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Abstract 

Cardiovascular disease contributes significantly to global morbidity and mortality 

and is particularly prevalent among individuals with Type 2 diabetes, which is 

thought to in part be due to the association between diabetes and the metabolic 

syndrome.  Traditional cardiovascular risk prediction scores perform well in the 

general population but their use in people with Type 2 diabetes is limited as they are 

thought to underperform in high risk groups.  Indeed, the use of any risk prediction in 

people with Type 2 diabetes is a point of discussion among clinicians as people with 

diabetes are thought by some to be at immediate high risk of CVD, whereas others 

view them as having a degree of modifiable risk which can be addressed using risk 

prediction.  In the general population, novel markers such as cIMT and carotid 

plaque, as well as other potential biomarkers of cardiovascular risk, have been 

explored as possible adjuncts to risk scores in the prediction of cardiovascular 

disease.  The evidence for their use in general populations has been established, 

although there have been no firm conclusions with regard to recommendations for 

their use, which is partly due to the high degree of variability in cIMT measurement.  

However, the evidence for their use in people with Type 2 diabetes is sparse, despite 

the use of such markers as surrogate CV endpoints in clinical trials.    

This thesis aimed to describe the frequency, distribution and change of cIMT and 

carotid plaque, as well as to explore the relationship of cIMT and carotid plaque with 

cardiovascular risk factors, prevalent cardiovascular disease and future 

cardiovascular events in older people with Type 2 diabetes.  The association between 

cIMT, carotid plaque and other novel risk markers was also explored.   

The analysis was performed using data from the Edinburgh Type 2 Diabetes Study 

(ET2DS).  This study is a large, prospective cohort study of 1066 men and women 

with Type 2 diabetes, aged 60-75 years at recruitment, living in Edinburgh and the 

Lothians.  cIMT and carotid plaque were measured at year 1 follow up of the study.  

Variables concerning cardiovascular risk factors used in this thesis were obtained 
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from the data collection performed at baseline and year 1.  A mean of 3.5 years of 

follow up was available for analysis and is complete for the baseline cohort as data 

linkage was performed.   

Mean values of cIMT in the ET2DS were comparable with other studies of cIMT in 

people with Type 2 diabetes and may indeed be higher than cIMT in the general 

population.  Measurement of cIMT by the sonographer was comparable with 

computer aided measurements.  Increasing cIMT was independently associated 

(although only modestly) with increasing age, male sex and raised systolic blood 

pressure.  Mean cIMT was associated with prevalent vascular disease and was 

predictive of incident global cardiovascular events and coronary artery events (but 

not stroke) over and above UKPDS risk factors, although the clinical impact of this 

on the reclassification of vascular risk (as demonstrated by net reclassification index 

(NRI)) was limited.  

There was a high prevalence of carotid plaque, and in particular “high risk” plaque, 

in the ET2DS.  Different measures of carotid plaque were independently associated 

with several cardiovascular risk factors.  Carotid plaque thickness was independently 

associated, albeit modestly, with increasing age, male sex, duration of diabetes and 

hypertension, plaque score with increasing age, hypertension, smoking and low BMI, 

and high risk plaque with hypertension and low BMI.  All measures of carotid plaque 

were associated with prevalent vascular disease.  However, despite these 

associations, carotid plaque did not have any additional predictive value for incident 

cardiovascular events over and above UKPDS risk factors.   

Finally, measures of cIMT and carotid plaque in the ET2DS were associated with the 

biomarkers ankle brachial index (ABI) and NTproBNP.  In addition these markers 

were significantly higher in those individuals with prevalent vascular disease, 

suggesting a more extensive exploration of the association of these markers in 

relation to cardiovascular disease in the ET2DS may be warranted.   
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Summary 

cIMT and carotid plaque are modestly associated with traditional cardiovascular risk 

factors and prevalent cardiovascular disease in older adults with Type 2 diabetes.  

cIMT has been shown to be predictive of incident events while carotid plaque was 

not, in people with Type 2 diabetes, over and above traditional cardiovascular risk 

factors, although its impact on risk reclassification may only be small.  Further 

evidence is required from the longer follow up of the ET2DS before firm conclusions 

can be drawn on the usefulness of cIMT and carotid plaque as risk markers in people 

with Type 2 diabetes.  In addition, large collaborative studies could be used to further 

explore the relationship of carotid plaque, and change in cIMT with incident 

cardiovascular events, as well as exploring the additive effect of cIMT and plaque on 

risk prediction.   
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Chapter 1: Cardiovascular Disease, Diabetes 
and Carotid Ultrasound 

 

Introduction 

In 2008, the World Health Organisation (WHO) stated that cardiovascular disease 

(CVD) is the leading cause of morbidity and mortality worldwide, as well as the 

leading cause of death in people with Type 2 diabetes (WHO 2008).  Although there 

is now considerably greater awareness and improved management of both modifiable 

vascular risk factors and acute vascular events, following decades of research, 

cardiovascular disease remains an extensive burden on health care systems.  As is the 

case for many other major medical conditions, restrictions imposed upon health care 

funding in many countries means that there must be an element of patient selection 

when prescribing both pharmaceutical and non-pharmaceutical management plans 

for cardiovascular disease.  Methods for predicting who might be at a greater 

cardiovascular risk, and therefore gain the most benefit from early intensive 

management (the most economically and medically beneficial strategy), range from 

highly invasive imaging procedures to non-invasive cardiovascular risk scores.  

However, none of these methods alone currently provide an accurate estimation of 

risk which is suitable for use in every patient and indeed, many events occur in 

people in whom risk was not identified as being raised (Taylor 2002).  This has led to 

increasing interest in the use of ‘novel’ risk markers in the prediction of events.  

Non-invasive markers of vascular risk, including carotid intima media thickness and 

carotid plaque, have recently been cited as having the potential to improve risk 

prediction over and above traditional risk scoring (such as Framingham scores) in the 

general population (Calonge N, Petitti DB et al. 2009; Nambi V, Chambless L et al. 

2010; Simon A, Megnien JL et al. 2010; Nambi V, Chambless L et al. 2012; Peters 

SAE, den Ruijter HM et al. 2012).    
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An additional growing burden upon health is Type 2 diabetes (T2DM). As well as 

the damage this chronic disease inflicts upon the renal, visual and neurological 

systems, Type 2 diabetes confers an increased cardiovascular risk over and above 

that of people without diabetes.  Those with Type 2 diabetes more frequently present 

with vascular disease at an earlier age and often present with advanced disease at 

diagnosis due to the silent damage inflicted upon vessel walls by hyperglycaemia and 

the effects of established vascular risk factors that usually accompany a diagnosis of 

T2DM.  However, there remains controversy as to whether Type 2 diabetes should 

be considered a risk equivalent for CVD (Haffner, Lehto et al. 1998) or a risk factor 

for CVD (Wong ND, Glovaci D et al. 2012; Sattar N 2013).  If it is considered a risk 

equivalent, individuals should immediately be classed as high risk and treated as 

such.  However, if it is to be considered as a risk factor for CVD, there is still a 

spectrum of risk and individuals could arguably be characterised in a similar way to 

the general population in terms of cardiovascular risk management.    

Traditional risk scores that are used to predict incident cardiovascular events have 

largely been developed in people initially free of such events in the general 

population and as such, are thought to be less accurate for people with Type 2 

diabetes.  As in the general population, there is also an opportunity to use markers 

such as cIMT and carotid plaque in the evaluation of cardiovascular risk in people 

with T2DM.  However the use of these markers in people with Type 2 diabetes is 

less well documented than in the general population.  The United States Preventive 

Services Task Force (USPSTF) statement recently published (United States 

Preventative Services Task Force 2009), stated that whilst there was some evidence 

for the use of cIMT in risk prediction, more evidence for its use in people with 

diabetes was required. 

This thesis aims to explore cIMT and carotid plaque in a large population based 

cohort of older people with Type 2 diabetes, assessing their relationship with 

traditional cardiovascular risk factors and prevalent cardiovascular disease, as well as 

other novel markers of vascular risk; and to assess the ability of both cIMT and 
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carotid plaque to predict future vascular events in this group.  It will also address 

methodological issues around the measurement of cIMT in an epidemiological study.  

The introductory chapter provides a review of the current literature regarding 

cardiovascular disease, Type 2 diabetes and carotid ultrasound; the second chapter  

describes the specific aims and objectives of this thesis; Chapter 3 describes the 

methodology used in this thesis; Chapters 4,5 and 6 will describe descriptive, cross 

sectional and longitudinal analysis results; and Chapter 7 will be a discussion of the 

results in the context of current literature, with  recommendations for further 

research.   

 

1.1 Cardiovascular disease 

 Definition & frequency in the UK 1.1.1

Cardiovascular disease is defined as a disease process which affects the structure and 

function of the heart, arteries and veins (WHO Regional Office for Europe 2012) .  

This includes outcomes such as myocardial infarction, angina, stroke, transient 

ischaemic attack (TIA) and intermittent claudication amongst many others.  There 

are several terms that are used to describe different aspects of CVD, the most 

common of which are coronary heart disease, coronary artery disease, 

cerebrovascular disease and peripheral arterial disease.  Whilst the common 

underlying pathology of these diseases is the process of atherosclerosis, each term 

describes a distinct anatomical location, reflecting the specific vessels and organs 

involved.  Coronary heart disease and coronary artery disease commonly describe 

atherosclerotic disease of the coronary arteries and includes outcome events such as 

myocardial infarction and angina.  Cerebrovascular disease refers more specifically 

to disease affecting the cerebral arteries, and includes stroke and transient ischaemic 

attacks (TIA) as outcomes, whilst peripheral arterial disease refers specifically to 

diseases of the arteries of the limbs, in particular, the lower limbs.  Intermittent 

claudication is the chief symptom of peripheral vascular disease.  The term 

cardiovascular disease is frequently used as an umbrella term to describe these 
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different groups, and there can be some confusion regarding the specific diseases 

being referred to.   

For the purposes of this thesis, the terms coronary artery disease and 

cerebrovascular disease will be adopted to describe myocardial infarction (MI) & 

angina, and stroke & TIA respectively, while the term cardiovascular disease will 

refer to coronary artery disease and cerebrovascular disease as a group. 

In 2010, the estimated prevalence of CVD in Scotland was 16.3% for men and 14.0% 

for women (of all ages), as reported in the British Heart Foundation Coronary Heart 

Disease Statistics 2012 (Townsend N, Wickramasinghe K et al. 2012), using data 

from the Scottish Health Survey 2010.  Figures for men and women in England are 

reported as 13.6% and 13.0% respectively (using data from the Health Survey 

England 2006).  Figure 1-1 describes the prevalence of CAD, MI, angina, and stroke 

that were estimated by the Scottish Health Survey 2010. 

Figure 1-1 Prevalence of cardiovascular disease in Scotland 2010 (%) (Source: Scottish Health 

Survey 2010) 
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Due to general improvements in risk factor management, the incidence of myocardial 

infarction is reducing in the UK.  In Scotland, there was a 25% reduction in the 

incidence of MI in the period 2000 – 2009 (figure 1-2).  However, incidence remains 

higher in men than in women, although the difference between the sexes lessens with 

increasing age.  In 2009, incidence of myocardial infarction was 255 per 100,000 per 

year in Scottish men and 113 per 100,000 in Scottish women.  There are comparable 

data for England in the years 2005-2007, which also highlights the ongoing North-

South divide in vascular disease, with the incidence of MI 20% higher in Scottish 

men and 35% higher in Scottish women than their English counterparts (Townsend 

N, Wickramasinghe K et al. 2012). 

Figure 1-2 Age standardised incidence rate of myocardial infarction (per 100,000/year) in Scotland 

(Source: BHF CHD statistics, 2012) 
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men, incidence was 178 per 100,000 per year and in English women it was 139 per 

100,000 per year.   

Figure 1-3 Age standardised incidence rate of stroke (per 100,000/year) in Scotland (Source: BHF 

CHD statistics, 2012) 
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Figure 1-4 Age standardised incidence of Angina (per 100,000 per year) in 2009 (Source: BHF CHD 

statistics, 2012) 
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Some of the main sources of endothelial injury are blood pressure associated shear 

stress, elevated low density lipoprotein (LDL) cholesterol, chemical toxins in 

cigarette smoke, reduced high density lipoprotein (HDL) cholesterol, insulin 

resistance and glycosylated end products produced in diabetes (Fuster 1994; Epstein 

and Ross 1999; Zaman, Helft et al. 2000).   

The initial changes seen in artery walls are commonly known as “fatty streaks”.  

These appear as white streaks in the artery wall and are due to the presence of 

cholesterol containing macrophages – foam cells – in the sub endothelial layer of the 

vessel wall.  The driver behind the presence of foam cells in the artery wall is the 

deposition of LDL molecules within the endothelium.  Endothelial cell morphology 

at sites of turbulent blood flood makes the endothelium more permeable to molecules 

such as LDL, leading to a higher propensity to lesion formation.  Raised LDL levels 

also lead to increased uptake of LDL into the endothelium.  The LDL molecules can 

become oxidised and cause direct damage to the surrounding wall tissue, promoting 

an inflammatory response as well as reducing the production of nitric oxide (a potent 

vasodilator).  The production of pro-inflammatory molecules by the endothelial cells 

causes monocytes to be activated in response to the inflammation and invade the 

wall, where macrophage differentiation occurs.  The macrophages then ingest the 

highly modified oxidised LDL molecules, and gradually enlarge, becoming known as 

foam cells as this process continues (Lusis AJ 2000).    

The inflammatory process is further promoted by the death of the foam cells and so 

the cycle continues, with proliferation and migration of smooth muscle cells from the 

tunica media to the intima in response to cytokines released from damaged 

endothelial cells.  The smooth muscles cells migrate to the intimal layer and 

proliferate, and generate excess extra-cellular matrix which produces a fibrous lesion 

in the artery wall (Lusis AJ 2000).  Platelets are also attracted by the ongoing 

endothelial damage and they too release growth factors which can also result in the 

migration and proliferation of local smooth muscle cells (Willerson JT, Yao SK et al. 

1991; Ross R 1993; Rosenfeld ME and Pestel E 1994).  A low HDL cholesterol level 
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can exacerbate the deposition of LDL cholesterol in the endothelium.  The main 

function of HDL cholesterol is to remove cholesterol from tissues and return it to the 

liver, where it is excreted in bile.  If HDL cholesterol levels are reduced, LDL 

cholesterol can continue to promote uptake of cholesterol into tissues unopposed. 

As the process of atherosclerosis progresses, the early arterial wall changes begin to 

extend.  Further inflammatory changes lead to plaque development and the 

subsequent changes associated with the plaque can lead to complete occlusion of the 

artery, with infarction of the tissue supplied by the artery. The altered smooth muscle 

cell function leads to the formation of a fibrous cap over the lesion and it is at this 

point that the lesion can protrude into the lumen of the artery.  Matrix 

metalloproteinase production is altered, leading to a remodelling of the artery wall, 

and compensatory dilatation of the artery, until plaque stenosis reaches 40-50%, at 

which point dilation can no longer compensate (Glagov S 1994; Godin D, Ivan E et 

al. 2000; Hall HA and Bassiouny HS 2012).    Plaque stability is related to plaque 

structure.  More stable plaques tend to have smaller lipid cores, thicker fibrous caps 

and fewer inflammatory cells.  Those plaques that are prone to rupture and are less 

stable tend to have large lipid cores, thin fibrous caps, more inflammatory cells 

(Zaman, Helft et al. 2000; Davies, Rudd et al. 2004).  

Angina and myocardial infarction  

When an individual with coronary atherosclerosis exercises or is under emotional 

stress, the oxygen demand of the myocardium increases but the narrowed vascular 

lumen restricts the volume of oxygenated blood that can be carried to the tissues, 

resulting in ischaemia in the myocardial tissue (Fuchs RM and Becker LC 1982).   

As the individual rests, oxygen demand reduces and the available supply of 

oxygenated blood is again adequate and so chest pain resolves.  The tissue is not 

usually damaged and can return to normal function.  The manifests clinically as 

angina - the classical symptoms of which are exertional chest pain or chest tightness 

and in some cases, autonomic symptoms associated with the chest discomfort, such 

as nausea and light headedness.  Recovery can be aided by the use of vasodilatory 
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drugs such as nitrates and in the case of recurrent severe episodes, coronary artery 

stenting or bypass grafting can be implemented to return blood flow to near normal.  

This predictable pattern of angina is typically referred to as stable angina.  However, 

in some cases, chest pain can occur at rest or at a lesser level of exertion than usual.  

Angina symptoms may also worsen over a short period of time.  This is known as 

unstable angina and is a higher risk entity than stable angina.  It is usually the effect 

of an unstable plaque rupturing and further restricting the lumen.  If left untreated, it 

is more likely to lead to myocardial infarction.  Unstable angina can be identified as 

one sub classification of the acute coronary syndrome (Newby DE, Grubb NR et al. 

2014) .  

 As an atherosclerotic plaque evolves, plaque rupture and clot formation are 

common.  If the contents of the plaque are dispersed or a portion of thrombus 

becomes separated, embolisation to the coronary arteries can occur.  If the embolus is 

of sufficient diameter, there can be complete occlusion of the coronary artery.  The 

supply of oxygenated blood to the myocardium is completely restricted and this 

results in infarction of the tissue (Newby DE, Grubb NR et al. 2014).  The infarcted 

tissue becomes necrotic and will release its contents e.g. cardiac enzymes such as 

troponin and creatinine kinase (Thygesen, Alpert et al. 2012).   This damage to the 

tissue is irreversible and can be fatal if a large portion of the myocardium becomes 

dysfunctional.  Thrombolysis or primary percutaneous interventions offer the best 

chance of recovery as they can restore blood flow to near normal (Newby DE, Grubb 

NR et al. 2014).  Typical symptoms include a severe and intractable central crushing 

chest pain, often with radiation to the left arm or jaw.  The pain does not resolve with 

rest and may be accompanied by a sense of impending death, nausea and vomiting. 

TIA and stroke  

Transient ischaemic attacks are characterized by temporary weakness or other 

neurological symptoms.  They are commonly the result of small emboli from plaque 

in the carotid arteries or thrombus from the heart (as a result of atrial fibrillation) 

being carried to the distant cerebral circulation.  In some cases, an almost complete 
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occlusion of the carotid arteries by plaque can cause such narrowing that the blood 

flow to the cerebral tissue is markedly reduced.  There is usually spontaneous 

resolution of the interruption to blood flow and so there is usually only ischaemia of 

the cerebral tissue and not complete infarction.  As a result, the neurological 

dysfunction normally resolves spontaneously.  However, risk factor management will 

be necessary following an event to prevent further episodes (Langhorne P 2014).   

Like TIAs, the pathology underlying a stroke is usually embolism of a thrombus 

from the heart or carotid arteries, or in some cases, massive haemorrhage from a 

cerebral aneurysm or other vascular abnormality. Cerebral blood flow is usually 

completely obscured and cerebral tissue will be damaged irreversibly after 3 hours of 

oxygen deprivation.  As such, in the case of ischaemic stroke only (thrombolysis is 

contraindicated in haemorrhagic stroke), thrombolysis is not given after 4.5 hours as 

it cannot reverse any damage that has occurred (Langhorne P 2014).   

 Diagnosis 1.1.3

Angina  

During periods of chest pain, angina can be diagnosed on a 12 lead ECG as ST 

segment depression in any lead.  Exertional chest pain can be elicited during exercise 

stress testing.  Patients undergo ECG whilst performing progressive exercise 

(walking) on a treadmill and the appearance of ischaemic changes (ST segment 

depression) during exercise can be diagnostic of angina.  This test can also be used to 

demonstrate the severity of disease in people with known angina. If stress testing is 

not conclusive, more invasive diagnostic testing may be required (Newby DE, Grubb 

NR et al. 2014).  Coronary artery angiography can reveal any narrowing of the artery 

lumen and can be used to diagnose the site and extent of obstruction, allowing 

stenting to be undertaken (Newby DE, Grubb NR et al. 2014). 

Myocardial infarction  

Myocardial infarction usually presents with a history of acute, unremitting and 

unresolving central, crushing chest pain that may or may not radiate to the left arm 
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and/or jaw.  There may also be complete circulatory collapse associated with cardiac 

arrest (Newby DE, Grubb NR et al. 2014).  The ECG during myocardial infarction 

typically displays ST segment elevation, representing infarction of the myocardial 

tissue.  Current diagnostic standards include the measurement of troponin-I or 

troponin-T - subunits of the cardiac enzyme troponin.  Any elevation of troponin 

(according to individual lab standards) indicates damage to the myocardium and can 

be diagnostic of an MI (SIGN 93 2013).  Angiography may be necessary to identify 

occlusions and is usually undertaken as part of the primary treatment of myocardial 

infarction.  Primary percutaneous intervention is used as a first line treatment in 

many health boards, including NHS Lothian.  Angiography will demonstrate a 

complete occlusion of one or more of the coronary arteries.  Angioplasty and/or 

stenting may be carried out depending on the severity of disease (Newby DE, Grubb 

NR et al. 2014). 

In epidemiological studies and clinical trials, systematic coding of 12 lead ECGs, 

such as Minnesota coding (Prineas RJ, Crowe RS et al. 1982) are often used to 

identify changes specific to angina and MI.  In addition, tools such as the Rose chest 

pain questionnaire can be used to elicit further information regarding coronary artery 

disease (Rose G, McCartney P et al. 1977). 

TIA  

Transient ischaemic attacks usually present with a history of short lived, self-limiting 

rapid onset neurological deficits, which can result in temporary numbness, weakness 

or paralysis of the limbs or face.  In addition, if the retinal vessels, optic radiation or 

visual cortex are affected, there may be a temporary visual defect.  Following a 

diagnosis of suspected TIA, a brain CT can rule out any cerebral abnormalities and 

carotid ultrasound is performed looking for evidence of carotid stenosis or plaque 

(NICE CG68 2008).  However, CT is often normal and carotid ultrasound tends to 

provide more useful information. 
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Stroke 

Like a transient ischaemic attack, acute stroke presents with rapid onset of numbness, 

weakness or paralysis of the limbs and/or face.  Depending on the location of the 

cerebral ischaemia, there may be paralysis of an entire side of the body or it may be 

limited just to the face.  Symptoms tend not to resolve spontaneously as there is 

infarction of the cerebral tissue, and as a result, the neurological deficit may be long 

term.  CT imaging of the brain is important for management of an evolving stroke.  

Ischaemic and haemorrhagic strokes have differing appearances on CT (NICE CG68 

2008)    

 Traditional cardiovascular risk factors 1.1.4

As well as the accepted non-modifiable risk factors of age, gender and ethnicity, the 

major modifiable environmental cardiovascular risk factors for CVD include 

hypertension, dyslipidaemia, obesity, smoking, and physical inactivity, in addition to 

diabetes.   

Age, gender & ethnicity 

Age is one of the major non-modifiable risk factors for cardiovascular disease with 

rate of disease increasing steadily across increasing age groups in both men and 

women (Castelli WP 1984; Tunstall-Pedoe H, Kuulasmaa K et al. 1994; Rich-

Edwards JW, Manson JAE et al. 1995).  The additive effect of vascular stress and 

other cardiovascular risk factors on the vessel wall is thought to contribute to the 

effect of age on vascular risk. Men are more likely to develop coronary artery disease 

than women (Jousilahti P, Vartiainen E et al. 1999), although once women reach the 

menopause, the difference between the sexes attenuates (Pappa T and Alevizaki M 

2012). Several theories have been postulated for this, including that either oestrogen 

is a protective factor for CAD, or that testosterone increases the risk for CAD (Pappa 

T and Alevizaki M 2012), however, there is still no clear answer to this question.  

Those from certain ethnic backgrounds are also known to be at higher risk of CVD 

than those from other backgrounds, including an increased prevalence of CAD in 

people of Indian and Pakistani backgrounds (6% and 8% respectively) compared to 
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other people living in the UK, who were not born in the UK (Townsend N, 

Wickramasinghe K et al. 2012).  In the UK, both men and women of South Asian 

origin had a higher risk of CAD and stroke than European people (Chaturvedi 2003) 

and people of Afro-Caribbean origin had a reduced risk of CAD but an increased risk 

of stroke when compared to European residents.  This may be due in part to higher 

levels of glucose intolerance, central obesity, fasting triglycerides and insulin levels 

in South Asians when compared with Europeans (McKeigue PM, Shah B et al. 

1991).  This is also seen in people of Afro Caribbean descent; however, their levels 

of LDL cholesterol and triglycerides are lower than that of Europeans. Black 

Caribbean, South Asian, Pakistani and Bangladeshi men have a higher prevalence of 

diabetes (Townsend N, Wickramasinghe K et al. 2012), supporting the theory that 

ethnic differences may be influenced by differences in insulin resistance and 

endothelial dysfunction (Chaturvedi 2003).  

Hypertension, dyslipidaemia and smoking 

The three most “traditional” cardiovascular risk factors are hypertension, smoking 

and dyslipidaemia.  Hypertension is prevalent throughout the UK.  The Scottish 

Health Survey (2010) revealed that 35% of men and 30% of women in Scotland had 

hypertension (defined as systolic blood pressure >140mmHg or diastolic blood 

pressure >90mmHg), comparable with rates in England (Townsend N, 

Wickramasinghe K et al. 2012).  On a meta-analysis of data from over 1 million 

subjects, the Prospective Studies Collaboration in 2002 revealed that each 20mmHg 

rise in systolic blood pressure (equivalent to 10mmHg increase in diastolic blood 

pressure) CAD risk doubles for adults aged 40-69 years (Prospective Studies 

Collaboration 2002). Essential hypertension is a complex condition and the 

pathophysiology is not fully understood.  Exposure of the vessel wall to raised 

arterial pressure promotes the formation of atheromatous lesions which in turn 

increase the risk of vascular events such as MI or stroke.  Therefore, the aim of 

management is to reduce blood pressure.  NICE guidelines recommend a target blood 

pressure of 140/90mm (NICE CG127 2011) while in those with Type 2 diabetes, 
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target blood pressure is tighter, with a target systolic pressure of <130 and target 

diastolic pressure of <80 (SIGN 116 2010).   

Dyslipidaemia is a term that is usually used when referring to hyperlipidaemia 

(raised total cholesterol, LDL cholesterol or triglycerides), with the exception of 

HDL cholesterol which is abnormal when reduced.  There are several factors which 

are known to disrupt lipid levels.  Cholesterol production occurs primarily in the 

liver, but dietary intake and lifestyle factors can also contribute.  Increased 

consumption of lipids such as saturated fats, and reduced levels of physical activity 

and genetic factors can lead to raised plasma lipid levels.  Additionally, insulin 

resistance has also been linked with altered blood lipid levels, including raised 

triglyceride levels and low HDL levels (Garg A 1996).  In terms of the association 

between dyslipidaemia and cardiovascular disease risk, the Prospective Studies 

Collaboration identified an independent positive association between total 

cholesterol and ischaemic heart disease, but not stroke (Prospective Studies 

Collaboration 2007).  This relationship persisted at all levels of blood pressure.  

There is also a strong body of evidence that statin use can reduce the occurrence of 

vascular outcomes (Taylor F, Huffman MD et al. 2013), supporting a role of 

dyslipidaemia in the development of cardiovascular disease. 

The association between smoking and cardiovascular disease is well described.  The 

effect of smoking on the endothelium encourages the development of atherosclerotic 

plaque.  A 50 year study of the relationship between smoking and cause specific 

mortality (commenced in 1951 following case control studies that highlighted a 

possible link between cigarette smoking and lung cancer) highlighted the increased 

mortality rate for ischaemic heart disease associated with smoking (Doll, Peto et al. 

2004).  Men who continued to smoke had an age standardized mortality rate of 10.01 

per 1000men/year for IHD, compared with 6.19 per 1000 men/year for lifelong non-

smokers, whilst former smokers were in between with a mortality rate of 7.61 per 

1000 men per year.  A similar trend was seen for current smokers versus never 

smokers for cerebrovascular disease (4.32vs2.75 per 1000men/year respectively).  
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An increase in mortality rate was also seen for both IHD and CVD as the number of 

cigarettes smoked increased (Doll, Peto et al. 2004).  The prevalence of cigarette 

smoking in Great Britain has decreased substantially over the decades.  From 1972-

1994, prevalence in men decreased from 52% to 28%, and in women, from 41% to 

26%, and indeed has continued to fall, albeit at a slower rate.    More recent figures 

from 2010 estimate the prevalence of cigarette smoking in the UK to be 21% for men 

and 20% for women (Townsend N, Wickramasinghe K et al. 2012). 

Lifestyle (diet and activity) and obesity 

Lifestyle factors also play an important role in the development of cardiovascular 

disease, including diet and physical activity.  A diet high in saturated fat and salt, and 

low in fibre, fruit and vegetables can lead to hypercholesterolaemia, hypertension 

and a greater risk of cardiovascular disease (Townsend N, Wickramasinghe K et al. 

2012).  Excessive calorie intake leads to obesity, whereas expending excess calories 

through physical exercise prevents the development of obesity and overweight.  The 

first study which demonstrated a link between level of activity and cardiovascular 

risk, published over 5 decades ago by Morris et al, demonstrated that those people 

with more physically demanding jobs such as bus conductors or postmen, had a 

lower rates of cardiovascular disease (Morris, Heady et al. 1953).  Initial limitations 

of the study, such as confounding by obesity and other vascular risk factors, were 

later accounted for and Morris et al were able to demonstrate the cardioprotective 

nature of physical activity (Morris, Chave et al. 1973).  More recently, Myers et al 

demonstrated that exercise capacity was predictive of all-cause mortality (Myers, 

Kaykha et al. 2004).   

Obesity is an independent risk factor for cardiovascular disease (Poirier and Eckel 

2002; Poirier, Giles et al. 2006), as well as being a major factor in the development 

of Type 2 diabetes and other vascular risk factors such as hypercholesterolaemia and 

hypertension (Townsend N, Wickramasinghe K et al. 2012).  Mean body mass index 

(BMI) has increased over the past 30-40 years, a combination of both reduced 

physical activity and change in diet (Butland, Jebb et al. 2007).  In the 1960s and 
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early 1970s, both men and women largely had a BMI within the ‘normal range’ of 

20-25 but by the early 1990s, the mean BMI was above 25 and has continued to 

increase, to such an extent that by the 2050, it is estimated that 60% of UK men and 

50% of UK women will be obese (Butland, Jebb et al. 2007).  Childhood obesity is 

also a growing problem, bringing with it the increased burden of diabetes and its 

associated risks.  Prevalence of both overweight and obese children has increased in 

English children from 1974 to 2003 (Stamatakis, Primatesta et al. 2005).   

 Cardiovascular risk management & assessment 1.1.5

Primary and secondary prevention  

Despite the many manifestations of cardiovascular disease, the overall management 

of these conditions has a common theme.  The primary aim is to reduce exposure to 

cardiovascular risk factors and prevent events.  Blood lipids, blood pressure and 

smoking are the major risk factors to target and these can be tackled with a 

combination of lifestyle adaptation and medication.  Primary prevention is the 

management of cardiovascular risk factors in someone with no prior history of 

cardiovascular disease (SIGN 97 2007).  The aim of primary prevention is to educate 

patients with regards to diet, lifestyle and potential medical intervention, in order to 

stop them having a first event. In Scotland, SIGN Guideline 97 provides information 

and advice for clinicians initiating primary prevention (SIGN 97 2007). Control of 

blood pressure, blood lipids, platelet function and lifestyle factors such as smoking 

cessation are the main stay of primary prevention of CAD.  Statins are the mainstay 

of the management of elevated plasma cholesterol, and anti-hypertensive agents such 

as beta blockers and ACE-inhibitors among many others are used to reduce blood 

pressure.  Lifestyle interventions to reduce smoking are available, including the use 

of nicotine replacement therapy and newer pharmacological agents such as 

bupropione.  Aspirin had also been used as an anti-platelet therapy although the 

usefulness of this in primary prevention has been called into question recently 

following publication of data regarding the risk/benefit of aspirin (Antithrombotic 

Trialists' (ATT) Collaboration, Baigent C et al. 2009; Fowkes FR, Price JF et al. 

2010).  Another important aspect of primary prevention is the assessment of 
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cardiovascular risk with a view to optimising cardiovascular risk factor management.  

Risk scores, family history and current medical history are taken into account when 

assessing an individual’s risk of having a cardiovascular event.  Other methods of 

risk evaluation involving direct measurement of disease, for example coronary 

angiography and coronary artery calcium (CAC) determined by CT involve higher 

doses of radiation than for example ultrasound, and in the case of angiography is 

more invasive, and therefore may not be suitable investigations for risk prediction in 

general healthcare settings.  Interest has therefore increased in the use non-invasive 

measures of atherosclerosis, including the carotid intima media thickness.   

Secondary prevention is the management of cardiovascular risk factors, initiated after 

someone has a vascular event, with the aim of preventing a further event occurring.  

Additional medication may be added on top of current treatments and the importance 

of lifestyle modification is reinforced (SIGN 93 2013).  

Cardiovascular risk assessment scores  

Primary prevention describes managing cardiovascular risk factors before any 

cardiovascular events occur. Therefore, information regarding an individual’s future 

risk of events must be taken into consideration when considering how aggressive a 

strategy should be implemented. This is particularly desirable in a general population 

because included in that population are individuals who are at low risk, intermediate 

risk and high risk of vascular disease.  Subsequently, not all members require active 

risk factor management, whereas some require rather more intensive risk factor 

management.  In addition to guiding the correct management of individual patients, 

risk prediction also allows health systems to target expensive treatments to those who 

will gain the most benefit.   

Because the symptoms of cardiovascular disease usually only manifest once disease 

is significantly advanced, there is a need for cardiovascular risk prediction tools to 

use early markers of disease risk that are easily measurable, for example 

hypertension or dyslipidaemia.  Well established methods for predicting vascular risk 
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include the combination of known cardiovascular risk factors into risk prediction 

models or algorithms.  A variety of such risk scores have been developed and 

proposed for use in the general population, including the Framingham Risk Score 

(Anderson KM et al., 1991), SCORE (Conroy RM et al., 2003), ASSIGN 

(Woodward M et al., 2007) and QRISK2 (Hippisley-Cox J et al., 2007, Collins GS 

and Altman DG, 2010), among others.  These algorithms are based upon known 

cardiovascular risk factors, including age, sex, smoking status, diabetes status, total 

& HDL cholesterol and systolic blood pressure, and differ from each other primarily 

in the exact risk factors included in the model.  Although their non-invasive nature 

means they are often used in clinical practice, cardiovascular risk algorithms have 

been shown to be inaccurate in low risk populations and high risk populations, such 

as those people with diabetes (Brindle P et al., 2006).  Until recently, in the United 

Kingdom, the National Institute for Health and Clinical Excellence (NICE) 

recommended the use of the Framingham risk equation when evaluating individual 

patient risk in the general population, and following an update to their guidance did 

not recommend any particular score and left the selection of the appropriate tool to 

the clinician (Collins GS and Altman DG 2010).    However, the most recent NICE 

guideline for managing cardiovascular disease recommends the use of the QRISK2 

risk score when evaluating cardiovascular risk (NICE CG 181 2014) .   

Many of the traditional risk factors for cardiovascular disease discussed previously, 

as well as history of cardiovascular disease and diabetes are common features of 

many risk prediction algorithms.  As an example to illustrate the differences in 

choice of included predictors, listed in table 1-1 are the key factors considered in the 

four well known and commonly used risk scores: Framingham, QRISK2, ASSIGN 

and SCORE (Anderson KM, Odell PM et al. 1991; Conroy RM, Pyörälä K et al. 

2003; Hippisley-Cox J, Coupland C et al. 2007; Woodward M, Brindle P et al. 2007; 

Collins GS and Altman DG 2010).   
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Table 1-1 Example of predictor variables included in cardiovascular risk scores developed and used 

in the general population 

 Framingham QRISK2 ASSIGN SCORE 

OUTCOME CHD    

Age     
Sex     
Diabetes     

Smoking     

Number of cigarettes     

Systolic Blood Pressure     
Total Cholesterol     
HDL Cholesterol     

Cholesterol/HDL Ratio     

BMI     

Postcode     

Scottish Postcode     

Previous CVD     

History of angina/MI     

CKD     

AF     

Blood pressure treatment     

RA     

Family history of CHD/Stroke     

HDL=high density lipoprotein, BMI=body mass index, CVD=cardiovascular disease, MI=myocardial infarction, CKD=chronic 

kidney disease, AF=atrial fibrillation, RA=rheumatoid arthritis, CHD=coronary heart disease 

 

Alternative methods of risk prediction 

Although cardiovascular risk scores are effective in clinical practice, they do not 

capture the full extent of an individual’s risk, especially in lower or higher risk 

groups (Brindle P, Beswick A et al. 2006).  Therefore, researchers have turned to 

other methods to inform and improve current methods. The most prominent of these 

are non-invasive markers of cardiovascular risk.  Included in this category are 

physical markers such as carotid intima media thickness, carotid plaque, coronary 

artery calcium score and ankle brachial index (ABI).  Other potential additions to 

existing risk scores being considered include biochemical markers such as ABI, 

eGFR, albuminuria, IL-6, CRP, NTproBNP (Ridker PM, Rifai N et al. 2002; Weir 

MR 2007; Fowkes FG, Murray GD et al. 2008; Lee JK, Bettencourt R et al. 2012; 

Donfrancesco C, Palleschi S et al. 2013).  cIMT and plaque are easily assessed using 

carotid B mode ultrasound, and ankle brachial index can be measured using a hand 

held Doppler.   Coronary artery calcium score can be assessed using thoracic x-ray or 
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thoracic computed tomography (CT).  However, compared with other non-invasive 

markers, this carries a slightly greater risk to individuals due to the use of radiation.  

Because the main focus of this thesis is cIMT and carotid plaque, they will be 

discussed in more detail in section 1.3 of this chapter.  Novel biomarkers are 

discussed in the following section.   

 Novel cardiovascular biomarkers 1.1.6

Several other potential markers of vascular risk are being considered for use in 

vascular risk prediction.  These include estimated glomerular filtration rate (eGFR), 

microalbuminuria, interleukin-6 (IL-6), C-reactive protein (CRP) and N-terminal 

pro-brain natriuretic peptide (NTProBNP).  Ultrasound markers such as cIMT and 

carotid plaque will be discussed in detail in section 1.3 and 1.4 of this chapter. 

Ankle brachial index 

The ankle brachial index is a measure of peripheral arterial disease.  It is the ratio of 

the systolic pressure in the ankle to the systolic pressure in the arm.  As well as being 

an indicator of peripheral arterial disease, there is evidence that it is a marker of 

generalized atherosclerosis.  There is evidence of a relationship between ABI and 

vascular risk factors and prevalent vascular disease, as well as a prospective 

relationship between ABI and future vascular risk.  Newman et al found that in the 

older adult participants of the Cardiovascular Health Study (CHS) there was an in 

inverse relationship between ABI and vascular risk factors, with those with a lower 

ABI having higher levels of vascular risk factors (Newman, Siscovick et al. 1993).  

There was a similar pattern seen between ABI and prevalent subclinical and clinical 

CVD. Thus, those with a lower ABI had a greater cardiovascular risk, even those 

with only a modest reduction in ABI.  More recent data from the Edinburgh Artery 

Study demonstrated that ABI was predictive of cardiovascular events and mortality, 

independently of conventional cardiovascular risk factors (Leng, Fowkes et al. 1996; 

Wild, Byrne et al. 2006).  These findings have been replicated by other European 

studies (Ögren, Hedblad et al. 1993; Kornitzer, Dramaix et al. 1995; Hooi, Kester et 
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al. 2004; van der Meer, Bots et al. 2004).  More recently, a large meta-analysis by 

Fowkes et al was published and included data from over 48000 individuals.  It 

demonstrated that ABI may provide additional information over and above the 

Framingham risk score in prediction of cardiovascular events ((Fowkes FG, Murray 

GD et al. 2008).  Ankle brachial index has also been found to be similar to cIMT in 

terms of ability to predict future vascular risk and in fact combination of the two 

measures improve prediction (Price JF, Tzoulaki I et al. 2007).   

eGFR and microalbuminuria 

It has been established that individuals with chronic kidney disease (CKD) are more 

likely to die than develop renal failure, especially from cardiovascular disease (Keith 

DS, Nichols GA et al. 2004) and several recent studies also point to the estimated 

glomerular filtration rate (eGFR) as a marker of cardiovascular risk.  One study by 

Donfrancesco et al suggests that even a modest reduction of eGFR in a low risk 

general population can significantly increase the risk of incident cardiovascular 

disease and all-cause mortality (Donfrancesco C, Palleschi S et al. 2013).   A recent 

meta-analysis of 1 234 182 individuals from 21 different studies identified eGFR as 

being an independent predictor of all cause and cardiovascular mortality, with 

increasing hazard ratios as eGFR falls below 75mg/ml/1.73m2 (Chronic Kidney 

Disease Consortium 2010).   

Microalbuminuria, the excretion of albumin into the urine, has also been increasingly 

linked with cardiovascular disease.  Early work by Keen et al first described 

microalbuminuria in diabetic patients in 1969 (Keen H, Chlouverakis C et al. 1969).  

It was first linked to essential hypertension in 1974 by Parving et al, and in 1984, 

Mogensen et al published data  demonstrating that microalbuminuria could predict 

early mortality in maturity onset diabetes (Parving H-H, Mogensen CE et al. 1974; 

Mogensen CE 1984).  A 2007 review highlighted that there is evidence that 

microalbuminuria can risk prediction for CVD over and above traditional vascular 

risk factors (Weir MR 2007).  The Chronic Kidney Disease Consortium (2010) also 
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identified microalbuminuria as an independent predictor of both all cause and 

cardiovascular mortality (Chronic Kidney Disease Consortium 2010).   

Interleukin-6 

Interleukin-6 is a pro-inflammatory cytokine secreted by T cells and macrophages in 

response to infection and trauma.  Its potential as a marker of vascular risk has been 

discussed in recent studies.  Several published studies have described the relationship 

between circulating levels of IL-6 and risk of cardiovascular disease (Ridker PM, 

Rifai N et al. 2000; Danesh J, Kaptoge S et al. 2008; Sattar, Murray et al. 2009).  The 

results of the Rancho Bernardo Study, published in 2012, highlight a strong 

association between circulating IL-6 and all-cause, CVD, cancer and liver related 

mortality (Lee JK, Bettencourt R et al. 2012).  They demonstrated a CVD risk factor 

adjusted HR of 1.38 (95% CI, 1.16–1.65) for CVD mortality. Adjustment for CRP 

levels attenuated the effects somewhat but the association between IL-6 and CVD 

mortality remained statistically significant.  A study of 121 Japanese participants 

identified that IL-6 was a strong independent predictor of future cardiovascular 

events (HR 2.80 (1.34–5.83) for highest tertile of IL-6) (Nishida H, Horio T et al. 

2011).   

C reactive protein 

CRP is a general marker of inflammation.  Measurement of high sensitivity CRP 

(hsCRP) has been incorporated into several guidelines for the assessment and 

management of those suspected of having CVD.  The relationship between hsCRP 

and CVD in men and women has been assessed in several studies (Kuller LH, Tracy 

RP et al. 1996; Ridker PM, Cushman M et al. 1997).  Its use over and above 

traditional risk factors has also been assessed (Ridker PM, Rifai N et al. 2002).  

However, more recent evidence suggests that the role of CRP in the prediction of 

cardiovascular risk may not be clear cut.  In 2006, Sattar and Lowe highlight that 

while early studies may have demonstrated that hs-CRP was predictive of vascular 

events over traditional risk factors, more recent studies show a far less strong 

association (Sattar and Lowe 2006).  This, along with the short term variability in 
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CRP as well as the remaining questions regarding the causal role CRP plays lead 

them to conclude that the current focus should remain on traditional risk factors.   

NTproBNP 

Several studies have established the potential for NTproBNP (the pro-hormone 

fragment of brain-type natriuretic peptide secreted by the ventricular myocardium 

during ventricular stretch (Heart Protection Study Collaborative Group 2007) in the 

prediction of cardiovascular events.  A large study of 3199 individuals in the Heart 

Outcomes Prevention Evaluation (HOPE) Study (a secondary prevention population) 

assessed the incremental predictive value of a range of plasma biomarkers and found 

that while various inflammatory markers were related to future cardiovascular risk, 

the model containing NTproBNP as well as traditional cardiovascular risk factors 

was more predictive of future vascular events (HR1.72 per 1-SD change in 

NTproBNP) (Blankenberg, McQueen et al. 2006).  In a further study of 20536   

individuals in the MRC/BHF heart protection study, high NTproBNP levels were 

highly predictive of major cardiovascular events including MI, stroke and 

revascularisation (adjusted RR 2.26), coronary events (RR 3.09) and stroke (RR 

1.80) (Heart Protection Study Collaborative Group 2007).   

 

1.2 Type 2 diabetes and vascular disease  

Type 2 diabetes is a chronic condition characterised by hyperglycaemia, insulin 

resistance and relative insulin deficiency.  It occurs primarily in individuals aged 40 

years and above, in particular those who are overweight and obese.  As insulin 

resistance progresses, insulin production by the endocrine pancreas increases, to 

counter the effect.  Continual over-production of insulin leads to a failure of the 

pancreatic islet cells and plasma glucose levels begin to rise (Pearson ER and 

McCrimmon RJ 2014).  This is the stage at which Type 2 diabetes becomes clinically 

apparent, or detectable by laboratory tests, as blood glucose levels are no longer 

maintained in the normal range.  This can also be referred to as a relative insulin 
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deficiency as the balance between available insulin and the effect of insulin 

resistance is disrupted.  A clinical diagnosis of Type 2 diabetes most often occurs 

after years of subclinical hyperglycaemia and consequently, at the point of diagnosis, 

the long term damage to end organs has already been initiated.  Long term 

complications include diabetic nephropathy, neuropathy, retinopathy (microvascular 

complications) and an increased risk of cardiovascular disease (macrovascular 

disease), and due to the long subclinical phase of Type 2 diabetes, these 

complications may be somewhat advanced at the point of diagnosis.   

 Pathology of Type 2 diabetes 1.2.1

Type 1 and Type 2 diabetes demonstrate differing pathologies.  Type 1 diabetes is 

thought to result from autoimmune destruction of beta cells, which once reaching a 

critical mass loss, results in a symptomatic lack of endogenous insulin production, 

requiring exogenous insulin treatment (Atkinson, Eisenbarth et al. 2014).  

Previously, it was believed that the beta cell loss in Type 1 diabetes was complete 

but more recent work has demonstrated persistent residual C peptide secretion, 

suggesting that in some individuals, there are remaining beta cells that may retain 

some function (Keenan, Sun et al. 2010).  In contrast, Type 2 diabetes displays a 

spectrum of insulin resistance and relative insulin deficiency.  In the early stages of 

disease, the pancreas continues to produce insulin, and as such, the initial 

management can range from simple diet and lifestyle modification, to a variety of 

pharmacological interventions, including metformin, sulphonylureas and insulin, as 

well as non-pharmacological management.  However, once the disease has 

progressed to levels of insulin resistance that outweigh the physiological effect of the 

available endogenous insulin, despite lifestyle modification and oral hypoglycaemic 

agents, exogenous insulin therapy and insulin sensitising medications are often the 

only remaining option.  

Insulin resistance  

Insulin resistance is defined as the resistance of target tissues to the action of insulin.  

As food is digested and carbohydrates are broken down into smaller sugar molecules, 
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islet cells in the pancreas are stimulated to release insulin in response to both the 

elevated plasma glucose and the effect of gut hormones.  In normal glucose tolerant 

people, insulin then acts upon tissues such through insulin receptors, activating a 

complex signalling cascade which promotes the transport of the glucose receptor 

GLUT4 to the cell surface, which in turn allows the uptake of glucose into the cells 

via these receptors (Pearson ER and McCrimmon RJ 2014).  This reduces the plasma 

glucose concentration and as it continues to fall, insulin production in the pancreas 

also falls.  This, along with regulation of hepatic glucose production, maintains 

plasma blood glucose at normal levels (Pearson ER and McCrimmon RJ 2014).   In 

people with Type 2 diabetes, the same level of insulin is unable to exert the same 

effect on glucose levels and so the pancreas increases insulin production to 

compensate.  The pathology underlying insulin resistance is complex.  It is currently 

thought that there may be a genetic basis to insulin resistance and there is strong 

evidence in favour of this, with a 58% concordance of development of Type 2 

diabetes in twins (Newman B, Selby JV et al. 1987). 

Insulin resistance itself is related to a number of cardiovascular risk factors, 

including hypertension, central obesity and dyslipidaemia.  This constellation of 

conditions is often referred to as the Metabolic Syndrome (Pearson ER and 

McCrimmon RJ 2014).  Visceral obesity in particular seems to be associated with 

insulin resistance.  Intra-abdominal adipose tissue is metabolically active and 

produces cytokines such as TNF-α and IL-6, which disrupt the action of insulin in 

adipose tissue.  Other conditions in which insulin resistance is affected include 

infection, in which insulin resistance is also mediated by TNF-α.  Visceral adiposity 

is also associated with the development of non-alcoholic fatty liver disease (NAFLD) 

and leads to the production of excess free fatty acids which increase hepatic glucose 

production and can lead to insulin resistance.   

Insulin deficiency and pancreatic beta cell dysfunction 

The second component thought to underpin the pathology of Type 2 diabetes is a 

failure of the pancreatic beta cells in the islets of the pancreas.  As has been 
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previously discussed, the pancreatic pathology in Type 2 diabetes is not the same as 

that of Type 1 Diabetes, and whilst there is a failing of the pancreatic beta cells, there 

is rarely such a complete failure and most people with Type 2 diabetes continue to 

produce insulin in some quantity.  The resulting effect is a relative deficiency of 

insulin, as resistance to insulin causes a requirement for the pancreas to overproduce 

insulin to compensate for the increased demands to produce the same effect as in 

normal glucose tolerant individuals. However, many people with insulin resistance 

can continue to produce enough insulin to counteract the resistance without 

developing diabetes (Weyer C, Bogardus C et al. 1999) . An example of this which is 

often used is that of an obese person with insulin resistance who does not go on to 

develop diabetes (Gerlich JE 1999).  In the broadest terms, those who do go on to 

develop diabetes, the ability to produce insulin in response to resistance decreases 

with time due to a progressive loss of beta cell function.  At this point, insulin 

resistance and demand exceeds production, which results in hyperglycaemia and the 

development of diabetes (Buchanan TA 2001). 

The pathology underlying pancreatic beta cell insufficiency is not well understood.  

Several hypotheses have been put forward, including the effects of glucose toxicity 

and lipotoxicity on reduced beta cell mass.  One theory suggests that there is a failure 

of receptors in the pancreas that respond to rising glucose levels and so pancreatic 

beta cell mass does not increase in response (Kasuga M 2006).  However, there is 

believed to be more than just loss of beta cell mass.  The role of beta cell dysfunction 

in Type 2 diabetes has recently been reviewed by Ferrannini and Mari (Ferrannini 

and Mari 2014).  They highlight that in Type 2 diabetes, insulin resistance is 

associated with several beta cell function abnormalities.  Firstly, they suggest that 

there is increased fasting insulin secretion and total stimulated insulin output (as a 

result of hyperglycaemia) and that with time, there is a reduction in the total insulin 

output.  Further to this, reduction in glucose sensitivity of the beta cell is thought to 

be a key part of beta cell defect, and in addition, they highlight that a reduction in the 

incretin effect (increased insulin production in response to oral glucose loading) is 

another key facet of the pathology of Type 2 diabetes.  Other key deficits include a 
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reduction in the ability of the beta cells to respond rapidly to changes in glucose 

levels (rate sensitivity).  Ferrannini describe these changes as “predominantly 

functional and potentially reversible”,  

Resulting hyperglycaemia 

Hyperglycaemia is the resultant end product of insulin resistance and insulin 

deficiency.  As insulin resistance worsens and eventually, pancreatic insulin 

production reduces, blood glucose levels start to rise.  The effect of hyperglycaemia 

on body physiology is wide and varied and is responsible for many symptoms of 

diabetes, including polydipsia & polyuria, visual problems, fatigue, weight loss; poor 

wound healing or recurrent infections, dry mouth & skin; tingling in feet or heels, 

erectile dysfunction, cardiac arrhythmia, stupor, coma and seizures.  The classical 

triad of polydipsia, polyuria and polyphagia are usually the key symptoms of 

hyperglycaemia and are a common presentation of Type 1 diabetes, along with 

weight loss.  While acidosis is common at presentation in Type 1 (diabetic 

ketoacidosis), it is becoming increasingly so for those with Type 2 diabetes (hyper-

osmolar non-ketotic acidosis (HONK)).  Ketosis is usually absent in Type 2 diabetes 

as there is still some residual insulin production, which prevents lipolysis from 

occurring, leading to production of ketones (Pearson ER and McCrimmon RJ 2014).   

 Risk factors and frequency of Type 2 diabetes in the UK 1.2.2

There is no single identified trigger point for the development of Type 2 diabetes.  

Most commonly, there is a complex multifactorial pathway that leads to an eventual 

diagnosis.  A variety of lifestyle factors can precede the development of diabetes 

(table 1-2).  These risk factors are very similar to those of cardiovascular disease and 

the metabolic syndrome, a cluster of risk factors that put an individual at increased 

risk of cardiovascular disease, diabetes and liver disease.   
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Table 1-2 Risk Factors for Type 2 Diabetes 

Age > 45 years 

Obesity (especially central obesity) 

Impaired glucose tolerance 

Previous gestational diabetes  

Family history of diabetes 

Given birth to a baby weighing more than 9 pounds  

HDL cholesterol < 35mg/Dl 

Plasma triglycerides > 250 mg/Dl 

High blood pressure ≥140/90 mmHg 

Low activity level (exercising less than 3 times a week) 

Metabolic syndrome 

Polycystic ovarian syndrome 

Ethnicity 

 

In October 2011, the Quality and Outcomes Framework (QOF) provided statistics on 

the prevalence of diabetes (both Type 1 and Type 2) in the UK and these were 

reported by Diabetes UK (table 1-3).  In Scotland, the estimated prevalence of 

diabetes in adults over 17 years of age was 4.3% (n=223,494), with a UK average of 

4.45% for the period April 2010-March 2011.  NHS Lothian had a prevalence of 

3.67%, just below the Scottish and national averages (Quality & Outcomes 

Framework 2010-2011).  The prevalence of diabetes has increased in recent years, 

with prevalence in the UK in 2006 estimated at 3.54% (Diabetes UK), with a year on 

year increase evident from QOF data.  In 2004, the WHO estimated worldwide 

prevalence of diabetes for all ages in 2000 was 2.8% but they project that by 2030, 

this will have risen to 4.4% (Wild, Roglic et al. 2004).  Thus, it is evident that 

diabetes poses, and will continue to pose, a significant challenge for health care 

provision.   
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Table 1-3 Prevalence of Diabetes in the UK (Source: Diabetes UK) (Diabetes UK 2011) 

Country Prevalence Number of people 

England  5.5 % 2,455,937 

Northern Ireland  3.8 % 72, 693 

Scotland  4.3 % 223,494 

Wales  5.0 % 160, 533 

 

 Diagnosing Type 2 diabetes 1.2.3

The development of Type 2 diabetes occurs over a considerable period of time.  As 

insulin resistance worsens and pancreatic function begins to decline, patients often 

remain asymptomatic.  It is because of this that the diagnosis of Type 2 diabetes is 

most commonly made at a point of opportunistic screening, such as that done in GP 

practices, or when patients present to a hospital clinic with other medical problems.  

The presence of a raised glucose leads to follow up testing with an oral glucose 

tolerance test. Diagnosis in the UK is made following a fasting blood glucose of >7 

mmol/l or an oral glucose tolerance test OGTT of >11mmol/l 2 hours after glucose 

loading, in addition to symptoms of diabetes (World Health Organization 2006).  If 

fasting glucose is <7mmol/l but OGTT is between 7.8 and 11.1mmol/l, a diagnosis of 

impaired glucose tolerance is made.   In 2011, the WHO produced updated 

guidelines for the diagnosis of diabetes, stating that HbA1c can be used to diagnose 

type 2 diabetes in certain patient groups (World Health Organization 2011).  

However there are constraints on the patients in which this testing can be used and 

additional guidance regarding management in cases where HbA1c is not raised and 

yet there is still a clinical suspicion of diabetes.  

