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Abstract 
The human immune-regulatory protein, complement receptor type 1 (CR1, CD35), occurs on 
erythrocytes where it serves as the immune adherence receptor. It interacts with C3b, C4b, C1q 
and mannan-binding lectin (MBL). It additionally binds the Plasmodium falciparum protein, 
Rh4, in the non-sialic acid-dependent erythrocye-invasion pathway, and is also important for 
rosetting, via an interaction with P. falciparum erythrocyte membrane protein 1 (PfEMP1). A 
C3b/C4b, and PfEMP1 binding site lies in CCP modules 15-17 (out of 30 in CR1), while 
polymorphisms that afford advantage to some populations in dealing with severe malaria occur 
in CCPs 24-25, begging the question central to this thesis – do these polymorphism modulate 
function, and if so how? We hypothesized that the CR1 architecture apposes CCPs 15-17 and 
CCPs 24-25 using the exceptionally long linker between CCPs 21 and 22 as a hinge, thus 
polymorphic variants in CCPs 24-25 modulate functionality in CCPs 15-17. To test this, a panel 
of recombinant CR1 protein fragments (CCPs 21, 21-22, 20-23, 15-17, 17, 10-11, 17-25, 15-25 
and 24-25) were produced in Pichia pastoris along with polymorphic forms of the relevant 
constructs. After purification, biophysical and biological methods were used to assess whether 
the linker does indeed act as a hinge, and the comparative abilities of the CCPs 15-25 variants 
(along with soluble CR1 (sCR1), CCPs 1-3 and the panel of CR1 fragments) to interact with a 
range of ligands were measured.  
We found no evidence from NMR for face-to-face contacts between CCPs 21 and 22 that would 
be consistent with the long linker permitting a 180-degree bend between them. Indeed, based on 
scattering and analytical ultracentrifugation data, CCPs 20-23 form an extended rather than a 
bent-back structure. All of the four Knops blood-group variants of the CCPs 15-25 proteins 
produced similar results according to dynamic light scattering and AUC indicating no structural 
difference or change in self-association state between variants. In addition, based on the data 
collected from surface plasmon resonance (SPR), ELISA and fluid-phase cofactor (for factor I) 
assays, there were no evidence of any difference between the polymorphic forms with respect to 
their interactions with C3b, C4b, C1q and MBL.  Only weak interaction was observed for sCR1, 
and all CCPs 15-25 variants, with the relevant part of PfEMP1, and there was no measurable 
difference amongst the variants in disrupting rosettes. The sCR1-Rh4.9 interaction was 
confirmed by SPR; affinities measured between the binding domain of Rh4 and the panel of CR1 
fragments identified CCPs 1-3 (site 1) as the main interaction site. It seemed unlikely therefore 
that CCPs 24 and 25 could modulate Rh4 binding; indeed none of the four CR1 15-25 variants 
bound Rh4.9 appreciably.  Thus we concluded that allotypic variations in CCPs 24-25 have no 
measurable effect on the architecture as well as  binding of CR1 to its host or parasite ligands  
The inferred selective pressure acting on these variants likely arise from some other (i.e. besides 
malaria) geographically localised infectious diseases. 
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1.1 Polymorphisms and disease 

  

Polymorphisms in genes have been studied, over many years, in search of possible 

associations with disease conditions. A polymorphism is a variation in the DNA that is 

too common to be due merely to a new mutation. A polymorphism must have a 

frequency of at least 1% in the population (Manning, 2010). Examples of very well-

studied polymorphisms include those found in genes responsible for sickle-cell disease 

(Allison, 1956; Ford, 1973 ; Aidoo et al., 2002, Williams et al., 2005), the ABO blood 

group antigens (Clark, 1964; Crow, 1993; Meade and Earickson 2005 ; Cserti and Dzik, 

2007) and glucose-6-phosphate dehydrogenase deficiency (Beutler, 1994; Verrelli et 

al., 2002). In each of these cases the possession by an individual of a certain variant 

appears to offer protection against malaria or other infectious diseases, and it is thought 

that these polymorphisms have become widespread in populations native to disease 

endemic areas as a result of selective pressure (Cooke and Hill, 2001; Sykes, 1999). 

While some polymorphisms have been strongly linked to increased or decreased 

predisposition to specific diseases, others appear unconnected to any known pathology. 

A third category consists of polymorphisms for which circumstantial evidence supports 

a disease link but further work is needed to confirm this and establish its molecular 

basis. 
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1.1.1 Debate on Knops blood group polymorphisms and their association with 

severe malaria 

A good example of this third category are the Knops blood group polymorphisms, the 

best studied of which encodes sequence variations found in long homologous repeat 

(LHR)-D of the complement receptor type 1 (CR1)/immune adherence receptor.  The 

strikingly non-uniform geographical distribution of these polymorphisms (Rowe et al., 

2009; Stoute, 2005) has given rise to the widely accepted hypothesis that they are also 

connected to a survival advantage in malaria-endemic areas. More specifically the 

possession of certain Knops blood group antigens seem to be linked to protection 

against severe malarial anaemia and cerebral malaria (Rowe et al., 2009; Stoute, 2005, 

2011) background material on malaria may be found below).  

This proposition had been under debate for many years. In particular, the 

identification of CR1 as an erythrocyte-borne ligand for Plasmodium falciparum 

erythrocyte membrane protein 1 (PfEMP1) in field isolates, and the demonstration that 

this interaction contributes to the formation of rosettes containing infected and 

uninfected red blood cells – a phenomenon that, based on several studies, has been 

associated with disease severity - seemed to bolster the case for such a link (Rowe et 

al., 1995; Heddini et al., 2001, Carlson et al., 1990 and Treutiger et al., 1992).   

On the other hand, other studies (Zimmerman et al., 2003; Jallow et al., 2009; Bellamy 

et al., 1998) concluded that, Knops blood group alleles are not associated with 

protection against severe malaria in the Gambia. These authors suggested that the 

alleles might confer a selective advantage against infectious disease in general with no 

specificity for P. falciparum malaria. These findings, however, were complicated by 

variations between the various alleles in terms of CR1 copy number on erythrocytes. 
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Another study (Thathy et al., 2005) suggested there was association between the 

polymorphic forms and severe forms of malaria in Kenya. These results supported the 

hypothesis that the Swain-Langley(2) (Sl(2)) allele and, possibly, the McCoyb (McCb) 

allele (see below for details of the specific amino acid variations that comprise the set 

of Knops blood group antigens) evolved against a background of malarial transmission 

and that certain allotypes might confer a survival advantage. 

As has been pointed out by others (Krych-Goldberg et al., 2002), a detailed 

study at the molecular level of the interaction between PfEMP1 and CR1 could help 

understand whether the Knops blood group alleles have any direct effect on affinity 

between these proteins. Furthermore, a wider exploration of the functional properties of 

the Knops blood group antigenic variants is clearly justified. This would include 

examination of their ability to regulate complement and to interact with the multiple 

binding partners of CR1 including the complement proteins (see below) C3b, C4b, and 

C1q, as well as PfEMP1 and the more recently identified additional parasite ligand 

important for erythrocyte invasion, Rh 4 (Krych et al., 1991, Krych-Goldberg et al., 

2002; Klickstein et al., 1997; Rowe et al., 2000; Tham et al., 2010). 

 

1.2 The complement system  

 

The operation of the human immune system involves a combination of both innate 

(natural) and acquired (adaptive) immune responses. Innate immunity is made up of a 

range of components that together comprise a non-specific means of defence against 

pathogens. This range includes: physical barriers such as the skin and mucous 
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membranes; physiological factors such as the maintenance of certain pH values, 

temperatures and oxygen tensions; the secretion of proteins such as lysozyme into 

external body fluids; soluble protein factors within the blood stream and interstitial 

fluids such as those of the complement cascade, interferons, collectins, and C-reactive 

protein; and phagocytic cells including macrophages and polymorphonuclear 

leucocytes (Roitt et al., 1998). 

The complement system is considered the key molecular component of innate 

immunity, even though it is now well established that various complement proteins also 

act to augment antibody production by B-cells and to stimulate T-cells. Moreover the 

complement cascade, which is potentially cytolytic, is an important effector arm of 

adaptive immunity.  The complement system is now known to consist of more than 30 

plasma and membrane-associated proteins (Jha et al., 2003) and to include both 

activators and regulators. There are three main routes to activation of the complement 

cascade (Figure 1.1A).  

 

 

Figure 1.1 The complement pathways and CCP module  
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(A) Schematic diagram of the complement cascade: The diagram draws attention to the central 
role that C3 plays in all three pathways. This highlights the need for its convertase – the 
enzyme that converts C3 to its activated product, C3b - to be properly regulated. (B) The green 
cartoon on the left represents the multiple complement control protein domains or modules 
(CCPs), joined together by short linking sequences like beads on a string, which comprise a 
typical member of the regulators of complement activation (RCA) family of proteins encoded 
on chromosome 1q32. Note that these proteins are very unlikely to be fully extended and rod-
like as drawn here although in fact there are no structures available for any RCA or RCA 
fragment longer than four CCPs. To the right is shown a cartoon to illustrate the secondary and 
tertiary structures of a typical CCP. 

 

The classical pathway is triggered by the binding to the complement C1 

complex (composed of C1q, and two copies each of C1r and C1s) to antigen-antibody 

complexes (Morgan and Harris, 1999) via the globular heads of the trimeric C1q 

components. Specific sugars (mainly found on the surface of micro-organisms) trigger 

the lectin pathway via the mannose binding lectin (MBL)/MBL-associated serine 

protease (MASP) complex, which resembles C1 in terms of its moilecular architecture. 

In brief, activation of either C1 or MBL/MASP results in cleavage of the inert C4 

component of the complement cascade to activated products C4a and C4b. Cleavage 

results in exposure of new binding sites on C4b and the activation of a thioester group 

such that it readily attaches covalently to nearby surfaces. Surface-bound C4b is an 

opsonin, targeting the cells and particles to which it is attached for phagocytosis. The 

nascent C4b additionally binds to C2, whereupon C2 becomes a substrate for the 

activated C1-complex and is thereby cleaved to 2a and 2b. The 2b fragment is released 

while the C4bC2a complex thus formed is the classical pathway C3 convertase; it 

cleaves the abundant inert plasma protein C3 into its activated form, C3b and the 

anaphylatoxin, C3a. C3 and C4 (both around 185 kD) are closely related paralogues 

and the conversion of C3 to C3b resembles that of C4 to C4b in terms of exposure of 
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new binding sites and attachment of C3b to surface via a covalent linkage. C3b, like 

C4b, is an opsonin. 

The alternative pathway begins when low-rate but spontaneous C3 activation in 

plasma occurs, involving hydrolysis of its buried thioester group and generating 

C3(H2O). This protein thought to resemble C3b both structurally and functionally, 

binds to complement factor B to form the complex C3(H2O)B. In this context the factor 

B is cleaved by factor D forming C3(H2O)Bb. This (like C4b2a) is a C3 convertase 

(sometimes called the initiating c3 convertase), and unless it is regaled it will “kick-

start” the complement cascade by generating more C3a and C3b molecules from C3. 

The activated product C3b (like C3(H2O)) binds to factor B and subsequently yields 

the C3bBb complex, which is yet another C3 convertase in this case called the 

alternative pathway convertase. Its action produces more C3b thus stoking a positive 

feed-back loop.  

Since both C3b and C4b bind virtually indiscriminately to both foreign and self 

surfaces, regulators are essential to ensure that levels of C3b (and C3a) and C4b are 

controlled, on or near host cell membranes that would otherwise become opsonised or 

lysed by further steps in the complement cascade (see Figure 1.1).  In these subsequent 

steps, both C3bBb and C4b2a can collect one (or possible more) C3b molecule to 

become the trimolecular C5 convertases, (C3b)2Bb and C4b2a3b, respectively. These 

undergo a specificity shift from cleavage of C3 to cleavage of C5. C5 is a paralogue of 

C3 and C4 although it does not contain a thioester.  Cleavage yields C5b and C5a; the 

latter is a powerful anaphylatoxin. C5b interacts with C6 and then the C5bC6 complex 

nucleates formation of the C5b,6,7,8,9n membrane attack complex that  leads to cell 

lysis (Law and Reid, 1995; Morgan and Harris, 1999). Thus three major activities of 
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complement are opsonization, anaphylatoxin release and cell lysis (Blom et al., 2004).  

In more recent years it has become clear that further breakdown products of C3b – e.g. 

iC3b and C3d – are powerful opsonins and ligands for other cell-surface receptors such 

as CR2 and CR3 that trigger various cellular responses including the stimulation of 

antibody production by B-cells. 

 

1.2.1 Regulators of complement activation (RCA)  

Regulators of the complement cascade maintain the precise balance needed between 

activation and repression of complement amplification (Liszewski et al., 1996). This is 

achieved by several mechanisms including the regulation of C3 and C5 convertases. 

The most important site of intervention is the regulation of the alternative pathway C3 

convertases.  Complement regulators can either be membrane-bound (for example 

CR1) or in the fluid phase (for example factor H). (Kirkitadze and Barlow, 2001; Law 

and Reid, 1995; Koolman and Rohm, 1998; Morgan and Harris, 1999). 

 The largest family of complement inhibitors are a group of homologous proteins 

called the “regulators of complement activation” (RCA). These proteins are composed 

of various numbers of domains called complement control protein (CCP) modules, 

short consensus repeats or sushi domains (Figure 1.1B). CCP modules are built up of 

approximately 60 amino acid residues, and each contains four cysteine residues that 

form two disulphide bonds (Barlow et al., 1991; Norman et al., 1991, Figure 1.1B). 

Each CCP module also has an invariant tryptophan, conserved glycines and prolines, 

and a region of low conservation termed the  hypervariable loop.  

 The modules are connected to one another by linkers of between three and eight 

residues. (Blein et al., 2004). Some neighbouring CCP modules are known to stabilise 

each other and some are known to cooperate in order to form specific binding surfaces 
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(Kirkitadze and Barlow, 2001). Therefore the functions of these proteins are the product 

of the component CCP modules and of the relative orientations and intermodular 

interactions between CCP modules. The number of linker residues is a critical factor in 

this respect. Given the importance of the regulators in controlling and directing 

complement activation, it is clear that any deficiencies in function could lead to 

diseases in humans (Law and Reid, 1995). 

 

1.2.2 Information on some examples of the RCAs 

Factor H is a soluble glycoprotein that is elongated and made up entirely from 20 CCP 

modules. It competes with the binding of factor B to C3b, accelerates decay of C3bBb 

in the alternative pathway and acts as a cofactor in the cleavage of C3b by factor I. A 

set of five FH-related proteins (between five and nine CCPs) are probably also involved 

in various aspects of complement regulation but are less well characterised. Membrane 

cofactor protein (MCP) (or CD46) is a transmembrane protein acting as a cofactor for 

factor I-catalysed cleavage of C3b and C4b. Hence both pathways of the complement 

system are regulated by MCP that is comprised of four CCP modules, an O-

glycosylated serine/threonine/proline-rich domain, a transmembrane region and an 

intracellular region. Decay accelerating factor (DAF) (or CD55) accelerates the decay 

of C3/C5-convertases of the classical and alternative pathways. It is composed of four 

CCP modules followed by a serine/threonine-rich domain, and a GPI-anchor used for 

attachment to the membrane. Complement receptor type 2 (CR2) (or CD21) is a 

member of the RCA family but not in fact a regulator. It is a cellular receptor composed 

of 15 CCP modules, a transmembrane region and an intracellular domain. CR2 on the 

surface of B-cells links the innate and acquired immune responses by stepping up 
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antibody production upon binding to C3d-antigen complexes (C3d is the ultimate 

proteolytic degradation product of C3b and it remains covalently bound to the surface). 

CR2 is also known to be a receptor for the Epstein-Barr virus. C4b-binding protein 

(C4bp) is a soluble protein that acts similarly to factor H, but on the classical pathway. 

It is spider-like in structure with the major isoform made up of 59 CCP modules, 

grouped into seven α-chains (eight CCP modules per α-chain) and one β-chain (three 

CCP modules per β-chain) (Blom et al., 2004). The C-termini of both chains have 

additional regions, which polymerise the single chains by disulfide formation to create 

the mature protein. CR1 is the final member of the RCA family and is the focus of this 

thesis. 

 

1.2.3 Complement receptor 1 (CR1 or CD35), expression and functions 

Complement receptor 1 is a cellular regulatory protein found on the surfaces of a 

variety of cells, although the majority is located on erythrocytes (Ahearn and Fearon, 

1989). The CR1 gene is expressed by all peripheral blood cells except platelets, natural 

killer cells and most T lymphocytes; a small amount of soluble form founding plasma 

has been reported (Hamer et al., 1998 ; Dantelsson et al., 1994 ; Pascual et al., 1993),  

but its physiological relevance remains unsubstantiated (Fearon, 1980; Tedder et al., 

1983; Yoon and Fearon, 1985). In tissues, it is expressed by follicular-dentritic cells, B 

lymphocytes, glomerular prodocytes and some astrocytes (Krych-Goldberg and 

Atkinson, 2001). 

             In its most common allotypic variant, CR1 is made up of 30 CCP modules, a 

transmembrane domain and an intracellular domain. Three of the 30 CCP modules 
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appear to be needed for each of three key C3b/C4b-binding site. The N-terminal 28 

CCP modules are made up of four “long homologous repeats” (LHRs A-D), each 

consisting of seven CCP modules (Birmingham and Hebert, 2001; Klickstein et al., 

1987). The three well studied C3b/C4b-binding sites lie (one each) at the N-termini of 

LHRs A-C; CCPs 1-3 forms one region (called functional site 1), whereas the two 

other, almost identical, regions comprising CCPs 8-10 and 15-17 form two copies of  

functional site 2 (Goldberg et al., 1989 ; Kalli et al., 1991). Each of sites 1 and 2 

encompasses a discrete functional activity (Figure 1.2B). 

 
 
Figure 1.2 Schematic presentations of different aspects of CR1  

(A) CR1 module and linker lengths. CCP modules are represented by oval shapes and their 
sizes are proportional to the number of residues they contain in excess of 50. Linker lengths are 
exaggerated to illustrate their variability. In this hypothetical structure the uniquely long (eight 
residues) linker between CCPs 21 and 22 (i.e. between LHRs C and D) is bent but in fact there 
is little reliable information available about the overall architecture of this 220-KDa 
glycoprotein. (B) CR1 internal homology and binding sites. The CCPs are represented by 
circles without reference to their variation in numbers of constituent residues. The diagram 
indicates the binding sites of CR1 – each is made up of the first three modules of a long 
homologous repeat (LHR). Modules placed on top of the full length CR1 are there to show the 
modules whose identities are greater than 90% (Portions of this diagram was modified from 
PhD thesis of Dr Dinesh Soares). Note that modules 3, 10 and 17 are nearly identical to one 
another; modules 3-14 are nearly identical to 10-21; these two triple-module fragments have the 
same functionality in complement regulation but interact differentially with PfEMP1 (see text). 
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With regard to function, CR1 acts to regulate activation of both the classical and 

alternative pathways by serving (like MCP does) as a cofactor for factor I-mediated 

proteolysis of C3b and C4b to iC3b and iC4b (Krych et al., 1994 ; Subramanian et al., 

1996 ; Krych et al., 2005) . It uniquely facilitates a further cleavage step of iC3b, to 

C3dg (or C4dg) (Ross et al., 1982 ; Medof et al., 1982; Iida and Nussenzweig, 1981; 

Medof and Nussenzweig, 1984); C3dg and C4dg are readily broken down non-

specifically thus generating ligands for CR2 on B cells (Ricklin et al., 2010). One 

product of C3b cleavage, iC3b, binds to complement receptor types 3 and 4 on 

phagocytic cells. CR1 also has decay-accelerating activity i.e. it speeds up the 

dissociation of all four of the convertases in the complement cascade (Farries, 1990 ; 

Fearon, 1979; Weisman et al., 1990). By thus limiting the deposition of C3b and C4b, 

this decay-accelerating activity (Krych et al., 1999) is thought to regulate the size of 

immune complexes in vivo, and prevent excessive complement activation. CR1 is also, 

importantly, the immune adherence receptor, that enables erythrocytes to harvest 

particles coated (opsonised) in C3b and/or C4b (Birmingham, 1995), and thus to ferry 

these opsonised entities to the liver and spleen (Krynch-Goldberg and Atkinson, 2001; 

Birmingham and Hebert, 2001; Dobson et al., 1981) where they stimulate phagocytosis. 

In addition to the heavily studied C3b and C4-Binding sites CR1 has in the past been 

shown to bind both to C1q and to MBL, - initiating factors in the classical and 

alternative pathways respectively.  There is also a possibility that they, too, contribute 

to CR1-mediated immune adherence (Klickstaein et al., 1997 and Ghiran et al., 2000). 

The region of CR1 implicated in binding C1q is found in LHR-D (Klickstein et al., 

1997). 
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1.2.4 Functional localization within CR1 

As mentioned above, functional sites 2 (i.e. CCP 8-10 and 15-17) is involved in C3b 

and to a lesser degree, C4b binding and has co-factor activity to factor I. Meanwhile, 

site 1 (CCP 1-3) binds C4b better than C3b. It is however involved in decay 

accerelation. Figure 1.3 indicates the modules involved in C3b, C4b, C1q and PfEMP 1 

binding.  It also shows that much more work will need to be done on CR1 to identify 

the specific region involved in the interaction with the other partners.  Thirdly it shows 

that the binding sites of CR1 have different, although related, functions. 

 
 
Figure 1.3 Binding sites on CR1 for various ligands 

The CCP modules implicated in binding to each known ligand are given. Note that during the 
work described in this thesis it emerged that CCPs 1-3 are the major interacting partner for  Rh4 
– this is not shown on the diagram. 
  



CHAPTER 1 INTRODUCTION 
 

 14 

 

1.2.5 CR1 polymorphisms 

Three main categories of polymorphisms are exhibited by the CR1 gene. Size variations 

or molecular weight polymorphism were the first to be discovered and these might have 

arisen from LHR duplications and deletions (Holers et al., 1987 ; Cohen et al., 1989 ; 

Dykman et al., 1983 ; Thomas et al., 2005). The numerous size variants are believed to 

be the outcome of unequal gene crossover (Ahearn and Fearon, 1989). Four allelic 

forms of CR1, containing three to six LHRs, have been characterized. One of these, 

type A (or F), contains four LHRs and is the most common (82%) allele in all human 

populations studied to date (Xiang et al., 1999 ; Fearon et al., 1989).  

The second class of polymorphisms identified, correlate with the quantitative 

expression of CR1, or CR1 copy numbers, on erythrocytes (Ruuska et al., 1992 ; 

Kazatchkine et al., 1987). This HindIII restriction-fragment-length polymorphism is 

found to be common in Caucasians but rare or absent in Africans.  Homozygotes for the 

L (low expression) allele usually express fewer than 200 copies of CR1, whereas 

homozygotes for the H (high expression) allele express several times this number; 

heterozygotes are intermediate (Gibson and Waxman, 1994 ;Wilson et al., 1986; Xiang 

et al., 1999; Herrra et al., 1998 and  Rowe et al., 2002 ; Dervillez et al., 1997). The 

well-studied Knops blood-group antigenic variation is the third category of 

polymorphism (Moulds et al., 1991). These variants are the focus of the current project.  

The Swain-Langley (Sl) and McCoy (McC) Knops blood-group antigens, are all 

restricted to LHR-D of CR1 (Moulds et al., 1991; Rao et al., 1991). 

African-derived populations are characterized by a slightly higher incidence of a 

larger size – variant of CR1 (Moulds, 2002), and higher copy numbers of CR1 on 



CHAPTER 1 INTRODUCTION 
 

 15 

erytrocytes (Rowe et al., 2002) as well as increased frequency of the S/2 and McCb 

alleles (Moulds et al., 2001). For example, elevated frequencies of McCb and S/2 

alleles have been correlated to resistance to Mycobacterium tuberculosis infections 

(Noumsi et al., 2011) 

 

1.2.6 Knops blood group polymorphism 

The Knops blood group set of polymorphisms consist of Knops a and b (Kna/Knb), 

McCoy a and b (McCa/McCb), Swain-Langley (Sl1/Sl2) and Villien (Vil) (Daniels et al., 

2003 and Moulds et al., 2001). The Knpa/b pair was initially identified among 

previously transfused Caucasian women, in whom an unknown antibody, whose loci 

distinct from those already known (ABO or Rhesus) was detected (Helgeson et al., 

1970; Moulds et al., 2004). In contrast to the anti-Knb, which was reported to be better 

represented in Caucasian donors, antibody producers to this newly discovered McCa 

antigen were prevalent in people of black African origin. (Molthan, 1983; Moulds et 

al., 2004; Molthan and Giles, 1975). Interestingly, Kna, which seems to be associated 

with McCa was found predominantly in caucasoids (Molthan and Moulds, 1978) and 

this suggested that the ethnic background seems to influence the description of the 

Knop’s polymorphism. Significant subsequent studies revealed that the Knops blood 

group antigenic variations are located on CR1 (Moulds et al., 1991; Rao et al., 1991 ; 

Reid, 2004). Furthermore, McCa and McCb and Sl1/2 and Vil are each associated 

specifically with single nucleotide polymorphism in CCP 25 of CR1 (Moulds et al., 

2001). Thirdly, there was a renaming of Sla antigen into Sl1 and Vil into Sl2 (Daniels et 

al., 2003). 
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It emerged that both the Swain-Langley (Sl) and McCoy (McC) blood group 

polymorphisms are antithetical pairs. The McC alleles code for either glutamic acid 

(Glu) or lysine (Lys) at position 1590 (i.e. creating K1590 or E1590) as a result of an 

Adenine (A) change to guanine (G) at base-pair position 4795 (c4795A˃G). Such a 

substituion, of an acidic glutamic acid sidechain for a basic one, might change the 

electrostatics at the surface of module 25 (Soares et al., 2005), if it corresponds to an 

exposed position or could disrupt an internal salt bridge if it were buried. Similarly, Sl2 

polymorphism corresponds to the change of Arginine (Arg) to glycine (Gly) at amino 

acid position 1601 (R1601 or G1601), also as a result of an Adenine (A) change to 

guanine (G) but this time at DNA base-pair position 4828 (c4828A˃G). This also 

corresponds to a non-conservative substitution that could have significant effects upon 

the surface properties or structure of CCP 25 and hence upon its interaction with other 

proteins (in the complement system or from pathogens, its self-associative properties on 

the cell-surface, or its intramolecular interaction with other CR1 modules that may play 

a role in the overall architecture of the protein. Clearly, such effects might be adaptive 

and one could envisage potentially major differences between for example E1590, 

G1601 and its allotypic variant K1590, R1601. (Thathy et al., 2005 ; Moulds et al., 

2000) (See figure 1.9 for possible structural implications). 
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                     Frequency (%)  
Phenotype Caucasians 

 
African-
Americans         

Africans 
Amino 
Acid 

Correlation 
with malaria 

McC(a+)* 98 99 82-95 Lys 1590 Unknown 

McC(b+)* 1 44 44-56 Glu 1590 Unknown 

Sl:1* 99 65 37 Arg 1601  

Sl:2* 1 39 68-72 Gly 1601 ª͂Reduced 
rosetting  

 

Table 1.1 Knops blood group polymorphisms  
* McC = McCoy; Sl = Swain-Langley.  McCa and McCb are one allelic antigen pair.  
Sl1 and Sl2 are another pair.  The corresponding phenotypes for the first pair are 
McC(a+) and McC(b+), and for the second pair are Sl:1 and Sl:2.  ªThere is reduced 
rosetting of Sl:2 RBCs  with P. falciparum infected Table adapted from (Krych-
Goldberg et al., 2002 ; Cockburn I A et al., 2004) 

 

1.2.7 Location of Knops blood group antigens with respect to C3b/C4-binding 

sites  

 Each functional site 2 of CR1 (in modules 8-10 and 15-17) is known to bind to both 

C3b and (to a lesser degree) C4b (The structure of CR1 15-17 is solved, Smith et al. 

2002. On the other hand, the Knops blood group polymorphisms occur within CCP 

modules 25 (Moulds et al., 2001). Despite their distance from the nearest copy of 

functional site 2 within the primary sequence, it is entirely feasible that the Knops 

blood group antigens are brought into physical proximity with modules 15-17 when the 

exodomain of native CR1 adopts an energetically favoured three-dimensional 

arrangement of its multiple modules. If that were the case than the Knops blood group 

antigens could contribute to a contiguous binding site for C3b (or C4b) consisting 

predominantly of surfaces contributed by CCP modules 15-17. Alternatively, they 

could bind to C3b at some other site than do modules 15-17 in a weak secondary 
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interaction that is not easily detectable but modulates affinity none the less. A further 

possibility is that they modulate interactions with C3b or C4 via an intramolecular 

interaction between modules 24/25 and modules 15-17.   

 A less likely possibility is that there are direct or indirect interactions between 

the Knops antigens and either functional site 1 (CCPs 1-3) or the first copy of site 2 

(CCPs 8-10).  Note, however, that the presence of the exceptionally long linker 

between LHR-C and LHR–D (i.e. CCPs 21 sand 22) provides a convenient “hinge 

point” (see below for a more extensive discussion of this point) in CR1 that is 

suggestive of a folding back of LHR-C onto LHR-D and hence proximity and potential 

cooperation between CCP 24/25 and CCPs 15-17 rather than the other functional sites.  

Finally it is conceivable that interactions between these apparently distant regions of 

the molecule could be intermolecular and be linked to self-association of CR1 –

clustering of CR1 upon ligation has been reported to accompany ligation. 
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Figure 1.4 Important regions of CR1 

This cartoon shows the positions of the binding sites for C3b, C4b, C1q/MBL as well as 
PfEMP1 and Rh4. It also draws attention to the location of the Knop polymorphism. In essence, 
the current project set out to explain how polymorphisms displayed so remotely with respect to 
the established binding sites could nonetheless modulate the latter’s activities. 
 

1.2.8 Locations of binding sites for C1q and MBL on CR1  

Complement components C1q, and MBL, as well  ficolins, function to eliminate 

invading microorganism, either by activating the classical pathway (C1q) or the lectin 

pathway (MBL and ficolin) (Ma et al., 2004). C1q, mannose binding lectin (MBL), and 

other members of the collagen family of proteins are pattern recognition molecules, 

able to enhance the phagocytosis of pathogens, cellular debris, and apoptotic cells in 

vitro and in vivo (Korb and Ahearn, 1997). C1q binds to antibody-antigen complexes 

and therefore actively mediates protection against infectious disease as an effective 

follow-up sequel to antibody production and binding to antigens. However, C1q can 

also recognize and bind to apoptotic cells (Korb and Ahearn, 1997), and may 
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participate in the clearance of autoantigens. Interestingly, a few reports have purported 

to show that C1q binds directly to CR1 (Klickstein et al., 1997), and suggested that C1q 

may participate directly in clearance of infected cells.  If C1q does indeed assist in 

clearance of infected cell via binding to a site on CR1, then this might be releavant to 

the current polymorphism study. Importantly the putative C1q binding site was reported 

to lie in LHR-D (Tas et al., 1999). MBL has also been found to bind CR1 (Ghiran et 

al., 2000, Sander et al., 1999) although as with C1q, the literature on this topic is thin 

and its physiological purpose unestablished. The presence of both the Knops blood-

group antigens and binding sites for C1q (and possibly MBL) in LHR-D is clearly 

potentially pertinent to the hypothesis that the Knops blood group variants modulate 

some disease-related aspect of CR1 function and this requires investigation. 

 

1.3 Malaria 

 

Malaria is still responsible for millions of deaths worldwide, especially in sub-Saharan 

Africa, in spite of technological and economical progress in vector eradication, disease 

prevention and treatments (Breman et al., 2001 ; Holding and Snow, 2001 ; Sachs and 

Malaney, 2002). It is a parasitic infection caused by a protozoan of the Apicomplexan 

group of the genus Plasmodia. Among the species that infect man (Plasmodium 

malariae, P. ovale, P. vivax and P. falciparum), P. falciparum is the most devastating.  

Several factors account for the severity of the problem and the difficulty of eradicating 

this disease (Hviid, 1998). One of these factors is that the early signs of malaria 

(Birmingham and Hebert, 2001) look much like the symptoms of other diseases 
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(Warrell, 1993) so they are not always taken seriously. Second, diagnosis is quite 

difficult since it requires trained technicians to conduct the microscopy (Hanscheid, 

1999 ; Warhurst and Williams, 1996 ; Weatherall et al., 2002). Third, the parasites 

responsible are mainly intracellular, hence effective treatment must be targeted at 

parasites within cells, which is challenging. In any case, the ability of the parasite to 

switch or change surface proteins leads to resistance to drugs (Noedl et al., 2008) and 

so frustrates drug designers. Meanwhile, the mechanism leading to severe anaemia is 

poorly understood (Stoute et al., 2003 ; Waitumbi et al., 2000)   Moreover, the parasitic 

life cycle is complex, involving both man and mosquito Ross, 1897 ; Gilles, 1993); this 

implies that a really effective control strategy would be targeted at the relevant events 

in both man and the vector. 

          Studies have been made in different areas of malaria such as pregnancy 

associated and var2csa towards vaccine production (Dahlbäck et al., 2011;  Sander et 

al., 2008 ; Arnot et al., 2001 ; Salanti et al., 2011 ; Pinto et al., 2011 ; Joergensen et al., 

2009 ; Sander et al., 2011 ; Fried and Duffy, 1996) 
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Figure 1.5 Life cycle and life forms of P. falciparum  

 

(A) The pink dashed rectangular region and the black arrows indicate the part of the life cycle 
that will be of importance to the current study. A lot of activities take place in this part of the 
cycle, but two main phenomena are of particular interest: Rosette formation (as explained 
further in the text below) and invasion of erythrocyres. (B) Stained slide showing microscopic 
ring form and trophozoites of P. falciparum. (Image-www.cdfound.do.it/html/pitt.htm). The 
form of the parasite observed in the red blood cells after invasion is the ring form seen in the 
top slide; the lower slide on the other hand shows the trophozoite forms of the parasite that is 
associated with rosetting. (Picture taken during the author’s parasite culture work). 
 
 

1.3.1 Life cycle of Plasmodium falciparum 

As the mosquito feeds, sporozoites, resident in the salivary ducts of the mosquito, are 

injected into the subcutaneous tissue and then into the bloodstream of the host (Miller 

et al., 2002), before quite rapidly invading hepatocytes. The sporozoites then undergo 

nuclear divisions which results in the formation of liver schizonts over a period of 7-10 
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days. The parasites now in their merozoites incarnation are released into the 

bloodstream whereupon they very rapidly invade erythrocytes (Miller et al., 2002, 

2004). 

 Invasion of red blood cells in the human host by P. falciparum commences the 

erythrocytic cycle. Importantly, most pathological features of the disease are as a result 

of this erythrocytic cycle (Ramasamy, 1998). These include fever and chill which are a 

consequence of the waste products released from liver schizonts along with the 

merozoites (Mackintosh et al., 2004). P. falciparum has the capability of adhering to 

venular endothelium and thus being involved in cyto-adherance. This is also the stage 

in the life cycle at which rosetting occurs during which infected and non-infected cells 

associate with one another in the blood stream (Section 1.3.2) with pathogenic 

consequences (Newbold et al., 1997). Whilst this cycle lasts 48-72 hours in the case of 

most Plasmodium spp., for P. falciparum it usually lasts 48 hours (Biggs and Brown, 

2001). After multiplication through several cycles of invasion, release and reinvasion, 

P. falciparum then enters the sexual stage of the cycle (Biggs and Brown, 2001).  

Some merozoites in red blood cells differentiate into gametocytes (Biggs and 

Brown, 2001). These are picked up by the mosquito during a blood meal. In the 

stomach of the mosquito, fusion of gametocytes and meiosis occur. This leads to the 

production of a zygote, which has the ability to penetrating the midgut forming an 

oocyst. Asexual division of the mature oocyst then occurs to form sporozoites. The 

sporozoites migrate to the salivary glands thus completing a full cycle (Gilles, 1993). 

              To help reduce the morbidity and mortality of malaria, researchers over the 

years have put much effort into understanding various parts of its life-cycle and the 
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potential for interventions. Two aspects of the life-cycle that are of particular interest 

here are parasite invasion and the mechanism of rosette formation or “rosetting”.  

Notably, severe malaria is often associated with rosetting of erythrocytes (Newbold et 

al., 1999).  

1.3.2 Rosetting 

Rosetting can be described as the spontaneous attachment of more than two uninfected 

erythrocytes to one or more Plasmodium-infected ones. This might lead to cell 

agglutination, disturbance in the free flow of blood and sequestration of the 

Plasmodium parasites in the blood stream. Many of the malaria parasites in endemic 

areas have been shown to undergo rosetting and rosette appears to be detrimental in 

various ways that might explain the connection with severe forms and often life-

threatening forms of malaria (Newbold et al., 1999). 

     
Figure 1.6 Rosette formation  

 (A) An infected RBC (centre) binding healthy RBCs causing clumping or agglutination called 
“rosetting” (image source: Texas Medical Center website). (B) Depicts formation of a rosette in 
the microvasculature.  Rosetting might be a strategy used by the parasite to remain sequestered 
in the microvasculature so as to avoid destruction in the spleen and liver. Erythrocyte rosetting 
causes obstruction of the blood flow in microcapillaries.  This may help to explain the 
observation that formation of rosettes correlates with severity of malaria (Rowe, Obeiro et al. 
1995).    
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Rosetting should be confused neither with cytoadherance nor with clumping, even 

though all these phenomena are associated with severe malaria. Cytoadherance is the 

attachment of infected red blood cells to the walls of blood vessels (Ho and White, 

1999). Clumping, in the case of malaria, usually refers to the attachment of platelets to 

infected red blood cells (Kaul et al., 1991). Cytoadherance seem to occur in all forms of 

severe malaria, while rosetting is associated primarily with selected strains of P. 

falciparum. Rosetting, which normally occurs alongside cytoadherance, has been 

demonstrated to contribute to the obstruction of blood flow (Miller et al., 1994 ; Kual et 

al., 1991). 

For rosetting to occur, the appropriate parasite factors and host receptors are clearly 

a requirement. Complement receptor type 1 (CR1) is among the major host receptors 

found to be involved in rosetting. Plasmodium falciparum erythrocyte membrane 

proteins 1 (PfEMP1) has been identified as the parasite ligand for CR1 (Rowe et al., 

1997). Some additional host factors that have been implicated in rosetting include the 

ABO antigen (Carlson and Wahlgren, 1992; Barragan et al., 2000), immunoglobulin M 

(Scholander et al., 1996, Clough et al., 1998), and CD36 (Handunnetti et al., 1992, 

Wahlgren et al., 1992); all are implicated in binding to parts of PfEMP1. The duffy 

binding-like 1α (DBL1α) domain of PfEMP1 has been mapped as the likely binding 

site of CR1 during the rosetting process (Rowe et al., 1997; 2000). 

Subversion of proteins that work within the host immune system is a strategy 

commonly used by pathogens (Lindahl et al., 2000). Many of these pathogens bind 

complement receptors and complement regulatory proteins. This approach commonly 

facilitates entrance to host cells although in others, it modulates complement activation. 
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For instance, microorganisms as diverse as Leishmania (parasite), mycobacteria 

(bacteria) and HIV (virus) exploit complement receptor type 1 (CR1) for at least some 

aspects of cell entry (da Silva et al., 1989 ; Wyler et al., 1985 ; Schlesinger and 

Horwitz, 1990 ; Cooper 1998; Thieblemont et al., 1993 ; Munson et al., 1995). It is 

likely that a different purpose is served when PfEMP1 is expressed on the surfaces of 

infected erythrocytes. As briefly mentioned, rosette formation could be a strategy used 

by the parasite to remain sequestered in the microvasculature and to thereby avoid 

destruction in the spleen and liver (Wahlgren et al., 1989). An obstruction of the blood 

flow in microcapillaries is a well-established consequence of erythrocytes rossetting 

(Wahlgren et al., 1992). 

 

1.3.3 PfEMP1 protein (family and binding partners)   

The PfEMP1 protein is encoded by the var gene family. The number of var genes per 

parasite clone is estimated to be between 40 and 50. They are found on all 

chromosomes, usually at telomeres (Chen et al., 2000). At any given time, the parasite 

expresses a single var gene but expression is subjected to sequential switches from one 

gene to another (Chen et al., 2000, Miller et al., 2002, Su et al., 1995 ; Baruch et al., 

1995). This helps the parasite to avoid recognition by the host’s adaptive immune 

system. Quite extensive work have been done on the var gene family, antigen switching 

and different parts of the variety of PfEMP have been expressed using different 

expression systems (Chen et al., 1998; Wang et al., 2009 ; Salanti et al., 2002 ; 

Lavstsen et al., 2003 ; Staalsoe et al., 2002 ; Joergensen et al., 2010 ; Victor et al., 

2010)  
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The PfEMP1 proteins range in size from 200 to 350 kDa. Their extracellular 

portions are organized into domains. An N-terminal segment is followed by a variable 

number of Duffy-binding-like (DBL) domains, cysteine–rich interdomain regions 

(CIDR), and sometimes, a C2 domain (Figure1.7). Based on sequence homology, DBL 

domains fall into five classes (α-γ) (Smith et al., (2000)). In nearly all PfEMP1 

proteins, the DBLα domain at the N-terminus is followed by a CIDRγ region (Figure 

1.7). These N-terminal DBLα domains exhibit ~20% sequence identity across the 

PfEMP1 family (Su et al., 1995). The remaining portion of PfEMP1 varies 

substantially.  

The PfEMP1 protein is primarily responsible for the array of binding activities of 

parasitized erythrocytes (Chen et al., 2000 and Miller et al., 2002). This protein has 

been reported to interact with several types of soluble ligands and surface molecules, 

including intracellular adhesion molecule 1 (ICAM-1), type A and B blood group 

antigens, thrombospodin, E-selectin, chondroitin sulfate and CD36 as well as CR1 

(Chen et al., 2000) (see below).  

The conserved sequence amongst N-terminal DBLα domains has been suggested to 

mediate binding to a common ligand, whereas variable sequences (in other domains) 

could be involved in recognizing a range of specific ligands. DBLα domains and CIDR 

regions both have adhesive properties. Both of these domains are implicated in 

rosetting, with DBLα being suspected of interacting with CR1 (Rowe, 1997; 2000). 

To investigate the CR1-PfEMP1 interaction further, attention has focussed on 

the N-terminal DBLα but also on the adjacent CIDR. The sequences of DBLα-CIDR 

and DBLγ (as provided by Matt Higgens, University of Oxford) are shown in the 
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appendix (Appendix F). When over-expressed, the encoded DBLα had an expected size 

of 43 kDa. Since these portions of the protein are normally conserved, their structure 

would be expected to be similar to the structures of equivalent regions across the 

PfEMP1 family.   

 

Figure 1.7 Domains of PfEMP1 

 Representation of PfEMP1 (of R29) showing the suspected binding site for CR1 in DBLα as 
well as other putative binding sites. 
 

1.3.4 The binding site on CR1 for PfEMP1   

As discussed above, CR1 has been implicated in the rosetting of erythrocytes and thus 

could contribute to the development of severe malaria. In a previous study (Rowe, 

Moulds et al., 1997; Rowe, Rogerson et al., 2000) conducted to map the site of CR1 

that binds to PfEMP1 in rosette formation, CR1 site 2 (specifically, modules 15-17) 

was implicated. Truncated fragments of CR1 that contained the proposed binding site 

brought about a reversal of rosetting in an experimental context (Rowe et al., 1997 ; 

2000). It is of particular interest that functional site 2 (see above) is also known to bind 

to both C3b (and C4b). As mentioned above there are two copies of Site 2 since 

modules 15-17 are virtually identical in primary sequence to modules 8-10. 
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As has been outlined in the earlier section that discussed the spatial relationship 

of C3b/C4b-binding sites and Knops blood group antigens, architectural features within 

the CR1 exodomain could allow module 24/25 to influence functionality at the 

proposed PfeMP1-binding site in CCPs 15-17. 

