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Abstract 

Maintenance of T cell tolerance to self-antigens is crucial to prevent immune 

responses against our own tissue, which can result in autoimmune pathology. 

Experimentally, the outcome of an immune response can depend on the form in 

which the antigen is administered. Systemic administration of soluble antigen results 

in antigen-specific T cell tolerance, while administration of the same antigen in 

conjunction with an adjuvant leads to T cell immunity. Both tolerance and immunity 

involve some degree of T cell activation, a process in which costimulatory receptor-

ligand pairs on T cells and dendritic cells (DC) are of crucial importance. Tolerance 

induction is thought to be the result of peptide presentation by resting DC, which are 

lacking full costimulatory potential. The precise signals that drive a T cell towards 

tolerance, rather than a productive immune response, are not well defined. This 

project has addressed this issue by asking three questions: 

Can exogenous ligation of defined costimulatory receptors convert a tolerogenic 

signal into an immunogenic one? 

How does expression of CD154, 0X40 and RANKL on T cells, and CD40, 

OX40L and RANK on DC differ during induction of T cell tolerance versus T cell 

immunity? 

Do T cells become tolerant on exposure to antigen-loaded DC lacking CD40? 

- It was found that agonistic antibodies to CD40 and 0X40 overcame a tolerogenic 

signal, and prevented the induction of tolerance. CD154, 0X40 and RANKL were 

expressed on T cells under conditions leading to either tolerance or immunity. Up-

regulationlinduction of CD40, OX40L and RANK on DC, however, was only 

observed during the induction of T cell immunity. The administration of antigen-

loaded CD40-deficient DC mimicked tolerance induced by soluble peptide. 

Collectively, the results suggest that the CD40-CD154 interaction provides an 

important checkpoint in the decision between T cell tolerance and immunity. 

Investigating the process of tolerance induction may provide a rational basis for 

therapeutic targeting of costimulatory pairs in adverse immune reactions in humans. 
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1. CHAPTER 1- Introduction 

1.1. T cell activation 

T cells are a subset of lymphocytes defined by their development in the thymus and 

by heterodimeric receptors on their surface. T cells bearing the a, 13 T cell receptor 

(TCR) can broadly be divided into CD4 and CD8 T cells, according to their 

selective expression of these co-receptors (Davis and Bjorkrnan, 1988). This 

introduction concentrates on CD4, so—called T helper (Th) cells. CD4 T cells 

require three signals for effective activation (Kalinski et al., 1999), which are 

illustrated in Fig. 1 .1. 

1.1.1. Signals 1, 2 and 3 lead to effective T cell activation 

The first signal required for T cell activation consists of TCR binding to peptide-

MHC complexes displayed on the surface on antigen presenting cells (APC). The 

expression of CD4 restricts CD4 T cells to recognition of processed peptides bound 

to MHC class II molecules (Guermonprez et al., 2002). Although B cells and 

macrophages also express MHC class II complexes and are able to activate naïve 

CD4 T cells in vitro (Askew et al., 1995; Cassell and Schwartz, 1994), dendritic 

cells (DC) are the only MHC class II expressing cell type in the T cell areas of the 

lymph node (LN) (Steinman et al., 1997). DC are the initiating APC for primary 

immune response in vivo (Banchereau and Steinman, 1998; Steinman, 1991), and 

they are thus referred to as professional APC (Lassila et al., 1988). They efficiently 

take up protein, which is processed to peptides, and these processed peptides are 

loaded onto MHC class II molecules for recognition by the TCR. 

The second signal required for effective T cell activation is delivered through a 

variety of costimulatory molecules found on DC and T cells. Although costimulation 

can simply promote more efficient engagement of TCR molecules to enhance the 

initial activation, it has become clear that it also serves to provide additional signals 

leading to cell division, augmented cell survival or induction of effector functions In 

20 



the last decade, an increasing number of costimulatory receptor-ligand pairs have 

been discovered, revealing the complexity of signalling involved in the regulation of 

T cell expansion, contraction, and inactivation. These can be divided into two main 

groups, the immunoglobulin (Ig) superfamily, including CD28, PD-I and ICOS; and 

the TNF receptor (TNFR) superfamily, including CD40, 0X40 and RANK, both of 

which will be introduced in more detail in section 1.2. These receptor-ligand pairs 

are shown in Fig. 1.2, although it is important to emphasize that this is only a 

summary and not an exhaustive list of the molecules with costimulatory activity. 

Finally, signal 3 plays a role in directing the effector functions of T cells. The 

paradigm is that naïve (ThO) cells differentiate predominantly into effector ThI or 

Th2 cells, which are defined by the cytokines secreted during the immune response 

(Mosmann and Coffman, 1989). The Thl-Th2 divergence is influenced by a variety 

of factors, including the cytokine environment present at the initiation of the immune 

response, the antigen (Ag) dose, and the presence of costimulatory molecules 

(Constant and Bottomly, 1997). The presence of interleukin-12 (IL-12) drives 

development of Thi cells that secrete the pro-inflammatory cytokines interferon-y 

(IFN-y) and tumour necrosis factor cX113 (TNF-(x/3), principally in response to 

intracellular pathogens. Th2 cells secrete IL-4, IL-5 and IL-13 and initiate antibody 

production, generally against extracellular pathogens. All three signals are regulated 

through the information DC receive at the site of Ag exposure, via expression of 

'pattern-recognition receptors', such as Toll-like receptors (TLR). In this way, DC 

exert control over the outcome of the immune response. The change from an Ag-

capturing to an Ag-presenting, T-cell-priming mode, coupled with the expression of 

the necessary costimulatory molecules and cytokines, allows DC to initiate, the 

appropriate adaptive immune response. 
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1.1.2. Experimental Autoimmune Encephalomyelitis as a 
model of T cell-driven autoimmunity 

Experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis, 

is an autoimmune disease that is driven by CD4 T cells specific for components of 

the central nervous system (CNS) myelin sheath. These cells traffic to the CNS 

parenchyma, resulting in focal areas of inflammation and demyelination throughout 

the CNS (Martin and McFarland, 1995). EAE can be induced in mice by active 

immunization with complete Freund's adjuvant (CFA) mixed with CNS auto-Ag, 

notably myelin basic protein (MBP) (Anderton and Wraith, 1998; Zamvil et al., 

1985), proteolipid protein (PLP) (Anderton and Wraith, 1998) and myelin 

oligodendrocyte glycoprotein (MOG) (Mendel et al., 1995), or by the adoptive 

transfer of MBP-reactive T cells (Lafaille et al., 1997; Zamvil et al.). Central to the 

aetiology of most experimental autoimmune models is the activation of CD4 T cells 

of the Thi functional phenotype, and the CD4 T cell lines and clones that transfer 

EAE invariably produce IFN-y and/or, TNF-a/13 on antigenic challenge in vitro 

(Ando et al., 1989; Powell et al., 1990). Immunodominant T cell epitopes within 

myelin auto-Ag have been defined, allowing EAE induction with peptide Ag. The 

35-55 peptide of MOG (pMOG) has been shown to cause EAE in H2b  mice (Mendel 

et al., 1995; Mendel et al., 1996). Since a number of knockout mice are available on 

the H2b  background, including CD40- and CD 154-deficient mice, EAE provides a 

good model to study the importance of these costimulatory molecules in a disease 

setting. 
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1.2. The molecular basis of costimulation 

A large number of costimulatory receptor-ligand pairs have been identified, some of 

which are shown in Fig. 1.2. The molecules shown are expressed at various stages 

during the immune response. Although some redundancy exists, the requirements for 

many of these molecular interactions probably reflects a need for different signals at 

different times and stages during the immune response. In addition to allowing 

development of alternative effector functions or creation of long-lasting immunity, 

this provides a number of checkpoints during T cell activation, which may serve to 

control the final outcome of an immune response. 

1.2.1. Members of the immunoglobulin superfamily 

Although a large number of costimulatory molecules are expressed after TCR 

ligation, some are found constitutively expressed on naïve T cells, and are thus 

considered especially important during the early stages of T cell activation. One such 

molecule is CD28, a member of the Ig superfamily, which is constitutively expressed 

on naïve T cells (Linsley and Ledbetter, 1993). CD28 binds to CD80 or CD86, found 

at low levels on resting DC, and upregulated on activated, mature DC (Banchereau et 

al., 2000). CD28 engagement can enhance T cell proliferation (Jenkins et al., 1991), 

cytokine secretion (Jenkins et al., 1991), and expression of anti-apoptotic molecules 

such as Bcl-xL (Boiseet al., 1995). Experiments using CD28-deficient T cells clearly 

show that CD28 is required for initial T cell prolifeation in vivo (Howland et al., 

2000). CD28-deficient mice show reduced Th2 responses with defective 

immunoglobulin class switching, but normal cytotoxic T cell responses, indicating 

differential requirements in the activation of helper or cytotoxic T cells (Shahinian et 

al., 1993). 

Another receptor for CD80 and CD86 is expressed by both CD4 and CD8 T cells 

after activation, namely cytotoxic T lymphocyte Ag-4 (CTLA-4). CTLA-4 is a close 

homologue of CD28, and an important negative regulator of T cell responses. It 

binds CD80 and CD86 with 20-50-fold higher affinity than CD28, and is thought to 
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deliver a negative signal to the T cell (Oosterwegel etal., 1999), thus downregulating 

T cell responses after initial activation. CTLA-4 deficient mice develop fatal 

lymphOproliferative disease with multiorgan tissue destruction, illustrating the 

critical ro!e of CTLA-4 in moderating T cell activation and maintaining peripheral 

self-tolerance (Tivol et al., 1995). 

Other costimulatory molecules with negative effects on T ccll activation have 

recent!y been described, including Programmed Death-I (PD-I), which binds to 

Programmed Death Ligand 1 and 2 (PD-Li and PD-L2), also members of the Ig 

superfamily. PD-I is expressed on activated T and B cells, as well as myeloid cells 

(Agata et al., 1996). PD-Li is constitutively expressed on naïve T cells, B cells, 

macrophages and DC, is upregulated on T cells, macrophages and DC after 

activation (Liang et al., 2003), and has also been found in non-lymphoid organs such 

as heart, placenta, lung and pancreas (Liang et al., 2003). In contrast, PD-L2 was 

only inducible on macrophages and DC after cytokine stimulation (Yamazaki et al., 

2002). Ligation of PD-I by both PD-LI and PD-L2 inhibits T cell activation 

(Khoury and Sayegh, 2004). Blocking PD-i worsens EAE induced by immunisation 

with pMOG in CFA (Salama et al., 2003), and PD-i-deficient mice develop multiple 

autoimmune diseases (Nishimura et al., 1999; Nishimura et al., 2001), suggesting a 

possible role for PD-i in controlling the activation of autoreactive T cells. 

ICOS, a third member of the Ig superfamily family, is expressed on activated but not 

naïve T cell (Hutloff et al., 1999). ICOS binds to 137h, which is constitutively 

expressed on B cells, some macrophages and DC (Sharpe and Freeman, 2002.;. 

Yoshinaga et al., 1999). Experiments with ICOS-deficient T cells indicate that the 

ICOS-B7h interaction plays a role in T cell activation and proliferation in vitro. In 

vivo, it is essential for germinal centre formation (Dong and Nurieva, 2003), and a 

lack of ICOS has an effect on Th2, but not Thi development (Dong and Nurieva, 

2003). ICOS thus appears to be less crucial for in vivo T cell activation, but more 

important for fine-tuning effector T cell differentiation and function. 
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1.2.2. TNF/TNFR family members 

The TNFR-TNF superfamily consists of an increasing number of molecules, many of 

which have been reported to play a role at various stages in the activation of T cells. 

The TNFR family members are type I transmembrane proteins, and are believed to 

exist either as monomers or as self-assembled oligomers, forming trimeric signalling 

complexes when interacting with their ligand. The ligands are members of the TNF 

family, which are type II transmembrane proteins, and thought to be expressed as 

trimers on the cell surface. Although some redundancy exists between members of 

these families, knockout studies show specific functions for most of the molecules, 

which cannot be compensated for by other members of the family. Most accounts of 

TNR and TNFR-family members take the simplistic view that one molecule is 

expressed by T cells, while its molecular partner is expressed by APC. Interestingly, 

in some cases, both receptor and ligand can be expressed by T cells (Croft, 2003). 

Although it is not known whether this occurs generally in vivo, it might indicate a 

potential role for TNFR-TNF-family interactions in communication between T cells, 

amplifying signals that were initiated by APC. However, this project concentrates on 

DC-T cell interactions, and expression of these molecules will be discussed with 

respect to receptor-ligand expression on these two cell types. The three receptor-

ligand pairs of particular relevance to this project are described in further detail 

below. 

The CD40-CD154 interaction 

The CD40-CD 154 interaction has been known to be crucial in the initiation of T cell 

immunity for some time (Grewal and Flavell, 1998). The gene encoding CD154 is 

found on the X chromosome in both humans and mice. Mutations in the CD154 gene 

result in the X-linked hyper-IgM syndrome in humans (Notarangelo and Peitsch, 

1996; Villa et al., 1994). CD40-deficient mice have significant defects in thymus-

dependent T cell responses, failing to form germinal centres and showing defects in 

immunoglobulin class switching (Castigli et al., 1994; Kawabe et al., 1994), while 

CD154-deficient mice similarly fail to form germinal centres and show decreased 

antibody responses (Grewal et al., 1995; Xu et al., 1994). Early reports suggested 
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that CD154' T cells fail to prime in vivo (Grewal et al., 1996), but more recently, it 

was shown that CD 154' T cells become activated, but are unable to sustain a 

response in vivo, and are defective in ThI development in vitro (Howland et at., 

2000). Mice deficient for CD40 or CD154 fail to develop EAE (Grewal et at., 1996; 

Grewal et al., 1995), and mice lacking expression of CD40 in the CNS similarly do 

not develop symptoms of EAE (Becher et al., 2001). Blocking the CD40-CD154 

interaction prevents the induction of EAE (Gerritse et al., 1996; Laman et al., 2002; 

Samoilova et al., 1997), while agonistic anti-CD40 monoclonal antibody (mAb) 

potentiates EAE (Ichikawa et al., 2002), further illustrating the importance of the 

CD40-CD 154 interaction in T cell priming. 

CD40 is found at low levels on resting APC, and is upregulated after APC activation 

(Celia et al., 1997; Inaba et at., 1994; Vremec and Shortman, 1997), whereas CD154 

is transiently induced on naïve T cells after TCR stimulation (Roy et al., 1993). 

Splenic CD4 T cells show CD 154 expression 4 hrs after in vitro anti-CD3 

stimulation, which peaks between 6 and 8 hrs, and returns to resting levels between 

24 and 48 hrs (Roy et al., 1993). The CD40-CD154 interaction primarily signals to 

the APC, resulting in sustained activation of nuclear factor-icB (NF-icB) transcription 

factors (O'Sullivan and Thomas, 2002), which regulate DC differentiation and 

cytokine production. In culture, CD40 signalling results in increased expression of 

CD80 and CD86 (Caux et at., 1994), enhanced Ag presentation (Delamarre et at., 

2003; Machy et at., 2002) and IL-12 production (Celia et al., 1996; Koch et at., 

1996). CD40 signalling also enhances DC survival through upregutation of the 

survival molecule Bcl-2 (Bjorck et at., 1997). Although some evidence for CD154 

signalling into the T cell also exists (van Essen et al., 1995), the significance of this 

remains to be investigated. CD40 ligation on DC is a crucial trigger for IL-12 release 

and priming of a Thi type response (Cella et al., 1996; Koch et at., 1996), and the 

CD40-CD154 interaction synergises with IL-12 in selectively enhancing IFN-y 

production by T cells (Peng et at., 1996). In the absence of IL-12 release, a default 

Th2 type response is observed (Stuber et al., 1996). 
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While CD28 is required for the initiation of the T cell response, CD 154 is required 

for sustaining Thi responses (Howland et al., 2000). A soluble isoform of CD154 

has been found in T cell supernatants after, activation (Graf et al., 1995). Soluble 

CD 154 was also detected in human serum of individuals with systemic lupus 

erythematosus (Kato et al., 1999) and rheumatoid arthritis (Tamura et al., 2001), but 

the significance of soluble CD154 during T cell responses remains to be clarified. 

CD40 ligation delays clonal deletion of Ag-specific T cells and enhanced T cell 

clonal expansion in response to super-Ag (Maxwell et al., 1999). This may be due to 

de novo OX40L expression on DC, which is induced after CD40 ligation, and which 

signals to the T cell through 0X40 (Fillatreau and Gray, 2003). The importance of 

this interaction is further explained in the next section. 

As described above, CD40 and CDI54 are crucial for effective T cell activation in 

lymphoid organs. The CD40-CD154 interaction is however also important in the 

migration of DC from the periphery to the draining lymph node (DLN). The 

paracortical regions in DLN have been shown to be site of Ag-specific DC-T 

interaction (Ingulli et al., 1997). In CD154' mice, Ag-specific DC failed to migrate 

out of the skin and fewer DC accumulated in the DLN after contact sensitisation 

(Moodycliffe et al., 2000). This migratory defect was accompanied by a decrease in 

TNF-a. It appears that CD40 ligation of DC induces their migration out of the 

periphery, but that an important effect of CD40 ligation is TNF-a release by cells in 

the peripheral tissue displaying CD154 (Moodycliffe et al., 2000). These CD154-

displaying cells have not been identified yet, but possible candidates include mast 

cells and keratinocytes (Flores-Romo, 2001). 

Once in the DLN, the CD40-CD154 interaction is essential for DC longevity (Miga 

et al., 2001). Administration of blocking anti-CD154 antibodies accelerated 

disappearance of DC in the DLN, leading to a deficiency in sustaining T cell 

responses over a longer period of time (Miga et al., 2001), fitting with previous data 

that CD28 appeared to be the most important costimulatory molecule for initial T cell 

activation, while CD40 on DC was required for sustained T cell responses (Howland 
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et al., 2000). The CD40-CD154 interaction is, as a result, crucial for DC migration as 

well as T cell activation, and also appears to be important during effector T cell 

activation in the target organs later in the immune response (Becher et al., 2001; 

Grewal and Flavell, 1998). A model for the role of CD40-CD 154 in T cell function is 

shown in Fig. 1.3. 

The 0X40-OX40L interaction 

0X40 and OX40L-deficient mice have reduced primary CD4 T cell responses to 

common protein Ag, some viruses, and in contact-sensitivity reactions (Kopf et al., 

1999; Murata et al., 2000). OX40L-deficient mice also show reduced severity of 

EAE (Ndhlovu et al., 2001), and administration of a neutralising anti-OX40L Ab 

ameliorates EAE (Nohara et al., 2001; Weinberg et al., 1999). As with CD154, 0X40 

is not constitutively expressed on naïve T cells, but peaks in expression 3-4 days 

after initial activation signals. It is rapidly and highly re-expressed on effector T 

cells, and can be induced by TCR signals in the absence of CD28 (Akiba et al., 1999; 

Gramaglia et al., 1998; Nohara et al., 2001). Like CD28, 0X40 ligation promotes 

Bcl-xL and Bcl-2 expression in T cells and thus prolongs T cell survival (Rogers et 

al., 2001). This effect is illustrated in naïve CD4 T cell populations that are deficient 

in 0X40. The early proliferation in these T cells is not impaired, but marked 

apoptotic cell death occurs 4-5 days after T cell activation, resulting in lower 

frequencies of Ag-specific effector T cells being generated late in the primary 

response, and fewer T cells entering the memory pool (Gramaglia et al., 2000). 

Correspondingly, OX40L is expressed on DC many hours or days after DC 

activation (Ohshima et al., 1997; Rogers et al., 2001), and its induction is dependant 

on CD40 ligation (Fillatreau and Gray, 2003). These data indicate that the 0X40-

OX40L interaction is very likely to be important after the CD40-CD 154 interaction 

has taken place. 

Overexpression studies further reinforce the view that the 0X40-OX40L interaction 

provides late-acting signals that allow the survival of newly generated T effector 

cells. Transgenic expression of OX40L by DC (Brocker et al., 1999), or T cells 
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(Murata et al., 2002), increases the number of Ag-specific T cells and produces 

autoimmune-like symptoms, normally associated with aberrant T cell activation. 

Similarly, administration of agonistic antibodies for 0X40 after immunisation results 

in increased numbers of Ag-specific T cells, and an increased memory T cell 

population (Gramaglia et al., 2000). Although 0X40-deficiency had similar reducing 

effects on both CD4 and CD8 T cell responses, the primary effect of 0X40-

deficiency may be on CD4 T cells, which need to be "conditioned" in order to 

activate CD8 T cells (Bennett et al., 1998; Ridge et al., 1998). Analogous results in 

CD8 cells have been obtained in studies looking at the role of a different TNFR 

superfamily member in CD8 T cells, namely 4-IBB, suggesting a possible role for 

0X40 in CD4 T cells, and 4-1BB in CD8 T cells in some systems (Croft, 2003). 

However, some research also reports distinct roles for OX4OL, such as a requirement 

for OX40L on B cells for the induction of primary Th2 responses (Linton et al., 

2003), and expression of OX40L on a unique APC population, found at the T cell-B 

cell interface and in B cell follicles (Kim et al., 2003), which might provide co-

stimulatory signals to memory T cells over extended periods of time. A model for the 

role of 0X40-OX40L in T cell function is shown in Fig. 1.4. 

The RANK-RANKL interaction 

RANKL (receptor activator of NFiB ligand, also known as TRANCE, 

osteoprotegerin ligand, or osteoclast differentiation factor), is a recently described 

member of the TNF superfamily, that was discovered during attempts to clone novel 

genes involved in regulation of apoptosis and function of DC (Anderson et al., 1997; 

Wong et al., 1997) Its receptor is RANK, and this receptor-ligand pair displays 

remarkable sequence homology with CD154 and CD40 respectively (Anderson et al., 

1997). However, both RANK and RANKL-deficient mice have impaired lymph node 

organogenesis and increased bone density (Dougall et al., 1999; Kong et al., 1999), 

indicating these molecules have additional functions in organ development, as well 

as in the mature immune system. So far, no data exists with respect to RANK- or 

RANKL-deficient mice and their susceptibility to EAE. 
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Similar to CD 154, RANKL is expressed on T cells in a TCR-dependent manner after 

in vitro activation. It is detected as soon as 4 hours after T cell stimulation, but its 

expression peaks at 48 hours, and remains high until at least 96 hours (Josien et al., 

1999). This expression is strongly enhanced by CD28 stimulation (Josien et al., 

1999). RANKL is additionally found on immature DC in the skin, where it may play 

a role in regulating long-term survival of interstitial DC (Cremer et al., 2002). RANK 

is also expressed on these cells, but while RANKL is lost during maturation and 

migration to DLN, mature DC retain expression of RANK, becoming dependent on 

RANKL expression by other cell types in DLN, e.g. T cells, for survival (Cremer et 

al., 2002). In vitro treatment of these mature DC with soluble RANKL induces Bc!-

xL expression in DC and thus promotes DC survival, as well as cytokine production 

(IL-i, IL-6 and IL-12) by DC (Josien et al., 1999). Treatment of Ag-loaded, mature 

DC with soluble RANKL before subcutaneous injection also affects immune 

responses, resulting in prolonged DC survival in the DLN as well as increased 

primary and secondary T cell responses (Josien et al., 2000). Although T and B 

express low levels of RANK, soluble RANKL has no effect on these cells (Josien et 

al., 1999). 

The CD40-CD154 and the RANK-RANKL interactions appear to show some 

redundancy, both leading to IL-12 production and promoting ThI type responses. 

This is further evident in that RANK-RANKL can compensate for CD40-deficiency 

in response to a number of viruses (Bachmann et al., 1999). However, their functions 

do not completely overlap, exemplified by the fact that RANKL exerts its effects 

mainly on DC, while the CD40-CD154 is also crucial during T-B cell interactions 

and subsequent antibody isotype switching (Banchereau et al., 1994). RANKL 

expression on anti-CD3 activated T cells in vitro peaks at 48hrs (Josien et al., 1999). 

CD154 on the other hand is more rapidly expressed, and expression wanes within 24-

48 hrs (Roy et al., 1993). CD40 ligation of cultured human DC in vitro also greatly 

increases RANK expression (Anderson et al., 1997), suggesting that RANKL may 

act at a later time-point than CD 154 during T cell activation to regulate DC function 

and survival, providing an additional checkpoint during T cell activation by DC. 
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1.2.3. Dendritic cells as the initiators of CD4 T cell 
responses 

The DC located in most peripheral non-lymphoid tissues are in an immature, or 

quiescent, state. Here, they sample their environment for Ag. Upon exposure to 

inflammatory signals or mediators, DC undergo migratory, phenotypic, and 

functional changes (Flores-Romo, 2001). They migrate from the periphery via 

afferent lymphatics to DLN, lose their high endocytic and phagocytic activity, up-

regulate their levels of costimulatory molecules, such as CD40, CD80 and CD86, and 

concentrate peptide-loaded MHC class H molecules at their cell surface (Flores-

Romo, 2001). On arrival in the LN, these mature, activated DC are capable of 

stimulating naïve Ag-specific T cells. 

DC subsets 

A number of DC subsets can be identified in humans and mice. The correspondence 

between these subsets remains unclear, possibly because human DC are generally 

isolated from peripheral blood, while murine DC are purified from secondary 

lymphoid organs. CD11c is a surface molecule used as a DC marker, although it is 

also expressed on other cells of myeloid origin. Expression of CD4 and CD8a is 

generally used to distinguish different DC subsets, and it is thought that CD8ci. DC 

are of myeloid origin, while CD8a are of lymphoid origin (Celia et at., 1997). 

Mouse spleen contains three distinct mature DC populations, CD4, CD8c(; CD4, 

CD8a; and CD4, CD8a (Kamath et al., 2000; Vremec et al., 2000). CD8c DC are 

primarily found in the T cell rich paracortex, and CD8a DC (CD11b) reside in the 

outer edges of the paracortex, near B cell rich follicles (parafollicular region) (Pooley 

et al., 2001). DEC-205 is another phenotypic marker for DC, which has been 

investigated to segregate DC subset function. In the spleen, the expression of CD8a 

correlates with DEC-205 expression (Kronin et al., 2000). In the LN on the other 

hand, an additional CD8I, DEC-205subset, can be located (Kronin et al., 2000). 
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A further subset of DC, which is CD1 1cim0w,  has been identified, and is called 

plasmacytoid DC. These plasmacytoid DC are found in all lymphoid tissue as large, 

round cells, which change to DC morphology after stimulation with viral products, 

CpG (further described below) or IL-2 in vitro. They then become potent producers 

of interferon (IFN)-cx and IFN-13 (O'Keeffe et al., 2002), and are thus thought to be 

important in the defence against viral pathogens. 