Although detection of Type 2 diabetes in this way can lead to diagnosis before 

symptoms appear, there can already be damage to the retina, kidneys and coronary 

arteries.  In some cases, an abnormality in these organs is what prompts testing for 

diabetes, for example the occurrence of myocardial infarction or in those with loss of 
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vision.  Occasionally, Type 2 diabetes presents acutely with the uncontrolled 

symptoms of diabetes.  These are: excessive thirst, polyuria, polydipsia, nocturia, 

fatigue, weight loss and non-healing wounds.  This is similar to the presentation of 

Type 1 Diabetes, but as discussed earlier, often there is no acidosis at diagnosis, 

although patients with Type 2 diabetes can present with similarly raised glucose 

levels. 

 Microvascular complications of Type 2 diabetes 1.2.4

The complications of Type 2 diabetes are manifest in many different anatomical beds 

and can be broadly categorised as microvascular, macrovascular and neuropathic.  In 

terms of cardiovascular disease, both microvascular disease and macrovascular 

disease are of importance.  The microvascular complications of Type 2 diabetes are 

most commonly manifest in the renal, retinal and nervous systems (Fowler MJ 

2008).   

Diabetic retinopathy 

Diabetic retinopathy is the most common microvascular complication of diabetes. 

Duration and severity of hyperglycaemia are the main factors underlying the 

development of retinopathy.  In addition, the UKPDS study published data 

suggesting that hypertension may also play a role in some patients with Type 2 

diabetes. In some cases, the development of retinopathy starts before a diagnosis of 

diabetes has been made (Fong DS, Aiello LP et al. 2004).  Aldose reductase, 

glycoproteins, oxidative stress and growth factors have all been implicated in the 

development of diabetic retinopathy (Fowler MJ 2008).   

Diabetic neuropathy 

Diabetic nephropathy is the leading cause of renal failure in the USA (Fowler MJ 

2008).  Similarly to diabetic retinopathy, almost 7% of people with Type 2 diabetes 

may have microalbuminuria at the point of diagnosis of diabetes (Gross JL, De 

Azevedo MJ et al. 2005).  Glucose control has strong associations with the 

development of nephropathy and good glycaemic control is an important part of 
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disease prevention.  In addition treatment with ACE inhibitors has been shown to 

reduce development of nephropathy in people with Type 2 diabetes but not those 

with Type 1 diabetes (Gerstein HC 2000; Gross JL, De Azevedo MJ et al. 2005).   

Diabetic neuropathy is another complication that is related to both the magnitude and 

duration of hyperglycaemia.  The American Diabetes Association describes 

peripheral neuropathy in diabetes as a diagnosis of exclusion (American Diabetes 

Association - Standards of Medical Care in Diabetes 2011).  Diabetic neuropathies 

can take a variety of forms, including sensory and autonomic neuropathy, and many 

people with neuropathy go on to undergo amputation as a result of the increased risk 

of foot ulceration and injury in cases of neuropathy.  They cause significant 

morbidity and affect many difference body systems, including the digestive tract and 

cardiac function in addition to sensory dysfunction (Fowler MJ 2008).   

 Macrovascular complications of Type 2 diabetes 1.2.5

The Task Force on Diabetes and Cardiovascular Diseases of the European Society of 

Cardiology (ESC) and of the European Association for the Study of Diabetes 

(EASD) published a guideline on diabetes and cardiovascular disease.   In this, they 

highlight that people with diabetes have a 2 to 3 times higher risk of developed 

coronary artery disease than those people without diabetes (Rydén, Standl et al. 

2007). They highlight that there is a difference in cardiovascular risk between people 

with Type 1 and Type 2 diabetes, noting that CVD caused 44% of mortality in 

people with Type 1 diabetes, compared with 52% in people with Type 2 diabetes 

(Morrish, Wang et al. 2001). 

Macrovascular complications of Type 2 Diabetes include coronary artery disease, 

stroke and peripheral vascular disease.  The pathology that underlies macrovascular 

disease in diabetes is atherosclerosis.  In those people with diabetes, development of 

atherosclerosis seems to be accelerated and several major factors have been 

postulated as possible mechanisms, including hyperglycaemia, dyslipidaemia and 

subclinical inflammation (Beckman, Creager et al. 2002; Mazzone T, Chait A et al. 
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2008).  Endothelial cells, smooth muscle cells and platelets can all be affected by 

these factors through a variety of mechanisms, resulting in endovascular injury.  

Endothelial production of nitric oxide is one of the key factors involved in vascular 

health.  Nitric oxide has a vital role in the control of vascular relaxation, through its 

promotion of vessel dilation (Moncada S, Palmer RM et al. 1991; Moncada S 1999).   

Additionally, nitric oxide plays a role in several other steps that are protective of the 

vessel wall.  It inhibits platelet activation, reduces leucocyte adhesion to the 

endothelium and subsequent migration into the vessel wall (which reduces 

inflammation) and lessens smooth muscle cell proliferation and migration (Moncada 

S, Palmer RM et al. 1991; Moncada S 1999; Verma S and Anderson TJ 2001).  In 

diabetes, nitric-oxide mediated vasodilation is impaired and nitric oxide mediated 

vasodilation is limited while platelet aggregation is increased (Fowler MJ 2008).   

Chronic subclinical inflammation has also been implicated in the development of 

both atherosclerosis and Type 2 diabetes.  The Hoorn Study investigated the link 

between endothelial dysfunction and low grade inflammation and cardiovascular 

mortality in people with Type 2 diabetes (de Jager J, Dekker JM et al. 2006).  The 

basis for the work they undertook was the commonly held belief that endothelial 

dysfunction and low grade inflammation can explain why deteriorating glucose 

tolerance is associated with cardiovascular events in those with Type 2 diabetes.   

The association between diabetes and the metabolic syndrome also plays a key role 

in the development of cardiovascular disease, as the major risk factors for Type 2 

diabetes are the same as those for cardiovascular disease.  People with Type 2 

diabetes have an increased risk of cardiovascular disease, such that people with 

diabetes and no previous history of myocardial infarction have as a high a risk of 

future myocardial infarction as people without diabetes who have a previous 

myocardial infarction (Haffner, Lehto et al. 1998).  This has led to Type 2 diabetes 

being considered by some to be a cardiovascular risk equivalent.   
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Metabolic syndrome  

Typically, individuals with Type 2 diabetes display a poorer cardiovascular risk 

factor profile than those in the general population.  The complex interplay between 

Type 2 diabetes, cardiovascular disease and the metabolic syndrome goes some way 

to explaining this phenomenon.  The metabolic syndrome is a group of risk factors 

that, collectively, lead to an increased risk of developing cardiovascular disease, 

Type 2 diabetes and liver disease.  The components necessary for a diagnosis of 

metabolic syndrome include: dyslipidaemia, increased body fat (in particular central 

obesity), insulin resistance and hyperglycaemia, fatty liver disease, hypertension, 

raised inflammatory and pro-thrombotic markers and endothelial dysfunction 

(Kalofoutis C, Piperi C et al. 2007).  Following initial work done in the late 1980s by 

Reaven (Reaven 1988) where he described “syndrome X”, the original theory has 

been extended to suggest that the underlying pathology of the metabolic syndrome 

lies in the presence of obesity, which leads to insulin resistance, however, the exact 

mechanism underlying the syndrome is still unidentified (Ferrannini, Natali et al. 

1997).    

The metabolic syndrome is commonly diagnosed by the International Diabetes 

Federation (IDF) and American Heart Association (AHA) criteria (Alberti, Eckel et 

al. 2009), which are demonstrated in table 1-4.  These criteria are very similar to the 

criteria for the diagnosis of Type 2 diabetes, reflecting the close relationship between 

the two. 

Table 1-4 IDF/AHA criteria for diagnosis of metabolic syndrome 

3 or more of the following: 

 Increased waist ethnicity specific waist circumference  

 Body mass index (BMI) above 30 kg/m2,  

 Blood pressure above 130/85 or treatment for hypertension 

 Triglycerides above 1.7 mmol/L or treatment for this abnormality 

 HDL cholesterol <1.03 mmol/L in men and <1.29 mmol/L in women or treatment 
for this abnormality 

 Fasting plasma glucose >5.6mmol/l  
 



 

 

 35 

The metabolic syndrome underlies the pro-atherogenic risk factor profile displayed 

in people with diabetes.  In addition to impaired glucose regulation, people with 

Type 2 diabetes are more like to be hypertensive and centrally obese, have an 

adverse lipid profile, microalbuminuria and raised inflammatory markers (Kalofoutis 

C, Piperi C et al. 2007).  50% of people with diabetes are hypertensive at the time of 

diagnosis (Stults and Jones 2006), while the lipid profile often includes low 

circulating HDL cholesterol, with a moderate elevation in triglyceride levels (Solano 

and Goldberg 2006).   Diabetes itself causes a 2-4 fold increase in the risk of CVD, 

and in the presence of concomitant hypertension, total mortality and stroke, that risk 

is doubled, while the CHD risk is tripled, and the development of microvascular 

complications is hastened (Reboldi, Gentile et al. 2009).   

The association of diabetes with the metabolic syndrome is strong and may account 

for the increased prevalence of cardiovascular disease in this group (Isomaa, 

Almgren et al. 2001; Stern MP, Williams K et al. 2004). 

 Managing cardiovascular risk in Type 2 diabetes 1.2.6

In the UK, guidelines from NICE and SIGN provide guidance to clinicians for the 

management of cardiovascular disease in people with Type 2 Diabetes (NICE CG87 

2008; SIGN 116 2010).  As people with Type 2 diabetes are known to be at increased 

risk for CVD, the overarching principal is one of aggressive management of any 

pertinent vascular risk factors, to the same extent as secondary prevention of CVD in 

the non-diabetic populations.  Risk factors are generally managed using the same 

agents and targets for blood pressure and lipids are broadly the same as the general 

population,  unless complications co-exist (NICE CG87 2008), for example, blood 

pressure targets are 140/80mmHg unless renal, eye or cerebrovascular disease are 

present at which point in becomes 135/85mmHg.     

There are differing opinions in the literature concerning the value of cardiovascular 

risk prediction in individuals with diabetes.  Because individuals with diabetes 

demonstrate a similar risk profile as those without diabetes that have had an event, 
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several guidelines recommend managing all people with diabetes as high risk.  

However, other guidelines take a different approach, whereby there is considered to 

be a spectrum of risk with the population of diabetes that still requires quantification. 

They support the argument that it is important to perform risk prediction in people 

with Type 2 diabetes because as in the general population, there is evidence that 

intensive therapy can reduce cardiovascular and all-cause mortality (Gæde, Lund-

Andersen et al. 2008).  Unfortunately, not all health systems can afford a blanket 

policy of treatment and so varying elements of risk prediction must be performed in 

different populations to identify those at highest risk.  As discussed in chapter 1, 

unlike in the general population, the use of risk prediction scores in Type 2 Diabetes 

is not clear cut, and is limited by their accuracy in this population.  However, we 

know that people with Type 2 diabetes have an increased risk of cardiovascular 

disease.  Therefore, the development of scores specifically for use in people with 

Type 2 diabetes has been tackled by several groups, including the UK Prospective 

Diabetes Study (UKPDS).   

Some clinical guidelines recommend that people with Type 2 Diabetes be considered 

as high risk from the point of diagnosis.  The Scottish Intercollegiate Guidelines 

Network (SIGN) published a guideline on assessing cardiovascular risk (SIGN 97 

2007).  This guideline, advised that adults with Type 2 diabetes who are over the age 

of 40 years do not require risk assessment, as they are automatically at a high CVD 

risk (>20%) due to their clinical history.  The risk assessment that they discuss is 

based on risk scores alone, and does not include the use of adjuncts such as intima 

media thickness.  The 2009 NICE guidelines for managing CVD risk in people with 

Type 2 diabetes suggest that people with Type 2 diabetes should be considered as 

high risk for CVD, unless he or she:  
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 is not overweight  

 is normotensive (< 140/80 mmHg in the absence of antihypertensive 
therapy)  

 does not have microalbuminuria  

 is a non-smoker 

 does not have a high-risk lipid profile  

 has no history of cardiovascular disease and  

 has no family history of cardiovascular disease. (NICE Clinical Guideline 87 
2009) 

 

In this situation, they recommend that it would be of use to perform annual 

cardiovascular risk estimation using the UKPDS risk score in people who meet these 

criteria (NICE CG87 2008) (however, it should be noted that the advice in this 

guideline was updated in 2014 to recommend that the QRisk2 score be used for risk 

assessment in people with diabetes (NICE CG 181 2014)).  The American Diabetes 

Association (ADA) states only that there should be assessment of risk factors 

(American Diabetes Association - Standards of Medical Care in Diabetes 2011).  

Guidelines from the International Diabetes Federation recommend the use of 

diabetes specific risk scores (International Diabetes Federation 2005), while others 

recommend scores such as Framingham or DECODE (Rydén, Standl et al. 2007).   

In 2009, Chamnan et al published a systematic review focusing on cardiovascular 

risk assessment scores in people with diabetes, in which they examined scores that 

were developed in both individuals with diabetes and those developed in a general 

population (Chamnan P, Simmons RK et al. 2009).  They highlight that there is 

evidence of improvement in the risk of fatal and non-fatal cardiovascular events in 

people with diabetes following multifactorial interventions, such as the Steno-2 study 

(Gæde, Vedel et al. 2003; Gæde, Lund-Andersen et al. 2008).  However, for chiefly 

economic reasons, many countries have to practice a rationing approach to managing 

cardiovascular risk, with risk assessed prior to prescription of preventive therapies, 

allowing the highest risk patients to be prioritised for treatment (Chamnan P, 

Simmons RK et al. 2009).  This has led to increased use of cardiovascular risk scores 
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in people with diabetes.  The authors also highlight two other reasons for the use of a 

risk prediction tool (Chamnan P, Simmons RK et al. 2009).  Firstly, they may be 

used to provide an individual’s risk (absolute risk) and secondly, they may be used to 

encourage individuals to improve their lifestyle, in which case the score is required 

to reflect the modifiable risk, rather than a risk predicted from fixed variables. 

 Cardiovascular risk prediction scores in Type 2 1.2.7
diabetes 

Several groups have attempted to develop risk algorithms that are specific to the 

diabetic population using diabetic cohorts in the development, in order to produce a 

risk score that might be more accurate in this group.  Although there have been 

several scores developed that have good discriminatory values, there is still no strong 

evidence as to which score is best suited for use in Type 2 diabetes (van Dieren S, 

Beulens JWJ et al. 2012).   

Two major reviews have summarised the main risk scores used in and developed for 

diabetic populations (Chamnan P, Simmons RK et al. 2009; van Dieren S, Beulens 

JWJ et al. 2012) (the latter providing what is essentially an update of the former).  

The authors examined several different risk scores, including scores developed both 

in general populations and diabetic populations, in addition to reviewing scores that 

have been validated in diabetic populations.  They noted that the predictive ability of 

scores varied in different populations and conclude that scores developed in general 

populations were likely to underestimate risk in people with T2DM.  Similarly, those 

scores developed in diabetic populations required to be better validated in other 

populations before definitive conclusions can be made as to their use.   

Their overarching conclusion of both reviews is that it may be more useful to have 

population specific scores rather than one universal score for all populations.  This 

would seem to be a sensible approach to risk prediction.  Some of the scores that 

were developed in diabetic populations that are included in their review are discussed 

below. 
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Risk scores developed in diabetic populations 

There are several examples of risk scores that have been developed in diabetic 

populations rather than in general populations.  The most commonly included risk 

factors are age, sex, duration of diagnosed diabetes, HbA1c and smoking (van Dieren 

S, Beulens JWJ et al. 2012).   

An early score by Yudkin et al used a sample of 2138 American subjects with Type 2 

diabetes to develop a model for predicting CHD risk over 10 years, including six 

predictor variables in the model (Yudkin and Chaturvedi 1999).  Several years later, 

the UKPDS risk engine was developed in Oxford, and was based on data from 53 

000 patient years from individuals with Type 2 diabetes enrolled in the UKPDS 

study (Stevens RJ, Kothari V et al. 2001).  UKPDS found that previous risk scores 

were less accurate in people with diabetes and the use of simply a dichotomous 

variable for diabetes or glycaemia in previous risk scores was identified as a target 

for change.  The authors instead used HbA1c as a diabetes marker and additionally 

replaced age with age-at-diagnosis and time since diagnosis of diabetes.  The 

inclusion of these variables aimed to address the role that each plays in the 

development of the complications of diabetes (Stevens RJ, Kothari V et al. 2001).  

The first version was developed in a population of 4540 men and women with Type 

2 Diabetes but no history of cardiovascular disease (Stevens RJ, Kothari V et al. 

2001).  An additional version that is specific for stroke was developed in 4549 people 

with T2DM and no previous stroke (Kothari V, Stevens RJ et al. 2002).    

The ARIC investigators also published a model developed in people with diabetes 

(Folsom AR, Chambless LE et al. 2003).  They based the model on 1273 subjects 

with Type 2 diabetes in the US and it predicted risk of CHD over 10 years.  They 

achieved an area under the curve of 0.76 for men and 0.78 for women.  Another 

score that predicted CHD risk (although over only 5 years) was the DARTS score 

(Diabetes Audit and Research in Tayside, Scotland) (Donnan, Donnelly et al. 2006).  

This score included a similar number of predictors to the initial ARIC score and the 

resulting AUC for the score was 0.71. 



 

 

 40 

The Hong Kong Diabetes registry was used to create 3 scores – one for stroke (Yang, 

So et al. 2007), one for CHD (Yang, So et al. 2008) and one for heart failure (Yang, 

Ma et al. 2008).  These studies were published on data from just over 7000 people 

with Type 2 diabetes living in China.  They predicted risk over 5 years and achieved 

AUC ranging from 0.70 for CHD to 0.85 for heart failure.  These results were similar 

to those of the Swedish National Diabetes Register (Cederholm, Eeg-Olofsson et al. 

2008).  11,646 people with Type 2 diabetes were used to develop the score using a 

Cox model and it predicted the risk of CVD over a 5 year period.  The reported AUC 

was 0.70.   

More recently a study published in New Zealand developed a risk model in a cohort 

of people with Type 2 diabetes living in New Zealand (Elley, Robinson et al. 2010).  

CVD and CHD risk was predicted over 5 years and used 10 predictors.  The AUC for 

CVD was 0.68 and for CHD 0.71.  A further score from Australia by Davis et al as 

part of the Freemantle diabetes study (Davis, Knuiman et al. 2010) reported an AUC 

of 0.80 in the prediction of CVD.  Additionally, the ADVANCE collaborative group 

(Kengne, Patel et al. 2011) reports the use of 10 predictors to create a cox model that 

predicted 4 year risk of CVD.  A similar AUC was seen in both the initial testing and 

validation in an independent cohort (0.71 and 0.69 respectively).   

Scores externally validated in a diabetic population 

Van Dieren et al highlight in their comprehensive review article that of the 12 risk 

scores they identified that have been developed in diabetic populations, and the 33 

general population risk scores that account for diabetes, 31% had been externally 

validated in a general population (van Dieren S, Beulens JWJ et al. 2012), including 

the ADVANCE, Fremantle, DCS, DARTS, UKPDS, HMRS, Framingham, CUORE, 

Decode and PROCAM scores.    There was great variation in the discriminative 

ability of these scores in diabetics, including the even the UKPDS and Framingham 

scores, which had AUC ranging from 0.65-0.76 for the UKPDS score and 0.56-0.80 

for the Framingham score, with poor calibration reported for both studies (van 
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Dieren S, Beulens JWJ et al. 2012), suggesting that risk scores do not perform well 

in patients with diabetes.   

The poor performance of risk scores in people with diabetes, as well as the increased 

incidence of cardiovascular disease in this population, has opened the door to 

exploration of methods to improve risk prediction in people with diabetes.  Novel 

biomarkers such as carotid intima media thickness (which has been extensively 

studied in the general population as a marker of vascular risk) and carotid plaque, are 

starting to be explored in addition to traditional cardiovascular risk factors 

(Yamasaki Y, Kodama M et al. 2000; Bernard S, Sérusclat A et al. 2005).   

 

1.3 Carotid ultrasound and cIMT 

Visualisation of the carotid artery using ultrasound is regularly undertaken as part of 

investigations for transient ischaemic attacks (TIA) although the primary objective in 

that situation is usually assessing blood flow in the vessel and any stenosis resulting 

from atherosclerosis of the wall, with a view to performing carotid endarterectomy.  

However, in 1984 Pignoli et al suggested that measuring the thickness of the carotid 

wall may be a more accurate measure of atherosclerosis given that atherosclerosis is 

primarily a pathology of the artery wall and there is often luminal expansion to 

compensate for thickening of the vessel wall (Pignoli P, Tremoli E et al. 1986).  
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 Anatomy of the neck 1.3.1

 

Figure 1-5 Arteries of the neck (reproduced from 

http://www.texasheartinstitute.org/HIC/Topics/cond/CarotidArteryDisease.cfm) 

 

The carotid arteries are the major arteries of the neck (figure 1-5).  The 

brachiocephalic trunk branches from the aorta, and bifurcates into the right common 

carotid artery and the right subclavian artery.  The left common carotid artery and the 

left subclavian artery are branches of the aortic arch itself.  On both the right and left 

sides, as the common carotid artery extends upwards into the neck, it bifurcates into 

the internal and external carotid arteries, with the internal artery entering the skull to 

provide the cerebral blood supply, and the external artery supplying structures 

external to the skull. 

The three key anatomical areas that are considered most important when measuring 

carotid intima media thickness are the common carotid artery, the carotid bifurcation 

and the internal carotid artery.  The common carotid artery is the most accessible 

portion of the carotid artery in terms of surface anatomy.  It runs along the course of 

the sternocleidomastoid muscle on the anterior aspect of the neck and as such, it is 

ideally located for non-invasive assessment by ultrasound.  The bifurcation is located 

at the level of the thyroid cartilage, and the internal carotid extends up behind the 

angle of the jaw.   

http://www.texasheartinstitute.org/HIC/Topics/cond/CarotidArteryDisease.cfm
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 Structure & pathology of the carotid artery wall 1.3.2

 

Figure 1-6 Diagrammatic representation of the anatomical structure of the carotid artery wall 

 

The carotid wall shares common anatomy with all arterial structures.  The wall 

comprises three layers – the tunica intima, tunica media and tunica adventitia (figure 

1-6) – with each layer performing a unique role.  The intima is the layer adjacent to 

the lumen of the vessel and consists of a layer of endothelial cells and an elastic layer 

known as the internal elastic lamina.  The endothelium is the biologically active 

section of the intima and it is supported by the elastic lamina.  The media is primarily 

composed of smooth muscle cells surrounded by a layer of extracellular matrix 

comprising elastin, collagen and proteoglycans.  The media has an important 

structural role but is also responsive to intimal injury, when smooth muscle cells 

proliferate and it promotes inflammatory cell migration.   The external elastic lamina 

separates the media from the adventitia.  The adventitia is primarily composed of 

collagen.  Autonomic nerve fibers extend into the media.  
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The intima media thickness is defined as the distance between the luminal edge of 

the intima and the adventitial edge of the media (Wikstrand J 2007) however, the 

pathology underlying the thickening of the intima media complex is not fully 

understood.   Thickening of the intima media complex is most often associated with 

atherosclerosis whereas thickening of the media is often due to hyperplasia related to 

shear stress on the vascular wall as a result of hypertension (Johnsen SH and 

Mathiesen EB 2009).  Therefore, thickening of the intima-medial complex could be 

due to either or both of these processes, highlighting that it is not well defined 

whether or not cIMT thickening is a precursor of atherosclerosis or simply a response 

to stress on the wall. This is further complicated because when measuring cIMT, it is 

not always possible to delineate the intima from the media and it is therefore difficult 

(or perhaps impossible) to attribute any thickening to one or the other processes.   

 Ultrasound measurement of cIMT 1.3.3

Traditionally, the detection and quantification of atherosclerotic disease in arteries 

was done by invasive methods, including contrast angiography.  However, since the 

mid-1980s, work has been advancing to develop reliable, non-invasive methods for 

the quantification of carotid intima media thickness, as well as atherosclerotic 

plaques.  

Ultrasound modes used in measurement of cIMT 

There are several different modes of ultrasound that have a variety of different uses.  

A-mode ultrasound is used primarily for therapeutic ultrasound treatment and is not 

usually involved in imaging.  In B mode ultrasound, a linear array of transducers 

simultaneously scans the desired area of investigation, allowing a 2 dimensional 

picture to be formed on screen.  It is this mode that is most commonly used in 

diagnostic ultrasound.  Current technology allows for real time image analysis, 

producing a moving 2D image on screen.  M mode ultrasound, which is a form of 

ultrasound that detects motion, is primarily used in echocardiography and fetal 

ultrasound to demonstrate heart motion. 
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Doppler mode ultrasound is perhaps most commonly associated with carotid 

imaging.  Measurement and visualisation of blood flow in vessels of the neck is 

made possible by utilising the principles of the Doppler Effect.  This mode of 

ultrasound is commonly used when investing stenosis of the carotid artery in patients 

affected by transient ischaemic attacks (TIA).  It is also possible to discern the 

outline and luminal projection of arterial wall plaques.  However, it does not provide 

a detailed assessment of plaque thickness and cannot provide any more information 

regarding the vessel wall. B mode ultrasound however, can provide a more detailed 

image of the artery wall, hence its use in the measurement of cIMT.  It enables direct 

visualisation of the artery wall (Pignoli P 1984), enabling measurement of intima-

media thickness.   

Use of B mode ultrasound in measuring cIMT 

The initial advances in this field were made by Pignoli et al.  The group looked at 

measuring cIMT in vitro and in vivo, using B mode ultrasound.  Their initial work, 

published in 1984, demonstrated a significant association between pathological 

measurement of cIMT and B mode ultrasound measurement of the complex.  This 

original study measured cIMT in a small number of normal and moderately diseased 

arteries in vitro (Pignoli P 1984).  They continued to take this work forward by 

examining the relationship between measurements made both in vitro and in vivo, 

and determining what anatomical structures account for what images on the 

ultrasound. 

The characteristic B mode image of the intima media complex of the arterial wall is 

of a “double line pattern”.  This pattern consists of two parallel echogenic lines that 

are separated by an area of hypogenicity (figure 1). 
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Figure 1-7 Graphic representation of B mode ultrasound of cIMT 

 

In figure 1-7, the first line of the double echo represents the intima of the artery wall 

and the leading edge of this structure (marked A) represents the intimal-luminal 

interface.  The area of hypogenicity (black section) represents the media of the wall 

and finally the second line of the echo (second light grey section) represents the 

adventitia.  The edge between the media and adventitia is called the media-

adventitial interface (marked B).  

Pignoli et al took specimens from men aged 20-74, and included a mix of normal and 

pathological specimens.  They measured the intima media thickness, in a marked 

region of the artery wall, using both gross pathology and histology.  Once this was 

done, they prepared the arterial segments and placed them in water tanks.  They then 

measured the same segment of the arterial wall using a B mode ultrasound.  This 

enabled them to compare histological and pathological cIMT with that measured by 

B mode ultrasound.   

The next step was to measure in situ specimens in cadaveric specimens.  They 

measured the cIMT by B mode ultrasound in common carotid arteries that were 

cannulated with an inflatable balloon catheter and found that the cIMT was not 
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significantly different in the in situ and excised specimens.   This was then extended 

to assessing cIMT in 10 living subjects.  This demonstrated that the characteristic 

“double line pattern” was visible in living specimens and that the mean cIMT was 

similar to that found in the in vitro study. 

And so, Pignoli et al had shown B mode ultrasound to be a valid and useful tool in 

measuring cIMT in vivo.  It was this work that laid the foundations for the use of B 

mode ultrasound as a reliable, and importantly, non-invasive method for such 

measurements.  These findings were further confirmed by Persson et al in 1994 

(Persson J, Formgren J et al. 1994).  The group compared measurement of cIMT 

using B mode ultrasound with the same distance measure using light microscopy.   

They found that cIMT measured by B mode ultrasound correlated highly with that 

defined by light microscopy (r 0.82, p<0.001) – however, one must bear in mind that 

whilst there is a good correlation between these measures, this does not necessarily 

mean that there will be good agreement as even poorly agreeing measures can 

produce good correlation (Bland JM and Altman DG 1986).  They noted that cIMT 

measured by light microscopy was consistently smaller, however, this was attributed 

to tissue shrinkage (Persson J, Formgren J et al. 1994). 

The main advantages of using ultrasound for this purpose lie in its flexibility, low 

cost and low risk.  There is little to no long term effects of ultrasound exposure and 

new technological advances mean that ultrasound can be easily done at the bedside if 

required.  Compared to other imaging modes, ultrasound is also inexpensive, making 

it more accessible.  The major disadvantage to its use is unreliable penetration of 

deep structures in obese patients.  Whilst not a major concern when imaging the 

neck, this must be considered, especially given the relationship between obesity and 

potential vascular risk. 

The carotid artery branches from the common carotid artery into the internal and 

external carotid artery.  The point of branching is known as the carotid bifurcation.  

The common carotid artery is most easily visualized using ultrasound due to its 
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position in the neck.   The bifurcation and internal carotids are more difficult to 

visualize due to their anatomical obscurity and consequently they cannot be 

measured in all individuals.  Kanters et al found that there can be a higher proportion 

of missing values when cIMT is measured in these areas, as well as a higher degree 

of measurement variation (Kanters SD, Algra A et al. 1997).  A moderate correlation 

between cIMT at different sites was noted by Howard et al, however, cIMT at once 

site could not predict cIMT at another (Howard G, Burke GL et al. 1994).  This has 

led to the cIMT in the common carotid artery being favoured as a site of 

measurement due to ease of access and reliability.   

Summary measures of intima media thickness 

Despite the publication of various guidelines concerned with the measurement of 

cIMT, there is no unified summary measure of cIMT.  Because of the variety of 

protocols which studies use to measure cIMT, different methods are used to 

summarize cIMT (Lorenz MW, Markus HS et al. 2007).  The simplest of these is the 

mean – an average of all the measurements taken for cIMT.  For example, in the 

Edinburgh Type 2 Diabetes Study, 6 measurements were made in total (3 on the left, 

3 on the right).  The mean cIMT would be the mean of those 6 readings.  In other 

studies, it would be the mean of the mean cIMT at each segment of the carotid tree.  

In some cases, the maximum cIMT is used.  This too is often used to different effect 

in different studies.  In some, it is the higher of the mean of the left and mean of the 

right.  In others, it represents the mean of the maximum right and maximum left 

readings.  This heterogeneity leads to many difficulties when it comes to comparing 

studies of cIMT. 

 Measurement variation 1.3.4

Measurement variation is a problem which is widespread in all research 

methodology.  In epidemiological studies, error and variability can lead to bias and 

lack of precision when measurements are analysed.   
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Physiological measurements are prone to variability from many sources, including 

the machine or equipment used and the subjective view of the individual taking the 

measurement.  In terms of carotid intima media thickness, variation can be 

introduced by the ultrasound machine used, the ultrasonographer taking the readings, 

the skill of the reader performing measurements using software after image 

acquisition and even the patient themselves.  The first of these – the ultrasound 

machine – is not of as much importance as it was previously.  Machines are built to 

an industry standard and error and variation are often due to selection of 

inappropriate settings (eg gain) or poor maintenance of machines.  Physical factors 

and anatomy of the patient contribute to variability in several ways. Firstly, a more 

physical than anatomical property, is movement of the carotid artery. In comparison 

to other arteries, there is relatively little movement of the carotid artery; nonetheless, 

this remains a source of error (Kanters SD, Algra A et al. 1997).  However, a more 

important factor to consider is the position of the carotid segments in the neck.  

Whilst the carotid is a very superficial artery, not all segments are as easily 

accessible by ultrasound as the common carotid.  Measurements of the internal and 

external carotids, and the carotid bifurcation, are more prone to missing data due to 

inaccessibility.  Several studies have documented this and the ACAP Study found 

that the CCA segments could be visualized in 99% of cases, the bifurcation 88% and 

the ICA 67%, which highlights the differences in accessibility of each of these 

segments (Espeland MA, Craven TE et al. 1996).  Part of this may be due to an 

inability of the patients to move into or maintain the position required for 

measurement of cIMT.   

The largest source of measurement error and variability however, is the sonographer 

and reader.  Human error is a major factor in many physiological measurements and 

no less so in cIMT measurement.  The actual imaging of the cIMT is usually 

undertaken by a sonographer.  They may or may not perform cIMT measurement 

there and then.  If not, the image is stored, either as a longitudinal image or as a 

video, and measurement is performed later by a reader (either the same sonographer 

or an independent reader), or automated edge detection software.  Many large studies 
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who have measured cIMT have looked more specifically at variability in cIMT 

within their studies. An example would be the study by Salonen et al in 1991.  In this 

study, inter-observer variation was the main source of variability, with only 4% 

attributable to intra-observer variation (Salonen R, Haapanen A et al. 1991).  The 

findings of the Rotterdam study were similar.  They measured cIMT using the 

controls described above – a single radiographer and multiple off line readers - and 

demonstrated that 87% of variability in cIMT following repeat scanning was due to 

between-subject variation and 13% was due to inter-observer variation in both 

readers and sonographers (Bots ML, Mulder PG et al. 1994).  A study by Lundby-

Christensen et al examined reproducibility of cIMT in those with and without Type 2 

diabetes (Lundby-Christensen L, Almdal TP et al. 2010).  They found that 

reproducibility was good in both people with and without diabetes.   

As would be expected, it is easier to control for many of these sources of variation in 

a research setting than in clinical practice.  The use of simple measures such as a 

single radiographer making measurements, using the same machine for each 

participant and using several readers to perform offline measurements can all reduce 

variation; however assessment of cIMT measurement accuracy should be an 

important feature of any research study.   

 Automated edge detection software 1.3.5

Tackling measurement variation has led researchers to investigate a variety of 

techniques aimed at reducing measurement variation.  In clinical trials and 

epidemiological studies, it is usually relatively simple to have the same sonographer 

or reader perform measurements at each follow up, dependent on the length of the 

trial or study.  However, this is not as applicable in a clinical setting.  Work rotas, 

staff turnover and availability, and importantly, health care budgets all affect the 

availability of specific staff members for performing measurement of cIMT in 

specific patients.  And so, focus has fallen upon finding a way to remove this source 

of measurement variation to allow cIMT measurement to be widely applied in 

clinical settings. 
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Figure 1-8Automated edge detection of cIMT (reproduced from Robertson et al, Appendix F) 

 

 

There has been considerable interest in the development of automated and semi-

automated measurement protocols for cIMT measurement (figure 1-8).  By removing 

the human aspect of cIMT measurement, and replacing it with a computer algorithm, 

the inherent inter-reader variability could be removed.  However, finding an 

algorithm that is capable of analysing all scans of cIMT done on all types of 

ultrasound machine is a difficult task.  As such, many ultrasound machine 

manufacturers have developed their own in-house software to be used on their own 

machines.  These allow real time measurement of cIMT by the algorithm and remove 

human error.  However, many measurements are still made on machines on which 

such software cannot be used.   
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There have been recommendations from both the ASE and Mannheim consensuses 

that edge detection software should be used where possible to make measurements of 

cIMT (Touboul PJ, Hennerici MG et al. 2007; Stein JH, Korcarz CE et al. 2008; 

Touboul PJ, Hennerici MG et al. 2012).  Initially, there were only programmes that 

were based on user dependent edge detection techniques.  However with time, there 

has been evolution from those which require a significant level of user input, to 

systems which use algorithms to allow user independent identification of the lumen-

intima interface and the media-adventitia interface of the cIMT. Several different 

methods are discussed in a 2010 review of computer aided cIMT measurement by 

Molinari et al (Molinari, Zeng et al. 2010). 

On ultrasound imaging, the adventitia and the lumen have differing pixel intensities, 

with the lumen having bright pixel intensity in comparison to the lumen. The 

underlying basis of edge detection software lies in the detection of this pixel gradient 

as the unique intensity profiles make both the lumen and adventitia easily identifiable.  

The intima media thickness is the area that lies between these 2 landmarks.  As 

described in the review by Molinari, several groups have approached this challenge 

from a number of different angles.  Liguori et al, who applied an edge detection 

technique, describe a measurement uncertainty of 0.02mm.  However, the major 

problems that existed with their approach were noise interference and that the system 

was not fully automated (Liguori, Paolillo et al. 2001).  More recent publications have 

also employed edge detection techniques using a gradient based algorithm have 

shown improved measurement error (Stein, Korcarz et al. 2005) (Faita, Gemignani et 

al. 2008).   

Many of these systems still rely on the user acquiring the image initially and then 

selecting the region of interest in which the system can make measurements, which 

still introduces an element of potential error.  However, fully automated systems have 

been considered by several groups, including Molinari et al, who have worked to 

develop a fully automated edge detection system (Molinari, Zeng et al. 2010), in 

which the user is not required to provide any further input beyond scan acquisition.   
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Although several groups have developed potential edge detection systems, based on a 

variety of algorithms, there is still a requirement to compare these to the current 

methods of cIMT measurement, which is manual measurement.  Peters et al found 

semi-automated and manual measurements to be highly reproducible (Peters SA, den 

Ruijter HM et al. 2011).  The relationship between cIMT and cardiovascular risk 

factors was also preserved by the use of semi-automated measurements.  A similar 

finding was seen in the MESA study, between edge detection readings and manual 

readings (Polak JF, Pencina MJ et al. 2011).   

The crucial factor that will support the use of automated methods in clinical practice 

is the reduction in inter-reader bias.   

Multiple versus single measurement of cIMT 

Traditionally, ultrasound measurement of cIMT involves taking small numbers of 

measurement of cIMT online, using calipers (figure 1-9).   

Figure 1-9 Measurement of cIMT using calipers (A intima lumen interface, B media adventitia 

interface) 
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For example, in the Edinburgh Type 2 Diabetes Study, 3 measurements were taken 

on each side of the neck (common carotid).  Other studies may take up to 12 

measurements on each side (common, bifurcation and internal carotid).  Taking only 

small number of measurements poses several problems.  As has been previously 

discussed, there are important differences between intima-media thickening and 

plaque/atherosclerosis.  While it is recommended that cIMT measurements are made 

in areas free of plaque, intimal thickening is not uniform throughout the length of the 

vessel wall.  Whilst plaque is defined as a focal thickening >1.5mm, taking one, three 

or even twelve measurements may not provide a good representation of a constantly 

varying intimal medial thickness. 

It is important to consider the importance of this however.  Whilst it may not be a 

problem if the measurements taken capture the largest cIMT of the vessel, true risk 

may be missed if measurements are made in a thinner area. Some obvious problems 

arise when considering how to measure cIMT down the length of the vessel.  Plaque 

is the first of these obstacles that must be overcome.  Some degree of user input may 

still be necessary to define areas free of plaque in which measurements can be made.   

Automated measurement of cIMT provides the ability to take multiple measurements 

in a relatively short period of time.  Measurements can be made at predefined 

intervals and an average produced.  However, the amount of input required from the 

user depends on the way in which the software works.   The necessity of the absence 

of plaque in the measurement of cIMT means that user input may be required to 

select an area for analysis that is free of plaque.   

There has been limited work looking specifically at the association between edge 

detected cIMT measurements and cardiovascular risk factors, compared with manual 

cIMT measurements.  In 2011, Polak et al published a study which addressed this 

using an edge detection system to measure cIMT thickness on over 5000 people 

(Polak JF, Pencina MJ et al. 2011).  The cIMT measurements made by edge 

detection software were on average 0.191mm larger than the manual measurements 
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and showed less inter-reader variability, although interestingly, they were no more 

reproducible (as has been shown in other studies).   The associations of edge detected 

cIMT were almost as strong as those from manual cIMT with the exception of 

diabetes and HDL cholesterol, which were stronger for edge detected cIMT.   

 Use of cIMT in risk prediction - consensus statements 1.3.6

The use of cIMT in clinical practice has not currently reached a high degree of 

saturation.  Clinical trials more commonly utilize cIMT as a surrogate end point for 

cardiovascular disease.  Clinical trials, indeed any kind of research study, demand a 

high degree of accuracy in measurement of any factor and so in an attempt to 

standardize the way in which measurements of cIMT are made, a number of 

guidelines and consensus statements have been developed by different groups, 

including the American Society of Echocardiography, among others (Touboul PJ, 

Hennerici MG et al. 2004; Roman MJ, Naqvi TZ et al. 2006; Touboul PJ, Hennerici 

MG et al. 2007).  

In 2004 a group of European researchers drafted the Mannheim Consensus (Touboul 

PJ, Hennerici MG et al. 2004).  As mentioned, they aimed to standardize cIMT 

measurement with the aim of allowing more accurate analysis and meta-analysis of 

cIMT data.  They also addressed the issue of classifying early and late atherosclerotic 

change, defining plaque and cIMT separately. They highlight that there are many 

differences between plaque and cIMT, including different associations with 

established vascular risk factors, as well as differing associations with incident 

vascular disease (Ebrahim, Papacosta et al. 1999; Taylor 2002; Den Ruijter, Peters et 

al. 2013).  In terms of measurement of cIMT, the consensus recommends that 

measurements be made in the common carotid artery (as this is the most easily 

visualized of the carotid segments) in a 10mm segment free from plaque with the 

double echo visible.  Measurements should also be made on the far wall.  In an 

update of this statement published in 2007, they address which measure of cIMT to 

make (ie mean cIMT, maximum cIMT etc).  Whilst they make no definite 

conclusion, they state that mean cIMT may be less susceptible to outliers than max 
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cIMT (which may represent a more advanced disease state) and also that cIMT and 

plaque should always be considered separately (Touboul PJ, Hennerici MG et al. 

2007).  A 2011 update this guideline published in 2012 highlights the importance of 

harmonizing the methods of collecting cIMT across epidemiological and 

interventional studies to facilitate easier comparison of results.  They also provide 

further criteria for distinguishing early plaque from thickened cIMT.  It also 

recommends against serial cIMT measurement in individual patients (Touboul PJ, 

Hennerici MG et al. 2012) 

Further guidelines have also been released by the American Society of 

Echocardiography (Roman MJ, Naqvi TZ et al. 2006; Stein JH, Korcarz CE et al. 

2008).  A key suggestion from these guidelines is that cIMT measurement is most 

likely to be of benefit in those people deemed to be at intermediate risk by 

cardiovascular risk scores as this group represents both those at true high risk, true 

intermediate and true low risk.  Therefore additional information from cIMT 

measurements may allow clinicians to tease out the true risk status of an individual.  

The ASE guidelines of 2008 also highlight that it is important to measure carotid 

plaque as well as cIMT.   

The Mannheim Consensus does not make reference to what should be considered 

either a “normal” cIMT or a “high risk” cIMT.  IN contrast, the ASE guidelines for 

the use of carotid ultrasound suggest that a cIMT value in the 75th percentile should 

be considered high risk  

 Association of cIMT with vascular risk factors 1.3.7

cIMT is known to be associated with the traditional cardiovascular risk factors.  

Increasing age, male sex, smoking, blood pressure, BMI, WHR, sedentary lifestyle, 

family history, ethnicity and presence of diabetes are all predictive of cIMT 

(Mannami T, Konishi M et al. 1997).  Several studies have demonstrated an 

association of cIMT with increasing age, including the National Institute for 

Longevity Sciences-Longitudinal Study of Aging (NILS-LSA) (Ando, Takekuma et 
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al. 2000) and the Edinburgh Artery Study (EAS) (Allan, Mowbray et al. 1997).  

These studies also demonstrated that cIMT was higher in men than in women.  The 

AXA study found associations between cIMT and BMI, systolic and diastolic blood 

pressure, plasma lipids, glucose and smoking, although some sex differences existed 

for several risk factors (Gariepy J, Salomon J et al. 1998).  The Insulin Resistance 

Atherosclerosis Study (IRAS) demonstrated an important association between cIMT 

and established diabetes (Wagenknecht, D'Agostino Jr et al. 1998), which will be 

discussed later in this thesis.  Lifestyle factors such as dietary cholesterol, BMI and 

smoking were associated with progression of cIMT in the Monitored Atherosclerosis 

Regression Study (MARS) (Markus, Mack et al. 1997).  Hypercholesterolaemia has 

also been associated with increased cIMT (Wendelhag, Wiklund et al. 1993; Joensuu 

T, Salonen R et al. 1994; Gariepy, Simon et al. 1995). 

A study in 2000 by Baldassarre investigated the association between cIMT measured 

in routine clinical practice and cardiovascular risk factors in 963 participants from a 

general population sample.  The authors report that cIMT correlated with systolic 

blood pressure, total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides and 

blood glucose  (Baldassarre, Amato et al. 2000). cIMT was linearly associated with 

the number of risk factors present (p<0.003). They also showed that cIMT was 

higher in men than women and that those with CHD and PAD had higher cIMT than 

controls.   

Ebrahim et al examined the association between cIMT in the common carotid and 

bifurcation with CV risk factors (Ebrahim, Papacosta et al. 1999).   They found in 

800 men and women drawn from a national cohort (British Regional Heart Study) 

that cIMT of the common carotid had a different pattern of risk factor association 

compared with cIMT of the bifurcation.  cIMT of the bifurcation had a stronger 

association with age than common carotid cIMT.  In addition, cIMT in the 

bifurcation showed a significant association with plasma lipids, whereas common 

carotid IMT did not.  
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In 2010, a cross sectional analysis of cIMT and vascular risk factors in the 

IMPROVE study demonstrated that cIMT was positively associated with latitude, 

age, gender, pack years and hypertension, and negatively associated with education 

level (Baldassarre, Nyyssönen et al. 2010).  The authors comment that the 

association of cIMT with latitude reflects the known north-south gradient of CHD 

mortality (Sans, Kesteloot et al. 1997; Baldassarre, Nyyssönen et al. 2010).  The 

PARC study demonstrated an association between cIMT and age, male sex, smoking, 

total cholesterol, HDL cholesterol and systolic blood pressure on linear regression 

(Touboul, Vicaut et al. 2007).   

cIMT and ethnicity has also been studied and several studies have demonstrated that 

there are differences in cIMT according to ethnic origin.  It has been demonstrated 

that cIMT in black people is greater than that in white people (Howard, Sharrett et al. 

1993; Urbina, Srinivasan et al. 2002).  Both these groups had a higher cIMT than that 

of Hispanic people (D'Agostino, Burke et al. 1996).  

 Association of cIMT with incident coronary events 1.3.8

In order to further explore the relationship between cIMT and vascular risk, several 

large epidemiological studies have expanded on the cross sectional work by the 

studies that have been discussed so far.   

In the first instance, studies have shown that there is a correlation between cIMT and 

the extent of coronary artery atherosclerosis (Geroulakos G, O'Gorman DJ et al. 

1994; Coskun U, Yildiz A et al. 2009).  However, there are large studies that have 

examined the relationship between cIMT and incident vascular disease (Salonen JT 

and Salonen R 1993; Chambless LE, Heiss G et al. 1997; O'Leary DH, Polak JF et al. 

1999; Chambless LE, Folsom AR et al. 2000; Iglesias del Sol A, Bots ML et al. 

2002; Hollander M, Hak AE et al. 2003; Rosvall M, Janzon L et al. 2005; Rosvall M, 

Janzon L et al. 2005; Lorenz MW, von Kegler S et al. 2006; Folsom, Kronmal et al. 

2008; Polak, Pencina et al. 2011).  These studies are summarized in table 1-5. 
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One of the earliest studies examining this relationship was a Finnish study of 1257 

men free of vascular disease and aged 43-60 years (Salonen JT and Salonen R 1993).  

After 3 years of follow up, a 0.1mm increase in carotid IMT represented an 11% 

increase in risk of myocardial infarction.  Following this study, the Atherosclerosis 

Risk in Communities Study (ARIC) found a similar relationship.  They followed up 

12841 men and women free of cardiovascular disease at recruitment and aged 45-64 

years.  Mean cIMT was associated with an increased risk of cardiovascular disease. 

This relationship persisted after adjustment for age, sex and race (HR 5.07 (95% CI 

3.08-8.36) and HR 1.87 (95% CI 1.28-2.69) for men and women respectively).  They 

performed additional analysis controlling for established cardiovascular risk factors 

and found that whilst a higher cIMT (>0.8mm) maintained a relationship with 

incident events, this was not the case for cIMT <0.8mm (Chambless LE, Heiss G et 

al. 1997).   

Another epidemiological study that addressed this relationship was the 

Cardiovascular Health Study (CHS).  In their study of 4476 subjects free from CHD 

(mean age 72.5 years) they followed up incident vascular events, including stroke 

and myocardial infarction over approximately 6 years.  Like the ARIC study, they 

also adjusted the results for conventional cardiovascular risk factors and found that 

those with an cIMT in the higher quintiles had increased risk for MI or stroke when 

compared with the lower quintiles (adjusted RR 3.15 (95% CI 2.19-4.52) (O'Leary 

DH, Polak JF et al. 1999).  They also noted that they relationship appeared to be 

linear.     

In the Rotterdam Study, increased cIMT was predictive of myocardial infarction, 

even after adjustment for age and sex.  The Rotterdam study is a prospective study 

that measured cIMT in 5851 men and women aged 55 and above and followed up 

incident events for an average of 4.6 years.  cIMT was measured in the common 

carotid, bifurcation and internal carotid, and in addition a combined cIMT value was 

derived from these three measures. Of these, only cIMT in the common carotid artery 

(RR 1.44), bifurcation (RR1.34) and the combined measure (RR 1.47) were 
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significantly associated with incident MI (Iglesias del Sol A, Bots ML et al. 2002).  

Interestingly, these results were in contrast to an earlier publication from the 

Rotterdam study that found that adding cIMT to established vascular risk factors did 

not improve prediction of CHD (Iglesias del Sol A, Moons KG et al. 2001).  

Following on from the work of the Rotterdam study was the Carotid Atherosclerosis 

Progression Study (CAPS).  Researchers studied 6962 people who were initially 

drawn from a primary health care scheme.  cIMT was measured at all carotid 

segments.  They followed up 5056 participants for myocardial infarction, stroke and 

death for an average of 4.2 years.    Of the segments measured, all were found to 

have increased HR for all outcomes before adjustment.  Adjusted HRs remained 

significant only for cIMT at the CCA and bifurcation for MI and a combined 

outcome of MI, stroke or death (Lorenz MW, von Kegler S et al. 2006). 

The Malmo Diet and Cancer Study (MDCS) enrolled 5163 subjects into their 10 year 

cohort (Rosvall M, Janzon L et al. 2005).  They measured cIMT in addition to 

carotid plaque and stenosis, and found that all three were associated with incident 

fatal and non-fatal MI, or CHD death.  The adjusted HR for cIMT was 1.23 (95% CI 

1.07-1.41), which persisted on additional adjustment for carotid plaque.   

In 2007, in order to review the evidence for the use of cIMT in risk prediction, 

Lorenz et al undertook a systematic review and meta-analysis of large 

epidemiological studies examining cIMT in relation to incident events.  They 

identified that the studies included used variety of ultrasound protocols and summary 

measures of cIMT which introduced a degree of heterogeneity between the studies.  

When they estimated relative risk they found that cIMT was predictive of MI (age 

and sex adjusted RR 1.26 (95% CI 1.21-1.30)) (Lorenz MW, Markus HS et al. 2007).  

This led them to conclude that cIMT may be of use in cardiovascular risk prediction. 

Following the publication of this review, there have been several other large 

epidemiological studies that have published data concerning cIMT and incident 

vascular events.  The Framingham study published data from almost 3000 



 

 

 61 

participants in the Framingham Offspring study in 2011.  In addition to assessing the 

relationship between cIMT and incident events, they also looked at the effect of 

cIMT on reclassification of risk (Polak, Pencina et al. 2011) after measuring cIMT in 

both the common and internal carotid arteries.  The authors report that both common 

carotid (HR 1.13 (1.02 to 1.24)) and internal carotid cIMT (HR 1.21 (1.13-1.29)) 

predicted coronary events but that only the internal carotid cIMT improved risk 

prediction above traditional risk factors (NRI 7.6%, P<0.001).   

In 2012, MESA published the results of a further study examining the role of novel 

risk markers in cardiovascular risk assessment in those people deemed to have an 

intermediate risk of vascular disease.  In this study, carotid intima media thickness 

did not associate with incident cardiovascular events (HR 1.17, 95% CI, 0.95-1.45) 

(Yeboah J, McClelland RL et al. 2012).  The overall result of this study was that 

coronary artery calcium was the best predictor of vascular risk in this group and 

provided the greatest improvement in risk classification.    

A large meta-analysis by Den Ruijeter et al comprising data from 14 population-

based cohorts (45, 828 individual participants) examined the association between 

cIMT and incident MI and stroke.  They identified 4007 incident events over a 

follow up period of 11 years and fitted a model that was adjusted with common 

Framingham risk factors and then added cIMT to estimate absolute 10 year risk. The 

net reclassification improvement was small (0.8%; 95% CI, 0.1%-1.6%) and 

specifically in those at intermediate risk, it was 3.6% (95% CI, 2.7%-4.6%) (Den 

Ruijter HM, Peters SA et al. 2012).  The conclusion of this meta-analysis was that 

while there was an increase in prediction, it was unlikely to be of any clinical use. 

Another recent meta-analysis performed in the Netherlands also examined the 

association between cIMT and future vascular events.  They too found that cIMT did 

not add to the predictive value of traditional risk factors (van den Oord, Sijbrands et 

al. 2013).  While the meta-analysis revealed that a 1 SD increase in cIMT was 

predictive for myocardial infarction (HR 1.26, 95% CI 1.20–1.31), as well as for 
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stroke (HR 1.31, 95% CI 1.26–1.36), and the HR for the combined end point of MI 

and stroke was 1.26 CI 1.17-1.36, there was no significant increase in the areas under 

the curve increased from 0.726 to 0.729 (p = 0.800). 

The IMPROVE study examined the use of both a range of cIMT measures and a 

measure known as interadventitia common carotid artery diameter (ICCAD). Using 

data from cohort study covering 5 European countries (3,703 subjects with a median 

age 64.4 years) with median follow up of 36.2 months, and 215 first cardiovascular 

events, they found that an average of 8 maximal cIMT measurements either alone or 

combined with ICCAD improved classification of events and nonevents better than 

common carotid IMT and they recommend a strategy involving cIMT and ICCAD in 

addition to Framingham risk factors in predicting risk (Baldassarre D, Hamsten A et 

al. 2012).  
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Table 1-5 Prediction of cardiovascular events by cIMT in epidemiological studies 

Study Subjects (n) Outcome Adjusted* HR for cIMT (95% CI) RR (95% CI) 

Kuopio Ischaemic Heart Disease Study (KIHD)  1257 MI - - 

Atherosclerosis Risk in Communities (ARIC)  12841 MI 
Women 5.07 (3.08-8.36)

 †
 

Men 1.87 (1.28-2.69)
 †

 
- 

Atherosclerosis Risk in Communities (ARIC)  14214 Stroke 
Women 8.54 (3.52-20.74)

 †
 

Men 3.62 (1.45-9.15)
 †

 
- 

Cardiovascular Health Study (CHS) 4476 
MI/ 

Stroke 
- 3.15 (2.19-4.52) 

‡
 

Rotterdam Study  5851 MI - 
Combined cIMT 1.38 (1.21-1.58)

 

‡
  

Rotterdam Study  5479 Stroke - 2.23 (1.48-3.36) 
†
  

Malmo Diet and Cancer Study (MDCS)  5163 MI 1.23 (1.07–1.41)
 ‡

 - 

Malmo Diet and Cancer Study (MDCS)  5163 Stroke 1.21 (1.02-1.44)
 ‡

 - 

Carotid Atherosclerosis Progression Study (CAPS)  6962 MI/Stroke/death 1.16 (1.05-1.27)
 ‡‡

 - 

Lorenz Meta-Analysis  37197 
MI 

Stroke 
- 

1.26 (1.21-1.3)
 ‡

 
1.32 (1.27-1.38)

 ‡
 

Multi-Ethnic Study of Athersclerosis (MESA)  6698 All CVD 1.3 (1.1-1.4)
 ‡

 - 

Framingham Offspring Study  2965 All CVD 
Mean CCA 1.13 (0.000-0.007)

 ‡
 

Max ICA 1.21 (1.13-1.29)
 ‡

 
- 

CCA – common carotid artery, ICA – internal carotid artery, MI – Myocardial Infarction, CHD-coronary heart disease, CVD-cardiovascular disease HR hazard ratio, RR relative risk 
*=age sex and risk factor adjusted, except ARIC – age, race and centre adjusted only,  
†-highest vs lowest cIMT   ‡ - per 1SD increase in cIMT   ‡‡ - per 0.15mm increase in cIMT  



 

  64 

 Association of cIMT with incident stroke 1.3.9

As well as an association with coronary artery disease, studies have also examined 

the relationship between cIMT and stroke, given the more direct anatomical 

relationship between the carotid artery and the cerebral vasculature.  In 2003, the 

Rotterdam study assessed both carotid plaque and cIMT.  When they compared the 

association between both and incident stroke, they found that a cIMT >0.84mm was 

a stronger predictor than plaque, with a relative risk of 2.42 after adjusting for 

established CV risk factors (highest tertile versus lowest tertile) (Hollander M, Hak 

AE et al. 2003).  Other studies that have produced results supporting this finding 

include the MDCS study which demonstrated a hazard ratio of 1.21 for cIMT in 

prediction of incident stroke.  This was found to persist even when the results were 

adjusted for carotid plaque (Rosvall M, Janzon L et al. 2005).  In support of this, 

Prati et al found that in their study of 1348 participants, common carotid artery cIMT 

>1mm had a RR of 10.4% versus cIMT <1mm for ischaemic stroke, TIA and 

vascular death  (Prati, Tosetto et al. 2008).  However, when they added cIMT or 

plaque to Framingham risk factors, IMT only improved prediction in those with a 

Framingham risk >20%.  Chien et al found a similar HR per 1mm SD change in 

cIMT for stroke of 1.47 (1.28-1.69) in 2190 Chinese participants (Chien, Su et al. 