1.3.5 Process of erythrocyte invasion 

The survival of P. falciparum within the human host depends largely on the ability of 

that parasite to invade red blood cells, and to do so rapidly. This is a complex process 

that has not yet been fully understood. It has been suggested that the process begins 

with the specific binding of the merozoite to the erythrocyte through multiple parasite 

proteins. There follows a re-orientation of the merozoites, resulting in the apical end, 

which contains specialized secretory organelles, being adjacent to the erythrocyte 

membrane. There is then a fusion of the sub-cellular organelles with the merozoite 

membrane, leading to the organelle membrane proteins being placed on the surface of 

the merozoite. A junction between the two cells is then formed in which the surface of 

the merozoite interacts with the erythrocyte surface proteins using their ligands 

localized at the apical tip. Following engagement between parasite protein and host cell 

surface receptor, the parasitic organism actively enters the erythrocyte via a mechanism 

that has not been fully characterised. Invasion involves redistribution of the host 

membrane proteins away from the erythrocyte – parasite junction. A parasitophorous 

vacuolar membrane (PVC) forms around the junction, and the parasite, using actin-

myosin generated force, moves into this organelle (Cowman et al., 2006).  The 

multistep process can be summarised as involving initial contact of the merozoite with 

the erythrocyte, then an apical reorientation occurs so that there is a formation of a tight 



CHAPTER 1 INTRODUCTION 
 

 30 

junction that moves progressively towards the posterior end of the parasite until host 

cell membrane fusion is complete allowing cell entry (Cowman et al., 2006). When a 

merozoite invades an erythrocyte, it initiates the erythrocytic stage of the parasite’s life 

cycle (Miller et al., 2002). 

1.3.6 Invasion protein families and pathways 

Two different gene families encode proteins that are important in P. falciparum 

invasion. One gene family, the erythrocyte-binding–like antigens (EBA), includes 

EBA-140/BAEBL, EBA-175, EBA-181/JESEBL and EBL-1. The second  family is 

reticulocyte-binding–like homology proteins (RBPs or PfRhs) amongst which are  

PfRh1, PfRh2a, PfRh2b, PfRh4, and PfRh5 (Peterson and Wellems, 2000; Adams et 

al., 1992; Rayner et al., 2000, Rayner, 2001). The EBA group are categorised as being 

involved in sialic acid–dependent invasion pathways on the basis that their interactions 

are sensitive to neuraminidase treatment of erythrocytes. On the other hand, the RBPs 

or PfRhs family are described as being in the sialic acid–independent invasion 

pathways for reasons contrary to those used to define the EBA group. Amongst the 

erythrocyte receptors that have been found to bind to P. falciparum invasion ligands in 

the EBA group are glycophorin A (GpA) interacting with EBA-175 (Sim et al., 1994), 

glycophorinB with EBL-1 (Mayer et al., 2009), and glycophorin C with EBA-140 

(Maier et al., 2003). GpA is a major glycoprotein found on human erythrocytes; it is 

heavily sialylated (Marchesi et al., 1972). 
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Figure 1.8 A representation of PfRH4  

This is an example of a protein that is associated with the sialic acid-independent invasion 
pathway. The cartoon shows the region that corresponds to a recombinantly produced fragment 
of PfRH4.9 that presumably corresponds to one or more domains and has been recently shown 
to interact with CR1 in this invasion pathway. The Cs denotes cysteine residues, and the black 
lines with round heads shows the amino acid sequence numbers (Adapted from Tham et al., 
2009). 
 

Numerous studies suggested the interaction between EBA-175  and  

glycophorin A ,  (Adams et al., 1992; Camus and Hadley, 1985; Klotz et al., 1992; 

Orlandi et al., 1992; Sim et al., 1990), whose pathway (EBA-175/GpA) is 

chymotrypsin-resistant (Duraisingh et al., 2003a).  

 

1.3.7 Possible connection between CR1 polymorphisms and Rh4-mediated 

invasion 

While the majority of ligands for the EBA group of receptors had been identified prior 

to the current work commencing, the identification of CR1 as an important receptor for 

the sialic acid–independent invasion pathway, in multiple laboratory strains and wild 

isolates, came only recently. A still more recent paper (the result of a collaboration 

between the Cowman laboratory in Melbourne and our laboratory) presented strong 
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evidence that PfRh4 is the likely parasite binding partner (Spadafora et al., 2010, 

Awandare et al., 2011 ; Tham et al., 2010). Notably, when the gene for PfRh4 was 

disrupted, in the W2mef strain, the parasite lost its ability to switch invasion pathways 

i.e. was unable to invade neuraminidase-treated erythrocytes (Stubbs et al., 2005). 

Moreover, when anti-PfRh4 antibodies were included in a growth assay, it became even 

clearer that PfRh4 is the major ligand responsible for invasion through the sialic acid–

independent pathways (in the region of 50–80%, depending on the parasite strain used) 

(Tham et al., 2009). In brief, when PfRh4 expression is activated, the parasite is able to 

switch receptor usage from sialic acid–dependent to sialic acid-independent pathways. 

This provides a mechanism for the parasite to invade by multiple alternative different 

pathways (Stubbs et al., 2005) and this facility presumably has evolved to assist 

evasion of the immune system.  

Since invasion of erythrocytes is an essential component of the life cycle of P. 

falciparum, it has been crucial to identify all the parasite ligand, and their host 

erythrocyte receptors, that are used in invasion. This will help in appreciating the full 

repertoire of invasion pathways available to P. falciparum and in designing strategies 

for vaccine design or therapeutic intervention. Given that CR1 is an important receptor 

for PfRh4 and that this interaction is critical for invasion, it was hypothesised that the 

region of CR1 containing the Knops group polymorphisms might be able to influence 

binding to PfRH4. Were this to the case it would help explain the link between these 

polymorphism and the risk of developing severe malaria discussed above. Therefore, 

the current study set out to identify the critical regions of CR1 for binding to the 

parasite protein and also to measure affinities of the different variants for PfRh4. 
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1.3.8 Justification for CR1 polymorphism and structural study   

The hypothesis to be addressed in this work clearly depends on the Knops blood group 

variants having functional consequences that must have a structural basis. With that in 

mind, the possible contribution to CR1 architecture of the long linker between LHRs-C 

and D was considered.  

The two loci where the amino acid substitution occur (K1590E and R1601G) 

are only separated by ten residues and in homology-based models of CCP 25 (CCP-db 

website1) are surface exposed (Moulds, 2010). Thus the side-chains in question (as 

outlined above) potentially interact with neighbouring CR1 modules, with host or 

parasite ligands or with other CR1 molecules. The middle cartoon of Figure 1.9A 

depicts a model of CCP 25 in which the surface-exposed region corresponding to the 

amino acid substitutions (R1601G) is highlighted in red. The flanking cartoons (Fig. 

1.9A) demonstrate the loss of the large positively charged and relatively hydrophilic 

side chain of Arg1601 when it is substituted with small, neutral and relatively 

hydrophobic glycine (as in R1601G).  (Leninger et al., 2004; Moulds et al., 2001).  The 

Lys/Glu1590 variants are clearly different by two charges although both sidechains are 

relatively large and hydrophilic.   

 

Thus if residues 1590 and/or 1601 occur within or close to a binding site of 

CR1, or in a region critical for key intramolecular (e.g. intermodular) contacts then 

quite drastic functional and/or structural consequences might result. Note, indeed, that 

the junction orientation between CCPs 24 and 25 could be affected by the K1590E 

                                                 
1 http://www.bionmr.chem.ed.ac.uk/bionmr/public_html/ccp-db.html 
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change, since the substitution would have taken place just one amino acid before the 

first Cys (C1591) of CCP 25  

 
 

 
 
 

 
Figure 1.9 Potential structural aspects of CR1 polymorphisms 

(A) 3D cartoons of polymorphic forms of CCPs 25 (B) Comparison of tilts between linker 
lengths. (Left)  4 amino acid residue linker of CR1 16-17,  tilted at an angle of 16.3°  whiles 
(Right) eight amino acid residue linker of CR2 1-2, titled at an angle of 142°  
     

The linker between modules 21 and 22 stands out both for its unusual length 

and because of its strategic position between the LHR-C containing a C3b, C4b and 
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PfEMP1 binding site,  and LHR-D which contains the McC and Sl Knops blood group 

polymorphisms. Although no study has so far implicated this linker in any known 

biological function, intuition suggests it has evolved for a purpose and that it could 

have a key role in the architecture of CR1. Another eight-amino acid residue linker is 

present between the N-terminal CCPs of CR2 and these modules were shown to adopt a 

V-shape with an intermodular angle of 142° (Figure 1.9B).  Other module pairs, linked 

by three or four residues, are much more extended with a tendency towards being 

almost linear (see Fig. 1.9B). But to complicate matters, CCPs 12 and 13 of FH linked 

by eight residues form a bend but not a V-shape structure.  Clearly, the orientation of 

modules 21 and 22 requires experimental investigation.  

 
 

1.4 Hypothesis  

To summarise the hypothesis is that the Knops blood group-polymorphism will have an 

effect on the way CR1 interacts with one or more of its ligands. This is easily testable 

in the case of known ligands such as C3b, C4b, C1q, PfEMP1 and Rh4.9. We also 

hypothesized that the CR1 molecule adopts a bent-back conformation that apposes 

CCPs 15-17 and CCPs 24-25. We finally conjectured that modules 24 and 25 might 

participate directly in interactions with ligands that have yet been identified (perhaps 

relevant to host-parasite interactions)  

CR1 Knop polymorphism will make a difference in the way CCP 15-25 interacts with 

its binding partners 
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Figure 1.10 Illustrates portions of the Hypothesis 

 

1.5 Aims and objectives 

The aim of the study was to investigate whether polymorphisms, displayed at a remote 

part of the protein from previously mapped binding sites, can affect the function of the 

protein when interacting with its ligands. This will be done by: (1) Recombinantly 

producing relevant constructs of CR1; (2) Structurally testing whether the CR1 

molecule in the LHR-C,D region has a bent-back conformation; (3) Biologically testing 

whether the allotypic variants bind differentially to ligands or exhibit differences in 

functional assays. 
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Figure 1.11 Illustrate the steps involved in attaining the specific objectives 

In all (Aim 1, 2 & 3), Yellow oval shapes represent CCP modules. Aim1 - Protein production 
and purification. Aim 2 – Biologically studies – Shape represent a bend back conformation. 
Whiles brown triangles represent their binding partners (C3b, C4b, C1q, PfEMP1 & Rh4.9). 
Aim 3 – Biophysical studies.  Differents shapes in A, B and C represent extended (straight) and 
globular (curved). 
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2.1 Overview of methods 

A range of methods were used in order to accomplish the goals of this project. The 

following flow chart (Flow chart 2.1) summarises the main activities.  

 

 

 

 

 

 

 
 
Flow chart 2.1 Main activities in the current project  
(A) Overview. (B) Methods employed in the molecular biology/DNA manipulation component 
of the work. 
 
 

2.2 DNA manipulation 

The techniques used in this component of the work include the polymerase chain 

reaction (PCR), DNA amplifications and extractions, “TOPO cloning” (Invitrogen), 
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DNA digests using restriction enzymes, DNA ligations, and transformations into E. coli 

and P. pastoris cells (Flow chart 2.1B). A summary of the steps involved, from creation 

of the insert encoding the protein of interest to the transformation of the expression 

plasmid into P. pastoris, is presented in Figure 2.1 and outlined below. Each step will 

be elaborated upon subsequently.  

Note that human CR1 cDNA was provided by John Atkinson (Washington 

University Medical School) and oligonucleotide primers for PCR were ordered from 

Sigma or Invitrogen. The PCR-amplified (details in Section 2.2.5) DNA segments of 

choice were subjected to blunt-ended topoisomerase-mediated cloning into the vector 

pCR®4Blunt-TOPO (Invitrogen) followed by transformation into One Shot Top10 

chemically competent E. coli cells (Invitrogen).  Successfully transformed colonies were 

selected on ampicillin-containing Luria-Bertani (LB) media (agar initially and, later, 

broth).  Following amplification of the TOPO vector in E. coli, it was extracted and 

double digested using restriction enzymes (purchased from New England Biolabs) (see 

Section 2.2.8 for details).  The insert was then ethanol precipitated or gel extracted and 

ligated into a cut pPicZ αB expression vector (Invitrogen). After amplification in E. coli, 

the linearised (using SacI, New England Biolabs) plasmid was transformed into the wild-

type KM7I H strain of P. pastoris (Invitrogen) for protein production. Transformed P. 

pastoris colonies were selected on high-Zeocin containing media (yeast-extract peptone 

dextrose –YPD) to favour selection of those with high copy numbers. Mutations were 

introduced using a QuickChange site mutagenesis kit (Stratagene) in some cases to 

make it possible to produce polymorphic forms of the protein.  
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Figure 2.1 Summary of cloning and transformations of DNA encoding the CR1 fragments  

Oligonucleotides/primers are shown in orange, the DNA insert is in yellow, the pCR®4Blunt-
TOPO vector is dark blue, pPICZ αB vector is in light blue. From top: The amplification step 
involves the use of forward and reverse primers (orange, see Table 2.1 for sequences). The 
TOPO cloning step involved the amplified PCR product (yellow blunt-ended bar) and the 
pCR®4Blunt-TOPO (“empty Topo vector” – blue circle). After transformation into, and DNA 
extraction from, E. coli cells the “sticky-ended” DNA insert (yellow) is a result of the 
restriction enzyme digestion of the TOPO-cloned product (restriction enzymes used for the 
double digestion in this study were PstI, XbaI and NotI). Ligation of the DNA fragment into the 
P. pastoris expression vector pPICZ αB required double digestion of the plasmid (light-blue 
incomplete circle), using the same restriction enzymes as used to create the insert. The resultant 
vector (light blue and yellow) is amplified (with transformed E. coli cells), extracted, linearised 
(using SacI), and transformed into P. pastoris (KM71 H strain). 
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2.2.1 Primer sequences 

Table 2.1 shows the sequences of primers used in this study. The restriction-enzyme 

sites are shown in lower-case letters, while the annealing region are in upper-case 

letters. The primer-pairs numbered 1 – 10 were designed (with the aid of the Sigma 

Genosys website, which has a DNA calculator used for cross-checking the parameters 

and characteristics of the primer) and purchased by the author, while Dr. Christoph 

Schmidt (University of Edinburgh) kindly provided the primer-pairs numbered 11 and 

12. The latter two pairs of primers were mainly used for screening and sequencing after 

DNA fragments had been cloned into the TOPO vector or the P. pastoris cloning vector 

(pPicZ αB). The bold black line in Table 2.1 separates the primers without restriction-

enzyme site (lower ones) from the primers that were designed with restriction sites 

(upper ones). 
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NO PROTEIN 
CONSTRUCT 

OLIGONUCLEOTIDE DESCRIPTION AND SEQUENCE RESTRIC-
TION 
SITE 

 5’ aactgcaggcGAACATATCTTTTGTCCAAATCC Pst1  
1 

CR1 21    

3’ aactgcaggcGAACATATCTTTTGTCCAAATCC Xba1 

 5’ aactgcaggcGAACATATCTTTTGTCCAAATCC Pst1  
2 

CR1 21- 22    

3’ gctctagactaTCTACAGTTGTCTTCAACACTTGAC Xba1 

 5’ aactgcaggcTCCTGTGATGACTTCTTGGG Pst1  
3 

CR1 20 -23   

3’ gctctagactaGATCTCACAAATAGGTGCCTTC Xba1 

 5’ aactgcaggcCGAATTCCTTGTGGGC  Pst1  
4 

CR1 17 

3’ gctctagactaGTTAGGTATAATGCACTGAGGG   Xba1 

 5’ aactgcaggcCGAATTCCTTGTGGGC  Pst1  
5 

CR1 10-11/17-18 

3’ gctctagactaCCTGGAGCAGCTTGG Xba1 

 5’ aactgcaggcCGAATTCCTTGTGGGC  Pst1  
6 

CR1 17-25 

3’ gctctagactaGGAGCAGTGTGGCAGC Xba1 

 
7 

CR115-25  5’ aactgcaggcCTGGGTCACTGTCAAGCC Pst1 

  3’ gcgcggccgcctaGGAGCAGTGTGGCAGCTTG Not1 

 5’ aactgcaggcATATCTTGTGAGCCACCTCC Pst1  
8 

CR1 24-25 

3’ gctctagactaGGAGCAGTGTGGCAGC  Xba1 

 5’ CCTCGGTGTATTTCTACTAATGAATGCACAGCTCCAGAAGTTG  
9 

CR1 15-25 
K1590E 
 3’ CAACTTCTGGAGCTGTGCATTCATTAGTAGAAATACACCGAGG 

 5’ CAGAAGTTGAAAATGCAATTGGAGTACCAGGAAACAGGAG  
10 

R1601G  

3’ CTCCTGTTTCCTGGTACTCCAATTGCATTTTCAACTTCTG 

 5’ GGGGATTTCGATGTTGCTGTTTTG  
11 

Alpha-Factor  & 
 AOX1  3’ CCGGTCTTCTCGTAAGTGCC 

 5’ GCAGCTTATAATGGTTACAAATAAAGCAATAGC  
12 

pUB/Bsd-TOPO 

3’ GGTAACGCCAGGGTTTTCCC  

 

Table 2.1 Primer sequences 
 

In primer-pairs numbered 9 and 10, the base pair to be changed using site-directed 

mutagenesis, is highlighted in red. The names of primers used in the QuickChange 

(Stratagene) site-directed mutagenesis kits are written in such a way that the amino acid 

substitution is indicated (e.g. K 1590 E). For the purposes of this study, these two pairs 
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of primers (K1590E and R1601G) were used to generate the McC and Sl Knops blood-

group polymorphic forms of specific CR1 constructs such as CR1 15-25, CR1 17-25 

and CR1 24-25. In all these cases, the K1590E and the R1601G amino acid changes 

were achieved by introducing A4795G and A4828G base-pair changes, respectively.  

  

2.2.2  Amplification of coding sequences using PCR  

Amplification of the coding sequences is one of four applications of the PCR technique 

used in this study. The other applications are: introducing mutations needed to effect 

desired amino acid substitutions; screening of transformed cells; and sequencing of 

extracted DNA. 

           Materials required for this section included: oligonucleotide primers (see Table 

2.1, Sigma or Invitrogen), human CR1 cDNA (provided by John Atkinson, Washington 

University Medical School), Herculase  Pfu  reaction buffer, Herculase HotStart and 

Turbo Pfu polymerase (all from Strategene), dimethylsulfoxide (DMSO), molecular 

biology-grade H2O, and deoxynucleotide triphosphates (dNTPs) (from Roche). 

             The reaction mixture was usually made up of 1 µl each of forward and reverse 

primers (equivalent to 10 µmol), variable amount of template DNA (in the region of 40 

ng), 5 µl Herculase or Pfu reaction buffer (the “10x concentrate” supplied by 

Stratagene), 2.5 µl DMSO (in the case of Herculase being used), 1 µl dNTPs (from the 

10 mM solution supplied by Roche) and 0.5 µl of either Herculase HotStart or Turbo 

Pfu polymerase solutions (as supplied at 5 U/µl by Stratagene) using molecular 

biology-grade H2O, the total volume was adjusted to 50 µl. If the yield of DNA 
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following PCR amplification was low, the procedure was repeated using this initial 

product as the template but the annealing temperature (see below) was adjusted. 

              A summary of steps in PCR-amplification of the coding sequences is shown in 

Flow chart 2.2, indicating the appropriate PCR-cycling parameters. The elongation time 

was adjusted to around one minute per thousand base pairs of DNA as per the protocol 

(Strategene manual). Non-binding regions, restriction-enzyme sites or mutation 

substitutions of the primers were all taken into consideration when the melting 

temperatures (Tms) were estimated for use in annealing steps. When the two primers 

(forward and reverse) had dissimilar Tms, the lower of the two Tm values was used as an 

annealing temperature. Thus the annealing temperature and time were adjusted for each 

construct, according to the Tm of the primers and the length of the construct. 
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Flow chart 2.2 Program used for  PCR for amplification of DNA 
 

2.2.3 Running of agarose gel electrophoresis  

Agarose gel electrophoresis was performed after the amplification process to quantify 

the yield of the reaction, assess product purity, and check the product was running at a 

position commensurate with the expected size/molecular weight. This was needed to 

ascertain whether the PCR itself had worked and ensure the amplified DNA produce is 

not a contaminant. 

Step 1: Initialisation, Temperature (oC): 95, Time (min):- 1.0, Repetitions: 1x 

 

Step 2: Denaturation, Temperature (oC): 95, Time (min): 0.5, Repetitions: 14x 

 

Step 3:  Annealing steps, Temperature (oC): Tm, Time (min): 0.5, Repetitions 14x                                             
                                                                  (gradient -0.5°       R=3.0°/s)                               

Step 4: Elongation, Temperature (oC): 72, Time (min): 1.0/kb DNA, Repetitions: 14x               

  

Step 5: Denaturation, Temperature (oC): 95, Time (min):  0.5, Repetitions: 19 - 24x 

 

Step 6: Annealing, Temperature (oC): Tm -7,   Time (min): 0.5, Repetitions: 19 - 24x 

                    

Step 7: Elongation, Temperature (oC): 72 Time (min): 1.0/kb DNA, Repetitions: 19 - 2 4x  
                                     

 
Step 8: Final Elongation, Temperature (oC): 72,   Time (min): 5.0 

Step 9: Hold, Temperature (oC): 4,   Time (min): hold 
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The materials used in running agarose gel electrophoresis included agarose obtained 

from Qiagen, tris-acetate EDTA (TAE) buffer (Tris base, glacial acetic acid, 0.5 M 

EDTA, pH 8.0, and ddH2O), ethidium bromide/CYBR Safe (Invitrogen), a gel-running 

tank and its associated apparatus and a microwave oven or water bath, DNA molecular-

weight markers (New England Biolabs), DNA (e.g. a PCR product, see previous 

section), loading buffer (Invitrogen) and a UV trans-illuminator (Ultraviolet Products). 

An appropriate amount of agarose powder was mixed with an appropriate volume of 

TAE (which was usually diluted from the 50X stock supplied) to make up a 1% (w/v) 

agarose gel. This was heated with gentle mixing at short intervals until the agarose was 

completely dissolved. An appropriate amount of ethidium bromide/CYBR Safe was 

then mixed gently with the dissolved agarose after it had been allowed to cool, but 

before it set (at about 50 °C). Generally, a final concentration of about 50 µg/l for 

ethidium bromide was sufficient to visualise the DNA. 

The running tank was filled with TAE buffer, and the DNA samples (8 µl), mixed 

with 4 µl loading buffer, and were placed in the wells. Two DNA molecular-weight 

markers (New England Biolabs) were run simultaneously alongside the samples. The 

“100-base pair” marker was useful for DNA products in the range of 250 to 1500 base 

pairs while the “1-kb marker” was essential when the molecular weight of the DNA 

products were within the range of 500 – 10,000 basepairs.  The gel was run at 80-100 V 

until good separation of the markers was obtained, but ensuring that the DNA did not 

run out of the gel. Using UV radiation from a trans-illuminator, the gels were 

visualised, and images captured for archiving with a digital camera.  



CHAPTER 2 MATERIALS AND METHODOLOGY 
 

 48 

2.2.4 Gel extraction and ethanol precipitation 

These two procedures were deployed to clean up the DNA (e.g. the PCR product) and 

to separate it from other materials such as enzymes, primers, other unwanted amplified 

DNA fragments, proteins etc. Materials included; Qiagen gel-extraction kit, centrifuge 

(Sorvall legend RT, with SH-3000 swinging bucket rotor), sodium acetate, 100% 

ethanol and 70% (v/v) ethanol.  

           Gel extraction was performed before cloning using the protocol found in the 

Qiagen manual. A DNA agarose gel was run (as previously described) and after 

separating the desired DNA band  from  all other materials, the DNA fragment was 

excised from the gel with a clean, sharp scalpel. This gel slice was weighed, put into a 

colourless tube and then dissolved in three times as much volume of the buffer as the 

weight of the gel (e.g. 100 mg of gel dissolved in 300 µl of buffer) and incubated at 50 

°C for 10 minutes, mixing at 2-3 minute intervals until the gel slice had completely 

dissolved. After checking to make sure that the colour of the mixture was yellow, one 

gel-volume of isopropanol was added to the sample with mixing. The sample was then 

applied to the QIAquick (Qiagen) column that had been placed in a 2-ml collection tube, 

and centrifuged for 60 s. The flow-through was discarded and the QIAquick column 

placed back into the same collection tube. After the QIAquick column has been 

washed, an additional centrifugation was done at 13,000 rpm for 60 s and then the 

QIAquick column was placed into a clean 1.5-ml microfuge tube for elution. This was 

achieved by adding 50 µl or 30 µl of the elution buffer to the centre of the QIAquick 

column, and centrifuging (13,000 rpm) for 60 s, after it has been allowed to stand for 

60s. 
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Ethanol precipitation was used to concentrate the DNA and further clean it up. Before 

commencing, it was important that the volume of the DNA sample was noted, because 

that determined how much salt as well as ethanol was to be added.  A 1/10th volume of 

3 M sodium acetate, pH 5.2, was then added, followed by 2 to 2.5 volumes of cold 

100% ethanol. After vigorously mixing by vortexing and placing on ice, or in the -20 

°C freezer, for about 30-60 minutes, the mixture was centrifuged ( using a benchtop  

Eppendorf centrifuge 5415R, from Hamburg, Germany) at maximum speed for 15-30 

minutes, and then the supernatant was carefully removed and discarded. Sufficient 70% 

(v/v) ethanol was then added to wash the residual salt from the pellet, after which it was 

centrifuged (13,000 rpm) for about 15 minutes and the supernatant was discarded. The 

pellet was re-suspended in water after it has been left to air dry. 	
  

2.2.5 TOPO® cloning of PCR product   

The materials used in blunt-ended topoisomerase cloning included: the DNA product 

from the PCR, and the Invitrogen TOPO® cloning kit. Cloning was carried out 

according to the Invitrogen manual. To set the reaction up, a 2 µl aliquot of the PCR 

product was mixed with 0.5 µl of salt solution, 0.5 µl sterile H2O and 0.5 µl of the 

TOPO® vector as supplied. The solutions were gently mixed and incubated for 5-10 

minutes at room temperature. A part of this 3.5 µl mixture containing plasmid DNA 

was then transformed into Top10 chemically competent E. coli cells as described 

below. 

2.2.6 Transformation of Top10 E. coli cells 

The materials used for this section were: Plasmid DNA (e.g. the product from the 

TOPO® cloning procedure described in Section 2.2.4), super optimal broth with 
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catabolite repression (SOC) medium, LB agar plates containing 100 µg/ml ampicillin or 

LB Lennox containing 25 µg/ml Zeocin, or LB broth containing 100 µg/ml ampicillin, 

shaking incubator (250 rpm, Stuart Scientific Orbital Incubator SI50).  

The chemically competent Top10 cells (50 µl) were thawed on ice and 1-2 µl of 

the plasmid DNA was added and mixed by tapping the tube. After incubation on ice for 

30 minutes, the cells were placed in a water bath at 42 oC for 45 s and then quickly 

returned to the ice for 120 s. About 250 µL SOC medium was pre-warmed in the 42 oC 

water bath and this pre-warmed SOC medium was added to the transformed cells and 

the mixture incubated at 37 oC, for one hour shaking at 200 rpm. LB agar plates (pre-

warmed to 37 oC) were placed in the incubator and used for the spreading/plating of the 

transformed cells. When TOPO® vector was used for the cloning, LB agar plates 

containing 100 µg/ml of ampicillin were used for the spreading and incubation at 37 oC 

overnight. Note that LB Lennox agar containing 25 µg/ml Zeocin plates were utilised 

when the vector involved was pPicZ αB. 

 

2.2.7 Cultures and plasmid DNA extraction (“Minipreps” and “Maxipreps”) 

Materials for this part of the work included: QIAprep miniprep or QIAprep maxiprep 

kits for plasmid extraction and the QIAquick spin gel kit, all purchased from Qiagen. 

The culture and DNA extraction were carried out according to the protocol 

provided with the Qiagen QIAprep spin gel kits. After transformation and following 

overnight incubation on LB agar plates with 100 µg/ml of ampicillin in the case of 

TOPO® vector (but 25 µg/ml of Zeocin for the pPicZ αB vector), single colonies were 

picked and inoculated into 5 ml LB broth containing 100 µg/ml of ampicillin (for 
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TOPO vector and 25 µg/ml of Zeocin for pPicZ αB vector). For a small preparation 

(“miniprep”), an overnight incubation at 37 oC, shaking at 225 rpm, was sufficient. For 

larger culture volumes (maxiprep) 100 µl of the 5-ml starter culture was re-inoculated 

into 50-250 ml of appropriate media (LB broth containing ampicillin or Zeocin for 

TOPO or pPicZ αB vectors respectively). The overnight culture of 5 ml (miniprep), or 

50-250 ml (maxiprep), was pelleted by centrifugation (4,000x g for 5-10 minutes) and 

DNA extraction was performed as per the above protocol. The eluted DNA 

concentrations were checked by spectroscopy (Eppendorf BioSpectrmeter) at a 

wavelength of 260 nm, DNA was stored at -20 oC. 

 

2.2.8 Sequencing 

DNA sequencing was performed at various junctures, for example after cloning into a 

different vector or site-directed mutagenesis. The materials needed for sequencing were 

primers (see above) and the ABI Prism dGTP BigDye Terminator Version 3.1 

sequencing kit (Applied Biosystems).   

The total reaction volume was kept at 20 µL using sterile water and the mixture 

was made of about 1 to 2 µl of the template DNA (150-300 ng), 1 µl primer (3.2 pmol), 

and finally 4 µl of the BigDye Terminator V3.1 solution as supplied. After mixing well 

(for 5 s), the program below was used for the PCR sequencing reaction.  
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Flow chart 2.3 Program use for PCR prior to sequencing 
 

After the PCR reaction has been carried out, samples were submitted for 

automated sequencing to the service in the School of Biological Sciences, University of 

Edinburgh. The results were analysed using the BioEdit software downloaded from the 

(http://www.mbio.ncsu.edu/BioEdit/bioedit.html). 

2.2.9 Restriction enzyme digests (double digestions) 

Materials for this step included: Restriction endonuclease (PstI, XbaI, NotI and SacI), 

NEB buffer  and bovine serum albumin (BSA) ( all from New England Biolabs). 

The restriction enzymes were used to cut out the DNA insert from the TOPO 

vector at the appropriate restriction sites for re-cloning into the pPicZ αB. For a final 

reaction volume of 20 µl, 2 µl of the appropriate 10x concentrate NEB buffer was 

mixed with 16 µl of eluted plasmid DNA. About 0.2 µl of BSA was then added, and 

finally 1 µl of each of the restriction enzyme (20 U/µl) was added. The mixture was 

Step 1: Initialisation, Temperature (oC): 95,   Time (min): 0.5, Repetitions: 1x                      
            

Step 2: Denaturation, Temperature (oC): 96, Time (min): 0.5, Repetitions: 24x                      
            

Step 3: Annealing, Temperature (oC): 50, Time (min): 0.5, Repetitions: 24x                      
            

Step 4: Elongation, Temperature (oC): 60, Time (min): 4.0, Repetitions: 24x                      
            

Step 5: Hold, Temperature (oC): 4, Time (min): hold, Repetitions: -                     
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quickly vortexed, centrifuged (using Eppendorf centrifuge 5415R, from Hamburg, 

Germany) and finally incubated at 37 oC for 1-4 hours. Following electrophoresis of 

products on an agarose gel, extraction of cut DNA fragments was carried out using the 

QIAquick Gel Extraction Kit as previously described. 

 

2.2.10 Ligation into pPicZ αB  

Materials needed for this step included: pPicZ αB (Invitrogen), and 2x Quick Ligation 

Reaction Buffer and Quick T4 DNA Ligase, both purchased from New England 

Biolabs, and LB Lennox containing Zeocin (Autogen Bioclear)   

  The ligation was performed according to the New England Biolabs manual 

where 50 ng of the cut vector was mixed with a three-fold molar excess of insert and 

adjusted with sterile water to a volume of 10 µl. Then 10 µl of 2X Quick Ligation 

Buffer and 1 µl of Quick T4 DNA ligase were added and mixed thoroughly. After 

centrifugation, the reaction mixture was incubated at room temperature for five minutes 

prior to Top10 E. coli transformation. Transformed cells were spread onto LB Lennox 

plus Zeocin (25 µg/ml) plates and incubated overnight at 37 °C.  Transformation was 

performed as described earlier. 

 

2.2.11 PCR Mastermix screening of transformed colonies 

 This PCR-based screening step was locally termed ‘Mastermix screening’ because it 

was performed with Mastermix (Promega), which contained the polymerase, dNTPs 

and the polymerase buffer. It was used in this study mainly to ensure that the DNA of 

the correct size had been inserted before sequencing. Apart from the Mastermix, 
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materials needed for this step were the oligonucleotide primers (Invitrogen or Sigma) 

and EB buffer (10 mM TrisHCl, pH 8.5, from Qiagen) 

This screening was done both for the TOPO-cloned transformants and after 

cloning into pPicZ αB vector. Between four and six single colonies per cloned construct 

were picked from an overnight culture.  Some were transferred onto a new plate while 

the rest were mixed with 20 µl of EB buffer in a labelled PCR tube. To lyse the cells 

and to release the plasmid DNA, the mixture was heated to between 90-100 °C for 5 

minutes, and a 1-2 µl aliquot of this was taken for the screening reaction. The reaction 

mixture was made of 2 µl each of appropriate primers (M13 forward and reverse 

primers for the TOPO vector, and alpha-factor forward and AOX reverse primers for 

the pPicZ αB vector – see Table 2.1 for sequence), 1-2 µl of plasmid DNA and, finally, 

5 µl of the PCR Mastermix solution. After mixing well, the screening was started using 

the PCR program below. This screening would not have been necessary if gel 

extraction after double digestion have been successful before re-cloning into the pPicZ 

αB vector. 
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Flow chart 2.4 PCR screening cycle programme 
 

The screening products were analysed by running an agarose gel, after which 

samples that screened positive (i.e. showing a band of the expected size for the DNA 

fragment plus the additional amplified parts of the vector) were sent for sequencing. If 

the desired sequence were confirmed, it was selected for further work.  For example 

some samples were used as templates for site-directed mutagenesis.  

 

2.2.12 QuickChange site-directed mutagenesis  

In this work, the QuickChange site-directed mutagenesis kit was used to introduce the 

nucleotide substitution needed to express the Knops blood-group polymorphic 

variations that occur in CCPs 24-25 of CR1. The template was therefore normally the 

DNA coding for the CR1 construct already cloned into the pPicZ αB vector. The 

Step 1: Initialisation, Temperature (oC): 95,   Time (min): 1.0, Repetitions: 1x                      
            

Step 2: Denaturation, Temperature (oC): 50, Time (min): 0.5, Repetitions: 30x                      
            

Step 3: Annealing, Temperature (oC): 95, Time (min): 0.5, Repetitions: 30x                      
            

Step 4: Elongation, Temperature (oC): 60, Time (min): 1.0/kb DNA, Repetitions: 30x                      
            

Step 5: Hold, Temperature (oC): 4, Time (min): hold, Repetitions: -                     
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materials needed for this work included the QuickChange Kit (Stratagene), 

oligonucleotide primers (see Table 2.1), the template DNA (from the previously cloned 

CR1 construct), and DpnI (10 U/µl) (New England Biolabs). The QuickChange kit 

mentioned contains the Pfu reaction buffer, Pfu polymerase, molecular biology-grade 

H2O and dNTPs. 

The reaction mixture consisted of 1 µl  of template plasmid DNA (normally 

about 40 ng), 1 µl  each of the  forward and the reverse primers (about 10 µmol each), 1 

µl of  dNTPs (from a 10 mM stock as supplied) and 5 µl of  the 10x concentrated  Pfu 

buffer. With the exception of the 1 µl Pfu Turbo polymerase (2.5 U/µl), which was the 

last reagent to be added, the volume was adjusted to 50 µl using molecular biology-

grade H2O. Immediately after the polymerase was added, a brief vortexing was 

performed, the sample was centrifuged and PCR carried out. The generalised form of 

the PCR program is shown in Flowchart 2.6. 

 

 

 

 

 

 

 

 

 

 

 

Step 1: Initialisation, Temperature (oC): 95,   Time (min): 0.5, Repetitions: 1x                      
            

Step 2: Denaturation, Temperature (oC): 96, Time (min): 0.5, Repetitions: 19x                      
            

Step 3: Annealing, Temperature (oC): Tm -5, Time (min): 1.0, Repetitions: 19x                      
            

Step 4: Elongation, Temperature (oC): 68, Time (min): 1.0/kb DNA,   Repetitions: 24x                      
            

Step 5: Hold, Temperature (oC): 4, Time (min): hold, Repetitions: -                     
            

Step 5: Final Elongation, Temperature (oC): 72, Time (min): 5.0,   Repetitions: -                      
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Flow chart 2.5 PCR cycling parameters for QuickChange site-directed mutagenesis 

The product was mixed with DpnI (10 U/µl) and incubated for between one and 

two hours at 37 ºC to allow for digestion of the methylated template DNA plasmid prior 

to transformation into (XL blue) super-competent bacterial cells. Selected colonies 

were picked and cultured, and then DNA extraction and sequencing were performed as 

described above. DNA from the colonies that yielded good sequencing results was 

extracted using the QIAprep Spin maxiprep kit, linearised by SacI-digestion and 

cleaned up using phenol-chloroform extraction and ethanol precipitation. (The 

procedure for the SacI enzymatic digestion is similar to the one previously described 

above under enzymatic digestion). 

 

2.2.13 Phenol-chloroform extraction 

Materials for this step included: phenol, chloroform and isoamyl alcohol purchased 

from Sigma-Aldrich, chloroform and the linearised maxiprep product described above. 

The total volume of the linearised maxiprep product was noted and an equal volume 

added of commercially prepared phenol: chloroform (normally kept in the 4 ºC fridge). 

This was vigorously mixed by vortexing and spun down by centrifuging at maximum 

speed on the bench-top microcentrifuge (~13,000 rpm) for 120 s at room temperature. 

The aqueous phase (i.e. upper part) was transferred into a fresh centrifuge tube and 

another equal volume of commercially prepared phenol:chloroform was added. The 

centrifugation procedure and transfer of the aqueous phase into a fresh tube were 

repeated. Finally, an equal volume of chloroform was added, mixed, spun down and the 

aqueous phase was transferred into a fresh tube for ethanol precipitation. Ethanol 
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precipitation was performed as has been previously described. The purified linearised 

product was then transformed into P. pastoris KM71 H cells. 

2.2.14 Pischia pastoris expression system of choice 

The P. pastoris KM71 H strain (from Invitrogen) uses the catalytic ability of alcohol 

oxidase (AOX) to metabolise methanol and it belongs to the MUTS phenotype. MUTS 

has advantages over the other P. pastoris methanol metabolising phenotype, MUT+ and 

was chosen as the expression system for this study. The P. pastoris system was picked 

for expression work in this case because as a eukaryote, yeast is able to form disulfide 

bonds (this can be problematic with E. coli-based systems). The chosen system 

facilitates the secretion of the desired protein into the supernatant, facilitating 

harvesting and purification. Secretion requires the α-factor signal-peptide. Prior to 

secretion this signal peptide is naturally cut off by endogenous enzymes that recognize 

the last amino acid residues of the signal peptide (EAEA) ahead of the desired protein 

sequence (Cereghino et al., 2000, Cregg et al., 1993, Clare et al., 1991). The cells can 

utilise methanol as a carbon and energy source and are induced to express the target 

gene (and produce and secrete the protein) by addition of methanol to the medium.  

2.2.15 Transformation of P. pastoris KM71 H cells   

 The transformation was carried out according to the Invitrogen manual. The process 

started by inoculating 5 ml of YPD with the P. pastoris strain (KM71 H wild-type) and 

culturing overnight at 30 °C.  Between 0.1 and 0.5 ml of the overnight culture was then 

put into a two-litre flask containing 500 ml of fresh medium and grown overnight to an 

OD600 of 1.3-1.5.  The cells were centrifuged at 1500 x g for five minutes at 4 °C and 

the pellet re-suspended with 500 ml of ice-cold, sterile water.  The cells were 
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centrifuged as described earlier, the pellet re-suspended with 250 ml of ice-cold, sterile 

water, centrifuged again, re-suspended with 20 ml of ice-cold 1 M sorbitol, centrifuged 

again and then finally re-suspended in 1 ml of ice-cold 1 M sorbitol for a final volume 

of approximately 1.5 ml. The volumes were proportionally reduced depending on how 

much of the KM71 H wild-type cells were needed. 

An aliquot of 80 µl of the competent cells of KM71 H prepared above was 

mixed with 5-20 µg of linearized DNA (in 5-10 µl tris-acetate EDTA buffer, TAE) and 

transferred to an ice-cold 0.2-cm electroporation cuvette. The cuvette containing the 

cells was incubated on ice for five minutes while making sure that the BioRad 

GenePulser II was set at 1500 V, 25 µF and 200 milliohms. Pulsing was done for about 

6 s, and 1 ml of ice-cold 1 M sorbitol was immediately added to the cuvette. The 

contents of the cuvette was transferred to a sterile microcentrifuge tube and incubated at 

30 °C for about 1-3 hours. Different amounts of this were pipetted and distributed onto 

pre-warmed YPDS plus Zeocin agar plates, spreading aliquots ranging from 100 to 400 

µl over each plate. These were incubated at 30 °C until colonies had appeared.  For 

plates containing between 100 and 300 µg/ml of Zeocin, successfully transformed 

colonies were usually observed by the third day. By the fourth day, isolated colonies 

were picked for protein-production trials and were also re-plated on higher Zeocin-

containing YPDS agar plates.  

 

 



CHAPTER 2 MATERIALS AND METHODOLOGY 
 

 60 

 

 

 

Figure 2.2    Summary of some techniques used in the molecular work  

(A) Summery of different forms of PCR employed during the current study. These summaries 
are written and numbered 1, 2, 3 and 4 in hexagonal shapes around the central encircled  PCR. 
(B) Two broad areas of cloning used in the study- TOPO cloning and cloning into the P. 
pastoris expression vector, pPicZ αB. (C) Forms of DNA extractions, employed in the current 
study – miniprep and miniprep.  (D) Types of transformations used in this study – E. coli or P. 
pastoris. 
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2.3 Protein production and purification 

 

Methods employed for production of proteins include small-scale production trials 

(“miniscale”), as well as larger-scale production in shaker flasks and, ultimately, the 

fermentor. After harvesting, purification was carried out using ion-exchange as well as 

gel-filtration chromatography (see Flow chart 2.7). Materials needed for this section 

included; BMG (buffered minimal glycerol), BMM (buffered minimal methanol), 

baffled flask, methanol (100%), centrifuge, shaking incubator and fermentor.. 

 

 
 
 
 
 
 
 

 

 
 
 
 

 

 

Flow chart 2.6 Overview of methods for protein production and purification 
 
 

2.3.1 Small –scale protein production trials 

Protein production trials were carried out according to the guidelines in the manual 

provided by Invitrogen (with their EasySelectTM Pichia Expression Kit) with the need 
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for some minor modifications. Fifty-ml Falcon tubes containing 5-10 ml of BMG, or - 

in the case of low-yielding strains - small (250-mL) baffled flasks containing 80-100 ml 

of buffered minimal glycerol (BMG), were inoculated with an isolated colony (or with 

a small starter culture in the case of baffled flasks). They were then incubated for two 

days at 30 °C in a shaking incubator. Since P. pastoris cells have a high demand for 

oxygen for metabolism it was important that vessels were shaken at a speed of at least 

300 rpm.  Once cells had attained an OD600 of between 2 and 6 the culture was spun 

down at 1500 x g for 5 minutes. The supernatant was then discarded and the pellet re-

suspended in BMM (to 50-60% of original volume of BMG) for further incubation in 

the shaking incubator at 30 °C. The 0.5% methanol (v/v) in this replacement media 

induces expression of the inserted gene that is under the control (as explained above) of 

the AOX promoter. On each of the three subsequent days the cells were fed with 

methanol to give a maximum final concentration of 1% (assuming the methanol from a 

previous feed had been exhausted).  On the day of harvesting the culture was spun 

down at 4000-6000 x g and the supernatant was filtered through a 0.2-µm filter. 

Generally after a trial protein production, some form of concentration is needed to help 

visualise (with Coomassie staining) the resulting recombinant protein on a 

polyacrylamide gel. Tricholoroacetic precipitation and spin concentration were used for 

this purpose. 