Ever since the identification of DC subsets, attempts have been made to link DC 

ontogeny to DC function. Conflicting data exists with respect to the induction of Thi 

versus Th2 type responses by CD8a or CD8cI DC. Both CD8a and CD8c DC 

have been shown to efficiently prime Ag-specific T cells in vivo, inducing Th 1 and 

Th2 responses respectively when transferred into naïve hosts (Maldonado Lopez et 

al., 1999b). In this system, it is suggested that CD8c DC selectively express IL-12 

and prime Thi type responses (Maldonado Lopez et al., 1999a). However, the 

maintenance of peripheral tolerance is also attributed to these DC (Belz et al., 2002). 

Others reported that both DC subtypes can induce either type of immune response,. 

and that the microbial signals, which the DC receive, directs the outcome of the Th 

response (Manickasingham et al., 2003). Additionally, evidence suggesting that 

CD8c cells mature from CD8I precursors clearly exists (Martinez del Hoyo et al., 

2002), and thus both DC subtypes can be derived from clonogenic myeloid 

precursors (Traver et al., 2000). CD8ci and CD8c DC may represent different 

maturation stages of the same DC population. The most recent research suggests that 

both DC subsets receive signals from the surrounding environment at the time of Ag 

exposure through for example TLR, described below. These signals mature the DC 

in the appropriate way to ensure that the type of immune response, which most 

effectively deals with the .pathogen at hand, will be initiated. Interestingly, different 

DC subsets express different repertoires of TLR (Boonstra et al., 2003; Reis e Sousa, 

2004). At present, the role and significance of DC subsets for the type of T cell 

response remains to be clarified. 

Toll-Like receptor expression on DC 
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Mammalian TLR are part of a family of 'pattern-recognition receptors', a term first 

coined over 15 years ago (Janeway, 1989). They recognise conserved microbial 

structures, including unmethylated CpG sequences on bacterial DNA (TLR9) 

(Hemmi et al., 2000), lipopolysaccharide (LPS) from Gram-negative bacteria (TLR4) 

(Hoshino et al., 1999) or double-stranded RNA (TLR3) (Alexopoulou et al., 2001). 

DC express a range of TLR, and different subtypes of DC express varying levels of 

the nine murine TLR identified so far (Kapsenberg, 2003). TLR triggering has 

pleiotropic effects on DC, for example promoting survival, chemokine and cytokine 

secretion, expression of chemokine receptors, or migration (Akira, 2003). The 

adaptive immune response generally starts with T cell recognition of peptides on DC, 

which have matured after previous TLR ligation. TLR are therefore crucial proteins 

linking the innate and adaptive immunity (Akira et al., 2001), and additionally, the 

cytokines and chemokines secreted in response to TLR ligation influences the 

outcome of adaptive immune responses. There follows a brief summary of the main 

effects of LPS and CpG, which signal through TLR4 and TLR9 respectively, and 

which are used as adjuvants in this project (also see Fig. 1.5). Both TLR4 and TLR9 

signal through MyD88, an adaptor protein resulting in the activation of the 

transcription factor NF-KB, which controls expression of a number of pro-

inflammatory cytokines. 

LPS as an adjuvant 

LPS is an integral component of the outer membrane of Gram-negative bacteria and 

can provoke a life threatening condition called endotoxic shock (Ulevitch and 

Tobias, 1995). LPS is a ligand for TLR4, but the LPS recognition complex may 

variably contain other components such as CDI4, MD2, heat shock proteins 70 and 

90, and the chemokine receptor CXCR4 (Triantafilou et al., 2001; Underhill, 2003). 

Both TLR4 and MD2 are required for responsiveness to LPS, since MD2 is 

physically associated with the extracellular domain of TLR4 on the cell surface 

(Underhill, 2003). LPS induces release of inflammatory cytokines as well as IFN-13. 

The induction of inflammatory cytokines, such as Th-i3 or IL-12, is dependent on 

the intracellular adaptor molecules MyD88 and TIRAP, which lead to NFiB 
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activation and subsequent induction of cytokine gene transcription in DC (Akira et 

al., 2001). IFN-13 (a type I IFN) release and subsequent upregulation of CD40, CD80 

and CD86 through autocrine and paracrine signalling is MyD88 independent, but 

regulated through IFN regulatory factor 3 (IRF-3) (Kaisho and Akira, 2003). 

However, additional MyD88-independent pathways of LPS activation of DC also. 

exist, which remain to be investigated. 

LPS has been shown to fully activate DC, and its adjuvant effect has been used in 

numerous systems to enhance the T cell response in vivo and in vitro (Khoruts et al., 

1998; Maxwell et al., 2002). In vitro treatment of mouse DC with LPS greatly 

enhances Ag loading onto MHC class II, and display of these MHC class II:peptide 

complexes on the cell surface (Inaba et al., 2000). LPS co-administration in vivo 

similarly improves presentation of protein Ag by both CD8f and CD8a DC (Reis e 

Sousa and Germain, 1999), which may be an indirect effect of the inflammatory 

properties of LPS (Manickasingham and Reis e Sousa, 2000). It also induces splenic 

CD8cx DC migration, from the marginal zone to the T cell areas of the white pulp 

(De Smedt et al., 1996; Reis e Sousa et al., 1997). LPS thus enhances both the T cell 

priming abilities of DC, as well as causing their migration into the T cell areas where 

that priming can occur. LPS stimulation results in IL-12 release by DC, and the 

subsequent induction of a Thi type response under most experimental conditions 

(Langenkamp et al., 2000). However, Th2 type responses after LPS stimulation have 

also been described (Boonstra et al., 2003; Pulendran et al., 2001). Interestingly, the 

IL-12 production after LPS stimulation is a transient effect, and the DC subsequently 

becomes refractory to further stimulation, an effect described as exhaustion. 

CpG as an adjuvant 

CpG-rich motifs are found in microbial DNA, and they are ligands for TLR9 

(Hemmi et al., 2000), which is found on endosomes inside the cells. Three different 

types of CpG have been identified so far, CpG A, which induces IFN-o release by 

DC, but is a poor stimulator of B cell proliferation; CpG B, which conversely 
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stimulates B cell proliferation, but does not induce lEN-a release by DC, and CpG C, 

which stimulates both B cells and DC (Reis e Sousa, 2004). Similar to LPS, CpG has 

been used as an adjuvant in a number of experimental systems, and induces a Thl 

type response (Jakob et al., 1999). DC activation by CpG at the time of T cell 

activation enhances immune responses (Boonstra et al., 2003), and enhances T cell 

responsiveness even after previous tolerance induction (Ichikawa et al., 2002). TLR9 

signals exclusively via MyD88, inducing production of pro-inflammatory cytokines, 

and augmentation of CD40, CD80 and CD86 levels on DC (Hemmi et al., 2000). 

Release of type I IFN is also stimulated, although the exact pathway leading to IFN -

gene induction is unknown (Reis e Sousa, 2004). Additionally, CpG provides a 

survival signal to DC, inducing upregulation of survival molecules Bcl-2 and Bcl-xL 

(Park et al., 2002). CpG thus increases DC survival as well as inducing DC 

maturation, leading to the initiation of effective T cell immunity. 
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1.3. T cell tolerance 

TCR diversity coupled with flexible Ag recognition allows T cells to respond to 

peptides from virtually all molecules andlor cells, including our own tissue (Mason, 

1998). However, the immune system is able to distinguish between harmless self-

molecules, and molecules or cells that might be dangerous to us. An immune 

response should only be initiated in the latter case, whereas a tolerant state to self-

molecules is maintained in healthy individuals by a variety of mechanisms. 

1.3.1. Central tolerance 

Tolerance is usually defined as the failure to respond to Ag, resulting in avoidance of 

autoimmunity and pathology. Intrathymic deletion of T cells with high affinity for 

self-Ag plays a crucial role in limiting the autoreactive T cell repertoire (Kappler et 

al., 1987). The thymus contains a variety of professional APC, which express both 

MHC class I and II molecules. These APC include DC, macrophages, B cells and 

thymic epithelial cells (TEC) (Derbinski et al., 2001), which can all express a large 

array of self-Ag. Immature T cells that bind their specific Ag with high affinity in the 

thymus, are deleted at the CD4, CD8 double-positive stage. This process is termed 

central tolerance. In recent years, it has become evident that even "tissue specific" 

Ag are expressed in the thymus. In particular medullary TEC express a vast range of 

Ag which are known to be putative targets in autoimmune diseases, for example 

insulin and MOG (Derbinski et al., 2001). The transcription factor AIRE, which is 

primarily expressed in the TEC and DC in the thymus, may be responsible for 

expression of these "tissue specific" Ag (Mathis and Benoist, 2004). Since immature 

T cellg recognising these auto-Ag become deleted or possibly become regulatory T 

cells (T reg, see below), expression of tissue specific Ag in the thymus greatly limits 

the number of potentially autoreactive T cells in the periphery. 

1.3.2. Peripheral tolerance 

Nevertheless, it is unlikely that all self-peptides can be displayed in the thymus. 

Central tolerance is inevitably an incomplete process, and autoreactive T cells are 



consequently found in the periphery, requiring mechanisms of peripheral tolerance to 

avoid autoimmune pathology (Anderton and Wraith, 2002). Three major mechanisms 

have been proposed to be relevant for the maintenance of peripheral tolerance to self-

Ag, as well as for the induction of tolerance to administered Ag, namely T cell 

deletion, anergy, and suppression by T reg. T cells go through a number of stages 

through their life span and during an immune response, and these different 

mechanisms may all be necessary to avoid detrimental autoimmune responses at 

these various stages. 

Deletion by activation induced cell death 

Activation induced cell death (AICD) is a process of apoptosis induced by repeated 

activation of T lymphocytes by their specific Ag. The principal mechanism of AICD 

in CD4 T cells is the co-expression of Fas (CD95) and Fas ligand (FasL), which has 

been shown to occur after repeated Ag stimulation, and is important in limiting the 

immune response to foreign Ag to avoid damage to the host (Lenardo et al., 1999). 

Resting naïve T cells express little surface Fas, while TCR stimulation in the 

presence of IL-2, a cytokine important for T cell proliferation, enhance Fas 

expression. The activated T cell becomes sensitive to FasL induced apoptosis, which 

is triggered through endogenously produced FasL and signalling through Fas 

(Refaeli et al., 1998). AICD is important to limit the numbers of Ag-specific cells 

towards the end of a normal immune response. Similarly, if an Ag is presented 

chronically, inhibitory genes such as FasL are activated, rendering the T cell 

susceptible to Fas-induced apoptosis (Goodnow, 2001). AICD may thus limit early 

activation and expansion of self-reactive T cells, which consistently see their specific 

Ag, and has a supplementary role in maintenance of peripheral tolerance. The 

significance of Fas and its ligand for peripheral T cell tolerance is underlined by the 

fact that mice deficient for either of these molecules show lymphoproliferative 

disease and systemic autoimmunity (Cohen and Eisenberg, 1991). 
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Anergy 

Anergy can be described as a state of lasting T cell unresponsiveness. Two broad 

categories of anergy are distinguished, namely clonal anergy and adaptive anergy 

(Schwartz, 2003). The former is mostly observed in previously activated T cells, and 

is characterised by growth arrest of the T cell, with lack of proliferation and a block 

in IL-2 production, but little loss of effector function and other cytokine production. 

The latter is initiated in naïve T cells, and consists of a more generalised inhibition of 

proliferation and effector functions (Schwartz, 2003). Clonal anergy does not require 

T cell proliferation or persistence of Ag, in contrast to adaptive anergy, which 

requires persistency of Ag to maintain the unresponsive state. Also, clonal anergy 

can be reversed by addition of IL-2, while adaptive anergy is maintained even after 

addition of IL-2 (Schwartz, 2003). 

Both types of anergy can be induced by a number of circumstances in vitro and in 

vivo. Clonal anergy has primarily been studies in vitro, and induction of clonal 

anergy in CD4 T cell clones is induced through strong TCR signalling in the 

absence of costimulation (i.e. provision of signal I without signal 2) (Jenkins and 

Schwartz, 1987) or by stimulation with a low affinity ligand in the presence of 

costimulation (i.e. a low signal 1 with signal 2) (Sloan-Lancaster et al., 1993). 

Clonally anergised T cells remain viable and provision of IL-2 reverses anergy 

induction (Beverly et al., 1992). The CD28-CD80/CD86 interaction is critical in the 

prevention of clonal anergy, possibly by having an, inhibitory effect on the 

production or function of anergic factors (Becker et al., 1995), or through stimulation 

of IL-2 (Beverly et al., 1992; Jenkins, 1992). The involvement of CTLA-4 on the 

other hand is less clear. Blocking antibodies to CTLA-4 or genetic CTLA-4 

deficiency did not influence the induction of clonal anergy in vitro in some systems 

(Frauwirth et al., 2000), but did have a role in others (Wells et al., 2001). All the 

same, it is debatable how important results from in vitro studies are, and although 

some transfer studies looking at clonal anergy in vivo have been carried out 
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(Schwartz, 2003), it is adaptive anergy which has been studied more extensively in 

vivo. 

Adaptive anergy is often initiated in naïve T cells in vivo by TCR stimulation without 

provision of costimulatory molecules, which is thought to be the case during peptide-

induced tolerance. T cells go through a significant phase of proliferation before 

becoming anergic (Pape et al., 1998), see section 1.3.4. The role of the CD28/CTLA-

4-CD80/CD86 interaction for adaptive anergy is debatable. The importance of CD28 

is difficult to investigate, since CD28' T cells fail to proliferate in response to Ag 

(Howland et al., 2000), while the role for CTLA-4 is controversial. Some groups 

report that the induction of anergy in vivo was only possible through engagement of 

CTLA-4, illustrated by a lack of anergy induction when CTLA-4 was blocked (Perez 

et al., 1997), and inability to induce anergy in CTLA-4-deficient T cells (Greenwald 

et al., 2001). Others suggest anergy of CD8 T cell in vivo was possible in the 

absence of CTLA-4 (Frauwirth et al., 2001). The exact role of CTLA-4 in T cell 

activation, anergy and tolerance remains open to discussion, and requires further 

investigation. 

In addition to an increasing number of molecules being identified as positive 

regulators of T cell responses, negative regulators of T cell activation, such as PD-I 

and its ligands PD-LI and PD-L2 (Greenwald et al., 2002) are becoming apparent. It 

seems plausible, that rather than anergy being the result of a simple lack of 

costimulation, it is determined by a balance of positive and negative signals that the 

T cell receives after TCR recognition. 

The molecular mechanisms responsible for anergy induction and maintenance are a 

subject of intense investigation. A number of signalling pathways are activated after 

ligation of TCR and costimulatory molecules. Recently, it was shown that during the 

induction of clonal anergy, a specific set of genes became activated (Macian et al., 

2002), including genes encoding Cbl-1, Itch and GRAIL, three ubiquitin ligases (E3s) 
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(Heissmeyer et al., 2004). E3s confer substrate specificity to the ubiquitin system 

(Schnell and Hicke, 2003), which targets proteins for degradation. It is suggested that 

degradation of signalling proteins leads to disruption of the signalling synapse 

between the APC and the T cell, which ultimately results in T cell anergy 

(Heissmeyer et al., 2004). Other molecules that may influence tolerance induction 

are signal transducers and activators of transcription (Stats), which are cytoplasmic 

transcription factors, playing important roles as mediators in cytokine and growth 

factor signalling (Daniel!, 1997). Stat 3 has recently been described as a negative 

regulator of inflammatory responses, and CD4 T cells from mice with disrupted Stat 

3 function in macrophages cannot be tolerised through a known tolerogenic protocol 

(i.v. administration of soluble peptide) (Cheng et al., 2003; Kearney et al., 1994). 

Stat 3 is thus a signalling molecule that has been identified to specifically be required 

for tolerance induction. Identification of molecules such as..Cbl-1, Itch, GRAIL and 

Stat3 gives new insight into the molecular events during tolerance induction, and 

allows identification of new potential targets for immunotherapy. 

Regulatory T cells 

The idea of a specialised subset of T cells, which limits the outcome of an immune 

response, was first described in the 1970s (Gershon, 1975). After a long period 

during which this concept was in disrepute, regulatory T cells (T reg) have regained 

acceptance as a specialised subset of T cells, which have suppressive or regulatory 

properties, aiding in the prevention of autoaggressive immune responses. Two 

different T reg subsets can be distinguished through their mode of action. Naturally 

occurring T reg are thought to arise in the thymus, perhaps via an altered negative 

selection by self-Ag (Caton, 2003), but they may have to re-encounter Ag in the 

periphery to become fully mature (Shevach, 2000). They constitute 5-10% of all 

peripheral CD4 T cells and display characteristic surface markers such as CD25 

(Sakaguchi et al., 1995), CTLA-4 (Read et al., 2000) and GITR (McHugh et al., 

2002; Shimizu et al., 2002). Their importance in peripheral tolerance is demonstrated 

by the development of autoimmune diseases such as gastritis and thyroiditis when T 

reg are eradicated (Sakaguchi et al., 1995). Although T reg need to be triggered 
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through their TCR (Shevach, 2002), once activated, they suppress effector T cells 

(CD25) in an Ag-nonspecific fashion (Thornton and Shevach, 2000). In vitro, this 

inhibitory action is dependent on cell-cell contact with the CD25 cells to be 

suppressed, and can be overcome by addition of exogenous IL-2 and IL-15 

(Dieckmann et al., 2001; Jonuleit etal., 2001; Thornton and Shevach, 1998). In vivo, 

roles for IIL-10 and TGF-P have been described (Belkaid et al., 2002; Sun-Payer and 

Cantor, 2001). However, their target Ag and mechanisms of action remain poorly 

defined, and their exact role in autoimmune diseases continues to be a topic of 

intense investigation. 

The second type of suppressive CD4 T cells is induced from conventional 

CD4CD25 T cells in the periphery. In contrast to the naturally occurring 

CD4CD25 subset, these T cells carry out their in vitro suppressive effects via cell 

contact independent mechanisms, mainly through secretion of immunomodulatory 

cytokines such as IL-lO andlor TGF-13 (Jonuleit and Schmitt, 2003). Two subsets of 

induced T reg have been described as Trl and Th3 cells (Roncarolo et al., 2001 a; 

Weiner, 2001). TrI cells produce large amounts of IL-lO and little TGF-f3, while Th3 

produce preferentially TGF-. Trl cells were first induced by repeated stimulation of 

T cells in the presence of IL-lO (Groux et al., 1997). The resulting T cell population 

controls activation of naïve and memory T cells in vivo and in vitro, and suppresses 

Thi- and Th2-mediated responses to pathogens, tumours and allo-Ag (Groux, 2003). 

The inhibitory effect is mainly through production of IL-b, as shown by the reversal 

of this effect after administration of blocking antibodies against IL-b (Groux et al., 

1997). Th3 cells producing TGF-P were identified in mice after oral tolerance 

induction using myelin basic protein (MBP) (Chen et al., 1994), and have similarly 

been described in humans after oral administration of MBP (Fukaura et al., 1996). 

TGF-13 influences the activity of multiple cell types, and Th3 cells may therefore 

have a major role in many aspects of immune regulation and T cell homeostasis 

(Weiner, 2001). 
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1.3.3. Dendritic cells as tolerogenic APC 

It is clear from the existing data that Ag presentation by APC, including DC, plays a 

major role in the induction and maintenance of tolerance. There are two separate 

ideas about DC and their role in tolerance. Firstly, a subset of regulatory DC may 

specialise in inducing tolerance in the T cells to which they present, or secondly, the 

activation status of the DC regulates their ability to induce tolerance or immunity. 

Some evidence exists for specialised regulatory DC (Fazekas de St Groth, 1998; Suss 

and Shortman, 1996), in that CD8u DC of lymphoid origin (LDC) have been 

proposed to negatively regulate CD8 T cell responses (Belz et al., 2002; Kronin et 

al., 1996; Kronin et al., 2000). These LDC are the predominant DC population found 

in the spleen and in the T cell zones of non-immunised mice (Fazekas de St Groth, 

1998), and have been found to express high levels of seif-peptides (Inaba et al., 

1997), making them an ideal candidate for tolerance induction (Fazekas de St Groth, 

1998). However, since they may be derived from the same precursors as CD8c( DC, 

(Roncarolo et al., 2001b; Traver et al., 2000), and taking into account the 

accumulating evidence that tolerance is a result of the activation status of the DC 

(described below), it remains to be seen whether there truly is a subtype of DC 

specialised for tolerance induction. 

It has been shown that T cell tolerance to self-Ag is an active choice of the immune 

system. The (self-) reactive T cell goes through a phase of activation (Kurts et al., 

1997), and evidence exists that the T cell acquires significant effector functions on its 

way to becoming tolerant (Huang et al., 2003). Originally, it was thought that 

immature, resting DC, which display MHC/self-peptide complexes and low levels of 

costimulatory molecules in the absence of inflammatory stimuli, induce peripheral T 

cell tolerance in vivo (Dhodapkar et al., 2001; Steinman et al., 2000). This idea has 

now been revised to suggest that peripheral tolerance in the steady state is induced by 

mature, but quiescent DC, displaying high levels of self-Ag in their surface (Inaba et 

al., 1997), while immunity is initiated by DC that are fully activated through the 

presence of "danger", such as microbial molecules, which activate DC through TLR 

ligation as described in section 1.2.3 (Albert et al., 2001; Shortman and Heath, 2001). 
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The activated DC provide the T cells with much stronger versions of the same 

signals and/or additional signals to induce immunity. One might therefore suggest 

that the induction of tolerance versus immunity could be determined by the ratio of 

quiescent DC to activated/mature DC (Roncarolo et al., 2001b). The emerging 

consensus is that quiescent DC, which display self-Ag and low levels of 

costimulatory molecules, and which continuously travel from peripheral sites to 

DLN, are required for continual induction of tolerance to self-Ag. However, if DC 

become activated in the presence of "danger" or through maturation signals such as 

agonistic anti-CD40 antibody, they increase expression of costimulatory molecules. 

This in turn allows initiation of an effective immune response in the DLN. Although 

the DC still express self-Ag, the prior establishment of self-tolerance will prevent 

detrimental immune responses against those self-Ag. 

Quiescent DC can induce T cell deletion as well as T cell anergy to foreign and self-

Ag, and DC also play a role in the induction and modulation of T reg in vitro and in 

vivo. Targeting ovalbumin peptide (pOVA), or hen egg lysozyme (HEL) to resting 

DC via DEC-205 results in deletion of both Ag-specific CD4 and CD8 T cells 

(Bonifaz et al., 2002; Hawiger et al., 2001), while targeting pMOG to resting DC via 

DEC-205 causes CD4 T cell anergy (Hawiger et al., 2004). In both cases, T cells go 

through a phase of proliferation and activation before becoming anergic or deleted. 

IL-lO producing T reg may be induced in vitro by repetitive stimulation through 

untreated immature DC (Jonuleit et al., 2000). In vivo, steady-state DC present 

soluble protein to CD4 CD25 T cells, and induce their expansion (Yamazaki et al., 

2003). At least in humans, T reg themselves can also reduce the capacity of DC to 

induce T cell proliferation, indicating a feedback loop resulting in maintenance of 

tolerance (Roncarolo et al., 2001b). Similarly, CD4 CD25 T reg are able to directly 

induce the development of other T reg subsets (Dieckmann et al., 2002; Jonuleit et 

al., 2002), to elicit a form of infectious tolerance. The ability to induce T reg using 

modified DC has enormous therapeutic potential, but more research needs to be 

carried out to fully understand the mechanisms involved. 
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1.3.4. Peptide-induced tolerance 

It has been known for a long time that the form in which the Ag is administered plays 

a crucial role in the outcome of the immune response (Weigle, 1973). Ag in 

aggregated form, or administered with appropriate "danger" signals, such as 

adjuvant, leads to T cell activation and expansion and the generation of a productive 

immune response. The same Ag administered in soluble, monomeric form (in the 

absence of "danger"), however, leads to T cell tolerance, as illustrated by the absence 

of T cell activation when rechallenged with Ag in adjuvant. Administration of 

soluble Ag via the oral/mucosal, intravenous (i.v.), intraperitoneal (i.p.), or intranasal 

(i.n.) routes have all been shown to successfully induce tolerance (a! Sabbagh et al., 

1994; Burkhart et al., 1999; Chen et al., 1995; Liblau et al., 1996; Liu and Wraith, 

1995). With the identification of immunodominant epitopes within proteins, it has 

been possible to move from tolerisation using whole proteins to induction of 

tolerance through administration of soluble peptides. This approach is very effective 

in preventing autoimmunity, and inhibits the onset of autoimmunity in EAE 

(Anderton and Wraith, 1998), as well as in experimental models of arthritis and 

myasthenia gravis (Paas-Rozner et al., 2000). The therapeutic potential for treatments 

of allergies and human autoimmune diseases is described further at the end of this 

section. 

The exact mechanisms leading to induction of tolerance after administration of 

soluble peptide remain an issue of debate. It has been suggested that tolerance is 

simply due to immune deviation from a Thi phenotype, which causes autoimmune 

damage, to a less pathological Th2 cytokine profile (Tian et al., 1996). However, it 

has been shown that in most systems, induction of peptide-induced tolerance 

involves the same mechanisms responsible for induction of peripheral tolerance; 

anergy, apoptosis and induction of T reg. Each has been shown to play a role, 

depending on the exact dose and route of Ag administration, and in a number of 

systems, a combination of these mechanisms was responsible for the resulting 

tolerance. High doses of orally administered Ag may cause deletion of specific T 

cells (probably through Fas-mediated apoptosis after initial T cell activation, i.e. 



AICD) (Chen et al., 1995), or anergy (Friedman and Weiner, 1994). Low doses on 

the other hand appear to induce Ag-specific T reg of the Th3 subtype (Chen et al., 

1994; Friedman and Weiner, 1994). Similarly, i.v. administration of high doses of 

soluble peptide causes apoptosis of Ag-specific T cells (Liblau et at., 1996), and in 

some systems it was shown that most Ag-specific T cells are deleted, leaving the 

remaining Ag-specific T cells functionally impaired, i.e. anergic, and resulting in T 

cell tolerance (Kearney et al., 1994; Pape et al., 1998). In most experimental systems, 

tolerance is thus likely to result from several mechanisms collectively acting to 

maintain tolerance. 