2008).   

Not all studies have supported the findings so resolutely.  Both the ARIC and CHS 

studies have demonstrated a relationship between stroke and IMT that was not linear.  

In ARIC, whilst increasing cIMT and stroke incidence were associated, the 

relationship was not as strong when conventional risk factors were taken into 

consideration (Chambless LE, Folsom AR et al. 2000).  These findings were 

mirrored by the CHS which demonstrated a non-linear relationship between cIMT 

quintiles (O'Leary DH, Polak JF et al. 1999). 

In contrast, the more recent MESA study has published conflicting results on cIMT 

and stroke.  In their 2008 publication, they report a hazard ratio per 1mm SD change 

in cIMT of 1.4 (1.2-1.8) for stroke in 6698 participants after median follow up of 3.9 

years (Folsom, Kronmal et al. 2008).  However, a subsequent paper published in 
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2011 from the same study (including 5520 participants) could not find an association 

between cIMT and stroke with a non-significant hazard ratio of only 0.89 (95%CI 

0.8-1.3) after adjusting for traditional risk factors, although they did see an 

significant association for change in cIMT (Polak, Pencina et al. 2011) 

 cIMT and clinical risk prediction 1.3.10

Before cIMT can be considered for use in clinical practice, its ability to predict 

vascular events must be compared with the current accepted methods of risk 

prediction.  The most common methods of risk prediction (as have already been 

discussed) are risk scores which incorporate the major cardiovascular risk factors.  

Therefore, cIMT must be compared with these factors.  One way of assessing this is 

to add cIMT into models containing risk factors.  This method has been 

recommended by the recent USPSTF statement (United States Preventative Services 

Task Force 2009).  In addition, net reclassification index and clinical net 

reclassification can be assessed.  This is the number of people who are reclassified 

based on risk.  Clinical NRI applies specifically to those deemed to be at 

intermediate risk. 

Several studies have adopted this approach, including ARIC and CAPS.  In the ARIC 

data, adding both cIMT and plaque to traditional risk factors improved prediction of 

vascular events.  Overall, 23% of cases had their risk reclassified.  This resulted in a 

net reclassification index of 9.9% and clinical NRI of 21.7% (Nambi V, Chambless L 

et al. 2010).  In addition, they found that measuring cIMT in the CCA was sufficient 

for using in clinical risk prediction (in comparison to all segment cIMT).   

Not all studies have found such a positive finding and have cast doubt on the 

usefulness of cIMT in risk prediction.  The CAPS study found that cIMT in addition 

to established risk factors, did not improve risk classification, with a net 

reclassification index of -1.41% (Lorenz, Schaefer et al. 2010).  A 2010 narrative 

review of the data published on cIMT and plaque in risk prediction found that 

although cIMT did predict CHD independently, it contributed only modestly to risk 

prediction and they concluded that carotid plaque may be a more useful measure of 

vascular risk (Simon A, Megnien JL et al. 2010).  A systematic review of examined 
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cIMT in addition to other novel risk markers and they had an opposite conclusion – 

that they found strong evidence that cIMT could improve risk prediction (Peters 

SAE, den Ruijter HM et al. 2012).  The NRI of the studies included ranged from -1.4 

to 11.6%.   

Several guidelines have been highlighted by the Mannheim Consensus, which 

address the use of cIMT in assessing CVD risk in clinical practice including the 

Report of the National Cholesterol Education program Adult Treatment Panel III, 

which recommends its use to detect subclinical atherosclerosis, which aids decision 

making in the management of blood lipids (van den Oord, Sijbrands et al. 2013); and 

ESH/ESC guidelines used in Spain that recommend cIMT for the use in detecting 

target organ damage in hypertension (Antithrombotic Trialists' (ATT) Collaboration, 

Baigent C et al. 2009).  However, the ACC/AHA published recommendations in 

2013 that were not in support of cIMT in the assessment of cardiovascular risk of 

first CVD event, citing the basis for this decision as primarily a 2012 individual 

participant data meta-analysis published by Den Ruijter et al of the USE cIMT 

initiative (Den Ruijter HM, Peters SA et al. 2012), in combination with concerns 

about measurement accuracy (Goff, Lloyd-Jones et al. 2013).  

 cIMT progression and vascular risk 1.3.11

Progression or indeed regression of cIMT has been used as a surrogate 

cardiovascular outcome in the trials of several drugs (ENHANCE and METEOR 

trials).  The assumption underlying its use is that progression of cIMT is associated 

with increased vascular risk and regression with decreasing risk, however, the 

evidence underlying this relationship is not clear.  Several large meta-analyses have 

attempted to address this and the results have been mixed.  A large meta-analysis 

recently published included 41 studies and addressed whether cIMT regression 

predicted reduction of cardiovascular events.  The authors reported that although 

there was reduction in the number of events, there was no relationship between the 

regression of cIMT and the events, suggesting that reduction in cIMT does not reflect 

a reduction in cardiovascular events (Costanzo P, Perrone-Filardi P et al. 2010).  A 

further meta-analysis including 28 studies identified that mean change in cIMT was 
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associated with a lower likelihood of non-fatal MI (Goldberger, Valle et al. 2010).  

However, this was noted only in selected RCTs that were included in their analysis.  

Because of these inconsistent findings, they conclude that while there is some 

evidence that change in cIMT is associated with change in event likelihood, they 

urge caution in the use of cIMT as a surrogate endpoint.  In 2012, the PROG IMT 

collaboration published a meta-analysis of data from 36 948 individuals from 16 

cohorts (Lorenz, Polak et al. 2012).  The authors report that after mean follow up of 7 

years, change in cIMT from two ultrasound scans was not associated with increased 

cardiovascular risk, and draw no firm conclusions on its use as a surrogate end point.  

They also reported that the “average” cIMT (the average of the two ultrasound 

readings) did independently associated with cardiovascular risk (adjusted HR 1.16 

(1.10-1.22), suggesting that cIMT may still be useful in risk prediction rather than as 

a surrogate endpoint.   

1.4 Carotid plaque 

Atherosclerotic plaque development is the end product of atherosclerotic change in 

the vessel wall.  Plaques form on the vessel wall as a consequence of exposure of the 

wall to vascular risk factors such as hypertension, dyslipidaemia or inflammation 

(see section 1.4). Interest in the presence of atherosclerotic plaques in the carotid 

artery is growing and there is interest in both plaque burden and plaque morphology.  

Several authors have suggested that plaque represents a more advance stage of 

disease, and as such may be more predictive of vascular events than cIMT (Ebrahim, 

Papacosta et al. 1999).   

There are many different aspects of plaque that can be measured using carotid 

ultrasound.  Plaque thickness is perhaps the simplest facet, and is primarily assessed 

by measuring either the thickness of the plaque itself or the degree of carotid stenosis 

– that is, the encroachment of the plaque on the lumen of the vessel.  The Mannheim 

consensus defines plaque as a focal protrusion into the lumen of >1.5mm or >50% of 

the surrounding IMT (Touboul PJ, Hennerici MG et al. 2012).  There is also interest 

in plaque area, plaque volume and plaque morphology, and the relationship of these 

aspects of plaque with cardiovascular disease.  In terms of plaque morphology, 
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plaque echogenicity and structural appearance have attracted most interest, 

particularly when considered in the context of cerebrovascular disease.  However, 

there has also been limited work that has assessed the impact of carotid plaque 

morphology on the future risk of coronary artery events.   

 Quantitative measures of carotid plaque 1.4.1

Similarly to cIMT, carotid plaque can be assessed using B mode ultrasound of the 

carotid artery.  In addition, Doppler ultrasound can be used to assess stenosis of the 

artery lumen and make quantitative assessments of plaque.  Several aspects of carotid 

plaque can be measured – maximum plaque thickness, total plaque area and total 

plaque volume are three commonly measurable variables.  In addition, plaque 

morphology (ie the composition) can also be assessed.  Plaque is sometimes 

described by the plaque “burden”, which is a loose term used to describe the number, 

size and/or volume of plaques present at specific anatomical sites, commonly the 

carotid artery.  Age is sometimes substituted for plaque burden however, it is the 

plaque burden which is the true risk factor – and individuals of the same age will 

have differing plaque burden.   The different methods for measuring plaque are 

discussed below.  Consensus statements have attempted to address plaque 

measurement but there are no firm recommendations.  The Mannheim consensus 

suggests the measurement of the following plaque characteristics: Plaque location, 

thickness, area and number, scanned in longitudinal and cross-sections must be 

recorded, but highlight that there is not enough current evidence to support the 

measurement of plaque morphology  as of yet (Touboul PJ, Hennerici MG et al. 

2012).   

Maximum plaque thickness 

Maximum plaque thickness is the maximum thickness of any given plaque, from the 

media adventitial interface to the lumen-intima interface.  It is similar to intima 

media thickness but is measured specifically in a focal plaque.  The reading captures 

only the thickness of the plaque at the maximum point.   
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Total plaque area and plaque volume 

Total plaque area involves measurement of the surface area of plaque in an artery.  

Similarly, total plaque volume is a measure of the volume of plaque present.  Both 

can be estimated using carotid ultrasound, with total plaque area and plaque volume 

represent the 2D and 3D quantification of plaque burden, respectively; whereas 

plaque thickness represents only a 1 dimensional measure of plaque and is more alike 

to intima media thickness, even though it is a specific measure of a plaque (Pollex 

RL, Spence JD et al. 2005).  Plaque area is typically measured on a cross sectional 

longitudinal image of the carotid artery and involves measurement of all visible 

plaques.  The perimeter of each visible plaque is traced  and the areas summed to 

create total plaque area (Spence, Eliasziw et al. 2002). Spence et al also performed a 

study in 1686 subjects where they measured total plaque area at baseline and 

followed them up for a mean of 2.5 ± 1.3 years for incident cardiovascular events 

(Spence, Eliasziw et al. 2002).  After adjusting for baseline characteristics, they 

found that the risk of cardiovascular disease increased with each quartile of plaque 

area. They also noted that those people who showed a progression in plaque area 

with time had an increased risk of vascular events compared with those who had no 

change or regression (15.7% vs 7.6% and 9.4% respectively).  An additional study by 

Spence et al found that over 1 year, plaque area increased by 2 times as much as 

plaque thickness, which suggests mean that plaque area may be a more sensitive 

indicator of atherosclerosis (Spence 2002).   

Total plaque volume is a similar measure to plaque area but requires the use of 3D 

ultrasound to quantify the plaque volume along a longitudinal section of the carotid 

artery.  3D ultrasound uses a series of cross sectional slices which are added together 

to determine the volume.  Thus, accuracy of volume is dependent on the number of 

cross sectional slices that are taken.  Spence et al examined the reliability of 3d 

ultrasound measurement of plaque volume and found intra and inter-observer 

variability of 94% and 93.2% respectively (Landry, Spence et al. 2004).  

Measurement variation reduced as plaque size increased.  A systematic review by 

Makris et al, identified 7 studies examining reproducibility of carotid plaque volume 

measurements using 3D ultrasound (Makris, Lavida et al. 2011).  They found that 3D 
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ultrasound measurements were reliable although they note heterogeneity between 

studies and recommend that further evidence is needed to assess whether 3D 

ultrasound is superior to 2D ultrasound assessment of carotid plaque. 

 Plaque morphology 1.4.2

B mode ultrasound can also be used to assess the morphology of carotid plaque 

which can suggest the structure and composition of the plaque and there is evidence 

to suggest that plaque morphology might be useful in assessing how vulnerable a 

plaque is (Grønholdt MLM, Nordestgaard BG et al. 2001; Liapis, Kakisis et al. 2001; 

AbuRahma, Wulu et al. 2002; Honda O, Sugiyama S et al. 2004).  Plaques which are 

more likely to rupture tend to be rich in lipid and haemorrhage (Epstein, Fuster et al. 

1992; Davies 1996).   

Assessing plaque morphology on ultrasound brings with it many similar limitations 

to those seen in intima media measurement.  Classification of a plaque as echolucent 

or echogenic by a sonographer can be a subjective process, although the use of 

predetermined criteria can reduce this to some extent. However, the development of 

computer quantification of echolucency has helped to a great extent.  Gray scale 

median (GSM) is measured after image normalization and there have been 

demonstrated links between low GSM (echolucent plaque) and plaque instability 

(Hall HA and Bassiouny HS 2012).   The Mannheim Consensus update of 2012 notes 

that the value of recording plaque texture remains uncertain and that this is an area 

that requires further research (Touboul PJ, Hennerici MG et al. 2012) although some 

studies have started to explore this area.   For example,  Prati et al developed a risk 

score incorporating various aspects of plaque composition including stenosis degree, 

plaque surface irregularity, echolucency and texture.  They found that the total 

plaque risk score was a powerful predictor of cerebrovascular events (Prati, Tosetto 

et al. 2011). 

Echogenicity 

Plaque echogenicity can be characterised on the basis of it echogenicity on 

ultrasound.  Low echogenicity plaques appear on ultrasound as being black or nearly 

black (echolucent) and are usually referenced in comparison with blood.  In contrast, 
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high echogenicity plaques appear as white (echogenic) and can be referenced with 

bone.  Echolucent plaques tend to be lipid rich and are prone to rupture (Grønholdt 

MLM, Nordestgaard BG et al. 2001; Honda O, Sugiyama S et al. 2004), whereas 

echogenic plaques tend to be calcified and fibrinogen rich. 

Heterogeneity 

Plaque heterogeneity is a way of classifying the texture or composition of the plaque.  

Similarly to echogenicity, plaque heterogeneity can be classified into 2 broad 

categories.  Heterogeneous plaque is defined as plaque with >20% of the plaque 

differing in echogenicity to the rest of the plaque.  Homogeneous plaques have a 

structure that is consistent throughout.  An example of a heterogeneous plaque might 

be a plaque with a lipid core that also possesses intra-plaque haemorrhage as well as 

a calcified portion.  A homogenous plaque would be a plaque composed of only a 

lipid core.  Heterogeneous plaques are also considered to be at increased risk of 

adverse clinical consequences (Petersen C, Pecanha PB et al. 2006).   

Relationship of ultrasound appearance of plaques with histology 

Several studies have demonstrated the link between B mode ultrasound appearance 

of plaques and histological appearance of plaque.  Many of these studies are based 

upon work done in the exploration of the association between plaque type and carotid 

endarterectomy.  In 1995, a large multi-centre study by the European Carotid Plaque 

Study Group published data on 270 carotid endarterectomy specimens and found that 

ultrasound determined plaque morphology was associated with histological findings.  

Plaque echogenicity on ultrasound was inversely associated with plaque composition 

(European Carotid Plaque Study Group and Sillesen 1995).    

One must then look to examine the relationship between histological plaque 

appearance and future vascular risk.  A paper by Hellings et al published in 2010 

described the association between plaque histology and future cardiovascular risk in 

a prognostic  study (Hellings WE, Peeters W et al. 2010).  Subjects who had 

undergone carotid endarterectomy had their plaque specimens analysed 

histologically and those who had plaque haemorrhage or intraplaque vessel 

formation had a higher risk of the primary outcome (vascular event including CVD 
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death, non-fatal stroke and non-fatal MI, or vascular intervention) with a HR of 1.7 

(95% CI 1.2 – 2.5) and 1.4 (95% CI 1.1 – 1.9) respectively.  This relationship was 

independent of clinical risk factors and medication use. Interestingly, other 

histological aspects of plaque such as macrophage infiltration, large lipid core, 

calcifications, collagen and smooth muscle cell infiltration were not associated with 

an increased risk of a vascular outcome. 

In 2007, a study was published of pathological specimens taken from symptomatic 

carotid endarterectomy patients that were examined using ultrasound prior to 

excision (Snow, Ben-Sassi et al. 2007). Of 33 predominantly echolucent plaques on 

USS, 27 were haemorrhage or lipid rich.  Of 17 plaques that were characterised as 

echogenic, 11 were found to be predominantly fibrotic.  They concluded that 

ultrasound plaque assessment may be useful in identifying potentially unstable 

(echolucent) plaques and help in the selection of individuals for carotid 

endarterectomy.   

In 2011, a Japanese study that examined the ability of diagnostic tools to predict 

plaque type (in order to stream line selection of patients for carotid endarterectomy) 

demonstrated that plaque morphology on carotid ultrasound was closely associated 

with histological findings following carotid endarterectomy, although 

ultrasonography was not sufficient for all patients and they suggest that a 

combination of US and MRI could be useful (Arai, Yamaguchi et al. 2011).   

 Reproducibility of plaque assessment 1.4.3

An early study by Joakimsen et al examined the reproducibility of carotid plaque 

assessment using a ultrasound (Joakimsen O, Bønaa KH et al. 1997).  They found 

that plaque occurrence displayed good inter and intra-observer agreement (K value 

0.72 95%CI 0.6-0.84 vs 0.76 95%CI 0.63-0.89).  There was only a moderate degree 

of agreement with regards plaque thickness, with mean absolute differences ranging 

from 0.25-0.55mm.  Plaque morphology classification however showed a high 

degree of agreement.  Therefore, ultrasound assessment seems to be a good way of 

assessing plaque occurrence and morphology but not such a good way of measuring 

plaque thickness.  
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 Association of carotid plaque with vascular risk factors 1.4.4

Like cIMT, there have been several studies that have demonstrated an association 

between carotid plaque and cardiovascular risk factors.  Increasing age is associated 

with increased plaque presence (Lemne, Jogestrand et al. 1995; Bonithon-Kopp, 

Touboul et al. 1996; Mannami T, Konishi M et al. 1997; Aminbakhsh, Frohlich et al. 

1999; Homma S, Hirose N et al. 2001; Sun, Lin et al. 2002).  Systolic blood pressure, 

smoking, total/HDL cholesterol ratio and BMI have also been associated with plaque 

presence (Bonithon-Kopp, Touboul et al. 1996; Mannami T, Konishi M et al. 1997; 

Aminbakhsh, Frohlich et al. 1999; Ebrahim, Papacosta et al. 1999; Sun, Lin et al. 

2002).   The British Regional Heart Study (BRHS) demonstrated a linear relationship 

between increasing plaque presence and increasing BRHS risk score (which contains 

traditional CV risk factors) (Zureik, Touboul et al. 1999).   

In Canadian study of 168 Oji-Cree adults with an average age of 38.2 years, total 

plaque area was strongly associated with age, sex, smoking and total cholesterol, but 

not hypertension (Al-Shali K, House AA et al. 2005).  Total plaque volume however 

was associated only with age, sex and diabetes.   

A study by Ebrahim et al in 1999 showed that 57% of men and 58% of women had 

carotid plaque.  Prevalence increased with age and cIMT was on average 0.1mm 

higher in people with plaque compared with those without and there was an inverse 

association between plaque prevalence and HDL cholesterol (Ebrahim, Papacosta et 

al. 1999).  The presence of plaques was associated with cardiovascular risk factors 

(smoking, deprivation and fibrinogen), as well as prevalent vascular disease.  A later 

study by Virani et al in 2011 found that in the ARIC study, maximum plaque 

thickness (defined as the maximum plaque thickness recorded in 12 segments of the 

carotid artery) was strongly associated with blood lipids including total cholesterol, 

LDL and HDL cholesterol after full risk factor adjustment (Virani SS, Catellier DJ et 

al. 2011).  They also identified that plaques found on MRI to have a lipid rich core 

(those that would be described as echolucent on US) had a strong relationship with 

lipid ratios such as total/HDL ratio after full adjustment for CV risk factors.   
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Spence et al identified that the distribution of carotid plaque area increased with age 

and was higher in men than in women (Spence 2006).  

Data from the PIVUS study that plaque size (as quantified by plaque volume) 

demonstrated different associations with vascular risk factors than plaque 

echogenicity (Andersson, Sundström et al. 2009).   

Data from the Tromsø Study established that HDL cholesterol was associated with 

echolucent carotid plaques (adjusted OR 0.69 (95%CI 0.52-0.93) in 6727 participants 

in a population health survey (Mathiesen EB, Bønaa KH et al. 2001).   

 Carotid plaque and prediction of coronary events 1.4.5

Carotid plaque has been investigated in relation to prediction of coronary events.  

Because there is no definitive measure of carotid plaque, the studies vary in exactly 

which measure is used in prediction.  Several studies have linked carotid plaque with 

an increased risk of coronary events (Honda O, Sugiyama S et al. 2004; Seo Y, 

Watanabe S et al. 2006; Reiter, Effenberger et al. 2008).  Honda et al established that 

echolucent (lipid rich plaques) as identified by low integrated backscatter on US 

predicted coronary artery plaque complexity and also the development of coronary 

artery complication sin a sample of 71 individuals with ACS and 215 with stable 

CAD.   

A German study by Reiter et al examined echolucency and the risk of major 

cardiovascular events in high risk patients.  They determined the change in plaque 

composition over 7.5 months and found an association with future major 

cardiovascular events in those people with increasing plaque echolucency.  However, 

there was no relationship between absolute levels of GSM at either baseline or follow 

up (Reiter, Effenberger et al. 2008).   

In a related study, Swedish investigators examined the relationship between non-

stenotic femoral plaques and future vascular risk.  They used B mode ultrasound to 

assess plaque in the femoral arteries and record plaque occurrence, plaque size and 

plaque characteristics including echogenicity and echolucency.  They found that 

plaque occurrence and size were predictive of future vascular events, as was plaque 
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echolucency to some extent, although there was no significant difference between 

echogenic and echolucent plaque (Schmidt, Fagerberg et al. 2005).   

Spence et al also found an association between plaque area and risk of stroke, MI or 

death.  In a study of 918 patients, the higher quartile of plaque area was associated 

with a 3 fold increase in risk for stroke, MI or death (Spence 2002).   

Hirano et al published a study of 413 patients with CAD and carotid plaque and 

assessed the predictive ability of plaque echolucency and plaque size for incident 

coronary events (Hirano M, Nakamura T et al. 2010).  They found that in multi-risk 

factor adjusted models, the model with both plaque echolucency and plaque 

thickness was a better predictor of incident events (AUC 0.80) than either the model 

with just plaque thickness (AUC 0.74) and the model with only plaque echolucency 

(AUC 0.76).   

The MESA study explored carotid plaque metrics measured using ultrasound (plaque 

presence, thickness and stenosis) in relation to incident CVD.  They demonstrated 

that all measures of plaque were predictive of coronary artery disease and 

cardiovascular disease but not stroke (Polak, Szklo et al. 2013).  The authors also 

found that the NRI for CVD was less than that for CHD suggesting plaque was more 

useful in predicting CHD.  More recently, the authors reported the results of a study 

of carotid plaque morphology determined by magnetic resonance imaging in relation 

to incident vascular disease (Zavodni, Wasserman et al. 2014).  The authors reported 

that when MRI plaque remodeling index and lipid core were added to a model 

containing traditional risk factors, the AUC was increased from 0.696 to 0.734, 

suggesting the plaque characteristics were useful in improving prediction of 

cardiovascular risk.     

 Carotid plaque and prediction of stroke 1.4.6

Carotid plaque is known to be a pathological cause of stroke and TIA, with 

narrowing of the carotid arteries by enlarging plaques causing critical stenosis and 

reduction in blood flow to the brain (ischaemic stroke).  In addition, thrombus or 

plaque material may embolise and are carried straight to the cerebral arteries, where 
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partial or complete occlusion can lead to stroke.  The mechanism is dependent on the 

characteristics of the plaque present in the carotid artery.  Stable, fibrotic plaques 

tend to cause stenosis whereas lipid rich, haemorrhagic plaques are more likely to 

rupture and embolise their contents.   Thus plaque morphology has been explored in 

relation to stroke, with several studies reporting that when compared with echogenic 

plaques, echolucent plaque has been shown to be associated with a higher risk of 

cerebrovascular ischaemic events (Pedro LM, Pedro MM et al. 2000; Grønholdt 

MLM, Nordestgaard BG et al. 2001; Mathiesen EB, Bønaa KH et al. 2001).  .   

In a 1998 study, Polak et al reported that hypoechoic (echolucent) plaque was 

associated with incident stroke (RR 1.72) after adjusting for cardiovascular risk 

factors (Polak JF, Shemanski L et al. 1998).  The authors also reported that stenosis 

was associated with incident stroke.  Additionally, Hollander et al published data 

from the Rotterdam study in 2002 which demonstrated a relationship between carotid 

plaque, stroke and cerebral infarction.  In 4217 asymptomatic adults older than 55 

years of age, carotid plaque at any area increased the risk of stroke and cerebral 

infarction (Hollander M, Bots ML et al. 2002).  In support of these results, Shaalan et 

al have reported that plaques with more calcification were more stable and were 

associated with a lower risk of ischaemic events than plaques with less calcification 

(Shaalan, Cheng et al. 2004). 

There is also evident that heterogeneous plaque is associated with an increased risk 

of stroke.  Petersen et al established a relationship between heterogeneous plaque and 

death in a study of 541 hospitalised cardiology patients in Pisa, Italy (Petersen C, 

Pecanha PB et al. 2006).  In multifactorial models, plaque heterogeneity had a 

relative risk of 1.6 95% CI 1.2-2.14) for death.   

Some studies have examined multiple facets of carotid plaque.  Mathieson et al 

showed that in the Tromsø study, echolucent plaques were associated with an 

increased risk of future cerebrovascular events, independent of the degree of arterial 

stenosis and cardiovascular risk factors (Mathiesen EB, Bønaa KH et al. 2001).  

They also determined that total plaque area appeared to be predictive for first ever 

stroke, with fully adjusted HR (for highest quartile vs no plaque) of 1.73 (95%CI 
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1.19-2.52) for men and 1.62 (95%CI 1.04-2.53) for women (Mathiesen EB, Johnsen 

SH et al. 2011).  Similarly, Prati et al investigated the ability of carotid plaque 

morphology to predict future stroke over and above Framingham Risk factors.  They 

developed a plaque score (total plaque risk score (TPRS)) that included degree of 

stenosis, plaque surface irregularity, echolucency and texture.  They found that a 

high TPRS was a strong predictor of cerebrovascular events.  When they added 

TPRS to conventional Framingham risk factors, the area under the ROC curve was 

significantly increased compared with just the Framingham risk factors (0.90 vs 0.88, 

p=0.04) (Prati, Tosetto et al. 2011).   

1.5 Carotid plaque or cIMT in prediction of vascular 

risk? 

Carotid intima media thickness and carotid plaque both represent alteration to the 

artery wall but their differing relationships with cardiovascular risk factors and CVD 

mean it is unclear which might be of most use in the prediction of vascular events.  

Indeed, Ebrahim et al hypothesised in 1999 that it may be the presence of plaque at 

the carotid bifurcation, rather than the cIMT, that represents a higher risk of disease 

and suggested that efforts be made to address this (Ebrahim, Papacosta et al. 1999). 

It has been argued that carotid intima media thickness does not represent early 

atherosclerosis, with much of the thickening being due to medial hyperplasia in 

response to hypertension, and that rather, it may in fact represent a precursor to 

atherosclerosis (Spence JD 2012).  Plaque on the other hand is a manifestation of 

atherosclerosis, so it has been suggested that carotid plaque might be a better choice 

as a predictor of future vascular disease than intima media thickness (Inaba, Chen et 

al. 2012).   

In 2011, Mathieson et al explored the association between carotid plaque, cIMT and 

first ischaemic stroke in the Tromsø Study (Mathiesen EB, Johnsen SH et al. 2011).  

They followed up 3240 men and 3344 women over a 10 year period after measuring 

cIMT and carotid plaque at baseline.  They found that carotid plaque area had a 

higher hazard ratio for stroke than cIMT per 1 SD increase (for men and women 

respectively, HR 1.23 95% CI 1.09–1.38 and 1.19 (95% CI, 1.01–1.41 vs HR 1.08 
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95% CI 0.95–1.22 and HR 1.24 95% CI 1.05–1.48).  In addition, there was a higher 

risk for those in the highest quartile of plaque area versus no plaque (HR 1.73 95% 

CI 1.19–2.52 for men and 1.62 95% CI 1.04–2.53 for women) whilst there was no 

difference across the quartiles of cIMT.  They also demonstrated that plaque area 

was a better predictor for MI than cIMT in the general population (Johnsen, 

Mathiesen et al. 2007).   

Other studies that have examined the predictive ability of plaque versus cIMT were 

summarized in a meta-analysis by Inaba et al that compared cIMT with carotid 

plaque in the prediction of coronary artery events.  They identified 11 population 

based studies and found that carotid plaque was better at predicting future MI than 

cIMT.  They also undertook a meta-analysis of 27 diagnostic studies that examined 

coronary artery disease and found an increased, but non-significant, diagnostic odds 

ratio of carotid plaque for detecting CAD (Inaba, Chen et al. 2012). 

A study by Nambi et al used data from the ARIC study to examine the effect of 

adding cIMT and carotid plaque to TRFs in cardiovascular risk prediction (Nambi V, 

Chambless L et al. 2010).  They found that net reclassification index was similar for 

TRFs + cIMT and TRFs + plaque.  However, NRI was higher when both cIMT and 

plaque were added to TRFs, suggesting that adding both cIMT and carotid plaque to 

TRFs would improve risk stratification. 

The emerging evidence that plaque may be more predictive of vascular events led to 

an editorial comment by J. David Spence (Spence JD 2012) on the meta-analysis 

performed by Inaba et al (Inaba, Chen et al. 2012) in which he highlights an 

important point – why is plaque not measured at the same time as cIMT, as no 

additional equipment is required?    Therefore, the evidence is not clear as to which 

might be of more use and indeed, whether or not combing cIMT and plaque would in 

fact provide additional value.   
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1.6 cIMT and Type 2 diabetes 

Given that cardiovascular risk scores are known to underperform in people with 

Type 2 diabetes, and the continued excess morbidity from vascular disease, there is a 

need to find additional sources of information regarding future vascular risk in this 

group.  The United States Preventive Services Task Force (UKPSTF) released a 

recommendation statement regarding the use of non-traditional risk factors in the 

prediction of cardiovascular risk.  Carotid intima media thickness is included in their 

list of non-traditional risk factors, along with high-sensitivity CRP (hs-CRP), ankle-

brachial index (ABI), leukocyte count, fasting blood glucose level, periodontal 

disease, coronary artery calcification (CAC) score on electron-beam computed 

tomography (EBCT), homocysteine level, and lipoprotein(a) level.  They highlight 

that there is still insufficient evidence to make a definitive statement on the use of 

non-traditional risk factors, including cIMT, and highlight where there are still gaps 

in the available research.  With regards diabetes, they stated that there is a need to 

clarify clinicians’ views on whether diabetes is a CHD risk equivalent state or is 

instead a risk factor for CHD. As a result, they suggest that non-traditional risk 

factors associations with cardiovascular risk should be assessed in diabetic 

populations (United States Preventative Services Task Force 2009).   

 cIMT in Type 2 diabetes  1.6.1

Several studies have demonstrated increased cIMT in people with Type 2 diabetes in 

comparison with non-diabetic individuals.  A 1994 study by Pujia et al measured 

cIMT in 54 subjects with NIDDM and 54 controls and found that cIMT was 

significantly higher in subjects with NIDDM compared with controls (0.765 vs 

0.692mm respectively), along with higher plasma triglycerides and lower HDL 

cholesterol (Pujia, Gnasso et al. 1994).  cIMT was positively correlated with age, sex 

and negatively correlated with HDL cholesterol.  Another early article published by 

Niskanen et al in 1996 demonstrated that in 84 individuals with NIDDM compared 

with 119 non-NIDDM individuals, those with diabetes had an increased cIMT at 

both the common carotid and bifurcation (Niskanen L, Rauramaa R et al. 1996). 
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In 2006, Brohall et al conducted a systematic review and meta-analysis of studies 

examining IMT in Type 2 diabetes (Brohall G, Odén A et al. 2006).    They 

identified 23 studies comprising 24111 subjects.  The overall finding was that 

subjects with diabetes had a cIMT which was on average 0.13mm higher (95% CI: 

0.109–0.1310) than subjects without diabetes. In addition, those with impaired 

glucose tolerance (IGT) also had a significantly higher cIMT, on average 0.04mm.   

In a follow up study by Brohall et al, they examined cIMT in people with IGT 

compared with controls and in addition performed a meta-analysis.  They found that 

in the case control sub study, there was no increase in the occurrence of subclinical 

atherosclerosis.  The meta-analysis revealed a contrasting result, demonstrating a 

small increase in the CCA IMT in people with IGT (Brohall G, Schmidt C et al. 

2009).  Einarson et al performed a meta-analysis examining the relationship between 

cIMT and blood glucose.  They used 15 592 patients from 11 studies and found a 

correlation between cIMT and post-prandial glucose.  The effect size between 

diabetics and normal was 0.294 (0.245-0.343) and between IGT and normal was 

0.137 (0.072-0.202) (Einarson TR, Hunchuck J et al. 2010).  These results suggest 

that there is a small but significant relationship between glucose and cIMT.  A 1999 

study by Temelkova-Kurktschiev et al also found that cIMT was significantly higher 

in 71 people with newly diagnosed Type 2 diabetes when compared with matched 

controls (mean cIMT 0.95 vs 0.85mm respectively) (Temelkova-Kurktschiev, 

Koehler et al. 1999).   

Lee et al have also demonstrated that people with diabetes had a higher cIMT than 

those without diabetes, and indeed, those with diabetes and CAD had a higher cIMT 

than those with diabetes and no CAD, and both had higher cIMT than non-diabetic 

individuals (Lee E, Emoto M et al. 2009).  On multifactorial logistic regression, they 

found that a high cIMT >1.3mm was associated with concurrent CAD (OR 2.205 

(1.52-3.20) p<0.001).   

A Spanish study published in 2011 compared cIMT in people with diabetes, people 

with hypertension and controls.  They found that cIMT was greatest in people with 

diabetes compared with those with hypertension and controls (0.781mm v 0.738mm 
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and 0.686mm respectively), although progression of cIMT was greatest in people 

with hypertension (Gómez-Marcos, Recio-Rodríguez et al. 2011).   

 Association of cIMT with CV risk factors in people with 1.6.2
Type 2 diabetes 

Before cIMT can be investigated in association with incident disease, it is important 

to establish the relationship between cIMT and cardiovascular risk factors.  The use 

of cIMT as a surrogate marker in clinical trials suggests that cIMT is known to be 

associated with cardiovascular risk factors and cardiovascular disease in people with 

Type 2 diabetes. This section describes published literature on the relationship 

between cIMT and risk factors in people with Type 2 diabetes.  While there are 

several papers that report this, very few publications address this topic as a primary 

aim.   

In their study of normotensive Type 2 diabetic participants, Kong et al found a 

positive association of cIMT with increasing age, male sex and smoking (Kong, 

Elatrozy et al. 2000), while Wagenknecht et al have reported an association between 

cIMT and duration of diabetes in their cross sectional study of 489 people with Type 

2 diabetes (Wagenknecht, D’Agostino et al. 1997) 

Niskanen et al demonstrated in 1996 that mean cIMT in 84 older adults with diabetes 

was associated with a variety of factors including post-glucose 1 hour plasma insulin, 

serum LDL triglyceride and apolipoprotein B (Niskanen L, Rauramaa R et al. 1996). 

However, in 2000, Guvener et al found reported that the major determinants of cIMT 

in people with Type 2 diabetes were age and BMI (Güvener, Tütüncü et al. 2000).   

Smoking has also been associated with cIMT in diabetes as in the general population.  

Karim et al found that mean carotid IMT was higher in smoking than in non-smoking 

subjects with diabetes, although the difference was not statistically significant after 

adjusting for age, gender and other confounders (Karim, Buchanan et al. 2005).  

A 2006 cross sectional study by Yokoyama et al assessed the relationship between 

components of the metabolic syndrome and cIMT in people with Type 2 diabetes and 

no history of CVD (Yokoyama, Kuramitsu et al. 2007).  They found that cIMT 
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increased according to the number of metabolic syndrome components present 

(p=0.002) and the presence of higher blood pressure and higher abdominal obesity 

influenced cIMT.   

The association between glucose fluctuations in people with Type 2 diabetes and 

cIMT was explored by Chen et al in 2010 (Chen, Zhang et al. 2010).  Using data 

obtained from continuous glucose monitoring, a case control study of 36 subjects 

with diabetes and 10 controls several glucose fluctuation parameters increased with 

increasing cIMT and the authors hypothesize that glucose fluctuations may 

accelerate the development of atherosclerosis in older people with Type 2 diabetes.  

This echoes the findings of a 1999 study that examined the association of post 

prandial glucose levels with cIMT in 403 people aged 40-70 years without diabetes.  

They found an association between post prandial hyperglycaemia and increased 

cIMT, suggesting that hyperglycaemia exerts a damaging effect on the endothelium 

(Hanefeld, Koehler et al. 1999).  A similar study by Esposito et al examining post 

meal glucose peaks found that incremental glucose peaks were correlated with cIMT 

(Esposito K, Ciotola M et al. 2008). 

A 2009 study by Butt et al examined cIMT in 200 people with Type 2 diabetes and 

described the association with cardiovascular risk factors.  cIMT was only correlated 

with duration of diabetes, BMI and HDL cholesterol, with an inverse correlation 

being seen in the case of HDL cholesterol (Butt MU and Zakaria M 2009).  A study 

in 380 Korean subjects with newly diagnosed Type 2 diabetes assessed the 

association between cardiovascular risk as determined by the UKPDS risk engine 

and cIMT, among other non-invasive markers (Seon, Min et al. 2011).  After 

adjusting for age, both the 10 year CHD risk and 10 year stroke risks correlated with 

cIMT.  In addition, cIMT correlated with age, HbA1c and gender.   

Inflammatory markers have also been shown to be associated with cIMT in people 

with diabetes.  A study of 105 patients with Type 2 diabetes by Kang et al 

demonstrated that serum high sensitivity CRP was correlated with parameters of 

cIMT and also BMI, WHR as well as plasma lipids (Kang ES, Kim JH et al. 2004).   
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 Association of cIMT with prevalent vascular disease in 1.6.3
people with Type 2 diabetes 

As well as an association with cardiovascular risk factors, it has been important to 

establish an association with cIMT and cardiovascular disease in other vascular beds. 

In 2003, Hunt et al examined carotid intima-media thickness in 1127 non-diabetic, 

66 pre-diabetic and 303 diabetic individuals (Hunt KJ, Williams K et al. 2003).  They 

found that age and sex adjusted mean cIMT of both the ICA and CCA was higher in 

those with pre-diabetes than those without diabetes, although only the ICA IMT 

remained significantly higher after adjustment for established CV risk factors.   

An early Japanese study examined the relationship between cIMT and coronary 

artery disease in 80 people with Type 2 diabetes (40 with CAD determined by 

coronary angiography and 40 with no known CAD) (Mitsuhashi, Onuma et al. 2002).  

Those with known CAD had significantly higher cIMT compared with those without 

CAD.  In addition they noted that cIMT was higher in those who had had CABG 

compared with those who had another procedure.  cIMT, along with hypertension, 

hyperlipidaemia and hyperuricaemia, was significantly associated with prevalent 

CAD on forward stepwise logistic regression, although this was not significant when 

all variables were entered on logistic regression.   

Lee et al examined cIMT and plaque in relation to ischaemic stroke in patients with 

Type 2 diabetes (Lee EJ, Kim HJ et al. 2007).  They found that those subjects with 

MR diagnosed stroke had significant differences in sex, current smoking, 

hypertension and HDL cholesterol compared with controls.  Those with ischaemic 

stroke had significantly higher mean CCA IMT compared to controls.  On logistic 

regression, there was an association between mean cIMT and ischaemic stroke (OR 

5.29 (95% CI 1.05-26.7)), although this relationship did not persist after adjustment 

for cerebrovascular risk factors (OR 1.64 (95% CI 0.14-19.4)).   A similar pattern 

was seen for max cIMT.  

In 2009, Djaberi et al assessed cIMT in 150 asymptomatic diabetic patients, who also 

underwent CT coronary angiography.  cIMT was increased in people with 

obstructive stenosis compared with no atherosclerosis and they found a cut off cIMT 
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value of 0.67mm gave a good sensitivity and specificity when predicting obstructive 

coronary stenosis. cIMT was an independent predictor of coronary atherosclerosis 

(p<0.01) (Djaberi R, Schuijf JD et al. 2009).    In 2010, they examined data 

evaluating the relationship between cIMT and myocardial perfusion in 98 people 

with Type 2 diabetes.  Increased cIMT was associated with abnormal myocardial 

perfusion on SPECT scanning.  An increased cIMT was associated with both the 

extent of abnormal perfusion, measured by summed stress score (SSS), and the 

prevalence of abnormal perfusion (Djaberi, Schuijf et al. 2010).   

In a small study of 91 Japanese subjects with Type 2 diabetes, multi-slice CT 

coronary angiography and carotid ultrasound were used to assess coronary artery 

stenosis and carotid IMT (Kasami, Kaneto et al. 2011).  Those subjects that 

demonstrated a higher degree of coronary stenosis had a higher max cIMT than those 

with a lesser degree of stenosis, and for the middle grades of stenosis this 

relationship persisted after adjustment for age, sex, duration of diabetes, hypertension 

and dyslipidaemia.   

 cIMT and risk prediction in diabetes 1.6.4

The association between cIMT and future vascular risk in people with Type 2 

diabetes has not been well documented.  The literature was systematically searched 

to identify publications reporting the results of longitudinal studies investigating 

cIMT as a potential predictor of cardiovascular risk in people with Type 2 diabetes.   

Search strategy 

Titles and abstracts of studies listed in Medline and Pubmed from 1946 until 31st 

December 2013 were searched using the following search terms: [(carotid intima 

media thick* OR carotid atherosclerosis) AND (cardiovascular* OR coronary heart* 

OR stroke OR myocardial inf* OR MI) AND (type 2 diab* OR niddm)].  Reference 

lists of key papers and reviews were searched for additional sources.   
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Selection Criteria 

Criteria for selection were: 1) studies of humans, 2) studies of type 2 diabetes, 3) 

ascertainment of incident cardiovascular events, 4) cIMT measured using ultrasound 

and 5) reports results in addition to risk factors. 

Included studies 

579 studies were identified.  The titles and abstracts were assessed for inclusion 

using the selection criteria.  Six studies were identified that met the criteria.  Of 

those, 4 were prospective studies and 1 was a retrospective study.  A summary of the 

included studies is provided in table 1-6. 

Table 1-6 Summary of studies of cIMT and cardiovascular risk that were identified by literature 

search and met selection criteria 

 Study Design Follow up 

(years) 

N Age CVD outcome CIMT 

measure 

Yamasaki  Prospective 3.1 287 61.6 CHD or 

cerebrovascular 

CCA, ICA, 

bifurcation 

Bernard Prospective  5 229 55.5 CVD and CAD CCA  

Ataoglu Retrospective 10 102 53 CVD CCA 

Malik Prospective 6.4 881 65 CHD and CVD CCA and ICA 

Yoshida Retrospective 5.4 783 - CVD CCA 

Den 

Ruijter 

Meta-analysis 8.7 4220 61 CVD (MI or stroke) CCA  

 

Japanese researchers measured cIMT in 287 subjects with Type 2 diabetes who were 

free of cardiovascular disease (Yamasaki Y, Kodama M et al. 2000).  They measured 

it at baseline and after mean follow up of 3.1 years.  They noted an annual 
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progression of cIMT of 0.04±0.004mm/year and identified risk factors that were 

associated with progression of cIMT.  The risk factors identified were baseline 

cIMT, HbA1c and age.  In addition they examined the factors that predicted incident 

non-fatal CHD and found that after adjusting for risk factors, baseline cIMT and a 

low HDL level were independent predictors.   

In 2005, Bernard et al published a study of cIMT in 229 patients with Type 2 

diabetes aged 35-75 years who were free of any cardiovascular complications but 

with at least one cardiovascular risk factor.  They found that age, cIMT, carotid 

plaques, number of plaques, Framingham Risk score and a suboptimal exercise 

tolerance test were associated with incident vascular events.  cIMT was an 

independent predictor of CV events and the predictive ability of cIMT was similar to 

that of the Framingham score.  When added to a Cox model containing Framingham 

risk score, the combination of cIMT and Framingham risk factors improved 

prediction of events compared to Framingham risk factors alone (Bernard S, 

Sérusclat A et al. 2005).  This suggests that using cIMT to predict future vascular 

risk in people with Type 2 diabetes may be of use.   

In 2009, a Turkish group published the results of a retrospective cohort study that 

addressed the addition of cIMT to FRS for predicting vascular events in Type 2 

diabetes (Ataoglu, Saler et al. 2009).  They found that in 102 subjects who were 

followed up for 10 years, cIMT could be useful in addition to Framingham risk 

scoring.   However, caution must be applied to these results as they are the results of 

a retrospective cohort and the effect of bias and confounding may be greater in this 

cohort than in a prospective study.   

More recently, a study by the MESA researchers included 881 individuals with 

diabetes (Malik S, Budoff M et al. 2011).  The authors examined the association of 

both cIMT and coronary artery calcium with CAD and CVD over 6.4 years of follow 

up.  Conversely to previous studies, they identified that cIMT was not predictive of 

events in people with Type 2 diabetes (HR 1.7 (0.7-4.3) for 4th vs 1st quartile of 

cIMT).   
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In 2012 another retrospective Japanese study, including 738 people with T2DM but 

free of CVD, demonstrated that cIMT added to the predictive ability of the FRS in 

the study sample (Yoshida, Mita et al. 2012).  They used Cox proportional hazards 

models to examine the predictive ability of cIMT and brachial-ankle pulse wave 

velocity for cardiovascular events and found that cIMT and not abPWV predicted the 

events.  They then examined the additional effect of cIMT on FRS and found that 

adding cIMT to FRS improved prediction of cardiovascular events.  

The smaller sample size of the previous study was tackled by a large meta-analysis 

published by the USE-IMT collaboration, which demonstrated that in a cohort of 

4420 people with diabetes identified from the cohorts in the collaboration, cIMT did 

not add to cardiovascular risk prediction in individuals with diabetes (Den Ruijter, 

Peters et al. 2013).  While, the authors reported an adjusted hazard ratio of 1.22 

(1.14-1.32) of cIMT for incident cardiovascular events, the effect on reclassification 

was limited.  They identified that a model containing Framingham risk factors alone 

had an AUC of 0.68 and that on addition of cIMT, AUC increased to 0.69, while the 

net reclassification of the cIMT model was small (1.7%).   However, this study has 

several limitations.  Because the individuals are drawn from general population 

cohorts, the definition of diabetes varied over each study which may lead to 

inaccuracy in the diagnosis of diabetes in the group.  They also identify other 

limitations.  Information regarding severity or duration of diabetes is missing and 

data acquisition protocols will have varied with each study, leading to cIMT 

measurement variation across the studies (Den Ruijter, Peters et al. 2013).  The 

authors additionally note that they have not addressed carotid plaque in their 

analysis, which may be a potential avenue for future exploration in people with 

diabetes.   

Summary 

This search of the literature has confirmed that the evidence for the use of cIMT as a 

predictor of cardiovascular events in people with Type 2 diabetes is limited and 

mixed.  There is heterogeneity among the studies in terms of the population studied 

and populations tend to be at the older end of the spectrum of diabetes. The results of 
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the meta-analysis, when taken into context with current research in cIMT in the 

general population, suggests that cIMT may not be as useful as first thought in the 

prediction of cardiovascular risk.  However, the answer is still not clear cut and this 

will be only be addressed by replication of results in further diabetes populations. 

1.7 Carotid plaque and Type 2 diabetes 

Although there is a growing body of evidence for the use of carotid plaque in the 

prediction of cardiovascular risk in the general population, as described in section 1.4 

of this chapter, carotid plaque in persons with diabetes has been not been as 

extensively studied.   

 Association of carotid plaque with CV risk factors and 1.7.1
prevalent CVD in people with Type 2 diabetes 

There are few studies specifically examining the relationship between carotid plaque 

and cardiovascular risk factors in individuals with Type 2 diabetes.  In 2012, Cardoso 

et al reported the independent associations of cardiovascular risk factors with plaque 

score (a composite of plaque presence and degree of stenosis) in 441 people, aged up 

to 80 years, with Type 2 diabetes (Cardoso, Marques et al. 2012). They found that 

the main correlates of plaque score were older age, cigarette smoking and the use of 

antihypertensive medications.   

Additionally, a recent prospective study by Irie et al found that gender, BMI and 

low-HDL-cholesterol are important determinants of the content of the vascular wall 

in diabetic subjects (Irie, Katakami et al. 2014).  

Pollex et al demonstrated that people with Type 2 diabetes and impaired glucose 

tolerance had greater plaque development than normoglycaemic controls (Pollex RL, 

Spence JD et al. 2005).  That study examined plaque in 49 Oji-Cree Canadians and 

49 age and sex-matched controls and measured total plaque volume.  They found that 

total plaque volume and cIMT were only moderately correlated, and interestingly 

noted that use of carotid plaque as an outcome would require a smaller sample size 

than that of cIMT (Pollex RL, Spence JD et al. 2005).  However, it was noted that the 



 

  89 

difference between the 2 groups in baseline plasma lipid levels could explain the 

difference in plaque volume seen.   

A 2007 study by Ostling et al performed carotid ultrasonography on people with a 

known right carotid artery plaque (47 people with diabetes and 51 without diabetes).  

They assessed plaque echogenicity using standardised gray-scale median values 

(GSM).  A lower GSM indicates a more echolucent plaque.  The investigators noted 

that GSM values were significantly lower in the group with diabetes, compared with 

those without diabetes (37.0±14.8 v 45.5±15.4, P=0.007), indicating a higher 

prevalence of echolucent plaques in subject with diabetes.   When they looked at the 

association between plaque echogenicity and vascular risk factors, they found that 

only triglycerides were associated with plaque echogenicity (Ostling G, Hedblad B et 

al. 2007).   

Several studies have examined the relationship between carotid plaque and prevalent 

disease (both presence and extent).  Akazawa et al performed B mode ultrasound of 

the carotid artery and multi-slice CT coronary angiography on 277 Japanese subjects 

with Type 2 diabetes but without known coronary artery disease.  They created a 

plaque score (the sum of plaque thickness in the carotid artery) and found that when 

plaque score was inserted into a multiple regression model containing traditional 

cardiovascular risk factors, it was a significant predictor of extent of disease in the 

coronary artery (Akazawa, Tojikubo et al. 2012).  Lee et al performed a cross 

sectional study to examine the CCA-cIMT and plaque score in relation to ischaemic 

stroke in people with Type 2 diabetes (Lee EJ, Kim HJ et al. 2007).  Using brain 

MRI and carotid ultrasonography, they found that those with Type 2 diabetes and 

acute stroke had a higher CCA-cIMT and plaque score than those with diabetes who 

were free of stroke.  Unadjusted odds ratios suggested that carotid plaque scores 

were risk factors for acute ischaemic stroke in people with Type 2 diabetes (OR 3.14 

(95% CI 1.67-5.93).  However, once cerebrovascular risk factors were accounted for, 

the association became non-significant (OR 2.14 (95% CI 0.80-5.73).   

A Chinese study performed dual source computer tomography angiography in 125 

people with Type 2 diabetes and suspected cerebrovascular disease (He C, Yang Z et 
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al. 2010).  They examined the prevalence of carotid and cerebrovascular plaques.  

They found that 91.2% of subjects (n=114) had atherosclerotic plaques detected.  

45% of those plaques were non-calcified, 39% were calcified and 16% were of 

mixed composition.  In addition, they noted that there was an extensive distribution 

of plaque – 55.8% of people had a 1-5 diseased segments, and 30.7% had 6-10 

diseased segments.  The most common site of plaque was the cavernous ICA.   

A small Czech study of 38 subjects who underwent stress myocardial single positron 

emission computed tomography (SPECT) reported an association between 

ultrasound detected atheromatous plaque and an abnormal SPECT scan (Charvat, 

Michalova et al. 2006).  An abnormal SPECT scan suggests a myocardial perfusion 

defect, suggesting ischaemic heart disease.  And so this result suggests that carotid 

plaque is associated with prevalent ischaemic heart disease in this study.   The major 

limitation of this work is the study sample size but it does give an indication of a 

relationship between plaque and cardiovascular disease in people with Type 2 

diabetes.   

 

 Carotid plaque and risk prediction in people with Type 2 1.7.2
diabetes 

Publications reporting the prospective association between carotid plaque and future 

vascular risk in people with Type 2 are sparse.  The literature was systematically 

searched to identify publications reporting the results of longitudinal studies 

investigating carotid plaque as a potential predictor of cardiovascular risk in people 

with Type 2 diabetes 

Search Strategy 

Titles and abstracts of studies listed in Medline and Pubmed from 1946 until 31st 

December 2013 were searched using the following search terms: [(carotid plaque OR 

carotid atherosclerosis) AND (cardiovascular* OR coronary heart* OR stroke OR 

myocardial inf* OR MI) AND (type 2 diab* OR niddm)].  Reference lists of key 

papers and reviews were searched for additional sources.  
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Selection Criteria 

Criteria for selection were: 1) original research, 2) studies of humans, 3) studies of 

type 2 diabetes, 4) ascertainment of incident cardiovascular events, 5) carotid plaque 

measured using ultrasound and 6) reports results in addition to risk factors. 

Included Studies 

529 studies were identified.  The titles and abstracts were assessed for inclusion 

using the selection criteria.  Two studies were identified that met the criteria.  A 

summary of the included studies is provided in table 1-7. 

Table 1-7 Summary of studies of carotid plaque and cardiovascular risk that were identified by 

literature search and met selection criteria 

 Study Design Follow up 

(years) 

N Age CVD outcome Plaque 

measure 

Katakami Prospective 7.9 85  CVD Echolucency 

Irie Prospective  4.6 287 65 CVD Echolucency 

 

Only 2 prospective publications were identified.  The first publication by Katakami 

et al, reported the results of a pilot study in 85 adults with Type 2 diabetes who were 

asymptomatic of cardiovascular disease and who were followed up for around 8 

years.  Using the calibrated-IBS (a measure of the echolucency of a plaque) and 

plaque thickness to assess carotid plaque, the authors report that incident events were 

higher in individuals with low calibrated IBS values.  They also report that both 

calibrated IBS value and plaque thickness were independently predictive of events 

even after adjusting for Framingham risk score (HR 0.80 (0.7-0.9) and 1.94 (1.12-

3.21) respectively) (Katakami, Takahara et al. 2012).  The negative relationship 

between IBS and risk is because a low IBS value represents more echolucent (ie high 

risk) plaque.   
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Building on the results of the pilot study by Katakami, Irie et al published data on a 

study of 287 adults with diabetes.  Plaque echolucency was determined using gray 

scale median (a computer aided method of  quantifying plaque echogenicity) (Irie, 

Katakami et al. 2013).  The advantage of this method over the calibrated IBS method 

used in their pilot study (Katakami, Takahara et al. 2012) was that it did not require 

specific software or hardware and so might be a more generalizable method.  The 

authors reported risk factor adjusted hazard ratios of 4.55 for echolucent plaque and 

1.44 for plaque thickness in a model for cardiovascular events.  Adding plaque 

thickness to traditional risk factors significantly increased the area under the curve 

(AUC 0.60-0.73, p<0.05) and addition of plaque echolucency to both risk factors and 

plaque thickness increased the AUC to 0.82 (p<0.05).   