 

2.3.2 Trichloroacetic acid (TCA) precipitation and centrifugal concentration 

 
 For TCA precipitation, an aliquot of about 1 ml of the supernatant from the 

“miniscale” production trial was pipetted into a microcentrufuge tube and then an equal 
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volume of 20% (v/v) trichloroacetic acid (TCA) was added, shaking gently to mix. The 

mixture was kept on ice for approximately 30 minutes prior to being centrifuged (4 °C, 

12,000 rpm in Eppendorf centrifuge 5415R) for between 15 and 30 minutes. After the 

supernatant has been carefully removed and discarded, 300 µl of cold acetone was 

added to the precipitate and the sample was centrifuged for a further five minutes. After 

careful removal and discarding of the supernatant the pellet was air-dried. Using SDS-

PAGE loading buffer the pellet was re-suspended, and after heating at 80 °C for three 

minutes, SDS PAGE was run with protein markers running alongside. 

            For concentration (as an alternative to TCA precipitation) the supernatant was 

applied to a Vivaspin concentrator and centrifuged according to manufacturer’s 

instructions, being careful not to exceed the maximum g-force. This work made use of 

0.5-ml, 6.0-ml and 20-ml concentrators with either 3-kD, 5-kD or 10-kD molecular-

weight cut-off membranes depending on the size of the protein. The flow through 

(filtrate) from the first spin was discarded and then more supernatant was used to top up 

as necessary until all of the supernatant had been concentrated to the desired volume. 

The concentrate was then pipetted up and down to mix, transferred into a new 

microfuge tube and, following addition of SDS-PAGE loading buffer, subjected to 

SDS-PAGE. 

2.3.3 Running sodium dodecyl sulphate-polyacrylamide gel elctrophoresis (SDS - 

PAGE) 

 
The following materials were used:  Pre-stained protein molecular-weight markers 

(BioRad), pre-cast polyacrylamide gradient gels (normally  4-12% NuPage Bis-Tris 

gels from Invitrogen but 4–20% Criterion gels from Bio-Rad were also used), BioSafe 
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Coomassie stain (from Bio-Rad), gel-running buffer (NuPAGE MES-buffer from 

Invitrogen and TGS-buffer from BioRad). The gel apparatus (consisting up of the gel 

tank, the gel itself, the running buffer and hardware supplied by Invitrogen) was 

assembled and the protein samples were mixed with the loading buffer that contained 

100 mM mercaptoethanol, 2% (w/v) SDS, 0.1% (w/v) bromophenol blue, 50 mM Tri-

HCl and 10% (v/v) glycerol. 

These samples were then heated at 65 - 70 ̊ C for three minutes, and then 20 µL was 

loaded into each well and the electrophoresis run at 180-200 V. Samples were run 

alongside pre-stained protein molecular-weight markers. The gel was washed (three 

times in water, changing the water every 10 minutes) and then Coomassie (from Bio-

Rad) stained (by adding just enough stain to cover the gel and rocking the container) to 

visualise bands corresponding to resolved proteins.  

Knowing the molecular weight of the target protein, SDS-PAGE provided insight into 

whether the desired protein(s) had been produced and in approximately what yield(s). 

On occasions where it still was not clear at this stage whether detectable protein 

production had been achieved or where there was doubt over the identity of a band, 

Western blotting was performed. For all miniscale trials, between 18 – 24 µl was 

loaded into wells depending on the type of NuPAGE gel. When the harvest was from a 

fermentor run, samples were not concentrated before loading on the gel, but a 

maximum volume was loaded. However, a concentration step was always employed 

after “miniscale” production trials or shaker-flask protein production trials. In the 

current study, therefore, between 14 and 18 µl of protein solution was mixed with a 4X 

loading buffer thereby filling wells that could accommodate between 20-25 µl. 

However, after purification (whether by ion-exchange or gel-filtration 
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chromatography), sample loading depending on the concentration of protein, and 

ranged from as low as 3 µl (variants) to as high as 14 µl.  

 

2.3.4 Western blot 

Primary murine antibodies against human CR1, specifically, 7G9 which recognizes 

CCPs 19-21, were provided by Professor Alex Rowe (University of Edinburgh). The 

choice of that antibody was based on its ability to recognise a common component of 

the longer constructs used in the current study (i.e. CR1 17-25, CR1 15-25, and their 

variants) that proved more difficult to produce in high yields than their shorter 

counterparts. Since CR1 20-23 had already been successfully produced in high yield 

(prior to making the longer constructs), and was recognised by the same antibody, it 

was selected as a positive control in a Western blot that screens for production of the 

longer constructs. Secondary antibody (anti-mouse, also gifted by Professor Rowe) was 

conjugated with horseradish peroxidase. Other materials used  included: nitrocellulose 

membranes from BioRad, Towbin/transfer buffer (made from 3.03 g/l tris base, 14.4 g/l 

glycine , 100 ml-200 ml/l methanol), a Mini Trans-Blot cell (from BioRad), PBS, PBS 

plus 5% (w/v) non-fat dried milk (blocking buffer, locally prepared by author), PBS 

plus 0.05% (w/v) TWEEN20 from BioRad, SuperSignal West PICO-Chemiluminescent 

Substrate from Pierce, and Ponceau stain from Sigma-Aldrich.  

In addition to sensitive detection of proteins produced at low levels, and 

authentication of candidate bands (particular those running differently to what might be 

expected from their molecular weight) western blots were used  to search for the 

products of degraded  target  proteins. First, samples were run on SDS-PAGE as 
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described above, alongside pre-stained molecular-weight markers. The gel was quickly 

rinsed in water and briefly washed in Towbin buffer before preparing to transfer 

resolved proteins onto a membrane. At this stage, the nitrocellulose membrane, filter or 

blotting paper, and sponge or fibre pad, were all soaked in Towbin buffer.  

           A transfer “pack” was then assembled by sandwiching the gel and the membrane 

between two blotting papers and (on the outside) two sponges. Using a Mini Trans-Blot 

cell (from BioRad) and in Towbin/transfer buffer, proteins were transferred from the 

gel onto the nitrocellulose membrane either by applying a constant current of 150 mA 

for 2-3 hours or running it overnight at 30 mA in the cold room. To assess the success 

of the transfer, Ponceua staining of the membrane was used, although the transfer of the 

pre-stained molecular-weight markers had in any case suggested that the procedure had 

worked. 

The membrane bearing the transferred protein was then immersed into about 

100 ml of PBS containing 5% (w/v) non-fat dried milk for up to 2 hours and at 37 °C 

for blocking of non-specific interactions. The membrane was subsequently incubated 

(rocking platform) for about 2-3 hours in 5 ml of 1-in-500 to 1-in-1000 diluted primary 

antibody. The dilutions of both primary and secondary antibodies were done in PBS 

with 5% (w/v) non-fat dried milk. A multiple washing step of 10 minutes with PBS, 20 

minutes with PBS plus 0.05% (w/v) TWEEN20, and 10 minutes with PBS was carried 

out following incubation with the primary antibody. The membrane was then incubated 

in 5 ml of a 1-in-1000 to 1-in-3000 diluted secondary antibody for two hours and 

washed as above. 

Using the developing reagents from Amersham Biosciences, the secondary 

antibody conjugated to horse radish peroxidase was detected and the film developed in 



CHAPTER 2 MATERIALS AND METHODOLOGY 
 

 67 

the dark room by X-ray for a time ranging from a few seconds to a minute. The pre-

stained molecular-weight markers were then transcribed or re-drawn onto the developed 

film for comparison. 

2.3.5 Larger-scale (shaker flask) protein production 

The procedure adopted for larger-scale shaker flask protein production runs or trials 

was similar to that of the “miniscale” expression described above. The main exceptions 

are that the 5-10 ml BMG culture in the “miniscale” protocol served as a starter culture 

for a larger volume (typically 500 ml in each of four baffled two-litre flasks). Because 

of the lag phase likely to occur following this seeding process, the number of days 

needed for the cells to be cultured in BMG was increased by one day. Subsequently it 

was found that the larger-volume cultures required longer spinning times prior to the 

induction step (10 minutes at 1500 x g). The required amount of spinning became even 

higher during harvesting of the target protein-containing supernatant (typically 8000 x g 

for 45-60 minutes). 

2.3.6 The use of fermentors for protein production  

Fermentation was carried out in an effort to increase the protein yield on the grounds 

that the better aeration and control of nutrients that is possible in the fermentor should 

result in higher cell densities. Equipment and materials needed included: a cylindrical 

Bioflow 3000 fermentor vessel and associated hardware purchased from New 

Brunswick Scientific, Antifoam 206 from Sigma-Aldrich, purity-grade fermentation 

trace mineral salts (PTM1 salt) from Amresco, materials for basal salt, glycerol, 

methanol and  - in some cases - isotopic labels (see Sections 2.3.6.2 to 2.3.6.5). The 

fermentor had the advantage that in addition to being able to control the rate of 
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agitation and deliver oxygen or air from a compressed source, a range of probes were 

available that were used to monitor and control parameters such as dissolved oxygen, 

pH and temperature.  

           The fermentation process begins with a starter culture similar to what has been 

previously described under shaker-flask protein-production trials where a 5-10 ml 

culture was used to inoculate 200-400 ml of BMG in a two-litre baffled flask. The 

volume of this starter culture used was at least 1/10th of the final fermentation culture 

volume. While the starter culture was growing, the initial medium (basal salt) was 

prepared and poured into the assembled fermentor vessel, with all the probes attached 

for autoclaving. Although there were similarities between the various growths that were 

performed in terms of the preparation of the initial medium/basal salt mixtures, there 

were variations between fermentation runs in the actual contents and the details of 

subsequent feeding protocols.  In particular where fermentation was being carried out to 

produce isotopically labelled protein the differences in the composition of media are 

detailed below (Sections 2.3.6.1 to 2.3.6.5).  

               After the autoclaved vessel, with its appropriate basal salt, and attached 

probes had cooled, the probes were connected to the electrical power source of the 

fermentor, enabling the disolved oxygen (DO2) probe to be charged over night. While 

charging the DO2 probe, air (from a compressed source) was introduced into the vessel 

through a sterile filter and agitation was set to 200 rpm. At this stage the growth 

medium was acidic and this retards growth of any contaminating organisms. On the 

following day, after the probe had been fully charged, the pH was adjusted to 5.0 by the 

addition of varying amount of base, through the base-feeding line and then the DO2 

probe calibrated. Then, 2.5 ml/l of high-purity grade fermentation trace mineral salts 



CHAPTER 2 MATERIALS AND METHODOLOGY 
 

 69 

(PTM1 salt, Amresco) and 0.5 ml/l of Antifoam 206 (from Sigma-Aldrich) were added 

to the medium and the temperature  set to 30 ºC.  

The fermentor was programmed to link the DO2 level to the agitation rate, such 

that the DO2 was maintained at 40% of saturation. Thus the instrument was set up so 

that the agitation rate automatically increased to a maximum of 1000 rpm, from the 

normal 200 rpm, when dissolved oxygen fell below 40%. This procedure helped in the 

monitoring of activity and growth of the cells because the agitation rate increased as 

nutrients were metabolised and oxygen levels fell, but decreased when nutrients were 

exhausted and no oxygen was needed.  

Once all of the aforementioned had been set up and checked, the starter culture 

was spun down at 1500 x g and the pellet re-suspended in 10-40 ml of 100 mM 

potassium phosphate buffer, pH 6.0. The starter culture was then injected into the 

fermentor, following which a rapid reduction in the dissolved oxygen level occurs and a 

corresponding increase in the agitation rate was expected.  

There were slight variations between fermentor runs in the times of induction 

and the subsequent feeding programme, depending on whether there was a need for 

isotopic labelling or not, as well as the type of labelling required. With the exception of 

13C labelling, which called for introduction of 13C-glucose, the protocol was as follows. 

Induction normally took place after two days of cell growth on 1% (v/v) glycerol, 

mixed with PTM1 salt (4.35 ml/l). For induction, temperature was reduced to 15 °C and 

expression induced by addition of methanol mixed with (4.35ml/l)  PTM1 salts, to a 

final concentration of 0.5% (v/v) of the culture volume. For three subsequent days, 

methanol mixed with 4.35ml/l of PTM1 salts was added to a final concentration of 

1.0% (v/v) of culture volume and to about 1.2% (v/v) (in some cases) on the last day. 
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Sometimes, feeding was carried out twice a day depending on the metabolic activity 

within the culture, as indicated by the agitation rate and the inferred DO2 level.  

Finally, at the time of harvesting, the contents of the fermentor were retrieved 

and cells removed by centrifugation in a similar way to that described above for the 

larger-scale shaking flask production runs, except that before the 45-minute 8000 x g 

spin, a preliminary spin at about 4000 x g for 15 minutes was performed. This extra 

step helped avoid the contamination of the supernatant by cells that would otherwise 

frequently block the 0.2-µm filter used to clarify the supernatant after centrifugation. 

2.3.6.1  Fermentation without isotopic labels (production of non-labelled 

protein) 

For producing non-labelled protein by fermentation, 1 l of initial medium was made 

from; 27 ml of 85% (w/v) phosphoric acid, 0.95 g of CaSO4 x7.H2O, 15.0 g of MgSO4 

x 7.H2O, 18.2 g of K2SO4, 4.2 g of KOH, 25 ml of glycerol; water was added to make 

up to 1 l and the pH was adjusted to pH 5 by addition of  4% NH4OH solution.  Note 

that ammonium hydroxide was used in the non-labelling fermentations as both the base 

for regulating the pH and as a nitrogen source, while glycerol was the carbon source. 

2.3.6.2  Fermentation with isotopic labels 

For fermentations intended to produce isotopically labelled proteins, the initial medium 

was made of: 0.95 g CaSO4 x 7.H2O, 12.0 g MgSO4 x 7.H2O, 6.0 g K2SO4, 60 ml 1 M 

potassium phosphate buffer, pH 6.0, and water to make up to a total of 600 ml of 

medium. A 2 M KOH solution was used as a base for pH adjustment during the 

fermentation. 
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 2.3.6.3 15N flabelling (single labelling) of proteins in the fermentor 

For 15N labelling of the target protein, about 8 g of 15N-(NH4)2SO4 (Sigma-Aldrich) was 

dissolved in about 10 ml H2O and sterile-filtered through 0.2-µm filter then (normally) 

added to the culture at the same time as inoculation. Note that in this case glycerol 

served as the carbon and energy source. 

 

2.3.6.4  15N and 13C labelling (double labelling) of proteins 

For 15N and 13C double labelling of the target protein, about 7 g 15N-(NH4)2SO4 was 

added to 15 g of 13C-glucose (Sigma-Aldrich), dissolved in about 40 ml of H2O and the 

solution was filtered, as previously described, to sterilise it. The culture was fed with 

the 13C-glucose for two days after which a 1g feed of 13C-glycerol (Sigma-Aldrich) was 

providedn. Subsequently, the cells were starved for about 3-4 hours in preparation for 

induction by addition of 13C-methanol (Sigma-Aldrich) to a final concentration of 0.5% 

(v/v). Thereafter 13C-methanol feeds were delivered as previously described for the 

non-labelling fermentations. 

 

2.3.6.5  15N and 2H labelling (deuteration) of CR1 20-23 

The procedure employed for producing a deuterated sample was similar to that used for 

15N labelling, except that “light” water (H2O) was replaced by “heavy” water (D2O). 

Thus, to the greatest extent possible all solutions of reagents and nutrients were 

constituted in 98% D2O (Sigma-Aldrich). The starter culture was also grown up in 98% 

D2O. Cells in the fermentor grew more slowly in D2O due to the “isotope effect” as 
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expected, and therefore an additional day for cell growth prior to induction was 

allowed.  

 

2.3.7 Protein purification 

Prior to protein purification, phenylmethyl	
   sulfonyl	
   fluoride	
   (PMSF) and 

ethylenediaminetetraacetic acid (EDTA) were routinely added to final concentrations of 

0.5 mM and 5 mM, respectively, to deter proteolysis. Some chromatography columns 

and resins were purchased from Amersham while, unless stated otherwise, all pre-

packed columns and affinity resins were purchased from GE Healthcare. 

  

2.3.7.1  Chromatography on bench-top self-poured columns 

 The first purification step entailed low-resolution (step-gradient) ion-exchange 

chromatography on a bench-top column (Econo-Pac, volume = 5-10 ml, BioRad) 

packed with SP Sepharose. The main goal of this step was to extract the target protein 

semi-selectively out of the large volume of the growth medium and concentrate it into a 

much smaller and more manageable volume. The eluant was monitored at 280 nm 

using the Eppendorf BioSpectrometer. Prior to loading on the column, the crude 

supernatants from fermentors or shaker flasks were diluted 1-in-5 (to reduce ionic 

strength) and the pH adjusted to one at which the protein would be expected (basd on 

theoretical pI values) to bind to the resin. After washing at a typical flow rate of 5 

ml/min (using a pump to deal with volumes between 1 and 4 litres), two or three 

column-volumes of low-salt buffer (normally 20 mM sodium acetate, pH 4 but this 
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depended on the calculated theoretical pI). Elution was done using the same buffer but 

containing 1 M NaCl.  

 

2.3.7.2  Desalting 

 After bench-top step-gradient ion-exchange chromatography, the proteins had been 

eluted in a concentrated form but in 1 M NaCl solution, and therefore a desalting step 

was required prior to the subsequent higher-resolution ion-exchange purification step. 

Desalting was achieved when the eluted samples from the previous purification were 

applied to a 5-ml HiTrap (Amersham) desalting column. A 20 mM sodium acetate 

buffer was used (pH adjusted according to pI, but pH 4.0 unless stated otherwise). The 

flow rate was 3 ml/min and absorbance was recorded at 280 nm. 

 

2.3.7.3  Cation-exchange chromatography 

 After desalting, a more refined form of cation-exchange chromatography was carried 

out, on the BioCad 700E system, as a second purification step. After loading onto 

(normally) a Tricorn MonoS column (4.6 mm x 100 mm, column volume = 1.7 ml) 

(Amersham) and then washing with (typically) 20 mM sodium acetate buffers, pH 4-

4.5 (depending on the calculated pI of the protein), samples were eluted by applying a 

linear gradient to 1 M NaCl in the same buffer and absorbance of eluate monitored at 

280 nm. Protein-containing fractions were analysed by SDS-PAGE and then 

appropriate fractions pooled for the third and final purification step. 
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2.3.7.4  Gel-filtration (size-exclusion) chromatography 

 Gel-filtration or size-exclusion chromatography, performed on an ÄKTAdesign™-

FPLC system (having a pump P-920, UV-detector unit UPC-900, from GE-Healthcare), 

was used as a “polishing step” and to separate impurities from the protein of interest 

based on size. It was carried out on a HiLoad 16/60 Superdex 75 (preparation grade) 

column (GE Healthcare) using (normally) phosphate buffered saline as an elution buffer. 

Note that in the cases of proteins intended for NMR-based studies, 20 mM potassium 

phosphate buffer, pH 7.4, with 500 mM NaCl was used as an elution buffer to make the 

subsequent buffer-exchange into an NMR-compatible buffer (low salt) easier.  

 

2.3.8 Enzymatic deglycosylation  

EndoH
f, EndoH, or PNgases (from New England Biolabs) were used to remove or “trim” 

N-glycans (that are added at N-glycosylation cognate sites by P. pastoris but, being 

hypermannosylated, do not correspond to mammalian equivalents and are in any case 

often highly heterogeous). These enzymes cleave the bond between the innermost N-

acetylglucosamine residue and the remainder of the glycan. Enzymatic deglycosylation 

was mostly done between the initial step-gradient ion-exchange protein-capture stage 

(after which diffuse bands on SDS-PAGE furnished evidence of glycosylation) and the 

subsequent higher-resolution ion-exchange chromatographic step; but in the case of 

small-scale trial protein productions it was performed on crude cell-free supernatant. 

Between 10-15 µl of the enzyme was used for deglycosylating a range of 0.2-0.3 mg 

protein eluted from SP-Sepharose resin. The enzyme were added to the protein sample, 

mixed and incubated for 2-3 hours at 37 °C. Subsequently the glycosidase-treated 
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samples were run alongside untreated ones on SDS-PAGE in the hope of detecting 

more defined protein bands of lower molecular weight corresponding to the expected 

(calculated) value.  

2.3.9 Determination of Protein concentrations  

Protein concentrations were estimated based on UV absorbance (280 nm), calculated 

molecular weights and theoretical extinction coefficients (obtained using the on-line 

ExPASy ProtParam tool).  Absorbances were measured on a BioSpectrometer 

(Eppendorf). 

2.3.10 Buffer exchange by spin concentration or dialysis 

 Buffer exchange was essential in the final preparation of the sample for both structural 

work and functional studies. Buffer exchange by spin concentration was mainly used 

when isotopically labelled (or non-labelled for a 1D experiment) proteins were being 

prepared for NMR. Dialysis, on the other hand, was typically used in preparing the 

samples for the biological assays (e.g. in SPR, all samples were dialysed into the 

working buffer at the same time). 

       In order to achieve buffer exchange using centrifugal concentrators, the protein was 

loaded into one or more Vivaspin devices (Sartorius Mechatronics, note that it was 

important to thoroughly wash the filtration membrane to remove the preservatives), 

with suitable capacities and molecular-weight cut-offs, and concentrated as described 

above to a smaller defined volume but being mindful of the danger of protein 

aggregation or precipitation.  Then a known quantity of cold replacement buffer was 

added (with thorough mixing using the pipette tip) and the protein sample was re-
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concentrated. This procedure was repeated until it was calculated that the required 

extent of buffer exchange had been attained. 

        Buffer exchange by dialysis involves loading a suitable amount (e.g. 250 µl) of the 

protein solution into a thoroughly rinsed dialysis cassette (Bio-Rad), gently covering it 

with the lid (in which the membrane is located in this apparatus) and floating it over the 

replacement buffer. The buffer was constantly stirred using a magnetic stir bar and 

changed at intervals until the desired extent of buffer exchange had been attained.	
  

 

2.4 Biological Studies 

 

A range of methods was used to assess various aspects of the biological functions of the 

purified recombinant proteins. These include measurement of fluid-phase factor I co-

factor activity against C3b and C4b, surface plasmon resonance (SPR)-based binding 

studies and measurements of affinity for host and parasite ligands, and erythrocyte 

rosette-disruption assays (in P. falciparum-infected blood samples). Carried out 

elsewhere by collaborators were P. falciparum merozoite invasion-competition assays 

and Enzyme-Linked Immunosorbent Assays (ELISAs) (see Flow chart 2.7). 

 

 
Flow chart 2.7 Overview of methods for Biological studies  
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2.4.1 Co-factor Assay 

The factor I co-factor assay was employed as a simple measure of native complement 

regulatory activity of the recombinant proteins, and was employed in comparisons of 

the four allotypic variants of CR1 15-25 corresponding to the Knops blood-group 

antigens McC(a/b) and Sl(1/2). This assay was based on the principle that native full-

length CR1 is a cofactor for cofactor I-mediated cleavage of C3b and C4b, producing 

iC3b and iC4b, and indeed (uniquely to CR1) further cleavages to C3dg or C4dg 

(Figure 2.3A).  

In the current study, four sets of experiments were set up. In two of these 

identical amounts of the putative cofactor were used (namely 1 µg) but the incubation 

times varied (15 minutes and one hour) while in the other experiments the amount of 

co-factor was varied (0.25 µg and 1 µg) and the incubation time maintained at one 

hour. Positive controls included soluble full-length CR1 (sCR1) and the three-module 

fragment CR1 15-17 corresponding to functional site 2; CR1 21-22 and buffer (PBS) 

alone were used as negative controls. All samples contained 0.1 µg of factor I, 2.5 µg of 

C3b and either 0.25 µg or 1 µg of the appropriate CR1 construct in a total volume of 20 

µl. In a related study by our collaborators (in the Atkinson lab, Washington University 

Medical School), the cofactor activity of the CR1 15-25 polymorphic forms were 

assessed for both both C3b and C4b claevage.  

 The proteolytic reaction was initiated by addition of factor I (0.1 µg) and 

stopped by adding 6 µl NuPAGE reducing buffer containing lithium dodecyl sulfate 

(pH = 8.4, from Invitrogen). Figure 2.3B illustrates what would be expected from SDS-

PAGE of the products of a cofactor assay. Note that in the presence of cofactor (e.g. 
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CR1 or factor H), factor I (initially) cleaves sequentially and very specifically the C3b 

α' -chain (i.e. the remains of the α-chain after cleavage of C3 to C3b) in two places to 

release the small C3f peptide and create iC3b. The β-chain is not cleaved by factor I. 

Thus upon reduction of the inter-chain disulphide linkage, two bands corresponding to 

the 43-kD and 67-kD products of the C3b α'−chain can be resolved by SDS-PAGE 

along with the intact β-chain.  Further cleavage of iC3b by factor I occurs in the 

presence of CR1, yielding the large C3c fragment and the smaller but important C3dg 

fragment (cleaved subsequently by other proteases to ~30 kD C3d). Thus, in this assay, 

activity is inferred from the amount of cleavage products observed following SDS-

PAGE analysis of the reaction mixture. 

 

Figure 2.3 Illustration of the principle and the expected outcome of the fluid-phase cofactor 
assay 

(A) CR1 is a cofactor for factor I-mediated cleavage of C3b α’-chain. Cleaved fragments are  
represented with cartoons and approrpriately labelled.(B) A schematic to show the expected 
outcome of SDS-PAGE performed to analyse the reaction products. Only CR1 is cofactor for 
third cleavage (to C3dg, not C3d (C3dg gets cleaved by other proteases to C3d in vivo).For 
details of the molecular weights and chains of origin of the cleaved fragments, see section 5.2 
(chapter 5). 
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2.4.2 Surface plasmon resonance (SPR)   

The phenemonon of surface plasmon resonance (SPR) was utilised to follow binding of 

the recombinant CR1 constructs, and approriate controls, to C3b, C4b, the classical 

pathway complement protein, C1q, and the parasite protein domains, DBLα and Rh4.9. 

A Biacore T100 (GE Healthcare) instrument was used for these studies. The theory of 

SPR is beyond the scope of this thesis but, in practice, a protein is chemically 

immobilised onto the polymer coated surface of a sensor chip. The chip “senses” the 

increase in surface density that arises from the binding of these protein molecules. The 

magnitude of this response is recoded accurately in real time, and expressed in 

resonance units (RU). For most proteins one RU corresponds to a change in the surface 

density of 1 pg/mm2 on the sensor surface (Fig. 2.4B).  Next a solution of a second 

protein is flowed over the protein-bearing sensor-chip surface. Binding of the protein in 

solution (“analyte”) to the one on the sensor chip (“ligand”) is likewise sensed by the 

chip surface leading to to a further response. The strength of the recorded response (in 

RU) is thus a function both of the number of analyte protein molecules that bind to the 

ligand protein but also of their molecular weights. 

In the current work, C3b, C4b, C1q, or the parasite protein domains, were 

immobilized as ligands while the various CR1 fragments produced in this study served 

as analytes. Amine coupling was used for covalently attaching the ligands onto the 

surface of Biacore series-S carboxymethylated dextran (CM5) sensor chips 

(Biocore/GE Healthcare) in the current study. Note that each chip had four distinct 

“flow cells” (numbered 1 to 4) such that a solution of analyte could be flowed 

simultaneously over four different ligand-bearing surfaces and data recorded from all 
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four channels. Immobilization was carried out according to manufacturer’s instructions 

(Fig. 2.4C).  

Following a number of trials (described in the Results chapter), two separate 

CM5 sensor chips were used for the definitive set of experiments that aimed to achieve 

reproducible and publishable data. The first was termed the “complement chip”. It was 

loaded with three different human proteins - C3b, C4b, and C1q (from Complement 

Technology).  These were individually immobilized, by amine coupling (Schmidt et al., 

2008), on three of the four flow-cell surfaces, with the fourth flow cell being employed 

as a blank or reference surface. The second CM5 sensor chip was termed the “malaria 

chip” and was loaded with two recombinant P. falciparum protein fragments (desribed 

in more detail in Section 3.11 and in the Results), namely NTS-DBLa-CIDR (donated 

by Matt Higgins, Oxford) and Rh4.9 (from Alan Cowman, Melbourne). Details of 

loadings (in terms of numbers of RUs) are given in the Results chapter. 

To prevent interference from any non-specific binding of the proteins to the 

reference surface of the chip, a phenemonon that usually translates into negative curves, 

a “blank immobilisation” was performed as described below. This was done twice. To 

ensure reproducibility, duplicate injections of all the samples were made. The flow rate 

ws set to of 30 µl/min, the temperature maintained at 25 °C, contact times of  90 and 45 

seconds (for the ‘complement’ and the ‘malaria chips’ respectively) were used and the 

dissociation time allowed was 200 s. The  running buffer was  HBS-EP+  consisting of  

10 mM HEPES-buffered 150 mM saline, 3 mM EDTA and 0.05% (v/v) surfactant 

polysorbate 20 at pH 7.4 (HBS-EP+). As the experiment proceeded, two injections of 1 

M NaCl with a contact time of 45 s were used between sample-injections to regenerate 

the surfaces of the chips. These conditions emerged following trial runs (performed 
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with the kind assistance of Dr Christoph Schmidt) that aimed to achieve optimised 

conditions. 

Data were processed using the Biacore T100 evaluation software version 2.0, 

and the points of reporting (for KD calculations) were set to be 2 seconds before the 

beginning and after the end of the injections. The software derived the dissociation 

constants in this case by fitting steady-state binding levels.  Note that the response 

recorded on the blank surface was subtracted from the response unit recorded on the 

surface bearing the ligand.  

  

2.4.2.1  Sensor chips and amine coupling 

The sensor chip comprises a glass surface that has been coated with a thin layer of gold. 

In this work the CM5 chip was utilized, in which the gold surface is modified with a 

carboxymethylated dextran layer. This dextran hydrogel layer forms a hydrophilic 

environment for attached biomolecules, preserving them in a non-denatured state. Other 

derivatized surfaces were available but not used in this study (Fig. 2.4D). 
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Figure 2.4 Surface plasmon resonance 
(A) The principle of SPR. (B) Sensorgram generation. (C) The terminology of SPR, illustrating 
analyte and ligand, as well as the types of immobilization that may be employed. (D) A 
schematic to represent the composition of the chip surface (Diagrams adapted from 
www.biacore.com) 
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Figure 2.5 Sensor chips and coupling  

(A) A schematic representation of the CM5 sensor chip used in the current study. (B) For 
comparison, a C1 sensor chip. (C) Amine coupling was used in the current study to immobilise 
ligands (e.g. C3b, C4b Rh4.9 etc. to the CM5 chip sensor surface).  (Diagrams adapted from 
www.biacore.com). 

 

2.4.3 ELISA 

The principle of this tool is based on the detection of antigen-antibody complexes. 

Enzyme-Linked Immunosorbent Assay (ELISA) used in this study were mainly carried 

out in John Atkinson’s laboratory in St Loius, MO, USA. The following describes the 

binding experiments of sCR1 and CCPs 15-25 variants to C3b, C4b, C1q and MBL.  

To a C3b-coated plate, solutions of 1 mg/ml CR1 variants (25 mM NaCl) were 

added. The primary antibody used for detection was CR1 polyclonal antibody, and the 

secondary antibody was anti-rabbit IgG conjugated with horseradish peroxidase (HRP). 

A B 

C 
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The results of three separate experiments were averaged. Similar experiments were 

performed on plates coated with C4b.  

For detection of C1q binding to CR1, however, sCR1 or CR1 15-25 variants were 

coated on plates. The concentration of C1q added was 140 ng/ml (in 75 mM salt), the 

primary antibody used was rabbit anti-C1q, and the secondary antibody was anti-rabbit 

IgG conjugated with HRP. The results of three separate experiments were averaged  

Finally, results for MBL were obtained when 5 µg/ml MBL (25 mM salt) was 

added to the CR1-coated plate and binding was detected with anti-MBL antibody made 

in mouse, and anti-mouse IgG conjugated with HRP. The results of two experiments 

were averaged. 

 

2.4.4 Rosette inhibition /Disruptive assay 

 
Figure 2.6 illustrates in simple terms the steps taken on the day of performing a rosette-

disruption assay. The materials needed were a rosetting P. falciparum culture (at about 

2% haematocrit in malaria culture medium), ethidium bromide, “binding medium” 

(RPMI 1640 with additives and 10% serum, but no bicarbonate, approx pH = 7.3 

(Sigma-Aldrich) microscope slides, cover slips and Vaseline, a fluorescence microscope 

(Olympus) and a water bath set at 37 oC. 
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Figure 2.6 Experimental steps involved in rosette-disruption assay  

1- Cell culture flask containing rosetting parasite. 2- Separate culture to be stained and changed 
into binding medium. 3 - Aliqout of culture added into microfuge tube 4-Addition of potential 
rosette disrupter. 5- Mixing and incubating . 6- Sample prepared for microscopic examination.   
 

The first step involves setting up a culture and maintaining it to a high rosetting 

frequency. This has been detailed later in a separate section, since it is a complex 

procedure. On the day of the experiment, an aliquot (between 10 – 15 ml) of parasite 

culture suspension, made up of mainly the trophozoic form (in step 2, see Fig. 2.6) was 

pre-stained with 25 µg/ml ethidium bromide for about 5 minutes at 37 oC. The cell 

suspension was centrifuged (2000 rpm for 2 minutes) and the ethidium-bromide 

containing supernatant was discarded (via a proper disposal procedure due to its 

carcinogenic potential). The cell pellet was re-suspended at about 2% haematocrit in a 
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“binding medium” containing 10% (v/v) serum. It differed from the regular culture 

medium (see section 2.4.4. for details). 

In steps 3 and 4 (Fig. 2.6) aliquots (usually about 25 or 50 µl) of the pre-stained 

culture suspension were placed into a microfuge tube. Potential inhibitors or disruptors 

of rosetting were added at various concentrations. It was important to include positive 

and negative controls here (see below for details). The mixture was incubated (step 5) 

at 37 oC for 30 mins. During this incubation period, cells were re-suspended every 10 

minutess by flicking the tube gently. 

Subsequently (step 6), a drop (about 10 µl) of the pre-stained culture suspension 

was placed on a microscope slide. The edges of the cover slip (22 mm x 22 mm) were 

lightly coated with Vaseline before it was lowered gently over the drop. At this stage, 

control and experimental slides were labelled in code and then shuffled by a colleague 

so that ensuing steps were performed “blind” by the experimenter. Only four slides 

were prepared for counting at any one time to avoid delays between slide preparation 

and the counting step. 

  Each slide was viewed (as quickly as possible) under the fluorescence 

microscope using a 40x magnification objective lens – illumination was adjusted so that 

both infected erythrocytes (that fluoresce orange) as well as the non-infected cells (not 

fluorescent as they have no nucleic acid) can be seen. A total of 200 infected red blood 

cells were counted and scored as either being in a rosette, or not, where a rosette is 

defined as “an infected cell with two or more uninfected red cells sticking to it”. (Note 

that when the slide or microscope was knocked accidentally, counting was aborted 

since this seemed to lead to erroneous readings due to clumping of cells because of the 

culture touching the cover slip).  Only mature (that is, pigmented trophozoite or 
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schizont) infected cells were counted; these were easily differentiated from ring-stages 

because rings only give a “pin-prick” of fluorescence. This allowed calculation of 

“rosette frequency” as the number of infected cells in rosettes expressed as a percentage 

of the total number of infected cells counted. (Note that slides, tubes and tips were 

disposed off in a sharps bin for incineration).  

To ensure a successful experimental day, much preparation was necessary in the 

preceding weeks.  This is described in the following sub sections. These included media 

preparation, washing of cells (erythrocytes), thawing of the parasites, setting up the 

parasite culture, synchronizing it at intervals, and selecting and maintaining the culture 

at high rosette frequency.  

 

2.4.4.1  Preparation of culture media for the rosette-disruption assay 

RPMI-1640 (developed at Roswell Park Memorial Institute) is a bicarbonate-buffered 

medium originally developed for culturing leucocytes.  For the current studies, 

“incomplete RPMI-1640” was prepared as follows: to 500 ml RMPI-1640 (Sigma-­‐

Aldrich) (note this contains 26.7 ml/L of 7.5% NaHCO3 solution or 2.0 g/L of NaHCO3 

powder bicarbonate) was added 12.5 ml of 1 M Hepes, 5 ml of 200 mM glutamine, 5 

ml of 20% (w/v) glucose solution, 1.25 ml of 10 mg/ml gentamicin, and ~1 ml of 1 M 

NaOH (used to adjust the pH to approx 7.2 to 7.4 as judged by observing the colour. It 

was noted that a red colour indicated the right pH, not orange or pink. Complete RPMI-

1640 was prepared using the same protocol but by adding, to a final concentration of 

10% (v/v), pooled (from at least five donors) normal human serum (i.e. not heat 

inactivated and stored at -20 °C prior to use). Therefore an aliquot of 40 ml of serum 
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was added to 360 ml of incomplete RPMI.  The “binding medium” was the same as 

complete RPMI-1640, but contains no bicarbonate – this maintained a stable pH in the 

absence of high CO2 more effectively than medium with bicarbonate.     

 

2.4.4.2  Washing of blood 

Group O red blood cells (Scotish National Blood Transfusion Service) were routinely 

used to avoid problems with ABO incompatibility. Some blood transfusion service 

blood packs came with a leucodepletion filter that was used to remove white cells 

before aliquoting. When this had been done, samples (labelled as “white cell depleted”) 

were just washed two times, by centrifugation and re-suspension, in incomplete RPMI-

1640 and stored at 50% haematocrit in incomplete RPMI. For whole blood, the 

procedure started with diluting the fresh blood with an equal volume of incomplete 

RPMI, and then lymphocytes and monocytes were removed by layering 10 ml of 

diluted blood over 5 ml of Lymphoprep in a 15 ml tube. It was spun for 15 minutes ( at 

top speed ) on a bench-top centrifuge (at room temperature), and the supernatant were 

aspirated. The red blood cells were then washed twice, by centrifugation and re-

suspension, with 13 ml of incomplete RPMI. These steps were repeated and finally, the 

cells were re-suspended at 50% haematocrit in incomplete RPMI, to be stored at 4 °C. 

Ideally, the washed red blood cells should be used within a week and must be used 

within two weeks of being drawn. 

2.4.4.3  Thawing parasites and setting up a culture 

To ensure thawing of the R29 strain of P. falciparum parasite ( a laboratory adapted 

strain cloned from IT/FCR3 strain), a frozen vial of this parasite was taken from liquid 
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nitrogen,  placed in 37°C water bath and monitored by visualizing it. Once thawed, it 

was transferred into a 50-ml Falcon tube. Then, 200 µl of sterile 12 % (w/v) NaCl (at 

37°C) was added dropwise with a sterile plastic Pasteur pipette (with continuous 

agitation over two minutes) to the 1 ml thawed suspension. The tube was allowed to 

stand for 5 minutes and then 10 ml of 1.8% (w/v) NaCl was added, again, in drops. 

Following this, 10 ml of 0.9% (w/v) NaCl and 0.2% (w/v) glucose were added slowly 

and the tube was centrifuged for 4 minutes at 2000 rpm. The supernatant was removed 

and cells were washed twice   in a previously warmed (37°C) 20 ml of incomplete 

RPMI-1640, (re-suspending and spinning at each washing step) and finally re-

suspended in complete RPMI-1640. Before incubation (at 37°C), the final suspension in 

the falcon tube was transfered into a T150 culture flask (Sigma-Aldrich®.), leaving a 

small aliquot for Giemsa staining. Gas was bubbled through the contents of the culture 

flask (a mixture of 94% nitrogen, 5% CO2, and 1% oxygen) prior to incubating (3 

days) at 37 °C. 

2.4.4.4  Growing parasites 

The growth medium (complete RPMI-1640) was warmed to 37°C (water bath) before 

use since the parasites would not tolerate cold shock. To the parasite cultures, prepared 

as described above, fresh medium was supplied daily. The medium was changed by 

transferring the culture suspension to a centrifuge tube, spinning out the cells (as above) 

and re-suspending in fresh medium (amount decided as described below). It was then 

transferred to culture flask, and “gassed” (see above) for approximately 30 seconds, 

before returning to the incubator at 37 °C.  
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2.4.4.5  Giemsa smears 

In order to monitor the culture and maintain an optimal feeding regime, smears 

were prepared daily by transferring a small aliquot of the suspension into a microfuge 

tube which was then spun down, and cells re-suspended at about 50% haematocrit after 

which they were smeared onto a clean glass slide. The smear was dried and fixed with 

methanol from sealed glass bottle. This is important because if the methanol was stored 

in an unsealed plastic bottle, it could have absorbed water from the atmosphere, 

especially when it is warm. It then no longer fixes the cells properly, so the cells would 

look fuzzy and have holes in them. The dry – fixed smear is then stained with freshly 

made 10% Giemsa, and parasitaemia was estimated by counting 500 cells. This 

provided a rough indication of how much fresh medium and how many red blood cells 

were required for maintenance of the culture since most parasite lines exhibited 

approximately a five-fold extent of reinvasion of cells for each. The amount of red 

blood cells supplied per cycle depended on how many parasites were needed, and what 

level of parasitaemia was desired. The amount of medium that was required depended 

on the level of parasitaemia and the stage of the lifecycle. Parasites at ring-stage needed 

less medium than mature pigmented trophozoites/schizonts, while the higher the level 

of parasitaemia, the more medium was required. The equation for estimating the 

amount of medium required was; Medium (ml) = 5 x parasitaemia (%) x packed cell 

volume (ml). Care was taken not to overfill the culture flasks e.g. a packed cell volume 

of 2 ml (10% parsitaemia) was maximal given the maximum volume of medium  of 100 

ml in large flasks (T150). 
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 2.4.4.6 Selection for rosetting 

Parasites in culture had a tendency to lose the ability to rosette over time, through var 

gene switching. Two methods were therefore used to select for rosetting parasites: 

“Percoll” and “Plasmagel”( Corrigan and Rowe, 2010 ; Ghumra et al., 2011). 

In the Percoll method (details below), which was done approximately once a 

week involved centrifuging parasite cultures through Percoll to select rosettes. A 90 % 

(v/v) stock solution was made up from 90 ml Percoll (GE Healthcare) and 10 ml of 10x 

concentrated incomplete RPMI-1640 (pH close to 7).  Further solutions were made by 

dilution e.g. a 60% (w/v) Percoll solution, was made by mixing 33.3 ml of the 90% 

Percoll stock and 16.7 ml of incomplete RPMI-1640. Then 5 ml of 60% (w/v) Percoll 

was placed in a 15-ml centrifuge tube while the cultured parasite cells were spun down 

and re-suspended in about 5 ml of complete-RPMI. This suspension was gently layered 

over the Percoll solution and this was spun at top speed for 10 minutes at room 

temperature. This gave rise to a packed pellet of non-infected red blood cells, ring-stage 

parasites and rosetting mature-infected erythrocytes at the bottom of the tube, and a 

(resolved) band of non-rosetting mature trophozoites and schizonts at the 

percoll/RPMI-1640 interface. Thus most of supernatant could be removed by gentle 

suction and the parasite layer containing non-rosetting trophozoites and schizonts was 

carefully removed leaving behind the pellet (Fig. 2.7A). This pellet was washed twice 

in incomplete RPMI-1640 and then returned to culture. 

Selecting of rosettes by Plasmagel (which is 3% gelatine in normal saline, 

supplied as a sterile solution by Rhone-Poulenc) flotation is based on the principle that 

when suspended in Plasmagel, non-rosetting mature pigmented trophozoite-infected 

cells float as a layer on the top, whereas the denser uninfected RBC and infected cells 
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with ring stages or rosetting pigmented trophozoites sink to the bottom layer (see Fig. 

2.7A).  Therefore to enrich for rosetting parasites, the bottom layer was kept and the top 

layer was discarded.  In this procedure, the gelatine was pre-warmed to 37oC while, 

separately, the cells from the culture suspension were spun down and supernatant was 

removed. The pellet volume was estimated and incomplete RPMI was supplied to 

afford a haematocrit of about 40-50%. This was transferred to a 15-ml Falcon tube and 

an equal volume of gelatine was then added. The tube was place upright in a 37oC 

incubator for 10-15 minutes, until two separate layers became clearly visible. The top 

layer containing the non-rosetting trophozoites was removed while the bottom layer, 

containing RBCs, ring-stages and rosetting mature-pigmented trophozoites was washed 

once in incomplete RPMI and again in complete RPMI. It was re-suspended in 

complete medium, and then fresh blood was added to give a culture with overall ~2% 

parasitaemia that was gassed (see above) and returned to the 37 
oC incubator to 

continue the culture. 
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 Figure 2.7 Culture selection and synchronization 

(A) Selecting of rosetting using 60% Percoll or Plasmagel flotation. (B) Synchronization by 
sorbitol. Deep black represents- matured trophozoites and the squiggles represent – ring forms 
(in both panels A and B).  
  