Induction of T cell tolerance is an active process 

Earlier studies showed that systemic T cell tolerance takes 3 days to become 

established (Liu and Wraith, 1995). Because only a fraction of T cells are specific for 

a certain Ag, the number of Ag-reactive T cells during an immune response is small, 

and impossible to trace. By generating TCR transgenic mice, in which all T cells 

specifically recognise a certain peptide-MHC complex, and transferring T cells from 

the TCR transgenic mouse into naïve syngeneic recipients, it became possible to 

trace a definite population of T cells during the induction of tolerance (Kearney et 

al., 1994). Initial experiments compared T cell expansion after i.v. administration of 

soluble Ag to sc injections of Ag in CFA. While in both cases, Ag-reactive T cells 

proliferated in response to the Ag, T cells only entered B cell follicles and remained 

Ag responsive upon in vitro challenge when Ag was administered with an adjuvant. 

When T cells encountered their Ag without the presence of adjuvant, they 

proliferated for some time, but never entered B cell follicles, and the cells that 

remained were hyporesponsive to antigenic challenge (Kearney et al., 1994). 

It has since been shown in a number of systems that although tolerant T cells are 

ultimately unresponsive to their Ag, they go through a significant phase of activation 

en route to tolerance induction. The kinetics of T cell activation during the induction 

of tolerance show transient T cell activation with expression of costimulatory 

molecules, followed by T cell unresponsiveness to Ag (Kearney et al., 1994). 
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Similarly, expression of a neo-self-Ag results in initial activation and gain of effector 

functions, before finally resulting in anergy of the adoptively transferred Ag-specific 

T cells (Huang et al., 2003). In both systei-ns, T cells undergo significant activation 

and proliferate in response to Ag-encounter, before becoming anergic. In 

experimental settings where Ag are targeted to quiescent DC, T cells similarly go 

through a phase of activation and proliferation, before becoming anergic or deleted 

(Bonifaz et al., 2002; Hawiger et al., 2001; Hawiger et al., 2004). Since 

costimulatory molecules are crucial for effective T cell activation, their possible 

importance during the induction of tolerance is evident and discussed further in 

section 1.3.5. 

DC versus B cells in the induction of T cell tolerance 

The APC that is responsible for displaying peptide to tolerise T cells, has been 

debated for some time. Early data shows that not only DC, but also B cells present 

processed peptides 4 hours after i.v. administration of soluble protein in vivo (Zhong 

et al., 1997). Nevertheless, it has been shown that CD8a DC present to CD8 T 

cells, while CD8oC DC present to CD4 T cells after i.v. administration of Ag 

(Pooley et al., 2001). Also, T cell-DC interactions, rather than T cell-B cell 

interactions, were observed in the parafollicular regions of the DLN after s.c. 

administration of soluble protein (Ingulli et al., 1997). More recently, it was shown 

that 4 hours after s.c. administration of soluble protein, most protein was found on 

the CD8ot DC subset, in the parafollicular regions of the DLN, to which Ag-specific 

T cells home after administration of Ag (Ingulli et al., 2002). Additionally, it was 

shown that protein administered s.c. was presented to T cells in the DLN in two 

temporally distinct waves. Even though processed protein was found on B cells 

throughout the 24 hours period examined, the peptide-expressing cells in T cell areas 

were found to be DC (Itano et al., 2003). Finally, DC display peptide for several days 

longer on their surface compared to B cells after i.v. administration of peptide (S. 

Anderton, personal communication), and B cell-deficient p.MT mice can be tolerised 

to induction of EAE (Vella et al., 1996). Collectively, these data suggest that it is 

DC that present processed peptides to T cells and tolerise them, rather than B cells. 



Further supporting this argument is the notion that T cells need signals different from 

TCR stimulation to enter B cell areas. In the presence of "danger", such as of LPS or 

the proinflammatory cytokines IL-i and TNF-a, T cells migrate into B cell follicles 

(Pape et al., 1997). It was similarly shown in an oral tolerance model that T cells do 

not enter B cell follicles after a tolerogenic stimulus, while they do after 

administration of an immunogenic one (Smith et al., 2002), and that T cells need to 

receive costimulatory signals from DC before they can enter B cell areas (Fillatreau 

and Gray, 2003). It appears that although B cells may present peptide on their surface 

after administration of soluble Ag, T cells will home to T cell areas and first need to 

interact with DC before being able to enter B cell areas and possibly re-encounter 

their Ag. 

Tolerance to EAE 

All three mechanisms of tolerance described above are thought to play a role in 

therapeutically-induced tolerance to myelin Ag. FasL-mediated apoptosis is 

important in some mouse strains in the recovery from EAE, however, it also 

functions in T cell-mediated killing of oligodendrocytes (Sabelko Downes et al., 

1999). Direct induction of T cell apoptosis with high-dose Ag can similarly induce 

remission of EAE (Critchfield et al., 1994). Administration of soluble peptides from 

PLP or MBP result in protection from subsequent EAE induction (Anderton and 

Wraith, 1998). At the population level, tolerant T cells are similar to anergic T cells 

described above, since this tolerance is characterised by reduced T cell proliferation 

and cytokine production upon rechallenge with Ag in adjuvant. Immune deviation 

towards a Th2 phenotype has not proved to be successful in suppressing on-going 

EAE (Khoruts et al., 1995), but EAE could be prevented if Th2 cells were present 

during the initiation of the Thi response (Kuchroo et al., 1995). 

Several tolerisation protocols result in the induction of a suppressor T cell 

population. Th3 cells described in section 1.3.2, producing large amounts of TGF-f3, 

and some IL-10 and IL-4 in an Ag-specific fashion, were first isolated after oral 
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administration of lower doses of MBP (Chen et at., 1994). These cells successfully 

suppressed EAE after transfer into naïve recipients. Intranasally-induced peptide 

tolerance to EAE induces T cell populations that produce IL-b (Burkhart et al., 

1999; Massey et al., 2002). When IL-lO was neutralised, or IL-JO-deficient mice 

were used, mice were no longer protected from EAE after i.n. administration of Ag, 

further showing the importance of IL-10 in this process (Burkhart et at., 1999; 

Massey et al., 2002). The search for Ag-specific T reg cells is still ongoing, and their 

isolation may allow exploitation of novel therapeutic possibilities for the treatment of 

autoimmune diseases. 

Peptide therapy in humans 

Over the last years, the findings from peptide-induced tolerance in animal models 

have been translated into peptide-based therapeutic trials to treat autoimmunity in 

humans. However, the majority of data has been generated from attempts to treat 

allergy. A variety of methods, including administration of soluble whole allergenic 

proteins, or peptides from allergens, have been tested. Results have however been 

mixed, and most trials showed some adverse side effects of treatment with peptide, 

such as symptoms of breathlessness and wheeze with onset several hours after 

peptide administration. Improvements in allergic reactions of patients were found 

after high dose peptide therapy with Fel d I peptides (a cat allergen) (Norman et al., 

1996), and promising results indicating induction of T cell hyporesponsiveness after 

peptide administration have also been reported (Oldfield et al., 2001). Even more 

encouraging results were found when patients, who previously had severe systemic 

reactions following bee stings, were treated with a mixture of three peptides from the 

major bee venom allergen, and all five patients experienced no, or greatly reduced, 

reactivity to bee stings (Muller et al., 1998). Unfortunately, other trials showed less 

promising results (Simons et al., 1996). Nevertheless a number of studies indicate a 

role for IL-10 in successful treatment using soluble peptide or protein (Akdis et at., 

2001; Oldfield et al., 2002), indicating that human peptide therapy may work through 

induction of enhanced IL-lO production which down-regulates pro-inflammatory 

responses. Hopefully, ongoing studies will further elucidate the relevant 



mechanisms, and will brighten the prospects of developing peptide-based vaccines 

for human diseases. 

1.3.5. The CD40-CD154 interaction in the decision between 
tolerance and immunity 

As described above, T cells go through a significant phase of activation and 

proliferation on their way to becoming tolerant. The importance of costimulatory 

molecules such as CD40 and 0X40 during the induction of T cell immunity is 

described above, and is well-documented in the literature. The importance of some 

costimulatory molecules during the induction of tolerance has been investigated, but 

this has by no means been extensive. Conflicting evidence exists with respect to the 

requirements of CD40-CD154 in tolerance. Mucosally induced tolerance to 

ovalbumin appears to require the presence of CD 154 in some systems (Kweon et al., 

1999), but not others (Hanninen et al., 2002), while tolerisation via the Lv. route was 

possible in the absence of CD154 (Howland et al., 2000). The requirements for 

0X40-OX40L interactions during tolerance induction had not yet been investigated 

prior to this project. 

Exogenous ligation of CD40 has been used extensively to activate APC in vitro 

(Caux et al., 1994; CelIa et al., 1996), and more recently, is has been shown that 

administration of agonistic anti-CD40 mAb in vivo boosts T cell immunity in 

response to a super-Ag (Maxwell et al., 1999). Other experimental systems further 

support this, in that anti-CD40 administration also prevents tolerance to tumours 

(Diehi et al., 1999; Grohmann et al., 2001; Sotomayor et al., 1999). Similarly, ex vivo 

blockade of CD40-CD 154 has also been reported to result in the induction of potent 

T reg (Taylor et al., 2002) after transfer of tolerised T cells, and in vivo blockade of 

CD40-CD154 interaction induces T cell tolerance (Tang et al., 1997), and prolongs 

allograft survival (Honey et al., 1999). CD40-deficient DC have been shown to 

produce IL-b, but not IL-12, which induced T cell hyporesponsiveness in vitro (Gao 

et al., 1999), again illustrating the importance of CD40 on DC for effective 

immunity. Similar to the conflicting evidence for the requirements of CD40-CD154 

WE 



in mucosal tolerance however, there is some evidence that administration of 

agonistic anti-CD40 does not prevent mucosally induced tolerance (Chung et al., 

2004; Sun and Van Houten, 2002), suggesting that T cell tolerance is differentially 

regulated in different peripheral sites. Nevertheless, the CD40-CD154 interaction is 

an important candidate as a checkpoint determining between tolerance and immunity. 

The interactions of CD28 and CTLA-4 with CD80 and CD86 have been suggested to 

determine tolerance versus immunity. However, initial T cell activation in T cells 

lacking CD28 is greatly impaired (Howland et al., 2000). Since T cells undergo a 

significant phase of activation and proliferation on their way to becoming tolerant, 

this suggests that the CD28-CD80/CD86 interaction is not disrupted during tolerance 

induction. In contrast, when T cells lacking CD154 are stimulated by an Ag in 

adjuvant, they initially become activated, and although they are unable to sustain this 

activation, they are not rendered tolerant by this initial activation in the absence of 

CD154 (Howland et al., 2000). Nevertheless, CD154 T cells can be tolerised by 

administration of soluble Ag. CD154 is thus neither required for tolerance induction, 

nor for initial T cell activation. The main role identified for CD154 is ligation of 

CD40 on DC, which leads to the induction of OX40L expression on the surface of 

DC (Fillatreau and Gray, 2003;Ohshima et al., 1997). OX40L is then thought to bind 

0X40 on activated T cells, resulting in the expression of the survival molecules Bcl-

2 and Bcl-xL (Rogers et al., 2001) (also see section 1.1.4). The main effect when the 

CD40-CD 154 interaction is missing, either through a lack of CD 154, or by blocking 

with antibodies, may thus be the subsequent lack of up-regulation of OX40L on DC. 

This will result in a shortage of survival signals to the activated T cell, and 

subsequent T cell tolerance. In contrast, provision of anti-CD40 activates the DC and 

results in OX40L expression, allowing T cell immunity. The CD40-CD 154 

interaction may therefore be a crucial switch deciding between T cell tolerance and T 

cell immunity. 
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1.4. Central Hypothesis 

The CD40-CD 154 and 0X40-OX40L interactions have previously been shown to be 

of crucial importance during T cell responses, giving a costimulatory signal, i.e. 

signal 2, resulting in effective T cell activation. The timing of expression of CD154 

and 0X40 on T cells fits with the timing of tolerance induction. This thesis proposed 

that the chief defect driving a T cell towards tolerance is the lack of CD40 ligation, 

subsequently resulting in a lack of the 0X40-OX40L interaction. The CD40-CD154 

and the 0X40-OX40L interactions are thus pivotal in the decision between tolerance 

and immunity. 
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1.5. Aims 

The above hypothesis was investigated by asking three main questions: 

Can exogenous ligation of defined costimulatory receptors convert a 

tolerogenic signal into an immunogenic one? 

If the CD40-CD 154 and 0X40-OX40L interactions are checkpoints determining the 

outcome of T cell immunity, agonistic antibodies to CD40 or 0X40 should prevent 

the induction of T cell tolerance after administration of a tolerogenic stimulus. 

How does expression of CD 154 and 0X40 on T cells, and CD40 and OX40L 

on DC differ during induction of T cell tolerance versus T cell immunity? 

If the presence or absence of costimulatory molecules on DC is responsible for the 

induction of T cell immunity versus tolerance, DC will upregulate expression of 

CD40 and OX40L during the induction of T cell immunity, but not T cell tolerance. 

Since T cells go through a phase of activation during tolerance induction, T cells are 

likely to express CD 154 and 0X40 during both immunity and tolerance. 

Do T cells become tolerant on exposure to Ag-loaded DC lacking CD40? 

The lack of CD40 on Ag-loaded DC should not result in T cell priming, but 

conversly induce T cell tolerance. 

These three questions will be addressed in turn in Chapters 3, 4, and 5, respectively. 
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Fig. 1.1: 
Signals 1, 2 and 3 lead to effective T cell activation 
Signal 1 is the Ag-specific signal that is mediated through the TCR-
MHC-peptide complex interaction. Signal 2 can be provided by a 
variety of costimulatory molecules. Shown here are CD80/CD86-
CD28, and CD40-CD 154. Other costimulatory molecules shown to 
be important for effective T cell activation are 0X40 and RANKL, 
binding to their receptors OX40L and RANK, respectively. Signal 
3 induces release of the polarising signals that promote the 
development of Th 1 or Th2 cells. Signal 3 also activates DC, 
resulting in increased expression of costimulatory molecules, i.e 
signal 2. 
(Adapted from Kapsenberg, 2003) 
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Fig. 1.2: 
Summary of some of the costimulatory molecules known to be 
important in T cell activation 
The TCR-MHC-peptide complex interaction induces expression of 
CD154, 0X40, RANKL (as well as CTLA-4, ICOS and PD-i). 
CD 154 expression peaks between 6 and 8 hours, while 0X40 and 
RANKL expression peak 2-3 days after initial T cell activation. 
CD40 is expressed constitutively at low levels on DC, and becomes 
upregulated early after DC activation. OX40L is induced (and 
CD80 and CD86 are upregulated) through CD40 ligation, while 
RANK has been found to be expressed on mature DC. Expression 
of these three receptor-ligand pairs are investigated in detail in this 
thesis. 
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Fig. 1.3: 
The role of CD40-CD 154 in T cell function 
The CD40-CD 154 interaction is involved in DC migration to 
lymphoid organs 0. and DC maturation, allowing effective T cell 
activation. CD40 signalling induces up-regulation of a number of 
costimulatory molecules, such as CD80. CD86. OX40L. enhancing 
DC survival in the lymph node 0. Ligation of these niolecules by 
their receptors on T cells results in effective T cell activation and 
survival 0. inducing T cell migration into B cell follicles. Once the 
T cell has become activated. CD40-CD 154 is important in B-T cell 
interactions, allowing isotype class switching 0. Finally, CD40-
CD 154 allows entry of effector T cells into peripheral sites. e.g. 
CD40 expression in the CNS is required for entry of T cells into the 
CNS 0. However, it does not appear to play a role in memory 
formation and is not required for reactivation of memory cells. 
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Fig. 1.4: 
The role of OX4OL-0X40 in T cell function 
0X40 is up-regulated after TCR Ag recognition in lymphoid 
organs. Binding to OX40L on activated DC induces expression of 
survival molecules in effector T cells 0. 0X4() ligation also allows 
effective entry into the memory T cell pool 0. Binding of OX40L 
on B cells may play a role in induction of Th2 type responses 0. 
Finally, OX40L-0X40 is involved in entry of effector T cell into 

peripheral sites 0. and reactivation of memory cells 0. 
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Fig. 1.5: 
Possible signalling pathways coupling TLR4 and T1,119 to DC 
activation 
TLR-4 can signal via both MyD88 and TRIF. TIRAP couples 
MyD88 to TLR4. MyD88 and TRIF promote activation of NFiB 
and MAPKs, allowing transcription of inflammatory cytokines, 
such as IL-6, IL-12 and TNF-a. TRIF also activates IRF3, leading 
to synthesis of type I IFN. TLR9 signals exclusively through 
MyD88, which does not activate IRF3, but nevertheless results in 
WN-13 release (a type I IFN). IFN- P then signals in autocrine and 
paracrine manner, resulting in increased upregulation of CD80. 
CD86 and CD40. 
(Adapted from Reis e Sousa. 2004) 
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2. CHAPTER 2 - Materials and Methods 

2.1. Mice 

All mice used were on the C57BL/6 (H2b)  background and were bred at the Institute 

of Infection and Immunology Research, University of Edinburgh. C57BL/6 (136), 

CD40' (Kawabe et al., 1994), CD154' (Xii et al., 1994), jiMT (Kitamura and 

Rajewsky, 1992) and B6 Ly5.1 congenic mice were used extensively. OT-Il mice 

expressing an Abrestricted,  transgenic pOVA-reactive TCR (Barnden et al., 1998) 

were crossed with the respective strains to generate OT-IIxCD40' mice, OT-

IIxCD154 1  mice, and OT-llxLy5.1 mice. Sex-matched, 6-8 week old mice were 

used for all experiments. 

2.2. Reagents 

2.2.1. Antigens 

Peptides (ovalbumin 323-339, hereafter referred to as pOVA, and myelin 

oligodendrocyte glycoprotein peptide 35-55, hereafter referred to as pMOG) were 

synthesized by the Advanced Biotechnology Centre, Imperial College London, using 

standard F moc chemistry. 

2.2.2. Antibodies 

The OX-86 hybridoma that produces anti-0X40 and the MAC-49 isotype control 

hybridoma (anti-phytochrome, rat IgGI isotype), as well as the MAC-i control 

hybridoma (anti-glycoprotein of Chlamydomonas reinhardii, rat IgG2a isotype), 

were obtained from the European Collection of Cell Culture (ECACC, Wiltshire, 

GB). The FGK-45 hybridoma that produces anti-CD40 was kindly provided by Prof 

D. Gray, IIIR, Edinburgh. Antibodies were purified using an AktaPrime (Amersham 

Biosciences) automated chromatography system using a High Trap protein G HP 

(Amersham Biosciences). 



2.2.3.Adjuvants 

Complete Freud's Adjuvant (CFA) and LPS were obtained from Sigma (Poole, GB). 

CpG1668 (TCCATGACGTTCCTGATGCT) was produced by MWG. 

Various doses of LPS have previously been shown to induce immunity (Khoruts et 

al., 1998; Maxwell et al., 2002), and 30p.g LPS was tested here, found to work 

efficiently to prevent tolerance, and thus used in subsequent experiments to induce 

immunity. 

5.tg CpG has been used by others to induce immunity (Vicari et al., 2002), and was 

thus initially tested in the system used here. When it was unsuccessful in inducing 

immunity, higher doses (lOp.g and 30p.g) were also tested, but similarly did not 

induce immunity. 

2.2.4. Tissue culture media 

The following media were used unless indicated otherwise. 

Tissue wash medium: RPM! 1640 medium containing 2mM L-Glutamine, 5x10 5  M 

2-ME, 100U/ml penicillin, lOOp.g/ml streptomycin (all from Gibco, Life 

Technologies, Paisley, UK Gibco, hereafter referred to as Gibco). 

Tissue culture medium: X-VIV0I5 serum free medium (BioWhittaker, Maidenhead, 

GB) supplemented with 2mM L-glutamine and 5x10 5  M 2-ME. 

2.2.5. General reagents 

MACS buffer: Hanks medium, supplemented with 5x10 5  M 2-ME, 100g/ml 

penicillin, 100 U/mI streptomycin, and 2% FCS (all from Gibco). 

FACS buffer: PBS supplemented with 2% FCS (Gibco) and 0.05% NaN3. 

The PBS used for i.v. administration of cells and antigens was calcium- and 

magnesium-free sterile PBS (Gibco). 

PTX: Pertussis toxin for induction of EAE was obtained from the ECACC, and 

diluted in PBS (above) for i.p. administration. 



2.3. Cell purification 

2.3.1. Isolation of naïve CD4 T cells 

Peripheral lymph nodes and spleens were removed, disaggregated, and resuspended 

in MACS buffer. Cells were depleted of red blood cells (RBC) using RBC lysis 

buffer (Sigma). CD4 T cells were isolated by positive selection using CD4-

conjugated MACS beads and MS or LS columns (all Miltenyi Biotec), according to 

the manufacturer's instructions. Cells were incubated at 90111 MACS buffer/10 7  total 

cells, with 10il beads/10 7  total cells for 15min at 4°C, before purification on a 

MACS magnet (Vario MACS, Miltenyi Biotec). A consistent purity of >95% CD4 

was confirmed by flow cytometry. 

2.3.2. Isolation of splenic DC for phenotyping 

Spleens were removed and experimental groups of mice were pooled (2 mice/group 

for each time point). Spleens were disaggregated, and resuspended in MACS buffer. 

Cells were depleted of RBC using RBC lysis buffer. CD11c cells were isolated from 

the spleen by positive selection using anti-CD1Ic-conjugated MACS beads (Miltenyi 

Biotec), according to the manufacturer's instructions (with a consistent purity of 

>80% CD11c as confirmed by flow cytometry). Cells were incubated at 4001i1 

MACS buffer/10 8  total cells, with 100111 beads/10 8  total cells, for l5min at 4°C, 

before purification on a MACS magnet using MS or LS columns. CD1 ic-purified 

cells were resuspended in FACS buffer for FACS analysis. 

2.3.3. Isolation of splenic DC from naïve mice 

Splenic DC were isolated from naive B6 or CD40' mice by initial digestion of. 

spleens in lOmi RPMI without serum, supplemented with 2.4mg/nil collagenase D 

(Worthington Biochemical) and lmg/ml DNAse (Sigma, final concentrations) for 30 

minutes at 37°C. Cells were depleted of RBC using RBC lysis buffer. CDI lc cells 

were then isolated by positive selection using anti-CD 1 Ic-conjugated MACS beads 

as described in section 2.3.2. CDI 1c cells were then resuspended in wash medium 

for further experiments. 
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Because the simple process of DC purification can induce DC maturationlactivation, 

and upregulation of costimulatory molecules, different purification methods were 

tested, to ensure the above method was comparable to others with respect to the 

levels of costimulatory molecules found on DC from naïve mice after purification. 

Alternatively, DC were isolated using an adaptation of a previously described 

protocol (Vremec et al., 1992). Spleens were divided into two groups, and one group 

was digested as above, while the other group was digested as above in the presence 

of 100U/ml polymyxin B (Sigma). EDTA (Imi, 0.IM, pH 7.2) was added to both 

groups for the last 5 minutes of incubation, The cells were removed from the digest 

by centrifugation, prior to depletion of RBC using RBC lysis buffer, and the pellet 

was resuspended 4 ml of wash medium, and underlayed with I .077g/cm 3  NycoPrep 

(Axis-Shield diagnostics), and a low density fraction was collected after 

centrifugation at 610xg for 15 minutes at 4°C. This fraction was incubated for 30 

minutes at 4°C with anti-CD3 (KT-3), anti-Thy.1 (30-1412) and anti-Gri (RB68C5). 

These are all antibodies raised in rats, and DC were purified by depletion of 

antibody-bound cells using anti-rat Ig-coupied dynabeads (5:1 ratio) (Dynal, Milan 

Analytica). Dynabead purification was carried out under continuous rotation for 20 

minutes at 4°C. The resulting population was >80% CDI 1c as confirmed by flow 

cytometry. Expression of costimulatory molecules on DC was analysed by FACS 

analyses as described in section 2.7.1. 

2.3.4. Preparation of bone marrow-derived DC 

"Myeioid-like" DC were obtained using an adaptation of a previously used protocol 

(Inaba et al., 1992). Bone marrow cells were flushed from femurs and tibias, depleted 

of RBC using RBC lysis buffer and cultured in 24-well flat-bottom plates at 3.75x l0 

cells/mi, in imi wash medium/well (supplemented with 1% normal mouse serum, 

Gibco) and 5% GM-CSF supernatant (GM-CSF supernatant from cell cultures of an 

GMCSF-producing cell line; X-86, kindly provided by Dr A. Knight, IIIR, 

Edinburgh). The cells are washed with this medium at day 3 and day 6, before 

collection at day 7 for further experiments. The resulting population was >75% 

CD1 lc+ as confirmed by FACS analysis as described in section 2.7. 1. 
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To test the ability of CpG1668  to activate DC, DC were incubated with 6jig/ml 

CpG1668 overnight before FACS analysis as described in section 2.7.1. 

2.4. In vivo antigen administration 

2.4.1. Immunisations 

Mice received 20j.tg pOVA or 100ig pMOG emulsified in CFA (Sigma, Poole, GB) 

s.c. in the hind legs, on day 0. Varying doses of pOVA (ranging from 20-100.tg) 

were originally tested, and 20p.g found to give efficient recall responses upon ex vivo 

recall challenge. Similarly, varying doses of pMOG had previously been tested in the 

lab, and lOOjig gave optimal recall responses in the system used. After ten days, 

spleens and draining inguinal and popliteal LN were removed, disaggregated and 

used as a source of primed lymphoid populations. Cells were cultured as described in 

section 2.5.1. 

2.4.2. Induction of tolerance with soluble peptides 

For experiments investigating the induction of T cell tolerance, mice received a 

single i.v. dose of 500p.g pOVA or pMOG on day -7, or 3 doses of 200ig pOVA or 

pMOG on days -8, -6 and -4. Some mice then received pOVA/CFA or pMOG/CFA 

as described above. Three doses of 200jig peptide administered i.p. two days apart 

had previously been established in the lab to successfully induce tolerance. Vary.ing 

doses of peptide to induce tolerance i.v. were tested (ranging from 200ig-500jig), 

and 500.tg were required to successfully induce tolerance after adoptive transfer of 

Ag-specific T cells. In order to keep the dose of peptide consistent, 500 jig were used 

in subsequent experiments to induce tolerance whether or not the adoptive transfer 

system was used. This dose has also been used by others to induce tolerance after 

adoptive transfer of Ag-specific T cells (Bansal-Pakala et al., 2001). 
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2.4.3. Administration of LPS to induce T cell immunity 

For experiments using LPS as an adjuvant to prevent tolerance induction, mice 

received 500.tg pOVA and 30p.g LPS in PBS i.v. 