Summary 

The systematic review performed here highlights just how lacking data for the use of 

carotid plaque in risk prediction in people with Type 2 diabetes is. While the results 

of the study presented above are promising, the small sample size and specific 

population under study limit the generalizability of the results.  The evidence base in 

the general population is also small and it is still not clear whether cIMT or plaque 

may yield better prediction for CVD.  What is clear is that much work is required to 

characterise this relationship in people with Type 2 diabetes before any firm 

conclusions can be made.   

1.8 Chapter summary 

Cardiovascular disease is a major cause of morbidity and mortality.  It is particularly 

prevalent in individuals with Type 2 diabetes, and despite increased management of 

established cardiovascular risk factors, it is still the main cause of death in this group.  

Identification of people with Type 2 diabetes who are at higher risk may allow for 

more intensive management of risk factors and reduce the occurrence of events.  

However, risk scores do not adequately predict risk in people with Type 2 diabetes so 

researchers have turned to non-invasive markers of risk in attempts to improve 

prediction.  One such marker is carotid intima media thickness, which is frequently 

used as a surrogate marker of vascular disease in clinical trials, and there is evidence 
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from general population studies that this may be useful in addition to current risk 

prediction methods, although this evidence is not definitive.  The USPSTF 

recommends that cIMT be assessed in people with diabetes in order to fully assess its 

value as a prognostic marker.  There is some evidence that cIMT is associated with 

both cardiovascular risk, prevalent disease and future vascular risk but it is not 

conclusive.  Carotid artery plaque is also of interest as a potential marker of vascular 

risk.  It is also measurable by ultrasound and may be more predictive than cIMT for 

vascular disease.  However, evidence for its use in Type 2 diabetes is limited and 

more research is required.   
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Chapter 2: Aims and Objectives 

 

The emergence of cIMT and carotid plaque as novel markers of cardiovascular risk 

in the general population has stimulated interest in their use in higher risk 

populations such as those with Type 2 diabetes.  However, the USPSTF statement of 

2009 highlights that there is a lack of evidence for the use of more novel markers 

such as cIMT in people with Type 2 diabetes (despite their use as surrogate 

cardiovascular outcomes in clinical trials in diabetic populations).  In addition, the 

Mannheim consensus statement on cIMT and carotid plaque highlights that while 

there is a wide range of evidence for the use of cIMT, the evidence base for the use 

of carotid plaque in risk prediction remains sparse (Touboul PJ, Hennerici MG et al. 

2012).  Therefore, the overriding aim of this thesis is to explore the associations of 

both cIMT and carotid plaque with cardiovascular risk factors (both traditional and 

novel), prevalent cardiovascular disease and future cardiovascular risk in a large 

cohort of older people with Type 2 diabetes, using   data from the Edinburgh Type 2 

Diabetes Study.  

 

2.1 Aims 

This thesis will address several key aims: 

1. To determine the frequency and distribution of cIMT and carotid plaque in older 

people with Type 2 Diabetes and investigate methods of cIMT measurement in 

the ET2DS 

2. To determine the association of cIMT and carotid plaque with traditional 

cardiovascular risk factors and with more novel biomarkers of cardiovascular risk 

(those being explored in studies as of potential use in CV risk scores), including 

ABI, ACR, IL-6, CRP and NT proBNP 

3. To determine association of cIMT and plaque with prevalent cardiovascular 

disease (CAD and cerebrovascular disease) in people with Type 2 diabetes 
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4. To assess the potential of cIMT and plaque as predictors of incident 

cardiovascular events and possible associations over and above UKPDS variables 

 

2.2 Objectives 

The aims described above will be achieved through a series of individual objectives: 

1. Describe the study sample demographics and determine intra-reader variability in 

cIMT measurement in the ET2DS and investigate the effect of multiple 

measurements on cIMT values 

2. Describe the frequency, distribution, prevalence and change in cIMT and plaque 

over time in the ET2DS  

3. Determine the cross sectional association of cIMT and plaque with traditional 

and novel CV risk factors, in people with Type 2 diabetes,  

4. Determine the association between cIMT and plaque, with prevalent CVD eg 

MI/Stroke. 

5. Determine the incidence of vascular events in the ET2DS and describe associated 

cardiovascular risk factors 

6. Determine the association between cIMT, carotid plaque and incident vascular 

events  

7. Use statistical modelling to examine the predictive ability of cIMT and plaque for 

cardiovascular events over and above traditional cardiovascular risk factors 
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Chapter 3: Methods 

 

3.1 Introduction 

This chapter describes the methods of the research included in this thesis.  The 

research was performed using individual participant data from the Edinburgh Type 2 

Diabetes Study (ET2DS), a large, population-based cohort study that was established 

in Edinburgh in 2006.  The main objectives of the ET2DS are to investigate the 

relationship between a wide range of risk factors and the long term complications of 

Type 2 diabetes, with a particular focus on cognition, liver disease and vascular 

disease.   Prior to this thesis, subjects were assessed at baseline and year 1, and I 

subsequently participated in further data collection at year 4 follow up clinics.  Data 

for this thesis have been drawn from all three data collection points of the ET2DS 

and focuses exclusively on the vascular aspects of the study.  Methods relevant to the 

research included in the thesis are described below and draw on published material 

(Price JF, Reynolds RM et al. 2008; Marioni, Strachan et al. 2010) as well as 

describing my own contribution to follow-up data collection and the statistical 

analysis undertaken. 

 

3.2 Edinburgh Type 2 Diabetes Study  

The ET2DS comprises 1066 men and women with Type 2 diabetes aged 60-74 years 

and living in Edinburgh and the Lothians at baseline (2006-2007).  The full study 

protocol is detailed in the 2008 publication by Price et al (Price JF, Reynolds RM et 

al. 2008).  

 Recruitment, clinic invitations and attendance 3.2.1

Potential eligible participants were identified from the Lothian Diabetes Register 

(LDR), a large computerised database containing details of over 20,000 people with 

Type 2 diabetes living in Edinburgh and the Lothians.  Exclusion criteria were 

minimal and included subjects in whom it was not possible to confirm a clinical 

diagnosis of Type 2 Diabetes, non-English speakers (due to the nature of cognitive 
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tests undertaken), corrected visual acuity worse than 6/36, those unwilling to give 

consent and those physically unable to take part in the examination.   

The aim of the study was to recruit 1000 subjects in order to achieve approximately 

90% power at a two-sided 5% level of significance, to detect a Pearson correlation 

coefficient of ≥ 0.10, between continuous outcome measures (e.g. cognitive test 

scores) and predictor variables (Price JF, Reynolds RM et al. 2008). It was estimated 

that a sample size of 800 would retain 90% power to detect a correlation coefficient 

of ≥ 0.12 between risk factors and outcome measures after drop outs and loss to 

follow up. This sample size, with the same levels of power and significance, was 

determined to be sufficient to detect any risk factor that contributed 1% or more to 

the variance in outcome, both at baseline and at follow-up (Price JF, Reynolds RM et 

al. 2008).   

A sample of men and women aged between 60 and 74 years on 1st August 2006 was 

obtained by randomly selecting participants by sex and 5 year age bands from the list 

of eligible participants extracted from the LDR.  5454 subjects were initially invited 

to take part in the study, 3286 of whom replied.  1252 expressed an interest in 

participation in the study and of those, 1077 attended baseline clinics. Four 

participants were unable to take part in the examinations for physical or emotional 

reasons and 7 did not meet the criteria for Type 2 Diabetes after detailed review of 

clinical evidence leaving a total of 1066 participants at baseline (figure 3-1).  

Baseline clinic appointments took place between 14th August 2006 and 29th August 

2007 at the Wellcome Trust Clinical Research Facility (WTCRF) at the Western 

General Hospital (WGH), Edinburgh. 

Participants were invited to attend a further research clinic one year after recruitment.  

Of the 1066 that attended at baseline, 939 (88%) agreed to attend the year one clinic.  

(12 subjects were not invited to the year 1 clinics; 2 had died, 5 refused to be 

contacted out with the originally planned 4-year follow up, 3 were deemed unsuitable 

for contact by the study team and 2 withdrew from further contact after the baseline 

clinic).  Of those that were invited but did not attend the year 1 clinic, 19 could not 

be contacted, 23 were unable or unwilling to attend on health grounds, 38 were 
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unable or unwilling to attend for other reasons, 21 cancelled or did not attend the 

appointment and 13 had died. A further 1 person was unable to complete the 

examination (figure 3-2).  Year 1 clinic appointments took place between 26th 

October 2007 and 27th August 2008 at the Wellcome Trust Clinical Research Facility 

(WTCRF) at the Western General Hospital (WGH), Edinburgh. 

In 2010, appointments were sent out for year 4 follow up appointments. Because of 

the extended time between the follow up clinics, prior to contacting subjects for the 

year 4 follow up clinic, I prepared a newsletter about the study which was sent out in 

December 2009 to all subjects, reminding them that clinics would be starting again, 

and asking them to inform the study of any change in contact details or 

circumstances. This provided an opportunity to identify any subjects who were 

deceased, in addition to those who were not able or willing to continue in the study at 

this point.  Any mail that was returned was tracked using the NHS Lothian health 

records (Med Trak) to identify any change of address or death.  When participants 

were contacted with appointments, those who chose not to attend were recorded as 

declined. Of the 1066 people who attended baseline clinics, 974 were invited to 

attend the year 4 clinics.  Of those that were not invited, 81 had died and 10 had 

withdrawn after the baseline clinic.  Of the 974 that were available to be invited, 15 

people could not be contacted, 30 people withdrew from the study and 100 declined 

to attend.  Of those that withdrew themselves, 9 gave no reason, 6 were too unwell, 2 

had dementia and one did not have diabetes.  Of those that were withdrawn by the 

study team, 5 were too unwell to undergo assessment and 7 had dementia.  Of the 

100 that declined to attend, 39 were unwell, 43 gave no reason, 10 cited personal 

reasons, 5 were full time carers and 3 gave other reasons (figure 3-3).   In total, 830 

participants returned for the year 4 follow up.  Clinical examinations for the year four 

follow up were undertaken by me and three other researchers between 17th May 

2010 and 20th May 2011 at the WTCRF.  Those who were unable to attend due to ill 

health or other reasons were sent a self-completion questionnaire. For those who did 

not return the questionnaire, a questionnaire was sent to their GP. Participants who 

did not attend appointments were telephoned and offered a further appointment.   
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Prior to each data collection clinic attendance (at each wave) and following 

confirmation of an appointment time via telephone, participants were sent an 

appointment letter and a self-completion questionnaire, along with an information 

leaflet, a urine specimen container, with instructions for collecting early morning 

urine (baseline and year 4 only), and a map of the hospital.   Each participant was 

asked to fast overnight, or for at least 4 hours prior to the clinic visit (depending on 

appointment time) to facilitate blood sampling and ultrasound scanning.  Those 

subjects who fasted overnight were instructed to omit diabetic medications and to 

bring them to the appointment to take when a light breakfast was provided.     

Data were collated in a password protected Microsoft Access database.  All data 

were manually entered and double data entry examination was completed to ensure 

data had been entered accurately.   

 Ethical approval 3.2.2

All participants in the ET2DS provided informed consent prior to each wave of the 

study.  In addition the study had full ethical approval from the Lothian Medical 

Research Ethics Committee.  Full ethical permission was granted for ISD data 

linkage performed at baseline and follow up.   
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Figure 3-1 Recruitment Flow Chart 
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Figure 3-2 Flow chart of Year 1 attendance 
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Figure 3-3 Flow chart of attendance at year 4 clinics 
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3.3 Clinical examinations 

 Height & weight 3.3.1

Height at baseline was recorded using a wall mounted height tape.  Subjects were 

asked to remove shoes and to stand with their heels and back against the wall.  Eyes 

were lined up with the centre of the ear to allow measurement of maximum height.  

Measurements were recorded to the nearest 0.1cm.  Weight was measured without 

outdoor clothing, shoes or heavy items and recorded on the data collection form to 

the nearest 0.1kg.   

 Electrocardiogram 3.3.2

An ECG was recorded using a GE Marquette MAC 1200 ECG machine.  Electrodes 

were positioned following preparation of the skin (cleaning, drying, exfoliating or 

shaving as required).  Four electrodes were applied to the limbs and six to the chest.  

The ECG was obtained with the patient lying still and relaxed.   ECGs were coded by 

a senior clinician using the Minnesota coding system (Prineas RJ, Crowe RS et al. 

1982) and entered manually into the database. 

 Brachial blood pressure 3.3.3

Brachial blood pressure was measured in the right arm, directly after ankle brachial 

pressure index was measured.  The cuff was applied to the right arm and using a 

stethoscope, systolic pressure was read when clear, repetitive tapping sounds 

appeared for 2 consecutive beats.  The diastolic pressure was taken when the tapping 

sounds were no longer audible.  

 Ankle brachial pressure index 3.3.4

Following 5 minutes of rest, the sphygmomanometer cuff was placed around the arm 

and the hand held Doppler was placed over the brachial artery at the point of 

maximum pulsation.  The cuff was inflated to 30mmHg above the estimated systolic 

pressure.  The pressure was reduced at a rate of 2-3mmHg per second and systolic 

pressure was recorded when clear sounds first appeared.  Measurements were 

recorded to the nearest 2mmHg.  This was repeated in the both arms and both feet 

(dorsalis pedis and posterior tibial pulses) to obtain 6 readings.  ABI was calculated 
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using the lowest ankle pressure as the numerator and the highest brachial pressure as 

the denominator.   

 

3.4 Self-completed questionnaires 

Subjects were sent out a questionnaire prior to attending the baseline, year 1 and year 

4 clinics (appendices A, B and C).  At baseline, in addition to basic demographic 

questions (date of birth, education level, marital status, ethnicity) this questionnaire 

included: questions regarding previous medical diagnoses and procedures; date of 

diagnosis of diabetes; current and recent medications; alcohol consumption; smoking 

history (have they ever smoked and if so, how many cigarettes/cigars/pipe per day 

and for how long); the WHO chest pain questionnaire (Rose G, McCartney P et al. 

1977) and the Edinburgh Claudication Questionnaire (Leng GC and Fowkes FG 

1992). At year 1, questions regarding current medication use were repeated, in 

addition to other conditions not related to this thesis. At year 4, the self-completion 

questionnaire included the same questions as baseline and in addition, questions 

regarding new medical diagnoses in the past 4 years as well as further questions 

regarding current medications, and use of specific medications in the past 6 months.  

In the baseline and year 4 questionnaires, the responses regarding events, diagnoses 

and operations were coded using ICD 10 and OPCS codes, prior to data entry.  

Medications were coded using BNF coding.  The chest and leg pain questionnaires 

were coded at the time of the clinic.  Any questions that the subject could not answer 

were completed with the assistance of study staff and all responses checked before 

the subject left the clinic, where possible.   

 

3.5 Blood & urine sampling and processing 

 Venepuncture & urine sample collection 3.5.1

Venous blood samples were obtained on the day of clinic attendance.  After a period 

of fasting, a tourniquet was applied above the antecubital fossa and an appropriate 

sampling site identified.  Skin was cleaned using alcohol wipes and venepuncture 
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undertaken using a Monovette blood collection system.  Samples for processing and 

storage by study staff (for later analysis) were immediately labelled with the study 

number and the date the blood was taken and placed directly onto ice for processing 

at the end of the clinic.  Samples sent to the Western General Hospital Combined 

Haematology and Biochemistry Laboratory were labelled with the minimum required 

data set and sent to the laboratory at the end of each clinic.  Reasons for any tubes 

not being filled were noted, as was the time of venepuncture.  Attempts were made to 

obtain blood samples from each participant.  Where blood sampling was not possible 

on the day of clinic attendance, subjects were invited back to a further appointment 

for blood sampling.  When that was not possible, home visits were carried out where 

possible in order to obtain samples.  Samples processed by study staff were 

centrifuged before being separated and stored at -80C.  CRP, IL-6 and NTproBNP 

were measured in these samples. 

An early morning urine specimen was collected for measurement of urinary albumin 

and creatinine for calculation of the albumin: creatinine ratio (ACR).  Participants 

were sent instructions and a sample tube to collect an early morning urine sample.  

Samples were stored on ice on receipt at the clinics and frozen at -80C for later 

analysis.   

 Analysis of samples 3.5.2

Serum isotope dilution mass spectrometry–traceable creatinine, plasma HbA1c, total 

cholesterol and HDL cholesterol were measured in venous blood and creatinine 

measured in urine (for calculation of albumin:creatinine ratio) and analysed 

according to standard protocols in the Department of Biochemistry, Western General 

Hospital, Edinburgh, UK. Serum creatinine measurement was used to estimate 

glomerular filtration rate (eGFR) using the CKD-EPI equation ((Levey, Stevens et al. 

2009)). Assays for plasma CRP and IL-6 were performed in the University 

Department of Medicine, Glasgow Royal Infirmary, as described by Marioni et al 

(Marioni, Strachan et al. 2010). CRP was assayed using a high-sensitivity 

immunonephelometric assay (Tzoulaki, Murray et al. 2007), while IL-6 antigen 

levels were determined using high-sensitivity ELISA kits (R&D Systems, Oxon, 
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U.K.).  Plasma NT-proBNP concentrations were determined using the Elecsys 2010 

electrochemiluminescence method  (Roche Diagnostics, Burgess Hill, UK) calibrated 

using the manufacturer's reagents. Manufacturer's controls were used with limits of 

acceptability defined by the manufacturer. Low control CV was 6.7% and high 

control CV was 4.9%. 

 

3.6 Ultrasound scanning  

Ultrasound of the carotid arteries was performed at both year 1 and year 4 by the 

same specially-trained ultrasonographer.  Images were captured using a Siemen’s 

Elegra Ultrasound. A 2-5-MHz transducer was used.   

 cIMT measurement at Year 1 and Year 4 3.6.1

The cIMT was measured according to the ET2DS ultrasound SOP (appendix D).   

The subject was positioned at 45 degrees, with the head turned to the side 

contralateral to measurement.  The probe was placed on the neck until the carotid 

artery could be visualised.  The probe was then turned so that the artery wall was 

parallel with the transducer.  Measurements were made of the intima media thickness 

at a point 1cm below the bifurcation of the common carotid, in an area free of 

plaque.  Three measurements were made on each side.  An image was frozen and 

saved for each measurement.  Images were securely stored on a University of 

Edinburgh hard drive. 

 Carotid plaque assessment at Year 1 and Year 4 3.6.2

Plaque was defined in the SOP as a focal structure encroaching into the arterial 

lumen of at least 0.5 mm or 50% of the surrounding IMT value, or with a thickness 

>1.5 mm as measured from the media-adventitia interface to the intima-lumen 

interface, and was judged subjectively by the ultrasonographer.  Carotid plaque was 

assessed as present or absent in both right and left common carotids, internal 

carotids, external carotids and carotid bifurcations.   
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Plaque morphology was assessed subjectively by the sonographer.  Echolucency was 

defined as presence of one or more plaques appearing black or almost black as 

flowing blood (compared with echogenic plaque which appears white or almost 

white, similar to the far wall media-adventitia interface).   Heterogeneous plaque was 

recorded if one or more plaques were present in which echogenicity of more than 

20% of the plaque area differed substantially from the echogenicity of the rest of the 

plaque.   

Plaque thickness was also assessed.  The plaque with the maximum thickness was 

identified on each side and measured using cross hairs placed by the 

ultrasonographer.  Plaque thickness was recorded for both left and right.   

 Viewing and storage of carotid ultrasound images 3.6.3

At year 1, all ultrasound images were downloaded from the ultrasound in a 

proprietary format.  Prior to use in this thesis, they were required to be converted to 

DICOM format in order for use with University software.  File conversion was 

undertaken by Dr Calum Gray of the Clinical Research Imaging Centre, University 

of Edinburgh.   

At year 4, images were downloaded directly from the ultrasound machine in DICOM 

format onto MO discs and transferred by me to a networked hard drive using an MO 

disc reader.  Images were recorded and saved by me in separate files for each subject, 

labelled by subject number.  I stored the images on a networked drive, which was 

backed up, and a copy was also stored on a portable hard drive (Freecom Hard Drive 

Classic 3.5” 500GB USB-2.0). 

Following this, I was able to view both year 1 and year 4 images using MicroDicom 

viewer.  Analyze 10.0 software was used to prepare images for use with the IMT 

measurement software (detailed later in this thesis).   

 IMT measurement validation at Year 4 3.6.4

In order to assess intra-observer variability in the measurement of cIMT, I selected 

individuals to undergo repeat cIMT measurement at year 4.  Subjects who reattended 

the clinic for other reasons were invited to be rescanned at the time of return.  52 
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subjects were recruited to this validation study and each subject returned to the clinic 

at a time suitable for them.  They underwent repeat cIMT measurement using the 

same ultrasound protocol as was used at the previous 2 measurement sessions.  The 

sonographer was blinded to the previous year 4 measurements.  Data were recorded 

in a Microsoft Access database.   

 

3.7 IMT measurement software 

In collaboration with Dr Calum Gray and Dr Tom MacGillivray of the Image 

Analysis team at the Clinical Research Imaging Centre (CRIC), part of the Wellcome 

Trust Clinical Research Facility in Edinburgh, I contributed to the development of a 

computer programme that could be used perform serial measurement of IMT along a 

length of carotid artery wall using the frozen images stored at the time of ultrasound 

assessment.  The aim of developing this software was to allow for a comparison 

between taking only 2 or 3 measurements at points on the vessel wall and taking 

multiple measurements along the wall.  Broadly speaking, once an outline of the IMT 

of vessel wall is identified by the user, the software finds a line of best fit along the 

midpoint of the wall section identified, and takes measurements of the cIMT at an 

angle perpendicular to this line (see software SOP, appendix E).  
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 Program algorithm 3.7.2

Figure 3-4 Schematic for calculating cIMT (reproduced from software SOP, Appendix E) 

 

The assumption of the program is that measurements of IMT taken along the vessel 

wall must be taken perpendicular to the edges as far as possible to take into account 

any bend in the wall, which allows the measurement of IMT to be a meaningful 

value (figure 3-4).  Users have control over the best fit line pixel distance and the 

number of pixels between each cIMT reading.  This can be defined after the image is 

prepared, allowing the number of readings taken per image to be altered as required.  

A line of best fit is made between the two user drawn lines and then perpendicular 

lines were drawn between the edges and the best fit lines.  These are deemed to be 

the intima media thickness.    
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 Preparation of images 3.7.3

Figure 3-5 Outline of interfaces following manual tracing (reproduced from software SOP, 

Appendix E) 

 

Analyze 10.0 was used to create an object map of each image (figure 3-5).  This 

involved tracing the outline of the lumen-intima media border using a spline.  Then, 

using a new spline, the line of the media-adventitial interface was traced.  The 

sections of artery wall that were identified for measurement were free of plaque, as 

judged by each user, in keeping with the study SOP for measurement of IMT.  As 

long a section of artery wall as possible was measured.  The splines were then 

toggled if appropriate to create a more accurate fit and then these edits were applied 

to the object map.  The object map was then saved, along with a copy of the image. 

Once I was experienced in processing the images, I trained a further two readers to 

assist in preparing the images. Two hundred and thirty five participants’ images were 

prepared.   The time that it took to prepare each set of images limited the number of 

participants’ images that could be included in the sample.  This limited the statistical 

analysis that could be performed as the way in which the images were selected was 

not completely random (as preparing the images took a lot longer than was initially 

expected).  



 

  111 

 

 Processing of images 3.7.4

Figure 3-6 Screenshot of software measurement output (reproduced from software SOP, Appendix 

E) 

 

Following preparation of the images, processing of the images by the software was 

performed in batches overnight.  The name of the image file and the object map file 

were inserted into an Excel spread sheet which was then used by the software to 

process the files in batches. The number of measurements could be easily altered if 

needed and the measuring process rerun if required.    However, for the purposes of 

this thesis a line of best fit distance of 50 pixels and measurement distance of 10 

pixels was chosen for analysis.  Once measured, the programme automatically 
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exported the measurements to an excel spread sheet where they were stored.  In 

addition to the raw individual measurements, the mean, maximum and minimum 

values were summarised, as well as number of measurements and standard deviation 

of the mean. 

 Limitations of IMT software 3.7.5

The major limitation of this process was image quality and the possibility of human 

error introduced when the IMT borders were traced.  The machine on which the 

images were obtained could not produce images of a high enough quality to allow 

automatic edge detection to be used.  Human error was introduced at the point of line 

selection. However, these limitations were felt to be acceptable in the context of this 

research as the comparable measure is the sonographer measurements which are 

open to the same limitations, and the main aim of the research was to find the overall 

effect of increasing the number of measurements used to calculate the mean cIMT.   

 

3.8 Determination of prevalent and incident events 

Prevalent and incident cardiovascular events used in this thesis were identified using 

several sources of information to ensure that all possible events were captured.  At 

both baseline and year 4 follow-up, events and diagnoses that were reported by 

participants in the self-completed questionnaire or on ECG were identified.  

Attempts were made to confirm these diagnoses using data linkage from ISD.  

Additionally, any events that were not reported by subjects but were present on ISD 

linkage were identified.  Further evidence was obtained from general practitioners 

and hospital notes where required.  

I was responsible for the identification and confirmation of incident cardiovascular 

events following the year 4 follow up clinic, while baseline events had been 

determined by members of the baseline study team on completion of the baseline 

clinics.   
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 Non-fatal events 3.8.1

All possible cardiovascular events were confirmed by an events committee 

comprising 2 clinically qualified members of the ET2DS team, as recommended by 

the FDA in 2010 (Centre for Drug Evaluation and Research 2008). Data was 

collected by one team member and the criteria applied.  Cases were then discussed 

by the 2 panel members and decisions in cases where more detail was need were 

discussed following further data collection from hospital notes.  In the case of any 

discrepancies in decisions making, a third clinically qualified consultant was 

available to adjudicate. 

Questionnaire and Examination 

Baseline 

At baseline, subjects completed a questionnaire (appendix A) and were asked if they 

had ever had a doctor diagnosis of angina, MI, stroke, coronary intervention and 

peripheral intervention.  They were also asked to report current medication use and 

whether they were taking medication for angina, hypertension, raised cholesterol or 

if they were taking aspirin.  They also completed the WHO chest pain Questionnaire 

(Rose G, McCartney P et al. 1977).  The ECG taken as baseline was also available to 

provide information, having been coded using the Minnesota coding system by 

clinically trained members of the study team (coded as ischaemic if Minnesota codes 

were 1.1 to 1.3; 4.1to 4.2; 5.1 to 5.3; 7.1, and coded as Q-waves if Minnesota codes 

were 1.1.1 to 1.2.5; 1.2.7; or 9.2 plus 5.1 or 5.2 (Prineas RJ, Crowe RS et al. 1982). 

Year 4 

The self-reported questionnaire at year 4 (appendix C) asked subjects to report 

whether they had had a doctor diagnosis of angina, MI, stroke, coronary intervention 

and peripheral intervention in the 4 years since their baseline clinic attendance.  They 

were also asked about current medication use, completed the WHO chest pain 

questionnaire again, and a repeat ECG was taken and coded using the Minnesota 

coding system by a clinically trained member of the study team (as at baseline). 
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Information Services Division Data Linkage 

At baseline, data concerning deaths and hospital discharges were obtained from the 

Information Services Division (part of NHS National Services Scotland).   

Baseline Data Linkage 

Identifying data were sent to ISD and data linkage performed to capture all hospital 

discharge codes (both ICD 9 and 10) and OPCS 4 codes for each subject, from the 

earliest point available up until baseline.  The SMR linked dataset was used to 

perform the linkage (SMR01, 04, 06 and GROS deaths records).  All ICD 10 codes 

for cardiovascular disease (I20-I25, I61, I63-I66, I252, I679, I694, G45 and G659) or 

where not available, ICD 9, were extracted manually from the ISD data linkage. 

Year 4 Data Linkage 

Prior to performing linkage, an application was made to ISD.  Full ethical permission 

was granted.  Information was obtained regarding all hospital discharges and 

procedures for each subject between 1st January 2007 and 20th May 2011.  

Information was also obtained regarding all deaths in that period.  Subjects were 

again linked to the SMR linked dataset.  All ICD 10 codes for cardiovascular disease 

(I20-I25, I61, I63-I66, I252, I679, I694, G45 and G659) were extracted manually 

from the ISD data linkage. 

Hospital Notes and GP Information at Year 4 

In situations where there was discrepancy between data linkage and self-report of an 

event, or where individuals did not meet the full criteria (detailed later) for a given 

event, I searched individual hospital notes for information to help confirm or refute a 

diagnosis.  If hospital notes were uninformative or unavailable, GPs were asked to 

confirm any events.   

 Fatal Events 3.8.2

Next of Kin Reporting of Deaths 

During the process of appointment making, reports received from spouses/family 

members of a participant’s death were noted in the database, along with a provisional 

cause of death if given.  In addition, correspondence in response to the study 

newsletter also provided information of participant death.   
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ISD Linkage to Death Information 

Linkage to the combined dataset at ISD allowed identification of all registered 

hospital and out-of-hospital deaths, and provided a cause of death.   

Confirmation of Cause and Date of Death 

All deaths notified by next of kin or by ISD data linkage were investigated. Those 

deaths notified by ISD data linkage had the date of death and underlying cause of 

death noted.  Those deaths notified by next of kin were cross referenced with the ISD 

linkage and those that were not present on both lists were investigated further using 

medical records so that cause and date of death could be confirmed.   

 

3.9 Criteria for definition of cardiovascular events 

 ET2DS criteria for prevalent CVD at baseline (2006/2007)  3.9.1

MI 

Myocardial infarction was recorded if 2 out of 3 of the following criteria were met: 

(i) Self-report (subject‘s recall of a doctor‘s diagnosis) of heart attack 

(ii) Myocardial infarction indicated by WHO chest pain questionnaire 

(iii) ECG evidence of ischaemia 

OR if both of the following were present: 

(i) Self-report (subject‘s recall of a doctor‘s diagnosis) of heart attack 

(ii) Prior hospital discharge code for MI (ICD10 codes I21-I23, I252) 

Stroke 

Stroke was recorded if 2 out of 3 of the following criteria were present:  

(i) subject recall of a doctor‘s diagnosis of stroke 

(ii) prior hospital discharge code consistent with stroke (ICD10 codes I61, 

I63-I66,I679, I694) 

(iii) confirmation by clinical notes reviews that event not due to transient 

ischemic attack (TIA). 
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TIA 

Transient ischaemic attack was recorded if two out of three of the following 174 

criteria were present: 

(i) subject recall of a doctor‘s diagnosis of stroke 

(ii) prior hospital discharge code consistent with TIA (eg. ICD10 codes G45, 

G659) 

(iii) confirmation by clinical notes reviews that event due to TIA. 

TIA was also recorded if subjects volunteered a self-reported history of TIA, “mini 

stroke” or “slight stroke” on the questionnaire. 

Angina 

Angina was recorded if two out of three of the following criteria were met: 

(i) self-report of doctor-diagnosed angina or taking regular anti-anginal 

medication 

(ii) angina indicated on WHO Chest Pain Questionnaire 

(iii) Ischaemic ECG codes 

OR if both the following criteria were met: 

(i) self-report of doctor-diagnosed angina or taking regular anti-anginal 

medication 

(ii) prior hospital discharge code for ischemic heart disease (ICD10 codes 

I20-I25). 

 

 ET2DS criteria for incident CVD at year 4 (2010/11) 3.9.2

I identified potential vascular events, operations and procedures using the self-

reported questionnaire, GP questionnaire, ECG and hospital discharge coding. I then 

developed and applied the following criteria and searched hospital notes for 

additional information if the criteria were not immediately met.  If there was doubt as 
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to whether criteria had been met even after searching hospital notes, possible cases 

were discussed by the events panel on an individual basis and a consensus decision 

was made.   

Fatal MI 

Either death certificate confirmed OR criteria for non-fatal MI within 4 weeks of 

unexplained/sudden death. 

Non-fatal MI/ACS 

Either ICD-10 code for new MI from ISD record linkage to discharges from Scottish 

hospitals (SMR), with date confirming that event occurred after baseline clinic visit 

PLUS one or more of the following (supporting evidence): 

i) Subject report of a doctor diagnosis of MI on the 4-year self-completion 

questionnaire, with date consistent with ISD report OR NEW subject report 

of MI as cause of chest pain on the WHO CPQ 

ii) Minnesota ECG codes for MI which were not present at baseline 

iii)  GP report of an MI on postal GP questionnaire (for clinic non-attenders only), 

with date consistent with ISD report 

OR If criteria for MI met following scrutiny of the clinical notes (hospital and/or 

GP notes) of any subject with one or more individual indicators of a possible MI, 

except ECG (see (a) above) but not meeting the full criteria under (a). 

 
Angina 

Either A diagnosis of angina during follow-up required that subjects did not meet 

criteria for angina at baseline, plus either: 
 

i) ICD-10 code for angina as PRIMARY diagnosis code from ISD record 

linkage to discharges from Scottish hospitals (SMR), with date confirming 

that diagnosis occurred after baseline clinic 

OR At least two of the following: 
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i) Subject report of a doctor diagnosis of angina (or of taking medication for 

angina) with date consistent with diagnosis after baseline 

ii) New ischaemic ECG at year 4 

iii)  Angina on WHO chest pain questionnaire  

OR Clinical diagnosis of angina recorded by a doctor on scrutiny of the notes of 

any subject with one or more individual indicators of possible new angina (new ICD 

code for angina but not primary code, new self-report of doctor diagnosis or 

medication, new angina on WHO chest pain questionnaire) but not meeting full 

criteria under 1 or 2 above. 

(N.B. If actual date of diagnosis of angina cannot be ascertained, then date should be 

date of follow-up clinical appointment) 

New possible other IHD 

A diagnosis of ‘possible other IHD’ during follow-up required that subjects did not 

meet any of the criteria for events listed under ‘all IHD’ at baseline (including 

‘possible other IHD’), plus: 

i) ICD code for IHD with date consistent with diagnosis since baseline in 

subjects without MI, angina or coronary intervention at follow-up. 

Fatal stroke 

Death certificate confirmed or criteria for non-fatal stroke within 6 weeks of 

unexplained/sudden death 

Non-fatal stroke 

Either ICD-10 codes for stroke as PRIMARY diagnosis 

OR Self-report of stroke confirmed as stroke on scrutiny of clinical notes 

OR  Non-primary ICD-10 codes for stroke, confirmed as stroke on scrutiny of 

clinical notes 

TIA 

Either ICD-10 code for TIA as PRIMARY diagnosis on ISD data 

OR  Self-report of stroke confirmed as TIA on scrutiny of clinical notes 
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OR  Non-primary ICD-10 code for stroke or TIA confirmed as TIA on scrutiny of 

clinical notes. 
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Figure 3-7 Flow chart of incident event identification 
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3.10 Data analysis 

Data were collected and entered into a Microsoft Access database and exported to 

IBM SPSS v19 for data analysis. 

 Double data entry 3.10.1

In order to assess the accuracy of the data collected at year 4 and the resultant 

variables, the paper records of a random sample of 80 individuals (10%) were 

selected from the cohort and used for double data entry.  I, along with three other 

study team members re-entered 20 sets of notes each into the database.  Comparison 

of the resulting dataset with the original data set revealed an error rate of 0.007.  On 

discussion with senior study team members, this was felt to be an acceptable level of 

error and it was agreed that the resultant variables were reliable for use.   

 Data cleaning and outliers 3.10.2

Following completion of data entry at year 4, all data in the database was analysed 

for outlying or unusual values.  These were examined on an individual basis and 

compared with original copies of the results.  Input errors were changed to the 

correct value on the original database, and detailed logs of any changes were kept.  

Those values which could not be explained by input error were removed from the 

database if not biologically plausible, and retained if simply high but true values.  As 

part of this procedure I prepared the year 1 and year 4 cIMT and plaque and the year 

4 renal function, lipids, ECG, ABPI and brachial blood pressure. 

The year 1 cIMT measurements were examined for any outlying or unusual results 

(<0.5mm or >1.5mm), and those that were identified as having been incorrectly 

measured by the sonographer (following analysis of stored images) were removed 

from the database.  Examples of this include where a plaque has clearly been 

measured instead of an area of IMT free of plaque, or where the measurement 

callipers were incorrectly placed.  Measurements that were simply data input errors 

were corrected following comparison with images, and any other unusual values that 
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could not be explained in this way were dealt with on a case by case basis.  Any 

values that could not be explained were removed from the database.  

Year 4 IMT measurements were dealt with in the same way, as were plaque 

measurements. 

 

 Variables used in this thesis 3.10.3

Variables included in this thesis are summarized in table 3-1. 

Demographic Variables – Age at year 1 is a continuous variable calculated as [date 

of year 1 clinic appointment – date of birth].  Sex is a binary variable (male or 

female). SIMD is a 5 level categorical variable (1 being most deprived quintile and 5 

being least deprived).   

Diabetes Variables – Duration of diabetes is calculated as [date year 1 appointment 

– date of diagnosis of diabetes] and is used as a log10 transformed variable in 

analyses.  HbA1c is a continuous variable (%Hb) and diabetes treatment was 

recorded as a 3 level categorical variable – diet alone, oral medication alone or 

insulin ± oral medication.   

Blood Pressure Variables – Systolic and diastolic blood pressure are continuous 

variables reported in mmHG.  The use of antihypertensive medications is a binary 

variable (yes or no). 

Lipid Variables – Total and HDL cholesterol are continuous variables (mmol/l) and 

use of lipid lowering medication is a binary variable (yes or no). 

Smoking Variables – Smoking status is described as a 3 level categorical variable 

(current, ex or never smoker). 

Obesity Indices – BMI is a continuous variables calculated using height and weight 

measured at baseline clinics, using the formula BMI = weight (kg) / [height (m)]2.   
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Novel Markers – IL-6, ACR and CRP are continuous variables on a log scale (due 

to non-normal distribution).  ACR and eGFR are also continuous variables.  ABPI is 

calculated as [lowest ankle pressure (mmHg) / highest brachial pressure (mmHg)].  

All novel markers were log10 transformed for use in analyses. 

Carotid Ultrasound Variables –All cIMT variables are continuous variables.  There 

is no definitive recommendation on which summary measure of cIMT to use. Several 

measures of cIMT will be used in this thesis.  Mean cIMT is the mean of all 6 cIMT 

readings; maximum cIMT is the highest of the 6 IMT readings; maximum mean 

cIMT is the higher of mean left and mean right IMT; mean maximum cIMT is the 

mean of the maximum right and maximum left IMT.  Plaque presence (at least 1 

plaque in any segment of the carotid arteries) is reported as a binary variable (yes or 

no).  Mean plaque thickness is the mean of the right and left plaque thicknesses. 

Maximum plaque thickness is the higher of the right and left plaque thicknesses. 

Plaque score is the sum of the areas in which at least one plaque is present 

throughout the left and right carotid tree (min 0 areas, max 8 areas), based on a 

method used by Lee et al (Lee EJ, Kim HJ et al. 2007).  Plaque score was also used 

as a binary variable (score ≤4 or score >4).  Plaque echogenicity is a 4 level 

categorical variable (echogenic/no plaque only, echolucent plaque only, 

heterogeneous plaque only, both types of plaque).  It is also considered as a binary 

variable (low risk plaque (echogenic/no plaque) vs high risk plaque (echolucent, 

heterogeneous or both types).   

Cardiovascular Event Outcomes – Event variables for prevalent and incident CVD 

are binary (yes or no). Outcomes are (for both prevalent and incident events): 

 Any CVD – either angina, fatal or nonfatal MI, TIA, fatal or non-fatal stroke, 

and any cardiovascular death. 

 Any CAD – either fatal or nonfatal MI or angina 

 Any cerebrovascular – either fatal or non-fatal stroke or TIA 

 Any fatal (incident only) – any fatal cardiovascular event (including other 

ischaemic heart disease)   
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In most cases, prevalent events were taken from baseline data.  In addition, because 

cIMT was measured at year 1, any incident events recorded between baseline and 

year 1 were subsequently attributed to “prevalence”.   

Table 3-1 Collection time point for variables used in this thesis 

Demographic Baseline Year 1 Year 4 

Date of birth BMI ABI IMT and Plaque 

SIMD Smoking variables Systolic BP Incident CVD events 
Sex NTproBNP Diastolic BP  
Age IL-6 Lipids  

 eGFR HbA1c  
 ACR Medication use  
 CRP IMT & plaque  
 Prevalent CVD events Duration DM  
SIMD=Scottish Index of Multiple Deprivation, BMI=body mass index, NTproBNP=amino terminal brain natriuretic peptide, 

IL-6=interleukin 6, eGFR=estimated glomerular filtration rate, ACR=albumin creatinine ratio, CRP=c reactive protein, 
CVD=cardiovascular disease, ABI=ankle brachial index, BP=blood pressure, HBA1c=glycated haemoglobin, DM=diabetes 
mellitus, IMT=intima media thickness 

 

 Statistical analysis  3.10.4

In the analyses presented in this thesis, a p value of less than 0.05 was generally 

taken to denote statistical significance, as is standard in most epidemiological 

research.  Consideration was given to correcting for the effect of performing multiple 

analyses, using the Bonferroni method.  At a level of <5% significance, there is a less 

than 5% chance the null hypothesis is rejected, even though it is true (type I error).  

As the number of analyses increases, the likelihood of a type I error increases and so 

in the Bonferroni method, the level of significance is divided by the number of 

analyses performed to reduce the level below which a result is considered significant, 

thereby reducing the likelihood of type I errors.  However, the consequence of this is 

an increase in type II errors, whereby the null hypothesis is accepted, despite being 

untrue.  (Perneger TV 1998) highlights that the main problem with this approach is 

that the point at which one limits the number of tests divided by (eg in on paper, or in 

one study or indeed, a researchers entire lifetime) becomes arbitrary and in the 

context of research undertaken with a predetermined hypothesis (as in this thesis), it 

is more important to consider the significance of test results in the context of other 

tests, taking care to keep the number of tests undertaken to the minimum required for 

the research.  This was the approach adopted in this thesis.   
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Descriptive analysis and cross sectional analysis of carotid variables 
with risk factors 

Variables for analysis were drawn from the year 1 data rather than baseline where 

possible, as IMT was first measured at the year 1 clinic.  Baseline demographics of 

the study population are described to allow comparison with those who attended year 

1 follow up.  Variables that were not measured at year 1 were substituted with the 

corresponding baseline variable (BMI, smoking status and pack years, NTproBNP, 

IL-6, eGFR, ACR and CRP). 

Histograms of continuous variables were visually inspected for normality.  Most 

variables were normally distributed.  Those variables that were not normally 

distributed were duration of diabetes, ACR, NTproBNP, IL-6 and CRP.  Log10 

transformation was used to transform all the variables except pack years, which was 

square root transformed.  Histograms of variables after transformation were 

inspected to confirm that a normal distribution had been achieved (figure 3-5). For 

normally distributed variables, mean and standard deviation are quoted, and for 

skewed variables, median and interquartile ranges are described. 
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Figure 3-8 Histograms of untransformed and transformed skewed variables 
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Unadjusted associations between continuous variables were assessed using Pearson 

correlation coefficients.  The r value and corresponding p value are reported.  Partial 

correlation was used to examine age and sex adjusted correlation coefficients.  R 

values and p values are reported.  For categorical variables, unadjusted and age and 

sex adjusted associations with continuous variables was assessed using ANOVA (β 

values and p values reported).  Chi squared testing was used to examine relationships 

between two categorical variables (chi square and p value reported).    

Linear regression models were used to examine the multifactorial determinants of the 

continuous IMT and plaque variables.  Variables were entered into the model and β 

coefficients and p values reported.  Model variance explained is also reported (r2).   

Association of carotid variables with prevalent CVD 

Logistic regression models were used to assess the association between prevalent 

CVD and measures of cIMT and plaque.  Four models were fitted: 
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Model 1 Unadjusted  
Model 2  Age and sex 

Model 3 model 3 Age, sex, SIMD, duration of DM, HbA1C, diabetes treatment, 
systolic blood pressure, diastolic blood pressure, Antihypertensive 

use, total cholesterol, HDL cholesterol, lipid lowering medication use, 
smoking, BMI 

Model 4 Age, sex, SIMD, duration of DM, HbA1C, diabetes treatment, systolic 
blood pressure, diastolic blood pressure, Antihypertensive use, total 

cholesterol, HDL cholesterol, lipid lowering medication use, smoking, 
BMI, ankle brachial index, albumin creatinine ratio, interleukin 6, c 
reactive protein, NTproBNP 

 

cIMT measurement validation 

52 subjects were recruited to have a second IMT measurement performed.  Subjects 

returned at varying intervals after the first scan.  As only one sonographer was used, 

only intra-observer variability could be evaluated.  IMT measurements were recorded 

in millimetres to 1 decimal point at both sessions.  The mean values of cIMT were 

calculated for the first session and the second session.  A mean of both the right and 

left measurements was calculated as well as a mean of all 6 measurements.   

Kolmogorov-Smirnov tests were performed on the mean values and were found to be 

non-significant at the 99% level, so the data was assumed to be normally distributed, 

thus parametric tests could be used.  Pearson correlation coefficients were calculated 

and the paired t test used to compare the means.  Intra-class correlation was 

calculated to assess intra-observer variability.   Limits of agreement between both 

sessions were evaluated using Bland Altman plots.  Analysis was performed on all 

52 subjects (regardless of time between scans) and on a subgroup who had their 

second scan within 4 months of the first.   

cIMT measurement software analysis 

Measurements of mean cIMT made using the cIMT software were compared with 

those made in the same 233 individuals by the sonographer.  Pearson correlation 

coefficients and paired student t tests were used to compare inter-correlations and the 

mean of each measurement in the sub-population. Due to the small sample size, no 

further statistical analyses were performed. 
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Association of carotid variables with incident cardiovascular disease 

The association between year 1 cIMT and plaque and future vascular events was 

determined using Cox Proportional Hazards modelling. Time to event was calculated 

by subtracting the date of year 1 appointment from the date of the first event, or from 

the date of censoring in the case of non-events (defined at 31st August 2011).  

Cardiovascular events were examined in 4 ways – any cardiovascular event (fatal 

and non-fatal MI, angina, fatal and non-fatal stroke or TIA), any CAD (Fatal or non-

fatal MI or angina), any Cerebrovascular disease (Fatal or non-fatal Stroke or TIA) 

and any fatal event (fatal MI, fatal Stroke, fatal other IHD). Firstly, variables were 

entered into the model unadjusted.  Then, they were adjusted for age, sex and 

previous CVD (to take account of the risk inferred by previous disease).  Following 

this, full adjustment for variables (where available) used in the UKPDS risk score 

was undertaken.  The UKPDS risk score variables were chosen because scores such 

as the Framingham score take limited account of diabetes status and were developed 

in general populations. As such, the UKPDS, which was developed in and is for use 

by individuals with diabetes, was felt to be a more appropriate representation of 

current risk prediction in people with Type 2 diabetes.  Ethnicity was not included as 

the majority of the cohort was of the same ethnicity.  Atrial fibrillation was also 

excluded as this information was not available at the time of analysis.  Stepwise 

regression and construction of individual multifactorial models were not undertaken 

given the low proportion of overall variability in cIMT that was explained by the 

totality of the measured various risk factors. 

Cox Regression Model A Unadjusted 

Cox Regression Model B Age, Sex and Previous CVD adjusted 

Cox Regression Model C Age, Sex, Previous CVD, duration of diabetes, 

HbA1c, systolic BP, total cholesterol, HDL, smoking status  

The Cox proportional hazards assumption was assessed for included variables using 

log minus log plots.  All variables met the proportional hazards assumption for each 

outcome event.   



 

  130 

Following the construction of the Cox models, assessment of any improvement in the 

model on addition of the test variables was assessed by determining the area under 

the ROC curve for each model (AUC).  The predicted individual risk (XBeta) for 

each model under investigation was saved as a new variable during Cox Regression 

and used to create a ROC curve.  The area under each curve was calculated and 

compared. 

In order to assess the potential effect on risk classification of any variables which 

survived Cox analysis, the net reclassification index was employed.  Net 

reclassification index is a method which evaluates the proportion of subjects moving 

accurately or inaccurately from one risk category to another after change to a 

prediction model.  In this thesis, participants were assigned to a level of risk (low, 

intermediate or high) based on arbitrary tertiles calculated from the X beta values of 

each model, as described by de Ruijter et al ((de Ruijter W, Westendorp RGJ et al. 

2009).  While this does not correspond directly to meaningful clinical risk levels, the 

small number of events led to a number of zero cells in the cross tabulations.  The 

tertiles for each model were cross tabulated (separately for the event and non-event 

groups) and net reclassification index calculated using the following formula: 

NRI= [Pup(events)-Pdown(events)]-[Pup(nonevents)-Pdown(nonevents)] 
Where: 

Pup(events)=[number of events moving up/number of events]  
Pdown(events)= [number of events moving down/number of events]  
Pup(nonevents)= [number of nonevents moving up/number of nonevents] 

Pdown(nonevents)= [number of nonevents moving up/number of nonevents]  
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Chapter 4: Results 1 - Characteristics of study 
population and descriptive statistics for risk 

factor variables and carotid ultrasound 
parameters 

 

This chapter describes the socio-demographic characteristics and representativeness 

of the ET2DS study population and the sub-population used for analyses presented in 

this thesis.  It also presents descriptive statistics for included vascular risk factor 

variables which are both traditional cardiovascular risk factors (including those in the 

UKPDS risk score) and more ‘novel’ biomarkers (including ABI, ACR, eGFR, 

plasma IL6, CRP and NTproBNP), which are starting to be explored in terms of their 

potential as cardiovascular risk predictors in other study populations.  It further 

describes the results of carotid ultrasound measurements at Year 1 and Year 4 follow 

up as well as change in ultrasound measurements between these time points.  Finally, 

an assessment of measurement methods used in the study is presented. 

 

4.1 ET2DS study population 

 Baseline socio-demographic characteristics  4.1.1

Baseline socio-demographic characteristics of the ET2DS study population are 

presented in table 4-1 (column 1).  At recruitment, mean age of participants of the 

ET2DS (n=1066) was 67.9 years, and 547 (51.3%) participants were male. One 

hundred and twenty-seven (11.9%) were in the first quintile of the Scottish Index of 

Multiple Deprivation (most deprived), 208 (19.5%) were in the second quintile, 188 

(17.6%) were in the third quintile, 194 (18.2%) were in the fourth quintile and 349 

(32.7%) were in the top quintile (least deprived). 

 Representativeness 4.1.2

Representativeness of the recruited ET2DS population was assessed by researchers 

involved in the baseline phase of the ET2DS (Marioni, Strachan et al. 2010).  The 
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results of this analysis are presented in table 4-1.  Clinical and socio-demographic 

characteristics recorded on the Lothian Diabetes Register were compared between 

those individuals who had been invited, at random, to participate and had attended 

(participants n=1066), with those who had declined or did not respond (‘non-

participants’, n=4386). 

Mean age of participants and non-participants was similar (both 67.9 years), but 

participants were more likely to be male (51.3% vs. 41.9%).  In addition, there was a 

higher proportion of individuals from less deprived backgrounds in the participant 

group.  Mean systolic blood pressure was slightly lower in participants but mean 

cholesterol, mean HbA1c, duration of diabetes and proportion receiving insulin 

treatment were similar between participants and non-participants.   

Table 4-1 Comparison of clinical characteristics recorded on the Lothian Diabetes Register in ET2DS 

participants and non-participants (adapted from (Marioni, Strachan et al. 2010)) 

 Participants (n=1028-1066) Non-Participants (n=4020-4385) 

Mean Age (years) 67.9 (4.2) 67.9 (4.4) 

Male sex  51.3 (547) 41.9 (1839) 

Deprivation rank    

1st quintile (most deprived) 11.9 (127) 16.8 (736) 

2nd quintile 19.5 (208) 25.9 (1134) 

3rd quintile 17.6 (188) 18.7 (820) 

4th quintile 18.2 (194) 17.8 (782) 

5th quintile (least deprived) 32.7 (349) 20.8 (897) 

Duration of diabetes <5 years  48.4 (516) 48.7 (2135) 

Insulin Treatment 17.4 (185) 16.1 (704) 

Cholesterol (mmol/l) 4.3 (0.9) 4.2 (0.96) 

Systolic blood pressure  (mmHg) 133.3 (16.44) 137.2 (18.15) 

HBA1c (%Hb) 7.4 (1.12) 7.4 (1.36) 

Values are mean (SD) or % (n) HbA1c=glycated haemoglobin 

For the purposes of the research presented in this thesis, baseline demographic and 

cardiometabolic characteristics were also compared between subjects attending 

baseline, one year follow up and four year follow up respectively (table 4-2), and 

between those that had a full set of valid IMT readings at the one year visit and those 

that did not (table 4-3).   
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Of the 1066 participants in the ET2DS, 939 (88.1%) attended the year 1 follow up 

clinic and 831 (77.9%) attended the year 4 follow up clinic.  In general, mean 

baseline characteristics were similar across the cohort at all three time points. At year 

1 and year 4, there was a slightly lower proportion of subjects who had been current 

smokers at baseline (both 12.5%) compared with the entire cohort (14.0%) and 

baseline systolic blood pressure was slightly lower at 132.5 ±15.7 mmHg in those at 

year 4 compared with the whole cohort (133.3 ± 16.4 mmHg).  However, even these 

differences were small.  

Table 4-2 Baseline characteristics of study participants attending baseline, 1 year and 4 year 

follow-up of the ET2DS 

  All subjects 
(n=1066) 

Year 1 participants 
(n=939) 

Year 4 Participants 
(n=831) 

Demographics Age at Baseline (years) 67.8 (4.17) 67.8 (4.15) 67.7 (4.14) 
 Sex  (male) 546 (51.3) 487 (52.0) 430 (51.7) 
     
Diabetes  Duration of Diabetes (years) 6.0 (8) 6.0 (8.0) 6.0 (8.0) 
 HbA1C (%Hb) 7.39 (1.12) 7.37 (1.11) 7.39 (1.13) 
 Diabetes Treatment     
 Diet Alone 201 (18.9) 182 (19.4) 166 (20.0) 
 Oral Hypoglycaemics 689 (64.6) 607 (64.7) 530 (63.8) 
 Insulin ± Oral Hypoglycaemics 176 (16.5) 149 (15.9) 135 (16.2) 
     
Blood Pressure Systolic BP (mmHg)  133.3 (16.3) 133.2 (16.2) 132.5 (15.7) 

 Diastolic BP(mmHg) 69.1 (9.0) 69.0 (9.0) 68.9 (8.8) 
     
Blood Lipids Total Cholesterol 4.31 (0.90) 4.31 (0.89) 4.33 (0.91) 
 HDL Cholesterol 1.30 (0.36) 1.29 (0.35) 1.29 (0.35) 
     
Smoking Smoking Status     
 Current smoker 148 (14.0) 117 (12.5) 104 (12.5) 
 Ex smoker 501 (47.4) 443 (47.5) 392 (47.2) 
 Never smoker 409 (38.7) 373 (40.0) 332 (40.0) 
     
Obesity Index BMI (kg/m2) 31.3 (5.6) 31.3 (5.6) 31.2 (5.5) 
Renal ACR 1.8 (3.0) 1.8 (3.0) 1.8 (3.2) 
BP=blood pressure, HDL=high density lipoprotein, BMI=body mass index 

Values are mean (SD), median (Interquartile range), or n (%)  

 

4.2 One year follow up study population 

 Missing data 4.2.1

cIMT  

Of the 939 subjects that attended year 1 follow up, 916 subjects had valid cIMT 

readings at year 1 and 904 had valid plaque readings. In terms of cIMT 

measurements, the remaining 23 participants had no valid cIMT readings due to 
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problems with the measurement of cIMT at the clinic eg physical barrier to 

measurement or incorrect measurements taken. This also applied to those with 

missing plaque measurements. A comparison of baseline characteristics between 

those subjects with and without cIMT measurements at year 1 is made in table 4-3.  