2.4.4.7  Synchronising parasites by Sorbitol lyses 

The goal of this step was to achieve synchronicity of the paraite invasion/lysis cycle. 

The principle used here was that only parasitized red blood cells more than 

approximately 20 hours post-invasion are permeable to sorbitol. They can therefore be 

lysed by osmosis, leaving the younger ring forms and non-infected erythrocytes 

(Lambros et al., 1979) (Fig. 2.7B). Cultured cells were spun down and supernatant 

removed. Approximately 5-10 ml of a pre-warmed 5% (w/v) sorbitol solution (at 37 oC, 

from Sigma) was used to re-suspend the pellet. The suspension was incubated for 15 

minutes (37 oC) prior to two washes (by spinning down and re-suspending cells) using 

13 ml incomplete RPMI-1640, to remove lysed cells. The non-lysed cells were then re-
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suspended in complete medium, and a Giemsa-stained smear was examined to check 

whether mature pigmented trophozoites and schizonts had been removed. Finally the 

culture was “gassed” and returned to the 37 oC incubator. 

2.4.5 Invasion assays 

The intention of these was to ascertain whether the CR1 fragments were able to 

compete with CR1 on red blood cells as a receptor for the silaic acid independent 

invasion pathway. These experiments were performed by our collaborator Dr W.H 

Tham, according to methods described in our publication (Tham et al., 2010). In 

essence, parasite growth was monitored over two cycles of invasion and lysis (Persson 

et al., 2008). Two strains of P. falciparum were used: W2mef-Rh4 and 3D7. W2mef-

Rh4 is known to mainly use the sialic acid-dependent invasion pathway and therefore 

these strains served as a control.  The 3D7 strain is able to switch its preferred invasion 

route when incubated with red blood cells that have been treated with neuraminidase to 

remove sialic acids from the cell surface. Thus in these experiments neuraminidase 

treated and untreated cells were used. 

Neuraminidase (66.7 mU/ml)-treated or normal erythrocytes at 1% hematocrit 

in culture medium were inoculated with late-trophozoite stage parasites to give a 

parasitemia level of 0.2% and hematocrit of 1% in  a volume of 50 µl. The parasites 

were subsequently cultured in 96-well round-bottom microtiter plates (Becton 

Dickinson). Solutions of the purified recombinant proteins to be tested were added, to a 

range of final concentrations, prior to the first reinvasion episode. After incubation with 

these proteins for two cycles of parasite growth, the parasitemia of each well was 

determined by flow cytometry of ethidium bromide -stained trophozoite stage parasites 
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using Fluorescence-activated cell sorting (FACS) system with a plate reader (Becton 

Dickinson). For each well, 40,000 cells or more were counted. Growth was expressed 

as a percentage of parasitemia for the mean of two samples. Two independent assays 

were also performed. 

 Erythrocyte competitive binding assays were also carried out. These were 

performed by incubating the test proteins with matured culture supernatants prior to 

proceeding with standard erythrocyte binding assays as follows. An aliquot of culture 

supernatant (250 µl) was mixed with 50 µl of packed erythrocyte for more than 30 mins 

at room temperature. The mixtures were centrifuged at 12,000 rpm for 30 s through 400 

µl of silicone oil (dibutyl phthalate; Sigma). This was done to remove unbound protein 

that has remained within the culture supernatant. Both the erythrocyte and bound 

protein were washed twice with 500 µl of phosphate buffered saline. Proteins bound to 

the erythrocyte were eluted by incubation with 10 µl of 1.5 M NaCl for 15 min at room 

temperature and then centrifuged for 30s at 12,000 rpm , and the elute was removed 

from the erythrocytes. An equal volume of 2x reducing sample buffer was then added 

to the eluted proteins. The eluted proteins were separated on SDS-PAGE and identified 

by immunoblotting.  

 

2.5 Biophysical / Structural Studies 

 

An overview of the methods used for structural studies is presented in Flow chart 2.9. 

As described in the Introduction, the aims of this component of the work were two-fold. 

It was important to assess any effect of the Knops blood-group polymorphisms in CCPs 
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24-25 on the architecture and self-association properties of CR1. It was also desirable 

to test the hypothesis that these variable residues are apposed to functionally important 

residues in functional site 2 via a hinge-like structure between LHR-C and LHR-D (i.e. 

modules 20-23). 

 

Flow chart 2.8 Overview of methods for structural studies 
 

2.5.1 Nuclear magnetic resonance spectrocopy (NMR)  

 

Theory and scope of experiments performed 

The phenomena recorded in nuclear magnetic resonance spectroscopy (NMR) derive 

from the responses of spins of certain nuclei (termed “spin=half’ nuclei and including 

1H, 15N and 13C) to being placed in a strong applied magnetic field. Normally these 

nuclear spins are oriented randomly. But when a strong magnetic field is applied to a 

sample (e.g. of a protein) some of its nuclear spins become aligned either with the field 

or against it and these two states differ slightly in energy (at a level similar to the low 

energy of radio waves).  
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Thus when nuclei in a magnetic field are irradiated with radio waves of the 

appropriate frequency, interconversions between lower and higher energy states occur – 

a condition known as resonance. Different types of nuclei (e.g. 1H versus 13C or 15N) 

resonate at very different frequencies but the resonant frequencies of nuclei are also 

exquisitely sensitive to their immediate surroundings within the molecule.  Hence a 

spectrum of 1H NMR frequencies is observed for a protein, for example, that can be 

used to infer how compactly folded it is and ultimately (backed up by 13C and 15N 

frequencies and NMR experiments designed to explore and record structural and spatial 

relationships between these nuclei) to determine its structure (not performed in the 

current work). Moreover, interactions with other molecules (or other domains in the 

same protein) cause changes in resonant frequencies to varying extents depending on 

the size of the interacting interfaces and these can be used to delineate interacting sites 

in favourable circumstance.  

The NMR data acquisition for this work was kindly carried out by the NMR 

manager of the Edinburgh Biomolecular NMR unit, Mr Juraj Bella. Dr Christoph 

Schmidt and Dr Mara Guariento also helped with data collection and/or processing of 

spectra with additional expert advice from Dr Dusan Uhrín.  Data were acquired by the 

use of Topspin (the name of the relevant Bruker software) while AZARA (freely 

available from the Common Computing Protocol for NMR (CCPN), University of 

Cambridge) was used for spectral processing (Vranken et al., 2005). Most of the NMR 

data in this work were collected on the Bio800 NMR spectrometer but the Bio600 

spectrometer was also used from time to time, e.g. for collecting 1D spectra or to 

confirm that protein samples were still intact. 
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A range of one-dimensional (1H-observe) and multidimensional (for details of 

sample conditions and pulse sequences, see below and in relevant sections of the 

Results chapter) spectra were recorded and processed, using standard techniques that 

have been described elsewhere (e.g. on the Edinburgh BioNMR Unit’s website but also 

in textbooks and the literature), with greatest use being made of the 15N,1H-HSQC 

experiment. Overlays of 15N,1H-HSQC spectra of the various fragments were 

performed in order to compare chemical shifts of specific CCP modules in different 

contexts (e.g. in CR1 21-22 versus CR1 20-23) and thereby infer information regarding 

the extent of their interactions with other CCP modules.  

The standard suite of three-dimensional NMR experiments (e.g. the 

CBCA(CO)NH and CBCANH “pair” as found in  Bodenhausen and Ruben, 1980, 

Vuister and Bax, 1992, Grzesiek and Bax, 1992, 1993), using very well established 

pulse sequences (installed on our Bruker instruments) and required for backbone 

assignments, were performed on a 15N,13C double-labelled sample of the CCP 21-22 

pair that spans the abnormally long LHR-C to LHR-D linker. Finally a 15N,1H-HSQC 

spectrum (and a TROSY spectrum that is particularly suitable for larger proteins) was 

recorded on a deuturated (2H,15N-labelled) sample of 20-23. 

2.5.2 Backbone assignment of CR1 21-22 

 In backbone assignment (performed using ANSIG, from the CCPN, the 15N,1H-HSQC 

experiment played a key role in the sense that it served as a central reference spectrum. 

Since each cross-peak in such a spectrum represents a distinct 15N with its attached 

proton, its coordinates on the y-axis (nitrogen) and x-axis (hydrogen) corresponds to the 

resonant frequencies (chemical shifts) of these nuclei.  
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Figure 2.8 Steps of Backbone assignment  

(A) Schematics to illustrate the 15N,1H-HSQC, CBCA(CO)NH and CBCANH spectra needed 
for backbone assignment. (B) Illustration of a hypothetic sequential walk (through the long 
linker of CR1 21-22 – actual data appear in the Results chapter).  
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In addition to the 15N,1H-HSQC, the three dimensional CBCA(CO)NH and 

HNCACB triple resonance experiments were employed to sequentially assign the 

chemical shift of the Cα, Cβ, N and (N)H nuclei of the amino acids (Figure 2.8A).  

Before commencing resonance assignment, all the peaks in the 15N,1H-HSQC, 

CBCA(CO)NH and HNCACB spectra were “picked” (in the ANSIG program installed 

on a desktop computer) by putting a cross in the centre of each peak that was 

considered to be valid (i.e. not to be noise nor to be an artefact nor a “diagonal” peak) . 

Since the three experiment were linked via having effectively common 1H and 15N axes, 

each cross-peak in the 15N,1H-HSQC spectrum was easily traced to corresponding strips 

of cross-peaks (i.e. with connectivities to the “root” HSQC peak) in the CBCA(CO)NH 

and HNCACB spectra. These strips of peaks correspond to 13C nuclei that are 

connected through bonds to the backbone amide 15N of the root resonance. The pulse 

sequences used (well established and not discussed further here) ensure that in the 

HNCACB experiment the Cα and Cβ cross peaks of residue i, as well as those of 

residue i-1 appear as cross-peaks. On the other hand in the CBCA(CO)NH experiment 

only the Cα  and Cβ  cross-peaks of residue i-1 are detected. Thus an overlay of strips 

from the respective spectra allows identification of sequential pairs of strips (see Fig. 

2.8). In Figure 2.8, colour coding (cross-peaks from CBCA(CO)NH are blue and 

represents the Cα and Cβ of residue i-1, while the HNCACB cross peaks are yellow for 

the Cβ (of residue i) and pink for the Cα (of residue i)) indicates this process. As seen 

in the last panel of Fig. 2.8, it became clear which of the Cβ and Cα cross peaks 

belonged to the ith residue or the i-1th residue, since the i-1 cross-peaks are overlays of 

blue and yellow, or pink, in this colour scheme.  
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 The figure also illustrates how, by extension, a sequential series of strips were 

identified. Thus to link an arbitrarily assigned residue (i) with the next amino acid 

residue in the protein sequence, horizontal lines were ruled from residue i’s directly 

attached Cα and Cβ cross peaks in that strip. Then by scrolling through the peak list 

database (generated in ANSIG when the peaks were picked), it was often possible to 

find a strip - corresponding to residue i+1 - that exhibited the same pair of chemical 

shifts but in this case they corresponded not to its own Cα and Cβ nuclei but to the 

equivalent nuclei of the preceding residue, i (blue peaks for illustration purposes in Fig. 

2.8). Then, in this new-found strip (i+1) the cross-peaks of directly attached Cα and Cβ 

were used to find the strip corresponding to i+2. This process could continue, both 

forwards and backwards along the protein sequence (“sequential walk”) (see Fig. 4.8B) 

until a break is reached due to lack of data or the presence of a proline that lacks an 

amide group.  

Most side chains have characteristic Cα and Cβ shifts that allow them to be 

identified or classified according to amino acid type. So given the identification of 

chains of sequential strips that could individually be tentatively assigned in many cases 

to amino acid types it was not surprising that comparison with the actual sequence 

allows unambiguous match between a series of strips and a run of amino acids - thus 

establishing sequence-specific assignments of 13Cα and 13Cβ as well as H(15N) and 

1HN nuclei over much of the protein sequence. The availability of these assignments 

made comparisons of the HSQC spectra far more informative. 
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2.5.3 Dynamic light scattering (DLS) and small-angle X-ray scattering 

Dynamic light scattering (DLS) is a relatively fast method of characterizing the size of 

biomolecules in solution, taking only minutes for a measurement. DLS may be used to 

distinguish between a homogenous monodisperse and an aggregated sample. This is 

important because quite frequently in nature, oligomeric states exist in equilibrium in 

solutions of biomolecules (or in a membrane) and sequence variations may affect this 

equilibrium with functional consequences. The apparent particle size measured by DLS 

is also of interest since it is modulated by molecular shape with extended 

macromolecules appearing to be bigger than compact macromolecules. Thus when used 

to compare a series of sequence variants, DLS data could reveal any gross changes in 

dimensions that might arise. 

   The principle of light scattering is based on what happens when light passes 

through a solution containing molecules. Depending on the optical parameters of the 

system, part of the light will be scattered. This scattered light may be analysed either in 

terms of its intensity or in terms of its fluctuations. The former is called static light 

scattering (see Harding, Sattelle and Bloomfield 1992). Dynamic light scattering, on the 

other hand (Berne, 2000; Pecora, 1985), detects the fluctuations of the scattering 

intensity due to the Brownian motion of molecules in solution. The statistics of the 

scattering signal are analysed with a correlator, and the resulting correlation function 

may be inverted to find a size distribution for the particles (molecules) in solution. This 

technique works without requiring knowledge of the exact sample concentration and 

has been used with success in structural biology (see, Bergfors, 1999; D’Arcy, 1994; 

Ferre D’Amare, 1994 for examples).  
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In this work, the Zetasizer Nano-S system (Malvern Instruments) was used. The 

details of sample conditions used for collection of DLS data are given in the relevant 

Results section.  

Small-angle X-ray scattering works on similar principles (although the theory is beyond 

the scope of this thesis) but is a more powerful technique with higher information 

content. Bead models may be constructed and scattering curves back-calculated in an 

attempt to define a narrow range of structures that fit with the experimental data.  

Samples were submitted to DESY in Hamburg for data collection on the X33 beamline 

of EMBL (Koch and Bordas, 1983 ; Roessle  et al., 2007). This experiment was kindly 

performed by our collaborators Dr Haydyn Mertens and Dr Dmitri Svergun, who also 

analysed the data using PRIMUS (Konarev et al., 2003), Guinier analysis (Guinier, 

1939), and GNOM (Svergun, 1992), and performed the modelling as well as providing 

expert advice. The ab initio modelling program, DAMMIF was used for molecular 

weight determination whiles low resolution shape constructs were determined by ab 

initio beadmodelling in DAMMIF (Franke and Svergun, 2009). To determine the most 

representative model from each of the ab initio methods, SUBCOMB was used (Kozin  

and Svergun, 2001). Also, averaged DAMMIF models were determined using 

DAMAVER (Konarev et al., 2003) and then adjusted, so that they agree with the 

experimentally determined excluded volume, 

using DAMFILT (Volkov and Svergun, 2003). Details of sample conditions and data 

analysis are found in the relevant Results section. 
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2.5.4 Analytical Ultracentrifugation (AUC) 

Analytical centrifugation is similar to differential centrifugation in that both techniques 

apply the principles of centrifugal acceleration to separate components of a sample 

based on shape and mass differences. However, in analytical centrifugation analysis of 

the concentration of the sample during centrifugation can be performed since light 

detection devices are incorporated into the system; this is the key difference. Thus in 

analytical centrifugation two forms of hydrodynamic analysis are possible: (1) 

sedimentation velocity; and (2) sedimentation equilibrium. In the current work, the 

sedimentation velocity technique was used. 

Sedimentation velocity is a powerful method because it allows both the mass 

and the shape of molecules to be determined – unlike DLS that conflates the two. 

Typical spin speeds are in the range of 40,000 - 60,000 rpm causing components to 

separate out in layers, forming boundaries or concentration gradients - in solution. A 

series of scans (based on detection of absorbance or refractive index) is performed on 

the sample during the spin enabling the movement of particle boundaries as a function 

of time (their velocity) to be recorded. Each resulting data set was analysed (SEDFIT, 

Schuck, (2000) This enables calculation of the sedimentation coefficient (S) that is a 

function of: molecular weight, density, molecular shape (proteins with a more 

elongated shape will experience more friction from solvent, so will tend to sediment 

more slowly), solute concentration, solvent viscosity and charge of the protein (since a 

charged particle will travel more quickly through a polar solvent). The theory involved 

and the corresponding equations are beyond the scope of this thesis. Yet, value of the 

partial specific volume for all four variants was computed using SEDNTERP (Laue et 

al., 1992). 
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In addition to determination of S, the diffusion coefficient (D) can be 

determined by measurement of the spreading of a boundary; this is helpful in 

determining, for a purified protein, the homogeneity of self-association. Thus a 

homogenous product (monomer, dimmer etc.) yields a sharper boundary than a mixture 

of self-associated forms in equilibrium. 

Thus sedimentation velocity measurements performed on a set of variants as in 

the current work enabled comparisons of homogeneity and degree of self-association as 

well as overall shape of a protein (spherical or more extended).  In the current project, 

samples were submitted to the University of Nottingham for measurement and expert 

analysis all of which was generously carried out by our collaborator, Professor Arthur 

Rowe. More precise details may be found in the relevant section of Results. 
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3.1 Introduction to overproduction of recombinant proteins 

The production of a set of truncation mutants (“fragments”) of CR1 containing various 

numbers of CCP modules was required for this project. A series of three fragments of 

increasing size (CR1 21, CR1 21-22 and CR1 20-23) was created for structural studies 

aimed at assessing whether the modules on either side of the exceptionally long linking 

sequence between LHR-C and LHR-D (CCPs 21 and 22) are folded back upon one 

another to create a “U-bend”. These proteins also served as useful negative controls in 

various biological assays. Another set of smaller fragments (CR1 10-11, CR1 15-17, CR1 

17 and CR1 24-25) was produced whose members correspond to parts of known or 

potential binding sites in CR1 and were intended for biological assays. Finally, 

polymorphic variants of each of two sets of longer fragments (CR1 15-25 and CR1 17-25 

variants) were produced that incorporate modules contributing to structure and function, 

and these were used in both biophysical and functional studies. 

 

For this project, involving functional and biophysical characterisation, multiple-

milligram quantities of pure, properly folded and validated protein fragments were 

required. Only in the case of CR1 15-17 was an over-expressing clone (of Pichia 

pastoris) available at the start of the work – this was a generous gift from the Atkinson 

lab (Washington University School of Medicine, St Louis). This chapter describes the 

results obtained from the cloning and expression of DNA segments encoding the 

remaining protein fragments, along with the results from efforts at overproduction and 

purification of the resultant recombinant proteins. As highlighted in Materials and 

Methods (Chapter 2), in all cases DNA was amplified (directly or indirectly) from cDNA 
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encoding full length CR1, also kindly provided by the Atkinson lab; and the expression 

host used in all cases was the methylotropic yeast, P. pastoris (Schmidt et al., 2011).The 

results presented will include images of agarose gels used to resolve and size DNA 

molecules, and of polyacrylamide gels following protein electrophoresis in the presence 

of SDS, as well as chromatograms showing protein elution profiles.  Details of all these 

methods may be found in the Materials and Methods chapter (Chapter 2). 

 

 

Figure 3.1 Proteins whose DNA were cloned and expressed, and that were subsequently 

overproduced in P. pastoris, during the course of this project. 

A schematic representation of the 30 extracellular CCP modules (ovals) of CR1 (top) and 
(beneath) a summary of the recombinant CR1 protein fragments produced for the current project. 
The number of CCP modules in each fragment is summarised and also indicated are the extents of 
the long homologous repeats (LHRs A-D), the position of the two copies of functional site 2, the 
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locations of Knops blood group variations, and the location of the long intermodular “linker” of 
eight residues between LHRs C and D. The vertical arrangement (from top to bottom) of the 
constructs reflects the order in which the constructs were recombinantly made and purified.  
 

Since cloning and overexpression of genes in P. pastoris, and the subsequent 

production and purification of recombinant protein, appeared to become more 

challenging as the target proteins incorporated more modules, initial work focussed on 

obtaining fragments consisting of single- and double-CCP modules. As this proved very 

successful, efforts extended incrementally to encompass longer constructs culminating in 

successful production of a set of eleven-CCP module fragments.  

Some vital statistics for the set of recombinant CR1 fragments employed in the 

current study are summarised in Table 3.1. 

 
Name of Construct Number of 

Amino 
Acid 

(AA No) 

DNA 
Molecular 

Weight (bp) 

Protein 
Molecular 
Weight (in 

KDa) 

Theoreti
cal   PI 

Extention 
Coefficient 

(ε) 

          N- 
Glycosylation 
        Sites 

CR1 21 82 246 8.790 5.38 8730 No 
CR1 21-22 143 429 15.65 5.09 17460 No 
CR1 20-23 264 792 28.76 5.90 30450 Yes 
CR1 15-17 197 591 21.70 8.46 27680 Site removed 
CR1 17 82 246 8.913 6.75 10220 No 
CR1 10-11 139 417 15.20 6.82 15970 Yes 
CR1 17-25KR 591 1773 64.88 6.12 71120 Yes 
CR1 17-25ER 591 1773 64.88 5.96 71120 Yes 
CR1 17-25KG 591 1773 64.88 6.04 71120 Yes 
CR1 17-25EG 591 1773 64.88 5.88 71120 Yes 
CR1 15-25KR 711 2133 78.10 6.86 88580 Yes 
CR1 15-25ER 711 2133 78.10 6.62 88580 Yes 
CR1 15-25KG 711 2133 78.10 6.73 88580 Yes 
CR1 15-25EG 711 2133 78.10 6.53 88580 Yes 
CR1 24-25KR 137 411 15.0 6.07 15970 Yes 
CR1 24-25ER 137 411 15.0 5.49 15970 Yes 
CR1 24-25KG 137 411 15.0 5.75 15970 Yes 
CR1 24-25EG 137 411 15.0 5.25 15970 Yes 
 
Table 3.1 Summary of “vital statitics”for the protein fragments made for the current study  
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Name of Construct First residue 
name 

Last residue 
name 

No and location of  
 N-glycosylation sites 

CR1 21 E 1317 R 1392 
 

  0  
NONE 

CR1 21-22 H 1317 S 1456 
 

  0  
NONE 

CR1 20-23 S 1257 I 1516 
 

  3 N1310-S1312 ,  N1481- S1483, 
N1504-S1506 

CR1 15-17 L 940 N 1136 
 

  2 N959-S961, N1028-S1030 
( But Knocked Out) 

CR1 17 R1063 N 1136 
 

  0  
NONE 

CR1 10-11 R 613 R 745 
 

1  
N702-S704 

CR1 17-25KR 
 

I 1064 S 1647  

CR1 17-25ER 
 

I 1064 S 1647 

CR1 17-25KG 
 

I 1064 S 1647 

CR1 17-25EG I 1064 S 1647 
 

 7 

N1152-S11454 , N1215-S1217, 

 
N1310-S1312 ,  N1481- S1483, 
 
N1504-S1506, N1534-T1536 

 
N1540-T1542 
 

CR1 15-25KR T 940 S 1647 
 

CR1 15-25ER T 940 S 1647 
 

 
CR1 15-25KG 

 
T 940 

 
S 1647 
 

 
CR1 15-25EG 

 
T 940 

 
S 1647 
 

 9 N959-S961, N1028-S1030 

 
N1152-S11454 , N1215-S1217, 

 
N1310-S1312 ,  N1481- S1483, 
 
N1504-S1506, N1534-T1536 

 
N1540-T1542 

CR1 24-25KR I 1517 S 1647 
 

CR1 24-25ER I 1517 S 1647 
 

CR1 24-25KG I 1517 S 1647 

CR1 24-25EG I 1517 S 1647 
 

  3  
N1534-T1536 
 
N1540-T1542 
 
N1605-S1607 

 
 
 

Table 3.2 Domain boundaries and N-glycosylation sites 
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3.2 CR1 CCP 21 cloning, production and purification 

 

The 21st CCP of CR1 (CR1 21) is the last module of LHR-C (see Fig. 3.1) and is joined 

to CCP 22 by an eight-residue linker. It was decided to prepare this single module (for 

domain boundaries used, see Table 3.2) with a view to a future NMR spectroscopy-based 

comparison of its chemical shifts with those of the recombinant double-module construct 

CR1 21-22.  

 

DNA was amplified with the forward and reverse primers indicated in Table 2.1 

(see Chapter 2, Materials and Methods). The amplification product (see Fig. 3.2A) 

migrates as a band of DNA on an agarose gel to a position consistent with its expected 

length of 246 base pairs. Subsequently, TOPO®isomerase (TOPO®) cloning (as described 

in the manual supplied with the TOPO® Cloning Kit, Invitrogen) was performed to place 

the PCR-derived insert into the TOPO® plasmid vector that was then used to transform 

Top10 E. coli competent cells (Invtrogen). The amplified and subsequently extracted 

DNA (using the QIAprep Miniprep Kit (Qiagen)) was digested using PstI and XbaI. The 

digested insert was ligated into commercially available pPICZ αB vector (see Materials 

and Methods for more details). This was amplified in Top 10 E. coli competent cells and 

DNA extracted as before. Following linearization (SacI), the recombinant vector was 

transformed into P. pastoris KM71H cells for expression. To ensure that the 

transformation was successful, PCR screening was done on the P. pastoris colonies 

using, as forward and reverse primers, DNA encoding the α factor and the AOX 
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promoter, respectively; a band of 246 + 330 base pairs would therefore be expected for a 

successful insertion. In Figure 3.2B, therefore, the bands in lanes 1 and 2 are consistent 

with insert-positive colonies that were taken forward for protein-production trials. 

 
       
Figure 3.2   Cloning, production and purification of CR1 21 

(A) PCR amplification of CR1 21-encoding DNA from CR1 cDNA; bands in well (W) 1 and W2 
correspond to the expected 246-bp DNA; L is a 100-bp ladder (which ran poorly for reasons 
unknown, producing diffuse bands). (B) PCR screening of CR1 21-encoding DNA transformed 
P. pastoris colonies; the 576-bp bands in W1 and W2 corresponds to the expected size of the 
PCR prodict. (C) Gradient SDS-PAGE performed on TCA precipitated product derived from 1 ml 
of cell culture supernatant (resuspended in about 20 µL of 2X SDS loading buffer) from ten 
separate “mini-scale” (5 mls each) CR1 21 protein-production trials; an arrow indicates the 
position of protein bands at the expected mobility (molecular weight markers, in kD, are 
indicated) The right-hand lanes show that the protein (e.g. from colonies 1 and 2) still runs as a 
single band under reducing conditions (containing a final concentration of about 100 mM DTT). 
(D) SDS-PAGE of about 20 µL of a 10-fold concentrated aliquot (not purified) taken from 
growth media supernatant from a larger (one litre)-scale production run of CR1 21. (E) 
Chromatogram obtained after loading crude recombinant CR1 21 protein onto a cation-exchange 
(MonoS – details in Chapter 2) column in 20 mM sodium acetate buffer (pH 4.0) and eluting with 
a salt (NaCl) gradient from 0 to 1 M NaCl; (F) Commassie-stained SDS-PAGE of the fractions 
corresponding to the two major peaks, A and B, eluted from the cation-exchange chromatography 
column in panel E.  
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From the SDS PAGE gel (Figure 3.2C), it is apparent that all colonies screened in the 

mini-scale protien production trials expressed the CR1 21 gene well, with colonies 

numbers 2 and 7 subsequently selected for larger -scale protein production and the laying 

down of glycerol stocks. Note that CCP 21 has an expected MWt of 8-9 kDa and so as 

expected runs just ahead of the first band of the “Precision Plus” protein molecular 

weight markers (~10 kDa).  

Using a shaker flask, a larger culture was set up leading to a one-litre harvest. 

Harvesting and preparation for purification were carried out as described in section 2.3.7 

of Materials and Methods (Chapter 2; note similar methods were also used for all the 

other CR1 fragments).  Before any purification commenced, the supernatant was 

analysed by SDS-PAGE to provide the basis upon which to very approximately estimate 

the level of protein production (see Fig. 3.2D). Lane 1 in Figure 3.2D contains a band 

running just below 10 kDa. This corresponds to the expected molecular weight of CR1 21 

(see Table 3.2). Subsequently, a one-in-five dilution of the filtered supernatant was 

performed to decrease its ionic strength (and the conductivity checked), then the pH was 

adjusted to 4. (Note the predicted pI of the construct is 5.38 (Table 3.1)).  This sample 

was subjected to cation-exchange chromatography performed on a self-poured SP-

sepharose column with a step elution, using 1 M NaCl. The eluted product was de-salted 

and run through a second higher-resolution cation-exchange column (monoS, size and 

supplier). Two overlapping peaks (named A and B) were obtained (Fig. 3.2D) 

corresponding to fraction numbers 34 and 36, respectively. Peak B looked fairly pure 

according to SDS-PAGE and therefore fractions 36-37 were pooled for further 
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characterisation. The overall yield of purified protein from this one-liter growth was 

estimated to be 0.8 mM in a total volume of 1 ml. 

 

3.3 CR1 21-22 cloning, production and purification 

 

The 21st and 22nd CCP modules of FH form the boundary between LHRs-C and D, and, 

as was discussed above, are connected by the longest inter-modular linker amongst all 

RCA proteins. Using the appropriate primers (Table 2.1 in Chapter 2), the segment of the 

cDNA that corresponds to the DNA encoding CCP 21-22 of CR1 was amplified (See 

Table 3.2 for chosen domain boundaries) by PCR. The DNA product contains 429 bp and 

ran accordingly on an agarose gel (i.e. it was larger than the insert encoding CR1 21, see 

Fig. 3.3A). This PCR-amplified product was cleaned up, TOPO®-cloned as before, 

sequenced, and restriction-enzyme digested (using Pst1 and Xba1) using similar 

procedures to those applied to CR1 21. The insert was ligated into the P. pastoris vector 

pPICZ αB and transformed into top 10 E. coli competent cells for “maxi-prep” using the 

QIAprep®maxiprep Kit (Qiagen). 

      The resultant plasmids were linearised using SacI and the products run out on a 1% 

(w/v) agarose gel alongside the non-linearised (uncut) plasmid that ran slightly faster, as 

expected. On this basis, the two highest expressing colonies were selected for further 

work (see Fig. 3.3B). Following clean up of these linearised DNA samples by phenol-

chloroform extraction and ethanol precipitation (see Materials and Methods) they was 

used to transform P. pastoris strain KM71H. Screening by PCR, using Mastermix 

(Promega), of the resultant P. pastoris colonies was performed to ensure that the 
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recombinant gene had been successfully inserted prior to expression trials. Two colonies 

(see Fig. 3.3C) (in wells 1 and 2) screened positive for the presence of insert.  

 
Figure 3.3   Cloning, production and purification CR1 21-22 

(A) Amplification of CR1 21-22-encoding DNA from CR1 cDNA; bands in W1 and W4 
correspond to the 429-bp of CR1 21-22. Arrow indicates a band running in the expected place 
and presumed to correspond to the insert coding for CR1 21-22. (B) SacI digest (linearisation) of 
the CR1 21-22-containing plasmid; W1 and W2 correspond to cut and uncut plasmids from 
colony C1 whilst W3 and W4 correspond to cut and uncut copies of C2, respectively. L’ is 1-kb 
ladder. (C) PCR screening of transformed P. pastoris colonies; the 759-bp bands in W1 and W2 
corresponds to the expected size of insert plus flanking sequences; as before, L’ is 1 kilo-bp 
ladder. (D) Gradient SDS-PAGE of mini-scale production trials of nine P. pastoris CR1 21-22 
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colonies; arrow indicate the faint bands running where the product would be expected. (E) SDS-
PAGE, performed on a gradient gel, of concentrated but crude supernatant (after spinning out 
cells) from CR1 21-22 large-scale production trial with strong band (arrow; lane 1) running as 
expected for this size of protein and only a faint band from an unconcentrated supernatant (lane 
2). (F) Results of SDS-PAGE perfomed on fractions obtained from cation-exchange purification 
of CR1 21-22; these fractions were eluted from a MonoS column with 20 mM sodium acetate 
buffer (pH 4.0), with 1 M NaCl. (G) Chromatogram obtained for the size-exclusion purification 
of CR1 21-22. (H) SDS PAGE following size-exclusion chromatography of (non-isotopically 
labelled) CR1 21-22.  
 

Assuming successful insertion, the expected number of basepairs for the PCR product 

(using, as before, α-factor-derived forward primers and AOX promoter-derived reverse 

primers) is 759 bp, which is consistent with the band running just below the 1 kilo-bp 

marker in Figure 3.3C. 

After a successful mini-scale protein production trial, however, it became clear 

that the yield of recombinant protein was relatively low, as evidenced by faint bands on 

the gel (see Fig. 3.3D). Colonies were subsequently re-streaked on YPD-agar plates 

containing higher amounts of Zeocin™ (200–300 µg/ml) in order to achieve more 

stringent selection of high-copy number clones. Selected colonies from the YPD-agar 

plate were then picked and cultured in shaker flasks; the cells were spun out and aliquots 

of the supernatants were concentrated and analysed by SDS-PAGE (see Fig. 3.3E).  

Yields improved following additional colony selection procedure. Similar purification 

steps to those used for CR1 21 were applied, since the theoretical pI of this construct is 

5.1 (see Table 3.1). Thus cation-exchange chromatography was used for the first two 

purification steps employing, sequentially, a self poured SP-Sepharose column (between 

10 ml of resin), and then a higher resolution monoS column. An SDS-polyacrylamde gel 

was run on the fractions eluted from the monoS column (Fig. 3.3F) revealing relatively 

pure protein with a degree of degredation and other impurities. Following buffer-
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exchange into PBS, size-exclusion chromatography was performed as a polishing step 

(see Figs. 3.3G and 3.3H for the chromatogram and corresponding analysis of fraction 

using SDS-PAGE.) Note that purified proteins runs at the expected sites (about 15 kDa) 

under non-reducing conditions, while under reducing conditions bands run slightly 

higher, as expected, and there is little or no evidence of proteolytic clipping of CR1 21-

22.  The overall yield of purified protein was estimated to be 1 mM in 1.0 ml. 

 

3.4 CR1 20-23 cloning, production and purification 

 

To gain further knowledge of the architecture surrounding the long intermodular linker 

between LHR-C and LHR-D, the four-module construct CR1 20-23 was also needed. As 

before PCR was employed to amplify the appropriate segment of DNA (see Table 3.2 for 

the domain boundaries chosen) from the cDNA for full-length CR1. A product consistent 

with the expected 792 bp was obtained (see Fig. 3.4A). TOPO®-cloning and double 

digestion was used as before to produce an insert of appropriate size (see W2 in Fig. 

3.4B) for ligation into the pPICZ αB vector and amplification in E. coli; note, a modified 

ligation protocol (see Materials and Methods) was used and PCR was employed to check 

for successful ligation. As shown in Figure 3.4C, vectors from E. coli colonies 1, 2, 7, 8, 

10, and 11 all appeared to contain the insert on the grounds that the PCR products ran in 

the expected place (~1.2 kb). Several of these colonies were then checeked to verify that 

the sequences were indeed correct and that they were in frame. Plasmids were 

subsequently recovered, SacI linearized, and run on a 1 % agarose gel alongside the uncut 

version (see Fig. 3.4D). After successful transformation into P. pastoris, another PCR-



CHAPTER 3 PROTEIN EXPRESSION AND PURIFICATION 

 118 

based screen was carried out using forward and reverse primers precisely as described 

earlier - the band runs just above the 1 kbp marker as expected for a 1.2 kb segment of 

DNA. 

 
Figure 3.4   Cloning, production and purification of CR1 20-23 

(A) PCR amplification of CR1 20-23-encoding DNA from cDNA. A band consistent with the 
expected size of 792 bp was obtained. (B) TOPO®-cloning and double digestion using Pst1 and 
Xba1 yields a band of the expected size. (C) Screening for successful ligation by PCR of plasmids 
produced in E. coli. (D) Sac1 linearisation of PicZ αB containing insert for CR1 20-23, (E) 
Screening by PCR of PicZ αB from P. pastoris that contain the DNA encoding CR1 20-23, L and 
L’ denote size-marker ladders. (F) SDS PAGE following “mini-scale” production trial of CR1 20-
23 (contents TCA-preicpited from 1 ml of culture superntant from a 5 mL culture). (G) SDS 
PAGE analysis following CR1 20-23 production in a one-litre shaking flask cell culture; lane 1 
contains EndoHf deglycosylated protein while (for comparison) lane 2 contains the crude 
glycsosylated material. (H) Commassie-stained SDS PAGE following the first cation exchange 
chromatography step. (I) Commassie-stained SDS PAGE following second cation-exchange on 
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monoS column. (J) Chromatogram following size-exclusion chromatograph of CR1 20-23. (K) 
SDS PAGE confirming that the main peak obtained following size-chromatography contains pure 
protein with an expected mass of about 30 kDa. 
 

Colony 3 (see Fig. 3.4F) was used for larger-scale (one-litre) protein production growth 

and the harvested supernatant (i.e. after spinning out cells) was diluted and subjected to a 

step-elution cation-exchange purification (pI =5.90, pH = 4.0) using a self-poured bench-

top SP-sepharose column (10ml of resin), as before. The eluted protein (see Fig. 3.4G) 

was then deglycocylated using endo Hf (two hours incubation at 37 °C). Note that this 

deglycosylation step had not proved necessary in the cases of CR1 21 and CR1 21-22 

because they did not have any N-glycosylation sites. After de-salting, a second cation-

exchange chromatography step was performed on a monoS column, in an identical 

fashion to that used for purification of CR1 21 and CR1 21-22. SDS-PAGE analysis 

confirmed the production of a protein band of the expected size for deglycosylated 

material (~28 kDa, see Fig. 3.4I and Table 3.1). Finally the pooled fractions, after buffer 

exchange into PBS, were subjected to a size-exclusion ”polishing” step on a Hiload 

Superdex 75 column (Fig. 3.4J ) and SDS-PAGE was performed on the resultant 

fractions (Fig. 3.4K).  The yield of pure protein from this one-litre growth was 0.24 mM 

in 1 mL. 

 

3.5 CR1 15-17 Cloning, Production and Purification 

 

Modules 15-17 of CR1 encompass one of two copies of functional site 2 and the DNA 

encoding CR1 15-17, already cloned into the P. pastoris expression vector pPIC9, was 

kindly provided by John Atkinson. Therefore transformation of this construct had been 
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entirely accomplished by the Atkinson group.  A one-litre culture was grown up in a 

shaker flask (see Materials and Methods), cells removed by centrifugation, and protein of 

the correct size detected in the supernatant (Fig. 3.5A). An initial bench top cation-

exchange chromatography step was carried out on diluted cell culture supernatant using 

25 mM MES buffer (pH 5.0, the pI of CR1 15-17 is 8.46) as the binding buffer and 

eluting with a gradient to 1 M NaCl yielding the SDS-PAGE analysis shown in Figure 

3.5B. Pooled protein-containing fractions from this step were buffer exchanged into PBS 

and subject to a size-exclusion (HiLoad Superdex 75 column) chromatography step (see 

Fig. 3.5C). The main peak (covering fractions 30 to 36) was analysed by SDS–PAGE and 

found to contain one very dominant band of the expected mass, under both reducing and 

non-reducing conditions (Figure 3.5D).  

 

Figure 3.5   Purification of CR1 15-17 by ion exchange and gel filtration 

(A) A Commassie-stained SDS-polacylamide gel of crude supernatant from a one-litre culture (12 
µL of culture loaded in each well); arrow indicates position of the expected bands. (B) A SDS-
polacylamide gel of the first ion-exchange based purification (SP sepharose). (C) Chromatogram 
following the final size-exclusion chromatographic (Superdex 75) purification of CR1 15-17. (D)  
Purity of CR1 15-17 as assessed by SDS-PAGE under reducing (left) and non-reducing 
conditions. 
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As expected for a well-folded protein with intact disulphide bonds, the reduced proteins 

runs slightly higher than the non-reducing ones.  However, there does appear to be a 

contaminating band, of approximately dimer size, in the non-reducing lanes.  

 

3.6 CR1 17 cloning, production and purification 

 

Among the many antibodies that recognize CR1, J3B11 has CCP 17 as its epitope. 

Interestingly, J3B11 effectively disrupts rosettes. While all three CCPs (15-17) of site 2 

are required for C3b interaction, soluble recombinant CR1 17 alone might have some 

effect on rosetting. The DNA encoding CCP 17 (for boundaries, see Table 3.2.) was 

amplified both from a cloned CR1 17-25-encoding template (see below) and from CR1 

cDNA. All three lanes in Figure 3.6A (W1 and W2 from cDNA and W3 from CR1 17-

25) contain DNA bands of an approximately appropriate size. Double digest (using PstI 

and XbaI) of the DNA extracted from three of the TOPO®-cloned colonies are shown in 

Figure 3.6B wherein lanes 1 and 3 contained the digested DNA insert coding for CR1 17. 
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Figure 3.6   Cloning, production and purification of CR1 17 

(A) PCR amplification of DNA coding for CR1 17 from cDNA for CR1 (well (W)1 & W2) 
and DNA encoding CR1 17-25 (W3). (B) Double digest of TOPO®-cloned CR1 17. (C) SacI 
digest of plasmid containing insert for CR1 17. (D) PCR-based screening of vectors containing 
DNA for CR1 17 from P. pastoris colonies. Note: L represents 100-bp ladder, L’ represents 1-
kbp ladder. (E) SDS-PAGE of unpurified supernatant from one-litre culture (shaker flask) for 
production of CR1 17 (12µL of culture supernatant loaded in each well). (F) SDS-PAGE analysis 
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of the outcome of first cation-exchange chromatographic purification performed as described 
earlier for CR1 21 and CR1 21-22. (G) Chromatogram to show outcome of the second cation-
exchange step (monoS) ( pI =6.75 and hence pH = 4.0). (H) SDS-PAGE of fractions from the 
second cation-exchange purification of CR1 17. (I) Chromatogram obtained from size-exclusion 
chromatography of CR1 17. (J) SDS-PAGE performed on protein obtained from one of this final 
purification step. 
 

As before, after ligation into pPicZ αB, screening and sequencing, plasmids containing 

DNA (for CR1 17) were extracted from the selected E. coli colony and SacI digested 

(Fig. 3.6C), then purified and transformed into P. pastoris. Colonies obtained from the 

transformation were screened (Fig. 3.6D) and trial expression instigated. 

The one-litre shaker flask supernatant was analysed by SDS PAGE (Fig. 3.6E), 

then subjected to cation-exchange chromatography (on a self-packed SP sepharose 

column as before). Since CR1 17 has a theoretical PI of 6.75, 20 mM sodium acetate 

buffer, pH 4, was used (Fig. 3.6F). As before, a second cation-exchange chromatographic 

step (on MonoS) was undertaken (see Figs. 3.6G and H), followed by a size-exclusion 

chromatographic step (Figs. 3.6I and J). 

 

3.7 CR1 10-11 cloning, production and purification 

 

Because of the near-identical sequences of LHRs B and C, it was possible that an attempt 

to amplify modules 17-18 from cDNA could result in amplification of modules 10-11. In 

anticipation of this difficulty, more than one tube were set up for the amplification of the 

requisite DNA region encoding modules 17-18 of CR1, one (well (W)3) used the CR1 

17-25 coding sequence as its template whilst two others (W1 and W2) contained the 

cDNA of full-length CR1 as template (Figure 3.7A). The amplification of the cDNA for 



CHAPTER 3 PROTEIN EXPRESSION AND PURIFICATION 

 124 

CR1 worked well; after TOPO®-cloning and sequencing, however, it became apparent 

that the portion amplified from the cDNA was actually CR1 10-11 found in LHR-B and 

not the expected CR1 17-18 from LHR-C. Given the near-identical sequences, it was 

decided to continue anyway and make CR1 10-11 instead of CR1 17-18. A double digest 

was performed on the TOPO® plasmid vector (pCR®4Blunt-TOPO®) containing CR1 10-

11-encoding DNA using PstI and XbaI (Fig. 3.7B) as described in the previous sections. 