2.4.4. Administration of antibodies to prevent tolerance 
induction 

Mice received 200j.tg of anti-CD40, anti-0X40, MAC-I, or MAC49 as indicated on 

day -7 (at the same time as soluble peptide), and in some cases a second dose on day 

-5 as indicated. Different doses (ranging from 5Oig-200.Lg) were tested, and 200ig 

was found to have the most profound effects in vivo. 

24.5. In vivo administration of antigen-loaded DC 

DC were purified (in the case of splenic DC) or grown (in the case of bm-derived 

DC) from naïve B6 or CD40' mice as described above. DC were resuspended at 

2.5x106  cells/ml in wash medium supplemented with 1% normal mouse serum and 

pulsed with either pOVA or pMOG (53tg/ml, 1:75 of 4mg/ml stock solution; this 

concentration had been optimised by Georgia Perona Wright) as indicated, in the 

presence of LPS (0.1 j.tg/ml, Sigma) for 2 hours. 5x10 5  DC were injected i.v. into B6 

recipients on day 0. Varying numbers of DC (5x10 5-2x106) were originally tested, 

and 5x105  DC gave efficient recall responses. Some mice also received 200.tg anti-

0X40 or isotype control antibody MAC 49 on the day of DC injection and 2 days 

later, as indicated. 

2.5. In vitro assessment of T cell function 

2.5.1. Recall proliferation assays 

Lymphoid cell suspensions were cultured in 96-well flat-bottom microtitre plates 

(Becton Dickinson) at 6x10 5  LN cells/well or 8x10 5  spleen cells/well using tissue 

culture medium. Cultures were stimulated with a dose range of pOVA or pMOG for 

48 hours prior to addition of tritiated thymidine (3H-dThd, Amersham) at 0.5 
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p.Ci/well. The dose ranges (ranging from pMOG: 0.03-30!iM, or —0.06-60igIml, 

pOVA: 0.001-100l.LM or —0.0018-180jig/ml) and cell numbers used were previously 

optimised in the lab. After a further 18 hours, cultures were harvested and dThd 

incorporation measured using a liquid scintillation 13-counter (Wallac). Results are 

expressed as mean cpm of triplicate cultures. 

2.5.2. Cytokines production assays (ELISA) 

Production of some cytokines is difficult to detect by standard ELISA techniques, 

and cell-based ELISAs were thus adapted from a previously described protocol 

(Beech et al., 1997) in order to quantify Ag-specific production of cytokines. 

Cultures were set up with Ag as described above for T cell proliferation assays. After 

48 hours, lOOjJ.l aliquots of cells were removed from each well, and tested for 

production of IL-2, IL-4, and IFNy by ELISA. Miérotitre plates (NUNC) were coated 

with the cytokine-specific capture antibodies JES6-1Al2 (anti-IL-2), IIBI1 (anti-IL-

4) or R4-6A2 (anti-IFNy) using bicarbonate coating buffer (pH 9.6) at 4°C overnight 

prior to transfer of cells. After a further 24 hours culture, specifically bound 

cytokines were quantified using biotinylated secondary antibodies E56-5H4 (anti-IL-

2), BVD6-24G2 (anti-IL-4) or XMGI .2 (anti-IFNy) followed by extravidin 

peroxidase (Sigma). Cytokines were detected using phosphate citrate buffer, with 

added hydrogen peroxide and 3,3',5,5'-tetramethyl-benzidine (TMB) (both Sigma). 

Reactions were stopped using 2M sulphuric acid. All cytokines were quantified with 

standard curves obtained with known amounts of recombinant mouse cytokines. All 

monoclonal antibodies and recombinant mouse cytokine standards were purchased 

from BD PharMingen. The lower and upper limits of detections were as follows: IL-

2 and IL-4: 4-1000pgIml, IL-lO and IFN-y: 0.4-10ng/mI. 

2.5.3. In vitro assays of primary T cell activation 

Ag-loaded DC were prepared by incubation with 53tg/ml pOVA (1:75 of 4mg/ml 

stock solution) in wash medium supplemented with I % normal mouse serum at 37°C 

for 2 hours in the presence of 0.1 p.g/ml LPS (Sigma). Naïve CD4-purified UT- 

219 



llxCD40 T cells were labelled with 51.tM CFSE (Molecular Probes). Cells were 

labelled at 107/ml in wash medium for 15 minutes at 37°C (continuous shaking). 

CFSE was quenched with wash medium supplemented with 5% FCS (Gibco), prior 

to culture with pOVA-loaded DC (4x10 4  T cells + 4xI03  DC, 8xIO2  DC, or 4x102  

DC/well) in 96-well flat-bottom plates (Becton Dickinson) using wash medium 

supplemented with 5% FCS. These numbers of T cells with these ranges of DC 

numbers gave good T cell proliferation in preliminary experiments testing the ability 

of DC to activate transgenic T cells in vitro (see Fig. 5.2). Cells were harvested for 

FACS analysis at various time-points. 

2.6. Adoptive transfer model for T cell tolerance or 

immunity 

In order to phenotype T cells during the induction of tolerance or immunity, CD4 T 

cells were purified as described above from OT-Il, OT-IIxLy5.1 or OT-IIxCDI54' 

mice as indicated. 2-4x106  cells/mouse were transferred i.v. into syngeneic, naïve 

recipients on day -1. In some cases, CD4-purified T cells were fluorescently labelled 

with CFSE (see section 2.5.3) prior to adoptive transfer. 

Mice received i.v. injections of 200p1 PBS, 50Otg pOVA in PBS, 50Otg 

pOVA+30p.g LPS in PBS, or 500tg pOVA+30jig CpG one day after adoptive 

transfer of pOVA-reactive T cells, i.e. day 0. In some experiments, some mice also 

received 200tg anti-CD40 or 200 jig MAC-I as indicated on the same day. 

Mice were sacrificed at various time-points after Ag-administration, and 

splenic DC were isolated for phenotyping as described in section 2.3.4. The 

flowthrough of the purification procedure contained the transferred T cells, and their 

phenotype was assessed as described below. 
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2.7. Phenotypic analysis of T cell and DC populations 

after induction of tolerance or immunity 

2.7.1. Flow cytometric analysis 

Samples were washed with FACS buffer prior to incubations with antibodies. All 

samples were incubated with the 2.4.G2 anti-Fc receptor antibody to prevent non-

specific binding via Fc receptors, prior to incubations with other antibodies. 

Antibodies were diluted in FACS buffer supplemented with anti-Fc receptor 

antibody (final concentration of 2OIg/ml). FACS buffer used for staining of DC was 

also supplemented with 2% normal rat serum (Caltag) and 2% normal goat serum 

(Caltag) to prevent non-specific binding. All samples were collected on a Becton 

Dickinson FACScan (Mountain View, CA) flow cytometer and analysed using 

FlowJo Software (TreeStar, USA). All antibodies were obtained from BD 

Pharmingen (Oxford, GB) unless stated otherwise. 

DC purity was assessed with FITC-conjugated anti-CD 1 ic. Costimulatory molecules 

on DC were identified using biotinylated primary antibodies specific for CD80, 

CD86, CD40, OX40L or RANK (R&D systems), followed by streptavidin-APC 

conjugate. The following biotinylated isotype control antibodies were used: IgG2a, 

IgG2b and IgGi. 

In experiments involving transfer of OT-Il cells, the T cells were identified using 

biotinylated anti-V5 followed by APC- or FITC-conjugated streptavidin and PE-

conjugated anti-Vct2. Transferred OT-IIxLy5. 1 cells were identified using APC-

conjugated anti-CD4 together with FITC-conjugated anti-Ly5.1. In the case of 

transfer of previously CFSE-labelled cells, identification used biotinylated anti-Ly5. 1 

followed by APC-conjugated streptavidin and PE-conjugated CD4. T cell activation 

was assessed using biotinylated anti-CD69, anti-0X40, or anti-RANKL (R&D 

Systems), all followed by APC-conjugated streptavidin. Control samples were 

stained with APC-conjugated streptavidin alone. Once CD154 reaches the cell 



surface,. it is rapidly cleaved off. Intracellular staining was thus carried out to 

investigate CD 154 expression (see below). 

Intracellular cytokine production was measured ex vivo in splenocytes by flow 

cytrometric staining as described (Openshaw et al., 1995). Briefly, splenocytes (at 

5x106/ml) were stimulated with PMAlionomycin (Sigma, 1IgIml and l5ng/ml final 

concentration) in the presence of GolgiStop (diluted 1:1000) (BD Pharmingen) for 4 

hours at 37°C, before staining with biotinylated anti-V35 followed by APC-

conjugated streptavidin, and FITC-conjugated anti-Va2, or APC-conjugated anti-

CD4 together with FITC-conjugated anti-Ly5.1, as indicated. Cells were then fixed 

for 20 minutes on ice, washed with cytoperm wash buffer (BD Pharmingen) and 

stained with PE-conjugated anti-IL-2, anti-IL-4, anti-IL-lO or anti-IFNy for 30 

minutes on ice. To look for CD 154 expression, cells were first stained with APC-

conjugated anti-CD4 together with FITC-conjugated anti-Ly5. 1, before fixing, and 

stained with biotinylated anti-CD 154, followed by APC-conj ugated streptavidin, 

both diluted in Cytoperm wash buffer (BD Pharmingen). 

2.7.2. Immunofluorescence 

For experiments analysing costimulatory molecules by immunofluorescence, purified 

CD4 Ly5.1 OT-Il T cells were fluorescently labelled using Cell Tracker Orange 

CMTMR (CT orange, Molecular Probes). Since cells stained with CT orange stay 

fluorescent for up to 3 cell divisions according to the manufacturer, compared to 

CFSE labelled cells, which loose fluoerescence upon cell division, labelling the cells 

using CT orange was more likely to allow tracking of T cells using 

immunofluorescence microscopy. Cells were labelled at 10 7  cells/ml with 25..tM CT 

orange for 15 minutes at 37°C, before adoptive transfer into naïve B6 recipients on 

day -1. As before, mice received SOOjig pOVA in PBS, 500ig pOVA+30g LPS in 

PBS, or PBS alone on day 0, Mice were sacrificed 12 and 36 hours after 

administration of Ag. FACS analysis of spleen cells was carried out as described in 

section 2.7.1. Spleen tissue sections were also snap-frozen in liquid nitrogen, and 5- 

67 



.tm cryosections were cut on a cryostat (Meica microsystems). Sections were dried 

overright, prior to fixing for 10 minutes in cold acetone, and rehydration for 15 

minutes in PBS. Sections were kept in the dark. All washes were carried out for 2 x 3 

minutes using TBST buffer (0.05M Tris-Hcl pH 7.6, 0.3M NaCI, .01% Tween 20), 

and all incubations were carried out at room temperature in a dark, humidified 

staining chamber. 

Sections were blocked with 3% H202 for 5 minutes, and blocked with avidin-biotin-

blocking reagents (Vector) according to the manufacturers instructions for 15 

minutes each. Sections were then blocked and stained using the DAKO Catalysed 

Signal Amplification (CSA) kit. The kit was used according to the manufacturers 

instructions, but adapted in the final steps for immunofluorescence. Briefly, sections 

were blocked with protein block (DAKO kit) for 15 minutes, before addition of 

primary biotinylated antibody for 15 minutes (CD69, CD 154, 0X40 or OX40L, all 

from Pharmingen as used above for FACS analysis, used at a 1:100 dilution). 

Sections were then incubated with streptavidin-biotin-complex from the DAKO kit 

for 15 minutes, before incubation with amplification reagent for l5minutes. Finally, 

the sections were ihcubated with streptavidin-conjugated Alexa Fluoro 647 

(Molecular Probes), before two final 3-minute washes in .  PBS, and mounting with 

Vectashield mounting medium for fluorescence (Vector). Pictures were taken with 

3CCD colour vision camera (controlled by Hamamatsu and Orbit controllers) and 

evaluated with Openlab version 3.0.9 digital imaging programme (Improvision, 

Warwick, UK). This work was carried out in collaboration with Dr Paul Garside and 

Angela Grierson (Department of Immunology, Western Infirmary, University of 

Glasgow). 

2.8. Induction and assessment of EAE 

EAE was induced with s.c. injection of 100.Lg p35-55 in a total of lOOjil CFA 

containing 0.5 mg heat-killed Mycobacterium tuberculosis (50 tl into each hind leg). 

Mice also received 200ng pertussis toxin (ECACC) i.p. in 0.5 ml PBS on the same 



day and 2 days later. This protocol has previously been shown to induce EAE in H2b 

mice (Mendel et al., 1995). Clinical signs of EAE were assessed daily using the 

following scoring index: 0, no signs; 1, flaccid tail: 2, impaired righting reflex andlor 

impaired gait; 3, partial hind leg paralysis; 4, total hind leg paralysis; 5, hind and fore 

leg paralysis; 6, moribound or dead. Differences in total disease burden between 

groups were determined using the Mann-Whitney U test. This statistical test is 

accepted for comparison of data obtained from EAE experiments, and consistenly 

used in the scientific community. A different test, namely calculating the area under 

the curve (of EAE scores plotted against days for each experimental group) and using 

the Kruskal-Wallis test, another rank sum test similar to the Mann-Whitney U test, 

can also be used, and may arguably be more accurate. However, the Mann-Whitney 

U test is the standard test used, and we thus chose to analyse out data using this 

widely accepted statistical test. 

2.9. Generation of bone marrow-chimeric mice 

Recipient mice received 1150 cGy of ny-irradiation via a cesium isotope ( 127Cs) 

source. One day later, recipients received 5x10 6  donor bone marrow cells. Bone 

marrow cells were flushed from femurs and tibias of CD40' mice, depleted of RBC 

using RBC lysis buffer, and depleted of T cells by labelling with a biotinylated anti-

Thyl (clone T24) before incubation with streptavidin-microbeads (Miltenyi Biotec) 

and negative selection with a MACS CS magnetic column. Chimeras were left to 

fully reconstitute their peripheral lymphoid system over at least 8 weeks before use 

in EAE experiments. 

2.10. Generation of T cell lines 

pOVA and pMOG-specific T cell lines (TCL) were generated from B6, CD40' mice 

and CD 154" mice. Mice were immunised with 20tg pOVA/CFA or 100ig 

pMOG/CFA, and DLN were taken 10 days later. TCL were then generated by in 

vitro stimulation of LNC with pOVA or pMOG, and were maintained using a 



standard 7-day restimulation/expansion cycle. TCL were restimulated for 3 days with 

pOVA or pMOG (1st  10tM, then I tM peptide) in the presence of irradiated (30 Gy) 

syngeneic B6 spleen APC. T cell blasts were isolated using a NycoPrep 1.077 animal 

density gradient (Nycomed Pharma, Oslo, Norway) and expanded in wash medium 

supplemented with 5% FCS and 5% Con A-activated rat spleen supernatant as a 

source of T cell growth factors. 

For proliferation and cytokine production assays, T cells were cultured in 96-well 

flat-bottom microtitre plates (Becton Dickinson) at 4x10 4  T cells/well with 5x10 5  

APC/well using tissue culture medium. Both assays were carried out as described in 

sections 2.5.1 and 2.5.2. This method had been optimised prior to my arrival in the 

lab. 
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3. CHAPTER 3 - Exogenous ligation of either CD40 or 

0X40 overcomes a tolerogenic signal 

3.1. Introduction 

Conflicting evidence exists with respect to the requirement of CD154 in the 

induction of T cell immunity as well as T cell tolerance. Early reports showed that 

CD154 T cells fail to prime in vivo, and that CD154 is needed for induction of EAE 

(Grewal et al., 1996; Grewal et al., 1995). More recently, it has been shown that 

CD154' T cells are unable to sustain a response in vivo, and are defective in Thi 

development in vitro (Howiand et al., 2000). Regarding tolerance induction, it has 

been reported that mucosal tolerance via the oral route requires the CD40-CD 154 

interaction (Kweon et al., 1.999). Other groups however reported that CD154' mice 

could successfully be tolerised via i.v. administration of soluble peptide (Howland et 

al., 2000). 

Exogenous ligation of CD40 on APC through administration of agonistic anti-CD40 

monoclonal antibodies has been used extensively to activate APC in vitro (Caux et 

al., 1994; Celia et al., 1996) and in vivo (Chung et al., 2004). It has also been shown 

that administration of agonistic anti-CD40 abrogates tolerogenic presentation to both 

CD4 and CD8 T cells resulting in effective T cell immunity and autoimmune 

pathology (Bennett et al., 1998; Garza et al., 2000; Hawiger et al., 2001), or 

prevention of tolerance to tumours (Diehi et al., 1999; Grohmann et al., 2001; 

Sotomayor et al., 1999). However, others report that administration of agonistic 

CD40 does not prevent tolerance induction (Chung et al., 2004; Sun and Van 

Houten, 2002). One effect of CD40 ligation on APC is the up-regulation of OX40L 

on the surface of the APC (Fillatreau and Gray, 2003). Ligation of 0X40 (up-

regulated on T cells in response to TCR signalling) has been reported to lead to 

elevated T cell expression of survival factors such as Bc!-2 and Bcl-xL (Rogrs et al., 

2001). This chapter describes a series of experiments that tested the requirements for 
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CD 154 expression for tolerance induction, and investigated whether administration 

of agonistic anti-0X40 and anti-CD40 antibodies, prevented peptide-induced 

tolerance. The relevance of this approach was also tested in the disease setting of 

EAE. 

3.2. Approach 

Firstly, the ex vivo recall responses to administration of Ag in CFA (later employed 

to test the induction or prevention of T cell tolerance) were compared in CD40-

deficient, CD154-deficient mice and wild-type (136) mice. In order to induce 

systemic T cell tolerance, a high dose (50Oig) of Ag (either pMOG or pOVA) was 

administered i.v. One of the criteria used to define tolerance is unresponsiveness to 

administration of the Ag in adjuvant, which would normally result in successful T 

cell priming. Throughout this chapter, mice were tolerised by i.v. administration of 

Ag. Some groups of mice received the agonistic antibodies anti-0X40 and anti-

CD40 at the time of i.v. administration of soluble Ag, and two days later, a protocol 

which was adapted from other systems (Diehi et al., 1999; Sotomayor et al., 1999). 

In order to test whether exogenous ligation of CD40 or 0X40 prevented tolerance 

induction, mice were subsequently given Ag in CPA. Tolerance induction would lead 

to diminished proliferation and cytokine production. These responses would be intact 

if tolerance had been prevented. EAE was also used to test the relevance of the 

findings in an autoimmune disease setting. 

The experimental outline of this chapter is shown in Figure 3.1. 
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3.3. Comparison of primary responses in CD40 1 , CD1 54' 

and B6 mice 

Previous studies show that CD40' and CD154' mice are defective in Ag-specific T 

cell responses (Castigli et al., 1994; Grewal et al., 1995; Kawabe et al., 1994; Xu et 

al., 1994). Because the extent of T cell priming can be determined by the route of Ag 

administration and the choice of adjuvant, we compared priming of CD40t CD 154' 

and B6 mice using the Ag and adjuvant subsequently used throughout this series of 

experiments, namely pOVA in CFA and pMOG in CFA. CPA contains 

mycobacterial components that act through TLRs to induce a Th I type response in 

most experimental systems (Schnare et al., 2001). The CD40-CD154 interaction is 

important for the induction of a Thi type response, since ligation of CD40 increases 

IL-12 release by DC, which results in IFN-y production by T cells (Schulz et al., 

2000). The lack of CD 154 or CD40 could therefore have an effect on T cell priming 

using Ag in CFA. 

B6, CD154 and CD40' mice were immunised with pMOG/CFA. Ten days after 

immunisation with pMOG/CFA, cells of the DLN were examined for Ag-specific 

proliferative capacity and cytokine production. B6 mice showed high Ag-specific 

proliferation, high levels of IFN-y, and low levels of IL-4, indicative of a Thi 

response (Fig. 3.2). These results were also applicable to immunisation with 

pOVA/CFA (not shown). While CD40 deficiency led to decreased proliferative 

capacity, proliferation in CD154 mice was comparable to that seen in B6 mice. 

Cytokine production was also impaired differently in the knockouts compared to B6 

control mice (Fig. 3.2). DLN cells from CD40' mice failed to produce considerable 

amounts of IFN-y, but produced some IL-4. CD154 LN cells, on the other hand, 

produced little IFN-y, but large amounts of IL-4, corresponding to a Th2 phenotype 

(Fig. 3.2). 
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Although CD40' mice primed poorly, it was nevertheless possible to make TCL 

after p0 VA/CPA or pMOG/CFA immunisation using DLN from these mice. These 

TCL were assessed for Ag-specific cytokine production after several rounds of 

restimulation with syngeneic B6 APC. Similar to DLN cells from 'mice lacking 

CD 154, TCL cells from CD 154' mice produced little IFN-y, but considerable IL-4 

production, indicative of a Th2 phenotype (Fig. 3.3, even though the background 

levels for IL-4 production were high in both groups, there nevertheless was 

considerable Ag-specific IL-4 production in TCL from CD154' mice). TCL cells 

from CD40' mice, on the other hand, showed considerable IFN-y production after 

several rounds of stimulation, with little IL-4 production (Fig 3.3). This suggests that 

the lack of CD154 on T cells produced a stable Th2 phenotype. The deficits from 

initial priming in the absence of CD40, however, were overcome through 

restimulation in the presence of CD40 on B6 APC, allowing development of a Thi 

phenotype. 

B6 mice thus showed optimal T cell expansion, and displayed a Thi type profile, 

while CD154' mice showed almost optimal T cell expansion, displaying a stable 

Th2 type profile after Ag/CPA immunisation. CD40' mice had reduced T cell 

expansion, with a Th2 type profile, which can be converted to a Thi phenotype 

through restimulation with syngeneic B6 APC. 

3.4. Exogenous ligation of CD40 or 0X40 influences the 

cytokine response in CD1 54/  mice 

The lack of the CD40-CD 154 interaction thus shifts the cytokine response towards a 

Th2 profile. The 0X40-OX40L interaction has been implicated to be important for 

the induction of Th2 type responses (Flynn et al., 1998; Linton et al., 2003). 

Agonistic antibodies to CD40 and 0X40 were used to test if exogenous ligation of 

these two molecules would influence the cytokine profile in CD154 4  mice. Mice 

were immunised with pMOG/CFA on day 0, and some groups received anti-CD40 or 

anti-0X40 antibodies at the same time, and two days later. Ligation of CD40 greatly 
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reduced IL-4 levels relative to those seen in CD154' control mice, but had no 

significant effect on IFN-y levels. Ligation of 0X40 resulted in increased levels of 

both IL-4 and IFN-'y (Fig. 3.4). Isotype control antibodies for anti-CD40 and anti-

0X40 were not available at the time of these experiments. However, administration 

of isotype controls in later experiments did not have the effects seen with 

administration of anti-CD40 or anti-0X40. Exogenous ligation of CD40 thus 

appeared to shut off IL-4 production in CD154' mice without an increase in IFN-y 

production, while exogenous ligation of 0X40 greatly enhanced both IL-4 and WN-1 

production. This experiments remains to be repeated, but indicated a differential 

effect of anti-CD40 and anti-0X40 on cytokine production. 

3.5. CD154 is not required for peptide-induced tolerance 

Previous reports give conflicting results with respect to the importance of CD 154 

during peptide-induced tolerance induction (Kweon et al.,.1999), (Howland et al., 

2000). In order to address this question in the experimental system used here, mice 

received one dose of pOVA i.v. or 3 doses of pMOG i.p., two tolerisation protocols, 

which have both been used extensively by our laboratory and others to effectively 

induce T cell tolerance. 7 days after administration of soluble peptide, mice received 

the same peptide in CFA. Unresponsiveness to this rechallenge with Ag in adjuvant 

would indicate successful tolerance induction. Since profound effects on proliferative 

capacity were observed after i.v. or i.p. administration of both pOVA and pMOG 

(Fig. 3.5), tolerance was induced successfully in the absence of CD 154. CD154 was 

thus not required for peptide-induced tolerance to pOVA or pMOG. 

3.6. Peptide-induced tolerance diminishes cytokine 

responses in both B6 and CD154 mice 

To further investigate the effects of i.v. administration of pOVA on T cell effector 

function, pOVA-specific cytokine ELISAs were carried out 10 days after in vivo 

rechallenge with pOVA in CFA. Both the Thi type response in B6 mice, and the Th2 

75 



type response in CD154' mice were ablated after administration of soluble pOVA 

(Fig. 3.6). 

3.7. Investigating the roles of CD40 and 0X40 in peptide-

induced tolerance 

Exogenous ligation of CD40 activates APC in vivo, and has previously been reported 

to result in effective immunity against tumours (Diehl et al., 1999; Grohmann et al., 

2001; Sotomayor et al., 1999). Based on the central hypothesis, administration of 

agonistic anti-CD40 should also prevent tolerance induction by administration of 

soluble peptide. Similarly, if agonistic anti-CD40 prevents tolerance through up-

regulation of OX40L on DC, which then binds to 0X40 on activated T cells, 

exogenous ligation of 0X40 should prevent peptide-induced tolerance. In order to 

elucidate the importance of the CD40-CD154 and OX40L-0X40 interactions in the 

experimental system used here, the ability of agonistic anti-CD40 and anti-0X40 to 

prevent induction of tolerance was investigated. 

Since both i.v. and i.p. administration of Ag resulted in tolerance induction, the 

protocol chosen to use in subsequent experiment was i.v. administration of Ag, 

which only required a single dose of 500.tg pOVA, rather than three doses of 200ig 

pOVA. 

3.7.1. Exogenous ligation of CD40 or 0X40 does not convert 
a tolerogenic signal into an immunogenic one 

To test whether administration of agonistic anti-0X40 and anti-CD40 could convert 

tolerance into immunity in the experimental system used, B6 or CD154 mice 

received 200jig of anti-CD40, anti-0X40 or isotype control antibody on the same 

day as i.v. administration of 500ig pOVA and a second dose of antibody two days 

later. Initially, pOVA was not given in CFA at day 7. Instead, ex vivo recall 

responses to a dose range of pOVA were examined 7 days after Ag administration, to 
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test whether administration of these antibodies could result in effective T cell 

priming. Administration of pOVA alone did not result in effective recall responses, 

and neither anti-CD40, nor anti-0X40 administration resulted in effective T cell 

priming in B6 or CD154' mice (Fig. 3.7). 