There were no significant differences between the two groups, with the exception of 

smoking, where only 13.0% of people with cIMT measurements were current 

smokers compared with 22.4% of people without cIMT measurements.   

 

Table 4-3 Comparison of baseline characteristics of subjects with and without valid cIMT 

measurements at year 1 follow up of the ET2DS 

  Subjects with valid year 1 
cIMT measurements 
(n=916) 

Subjects without valid 
year 1 cIMT 
measurements (n=150) 

P value 

Demographics Age at Baseline (years) 67.9 (4.2) 67.9 (4.4) NS 
 Sex  (male) 51.7 (474) 48.7 (73) NS 
     
Diabetes  Duration of Diabetes (years) 6.0 (8.0) 6.0 (7.8) NS 
 HbA1C (% Hb) 7.38 (1.12) 7.53 (1.12) NS 
 Diabetes Treatment     
 Diet Alone 19.7 (180) 14.7 (22)  
 Oral Hypoglycaemics 64.5 (591) 66.0 (99) NS 
 Insulin ± Oral Hypoglycaemics  15.8 (145) 19.3 (29)   
     
Blood Pressure Systolic BP (mmHg)  133.2 (16.4) 133.9 (17.1) NS 

 Diastolic BP(mmHg) 69.1 (9.0) 69.1 (9.2) NS 
     
Blood Lipids Total Cholesterol (mmol/l) 4.31 (0.89) 4.31 (0.95) NS 
 HDL Cholesterol (mmol/l) 1.29 (0.35) 1.30 (0.43) NS 
     
Smoking  Current smoker 13.0 (119) 22.4 (33)  
 Ex smoker 46.9 (430) 48.3 (71) 0.002** 
 Never smoker 40.1 (367) 29.3 (43)  
     
Obesity Index BMI (kg/m2) 31.3 (5.7) 32.1 (5.7) NS 
BP=blood pressure, HDL=high density lipoprotein, BMI=body mass index, NS=not significant (p>0.05)  

Values are mean (SD), median (Interquartile range) or % (n)  ** significant p<0.01 
 

Other Variables 

At year 1, there were differing degrees of missing data for each variable (table 4-4).  

Age and BMI were complete for all subjects.  Duration of diabetes (years), systolic 

BP, diastolic BP, ABI, eGFR and IL-6 had missing data of less than 1%.  HbA1c, 

total cholesterol, HDL cholesterol, CRP and NTproBNP had a missing data level 

between 1% and 2%.  Continuous variables with higher missing data levels were 

albumin creatinine ratio (58.5%, n=550) and mean and maximum plaque thickness 

(5.4%, n=51 for both).  Categorical variables used in this thesis demonstrated less 
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missing data than continuous variables.  Sex, SIMD quintile, diabetes treatment, 

antihypertensive use and lipid lower medication use were complete.  Smoking status 

had <1% missing data.   

Table 4-4 Missing data in study population used in this thesis 

  Total in group N missing % missing 

Demographics Age (years) 939 0 0.0 

 Sex (male) 939 0 0.0 

 SIMD 939 0 0.0 

Diabetes  Duration of diabetes (years) 939 7 0.8 

 HbA1c (%Hb) 939 10 1.1 

 Diabetes Treatment 939 0 0.0 

Blood Pressure Systolic BP (mmHg) 939 5 0.5 

 Diastolic BP (mmHg) 939 5 0.5 

 Antihypertensive use (yes) 939 0 0.0 

Lipids Total Cholesterol (mmol/l) 939 10 1.1 

 HDL Cholesterol (mmol/l) 939 10 1.1 

 Lipid Lowering Medication (yes) 939 0 0.0 

Smoking Smoking status 939 1 0.1 

Obesity Index BMI (kg/m2) 939 0 0.0 

CVD Risk Marker ABI 939 6 0.6 

Renal Function eGFR (ml/min/1.73m2) 939 7 0.7 

 ACR (mg/mmol) 939 550 58.5 

Plasma Biomarkers CRP (mg/l) 939 16 1.7 

 IL-6 (pg/ml) 939 2 0.2 

 NTproBNP (pg/ml) 939 9 1.0 

Carotid Ultrasound Mean cIMT (mm) 939 23 2.4 

 Max cIMT (mm) 939 23 2.4 

 Max Mean cIMT (mm) 939 23 2.4 

 Mean Max cIMT (mm) 939 23 2.4 

 Mean Plaque Thickness (mm) 939 54 5.4 

 Max Plaque Thickness (mm) 939 54 5.4 

 Plaque Score 939 34 3.6 

 Plaque Morphology 939 2 0.2 

SIMD = Scottish Index of Multiple Deprivation, BP = blood pressure, HDL = high density lipoprotein, ABPI = ankle brachial 

pressure index, BMI = body mass index, eGFR = estimated glomerular filtration rate, ACR = albumin creatinine ratio, CRP = C 
reactive protein, IL-6 = interleukin 6, NTproBNP = N terminal pro-brain natriuretic peptide, cIMT = carotid intima media 
thickness  

 

 Characteristics of study populations at year 1  4.2.2

The characteristics of the study population at year 1 are presented in (table 4-5).  At 

year 1, subjects in the IMT analysis study population had a mean age of 68.9 ± 4.2 
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years, and 51.7% (474) were male.  There was a similar proportion of the sample in 

each of the quintiles of SIMD, with the exception of the most affluent quintile, which 

was over represented in the sample (quintile 5, 34.4% (315) vs quintile 1, 11.6% 

(106)).  The median duration of diabetes was 7.0 (8.0) years, with a mean HbA1c of 

7.18 ± 1.07%.  A high percentage of the sample (64.5% (591)) was using oral 

hypoglycaemic medications alone to manage their diabetes while fewer participants 

were treating their diabetes with diet modification alone (19.7% (180)) or with 

subcutaneous insulin (alone or in combination with oral hypoglycaemics) (15.8% 

(145)). The mean systolic blood pressure was 138.1 ± 18.4 mmHg, with a mean 

diastolic pressure of 74.1 ± 9.5 mmHg.  85.7% (785) of the sample reported using 

antihypertensive medication.  Mean total cholesterol was 4.15 ± 0.80 mmol/l and 

mean HDL cholesterol 1.23 ± 0.34 mmol/l.  84.3% (772) of participants reported use 

of lipid lowering medication.  13.0% (119) of the sample reported being current 

smokers, while 46.9% (430) reported that they were ex-smokers and 40.1% (367) 

reported that they had never smoked.  The mean ankle brachial index was 0.99 ± 

0.21 and the mean eGFR was 77.3 ± 18.6 ml/min/1.73m2. Median ACR value was 

1.80 (3.0) mg/mmol, median IL-6 was 2.82 (2.42) pg/ml, median CRP 1.76 (3.27) 

mg/l and NTProBNP had a median value of 74 (133) ng/ml.   

The corresponding values for the plaque analysis group were almost identical to 

those of the IMT group (table 4-5).   
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Table 4-5 Demographic variables, cardiometabolic factors and biomarkers of the study population 

at Year 1 ET2DS follow up 

  Subjects with valid IMT at year 1 

(n=916) 

Subjects with valid plaque 

assessment ay year 1 (n=905) 

Demographics Mean Follow up 
(years) 

3.53 (0.27) 3.53 (0.27) 

 Age (years) 68.9 (4.2) 69.0 (4.2) 

 Sex (male) 474 (51.7) 465 (51.4) 

 SIMD   

 Quintile 1 106 (11.6) 104 (11.5) 

 Quintile 2 169 (18.4) 170  (18.8) 

 Quintile 3 160 (17.5) 158 (17.5) 

 Quintile 4 166 (18.1) 167 (18.5) 

 Quintile 5 315 (34.4) 305 (33.7) 

Diabetes Duration of Diabetes 
(years) 

7.0 (8.0) 7.0 (8.0) 

 HbA1C (% Hb) 7.18 (1.07) 7.19 (1.08) 

 Diabetes Medication   

 Diet Alone 180 (19.7) 172 (19.0) 

 Oral Hypoglycaemics 591 (64.5) 590 (65.3) 

 Insulin ± oral 
hypoglycaemics 

145 (15.8) 142 (15.7) 

Blood Pressure Systolic Blood 
Pressure (mmHg)  

138.1 (18.4) 138.0 (18.5) 

 Diastolic Blood 
Pressure (mmHg)  

74.1 (9.5) 74.0 (9.5) 

 On antihypertensive  
(yes) 

785 (85.7) 775 (85.7) 

Lipids Total Cholesterol 
(mmol/l) 

4.15 (0.80) 4.15 (0.80) 

 HDL Cholesterol  
(mmol/l) 

1.23 (0.34) 1.23 (0.34) 

 Lipid lowering meds 
(yes) 

772 (84.3) 762 (84.3) 

Smoking Smoking status    

 Current smoker 119 (13.0) 115 (12.7) 

 Ex smoker 430 (46.9) 425 (47.0) 

 Never smoker 367 (40.1) 364 (40.3) 

Obesity Index BMI (kg/m
2
) 31.3 (5.7) 31.3 (5.7) 

CVD Risk Marker Ankle Brachial Index 0.99 (0.21) 0.99 (0.21) 

Renal Function eGFR (ml/min/1.73m
2
) 77.3 (18.6) 77.0 (18.2) 

 ACR (mg/mmol) 1.80 (3.0) 1.8 (3.0) 

Plasma Biomarkers IL6 (pg/ml) 2.82 (2.42) 2.82 (2.43) 

 CRP (mg/l) 1.76 (3.27) 1.76 (3.29) 

 NTProBNP (pg/ml) 

 

74 (133) 74 (133) 

Values are mean (SD), median (Interquartile range) or %(n) SIMD=Scottish Index of Multiple Deprivation, HDL=high density 
lipoprotein, BMI=body mass index, eGFR=estimated glomerular filtration rate, ACR=albumin creatinine ratio, IL-6=interleukin 
6, CRP=C reactive protein, NTProBNP=N terminal pro-brain natriuretic peptide,  
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4.3 Carotid intima media thickness  

This section describes the results of the cIMT measurement validation study and a 

description of cIMT distribution and change in the study sample.   

 cIMT validation study at year 4 follow up 4.3.1

Because of the well documented issues regarding the reliability and repeatability of 

ultrasound measurements of cIMT, an assessment was made of the measurements 

performed by the ET2DS sonographer.  This was carried out at the year 4 follow up 

clinics, at which time 52 subjects returned for repeat cIMT measurement.  As there 

was only 1 sonographer, only intra-observer variability could be assessed.  Data was 

assessed for normality using Kolmogorov-Smirnov tests at a 99% confidence level 

and found to be normal.   

Mean values for the mean cIMT recorded at each attendance are reported in table 4-

6.  Mean cIMT at the first attendance was 0.89mm and at the repeat attendance 

0.90mm.  The difference between the means was not statistically significant 

(p=0.537).  Pearson correlation coefficient between the means of the first and second 

sessions was 0.948 (p<0.001). Intra-class correlation was also determined using a 

two way random model with absolute agreement and was found to be 0.947 (0.910-

0.969) (p<0.001).  These analyses were repeated on two subgroups defined by time 

between the first and second reading (less than or more than 4 months apart).  There 

were no significant differences in the results for each group, suggesting that the time 

between readings did not affect cIMT measurement. 

Table 4-6 Correlation between cIMT measurements in the validation study 

 N 
1st Attendance 

(mm) 
2nd Attendance 

(mm) 
P 

value 
Pearson Correlation 

Coefficient 
Intraclass Correlation 

Coefficient (95%CI) 

Overall 52 0.89 0.90 0.537       0.948*** 0.947 (0.910-0.969)*** 

<4 months 
apart 

27 0.93 0.91 0.520       0.912*** 0.954 (0.898-0.979)*** 

>4 months 
apart 

25 0.88 0.88 0.958       0.983*** 0.991 (0.980-0.996)*** 

*** significant at  p<0.001.  Values for each attendance are mean cIMT.   
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Bland Altman plots were then created to visually evaluate agreement.  95% limits of 

agreement were calculated and plotted for the whole validation sample and the sub 

groups based on time between readings.    No clinically significant bias was seen in 

any of the measurements.   

Figure 4-1 Bland Altman Plots for cIMT Validation Study 
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 Description of cIMT in the study population 4.3.2

Mean values for the various cIMT measurements derived from year 1 recordings are 

described in table 4-7.  Year 1 mean cIMT was 0.94 ± 0.14mm, and year 1 maximum 

cIMT 1.06 ± 0.19mm.  Year 1 maximum mean cIMT and mean maximum cIMT 

were 0.99 ± 0.17mm and 0.99 ± 0.16mm respectively.  All measures of cIMT were 

higher in men than in women, and also higher in older participants than younger 

participants (table 4-8).  Additionally, mean cIMT was higher in the left carotid 

artery than the right (for both men and women in all age categories) – (table 4-8).    
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Table 4-7 cIMT measured at year 1 and year 4 of the ET2DS 

 Year 1 (n=916) Year 4 (n=781) Change (n=765) P for change 

Mean cIMT (mm) 0.94 (0.14) 0.92 (0.15) -0.02 (0.11)     0.001** 

Max cIMT (mm) 1.06 (0.19) 1.04 (0.22) -0.02 (0.19)     0.001** 

Max Mean cIMT (mm) 0.99 (0.17) 0.97 (0.17) -0.02 (0.17) 0.052 

Mean Max cIMT (mm) 0.99 (0.16) 0.99 (0.20) -0.02 (0.14)    <0.001*** 

Mean Right cIMT (mm) 0.92 (0.15) 0.90 (0.16) -0.02 (0.14)     0.001** 

Mean Left cIMT (mm) 0.96 (0.17) 0.94 (0.20) -0.02 (0.13)    <0.001*** 

Values are mean (SD), cIMT=carotid Intima Media Thickness ** significant at o<0.01, *** significant at p<0.001 

 

Table 4-8 cIMT in five year age bands for men and women, including left and right measurements 

for mean cIMT 

  Mean cIMT 
Max cIMT Max Mean cIMT Mean Max cIMT 

 Age Mean R L 

Men 61-66 0.93 0.90 0.96 1.05 1.00 0.99 

 66-71 0.97 0.96 0.99 1.10 1.03 1.03 

 71-76 0.99 0.96 1.02 1.13 1.06 1.05 

Women 61-66 0.88 0.87 0.89 0.99 0.93 0.93 

 66-71 0.91 0.90 0.91 1.01 0.95 0.96 

 71-76 0.93 0.91 0.95 1.04 0.98 0.98 

Values are mean (mm). Age categories are in years. R=right, L=left  

 

After follow up, year 4 mean cIMT was 0.92 ± 0.15mm and maximum cIMT 1.04 ± 

0.22mm.  Maximum mean cIMT and mean maximum cIMT were 0.97 ± 0.17mm 

and 0.99 ± 0.20mm respectively. Seven hundred and sixty five individuals had cIMT 

measurements at both year 1 and year 4.  Overall, there was a small negative change 

in IMT between these time points, which was statistically significant for all measures 

except maximum mean cIMT (table 4-7).  Average change in mean cIMT was -0.02 

±0.11mm and for maximum cIMT was -0.02 ± 0.19mm.  Max mean cIMT and mean 

max cIMT also demonstrated a negative change (-0.02 ±0.17mm and -0.02 ± 
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0.13mm respectively). Because all the measures of cIMT demonstrated a similar 

change with time, only change in mean cIMT was further analysed. Because of the 

potential effect of some medications on cIMT progression, change in mean cIMT 

was evaluated in those who were and were not taking antihypertensive medication 

and lipid lowering medication.  No statistically significant difference was noted in 

either group, although it is important to note that the direction of the change was 

different for those taking and not taking lipid lowering medication (taking -0.016mm 

vs not taking 0.002mm, p=0.111).   

 

4.4 Carotid plaque  

This section describes the frequency and distribution of carotid plaque in the study 

population.  Table 4-9 describes the frequency and distribution of carotid plaque in 

the ET2DS. 

 Description of carotid plaque thickness in the study 4.4.1
population 

Plaque variables measured at year 1 and year 4 of the ET2DS are summarised in 

table 4-9.  The prevalence of carotid plaque at year 1 in the ET2DS was high – 

97.8% (884) of participants had at least 1 plaque (of any size and type) present on 

carotid ultrasound.  Plaque was most common in the carotid bifurcations (right 

90.7% and left 92.7%) and the internal carotids (right 59.8% and left 61.9%); and 

least common in the common carotids (right 32.0% and left 42.4%) and the external 

carotids (right 28.9% and left 26.2% ).  In most divisions of the carotid artery, plaque 

was more common on the left than right, with the exception of the internal carotids.  

Mean values for mean plaque thickness and maximum plaque thickness at year 1 

were 2.44 ± 0.90 mm and 2.81± 1.11 mm respectively. 

At year 4, the prevalence of plaque remained similar, with 99.6% (751) of 

participants demonstrating at least 1 plaque.  Plaque remained most common in the 

carotid bifurcations (96.7% right and 97.2% left) and internal carotids (70.7% right 

and 71.1% left) and least common in the common carotids (55.0% right and 65.0% 
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left) and external carotids (42.5% right and 36.8% left).  Plaque was most common 

on the right side than the left side, with the exception of the bifurcation, in contrast to 

the findings at year 1.   Mean values for mean plaque thickness and maximum plaque 

thickness at year 4 were 2.81 ± 1.07mm and 3.26 ± 1.32 mm respectively.    

The percentage of individuals with at least 1 plaque was similar at both year 1 and 

year 4 (97.8% and 99.6% respectively). However, the percentage of individuals with 

plaque present at each division of the carotid artery was significantly higher at year 4 

than at year 1.  Mean plaque thickness increased significantly from Year 1 to Year 4 

by 0.40 ± 0.67 mm, p<0.001, which is in contrast to cIMT measures.  Maximum 

plaque thickness also demonstrated a significant increase between the two time 

points (0.47 ± 0.67mm, p<0.001). 

 Plaque score 4.4.2

Because of the method by which plaque was assessed (thickness of only 1 plaque on 

each side measured) and limitations set by the ultrasound machine used in this study, 

it was not possible to calculate plaque burden by more traditional methods such as 

total plaque volume or plaque area.  As such, a proxy for plaque burden was created 

using the presence of plaque in each of the segments of the carotid tree. A plaque 

score was calculated by totaling the number of areas of the right and left carotid 

arteries in which plaque was present.  Values ranged from 0 (no plaque in any area) 

to 8 (presence of at least 1 plaque in all 8 areas).   

At year 1, the majority of individuals (79.7% (720)) had a plaque score of between 2 

and 6.  15.2% of individuals had a score of 7 or 8 and 5.1% had a score of 1 or 0. 

Mean plaque score was 4.39 (1.9). This can be summarized more clearly by 

exploring the percentage of participants who had a high plaque score (greater than 

four) - 45.2% of participants had a plaque score >4 at year 1.   

At year 4, 81.8% of individuals had a plaque score of between 4 and 8, while 19.2% 

had a score of 3 or less.  Again, by exploring the percentage of participants with a 

plaque score great than or less than 4, it can be seen that 65.0% had a plaque score 

>4 at year 4.  The difference in percentage of participants with a plaque score >4 at 
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year 1 and year 4 was significant (p<0.001), suggesting that plaque burden may have 

increased in this time period. 

 Plaque morphology  4.4.3

At year 1, heterogeneous plaque (plaque where >20% of the plaque echogenicity 

differs from the rest of the plaque) was present in 44.8% (404) of participants (at 

least 1 heterogeneous plaque) and echolucent plaque in 37.0% (334) (at least 1 

echolucent plaque).  At year 4, 70.4% (529) participants had at least 1 heterogeneous 

plaque and 77.1% (579) had at least 1 echolucent plaque.   

When these results are broken down further, at year 1 12.5% of participants had only 

echolucent plaque, 20.3% had only heterogeneous plaque, 24.5% had both 

echolucent and heterogeneous plaque and 42.7% had neither type of plaque (which 

means that they had predominantly echogenic plaque or no plaque).  By summarizing 

plaque morphology as high risk (either echolucent or heterogeneous plaque) or low 

risk (no plaque or echogenic plaque), it can be seen that 57.3% of participants had 

high risk plaque at year 1.   

At year 4, 20.4% had echolucent plaque only, 13.7% had heterogeneous plaque only, 

56.7% had both echolucent and heterogeneous plaque and 9.2% had echogenic 

plaques.  A clear comparison can be made with year 1 by examining high risk versus 

low risk.   At year 1, 56.1% of participants had “high risk” plaque, while at year 4, 

this had risen to 89.8%.  This was significantly higher.   
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Table 4-9 Carotid plaque measured at year 1 and year 4 of the ET2DS 

 Year 1 (N 
max=904) 

Year 4 (N 
max=751) 

Change in 
mm 

P value (N 
max=761) 

Mean Plaque Thickness (mm) 2.44 (0.90) 2.81 (1.07) 0.40 (0.67) <0.001*** 

Max Plaque Thickness (mm) 2.81 (1.11) 3.26 (1.32) 0.47 (0.91) <0.001*** 
At least 1 plaque in any area 
of carotids 

97.8 (884) 99.6 (748) - 0.138 

Plaque Present in:     

Right Common Carotid 32.0 (289) 55.0 (413) - <0.001*** 
Left Common Carotid 42.4 (383) 65.0 (488) - <0.001*** 
Right Internal Carotid 59.8 (541) 70.7 (531) - <0.001*** 
Left  Internal Carotid 61.9 (560) 71.1 (534) - <0.001*** 

Right External Carotid 28.9 (261) 42.5 (319) - <0.001*** 
Left External Carotid 26.2 (237) 36.8 (276) - <0.001*** 

Right Bifurcation 90.7 (820) 96.7 (726) - 0.064 

Left Bifurcation 92.7 (838) 97.2 (730) - 0.003*** 
Plaque Score:     

0 2.1 (19) 0.4 (3) -  
1 3.0 (27) 1.1 (8) -  

2 14.5 (131) 8.1 (61) -  
3 16.3 (147) 8.5 (64) -  
4 18.6 (168) 16.9 (127) - <0.001*** 
5 16.5 (149) 15.4 (116) -  

6 13.8 (125) 16.5 (124) -  
7 7.2 (65) 14.9 (112) -  
8 8.0 (72) 18.1 (136) -  

Plaque Score Category     
≤4 54.5 (492) 35.0 (263) - <0.001*** 
>4 45.2 (411) 65.0 (488) -  

Plaque Morphology     

Echolucent plaque only 12.5 (113) 20.4 (153) -  
Heterogeneous plaque only 20.3 (183) 13.7 (103) - <0.001*** 

Both Types of Plaque 24.5 (221) 56.7 (426) -  

Neither type of plaque 42.7 (386) 9.2 (69) -  
Plaque Risk Type     

Low risk  42.7 (386) 9.2 (69) - <0.001*** 
High risk 57.3 (517) 89.8 (682) -  

Values are mean (SD) or % yes (n) *** significant at p<0.0001 

 

4.5 Inter-correlation of cIMT and carotid plaque 

parameters at Year 1 

The associations of cIMT and plaque variables with each other are described in 

tables 4-10 – 4-12.  cIMT variables were highly correlated with one another (range: 

r=0.911-0.977).  Right and left cIMT correlated moderately with each other (r=0.533, 

p<0.001) as did right and left plaque thickness (r=0.488, p<0.001).  Summary 
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measures of cIMT correlated substantially with one another (r=0.911-0.977).  They 

also correlated (albeit more modestly), with the plaque thickness measurements 

(range of r=0.223 - 0.278).    Mean cIMT and mean plaque thickness were more 

moderately correlated (r=0.268, p<0.001), as were maximum cIMT and maximum 

plaque thickness (r=0.254, p<0.001).   

Individuals with a higher plaque score (>4) tended to have a higher cIMT than those 

without (mean cIMT in those with high score 0.99 (0.15)mm versus those with low 

score 0.89 (0.12)mm).  Individuals with a higher plaque score also had more high 

risk plaque than those with a low score (76.9% versus 40.7% respectively).  

Individuals with high risk plaque also tended to have a higher cIMT (mean cIMT 

0.97mm) than those without (mean cIMT 0.89mm), as well as a higher plaque score 

(61.2% had plaque score >4 compared with those with low risk plaque (24.6%).  
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Table 4-10 Association of continuous cIMT with continuous carotid plaque thickness measurements at year 1 of the ET2DS 

 Left cIMT Mean cIMT Max cIMT Max Mean 
cIMT 

Mean Max 
cIMT 

Right Plaque 
Thickness 

Left Plaque 
Thickness 

Mean 
Plaque 
Thickness 

Max Plaque 
Thickness 

Right cIMT 0.533
***

 0.869
***

 0.727
*** 

0.745
*** 

0.844
*** 

0.204
*** 

0.138
*** 

0.206
*** 

0.188
*** 

Left cIMT - 0.877
***

 0.876
***

 0.916
*** 

0.871
*** 

0.207
*** 

0.253
*** 

0.270
*** 

0.260
*** 

Mean cIMT - 
- 

0.911
*** 

0.939
***

 0.977
***

 0.229
***

 0.223
***

 0.268
***

 0.254
***

 

Max cIMT - 
- - 

0.964
***

 0.949
***

 0.227
***

 0.244
***

 0.278
***

 0.262
***

 

Max Mean cIMT - - - - 0.936
***

 0.224
***

 0.238
***

 0.273
***

 0.260
***

 

Mean Max cIMT - - - - - 0.237
***

 0.231
***

 0.276
***

 0.258
***

 

Right Plaque Thickness - - - - - - 0.488
***

 0.874
***

 0.839
***

 

Left Plaque Thickness - - - - - - - 0.859
***

 0.823
***

 

Mean Plaque Thickness - - - - - - - - 0.959
***

 

Values are Pearson correlation coefficients.  ** *significant at level p<0.001 cIMT=carotid intima media thickness.  
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Table 4-11 Association of plaque score with cIMT, plaque thickness and plaque type 

 Plaque score<=4 (n=479) Plaque score >4 (n=402) P value 

Mean cIMT (mm) 0.89 (0.12) 0.99 (0.15)    <0.001*** 

Max cIMT (mm) 1.00 (0.16) 1.14 (0.20)    <0.001*** 

Max Mean cIMT (mm) 0.94 (0.14) 1.07 (0.18)    <0.001*** 

Mean Max cIMT (mm) 0.94 (0.13) 1.06 (0.16)    <0.001*** 

Mean Plaque Thickness (mm) 2.05 (0.72) 2.89 (0.88)    <0.001*** 

Max Plaque Thickness (mm) 2.36 (0.89) 3.33 (1.12)   <0.001*** 

Plaque morphology    

No or echogenic plaque 59.3 (291) 23.1 (95)  

Echolucent plaque only 14.1 (69) 10.7 (44)    <0.001*** 

Heterogeneous plaque only 15.5 (76) 26.0 (107)  

Both Types 11.2 (55) 40.1 (165)  

Plaque morphology category    

Low risk 59.3 (291) 23.1 (95)    <0.001*** 

High risk 40.7 (200) 76.9 (316)  

*** significant at p<0.001 

 

Table 4-12 Association of plaque type with cIMT, plaque thickness and plaque score 

 Low Risk (n=386) High Risk (n max=516) P value 

Mean cIMT (mm) 0.89 (0.13) 0.97 (0.14)    <0.001*** 

Max cIMT (mm) 1.00 (0.17) 1.10 (0.19)    <0.001*** 

Max Mean cIMT (mm) 0.94 (0.15) 1.03 (0.19)    <0.001*** 

Mean Max cIMT (mm) 0.95 (0.14) 1.02 (0.16)    <0.001*** 

Mean Plaque Thickness (mm) 2.05 (0.79) 2.72 (0.87)    <0.001*** 

Max Plaque Thickness (mm) 2.34 (0.97) 3.15 (1.08)    <0.001*** 

Plaque Score    

0 4.7 (18) 0.0 (0)  

1 6.7 (26) 0.2 (1)  

2 24.6 (95) 7.0 (36)  

3 22.5 (87) 11.6 (60)  

4 16.8 (65) 20.0 (103)    <0.001*** 

5 12.2 (47) 19.8 (102)  

6 7.3 (28) 18.8 (97)  

7 3.4 (13) 10.1 (52)  

8 1.8 (7) 12.6 (65)  

Plaque score category    

<=4 75.4 (291) 38.8 (200)    <0.001*** 

>4 24.6 (95) 61.2 (316)  

*** significant at p<0.001 

 

4.6 Serial cIMT measurements 

cIMT measurements at year 1 were repeated in 235 participants using a computer 

aided method for measuring cIMT.  These mean values for these measurements are 

reported in table 4-13, in addition to the corresponding sonographer value.  The 

minimum number of measurements taken for any individual image was 10 and the 
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maximum was 60, with an average number of measurements per participant of 192.  

For the sonographer measurements, the average number of measurements was 6 per 

participants (3 left and 3 right).  The mean serial cIMT was significantly lower than 

mean sonographer cIMT in the sample (0.91vs0.92mm, p<0.001 respectively).  The 

correlations between mean serial cIMT and mean cIMT were strong (r=0.811, 

p<0.001).   

Table 4-13 Comparison of cIMT measurements made by sonographer with computer aided method 

 Sub-sample (n=235) 

Serial cIMT   
Mean number of measurements per participant 192 (10.6) 

Mean serial cIMT (mm) 0.91 (0.14) 
Sonographer cIMT  

Mean number of measurements of participant 6 (0) 
Mean sonographer cIMT (mm) 0.92 (0.14) 

  
P value for difference in mean cIMT measurements 0.034* 

Values are mean (SD), * significant at p<0.05 

 

4.7 Chapter summary 

This chapter describes the socio-demographic characteristics and representativeness 

of the ET2DS study population and the sub-population used for analyses presented in 

this thesis as well as descriptive statistics of the ET2DS study sample.  It further 

describes the results of carotid ultrasound measurements in the study.  Participants in 

the ET2DS are generally representative of older adults with Type 2 diabetes living in 

Edinburgh and the Lothians and those who attended for year 1 cIMT measurements 

were representative of the cohort as a whole.  cIMT was normally distributed in the 

sample and was higher in men, as well as older participants.  cIMT was also higher 

in the left carotid artery than the right (for both men and women).  Change in cIMT 

between year 1 and year 4 follow up of the ET2DS showed a small, but significant 

regression.  cIMT measurement in the ET2DS was validated and found to be highly 

repeatable.  In comparison with computer aided measurements, the sonographer 

measurements were on average, slightly higher than the computer measurements but 

they displayed a high degree of correlation.   
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There was a high prevalence of carotid plaque in the ET2DS.  High risk plaques were 

particularly prevalent in the study sample, affecting 57% of participants and plaque 

was widely distributed in the carotid artery, as measured by plaque score.   

Continuous measurements of cIMT were highly correlated with one another, but less 

so with measures of plaque thickness.  Similarly, measures of plaque thickness 

correlated highly with one another.  Individuals with a high plaque score tended to 

have a high cIMT and more high risk plaque than those with a low plaque score.  

Similarly, those with a high risk plaque tended to have a higher cIMT and a higher 

plaque score.   
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Chapter 5: Results 2 - Cross Sectional 
Relationships between Carotid Ultrasound 

Parameters and Cardiovascular Disease in the 
ET2DS 

 

This chapter presents the results of cross sectional analyses of year 1 cIMT and 

plaque measurements, assessing the associations with traditional cardiovascular risk 

factors (including those in the UKPDS risk score) and with the more novel 

biomarkers of cardiovascular risk (ABI, eGFR, ACR, IL-6, CRP and NTproBNP), as 

well as prevalent cardiovascular disease.   

 

5.1 Association of cIMT with vascular risk factors and 

biomarkers 

Unadjusted Pearson correlation coefficients and p values for associations of cIMT 

with continuous vascular risk factors and biomarkers, and ANOVA parameter 

estimates coefficients for categorical variables are presented in table 5-1.  Age and 

sex adjusted values are presented in table 5-2.  The ANOVA statistic quoted 

quantifies the difference in the mean value of the variable between the test group and 

the reference category.   

 cIMT and vascular risk factors 5.1.1

There were significant unadjusted associations between cIMT and traditional 

vascular risk factors.  Increasing mean cIMT was associated with increasing age 

(r=0.164, p<0.001), higher systolic BP (r=0.075, p=0.024) and lower HDL 

cholesterol (r=-0.101, p<0.001).  Men were more likely to have a higher cIMT than 

women and those using lipid lowering medication tended to have a higher cIMT than 

those who did not. Similarly, current and ex-smokers had significantly higher mean 

cIMT than non-smokers (p<0.001).  Following adjustment for age and sex, the 

associations were attenuated somewhat and some associations were lost.  Only a 
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higher systolic BP (r=0.075, p<0.001) remained associated with a higher mean 

cIMT, as did use of lipid lowering medication.   

All other measures of cIMT were significantly associated with age, sex, systolic 

blood pressure, HDL cholesterol, lipid lowering medication and smoking.  The only 

differing associations were the association of maximum cIMT and mean maximum 

cIMT with lower total cholesterol (r=-0.081 and r=-0.076 respectively)) and 

maximum mean cIMT with lower diastolic blood pressure (r=-0.070).  After age and 

sex adjustment, all other measures of cIMT, except maximum cIMT remained 

associated with increased systolic blood pressure and the use of lipid lowering 

medication.  In addition, they all retained a positive association with lower HDL 

cholesterol and both maximum cIMT and maximum mean cIMT remained associated 

with a lower diastolic blood pressure.   

The key difference between the age and sex adjusted associations of mean cIMT and 

other measures with risk factors, was the association of the other measures with HDL 

cholesterol, where no association existed for mean cIMT.    

 cIMT and novel biomarkers of cardiovascular risk 5.1.2

Increasing mean cIMT was significantly associated with lower ABI (r=-0.099, 

p<0.001), increased IL-6 (r=0.069, p<0.001) and increased NTproBNP (r=0.126, 

p<0.001).    Following adjustment for age and sex, these significant associations 

remained - IL-6 (r=0.068, p<0.001) and NTproBNP (r=0.107, p<0.001) remained 

moderately positively correlated with mean cIMT while ABI retained its negative 

association (r=-0.136, p<0.001) 

All other measures of cIMT were associated with ABI and NTproBNP.  In addition, 

mean maximum cIMT was associated with increasing IL6 and ACR.  These 

associations remained after adjustment for age and sex, with the exception of the 

association of mean maximum cIMT with ACR, which lost statistical significance.   
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Table 5-1 Unadjusted correlation of cIMT with traditional cardiovascular risk factors and with novel biomarkers of cardiovascular risk 

  Mean cIMT Max cIMT MaxMean cIMT Mean Max cIMT 
  Correlation Anova*  Correlation Anova* Correlation Anova* Correlation Anova* 

Demographics Age 0.164*** - 0.141*** - 0.147*** - 0.149*** - 
 Sex (male) - 0.063*** - 0.087*** - 0.075*** - 0.072*** 
 SIMD         

 Quintile 1 (Most Deprived) - -0.001 - 0.005 - -0.005 - 0.006 
 Quintile 2 - 0.016 - 0.024 - 0.020 - 0.018 
 Quintile 3 - 0.009 - 0.018 - 0.019 - 0.014 
 Quintile 4 - 0.014 - 0.018 - 0.016 - 0.016 
 Quintile 5 (Least Deprived) - - - - - - - - 

Diabetes Duration of DM 0.031 - 0.017 - 0.013 - 0.028 - 
 HbA1C  0.009 - 0.007 - 0.013 - 0.008 - 
 T2DM Meds         

 Diet Alone - - - - - - - - 
 Oral  - -0.024 - -0.036 - -0.027 - -0.032 
 Insulin ± oral  - -0.015 - -0.025 - -0.016 - -0.022 

Blood Pressure Systolic BP   0.075* - 0.061 - 0.069* - 0.067* - 
 Diastolic BP -0.057 - -0.064 - -0.070* - -0.057 - 
 Antihypertensive (yes) - 0.009 - 0.008 - 0.013 - 0.009 
Blood Lipids Total Cholesterol  -0.065 - -0.081* - -0.064 - -0.076* - 
 HDL Cholesterol  -0.101** - -0.134*** - -0.114** - -0.121*** - 
 Cholesterol med (yes) - 0.029* - 0.043* - 0.037* - 0.032* 
Smoking Smoking status          

 Current smoker - 0.029* - 0.043* - 0.042* - 0.034* 
 Ex smoker - 0.040*** - 0.049*** - 0.043*** - 0.044*** 
 Never smoker -  -  - - - - 

Obesity Index BMI  -0.054 - -0.055 - -0.060 - -0.051 - 
CVD Risk Marker Ankle Brachial Index -0.099** - -0.092** - -0.100** - -0.098** - 
Renal Function eGFR -0.047 - -0.033 - -0.038 - -0.044 - 
 ACR 0.093 - 0.090 - 0.081 - 0.105* - 
Plasma Biomarkers IL6 0.069* - 0.048 - 0.051 - 0.067* - 
 CRP -0.007 - -0.019 - -0.018 - 0.003 - 
 NTProBNP 0.126*** - 0.105** - 0.114** - 0.119*** - 
For continuous variables, P earson correlation coefficients and corresponding p values are quoted.  *For categorical variables, the ANOVA statistic reported quantifies the difference in mean or maximum plaque thickness for the given 

categorical variable compared with the reference level (reference levels are female sex, least deprived SIMD quintile,  diet alone treatment for diabetes,  no lipid lowering medication, no anti-hypertensive medication, never 
smoker)SIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, BMI=body mass index, eGFR=estimated glomerular filtration rate, ACR=albumin creatinine ratio, IL -6=interleukin 6, CRP=C reactive protein, 

NTProBNP=N terminal pro-brain natriuretic peptide, Pack years = geometric mean.* significant at p<0.05, ** significant  at p<0.01, *** significant at p<0.001 
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 Table 5-2 Age and sex adjusted association of cIMT with traditional cardiovascular risk factors and with novel biomarkers of cardiovascular risk 

  Mean cIMT Max cIMT Max Mean cIMT Mean Max cIMT 
  Correlation Anova* Correlation Anova* Correlation Anova* Correlation Anova* 

Demographics SIMD         
 Quintile 1 (Most Deprived) - 0.012 - 0.022 - 0.011 - 0.021 
 Quintile 2 - 0.021 - 0.031 - 0.026 - 0.024 

 Quintile 3 - 0.009 - 0.018 - 0.018 - 0.013 
 Quintile 4 - 0.014 - 0.018 - 0.016 - 0.016 
 Quintile 5 (Least Deprived) - - - - - - - - 

Diabetes Duration of DM  0.023 - 0.009 - 0.014 - 0.027 - 
 HbA1C  0.033 - 0.028 - 0.034 - 0.030 - 

 Diabetes Medication         
 Diet Alone - - - - - - -  
 Oral Hypoglycaemics - -0.021 - -0.032 - -0.024 - -0.029 

 Insulin ± oral hypoglycaemics - -0.007 - -0.016 - -0.008 - -0.014 
Blood Pressure Systolic BP 0.075* - 0.064 - 0.070* - 0.069* - 

 Diastolic BP -0.058 - -0.068* - -0.074* - -0.061 - 
 On antihypertensives (yes) - 0.013 - 0.013 - 0.017 - 0.013* 
Blood Lipids Total Cholesterol  -0.010 - -0.026 - -0.011 - -0.021 - 
 HDL Cholesterol  -0.064 - -0.095** - -0.076* - -0.081* - 
 Cholesterol lowering meds (yes) - 0.024* - 0.036* - 0.032* - 0.027 
Smoking Smoking status         
 Current smoker - 0.022 - 0.032 - 0.034 - 0.025 
 Ex-smoker - 0.024* - 0.026 - 0.024 - 0.026* 

 Never smoker - - - - -  - - 
Obesity Index BMI  0.019 - 0.014 - 0.008 - 0.020 - 
CVD Risk Marker Ankle Brachial Index -0.136*** - -0.128*** - -0.135*** - -0.135*** - 
Renal Function eGFR -0.011 - -0.003 - -0.005 - -0.012 - 
 ACR 0.088 - 0.086 - 0.079 - 0.100 - 
Plasma Biomarkers IL6 0.068* - 0.048 - 0.050 - 0.068* - 
 CRP 0.047 - 0.035 - 0.034 - 0.059 - 
 NTProBNP 0.107** - 0.089** - 0.097** - 0.103** - 
For continuous variables, Pearson correlation coefficients and corresponding p values are quoted.  .  *For categorical variables, the ANOVA statistic reported quantifies the difference in mean or maximum plaque thickness for the given 

categorical variable compared with the reference level (reference levels are female sex, least deprived SIMD quintile,  diet alone treatment for diabetes,  no lipid lowering medication, no anti -hypertensive medication, never smoker) 
SIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, BMI=body mass index, eGFR=estimated glomerular filtration rate , ACR=albumin creatinine ratio, IL-6=interleukin 6, CRP=C reactive protein, NTProBNP=N 

terminal pro-brain natriuretic peptide, Pack years = geometric mean.* significant at p<0.05, ** significant at p<0.01, *** significant at p<0.001  
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5.2 Association of plaque thickness with vascular 
risk factors and biomarkers 

Unadjusted Pearson correlation coefficients and p values for associations of plaque 

thickness with continuous vascular risk factors and biomarkers, and ANOVA 

coefficients for associations with categorical variables are presented in table 5-3.  

Age and sex adjusted values are presented in table 5-4. 

 Plaque thickness and vascular risk factors 5.2.1

A variety of risk factors demonstrated a cross sectional association with mean plaque 

thickness.  A higher mean plaque thickness was significantly associated with 

increasing age (r=0.197) and male sex, as well as longer duration of diabetes 

(r=0.101), increased systolic blood pressure (r=0.124), lower BMI (r=-0.075), use of 

antihypertensive medication and cigarette smoking. Following adjustment for age 

and sex, mean plaque thickness remained significantly associated with a longer 

duration of diabetes (r=0.089), systolic BP (r=0.124), the use of antihypertensive 

medication and cigarette smoking. Maximum plaque thickness demonstrated the 

same age and sex adjusted associations.   

 Plaque thickness and novel biomarkers of 5.2.2
cardiovascular risk  

Mean plaque thickness was also associated with novel marker of cardiovascular risk. 

Increasing plaque thickness was significantly associated with a lower ABI (r=-

0.170), reduced eGFR (r=-0.114), increased ACR (r=0.102), increased IL6 (r=0.111), 

and higher NTproBNP (r=0.185).   Following age and sex adjustment, these 

associations persisted with limited attenuation of the magnitude of association, with 

the exception of the association with ACR which lost significance.  Maximum plaque 

thickness demonstrated the same pattern of association.  

Effect Size 

It is important to note that the effect sizes described in this section are not large.  

After age and sex adjustment the effect sizes are small (<0.1).  The strongest of these 
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associations were ABI and NTproBNP (>0.1).   Therefore, despite their significant p 

values, these associations may not be clinically significant.   
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Table 5-3 Unadjusted association of plaque thickness parameters with traditional cardiovascular 

risk factors and with novel biomarkers of cardiovascular risk  

  Mean Plaque thickness (mm) Max Plaque Thickness (mm) 

  Correlation ANOVA*  Correlation ANOVA*  

Demographics Age 0.197*** -  0.197*** -  

 Sex (male) - 0.376***  - 0.444***  

 SIMD       

 Quintile 1(Most Deprived) - 0.107  - 0.119  

 Quintile 2 - 0.130  - 0.094  

 Quintile 3 - 0.079  - 0.056  

 Quintile 4 - -0.011  - 0.005  

 Quintile 5 (Least Deprived) - -  - -  

Diabetes Duration of DM  0.101** -  0.092** -  

 HbA1C  0.011 -  -0.001 -  

 T2DM Meds       

 Diet Alone - -  - -  

 Oral  - -0.043  - -0.025  

 Insulin ± oral  - 0.041  - 0.015  

Blood Pressure Systolic BP  0.124*** -  0.101** -  

 Diastolic BP  -0.043 -  -0.049 -  

 Antihypertensives (yes) - 0.199*  - 0.251*  

Blood Lipids Total Cholesterol  -0.060 -  -0.056 -  

 HDL Cholesterol  -0.067 -  -0.058 -  

 Cholesterol med (yes) - 0.157  - 0.174  

Smoking Smoking status        

 Current smoker - 0.647***  - 0.751***  

 Ex smoker - 0.377***  - 0.437***  

 Never smoker - -  - -  

Obesity Index BMI  -0.075* -  -0.078* -  

CVD Risk Marker Ankle Brachial Index -0.170*** -  -0.153*** -  

Renal Function eGFR -0.114** -  -0.112** -  

 ACR 0.102* -  0.105* -  

Plasma Biomarkers IL6 0.111** -  0.091** -  

 CRP 0.058 -  0.056 -  

 NTProBNP 0.185*** -  0.182*** -  

For continuous variables, Pearson correlation coefficients and corresponding p values are quoted.  .  *For categorical variables, the 

ANOVA statistic reported quantifies the difference in mean or maximum plaque thickness for the given categorical variable compared with the 
reference level (reference levels are female sex, least deprived SIMD quintile,  diet alone treatment for diabetes,  no lipid  lowering medication, no 

anti-hypertensive medication, never smoker) SIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, 
BMI=body mass index, eGFR=estimated glomerular filtration rate, ACR=albumin creatinine ratio, IL-6=interleukin 6, CRP=C 

reactive protein, NTProBNP=N terminal pro-brain natriuretic peptide, Pack years = geometric mean.* significant at p<0.05, ** 
significant at p<0.01, *** significant at p<0.001 
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Table 5-4 Age and sex adjusted associations of plaque thickness parameters with traditional 

cardiovascular risk factors and with novel biomarkers of cardiovascular risk 

 
 

Mean Plaque Thickness 
(mm) 

Max Plaque Thickness 
(mm) 

  Correlation ANOVA*  Correlation ANOVA*  

Demographics SIMD       

 Quintile 1(most deprived) - 0.192  - 0.221  

 Quintile 2 - 0.165*  - 0.136  

 Quintile 3 - 0.078  - 0.054  

 Quintile 4 - -0.018  - -0.004  

 Quintile 5 (least deprived) - -  - -  

Diabetes Duration of DM  0.089** -  0.080* -  

 HbA1C  0.036 -  0.024 -  

 T2DM Meds       

 Diet Alone - -  - -  

 Oral  - -0.023  - 0.000  

 Insulin ± oral  - 0.092  - 0.075  

Blood Pressure Systolic BP  0.124*** -  0.099** -  

 Diastolic BP   -0.033 -  -0.038 -  

 Antihypertensives (yes) - 0.176*  - 0.223*  

Blood Lipids Total Cholesterol  -0.011 -  -0.008 -  

 HDL Cholesterol  -0.032 -  -0.025 -  

 Cholesterol med (yes) - 0.134  - 0.149  

Smoking Smoking status       

 Current smoker - 0.630***  - 0.733***  

 Ex smoker - 0.299***  - 0.345***  

 Never smoker - -  - -  

Obesity Index BMI -0.002 -  -0.006 -  

CVD Risk Marker Ankle Brachial Index -0.209*** -  -0.189*** -  

Renal Function eGFR -0.069* -  -0.068* -  

 ACR 0.087 -  0.091 -  

Plasma Biomarkers IL6 0.117** -  0.086** -  

 CRP 0.119*** -  0.113** -  

 NTProBNP 0.162*** -  0.157*** -  

For continuous variables, Pearson correlation coefficients and corresponding p values are quoted.  .  *For categorical variables, the 

ANOVA statistic reported quantifies the difference in mean or maximum plaque thickness for the given categorical variable compared with the 

reference level (reference levels are female sex, least deprived SIMD quintile,  diet alone treatment for diabetes,  no lipid lowering medication, no 

anti-hypertensive medication, never smoker)SIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, 
BMI=body mass index, eGFR=estimated glomerular filtration rate, ACR=albumin creatinine ratio, IL-6=interleukin 6, CRP=C 
reactive protein, NTProBNP=N terminal pro-brain natriuretic peptide, Pack years = geometric mean. 

* significant at p<0.05, ** significant at p<0.01, *** significant at p<0.001  
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 Association of plaque score with vascular risk factors 5.2.3
and biomarkers 

Associations of plaque score (≤4 or >4) with vascular risk factors are presented in 

table 5-5.  A further, more detailed analysis of the association between individual 

score values and risk factors is presented in table 5-6. 

Individuals with a higher plaque score (>4) were on average almost a year older 

(69.5 vs 68.5 years respectively) than those with a low score and were more likely to 

be male.  They tended to have a lower diastolic blood pressure, were more likely to 

have a history of cigarette smoking and had a lower BMI (all p<0.01).  Those with a 

higher plaque score also had a higher prevalence of previous CVD (45% vs 27%, 

p<0.001).  Several novel biomarkers were also associated with higher plaque score – 

lower ABI, reduced eGFR and increased NTproBNP (p<0.01).   

Upon inspection of the individual score values, men tended to have a higher plaque 

score than women. A higher percentage of those with a plaque score of 8 were male 

(64.8%) compared with those with a plaque score of 0 (47.4%), however the trend 

across the scores was not strictly linear. There was a linear increase in age from 

group 0 to group 8 (66.8 ± 4.6 years).  An overall negative trend in diastolic blood 

pressure across the groups was noted, however this was not linear. There were 

significantly more current and ex-smokers and fewer never smokers in group 8 

(22.5%, 59.2% and 18.3% respectively) compared with group 0 (5.3%, 31.6% and 

63.2% respectively).  Baseline BMI had an unexpected negative relationship with 

plaque score.  Those in group 0 had a higher BMI than those in group 8 (BMI 33.5 ± 

7.8 and 30.2 ± 4.9 respectively. The overall trend for ABI across the groups was 

downwards (group 0 ABI 1.01 ± 0.14 vs group 8 0.92 ± 0.24) although again this 

was not a liner relationship. There was a significant negative linear trend between 

eGFR and plaque score, with mean eGFR 85.4 ± 13.9 ml/min/1.73m2 in those with a 

plaque score of 0 and mean eGFR of 70.31 ± 22.3 ml/min/1.73m2). NT proBNP was 

also higher in those with a higher plaque score (group 0 67.0 ± 125.0 pg/ml vs group 

8 118.5 ± 213 pg/ml) and this trend was linear.   



 

160 

 

Table 5-5 Comparison of cardiovascular risk factors and novel risk markers in those with plaque 

score ≤4 or >4 

  Score ≤4 (n=386) Score>4 (n=517) P value 

Demographics Age (years) 68.5 (4.2) 69.5 (4.08)    0.001** 

 Sex (male) 46.3 (228) 57.4 (236)   0.001** 

 SIMD    

 Quintile 1(most deprived) 11.6 (57) 11.4 (47)  

 Quintile 2 17.7 (87) 20.0 (82)  

 Quintile 3 17.9 (88) 17.0 (70) 0.787 

 Quintile 4 19.7 (97) 17.0 (70)  

 Quintile 5 (least deprived) 33.1 (163) 34.5 (142)  

Diabetes Duration of Diabetes (years) 7.0 (8.0) 8.0 (7.00) 0.117 

 HbA1C (% haemoglobin) 7.17 (1.07) 7.23 (1.08) 0.405 

 Diabetes Medication    

 Diet Alone 20.7 (102) 17.0 (70)  

 Oral Hypoglycaemics 65.4 (322) 65.2 (268) 0.147 

 Insulin ± oral hypoglycaemics 13.8 (68) 17.8 (73)  

Blood Pressures Systolic Blood Pressure (mmHg)  137.0 (17.0) 139.3 (20.1) 0.069 

 Diastolic Blood Pressure (mmHg)  75.1 (9.2) 72.8 (9.6)   <0.001*** 

 On antihypertensives  (% yes) 84.6 (416) 87.1 (358) 0.160 

Blood Lipids Total Cholesterol (mmol/l) 4.17 (0.79) 4.11 (0.81) 0.262 

 HDL Cholesterol  (mmol/l) 1.25 (0.35) 1.21 (0.33) 0.068 

 Lipid lowering meds (% yes) 823.1 (409) 85.6 (352) 0.173 

Smoking Smoking status     

 Current smoker 9.3 (46) 16.8 (69)  

 Ex smoker 42.1 (207) 52.8 (217)    <0.001** 

 Never smoker 48.6 (239) 30.4 (125)  

Obesity Index BMI (kg/m2) 32.0 (6.0) 30.5 (5.1)    <0.001*** 

CVD Risk Marker Ankle Brachial Index 1.01 (0.18) 0.96 (0.24)    <0.001*** 

Renal Function eGFR (ml/min/1.73m2) 78.9 (18.0) 74.8 (19.5)      0.001** 

 ACR (mg/mmol) 1.6.5 (2.6) 1.9 (3.6) 0.088 

Plasma Biomarkers IL6 2.72 (2.40) 3.01 (2.62) 0.174 

 CRP (mg/l) 1.69 (3.12) 1.92 (3.34) 0.167 

 NTProBNP (pg/ml) 66.0 (114) 82.0 (172)    <0.001*** 

CVD History Previous CVD 27.8 (137) 44.8 (184) <0.001*** 

SIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, BMI=body mass index,  eGFR=estimated 
glomerular filtration rate, ACR=albumin creatinine ratio, IL-6=interleukin 6, CRP=C reactive protein, NTProBNP=N terminal 
pro-brain natriuretic peptide, Pack years = geometric mean. * significant at p<0.05, ** significant at p<0.01, *** significant at 
p<0.001 
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Table 5-6 Comparison of individuals carotid plaque score with traditional cardiovascular risk factors and novel biomarkers of cardiovascular risk 

 Plaque Score 
 0 1 2 3 4 5 6 7 8 

Age (years) 66.8 (4.6) 67.6 (4.3) 67.7 (3.9) 68.7 (4.18) 69.3 (4.16) 69.1 (4.0) 69.2 (4.1) 69.4 (4.3) 70.8 (3.8) 
Sex (male) 47.4 (9) 42.3 (11) 33.1 (42) 49.3 (71) 53.7 (88) 53.7 (79) 57.7 (71) 55.7 (34) 64.8 (46) 
SIMD          

Quintile 1(most deprived) 10.5 (2) 7.7 (2) 12.6 (16) 10.4 (15) 11.6 (19) 7.5 (11) 12.2 (15) 19.7 (12) 12.7 (9) 
Quintile 2 10.5 (2) 15.4 (4) 14.2 (18) 22.9 (33) 16.5 (27) 22.4 (33) 15.4 (19) 21.3 (13) 19.7 (14) 
Quintile 3 21.1 (4) 19.2 (5) 19.7 (25) 17.4 (25) 17.7 (29) 19.0 (28) 17.9 (22) 9.8 (6.0) 18.3 (13) 
Quintile 4 15.8 (3) 23.1 (6) 18.1 (23) 24.3 (35) 16.5 (27) 15.6 (23) 15.4 (19) 21.3 (13) 19.7 (14) 

Quintile 5 (least deprived) 42.1 (8) 34.6 (9) 35.4 (45) 25.0 (36) 37.8 (62) 35.4 (5) 39.0 (48) 27.9 (17) 29.6 (21) 
Duration of Diabetes (years) 6.0 (6.0) 6.5 (6.25) 7.0 (7.0) 6.0 (7.0) 8.0 (7.0) 7.0 (7.0) 8.0 (9.0) 8.0 (9.0) 8.5 (9.0) 
HbA1C (% haemoglobin) 7.4 (1.0) 7.6 (1.1) 7.3 (1.2) 7.0 (0.9) 7.1 (1.1) 7.3 (1.2) 7.3 (1.0) 7.1 (0.9) 7.1 (1.2) 
Diabetes Medication          

Diet Alone 21.1 (4) 11.5 (3) 18.1 (23) 22.9 (33) 22.6 (37) 20.4 (30) 16.3 (20) 19.7 (12) 11.3 (8) 
Oral Hypoglycaemics 57.9 (11) 69.2 (18) 66.9 (85) 68.1 (98) 60.4 (99) 63.9 (94) 64.2 (79) 62.3 (38) 70.4 (50) 

Insulin ± oral hypoglycaemics 21.1 (4) 19.2 (5) 15.0 (19) 9.0 (13) 17.1 (28) 15.6 (23) 19.5 (24) 18.0 (11) 18.3 (13) 
Systolic Blood Pressure (mmHg)  135.4 (15.2) 134.2 (19.5) 132.9 (15.6) 137.0 (17.2) 138.8 (17.6) 138.7 (19.0) 140.6 (20.3) 139.2 (20.6) 137.1 (21.0) 
Diastolic Blood Pressure (mmHg)  74.5 (10.7) 74.5 (9.3) 76.15 (9.6) 73.8 (9.2) 75.3 (8.7) 73.0 (8.2) 72.6 (9.0) 72.6 (11.6) 72.7 (10.7) 
On antihypertensives  (% yes) 68.4 (13) 80.8 (21) 79.5 (101) 87.5 (126) 87.2 (143) 85.0 (125) 87.0 (107) 88.5 (54) 91.5 (65) 
Total Cholesterol (mmol/l) 4.08 (0.89) 4.29 (0.98) 4.14 (0.80) 4.21 (0.79) 4.15 (0.75) 4.08 (0.82) 4.19 (0.78) 4.17 (0.80) 4.02 (0.83) 
HDL Cholesterol  (mmol/l) 1.22 (0.39) 1.31 (0.29) 1.24 (0.38) 1.28 (0.33) 1.23 (0.35) 1.22 (0.34) 1.24 (0.32) 1.22 (0.33) 1.17 (0.32) 
Lipid lowering meds (% yes) 73.7 (14) 69.2 (18) 79.5 (101) 81.9 (118) 89.6 (147) 84.4 (124) 88.6 (109) 82.0 (50) 85.9 (61) 
Smoking status           

Current smoker 5.3 (1) 11.5 (3) 5.5 (7) 10.4 (15) 12.2 (20) 14.3 (21) 12.2 (15) 24.6 (15) 22.5 (16) 
Ex smoker 31.6 (6) 38.5 (10) 43.3 (55) 41.7 (60) 41.5 (68) 47.6 (70) 52.8 (65) 59.0 (36) 59.2 (42) 

Never smoker 63.2 (12) 50 (13) 51.2 (65) 47.9 (69) 46.3 (76) 38.1 (56) 35.0 (43) 16.4 (10) 18.3 (13) 
BMI (kg/m2) 33.5 (7.8) 33.2 (7.5) 33.0 (6.1) 32.1 (6.1) 30.8 (5.3) 31.2 (5.5) 30.1 (5.0) 30.4 (4.6) 30.2 (4.9) 

Ankle Brachial Index 1.01 (0.14) 1.02 (0.12) 1.02 (0.16) 0.99 (0.19) 1.03 (0.18) 0.99 (0.20) 0.95 (0.22) 0.94 (0.35) 0.92 (0.24) 
eGFR (ml/min/1.73m2) 85.4 (13.9) 83.15 (16.2) 78.25 (17.66) 77.56 (19.06) 79.15 (17.84) 77.24 (17.76) 74.44 (19.7) 75.08 (17.23) 70.31 (22.3) 
ACR (mg/mmol) 1.3 (0.0) 1.75 (3.8) 2.30 (3.7) 1.40 (1.9) 1.75 (2.8) 1.3 (2.5) 2.30 (5.3) 1.95 (2.8) 3.00 (6.2) 
IL6 1.8 (2.06) 2.96 (3.80) 2.73 (2.30) 2.70 (2.09) 2.90 (2.52) 2.60 (2.12) 2.78 (2.34) 3.23 (3.13) 3.67 (3.28) 
CRP (mg/l) 1.45 (2.18) 1.77 (4.11) 1.7 (3.56) 1.82 (3.08) 1.57 (3.39) 1.69 (2.51) 1.76 (2.90) 2.69 (6.03) 2.65 (5.36) 
NTProBNP (pg/ml) 67.00 (125) 74.00 (137) 60.00 (119) 64.50 (99) 74.00 (126) 70.00 (111) 85.00 (233) 100 (236) 118.5 (213) 
SIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, BMI=body mass index, eGFR=estimated glomerular filtration rate, ACR=albumin creatinine ratio, IL-6=interleukin 6, CRP=C 

reactive protein, NTProBNP=N terminal pro-brain natriuretic peptide, Pack years = geometric mean..  a=No SD as n is 1 

* significant at p<0.05, ** significant at p<0.01, *** significant at p<0.001 



 

162 

 

 

 Association of plaque morphology with vascular risk 5.2.4
factors and biomarkers 

Associations of plaque morphology (low risk or high risk) with vascular risk factors 

are presented in table 5-7 and table 5-8.   