One of the successfully digested inserts (W1 and W3 of Fig. 3.7B) was then ligated into 

the pPICZ αB vector as before and this was used to transform E. coli cell. Once again, 

recombinant plasmids extracted (QIAprep Maxiprep Kit) from the tramsformed E. coli 

were linearised using SacI (Fig. 3.7C) and transformed into P. pastoris strain KM71H. 

Successful screening on Agar-YPD plates containing 200 µg/ml Zeocin™ was 

performed, followed by PCR-based screening of P. pastoris colonies (Fig. 3.7D).  

 “Mini-scale” protein production trials indicated a good yield of highly 

glycosylated proteins. Enxouraged by this and using the best clone, a one-litre shaker 

flask culture was prepared, yielding the SDS-PAGE results shown in Figure 3.7E.  As 

before, a bench-top self-poured SP Sepharose column was used to capture the 

glycsosylated protein from diluted supernatant (pI = 6.82, 20 mM sodium acetate buffer, 

pH 4.0). Following deglycosylation with Endo Hf a second cation-exchange 

chromatographic step was performed as before (Figs. 3.7F and G, respectively). Figures 

3.7H, I and J show the outcome of two sequential size-exclusion chromatographic steps. 

The second size-exclusion step was thought necessary in order to remove so far as 

possible any degraded product (see reducing side of Fig. 3.7H), and possibly the “ladder 
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like” impurities detected on the non-reducing side (Fig. 3.7H). From the one-litre culture, 

a solution of  0.61 mM purified protein in 1ml was obtained. 

 

Figure 3.7   Cloning, production and purification of CR1 10-11 (17-18) 

(A) PCR amplification of DNA encoding CR1 10-11 from cDNA (W1 and W2) and CR1 17-25 
(W3). DNA of 417 bp was expected. (B) Double digest of CR1 10-11 DNA following TOPO®-
cloning, using PstI and XbaI. (C) SacI llinearization of plasmid containing DNA for CR1 10-11. 
(D) PCR screening of CR1 10-11 insert following transformation of P. pastoris. Arrows indicate 
the expected bands. (E) Coomassie-stained SDS-PAGE performed on unpurified supernatant 
from a one-litre culture of CR1 10-11 (12 µL loaded); lane 2 contains glycsosylated protein and 
the main band has a smeared appearance at around 37 kD. (F) Chromatogram following cation-
exchange purification (monoS). (G) Outcome of Coomassie-stained SDS-PAGE performed on 
cation-exchange chromatography fraction from the monoS column. (H) Coomassie-stained SDS 
PAGE following first size-exclusion purification of CR1 10-11. (I) Chromatogram following 
second size-exclusion purification of CR1 10-11. (J) Coomassie-stained SDS PAGE of fractions 
collected from second gel filtration chromatography step. 
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3.8 CR1 17-25 cloning, production and purification 

 

Using the appropriately designed oligonucleotide primers (see Table 2.1), the DNA 

sequence coding for the Caucasian variant of this nine-module construct (CR1 17-25; was 

amplified (in triplicate – to increase chances of success since this is a much longer 

construct than had been made previously) using PCR from CR1 cDNA, and the product 

run out on an agarose gels (Figure 3.8). Two bands were observed in well 1 (W1 of Fig. 

3.8A) because the primers were able to anneal with more than one part of the DNA 

template. For similar reasons, non-targeted amplification was observed in wells 2 and 3. 

The band of the expected size (about 1773 bp, table 3.1) was cut out and purified for 

further work.  

TOPO®-cloning and double digestion using Pst1 and Xba1 were performed as 

described in previous sections (Fig. 3.8B). Colonies obtained from ligation into pPicZ αB 

and the transformation into Top 10 chemically competent E. coli cells for amplification 

were PCR screened (Figure 3.8C). Colonies 3, 4 and 7 screened positive and therefore 

were selected for sequencing. After selecting one of the sequenced colonies, the plasmid 

was amplified via a “maxi-prep”, SacI linearised (Figure 3.8D) and used to transform P. 

pastoris.  The transformed P. pastoris colonies that had grew on agar-YPD plates with 

300µg/ml Zeocin™ were re-screened using PCR (Figure 3.9E). Protein yields in small-

scale production trials were low (Figure 3.8F). Therefore western blot was employed 

using the 3D7 CR1 antibody (Figure 3.8G). Lanes 2 to 4 reveal CR1 17-25 production by 

three colonies, and may be compared to lane 1 that shows production of CR1 20-23, 

serving as positive control.   
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Once it has been established that this “Caucasian” variant of the construct (i.e. 

one that predominates in Caucasian populations and corresponds to CR1 17-25 

containing K1590 and R1601, or CR1 17-25KR) had been successfully cloned, expressed 

and purified, attempts were made to introduce the point mutations needed to express the 

other Knops blood group polymorphic variants. Site-directed mutagenesis was carried out 

to replace the appropriate base pairs; thus an A4795G (i.e. A4795 to G) substitution 

leading to Glu1590 CR1 17-25ER, A4828G leading to Gly1601 CR1 17-25KG, and the 

double substitution leading to (Glu1590E, Gly1601G) CR1 17-25EG, were generated 

(see Materials and Methods). Plasmids were sequenced to ensure that the correct changes 

had been effected them amplified in Top 10 E. coli cells and linearised prior to P. 

pastoris transformations. Small-scale growths were performed for all three mutated 

versions (variants) (CR1 17-25ER, KG and EG). The results of SDS-PAGE performed on 

the products of the “mini-scale” production trials of CR1 17-25ER (left half of gel) and 

CR1 17-25KG (right half of gel) are shown in Fig. 3.8H, while Panel (I) is the product of 

`’mini-scale” production trials on CR1 17-25EG. To confirm expression of these proteins  

- that were produced in relatively low yields, more sensitivity was needed and so western 

blots (details in Materials and Methods) were performed following SDS-PAGE of 

harvested supernatants from two colonies of each variant (Figure 3.8J). 
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Figure 3.8   Cloning, production and purification of CR1 17-25 and polymorphic forms 

(A) PCR amplification of DNA coding for CR1 17-25 from CR1 cDNA. Expected size of DNA = 
1773 bp. (B) Double digest of TOPO®-cloned CR1 17-25 DNA using PstI and XbaI. (C) 
Screening by PCR of CR1 17-25 from vector in E. coli Top10 cells. (D) SacI linearisation of 
plasmid containing the DNA for CR1 17-25. (E) PCR Screening of plasmid containing CR1 17-
25-encoding insert from P. pastoris cells. (F) SDS-PAGE analysis of small-scale production of 
CR1 17-25 (18 µl loaded of 20X concentrate from 1ml culture). (G) Western blot of proteins 
produced in small-scale trials after separation on an SDS-polyacrylamide gel. (H) SDS-PAGE 
analysis of “mini-scale” production trial of CR1 17-25ER (lanes 1 to 6) and of CR1 17-25KG 
(lanes 8 to 12) - the amount loaded is smilar to in panel F but only 10X concentrated. (I) CR1 17-
25EG “mini-scale” product analysed by SDS-PAGE (same quantity as panel F). (J) Western blot 
of all variants derived from CR1 17-25KR. Lanes 1 and 2 for two colonies producing CR1 17-
25ER, lanes 3 and 4 contain detected proteins produced from colonies of CR1 17KG. Lanes 5 and 



CHAPTER 3 PROTEIN EXPRESSION AND PURIFICATION 

 129 

6 were from a CR1 17-25EG-producing culture, but only lane 6 show a clear band. Lane 8 was 
loaded with CR1 20-23, which served as a positive control.    
 

While the mutagensis work was still underway, a one-litre culture of a colony 

already confirmed to be producing CR1 17-25KR (Figs. 3.9F and G) was grown up. After 

a five-fold dilution, the supernatant was loaded onto the self-poured SP sepharose column 

(pI of CR1 17-25KR is 6.1, so buffer used was 20 mM sodium acetate, pH 4.0). The 

highly glycsosylated protein product, eluted with 1 M NaCl, was detected by Coomassie-

stained SDS-PAGE (Fig. 3.9A). Enzymatic deglycosylation was accomplished using 

Endo Hf, Endo H or PNGase. The MWts of these last two are ~30 kDa from that of the 

target CR1 fragment; Endo Hf on the other hand has an MWt similar to CR1 17-25, i.e. 

68-70 kD. Under non-reducing conditions, the putative CR1 17-25 band runs just below 

the EndoHf band (lane 2 in Fig. 3.8B), but under reducing conditions, the two bands 

virtually overlap. After de-salting, a second cation-exchange procedure was carried out 

(Mono S, same buffers and gradient as described for the other constructs) (see Figs. 3.8C 

and D). Protein-containing fractions from the ion-exchange column (Fig. 3.9D), were 

buffer-exchanged into PBS for size-exclusion chromatography using Superdex 75 (see 

Fig. 3.9E). Under reducing conditions some degradation is visible that is not present 

under non–reducing conditions. This is consistent with proteolysis occurring within 

modules such that under non-reducing conditions the cleaved portions of the protein are 

held together by the disulfide bonds, of which they are two per module. 
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Figure 3.9   Purification of CR1 17-25 polymorphic forms 

(A) Commassie-stained SDS-polyacrylamide gel following the first cation-exchange 
chromatographic step. (B) As in (A) but after using EndoHf / PNGase (lane 1) and EndoHf (lane 
2). (C) Chromatogram following cation-exchange purification (monoS). (D) SDS-PAGE of 
fractions collected during the chromatographic step shown in panel C for CR1 17-25KR (i.e. the 
form predominant amongst Caucasian populations) (15 µL loaded). (E) Chromatogram for size-
exclusion purification step (Superdex 75) of CR1 17-25KR and Coomassie-stained SDS-
polyacrylamide gel of the fractions obtained from this chromatographic step (for CR1 17-25KR). 
(F) SDS-PAGE analysis of cation-exchange chromatographic purification products of CR1 17-
25KG. Glycosylated product is shown in the upper gel of the panel whiles the lower gel is 
deglycocylated using PNGase. (G) Upper, chromatograph and lower, SDS-PAGE obtained from 
similar purification step to that shown in panel E, except that these are products from the CR1 17-
25RG culture. (H) SDS-PAGE gel of CR1 17-25ER, showing (left) the glycosylated product 
following first cation-exchange step, reducing eventhough this does not mean much because of 
the glycosylation; also shown is the deglycosylated gel run under non-reducing conditions (right). 
(I) Similar what is shown in panel H but in this case results are for CR1 17-25EG, i.e. left – 
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glycsosylated product; right - deglycocylated form of the product purified by cation-exchange 
chromatography and run under reducing conditions. 
 

One-litre cultures of each of the three Knops blood group variants were also 

grown up and protein purified as before. The glycosylated fractions obtained from the 

second cation-exchange purification step for CR1 17-25KG are shown in the upper part 

of Figure 3.9F; displayed below are the deglycosylated samples.  Panel G of Figure 3.9 

shows the results of the subsequent size-exclusion chromatographic step for the CR1 17-

25KG variant. The results of SDS-PAGE performed on glycosylated and deglycosylated 

samples, following cation-exchange, are presented in Figure 3.9H for CR1 17-25ER and 

Fig. 3.9I for CR1 17-25EG, respectively. Purity as seen on these gels were poor but these 

could possibly be improved when bigger volumes areprepared and purified.  

 

3.9 Cloning, production and purification of CR1 15-25 

 

The most ambitious target of the current work was the eleven-module segment of CR1 

encompassing both a C3b(/C4b)-binding site (CR1 15-17) and the site of the McC and Sl 

Knops blood group polymorphisms (in CCP 25). To enhance the chances of attaining this 

challenging target, amplification of the CR1 15-25KR coding sequence from the 

“Caucasian variant of CR1”-encoding cDNA (see Table 3.2 for domain boundaries) was 

carried out in triplicate. Since there is an XbaI restriction site within the DNA segment 

coding for CCP modules 15-16 of this construct, the primers were designed with NotI 

restriction sites instead of XbaI ones. However the Pst1 restriction enzyme site was 

maintained (See Table 2.1 for the primer sequences used). Anticipating the potential 
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difficulties with amplifying such long DNA fragments, the extension time of the PCR 

cycle was lengthened and the number of cycles increased.  

Lanes 2 and 3 of Figure 3.10A demonstrates amplification of products that 

correspond to the expected size of CR1 15-25KR. After ethanol precipitation of the DNA 

product, TOPO®-cloning, ligation into pPICZ αB and transformation of E. coli Top10 

cells were carried out, as before. DNA was extracted from selected colonies and 

restriction enzyme digestion was used to identify, on a product-size basis, the colony 

most likely to have the insert. In Figure 3.10B, Lane 1 contains a correctly sized, albeit 

rather weak, band. Extensive screening and sequencing was then carried out in the hope 

of confirming that ligation into the pPICZ αB vector had been achieved. Screening with 

performed using the α-factor forward primers and the AOX-derived reverse primers, 

always adding, as controls, both an empty pPICZ αB vector (as seen in lane 8 of Fig. 

3.10C), and another CR1 construct such as CR1 20-23 (as seen in lanes 2, 3 and 5 of Fig. 

3.10C). Lane 1 of the gel in Figure 3.10C showed evidence of amplification, therefore 

DNA was extracted from this colony for sequencing. To ensure that the entire length of 

the CR1 15-25 had the appropriate sequence, several primers (i.e. in addition to the α-

factor forward and AOX-promoter reverse primers) were employed. These included 

oligonucleotides directed towards the 5’ end and the 3’ end of the DNA coding for 

module 21 along with the 5‘ and 3’ primers used previously for amplifying CR1 20-23 

(for details of primers see Table 2.1).  

Sequence-positive colonies were prepared for glycerol stock while DNA was 

extracted from one of them for linearization and P. pastoris transformation. An aliquot of 

this extracted DNA (i.e. encoding the CR1 15-25KR variant) was subsequently used for 
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site-directed mutagenesis (as was done in the case of the CR1 17-25 constructs and using 

the same oligonuceotides) to introduce the base-pair changes needed for the production of 

the other Knops blood group polymorphic variants (see Materials and Methods) and 

appendix D2 fro base pair changes. Lanes 1 and 2 of the gel in Figure 3.10D show bands 

for the K-to-E and R-to-G mutagenesis products. 

  

 
Figure 3.10 Cloning, production and purification of CR1 15-25 and polymorphic forms 

(A) PCR amplification of DNA encoding CR1 15-25 from cDNA. Expected DNA size was 2.133 
kilo-bp. (B) Double digest of TOPO®-cloned CR1 15-25-encoding DNA using PstI and NotI. (C) 
PCR-based screening of plasmids containing CR1 15-25 from E. coli Top10 cells. (D) 
“QuickChange” site-directed mutagenesis of CR1 15-25KR DNA to produce DNA coding for 
CR1 15-25ER (W1) and CR1 15-25KG (W2). (E) SDS PAGE analysis of small-scale production 
trial of CR1 15-25KR (18µL loaded of 20X concentration from 1-ml cell culture supernatants). 
(F) SDS-PAGE analysis of crude deglycosylated material in supernatant from a larger-scale 
culture (18 µL loaded from a one-litre fermenter). (G) Coomassie-stained SDS-polyacrylamide 
gel of fractions collected from the first cation-exchange chromatographic step; highly 
glycosylated proteins were formed. (H) SDS PAGE of de-glycosylated form of the fraction in 
panel G.  
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Specifically in the case of this eleven-module construct, an attempt was made to boost 

copy numbers by re-streaking colonies that grew on 100 mg/ml Zeocin™-YPD onto 300 

mg/ml-Zeocin™ plates before selection for further processing. Small-scale protein 

production trials of CR1 15-25KR yielded only faint bands (Fig. 3.10E). Nonetheless, 

colony 1 was picked for scale-up. Analysis by SDS-PAGE of the crude deglycosylated 

supernatant of a one-litre culture produced faint bands that were candidates for CR1 15-

25KR; lanes 1 and 2 (Fig. 3.10F) contain appropriately sized protein bands, under 

reducing and non-reducing conditions, respectively.  

In trial purifications (on a one-litre scale) of CR1 15-25KR, the standard initial 

cation-exchange chromatography step was carried out and glycoprotein-containing 

fractions were identified by SDS-PAGE (Fig. 3.10G). This glycosylated protein produced 

a smeary band running higher than might be expected, but deglycosylation yielded 

sharper bands of the expected masses -  about 75 kD under reducing conditions, and 

reassuringly a single band also under non-reducing conditions (running just below the 75-

kD marker) (Fig. 3.10H).  Panels E, F, G and H of Figure 3.10, which show results for 

CR1 15-25KR, follow the sequence of steps through which all four variants were taken 

before the final purification step (usually, size-exclusion chromatography). Similar 

results for the other three variants (from one-litre fermentations) were obtained but not 

shown. In order to increase the yields of protein produced (for all variants of CR1 25-25) 

with the aim of carrying out multiple experiments, larger-scale production attempts were 

made as described in the subsequent sections. 
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3.9.1 Purification of CR1 15-25KR (Caucasian)  

Based on its calculated pI of 6.86, CR1 15-25KR was amenable to cation-exchange 

chromatography in sodium acetate buffer, pH 4, and an XK 16/20 column packed with 25 

ml of SP-Sepharose resin (see Materials and Methods for details). The chromatogram 

(Fig. 3.11A) for this first purification step reveals poorly bound contaminating proteins 

eluting off the SP-Sepharose before the protein of interest. Because the target protein was 

glycsosylated all lanes in the SDS polyacrylamide gel contain “smeary” or poorly defined 

bands and species migrate more slowly (appear higher on the gel) than would be expected 

from the molecular weights calculated for the protein portion of the molecule (Figure 

3.11B). Deglycosylation using Endo Hf was performed immediately after the appropriate 

glycoprotein-containing fractions from cation-exchnage chromatography had been 

pooled. It will be appreciated that the molecular weights of this construct (i.e. CR1 15-

25) and that of Endo Hf  are similar (78 Kd and 70 Kd for CR115-25 and Endo Hf, 

respectively) and difficult to resolve on size-exclusion resin. Therefore, to the standard 

purification protocol, was added a step that involved passing the deglycosylated product 

over a mannose-binding resin, thus getting rid of the Endo Hf. Subsequently, size 

exclusion purification was performed.  
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Figure 3.11 Purification of CR1 15-25KR  

(A) Chromatogram for first cation-exchange purification step of CR1 15-25KR (details in 
Materials and Methods). (B) Commassie-stained SDS-polyacrylamide gel of glycoprotein-
containing fractions from the ion-exchange purification step. (C) Gel-filtration chromatogram of 
CR1 15-25KR (run over HiLoad Superdex75); peaks A and B in the chromatogram correspond to 
two species that become evident after deglycosylation and removal of EndoHf. Peak A 
corresponds to fractions 23 to 25, while peak B corresponds to fraction 26 to 28 as indicated in 
panel D; (D) The SDS-polyacrylamide gel loaded with frations (as shown) from the size-
exclusion chromatography and electrophoresed.  
 

The final “polishing” step (on a size-exclusion resin) was similar to that used previously 

(Figure 3.11C). There appear to be two overlapping peaks corresponding to species (A 

and B) of different sizes, perhaps reflecting incomplete deglycosylation. Indeeds there 

could be O-linked glycosylation present (that is not susceptible to deglycosylation by 

Endo Hf). Therefore fractions corresponding to peak A were not pooled with those of 
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peak B and the two species were individually tested for biological activities or binding 

abilities. The corresponding gel is shown in Figure 3.11D, with the proteins running at 

the expected molecular weight of 78.1 kD, irrespective of whether protein fractions 

corresponded to peaks A or B. This implies that the two species might be different in 

conformation or that they might correspond to dimers and monomers. Note that in the 

polyacrylamide gels, single bands are obtained under both reducing and non-reducing 

conditions with the non-reduced protein running a little faster, consistent with what 

would be expected of proteins containing disulfides. 

 

3.9.2 Purification of CR1 15-25ER  

Expression and production of CR1 15-25ER was performed using similar steps to those 

chosen to purify the CR1 15-25KR variant described above. CR1 15-25ER obviously has 

a Glu residue instead of Lys at amino acid position 1590 but still has an Arg at position 

1601 (theoretical pI is 6.62). Figure 3.12A shows the cation-exchange chromatogram of 

CR1 15-25ER performed on the same column as was used for CR1 15-25ER (see 

Materials and Methods for details). Though glycsosylated (and hence running higher than 

expected molecular weight of the protein component), an exceptionally clean protein is 

evident in Figure 3.12B.  This may have been thanks to modification of the protocol to 

include a 2.5-times column-volume low-salt buffer wash prior to the start of the salt 

gradient that helped to eliminate weakly binding contaminants.  
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Figure 3.12 Purification of CR1 15-25ER  

(A) Chromatogram for cation-exchange purification of CR1 15-25ER (Details in Materials and 
Methods). (B) Commassie-stained SDS-polyacrylamide gel of eletrophoresed glycoprotein-
containing fractions from this ion-exchange purification step. (C) Size-exclusion chromatography 
of CR1 15-25ER (on HiLoad Superdex-75) after deglycosylation and removal of Endo Hf. (D) 
Outcome of SDS-PAGE peformed on protein-containing fragments. 
 

After deglycosylation with Endo Hf as described previously, and passing the product 

through mannose-affinity beads to remove the fusion protein, size-exclusion 

chromatography yielded the results shown in Figures 3.12C and D. The protein ran at the 

expected molecular weight of ~78.1 Kd and was a single band under both reducing and 

non-reducing conditions (Figure 3.12D). 
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3.9.3 CR1 15-25KG Purification  

This protein has a Lys residue at amino acid 1590 but a Gly replaces the Arg at position 

number 1601. The expression, production and purification procedures were similar to 

those used for the other variants as described above. Hence cation-exchange 

chromatography of CR1 15-25KG yielded the results shown in Figure 3.13A. As 

expected for a construct with N-linked glycosylated sites, the fractions as analysed by 

SDS-PAGE (Fig. 3.13B) contain glycosylated proteins.  

 
Figure 3.13 Purification of CR1 15-25KG 

(A) Chromatogram of cation-exchange purification of CR1 15-25KG. (B) Commassie-stained 
SDS-polyacrylamide gel of glycoprotein-containing fractions from ion-exchange purification 
step. (C) Size-exclusion chromatogram of CR1 15-25KG following deglycosylation and removal 
of Endo Hf. (D) The corresponding SDS-PAGE. Details of all methods are provided in Chapter 2. 
 
The chromatogram of the final size-exclusion step performed on the CR1 15-25KG 

sample and the corresponding SDS-PAGE analysis are shown in Figures 3.13 C and D. 
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The purified protein runs on the gel at the expected size (78.1 kD), and there was an 

appropriate difference between the migration rates (upon SDS-PAGE) of bands under 

reducing and non-reducing conditions. Under reducing condition, however, there 

appeared to be two bands on the polyacrylamide gel close to each other. These appear to 

collapse into a single band in non-reducing conditions implying that a proportion of the 

protein molecules had been proteolytically “nicked”, presumably within one of the 

modules, but the separate polypeptides remains held together by disulphide bonds. 

Alternatively, and less likely, it is possible that the difference in the length of the 

potential cloning artefact (EA or EAEAA, as explained in the Introduction) could result 

in two similar species that are resolvable by SDS-PAGE under certain conditions and not 

others.     

 

3.9.4 CR1 15-25KG Purification  

The CR1 15-25EKG variant was cloned, produced and purified in essentially the same 

way as the other variants. Cation-exchange chromatography was used for inital 

harvesting and again for a first purification step as summarised in Figures 3.14A and B.  

As before, extensively washing the cation-exchange resin prior to starting an elution 

gradient (0 – 1 M NaCl) improved the efficacy of this procedure. Subsequently, 

deglycosylation and a size-exclusion chromatographic “polishing” step (results shown in 

Fig. 3.14C and D) afforded samples that upon SDS-PAGE yielded bands migrating with 

the expected masses of ~78 kD. Careful examination of the polyacrylamide gel reveals 

the presence of two bands running close together under reducing conditions, which 

become one band under non-reducing conditions. As discussed above, this presumably 



CHAPTER 3 PROTEIN EXPRESSION AND PURIFICATION 

 141 

arose from limited proteolysis within a module (near to one or other end of the protein) 

such that the two cleavage products are tethered via disulfide bond(s) and would 

therefore run as single species unless reduced. 

 

 

 

Figure 3.14 Purification of CR1 15-25EG  

(A) Chromatogram resulting from purification, on cation-exchange resin, of CR1 15-25EG. (B) 
Commassie-stained SDS-polyacrylamide gel following electrophoresis of glycoprotein-
containing fractions from the aforementioned ion-exchange purification step. (C) Chromatogram 
for CR1 15-25EG eluted from a HiLoad Superdex-75 size-exclusion column. (D) Results of SDS-
PAGE performed on fractions from size-exclusion chromatography. 
 

3.10 CR1 24-25 cloning, production and purification 

 

The recombainantly produced CR1 24-25 fragment (for domain boundaries see Table 

3.2) contains both the McC and Sl Knops blood group variants. Primers (Table 2.1) were 
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designed to amplify the relevant DNA segments from the DNA sequences coding for the 

four CR1 15-25 variants described above. Thus (in Fig. 3.16A) lanes 1 to 4 contain the 

correctly amplified DNA segments coding for the four polymorphic forms of CR1 24-25. 

After going through the processes of PCR, subcloning into the TOPO® plasmid vector 

(pCR®4Blunt-TOPO®), double digestion and ligation into pPICZ αB (as before, see 

Materials and Methods), successful transformed E. coli amplification hosts that screened 

positive were sequenced. Plasmids with the correct sequences were amplified by a “maxi-

prep”, SacI linearised and used to transform P. pastoris, all as before.  
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Figure 3.15 Cloning, production and purification of CR1 24-25 and polymorphic forms 

(A) Products of amplification by PCR of DNA segments encoding four variants of CR1 24-25 
from the DNA coding for CR1 15-25 (see text). The expected size of the DNA insert is 411 bp. 
(B) The result of SDS-PAGE performed on supernatants from small-scale production trials of 
CR1 24-25ER (lanes 1-5) and CR1 24-25KG (lanes 6-9); lanes 1 and 2 contain protein samples 
from the same culture but were run under non-reducing and reducing conditions, respectively. (C) 
SDS-PAGE performed following “mini-scale” trials for production of CR1 24-25EG (18 µL of 
20x concentrate of supernatant from a 1-ml cell culture). Lanes 1 to 5 represent expressions from 
the five selected colonies screened. (D) Similar outcome to that of panel C, except that lanes 2 to 
5 show expressions from selected colonies producing CR1 17-25ER Amount of material loaded is 
same as in panel C. (E) Cation-exchange chromatogram (upper sub-panel)) and selected fractions 
of CR1 24-25KR, ran on SDS-PAGE (lower sub-panel) are shown Similar cation-exchange  (SP-
sepharose) chromatograms and their corresponding polacylamide gels were obtained for CR1 24-
25KG (panel F), CR1 24-25KG (panel G), and CR1 24-25ER(panel H) (left is non-concentrated 
gel while arrow in right points to the pooled fraction that has been concentrated). Volumes loaded 
on gels were the same in each case. (Note that an XK column packed with 25 ml of resin was 
used for panels (E) and (H), while the one used for (F) and (G) was packed with only 7 ml of SP-
Sepharose.  
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Based on the reasonably good yields of target proteins revealed by SDS-PAGE following 

“mini-scale” production trials (Fig. 3.16), a one-litre culture for each variant was set up. 

As per normal, the resultant supernatants after harvesting were each diluted 1-in-5 and 

loaded onto self-packed (with SP-sepharose) XK column. Panels of Figure 3.16 (E for 

CR1 24-25KR, F for CR1 24-25KG, G for CR1 24-25 EG and H for CR1 24-25 ER) 

show the outcome of these protein production runs. Out of the four variants, production 

of CR1 24-25ER (Fig. 3.16H) was the poorest although evidence of a low level of 

producton is discernible as a faint band indicated by the arrow.  

 

3.11 Attempted Production of domains of PfEMP1   

 

The protocols employed for cloning, protein production and purification for the two 

DBLα domains depicted in Figure 3.17A were similar to those used for the CR1 

constructs in Figure 3.1. However, since the DBLα domains are “AT rich” and could 

pose a challenge for the P. pastoris expression system, a codon-optimized gene was 

purchased from GeneArt. The gene was subcloned into the TOPO® plasmid and 

transformed into chemically competent E.coli TOP10 cells. After “miniprep”, double 

digest, ligation into pPic ZαB and amplification (in E.coli cells), linearised plasmid was 

used to transform P. pastoris cells.  All of these steps were carried out in the same way as 

was described earlier for the other recombinant protein targets.   

Cell culture, harvesting of protein and purification were also carried out as before.  

Therefore after harvesting (and addition of EDTA and PMSF to inhibit proteases) ion-

exchange chromatography and size-exclusion chromatography were employed. In this 



CHAPTER 3 PROTEIN EXPRESSION AND PURIFICATION 

 145 

case, two differently sized peaks were obtained (“small” and “big” peaks, chromatogram 

not shown).The fractions corresponding to small and big peaks were independently 

pooled, and each pool was subjected to a further round of cation-exchange 

chromatography using the monoS. While two promising chromatograms were recorded, 

(see Fig. 3.17 B – up and C-up), subsequent SDS-PAGE (Fig. 3.17 A-down and B-down) 

suggested both batches of the protein had degraded, with potentially proteolytic 

fragments appearing as bands under both reducing and non-reducing conditions. A 

possible explanation for this observation derives from inspection of the sequence (see  

Appendix F) which suggests the odd number of cysteine residues present might result in 

disulfide shuffling and the potential non-formation of native disulfides. Fractions of the 

big peak were, nonetheless, used in the early SPR experiments involving CR1, C3b and 

DBLα, where it was described as DBLα(P) (Section 5.6.2)  

After the disappointing results obtained from attempts at DBLα expression in the 

P. pastoris system (and early failures to observe physiologically significant binding to 

either DBLα(P) or DBLα(M)) an attempt was made to produce the three-domain 

construct (DBLα-CIDR-DBLγ) using domain boundaries that result in a recombinant 

product that has an even number of cysteine residues and hence a lower chance of free 

thiols. Another codon-optimized gene, which was then ligated into pPic ZαB. was 

purchased from GeneArt and transformed into E.coli cells. After maxipreping to extract 

the amplified DNA, linearization was performed and the product prepared for 

transformation into   P. pastoris as previously described (Section 2.2.14).  

Figure 3.17D shows that a DNA band of the expected size (6.783 kb = 3.183kb of 

the DBLα-CIDR-DBLγ   gene inserted + 3.600 kb of the pPicZ-αB vector) was obtained 
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from the linearised plasmid. Subsequent yields of recombinant protein were, however, 

very low and bands obtained by SDS-PAGE of appropriate molecular weight could only 

be identified using Western blot.  Results obtained using DBL antibody and antihistidine 

antibody are shown in panel D of Figure 3.17D (lower sub-panel). 

 
 
 
 

 
Figure 3.17 Attempted production of PfEMP1 domains.  

 
(A) Domains of PfEMP1 used in this study. NTS is N-terminal segment, DBL means Duffy-Like 
binding domain and CIDR is Cysteine-rich interdomain region. (M) and (P) are letters designated 
to the different DBLs with respect to those who produced them.  DBLα(M) was produced by Dr. 
Matt Higgins and hence the letter (M) whiles DBLα(P) was produced by Patience Tetteh-
Quarcoo, hence the letter (P). Cation-exchange chromatograph and SDS-PAGE analysis of (B) 
the “big” peak (named DBLa Pat (P)).  First six lanes from the left are reducing whiles the rest 
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are non reducing and  (C) the “small” peak obtained from a previous attempt at purification 
involving cation exchange and size-exclusion chromatographic steps (D) Agarose gel (above) of 
linearised DNA encoding DBLα-CIDR-DBLγ   in pPicZα B (C-Cut and U-Uncut) and (below) 
Western blot  of the protein expressed (to identif the C-terminus, an anti-His tag antibody was 
used in lanes 1-4 while a DBLα-recognising antibody was used (lanes 5-7), to identify the N-
terminus).   
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4.1 Overview  

 

This chapter covers the results obtained from extensive biophysical characterisation of 

the recombinant proteins produced in this study.  Efforts - utilising a range of structural 

techniques including nuclear magnetic spectroscopy (NMR), dynamic light scattering 

(DLS), analytical ultracentrifugation (AUC) and small-angle X-ray scattering (SAXS) -

were aimed at addressing two main questions:  

(i) Does the long linking sequence unique to the boundary between LHR-C and 

LHR-D induce a bend in the CR1 molecule that causes these two regions to 

fold back against one another (such that sequence variations in LHR-D could 

modulate the functional activities resident in LHR-C)?  

(ii)  Do sequence variations in the 24th and 25th CCPs of CR1, arising from the Knops 

blood group McC and Sl polymorphisms, correlate with differences, either in 

gross molecular architecture or in self-association tendencies. 

Note that where there was a requirement for isotopic labelling during protein production, 

the results of this procedure are also included in the relevant sections of this chapter. 

 

4.2 NMR-based investigations of CR1-21, CR1 21-22 and CR1 20-23 

 

The approach employed here was to use chemical shift-perturbation mapping to 

interrogate the extent of interactions between neighbouring CCP modules in the LHR-

C/LHR-D boundary region. Each CCP module resembles a prolate ellipsoid in overall 



CHAPTER 4 BIOPHYSICAL STUDIES 

 150 

shape with one long axis and two shorter ones. An end-to-end interaction (with long axes 

more or less aligned) between modules generally results in an extended conformation 

involving only a small intermodular interface. On the other hand, a side-by-side 

interaction between modules results in a more compact arrangement with more extensive 

intermodular contacts. In the case of a side-by-side interaction then, one would expect 

major differences in the chemical shifts of a module (e.g. CR1 21) studied on its own 

versus the chemical shifts of the same module but studied in its double module context 

(e.g. CR1 21-22). As described in the Introduction, while in CR1 28 of the intermodular 

tethers (three or four residues) are too short to allow a side-by-side interaction (due to the 

steric bulk of the modules themselves), this is not the case for the linker between CCPs 

21 and 22. 

Comparison of 1H,15N-HSQC spectra for the variously-sized fragments was used as 

a relatively rapid and straightforward means of assessing the context-dependency of 

chemical shifts of backbone amide protons and nitrogen nuclei in a given CCP module.  

Some backbone assignment of nuclei was carried out to enhance the interperetation of the 

data.  Isotopic labelling of proteins was needed for these studies, and therefore most of 

the results sections below show protein gels obtained for the purified isotopically 

enriched protein fragments.  Labelling included 15N-enrichment only (for CR1 21 and 

CR1 21-22), dual 2H,15N labelling ( for CR1 20-23) and production of a double-labelled 

(15N,13C) version of CR1 21-22.  
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4.2.1  Production and purification of isotopic labelled CR1 21 

The production of isotopically (15N) labelled production CR1 21 in a fermentor was 

performed similarly to non-labelling fermentor runs, with a few adjustments to the 

protocol as described in Chapter 2 (Section 2.3.6). After the supernatant from a one-litre 

fermentation of a 15N-labelled growth had been harvested, purification commenced in a 

similar fashion to that described for the non-labelled CR1 21 protein (see Sections 3.2 

and 2.3.7).      

The chromatogram shown in Figure 4.1A was obtained during the purification, of 

CR1 21 on the MonoS cation-exchange column. SDS-PAGE of protein-containing 

fractions and Coomassie staining yielded the gel shown in Figure 4.1B. As was observed 

for the the non-labelled preparation (Section 3.2), under reducing condition the major 

band, presumably corresponding to CR1 21, runs close to the 10-kD size marker, while 

fractions also contain an impurity of appriximately 70 kD. This was removed by size-

exclusion chromatography resulting in the chromatogram shown in Figure 4.1C.  
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Figure 4.1 Preparation and NMR spectra for 15N CR1 21  

(A) Chromatogram obtained following the cation-exchange purification of 15N-CR1 21 (eluting 
with a gradient of 20 mM sodium acetate buffer, pH 4 and the same buffer with 1 M 
NaCl). (B) Commassie-stained gel following SDS-PAGE of the protein-containing fractions 
obtained from the cation-exchange chromatography. (C) Chromatogram following size-exclusion 
purification of 15N-CR1 21. (D) Commassie-stained gel following SDS-PAGE of the protein-
containing fractions obtained from size-exclusion chromatography. (E) One-dimensional 1H-
spectrum of 233 µM 15N-CR1 21. (F) 15N,1H HSQC spectrum of the same 15N-labelled protein 
construct as in panel E. 
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Unless specified otherwise, NMR experiments were run on samples containing 20 

mM potassium phosphate buffer, pH 6.6 (with no NaCl). Therefore, since the 15N-CR1 

21 was produced specifically with NMR experiments in mind, the buffer used for size-

exclusion chromatography was 20 mM potassium phosphate, pH 6.6, and 500 mM NaCl. 

In this way desalting, but no buffer-exchange, was necessary prior to transfer to the NMR 

tube. The Coomassie-stained gel, obtained following SDS-PAGE of the fractions from 

size-exlusion chromatography of 15N-CR1 21, is shown in Figure 4.1D.  

  
            The overall yield of labelled protein from this one-litre fermentation was a useful 

~7 mg. To a purified sample of 500 µL of 15N-CR1 21was added 50 µL of D2O to act as a 

“frequency lock”, and then the resultant 233 µM protein sample was transferred into a 5-

mm NMR tube for data collection in a high-field NMR spectrometer. A globular and 

properly folded, non-degraded and stable protein was indicated by the quality of the 1H 

spectrum (Fig. 4.1E) and 15N,1H-HSQC spectrum (Fig. 4.1F) of 15N-CR1 21. For 

example, the sharpness and dispersion of peaks in Figure 4.1E and the high ratio of up-

field shifted methyl peaks (at around 0-0.5 ppm) to those at a random coil position (i.e. 

giving signals at 1-2 ppm) are consistent with formation of a compact hydrophobic core 

containing aromatic side chains. Additionally, the HSQC spectrum in Figure 4.1F has 

roughly the number of cross peaks (~60, i.e. one for each amide (NH) group) expected 

for a pure sample of CR1 21, and the peaks are all of approximately uniform intensity 

and are well dispersed.  
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4.2.2 Production and purification of isotopically labelled CR1 21-22  

An identical protocol to that used for purification of CR1 21 was also employed for the 

cation-exchange purification of 15N-CR1 22-22 from a one-litre fermentation. The 

corresponding Coomassie-stained gel, following SDS-PAGE under reducing conditions, 

is shown in Figure 4.2A. The chromatogram and protein gel for the subsequent size-

exclusion chromatography step are displayed in Figures 4.2B and C. The total yield of 

labelled protein from a one-litre fermentation was 18 mg. 

 Following addition to 10 % (v/v) of D2O, a total volume of 550 µL of 15N-CR1 

21-22 solution (at the relatively high concentration for an NMR sample of 2.6 mM) was 

transferred to a 5-mm NMR tube.  After obtaining a 1D 1H spectrum for this sample (Fig. 

4.2D), a 15N,1H-HSQC spectrum was also recorded (see Fig. 4.2E). It was judged that 

these spectra were consistent with a well-folded, stable and non-degraded protein as had 

been the case for CR1 21. The central portion of the HSQC spectrum is quite crowded, 

which is to be expected given that this sample contains some 125 amides, but overall 

dispersion is good and the number of peaks matches the expected number of amides.  
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Figure 4.2 Preparation of, and NMR spectra for, 15N-CR1 21-22  

(A) Commassie-stained gel following SDS-PAGE of protein-containing fraction obtained from 
cation-exchange purification (not shown) of 15N-CR1 21-22. (B) Chromatogram obtained from 
the subsequent size-exclusion purification. (C) SDS-polyacrylamide gel following electrophoresis 
of protein-containing fractions indicated in panel B.  (D) 1D 1H spectrum of 15N-CR1 21-22. (E) 
15N,1H-HSQC spectrum of 15N-CR1 21-22. 
 

4.2.3 Comparison of 15N,1H- HSQC spectra of 15N-CR1 21 and 15N-CR1 21-22  

An overlay of the 15N,1H-HSQC spectra of CR1 21 and CR1 21-22 is displayed in Figure 

4.3. With a few exceptions, the cross peaks observed in the spectrum of CR1 21 

corresponded to cross peaks at near-identical positions in in the spectrum of CR1 21-22. 

The latter must correspond to CR1 21-derived cross peaks in the spectrum of CR1 21-22 

that have the same chemical shifts in spectra of both the single-module and double-

module CR1 fragments. This conservation of chemical shifts in the two contexts suggests 



CHAPTER 4 BIOPHYSICAL STUDIES 

 156 

that the attachment of CCP 22 does not affect the magnetic environments of any 

substantial surface regions of CCP 21. Such a result is not consistent with a conformation 

of the double module-construct in which the two modules participate in extensive side-

by-side interactions; rather they suggest an end-to-end arrangement with a relatively 

small intermodular interface. Note, however, that these results do not preclude a tilted 

arrangement of the modules in which the linker forms a small hydrophobic pocket that 

“glues” the two in a particular orientation (See Discussion in Chapter 6). 

 

Figure 4.3 Overlay of HSQC spectra of 15N-CR1 21 and 15N-CR1 21-22  

Positive cross peaks in the spectra are colour-coded as indicated by the cartoons i.e. the CR1 21 
spectrum is cyan while the CR1 21-22 spectrum is purple. Negative peaks for CR1 21 are red 
while those of CR1 21-22 are yellow. 
 

A question mark remained over the biological relevance of this conclusion, however, since 

additional CCP modules before module 21 and after module 22 could, in theory, interact 

with one another to stabilise a fully bent back 21-22 structure not seen in the isolated 

double module. To check whether the architecture of 21-22 changes in the context of a 

quadruple-module construct, a 15N-labelled sample of CR1 20-23 was prepared. 
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4.2.4 Production and purification of 15N,2H-CR1 20 -23 

The quadruple-module construct has a molecular weight of 28.76 kD, and if it were 

extended would be expected to tumble slowly, producing broad lines and consequently 

low signal intensities. To circumvent this anticipated outcome, a dual deuterated (2H) and 

15N-labelled sample was produced, as described in Section 2.3.6.5. This was subsequently 

purified via a similar method to the one used for the non-labelled sample (see Sections 

3.4 and 2.3.7). The resultant partially deuterated sample - in which the backbone amides 

inevitable become protonated by chemical exchange with aqueous (1H2O) solvent - was 

expected to yield improved spectra since the remaining protons should relax more slowly 

due to having fewer potential relaxation partners.  

The chromatogram obtained from cation-exchange chromatography and the 

Coomassie-stained gel following SDS-PAGE of protein-containing fragments, are shown 

in Figures 4.4A and B. After size-exclusion chromatography (Figs. 4.4C and D), the 

resultant purified protein preparations were pooled and buffer-exchanged for NMR data 

collection. An estimated 8.6 mg of protein was obtained from the one–litre cell culture. A 

300-µM NMR sample of 550 µl containing 10 % (v/v) D2O, was transferred to the NMR 

tube and the 1H and 15N,1H HSQC spectra of 15N,2H CR1 20-23 were recorded (Fig. 4.4E 

and Fig. 4.4F, respectively). These promising results represented the first NMR spectra 

collected (so far as we know) for a quadruple CCP module. Both spectra were of 

unexpectedly high quality for a relatively high-molecular weight and potentially extended 

protein of ~28 kD, despite the crowded nature of the middle region of the HSQC 

spectrum (Figure 4.4F). 
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Figure 4.4 Preparation of, and NMR spectra for, 15N,2H-CR1 20-23 

(A) Chromatogram obtained for the cation-exchange purification of 15N,2H-CR1 20-23 (elution 
with a gradient from 20 mM sodium acetate buffer, pH 4 to the same buffer but with 1 M 
NaCl). (B) Commassie-stained gel following SDS-PAGE of protein-containing fragments from 
the cation-exchange chromatography. (C) Chromatogram for size-exclusion purification step 
(using Superdex-75; 20 mM potassium phosphate, pH 6.6, 0.5 M NaCl.). (D) SDS-
polyacrylamide gel corresponding to the protein-containing fractions obtained from the size-



CHAPTER 4 BIOPHYSICAL STUDIES 

 159 

exclusion step.  (E) A 1H spectrum of 15N,2H-CR1 20-23. (F) 15N,1H-HSQC spectrum of 15N,2H-
CR1 20-23. 
 