3.7.2. Exogenous ligation of CD40 or 0X40 prevents 
tolerance induction in B6 and CD1 54' mice 

Although administration of anti-CD40 or anti-0X40 did not result in T cell priming, 

it was possible that administration of these antibodies nevertheless allowed the T 

cells to maintain responsiveness to subsequent in vivo challenge of Ag in adjuvant. 

B6 or CD154' mice therefore received 500tg pOVA i.v. at day -7, with or without 

anti-CD40, anti-0X40 or isotype control antibodies on the same day and two days 

later, followed by administration of 20jig pOVA/CFA on day 0 and examination of 

ex vivo recall responses to a dose range of pOVA on day 10. Ligation of CD40 and 

0X40 in B6 and CD40 in CD154 mice increasedproliferative responses to levels 

comparable to non-tolerised controls, while in CD 154' mice, ligation of 0X40 

further increased the proliferative response (Fig. 3.8). Administration of isotype 

control antibodies did not have this effect. This shows that although ligation of CD40 

or 0X40 did not result in effective T cell priming, it did prevent tolerisation of the T 

cells in bothB6 and CD154' mice. 

3.7.3. Exogenous ligation of CD40 or 0X40 partially prevents 
tolerance induction in the absence of B cells 

Although DC are responsible for the initiation of primary T cell responses in vivo 

(Banchereau et al., 2000), B cells are important in the induction of effective T cell 

immunity. CD40 and 0X40 are both expressed on activated B cells (Banchereau et 

al., 1994; Croft, 2003), but the importance of this expression for successful T cell 

priming remains to be determined (A. Crawford, personal communication). If CD40 

and 0X40 on B cells do not play a role in the prevention of T cell tolerance, ligation 

of CD40 and 0X40 at the time of administration of soluble peptide in iMT mice, 

which lack B cells, should still result in restoration of effective proliferative 
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responses. j.tMT mice thus received 500.tg pOVA i.v. at day -7, with or without anti-

CD40, anti-0X40 or isotype control antibodies on the same day and two days later, 

followed by administration of 20p.g pOVAICFA on day 0 and examination of ex vivo 

recall responses to a dose range of pOVA on day 10. Peptide-induced tolerance to 

pOVA was successfully induced in jiMT mice, indicating that B cells do not play a 

significant role in the induction of tolerance to soluble peptide. Administration of 

both anti-CD40 and anti-0X40 partially prevented tolerance induction as evident 

after immunisation with pOVAICFA (Fig. 3.9), an effect not seen after 

administration of isotype control antibodies. Anti-CD40 and anti-0X40 are therefore 

most likely to act on DC and T cells respectively to prevent tolerance induction, but a 

role for B cells in restoring responsiveness cannot be totally excluded. 

3.8. Induction and prevention of tolerance to EAE 

EAE is a mouse model for multiple sclerosis, and can be induced experimentally in 

mice in various ways (Bhardwaj et al., 1994; Sakai et al., 1988; Zamvil et al). Here, 

EAE was induced in H2b  mice by immunisation with pMOG in CFA. The activation 

of autoreactive CD4 T cells of the ThI functional phenotype after immunisation 

results in induction of EAE, characterised by a paralysis, which typically peaks 

around 2 weeks after immunisation with Ag. By four weeks after Ag administration 

the mice have recovered from the disease. 

To investigate whether i.v. administration of Ag could induce T cell tolerance and 

prevent the induction of EAE, mice received a single dose of 500ig pMOG 7 days 

prior to the induction of EAE. This approach resulted in tolerance and protection 

from EAE (Fig. 3.10). 



3.8.1. Exogenous ligation of 0X40 prevents tolerance 
induction to EAE in 136 mice 

The importance of the CD40-CD 154 interaction in EAE is well-documented 

(Gemtse et al., 1996; Grewal et al., 1996; Samoilova et al., 1997), while the 

importance of the 0X40-OX40L interaction has more recently been described to be 

relevant for development of clinical symptoms in EAE (Ndhlovu et al., 2001; Nohara 

et al., 2001; Weinberg et al., 1999). Since the present study showed that 

administration of anti-0X40 could prevent tolerance induction to a model Ag 

(pOVA), this approach was extended into the EAE setting. 200j.lg of anti-0X40 or 

isotype control antibody was administered i.p. at the time of i.v. administration of 

pMOG (day —7) and two days later. On day 0, EAE was induced by administration of 

pMOG in CPA, and i.p. injections of PTX on days 0 and 2. This experiment was 

carried out once. These preliminary results showed prevention of tolerance induction 

by administration of anti-0X40, with mice developing clinical signs of EAE similar 

to those seen in non-tolerised control mice (Fig. 3.10). 

3.8.2. Exogenous ligation of 0X40 in CD40-deficient mice 
does not lead to induction of EAE 

CD40' mice do not develop clinical signs of EAE (Becher et al., 2001). Since 

ligation of 0X40 results in increased number of Ag-specific T cells, and an increased 

memory T cell population (Gramaglia et al., 2000), we wanted to test whether 

administration of anti-0X40 could overcome the lack of CD154 signalling, and lead 

to priming of self-reactive T cells in CD40' mice, resulting in induction of EAR 

200ig anti-0X40 or isotype control antibody was given to CD40-deficient mice at 

the time of EAE induction, and two days later. However, administration of anti-

0X40 did not restore the induction of EAE (Fig. 3.11). 

3.8.3. CD40 expression on bone marrow-derived cells is 
required for typical EAE disease progression 

Previous reports suggested that CD40 expression in the CNS is of critical importance 

for development of clinical signs of EAE (Becher et al., 2001). Administration of 
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anti-0X40 in CD40' mice did not restore the induction of EAE, which was 

potentially due to the lack of CD40 expression in the CNS. Bone marrow chimeras, 

which lacked expression of CD40 on all bone marrow-derived cells, but not on any 

other cells in the body, were produced, and allowed to reconstitute for 8 weeks, 

before induction of EAE. The absence of CD40 on bm-derived cells was confirmed 

by FACS analysis. The lack of CD40 expression on bone marrow-derived cells 

resulted in greatly decreased severity of disease compared to B6 controls. 

Nevertheless, these mice did develop some signs of disease, in contrast to CD40' 

mice, where the global lack of CD40 totally prevented EAE (Fig. 3.12). 



3.9. Summary 

This chapter investigated the requirement of CD154 on T cells for the induction of 

tolerance, and the potentialto prevent tolerance induction through the administration 

of agonistic antibodies to CD40 and 0X40. It was found that CD 154-deficient mice 

gave Ag-specific ex vivo recall responses, suggesting successful T cell priming upon 

immunisation with Ag. CD40' mice however failed to prime efficiently, shown by a 

considerable decrease in ex vivo recall responses. Immunisation of CD 1541  mice 

with Ag in an adjuvant known to induce a Thi type cytokine profile resulted in a Th2 

type cytokine profile. This Th2 profile could only be partially shifted to a Thi profile 

by exogenous ligation of CD40 at the time of Ag challenge (decreased IL-4 

production, but no increased WN-y production). Exogenous ligation of 0X40 at the 

time of immunisation greatly increased the production of both type I and type 2 

cytokines in CD154' mice. The results indicate a possible quantitative effect of 

0X40 ligation on the immune response, while CD40 ligation has a qualitative effect 

with respect to the cytokine profile observed. 

Intravenous administration of soluble peptide produced Ag-specific T cell 

unresponsiveness in the absence of CD 154 signalling. This T cell tolerance could be 

prevented by exogenous ligation of CD40 or 0X40, in CD154 mice as well as B6 

mice. B6 mice were successfully tolerised against the induction of EAE by iv. 

administration of pMOG, which could similarly be prevented through administration 

of 0X40 at the time of Ag administration. Expression of CD40 in the CNS was 

required for optimal induction of EAE, and exogenous ligation of 0X40 did not 

induce EAE in CD40-deficient mice. It is concluded that although the CD40-CD 154 

interaction is important in T cell responses, CD 154 on T cells is not absolutely 

required for either initiation of T cell immunity or induction of T cell tolerance. 

Nevertheless, the results presented in this chapter indicate that the CD40-CD 154 and 

0X40-OX40L interactions are indeed important checkpoints determining firstly the 

outcome of T cell immunity with respect to tolerance versus immunity, and secondly 

the cytokines produced in response to antigenic challenge. 



3.10. Discussion 

Although, it was originally reported that CD154' mice do not prime effectively 

(Grewal et al., 1996), it has since then been shown that CD154 T cells initially 

expand normally, but cannot sustain a Thi type response (Howland et al., 2000). It 

was shown here that CD154' mice prime normally compared to B6 mice. In the 

experimental system employed, the Ag is emulsified in CFA, which is believed to 

provide a lasting suppl'y of Ag (it remains to be investigated for how long). Although 

it has been shown that in CD 154' mice, Ag-loaded DC failed to migrate out of the 

skin and fewer DC accumulated in the DLN after contact sensitisation (Moodycliffe 

et al., 2000), an Ag depot may explain the effective recall responses seen here after 

immunisation of CD154-deficient mice with Ag in CFA, since such a depot may 

have allowed sufficient numbers of Ag-loaded DC to reach DLN. This Ag depot 

could thus have rescued proliferative responses, but would not rescue CD 154 

signalling to DC. A lack of CD154 signalling to DC would cause decreased IL-12 

production by DC, and result in a Th2 type profile, which was indeed observed in 

this system. 

This same explanation should however hold true for C1340-deficient mice. Instead, 

mice lacking CD40 showed greatly reduced proliferative and cytokine responses. 

CD40 ligation is required for DC migration from the site of Ag administration to 

DLN, as well as during DC-T cell interactions in the DLN (Miga et al., 2001; 

Moodycliffe et al., 2000). A better explanation for the recall responses, which were 

observed in CD154 mice, but not CD40' mice, may thus be the existence of a 

different ligand for CD40, which compensates for the lack of CD 154 at the site of 

CFA injection. This would again allow DC migration to DLN, where they could 

interact with T cells, and in the absence of CD 154, induce a Th2 type response. In 

CD40' mice however, the lack of CD40 would result in ineffective DC migration, 

and thus result in greatly decreased proliferative recall responses. The 70 kDa 

mycobacterial heat shock protein (HSP 70) has been described to bind CD40 and 

result in release of chemokines (Wang et al., 2001). The presence of HSP 70 in CFA 
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might have substituted for the lack of CD154 at the site of CFA injection and 

allowed efficient T cell priming in CD 154' mice,but not in CD40' mice. 

Although conflicting evidence exists with respect to a CD154 requirement for 

tolerance induction (Howland et al., 2000; Kweon et al., 1999), it was shown here 

that CD 154 was not required for peptide-induced tolerance. The results obtained 

agree with previous data, that showed that systemic i.v administration of soluble 

peptide did not require the presence of CD154 (lowland et al., 2000). The 

contrasting results were obtained using a different experimental system, and 

investigated the requirements for mucosal tolerance after orally administered Ag 

(Kweon et al., 1999). Further evidence suggests that tolerance is differentially 

regulated at these different peripheral sites. On the one hand, ligation of CD40 has 

been used extensively to promote anti-tumour immunity (Diehl et al., 1999; 

Grohmann et al., 2001; Sotomayor et al., 1999), and to activate quiescent DC, 

breaking peripheral tolerance in vivo (Hawiger et al., 2001). On the other hand, in 

systems investigating mucosal tolerance, ligation of CD40 was not sufficient to 

prevent tolerance induction, even though it led to upregulation of CD80 and CD86 

on DC, and potentiated the proliferation of Ag-specific T cells in lymphoid organs 

(Chung et al., 2004). Similarly, activation of resident DC through administration of 

Flt3 Ligand, a growth factor that expands DC in vivo, prevented systemic tolerance 

(Pulendran et al., 1998), while it enhanced mucosal tolerance (Viney et al., 1998). It 

may well be that tolerance is differentially regulated at different peripheral sites, 

probably through DC biology. 

Exogenous ligation of CD40 successfully prevented the induction of tolerance 

through i.v. administration of soluble peptide, fitting with data obtained from other 

experimental systems (Diehl et al., 1999; Hawiger et al., 2001). Since one effect of 

CD40 ligation on is the upregulation of OX40L, it appears that the agonistic CD40 

antibody may be exerting its effects through induction of OX40L, allowing 

signalling to T cells and subsequent induction of survival molecules, resulting in 

effective T cell immunity. This is further investigated in the following chapter. 
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Exogenous ligation of 0X40 also prevented the induction of T cell tolerance, 

probably by directly ligating 0X40 on T cells and promoting T cell survival. This 

was similarly suggested in a recent paper investigating the effects of exogenous 

ligation of 0X40 (Bansal-Pakala et al., 2001). Using a T cell adoptive transfer 

system, this group reported successful tolerance induction through a single i.v. dose 

of soluble peptide, illustrated by reduced proliferative capacity upon in vitro 

rechallenge, and lack on IFN-y or IL-4 production, comparable to the data presented 

here. They prevented this tolerance through exogenous ligation of 0X40 at the time 

of administration of soluble peptide. Finally, they also report reversal of tolerance 

through 0X40 ligation at the time of giving peptide in CFA (i.e. at the time of in vivo 

rechallnge with Ag in adjuvant, rather than at the time of administration of soluble 

peptide). This raises the question of the exact timing of the immunogenic effect of 

the anti-0X40 antibody. While anti-0X40 may indeed have acted at the time of 

administration of soluble peptide, promoting T cell survival, without actually 

allowing T cell proliferation (Fig. 3.7), it cannot be excluded that anti-0X40 exerted 

its effects at the time of rechallenge with Ag in adjuvant. Identification of ways to 

reverse peptide-induced tolerance may lead to insights into preventing unwanted 

tolerance against tumours, holding great therapeutic potential, and further 

investigation needs to be carried out. 

The importance of the CD40-CD 154 interaction for the induction of EAE has 

previously been investigated in some detail (Gerritse etal., 1996; Grewal et al., 1996; 

Samoilova et al., 1997). CD40 deficient mice did not develop clinical signs of EAE, 

which correlates with more recently obtained data from a different group (Becher et 

al., 2001). Similarly, this group reported that the lack of CD40 on bone marrow-

derived cells resulted in decreased disease severity, which is also shown in this 

chapter. Exogenous ligation of 0X40 could not induce disease in CD40-deficient 

mice. Unfortunately, the ability of agonistic anti-0X40 to induce disease in mice 

lacking expression of CD40 on bone marrow-derived cells could not be investigated, 

due to time constraints. This antibody greatly enhanced cytokine responses in 

CD 154-deficient mice, inducing large amounts of IFN-y, and also prevented peptide- 

ril 



induced tolerance to pOVA and pMOG. It seems likely therefore, that exogenous 

ligation of 0X40 in CD40-deficient bone marrow chimeras would greatly enhance 

disease scores seen in these mice. This possibility remains to be investigated. 
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Figure 3.1: 
Experimental outline of Chapter 3 

Does exogenous ligation of CD40 or 0X40 prevent the induction 
of tolerance? 200 jig anti-CD40, anti-0X40 or isotype control 
antibody was co-administered with 500p.g pOVA on day —6, and 
mice received a second dose of antibody on day —4. 

The EAE model. Tolerance induction and induction of EAE. 

EIR 



	

CD40 	 CD1 54' 
60 

40 

20 

10-1 100 101  102 	 10-1 10 0  101 	102 

	

[pMOG] p.M 	 -0- B6 

-- CD4O-'- 

	

IFN-y 	 IFN-y 
-A-- CD154-'-  

	

40 	 100 

	

30 	 - 75 

E 

	

20 	 0) 50 
C 

	

10 	 25 

	

0 	 • 	 0 
10 0 	10' 	102 	 10 0 	101 	102 

[pMOG] p.M 

	

IL-4 	 IL-4 

	

150 	 150 

E 

	

•)100 	 - 	100 

a- 

	

50 	 7 	a- 50  

	

0 	 0_ 
100 	10' 	102 	 10 0 	101 	102 

[pMOG] p.M 
Figure 3.2: 
Comparison of T cell priming in CD40', CD154' and B6 mice 
after immunisation with pMOG in CFA 
Mice received 100p.g pMOG in CFA on day 0. Draining lymph 
nodes were assessed 10 days later for pMOG-specific proliferative 
responses or by ELISA for pMOG-specific IFN-1 or IL-4 
production. Background levels were as levels seen at lowest 
concentration of Ag in each group. For each cytokine datapoint, the 
SEM was <20%.. These data are from two of six experiments giving 
consistent results. 
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Figure 3.3: 
Cytokine production by TCL derived from CD40' or CD154' 
mice 
Mice received pMOG in CFA. DLN were taken 10 days later, and 
TLC established as described in the materials in methods. pMOG-
specific IL-4 and IFN-y production (A and B respectively) was 
assessed by ELTSA. Background levels were as follows: IL-
4(pg/ml): CD 154 -1-  mice 98, CD40' mice 116; IFN-y (ng/ml): 
CD 154-'-  mice 0.7, CD40' mice 2). For each datapoint, the SEM 
was <20%. These data are from one of two experiments giving 
consistent results. 
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Fig. 3.4: 
Exogenous ligation of CD40 or 0X40 influences the cytokine 
response in CD154' mice 
CD154 mice received lOOjig pMOG in CFA at day 0. As 
indicated, some groups also received 200ig anti-0X40 or anti-
CD40 at the time of pMOG in CFA administration and 2 days later. 
Draining lymph nodes were assessed 10 days later by ELISA for 
pMOG-specific IL-4 and TFN-y production to a dose range of 
pMOG (A: 1L-4, B: IFN-y). The effects seen with anti-CD40 and 
anti-0X40 were not found using isotype control antibodies. 
Background levels in each group were below detectable levels. For 
each datapoint, the SEM was <20%. These data are from one 
preliminary experiment. 
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Fig. 3.5: 
CD154 is not required for peptide-induced tolerance 
Mice received 3 doses of 500tg pMOG or PBS i.p., on days -8, -6 
and —4 (A) or a single dose of 500jig pOVA i.v. on day —7 (B), 
before immunisation with pMOG or pOVA in CFA on day 0. 
Draining lymph nodes were assessed 10 days later for pMOG or 
p0 VA-specific proliferative responses respectively. These data are 
from one of five giving consistent results. Background cpm in each 
group were as follows: pMOG: PBS 3291, peptide-treated CDl54 
mice 2834; pOVA: PBS 2375, peptide-treated CDlS4 mice 6224. 
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Fig. 3.6: 
Peptide-induced tolerance diminishes cytokine responses in B6 
and CD154' mice 
Mice received 5001g of pOVA i.v. on day —7, before 
administration of pOVA in CFA on day 0. Draining lymph nodes 
were assessed 10 days later by ELISA for p0 VA-specific cytokine 
production. Shown are IFN-y and IL-4 production by B6 mice (A 

and B respectively) and CD 154 -'-  mice (C and D). These data are 
from one of three experiments giving consistent results. The 
background cpm for all cytokines was below detectable levels in all 
groups. For each datapoint, the SEM was <20%. 
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Fig. 3.7: 
Exogenous ligation of CD40 or 0X40 does not convert a 
tolerogenic signal into an immunogenic one 
B6 or CD 154 -'-  mice received a single dose of 500p.g pOVA i.v. As 
indicated, some groups also received 200p.g anti-0X40 or anti-
CD40 at the time of pOVA administration and 2 days later. 
Draining lymph nodes were assessed 7 days later for proliferative 
responses to a dose range of pOVA (A: B6 mice, B: CD 154 -' -  mice). 
Background proliferation was as proliferation observed at iO for 
each group. These data are from one of three experiments giving 
consistent results. 
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Fig. 3.8: 
Exogenous ligation of CD40 or 0X40 prevents tolerance 
induction in B6or CD154' mice 
B6 or CD154 mice received a single dose of 500ig pOVA i.v. on 
day —7. As indicated, some groups also received 200.1g anti-0X40 or 
anti-CD40 at the time of pOVA administration and 2 days later. Mice 
were then immunised with pOVAJCFA on day 0, and draining lymph 
nodes assessed 10 days later for proliferative responses to a dose 
range of pOVA (A: B6 mice, B: CD154 mice). The effects seen 
with anti-CD40 and anti-0X40 were not found using isotype control 
antibodies. These data are from one of three experiments giving 
consistent results. Background cpm were as follows: B6: PBS 2038, 
pOVA 1530, pOVA+anti-CD40 1214, pOVA+anti-0X40 1483; 
CD154 mice: PBS 3489, pOVA 2341, pOVA+anti-CD40 6205, 

pOVA+anti-0X40 3328. 
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Fig. 3.9: 
Exogenous ligation of CD40 or 0X40 partially prevents 
tolerance induction in B cell-deficient mice 
pMT mice received a single dose of 500.tg pOVA i.v. on day —7. 
As indicated, some groups also received 200Ig anti-0X40 or anti-
CD40 at the time of pOVA administration and 2 days later. Mice 
were then immunised with pOVAICFA on day 0, and draining 
lymph nodes assessed 10 days later for proliferative responses to a 
dose range of pOVA. These data are fiom one of two experiments 
giving consistent results. Background levels were as follows: PBS 
1656, pOVA 1234, pOVA+anti-CD40 902, pOVA+anti-0X40 
1473. 
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Fig. 3.10: 
Exogenous ligation of 0X40 prevents tolerance induction to 
EAE in B6 mice 
Mice received a single dose of 50Otg pMOG i.v. on day —7. As 
indicated, some groups also received 200tg anti-0X40 at the time 
of pMOG administration and 2 days later. EAE was then induced 
through immunisation with pMOG/CFA on day 0 and PTX was 
given at the same day and 2 days later. Clinical EAE scores were 
assessed daily from day 7-28. The effects seen with anti-0X40 
were not found using an isotype control antibody. These results are 
from one preliminary experiment, and remain to be repeated. (p 
values determined by Mann-Whitney U test were: B6 controls vs. 
B6+pMOG i.v.: <0.0001, B6 controls vs. B6+pMOG i.v. +anti-
0X40: <0.0001) 
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Fig. 3.11: 
Exogenous ligation of 0X40 does not restore induction of EAE 
in CD40' mice 
EAE was induced through immunisation with pMOG/CFA on day 
0. PTX was given at the same day and 2 days later. One group also 
received antiOX40 i.p. at the time of immunisation and 2 days 
later. Clinical EAE scores were assessed daily from day 7-28. (p 
values determined by Mann-Whitney U test were: B6 controls vs. 
CD40' controls: <0.0001, B6 controls vs CD40+anti-OX40: 
<0.0001) These results are from one preliminary experiment. 

Eel 



4 

w 
0 
0 
U) 
W3 

w 

0 
C 

0 
C 
U) 
0) 

0 

 

10 	 20 	 30 

days 

—v-- B6 controls 

-- CD40 controls 

—0— CD40 chimeras 

Fig. 3.12: 
CD40 expression on bone marrow-derived cells is required for 
typical EAE disease progression 
Chimeras lacking CD40 expression on all bone marrow-derived 
cells were generated. EAE was induced through immunisation with 
pMOG/CFA on day 0. PTX was given at the same day and 2 days 
later. Clinical EAE scores were assessed daily from day 7-28. (p 
values determined by Mann-Whitney U test were: B6 controls vs. 
CD40 controls: <0.0001, B6 controls vs. CD40chimeras: 
<0.0001), CD40 controls vs. CD40 chimeras: <0.0001) These 
results are from one preliminary experiment. 
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4. CHAPTER 4 - Kinetics of costimulation during the 

induction of T cell tolerance versus immunity 

4.1. Introduction 

The previous chapter illustrated that exogenous ligation of either CD40 or 0X40 

could prevent the induction of T cell tolerance. This suggests that upregulation of 

one or both these costimulatory molecules occurred during tolerance induction, and 

indicates that .molecules known to be important for T cell activation may also play a 

role in T cell tolerance. This chapter investigated at which time-points during this 

process these receptors and their ligands were expressed. Expression of a third 

receptor-ligand pair, namely RANK-RANKL, was also examined. The RANK-

RANKL interaction was reported to be important for DC survival (Cremer et al., 

2002), and treatment of DC with RANKL before transfer into mice enhances their 

survival in the DLN, resulting in enhanced T cell responses (Josien et al., 2000). This 

pair could therefore play a role in the decision between tolerance and immunity. All 

three pairs are thus known to play an important role during T cell activation, but to 

date their expression during the induction of T cell tolerance has not been 

investigated. 

LPS has known effects on DC migration and activation (Reis e Sousa and Germain, 

1999), but most experimental data available stems from histological evaluation with 

regards to DC location, and from in vitro activation of DC. Although it is assumed 

that tolerance induction is the result of peptide presentation by quiescent DC, which 

lack full costimulatory potential (Steinman et al., 2003), few experiments actually 

look at the DC phenotype during the induction of T cell tolerance. Similarly, little ex 

vivo data exists, showing the state of DC activation after LPS administration. The 

• experiments in this chapter were designed to test the view that T cell immunity is the 

result of DC activation through microbial signals, whilst tolerance induction is a 

result of peptide presentation by immature DC, and sets out to reveal possible 



differences in costimulatory molecule expression on T cells during the induction of T 

cell tolerance or immunity. 

4.2. Approach 

Since T cell responses in naïve mice involve a very small number of Ag-specific T 

cells, it was necessary to use an adoptive transfer system to look at the T cell 

phenotype during the induction of tolerance. The use of TCR transgenic T cells from 

OT-Il mice (Barnden et al., 1998) allowed the transfer of a specific number of 

pOVA-reactive T cells into naive B6 hosts, enabling tracking of a defined number of 

Ag-reactive T cells. OT-Il cells express the Va2 and Vj35 TCR chains, and initially, 

the transferred cells were identified using monoclonal antibodies to these TCR 

chains. However, naïve B6 mice have endogenous Va2t Vl35 T cells, which are not 

necessarily p0 VA-reactive. OT-Il mice were therefore crossed with mice expressing 

the congenic marker Ly5. 1 (CD45. 1), and were identified by expression of this 

marker during subsequent FACS analysis (host B6 mice express Ly5.2). UT-Il cells 

were adoptively transferred into naïve hosts, before pOVA was administered in 

tolerogenic, i.e. soluble form, or immunogenic form, i.e. with LPS as adjuvant. At 

various time points after Ag administration, mice were sacrificed, and the transferred 

T cell population in the spleen was analysed by FACS. 