Individuals with high risk plaque (echolucent or heterogeneous) were significantly 

older than those with low risk plaque (69.2 vs 68.6 years), however they were no 

more likely to be male than female.   They were more likely to be using lipid 

lowering medications and had a lower BMI.  They were also more likely to have 

history of CVD.  There were no differences in blood pressure or blood lipids between 

the groups.  Several novel biomarkers were associated with the presence of high risk 

plaques.  Those with high risk plaques tended to have reduced eGFR (75.8 vs 

78.5ml/min/1.73m2, p=0.041), and increased NTproBNP (106.0 vs 69.0 pg/ml, 

p<0.001).   

If one examines the individual categories of plaque morphology mean age was 

highest in those with both types of plaque (69.8 ± 4.3 years) and lowest in those with 

echogenic or no plaque (68.5 ± 4.3 years). ABI was lowest in those with both types 

of plaque (0.94 ± 0.23).  eGFR was significantly lower in the group with both types 

of plaque (72.7 ± 19.5 ml/min/1.72m2) and ranged from 77.7-79.0 in the other 3 

groups. NT pro BNP showed a linear increase across the groups of plaque, and was 

highest in those with both types of plaque (95.0 ± 219).     
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Table 5-7 Association of plaque type with cardiovascular risk factors and novel risk markers 

  Low Risk (n=386) High Risk (n=517) P value 

Demographics Age (years) 68.6 (4.23) 69.2 (4.08)     0.029** 
 Sex (male) 50.0 (193) 52.6 (272) 0.239 
 SIMD    

 Quintile 1(most deprived) 10.76 (41) 12.2 (63)  
 Quintile 2 17.6 (68) 19.7 (102)  
 Quintile 3 18.1 (70) 17.0 (88) 0.838 
 Quintile 4 18.9 (73) 18.2 (94)  
 Quintile 5 (least deprived) 34.7 (134) 32.9 (170)  

Diabetes Duration of Diabetes (years) 7.0 (6.0) 8.0 (8.0) 0.217 
 HbA1C (% haemoglobin) 7.2 (1.01) 7.2 (1.13) 0.858 
 Diabetes Medication    

 Diet Alone 19.9 (77) 18.4 (95)  
 Oral Hypoglycaemics 65.8 (254) 64.8 (335) 0.534 
 Insulin ± oral hypoglycaemics 14.2 (55) 16.8 (87)  

Blood Pressure Systolic Blood Pressure (mmHg)  136.9 (17.6) 138.9 (19.1) 0.105 
 Diastolic Blood Pressure (mmHg)  74.6 (9.5) 73.6 (9.4) 0.108 
 On antihypertensives  (% yes) 85.2 (329) 86.1 (445) 0.396 
Blood Lipids Total Cholesterol (mmol/l) 4.17 (0.81) 4.13 (0.79) 0.397 
 HDL Cholesterol  (mmol/l) 1.24 (0.33) 1.23 (0.34) 0.895 
 Lipid lowering meds (% yes) 81.6 (315) 86.3 (446)   0.035* 
Smoking Smoking status     

 Current smoker 10.6 (41) 14.3 (74)  
 Ex smoker 45.9 (177) 48.0 (248) 0.109 
 Never smoker 43.5 (168) 37.7 (195)  

Obesity Index BMI (kg/m2) 31.9 (6.1) 30.9 (5.3)     0.005** 
CVD Risk Marker Ankle Brachial Index 1.00 (0.18) 0.98 (0.23) 0092 
Renal Function eGFR (ml/min/1.73m2) 78.5 (18.7) 75.8 (18.8)     0.041* 
 ACR (mg/mmol) 1.7 (2.6) 1.9 (3.3) 0.176 
Plasma Biomarkers IL6 2.75 (2.37) 2.85 (2.59) 0.322 
 CRP (mg/l) 1.76 (2.98) 1.76 (3.41) 0.452 
 NTProBNP (pg/ml) 66.0 (113) 82 153) 0.008** 
CVD History Previous CVD 28.8 (111) 40.8 (211) <0.001*** 
SIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, BMI=body mass index, eGFR=estimated 
glomerular filtration rate, ACR=albumin creatinine ratio, IL-6=interleukin 6, CRP=C reactive protein, NTProBNP=N terminal 
pro-brain natriuretic peptide, Pack years = geometric mean.  

* significant at p<0.05, ** significant at p<0.01, *** significant at p<0.001 
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Table 5-8 Association of individual carotid plaque morphology categories with traditional 

cardiovascular risk factors and novel biomarkers  

 
Echogenic or no  

Plaque 
Echolucent  
Plaque Only 

Heterogeneous  
Plaque Only 

Both 

Age 68.5 (43) 68.8 (3.8) 68.8 (3.9) 69.8 (4.3) 
Sex (male) 50.9 (204) 33.0 (37) 61.1 (110) 55.7 (123) 
SIMD     

Quintile 1 10.7 (43) 15.2 (17) 8.9 (16) 13.6 (30) 
Quintile 2 17.2 (69) 19.6 (22) 20.0 (36) 19.0 (42) 
Quintile 3 17.7 (71) 15.2 (17) 20.0 (36) 15.8 (35) 
Quintile 4 18.0 (72) 18.8 (21) 16.1 (29) 19.9 (44) 
Quintile 5 36.4 (146) 31.3 (35) 35.0 (63) 31.7 (70) 

Duration of DM (years) 7.0 (7.0) 6.0 (7.0) 8.0 (8.0) 8.0 (9.0) 
HbA1C  7.20 (1.0) 7.13 (1.2) 7.20 (1.1) 7.23 (1.2) 
T2DM Meds     

Diet Alone 21.2 (85) 14.3 (16) 20.0 (36) 19.0 (42) 
Oral  64.3 (258) 70.5 (79) 63.9 (115) 62.4 (138) 

Insulin ± oral  14.5 (58) 15.2 (17) 16.1 (29) 18.6 (41) 
Systolic BP (mmHg)  137.1 (17.4) 137.7 (14.3) 136.6 (18.2) 141.0 (21.6) 
Diastolic BP (mmHg)  74.75 (9.7) 74.9 (8.3) 72.8 (9.7) 73.5 (9.5) 
Antihypertensives (n, % yes) 85.3 (342) 81.3 (91) 86.7 (156) 87.8 (194) 
Total Cholesterol  4.18 (0.8) 4.24 (0.8) 4.06 (0.8) 4.12 (0.8) 
HDL Cholesterol  1.23 (0.33) 1.27 (0.4) 1.22 (0.3) 1.22 (0.4) 
Cholesterol med (n, % yes) 81.5 (327) 83.9 (94) 90.0 (162) 84.6 (187) 
Smoking status (%)     

Current smoker 11.2 (45) 15.2 (17) 13.3 (24) 14.9 (33) 
Ex smoker 45.9 (184) 43.8 (49) 45.6 (82) 52.0 (115) 

Never smoker 42.9 (172) 41.1 (46) 41.1 (74) 33.0 (73) 
BMI  31.9 (6.1) 31.9 (5.3) 31.4 (5.6) 30.0 (5.0) 
Ankle Brachial Index 0.99 (0.18) 1.00 (0.19) 1.00 (0.25) 0.94 (0.2) 
eGFR 79.0 (18.2) 79.0 (17.6) 77.7 (18.4) 72.7 (19.5) 
ACR 1.7 (2.7) 1.45 (3.2) 1.5 (2.5) 2.25 (4.0) 
IL6 2.73 (2.32) 2.81 (2.7) 2.51 (2.4) 3.07 (2.9) 
CRP 1.76 (3.1) 2.16 (3.9) 1.42 (2.7) 2.25 (3.7) 
NTProBNP 66.5 (117) 59.0 (106) 78.0 (162) 95.0 (219) 
SIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, BMI=body mass index, eGFR=estimated 
glomerular filtration rate, ACR=albumin creatinine ratio, IL-6=interleukin 6, CRP=C reactive protein, NTProBNP=N terminal 

pro-brain natriuretic peptide, Pack years = geometric mean. 

* significant at p<0.05, ** significant at p<0.01, *** significant at p<0.001 

 

5.3 Multifactorial associations of cIMT and carotid 

plaque  

Linear regression models were used to explore the multivariable association of risk 

factors with cIMT and plaque thickness.  Logistic regression was used to explore the 

same associations with plaque score and plaque morphology.  Two models were used 

to explore these relationships.  The first model examines only traditional 

cardiovascular risk factors (model 1).  The second models incorporate traditional 

cardiovascular risk factors and the more novel biomarkers (model 2).  Results for 

linear regression models, logistic regression models and the explained variance of 

each model are detailed in tables 5-9 – 5-13. 
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 cIMT 5.3.1

Traditional cardiovascular risk factors were entered as covariates into a linear 

regression model (model 1) for mean cIMT, maximum cIMT, maximum mean cIMT, 

mean maximum cIMT (table 5-9).  Age, male sex and systolic blood pressure 

showed a positive independent association with each cIMT variable.  In addition to 

these factors, maximum cIMT was associated with HDL cholesterol.  Interestingly, 

diastolic pressure demonstrated a negative association with each variable, which is 

not the expected direction of association.  This may be a reflection of the high 

percentage of individuals in the ET2DS that are taking antihypertensive medication. 

In the second model (table 5-10), both traditional cardiovascular risk factors and 

novel biomarkers of cardiovascular risk were entered into a linear regression model 

for each cIMT variable. In this model, ABI and NTproBNP were associated with all 

measures of cIMT after accounting for traditional risk factors.    

For mean cIMT, maximum cIMT, maximum mean cIMT and mean maximum cIMT, 

these models containing traditional cardiovascular risk factors explained 10.8%, 

10.6%, 10.4% and 10.8% of variance respectively, suggesting that these factors do 

not completely explain the variance seen in cIMT (table 5-11).  When novel 

cardiovascular risk factors were added to the traditional risk factors, these new 

models explained 16.7%, 14.2%, 14.8% and 16.4% of variance for mean cIMT, 

maximum cIMT, maximum mean cIMT, and mean maximum cIMT respectively.   

 Carotid plaque thickness 5.3.2

On entry of covariates to model 1, age, male sex, systolic and diastolic BP, and 

smoking status had a significant independent association with both mean plaque 

thickness and maximum plaque thickness. All the associations were positive, with 

the exception of diastolic pressure which, as for cIMT, had a negative association 

with both mean and maximum plaque thickness.   

Addition of novel risk factors to the model containing traditional cardiovascular risk 

factors revealed that ABI and NTproBNP had significant independent associations 
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with mean plaque thickness.  For maximum plaque thickness, only NTproBNP was 

independently associated following multifactorial adjustment. 

Model 1, containing only traditional risk factors explained 15.7% of the variance of 

mean plaque thickness and 14.0% of maximum plaque thickness.  Adding novel risk 

factors to the model increased variance to 18.9% and 17.6% respectively.   

 Plaque score and plaque morphology 5.3.3

Logistic regression models for the association of plaque score (<=4 or  >4) are 

presented in table 5-12.  After multifactorial adjustment, risk factors that were 

independently associated with a higher plaque score were increasing age, increasing 

systolic BP and diastolic BP, cigarette smoking and a low BMI.   

Logistic regression models for the association of plaque morphology (high risk or 

low risk) are presented in table 5-13.  After multifactorial adjustment, risk factors 

that were independently associated with high risk plaque were increasing systolic BP 

and diastolic BP, and low BMI. 
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Table 5-9 Multifactorial associations of cIMT and plaque thickness with traditional cardiovascular risk factors (Model 1) 

 Mean cIMT Max cIMT Max Mean cIMT Mean Max cIMT Mean Plaque Thickness Max Plaque Thickness 

 Β coeff P value Β coeff P value B coeff P value B Coeff P value Β coeff P value B Coeff P Value 

Age (years) 0.142 <0.001*** 0.116 0.001 0.121 <0.001*** 0.128 <0.001*** 0.176 <0.001*** 0.178 <0.001*** 

Sex (male) -0.218 <0.001*** -0.208 <0.001*** -0.206 <0.001*** -0.216 <0.001*** -0.155 <0.001*** -0.146 <0.001*** 

SIMD -0.022 0.513 -0.025 0.459 -0.016 0.609 -0.030 0.345 -0.046 0.154 -0.030 0.362 

Duration of diabetes 0.022 0.536 0.010 0.782 -0.003 0.943 0.025 0.480 0.082 0.021* 0.075 0.035* 

HbA1c 0.032 0.366 0.032 0.373 0.037 0.299 0.032 0.363 0.025 0.473 0.020 0.563 

Diabetes Medication -0.048 0.196 -0.057 0.125 -0.039 0.290 -0.062 0.096 -0.037 0.300 -0.040 0.270 

Systolic BP (mm Hg) 0.149 <0.001*** 0.143 <0.001*** 0.157 <0.001*** 0.145 <0.001*** 0.168 <0.001*** 0.139 0.001** 

Diastolic BP (mm Hg) -0.144 <0.001*** -0.146 <0.001*** -0.163 <0.001*** -0.141 <0.001*** -0.099 0.011* -0.092 0.019* 

Antihypertensive Use -0.058 0.086 -0.053 0.115 -0.061 0.068 -0.057 0.093 0.050 0.131 0.058 0.080 

Total Cholesterol 0.022 0.463 0.017 0.636 0.028 0.441 0.017 0.649 0.037 0.302 0.039 0.284 

HDL Cholesterol -0.051 0.144 -0.081 0.021* -0.066 0.055 -0.067 0.051 -0.017 0.619 -0.012 0.733 

Lipid lowering medication 0.060 0.073 0.062 0.068 0.065 0.056 0.056 0.096 0.035 0.286 0.033 0.326 

Smoking status -0.051 0.125 -0.054 0.107 -0.059 0.080 -0.054 0.108 -0.230 <0.001*** -0.222 <0.001*** 

BMI 0.015 0.660 0.001 0.971 0.005 0.890 0.011 0.751 -0.031 0.416 -0.032 0.367 

SIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, BMI=body mass index, eGFR=estimated glomerular filtration rate, ACR=albumin creatinine ratio, IL-6=interleukin 6, CRP=C 
reactive protein, NTProBNP=N terminal pro-brain natriuretic peptide, Pack years = geometric mean. 

* significant at p<0.05, ** significant at p<0.01, *** significant at p<0.001 
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Table 5-10 Multifactorial associations of cIMT and plaque thickness with novel risk factors after adjustment for traditional risk factors (Model 2) 

 Mean cIMT Max cIMT Max Mean cIMT Mean Max cIMT Mean Plaque Thickness Max Plaque Thickness 

 Β coeff P value Β coeff P value B coeff P value B Coeff P value Β coeff P value B Coeff P value 

ABI -0.161 0.004** -0.145 0.011** -0.146 0.010* -0.148 0.008** -0.139 0.011* -0.106 0.070 

eGFR 0.066 0.283 0.086 0.168 0.083 0.186 0.079 0.200 0.024 0.688 0.020 0.747 

ACR 0.025 0.656 0.027 0.483 0.019 0.740 0.037 0.515 0.008 0.885 0.028 0.615 

IL-6 -0.081 0.196 -0.045 0.705 -0.072 0.256 -0.041 0.511 0.085 0.167 0.091 0.141 

CRP -0.001 0.989 -0.046 0.468 -0.017 0.788 -0.010 0.866 -0.029 0.630 -0.048 0.433 

NTproBNP 0.241 <0.001*** 0.199 0.002*** 0.221 <0.001*** 0.223 <0.001*** 0.142 0.020* 0.155 0.012* 

Adjusted for Age (years), Sex (male), SIMD, Duration of diabetes, HbA1c, Diabetes Medication, Systolic BP (mm Hg), Diastolic BP (mm Hg), Antihypertensive Use, Total Cholesterol, HDL Cholesterol, 
Lipid lowering medication, Smoking status, BMISIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, BMI=body mass index, eGFR=estimated glomerular filtration rate, 

ACR=albumin creatinine ratio, IL-6=interleukin 6, CRP=C reactive protein, NTProBNP=N terminal pro-brain natriuretic peptide, Pack years = geometric mean* significant at p<0.05, ** significant at p<0.01, 
*** significant at p<0.001 

 

Table 5-11 Explained variance for linear regression models of continuous ultrasound parameters (R
2
) 

 Mean cIMT Max cIMT Max Mean cIMT Mean Max CIMT 
Mean Plaque 

Thickness 
Max Plaque 

Thickness 

Model 1 0.108 0.106 0.104 0.108 0.157 0.140 

Model 2 0.167 0.142 0.148 0.164 0.189 0.176 

Model 1 – traditional cardiovascular risk factors   
Model 2 – traditional cardiovascular risk factors and novel biomarkers 
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Table 5-12 Multifactorial associations of plaque score and plaque morphology with traditional 

cardiovascular risk factors (Model 1) 

 Plaque score >4 High risk plaque 

 Exp (B) P value Exp (B) P value 

Age (years) 1.04 0.020* 1.03 0.129 

Sex (male) 1.24 0.186 1.02 0.912 

SIMD 1.11 0.689 0.77 0.287 

Duration of diabetes 0.87 0.614 1.05 0.842 

HbA1c 1.07 0.400 0.993 0.921 

Diabetes Medication 1.42 0.219 1.25 0.416 

Systolic BP (mm Hg) 1.02 <0.001** 1.01 0.012* 

Diastolic BP (mm Hg) 0.96 <0.001*** 0.98 0.029* 

Antihypertensive Use 1.19 0.429 1..08 0.720 

Total Cholesterol 1.04 0.685 1.00 0.967 

HDL Cholesterol 0.74 0.202 0.98 0.945 

Lipid lowering medication 1.05 0.819 1.36 0.0.129 

Smoking status 1.95 <0.001*** 1.17 0.310 

BMI 0.95 0.001** 0.97 0.012* 

SIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, BMI=body mass index, eGFR=estimated 
glomerular filtration rate, ACR=albumin creatinine ratio, IL-6=interleukin 6, CRP=C reactive protein, NTProBNP=N terminal 
pro-brain natriuretic peptide, Pack years = geometric mean.* significant at p<0.05, ** significant at p<0 .01, *** significant at 

p<0.001 

Table 5-13 Multifactorial associations of plaque score and plaque morphology with novel risk 

factors after adjustment for traditional risk factors (Model 3) 

 Plaque score >4 High risk plaque 

 Β coeff P value Β coeff P value 

ABI 0.19 0.014* 0.62 0.450 

eGFR 1.00 0.788 0.99 0.434 

ACR 0.77 0.351 1.07 0.814 

IL-6 0.57 0.270 0.99 0.977 

CRP 1.40 0.278 1.11 0.726 

NTproBNP 2.38 0.003** 2.10 0.007** 

Adjusted for Age (years), Sex (male), SIMD, Duration of diabetes, HbA1c, Diabetes Medication, Systolic BP (mm Hg), 

Diastolic BP (mm Hg), Antihypertensive Use, Total Cholesterol, HDL Cholesterol, Lipid lowering medication, Smoking status, 
BMI, SIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, BMI=body mass index, eGFR=estimated 
glomerular filtration rate, ACR=albumin creatinine ratio, IL-6=interleukin 6, CRP=C reactive protein, NTProBNP=N terminal 

pro-brain natriuretic peptide, Pack years = geometric mean* significant at p<0.05, ** significant at p<0.01, *** significant at 
p<0.001 
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5.5 Change in cIMT and vascular risk factors 

A univariate correlation analysis (table 5-14) of change in cIMT between year 1 and 

year 4 follow up with risk factors revealed that only baseline cIMT was correlated 

with change in cIMT (r=-0.300, p<0.001).  Multifactorial regression modelling (table 

5-15) of change in mean cIMT revealed the independent predictors of change in 

cIMT were baseline mean cIMT (B -0.300, p<0.001) and BMI (-0.184, p=0.005). 

Table 5-14 Univariate association of risk factors and baseline cIMT with change in mean cIMT 

  Change mean cIMT 

  Correlation Anova 

Demographics Age -0.024 - 

 Sex (male) -  0.004 

 SIMD   

 Quintile 1 (Most Deprived) -  0.012 

 Quintile 2 -  0.013 

 Quintile 3 - -0.007 

 Quintile 4 - -0.004 

 Quintile 5 (Least Deprived) - - 

Diabetes Duration of DM (years) -0.046 - 

 HbA1C  -0.026 - 

 T2DM Meds   

 Diet Alone - -0.009 

 Oral  - -0.004 

 Insulin ± oral  - - 

Blood Pressure Systolic BP (mmHg)  0.068 - 

 Diastolic BP (mmHg)  0.080 - 

 Antihypertensives (n, % yes) -  0.004 

Blood Lipids Total Cholesterol  0.008 - 

 HDL Cholesterol  -0.064 - 

 Cholesterol med (n, % yes) - -0.018 

Smoking Smoking status (%)   

 Current smoker -  0.035 

 Ex smoker -  0.006 
 Never smoker - - 

Obesity Index BMI -0.050 - 

CVD Risk Marker ABI -0.020 - 

Renal Function eGFR -0.012 - 

 ACR -0.109 - 

Plasma Biomarkers IL6 0.008 - 

 CRP 0.036 - 

 NTProBNP -0.061 - 

Carotid Ultrasound Baseline cIMT       -0.300*** - 

For continuous variables, Pearson correlation coefficients and corresponding p values are quoted.  For categorical variables,  
ANOVAs quantify the difference in mean and maximum plaque thickness for the given categorical variable compared with  the 
reference level (reference levels are female sex, least deprived SIMD quintile,  diet alone treatment for diabetes,  no lipid 
lowering medication, no anti-hypertensive medication, never smoker) SIMD=Scottish Index of Multiple Deprivation, 

HDL=high density lipoprotein, BMI=body mass index, ABI =ankle brachial index, eGFR=estimated glomerular filtration rate, 
ACR=albumin creatinine ratio, IL-6=interleukin 6, CRP=C reactive protein, NTProBNP=N terminal pro-brain natriuretic 
peptide, Pack years = geometric mean.  *** significant at p<0.001 



 

171 

 

Table 5-15 Multifactorial associations of change in mean cIMT with cardiovascular risk factors and 

baseline cIMT 

 Change mean cIMT 

 Β coeff P value 

Age (years) -0.023 0.721 

Sex (male) -0.052 0.479 

SIMD 0.061 0.320 

Duration of diabetes 0.011 0.875 

HbA1c -0.018 0.771 

Diabetes Medication 0.114 0.082 

Systolic BP (mm Hg) 0.115 0.116 

Diastolic BP (mm Hg) 0.099 0.198 

Antihypertensive Use 0.027 0.668 

Total Cholesterol -0.043 0.507 

HDL Cholesterol -0.114 0.089 

Lipid lowering medication -0.038 0.531 

Smoking status -0.054 0.390 

BMI -0.183     0.005** 

ABI -0.090 0.157 

eGFR -0.110 0.109 

ACR -0.083 0.186 

IL-6 -0.013 0.965 

CRP -0.003 0.845 

NTproBNP -0.061 0.389 

Baseline cIMT  -0.327     <0.001*** 

SIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, BMI=body mass index, eGFR=estimated 
glomerular filtration rate, ACR=albumin creatinine ratio, IL-6=interleukin 6, CRP=C reactive protein, NTProBNP=N terminal 

pro-brain natriuretic peptide, Pack years = geometric mean.** significant at p<0.01 *** significant at p<0.001 

 

5.6 Prevalent vascular disease 

Prevalence of cardiovascular disease is reported in table 5-16.  At year 1, previous 

myocardial infarction was recorded for 129 (14.1%) participants, a diagnosis of 

angina for 250 (27.3%), previous stroke for 50 (5.5%) and previous TIA for 29 

(3.2%).  When vascular diseases were categorized into broader categories, 280 

(30.6%) had a history of any coronary artery disease (MI and/or angina), 79 (8.6%) 

had a history of any cerebrovascular disease (stroke and/or TIA) and 317 (34.6%) 

had a history of any cardiovascular disease (MI, angina, stroke or TIA).   
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Table 5-16 Prevalence of Vascular Disease in the ET2DS year 1 study population 

 % participants (n)  

Myocardial Infarction 14.1 (129) 

Angina 27.3 (250) 

Stroke 5.5 (50) 

Transient Ischaemic Attack 3.2 (29) 

Any Cardiovascular Disease 34.6 (317) 

Any Coronary Artery Disease 30.6 (280) 

Any Cerebrovascular Disease 8.6 (79) 

The groups reported are not mutually exclusive.  Prevalence is reported for individuals who have ever had any of the above 
diagnoses, regardless of whether they had also been diagnosed with one of the other diagnoses ie a participant who has had both 
an MI and a TIA is counted in both groups, and so the percentages do no total 100.  For the amalgamated groups, the group 

‘any cardiovascular disease’ has more participants because participants could be in both any CAD and any Cerebrovascular 
disease but only be counted once in the any CVD group.   

 

 Association of prevalent cardiovascular disease with 5.6.1
vascular risk factors and plasma biomarkers 

Distribution of cardiovascular risk factors and novel plasma biomarkers in those with 

grouped CVD outcomes are detailed in table 5-17.   

Any CVD 

Individuals with any CVD were older (69.35 vs 68.55 years, p=0.016), were more 

likely to be male (61.5% vs 46.6%, p<0.001) and more likely to be from less affluent 

social groups (p<0.001) than those with no history of CVD.  They had a longer 

duration of diabetes (8.0 vs 7.0 years, p=0.018) but there was no significant 

difference in HbA1c between the groups.  Slightly more individuals with a history of 

CVD used insulin in addition to oral medications compared to those without disease 

(19.9% vs 13.7%, p=0.045).   

Systolic blood pressure was broadly similar between the groups (139.26 vs 137.42 

mmHg, p=0.151) however diastolic blood pressure was significantly lower in those 

with CVD (72.763 vs 74.75 mmHg, p<0.001), a surprising finding which may be 

accounted for by the increased use of antihypertensive medication in this group 

(96.5% vs 80.0%, p<0.001).  Total cholesterol was lower in those with CVD (4.054 
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vs 4.198 mmol/l, p=0.010), as was HDL cholesterol (1.145 vs 1.276 mmol/l, 

p<0.001), while use of lipid lowering medications was higher (88.0 vs 82.3%, 

p=0.024).  While one might expect to see lower HDL cholesterol in those with CVD, 

while total cholesterol tends to be higher.  The unexpected finding of lower total 

cholesterol might be accounted for by the increased use of lipid lowering medication 

in the disease group.  A higher percentage of those with CVD were current or ex-

smokers compared to those without disease (67.5 vs 55.9%, p=0.003).  BMI was 

similar in both groups (31.8 vs 31.1, p=0.095).   

A lower ABI was also noted in those with disease (0.961 vs 1.001, p=0.006).  

Individuals who experienced any cardiovascular disease had poorer renal function 

than those who did not, with lower mean eGFR (72.97 vs 79.53 ml/min/1,73m2, 

p<0.001, respectively) and higher ACR (2.5 vs 1.5 mg/mol, p<0.001 respectively). 

Inflammatory markers were also higher in those with CVD (IL6 3.29 vs 2.59 pg/ml, 

p<0.001; CRP 2.19 vs 1.56 mg/l, p<0.001).  NTproBNP was also higher (144.5 vs 

59.0 pg/ml, p<0.001).   

Coronary Artery Disease 

Differences in risk factors and biomarkers in those with and without coronary artery 

disease were broadly similar to those seen for individuals with any cardiovascular 

disease, except that in the CAD group, there was no significant difference in the type 

of treatment for diabetes.   

Cerebrovascular Disease 

Differences in risk factors and plasma biomarkers between those with and without 

cerebrovascular disease were not as pronounced as in those with any cardiovascular 

disease or any CAD.  Those with cerebrovascular disease tended to be older and 

male, with a longer duration of diabetes and increased frequency of insulin use, than 

those without cerebrovascular disease.  They also had lower HDL cholesterol and a 

greater prevalence of current smoking.   They also tended to have a lower ABI and 

poorer renal function. CRP was the only inflammatory marker that was significantly 
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higher in those with cerebrovascular disease than those without.  Again, NTproBNP 

was higher in the disease group than those without disease.   

 Association of prevalent cardiovascular disease with 5.6.2
carotid ultrasound parameters  

Distribution of cardiovascular risk factors and novel plasma biomarkers in those with 

grouped CVD outcomes are detailed in table 5-18.   

Any CVD 

In subjects with any cardiovascular disease, mean cIMT was higher (0.99 vs 0.92 

mm, p<0.001) as were maximum cIMT (1.15 vs 1.04mm, p=0.001), maximum mean 

cIMT (1.06 vs 0.98mm, p=0.001) and mean maximum cIMT (1.07 vs 0.98, 

p<0.001).  There was no significant difference in change in mean cIMT. 

Mean plaque thickness was also higher (2.75 vs 2.28mm, p<0.001).  Individuals with 

CVD were more likely to have a higher plaque score. When plaque score and plaque 

morphology were considered as dichotomous variables (plaque score: ≤4 or >4 and 

plaque type: high risk/low risk respectively), those with disease tended to have a 

higher plaque score (57.3 vs 39.0%, p<0.001) and more high risk plaque (65.5 vs 

52.7%, p<0.001).   

Coronary Artery Disease 

Continuous carotid ultrasound variables were also significantly higher in individuals 

with CAD (mean cIMT 0.96 vs 0.93 mm, p=0.001; max cIMT 1.09 vs 1.05 mm, 

p=0.001, max mean cIMT 1.02 vs 0.98 mm, p=0.001; mean plaque thickness 2.78 vs 

2.29 mm p<0.001).  There was no significant difference in change in mean cIMT.  

Plaque score tended to be higher in those with CAD (>4 58.2 vs <=4 39.8%, 

p<0.001) and individuals with CAD tended to have more high risk plaque when 

compared with individuals without CAD (67.5 vs 52.6% respectively, p<0.001).  
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Cerebrovascular Disease 

Mean cIMT was higher in those with cerebrovascular disease (0.96 vs 0.93 mm, 

p<0.001) as was max cIMT (1.09 vs 1.05 mm, p<0.001), max mean cIMT (1.02 vs 

0.99, p<0.001) and mean plaque thickness (2.85 vs 2.41, p<0.001).  There was no 

significant difference in change in mean cIMT.  Individuals with a history 

cerebrovascular disease were more likely to have a plaque score >4 when compared 

to those without disease (62.5 vs 43.9% respectively, p=0.002) but there was no 

significant difference in presence of high risk plaque between the groups (p=0.191).   



 

 

 

1
7
6

 

Table 5-17 Prevalent Cardiovascular Disease, Cardiovascular Risk Factors and Novel plasma biomarkers 

 Any CVD No CVD P value Any CAD No CAD P value Any Cerebro No Cerebro P value 
Age (years) 69.35 (4.01) 68.66 (4.08) 0.016 69.5 (4.4) 68.64 (4.05) 0.003 68.9 (4.05) 68.89 (4.18) 0.893 
Sex (male) 61.5 (195) 46.6 (279) <0.001 61.8 (173) 47.3 (301) <0.001 67.1 (53) 50.3 (421) 0.004 
SIMD          

Quintile 1 14.8 (47) 9.8 (59)  15.0 (42) 10.1 (64)  19.0 (15) 10.9 (91)  
Quintile 2 23.7 (75) 15.7 (94)  23.6 (66) 16.2 (103)  24.1 (19) 17.9 (15)  
Quintile 3 19.6 (62) 16.4 (98) <0.001 18.6 (52) 17.0 (108) 0.002 24.1 (19) 16.8 (141) 0.006 
Quintile 4 15.4 (46) 20.0 (120)  15.4 (43) 19.3 (123)  8.9 (7) 19.3 (159)  
Quintile 5 27.4 (87) 38.1 (228)  27.5 (77) 37.4 (27.5)  24.1 (19) 35.4 (296)  

Duration of Diabetes (years) 8.0 (7.0) 7.0 (8.0) 0.018 8.00 (7.00) 7.0 (8.0) 0.037 9.00 (8.25) 7.0 (8.0) 0.013 
HbA1C (% haemoglobin) 7.239 (1.158) 7.154 (1.023) 0.257 7.199 (1.092) 7.176 (1.064) 0.764 7.372 (1.364) 7.165 (1.039) 0.101 

Diabetes Medication          
Diet Alone 19.6 (62) 19.7 (118)  18.9 (53) 20.0 (127)  21.5 (17) 19.5 (163)  

Oral Hypoglycaemics 60.6 (192) 66.6 (399) 0.045 62.1 (174) 65.6 (417) 0.234 53.2 (42) 65.6 (549) 0.033 
Insulin ± oral hypoglycaemics 19.9 (63) 13.7 (82)  18.9 (53) 14.5 (92)  25.3 (20) 14.9 (125)  

Systolic BP (mmHg)  139.26 (20.248) 137.42 (17.310) 0.151 139.19 (20.591) 137.55 (17.321) 0.216 140.29 (19.011) 137.85 (18.331) 0.261 
Diastolic BP (mmHg)  72.73 (10.30) 74.75 (8.99) 0.002 72.56 (10.384) 74.71 (9.023) 0.002 72.40 (10.037) 74.21 (9.449) 0.108 
On antihypertensives  (% yes) 96.5 (306) 80.0 (479) <0.001 98.2 (275) 80.2 (510) <0.001 92.4 (73) 85.1 (712) 0.075 
Total Cholesterol (mmol/l) 4.054 (0.817) 4.198 (0.794) 0.010 4.035 (0.822) 4.197 (0.792) 0.005 4.071 (0.765) 4.155 (0.808) 0.380 
HDL Cholesterol  (mmol/l) 1.145 (0.283) 1.276 (0.354) <0.001 1.138 (0.274) 1.271 (0.354) <0.001 1.128 (0.300) 1.240 (0.339) 0.005 
Lipid lowering meds (% yes) 88.0 (279) 82.3 (493) 0.024 89.6 (251) 81.9 (521) 0.003 81.0 (15) 84.6 (708) 0.404 
Smoking status           

Current smoker 14.5 (46) 12.2 (73)  14.3 (40) 12.4 (79)  16.5 (13) 12.7 (106)  
Ex smoker 53.0 (168) 43.7 (168) 0.003 52.9 (148) 44.3 (282) 0.013 57.0 (45) 46.0 (385) 0.037 

Never smoker 32.5 (103) 44.1 (264)  32.9 (92) 43.2 (275)  26.6 (21) 41.3 (346)  
Ankle Brachial Index 0.961 (0.242) 1.001 (0.188) 0.006 0.966 (0.249) 0.997 (0.189) 0.039 0.891 (0.246) 0.996 (0.204) <0.001 
BMI (kg/m2) 31.76 (5.61) 31.10 (5.72) 0.095 31.71 (5.61) 31.16 (5.71) 0.176 31.55 (5.54) 31.30 (5.70) 0.709 
eGFR (ml/min/1.73m2) 72.97 (20.26) 79.53 (17.307) <0.001 72.65 (20.43) 79.29 (17.42) <0.001 71.64 (22.15) 77.81 (18.19) 0.005 
ACR (mg/mmol) 2.5 (4.2) 1.5 (2.2) <0.001 2.5 (4.3) 1.5 (2.3) <0.001 2.85 (4.5) 1.7 (3.0) 0.012 
IL6 3.29 (2.81) 2.59 (2.24) <0.001 3.31 (2.87) 2.66 (2.25) <0.001 3.28 (2.30) 2.76 (2.43) 0.083 
CRP (mg/l) 2.19 (4.24) 1.56 (3.03) <0.001 2.18 (4.23) 1.6 (3.08) 0.002 2.26 (4.62) 1.67 (3.15) 0.011 
NTProBNP (pg/ml) 144.5 (269) 59.0 (83) <0.001 164.5 (285) 59.0 (82) <0.001 93.5 (232) 72.0 (129) 0.004 

SIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, BMI=body mass index, eGFR=estimated glomerular filtration rate, ACR=albumin creatinine ratio, IL-6=interleukin 6, CRP=C 
reactive protein, NTProBNP=N terminal pro-brain natriuretic peptide, Pack years = geometric mean. * significant at p<0.05, ** significant at p<0.01, *** significant at p<0.001 
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Table 5-18 Prevalent cardiovascular disease, carotid intima media thickness and carotid plaque 

 Any CVD No CVD P value Any CAD No CAD P value Any Cerebro No Cerebro P value 
Mean cIMT (mm) 0.99 (0.15) 0.92 (0.14) <0.001 0.96 (0.14) 0.93 (0.14) 0.001 0.96 (0.14) 0.93 (0.14) <0.001 
Max cIMT (mm) 1.15 (0.22) 1.04 (0.19) 0.001 1.09 (0.19) 1.05 (0.19) 0.001 1.09 (0.19) 1.05 (0.19) <0.001 
Max Mean cIMT (mm) 1.06 (0.20) 0.98 (0.17) 0.001 1.02 (0.17) 0.98 (1.02) 0.001 1.02 (0.17) 0.99 (0.17) <0.001 
Mean Max cIMT (mm) 1.07 (0.17) 0.98 (0.15) <0.001 1.02 (0.16) 0.98 (0.16) <0.001 1.02 (0.17) 0.99 (0.15) <0.001 
Mean Plaque Thickness (mm) 2.75 (0.94) 2.28 (0.84) <0.001 2.78 (0.93) 2.29 (0.84) <0.001 2.85 (1.15) 2.41 (0.86) <0.001 
Max Plaque Thickness (mm) 3.15 (1.15) 2.62 (1.04) <0.001 3.20 (1.16) 2.64 (1.04) <0.001 3.33 (1.46) 2.76 (1.06) 0.001 
Change in mean cIMT -0.01 (0.12) -0.01 (0.11) 0.774 -0.01 (0.11) -0.01 (0.11) 0.940 0.01 (0.15) -0.02 (0.11) 0.096 
Plaque Score          

0 1.2 (4) 2.6 (15)  0.7 (2) 2.7 (17)  2.5 (2) 2.1 (17)  
1 0.9 (3) 4.1 (24)  1.1 (3) 3.9 (24)  1.3 (1) 3.2 (26)  

2 9.3 (30) 17.4 (101)  8.5 (24) 17.2 (107)  10.0 (8) 14.9 (123)  
3 14.3 (46) 17.4 (101)  13.8 (39) 17.4 (108)  12.5 (10) 16.6 (137)  
4 16.8 (54) 19.6 (114) <0.001 17.7 (49) 19.0 (118) <0.001 11.3 (9) 19.3 (159) 0.043 
5 18.7 (60) 15.3 (89)  17.4 (49) 16.1 (100)  17.5 (14) 16.4 (135)  
6 16.5 (53) 12.4 (72)  18.8 (53) 11.6 (72)  17.5 (14) 13.5 (111)  
7 9.0 (29) 6.2 (36)  8.9 (25) 6.4 (40)  11.3 (9) 6.8 (56)  
8 13.1 (42) 5.2 (30)  13.1 (37) 5.6 (35)  16.3 (13) 7.2 (59)  

Plaque Score           
≤4 42.7 (137) 61.0 (355) <0.001 41.8 (118) 60.2 (374) <0.001 37.5 (30) 56.1 (462) 0.001 
>4 57.3 (184) 39.0 (227)  58.2 (164) 39.8 (247)  62.5 (50) 43.9 (361)  

Plaque Morphology          
Echogenic/no plaque 34.5 (111) 47.3 (275)  32.5 (92) 47.4 (294)  37.5 (30) 43.3 (356)  

Echolucent only 9.6 (31) 14.1 (82) <0.001 10.2 (29) 13.5 (84) <0.001 6.3 (5) 13.1 (107) 0.002 
Heterogenous only 22.7 (73) 18.9 (110)  23.7 (67) 18.7 (116)  15.0 (12) 20.8 (171)  

Both types 33.2 (107) 19.6 (114)  33.6 (95) 20.3 (126)  37.5 (33) 22.8 (188)  
Plaque Morphology          

Low Risk  34.5 (111) 47.3 (275) <0.001 32.5 (92) 47.4 (294) <0.001 37.5 (30) 43.3 (356) 0.191 
High Risk 65.5 (211) 52.7 (306)  67.5 (191) 52.6 (326)  62.5 (50) 55.7 (467)  

* significant at p<0.05, ** significant at p<0.01, *** significant at p<0.001 



 

178 

 

5.7 Logistic regression analyses for cardiovascular 
events 

Logistic regression analyses were performed to assess the association of cIMT and 

carotid plaque with prevalent cardiovascular events before and after adjustment for 

traditional cardiovascular risk factors and the more novel biomarkers.  Results are 

reported as odds ratios for 1 SD change in the factor being measured in tables 5-19, 

5-20 and 5-21.    

cIMT (table 5-19) 

In the unadjusted models (model 1), a 1-SD increase in mean cIMT had an odds ratio 

of 1.26 (1.10-1.45), p<0.001 for any prevalent CVD.  Age and sex adjustment 

(model 2) attenuated the odds ratio slightly (OR 1.16 (1.01-1.34), p=0.036), while 

after additional adjustment for traditional cardiovascular risk factors (model 3) and 

for novel biomarkers and SIMD (model 4) the odds ratios became non-significant 

(p>0.05). Odds ratios for any coronary artery disease and any cerebrovascular 

disease were similar to those for any CVD and were again attenuated and became 

non-significant once traditional risk factors were adjusted for (see table 5-12, column 

1).   

Max cIMT had an unadjusted odds ratio of 1.25 (1.10-1.43), p=0.001, and an age and 

sex adjusted OR 1.16 (1.01-1.33), p=0.039.  As was seen for mean cIMT, the odds 

ratios were attenuated in models 3 and 4, and subsequently fell out of statistical 

significance.  A similar pattern was seen for coronary artery disease and 

cerebrovascular disease (see table 5-13, column 2).  

For maximum mean cIMT, the unadjusted and age and sex adjusted odds ratios for 

any cardiovascular disease were OR 1.24 (1.08-1.42), p=0.002, and OR 1.15 (0.99-

1.32), p=0.052 respectively.  Further adjustment for CV risk factors caused the odds 

ratios to fall out of significance.  The same was seen for coronary artery disease and 

cerebrovascular disease. (see table 5-13, column 3). 

For mean max cIMT, unadjusted and age and sex adjusted odds ratios for any 

cardiovascular disease were OR 1.29 (1.13-1.49), p<0.001 and OR 1.19 (1.03-1.38), 
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p=0.018 respectively.  Again, further adjustment for traditional and then novel risk 

factor attenuated the odds ratios and cause them to fall out of statistical significance 

(see table 5-12, column 4).  The same pattern was seen for CAD and cerebrovascular 

disease.   

Plaque Thickness (table 5-20) 

Both mean and maximum plaque thickness demonstrated a more robust association 

with prevalent cardiovascular disease than cIMT. 

The unadjusted odds ratio of mean plaque thickness for cardiovascular disease was 

1.70 (1.47-1.97), p<0.001.  Adjusting for age and sex attenuated the odds ratio 

slightly to OR 1.60 (1.38-1.86), p<0.001.  However, unlike for cIMT variables, mean 

plaque thickness retained significant odds ratios upon additional adjustment for 

cardiovascular and novel risk factors (OR 1.50 (1.27-1.77), p<0.001 and OR 1.50 

(1.11-2.01), p=0.009 respectively). Similar odds ratios were seen for coronary artery 

disease and cerebrovascular disease and they remained significant for both following 

adjustment for cardiovascular risk factors, although mean plaque thickness lost 

significance for cerebrovascular disease once novel factors were accounted for (OR 

1.28 (0.86-1.91), p=0.0.224) (see table 5-13, column 1).   

Max plaque thickness had unadjusted odds ratio of 1.62 (1.40-1.88) p<0.001 and an 

age and sex adjusted OR of 1.52 (1.31-1.77), p<0.001 for any cardiovascular disease.  

Similarly to mean plaque thickness, further adjustment for both traditional and novel 

risk factors did not attenuated the odds ratio significantly (OR 1.45 (1.22-1.71), 

p<0.001 and OR 1.38 (1.03-1.83), p=0.030) (see table 5-13, column 2).  Similar odds 

ratios were seen for CAD and cerebrovascular disease, although, again, once novel 

risk factors were accounted for, max plaque thickness lost its association with 

cerebrovascular disease. 

Plaque score and plaque morphology (table 5-21) 

Similarly to the measures of plaque thickness, plaque score and plaque morphology 

were also strongly associated with prevalent cardiovascular disease and survived full 
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adjustment for risk factors (OR 1.74, p=0.049 and HR 1.74, p=0.043 respectively).  

Plaque score and plaque morphology were also associated with prevalent CAD, 

although plaque score lost its association once novel biomarkers were adjusted for.  

There was no relationship between cerebrovascular disease and either plaque score or 

plaque morphology once traditional risk factors were accounted for.  
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Table 5-19 Multifactorial adjusted associations between prevalent cardiovascular disease and cIMT 

 
 

Mean cIMT Max cIMT Max Mean cIMT Mean Max cIMT  

Outcome Odds Ratio CI P value Odds Ratio CI P value Odds Ratio CI P value Odds Ratio CI P value 
             
Any CVD             

Model  1 1.26 1.10-1.45 0.001 1.25 1.10-1.43 0.001 1.24 1.08-1.42 0.002 1.29 1.13-1.49 <0.001 
Model  2 1.16 1.01-1.34 0.036 1.16 1.01-1.33 0.039 1.15 0.99-1.32 0.052 1.19 1.03-1.38   0.018 

Model  3 1.06 0.91-1.25 0.442 1.05 0.90-1.23 0.556 1.05 0.90-1.23 0.559 1.08 0.92-1.27   0.351 
Model  4 0.99 0.75-1.30 0.938 0.97 0.75-1.26 0.833 0.97 0.75-1.25 0.805 0.99 0.75-1.31   0.964 

             
Coronary Artery Disease             

Model  1 1.28 1.11-1.47 0.001 1.27 1.10-1.45 0.001 1.25 1.09-1.44 0.001 1.29 1.13-1.50 <0.001 

Model  2 1.17 1.01-1.35 0.036 1.16 1.01-1.34 0.038 1.15 1.00-1.33 0.049 1.19 1.03-1.38   0.022 
Model  3 1.08 0.92-1.27 0.353 1.08 0.92-1.27 0.376 1.07 0.91-1.26 0.411 1.10 0.93-1.30   0.279 
Model  4 0.98 0.73-1.32 0.898 0.99 0.75-1.31 0.972 0.99 0.75-1.30 0.930 0.99 0.73-1.33   0.940 

             

Cerebrovascular Disease             
Model  1 1.46 1.18-1.81 0.001 1.51 1.22-1.86 <0.001 1.43 1.16-1.76 0.001 1.56 1.25-1.95 <0.001 

Model  2 1.41 1.12-1.76 0.003 1.45 1.17-1.81   0.001 1.37 1.11-1.70 0.004 1.51 1.20-1.89 <0.001 
Model  3 1.22 0.95-1.56 0.122 1.25 0.98-1.59   0.074 1.19 0.94-1.51 0.185 1.28 0.99-1.65   0.055 
Model  4 1.35 0.91-2.00 0.134 1.27 0.89-1.83   0.191 1.21 0.85-1.72 0.292 1.40 0.94-2.08   0.099 

             
model 1 unadjusted  
model 2 age and sex 

model 3 Age, sex,SIMD, duration of DM, HbA1C, diabetes treatment, systolic blood pressure, diastolic blood pressure, Antihypertensive use, total cholesterol, HDL cholesterol, lipid lowering medication use, 
smoking, BMI  
model 4 Age, sex, SIMD,duration of DM, HbA1C, diabetes treatment, systolic blood pressure, diastolic blood pressure, Antihypertensive use, total cholesterol, HDL cholesterol, lipid lowering medication 

use, smoking, BMI, ankle brachial index, albumin creatinine ratio, interleukin 6, c reactive protein, NTProBNP 
SIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, BMI=body mass index, eGFR=estimated glomerular filtration rate, ACR=albumin creatinine ratio, IL-6=interleukin 6, CRP=C 
reactive protein, NTProBNP=N terminal pro-brain natriuretic peptide, Pack years = geometric mean. 
* significant at p<0.05, ** significant at p<0.01, *** significant at p<0.001 
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Table 5-20 Multifactorial adjusted associations between prevalent cardiovascular disease and carotid plaque thickness 

 
 

Mean Plaque Thickness Max Plaque Thickness 

Outcome Odds Ratio CI P value Odds Ratio CI P value 
       
Any CVD       

Model  1 1.70 1.47-1.97 <0.001 1.62 1.40-1.88 <0.001 
Model  2 1.60 1.38-1.86 <0.001 1.52 1.31-1.77 <0.001 

Model  3 1.50 1.27-1.77 <0.001 1.45 1.22-1.71 <0.001 
Model  4 1.50 1.11-2.01   0.007 1.38 1.03-1.83   0.030 

       
Coronary Artery Disease       

Model  1 1.72 1.48-1.99 <0.001 1.66 1.43-1.92 <0.001 

Model  2 1.61 1.38-1.87 <0.001 1.55 1.33-1.81 <0.001 
Model  3 1.56 1.31-1.85 <0.001 1.52 1.27-1.80 <0.001 
Model  4 1.57 1.15-2.14   0.004 1.48 1.09-2.01   0.011 

       

Cerebrovascular Disease       
Model  1 1.55 1.25-1.90 <0.001 1.56 1.27-1.92 <0.001 

Model  2 1.49 1.19-1.85 <0.001 1.50 1.21-1.87 <0.001 
Model  3 1.32 1.03-1.70   0.028 1.37 1.07-1.75   0.012 
Model  4 1.28 0.86-1.91   0.224 1.28 0.85-1.91   0.234 

       
model 1 unadjusted  
model 2 age and sex 

model 3 Age, sex,SIMD, duration of DM, HbA1C, diabetes treatment, systolic blood pressure, diastolic blood pressure, Antihypertensive use, total cholesterol, HDL cholesterol, lipid lowering medication use, 
smoking, BMI  
model 4 Age, sex, SIMD,duration of DM, HbA1C, diabetes treatment, systolic blood pressure, diastolic blood pressure, Antihypertensive use, total cholesterol, HDL cholesterol, lipid lowering medication 

use, smoking, BMI, ankle brachial index, eGFR,  albumin creatinine ratio, interleukin 6, c reactive protein, NTProBNP 
SIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, BMI=body mass index, eGFR=estimated glomerular filtration rate, ACR=albumin creatinine ratio, IL-6=interleukin 6, CRP=C 
reactive protein, NTProBNP=N terminal pro-brain natriuretic peptide. 
* significant at p<0.05, ** significant at p<0.01, *** significant at p<0.001 
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Table 5-21 Multifactorial adjusted associations between prevalent cardiovascular disease and carotid plaque score and morphology 

 
 

Plaque Score >4 High Risk Plaque Type 

Outcome Odds Ratio CI P value Odds Ratio CI P value 
       
Any CVD       

Model  1 2.10 1.59-2.77 <0.001 1.71 1.29-2.26 <0.001 
Model  2 1.93 1.46-2.57 <0.001 1.66 1.25-2.21 <0.001 

Model  3 1.64 1.20-2.26   0.001 1.61 1.17-2.20   0.003 
Model  4 1.74 1.00-3.04   0.049 1.74 1.02-2.98   0.043 

       
Coronary Artery Disease       

Model  1 2.10 1.58-2.80 <0.001 1.87 1.40-2.51 <0.001 

Model  2 1.92 1.44-2.57 <0.001 1.82 1.35-2.45 <0.001 
Model  3 1.65 1.19-2.30   0.003 1.81 1.30-2.52 <0.001 
Model  4 1.71 0.94-3.09   0.078 2.64 146-4.76   0.001 

       

Cerebrovascular Disease       
Model  1 2.13 1.33-3.42   0.002 1.27 0.79-2.04   0.354 

Model  2 2.01 1.24-3.24   0.004 1.25 0.77-2.01   0.370 
Model  3 1.53 0.91-2.58   0.112 1.17 0.70-1.97   0.555 
Model  4 1.37 0.60-3.14   0.454 0.65 0.29-1.48   0.305 

       
model 1 unadjusted  
model 2 age and sex 

model 3 Age, sex,SIMD, duration of DM, HbA1C, diabetes treatment, systolic blood pressure, diastolic blood pressure, Antihypertensive use, total cholesterol, HDL cholesterol, lipid lowering medication use, 
smoking, BMI  
model 4 Age, sex, SIMD,duration of DM, HbA1C, diabetes treatment, systolic blood pressure, diastolic blood pressure, Antihypertensive use, total cholesterol, HDL cholesterol, lipid lowering medication 

use, smoking, BMI, ankle brachial index,eGFR,  albumin creatinine ratio, interleukin 6, c reactive protein, NTProBNP 
SIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, BMI=body mass index, eGFR=estimated glomerular filtration rate, ACR=albumin creatinine ratio, IL-6=interleukin 6, CRP=C 
reactive protein, NTProBNP=N terminal pro-brain natriuretic peptide. 
* significant at p<0.05, ** significant at p<0.01, *** significant at p<0.001 
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5.8 Chapter summary 

This chapter describes the cross sectional relationship between cIMT, carotid plaque 

and vascular risk factors (both traditional and novel), as well as the relationship 

between cIMT and carotid plaque and prevalent vascular disease.  cIMT was 

predominantly associated with increasing age, male sex and increased systolic blood 

pressure, although these were not strong associations with some factors having only 

small effect sizes.  These associations persisted following multivariable linear 

regression.  In addition, increased cIMT was associated with adverse levels the novel 

biomarkers ABI and NTproBNP following multivariable regression.   Further, 

change in cIMT between year 1 and year 4 demonstrated a regression.  The main risk 

factors associated with change in cIMT were BMI and baseline cIMT following 

multifactorial adjustment. 