The high quality of these spectra is, of course, indicative of non-degraded and stable 

protein in which all of the modules are compactly folded. The HSQC spectrum contains 

approximately the expected number of cross peaks for the size of protein, are they are of 

generally quite uniform intensity and well dispersed.   

 

4.2.5  Overlay of 15N,1H-HSQC spectra of 15N-CR1 21-22 and 15N,2H CR1 20-23 

The two HSQC spectra (of CR1 21-22 and CR1 20-23) were compared, by overlaying 

them (see Fig. 4.5), in an attempt to assess the effects of the additional modules (CCPs 20 

and 23) on the structure of CR1 21-22, Unlike the comparison of the HSQC spectra of 

CR1 21 and CR1 21-22, in which it was readily apparent that there was only minimal 

contact between modules, the comparison of CR1 21-22 and CR1 20-23 is not as easily 

interpreted. The majority of the cross peaks from CR1 21-22 are close to cross peaks in 

the CR1 20-23 spectrum, so most of these likely correspond to residues that are not 

influenced by attachment of modules 20 and 23. There are, however, a proportion 

(roughly 20%) of CR1 21-22 cross peaks that do not match to cross peaks in the CR1 20-

23 spectrum. 
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Figure 4.5 Overlay of HSQC spectra of 15N-CR1 21-22 and 2H,15N-CR1 20-23 

Cross peaks (positive and negative) in the CR1 21-22 spectrum are red while those from the CR1 
20-23 spectrum are purple.  
 
 
Minor differences in peak positions might have arisen from slight changes in temperature 

or buffer composition despite efforts to ensure these were consistent.  On the other hand, 

a couple of dozen cross peaks observed in the double-module context seem to have 

moved substantially in the spectrum of the quadruple-module fragment These might 

correspond to residues at the N-terminus of CCP 21 and/or the C-terminus of CCP 22 that 

are involved in end-to-end interfaces with CCPs 20 and 23, respectively, while the 

relative orientations of CCPs 21 and 22 remains unaffected (note that the short linkers 

between CCPs 20 and 21, and between CCPs 22 and 23, would seem to preclude a side-

by-side interaction, so this possibility was deemed unlikely and not really considered.) 

Alternatively, some of these perturbations might arise in residues at the CCP 21-22 
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linker/interface were it to undergo rearrangement in the longer construct. To discriminate 

between these possibilities, some backbone assignments were required to allow 

identification of the perturbed residues. In turn this required production of a double-

labelled (15N,13C) sample of CR1 21-22.   

 

4.2.6 Production and NMR-based studies of 15N,13C-CR1 21-22   

A one-litre fermentation was carried out for production of double-labelled CR1 21-22, 

following a similar procedure to that employed for preparation of the single labelled (15N) 

protein, but with the appropriate modification as described in Section 2.3.6.4.  The 

processes and conditions for harvesting, and cation-exchange and size-exclusion 

chromatographies, were all highly similar to those described in the case of 15N-CR1 21-

22. The size-exclusion chromatogram and its corresponding, Coomassie-stained, protein 

gel (following SDS-PAGE under reducing conditions) are shown in Figures 4.6A and 

4.6B (the results of the cation-exchange step are not shown). When the size-exclusion 

chromatographic fractions were subjected to SDS-PAGE and Coomassie stained, the 

resultant gel was consistent with a relatively pure and non-degraded protein (Fig. 4.6B).   
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Figure 4.6 Preparation and NMR studies of 15N,13C-CR1 21-22  

(A) Size-exclusion chromatography of 15N,13C-CR1 21-22. Using Superdex-75, the 15 kD 
protein predictably elutes at 75 ml, and is separated from larger-Mwt contaminating 
material that elutes as an earlier, smaller, peak. (B) The corresponding Coomassie-stained, 
protein gel following SDS-PAGE of the protein-containing fragments indicated in panel A. (C) 
Overlay of the 1H spectra collected on single-labelled and double-labelled CR1 21-22 (top) and 
overlay of the corresponding HSQC spectra (bottom). (D) “Zoom in” on a well-populated region 
of the overlaid HSQC spectra shown in panel C. Shown in orange are the 15N,13C-CR1 21-22 
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cross peaks (negative peaks in red), while in purple are shown cross peaks arising from 
the 15N CR1 21-22 sample (negative peaks in cyan).  
 
 
A large total of 30 mg of labelled protein was obtained from the initial one-liter 

fermentation; therefore this was divided into two NMR samples of about 1 mM each. 

One of these was used for the recording all of the NMR experiments needed for the 

purposes of assignment while the other was kept for future use by shock freezing and 

storage in a -80° C freezer. Thus, 1H and 15N,1H  HSQC spectra were collected initially, 

and these showed (Figs. 4.6 C and D) that the double-labeled protein was almost certainly 

chemically identical to the previously prepared singly labelled CR1 21-22 sample. 

 

4.2.7 Partial assignment of 15N, 13C CR1 21-22   

 Using the 15N,1H HSQC spectrum, along with the CACB(CO)NH and CACBNH NMR 

experiments (performed on the aforementioned 15N,13C-CR1 21-22 sample), an attempt 

was made to assign the all backbone nuclei. As detailed in Section 2.5.1, this task was 

undertaken in a stepwise procedure. To begin with, all cross peaks in the HSQC spectrum 

were picked and assigned arbitrary numbers (Fig. 4.7). These picked cross peaks (in the 

HSQC spectrum) were subsequently linked with their corresponding Cαs and Cβs by 

inspecting the processed spectra from the two complementary NMR experiments 

(CBCA(CO)NH and CBCANH). 
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Figure 4.7 Early step in partial assignment of NMR spectra of CR1 21-22 

Peaks in the HSQC spectrum were assigned arbitrary numbers before subsequent linkage to Cα 
and Cβ resonances.  
 

Figure 4.8 demonstrates the stepwise procedure generally used for backbone assignments 

in which the CBCACONH and CBCANH experiments were employed to help identify 

the Cα and Cβ of residue i -1 as well as the equivalent nuclei for residue i. By way of 

exemplification, Figure 4.8 shows the assignment of the cysteine residue that occurs at 

the C terminus of CCP module 21 and initiates the relatively long linking sequence  

(eight residues) between modules 21 and 22, culminating in the cysteine that represents 

the first residue of module 22. 
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Figure 4.8 Example of “sequential walk” for backbone assignment of CR1 21-22 

Assignment of the long linking sequence between modules 21 and 22 of CR1 Arrows show 
connectivities (used for assignment) from the Cα and Cβ of the i-1 residue to that of residue i. 
The Cα and Cβ in the CBCA(CO)NH expreriment are in blue, highlighting mainly the i-1 
cross peaks. The Cα and Cβ of both residue i and residue i-1, obtained from the CBCANH 
experiment, are shown in pink and yellow: yellow for putative Cα and pink for putative 
Cβ (based on chemical shifts).     
 
 
In all, about 90% of backbone nuclei in CR1 21,22 were confidently assigned to specific 

residues while a further 5% were only assigned tentatively (see Fig. 4.9 and the table in 

appendix D ).  

Based on such a partial assignment it was possible to ascertain which residues in 

CR1 21-22 were affected, in terms of their backbone chemical shifts, by attachment of 

modules 20 and 23. Figure 4.9 shows the partially assigned HSQC spectrum of CR1 21-

22 with residues of the 21-22 linker labelled in a blue font. 
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Figure 4.9 Partial assignment of backbone amides of CR1 21-22 

The15N,1H-HSQC spectra for single-labelled (purple are for positive and cyan for negative peaks, 
respectively) and double-labelled CR1 21-22 (orange and red for positive and negative peaks, 
respectively) are overlaid in this figure. The peaks that are labelled in a blue font are the eight 
amino acid residues in the linker region.   
 

It would be expected that if the preferred mutual arrangement of  CCPs 21 and 22 were to 

change upon addition of CCP 20 and 23 then the chemical shifts of the linker between 

CCPs 20 and 21 would change when these extra modules are added to the double-module 

fragment.  
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Figure 4.10   Peaks representing the amino acid of the linker between CCPs 21 and 22 

The linker is written out in single-letter code from left to right along the page. Arrow identify (in 
the “zoomed-in” pictures) the cross peak (marked with a cross) corresponding to each amino acid 
residue in the linker.  
 

Figure 4.10 shows expanded regions, containing linker-assigned cross peaks, extracted 

from the spectrum of Figure 4.11. Importantly, from inspection of this figure it is clear 

that none of these linker residues in fact experience context-dependent chemical 

perturbations. Since the presence of the additional module (20 and 23) have no effect on 

the magnetic environment of the eight amino acids in the linker, it may be concluded that 

these two module retain a non-intimate, probably end-to-end arrangement both as an 

isolated pair and when within the CR1 molecule.  This very strongly reinforces the notion 

that a side-by-side interaction is highly unlikely between these modules. These 

observations do not support the hypothesis that LHR-D folds back onto, and thereby 

functionally modulates, LHR-C. 
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Figure 4.11 Assessing chemical shift perturbations of residues in the linker between CCPs 21 
and 22 arising from attachment at either end of CCPs 20 and 23 

A 

B 
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(A) Overlay of spectra for the 15N,13C-CR1 21-22 sample and the 15N,2H-CR1 20-23 
sample. Positive cross peaks from the spectrum of CR1 21-22 are shown in blue 
(negative peaks in pink); orange is used to indicate positive cross peaks from the 
spectrum of the CR1 20-23 fragment (green for negative peaks). (B) Enlarged versions of 
selected zones to highlight key residues. Red labels were used for the peaks in the CR1 21-22 
spectrum that did not overlap with peaks in the CR1 20-23 HSQC spectrum. 
 

 

As may be judged from Figure 4.11, while backbone chemical shifts within the 

intermodular linker of CR1 21-22 seemed not to have been affected by the additional 

modules, the amide signals of non-linker residues including Ser1340, Gly1346, Ala1408, 

Ser1409, Ile1414 and Met1437, have been substantially “perturbed”. Most of these 

belong to CCP module 22. 

Thus the results of these NMR-based studies are fairly conclusive. They rule out 

the presene of a side-by-side arrangement of CCPs 21 and 22 even though these two 

modules have a tether between them of sufficient length to allow such a bent-back 

conformation. Some marked shifts in CCP 22 upon addition of modules 20 and 23 to 

CR1 21-22 is most easily explained by an intimate end-to-end association between 

modules 22 and 23 as seen in some other module pairs with four-residue linkers.  

 

4.3 CR1 15-25 polymorphic forms behave similarly upon subjection to 

size-exclusion chromatography  

 

Size-exclusion (or gel-filtration) chromatography has been extensively employed in this 

study, prinicipally as a final-step purification technique. A well-calibrated column such 

as the one used in the study ( HiLoad™ 16/60 Superdex™ 75 prep grade column from 

Amersham Biosciences®) , however, can achieve more than just purification. The volume 
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at which a prote elutes corresponds to its Stokes radius. A comparison of elution 

positions of a series of variants should thus reveal the existence of any major differences 

in shape or self-association, although it might be difficult to disentangle these two 

properties based on analysis of size-exclusion chromatography alone.  It is thus 

interesting to observe (see Figure. 4.12) that all four variants migrate at a similar rate 

through the resin (ignoring peak A of CR1 15-25KR), and emerge from the column at 

very similar elution volumes. This resuls indicaties that all four have near-identical 

Stokes radii and suggests that they are unlikely to have different intermodular 

conformational preferences. 

 

 

Figure 4.12 Overlay of size-exclusion chromatographic elution profiles for CR1 15-25 variants 

Colour coded chromatograms are overlaid illustrating co-elution of the four Knops blood group 
variants. The insert is a Coomassie-stained SDS-polyacrylamide gel following electrophoresis of 
all four purified variants.  
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4.4 Dynamic light scattering (DLS) 

 

Dynamic light scattering (DLS) is a readily available and easy-to-apply technique that 

may be used for rapidly assessing the distribution of particle sizes (based on their Stoke’s 

radii) in a solution of protein molecules. Like size-exclusion chromatography, it is 

particular useful for comparing sets of mutants, or series of fragments, but less useful for 

determining directly molecular dimensions or molecular weights (since a smaller, but 

more extended protein will scatter to a similar extent as a larger, globular protein). The 

set of recombinant fragments of CR1 produced in this study were subjected to DLS to: 

(a) check them for homogeneity; (b) compare the DLS-derived data for fragments of 

unknown structure with equivalent data collected for fragments of CR1 and other RCA 

proteins of known structures; and (c) compare the scattering properties of the four 

polymorphic variants of CR1 15-25 as a means of elucidating any differences in their 

overall architctures or self-associative properties. Because the technique is extremely 

sensitive to particle size, all the protein solutions tested were filtered (0.2 µm pore size.).  

4.4.1 Study by DLS of CR1 15-17 and CR1 21-22 and comparison with other 

fragments. 

In an experiment designed to provide “baseline” results, the CR1 15-17 sample yielded 

DLS results consistent with a largely homogeneous sample (judged by inspection of its 

particle-size distribution as a function of the total volume of particles sampled, rather 

than as a function of the total scattering intensity of the sample– see legend to Fig. 4.13). 

The mean particle diameter (estimated from the position of the top of the centre of the 

left-hand peak in the “by intensity” profile) was in the region of 5.9 nm or ~1.9-2.0 nm 
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for each of the three modules present in the fragment.  This value may be compared with 

1.9 nm per module for CCPs 6-8 of factor H (FH) and 1.6 nm per module for FH CCPs 1-

4 (all the DLS data for FH fragments quoted in this section were supplied by Dr 

Christoph Schmidt (Edinburgh) and are unpublished). Experimentally derived 3D 

structures exist for all three of these proteins; they are all monomeric and largely 

extended although FH CCPs 6-8 forms a curved (“banana-like”) structure and in FH 

CCPs 1-4 there is a kink or bend between CCPs 3 and 4.  

 The DLS data collected for the CR1 21-22 sample was also consistent with a 

largely homogenous preparation and monomeric protein, although there were more 

“contaminating” larger particles – probably aggregates – than in the CR1 15-17 

preparation. In the case of CR1 21-22, the mean particle diameter was in the region of 

4.5–4.6 nm or ~2.2–2.3 nm per module.  This is somewhat higher than the value of 2.1 

nm per module for the almost fully extended and rod-like (experimentally determined) 

structure of FH CCPs 19-20 (with its three-residue linker). It very strongly suggests that 

these two modules do not form a compact structure (like, for example, FH CCPs 10-15 

for which a value of 1.05 nm per module was observed). 
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Figure 4.13 Results of DLS compared for CR1-15-17 and CR1 21- 22  

Shown are DLS-derived particle size profiles by, respectively, intensity and volume for: (A) & 
(B) CR1-15-17 (C) & (D): CR1 21-22. Note that distributions “by intensity” emphasise the 
presence of any larger particles due to their disproportionate strength of scattering– hence the 
distribution “by volume” is generally used to assess the homogeneity of the sample.  On the other 
hand the plot of size distribution by intensity is useful for estimating the average size of the 
smaller particles in the preparation since they give rise to a distinct peak that is easily analysed. 
 
 

4.4.2 DLS results for CR1-15-25 polymorphic forms 

In this batch of experiment, all four Knops blood group variants of CR1 15-25 were 

assessed by considering particle size distribution both in terms of the total scattering 

intensity and also in terms of the total volume of particles present. In general, the four 

variants exhibited particle size profiles (for triplicate experiments) consistent with 

homogeneous and largely non-aggregated proteins (see Fig. 4.13) but some differences in 
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profiles are apparent. As explained below, these are probably sample preparation-related 

and not very significant.  

 

As is apparent from Figures 4.12A-D both the CR1 15-25EG and CR1 15-25ER 

preparation yielded particularly high-quality data with no indications of any self-

association or inhomogeneity. The CR1 15-25KG sample also looked to be largely free of 

aggregates, even though peaks representing bigger particles are present in the distribution 

by intensity (Figs. 4.13 E and F). As stated earlier (see legend to Fig. 4.12), even a 

miniscule population of the bigger particle would be sufficient to generate the signals on 

the right of the plot in Figure 4.12F. Hence this protein (CR1 15-25KG) behaves in a 

similar manner to CR1 15-25EG and CR1 15-25ER. In the case of CR1 15-25KR, 

however, (Figs. 4.13 G and H) the results of DLS are less clear-cut. In this case some 

significant levels of self-association or aggregation are present; moreover the scattering 

data for the triplicate measurements were not consistent with “record 10” appearing to be 

an outlier.  
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Figure 4.14 Results of DLS conducted on CR1-15-25 variants 

Size distribution profiles are shown by, respectively, intensity and volume for: (A) & (B): CR1 
15-25EG; (C) & (D):  CR1 15-25ER; (E) and (F): CR1 15-25KG; (G) & (H):  CR1 15-25KR. 
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In a direct comparison of the four polymorphic forms of CR1 15-25, fresh 

recordings (one for each, collected consecutively) were made and the profiles overlaid 

(Figs. 4.14A and B). Here it may be seen that the left-hand peaks in the “by intensity” 

profiles overlay very well for all four variants with a mean particle size of about 13.5 nm, 

or 1.2 nm per module.  Interestingly, this value is slightly greater than 1.05 nm per 

module for FH CCPs 10-15 and significantly greater than 0.8 nm per module for FH 

CCPs 8-15. It suggests that while the eleven modules of CR1 15-25 do not form an 

elongated structure nor do they form a bent-back structure as envisaged for FH CCPs 8-

15.  

Note that the “by volume” profiles indicate somewhat smaller and less consistent 

average particle sizes. This apparent discrepancy was not further investigated due to time 

constraints. 

Note also that parallel studies (below) using analytical ultracentrifugation 

suggested all four proteins were very similar both in terms of their mass, shape and 

degree of self-association. Therefore the evidence in Figures 4.13G and H for the 

presence of oligomers or aggregates in the CR1 15-25KR sample may be attributed to 

one of the steps in preparation or storage. The DLS data collections were not repeated on 

freshly prepared samples and so the results for CR1 15-25KR do not constitute good 

evidence for any physiologically meaningful differences between this and the other three 

variants in their propensity to self-associate.  
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Figure 4.15 Comparison of DLS-derived particle size profiles for CR1 15-25 variants 

An overlay of CR1-15-25 particle size distributions (by intensity, (A) and volume, (B)) of all 
polymorphic forms Cauc = KR is CR1 15-25 K1590 and R1601 (predominantly Caucasian), K to 
E = ER is CR1 15-25 E1590 and R1601, R to G = KG is CR1 15-25 K1590 and G1601 and afric 
KERG = EG is the double change, E1590 and G1601 (African type). 
 

B 

A 
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4.5 AUC and small-angle X-ray scattering 

 

Analytical ultracentrifugation (AUC) and small-angle X-ray Scattering (SAXS) each 

provide information about both the size and shape of proteins. Although they only furnish 

low-resolution information they proved valuable in the present work to: (a) Furnish 

evidence (orthogonal to the NMR work) regarding the overall shape of CR1 20-23 – is it 

extended or folded back; and (b) allow a comparison of the overall architecture of the 

CR1 15-25 variants that is more sophisticated than what could be achieved with DLS.  

4.5.1 Ultracentrifugation and scattering data for CR1 20-23 

The AUC results (data collected and analysed by Professor Arthur Rowe, Sutton 

Bonnington) suggested that CR1 20-23 is a highly extended protein especially when they 

were considered alongside the equivalent data for other multiple-CCP module fragments 

(Table 4.1). With its four modules, CR1 20-23 had an estimated axial ratio of 6.7. This 

value may be compared with axial ratios of 4.8 for four-module FH CCPs 11-14 and only 

3.4 for six-module FH CCPs 10-15, both of which have been reported to adopt compact 

structures. 

 
 
 
 
 
 
 
 
 
 
Table 4.1 Axial ratios (derived from AUC data) for various multiple CCP module protein 
fragments 

Sample     Axial ratio  (AUC) 
 
fH  11-14         4.75 
fH  10-15         3.39 
CR1  20-23      6.72* 
fH  12-13         1.00 
fH  7-8             3.24 
fH  7                1.00                        * Red font highlights CCPs of  interest                                
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Further evidence for the extended structure of CR1 20-23 was obtained from analysis of 

SAXS data. Despite radiation damage-mediated polymerisation upon repeated exposures 

posing a problem, satisfactory data of sufficient quality were collected (on 1.9 mg/ml and 

3.3 mg/ml samples) to allow an ab initio model of CR1 20-23 (see Fig. 4.16) to be fitted 

to the scattering curve (using the program DAMMIF – this work was carried out by our 

collaborator Dr Hardyn Mertens at DESY in Hamburg).  

 

 

 
 

Figure 4.16 SAXS data and model for CR1 20-23  

(A) SAXS profile and fit of the DAMMIF ab initio model to the CR1 20-23 data (1.9 mg/ml). 
 The CR1 20-23 DAMMIF model is shown as a red surface.  (B) Guinier plot of the CR1 20-23 
SAXS data at 1.9 mg/ml (open circles) and 3.3 mg/ml (open squares), showing no significant 
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concentration dependence of the SAXS parameters. Plots are displaced on the vertical axis for 
clarity.  (C) Distance distribution function, p(r) for CR1 20-23.  
 

 

4.5.2 Comparison of CR1 15-25 polymorphic variants by AUC 

All four variants, as 0.5 mg/ml solutions, were subjected to AUC (see Chapter 2 for more 

details; work performed and analysed by Professor Arthur Rowe, Nottingham). The 

outcome is summarised in Table 4.2. Their estimated sedimentation coefficients (related 

to molecular weight, and hence to oligomerisation state) were all very similar and lay in a 

narrow range from 3.13 S to 3.22 S. Their frictional ratios were also similar, ranging 

from 1.81 to 2.00.  Frictional ratios are related to axial ratios (more detailed calculations 

are underway in Professor Rowe’s lab but were not available at the time of writing and 

were beyond the scope of this thesis). Thus the AUC data  are consistent with all four 

variants having the same monomeric oligomerisation state and molecular dimensions. For 

comparison, the frictional ratio obtained for the compactly organised FH CCPs 10-15 

fragment was 1.14. Hence these data suggest that CR1 15-25 (in all four of the variations 

investigated) adopts a more extended structure than the central modules of FH. 

 

Sample mg/m
l 

s s(20,w) f/f0 

  (S) (S) SEDF
IT 

KR 0.5 3.13 3.25 2.10 
EG 0.5 3.16 3.28 1.94 
ER 0.5 3.22 3.33 1.81 
KG 0.5 3.13 3.25 2.00 

 
Table 4.2 Comparisons of AUC data for four polymorphic forms of CR1 15-25  
 (Perform by Prof. Arthur Rowe’s Laboratory) 
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4.6 Summary of Structural Studies 

By using an array of biophysical techniques it has been possible to answer most of the 

questions that motivated this part of the study. LHR-C and LHR-D are unlikely to be in 

close spatial proximity in the non-liganded form of CR1. Despite the potential offered by 

the uniquely long linker between these regions of the exodomain, none of NMR chemical 

shift perturbations, AUC nor SAXS support the hypothesis that the modules on either 

side of the long linker fold back against one another to create a U-turn in the molecule.  

This picture holds true for all four of the Knops blood group variants investigated since – 

in the CR1 15-25 context - all have very similar dynamic light scattering properties and 

migrate similarly in the ultracentrifuge. Moreover, all four CR1 15-25 variants are 

monomeric and there is no evidence that the polymorphisms module self-associative 

properties. The implications of these findings when considered in conjunction with the 

functional data are further discussed in Chapter 6.  
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5 CHAPTER FIVE 
BIOLOGICAL AND FUNCTIONAL STUDIES 
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5.1 Overview of biological and functional studies 

This chapter covers results obtained from the biological and functional aspects of the 

current project. These studies aimed to find out whether the Knops blood-group 

polymorphisms located in CCP modules 24-25 influence how CR1 interacts with its 

principal known ligands. A range of assays was employed including experiments that 

utilised cultures of the parasite (e.g. rosette-disruption assay and invasion-inhibition 

assays), measurements of complement regulatory activity on purified proteins, and in 

vitro experiments to measure directly protein–protein interaction (e.g. surface plasmon 

resonance and ELISA). As indicated below, some of this work was done in collaboration 

with labs elsewhere in Edinburgh and in Australia and the USA.   

5.2 Co-factor assays 

As was described in the Introduction, CR1 is an important regulator of the complement 

system that has both decay-accelerating and co-factor activities directed at both 

alternative and classical pathways of complement activation. It is the only complement 

regulator that (under physiological ionic strength conditions) acts as co-factor both for 

cleavage of C3b to iC3b, and of iC3b to C3dg/C3d.  The co-factor activity resides 

primarily in functional sites 2 of CR1 (modules 8-10 and 15-17), hence several of the 

constructs prepared for this study were expected to be active in fluid-phase co-factor 

assays. These were carried out by observing (via SDS-PAGE) the cleavage products of 

purified C3b upon incubation with factor I and the various CR1 fragments.  

In the current study, the co-factor assay was used initially (Figs. 5.1A-D) to 

confirm whether the purified over-expressed proteins were active and then to compare 
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activities of the four polymorphic variants of CR1 15-25 with one another. Note, 

however, that this assay was not well suited to discerning, in a quantitative manner, small 

differences in activity since it is an “end-point” assay (i.e. it does not monitor product in a 

continuous manner over time); moreover it was not straightforward to establish 

conditions under which the amount of product, produced at a particular time-point, was 

proportional to the amount of cofactor activity present.  

Initial fluid-phase co-factor assays were performed on samples (total volume 20 

µL) containing a mixture of C3b (2.5 µg), Factor I (0.1 µg) and either 0.25 µg or 1 µg of 

the appropriate CR1 construct, followed by incubation for either 15 minutes or 1 hour. At 

the end of the incubation, the reaction was stopped by adding 6 µL NuPAGE reducing 

buffer, pH 8.4, containing lithium dodecyl sulfate (Invitrogen). Samples were then heated 

and run on SDS-PAGE.   

Coomassie staining was used to reveal the presence of the 68-kD and 43-kD 

proteolytic fragments derived from the initial factor I-catalysed cleavage of the α’-chain 

of C3b and, potentially, the products of the (second) proteolytic cleavage of the 68-kD 

fragment (expected only when CR1, or a biologically active recombinant fragment of 

CR1, is the cofactor), namely C3dg (~39 kD) and a 29-30-kD fragment (Figs. 5.1A-D).  
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Figure 5.1 Cofactor Assay testing the polymorphic forms of CR1 15-25 

In this assay activity is evidenced by detection of proteolytic cleavage products of the C3b α’ 
chain at 68, 43, 39 and 29 kD. (A) Incubation for 15 mins and addition of 0.25 µg of co-factor; 
(B) 15 min duration as in (A) but addition of 1 µg of co-factor; (C) Incubation for 1 hour with 
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0.25 µg of added co-factor;  (D) Incubation for a duration of 1 hour, following addition of 1 µg of 
co-factor. (E) Result of cofactor assay (for cleavage of C3b) carried out in the Atkinson lab using 
a more sensitive protein detection method and therefore smaller quantities of reagents (see 
Materials and Methods). (F) Same as panel (E), except that in this panel the protein being 
degraded is C4b. In panels (E) and (F) a slightly different nomenclature was used for labelling 
and KR is CR1 15-25KR, ER is CR1 15-25ER, KG is CR1 15-25KG and EG is CR1 15-25EG.       
 
 
  Three cleavage products of the C3b α’chain (43, 37 and 29 kD) were observed 

(following electrophoresis and Coomassie staining, see Figs. 5.1A-D) after 15 minutes 

incubation following addition of 0.25 µg of all four polymorphic variants of CR1 15-25. 

Thus unlike the negative controls (i.e. CR1 21-22, or buffer only), each variant acted as 

co-factor for cleavage by factor I, just like the positive control (sCR1) and the previously 

characterised CR1 15-17 fragment. This confirms that correctly folded modules of site 2 

(CCPs 15-17) are present within each of the longer fragments and that all four variants 

show comparable co-factor activity, with no evidence for modulation of functionality via 

residues in CCP 25. 

 

Note from the results in Figures 5.1A-D that, as expected, sCR1 and CR1 

constructs containing functional site 2, are co-factors for cleavage of the C3b α'-chain 

(111 kDa) into the α'-chain fragments of iC3b (43 and 68 kDa) and then its further 

cleavage to yield C3dg and the 29-kD α'-chain remnant that belongs to C3c; on the other 

hand factor H cofactor activity is limited to cleavage to iC3b. Similar results were 

obtained for both shorter and longer (15 mins and 60 mins) incubation periods and for 

both low and high additions of CR1 construct (0.25 µg or 1 µg), indicating that we had 

not arrived at assay conditions under which cofactor amounts were limiting and hence 

would not have detected minor differences between the variants. 

Further co-factor assays were carried out in the Atkinson laboratory. For these 
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experiments a more sensitive protein-detection methods was used: In the C3b (Fig. 5.1E) 

cofactor assay, 25 pg of biotinylated C3b, 8.2 pg of FI, and 10 pg of CR1 15-25, (or 27 

pg of sCR1 2.7) were mixed in a final reaction volume of 30 µl of phosphate buffer, pH 

7.3, containing 50 mM NaCl.  For the C4b assay (Fig. 5.1F) 37.5 pg of C4b, 3.8 pg of FI 

and 50 pg of CR1 15-25 (or 135 pg of sCR1) were mixed in 30 ml of the same buffer as 

above. Incubations were carried out for one hour then stopped as above and run on 4-12% 

NuPAGE gels (Invitrogen). Protein bands were detected via avidin-horse radish 

peroxidase and electrochemical luminescence as described in Chapter 2. 

 

5.3 Rosette-disruption assays 

 
All experiments whose results will be shown in this section were performed in Professor 

Alex Rowe’s laboratory and under her kind supervision. The details of the rosette-

disruption assay and the principles behind it have been presented in the Materials and 

Methods chapter. As indicated, a successful outcome of this assay depends largely upon 

managing to maintain a viable “rosetting culture” i.e. a preparation of erythrocytes in 

which some cells are infected with the P. falciparum parasites and wherein rosettes have 

been (or are being) formed between parasitized and non-infected cells. Two of the key 

processes in maintaining such a culture are selection and synchronisation, both of which 

were detailed in Chapter 2. Synchronisation was achieved when a mixed culture of ring 

and trophozoic forms (see Fig. 5.2A) were treated with sorbitol (for details explanations 

see section 2.4.4.2). The resultant culture, with many ring forms, is Giemsa stained (to 

reveal parasitized cells) as displayed in Figure 5.2B. 
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Figure 5.2 Plasmodium falciparum in vitro culture techniques and rosetting assay 

(A) A Giemsa-stained slide of a mixed culture of ring and trophozoite forms. (B) A Giemsa-
stained slide of a synchronised culture showing, primarily, ring forms. Lower slides are “zoom 
ins” of the slides shown above. (C) Ethidium bromide preparation of rosetting culture before 
addition of any potential rosette-disrupting proteins. (D) Ethidium bromide preparation of cells 
(as in (C)) after addition of rosette-disrupting protein.  
 
Within the next cycle, a culture that contains numerous rosettes (“rosette-rich”) is 

achieved from the trophozoite-containing red blood cells. Figure 5.2C shows an ethidium 

bromide-stained rosette-rich culture, examined under the fluorescence microscope.  
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Infected cells stain positively (fluoresence) due to presence of parasite DNA in the 

anucleate red blood cell. Normal light microscope can also be used to visualize 

erythrocytes irrespective of their infection status. Thus a combination of light and 

fluorescence microscopy helps visualize rosettes and makes counting possible. Using this 

technique, between three and four uninfected red blood cells can be seen attached to each 

of the two infected ones in Figure 5.2C. Figure 5.2D demonstrates the disruptive effect 

on rosettes of sCR1. Destruction of rosettes is assumed to be the result of competition 

between sCR1 and CR1 on the erythrocyte surface for binding to PfEMP1 on the surface 

of infected erythrocytes.  

The experimental results featured in Figure 5.3A, B and C were obtained in 

assays performed with shorter constructs to define the minimum-size fragment capable of 

disruption of rosettes but also as a proof of principle that the longer constructs could be 

tested in this assay with reliable results. From sampling various protein concentrations it 

was found that 20 µM CR1 15-17 (Site 2) had significant disruptive effect on the rosettes, 

unlike the negative control of 20 mM potassium phosphate buffer alone. The J3B11 

antibody, which recognises at epitope in module 17 of CR1, served as a positive control 

throughout the three experiments summarised in Figure 5.2 A, B & C. It consistently had 

a dramatic negative effect on the number of rosettes present. This experiment further 

demonstrated that CR1 10-11 (i.e. equivalent to CR1 17-18) and (perhaps unexpectedly) 

single-module CR1 17 reproducibly disrupted rosettes as effectively as CR1 15-17 and 

J3B11. 

To prove that not all recombinant versions of CR1 fragments had negative effects 

on rosettes, CR1 21, CR1 21-22 and CR1 20-23 were included as negative controls 
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(Figure 5.3B). While the positive control (J3B11 antibody) worked well, this experiment 

showed as expected that none of these fragments had rosette-disrupting properties. 

In addition, protein constructs from factor H, which is also a member of the 

regulators of complement activation family, were also tested in this assay (Figure 5.3C). 

Again the positive control, J3B11, worked well, but factor H fragments did not 

significantly disrupt rosettes.  Addition of full-length factor H resulted in a small 

reduction in rosettes that was significant when compared to the binding-medium negative 

control, but not significant when compared to the PBS negative control. The result 

obtained with full-length factor H are therefore equivocal and the experiment would need 

to be repeated.  

Overall these results served to establish a workable, practical protocol, and 

suitable negative and positive controls, for subsequent functional testing of the 

polymorphic variants of CR1 15-25. All four polymorphic forms of CR1 15-25 had a 

considerable disruptive effect on rosettes that was comparable to that of CR1 15-17 and 

highly significant against negative controls with PBS and CR1 21-22 (Fig. 5.3D). (Note 

that antibody J3B11 was unfortunately not available to serve as the positive control in 

this last experiment). Interestingly, there was no measurable difference between the 

variants in their ability to disrupt rosettes and hence it may be inferred that all four have 

similar affinities for PfEMP1(For analytical tables and raw data see appendix E ). The 

conclusion of this study is therefore that the propensity to form rosettes – a property that 

is associated with susceptibility to severe forms of malaria – has not exerted selective 

pressure on the Sl1/2 and McCa/b alleles in the CR1 gene and cannot explain their non-

uniform geographical distribution.                                   
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Figure 5.3 Rosette disruption assays 

(A) Experimental results of adding CR1 15-17, CR1 17 and CR1 10-11 alongside the J3B11 
antibody (positive) control and buffer (PBS)-only negative control.*** P value <0.005 (B) Other 
CR1 constructs tested alongside J3B11 antibody. (C) Factor H constructs tested in this assay, 
along with antibody (to CCP 17) J3B11 (D) Results obtained for the four polymorphic forms of 
CR1 15-25 alongside sCR1, CR1 15-17 (positive controls) and CR1 21-22 (negative control).  
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5.4 Erythrocyte-invasion assays 

 

These experiments were carried out with Edinburgh-produced and purified proteins that 

had been dispatched to Professor Alan Cowman’s laboratory in Melbourne. The assays 

were performed by Dr Wai-hong Tham according to the procedure briefly outlined in 

Materials and Methods. Invasion experiments were conducted using cultures of 3D7 and 

W2mefΔRh4 strains of P. falciparum. The latter are deficient in the protein, Rh4, 

suspected to interact with CR1. Since it is the sialic acid-independent invasion pathway 

that was suspected of being mediated by CR1, neuraminidase treatment was employed to 

remove access to other potential invasion pathways. 

Thus when PBS (i.e. the buffer-only negative control) is added, invasion 

efficiency into 3D7 cells is independent of neuraminidase treatment and is set to 100% 

(Fig. 5.4A). On the other hand neuraminidase treatment results in loss of invasion 

capability of W2mefΔRh4 cells.  Addition of sCR1 (i.e. the full-length ectodomain, CCPs 

1-30) has a very dramatic effect on invasion of neuraminidase-treated red blood cells by 

3D7 parasites. This was presumed to arise from competition between sCR1 and 

erythrocyte-borne CR1 for binding to Rh4 (since sCR1 had no effect on invasion by 

W2mefΔRh4 cells into untreated red blood cells). This experiment also demonstrated that 

CR1 1-3 (a construct prepared in Edinburgh by Dr Mara Guariento) was almost as 

effective as sCR1 in the invasion-inhibition assay. This construct corresponds to 

functional site 1. Interestingly, the CR1 15-17, prepared in the current study, (i.e. 
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functional site 2) had no significant invasion-inhibition properties despite the 

aforementioned very high levels of sequence similarity between functional sites 1 and 2.  

 

None of the four polymorphic variants of CR1 15-25 had a major effect on 

invasion by 3D7 of neuraminidase-treated red blood cells. Although addition of CR1 15-

25KR appeared to have some effect, this is barely significant with respect to controls and 

not significant compared to the other variants. Such small discrepancies between variants 

could arise from slightly different buffer conditions or as the result of differences 

observed during the purification; further experiments would be required to investigate 

this.  

In summary, the Edinburgh-produced set of recombinant CR1 fragments allowed the 

delineation of the binding site of Rh4 on CR1, which is required for sialic acid-

independent invasion of red blood cells, to functional site 1. The constructs made in the 

current study (CR1 10-11, 15-17, 17, 20-21 and 15-25) were crucial to demonstrating that 

the affinity of CCPs 1-3 for Rh4 is unique amongst the modules of CR1. Moreover, the 

availability of all four variants of CR1 15-25 established that this observation holds true 

for geographically diverse populations. The lack of any difference between the variants 

suggests that susceptibility to invasion has not exerted selective pressure on the Knops 

blood-group antigens in CCP 25. 
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Figure 5.4 Erythrocyte-invasion assays and ELISA  

(A) Histogram to show the effects of various CR1 fragments on invasion of erythrocytes by P. 
falciparum merozoites.  The horizontal axis of the graph indicates the constructs used in the 
invasion assay. The colour-coding indicates the strain of P. falciparum investigated (see text) and 
whether or not cells were treated with neuraminidase to remove sialic acids and hence block the 
sialic acid-dependent invasion pathway (that does not utilse Rh4:CR1). PBS = phosphate buffered 
saline; sCR1 = soluble CR1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Constructs 
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5.5  Acquisition of P. falciparum proteins 

 

In this study, protein-protein interaction was assessed not only in culture-medium settings 

as described earlier, but also by direct measurement of protein:protein interactions. For 

surface plasmon resonance (SPR) studies, purified proteins are essential. Since all the 

requisite CR1 constructs had been produced successfully as described in Chapter 3, the 

next task was to acquire the binding partners in purified form. The three complement 

proteins used (C3b, C4b and C1q) were purchased from Complement Technology, Texas. 

On the other hand, the DBLα (Figure 5.5D, and see Introduction for further details of 

PfEMP1)  believed to be the domain of PfEMP1 that interacts with CR1 during rosetting, 

was kindly provided by Dr. Matt Haggin’s laboratory at the University of Cambridge 

(now at University of Oxford). This gift was timely after attempts to make useful 

amounts of Dblα-containing constructs in Edinburgh failed to yield the hoped for results 

(Figure 3.17). For completion, these frustrated attempts are described in Chapter 3, 

section 3.11.  

Having much more experience in making, handling and characterising the DBLα 

domains, Dr. Matt Higgins generously suggested the domain boundaries he had selected 

when producing his versions of DBLα. He also generously provided some of his 

recombinantly prepared DBLα(M) (Figure 5.5C) for SPR experimental trials. 

Subsequently he provided further recombnant proteins containing DBLα domains 

(through his collaboration with Alex Rowe’s group) including NTS-DBL and NTS-

DBLα-CIDR (Figure 5.5D). Finally, Rh4.9, the binding domain of the merozoite surface 
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protein used for erythrocyte invasion through the sialic acid-independent pathway, was 

provided by Professor Alan Cowman and Dr Waihong Tham (Figure 5. 5D).  

 

Figure 5.5 Malaria related proteins.   

(A) Domains of PfEMP1 used in this study. NTS is N-terminal segment, DBL means Duffy-Like 
binding domain and CIDR is Cysteine-rich interdomain region. (M) and (P) are letters designated 
to the different DBLs with respect to those who produced them.  DBLα(M) was produced by Dr. 
Matt Higgins and hence the letter (M) whiles DBLα(P) was produced by Patience Tetteh-
Quarcoo, hence the letter (P).  (A-insert) is representation of PfRH4. (Modified from Tham et al., 
2009). (B) DBLα(P).The sequence of this domain has odd number of cysteines. (C) DBLα(M). 
Has even number of cysteine. R and NR represents reducing and non-reducing conditions 
respectively. (D) DBLs with NTS and Rh4.9. Left side of the marker is reducing condition while 
the right side of the marker is non reducing condition . (From Left) Lane 1- Rh4.9, Lane 2 – NTS-
DBLα-CIDR and Lane 3- DBLα. (From right) Lane 1- Rh4.9, Lane 2 – NTS-DBLα-CIDR and 
Lane 3- DBLα. 
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5.6 Surface plasmon resonance-based affinity measurements I (early 

experiments) 

 

Surface plasmon resonance (SPR) affords the opportunity to observe protein-protein 

interactions in real time and to measure rate and equilibrium constants in a quantitative 

manner. It thereby complements results obtained from cell-based studies such as the 

rosette-disruption and invasion-inhibition assays from which the specific protein-protein 

interactions and their strengths can only be inferred. SPR thus provides a direct and 

accurate means of assessing whether sequence variations in CR1 influence binding 

affinities for major ligands. 

It was crucial to identify the best conditions under which to perform SPR 

measurements, particular since there existed little precedent for SPR-derived 

investigations of the proteins in the current study. While there was experience (in the 

Barlow group) of SPR-based investigations into the interaction of C3 fragments with 

complement regulators, interactions with putative binding domains from the parasite-

encoded proteins, DBLα and Rh4.9, represented new territory. The type of buffer to be 

used, the pH of the buffer and the type of sensor chip had to be optimized while at the 

same time it was highly desirable to perform the studies under physiologically relevant 

conditions. As discussed under Materials and Methods in Chapter 2, several different 

sensor chips were available for assessing various types of interaction. The CM5 and the 

C1 sensor chips had been used successfully to measure the affinity of the interaction 

between C3b immobilised by amine-coupling, and fragments (or full-length versions) of 

FH and CR1 (Schmidt et al., 2008, Mallin, 2003). A major objective of the current study 
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was to compare binding affinities, for both host proteins and parasite ligands, between the 

Knops blood-group polymorphic forms of CR1. It was decided that using similar sensor 

chips for both host and parasite proteins would provide the best basis for comparison. 

The strategy adopted was to further optimize conditions previously developed for 

measuring the affinities of C3b for various FH fragments. 

 

Description Chip 
Type 

 Flow Cell 1 Flow Cell 2 Flow Cell 3 Flow Cell 4 

Chip 1 CM 5 Blank  
(0 RU) 

C3b 
1510 RU 

DBLα(P) 
3023 RU    

C3b 
2992 RU  

Chip 2 CM 5 Blank  
(0 RU) 

C3b 
1500 RU 

DBLα(M) 
3000 RU    

C3b 
3000 RU 

Chip 3 C1 Blank 
(0 RU) 

C3b 
500 (RU) 

C3b 
750 (RU) 

DBL α(M) 
750 (RU) 

Chips for sections described as “ SPR measurement I” □ 
 
Description Chip 

Type 
 Flow Cell 1 Flow Cell 2 Flow Cell 3 Flow Cell 4 

Complement 
Chip 

CM 5 Blank  
(0 RU) 

C3b  
(1620 RU) 

C4b  
(1518 RU) 

C1Q  
(2125 RU) 

Malaria Chip CM 5  Blank  
(0 RU) 

NTS-DBL-
CIDR 
(1500 RU) 

Rh4.9 
(408 RU) 

Rh4.9 
(1476 RU) 

Chips for sections described “SPR measurement II ”  
	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  Table 5.1 Summary of Chips used for SPR-based studies 
 

5.6.1 Binding of CR1 site 2 to DBLα (versus binding to C3b) on CM5 and C1 chips  

A buffer with a pH similar to physiological conditions (“HBS-EP+” buffer - see 

Materials and Methods for details) was selected as a starting point. Proteins were dialysed 

into this buffer prior to SPR. Utility of the CM5 and C1 chips were assessed.  Figure 5.6 
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shows the results of some of the trial processes that were carried out to establish an 

optimised protocol suitable for accurate testing of the polymorphic forms of CR1 15-25.  