DC constitute about 1% of spleen cells, and gating on splenic DC during FACS 

analysis is difficult due to the heterogeneous level of expression of the CDIIc 

marker. DC were therefore purified before FACS analyses. Although purification 

may result in DC activation, it was necessary in order to examine the phenotype of 

the splenic DC population. A grdup, which received PBS, rather than pOVA in any 

form, was used as a control for possible DC activation and change in surface 

phenotype due to the purification process employed. Any reported changes in 

costimulatory molecule expression are with respect to this control group. 

The experimental outline is shown in Figure 4.1. 
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4.3. Administration of soluble pOVA induces Ag-specific 

tolerance in TCR transgenic T.cells 

The previous chapter shows that i.v. administration of soluble pOVA results in 

pOVA-specific T cell tolerance. In order to look at the phenotype of a defined 

population of T cells, the OT-Il adoptive transfer system was employed in most of 

the subsequent experiments. It was therefore important to test that systemic 

administration of soluble pOVA could similarly induce tolerance after the transfer of 

a large number of Ag-specific T cells. Mice received OT-Il cells on day —1, followed 

by 500p.g pOVA on day 0, and in vivo rechallenge with 20tg pOVA in CFA on day 

7. Greatly reduced T cell ex vivo recall proliferative responses were observed on day 

17, even after transfer of OT-Il cells (Fig. 4.2). Administration of a single dose of 

soluble pOVA could therefore be used in subsequent experiments to investigate the 

phenotype of DC and p0 VA-reactive T cells during the induction of T cell tolerance. 

4.4. Co-administration of LPS (but not CpG) leads to T 

cell immunity 

With the aim to compare T cell phenotype during the induction of T cell tolerance 

compared to the induction of T cell immunity, LPS and CpG were tested as adjuvants 

to prevent the induction of T cell tolerance, since both can be administered i.v. at the 

same time as soluble pOVA. OT-il cells were adoptively transferred into naïve B6 

hosts I day prior to the hosts receiving either 50Oig pOVA, 500Ig pOVA with 51g, 

10tg or 30.tg CpG (5tg has been used by others to induce immunity (Vicari et al., 

2002)), or 500Ig pOVA with 30tg LPS (various doses of LPS have previously been 

shown to induce immunity (Khoruts et al., 1998; Maxwell et al., 2002), and 301g 

was tested, and found to work efficiently to prevent tolerance). Splenic populations 

were assessed 7 days later for proliferative responses to a dose range of pOVA (Fig. 

4.3). Co-administration of pOVA and LPS did not result in tolerance induction, but 

allowed efficient recall responses, while co-administration of pOVA and CpG did 

not result in effective T cell immunity, since responses were similar to those seen 
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with pOVA alone, (Fig. 4.3, shown is pOVA co-administration with 30jig CpG, 

which was the highest dose used. Other doses included 5.p.g and 10tg CpG, which 

also did not prevent the induction of tolerance in this system, results not shown). 

CpG did however have an effect on DC in vitro, as shown through upregulation of 

CD40, CD80 and CD86 on bone manow-derived DC after incubation with 6tgIml 

(1tM) CpG overnight (Fig. 4.4). Other groups have administered CpG 

intratumorally to prevent tolerance against tumours (Vicari et al., 2002). This very 

localised delivery of CpG may explain the ability of CpG to prevent tolerance in that 

system, compared to systemic administration of CpG in the system used here. Since 

administration of pOVA with LPS resulted in effective T cell immunity, this protocol 

was used in subsequent experiments to compare the phenotype of DC and pOVA-

reactive T cells during induction of T cell immunity versus T cell tolerance. 

4.5. Phenotypic analysis of DC and T cells during the 

induction of T cell immunity versus T cell tolerance 

Having established that administration of pOVA alone resulted in T cell tolerance, 

while co-administration of pOVA and LPS induced T cell immunity, experiments 

were carried out to look at the phenotype of T cells and DC during these two 

processes. In all of the subsequent experiments in this chapter, CD4 OT-IT cells 

were purified by positive selection using anti -CD4-conj ugated MACS beads, prior to 

transfer into naïve recipients on day-i. On day 0, mice received the indicated 

administration protocol of pOVA alone or pOVA and LPS, and mice were sacrificed 

at various time points following Ag administration. Spleens were disaggregated, 

before DC were purified by positive selection using anti-CD lic beads. The 

flowthrough of this purification was kept to analyse the transfened T cell population. 

By day 2 after Ag administration, transfened OT-Il cells started to expand in 

numbers. T cells in groups that received pOVA alone consistently showed greater 

expansion at day 2 after Ag administration compared to pOVA+LPS groups. In the 

particular experiment shown (Fig. 4.5), CD4, Ly5.1 OT-Il cells made up 1.65% 
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(pOVA alone) and 0.31% (pOVA+LPS) of total lymphocytes on day 2. By day 3, 

both groups showed significant expansion (4.52% and 3.79% respectively). By day 

4, the p0 VA-specific T cell population in mice that had received pOVA alone started 

to decrease in number (3.19), indicating the induction of tolerance, while in mice that 

had received pOVA+LPS, the T cells continued to expand in numbers (7.18%) (Fig. 

4.5). 

The greater expansion seen at day 2 after administration of p0 VA alone could have 

been due to earlier entry into proliferation phase in this group, or due to greater 

expansion of T cells at these early time points. In order to distinguish between these 

two possibilities, CD4-purified Ly5.1 OT-Il cells were CFSE-labelled before 

adoptive transfer into naïve recipients on day-i. The CFSE profile of OT-Il cells was 

examined at days 1, 2, 3 and 4 after pOVA administration with or without LPS. 

Again, mice that had received pOVA alone showed a greater number of pOVA-

reactive T cells on day 2 than those that had received pOVA+LPS. Overlaying the 

CFSE profiles of groups that had received pOVA or pOVA+LPS allowed 

comparison of the number of cell divisions undergone in each group (Fig. 4.6b). This 

showed that the number of cell divisions in each group was similar at day 2, and the 

difference in T cell numbers are thus not due to earlier entry into cell division after 

administration of pOVA alone. By day 3 post Ag administration, both groups 

showed significant expansion as before (compare Fig. 4.5 and 4.6), but the CFSE 

profiles revealed that the cells had undergone greater numbers of cell division after 

administration of pOVA+LPS, compared to administration of pOVA alone (Fig. 

4.6b). By day 4, pOVA-reactive T cell numbers continued to increase during the 

induction of immunity, while numbers in mice that had been given pOVA alone had 

greatly reduced numbers of p0 VA-reactive T cells (Fig. 4.6). 

Fig. 4.5 and Fig. 4.6 illustrate the variation in percentages of pOVA-reactive cells 

seen between different experiments. These differences are probably due to the 

variations in transferred numbers, cell death after transfer (CFSE-labelled cells are 

more fragile, and prone to dying due to the way they have been prepared), and 
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differences in effectiveness of Ag administration. Nevertheless, the same trend was 

consistently observed in all experiments, and variation between experiments was 

therefore acceptable. 

4.6. Expression of costimulatory molecules on T cells 

during the induction of tolerance or immunity 

The establishment of systemic T cell tolerance takes at least three days (Liu and 

Wraith, 1995), and it was therefore decided to carry out a time course over 4 days, 

looking at the phenotype of T cells and DC during the induction of T cell tolerance 

and immunity. The experimental data obtained from days 3 and 4 were the same in 

all experimental groups unless indicated otherwise, and the results for days 1, 2 and 3 

are therefore shown. 

The transferred T cells were identified during FACS analysis by staining for the 

congenic marker Ly5.1, and gating onto CD4, Ly5.1F  cells. Expression of CD69, 

CD154, 0X40 and RANKL was analysed on this population of cells. CD69 is a 

marker accepted to be expressed very early after T cell stimulation. Since there is no 

evidence that this molecule has costimulatory capacity, it was solely used as a 

marker of T cell activation in these experiments. Although T cells expressed higher 

levels of CD69 after administration of pOVA with LPS (Appendix Fig. 1), the 

marker was expressed after administration of either pOVA alone, or pOVA with 

LPS, indicating successful initial T cell activation in both cases. 

4.6.1. Tolerance is not due to the absence of CD1 54 
expression on T cells 

Mice were sacrificed on days 1, 2 and 3 after Ag administration, and the expression 

profile of CD154 on transferred T cells was investigated at these time-points. CD154 

was expressed on days I and 2 after administration of pOVA and pOVA+LPS (Fig. 

4.7). By day 3, only a small percentage of transferred cells still expressed CD154. 
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CD 154 was expressed on the T cell during the induction of both T cell tolerance and 

immunity, although it appeared to be expressed for longer on T cells during the 

induction of T cell immunity. 

4.6.2. Tolerance is not due to the absence of 0X40 
expression on T cells 

0X40 was found on day I during induction of both T cell tolerance and T cell 

immunity (Fig. 4.8). Interestingly, 0X40 was expressed for longer and at higher 

levels on T cells during the induction of T cell immunity, with some 0X40 

expression still present on day 2 after Ag administration (34.6%). By day 3, neither 

of the two experimental groups showed 0X40 expression on transferred T cells 

compared to the PBS control group. Therefore, both CD154 and 0X40 were 

consistently seen to be expressed for longer during the induction of immunity 

compared to induction of tolerance. 

4.6.3. Tolerance induction results in rapid expression of 
RANKL on T cells 

Similar to CD154 and 0X40, RANKL was expressed on T cells during induction of 

tolerance and immunity (Fig. 4.9). In contrast to CD154 and 0X40 however, 

RANKL was expressed earlier and at higher levels during induction of tolerance 

compared to induction of immunity. This was clearly noticeable when a more 

detailed time course analysis was carried out (Fig. 4.10), with the pOVA group 

beginning to express RANKL by 12 hours, whereas the pOVA+LPS group did not 

express RANKL until 48 hours. Both groups still expressed some RANKL on day 3 

after Ag administration (Fig. 4.9). V  

Although the level of RANKL appeared to vary between experiments (compare Fig. 

4.9 and Fig. 4.10), there was definite up-regulation of RANKL in both experimental 

groups, which was not seen in the PBS control group, and this upregulation was 

consistently observed earlier, and on a greater percentage of T cells after 

administration of pOVA compared to administration of pOVA+LPS. 
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4.7. Expression of costimulatory molecules on DC during 

the induction of tolerance or immunity 

DC purity after isolation was assessed by staining for CD1 Ic, and was consistently 

above 80%. The CD11c population was stained for expression of CD40, OX40L, 

RANK, CD80 and CD86 in conjunction with CD8ct. Even though the percentages of 

CD8a DC appeared to vary between days 1, 2 and 3, this is most likely due to 

variation in staining (Fig. 4.11). There was nevertheless a small, but consistent 

increase in the percentage of CD8a 4  DC in the spleen after administration of pOVA 

alone, and a decrease of CD8c1 1  DC after administration of pOVA+LPS compared to 

the PBS control group on each day (Fig. 4.11). 

Purification of DC in the presence of polymyxin B (which binds LPS and prevents its 

DC-activating properties) (Montoya et al., 2002), and purifying DC by depletion, 

using a cocktail of antibodies against thymocytes, B cells, and granulocytes (Kamath 

et al., 2000), did not change the level of costimulatory molecules displayed on the 

surface of DC compared to the described method of positive selection (Appendix 

Fig. 2). It was therefore chosen to purify DC for phenotyping using positive 

selection. 

Immature DC constitutively express low levels of CD40, CD80 and CD86 (Vremec 

and Shortman, 1997). In order to control for possible activation and upregulation of 

these molecules during the purification procedure, levels of these molecules after Ag 

administration were compared to PBS controls, which were purified in the same way 

as the other experimental groups. Any upregulation of CD40, CD80 and CD86 must 

therefore have been due to events that had happened in vivo, prior to DC isolation. 
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4.7.1. CD40 is upregulated on DC during the induction of T 
cell immunity 

The level of CD40 on DC was not increased in mice that had received pOVA 

compared to PBS controls, but DC from mice that had received pOVA+LPS showed 

increased levels of CD40 on days I and 2 after Ag administration, as indicated by 

median fluorescence values (MF) in each group (Fig. 4.12). No difference in up-

regulation of CD40 could be observed between CD8a and CD8a DC, although in 

all three groups (in the steady state as well as after DC activation) MF values 

indicated slightly higher levels of CD40 on CD8a DC compared to CD8ci. DC (Fig. 

4.13). By day 3, CD40 levels had returned to normal compared to PBS controls. The 

CD1 lc, CD40 b 0  population, which was consistently seen on days I and 2 in the 

group that had received pOVA+LPS, may have consisted of immature DC recruited 

due to the inflammation occurring after administration of LPS, but this was not 

investigated in greater detail. Nevertheless, the administration of adjuvant therefore 

led to increased levels of CD40 on DC during induction of immunity, while during 

the tolerance induction, CD40 levels on DC did not change compared to PBS 

controls. 

4.7.2. OX40L is not detectable on DC during induction of T 
cell tolerance or T cell immunity 

No significant expression of OX40L on DC compared to isotype controls was 

observed during the induction of T cell tolerance or T cell immunity over the 3 days 

time course (Fig. 4.14). The MF values suggested expression of OX40L on DC after 

administration of pOVA+LPS at the day I time-point: However, although this 

increase was consistently observed, it is very small, and it is therefore difficult to 

draw conclusions with respect to OX40L expression from the FACS data obtained. 

4.7.3. RANK is upregulated on DC during the induction of T 
cell immunity 

DC constitutively expressed low levels of RANK. The level of RANK on DC was 

not increased in mice that had received pOVA compared to PBS controls, but DC 
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from mice that had received pOVA+LPS showed increased levels of RANK on day I 

after Ag administration (Fig. 4.15). No difference in upregulation of RANK could be 

observed between CD8I' and CD8a DC (Fig. 4.16), although similar to CD40 

expression, MF values indicated slightly elevated levels of RANK on CD8c DC 

compared to CD8cI DC, in all three experimental groups. By day 2, RANK levels in 

this group were returning to normal, and by day 3, RANK levels had returned to PBS 

controls levels. Interestingly, there was hardly any RANK expression above 

background levels at day 2 after pOVA+LPS administration, while RANKL was 

expressed on the T cells at that time. Fig. 4.10 shows that RANKL expression is 

induced between 24 and 48 hours after pOVA+LPS administration. Although RANK 

expression had decreased to background levels by day 2 (i.e. 48 hours), there 

nevertheless is a time window between day 1 and day 2 where both RANK and 

RANKL could have been expressed. 

4.7.4. CD80 and CD86 are upregulated on DC during the 
induction of T cell immunity 

DC constitutively expressed CD80 and CD86, but similar to data investigating CD40 

expression, CD80 and CD86 were upregulated after administration of pOVA+LPS, 

but stayed at levels seen in PBS controls groups after administration of pOVA alone 

(Figs. 4.17 and 4.18). By day 2, a population of CD80
1ow  i cells could be dentifled, 

which was still present at day 3, again similar to the CD40 expression data described 

above. Similarly, a large proportions of cells were present at day 2 and 3 that showed 

intermediate expression of CD86. Nevertheless, it appeared that CD86 stayed up-

regulated for longer, since it was still seen at high levels on a proportion of cells on 

day 3 after Ag administration. 
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4.8. Summary of costimulatory molecule expression on T 

cells and DC during the induction of T cell tolerance or 

immunity 

The time course investigating the phenotype of DC and T cells after administration 

of a tolerogenic or immunogenic protocol was repeated many times. Although slight 

variations in the duration and level of costimulatory molecule expression were 

observed, the same trend, summarised in Fig. 4.19, was observed consistently. 

CD154 (Fig. 4.7), 0X40 (Fig. 4.8) and RANKL (Fig. 4.9) were all found to be 

expressed on T cells after administration of pOVA alone or pOVA+LPS. However, 

CD154 and 0X40 were expressed at higher levels andlor for longer during the 

induction of immunity than tolerance, while RANKL was expressed earlier and at 

greater levels during tolerance induction. 

Nevertheless, the data obtained suggests that the expression of costimulatory 

molecules on DC is the deciding factor between tolerance and immunity, since 

increased expression of CD40 (Fig. 4.12), RANK (Fig. 4.15), CD80 and CD86 (Fig. 

4.17 and 4.18) was only ever seen during the induction of T cell immunity. During 

the induction of T cell thlerance, the expression of these molecules was 

indistinguishable from the PBS controls. 

The CD40, CD80 and CD86 profiles after administration of pOVA+LPS showed two 

DC populations at days 2 and 3, expressing different levels of CD40, CD80 and 

CD86 (Fig. 4.12, 4.17 and 4.18). The CD4010  population may suggest recruitment of 

immature DC from the circulation. Interestingly, Fig. 4.13 shows that the CD40b0 

population of CD1 1c cells was mostly CD8a. The significance of these 

observations, if indeed significant at all, remains open for discussion. 



4.9. Co-administration of pOVA and CpG does not alter 

the phenotype of DC, and does not prevent tolerance 

induction 

Even though co-administration of pOVA+CpG did not prevent tolerance induction, it 

did result in upregulation of co-stimulatory molecules in vitro. The phenotype of DC 

was therefore investigated ex vivo after co-administration of pOVA+CpG. 

Expression of CD40, OX40L and RANK did not change on DC in groups that had 

received pOVA+CpG compared to pOVA alone or PBS control groups (Fig 4.20, 

and Appendix Fig. 3-5). Similarly, administration of pOVA+CpG did not change 

expression of 0X40 and RANKL on T cells compared to groups that received pOVA 

alone (Appendix Fig. 6 and 7). Expression of CD 154 on T cells was not investigated 

in these experiments. 

4.10. Administration of agonistic anti-CD40 antibody 

results in induction of OX40L expression on DC 

Administration of agonistic anti-CD40 antibody prevented the induction of tolerance 

(Chapter 3). Successful T cell priming is normally used as a read-out for DC 

activation by the antibody. Here, T cell and DC phenotype were also analysed over a 

4-day time course. At these early time-points, T cell expansion was comparable in 

groups of mice that had received pOVA alone, or pOVA and anti-CD40. Analysis of 

DC phenotype however showed considerable DC activation after CD40 

administration, as illustrated by upregulation of CD80 and CD86 on days 2 and 3 

after Ag administration (Fig. 4.21). Administration of CD40 also induced expression 

of OX40L on days 2 and 3 (Fig. 4.21). Increased expression of CD80 and CD86, and 

expression of OX40L was found at comparable levels in CD8a and CD80 DC (not 

shown). The isotype control shown in Fig. 4.21 for day 2 was taken from the group 

of mice that had received pOVA+anti-CD40. This was because this group had the 

highest background staining at that day. Nevertheless, an upregulation of OX40L 

could be observed in that group on day 2 compared to the control staining. By day 4, 



expression of OX40L, CD80 and CD86 had returned to levels comparable to those in 

PBS controls (not shown). 

4.11. Expression of costimulatory molecules on CD154-

deficient T cells during the induction of T cell tolerance 

- 	or immunity 

It was shown in Chapter 3 that CD 154 on T cells is not essential for induction of T 

cell tolerance. In order to look at the expression of costimulatory molecules on 

CD154' T cells, OT-Il mice were crossed with CD154' mice. These mice did not 

express the congenic marker Ly5.1. Purified CD4 cells from OT II x CD154 mice 

were transferred into naïve CD154 4  recipients, and identified by gating on Va2 and 

V35, the TCR chains expressed by OT-Il mice. This allowed phenotyping of 

CD 154" T cells during the induction of T cell tolerance or immunity. However, 

CD154' mice have endogenous Va2, VI35  T cells (approximately 0.5% of the 

CD4 'T cell population in the spleen), which may not be pOVA-reactive. The 

number of Va2, VI35 increases to 1-1.8% after transfer. By gating on Va2 and V5, 

the FACS data obtained therefore included endogenous as well as transferred T cells. 

The percentage of transferred cells positive for the costimulatory molecule being 

analysed may in reality have been higher than seen on the FACS plots, since 

endogenous Vcx, p0 VA-non-specific T cells will not have been activated by 

administration of pOVA, and will thereby have increased the number of Va2, V05 

T cells, which are costimulatory mo1ecule. 

As with B6 mice, administration of pOVA+LPS induced immunity in CD154 mice 

(Appendix Fig. 8). In essence, the pattern of costimulatory molecule expression on T 

cells and DC during the induction of tolerance and immunity was the same in 

CD154 4-  mice as seen in B6 mice (summarised in Fig. 4.22). In the absence of 

CD154, 0X40 was expressed on T cells during the induction of tolerance and 

immunity (Appendix Fig.9). Similar to results obtained with CD 154-sufficient T 
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cells, 0X40 was expressed on a greater percentage of T cells and for longer after 

administration of pOVA+LPS. OX40L was not seen on any of the experimental 

groups, similar to results obtained in B6 mice (Appendix Fig.12). 

RANKL was expressed on cD I 54 T cells after administration of pOVA and after 

pOVA+LPS (Appendix Fig.10). RANKL expression again appeared at lower levels 

after administration- of pOVA+LPS, similar to results obtained with CD154-

sufficient T cells. CD154 signalling to DC via CD40 has previously been shown to 

induce RANK expression (Anderson et al., 1997). However, RANK expression in 

CD154 was comparable to that observed in B6 mice (compare Fig. 4.15 and 

Appendix Fig. 13), suggesting an LPS-dependent, CD40-CD 154-independent 

pathway of RANK upregulation. The expression of the three receptor-ligand pairs 

during induction of tolerance or immunity in CD154' mice is summarised in Fig. 

4.22. Although the level of RANK on day 2 was only slightly increased compared to 

the other groups (Appendix Fig. 13), this increase was seen consistently on day 2 

after administration of pOVA+LPS, and the summary therefore shows DC to display 

RANK on their surface at that time-point. 

4.12. Expression of costimulatory molecules in B cell-

deficient mice during the induction of T cell tolerance 

or immunity 

B cells have been shown to display MHC-peptide complexes on their surface after 

administration of soluble protein (Zhong et al., 1997). Chapter 3 showed that T cell 

tolerance could be established in the absence of B cells. Expression of the 

costimulatory molecules was investigated by transferring OT-Il cells into B cell 

deficient tMT mice. The expression of the costimulatory molecules during induction 

of tolerance or immunity in B cell-deficient mice is summarised in Fig. 4.23 (the 

expression of CD 154 was not investigated). 
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Expression of 0X40 on day 1 on pOVA-reactive T cells was comparable to data 

obtained from B6 mice (compare Fig. 4.8 and Appendix Fig. 14). However, 0X40 

was still found at increased levels on day 2, and thus appeared to stay upregulated 

longer in the absence of B cells. Interestingly, the expression of RANKL on T cells 

after administration of pOVA+LPS was negligible, similar to data obtained in 

CD154' mice (Appendix Fig. 15). However, the absence of B cells did not influence 

the levels of expression of CD40, OX40L and RANK on DC during induction of 

tolerance or immunity (Appendix Fig. 16 and 17, OX40L is not shown, since no 

expression was observed). Comparable to results obtained from experiments with B6 

mice, the levels of CD40 and RANK were increased on DC during the induction of 

immunity (Appendix Fig. 16 and 17), indicating that these cells are responsible for 

effective T cell immunity. 

4.13. Histological approach to investigating the expression 

of costimulatory molecules during the induction of 

tolerance of immunity 

Chapter 3 provided evidence for the lack of 0X40-OX40L signalling during 

tolerance, since exogenous ligation of 0X40 can prevent tolerance induction, which 

has also been observed by another group (Bansal-Pakala et al., 2001). During the 

induction of either tolerance or immunity, T cells became activated (Figs. 4.7-4.9), 

indicating definite contact with cells displaying peptide on their surface. These cells 

were likely to. be DC, since similar data was obtained from experiments in B6 

compared to B cell-deficient mice (Fig. 4.23). OX40L is induced through CD40 

ligation (Fig. 4.21). Interestingly, CD 154 was expressed on T cells during both the 

induction of tolerance and immunity (Fig. 4.7), which should have been sufficient to 

allow signaling through CD40, resulting in OX40L expression on DC. Nevertheless, 

only a very small increase of OX40L expression after administration of pOVA+LPS 

was seen, and the expression of OX40L on DC was therefore minimal under 

conditions leading to either tolerance or immunity (Fig. 4.14). Since OX40L 

expression via CD40 signaling requires DC-T cell contact, it was possible that the 
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actual number of DC in contact with T cells and expressing OX40L was too low to 

be detected through FACS analysis. 

In order to investigate expression of OX40L on DC in contact with T cells, and to 

validate the data obtained through FACS analysis, immunofluorescent histology was 

carried out on spleen tissue sections. To identify adoptively transferred T cells, CD4-

purified, Ly5.1 OT-LI cells were fluorescently labelled with CT orange before 

transfer into naïve B6 recipients, and pOVA was administered in tolerogenic (pOVA 

alone) or immunogenic form (pOVA+LPS), as before. Because the intensity of the 

fluorescent dye decreased with cell division, two early time-points, 12 hours and 36 

hours, were initially chosen to look at expression of costimulatory molecules, in 

particular CD154, 0X40 and OX40L. Mice were sacrificed at these two time-points, 

and spleen tissue sections were snap-frozen in liquid nitrogen. These sections were 

firstly stained for Ly5.1, to validate that the fluorescent cells, which could be seen in 

the tissue sections, actually were the Ly5.1 OT-Il cells, that had been transferred. 

Staining for Ly5.1 revealed that at 12 hours after administration of Ag, cells 

identified as CT were indeed Ly5.1 (Fig. 4.24a). However, by 36 hours after Ag 

administration, a large proportion of the Ly5.1 cells could no longer be 

distinguished from background fluorescence (Fig. 4.24b), since the number of Ly5.1 

cells identified through staining was larger than the number of CT cells observed. 

Fluorescently labelling UT-IT cells before transfer was thus an effective technique to 

look at expression of costimulatory molecules at very early time-points, but could not 

be used to look at later time-points. A double-staining protocol, staining for 

expression of Ly5. 1 and the chosen costimulatory marker, must be developed in 

order to look at these later time-points. Although a number of different approaches 

were tested, development of a double-staining protocol proved difficult, and requires 

further optimisation before it can be used effectively. 