Plaque thickness demonstrated more extensive associations with traditional risk 

factors, including with increasing age, male sex, longer duration of diabetes, 

increased systolic blood pressure and cigarette smoking, all of which survived 

multifactorial modelling but which again like cIMT, had only small effect sizes 

suggesting only modest associations. It was also associated with ABI and NTproBNP 

in multifactorial models.  The relationship between plaque score and cardiovascular 

risk factors was more complex, although several key risk factors that were associated 

with increased plaque score were increased age, increased systolic and diastolic 

blood pressure, cigarette smoking and a lower BMI. Reduced ABI and increased 

NTproBNP were also associated with plaque score.  Plaque morphology was 

associated with systolic and diastolic blood pressure and lower BMI.  It also 

associated with lower ABI and increased NTproBNP.   

Vascular disease had a prevalence of 34.6% (MI, angina, stroke or TIA) in the 

ET2DS at year 1 and was associated with increased values of both cIMT and carotid 

plaque.  Age and sex adjusted logistic regression models revealed that all measures 

of cIMT and plaque were associated with prevalent cardiovascular disease and CAD.  

However, for cIMT, these relationships lost statistical significance after full 

adjustment for traditional cardiovascular vascular risk factors, whereas for mean and 
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maximum plaque thickness and plaque score and plaque morphology, they persisted 

following full adjustment including both traditional risk factors and novel 

biomarkers.  Neither cIMT, plaque score or plaque morphology were as strongly 

associated with cerebrovascular disease once full adjustment was performed.   

These results suggest that carotid plaque may be more strongly associated with 

prevalent cardiovascular disease than cIMT and thus may have more potential to 

predict incident cardiovascular events.   
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Chapter 6: Results 3 – Longitudinal Analysis of 
Carotid Ultrasound Markers and Incident 

Cardiovascular Events 

 

This chapter reports the results of longitudinal analyses of the relationship between 

carotid ultrasound parameters and incident cardiovascular events in the Edinburgh 

Type 2 diabetes study.   Incidence rates are described, as well as the cardiovascular 

risk factor profile of those who had an event.  Finally, survival analyses of cIMT and 

carotid plaque parameters for cardiovascular events are described. 

 

6.1 Incident cardiovascular events in the ET2DS 

In the period between cIMT measurement at year 1, and the end of year 4 follow up 

of the ET2DS (31st August 2011), there were 74 individuals in the cIMT analysis 

group with fatal or non-fatal incident cardiovascular events in the study population of 

this thesis (only first events were recorded), which translates to an incidence rate for 

any cardiovascular disease of 8.1%.  Of the fatal events, three were confirmed 

myocardial infarction, two were confirmed stroke and eleven were cases of other 

ischaemic heart disease (not specified).  Of the non-fatal events, fifteen were 

confirmed myocardial infarction, eighteen were new diagnoses of angina, twenty 

were confirmed non-fatal stroke, and five were confirmed transient ischaemic attack.  

Because these were first events, the individuals groups are mutually exclusive.  For 

the plaque group, the number of overall CVD events was 75.   

As the number of events in each individual category was small, for the purposes of 

analysis, the events were categorized into four composite endpoints to maximize the 

possibility of detecting associations.  These categories were: Any CVD (Any 

cardiovascular event), CAD (Fatal MI, Non-Fatal MI and Angina), Cerebrovascular 

(Fatal Stroke, Non-fatal Stroke and TIA) and Fatal CVD (Fatal MI, Fatal Stoke and 

Other Fatal IHD).  The number of participants in each group is detailed in table 6-1.  

These groups are not mutually exclusive, for example, individuals who experienced a 
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fatal MI appear in both any CAD and fatal CVD.  This also applies to those who had 

a fatal stroke.  In addition, because the group of fatal events includes diagnoses 

recorded as “fatal ischaemic heart disease”, these individuals were not included in 

the any CAD group because they could not be confirmed as MI or angina (the 

definition of any CAD used in this thesis).   

Table 6-1 Incident Cardiovascular Events in IMT group in the period between year 1 follow up and 

August 2011 in the ET2DS 

Outcome Number of events % of sample 

Fatal MI 3 4.1 

Non-Fatal MI 15 20.3 

Angina 18 24.3 

Fatal Stoke 2 2.7 

Non-Fatal Stroke 20 27.0 

TIA 5 6.8 

Other Fatal IHD 11 14.9 

Total 74 100.0 

Composite Outcomes   

Any CVD  74 8.1 

CAD  36 3.9 

Cerebrovascular  27 2.9 

Fatal CVD  16 1.7 

MI=myocardial infarction, TIA=transient ischaemic attack, IHD=ischaemic heart disease  
The individual events listed in the first part of the table are mutually exclusive because each event listed is a first  event.  For the 
second part of the table, an event could belong to more than one composite group.  Therefore, no totals are listed for this 

section.   

Absolute risk of MI in the year 1 IMT group was 5.6 events per 1000 patient years.  

If we compare equivalent rates in other groups with Type 2 diabetes, Mulnier et al 

found (in data derived from a GP data base of 1739 people with Type 2 diabetes and 

almost 4000 without, a rate of 19.4 events per 1000 patient years for MI in adults 

with Type 2 diabetes aged 65-74 years (similar to the ET2DS), which is considerably 

higher than that seen in the ET2DS (Mulnier, Seaman et al. 2008).  This same study 

estimated a rate for a similarly aged non-diabetic population of 7.03 per 1000 patient 

years. 
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6.2 Demographics, vascular risk factors and incident 
cardiovascular events 

Demographic variables and traditional cardiovascular risk factors were compared in 

those participants with IMT measurements who had an incident cardiovascular event 

and those who did not (table 6-2).  Individuals who had an incident event were older 

and more likely to be male, but there was no difference in sociodemographic status 

between the groups.  Those with incident vascular events had a poorer diabetic 

profile than those with no event, with a longer median duration of diabetes, higher 

HbA1c and a higher percentage of individuals using insulin ± hypoglycaemics.  

When cardiovascular risk factors were compared between the groups, there was no 

significant difference in either systolic or diastolic blood pressure, but there was 

more antihypertensive medication use among those who had an event, which could 

explain why blood pressure was similar in each group.  There was no difference in 

total cholesterol levels between the groups and while HDL cholesterol was slightly 

lower in the incident event group, the difference did not reach statistical significance.  

There was however a higher percentage of individuals using lipid lowering 

medication in the group who experienced an event.  Smoking profiles did not vary 

between the groups, with no significant difference in the percentage of current, ex or 

never smokers in the groups.  Obesity indices were examined and BMI was found to 

be similar between the groups.  eGFR was also significantly lower in those who 

experienced an event, as was IL-6 and NTproBNP.  There was no difference in ABI, 

ACR or CRP between the groups.  Results were similar in the plaque analysis group. 

The relationship between prevalent cardiovascular and incident vascular disease was 

also explored.  Those individuals who experienced an incident event were more 

likely to have experienced a previous CVD event (51.4% previous CVD vs 34.0% no 

previous CVD, p=0.002).   
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Table 6-2 Demographics and Vascular Risk factors in Individuals with Incident Events and No 

events (IMT group) 

 Incident Event (n=74) No Event (n=842) P Value 

Age (years) 70.1 (3.9) 68.8 (4.2)    0.009** 
Sex (male) 63.5 (47) 50.7 (427)    0.023* 
SIMD    

Quintile 1(most deprived) 12.2 (9) 11.5 (97)  
Quintile 2 20.3 (15) 18.3 (154)  
Quintile 3 21.6 (16) 17.1 (144)    0.567 
Quintile 4 20.3 (15) 17.9 (151)  

Quintile 5 (least deprived) 25.7 (19) 35.2 (296)  
Duration of Diabetes (years) 9.0 (11.0) 7.0 (8.0)    0.010* 
HbA1C (% haemoglobin) 7.44 (1.19) 7.16 (1.06)    0.030* 
Diabetes Medication    

Diet Alone 16.2 (12) 20.0 (168)  
Oral Hypoglycaemics 50.0 (37) 65.8 (554)  <0.001*** 

Insulin ± oral hypoglycaemics 33.8 (25) 14.3 (120)  
Systolic BP (mmHg)  140.6 (19.3) 137.8 (18.3)    0.208 
Diastolic BP (mmHg)  72.4 (10.1) 74.2 (9.4)    0.120 
On antihypertensives  (% yes) 93.2 (69) 85.0 (716)    0.032* 
Total Cholesterol (mmol/l) 4.14 (0.96) 4.15 (0.79)    0.883 
HDL Cholesterol  (mmol/l) 1.16 (0.34) 1.24 (0.34)    0.061 

Lipid lowering meds (% yes) 91.9 (68) 83.6 (704)    0.037* 
Smoking status     

Current smoker 14.9 (11) 12.8 (108)  
Ex smoker 50.0 (37) 46.7 (393)    0.648 

Never smoker 35.1 (26) 40.5 (341)  
Pack Years  0.00 (0.00) 0.00 (0.00)    0.816 
BMI (kg/m2) 31.2 (5.2) 31.3 (5.7)    0.807 
ABI 0.96 (0.32) 0.99 (0.20)    0.257 
eGFR (ml/min/1.73m2) 69.2 (20.4) 77.9 (18.3)  <0.001** 
ACR 2.0 (8.) 1.7 (3.1)    0.147 
IL6 3.64 (2.6) 2.75 (2.4)    0.047* 
CRP 2.29 (3.3) 1.70 (3.3)    0.256 
NTproBNP 137.5 (235) 70.0 (126)  <0.001*** 
Previous History of CVD at baseline 51.4 (38) 34.0 (286)    0.002** 
SIMD=Scottish Index of Multiple Deprivation, HDL=high density lipoprotein, BMI=body mass index, eGFR=estimated 

glomerular filtration rate, CVD=cardiovascular disease  *=p<0.05, **p<0.01, ***significant at p<0.001 Values are mean (SD) , 
median IQR or % (n) 

 

6.3 IMT, plaque and incident vascular events 

The distribution of cIMT and plaque in individuals with incident events was 

examined using the students T test and chi squared statistic.  Further exploration 

through a series of Cox Proportional Hazards models examined the predictive ability 

of cIMT for incident CVD in people with diabetes. 

 Distribution of IMT and plaque in participants with 6.3.1
incident cardiovascular events 

All measures of cIMT were significantly higher in those who experienced an incident 

event when compared with those who did not (table 6-3).  Mean and maximum 
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plaque thickness were also significantly higher in those who had an event although 

the absolute difference was not as great as that seen for cIMT.  There was no 

significant difference in change in mean cIMT.  Plaque score was considered as a 

dichotomous score of less than or greater than 4, revealing a significantly higher 

proportion of participants with a plaque score >4 in the group with incident events 

than without.  Plaque morphology was significantly different between the groups.  

Participants with incident events were less likely to have echogenic/no plaque, 

echolucent plaque alone or heterogeneous plaque alone, and more likely to have both 

types of plaque (p=0.008) than individuals who did not have an event.  However, 

when plaque morphology was categorized as high or low risk, there was no 

significant difference in plaque morphology between those with and without incident 

events.  These results were repeated in the plaque analysis group.   

Table 6-3 cIMT and Plaque Measurements in those with and without incident events 

 Incident Event (n=74) No Event (n=842) P Value 

Mean IMT (mm) 0.985 (0.14) 0.931 (0.14)  0.001** 
Max IMT (mm) 1.112 (0.17) 1.054 (0.193)  0.013* 
Max Mean IMT (mm) 1.047 (0.16) 0.990 (0.17)  0.006** 
Mean Max IMT (mm) 1.048 (0.15) 0.990 (0.16)  0.002** 
Mean Plaque Thickness (mm) 2.694 (0.91) 2.421 (0.89)  0.015* 
Max Plaque Thickness (mm) 3.116 (1.16) 2.786 (1.10)  0.017* 
Change in mean cIMT (mm) -0.02 (0.15) -0.01 (0.11)  0.753 
Plaque Score     

0 1.4 (1) 2.2 (18)  
1 0.0 (0) 3.2 (26)  
2 8.5 (6) 14.9 (121)  
3 9.9 (7) 16.9 (137)  
4 22.5 (16) 18.2 (148)  0.116 
5 16.9 (12) 16.6 (135)  
6 15.5 (11) 13.8 (112)  
7 12.7 (9) 6.4 (52)  
8 12.7 (9) 7.6 (62)  

Plaque score ≤ 4 42.3 (30) 55.5 (450)  0.022* 
Plaque Score >4 57.7 (41) 44.5 (361)  
Plaque Morphology    

Echogenic/no plaque 35.1 (26) 44.6 (375)  
Echolucent only 9.5 (7) 12.5 (105)  0.008** 

Heterogenous only 14.9 (11) 20.1 (169)  
Both types 40.5 (30) 22.7 (191)  

High risk plaque (yes) 64.9 (48) 55.4 (465)  0.072 
Variables are reported as mean (SD) or %,n P values determined by students T test, ANOVA or chi square 

 

 Cox regression models 6.3.2

In order to explore further the relationship between cIMT and incident cardiovascular 

disease in people with Type 2 diabetes, Cox proportional hazards models were 
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employed.  Three models were created – Model A: unadjusted, Model B: age, sex 

and previous CVD adjusted and Model C: age, sex, previous CVD and UKPDS risk 

factor adjusted.  By adjusting for these risk factors, it is possible to comment on the 

potential to use cIMT or carotid plaque over and above these risk factors in 

cardiovascular risk prediction.  Hazard ratios for each of the models are presented in 

tables 6-4, 6-5 and 6-6. 

Incident cardiovascular disease 

Survival modelling for any cardiovascular disease revealed the most interesting 

results.  All four cIMT measures were predictive of incident cardiovascular disease.  

In unadjusted models, for a 1-SD increase in both mean cIMT and mean maximum 

cIMT there was a 1.4 fold increase in risk for any cardiovascular disease, while 

maximum cIMT and mean maximum cIMT had a slightly lower risk (1.30 and 1.33 

respectively).  Further adjustment for age, sex and previous CVD caused maximum 

cIMT and maximum mean cIMT to lose statistical significance in the model.  Mean 

cIMT and mean maximum cIMT, however, survived this additional adjustment, 

albeit with a modest reduction in risk (HR 1.29 (1.03-1.61) and 1.28 (1.01-1.60) 

respectively).  Full adjustment for UKPDS risk factors caused mean maximum cIMT 

to lose significance in the model but mean cIMT survived full adjustment with a HR 

of 1.26 (1.00-1.58), p=0.046.   

In unadjusted models, a 1-SD increase in both mean plaque thickness and maximum 

plaque thickness corresponded to a 1.26 fold increase in risk for incident vascular 

disease, however both measures lost significance once age, sex and previous CVD 

were adjusted for.  Plaque score showed the same pattern of association as plaque 

thickness in the models, while plaque morphology did not achieve any significance 

in even the unadjusted model.   

Incident coronary artery disease 

In unadjusted models, all measures of cIMT were predictive of incident coronary 

artery disease.  For a 1-SD increase in mean cIMT and mean maximum cIMT, there 

was a 1.5 fold increase in risk for coronary artery disease, while estimates for 

maximum cIMT and maximum mean cIMT were slightly lower with HR 1.36 and 
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1.37 respectively. Adjustment for age, sex and previous CAD attenuated the risk 

modestly for all measures of cIMT and at this point, max cIMT and max mean cIMT 

fell out of significance in the models.  Both mean cIMT and mean max cIMT 

however, survived further adjustment for the risk factors included in the UKPDS risk 

score (HR 1.49 for both measures).   

Mean plaque thickness and maximum plaque thickness were entered first into the 

unadjusted Cox model but failed to achieve statistical significance.  This was also the 

case for plaque score and plaque morphology.   

Incident cerebrovascular disease 

In unadjusted models for incident cerebrovascular disease, only plaque morphology 

demonstrated a significant association, which survived adjustment for age, sex and 

previous cerebrovascular disease.  However, full adjustment for the UKPDS risk 

factors caused the hazard ratios to lose statistical significance.   

Incident fatal cardiovascular disease 

On entry to the unadjusted model for fatal CVD, none of the carotid ultrasound 

markers achieved a statistical association with risk.  This is likely due to the low 

number of events in this group. 
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Table 6-4 Cox regression models for incident cardiovascular events and cIMT  

  Mean cIMT (mm) Max cIMT (mm) Max Mean cIMT (mm) Mean Max cIMT (mm) 

 Events (n) HR 95% CI P value HR 95% CI P value HR 95% CI P value HR 95% CI P value 

Any CVD Event 74             

Model A  1.41 1.14-1.74  0.001** 1.30 1.06-1.60  0.013* 1.33 1.08-1.63     0.006** 1.41 1.13-1.75 0.002** 

Model B  1.29 1.03-1.61 0.029* 1.18 0.95-1.47 0.141 1.22 0.98-1.51 0.074 1.28 1.01-1.60  0.038* 

Model C  1.26 1.00-1.58 0.046* 1.16 0.93-1.45 0.181 1.20 0.96-1.49 0.108 1.25 0.99-1.57 0.062 

CAD Events 36             

Model A  1.52 1.12-2.04  0.006** 1.36 1.01-1.82 0.041* 1.37 1.02-1.83 0.034* 1.53 1.13-2.07 0.007** 

Model B  1.47 1.08-2.01 0.015* 1.31 0.96-1.79 0.087 1.33 0.98-1.80 0.070 1.48 1.09-2.04 0.016* 

Model C  1.49 1.08-2.06 0.016* - - - - - - 1.49 1.07-2.07 0.017* 

Cerebrovascular Events 27             

Model A  1.38 0.97-1.97 0.070 1.29 0.92-1.82 0.145 1.31 0.94-1.84 0.117 1.39 0.97-1.99 0.079 

Model B  - - -    - - -    

Model C  - - -    - - -    

Fatal Events 16             

Model A  1.09 0.68-1.76 0.724 1.06 0.66-1.71 0.802 1.12 0.70-1.78 0.647 1.06 0.64-1.73 0.833 

Model B  - - - - - - - - - - - - 

Model C  - - -          
Model A Unadjusted 
Model B Age, Sex and Previous corresponding vascular events adjusted (except fatal events – previous any CVD used) 
Model C Age, Sex, Previous CVD and additional UKPDS risk factor adjusted (duration diabetes, HbA1c, systolic BP, cholesterol, HDL cholesterol, smoking) 

HR for 1SD change in each variable
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Table 6-5 Cox regression models for incident cardiovascular events and carotid plaque thickness 

  Mean Plaque Thickness (mm) Maximum Plaque Thickness (mm) 

 Number of Events HR 95% CI P value HR 95% CI P value 

Any CVD Event 74       

Model A  1.26 1.03-1.55   0.025* 1.26 1.02-1.54  0.029* 

Model B  1.10 0.88-1.38 0.403 1.10 0.88-1.38 0385 

Model C  - - - - - - 

CAD Events 36       

Model A  1.12 0.82-1.54 0.462 1.13 0.83-1.54 0.434 

Model B  - - - - - - 

Model C  - - - - - - 

Cerebrovascular Events 26       

Model A  1.37 0.98-1.91 0.069 1.35 0.97-1.89 0.076 

Model B  - - -    

Model C  - - -    

Fatal Events 16       

Model A  1.33 0.86-2.04 0.201 1.32 0.86-2.03 0.202 

Model B  - - - - - - 

Model C        
Model A Unadjusted 
Model B Age, Sex and Previous corresponding vascular events adjusted (except fatal events – previous any CVD used) 
Model C Age, Sex, Previous CVD and additional UKPDS risk factor adjusted (duration diabetes, HbA1c, systolic BP, cholesterol,  HDL cholesterol, smoking) 

HR for 1SD change in each variable 
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Table 6-6 Cox regression models for incident cardiovascular events and carotid plaque score and morphology 

  Plaque Score >4  Plaque Morphology Dichotomous  

 Number of Events HR 95% CI P value Number of Events HR 95% CI P value 

Any CVD Event 75    75    

Model A  1.77 1.12-2.81 0.015*  1.40 0.87-2.24 0.161 

Model B  1.44 0.90-2.31 0.129  - - - 

Model C  - - -  - - - 

CAD Events 36    36    

Model A  1.75 0.90-3.40 0.0.098  0.89 0.46-1.72 0.731 

Model B  - - -  - - - 

Model C  - - -  - - - 

Cerebrovascular Events 27    27    

Model A  1.82 0.85-3.93 0.126  2.76 1.11-6.85 0.029* 

Model B  - - -  2.53 1.02-6.30 0.046* 

Model C  - - -  2.28 0.91-5.71 0.079 

Fatal Events 16    16    

Model A  1.24 0.464-3.30 0.670  1.31 0.47-3.60 0.605 

Model B  - - -  - - - 

Model C  - - -  - - - 
Model A Unadjusted 
Model B Age, Sex and Previous corresponding vascular events adjusted (except fatal events – previous any CVD used) 
Model C Age, Sex, Previous CVD and additional UKPDS risk factor adjusted (duration diabetes, HbA1c, systolic BP, cholesterol, HDL cholesterol, smoking) 

HR are quoted for the plaque score>4 versus plaque score less than 4, and for high risk plaque versus low risk plaque 
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 Assessment of model  6.3.3

Mean cIMT survived adjustment for UKPDS risk factors in the prediction of global 

CVD and CAD, and as did mean maximum cIMT for CAD.   In order to assess the 

impact of cIMT on risk classification, only the models for mean cIMT were 

explored, for two reasons.  Firstly, only mean cIMT was chosen because the hazard 

ratios produced for both mean cIMT and mean maximum cIMT were almost 

identical in the models and so to avoid repetition, only mean cIMT was analysed.  

And secondly, the number of events in the CAD model was almost half that of the 

global CVD model and because reclassification is calculated in events and non-

events, the low number of events in the CAD group may not provide a meaningful 

measure of change.   

The model containing both cIMT and UKPDS risk factors was compared with the 

model containing UKPDS risk factors only, in order to explore any improvement in 

risk prediction brought by cIMT.  Area under the ROC curve was initially used to 

assess model improvement upon addition of cIMT, after which net reclassification 

index (NRI) was determined to assess the reclassification of predicted risk.   

ROC curve analysis 

ROC curves were created using the predicted risk (X beta) provided by the Cox 

regression model in section 6.3.2 (figure 6-1).  Area under the curve was compared 

for the model containing UKPDS risk factors alone and the model containing both 

risk factors and mean cIMT (table 6-7).  The area under the curve for the model 

containing only traditional risk factors was found to be 0.691  (85% CI 0.629-0.753). 

When cIMT was added to the model, there was a small improvement in AUC to 

0.704 (95% CI 0.645-0.763), suggesting that cIMT may contribute additional, albeit 

modest, information to current risk classification models.  
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Figure 6-1 ROC curves of predicted risk in global CVD model containing risk factors only and model 

containing mean cIMT and traditional risk factors 

 

Table 6-7 AUC for models containing risk factors only, and cIMT in addition to risk factors 

  Area Under the 

Curve 

95% Confidence 

Interval  

P 

value 

Global CVD Model 1 TRF 0.691 0.629 - 0.753 <0.001 

 Model 2 TRF + mean cIMT 0.704 0.645 – 0.763 <0.001 

TRF=traditional risk factors 
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Figure 6-2 ROC curves of predicted risk in global CVD model containing risk factors only and model 

containing mean plaque thickness and risk factors 

 

When the ROC curve for mean plaque thickness versus traditional risk factors was 

plotted, the AUC was 0.695 for both he TRF model only and the TRF and plaque 

model, confirming what was demonstrated in the Cox regression – that adding plaque 

to traditional risk factors does not improve prediction of cardiovascular events.   

Net Reclassification Index 

To explore the effect of adding cIMT to the reclassification of risk category for 

global CVD, net reclassification index was determined for the addition of mean 

cIMT to each model (table 6-8).  Risk was calculated from arbitrary tertiles of 

predicted risk produced by the models and categorized at low (1st tertile), 

intermediate and high risk (3rd tertile) (de Ruijter W, Westendorp RGJ et al. 2009).  

For global CVD, in the event group, 5 individuals had their risk category reclassified 

upwards, and 5 were reclassified down.  In the non-event group, 77 individuals had 
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their risk category reclassified upwards and 81 were reclassified down, producing a 

net reclassification index of 0.25%.   

Table 6-8 Reclassification of incident cardiovascular events when cIMT is added to the model 

containing cardiovascular risk factors 

   Model with TRF and cIMT 

   Low Intermediate High 

Event Group Model with TRF Low 5 2 0 

  Intermediate 2 21 3 

  High 0 3 38 

  

  
 

Model with TRF and cIMT 

  Low Intermediate High 

Non-Event Group Model with TRF Low 248 38 2 

  Intermediate 40 191 39 

  High 0 41 213 

TRF=traditional risk factors 

 

6.4 Chapter summary 

This chapter aimed to explore the relationship between cIMT, carotid plaque and 

incident cardiovascular disease in older adults with Type 2 diabetes.  Incident 

cardiovascular events in the study population were associated with increased age, 

male sex, longer duration of diabetes, increased HbA1c and reduced eGFR, as well 

as a previous history of cardiovascular disease.  Those individuals who experienced 

an incident event had significantly higher cIMT and plaque thickness, as well as a 

higher plaque score and a tendency to have high risk plaque present in the carotid 

arteries.   

In unadjusted Cox regression models for global cardiovascular disease, both cIMT 

and carotid plaque (thickness, score and morphology) were predictive of incident 

events; however only mean cIMT survived full adjustment for cardiovascular risk 

factors used in the UKPDS cardiovascular risk score. Mean cIMT and mean 

maximum cIMT were also predictive of incident CAD.  No measures of cIMT or 
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plaque were predictive of cerebrovascular disease once traditional risk factors were 

adjusted for.   

Further analysis of the global CVD model revealed that while there was an increase 

in the area under the curve when cIMT was added to the model containing traditional 

cardiovascular risk factors, there was only a small improvement in risk classification.    

Therefore, the usefulness of cIMT in predicting cardiovascular events over and 

above traditional risk factors may only be limited.    
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Chapter 7: Discussion 

 

Introduction 

Year on year, cardiovascular disease continues to be the number one cause of death 

globally. Identifying individuals at high risk of cardiovascular events is particularly 

important for the targeting of preventive therapies, even in high risk individuals such 

as people with Type 2 diabetes.   While cardiovascular risk scores based on 

conventional cardiovascular risk factors are the primary means by which 

cardiovascular risk is estimated in the general population, exploration of more novel 

factors, such as cIMT and carotid plaque, as markers of cardiovascular risk has 

received considerable attention, although there is still no global consensus as to their 

use in predicting risk in this group.  The evidence for the use of cIMT in individuals 

with Type 2 diabetes is particularly sparse and has been identified as an important 

area for exploration by the recent USPSTF statement (United States Preventative 

Services Task Force 2009).  In addition, the use of cIMT as a surrogate end point in 

clinical trials of drugs used in the treatment of diabetes are based primarily on 

evidence from the general population of the association between cIMT and 

cardiovascular risk.  There is little evidence from studies of people with diabetes to 

directly support this use.   

This thesis aimed to explore the relationship of carotid intima media thickness and 

carotid plaque with cardiovascular disease in older adults with Type 2 diabetes, using 

data from the Edinburgh Type 2 Diabetes Study cohort.  Both cross sectional and 

longitudinal relationships of carotid intima media thickness and carotid plaque with 

cardiovascular disease outcomes were investigated using a variety of statistical 

methods. In addition, an exploration of measurement methods for cIMT was also 

undertaken. The current chapter discusses the results of these analyses in the context 

of current research and describes potential areas for future research.  Methodological 

strengths and limitations of the thesis are also discussed. 
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7.1 Summary of main findings 

In order to meet the primary aim of this thesis (to explore the association of cIMT 

and carotid plaque with cardiovascular risk in older people with Type 2 diabetes), a 

series of objectives was addressed.  The first objective was to describe the frequency 

and distribution of cIMT and carotid plaque in older adults with Type 2 diabetes. 

Participants in the ET2DS were generally representative of older adults with Type 2 

diabetes living in Edinburgh and the Lothians and those who attended for year 1 

cIMT measurements were largely representative of the cohort as a whole.  A 

validation study revealed that cIMT measurement in the study was highly repeatable 

and was comparable with computer aided measurements.  cIMT was normally 

distributed in the sample and was higher in men, as well as older participants.  cIMT 

was also higher in the left carotid artery than the right.  There was a high prevalence 

of carotid plaque in the ET2DS, with at least 1 plaque present in approximately 97% 

of the study population.  Continuous measurements of cIMT were correlated with 

one another but less so with measures of plaque thickness.  Similarly, measures of 

plaque thickness correlated with one another.  Surprisingly, the change in mean 

cIMT was negative between year 1 and year 4, suggesting there was an improvement 

in cIMT over the follow up period.  

The second objective of this thesis was to describe the cross sectional relationship of 

cIMT and carotid plaque with vascular risk factors (both traditional and novel), as 

well as the relationship of cIMT and carotid plaque with prevalent vascular disease.  

Increased cIMT was predominantly associated with older age, male sex and higher 

systolic blood pressure and these associations persisted following multivariable 

linear regression, suggesting that these factors are independently associated with 

cIMT.  In addition, increased cIMT was associated with adverse levels of the novel 

biomarkers ABI and NTproBNP following multivariable regression.   However, it 

should be noted that the small effect sizes demonstrated were small, which may 

suggest that these were not strong relationships between cIMT and cardiovascular 

risk factors.   
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Increased plaque thickness demonstrated more extensive independent associations 

with traditional vascular risk factors than cIMT, namely older age, male sex, longer 

duration of diabetes, higher systolic blood pressure, and cigarette smoking. Plaque 

thickness was also positively associated with ABI and NTproBNP following 

multivariable adjustment.  Again, in some cases, the effect size was noted to be small 

and may suggest only a weak association between plaque and risk factors.  Plaque 

score was independently associated with increasing age, raised systolic and reduced 

diastolic blood pressure, smoking and lower BMI and was independently associated 

with reduced ABI and increased NTproBNP.  Plaque morphology was independently 

associated with raised systolic blood pressure, lower diastolic blood pressure and low 

BMI, as well as ABI and NTproBNP.  

There was a high prevalence of vascular disease (MI, angina, TIA, stroke) in the 

ET2DS at year 1 and the prevalence of vascular disease was associated with 

increased values of both cIMT and carotid plaque.  Age and sex adjusted logistic 

regression models revealed that all measures of cIMT and plaque were associated 

with prevalent cardiovascular disease.  However, for cIMT, these relationships lost 

statistical significance after adjustment for traditional cardiovascular risk factors, 

whereas for mean and maximum plaque thickness, they persisted following full 

adjustment including both traditional risk factors and novel biomarkers.   Plaque 

score and plaque morphology remained associated with CVD and CAD following 

full adjustment.  These results raise the possibility that carotid plaque may have more 

potential to predict incident cardiovascular events than cIMT.   

Building on the findings of the cross sectional analysis, the third objective, addressed 

in chapter 6, was to explore the relationship of cIMT and carotid plaque and incident 

cardiovascular disease.  Incident cardiovascular events in the study population were 

associated with older age, male sex, longer duration of diabetes, higher HbA1c and 

lower eGFR, as well as a previous history of cardiovascular disease.  Those 

individuals who experienced an incident event had significantly higher cIMT and 

plaque thickness, as well as a higher plaque score and a tendency to have high risk 

(echolucent or heterogeneous plaque) present in the carotid arteries.  In unadjusted 

cox regression models, both cIMT and carotid plaque measures were predictive of 
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incident cardiovascular events. However, only the association with mean cIMT 

survived full adjustment for cardiovascular risk factors used in the UKPDS 

cardiovascular risk score.  Only mean cIMT and mean maximum cIMT were 

predictive of CAD after multifactorial analysis but neither cIMT nor plaque global 

was predictive of cerebrovascular disease.  Further analysis of the model for any 

cardiovascular disease and mean cIMT revealed that while there was a small increase 

in the area under the curve for the model containing mean cIMT, there was a 

negligible improvement in risk classification, suggesting that while cIMT may be an 

independent predictor of cardiovascular risk and carotid plaque may not, the ultimate 

usefulness of cIMT in predicting cardiovascular events over and above traditional 

vascular risk factors may be limited.   

 

7.2 Strengths of the ET2DS 

The Edinburgh Type 2 Diabetes study is a longitudinal cohort study of individuals 

with Type 2 diabetes living in Edinburgh and the Lothians.  This study design, with a 

representative risk population, is ideally suited to the evaluation of potential risk 

prediction markers (Hlatky MA, Greenland P et al. 2009).  The study also possesses 

other factors highlighted by an American Heart Association Scientific Statement 

(Hlatky MA, Greenland P et al. 2009) as important in the evaluation of novel risk 

markers, including an accurate definition and ascertainment of outcome events, as 

well as robust reporting.  Hlatky et al highlight the “Strengthening the Reporting of 

Observational Studies in Epidemiology” (STROBE) guidelines (von Elm E, Altman 

DG et al. 2007; Hlatky MA, Greenland P et al. 2009) as the standard to which studies 

should be reported.  The reporting of the analyses presented in this thesis complies 

with the key areas in the STROBE guidelines.   

Bias, Chance and Confounding 

If one considers the key epidemiological concepts of bias, chance and confounding, 

the design of the ET2DS goes a long way to addressing each of these.   Bias was 

minimised by having robust data collection protocols, including SOPs for the clinics, 
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which were adhered to by a small team of dedicated study staff.  Generalizability was 

addressed by using a well-structured, random sampling frame which recruited a 

representative sample of individuals from the population of older people with Type 2 

diabetes living in Edinburgh and the Lothians.  Chance was addressed by the use of 

robust statistical testing.  Finally, the wide ranging data collection performed in the 

study produced a well phenotyped cohort, allowing researchers to adequately address 

many possible sources of confounding through multiple risk factor adjustment in 

statistical models.   

 Study recruitment, response and representativeness 7.2.1

Following recruitment and attendance of 1066 participants at baseline, 939 

participants returned to follow up at 1 year.  While there was a range of reasons for 

non-attendance at this time point, for many of which little could be done (e.g. death, 

inability to complete examination), the majority of reasons given by participants 

were related to inability or unwillingness to attend an appointment.  Vigorous 

attempts were made to encourage attendance by providing a choice of appointment 

time, as well as providing transport to and from the clinic if necessary.  In addition, a 

further appointment was offered in the case of non-attendance or illness.  Travel 

expenses were also offered on a case by case basis.  While this took considerable 

time and effort, it did result in 88.0% of the baseline participants returning for 

follow-up at year 1.   

Because of the time that had elapsed between year 1 and year 4 follow up, several 

attempts were made, prior to invitation to clinics, to determine current contact details 

for all ET2DS participants who were not already coded as withdrawn from the study, 

in order to maximize participation in the follow up study.  An initial strategy of 

posting a study newsletter to the last known address for each participant managed to 

capture up-to-date contact details for the majority of participants and where it was 

not possible after further exploration to identify a current address (or in the absence 

of a notification of the participants death), it was accepted that these individuals had 

been lost to follow up (n=15). In order to further encourage as high an attendance as 

possible, a similar vigorous strategy for appointment making to that used at year 1 
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was adopted.  This, combined with the robust approach to obtaining contact details, 

encouraged 77.9% of the original cohort to participate in year 4 follow up.  Despite 

the reduction in the size of the cohort attending year 4, the follow up of incident 

events remained nearly complete for the full cohort due to ISD data linkage which 

allows for follow up even without clinic attendance.  This is similar to follow up 

rates demonstrated by other studies of individuals with diabetes (Wang, Van Belle et 

al. 2004; Kramer CK, Muhlen D von et al. 2010).  

In comparison to some other larger collaborative studies of cIMT in people with 

diabetes eg USE IMT (Den Ruijter HM, Peters SA et al. 2012) or large single cohort 

studies such as the Framingham Study in which subpopulations of people with 

diabetes are identified from within the larger study population, the population of the 

ET2DS was recruited directly from a representative sampling frame of all individuals 

in Edinburgh with Type 2 diabetes, in order to examine specific outcomes in 

individuals with diabetes.  All participants were subject to the same entry criteria at 

recruitment, and measurement of cIMT and plaque was made using the same SOP 

and ultrasonographer, in comparison to larger studies that have drawn participants 

from multiple studies using different radiological SOPs and using different criteria to 

define diabetes (Den Ruijter, Peters et al. 2013).  This will have gone some way to 

addressing the effect that these sources of variability will have exerted on the results 

of larger studies.   

Representativeness 

The ET2DS is a cohort of older adults with Type 2 diabetes living in Edinburgh and 

the Lothians.  The representativeness analyses are presented in chapter 4 of this 

thesis and have been published previously (Marioni, Strachan et al. 2010).  The 

variables used to compare the two groups were limited to relevant demographic and 

cardiometabolic variables available on the Lothian Diabetes Register in order to 

allow comparison between attenders and non-attenders.  The analysis demonstrates 

that at baseline, those who agreed to participate in the ET2DS were broadly similar 

to those who did not participate, suggesting that the study sample is largely 

representative of the invited target population, although slightly more men 

participated in the study than did not, and individuals from the least deprived quintile 
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of SIMD were slightly overrepresented in the participant group, while those from 

more deprived quintiles slightly underrepresented.  This suggests that those from the 

least deprived quintile may have been more likely to agree to take part than those 

from more deprived quintiles.   

When this analysis was extended to compare baseline demographic and 

cardiometabolic characteristics of those that attended baseline, year 1 and year 4 

follow up, a more extensive panel of variables was selected from the baseline data 

collection, as these would be available for all participants and allow for a fuller 

comparison. This was important to assess given the loss to follow up over the course 

of the study and the risk of introducing bias as a result.  It was found that there were 

very few differences in baseline characteristics between those who attended each 

follow up, suggesting that at each wave of follow up, participants were broadly 

representative of the target population, and of each other.  A slightly higher 

proportion of the follow up cohorts were non-smokers at baseline compared with the 

original baseline cohort.  One explanation for this finding is the survivor effect 

(Arrighi HM and Hertz-Picciotto I 1994), whereby smokers might be more likely to 

have co-morbidities that could prevent attendance at follow up clinics, whereas non-

smokers are more likely to suffer less ill health and consequently be available to 

return for follow up.  The overall effect of the difference however is likely to be 

small given the small absolute difference in smoking prevalence between the groups. 

Because not all participants in the study underwent cIMT measurement, additional 

comparisons were made of baseline variables in those who had valid cIMT 

measurements at year 1 and those who did not.  There were no significant differences 

in major vascular risk factors, with the exception of smoking status, whereby those 

who did not have valid cIMT measurements were more likely to be smokers than 

those who did have cIMT measurements.  One explanation for this may have been 

that it was perhaps more technically challenging to identify the carotid arteries in 

smokers or again, that the smokers may have had co-morbidities preventing re-

attendance.  As several of those without valid cIMT did in fact have measurements 

that were made, but that were made incorrectly and were therefore unrelated to the 
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individuals concerned, it is possible that the differences in smoking may be related 

purely to chance.   

 Completeness and accuracy of data collection 7.2.2

A key aspect of a longitudinal or indeed, any epidemiological study, is complete, 

accurate data collection.  In particular for longitudinal studies, complete follow up 

data for identification of incident events is often the more difficult but most 

important data to obtain.  This section discusses the completeness and accuracy of 

data collection at year 1 and year 4 of the ET2DS.  Overall, missing data in the 

analysis population chosen for this thesis was low (<2%) for all variables with the 

exception of ACR, and some plaque measurements.   

Self-completed questionnaires 

In most cases at both year 1 and year 4, participants completed the questionnaire 

prior to attending the clinics.  In cases where the questionnaire was not completed, 

assistance was given to participants by study staff at the clinics.  For the small 

number of participants who were not withdrawn from the study but did not attend 

clinics, questionnaires were posted out either to individuals or to their GPs for 

completion.  This strategy allowed for a high rate of completion of the questionnaires 

and maximized data completeness which was especially important for the 

determination of incident cardiovascular events. 

Blood Sampling at Baseline and Year 1 

Individuals in whom it was not possible to obtain a blood sample on the day of clinic 

attendance were invited to return for repeat venipuncture.  Whilst some samples were 

processed by the NHS Lothian haematology and biochemistry labs, other samples 

were processed and stored by study staff for use at a later date (eg NTproBNP, 

inflammatory markers).  Extensive training for study staff in the processing and 

storage of remaining blood samples encouraged a high rate of sample viability.  

Circumstances out with the control of the study included loss or damage of samples 

in transit or storage, or during processing in external labs.   
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Clinical Examination at Year 1 

The data used from the clinical examination at year 1 was the systolic and diastolic 

blood pressure, which was obtained as part of the measurement of pulse wave 

analysis.  Measurements were performed by only one examiner, which eliminated the 

potential effect of inter-observer variability in the measurements although no official 

assessment of this was made.   

cIMT and Plaque Measurements 

Carotid ultrasound scans were performed on each participant that attended the clinics 

at both year 1 and year 4, unless there was a medical reason for not performing the 

scan.  A thorough scan was performed and every attempt made to visualize the 

carotid arteries, within the limits of the ultrasound SOP (appendix D) and 

recommended clinical guidelines.  Nearly 100% of participants were scanned at year 

1; however, on later visual inspection of individual scan results that were identified 

as outlying values, 23 individuals had their measurements excluded from the final 

dataset.  In the case of readings that were lower than expected, this was mostly due to 

incorrect caliper placement.  In the case of measurements that were higher than 

might be biologically plausible, incorrect readings were usually made in areas with 

plaque present.  As these problems contradicted the SOP for measurement of cIMT 

and plaque in the study, these measurements were excluded from the dataset.   

 Cardiovascular Event Follow Up 7.2.3

In order to provide conditions essential for a robust analysis of the association 

between cIMT and cardiovascular disease in the ET2DS, complete follow up for 

incident cardiovascular events was necessary. In order to maximize the capture of 

events and reduce misdiagnosis, several sources were used to identify and 

corroborate potential cases (self-completed questionnaires, ECGs and ISD data 

linkage). A formal event identification pathway was created in order to ensure 

impartiality and uniformity for each case and in cases were a diagnosis was 

ambiguous or unclear, decisions were agreed upon by a panel of clinically qualified 

member of the study team.  These methods resulted in a high degree of success in 

identifying potential events.  ISD linkage data was analyzed in the first instance, as 

this captures all hospital in patient stays in Edinburgh and the Lothians between 
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prescribed dates.  Patient self-reports and ECGs were then searched for potential 

events and the results combined with the data linkage.   

 IMT measurement methods  7.2.4

In order to minimize recording bias in cIMT and plaque measurements, all 

measurements were performed by only one sonographer, which eliminated inter-

observer variability in the study.  Nonetheless, it was important to assess the intra-

observer variability of the measurements made in the ET2DS to ensure confidence in 

the readings.  The validation study performed on year 4 measurements confirmed a 

high correlation between repeat measures of cIMT, suggesting that there was a good 

degree of repeatability in the measurements, which in turn increases confidence in 

accuracy of the cIMT measurements.  Although only the year 1 rather than the year 4 

cIMT measurements were used for the main analyses of this thesis, the sonographer 

at year 1 and year 4 was the same, suggesting that the accuracy of the readings at 

year 4 can be taken as a marker that the year 1 readings were performed to the same 

standard, although this must also be taken into consideration in the interpretation of 

results.   

Alternative method for measuring cIMT 

Limitations in the ultrasound technology and type of images saved at year 1 of the 

ET2DS prohibited the use of fully automated edge detection systems.  These have 

been recommended by consensus statements on the measurement of cIMT (Stein JH, 

Korcarz CE et al. 2008; Touboul PJ, Hennerici MG et al. 2012) in which the use of 

edge detection systems is suggested to improve measurement accuracy and to reduce 

variability in cIMT measurements both within and between studies by reducing the 

bias introduced by using different sonographers and SOPs (human error), as well as a 

reduction in cost and time required to perform measurement.  However, in an attempt 

to explore the effect of more extensive and perhaps accurate measurement of cIMT 

in the ET2DS, a partially-automated programme designed to take multiple 

measurements of cIMT along a user-defined section of cIMT was implemented.  The 

advantages of such a programme over that of the ultrasonographer’s measurements 

lies in the ability to take multiple measurements over a longer segment of the arterial 

wall, which may capture a more comprehensive measure of the cIMT of the vessel 
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wall and thus provide a measure which more truly reflects the relationship between 

cIMT and vascular risk. The major limitation of this approach lies in the continued 

dependence upon user identification (human error) of the artery wall interfaces. An 

additional limitation is the added time to process the images after the initial data 

collection.  However, as this was to be considered an exploratory analysis only, it 

was felt that these limitations could be accepted.   

Each individual who underwent cIMT measurement at year 1 by the study 

sonographer had a maximum of 6 (3 right and 3 left) carotid images stored.  Due to 

time limitations, a sample of 233 individuals was processed using the semi-

automated software.  These images were processed by myself and two other study 

team members, identifying the area to measure allowing for multiple measurements 

to be taken along the length of wall identified.  The distance between measurements 

was arbitrarily set as 10 pixels and the line of best fit was every 50 pixels.  The 

minimum number of measurements made in any image was 10 and the maximum 

was 60.  The mean number of measurements for any given individual was 192 

measurements, which is considerably more extensive than the 6 measurements made 

by the sonographer.   

A summary statistic of the serial cIMT measurements was calculated as the mean of 

all the measurements made for an individual (mean serial cIMT).  While mean serial 

cIMT was statistically significantly lower than mean sonographer cIMT in the 

sample (0.91vs0.92mm, p<0.001), the correlations between mean serial cIMT and 

mean cIMT were strong (r=0.811).  This, in combination with the small absolute 

difference between the measures (0.01mm) suggests that multiple measures along the 

vessel wall may not improve on sonographer cIMT measurement in the ET2DS.  The 

ultimate method of testing whether taking more measurements of cIMT provides a 

more representative measure of cIMT in the ET2DS would be to examine the 

association of both measures of cIMT with risk factors.  However, the small sample 

size of individuals with serial cIMT measurements in the ET2DS prohibits this at the 

time of writing, as the true direction and strength of any relationships may not be 

captured.   
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The serial, computer aided measurements made in this thesis are still considered as 

“manual” measurements, as the method by which the actual IMT boundaries are 

identified is by manual tracing by the reader.  Several studies have compared similar 

“manual” measures with edge detection methods.  A recent study by Peters et al 

compared manual and semi-automated measurements of cIMT of the far wall  of the 

common carotid artery in the METEOR study (Peters SA, den Ruijter HM et al. 

2011).  They identified that the measurements made by each method were 

comparable. The authors reported that the automated measurements were lower than 

the “manual” measurements, with an absolute difference of 0.02mm between the 

manual and automated readings (for both treatment and control groups).  In addition, 

they found the same associations with risk factors for each method. The MESA 

investigators also compared edge detected and manual measures of cIMT, although 

they report that edge detected measures were greater than manual readings, which 

contrasts with the findings of both the METEOR study and this thesis.  However, 

they did find similar (although slightly weaker) associations between edge detected 

cIMT and risk factors as they found between manual measurements and risk factors.  

Taking the results of this thesis in the context of the results of these studies, they 

could suggest that the serial measures made in the ET2DS might be comparable with 

those that could be obtained by edge detection.  Therefore, by extension, because of 

the good correlation between the serial measurements and the sonographer 

measurements, they may suggest that the sonographer measurements provide as good 

a measure of cIMT as might be obtained with edge detection methods.  However, 

this conclusion does constitute quite a leap and cannot be considered a definite 

statement, but more a hypothesis. 

Recommendations for future research would include the assessment of the full 

ET2DS cohort using the manual serial method to allow for a more meaningful 

comparison between the two methods.   

Summarising cIMT and carotid plaque 

In general, the method by which cIMT is summarised and reported in studies has not 

been formalised.  Studies often report a variety of summaries of IMT and do not 

always create the variables in the same way.  The way in which IMT is measured on 
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ultrasound plays a large part in how IMT can be summarised.  Measurement of cIMT 

in the common carotid artery leads to less flexibility in the summary statistics than if 

IMT is measured in the internal carotid, external carotid and bifurcation also.   

The Mannheim consensus provides brief guidance on the summarisation of cIMT 

measures.  The options they discuss include the mean, maximum and composite 

measures from both sides and different arterial sites (CCA, bifurcation and ICA). 

They highlight that the mean IMT values are less susceptible to outliers.  However 

the maximal IMT may reflect more advanced thickening, although care must be 

exercised with maximum cIMT as it may be more susceptible to measurement error.   

They also suggest that the values from both the right and left can be averaged, 

although it should be noted that the left cIMT is often higher than that of the right 

(Foerch, Buehler et al. 2003) and it may be that averaging the values could attenuate 

the associations between cIMT and vascular risk .  They also suggest avoiding 

composite scores including both plaque and cIMT.  In terms of plaque measurement 

they recommend the measurement of plaque location, thickness, area and number, 

scanned in longitudinal and cross-sections must be recorded.  The ET2DS was able 

to record plaque presence, location (summarised as plaque score), thickness and 

morphology. 

The cIMT parameters used in this thesis showed a high degree of inter-correlation 

(range of r=0.911-0.977).  This may suggest that the choice of cIMT summary in 

future analyses could be flexible.  The association of each cIMT measure with 

cardiovascular risk factors was examined to further explore this relationship.  The 

multifactorial adjusted associations between the individual summary statistics and 

cardiovascular risk factors were broadly similar (age, sex, systolic and diastolic 

blood pressure).  The same was seen for the novel markers ABI and NTproBNP. 

Whether or not this impacts upon the choice of summary statistic remains open for 

discussion.  The strong overall correlation between the measures, and broad 

similarities in association with risk factors, add weight to the suggestion that none 

should be used in preference to the others.  However, further brief consideration of 

the findings from the prospective analysis of cIMT and incident vascular disease 

found that the mean cIMT was most closely associated with future vascular risk.   
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When one considers carotid plaque thickness measures, there was a high degree of 

correlation between mean plaque thickness and maximum plaque thickness (r=0.959) 

and the relationship between mean and maximum plaque thickness and 

cardiovascular risk factors was identical, suggesting that again , neither need be used 

in preference to the other.   Plaque score and plaque morphology were also 

associated with similar risk factors to plaque thickness and were also associated with 

prevalent vascular disease. However, given the negative findings of the association 

of carotid plaque with incident vascular disease, it is difficult to come to a firm 

conclusion of which measure of plaque thickness is best to use.   Several consensus 

statements highlight that the evidence for which measure of plaque to use in risk 

prediction is not clear and indeed, further evidence is required before any firm 

recommendations can be made regarding these measures (Touboul PJ, Hennerici MG 

et al. 2012).   

 

7.3 Study Limitations 

One of the major limitations of the study is that cIMT was measured 1 year after the 

baseline risk factors, which may have attenuated the strength of the relationship 

between the cIMT parameters and measured vascular risk factors.  The reason 

underlying the collection of cIMT at year 1 rather than baseline was funding 

considerations. Assessment of cohort representativeness found that the cohort at 

baseline and year 1 were very similar when baseline risk factors were compared.  

The time discrepancy was addressed by selecting variables from year 1 where 

possible and where variables were not available, substituting baseline variables.  

Whilst this was not ideal, all steps possible were taken to minimise the number of 

variables that were substituted.  For some variables, the 1 year difference may only 

have had a small impact on the magnitude of any associations eg BMI, which may be 

expected to change only a small amount over the course of the year.  In the ET2DS, 

mean BMI at baseline was 31.3, while at year 4, was 31.4, suggesting that mean BMI 

remained fairly stable across the course of the study follow-up.  In addition, smoking 

variables were taken from baseline.  It is unlikely (although not impossible) that 
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individuals in the study would have taken up smoking during the study, and so any 

change in smoking habits between baseline and year 1 is likely to have been a 

decline in current smokers and an increase in ex-smokers. The effect of this would be 

an underestimation of the association between carotid ultrasound parameters and 

smoking.  Indeed, when smoking rates in year 1 and year 4 are assessed, there were 

fewer people reporting current smoking at year 4 than at year 1 (14.0% vs 9.4%).   

Carotid ultrasound in the study did not provide as extensive a set of measures as 

some other studies of cIMT (O'Leary DH, Polak JF et al. 1999; Iglesias del Sol A, 

Moons KG et al. 2001; Iglesias del Sol A, Bots ML et al. 2002).  cIMT was 

measured only in the CCA, with 6 measures taken in total.  Other studies of cIMT 

have measured in several areas including CCA, internal carotids and the bifurcation 

and included a greater number of measurements (Iglesias del Sol A, Bots ML et al. 

2002).  However, there is evidence that suggests that while measurements in other 

areas of the carotids do not necessarily predict measures at other sites, the CCA is 

sufficient for use due to its greater ease of access (Touboul PJ, Hennerici MG et al. 

2012).  Carotid plaque information was also limited in comparison to some other 

studies.  In terms of quantitative measures, only plaque thickness, and the presence 

or absence of plaque in different segments of the carotid arteries, were noted and it 

was not possible to quantify total plaque area or plaque volume.  In addition, plaque 

morphology measurements were limited by the subjective qualification of 

morphology by the sonographer.  More recent techniques such as gray scale median 

(GSM) (Irie, Katakami et al. 2013) were not used in this study due to limitations in 

the technology and quality of the images produced.  This may have an effect on the 

magnitude of the relationships between carotid plaque and vascular disease in this 

thesis, and may underestimate the risk.  In addition, the Mannheim consensus 

recommends measurement of the inter-adventitial diameter and the intraluminal 

diameter, as IMT is related to arterial diameter (Touboul PJ, Hennerici MG et al. 

2012), however, these measures are not available in the ET2DS data. 

The number of incident cardiovascular events recorded in the study was small 

relative to the number of participants in the study.  The use of a composite endpoint 

allowed for a maximization of the numbers included in each analyses, increasing the 
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likelihood of finding the true association between carotid ultrasound parameters and 

incident vascular disease.  Interestingly, the event rate for MI in the ET2DS was 5.6 

events per 1000 patient years.  If this is compared with figures published by Mulnier 

et al in 2008, for a similarly aged group they found an equivalent rate of 19.4 events 

per 1000 patient years (Mulnier, Seaman et al. 2008).  The rate they found for those 

without diabetes was 7.3 events per 1000 patient years, highlighting that the rate in 

the ET2DS was low, even for a general population.   