 

5.6.2 Using a CM5 chip 

The first SPR trial experiment was performed using the constructs that tested positive in 

the rosette-disruption assay (i.e.  CR1 17, CR1 15-17 and CR1 10-11). A CM5 chip was 

used with blank (0 response units (RU)) coating on flow cell (FC) 1 and 3023 RU of 

DBLα(P) immobilised, by amine coupling (see Materials and Methods for details), on FC 

3. Flow cells 2 and 4 were coated (amine-coupled) with 1510 RU and 2992 RU of C3b 

respectively (Table 5.1). Note that DBLα(P) refers to the version produced by the author 

(see Chapter 3, section 3.11) and has an odd number of cysteine residues and that it 

appeared to be degraded by SDS-PAGE under reducing conditions but was intact (i.e. 

held together by disulfides) under non-reducing conditions (see Fig. 5.5B) Known 

binders of C3b such as FH CCPs 19-20 (FH 19-20) and FH CCPs 1-4 (FH 1-4) were used 

as positive controls; they were flowed over the chip and the responses produced were 

compared to those obtained with similar concentrations of the CR1 fragments. The HBS-

EP+ buffer served to provide a baseline control.  

Two concentrations of proteins (2 µM and 20 µM) were flowed over the four 

channels of the CM5 chip. The responses (“sensorgrams”) obtained are displayed in 

Figures 4.6A and B. As expected, CR1 15-17 binds well to C3b (on FCs 2 and 4) as does 

FH 19-20 and FH 1-4.   The single module construct CR1 17 does not bind in a 

detectable fashion to C3b, nor does the double-module construct CR1 10-11 that is 

identical to CR1 17-18. These results are entirely consistent with previous work 
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suggesting that the functional site 2 of CR1 consists of a minimum of three modules at 

the N-terminus of LHR-B or LHR-C, and that neither the third module alone nor a 

conjunction of third and fourth modules (as in CR1 10-11), is sufficient to achieve 

measurable affinity. When the CR1 15-17 – previously implicated in rosetting – was 

flowed over FC 3 (bearing 3023 RU of immobilised DBLα(P)), only a very interaction 

was observed that is almost certainly not physiologically meaningful (see Fig. 5.6B). 

Strangely, though, FH 19-20 produces the largest response of all the proteins tested (see 

Fig. 5.6B). While the interaction is not strong and has a very rapid off-rate (note the KD 

was not measured), the size (and profile) of response is not much smaller than the 

response observed when an equivalent concentration of FH 19-20 was flowed over its 

well-established ligand C3b (Fig. 5.6B) (KD = ~4 µM).  There has not, to date, been any 

indication of involvement of factor H in rosette-disruption so this observation remains an 

enigma for the time being. 
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Figure 5.6 Binding of Site 2 (and control proteins from FH) to ligands bound to a CM5 Chip 

(A) Overlaid sensorgrams obtained for multiple potential ligands flowed over the C3b-coated 
CM5 chip surface (2992 RU on FC 4 of Chip 1, see Table 5.1); the identities of constructs 
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(colour-coded) and their concentrations are shown. All data (in this Figure) are baseline (HBS-
EP+ buffer)-subtracted. (B) As in panel (A) but in this case the chip surface (FC 3) was coated 
with 3023 RU of DBLα(P) . (C) A concentration series (up to 40.2 µM ) of CR1 15-17 was 
flowed over 3000 RU C3b-coated FC 2  to generate the response versus concentration curve 
(inset) that was used to estimate a KD for the CR1 15-17:C3b interaction. (D) As in panel (C) 
except the concentration series of CR1 15-17 was flowed over FC 3 that carried 3000 RU of 
DBL-α(P). The KD could not be calculated accurately (inset) due to failure to reach saturation.  
(E) As in panel (C) except the CR1 15-17 samples were flowed over the FC (4) (of Chip 2 in 
Table 5.1) bearing 3000 RU of immobilised C3b. (F) CR1 15-17 series of concentrations (up to 
60.7 µM) flowed over the 3000 RU of the DBL-α(M)–coated surface  (FC 3 of Chip 2 in Table 
5.1) to establish that there was only very weak direct interaction between CR1 15-17 and the 
DBLα - KD could not be calculated (inset) due to failure to reach saturation (even at 60.7 µM). 
 
  To quantify the CR1 functional site 2:C3b interaction, a series of concentrations 

of CR1 15-17 were flowed over FC 2 and FC 4 yielding (see Fig. 5.6C and E) KD values 

of around 2-4 µM. A similar experiment performed on FC 3 (bearing 3000 RU of 

DBLα(P) yielded very much smaller responses and a dubious (given weak responses and 

failure to reach saturation) KD value of about 20 µM.   

 Thus these studied very clearly demonstrated that functional site 2 of CR1 

interacts with C3b very much more strongly than with DBLα(P) and indeed the latter 

interaction was too weak to be defended as physiologically meaningful. Either CR1 

interacts only very weakly with PfEMP1, or the choice of domains used in these 

experiments was inappropriate. (Note that no direct interaction between these proteins 

has yet been demonstrated in the literature). It was in fact not unlikely that DBLα(P) was 

improperly folded or had been cleaved at a critical site (based on previously mentioned 

SDS-PAGE, Fig. 5.5B and 3.17 ) and therefore it was timely that Dr. Matt Higgins (now 

at University of Oxford) kindly provided an alternative construct of DBLα termed 

DBLα(Μ)  for the purposes of this study, which had been recombinantly produced in E. 

coli cells (using the Origami strain). This protein domain behaves appropriately on SDS-

PAGE producing a dominant main band that ran slightly higher under reducing 
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conditions compared to non-reducing conditions (Figure 5.5C). Using similar conditions 

(see chip 2 of Table 5.1) to those employed for DBLα(P), the interaction between CR1 

15-17 and  DBLα(M) was assessed and the results presented in Figure 5.6F. As was 

observed for DBLα(P), however, the interaction between CR1 15-17 and DBLα(M) was 

very weak (compared to that with C3b, see Fig. 5.6E); no saturation could be obtained 

and a plot of RU versus DBLα(M) concentration showed no sign of a plateau implying 

that the KD must be in excess of ~ 200 µM.  These results seemed to imply that even with 

a properly folded DBLα domain, any interaction with function site 2 of CR1 is at least 

50-100 fold weaker than that of C3b despite previous work showing that site 2 was 

critical for resetting. 

5.6.3 Using a C1 chip 

Given the poor interaction observed between CR1 15-17 and two versions of DBLα 

immobilised on the CM5 sensor chip, it was decided to repeat the measurements but 

deploy a C1 chip (i.e. lacking the carboxymethyl groups). As on the CM5 chip, two FCs 

were used for C3b immobilization (500 RU and 750 RU) while a third was use for 

DBLα(M) immobilisation (750 RU), and finally FC 1 was used as a reference blank. In 

this set of experiments, the four polymorphic variants of CR1 15-25 were also tested. 

         Contrasting results were obtained when 1 µM samples of the CR1 fragments were 

flowed over these flow cells (see Figs 5.7A and B). While on the C3b surface, the CR1 

constructs - including the four CR1 15-25 variants - interacted equally strongly on the 

DBLα surface, the results were difficult to interpret.  As shown in Figure 5.7A a variety 

of negative curves were generated for three of the variants while sCR1 produced only a 

small response and CR1 15-17 (consistently with results obtained on the CM5 chip) 
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yielded an even smaller response. The exception was CR1 15-25EG (Fig. 5.7B) that gave 

rise to a much greater response than sCR1. Subsequently, a concentration series of sCR1 

was flowed over the DBLα(M) surface. Figure 5.7D shows the results for the sCR1: 

DBLα(M) interaction that may be compared to the measurement of the sCR1: C3b 

interaction in Figure 5.7C. Consistently with the comparison in Figure 5.7B, DBLα(M) 

generates much smaller responses and unfortunately it was not possible to extract a 

reliable KD from these measurements due to poor fitting of the response versus 

concentration curve (see insert in Fig. 5.7D). CR1 15-25 EG was also flowed over both 

the C3b- and DBLα(M)-bearing surfaces; these experiments resulted in KD estimates of 

0.26 µM and 2.38 µM respectively (see Figs. 5.7 E and F). Finally, CR1 15-17 was 

similarly flowed over these two surfaces. The results are fully consistent with those in 

Figure 5.7B in that responses on the DBLα(M)-bearing surface are very small. The 

derived KD value (1.45 µM) for DBLα (M) must therefore be regarded as dubious.  

 Thus the sCR1, CR1-15-17 and all four variants of CR1 15-25 bound better to 

C3b on the C1 chip than to the same protein on the CM5 chip and response-versus-

concentration curves for these experiments fitted well to a hyperbolic plot allowing 

reliable KD estimates. In the case of immobilised DBLα(M) the responses obtained with 

CR1 15-17 and sCR1 were smaller (with respect to C3b) and the response-versus-

concentration plots did not fit as well to hyperbolic (two-state and 1:1 stoichiometry) 

functions such that no meaningful KDs could be extracted.  The result for CR1 15-25EG 

suggest that, although weaker than observed on the C3b surface, there is some form of 

interaction between DBLα and this CR1 15-25 variant. It was therefore worthwhile to re-
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investigate the behaviour of this variant on the CM5 chip as well as the C1 chip used 

here. Hence, for subsequent experiments, focus returned to the CM5 chip.     

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Binding of potential ligands to C3b and DBLα(M) immobilised on a C1 sensor chip 
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(A) Solutions, as indicated, of 1 µM of the protein constructs were flowed over the flow cell 
surface bearing (750 RU) C3b. (B) As in panel (A) except solutions were flowed over the flow 
cell surface loaded with 500 RU of DBLα(M).  (C) A concentration series of sCR1 flowed over 
the C3b-loaded surface. Insert shows response-versus-concentration data fitted to a hyperbolic 
function along with the calculated KD value.  (D) As in (C) except the sCR1 solutions were 
flowed over the DBLα(M)-loaded surface. (E) As in (C) except a concentration series of CR1 15-
25EG was used. (F) As in (D) except a concentration series of CR1 15-25EG was flowed across 
the DBLα(M) surface. (G) and (H) As in (E) & (F) except these curves are for CR1 15-17. 
 

The set of experiments described above represented a first attempt at quantification 

of affinities between CR1 fragments and their potential ligand. They served as a basis for 

a further phase of SPR-based experiments, described below, incorporating some 

refinements. For example, the negative curves observed in Figure 5.7B are usually a 

result of strong non-specific binding of proteins to the blank/reference flow cell surface 

compared to that of the “working” flow cell. This was improved upon subsequently by 

performing a double-blank immobilization (see Materials and Methods, section 2.4.2) 

Also, duplicate injections were not performed in the initial SPR studies, which made it 

difficult to check reproducibility; a possible implication was that injected proteins might 

not have been completely removed from the chip surface in the wash step and might 

therefore accumulate during injections of a concentration series.  

       

5.6.4 Further SPR-based investigations of CR1 15-25 binding to parasite proteins 

At this stage of the work, the four polymorphic forms of CR1 15-25 had been 

successfully produced and purified, and two further DBLα constructs from PfEMP1 had 

kindly been gifted by Dr. Matthew Higgins. The two new DBLαs provided were NTS-

DBLα and NTS–DBLα–CIDR (See Fig. 5.5D for appropriate lanes) Dr Higgins designed 
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these constructs on the basis that neighbouring regions might be needed for the putative 

binding of the DBLα domain to CR1. 

The Cowman group (Melbourne) provided Rh4.9, corresponding to a recombinant 

version of the N-terminal domain of the parasite protein Rh4, the protein that interacts 

with CR1 during the sialic acid independent invasion pathway used by P. falciparum 

merozoites. A CM5 chip was chosen for the SPR experiments (see reason for choice 

explained in section 5.6.3 above) and FC 1 served as the blank or reference.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Binding of CR1 constructs to DBL domains monitored by SPR 

(A) Overlay of sensorgrams obtained by flowing (individually) 1 µM solutions of the indicated 
CR1 constructs over the NTS-DBLα loaded surface of FC 2. (B) As in panel (A), except 10 µM 
solutions of CR1 constructs were flowed over the surface of FC 2. (C) Solutions of 1 µM of the 
four CR1 15-25 polymorphic variants were flowed over the flow cell surface bearing immobilised 
NTS-DBLα-CIDR. (D) Solutions of 10 µM of the four CR1 15-25 polymorphic variants were 
flowed over the flow cell (FC 4) surface bearing immobilised NTS-DBL-CIDR . (E) Zoom in on 
panel (D) to highlight weaker binders on NTS-DBL-CIDR  flow cell.  
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The three parasite DNA-encoded recombinant proteins were amine-coupled onto 

the surfaces of FCs 2 to 4: NTS-DBLα on FC 2; NTS-DBLα-CIDR on FC 3 and Rh4.9 

on FC 4. Panels (A) and (B) of Figure 5.8 show the overlaid sensorgrams obtained after 

flowing (one at a time) various CR1 constructs (at 1 µM and 10 µM) across the surface of 

FC 2 (NTS-DBLα). All four polymorphic forms of CR1 15-25 exhibited similar very 

weak (probably non-specific) interactions with immobilised NTS-DBLα as did CR1 1-3, 

CR1 15-17 and sCR1. Strangely though, Rh4.9 which was also flowed over the chip, 

seemed to interact with NTS-DBLα better than any of the CR1 fragments. Figures 4.8C, 

D and E illustrate the sensorgrams obtained for interactions of the same set of injected 

protein samples with NTS-DBL-CIDRα on the chip surface As before the CR1 constructs 

interact only very weakly with the surface; there are insignificant differences between the 

binding curves obtained for CR1 1-3 (not reported to be important for rosetting) and CR1 

15-17 (the purported rosetting-critical functional site of CR1) or full-length sCR1, while 

all four variants of CR1 15-25 bind equally poorly. It is thus very difficult to attach any 

significance to these sensorgrams in terms of physiologically relevant protein:protein 

interactions between CR1 and the PfEMP1 constructs. As was observed with NTS-

DBLα, Rh4.9 interacts with immobilised NTS-DBL-CIDRα much better than do the CR1 

constructs. This intriguing observation, however, is not backed up by any biological 

experiments to date and was not further investigated due to time constraints.  
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5.7 Surface plasmon resonance-based affinity measurements II 

(optimised experiments) 

 

While the SPR results obtained up to this point had been very promising, they were not 

regarded as publishable in quality and in any case it was important that key observations 

be replicated. For the final set of SPR-based experiments, designed to be the definitive 

ones, two CM5 chips were loaded with proteins. Commercially available C3b, C4b and 

C1q were immobilised on FCs 2 to 4 of the ‘complement chip’ while NTS-DBLa-CIDR 

and Rh4.9 (two different loadings) were coupled to FCs 2 to 4 of the ‘malaria chip’ 

(summarised in Table 5.1). 

 

5.7.1 CR1 proteins flown over C3b (Complement Chip) 

Figure 5.9A shows the sensorgrams obtained from flowing 10 µM solutions of the CR1 

constructs over FC 2 of the complement chip loaded with 1500 RU of C3b. The quality 

of these data was regarded as very high (“publishable”) on the basis of the excellent 

reproducibility of duplicate injections and the lack of negative data points, glitches or 

other artefacts. Moreover binding of the positive controls sCR1 and CR1 15-17, and the 

negative control CR1 10-11, are all as expected. Finally CR1 1-3 (i.e. functional site 1) 

binds to C3b significantly more weakly than CR1 15-17, which is consistent with several 

studies published by the Atkinson laboratory. 

 



CHAPTER 5 BIOLOGICAL AND FUNCTIONAL STUDIES 

 210 

 The four polymorphic forms of CR1 15-25 all had very similar binding curves 

and it may be inferred that all bind equally well to amine-coupled C3b. A form of CR1 

15-25KR that runs as a larger entity in the size-exclusion chromatography  (peak A in 

Figs. 3.12 and 4.13) binds less well than its smaller, non-glycosylated counterpart.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.9 “Definitive” study by SPR of binding to C3b by a set of CR1 constructs 

(A) Solutions of 10 µM CR1 constructs flowed over 1500 RUs of immobilised C3b on the surface 
of FC 2 of the “complement chip”. (B) As in panel (A) except 1-µM solutions of CR1 constructs 
were flowed over the same C3b-loaded surface. 
 

A 

B RU 

RU 
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 Similar observations (see Fig. 5.9B) were made when 1-µM solutions of 

the CR1 constructs were flowed over the C3b-loaded chip surface. In this set of 

experiments, CR1 17-25KG was included as an additional negative control, confirming 

that the binding displayed by the CR1 15-25 constructs resides entirely in the N-terminal 

modules. 

 

5.7.2 Series of CR1 concentrations on C3b Flow Cell 

To obtain KD values for complexes formed between C3b and the CR1 15-25 constructs, a 

concentration series (0-10 µM) of each variant was flowed over C3b immobilised on FC 

2 of the complement chip (see Figs. 5.10A-D). These data were of good quality and 

allowed plots of response-versus-concentration suitable for fitting and calculation of the 

KD values summarised in Table 5.2.  The four values obtained are similar - 1.5 µM for 

CR1-15-25KR, 2.4 µM for CR1 15-25ER; 2.1 µM for CR1 15-25KG; and 1.8 µM for 

CR1 15-25EG - and there is no trend of affinities in the series: KR to (ER, KG) to EG; 

implying that there are no significant differences in affinities for C3b arising from these 

sequence variations.  

 For comparison, a concentration series of sCR1was deployed (using the same FC 

as above) to provide a KD value of 1.3 µM for the sCR1:C3b complex (Fig. 5.10G).  

Using the same approach, a KD value of 2.2 µM was obtained for the CR1 15-17:C3b 

complex (Fig. 5.10E). A higher concentration range (0 – 62 µM) was chosen with which 

to characterise the complex between CR1 1-3 and C3b, based on the results of Figure 5.9 

and the literature. Even so, saturation was not achieved and hence the KD value obtained 
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at ~80 µM (Fig. 5.10F) must be regarded as an estimate only.  These values are 

summarised, along with those for the CR1 15-25 variants, in Table 5.2.  
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Figure 5.10 Estimation of KD values for CR1 constructs binding to immobilised C3b   

(A) Overlay of binding curves for a concentration series (0 – 10 µM) of CR1 15-25KR flowed 
over immobilised C3b (inset – response-versus-concentration plot fitted to obtain a KD value). (B) 
As in panel (A) but for CR1 15-25ER. (C) As in panel (A) but for CR1 15-25KG. (D) As in panel 
(A) but for CR1 15-25EG. (E) As in panel (A) but for CR1 15-17. (F) As in panel (A) except a 
concentration series of 0 – 60 µM of CR1 1-3 was deployed.  (G) As in panel (A) but for sCR1. 
 

5.7.3 CR1 constructs injected onto the C4b-loaded surface 

As noted in Table 5.1, FC 3 of the “complement chip” was loaded (amine coupling) with 

1500 RU of complement protein C4b (from Complement Technology). Figure 5.11 

shows a series of SPR-based experiments on C4b, analogous to those (for C3b) shown in 

Figure 5.9.  
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Figure 5.11 “Definitive” study by SPR of binding to C4b by a set of CR1 constructs 

(A)  Sensogram-overlay for 10-µM solutions of the various CR1 constructs flowed over 1500 
RUs of C4b immobilised on FC 3 of the complement chip. (B)  As in panel (A) but deploying 1-
µM solutions of the CR1 constructs.  (C) An expanded region of panel (B) to highlight the 
weaker binders.   
 

The positive control, sCR1 bound the most tightly out of this series as expected, 

while CR1 10-11 and CR1 17-25 served as good negative controls. CR1 1-3 bound less 

well than CR1 15-17 and neither bound to C4b as well as they did to C3b  - this is largely 

consistent with the literature that reports CR1 functional site 2 to be the main site for C3b 

binding. Not surprisingly, the variants of CR1 15-25 also bound less well to C4b than 

they did to C3b. Importantly from the perspective of the current study, all four produced 
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very similar binding curves, implying there is no difference amongst these variants in 

their affinity for C4b. 

 

5.7.4 Determination of KD values for complexes of CR1 constructs with C4b 

The same concentration-series experiments that were used to determine KD values for C3b also 

yielded equivalent data (Fig. 5.12) for C4b since both C3b and C4b were loaded onto different 

flow cells of the same CM5 “complement chip”. The resultant KD values are summarised in Table 

5.2. For the CR1 15-25 variants the values are all comparable: 6.9 µM for CR1 15-25KR; 8.1 µM 

for CR1 15-25ER, 6.9 µM for CR1 15-25KG; 8.0 µM for CR1 15-25EG. These longer constructs 

bind slightly better to C4b than CR1 15-17 (KD = 11.5 µM) and significantly better than CR1 1-3 

(21.4 µM).  The strongest binder to C4b was, as expected, sCR1 with its multiple interaction sites 

(KD  =1.6 µM). 
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Figure 5.12 Estimation of KD values for CR1 constructs binding to immobilised C4b 

(A) Overlay of binding curves for a concentration series (0 – 10 µM) of CR1 15-25KR flowed 
over immobilised C4b (inset – response-versus-concentration plot fitted to obtain a KD value). (B) 
As in panel A) but for CR1 15-25ER. (C) As in panel (A) but for CR1 15-25KG. (D) As in panel 
(A) but for CR1 15-25EG. (E) As in panel (A) but for CR1 15-17. (F) As in panel (A) except a 
concentration series of 0 – 60 µM of CR1 1-3 was deployed.  (G) As in panel (A) but for sCR1. 
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5.7.5 CR1 constructs injected onto a C1q-loaded surface 

Since C1q had been loaded onto FC 4 of the complement chip, the experiments outlined 

in the previous sections also provided data (see Fig. 5.13) that could be used to estimate 

the affinities of the CR1 constructs for immobilised C1q.  In general interactions 

appeared less strong than those with C3b (or C4b) as judged by the smaller responses 

elicited. 

From the overlaid sensograms in Figures 4.13A and B, it appears that full-length 

sCR1 surprizingly bound less well to C1q than most of the CR1 fragments  and it was 

also unexpected that CR1 15-17 (although the curves for duplicate injections do not 

overlay well) produces a larger response than the CR1 15-25 variants given that the C1q-

binding site was previously localised (Klickstein et al. 1997) to LHR-D (i.e. CCPs 22-

28).  The double module CR1 10-11 was a good negative control but CR1 1-3 appeared 

to interact weakly with C1q, which was not anticipated and may represent non-specific 

interactions. None of the variants interacted strongly with C1q and there was only minor 

differences between the strengths of the responses. Further information was gleaned from 

the results of the concentration-series experiments (discussed below). 
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Figure 5.13 “Definitive” study by SPR of binding to C1q by a set of CR1 constructs 

(A)  Sensogram-overlay for 10-µM solutions of the various CR1 constructs flowed over 2125 
RUs of C1q immobilised on FC 4 of the complement chip. (B) As in panel (A) but deploying 1-
µM solutions of the CR1 constructs.  (C) An expanded region of panel (B) to highlight the 
weaker binders.  
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5.7.6 Determination of KD values for complexes of CR1 constructs with C1q 

The KD values extracted (from the same experiments used to study interactions with C3b 

and C4b that were loaded onto different flow cells of the same chip) for complexes of 

CR1 and C1q (Fig. 5.14) are summarized in Table 5.2. The positive control, sCR1, was 

the tightest binder in the series tested with KD = 6.4 µM (notwithstanding the small 

response obtained when this was injected onto the C1q-loaded surface). Despite the lower 

responses obtained when CR1 15-25 constructs were flowed over C1q compared to C4b, 

(compare Figs 4.13 and 4.11) the calculated dissociation constants for C1q come out only 

slightly weaker, and with little evidence of differences between the four variants: 8.8 µM 

for CR1 15-25KR; 9.8 µM for CR1 CR1 15-25ER; 8.3 µM for CR1 15-25KG; 7.6 µM 

for CR1 15-25EG. Consistent with the relatively large response obtained when CR1 15-

17 was injected (Fig. 5.13) a KD value (11 µM) comparable to those for the CR1 15-25 

constructs was obtained. In the case of CR1 1-3, however, saturation was not reached, 

and a dubious value of 200 µM was obtained. Yet again, the size of the response obtained 

for injection of 10 µM CR1 1-3 (see Fig. 5.13) was out of proportion to its very weak 

interaction as revealed by these calculations of KD. 
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Figure 5.14 Estimation of KD values for CR1 constructs binding to immobilised C1q 

(A) Overlay of binding curves for a concentration series (0 – 10 µM) of CR1 15-25KR flowed 
over immobilised C1q (inset – response-versus-concentration plot fitted to obtain a KD value). (B) 
As in panel A) but for CR1 15-25ER. (C) As in panel (A) but for CR1 15-25KG. (D) As in panel 
(A) but for CR1 15-25EG. (E) As in panel (A) but for CR1 15-17. F As in panel (A) except a 
concentration series of 0 – 60 µM of CR1 1-3 was deployed.  G As in panel (A) but for sCR1.  

 

5.8  Malaria Chip      

The ‘malaria chip’, as detailed in Table 4.1, had 1500 RU of NTS-DBLα-CIDR 

immobilised on  FC 2, while on FCs 3 and 4 were loaded 408 RU and 1479 RU of Rh4.9, 

respectively. (FC1 served as a blank or reference). As was the case with the SPR 

experiments conducted on the “complement chip”, duplicate injections were performed 

and the work was conducted at 25 °C in HBS-EP+ buffer (details in Materials and 

Methods).  

5.8.1  Binding of CR1 constructs to immobilised NTS-DBLα-CIDR 

Figure 5.15 shows the reference (i.e. FC 1)-subtracted binding curves obtained following 

injections of CR1 constructs (at 5 µM) over FC 2 (loaded with  NTS-DBLa-CIDR). Only 

weak responses were recorded in all cases. There were some differences amongst the 

small signals obtained for the presumably weak binding to NTS-DBLa-CIDR of the four 

polymorphic forms of CR1 15-25. Injections of CR1 15-17 or sCR1 produced even 

smaller signals, only a little greater than the responses for the set of negative controls 

CR1 10-11, CR1 20-23 , CR1 21-22 and CR1 24-25C. Injection of CR1 1-3, however, 

yielded a relative large response (although poor duplicates) even though this construct 

had been added as a negative control. 
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Figure 5.15 SPR-derived data for CR1 constructs binding to surface loaded with NTS-DBLα-
CIDR  

 The constructs indicated were injected onto FC 2 of the malaria chip at 10 µM.  
 

 

Although the binding curves suggested low interaction affinities it was decided to 

try to measure these by undertaking concentration-series experiments similar to those 

described above for C3b, C4b and C1q.       

 

5.8.2  Attempted determination of KD values for CR1 constructs for DBL domain 

of PfEMP1 

Given the similarity amongst the CR1 15-25 variants with respect to binding curves on 

the NTS-DBLα-CIDR, only CR1 15-25KG was chosen for KD determination. A 

concentration–series from 1 µM to 50 µM was injected over FC 2 of the “malaria chip”, 

resulting in the sensograms shown in panel (A) of Figure 5.16. Increasing concentrations 

gave increasing responses but did not arrive at saturation, even at 50 µM. Thus a dubious 
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KD value of ~100 µM was calculated for the CR1 15-25KG interaction with NTS-DBLα-

CIDR. The equivalent concentration series was used in the case of CR1 15-17 but again 

there appeared to be a linear correlation between increasing concentration and responses 

with no saturation at 50 µM and therefore an unreliable calculated KD value in the range 

of 140 µM (Fig. 5.16B).  Similarly, a KD of ~100 µM was estimated for CR1 1-3 (Fig. 

5.16D). For sCR1 a series of lower-concentration solutions were injected ranging from 

0.5 to 10 µM (based on the expectation that full-length sCR1 would interact better than 

the fragments); strangely (see Fig. 5.16C), it displayed a fast on-rate and fast off-rate; 

saturation did not occur, although some evidence of levelling out is visible, and the KD 

came out at very roughly ~15 µM.  
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Figure 5.16 Concentration series of CR1 constructs flowed over the NTS-DBLα-CIDR surface 

(A) Overlaid sensorgrams obtained upon injection of CR1 15-25KG concentration series (0 – 50 
µM) onto NTS-DBLα-CIDR that had been immobilised onto FC 2 of the complement chip (inset: 
response-verus-concentration curve to estimate KD). (B) As in panel (A) but for CR1 15-17 (C) 
As in panel (A) except for a concentration series of 0 – 10 µM sCR1. (D) As in panel (A) but for 
CR1 1-3. 
 

5.8.3 “Definitive” studies of CR1 constructs binding Rh4.9 on “malaria chip” 

Figure 5.17 shows data obtained from the same sets of CR1 constructs as deployed in 

Figure 5.15 but in this case responses from FCs 3 and 4, loaded with Rh4.9 (see Table 

5.1), are displayed. 
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Figure 5.17 Rh4.9 interactions with CR1 

(A) sCR1 and CR1 fragments injected (separately) at 5 µM over 408 RUs of immobilised Rh4.9. 
(B) Expansion of a part of panel (A) to highlight the data for the more weakly binding proteins. 
(C)  As in panel (A) but for 1476 RUs loaded onto FC 4. (D)  Expansion of a part of panel (C) to 
highlight the data for the more weakly binding proteins. 
 

The quality of these SPR data was regarded as very high with strong, reproducible 

responses for some proteins and a lack of glitches or other artefacts. As is evident from 

Figures 4.17A and C, sCR1 and CR1 1-3 interact strongly with immobilised Rh4.9, while 

all other constructs bind only weakly (Figs. 5.17B and D). The CR1 15-25 constructs 
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produced slightly larger responses (similar amongst the four variants) than CR1 15-17 

that in turn yielded a larger response than CR1 17-25 and the smaller constructs such as 

CR1 10-11, CR1 20-23 etc. These results pinpoint the unique CR1 functional site 1 (CR1 

1-3) as the binding site for Rh4.9 and they are wholly consistent with the results of the 

invasion-inhibition assays. Importantly, none of the CR1 15-25 variants displayed 

significant affinity for Rh4.9 – thus ruling out invasion as a selective pressure on the 

Knops-blood group antigens. It was decided to proceed with KD measurements based on 

concentration-series experiments. 

 

5.8.4 Determination of KD values for complexes of CR1 constructs with Rh4.9 

From the data displayed in Figure 5.18, collected on FC 3 and 4, the following KD values 

were determined (summarised in Table 5.3; note that very similar results were obtained 

for FC 3 and 4, therefore duplicate KD values were not shown in the Table). For CR1 15-

17 saturation was not achieved at the top end of the 0–50 µM range and a highly dubious 

“theoretical” KD of ~300 µM was estimated based on a near-linear plot of response versus 

ligand concentration;  For CR1 15-25RG (chosen as a representative for all four variants 

that gave similar sensorgrams when injected onto the Rh4.9 surfaces) saturation was 

again not attained at 50 µM although some flattening of the response-versus-

concentration plot was perceptible and a KD in the range of 120 µM was estimated. For 

sCR1 a reliable KD of 3.0 µM was calculated that was somewhat tighter than the value of 

11 µM derived from the sensorgrams for CR1 1-3. These quantitative data back up the 

earlier statement that the primary binding site for Rh4.9 on CR1 lies in CR1 1-3 and that 

there is considerable discrimination in binding to Site 1 compared to the very similar (in 



CHAPTER 5 BIOLOGICAL AND FUNCTIONAL STUDIES 

 227 

sequence) Site 2.  That sCR1 binds more tightly than CR1 1-3, however, does suggest a 

contribution from other CCPs within CR1 – this and other implications of these findings, 

are discussed later. 

 

Figure 5.18 ”Definitive” KD measurements from SPR data for CR1 constructs flowed over 
Rh4.9 

(A) A concentation series (0 – 50 mM) of CR1 15-17 was injected over FC 3 and 4) that had been 
loaded with 408 and 1476 RUs of Rh4.9. Insert – a plot of response versus concentration of CR1 
15-17 used to estimate a KD value for this interaction.  (B) As in panel (A) but for (R,G)CR1 15-
25. (C) As in panel (A) but for a 0-10 mM concentration series of sCR1. (D) As in panel (A) but 
for  
CR1 1-3. 
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COMPLEMENT CHIP  (µM) MALARIA CHIP (µM) CONSTRUCT 
C3B  C4B C1Q NTS-CDBL-CIDR Rh4.9 

CR1 15-25KR 1.5 6.9 8.8   -    - 
CR1 15-25ER 2.4 8.1 9.8   -    - 
CR1 15-25KG 2.1 6.9 8.2 137.9 117.8 
CR1 15-25EG 1.8 8.0 7.6   -    - 
CR1 15-17 2.2 11.5 11.0 104.2 301.6 
CR1 1-3 79.2 21.4 202.9 103.8 2.98 
sCR1 1.3 1.5 6.4 14.15 11.33 

 
Table 5.2 Summary of  kD values 
 
 
 

5.8.5 ELISA experiments on binding of CR1 constructs to complement proteins    

In addition to the SPR experiments described earlier, Enzyme-Linked Immunosorbent 

Assay (ELISA) was employed to further investigate the possible effect of the knob 

polymorphism on the binding sites of the CR1 protein. Detail amount of proteins and 

conditions used for the experiment are described in section 2.4.3 of chapter 2.  Results 

obtaines from this experiment support the observation in the SPR described above, that 

there is no evidence in the influence of polymorphism on their interactions. With C3b 

interaction, sCR1 (with two high affinity C3b binding sites) should bind more avidly to 

C3b than CCPs 15-25 (one C3b binding site) but this can’t be concluded form this 

experiment since the detection system employs a rabbit poly anti-CR1 – thus, more 

potential binding sites on full length sCR1 vs CCPs 15-25. Also, African mutations do 

not influence CCP 15-25 binding to C3b. (Figure 5.19A).C4b also has same conclusion 

as with C3b binding, but despite CR1 having three C4b binding sites, only one is in CCPs 

15-25 and this might be a likely reason for overall lower binding. (Figure 5.19B). C1q 

binds to CR1 and also binds to CCPs 15-25 but with a lower avidity compared to full 
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length CR1. African mutations in repeat CCP24 do not appear to influence C1q binding. 

These outcomes suggest that there is more than one binding site on CR1 for C1q. (Figure 

5.19C). In MBL, binding to CR1 is weak; also, African mutations do not influence MBL 

binding. (Figure 5.19D). The implications of these together with the SPR data are 

discussed in section 6.3.4 and 6.3.5 of chapter six. 

 

 

Figure 5.19 Binding of CR1 polymorhpic forms to complement proteins by ELISA.    

 
(A) sCR1 and CR1 15-25 variants binding to C3b. (B) Same as in panel (A) but plate coated with 
C4b (C) Assessing C1q interaction on CR1 coated surface (D) Behaviour of the variants on MBL 
coated surface. (In B, C, D,and E) Labels below indicated in respective colour coded bars.  
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6.1 Discussions 

This chapter will discuss the results presented in Chapters 2, 3 and 4 with respect to the 

limitations of the techniques used and the implications of the data obtained.  The overall 

strategy of the current work is summarised in the flowchart below.   

The overarching aim of this project was to test the hypothesis that the McC(a/b) 

and Sl(1/2) Knops blood-group polymorphisms in LHR-D of CR1 modulate the capacity 

of the protein to act as one or more of the following: a complement regulator; the immune 

adherence receptor; a mediator of rosetting of P. falciparum-infected erythrocytes; or a 

ligand for invasion of erythrocytes by P. falciparum merozoites.  

Towards this end, CR1 constructs were overexpressed and recombinant versions 

of CR1 “fragments” (corresponding to individual CCP modules or series of modules from 

its exodomain) were produced in milligram yields. The resultant proteins were purified, 

structurally characterised and then tested in biological settings and in biochemical assays. 

Each aspect of the work will be discussed in turn below. 

 

Flow chart 6.1 Overview of the current study 
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6.2 Protein Production and Purification 

First the DNA manipulation steps and the cloning work will be reviewed and then the 

production and purification of the recombinant proteins will be considered with an 

emphasis on yields. 

 

6.2.1  DNA manipulation and cloning  

The eukaryotic organism P. pastoris was the expression host of choice in this work. No 

attempt was made to use E. coli in the current project due to the presence of multiple 

disulfide bonds within the target proteins. Mammalian and insect cells might also have 

been explored in this respect but they often produce rather low yields and are expensive 

to culture.  Cloning in this study typically involved insertion of the desired PCR-

amplified DNA sequence (from human cDNA) into the plasmid expression vector (pPicZ 

αB), via a route that involved Invitrogen’s TOPO cloning technology followed by double 

digestion with restriction endonculeases. After amplification in E. coli cells, the 

recombinant plasmid was linearised and used to transform P. pastoris cells (KM71 H 

strain).  This work followed a route well established in the Barlow group but involved 

overcoming some challenges posed by the requirement for relatively long stretches of 

DNA to be amplified and inserted into plasmids. 

The cloning of DNA encoding varying numbers of CCP modules (from one to 

eleven) was successfully accomplished in this study, entailing manipulation of DNA 

segments containing between ~150 and ~3000 base pairs. Increasing degrees of difficulty 
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were encountered in amplification, ligation and transformation steps, as the size of the 

construct increased. For instance, amplification of the DNA (initial PCR) for CR1 15-25 

yielded low and inconsistent quantities of nucleic acid (2133 bp); only one of three 

attempts resulted in detactable bands on an agarose gel (see Fig. 3.10A).  Amplification 

of the DNA encoding CR1 17-25 was also problematic partly because of sequence 

similarities among the LHRs, and the target DNA band was less intense compared to the 

shorter, unwanted, one (see Fig. 3.8A).  

To increase the chances of successful transformation, and in the hope of increased 

copy numbers in the P. pastoris clones (especially in the case of the longer construct), the 

amounts of DNA used were increased by between two- and three-fold. The positive effect 

of this strategy could be seen in the eventual production of useful quantities of all four 

polymorphic forms of the 15-25 fragment (see Figs. 3.11 to 3.14).  

 

6.2.2 Production of CCP module-containing protein fragments  

The variously sized fragments of the CR1 exodomain seemed to be produced at different 

levels in P. pastoris. In general, the smaller constructs (e.g. CR1 21 and CR1 10-11) were 

obtained in greater yields than the longer ones (e.g. CR1 17-25 and CR1 15-25). To 

compensate for this, the longer DNA constructs were expressed in larger-scale cell 

cultures, even during the initial expression trials. The reasons for the observed lower 

yields were not fully investigated. For example it was not established whether the 

problem lay at the level of transcription, translation, post-translational modifications, 

secretion or susceptibility to proteolysis.  
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The longer the mRNA transcript, the higher the chances of stem-loop formation 

and the consequent potential for early termination of translation on the ribosome. 

Likewise the presence of rare codons is more likely in longer constructs (given that codon 

usage in yeast differs from that in man), thus translation is slower due to shortages of 

cognate tRNA. In general, sequence-specific translation and transcrition problems should 

be minimized by recourse to codon optimization and thus the case for procuring a 

synthetic gene is enhanced for these longer fragments.  This strategy was subsequently 

adopted in the case of the recombinant P. falciparum protein targets (see below).  

At the protein level, it has been noticed previously (in the Barlow group, 

unpublished) that the presence within various recombinant fragments of specific CCP 

modules (e.g. modules 4 and 14 of factor H) appear (for unknown reasons) to correlate 

with poor production yields, so it is possible that some of the longer CR1 constructs also 

harbour “problem” CCP modules. It may also be that some CCP modules in CR1 require 

neighbours for stability and that when they are exposed at the N or C terminus of a 

recombinant protein fragment they are unstable and prone to proteolysis. It is also 

possible that the number of disulfides (two in each module) could pose a problem for the 

post-translational modification machinery of the yeast cell. Presumably, the more 

disulfides the more chances for incorrect disulfide formation leading to rejection by 

chaperones in the endoplasmic reticulum.  

Another (potentially related) possibility is that the recombinant proteins are being 

secreted but are being proteolysed during culture, during the harvesting of the secreted 

protein from the cell culture supernatent, or during the enzymatic deglycosylation 

incubation step that is required in most cases. Barlow-group members have observed this 
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phenomenon on several occasions in the case of P. pastoris-expressed proteins. The 

addition of peptides such as found in tryptone or peptone to the growth medium might 

help to avoid proteolysis during cell culture. It might also be beneficial to engineer out all 

N-glycosylation sites and thus avoid the necessity for the deglycosylation step. 

  

6.2.3 Production of DBLα and DBLα-CIDR-DBLγ 

In this study, the challenges discussed in sections 6.2.1 and 6.2.2 became even more 

apparent when attemting to produce PfEMP1 fragments, i.e. the DBLα and DBLα-CIDR-

DBLγ constructs (see Fig. 5.5A, B and C). Anticipating that the length of the DNA would 

make cloning and expression more problematic, and given the known “high-AT content” 

issues related to the heterologous expression of P. falciparum genes, genes for both 

DBLα (1,137 bp) and DBLα-CIDR-DBLγ (3,183 bp) were designed and synthesised by 

GeneArt to optimise codon usage (and ordered in a form already ligated into the pPicZ 

αB vector). Not only were rare (in yeast) codons replaced but the proprietary 

optimization algorithm also minimized sequences likely to form mRNA secondary 

structure, repeating codons that might introduce frameshift errors and cryptic translation-

start sites etc. Furthermore the opportunity was also taken in the design process to 

engineer out the N-glycosylation sites by replacing N with Q in instances of the sequence 

NXS/T. During DBLα production trials, peptone was sometimes added in an attempt to 

reduce proteolytic activities. Despite all of these measures, the protein yield was such that 

it could only be detected by Western blotting (see Fig. 3.17D). 
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6.2.4 Summing up 

To sum up, recombinant protein production in yeast of the CR1 fragments (ranging from 

the single module CCP21 (Fig. 3.2) to as long as 11-modules (Fig. 3.10) yielded 

milligram quantities of pure material. On the other hand, attempt to produce the P. 

falciparum proteins yielded disappointing and inconclusive results (Fig. 3.17). One 

difference not noted so far is that domain boundaries were very obvious in the case of 

most CCP modules (excluding the aforementioned cases where one module may require a 

neighbour for stability). On the other hand, the domain boundaries of DBLα domains are 

more difficult to establish and more appropriate choices, or more extensive trials of 

different boundaries might have led to better production yields.  Of course, not all 

possibilities for improving the yield were exhausted in the case of the DBLα–containing 

fragments due to time limitations. For example, it would be worth testing a wide range of 

culture conditions for optimal expression and seeking further ways of reducing 

proteolytic degradation. It would also be worthwhile exploring ways of purifying and 

characterising the potentially useful trace amounts of protein actually produced. 
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6.3 Biophysical Discussion 

The structural work discussed here includes NMR, AUC and DLS as summarised below. 

 

 
 
 
 
 
 
 
 
 
 
 
Flow chart 6.2 Biophysical studies 
 

6.3.1 NMR 

NMR chemical shifts are highly sensitive to context and this phenomenon was exploited 

in a simplified approach to structural investigations that did not demand the major work 

that would have been required in a full structure determination. The very few changes in 

chemical shifts for the amides of CR1 21 upon attachment of CCP 22 (to form CR1 21-

22) provided strong evidence that these modules do not share extensive side-by-side 

interactions despite the atypically long linking sequence between them that would allow 

or even promote such an arrangement. This is not to say that these modules do not adopt 

a “bent” end-to-end arrangement (i.e. one with a sizable angle of tilt between the 

modules) as was observed for CCPs 12-13 of factor H that are also joined by an eight-

residue linker (Schmidt et al., 2010). 15N Relaxation experiment (coupled with the almost 

complete backbone assignment already carried out) will help to clarify whether the 21-22 

pair forms a rigid or a flexible structure.  