Nevertheless, sections were stained for expression of CD69, CD 154, 0X40 and 

OX40L, 12 hours after administration of Ag. Correlating with the FACS data 

obtained from this 12 hours time-point, CD69, CD 154 and 0X40 were found to be 
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expressed on CT cells (i.e. on CD4 OT-Il cells) during both induction of tolerance 

and immunity, while OX40L staining was hardly observed (Fig. 4.25 and Table 

4.26). The percentages of CD69 adoptively transferred cells after administration of 

pOVA was higher than data obtained through FACS analysis (47.1 vs. 37.6%). 

However, after administration of pOVA+LPS, FACS analysis revealed a large 

percentage of pOVA-reactive T cells to be CD69 (81.2%), while 

immunofluorescence shows 66.6% of cells to be CD69. The percentages of CT 

cells showing expression of CD154 was higher than the results obtained through 

FACS analysis (pOVA: 25.7 vs. 15%, pOVA+LPS 27.7 vs. 7.43). This could be due 

to the method of staining. Cells need to be fixed, and intracellularly stained for 

CD 154 expression. Immunofluorescence staining on tissue sections may arguably be 

a more sensitive method of detection, and intracellular staining may not show a large 

enough shift during FACS analysis to accurately show all the CD154 cells. 

Immunofluorescence staining for 0X40 similarly showed a higher percentage of 

cells to be OX40 compared to FACS analysis (pOVA: 27.8 vs. 6.15, pOVA+LPS: 

29.3 vs. 19.3%). Very little immunofluorescent staining for OX40L was observed at 

this early time-point, and was rarely in proximity to CT cells. Unfortunately, it was 

not possible to investigate whether or not OX40L was expressed close to pOVA-

reactive T cells at later time-points. 

The use of a laser scanning cytometer (LSC) would allow quantification of the data 

obtained from OX40L staining, since using the LSC, one can scan tissue sections, 

and the software available allows analysis of the fluorescence observed not only on 

the cells of interest, but also in close proximity to those cells. A collaboration with 

Dr Paul Garside and Angela Grierson in Glasgow was set up, aiming to analyse 

expression of OX40L in close proximity to CT-labelled T cells. However, since very 

little OX40L staining was observed at the 12 hour time-point, and the CT-labelled 

cells could not be identified at later time-points, this approach again required 

development of a double-staining protocol. In an attempt to quantify the data 
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obtained from staining for OX40L, I counted OX40L staining in close proximity to 

transfened T cells. A summary of the histological data is given in Table 4.26. 

4.14. Induction of OX40L on CD8& DC by an unidentified 

compound 

The initial time courses that were performed to investigate DC and T cell phenotype 

used LPS from an unknown source, kindly provided by the lab of Prof. D. Gray, 

11W. Interestingly, these first experiments showed upregulation of OX40L 

specifically on the CD8a subset of CDI1c 1  DC on day 1 (Fig. 4.27), which later 

appeared to become CD8ct 11t  and/or disappeared from the spleen. This upregulation 

was also observed after administration of LPS alone in CD40' mice and CD154 

mice (not shown), pointing towards a pathway of CD40-CD154-independent 

induction of OX40L. It was later realised that the LPS was contaminated, possibly 

with a fungus. Unfortunately, the LPS has since been discarded, and the identity of 

this contaminant, remains a mystery. Nevertheless, the possibility that CD8ct DC 

can specifically upregulate OX40L expression, in a CD40-CD154-independent 

fashion, in response to an unknown (possibly fungally-derived) agent, is intriguing. 
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4.15. Summary 

The expression of three costimulatory receptor-ligand pairs, namely CD40-CD 154, 

0X40-OX40L and RANK-RANKL, was characterised during the tolerisation or 

activation of T cells over a time course of 4 days. T cells expressed CD154, 0X40 

and RANKL during the induction of either tolerance or immunity. CD 154 and 0X40 

were expressed for longer, and on a greater percentage of pOVA-reactive T cells 

during induction of immunity, while RANKL was expressed earlier and on a greater 

percentage of T cells during tolerance induction. DC increased their expression of 

CD40 and RANK only after administration of Ag with LPS, while FACS analysis 

could not detect OX40L during induction of either immunity or tolerance. OX40L 

expression was however observed specifically on CD8f DC in response to an 

unknown, possibly fungally derived compound. 

Induction of tolerance or immunity in CD154' mice was comparable to B6 mice, 

with similar expression of 0X40 on CD 154' T cells, and CD40, OX40L and RANK 

on DC during induction of either tolerance or immunity. In contrast to data from B6 

mice, little RANKL expression was found in CD154' mice after admihistration of 

pOVA and LPS. The absence of B cells had little influence on T cell or DC 

phenotype after Ag administration. Again, no RANKL was detected in response to 

pOVA+LPS. 

Chapter 3 showed that exogenous ligation of anti-CD40 prevented T cell tolerance, 

and it was here further shown that exogenous ligation of CD40 resulted in up-

regulation of CD80, CD86, and most importantly OX40L on DC, re-enforcing the 

idea that the CD40-CD154 and the 0X40-OX40L interactions are pivotal in the 

induction and prevention of T cell tolerance. 

Collectively, it is concluded that presentation of soluble peptide by quiescent or 

immature DC brings about T cell tolerance, while administration of LPS results in 
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activation of DC as shown by increased expression of costimulatory molecules, 

resulting in their ability to successfully initiate T cell immunity. 
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4.16. Discussion 

In recent years, evidence has accumulated suggesting that the activation state of the 

DC determines the outcome of antigenic challenge. Ligation of TLRs is coupled to 

DC activation, leading to increased expression of costimulatory molecules on the DC 

surface, migration into T cell areas, and the induction of effective T cell immunity 

(Reis e Sousa, 2004). The current consensus view suggests that in the absence of 

inflammatory stimuli in vivo, DC play an important role in the maintenance of 

peripheral tolerance (Belz et al., 2002; Hernandez et al., 2001; Scheinecker et al., 

2002; Steinman and Nussenzweig, 2002; Steinman et al., 2000). The ability of DC to 

induce tolerance or immunity appears to depend on their maturation stage 

(Dhodapkar et al., 2001; Jonuleit et al., 2000). Unmanipulated DC in vivo express 

little CD40 (Inaba et al., 1994; Schulz et al., 2000), and DC constitutively take up 

antigens in the periphery and present them to T cells in lymphoid organs in a 

tolerogenic fashion, which can be converted into immunogenic presentation after DC 

activation through CD40 (Hawiger et al., 2001; Maxwell et al., 1999). 

This chapter provided direct evidence for the importance of activation state of DC in 

the decision between tolerance and immunity. Specifically, it showed that 

administration of pOVA and LPS resulted in significant DC activation, illustrated by 

increased expression of CD40, RANK, CD80 and CD86, which resulted in T cell 

immunity. Expression levels of these molecules did not change during the induction 

of tolerance with respect to steady state controls. It is worth noting that the data 

presented did not investigate peptide expression on DC. It has been suggested that 

CD8I DC present peptide to CD4 T cells after s.c. administration of soluble 

peptide (Ingulli et al., 2002; Itano et al., 2003), and that CD8a DC also efficiently 

present processed peptide to CD8 T cells after i.v. administration of protein (Pooley 

et al., 2001). Co-administration of Ag and LPS has been shown to induce DC 

migration from the splenic marginal zone into T cell areas, enhancing expression of 

processed peptides on both CD8ct and CD8cC DC (Reis e Sousa and Germain, 

1999), which express TLR-4 at similar levels (Boonstra et al., 2003). It remains to be 
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investigated which subset of DC presents peptide after i.v. administration, although 

unpublished data from our laboratory suggests that both CD8c and CD8cI (CD4) 

DC do so (S. Anderton, personal communication). 

Administration of Ag and LPS consistently resulted in a small decrease of CD8c( 

DC in the spleen, while administration of Ag alone resulted in an increase of CD8f 

DC in the spleen. The CD8a subset of DC has previously been implicated in down-

regulating CD8 T cell responses (Belz et al., 2002; Kronin et al., 1996). The 

turnover of all subsets in the spleen is between 1.5 and 2.9 days, with the CD80( DC 

showing the fastest turnover rate after administration of LPS (Kamath et al., 2000), 

which agrees with data shown here. Although one may suggest that the decrease in 

CD8ct DC after administration of pOVA and LPS is due to preferential CD8a DC 

death and subsequent loss from the spleen, a mechanism by which the number of 

CD8a DC would increase after administration of soluble Ag alone is more difficult 

to explain. The changes in percentages of CD8a versus CD8cI DC observed here 

are very small, and the significance remains to be investigated. 

Whereas the differences in expression of CD40 and RANK on DC during the 

induction of immunity versus tolerance were very striking, less obvious differences 

were evident in costimulatory molecule expiession by T cells during the two 

processes. The general timing of expansion and subsequent loss of Ag-reactive cells 

after i.v. administration of soluble Ag correlates with previous reports (Kearney et 

al., 1994). These earlier studies compared T cell expansion after i.v. administration 

of Ag without adjuvant to administration of Ag in CFA, while this chapter compared 

administration of soluble peptide alone with co-administration of peptide and LPS. 

Greater T cell numbers were consistently observed at early time-points after 

administration of pOVA alone, compared to co-administration of pOVA and LPS. 

Using a TCR transgenic transfer system, it has been reported that for up to 42 hours 

after administration of Ag, T cells were difficult to detect by flow cytometry, 

although histology data showed that the cells were present in the organs examined 
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(Maxwell et al., 2004). This "loss" of T cells could be overcome by collagenase 

digesting the samples before flow cytometry. This decrease in T cell numbers was 

evident after both administration of Ag alone, and Ag and adjuvant, while in the 

system used here, numbers were lower after administration of Ag and adjuvant. 

Nevertheless, it cannot be excluded that the lower percentage of pOVA-reactive T 

cells found here at early time-points after pOVA+LPS administration compared to 

pOVA alone was due to the isolation procedure used, which did not include a 

collagenase digest. 

Previous data suggests that CD40 ligation acts to greatly enhance RANK expression 

on DC (Anderson et al., 1997). Nevertheless, RANK was found to be expressed at 

similar levels after administration of pOVA+LPS in B6 as well as CD154 mice. 

The levels of RANK expression observed in the steady state of B6 and CD154' mice 

were comparable to those described previously (Williamson et al., 2002). While 

CD154 and 0X40 were found for longer and at higher levels during the induction of 

immunity, RANKL expression was found at higher levels and at earlier time-points 

during the induction of tolerance compared to induction of immunity. RANKL 

expression was barely detectable in CD154' and B cell-deficient mice during the 

induction of immunity, while it was clearly present during the induction of tolerance. 

B cells and CD154 are thus not absolutely required for RANKL expression. 

Identification of a costimulatory molecule with positive correlation with tolerance 

induction was surprising, and it is intriguing to speculate about what significance the 

early RANKL expression during tolerance may have. This is further discussed in 

Chapter 6. 

Chapter 3 highlighted the importance of CD40 ligation as a checkpoint in the 

decision between immunity and tolerance through the successful prevention of 

tolerance induction with anti-CD40, comparable to data obtained in other recent 

studies investigating CD4 T cell tolerance (Hawiger et al., 2001). This chapter 

further shows that exogenous CD40 ligation increased expression of CD80, CD86 

and OX40L on DC. A similar approach (administration of anti-CD40 i.v.), has 
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previously been reported to result in upregulation of CD80 and CD86 (Chung et al., 

2004)., However, this upregulation was already seen by 24 hours after administration 

of antibody, compared to 48 hours in the results shown here, and also employed a 

model of mucosal tolerance, in which administration of anti-CD40 did not prevent 

tolerance induction. The discrepancy in timing may have been due to i.v. versus i.p. 

administration of the antibody, while inability to prevent tolerance may be due to 

differential regulation of tolerance in different peripheral sites. 

Although CD40 ligation resulted in CD80 and CD86 upregulation, its effect on 

OX40L expression was not investigated previously (Chung et al., 2004). OX40L was 

here found to be expressed after exogenous ligation of CD40, but not after 

administration of Ag with LPS. One explanation may be that only DC receiving a 

CD40 signal would upregulate OX40L. After administration of Ag in LPS, only DC 

in contact with the appropriate Ag-reactive (i.e. cD154 4 ) T cells should upregulate 

OX40L, and the number of those DC was too small to be traceable during FACS 

analysis. After administration of anti-CD40 however, a larger number of DC will 

have been given a signal through CD40 and upregulation of OX40L was seen at days 

2 and 3 after ligation. If OX40L is first upregulated at these later time-points after 

CD40 ligation, this would provide an explanation for the lack of OX40L staining on 

histology sections, which was carried out at 12 hours, i.e. at an earlier time-point, 

after Ag administration. 
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Fig. 4.1: 
Experimental outline of experiments investigating T cell and 
DC phenotypes during the induction of T cell tolerance versus 
the induction of T cell immunity 
Naive mice received a transfer of p0 VA-reactive T cells. One day 
later, mice were tolerised or immunised with pOVA, and the 
phenotype of T cells and DC was assessed 1, 2, 3 and 4 days after 
pOVA administratjon. 
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Fig. 4.2: 
Tolerance induction in, naïve B6 mice versus B6 mice after 
adoptive transfer of p0 VA-reactive cells 

Naïve B6 mice received a single dose of 500jig pOVA or PBS 
i.v. on day 0, followed by 20 jig pOVA/CFA on day 7, and 
lymphoid populations (draining lymph nodes shown here) assessed 
10 days later for proliferative responses to a dose range of pOVA'. 

B6 mice received Ly5.1 OT-Il cells one day prior to 
administration of pOVA i.v. Mice received a single dose of 500 jig 
pOVA or PBS i.v. on day 0, followed by 20 jig pOVA/CFA on day 
7, and lymphoid populations (draining lymph nodes shown here) 
were assessed on day 17 for proliferative responses to a dose range 

of pOVA. Background cpm were as those seen with iO jiM 
pOVA. 
These data are from one of three experiments giving consistent 
results. 
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Fig. 4.3: 
Co-administration of LPS (but not CpG) leads to T cell 
immunity 
B6 mice received Ly5. 1 1  OT-Il cells on day –1, one day prior to 
administration of pOVA. Mice received either 500 jig pOVA, PBS, 
500 jig pOVA with 30 jig CpG, or 500 jig pOVA with 30jig LPS (all 
i.v.) day 0, and splenic populations were assessed 7 days later for 
proliferative responses to a dose range of pOVA. Background cpm 
were as follows: PBS 2304, pOVA 2932, pOVA+CpG 2818, 
pOVA+LPS 6245. These data are from one of two experiments 
giving consistent results. 
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Fig. 4.4: 
Phenotype of DC after overnight culture with CpG 
B6 bone marrow cells were growti for 7 days 111 the presence of 
GM-CSF. cultured with 6ig/inl CpG overnight at 37°C, and 
stained for CD40, OX40L, CD80 and CD86. Filled histograms are 
CDI 1c cells stained with an isotype control antibody. These data 
are from one of two experiments giving consistent results. 
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Fig. 4.5: 
Expansion of p0 VA-reactive CD4 T cells after administration 
of pOVA or pOVA+LPS 
B6 mice received Ly5.lTh OT-Il cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 2, 3 and 4 post Ag administration, spleen cells were 
analysed by FACS for Ly5. I and CD4 expression. Percentages of 
total cells that were CD4. Ly5.l. are shown. These data are from 
one of eight experiments giving consistent results. 
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Fig. 4.6: 
CFSE profile of p0 VA-reactive CD4 1  T cells after 
administration of pOVA or pOVA+LPS 
B6 mice received CFSE-labelled Ly5.1 OT-Il cells one day prior 
to administration of pOVA, pOVA+LPS or PBS. 
On days 2, 3 and 4 post Ag administration, spleen cells were 
analysed by FACS for Ly5.1 and CD4 expression. A: CFSE 
profiles and percentages of total cells that are CD4, Ly5.P, are 
shown. B: The overlay allows comparison of number of cell 
divisions undergone after administration of pOVA or pOVA+LPS. 
These data are from one of three experiments giving consistent 
trends for division of p0 VA-reactive cells. 
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Fig. 4.7: 
Tolerance is not due to the absence of CD 154 on T cells 
B6 mice received Ly5. 1 OT-lI cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 1, 2 and 3 post Ag administration, spleen cells were 
analysed by FACS for CD154 expression by Ly5.l CD4 OT-lI 
cells (filled histograms are Ly5.1 CD4 UT-lI cells stained with 
streptavidin-APC alone). Percentages of Ly5. l CD4 UT-Il cells 
positive for CD 154 are shown on each graph. These data are from 
one of two experiments giving consistent results. 
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Fig. 4.8: 
Tolerance is not due to the absence of 0X40 on T cells 
B6 mice received Ly5. 1 0T-I1 cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 1,2 and 3 post Ag administration, spleen cells were 
analysed by FACS for 0X40 expression by Ly5.l C134 OT-lI 
cells (filled histograms are Ly5.l CD4 OT-Il cells stained with 
streptavidin-APC alone). Percentages of Ly5. I + CD4 OT-Il cells 
positive for 0X40 are shown on each graph. These data are from 
one of eight experiments giving consistent results. 
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Fig. 4.9: 
Tolerance induction results in rapid expression of RANKL on T 
cells 
B6 mice received Ly5. 1 1  UT-TI cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 1, 2 and 3 post Ag administration, spleen cells were 
analysed by FACS for RANKL expression by Ly5. I + CD4 OT-! I 
cells (filled histograms are Ly5.I CD4 UT-Il cells stained with 
streptavidin-APC alone). Percentages of Ly5. I + CD4 UT-Il cells 
positive for RANKL are shown on each graph. These data are from 
one of four experiments giving consistent results. 
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Fig. 4.10: 
Detailed time course analysis of RANKL expression on 1 cells 
during induction of tolerance versus immunity 
B6 mice received Ly5. I + OT-Il cells one day prior to 
administration of pOVA. pOVA+LPS or PBS. 
12, 18,24 and 48 hours post Ag administration, spleen cells were 
analysed by FACS for RANKL expression by Ly5. l CD4 OT-Il 
cells (filled histograms are Ly5.1 CD4 01-11 cells stained with 
streptavidin-APC alone). Percentages of Ly5. V CD4 OT-Il cells 
positive for RANKL are shown on each graph. These data are 
from one of two experiments giving consistent results. 
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Fig. 4.11: 
CD8a expression on DC after administration of pOVA, 
pOVA+LPS or PBS 
B6 mice received Ly5.l UT-TI cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. On days 1, 2 and 3 
post Ag administration, CDI 1c DC were purified from the spleen. 
CD1Ic cells were analysed by FACS for CD8a expression on 
days 1, 2 and 3. Percentages shown are CD8W DC vs. CD8cc 
DC.These results are from one of eight experiments giving 
consistent results. 
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Fig. 4.12: 
CD40 expression is upregulated on DC during the induction of 
immunity 
B6 mice received Ly5.1 OT-Il cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 1, 2 and 3 post Ag administration. CDI lc DC were 
purified from the spleen. CD! lc cells were analysed by FACS for 
CD40 expression on days 1,2 and 3 (filled histograms are CDI 1c 
cells stained with an isotype control antibody). Median 
fluorescence values of CD40 stained DC are shown on each graph. 
These data are from one of six experiments giving consistent 
results. 
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Fig. 4.13: 
CD40 expression on CD8a versus CD8a DC during the 
induction of tolerance or immunity 
B6 mice received Ly5. 1 OT-il cells one day prior to 
administration of pOVA. pOVA+LPS or PBS. 
On days I and 2 post Ag administration, CDI Ic DC were purified 
from the spleen. CDI 1c cells were analysed by FACS for CD8a 
and CD40 expression on days 1 and 2 (filled histograms are 
CD1 1c cells stained with an isotype control antibody). Median 
fluorescence values of CD40 stained DC are shown on each graph. 
These data are from one of six experiments giving consistent 
results. 
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Fig. 4.14: 
OX40L expression is not detectable on DC during the induction 
of tolerance or immunity 
B6 mice received Ly5. I + OT-H cells one day prior to 
administration of pOVA or pOVA+LPS. 
On days 1,2 and 3 post Ag administration, CD1lc DC were 
purified from the spleen. CD1 1c cells were analysed by FACS for 
OX40L expression on days 1, 2 and 3 (filled histograms are 
CD1 lc cells stained with an isotype control antibody). Median 
fluorescence values of OX40L stained DC are shown on each 
graph. These data are from one of several experiments giving 

consistent results. 
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Fig. 4.15: 
RANK expression is upregulated on I)C during the induction of 
immunity 
B6 mice received Ly5.l OT-Il cells one day prior to 
administration of pOVA or pOVA+LPS. 
On days 1.2 and 3 post Ag administration, CDI lc DC were 
purified from the spleen.CDI 1c cells were analysed by FACS for 
RANK expression on days 1,2 and 3 (filled histograms are CDI lc 
cells stained with an isotype control antibody). Median 
fluorescence values of RANK stained DC are shown on each 
graph. These data are from one of four experiments giving 
consistent results. 
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Fig. 4.16: 
RANK expression on CD8ocl versus CD8 DC during the 
induction of tolerance or immunity 
B6 mice received Ly5.l OT-Il cells one day prior to 
administration of pOVA or pOVA+LPS. 
On days I and 2 post Ag administration. CDI lc DC were purified 
from the spleen.CD1 lc cells were analysed by FACS for CD8cx 
and RANK expression on days 1 and 2 (filled histograms are 
CD1 1c cells stained with an isotype control antibody). Median 
fluorescence values of RANK stained DC are shown on each graph. 
These data are from one of four experiments giving consistent 
results. 
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Fig. 4.17: 
CD80 expression is upregulated on DC during the induction of 
immunity 
B6 mice received Ly5. I + OT-lI cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 1,2 and 3 post Ag administration, CDI lc DC were 
purified from the spleen. CDI lc cells were analysed by FACS for 
CD80 expression on days 1,2 and 3 (filled histograms are CDI lc 
cells stained with an isotype control antibody). Median 
fluorescence values of CD80 stained DC are shown on each graph. 
These data are from one of six experiments giving consistent 
results. 
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Fig. 4.18: 
CD86 expression is upregulated on DC during the induction of 
immunity 
B6 mice received Ly5. 1 OT-lI cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 1,2 and 3 post Ag administration. CDI lc DC were 
purified from the spleen. CD1 1c cells were analysed by FACS for 
CD86 expression on days 1, 2 and 3 (filled histograms are CDI 1c 
cells stained with an isotype control antibody). Median 
fluorescence values of CD86 stained DC are shown on each graph. 
These data are from one of five experiments giving consistent 
resu its. 
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Fig. 4.19: 
Summary of costimulatory molecule expression on DC and T 
cells during induction of tolerance or immunity 
B6 mice received Ly5.1 OT-Il cells one day prior to administration 
of pOVA, pOVA+LPS or PBS. 
On days 1, 2 and 3 post Ag administration, CDI lc DC were 
purified from the spleen, and CD! 1c cells were analysed by FACS 
for CD40, OX40L and RANK expression. Spleen cells were also 
analysed by FACS for CD 154, 0X40 and RANKL expression on 
Ly5. V CD4 OT-Il cells. These data are a summary from four 
experiments giving consistent trends of the timing of expression of 
these costimulatory molecules. 
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Fig. 4.20: 
Summary of costimulatory molecule expression on DC and T 
cells after i.v. administration of pOVA alone, or pOVA+CpG 
B6 mice received Ly5. V OT-Il cells one day prior to administration 
of pOVA, pOVA+CpG or PBS. 
On days 1, 2 and 3 post Ag administration, CD! I cl DC were 
purified from the spleen, and CD11c cells were analysed by FACS 
for CD40, OX40L and RANK expression on days 1, 2 and 3. Spleen 
cells were also analysed by FACS for 0X40 and RANKL 
expression by Ly5. V CD4 OT-Il cells. These data are a summary 
from three experiments giving consistent trends of the timing of 
expression of these costimulatory molecules. Expression of CD 154 
was not investigated in these experiments. 
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Fig. 4.21: 
Expression of CD80, CD86 and OX40L after administration of 
agonistic anti-CD40 Ab 
B6 mice received Ly5. 1 1  OT-Il cells one day prior to 
administration of pOVA or pOVA+200ig anti-CD40. 
On days 1.2 and 3 post Ag administration, CDI lc DC were 
purified from the spleen, and cells were analysed by FACS for 
OX40L. CD80 or CD86 expression on days 1, 2 and 3. Filled 
histograms are DC from mice that received pOVA+antiCD40. 
stained with streptavidin-APC alone. These data are from one of 
two experiments where administration of anti-CD40 successfully 
prevented the induction of T cell tolerance. 
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Fig. 4.22: 
Summary of costimulatory molecule expression on DC and 
CD154-deficient T cells during induction of tolerance or 
immunity 
CD 154' mice received CD154'xOT-II cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 1, 2 and 3 post Ag administration, CD11c DC were 
purified from the spleen, and CD! 1c cells were analysed by FACS 
for CD40, OX40L, RANK. Spleen cells were also analysed by 
FACS for 0X40 and RANKL expression by Va2, V35 OT-Il 
cells. These data are a summary from three experiments giving 
consistent trends of the timing of expression of these costimulatory 
molecules. 
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Fig. 4.23: 
Summary of costimulatory molecule expression on DC and T 
cells during induction of tolerance or immunity in B cell 
deficient mice 
.tMT mice received OT-fl cells one day prior to administration of 
pOVA, pOVA+LPS or PBS. 
On days 1, 2 and 3 post Ag administration, CD11c DC were 
purified from the spleen, and CDL 1c cells were analysed by FACS 
for CD40, OX40L and RANK expression. Spleen cells were also 
analysed by FACS for 0X40 and RANKL expression by Ly5.1 
CD4 OT-Il cells. These data are a summary from two experiments 
giving consistent trends of the timing of expression of these 
costimulatory molecules. Expression of CD 154 was not investigated 
in these experiments. 
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Fig. 
Identification of CT orange-labelled cells during induction of 
tolerance of immunity 
B6 mice received CT orange-labelled, Ly5. V OT-Il cells one day 
prior to administration of pOVA, pOVA+LPS or PBS. 
12 and 36 hours post Ag administration, mice were sacrificed, 
samples of the spleen were snap-frozen in liquid nitrogen. CT 
orange-labelled cells are shown in red, and sections were stained for 
Ly5.1 (shown in green). Shown are samples from mice 12 hours (A) 
and 36 hours (B) after administration of p0 VA alone. These results 
are from one preliminaiy experiment. 
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Fig. 4.25a: 	 - 
CD69 and CD154 expression 12 hours after administration of Ag 
B6 mice received CT orange-labelled, Ly5.1 OT-Il cells one day 
prior to administration of p0 VA, pOVA+LPS or PBS. 
12 post Ag administration, mice were sacrificed,and samples of the 
spleen were snap-frozen in liquid nitrogen. CT orange-labelled cells 
are shown in red, and sections were stained for CD69 and CDI 54 as 
indicated (in green). Corresponding FACS analysis is shown in 
lower right corners of pictures. These results are from one 
preliminary experiment. 
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Fig. 4.25b: 
0X40 and OX40L expression 12 hours after administration of Ag 
B6 mice received CT orange-labelled, Ly5. V OT-lI cells one day 
prior to administration of pOVA, pOVA+LPS or PBS. 
12 post Ag administration, mice were sacrificed,and samples of the 
spleen were snap-frozen in liquid nitrogen. CT orange-labelled cells 
are shown in red, and sections were stained for 0X40 and OX40L as 
indicated (in green). Corresponding FACS analysis for 0X40 is 
shown in lower right corners of pictures. These results are from one 
preliminaiy experiment. 
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PBS 3/19 15.8 3/36 8.3 4/61 6.6 0/51 0 

pOVA 16/34 47.1 18/70 25.7 20/72 27.8 0/93 0 

pOVA+LPS 14/21 66.6 33/119 27.7 34/1 16 29.3 1/62 0 

Fig. 4.26: 
Summary of expression of costimulatory molecules as seen 
through histology 
B6 mice received CT orange-labelled, Ly5. 1 1  OT-TI cells one day 
prior to administration of pOVA, pOVA+LPS or PBS. 
12 hours post Ag administration, mice were sacrificed, samples of 
the spleen were snap-frozen in liquid nitrogen. Tissue sections were 
stained for CD69, CD 154, 0X40 and OX40L. Pictures were taken, 
and CT cells were analysed for expression of these markers. The 
numbers shown are marker cells out of CTI cells (or in the case of 
OX40L, very little OX40L staining was observed), and percentage 
of marker cells calculated from these counts are shown in bold. 
These data are from one preliminary experiment. 
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Fig. 4.27: 
Induction of OX40L on CI)8u' DC by an unidentified compound 
B6 mice received Ly5.1 OT-lI cells one day prior to administration 
of pOVA, pOVAi-contaminated LPS or PBS. Shown are days I and 2 
only. 