As this thesis was in the final stage of completion, the NICE guidelines were revised 

(NICE CG 181 2014).  There was a change in their recommendations for 

cardiovascular risk prediction in people with Type 2 diabetes.  As of 2014, they 

recommend the QRISK2 score for assessing cardiovascular risk rather than the 

UKPDS Score, which they recommended previously. The majority of risk factors 

included in QRISK2 are similar to those included in the UKPDS used in this thesis, 

with the exception of rheumatoid arthritis, atrial fibrillation, BP treatment, 

deprivation, family history.  The impact of this change on the results of this thesis is 

unknown.  Some of the risk factors mentioned above are not available in the ET2DS 

(AF and family history) but the others are potentially available.  Therefore, 

recommendations for future research would include a recalibration of the models to 

include the additional risk factors in the QRISK2 score in order to produce up to date 

estimates for the association between cIMT and carotid plaque with incident vascular 

disease in the ET2DS.   

The ET2DS specifically aimed to recruit individuals between the age of 60 and 75 

years of age as the major outcomes of the study included cognition, liver disease and 

heart disease.  Therefore, the study sample does not include younger adults with 

Type 2 diabetes.  In addition, the majority of the study participants were white and 

there were only a few individuals of other ethnicities participating in the study.  

These two factors together impose limits upon the generalizability (external validity) 

of the results to other populations.   

Summary 
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The ET2DS has much strength, including sample size, good external validity and 

high quality, complete data collection for both risk factors and cardiovascular events.  

Limitations include the time between cIMT measurement and risk factor 

measurement and the limitations discussed regarding cIMT measurement.  However 

these issues have been addressed as far as possible and are likely to impact only in a 

small way on the results described in this thesis. 

The following sections discuss the key results from the various phases of analysis 

(summarized in section 8.1) in more detail. 

 

7.4 Frequency and distribution of cIMT and Carotid 

Plaque in People with Type 2 Diabetes  

 cIMT 7.4.1

Because of the similarity in the relationship between the different summary measures 

of cIMT and vascular risk factors (discussed in section 8.2.4), only mean cIMT will 

be discussed in any great detail in this section.   

Mean cIMT was normally distributed in the ET2DS and the mean value was 

0.94mm.  A comparison of mean cIMT with both studies in general populations and 

studies of people diabetes is summarised in table 7-1.  In general the ET2DS mean 

cIMT was comparable with mean cIMT values described in other studies of people 

with diabetes (range 0.83-1.21mm).  In addition, it was higher than the range of 

cIMT reported in several studies from the general population (range 0.59-0.84mm).  

This is in keeping with the results of a 2006 systematic review that identified 21 

studies of cIMT in people with diabetes and glucose intolerance  (Brohall G, Odén A 

et al. 2006).  Among the 24 111 individuals in the studies included in the review, 

4019 had Type 2 diabetes.  The authors identified that in 20 out of the 21 studies, 

individuals with diabetes had a higher cIMT than the healthy controls (Brohall G, 

Odén A et al. 2006).  They performed a random effects meta-analysis of the results 

and found that on average, mean CCA cIMT in people with diabetes was 0.13mm 

higher than in the control groups.  Mean CCA cIMT in individuals with diabetes 
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included in the meta-analysis ranged from 0.73-1.44mm.  The mean CCA cIMT in 

ET2DS was comparable with this range. It was also comparable with the range for 

similar ethnic groups (Caucasian European range 0.798-1.44mm).  This suggests that 

the mean cIMT in the ET2DS may be higher than comparable healthy individuals, 

although the nature of the ET2DS does not allow for firm conclusions on this topic as 

no controls were available for direct comparison (longitudinal cohort study).   

Table 7-1 Summary of CCA cIMT values in a selection of epidemiological studies 

 
Reference 

Total 

N 
Population Age Mean IMT 

ET2DS n/a 916 Diabetes 67.9 0.94 ± 0.14 

      

Insulin Resistance 
Atherosclerosis Study 

(Wagenknecht, D'Agostino Jr 
et al. 1998) 

1392 Diabetes  
57 (established 
DM) 

0.890 ± 0.02 

 
   58 (new DM) 

0.858 ± 
0.016 

Hoorn Study (Henry RMA, Kostense PJ et al. 
2004) 

301 Diabetes 67.8 0.88 ± 0.17 

n/a (Sigurdardottir V, Fagerberg B 
et al. 2004) 

262 Diabetes 
61 (established 
DM) 

0.87 ± 
0.0281 

 
   61 (new DM) 

0.85 ± 
0.0315 

n/a (Rajala U, Laakso M et al. 2002) 208 Diabetes 62 0.99 ± 0.04 

n/a (Niskanen L, Rauramaa R et al. 
1996) 

203 Diabetes 67 1.21 ± 0.04 

n/a (Geroulakos G, Ramaswami G 
et al. 1994) 

194 Diabetes 49 0.83 ± 0.02 

      

ARIC (Chambless LE, Heiss G et al. 
1997) 

12841 General 53.7 (f) 0.60 ± 0.00 

    54.3 (m) 0.66 ± 0.01 

CHS (O'Leary DH, Polak JF et al. 
1999) 

4476 General 72.5 - 

Rotterdam (Iglesias del Sol A, Bots ML et 
al. 2002) 

2073 General 70.0 (No MI) - 

    72 (MI) - 

MDCS 
(Rosvall M, Janzon L et al. 
2005) 

5077 General 57.4 (No CAD) 0.760 (n/a) 

    60.5 (CAD) 0.840 (n/a) 

CAPS (Lorenz MW, von Kegler S et al. 
2006) 

5056 General 50.1 
Left 0.71 ± 

0.17 

 
    

Right 0.74 ± 
0.20 

MESA (Folsom, Kronmal et al. 2008) 6698 General 45-84 - 

Framingham Offspring (Polak, Pencina et al. 2011) 2965 General 57.3 (no CVD) 0.59 ± 0.13 

    62.9 (CVD) 0.69 ± 0.15 

Improve (Baldassarre D, Hamsten A et 
al. 2012) 

3703 General 64.2 
0.71 ± 0.65-

0.8 
All reported measures are for common carotid artery (CCA) 

 Plaque presence and thickness  7.4.2
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There was a high prevalence of carotid plaque in the ET2DS at year 1 (97.6% of 

participants had at least 1 plaque).  Plaque was most common at the carotid 

bifurcation.  This is an area of altered intravascular dynamics and it is well 

documented that carotid plaque is more prevalent at the bifurcation (Imparato, Riles 

et al. 1979).  The prevalence of carotid plaque reported in this thesis was 

considerably greater than both the general population and at risk populations 

prevalences of between 30% - 78% quoted by previous studies (Fabris F, Zanocchi 

M et al. 1994; Joakimsen O, Bønaa KH et al. 1999; Kwon TG, Kim KW et al. 2009; 

Sillesen H, Muntendam P et al. 2012). The mean age of participants with a plaque 

prevalence of 30% was 59.7 year, while the mean age for participants in the study 

with prevalence of 78% was 68.8 years, which is comparable with the ET2DS. 

However, the prevalence in the ET2DS was considerably higher, at 97.6%, 

suggesting that carotid plaque may be more prevalent in people with Type 2 diabetes 

than in the general population.   

Published data concerning carotid plaque prevalence in people with Type 2 diabetes 

is limited.  A Chinese study published in 2010 reported carotid plaque prevalence of 

91% in persons who had Type 2 diabetes and suspected cerebrovascular disease 

(mean age 66 years) (He C, Yang Z et al. 2010).  While the participants in this study 

were not directly comparable with the ET2DS in that they were all suspected of 

having cerebrovascular disease, the mean age of participants was similar.  Another 

study from Macedonia in 2007 identified carotid plaque prevalence of just over 80% 

in a sample of 145 individuals with Type 2 diabetes and coronary artery disease.  The 

mean age of the participants was 59 years (Bosevski, Borozanov et al. 2007), which 

was only slightly lower than that of the ET2DS.  In 2005, Bernard et al reported a 

plaque prevalence of 50% in 229 individuals with Type 2 diabetes (Bernard S, 

Sérusclat A et al. 2005).  Another Chinese study of 250 individuals with and without 

microalbuminuria had a plaque prevalence of approximately 53%, which is markedly 

lower than that of the ET2DS (Zhang YH, Gao Y et al. 2013).  Participants in both 

this study and the Bernard study had a mean age of around 50 years, which was 

considerably younger than the ET2DS participants; this may go some way to 

explaining the differences in plaque prevalence.   
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Carotid plaque was assessed using several different methods in the ET2DS.  Mean 

plaque thickness and maximum plaque thickness were continuous measurements that 

were made on carotid ultrasound.  A prospective study by Irie et al examined carotid 

plaque in 287 individuals with Type 2 diabetes (Irie, Katakami et al. 2013).  They 

authors reported a mean plaque thickness of 2.26 ± 0.86mm which was comparable 

with the mean plaque thickness of the ET2DS (2.44mm).   

The correlation between plaque thickness and measures of cIMT was only moderate, 

suggesting that cIMT and carotid plaque are not interchangeable measures of 

atherosclerosis in the study.  This finding supports the results of study of 98 Oji-Cree 

adults published in 2005 (Pollex RL, Spence JD et al. 2005).  The authors found that 

the correlation between cIMT and total plaque volume was modest at 0.7 (which was 

higher than the correlation seen in the ET2DS).  This may support the theory that 

cIMT and plaque represent different aspects and stages of carotid atherosclerosis.   

 Plaque score and plaque morphology 7.4.3

The plaque score in the ET2DS was based on a method used by Lee et al (Lee EJ, 

Kim HJ et al. 2007) in a study of carotid plaque and stroke in people with Type 2 

diabetes.  It reflects the presence of at least 1 plaque in each of the sections of the 

carotid artery assessed. This was created as a proxy measure of plaque burden as 

more extensive measures such as total plaque area or total plaque volume were not 

available in this study.  In the ET2DS, plaque score ranged from 0-8 while in the Lee 

study, the range was 0-6.  In the ET2DS, most participants (79.9%) had a plaque 

score between 2 and 6, while in the Lee study, 77.5% of participants had a score of 

only 0-3, suggesting that the plaque burden in the ET2DS was higher than that 

demonstrated by Lee et al. The association of high plaque score (>4) with increasing 

cIMT and the presence of high risk plaques suggests that it is a good proxy measure 

for plaque burden.  

This thesis presents relatively unique data concerning carotid plaque morphology in 

people with Type 2 diabetes.  As reported earlier, there was a high prevalence of 

carotid plaque in the ET2DS but different plaque morphologies are associated with 

different risks of CVD.  Echolucent and heterogeneous plaques are thought to 
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represent a higher risk of rupture and thrombosis than fibrotic, echogenic and 

homogenous plaques, although the exact nature and strength of this risk remains 

uncertain.  In the ET2DS, there was a high prevalence at year 1 of so called “high 

risk” plaques (56.1%) and at year 4 (91%).  Reinforcing their status of “high risk”, 

these plaques were associated with increased cIMT, increased plaque thickness and a 

higher plaque score.  A study of plaque morphology measured by dual source CT 

angiography in 125 patients with type 2 diabetes  describes the prevalence of carotid 

and cerebrovascular plaques (He C, Yang Z et al. 2010).  The prevalence of non-

calcified or mixed plaques (high risk plaques) in the extracranial arteries and the 

intracranial ICA in the study by He et al was 18.2% and 74.8% respectively.  It is 

difficult to compare these results with the ET2DS because while the ET2DS 

measured plaque prevalence using ultrasound in the common carotid, internal 

carotid, bifurcation and external carotid, the study by He et al used CT to determine 

plaque presence in both the carotids and the cerebral vasculature.  The also divided 

the entire arterial tree up in to 40 segments which are not easily compared with the 

ET2DS. An earlier study of 47 T2DM participants and 51 controls had found that 

individuals with T2DM had more echolucent plaque than non-diabetic individuals 

(Ostling G, Hedblad B et al. 2007).  Again, it is difficult to directly compare the 

results of this study with those presented in this thesis as the authors quantify plaque 

echogenicity using GSM as a continuous measure, rather than describing simply 

presence of echolucent plaque as in the ET2DS. In the general population, Joakimson 

et al report the prevalence of high risk (soft) plaque in those with morphologically 

classifiable plaque as 37.7% (Joakimsen O, Bønaa KH et al. 1999).   

 Change in cIMT and plaque 7.4.4

In this thesis, analysis of cIMT over the course of follow up revealed a small but 

significant regression in mean cIMT over a mean follow up period of 3.5 years.  

Multifactorial analysis revealed the only independent predictors of change were 

baseline cIMT and BMI.  The negative β coefficients suggest that change in cIMT is 

smaller in those who have a larger cIMT and in those with a larger BMI.   
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The lack of progression, and indeed regression of cIMT in the ET2DS is a somewhat 

unexpected result as the association of increasing cIMT with increasing age would 

suggest that cIMT would progress over the course of follow up. Indeed, 

Wagenknecht et al have reported that cIMT not only progresses in people with 

diabetes, but that progression is greater than that seen in people without diabetes 

(Wagenknecht, Zaccaro et al. 2003).  Progression has also been reported in the 2000 

study by Yamasaki et al, where the authors identified a progression in cIMT of 

0.04mm/year in their study of 287 individuals with Type 2 diabetes over a mean 

follow up period of 3.1 years (Yamasaki Y, Kodama M et al. 2000).  The authors 

identified that the independent predictors of cIMT change were baseline thickness 

and HbA1c, which is partly supported by the findings in this thesis.  However, they 

noted a positive correlation between cIMT change and baseline cIMT whereas in the 

ET2DS, the correlation was negative.  In the general population, the ARIC study has 

also examined the determinants of change of cIMT with time and found that baseline 

diabetes, smoking, HDL cholesterol, pulse pressure, white blood cell count and 

fibrinogen were associated with change in cIMT (Chambless, Folsom et al. 2002). 

Further risk factors identified by the Rotterdam study include age, BMI, male sex, 

current smoking, systolic BP and hypertension (van der Meer, Iglesias del Sol et al. 

2003).  It is not easy to explain these differences, although the high frequency of 

lipid lowering medication use in the ET2DS in comparison to these studies (84.3% 

vs 48.7% (Yamasaki) and 9.7% (Wagenknect)) may go some way to explaining this 

phenomenon, as lipid lowering medications have been show to slow or indeed 

reverse cIMT progression (Hedblad B, Zambanini A et al. 2007; Yu CM, Zhang Q et 

al. 2007; Kastelein JJ, Akdim F et al. 2008).   

The lack of progression in cIMT in the ET2DS is puzzling and there are several 

potential explanations for this.  Firstly, the lower mean cIMT identified at the year 4 

follow up may reflect the loss to follow up of those with a higher cIMT (who may be 

at increased risk of morbidity and mortality and therefore less likely to reattend for 

measurement of cIMT).  However, the absolute difference in year 1 mean cIMT in 

those who did and did not have a cIMT measurement at year 4 was small  (no follow 

up 0.93 v follow up 0.94mm, p=0.775) and is unlikely to be the reason underlying 
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the lack of progression of cIMT in the ET2DS.  A second potential explanation may 

be measurement error and the resultant variability in cIMT measurements.  The 

validation study performed in the ET2DS at year 4 suggested that measurement of 

cIMT by the sonographer was reliable and was not influenced by time between 

readings.  While a validation study was not performed to confirm this at year 1, these 

findings were extrapolated to year 1 because the same sonographer was used at both 

times points. Therefore, it is unlikely that measurement error would explain the 

change in cIMT.   

Another potential explanation for the regression of cIMT at year 4 may be that it 

could reflect the ongoing influence of vascular risk factor modification by 

medications such as statins or antihypertensive medications.  Clinical trials of drugs 

such as statins have demonstrated a slowing and even regression of cIMT in the 

treatment group (Fleg, Mete et al.).  Further analysis of cIMT progression in those 

taking and not taking antihypertensives in the ET2DS revealed no statistically 

significant difference in progression between these groups and both groups showed a 

regression in cIMT.  When this analysis was extended to lipid lowering medication, 

those who were not taking these medications did have a positive change in cIMT 

(0.002mm) while the group taking medication showed regression, however the 

difference was not statistically significant so little comment can be made upon the 

effect of statins on cIMT change.    Therefore, it may be that the most likely 

explanation for the lack of progression in cIMT in the ET2DS is the short follow up 

time.  The development of atherosclerosis and vessel wall changes reflects years of 

influence from cardiovascular risk factors (Lorenz, Polak et al. 2012), whereas the 

change as measured between two follow up clinics represents only a very short 

period of time in comparison.  It may be that there is not sufficient change in the 

cIMT to be recorded between these two points, in addition to the modifying effect of 

drugs such as statins on the vessel wall and vascular risk factors such as hypertension 

that are known to impact on the cIMT.   

With regards to the association of cIMT change with cardiovascular risk and its use 

as a surrogate cardiovascular endpoint, as highlighted in the literature review, change 

in cIMT was analysed in those with and without both prevalent and incident vascular 
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events.  There was no significant difference in the change in mean cIMT between the 

groups, suggesting that change in cIMT is not related to future vascular risk in the 

ET2DS.    

Plaque thickness, in contrast to cIMT, showed a significant increase between year 1 

and year 4 of the ET2DS.  As discussed previously, carotid plaque may represent a 

more advanced and active disease process than cIMT and therefore, active rapid 

change in these measures may not be surprising as continued exposure to vascular 

risk factors has a more acute effect on the nature of atherosclerotic plaques, with 

rupture and fibrosis of plaques being influenced by these factors.  The constant active 

remodelling of plaques may explain why a change in plaque thickness was noted in 

contrast to cIMT.  Plaque score and morphology were also significantly altered at 

year 4 follow up in comparison with year 1.  Plaque was more extensive at year 4 

than at year 1, as demonstrated by the higher plaque score at year 4, and individuals 

tended to have more high risk plaque at follow up.  Only 9% of individuals had no 

plaque or echogenic plaque at year 4, compared with 44% at year 1.  This means that 

91% of the study population had at least 1 high risk plaque after 3 years of follow up, 

compared with 56.1% at year 1.  This is a considerable increase in such a short 

period. It is possible that this may be attributable to variability in the way the 

sonographer classified plaque morphology between year 1 and year 4.  However it is 

difficult to comment on this as no validation study was performed to assess this in 

the ET2DS. A study by Joakimsen in 1997 revealed that in general, reproducibility of 

plaque assessment was good.  Some aspects of plaque assessment had better inter 

and intra-reader variability (plaque presence and plaque morphology) in comparison 

with others that displayed only moderate agreement (plaque thickness) (Joakimsen 

O, Bønaa KH et al. 1997).  In view of this, in the ET2DS, it is perhaps most likely 

that the change in plaque morphology and distribution is simply related to the 

ongoing influence of vascular risk factors with time rather than any error in plaque 

assessment.   
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7.5 Association of cIMT with cardiovascular risk 
factors and prevalent CVD 

This section discusses the reported associations of cIMT with risk factors and 

prevalent CVD.   

 Cardiovascular risk factors 7.5.1

In this study, all cIMT parameters were significantly higher in males than females, 

and increased with age for both sexes which is in keeping with current research 

(Joakimsen O, Bønaa KH et al. 1999).  Mean cIMT was associated (after adjustment 

for age and sex) with increased duration of diabetes, raised systolic and reduced 

diastolic blood pressure, as well as cigarette smoking.  Full multifactorial analysis 

then revealed that the independent predictors of cIMT in the ET2DS were increased 

age, male sex and raised systolic blood pressure.  However, it should be noted that 

the effect sizes determined in this thesis are in some cases small.  For example, the 

age and sex adjusted correlation coefficient between systolic BP and mean cIMT is 

only 0.075 but is statistically significant.  While there is statistical significance, the 

clinical significance of such a small correlation must be questioned.  In the case of 

the parameters where the correlation coefficient is <0.1, it is possible the association 

may only be significant because of the sample size.  Similarly, the small ANOVA 

statistics also raise a similar question with regards to the categorical variables.   

Associations between risk factors and cIMT have been reported in several general 

population studies. The most common risk factors associated with cIMT are 

increasing age, male sex, raised systolic and diastolic blood pressure, reduced HDL 

and elevated total cholesterol.  An early study by Gariepy et al, of 788 men and 

women aged 17 to 65 years old, found associations between increasing cIMT and 

cardiovascular risk factors such as systolic and diastolic blood pressure, total and 

HDL cholesterol (women only) and blood glucose (men only) (Gariepy J, Salomon J 

et al. 1998).  A study from 2000 using data from 963 Italian adults attending a 

metabolic study centre in Milan found that cIMT correlated with systolic blood 

pressure, total, LDL and HDL cholesterol and triglycerides (Baldassarre, Amato et 

al. 2000).  In studies of cIMT and vascular risk factors in people with Type 2 
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diabetes (which are less widespread), several risk factors have been associated with 

cIMT, including serum triglycerides and HDL cholesterol (Temelkova-Kurktschiev, 

Koehler et al. 1999; Temelkova-Kurktschiev, Koehler et al. 2000), Butt 2009).  Other 

studies identified associations with age, BMI (Güvener, Tütüncü et al. 2000) and 

microalbuminuria (Agewall S, Wikstrand J et al. 1995; Mykkänen L, Zaccaro DJ et 

al. 1997). 

The most striking difference between these studies and the ET2DS is the lack of an 

association between cIMT and blood lipids in the ET2DS.  The most likely 

explanation for this discrepancy lies in the high use of lipid lowering medication in 

the ET2DS, which may have masked the true relationship between cIMT and blood 

lipids.  Another surprising finding is the lack of association of cIMT with smoking.  

The reasons for this are not clear but it may hint at the underlying pathology of cIMT 

as a precursor of atherosclerosis rather than atherosclerosis itself.  

 Prevalent vascular disease 7.5.2

Individuals in the ET2DS with a history of previous CVD displayed an altered 

cardiometabolic risk profile to those who with no history of CVD.  They were older 

and more likely to be male, and had a longer duration of diabetes - all of which are 

well-established risk factors for CVD.  There was no difference in HbA1c or systolic 

blood pressure, which probably reflects the increased use of insulin and 

antihypertensives in the disease group of high risk individuals.  Medication use may 

also explain the lower total cholesterol in the group with disease.  They also 

demonstrated a higher prevalence of smoking, which is in keeping with increased 

risk of vascular disease.  They had significantly poorer renal function, increased 

inflammatory markers and a higher NTproBNP than individuals without disease, all 

suggestive of an increased vascular risk (Blankenberg, McQueen et al. 2006; Chronic 

Kidney Disease Consortium 2010). (Ridker PM, Rifai N et al. 2000)  

All measures of cIMT were significantly higher in individuals who had ever been 

diagnosed with cardiovascular disease (MI, angina, TIA or stroke). This was also 

seen when individuals with and without CAD and with and without cerebrovascular 

disease were compared. However, logistic regression modelling revealed that 
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although cIMT was associated with prevalent CVD, this relationship lost significance 

once traditional risk factors were adjusted for and was the same for CAD and 

cerebrovascular disease.  This contrasted markedly with measures of carotid plaque, 

all of which remained associated with prevalent CVD, CAD and cerebrovascular 

disease, even after adjustment for traditional risk factors and novel risk factors.  

These results suggest that it may in fact be carotid plaque that may be more useful in 

the prediction of cardiovascular disease, given the strong association between plaque 

and CVD. 

Studies in both general populations and Type 2 diabetes have reported the 

association of cIMT with prevalent vascular disease.  In 1999, Ebrahim et al reported 

an association between cIMT and prevalent vascular disease (Ebrahim, Papacosta et 

al. 1999).  They identified that common carotid artery cIMT was associated with 

prevalent stroke whereas cIMT at the bifurcation of the carotids was more strongly 

associated with ischaemic heart disease.  A 2002 study by Baldassarre et al also 

reported higher cIMT in individuals from the general population with CHD 

(Baldassarre, Amato et al. 2000).   A more recent study by Polak et al, using data 

from the Framingham Offspring cohort found a stronger relationship between cIMT 

and prevalent vascular disease than was seen in the ET2DS  (Polak, Pencina et al. 

2010).  Using multifactorial logistic regression models, they identified both CCA 

cIMT and ICA cIMT as independent predictors of prevalent cardiovascular disease.  

Critically, several studies in people with diabetes revealed that individuals with both 

stroke and CAD, identified using CT and MR, had increased cIMT (Lee, 2007, 

Djaberi 2009, Kasami 2011). The results of this thesis, in particular in relation to 

CAD and general CVD, further support the findings of these studies. 

 

7.6 Association of Carotid Plaque with cardiovascular 
risk factors and prevalent CVD 

 Cardiovascular risk factors 7.6.1

Carotid plaque thickness in the ET2DS demonstrated a different cross sectional 

relationship with cardiovascular risk factors than cIMT.  This difference in risk factor 
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associations has been reported by other studies including the British Regional Heart 

Study (Ebrahim, Papacosta et al. 1999).  In the ET2DS, following multifactorial 

adjustment mean and maximum plaque thickness were associated with several risk 

factors – increasing age, male sex, longer duration of diabetes, increased systolic BP, 

reduced diastolic pressure and smoking history.  However, like cIMT, the effect size 

of the correlations was in some cases small and may not represent a strong 

relationship between the risk factors and plaque thickness (the strongest age and sex 

adjusted correlation was with systolic blood pressure (r=0.119)) and care must be 

taken not to overstate their importance.  The major difference between these 

associations and those seen for cIMT is the association with smoking.  Cigarette 

smoking is known to be a direct cause of atherosclerosis so it is not surprising to find 

this relationship with carotid plaque thickness but not with cIMT.  Carotid plaque 

burden as represented by individual plaque score in the ET2DS, appeared to be 

associated with a poor cardiometabolic profile however many of the differences were 

difficult to interpret as the relationships were not always completely linear.  In order 

to address this, plaque score was considered as a bivariate factor (score ≤4 or >4) and 

a similar risk factor profile to that of plaque thickness was identified for those people 

with a high plaque score (>4), with the additional exception of BMI, suggesting that 

plaque score may not provide any additional information on cardiovascular risk than 

plaque thickness.  The presence of high risk plaque was also associated with raised 

systolic and diastolic blood pressures, as well as also low BMI.  Interestingly, there 

was no association with smoking history.   

There are not many previous studies specifically of carotid plaque (in particular 

plaque thickness) and vascular risk factors in people with Type 2 diabetes.  One 

recent study by Irie et al demonstrated that male sex, BMI and low-HDL-cholesterol 

were strongly associated with plaque morphology in people with Type 2 diabetes 

(Irie, Katakami et al. 2014) which is in support of the finding of this thesis.  Cardoso 

et al also reported an association with smoking, which has been replicated in this 

thesis (Cardoso et al, 2012). In the general population, a review by Wyman et al 

highlighted that associations have been demonstrated between carotid plaque and 

age, systolic blood pressure, smoking, total/HDL cholesterol ratio and BMI (Wyman, 
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Fraizer et al. 2005).  It is interesting to note that the relationship between carotid 

plaque and blood lipids demonstrated by other studies is absent in the ET2DS.   

In terms of plaque morphology in the general population, Joakimsen et al noted that 

high risk plaques were more common in men from the general population (at all 

ages) although they do not describe the association of high risk plaques with risk 

factors (Joakimsen O, Bønaa KH et al. 1999).  In the ET2DS, while men were more 

likely to have high risk plaque than women, this difference disappeared following 

multifactorial adjustment.  Data from the Tromsø Study established that HDL 

cholesterol was associated with echolucent carotid plaques (adjusted OR 0.69 

(95%CI 0.52-0.93) in 6727 participants in a population health survey (Mathiesen EB, 

Bønaa KH et al. 2001).  Again, this relationship with HDL cholesterol was not 

demonstrated in the ET2DS.   

 Prevalent vascular disease 7.6.2

All parameters of carotid plaque considered in this thesis were more prevalent in 

individuals who had a history of any CVD.  The absolute differences in mean and 

maximum plaque thickness were considerable (0.6mm for mean plaque thickness and 

0.5mm for max plaque thickness).   

In a study by Lee et al, which examined the relationship between cIMT, plaque and 

stroke in 133 people with Type 2 diabetes, the authors found that individuals who 

had experienced a stroke tended to have a higher plaque score than those who had 

not (Lee et al, 2007).  This finding has been replicated in the ET2DS, where 

individuals with prevalent cerebrovascular disease (stroke or TIA) had a higher 

plaque score than those without.  This finding was also replicated for CAD and any 

CVD.  Also in accordance with the Lee study were the results of logistic regression 

models in which the association between plaque score and prevalent cerebrovascular 

disease was attenuated by adjustment for risk factors in logistic regression models. 

However, this thesis did find that the association between plaque score and CAD, as 

well as any CVD, survived full cardiovascular risk factor adjustment (including 

novel risk factors in the case of any CVD), suggesting a stronger relationship 

between plaque score and prevalent CAD and CVD rather than stroke.  This is 
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supported by the findings of Akazawa et al who reported that plaque score was 

associated with the extent of CAD after risk factors adjustment (Akazawa et al, 

2012).  In addition, high risk plaques were more common in people with prevalent 

CVD than those without, suggesting that they may also be associated with an 

increased risk for CVD.  

 

7.7 Usefulness of cIMT and Carotid Plaque in 

prediction of incident CV events over and above 
conventional risk factors in the ET2DS 

In the ET2DS, cIMT was independently associated with established cardiovascular 

risk factors and demonstrated a modest association with prevalent cardiovascular 

disease while carotid plaque showed a more robust relationship with both 

cardiovascular risk factors and prevalent vascular disease.  This suggested that 

carotid plaque may be more useful in the prediction of cardiovascular events than 

cIMT.  However, the results of the analysis of these factors with incident 

cardiovascular disease demonstrate that cIMT had a stronger relationship with 

incident vascular disease than carotid plaque.   

 cIMT and incident vascular events 7.7.1

Cox proportional hazards’ modelling was chosen to analyse the relationship between 

cIMT measurements made at year 1 in the ET2DS and incident cardiovascular 

events.  Unadjusted models for all cIMT variables and incident events revealed that 

all measures of cIMT were associated with incident CVD and most with CAD.  

There was no such association for fatal events or cerebrovascular disease, which may 

reflect the small number of events seen in each of these categories. This finding 

supports much of the research from general population studies which demonstrates a 

stronger link between cIMT and both general CVD and CAD, rather than stroke.   

Adjustment for age, sex, previous CVD and UKPDS cardiovascular risk factors 

attenuated the predictive ability for any CVD as well as CAD, for all measures of 

cIMT with the exception of mean cIMT, and mean maximum cIMT for CAD only.  
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Assessment of the usefulness of mean cIMT in prediction of cardiovascular disease 

over and above UKPDS risk factors was assessed using area under the curve and 

NRI.  AUC improved marginally on addition of mean cIMT to the model containing 

risk factors (0.691-0.704) and NRI was found to be 0.25% suggesting that there is an 

overall minimal improvement in risk prediction for cardiovascular events when mean 

cIMT is added to traditional risk factors, the clinical significance of which is 

uncertain.  These findings are similar to several studies that are discussed below, in 

addition to a large meta-analysis which will be discussed separately.   

Five epidemiological cohort studies (3 prospective and 2 retrospective) and one 

meta-analysis assessing the usefulness of cIMT on top of traditional cardiovascular 

risk factors in people with Type 2 diabetes were identified in chapter 1 of this thesis.  

It is important to compare the demographic and cardiometabolic characteristics of 

these studies with the ET2DS in order to make meaningful comparisons with their 

results.  The study population used in this thesis is a cohort of older adults with Type 

2 diabetes living in Edinburgh and the Lothians.  The average age of the participants 

at the time of carotid ultrasound assessment was 68.9 years, making the cohort 

slightly older than previous studies of cIMT and future cardiovascular risk in people 

with Type 2 diabetes (range 51.4-65.0 years) (Yamasaki Y, Kodama M et al. 2000; 

Bernard S, Sérusclat A et al. 2005; Ataoglu, Saler et al. 2009; Malik S, Budoff M et 

al. 2011).  The ET2DS also differed from previous study populations in a number of 

other respects.  For example, while the use of medication to manage diabetes was of 

a similar prevalence to that seen in the study by Bernard et al (Bernard S, Sérusclat A 

et al. 2005) the use of antihypertensive and lipid lowering medications was higher.  

Mean systolic and diastolic pressure was similar to that in the study by Yamasaki et 

al but lower than that in Ataolugo et al (Yamasaki Y, Kodama M et al. 2000; 

Ataoglu, Saler et al. 2009), which may be explained by the high prevalence of anti-

hypertensive use in the ET2DS.  Mean lipid levels in the ET2DS were poorer than 

that reported by Bernard et al but modestly better than that reported by Yamasaki et 

al (Yamasaki Y, Kodama M et al. 2000; Bernard S, Sérusclat A et al. 2005).   

The earliest of the prospective studies was that of Yamasaki et al who, in 2000, 

found that for a 1 unit increase in cIMT there was an almost 5 fold increase in risk of 
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non-fatal CAD after adjusting for cardiovascular risk factors in multifactorial logistic 

regression models (Yamasaki Y, Kodama M et al. 2000).  This thesis has identified 

that a 1 SD increase in mean cIMT led to a 1.5 fold increase in risk for incident non-

fatal CAD in the fully adjusted Cox regression models.  Whilst this is lower than the 

risk identified by Yamasaki et al, it should be noted that their logistic regression 

model takes no account of time to event, as is seen in Cox regression; therefore the 

risks may not be directly comparable.  However, the overall trend remains the same – 

that cIMT increased prediction of coronary artery disease over and above traditional 

risk factors. Unfortunately, they do not report any comparison of the models eg area 

under the curve or net reclassification, so it is impossible to comment on clinical 

impact of adding cIMT on risk classification in this study. 

In 2005, a further study by Bernard et al prospectively assessed the predictive ability 

of cIMT for cardiovascular events.  They found that for a 1 SD increase in mean 

cIMT there was an OR of 1.63 (95%CI 1.01-2.63) for cardiovascular events, after 

adjustment for age, sex, physical activity, microalbuminuria and HDL cholesterol.  

Their model for cardiovascular events containing only Framingham risk score had a 

similar AUC to the model containing only cIMT (0.720 vs 0.715 respectively) 

(Bernard S, Sérusclat A et al. 2005).  The AUC for the model containing only 

Framingham risk score was slightly higher than the same model in the ET2DS (AUC 

0.691).  When they combined both Framingham risk factors and cIMT into their 

model using a combined index, there was a significant improvement in prediction as 

demonstrated by increased survival in Kaplan-Meir curves (16.1, P=0.0003) - AUC 

is not reported for that model.  They also assessed Cox regression models of 

continuous cIMT in addition to FRS and found a global increase in chi square from 

14.1 to 18.1 (p=0.0035) when cIMT was added,  suggesting that cIMT may be 

predictive of cardiovascular events over and above FRS.  The results of this study are 

similar to the results found in the ET2DS.  They report an increase in global chi 

squared of 4.0 on addition of cIMT to the Framingham score, which is similar to the 

increase seen in the ET2DS on the addition of cIMT to UKPDS risk factors (3.87).  

Again, AUC and NRI are not reported for this study so no comparison is made with 

regards improvement in prediction. 
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Results from the Multi-Ethnic Study of Atherosclerosis (MESA), a large study of 

6814 participants aged 45-84, were published in 2011 (Malik S, Budoff M et al. 

2011).  Using 881 MESA participants who met the criteria for diabetes, they 

analysed maximum cIMT in quartiles and compared its predictive ability for CVD 

and CAD in models containing Framingham risk factors with that of coronary artery 

calcium (CAC).  In contrast to the results presented in this thesis, they found that 

while CAC adding to Cox models containing conventional risk factors significantly 

improved risk prediction for both CVD and CAD in people with diabetes, cIMT did 

not (4th vs 1st quartile cIMT HR 1.7 (0.7-4.3) and 1.0 (0.5-2.0) for CAD and CVD 

respectively).   ROC curve analysis however did show a small increase in AUC for 

CHD when the risk factor model was compared to a model with risk factors and 

cIMT (0.72 -0.74 respectively).  While the ET2DS cohort and the MESA participants 

included in this study were broadly similar in terms age and other risk factors, the 

MESA participants were drawn from a general population cohort, rather than being 

recruited into a diabetes specific study.  This may have introduced an element of 

heterogeneity into the study population which may have impacted upon the results of 

the analysis. 

The earliest retrospective cohort study that addressed the addition of cIMT to FRS 

for predicting vascular events in Type 2 diabetes was published in 2009 (Ataoglu, 

Saler et al. 2009).  The authors reported that in 102 subjects with diabetes, cIMT 

could be useful in addition to Framingham risk scoring in predicting vascular risk.   

The OR for cIMT following adjustment for FRS factors was 7.92.  However, caution 

must be applied to these results as they are the results of a retrospective cohort and 

the effect of bias and confounding may be greater in this cohort than in a prospective 

study.  Additionally, they do not report any reclassification statistics so the 

improvement in risk prediction cannot be compared with the results of this thesis.   

A further retrospective study from 2011 examined cIMT in relation to incident CVD 

events in a population of 783 type 2 diabetic adults (Yoshida, Mita et al. 2012).  

Using Cox regression models fitted for traditional cardiovascular risk factors, they 

identified that cIMT predicted risk for CVD events over and above the fitted risk 

factors (RR 2.39 (1.19-4.81, p=0.02).  ROC curves of models containing cIMT and 
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as well as Framingham risk factors revealed improved risk prediction with the AUC 

increasing from 0.645 for risk factors alone, to 0.656 on the addition of cIMT.  These 

results, in a study of comparable size, are very similar to the ET2DS.   

Because of the mixed and modest results demonstrated by these studies, a meta-

analysis was performed  by den Ruijter et al using data from 4,220 individuals with 

diabetes (and mean follow up of 8.7 years) in a large ongoing individual participant 

collaboration (USE IMT) involving 56,194 subjects from 17 population-based 

cohorts worldwide (Den Ruijter, Peters et al. 2013). Similarly to the methods used in 

this thesis, the authors used Cox regression models to assess the predictive ability of 

cIMT over and above Framingham risk factors.  They found a HR of 1.22 (1.14, 

1.32) for CVD events (MI or Stroke) for a 1SD increase in mean cIMT.  They then 

identified only a small improvement in NRI (1.7%).  This is highly comparable with 

the HR identified in this thesis for a 1DS increase in mean cIMT for CVD (HR 1.26 

(1.003-1.58).  The results of this thesis also demonstrated only a small increase in 

NRI (0.25% for tertiles of risk).   

Although the results of this thesis do not differ significantly from the findings of the 

somewhat larger meta-analysis performed by den Ruijter et al and some of the 

smaller individual studies, what this thesis adds to current research lies in addressing 

the methodological problems highlighted in the meta-analysis and the smaller 

studies.  If we first address the smaller studies, the obvious advantage of the ET2DS 

over these is sample size.  In contrast, while the numbers used in the meta-analysis 

are large, they were drawn from a large multi-centre collaboration.  Individuals with 

diabetes were identified from with large general population studies and the data 

pooled.  As den Ruijter et al highlight in their paper, there was considerable variation 

in the way that diabetes was defined and cIMT measured in each study.  The ET2DS 

was developed specifically to recruit a representative sample of individuals with 

Type 2 diabetes and each participant was subjected to the same entry criteria and the 

same study protocols.  In addition, important diabetes related factors such as duration 

of diabetes, which was controlled for in this thesis, were not available in the meta-

analysis. The authors also identify that they were unable to address carotid plaque in 

any way in their study, which this thesis was able to do.   In addition, to strengthen 
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the results of the models presented in this thesis, history of previous CVD was 

included in the models to account for the increased risk conferred by a previous 

cardiovascular event on future vascular risk.  The high prevalence of CVD in the 

ET2DS excluded the possibility of selecting a study sample that was free of CVD as 

the reduction in sample size would have had a considerable impact on the power of 

the study.  However, including previous CVD in the model goes some way to 

addressing this while maintaining a sufficient sample size.    

Therefore, while the results of this thesis do not differ dramatically from published 

research, aspects of the study perhaps allow more weight to be added to their 

findings.  In addition, the results from the ET2DS follow only 3.5 years of follow up, 

whereas the USE IMT meta-analysis was based on over 8 years of follow up.  Given 

the strength of the relationship between cIMT and incident events in the ET2DS after 

a comparably short period of follow up, there may value in performing further data 

linkage to extend the follow up to explore whether a stronger relationship might be 

found. 

 Plaque and incident cardiovascular disease 7.7.2

One of the aims of this thesis was to explore the relationship between carotid plaque 

and incident cardiovascular disease.  In this ET2DS, while individuals with incident 

vascular events had higher plaque thickness, higher plaque score and more higher 

risk plaques than those who did not have events, upon Cox regression modelling, no 

plaque parameters were associated with an increased risk for any type of incident 

event once cardiovascular risk factors were taken into account, and indeed most were 

not associated even in unadjusted models.  This is particularly surprising for the 

outcome of cerebrovascular disease, given the well documented relationship between 

carotid plaque (particularly plaque morphology) and stroke in the general population 

(Pedro LM, Pedro MM et al. 2000; Grønholdt MLM, Nordestgaard BG et al. 2001), 

although a similar result was reported in a general population study by the MESA 

group in 2013 .  There could be several potential explanations for this.  Firstly, the 

size of the study, although considerable, may not have been large enough to capture 

the relationship between carotid plaque and vascular risk.  The absolute differences 
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in carotid plaque between those with and without incident events were small and in 

addition, the small number of events in each outcome category may have weakened 

any associations between carotid plaque and incident events.  Thirdly, the way in 

which plaque was characterized may not have been as optimal for identifying any 

relationships as some more extensive measures of plaque eg total plaque volume.  

More complex measures of plaque may have captured more fully the cardiovascular 

risk associated with carotid plaque.  Although participants who experienced incident 

events had a higher plaque thickness than those who did not, the small absolute 

difference between the groups may not have clinical relevance in terms of risk 

prediction.   

A further possible explanation for the lack of association between carotid plaque and 

incident vascular disease may lie in the underlying pathology.  Carotid plaque is an 

active endothelial pathology.  It is possible that the very nature of carotid plaque 

means it is more closely associated to the current intravascular milieu, which is 

supported by the strong association of carotid plaque with prevalent vascular disease, 

rather than to any future vascular risk.   

There is evidence for a relationship between different measures of carotid plaque and 

incident cardiovascular disease in individuals from the general population (Wyman, 

Mays et al. 2006; Naqvi T and Lee M-S 2014), and a large meta-analysis has been 

conducted that concluded that in the general population, carotid plaque more 

accurately predicted CAD events than cIMT (Inaba, Chen et al. 2012).  However, 

data concerning the use of carotid plaque for cardiovascular risk prediction in Type 2 

diabetes are sparse (Den Ruijter HM, Peters SA et al. 2012) and indeed, literature 

searching revealed only a handful of papers that addressed mostly cross sectional 

relationships between carotid plaque and prevalent vascular disease in Type 2 

diabetes, rather than incident disease (Charvat, Michalova et al. 2006; Lee EJ, Kim 

HJ et al. 2007; Ostling G, Hedblad B et al. 2007; He C, Yang Z et al. 2010; 

Akazawa, Tojikubo et al. 2012).  Only two prospective studies in people with Type 2 

diabetes were identified (Katakami, Takahara et al. 2012; Irie, Katakami et al. 2013), 

both reporting results from the same study population.  A comparison of the ET2DS 

with these studies revealed that they were broadly similar in terms of demographics 
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and risk factors (Katakami, Takahara et al. 2012; Irie, Katakami et al. 2013).    

Katakami et al reported that low calibrated-IBS values (a measure of plaque 

echolucency) in a pilot study of 85 Type 2 diabetic persons could improve the risk 

prediction of cardiovascular events in asymptomatic type 2 diabetic patients with 

carotid plaque (Katakami, Takahara et al. 2012).  To expand this research, Irie et al 

demonstrated that in 287 individuals (from the same study population) with Type 2 

diabetes, echolucent plaques improved risk prediction after accounting for traditional 

risk factors (HR 4.55) and indeed, adding plaque echolucency to a model contained 

traditional risk factors and plaque thickness significantly increased the area under the 

curve for the models (Irie, Katakami et al. 2013).  In the ET2DS, while echolucent, 

high risk plaque was associated with cardiovascular risk factors and prevalent 

vascular disease, and indeed, was more prevalent in people with incident vascular 

disease, it did not demonstrate significant predictive value for incident events after 

traditional cardiovascular risk factors were accounted for. 

Although the results presented in this thesis do not support the current (limited) 

literature, the size of the ET2DS study in comparison with the two smaller studies 

discussed may point to the ET2DS being a closer reflection of the real relationship 

between carotid plaque and incident vascular disease in people with Type 2 diabetes.  

However, caution must be taken when interpreting this as the measures of carotid 

plaque in the two studies are not the same as those in the ET2DS so it is difficult to 

make a direct comparison.  Larger studies, with more extensive plaque assessment 

will be required to confirm the true relationship between carotid plaque and 

cardiovascular risk, including an analysis of which aspects of carotid plaque might be 

most useful in risk prediction in people with Type 2 diabetes.   

 

7.8 Novel biomarkers and cardiovascular disease in 
the ET2DS 

As this thesis progressed, it was noted that current literature was increasing regarding 

other potential markers of vascular risk (Ridker PM, Rifai N et al. 2000; 

Blankenberg, McQueen et al. 2006; Fowkes FG, Murray GD et al. 2008; 
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Donfrancesco C, Palleschi S et al. 2013).  While time limitations excluded the 

possibility of a full exploration of the potential for such markers to predict 

cardiovascular events in this thesis, exploratory analyses of the association between 

cIMT, carotid plaque, vascular disease and other novel markers of cardiovascular 

risk were performed.  Ankle brachial index (ABI), renal function (eGFR and 

microalbuminuria), markers of inflammation (CRP and IL-6) and NTproBNP (a 

marker of heart failure) were included.  cIMT and plaque were predominantly 

associated with ABI and NTproBNP following multifactorial regression.   

All measures of cIMT and plaque in the ET2DS were negatively associated with 

ABI.  A negative association between these two markers is expected as a decreasing 

ABI represents lower arterial distensability and subsequently, increased vascular risk 

whereas increasing cIMT and plaque represents increasing risk.  The relationship of 

cIMT and plaque with a proven marker of vascular risk could add weight to the 

evidence for the use of cIMT as a marker of risk, and conversely, may also support 

the use of ABI in people with diabetes.  Fowkes et al demonstrated that ABI is a 

reliable marker of cardiovascular risk in the general population and have validated its 

use as a risk model in a large collaboration of 18 cohorts (Fowkes FG, Murray GD et 

al. 2008; Fowkes, Murray et al. 2014).  In another Edinburgh based cohort, Price et 

al demonstrated that the addition of cIMT to ABI increased prediction of 

cardiovascular events (Price JF, Tzoulaki I et al. 2007) and the relationship between 

cIMT and ABI demonstrated in the ET2DS could suggest that combining cIMT and 

ABI may improve risk prediction in the cohort.  

Interestingly, no measures of cIMT or plaque were independently associated with 

renal function in the ET2DS.  Several recent studies, including a large meta-analysis, 

have identified eGFR and microalbuminuria (as measured by ACR) as potential 

markers of cardiovascular risk in the general population (Chronic Kidney Disease 

Consortium 2010; Donfrancesco C, Palleschi S et al. 2013), so the absence of any 

relationship between cIMT and eGFR in this study is perhaps surprising given the 

increased prevalence of chronic kidney disease and reduced renal function in people 

with Type 2 diabetes.   However, eGFR was significantly lower in participants who 
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had an incident event, as well as in those who had prevalent vascular disease, which 

may hint at the potential for eGFR to predict risk in this population. 

When inflammatory markers were assessed, cIMT was positively associated with IL-

6 but not with CRP.  Following adjustment for age and sex, correlation coefficients 

for IL-6 were attenuated somewhat but significance was retained; however they did 

not survive multivariate adjustment.  Type 2 diabetes is known to be associated with 

low grade inflammation (Pickup 2004) and there is also considerable literature 

describing the relationship between inflammatory markers and cardiovascular 

disease (Epstein and Ross 1999), an indeed, the relationship between inflammation 

and CVD and cIMT in Type 2 diabetes (de Jager J, Dekker JM et al. 2006; Ray A, 

Huisman MV et al. 2009), Kang, 2004).  Therefore, it is surprising to find such a 

limited relationship between markers of inflammation and cIMT in the ET2DS.    

However, again, there was an association between higher inflammatory markers and 

the presence of prevalent and incident vascular disease, which may suggest the 

potential for markers of inflammation to be used in risk prediction in people with 

diabetes.    

cIMT and plaque were also associated with NTproBNP, even after multifactorial 

adjustment.  NTproBNP is a novel marker of heart failure that has received increased 

interest recently as a potential marker of cardiovascular risk (Blankenberg, McQueen 

et al. 2006).  As well as being associated with cIMT, a higher NTproBNP was seen 

in individuals with prevalent and incident vascular disease in the ET2DS, suggesting 

NTproBNP could have the potential for use in risk prediction in this cohort.   

 

7.9 Conclusions 

The main aim of this thesis was to describe the frequency and distribution of cIMT 

and carotid plaque in people with Type 2 diabetes, and to explore the association of 

cIMT and carotid with cardiovascular risk factors and prevalent cardiovascular 

disease.  This allowed for a subsequent well informed analysis of the predictive 

abilities of IMT and carotid plaque for incident cardiovascular disease, over and 
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above cardiovascular risk factors that are included in common risk prediction scores, 

which was achieved in two stages.  Firstly, cIMT and carotid plaque were described 

in the study population, followed by a cross sectional analysis of cIMT and carotid 

plaque with cardiovascular risk factors and prevalent cardiovascular disease.  Finally, 

a longitudinal survival analysis of cIMT and carotid plaque with incident events was 

performed, adjusting for traditional cardiovascular risk factors and previous vascular 

disease.  Additional aims of this thesis were also to analyse the measurement of 

cIMT in the ET2DS and to address the relationship of cIMT, carotid plaque and both 

prevalent and incident vascular disease with more novel markers of cardiovascular 

risk, including ABI, renal function, inflammatory markers and NTproBNP. 

Mean values of cIMT in the ET2DS were comparable with other studies of cIMT in 

people with Type 2 diabetes and may indeed be higher than cIMT in the general 

population.  Increasing cIMT was found to be associated with several cardiovascular 

risk factors including increased age, male sex and raised systolic blood pressure, as 

well as adverse levels of the more novel markers of vascular risk such ABI and 

NTproBNP.  Mean cIMT was associated with prevalent vascular disease and was 

predictive of incident cardiovascular events and coronary artery events (but not 

stroke) over and above UKPDS risk factors, although the clinical impact of this on 

reclassification of vascular risk (as demonstrated by NRI) may be limited.  

There was a high prevalence of carotid plaque in the ET2DS, and in particular, so 

called “high risk” plaques.  The different measures of carotid plaque were associated 

with several cardiovascular risk factors including increasing age, male sex, longer 

duration of diabetes, hypertension, smoking and low BMI.  In addition, all measures 

of carotid plaque were associated with the novel biomarkers ABI and NTproBNP.  

Carotid plaque was associated with a slightly more extensive range of cardiovascular 

risk factors than cIMT and was strongly associated with prevalent vascular disease.  

However, despite this strong association with risk factors and prevalent vascular 

disease, carotid plaque did not have any additional predictive value for incident 

cardiovascular events over and above UKPDS risk factors.   
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This thesis also aimed to address several cIMT measurement issues.  A validation 

study of cIMT measurement in the ET2DS found that cIMT measurement was highly 

repeatable, giving weight to the conclusions based on the results in this thesis.  As 

consensus statements recommend that cIMT is measured using automated edge 

detection methods, which were not possible in the ET2DS, measurement of cIMT 

using user defined, computer aided measurement algorithms were examined to 

compare multiple cIMT measurements with the more limited sonographer 

measurements.   Measurements made using the computer algorithm were found to be 

lower than those made by the sonographer although the absolute difference was 

small and the two measures were highly correlated.  Because this approach was 

tested on a small sub-sample of the ET2DS, further work is needed before firm 

conclusions can be drawn regarding the best method to use when measuring cIMT in 

the ET2DS.   

Finally, measures of cIMT and carotid plaque in the ET2DS were associated with the 

novel markers ABI and NTproBNP.  In addition these markers were significantly 

higher in those individuals with prevalent vascular disease, suggesting a more 

extensive exploration of the association of these markers in relation to cardiovascular 

disease in the ET2DS may be warranted.   

 

Final Summary 

In conclusion, this thesis reports that both cIMT and carotid plaque are modestly 

associated with traditional cardiovascular risk factors in people with Type 2 diabetes.  

Carotid plaque appeared to be associated with prevalent vascular disease but 

prospective analysis revealed that cIMT was predictive for incident vascular events 

in older adults with Type 2 diabetes, while carotid plaque was not.  However, the 

exact clinical benefit of measuring cIMT over and above traditional cardiovascular 

risk factors is not clear.  Additionally, cIMT and carotid plaque, as well as prevalent 

vascular disease, were associated with the more novel biomarkers ABI and 

NTproBNP.  There may be potential to use these novel markers to improve 
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cardiovascular risk prediction in people with Type 2 diabetes but exploration of these 

factors is out with the remit of this thesis.  Measurement of cIMT in this thesis 

appears to be accurate and broadly comparable with computer aided measurements in 

a subsample of participants, however further analysis of these measurements in the 

whole cohort are needed before a firm conclusion can be drawn as to the added value 

of multiple cIMT measurements.   

 

7.10 Recommendations for Further Research 

 What this study contributes to current research 7.10.1

This thesis has confirmed current research suggesting that while cIMT seems to be 

predictive of incident cardiovascular disease in people with Type 2 diabetes, the 

clinical utility of the improvement over traditional cardiovascular risk factors 

remains to be proved.  Although the findings are not dramatically different, they 

strengthen the findings of the meta-analysis by den Ruijter et al because the study 

sample was a specifically chosen, robustly phenotyped cohort that had cIMT 

measured in a clear and consistent way.   

The results of the analysis of carotid plaque with vascular risk in people with 

diabetes are relatively unique in the literature and demonstrate that carotid plaque 

does not appear to be of use over and above traditional cardiovascular risk factors in 

the prediction of disease in people with diabetes, despite the strong association with 

risk factors and prevalent disease, and the potential evidence in the general 

population that carotid plaque may be more predictive for cardiovascular events than 

cIMT. However, more, large prospective epidemiological evidence is required before 

a conclusion regarding the use of carotid plaque in the prediction of cardiovascular 

risk in people with Type 2 diabetes can be made.  Additionally, this thesis suggests 

that other more novel markers of vascular risk such as ABI and NTproBNP seem to 

be associated with vascular risk factors and prevalent disease, and may be of use in 

predicting cardiovascular risk in people with Type 2 diabetes. 
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 Recommendations for future research 7.10.2

1. Longer follow up for the ET2DS may provide additional information on the 

relationship between cIMT and incident cardiovascular disease in the study.  

Follow up presented in this thesis was only for 3.5 years and follow up 

extended beyond this will increase the number of events available for analysis   

2. Despite the negative results presented in this thesis for the use of carotid 

plaque, larger studies may be needed to investigate this relationship further.  

Indeed, over the course of my PhD, I have worked with a large collaborative 

study (USE-IMT) which has published data regarding cIMT and future 

vascular risk, both in general populations and in people with diabetes (Den 

Ruijter HM, Peters SA et al. 2012; Den Ruijter, Peters et al. 2013).  Such a 

collaboration would be ideally suited to provide a robust analysis of carotid 

plaque.  In addition, longer follow up of the ET2DS may allow for a fuller 

assessment of the relationship of carotid plaque with incident vascular disease 

within the study. 

3. The association of cIMT, carotid plaque and prevalent vascular disease with 

ABI and NTproBNP in the ET2DS opens up the possibility of their use in 

CVD risk prediction in diabetes, particularly given the evidence for their use 

in the general population.  A  more in depth analysis of the relationship 

between incident CVD and these markers in the ET2DS, either compared 

with or in combination with cIMT or plaque, would be a sound primary step 

4. The findings presented in this thesis that describe the change in cIMT in the 

ET2DS highlight the need for further research into the progression or change 

in cIMT and carotid plaque over time, especially in relation to the use of 

cIMT as a surrogate end point in clinical trials in people with diabetes.  

Another large collaboration that I have been involved with in the course of 

my PhD is the PROG IMT collaboration which has specifically examined 

cIMT progression and future vascular risk (REF) and a meta-analysis of 

cIMT and progression and incident vascular disease is currently in final draft 

pre-submission. 
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5. Given the modest effect size of cIMT for predicting cardiovascular events 

and the negative findings for carotid plaque, a potential further avenue of 

exploration might be the combined predictive power of these markers.   
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