BIOPHYSICAL STUDIES 
 

NMR 
(chemical shift perturbations 

used to explore extensiveness of 
intermodular contacts) 

 

AUC, DLS & SAXS  
(comparing overall shapes, 
oligomerisation states and 

dimensions of CR1 fragments) 
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Based on similar arguments, relatively few changes in chemical shifts of modules 

21 and 22 (in CR1 21-22) accompany attachment of modules 20 and 23 to create the 

four-module construct CR1 20-23 and, very importantly, none of these perturbed 

resonances were assigned to residues in the eight-residue linker between CCPs 21 and 22. 

Thus whatever end-to-end arrangement of modules existed in CR1 21-22 must be 

retained in the CR1 20-23 context. It was noticed, however, that most of the changes that 

did occur were in CCP 22 (Appendix D and Fig. 4.11) indicating a more intimate 22-23 

interface (these modules joined by a typical four-residue linker) compared to the 20-21 

interface.  

 

6.3.2 AUC, DLS and SAXS 

The conclusions that were drawn from the NMR data were confirmed from the AUC 

experiments and SAXS-derived data for CR1 20-23. The SAXS scattering curve for CR1 

20-23 fitted very well to a model (Fig. 4.16) of the structure that is extended, with no 

evidence for a 180-degree bend in the middle. In fact the model reveals that none of the 

modules is very tilted compared to its neighbours and that there is no overall curvature 

within this region of CR1 that spans the LHR-C:LHR-D boundary. The DLS results 

obtained for CR1 15-25 were, overall, consistent with a non-aggregated protein that is 

neither fully extended nor globular in the case of each of the four variants despite some 

variation in “contamination” of preparations by aggregates. The AUC data for these four 

constructs also indicated that they were all nearly identical in apparent molecular weight, 

association state (monomeric) and overall shape and dimensions. In future work, SAXS 

studies of CR1 15-25 and CR1 17-25 would be valuable if the data were analysed taking 
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into account the available high-resolution structure for CR1 15-17, the aforementioned 

model of CR1 20-23 and the AUC results already obtained for CR1 15-25. This exercise 

could yield a reliable model for the CR1 15-25 structure and could also shed light on the 

important issue of inter-module flexibility within this fragment. 

 

6.3.3 Summing up   

This work has effectively falsified our hypotheses concerning the architectural role of the 

unique linker between CCP modules 21 and 22. A limitation of the study, however, is 

that it was not possible or feasible to work with longer constructs that would have been 

more representative of the full-length exodomain. Clearly (based on the earlier 

discussion) these would have been too difficult to produce in a recombinant form.  

Moreover they would have become increasingly difficult to meaningfully characterise 

using currently available biophysical techniques. This is why even though soluble full-

length CR1 was available it was not investigated from a structural perspective in this 

study. Indeed sCR1 has already been studied by SAXS (Furtado et al., 2008) and by 

negative-staining transmission electron microscopy (Weisman et al., 1990) among others 

(Kirkitadze et al., 1999, Kirkitadze et al., 1999) but these studies did not shed light on the 

module-specific issues addressed in this project. 
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6.4 Biological work 

 

To restate the starting hypothesis, polymorphisms in CR1 appear to be under selective 

pressures in different geographical regions suggesting that they have major although 

unknown phenotypic consequences.  The aim of the current study was to explore the 

functional repercussions of some key Knops blood-group antigens by studying in a range 

of assays the recombinant fragments of CR1 produced as discussed above.  Constructs 

had been designed based on the site of polymorphic variation (CCPs 24-25) being 

separated by a potentially hinge-like region (putatively CCPs 20-23) from one of the 

three key functional/ligand-binding sites (CCPs 15-17) of CR1.  Thus with availability of 

CR1 15-25 it became possible to investigate whether any of the activities of functional 

site 2 were modulated by the presence of the different variants. A range of techniques 

were utilised to measure interactions with both host and P. falciparum proteins; these 

have been summarized in the flowchart below, and will be discussed in the following 

sections. Note that the finding that CCPs 1-3 (and not 15-17) are exploited for invasion of 

erythrocytes by merozoites was made after the design of the CR1 constructs used in this 

study.  
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Flow chart 6.3 Biological studies 
 

6.3.1 Factor I-cofactor activity versus C3b 

The sequential proteolytic cleavages at two positions within the CUB domain of the C3b 

α-chain to produce iC3b (and the tiny C3f fragment) by factor I is strictly dependent on 

the presence of protein cofactors that belong to the regulators of complement activation 

family. As detailed in the Introduction, two homologous membrane-bound proteins – 

CR1 and membrane cofactor protein (MCP, CD46) (along with the soluble protein factor 

H) - each carry out this role via their respective C3b-binding sites consisting of three or 

four contiguous CCP modules. The cofactor activity of CR1 is almost certainly one of its 

main biological tasks since the initial cleavage product, iC3b, is no longer capable of 

binding to factor B (to form a C3b convertase) hence CR1 protects erythrocytes from 

uncontrolled deposition of C3b and subsequent complement-mediated hemolysis. The 

first product, iC3b is an important opsonin, like C3b, but is also a ligand for complement 

receptors 2 and 3; in the presence of CR1 (but not of MCP or factor H) factor I carries out 
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a further, third, cleavage of the α-chain creating C3c (of no known function) and C3dg 

that is non-specifically cleaved by other proteases to produce C3d, which remains 

tethered to membranes or surfaces. C3d is a major ligand for CR2 on B-cell surfaces 

where it sensitizes cells for antibody production by ~10,000-fold. 

It was reasoned that if the cofactor activity of CR1 were modulated by the Knops 

blood-group variations in LHR-D then this could have major implications for the 

individuals carrying such variants, hence providing the much sought link between 

genotype and phenotype for this blood group. Therefore measurment of cofactor activity 

represented a good starting point in terms of attempting to explain why specific CR1 

variants are disproportionately represented in certain populations.  

A simple fluid-phase assay was carried out in which each of the four variants of 

CR1 15-25 were added individually to a mixture of factor I and C3b. After an interval of 

time, C3b and its proteolytic fragments were resolved by SDS-PAGE and visualized 

using Coomassie staining. Like the sCR1 and factor H positive controls, all four CR1 15-

25 polymorphic variants were shown to have cofactor activity towards C3b. The assay 

also confirmed previous work showing that CCPs 15-17 appear necessary and sufficient 

for this activity while CCPs 21-22 (negative control) had no more cofactor activity than 

the buffer. It also became clear that the CR1 constructs that include modules 15-17 are 

cofactors both for cleavage of C3b to iC3b and (unlike factor H) further cleavage to C3c 

and C3dg; this is, again, in line with expectations. Thus together these experiments 

confirm the utility of these four (CR1 15-25) constructs for monitoring any modulating 

influences on functional site 2 of the variations in CCPs 24-25.  
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On the other hand, the assays were not carried out in a way that would have 

revealed subtle functional disruption since no proper time course or dose-dependency of 

activity was recorded. Ideally, the amount of protein required to achieve 50% cleavage of 

C3b over a fixed time interval would have been compared between variants; alternatively 

using limiting amounts of protein, the times required to reach 50% C3b cleavage could 

have been compared. 

The proteins produced for this study were also sent to the laboratory of our 

collaborator, John Atkinson (Washington University Medical School, St. Louis) who also 

carried out cofactor assays on the four variants. These investigators employed a more 

sensitive methods based on detection of biotinylated proteins and they looked at both C3b 

and C4b cleavage. In these assays, only partial C3b/C4b cleavage occured i.e. the 

reaction had not neared its end-point when terminated. Thus it is possible to compare the 

extent of the four reactions mediated by the four variants. Although it would have been 

possible (and preferable) to carry out a densitometric analysis to quantify the strengths of 

the bands, visual inspection is sufficient to conclude that all four lanes (i.e. each of which 

contains a variant) look very similar, both in the case of C3b and of C4b (see Figs 5.5E 

and F).  

In summary, while more rigorous assays should be carried out to reveal any subtle 

effects, there are no major differences between the McC(a/b) and Sl(1/2) Knops blood-

group variants of CR1 in terms of the ability of the second copy of functional site 2 to act 

as a cofactor for factor I.  It seems highly unlikely that the other copy of site 2 (in CCPs 

8-10) would be influenced by variations in CCPs 24-25, while functional site 1 (modules 

1-3) is probably not a major contributor to cofactor activity anyway.  Hence we can 
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conclude there will be little differences in protection of erythrocytes from C3b/C4b 

amplification, via the cofactor route, between individuals in different Knops blood 

groups.  Note that this finding is entirely consistent with the structural studies that did not 

provide any evidence for physical proximity between LHR-C and LHR-D. 

It should also be mentioned that CR1 has decay accelerating activity as well as 

cofactor activity.  Thus CR1 accelerates the irreversible decay of the C3 convertases, 

C3bBb and C4b2a, and also catalyses disassembly of the trimolecular C5 convertases. 

Decay-accelerating activity directed at the C3 convertases mainly resides in functional 

site 1 so it did not seem worthwhile to measure this in CR1 15-25.  It sems unlikely that 

the sequence variations in CCPs 24-25 will have any influence on activities resident in 

CCPs 1-3. The C5 convertase decay acceleration also requires functional site 2 (Goldberg 

et al., 1991,1998) but due to time limitations (and the lack of suitable constructs), this 

activity of CR1 was not investigated. 

 

6.3.2 Rosette disruption assays 

The formation of rosettes involving infected and non-infected red blood cells has been 

correlated, in some populations, with severe malarial anaemia and cerebral malaria, 

regarded as the most severe and life-threatening forms of the disease (Doumbo et al., 

2009). It has also been observed that red cells of the knobs Sl2 phenotype form fewer 

rosettes (Rowe et al., 1997). It was previously shown that both sCR1 and CR1 15-17 can 

disrupt preformed rosettes, presumably via a competition mechanism given that 

functional site 2 of CR1 reportedly represents a key binding site for PfEMP1 (Rowe et 

al., 1997, 2000 ). Rosette-disruption assays therefore represent a potentially insightful 
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way in which to investigate whether the four variants of CR1 15-25 differ in their affinity 

for PfEMP1.  

It was established in the current work that all four variants of this recombinant 

protein disrupted rosettes, which is consistent with the presence in these fragments of 

correctly folded modules 15-17 (and hence also with the positive cofactor assays, see Fig. 

5.1). There were, however, no significant differences in their respective rosette-disrupting 

activities. In the current experiments, the concentrations of CR1 fragments used were 20 

µM (incubated over a time period of 30 mins). A limitation of this assay, which is quite 

complicated to carry out, is that no full investigation of dose-dependency was possible 

and so we cannot be sure that the extent of observed rosette disruption is a linear function 

of the amount of active CR1 present. Furthermore the errors are inevitably rather large 

and so small differences could not have been detected. On the other hand, these 

functional results are totally consistent with the structural ones (above) that did not 

support the case for physical proximity between CCPs 24-25 and CCPs 15-17 of CR1. 

Any effects on rosette formation, in the plasma of individuals, of the Sl and McC 

polymorphic variations of CR1 may be indirect ones. It is for example possible, since 

CR1 molecules on cell surfaces form clusters and such clusters could influence rosette 

formation, that it is the ability of CR1 to cluster that is influenced by the Knops blood-

group polymorphisms. Note however that our biophysical studies did not detect 

differences in self-association between the variants. It should also be borne in mind that 

in a population-based study subjects might have been exposed to the malaria parasite 

previously and might have adapted to infection by changing their rosetting behaviour in 

some unknown way. 
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6.3.3 Invasion Experiments 

During the current project it emerged that CR1 is the major sialic acid-independent 

receptor for invasion of erythrocytes by merozoites (Tham et al., 2010). This 

immediately raised the intriguing and exciting possibility that different Knops blood 

group variants of CR1 might interact differentially with the P. falciparum “invasion” 

protein Rh4.  

The proteins (CR1 15-25 and others) created in the current project were therefore 

sent to our collaborator, Alan Cowman (Melbourne) for testing in invasion-competition 

assays. None of the CR1 15-25 constructs were able to significantly inhibit invasion. 

Although this was a negative finding, it was a very useful piece of evidence (taken along 

with assays on the other Edinburgh-produced fragments tested by the Melbourne group) 

for the finding that the invasion-critical Rh4-binding site lies in CCPs 1-3 (Tham W H et 

al., 2011). In particular it is intriguing that the very similar CCPs 15-17 are not a region 

of interaction during utilization of this invasion route.  

It was not really surprising therefore that all four polymorphic forms of CR1 15-25 

had the same or identical properties in this assay.  In summary, these results imply that 

the Knops blood-group polymorphism do not affect the sialic acid-independent invasion 

pathway.  A limitation of these experiments is that they did not directly test whether the 

variants in CCPs 24-25 could modulate CCPs 1-3 since we did not have the requisite 

constructs, but this does seem unlikely. 
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6.3.4 Interactions between CR1 and C3b/C4b 

Previous work (Krych et al., 1991) had identified Sites 1 (CCPs 1-3) and 2 (CCPs 8-10 

and 15-17) in LHRs A-C as being critical for C3b and C4b binding and hence to the key 

biological role of CR1 as the immune-adherence receptor (as well as its ability to prevent 

C3b amplification on the erythrocyte surface via its cofactor and decay accelerating 

activities). These published reports based on ELISAs had suggested that C3b bound 

primarily to Site 2, while previous unpublished SPR-based work (in Rosie Mallin’s PhD 

thesis, University of Edinburgh) indicated a KD in the range of 2 µM for the interaction 

between CR1 15-17 and immobilised C3b. In the current work all four polymorphic 

forms of the protein construct CCPs 15-25 (i.e. encompassing modules 15-17 

corresponding to the second copy of functional site 2) bound to immobilised C3b (in SPR 

experiments) with similar “sensorgram” profiles and KD values in the narrow range of 

1.4-2.4 µM. These values were similar to that obtained in the current study (on the same 

chip) for CR1 15-17, i.e. ~ 2 µM but somewhat weaker than the ~1 µM KD obtained for 

sCR1 with its multiple interaction sites for C3b. Furthermore, all four variants bound 

with similar affinities to C4b (in the range of 6.9 to 8.1 compared with of 11 µM for 

minimal construct CR1 15-17 and 1.5 µM for sCR1 with its three C4b-binding sites).  

Note that the site 2-containing CR1-fragments bound C3b somewhat more tightly than 

FH fragments containing CCPs 1-4 (KD = 10 µM) or FH CCPs 19-20 (KD  = 4 µM). 

Similar results were obtained using the ELISAs performed in the Atkinson 

laboratory (See figure 5.19 of section 5.8.5). These results were less quantitative than the 

SPR-derived data but nonetheless provide valuable, orthogonal, validation for a lack of 

any measurable differences between the CR1 15-25 variants in terms of their ability to 
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bind C3b or C4b. In particular note that ELISA does not involve the chemical 

modification of C3b/C4b (i.e. amine coupling) that was carried out when performing the 

SPR studies. 

Thus the Knops blood group polymorphisms in LHR-D have no or negligible 

effect on the interactions of the LHR-C copy of functional site 2 with C3b and C4b, as 

the immune adherence receptor (Krych et al., 1992) and its potential cytolytic 

consepuences (Fearon et al., 1989). It seems therefore very unlikely that they will 

influence binding at the LHR-B copy of functional site 2 or indeed site 1 in LHR-A.  

Therefore these results seem to rule out the hypothesis that the immune adherence 

functionality of CR1 is significantly modulated by the McC (a/b) and Sl (1/2) 

polymorphisms. 

 These functional results – showing a lack of effect of variations in CCP 25 on 

interactions of functional site 2, with either parasite or host ligands - are entirely 

consistent with conclusions from the structural work (in Chapter 4 and discussed above) 

that LHR-D is not bent back on to LHR-C via the long (CCP 21-22) linker between these 

LHRs (between). Taken together the structural and functional studies suggest LHRs-C 

and D are structurally and functionally independent units and that LHR A, B and C 

presumptuously bind C3b and C4b in a similar manner to factor H modules 1-3 (Wu et 

al., 2009). 

6.3.5 LHR-D specific interactions (ie with C1q and MBP) 

The putative role of LHR-D in ligand binding is much less well explored than that of 

functional site 1 or site 2. Reports (Klickstein et al,1997, Ghiran et al. 2000, Tas et al., 

1999) have suggested that LHR-D is the main interaction region for binding of CR1 to 



CHAPTER 6 DISCUSSION, CONCLUSION AND 
RECOMMENDATIONS 

 249 

C1q, a multimeric protein that triggers (upon binding multivalently to antibody-antigen 

complexes) the classical pathway of complement activation. The biological function of a 

C1q-CR1 interaction is, however, unclear. In the current study it was established that 

CR1 15-25 – which incorporates part of LHR-D (i.e. modules 22-25 but not modules 26-

28) – exhibits detectable binding (observed via SPR and ELISA) to C1q although this is 

weaker than binding to C3b. As observed in the case of CR1 binding to C3b and C4b, 

however, there was no significant difference in binding to C1q between the four 

polymorphic forms. Of interest is that in our study CR1 15-17 (but not CR1 20-23) bound 

to immobilised C1q (by SPR). Studies based on ELISAs conducted in the Atkinson group 

also showed that the four CR1 15-25 variants bound equally to C1q although not as well 

as sCR1, consistent with the notion that modules 26-28 (in addition to CCPs 22-25) could 

be involved in C1q binding.  

LHR-D was also previously reported to bind to MBL of the lectin-initiated 

complement activation pathway and this was explored by ELISA (although not by SPR 

due to time constraints). Binding of MBL to CR1 appeared to be weak in this study, 

while no variation between the polymorphic versions of CR1 15-25 could be discerned. It 

is however unclear why the binding to CR1 15-25 appeared stronger than binding to 

sCR1.  It may be that the very poor signals obtained from these ELISAs were too low to 

represent significant interactions.  

In conclusion, all four variants bind equally well to C1q immobilised by amine 

coupling on an SPR chip or absorbed onto an ELISA plate, and poorly (if at all) to MBL 

in ELISA. Although our constructs lack a complete copy of LHR-D they would 

nonetheless be expected to highlight differences between the variants if these existed.  
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6.3.6 Possible effect of glycosylation 

As has been speculated, the presence of N-linked glycans could influence the interaction 

of CR1 with its binding partners (Krych-Goldberg et al., 1998). A setback of our protein 

production strategy is that P. pastoris does not incorporate mammalian-type glycans but 

rather “hypermannosylates”, producing a heterogeneous mixture of improperly 

glycsosylated recombinant proteins that require treatment with endoglycosidases prior to 

purification and biophysical characterisation. The resultant proteins are expected to carry 

a GlcNAc residue at each potential N-glycosylation site (for the locations of these sites  

in CCPs 15-25 see Table 3.2) so in no sense can they said to be physiologically 

glycsosylated.  Thus a limitation of the present work is that it effectively ignores any 

effects of glycosylation on structure and function of CR1. 

                Furthermore, the bigger of the two peaks observed (out of Peak A and B) in the 

size-exclusion purification of CR1 15-25 KR (Fig. 3.11) could either be due to 

conformational change or incomplete deglycosylation (this requires testing by mass 

spectrometry). In any case, the protein from peak A (of Fig. 3.11C, later described in the 

SPR experiment as ‘CR1 15-25Cauc glyc’) exhibited different binding pattern on all the 

three surfaces tested (loaded with C3b, C4b or C1q- Figs. 5.9, 5.11 and 5.13). This 

observation is worth further investigation.  

6.3.7 Interactions of CR1 with parasite-encoded protein domains DBLα and Rh4.9 

The observed (by SPR) binding of sCR1, or the other recombinant CR1 constructs, to 

recombinant DBLα-containing constructs (i.e. representing the rosette-mediating protein 
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PfEMP1) was generally very weak and possibly corresponded to non-specific 

interactions. For example the CR1 1-3 sensorgrams were very similar to the CR1 15-17 

sensorgrams.  Moreover, the various polymorphisms in CCPs 24-25 did not seem to have 

any effect on the putative weak binding between CR1 15-25 and DBLα. While none of 

the measured interactions were wholly convincing due to low responses and failure to 

saturate, the interaction with sCR1 was the only one characterised by fast on and off 

rates, and a very low signal considering its higher MWt (see Fig. 4.16C), implying that it 

was if anything weaker than the interactions with the fragments. 

There are a number of possible explanations for our inability to observe 

physiologically meaningful interactions between the recombinant DBLα-containing 

constructs and any of the CR1 constructs. First, one of the recombinant versions of 

DBLα (P)  behaved anomalously during purification and might not have been fully 

folded due, for example, to incorrect choices of domain boundaries during the expression 

work. Second, the binding site in PfEMP1 for CR1 might in fact include regions beyond 

the DBLα−CIDR domain used in the “definitive” SPR measurements, and attempts in 

Edinburgh to construct triple domain DBLα-CIDR-DBLγ unfortunately failed (Figure 

3.17D). Third, interactions between CR1 and PfEMP1 may be inherently very weak but 

in the physiological setting it could be that multiple CR1 molecules interact with multiple 

PfEMP1 molecules thus achieving a strong cell-cell adherence via extensive 

multivalency; note that 20 µM concentrations of CR1 15-17 were sufficient to disrupt 

rosettes – see Fig. 5.3.  In summary, attempts to test directly whether the McC(a,b) and 

Sl(1,2) polymorphisms modulate interaction with PfEMP1 were inconclusive but the lack 

of effects observed in the rosette-disruption assays (discussed above) combined with our 
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inference that LHRs-C and D are structurally and functionally independent units, would 

indicate that this is, in any case, very unlikely.   

In contrast to the studies aimed at establishing dissociation constants for the 

interaction between PfEMP1 and CR1, quantitative studies of the Rh4-CR1 interaction by 

SPR were straightforward.  These studies confirmed that CCPs 1-3 were necessary and 

sufficient for binding to the recombinant Rh4.9 domain.  They further showed that CCPs 

15-25 do not harbour a region that can interact with Rh4.9 and that this is true for all four 

variants thus excluding the possibility that one or other of the Knops blood group SNPs 

might create a new binding site elsewhere than CCPs 1-3.  The CR1 15-25 “negative” 

control was also important in that it helped make the case for non-involvement of other 

CCPs (that were not tested directly) in Rh4.9 binding, based on the very high levels of 

internal sequence similarity within CR1.  

6.3.8 Summing up  

Our CR1 15-25 proteins behaved as expected in that they bind C3b, C4b, and (less 

convincingly) C1q but not Rh4.9 (and by extension P. falciparum Rh4). Moreover they 

disrupt rosettes formed by parasitized erythrocytes and have co-factor activity for 

cleavage (via factor I recruitment) of both C3b and C4b (Roversi et al., 2011) 

In nearly all cases the activities of CR1 15-25 relative to those of CR1 15-17 and 

full-length sCR1 were in line with expectations and with the previous assertions that 

CCPs 15-17 corresponds to a complete copy of C3b/C4b/PfEMP1-binding functional site 

2, while sCR1 contains multiple binding sites for C3b and C4b. These internally 

consistent results that are also in agreement with the literature thus provide a strong basis 

upon which valid comparisons between the variants may be made. None of the studies, 
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however, detected significant differences between the variants of CR1 in any of its 

functional aspects.  

 Thus, taking together all of the findings regarding interactions of CR1 with the P. 

falciparum proteins we can now conclude that: sialic acid-independent invasion is 

mediated by functional site 1 in LHR-A of CR1 and does not involve the highly similar 

site 2; rosetting is mediated by functional sites 2 in LHRs-B and C but does not involve 

functional site 1 (although a direct interaction between PfEMP1 and any region of CR1 

remains unproven); the Knops blood-group antigens that lie in LHR-D, despite their 

supposed link to resistance to severe malaria in certain populations, do not modulate the 

rosette-promoting interaction at site 2 (nor, presumably, the Rh4 interaction with site 1).  

In sum, the above studies serve to: authenticate the biological activity of our 

recombinant products; confirm much previous published work regarding the location of 

functional sites in CR1; agree with structural studies implying that there are minimal 

interactions between CCPs in LHR-C and LHR-D; and very substantially weaken – or 

even falsify - the hypothesis that Knops blood group variants differ in terms of their 

interactions with known host and parasitic ligands. 

 

6.3.9 Some recommendations for future studies and directions 

1) A comparison of deglycosylated and glycosylated proteins would be useful to assess 

the impact of N-glycans on function both within the in vitro assays and the cell-based 

studies. This would require the use of strains of P. pastoris that have been engineered (as 

reviewed by Wildt .S and Gernogross T.U) to incorporate mammalian style N-glycans.  
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2) While the rosette-disruption assays did not reveal any differences between variants, it 

would be very useful to compare in a quantitative manner the affinities between variants 

and relevant domains of PfEMP1. As discussed, these may simply be too weak to measure 

but further efforts to explore other immobilisation conditions/tactics and the use of 

different recombinant constructs of PfEMP1 fragments would be justified.  These could 

also lead to co-crystallisation based structural studies that could help in design of rosette-

disrupting therapeutics.  

3) To test these polymorphic constructs with newly found binding partners of CR1 such 

as bacterial, viral and parastic proteins will possibly help identify the possible effect or 

advantage of this distinctive polymorphism on particular population with which they are 

associated.  

4) Given the high similarity between CCPs 1-3 and CCPs 15-17, a “substitution by 

homology” mutagenesis approach could be used (in which residues from functional ite 2 

are individually replaced with equivalents from functional site 1) in CR1 15-25 constructs 

to obtain gain-of-function mutations and hence find critical residues for Rh4 binding. 
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Appendix A 
 
Material and method 
 
 

 

Map of pUB/Bsd-TOPO® vector:                                        Map of pPICZαB vector  

See  www.invitrogen.com  for full sequences 

 



APPENDICES 

 275 

Appendix B 
 
BUFFERS AND MEDIA 
 

MATERIALS 
 

BMG (Buffered minimal 
glycerol) 
 

This medium contained 100 mM Potassium phosphate pH 6, 
1.34% YNB (yeast nitrogen base with ammonium sulphate 
without amino acids), 4x10-5% biotin, 1% glycerol. 

BMM (Buffered minimal 
methanol) 
 

This media contained 100 mM Potassium phosphate pH 6, 
1.34% YNB (yeast nitrogen base with ammonium sulphate 
without amino acids), 4x10-5 % biotin, 0.5% methanol. 

LB (Luria-Bertani) 
 

Tryptone (10 g), NaCl (10 g) and yeast extract (2 g) were 
dissolved in 1 L dH2O, autoclaved and sealed.  Prior to use LB 
Ampicillin (to a final concentration of 100 µg/ml) was added.  
Preparation of agar plates includes the addition of 15 g agar 
prior to autoclaving. 

LB (Luria-Bertani) Lennox 
 

Tryptone (10 g), NaCl (5 g) and yeast extract (2 g) were 
dissolved in 1 L dH2O, autoclaved and sealed.  Prior to use 
Zeocin™™ (to a final concentration of 25 µg/ml) was added. 
Preparation of agar plates includes the addition of 15 g agar 
prior to autoclaving. 

SDS Sample buffer 
 

The SDS sample buffer contained 50 mM Tris-HCl, 100 mM 
ßME, 2%S DS (w/v) , 0.1% bromophenol blue (w/v), and 10% 
glycerol (v/v) in distilled H2O. 

SOC medium 
 

For this medium,  20 g Tryptone, 5 g Yeast Extract, 2 ml of 5 M 
NaCl, 2.5 ml of 1M KCl, 10 ml of 1M MgCl2, 10 ml of 1M 
MgSO4 and 20ml of 1M glucose were mixed. The mixture was 
adjusted to to 1 L with distilled H2O (dH2O) and sterilize by 
autoclaving. 

TAE Agarose 
 

This consisted of agarose 1 % (w/v) in 1 x TAE buffer; 50X 
TAE buffer contained Tris-acetate (2 M) and 100 mM EDTA in 
distilled H2O. 

1X Tris-Glycine-SDS Buffer 
(TGS) 
 

The TGS buffer contained (in distilled H2O)  0.025M Tris Base, 
0.192 M Glycine, 0.1% SDS (w/v), pH 8.3. 

YPD (Yeast Extract Peptone 
Dextrose Medium) 
 

Tryptone (20 g) and yeast extract (10 g) were dissolved in 900 
ml dH2O, autoclaved and sealed.  The solution was cooled to 
approximately 50 °C before addition of sterile filtered glucose 
solution (20g in 100 ml dH2O). Prior to use Zeocin™™ (to a 
final concentration of 100 µg/ml) was added. 
Preparation of agar plates includes the addition of 15 g agar 
prior to autoclaving. 

YPDS (Yeast Extract 
Peptone Dextrose Medium 
with Sorbitol)  
 

Just as YPD (Yeast Extract Peptone Dextrose Medium) but 
182 g sorbitol is added. Preparation of agar plates includes the 
addition of 15 g agar prior to autoclaving. 
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Appendix C 
 

 
 

 

 

 

 

 

 

 Chromatography and   SDS-PAGE gel of CR1 17 
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Appendix D 
 
D1 
 

# Residue 
Peak 

Number # Residue 
Peak 

Number # Residue 
Peak 

Number  
1314 Glu - E   1363 Phe - F 30 1412 Ile – I 5 
1315  Ala - A   1364 Asn - N 115 1413  Pro - P -  
1316  Glu - E   1365  Leu - L 78 1414 Ile – I 113 
1317  Ala - A   1366 Ile - I 13 1415 Asn - N 112 
1318 Ala - A 18 1367  Gly- G 118 1416 Asp - D 27 
1319  Gly- G 9 1368 Glu - E 22 1417 Phe - F 64 
1320 Glu - E 94 1369  Ser - S 109 1418 Glu - E 26 
1321 His - H 42 1370  Thr - T 44 1419 Phe - F 20 
1322 Ile – I 20 1371 Ile - I 66 1420  Pro - P -  
1323 Phe - F   1372  Arg - R 48 1421  Val - V 83 
1324 Cys - C   1373 Cys - C 99 1422  Gly- G 49 
1325  Pro - P -  1374 Thr - T 19 1423 Thr - T 14 
1326 Asn - N 65 1375  Ser - S 54 1424 Ser - S 34 
1327 Pro - P -  1376 Asp - D 75 1425 Leu - L 69 
1328 Pro - P -  1377  Pro - P -  1426 Asn - N 38 
1329 Ala - A 73 1378  His - H 24 1427  Tyr - Y   
1330  Ile - I 45 1379 Gly- G 60 1428 Glu - E 26 
1331  Leu - L 58 1380 Asn - N 36 1429  Cys – C 59 
1332 Asn - N 31 1381  Gly- G 81 1430  Arg – R  79 
1333  Gly - G 37 1382 Val -  V 70 1431 Pro – P -  
1334  Arg - R 72 1383 Trp - W 86 1432 Gly – G 32 
1335  His - H 53 1384 Ser - S 35 1433  Tyr – Y   
1336  Thr - T 116 1385 Ser - S 98 1434 Phe – F   
1337  Gly- G 5 1386 Pro - P -  1435  Gly- G 59 
1338  Thr - T 82 1387 Ala - A 11 1436 Lys – K 16 
1339  Pro - P -  1388 Pro - P -  1437 Met – M 87 
1340  Ser - S 25 1389  Arg - R 29 1438 Phe – F   
1341  Gly- G 117 1390 Cys - C 43 1439  Ser – S 3 
1342 Asp - D 97 1391  Glu - E 10 1440 Ile – I 67 
1343  Ile - I 93 1392 Leu - L 90 1441  Ser – S 39 
1344  Pro - P -  1393 Ser - S 63 1442  Cys – C 33 
1345  Tyr - Y 28 1394  Val - V 84 1443  Leu – L  89 / 16 

 
1346  Gly- G 105 1395 Arg - R 106 1444 Glu – E 116 
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# Residue 

Peak 
Number # Residue 

Peak 
Number # Residue 

Peak 
Number  

1347  Lys - K 72 1396  Ala - A 62 1445 Asn – N 138 
1348  Glu - E   1397  Gly- G 2 1446 Leu – L 7 
1349  Ile - I 1 1398  His - H 47 1447  Val – V 88 
1350  Ser - S   1399 Cys - C 85 1448 Trp – W 40 
1351  Tyr - Y 22 1400 Lys - K 104 1449 Ser – S 114 
1352  Thr - T   1401 Thr – T 4 1450  Ser – S 101 
1353  Cys - C 77 1402  Pro - P -  1451  Val – V 6 
1354 Asp - D 80 1403  Glu - E   1452  Glu – E 103 
1355  Pro - P -  1404  Gln - Q   1453 Asp – D   
1356  His - H Part of 42 1405  Phe - F   1454 Asn - N   
1357  Pro - P -  1406  Pro - P -  1455  Cys - C   
1358 Asp - D 119 1407  Phe - F   1456  Arg - R  Part of 6 
1359  Arg - R 111 1408  Ala - A 12       
1360  Gly- G 23 1409  Ser - S 57       
1361 Met - M 108 1410  Pro - P -        
1362  Thr - T 76 1411  Thr - T 17       

Blue fonts are the eight amino acid residues in the linker region and Red labels represent the 
peaks that moved. Green fonts labelled are assignments not sure off or having two or three peaks 
on top of each other, hence rendered “Part of”.   

 

D2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Single base pair changes that led to the knop polymorphism located on CR1 24-25   
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Appendix E 
 

Statistical Summery of Rosette Disruption Assay  
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Appendix F 

A 
 
SCSLDHKFHTNINTEYTEGRKPCYERNEKRFSNEGEAKCGSDKIRDYGIKSAGGACAPF
RRQNLCDRNLEYLINKNTNTTHDLLGNVLVTAKYEGDSIVNNHPDKNSSGNKSSICTAL
ARSFADIGDIVRGRDMFKPNDADKVEKGLQVVFGKIYNSLPSPAQKHYAHDDGSGNYYK
LREDWWAINRKEVWKAITCRAPNEANFFRNISGNMKAFTSQGYCGHSETNVPTNLDYVP
QFLRWFDEWAEEFCRIRKIKLENVKKECRDEPNNKYCSGDGHDCKRTYLKDNTIFIDLN
CPRCENACSNYTKWIEIQRKQFDKQKRKYMNEIKIKTNISNNENDKEFYENLDKKGYST
INTFLESLNHGKQCQDNIDKKNKTNFKNNLETFGPSGYCEACP 

B 
       SCS LDHKFHTNIN TEYTEGRKPC YERNEKRFSN EGEAKCGSDK IRDYGIKSAG 
GACAPFRRQN LCDRNLEYLI NKNTQTTHDL LGNVLVTAKY EGDSIVNNHP DKQSSGQKSS 
ICTALARSFA DIGDIVRGRD MFKPNDADKV EKGLQVVFGK IYNSLPSPAQ KHYAHDDGSG 
NYYKLREDWW AINRKEVWKA ITCRAPNEAN FFRQISGNMK AFTSQGYCGH SETNVPTNLD 
YVPQFLRWFD EWAEEFCRIR KIKLENVKKE CRDEPNNKYC SGDGHDCKRT YLKDNTIFID 
LNCPRCENAC SQYTKWIEIQ RKQFDKQKRK YMNEIKIKTQ ISNNENDKEF YENLDKKGYS 
TINTFLESLN HGKQCQDNID KKQKTNFKNN LETFGPSGYC EACPIYGVKC SNEKCTPVTE 
NEWNSNNRLP TDTSTKNLQA TNIDMLVNDG IGNAIDNELE KQCTKYGILK GIKKQKWQCQ 
YLNNIDQCKI NNVMNSGYFD NKIAFNVLFQ RWLRYFVRDH NRLKEKIDVC IKKENINENI 
CIKRCKTNCE CVGKWLEKKE AEWDKINQHY NQKNHIMFIL IPYWITGFYE KITFPNDFFK 
ALEDVDTINV LDTLKECQDT HCKIEKIRSI DVDLIKEIIS WLQNKIEVCK SHHDEDKHEY 
CCDILPKSVD DDEEDDEEVD EEKEESSQTT KRQISQKGGT KSASCVKGAC AIVKGVLQQK 
SQGSIDNCNA KNRKKNEWQC DKNTFVDGNE GVCMPPRRKS ICIHQLTLEE QTKNKYQLRE 
AFIKCAAKET NLLWDKYKND KNEAEELLKK GKIPEDFMRI MFYTFGDFRD FCLENDMGKD 
VDKVKKNINK VFQQSSKRGF KKIDPENWWN ENGPQIWNGM LCALIHADTK DSIKNKDNYK 
YEKVTILAKR DGSNGMTLSE FAKKPKFLRW FVEWYDDYCK ERQKYLTEVA STCKSIDGGQ 
LKCDRGCNNK CDEYKKYMRK KKEEWNLQDK YYKDKRENKG IDKGPIGIIV KDYVLANAKE 
YLKKKFTASC VTSSGKAQNS ATEEVKKNIE LLSEEQYYDA DQYCGCT  LVPRGS HHHHHH 

 
 

C 
 
DBLα-CIDR-DBLγ  DNA sequence from Gene Art  
 
GGTACCTGCAGGATCTTGTTCTTTGGACCACAAGTTCCACACTAACATCAACACTGAGTA 
CACTGAGGGTAGAAAGCCATGTTACGAGAGAAACGAGAAGAGATTCTCCAACGAGGGTGA 
AGCTAAGTGTGGTTCCGACAAGATTAGAGACTACGGTATCAAGTCTGCCGGTGGTGCTTG 
TGCTCCATTCAGAAGACAGAACCTTTGCGACAGAAACTTGGAGTACTTGATCAACAAGAA 
CACTCAGACTACTCACGACTTGTTGGGTAACGTTTTGGTTACTGCTAAGTACGAGGGAGA 
CTCCATTGTTAACAACCACCCAGACAAGCAATCTTCCGGTCAAAAGTCCTCCATCTGTAC 
TGCTTTGGCTAGATCCTTCGCTGACATCGGTGACATTGTTAGAGGTAGAGACATGTTCAA 
GCCAAACGACGCTGACAAGGTTGAAAAGGGATTGCAAGTTGTTTTCGGAAAGATCTACAA 
CTCTTTGCCATCCCCAGCTCAAAAGCATTACGCTCACGATGATGGTTCTGGTAACTACTA 
CAAGTTGAGAGAAGATTGGTGGGCTATCAACAGAAAAGAAGTTTGGAAGGCTATCACTTG 
TAGAGCCCCAAACGAGGCTAATTTCTTCAGACAGATCTCCGGTAACATGAAGGCTTTCAC 
TTCCCAAGGATACTGTGGTCACTCCGAGACTAACGTTCCAACTAACTTGGACTACGTTCC 
ACAGTTCTTGAGATGGTTCGACGAATGGGCTGAAGAGTTCTGTAGAATCAGAAAGATCAA 
GTTGGAGAACGTTAAGAAAGAATGTAGAGATGAGCCAAACAACAAGTACTGTTCCGGTGA 
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TGGTCACGACTGTAAGAGAACTTACTTGAAGGACAACACTATCTTCATCGACTTGAACTG 
TCCAAGATGTGAGAACGCTTGTTCCCAGTACACTAAGTGGATCGAGATCCAGAGAAAGCA 
ATTCGACAAGCAGAAAAGAAAGTACATGAACGAGATCAAGATCAAGACTCAGATCTCCAA 
CAACGAGAACGACAAAGAGTTCTACGAGAACTTGGACAAGAAGGGATACTCCACTATCAA 
CACTTTCTTGGAGTCCTTGAACCACGGAAAGCAATGTCAAGACAACATCGACAAGAAGCA 
AAAGACTAACTTCAAGAACAACTTGGAGACTTTCGGACCATCTGGTTACTGTGAGGCTTG 
TCCAATCTACGGTGTTAAGTGTTCCAACGAGAAGTGTACTCCAGTTACTGAGAACGAGTG 
GAACTCCAACAACAGATTGCCAACTGACACTTCCACTAAGAACTTGCAGGCTACAAACAT 
CGACATGTTGGTTAACGACGGTATCGGTAACGCTATTGACAACGAGTTGGAGAAGCAGTG 
TACTAAGTACGGTATCTTGAAGGGTATCAAGAAACAAAAGTGGCAGTGTCAGTACTTGAA 
CAACATCGACCAGTGTAAGATCAACAACGTTATGAACTCCGGTTACTTCGACAACAAGAT 
CGCTTTCAACGTTTTGTTCCAGAGATGGTTGAGATACTTTGTTAGAGATCACAACAGATT 
GAAAGAGAAGATCGATGTCTGCATCAAGAAAGAGAACATCAACGAGAACATCTGTATCAA 
GAGATGTAAGACTAACTGTGAGTGTGTTGGAAAGTGGCTTGAGAAGAAAGAAGCTGAGTG 
GGACAAGATTAACCAGCACTACAACCAGAAAAACCACATCATGTTCATCTTGATCCCATA 
CTGGATCACTGGTTTCTACGAGAAGATCACTTTCCCAAACGATTTCTTCAAGGCTTTGGA 
GGACGTTGACACTATCAACGTTTTGGACACTTTGAAAGAGTGTCAGGACACTCACTGTAA 
GATCGAGAAGATCAGATCCATCGACGTTGACTTGATCAAAGAGATCATCTCCTGGTTGCA 
GAACAAGATTGAAGTTTGTAAATCCCACCACGATGAGGATAAGCACGAGTACTGTTGTGA 
CATCTTGCCAAAGTCTGTTGATGATGACGAAGAGGACGACGAAGAAGTTGACGAAGAGAA 
AGAAGAGTCCTCCCAGACTACTAAGAGACAGATTTCCCAGAAGGGTGGTACTAAGTCTGC 
TTCCTGTGTTAAGGGAGCTTGTGCTATCGTTAAGGGAGTTTTGCAACAGAAGTCCCAGGG 
TTCCATTGATAACTGTAACGCTAAGAACAGAAAGAAAAACGAGTGGCAGTGTGACAAGAA 
CACTTTCGTTGACGGTAACGAGGGAGTTTGTATGCCACCAAGAAGAAAGTCCATCTGTAT 
CCACCAGTTGACTTTGGAGGAACAGACTAAGAACAAGTACCAGTTGAGAGAGGCTTTCAT 
CAAGTGCGCTGCTAAAGAGACTAACTTGCTTTGGGACAAGTACAAGAACGATAAGAACGA 
GGCTGAGGAATTGTTGAAGAAGGGAAAGATCCCAGAGGACTTCATGAGAATCATGTTCTA 
CACTTTCGGTGACTTCAGAGACTTCTGTTTGGAGAACGACATGGGAAAGGATGTTGACAA 
GGTTAAGAAGAACATCAACAAGGTTTTCCAGCAGTCCTCTAAGAGAGGTTTCAAGAAGAT 
CGACCCAGAAAACTGGTGGAACGAGAACGGTCCACAAATTTGGAACGGAATGTTGTGTGC 
TTTGATCCACGCTGACACTAAGGACTCCATCAAGAACAAGGACAACTACAAGTACGAGAA 
GGTTACAATCTTGGCTAAGAGAGATGGTTCCAACGGAATGACTTTGTCCGAGTTCGCTAA 
GAAGCCAAAGTTTTTGAGATGGTTTGTTGAGTGGTACGACGACTACTGTAAAGAGAGACA 
GAAGTACTTGACTGAAGTTGCTTCCACTTGTAAGTCCATTGACGGTGGTCAATTGAAGTG 
TGACAGAGGTTGTAACAACAAGTGTGACGAGTACAAGAAATACATGAGAAAGAAAAAAGA 
AGAGTGGAACTTGCAGGACAAGTACTACAAGGACAAGAGAGAGAACAAGGGTATTGACAA 
GGGTCCAATCGGTATCATCGTTAAGGACTACGTTTTGGCTAACGCTAAAGAGTACTTGAA 
GAAGAAGTTCACTGCTTCTTGCGTTACTTCCTCCGGAAAGGCTCAAAACTCTGCTACTGA 
AGAGGTTAAGAAAAATATCGAGTTGTTGTCCGAGGAACAATACTACGACGCTGACCAGTA 
CTGTGGTTGTACTTTGGTTCCAAGAGGTTCTCATCATCACCATCACCACTAGTAGTCTAG 
AGCTC 
TCGAG 
 
 
 
Sequences of part of PfEMP1 used for the study (DBLs) 
(A)Template from DBLα(M)- Same sequence without the black highlighted area was the 
sequence used for preparing DBLα(P)(B) DBLα-CIDR-DBLγ sequence with N-
glycosylation sites knocked out plus cleavable His-Tag: (C) DBLα-CIDR-DBLγ  DNA 
sequence from Gene 
 

 
 
 

A 

B 
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Additional Optimization sensogram on C1 chip  
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