On days 1,2 and 3 post Ag administration, CDI 1c DC were 
purified from the spleen. CD1 1c cells were analysed by FACS for 
OX40L expression on days 1,2 and 3 (filled histograms are CDI lc 
cells stained with streptavidin-APC alone). Median fluorescence 
values of OX40L stained DC are shown on each graph. Shown are 
days I and 2. 

CD8a expression is examined in the pOVA+contaminated LPS 
group on OX40L cells or OX40U (filled histograms are from 
OX40L, empty lines OX40L). These data are from one of three 
experiments giving consistent results. 
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5. CHAPTER 5 - Systemic administration of antigen-

loaded C1340-deficient DC mimics peptide-induced 

tolerance 

5.1. Introduction 

The previous chapters provided evidence for the importance of the CD40-CD154 

interaction in the induction of T cell immunity. Administration of pOVA and LPS, 

leading to effective immunity, resulted in increased expression of CD40 on DC. 

Exogenous ligation of CD40 induced expression of CD80, CD86 and OX40L on DC, 

and prevented the induction of T cell tolerance. This indicates that low levels of 

CD40 during tolerance induction, and the possible subsequent lack of CD40-CD154 

interaction, may have been responsible for the induction of tolerance. In order to 

determine whether the predominant effect of CD40 ligation was through 

upregulation of CD80/86, a system was needed in which CD80 and CD86 were 

expressed at high levels on DC, while CD40 was either present or absent. If signals 

downstream of the CD40-CDI 54 interaction other than CD80ICD86 (for example 

OX40L) were crucial for induction of immunity, the lack of CD40 should override 

the presence of CD80/CD86, and result in the induction of tolerance. 

Previous studies, which addressed the importance of CD40 using s.c. administration 

of Ag-loaded CD40-deficient or —sufficient DC, concluded that, whilst CD40' DC 

failed to lead to productive T cell immunity, T cell tolerance was also not evident 

(Miga et al., 2001). However a key factor for the induction of effective T cell 

tolerance with soluble Ag is the use of a systemic route (Anderton, 2001), 

implicating the spleen to be important in this process. One would therefore have 

predicted that the previous study using the subcutaneous route would not lead to a 

global tolerogenic effect. This chapter describes a series of experiments, in which 

CD40-deficient splenic DC (spDC) were administered i.v., testing the hypothesis that 

a lack of CD40 on DC in the spleen would induce Ag-specific T cell tolerance. 
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5.2. Approach 

Throughout these experiments, B6 and CD40-deficient mice were used as sources of 

DC. These DC were loaded with Ag ex-vivo, before being used to activate T cells 

either in vitro or in vivo. Initially, pMOG was used to load the DC, but with the 

arrival of the OT-Il adoptive transfer system in the lab, pOVA was used in most of 

the subsequent experiments, allowing the analysis of Ag-specific T cells. Early 

experiments, which were repeated with both pMOG and pOVA (without prior 

adoptive transfer of T cells), showed corresponding results, irrespective of the Ag 

used. The relevance of the findings from the adoptive transfer system were tested 

using the EAE model. 

The experimental outline of this chapter is shown in Figure 5.1. 
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5.3. Comparison of T cell activation by bone marrow-

derived DC and splenic DC in vitro 

Using spleens from B6 and CD40-deficient mice as sources of DC, the consequences 

of the lack of CD40 expression by DC on the kinetics of T cell activation and 

expansion were examined. In order to show the viability and Ag-presenting capacity 

of spDC after purification, in vitro T cell activation by spDC and bone marrow-

derived DC (bm-DC) from B6 mice were compared. SpDC were purified by positive 

selection using anti-CD 1 ic-conjugated MACS beads, and bm-derived DC were 

grown from bm of B6 or CD40' mice for 7 days in the presence of GM-CSF. DC 

were loaded with pOVA in the presence of LPS for 2hrs, and cultured with Ag-

specific T cells for 2 days. At lower DC:T cell ratios (i.e. fewer DC per T cell), bm-

derived and spDC induced similar levels of T cell proliferation. At higher DC:T cell 

ratios, spDC induced more T cell proliferation compared to bm-derived DC (Fig. 

5.2). The chosen method of purification for DC from the spleen thus left DC able to 

effectively present pOVA to Ag-specific T cells. 

Although bm-derived DC can easily be obtained in larger numbers, spDC were used 

in subsequent experiments, since the spleen is arguably the most important organ for 

induction of systemic T cell tolerance, and DC from the spleen are very likely to be 

involved in this process. DC are very potent initiators of immune responses. Only 

low numbers are needed to carry out in vitro or in vivo experiments, therefore, the 

rarity of DC in the spleen (approximately 1% of total spleen cells) did not present a 

problem in this series of experiments. 

5.4. B6 and C1340' splenic DC have similar phenotypic 

characteristics 

So as to exclude the possibility that subsequent results were due to variation in 

expression of other costimulatory molecules or in the proportions of DC subsets, the 
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surface phenotype of splenic DC isolated from B6 or CD40' mice was analysed. The 

DC were treated as for subsequent use in T cell activation studies, i.e. positive 

selection using anti-CD I Ic-conjugated beads and cultured in the presence of LPS for 

2 hrs. Similar percentages of CD8cx and CD4 DC subsets were found in each DC 

population (Fig. 5.3, bottom panel). Similar levels of CD80, CD86 and MHC class II 

were also found on the two DC populations (Fig. 5.3 top and middle panel). A large 

proportion of the DC displayed a mature phenotype, as illustrated by CD80, CD86 

and MHC class II expression, suggesting that the procedure used resulted in 

significant DC activation (Fig. 5.3). The only difference between CD40-sufficient 

and CD40-deficient DC is the level of CD40, and subsequent differences in ability to 

activate Ag-reactive T cells are therefore likely to be due to the presence or absence 

of CD4O. 

5.5. Comparing the ability of B6 and CD40' splenic DC to 

induce T cell activation and expansion in vitro 

The previous chapters have highlighted the importance of CD40-CD154 during T 

cell activation and tolerance. In an attempt to develop an in vitro model of T cell 

unresponsiveness, experiments were designed to test whether CD40' DC could 

activate a primary T response in vitro. 

5.5.1. CD40' spDC are able to induce T cell activation and 
expansion in vitro 

OT-Il mice were crossed with CD40' mice and CD4 T cells were purified from 

these OT II x CD40' mice, by positive selection using anti-CD4-conjugated MACS 

beads. This use of CD4 cells from OT II x CD40' mice ensured that any 

contaminating CD4 DC would be CD40 4 . The purified CD4 cells were CFSE-

labelled, and cultured with pOVA-pulsed DC (purified from B6 or CD40' mice and 

loaded with 50tM pOVA in the presence of LPS) in a 10:1 T cell:DC ratio. The 

CFSE profile was assessed after 2, 3, 4, and 5 days of culture (Fig. 5.4), together 

with expression of CD69, CD25, 0X40 and RANKL on p0 VA-reactive T cells (Fig. 
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5.5). CD69 and CD25 were used as markers of T cell activation, and together with 

the costimulatory molecules 0X40 and RANKL, expression of this set of molecules 

was investigated to reveal possible differences in the ability of B6 or CD40' DC to 

direct the outcome of T cell activation. 

Stimulation with CD40' spDC consistently led to a lower percentage of T cells 

entering division at early time-points (day 3 of culture) compared with cultures using 

B6 DC (Fig. 5.4). By day 3 of the experiment shown, about twice as many T cells 

had undergone cell division when stimulated with B6 DC, compared with those 

stimulated with CD40' DC (Fig. 5.4, middle panel). This was reflected in the 

percentages of T cells showing upregulation of CD69 and CD25 at days 2 and 3, and 

in the percentages of T cells showing upregulation of 0X40 and RANKL on day 3 

(Fig. 5.5). The results shown are gated on live cells, but.it  must be mentioned that 

cultures with CD40' DC had greater numbers of dead cells at later time-points, i.e. 

day 5, presumably from T cells that had not divided in response to Ag stimulation. 

Although down-regulation of levels of CD69, CD25, 0X40 and RANKL expression 

occurred more rapidly after stimulation with CD40' DC compared to B6 DC (Fig. 

5.5), those T cells that had entered the proliferative cycle had undergone similar 

numbers of cell divisions in both groups, irrespective of the DC used for stimulation 

(Fig. 5.4, overlays). In summary, these experiments suggest that CD40' DC were 

less efficient at triggering initial CD4 T cell expansion in vitro, but that this defect 

was overcome with time, possibly due to other costimulatory molecules, 

compensating for the lack of CD40 on CD40' DC. 

5.5.2. Varying the number of B6 and CD40' spDC does not 
differentially affect their ability to induce T cell 
expansion in vitro 

The number of DC presenting pOVA to Ag-specific T cells had a great effect on T 

cell proliferation (Fig. 5.2). To ensure that the lack of CD40 on DC is not overcome 

by the number of DC present during T cell stimulation, the number of DC was 

decreased from the previous 10:1 ratio, while the number of T cells was kept 
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constant, at 4x10 4  per well. The T cell:DC ratios were decreased 5 and 10 fold, 

giving 50:1 and 100:1 T cell:DC ratios, and DC were co-cultured with T cells as 

before. This reduction in DC number did not show any additional effects of CD40 

deficiency on DC, neither with respect to T cell expansion (Fig. 5.6), nor T cell 

costimulatory molecule expression (Fig. 5.7). The difference in the ability of B6 and 

CD40' DC to stimulate T cells, which was observed at higher DC numbers, was still 

seen at lower numbers of DC. The overall percentages of T cells undergoing cell 

division and showing upregulation of.costimulatory molecules (CD69 and 0X40 are 

shown in Fig. 5.7, but the same effect was seen for CD25 and RANKL) was 

decreased after culture with CD40' DC, but T cells stimulated by CD40-deficient 

DC underwent the same number of cell divisions as those stimulated by B6 DC. The 

presence of CD40 on DC is therefore not crucial for efficient T cell activation in 

vitro. 

5.6. CD40-deficient splenic DC induce abortive T cell 

activation and subsequent unresponsiveness in vivo 

The previous chapter showed that T cells go through a phase of activation before 

reaching a tolerant state in vivo. The above data shows the ability of CD40-deficient 

DC to activate T cells in vitro, but did not provide evidence for unresponsiveness to 

rechallenge. 

5.6.1. CD40' spDC do not support sustained Ag-specific T 
cell activation in vivo 

In order to test whether activation by CD40' DC renders T cells unresponsive to 

rechallenge with the same Ag, DC from CD40 4  or B6 mice were purified as before, 

and pulsed in vitro with pOVA, prior to i.v. administration to naïve B6 mice (initially 

without adoptive transfer of pOVA-reactive T cells). After six days, peripheral LN 

and spleen cells were examined for ex vivo recall responses to pOVA. Ag-specific 

proliferation was observed in lymphoid populations taken from mice that had 

received p0 VA-pulsed B6 DC, but not those that had received CD40' DC (Fig. 5.8). 
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Exogenous ligation of 0X40 prevented the induction of tolerance (Chapter 3) and 

0X40 is upregulated on the T cell during both induction of tolerance and immunity 

(Chapter 4). Since one effect of CD40 ligation is the upregulation of OX40L on DC 

(Chapter 4), which signals to T cells via 0X40, resulting in upregulation of the 

survival factors BcI-2 and Bcl-xL (Rogers et al., 2001), one could reason that 

provision of 0X40-signalling using an agonistic anti-0X40 monoclonal antibody 

might overcome the deficit in T cell activation seen after CD40' DC administration. 

However, no pOVA-reactive proliferative response in lymphoid populations from 

mice treated using this approach could be detected (Fig. 5.8), which correlated with 

data shown in Chapter 3, where provision of anti-0X40 at the time of primary Ag 

administration did not result in effective T cell responses (Fig. 3.7). 

5.6.2. CD40' spDC induce unresponsiveness to subsequent 
rechallenge with Ag in adjuvant in vivo 

Primary in vivo stimulation with Ag-loaded CD40' DC resulted in a lack of T cell 

responsiveness when T cells were restimulated in vitro. However, a more rigorous 

assessment of potential tolerance induction required analysis of T cell reactivity upon 

subsequent in vivo rechallenge with Ag in adjuvant. Mice therefore received pOVA-

loaded DC as before, and were then immunised with pOVA in CFA 6 days after 

administration of DC. Recall proliferative responses to a dose range of pOVA were 

tested 10 days after challenge with pOVA in CFA. Lymphoid populations from mice 

that initially received CD40' DC were clearly impaired in their ability to proliferate 

to pOVA in vitro compared with those from mice that had received B6 DC, or from 

control mice that received no DC (Fig. 5.9). In this setting, the provision of anti-

0X40 at the time of CD40' DC administration allowed in vitro recall responsiveness 

to be evident after immunisation with pOVA in CFA. Again, this is reminiscent of 

data obtained in Chapter 3, where T cells responded to in vivo rechallenge with Ag in 

adjuvant after previous tolerisation (Fig. 3.10). The absence of CD40 on DC 

rendered T cells unresponsive, but this unresponsiveness could be rescued by 

exogenous ligation of 0X40. 
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5.6.3. CD40' spDC induce abortive T cell activation in vivo 

A lack of T cell responsiveness may reflect an absence of Ag-reactive cells or their 

functional inactivation. To address this issue, the expansion and phenotypic changes 

of pOVA-specific T cells were followed in vivo using the OT-Il adoptive transfer 

system. Naïve B6 mice received CFSE-labelled OT-Il T cells on day —I, followed on 

day 0 by an i.v. injection of pOVA-pulsed B6 or CD40' DC as described above. 

Flow cytometry revealed similar changes in the levels of CD69 expression by 

transferred OT-Il T cells in the first three days after administration of either B6 or 

CD40' DC. However, although CD40' DC induced T cell proliferation in vivo, this 

was not sustained past three days after DC administration (Fig. 5.10). OT-Il T cell 

numbers were greatly reduced at the day 4 time-point in the spleens of mice that 

received CD40' DC, compared with a continued T cell expansion from day 3 to 4 in 

mice that received B6 DC (Fig. 5.10). 

5.6.4. Reduced. IL-2 and IFNy production and reduced 
proliferative capacity after exposure to Ag-loaded 
CD4O spDC 

The data presented above showed that the number of Ag-reactive T cells rapidly 

decreased after exposure to Ag on CD40' DC (Fig. 5.10). To determine whether 

disruption of CD40 signalling not only influenced survival of Ag-specific T cells, but 

also affected T cell effector function, i.e. T cell cytokine-producing capacity, 

intracellular cytokine production by OT-Il T cells 6 days after DC administration 

was measured. Lymphoid cells received mitogenic stimulation with PMA and 

ionomycin for 4 hours before intracellular cytokine production was determined by 

FACS staining. Production of both IL-2 and IFN-y was clearly evident after 

administration of B6 DC. Fewer OT-Il cells were producing IL-2 and IFN-y, 

however, after CD40' DC administration, although the percentages of Ly5.lt CD4 

T cells producing IL-2 and IFN-1 were still much higher than in PBS controls (Fig. 

5.1 lb and 5.1lc). Production of IL-4 and IL-lO was minimal after administration of 

either DC group (Fig. 5.1ld and 5.1le). Consistent with earlier findings using B6 

mice without OT-Il transfer (Fig. 5.8), it was found that lymphoid populations from 
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mice harbouring OT-Il T cells showed a greatly reduced proliferative capacity upon 

in vitro culture with pOVA after CD40' DC administration compared with those 

from mice receiving B6 DC (Fig. 5.12). The response in the CD40' DC group 

showed a low level of proliferation mirroring that seen in control mice that received 

PBS rather than DC (Fig. 5.12). 

5.6.5. CD40' spDC induce unresponsiveness in the adoptive 
transfer model 

The results obtained using the adoptive transfer system correlated with those from 

naive B6 mice. After transfer of OT-Il cells, mice received DC and were immunised 

with pOVA/CFA on day 6. Ten days after immunisation, diminished in vitro recall 

proliferative responses to pOVA and a decreased frequency of pOVA-reactive T 

cells in mice that received CD40' DC were found in DLN (Fig. 5.13a and b). 

Collectively, the data looking at T cell expansion in response to Ag encounter on DC 

lacking CD40 suggest that administration of CD40' DC results in an abortive 

activation of Ag-reactive T cells, with the remaining cells being less able to produce 

IL-2, WN-y, or to proliferate in response to Ag. 

5.7. Administration of CD40-deficient spDC protects from 

CNS autoimmune pathology 

The data thus far had indicated that exposure to Ag in the absence of the 

CD40:CD154 interaction induced a transient T cell activation followed by a 

substantial loss in Ag-reactive T cell numbers. Those T cells that did persist had a 

reduced ability to proliferate and produce cytokines. The net effect of these processes 

was to render the mouse relatively unresponsive to subsequent immunogenic 

challenge in vivo. To determine the significance of this unresponsiveness in a 

pathogenic setting, the capacity of autoantigen-loaded CD40' DC to modulate the 

development of pMOG-induced EAE was tested. Mice received either B6 or CD40' 

DC that had been loaded in vitro with the 50.tM pMOG and 6 days later EAE was 

induced by immunization with pMOG/CFA. Both 136 and CD40' DC consistently 
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conferred a degree of protection against EAE compared to mice that did not receive 

DC. However, CD40' DC clearly gave a more pronounced protection than B6 DC 

(Fig. 5.14). 

5.8. Inducing tolerance through administration of CD40' 

bone marrow-derived DC gives inconsistent results 

Although the spleen is arguably the most important organ for induction of T cell 

tolerance, as previously mentioned, it was decided to investigate the tolerogenic 

potential of bm-derived CD40' DC in a similar fashion to spDC as shown above. 

Human blood-derived monocytes, which are currently used in many clinical trials for 

enhancing immune responses to tumours (Bocchia et al., 2000), show similar 

characteristics to bm-DC (Shortman and Liu, 2002). DC in which ReIB function is 

inhibited lack CD40 expression (Martin et al., 2003). If bm-DC lacking CD40 have 

the same tolerogenic potential as CD40' spDC, the possible therapeutic benefits 

associated with blood-derived monocytes, which could be differentiated into DC 

lacking CD40, and could be grown for each patient individually, are considerable. 

5.8.1. 136 and CD404  bone marrow-derived DC have similar 
phenotypic characteristics 

After one week of in vitro culture with GM-CSF, bm-DC from B6 or CD40' mice 

were cultured in the presence of LPS for 2 hrs. DC were then stained for DC subset 

markers CD8cx and CD4, and their relative maturity assessed by staining for the 

costimulatory molecules CD80, CD86 and CD40, as well as by staining for MHC 

class II expression. Bone marrow-derived cells were CD8oC and CD4, and both B6 

and CD40' DC displayed similar surface levels of CD80, CD86 and MHC class II 

(Fig. 5.15). 
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5.8.2. Bone marrow-derived CD404  DC do not support Ag-

specific T cell proliferation in vivo 

DC grown from CD40' or B6 mice were pulsed in vitro with pMOG in the presence 

of LPS, prior to i.v. administration to naïve 136 mice. After six days, peripheral LN 

and spleen cells were examined for in vitro recall responses to pMOG. Ag-specific 

proliferation was observed in lymphoid populations taken from mice that had 

received pMOG-pulsed B6 DC, but not those that had received CD40' DC (Fig. 

5.16), consistent with findings using spDC (Fig. 5.8). 

5.8.3. Bone marrow-derived CD40' DC inconsistently induce 
unresponsiveness in vivo 

As with spDC, the above findings indicated a lack of T cell responsiveness as a result 

of primary in vivo stimulation with Ag-loaded bm-derived CD40' DC. However, 

rechallenge with Ag in adjuvant, which consistently resulted in decreased pOVA-

specific proliferation in after administration with CD40' spDC, gave inconsistent 

results when bm-derived CD40' DC were used (Fig. 5.17). In one experiment, 

administration of CD40' DC gave an Ag-non-specific reduction in T cell 

proliferation, while in a separate experiment, administration of both 136 and CD40' 

DC resulted in a modest decrease in proliferative responses to pMOG (Fig. 5.17). 

Even several repeats of the experiment did not lead to clarification whether or not 

administration of CD40' bm-derived DC could lead to Ag-specific T cell 

unresponsiveness. 
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5.9. Summary 

The experiments described in this chapter tested the prediction that Ag presentation 

by DC lacking CD40 would drive Ag-reactive T cell towards unresponsiveness. It 

was shown that CD40 expression on spDC was neither necessary for T cell 

proliferation in vitro, nor was it crucial for initial T cell expansion in vivo. However, 

it was essential for sustaining in vivo T cell expansion past day 3 after DC 

administration, after which a decrease in Ag-specific T cells was observed. This 

correlated with a decreased proportion of T cells producing IL-2 and JFN-y when 

stimulated by CD40' spDC. Importantly these deficits were evident even though the 

CD40' DC had elevated expression of other costimulatory molecules (CD80, 

CD86), and this effect is most likely due to the lack of CD40 on DC, disrupting 

further down-stream events (other than CD80/CD86). Reduced proliferative recall 

responses were found after administration of CD40' spDC, even after rigorous 

assessment of tolerance by administration of Ag in a strong adjuvant. Similar to data 

obtained in chapter 3, exogenous ligation of 0X40 did not rescue responsiveness 

during initial T cell priming, but allowed effective recall responses after rechallenge 

in the presence of a strong adjuvant. Using EAE, it was shown that administration of 

CD40-deficient DC conferred effective protection against the development of 

autoimmune pathology. From these data, it is concluded that the systemic 

administration of CD40-deficient spDC leads to inhibition of T cell activation and a 

deletional form of tolerance that is reminiscent of that seen following administration 

of soluble Ag. 

The chapter concludes by exploring the potentially similar tolerogenic effects of 

CD404  bm-derived DC. Although the initial results appeared promising, and CD40' 

bm-derived DC did not support T cell proliferation in vivo, and more rigorous 

assessment of tolerogenic potential gave inconsistent results. Nevertheless, this 

avenue of research possesses great therapeutic possibilities, and may be worth further 

investigation. 
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5.10. Discussion 

Presentation of peptide-MHC complexes by resting DC is generally accepted to be 

the key to T cell tolerance induction (Steinman and Nussenzweig, 2002). The finding 

that administration of Ag-loaded, CD40-deficient splenic DC resulted in T cell 

tolerance further highlighted the importance of CD40-CD 154 during the decision 

between tolerance and immunity. This fits with data obtained in Chapters 3 and 4, 

which showed that activation of DC by CD40 prevented tolerance induction, and that 

expression levels of CD40 were increased during the induction of immunity 

compared to tolerance induction (Chapter 4). The system used in this chapter 

provided a tool to specifically look at the impact of CD40-deficiency during T cell 

activation. The finding that CD40' DC induced initial T cell expansion, but were 

unable to sustain this expansion compared to their CD40-sufficient counterparts, is 

consistent with an earlier study that gave DC by a s.c. route (Miga et al., 2001). This 

previous study, however, did not report any unresponsiveness in the Ag-reactive T 

cells that persisted after CD40' DC administration. The obvious difference between 

these two studies is that the route of DC administration. In our series of experiments, 

it was deliberately chosen to give DC i.v., allowing access to the spleen, based on 

previous experience that systemic delivery is most effective at inducing T cell 

tolerance with peptide (Anderton et al., 1998). Inefficient T cell priming after s.c. 

injection of CD40' DC has been reported to be associated with accelerated loss of 

DC from the draining lymph node. Studies of tolerance induction with peptides 

indicate that, whilst establishment of a fully unresponsive state takes 4 to 5 days (Liu 

and Wraith, 1995), the key events that initiate the tolerogenic program probably 

occur within hours of TCR recognition (Hoyne et al., 1996; Zell et al., 2001)., This 

being the case, it could be argued that the issue of how many days B6 versus CD40' 

DC persist in the spleen after i.v. administration is unlikely to be the key to the T cell 

unresponsiveness observed. 

The results clearly show that CD40 DC provoked a proliferative burst in Ag- 

reactive T cells that lasts for three days. This is reminiscent of the data obtained in 

Chapter 4, showing that pOVA-reactive T cells underwent several rounds of cell 
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division after administration of soluble peptide before becoming tolerant. The soluble 

peptide was most likely presented by resting DC, expressing lower levels of CD40, 

compared to DC after administration of Ag and LPS. Therefore the initial 

proliferation seen using DC which completely lacked expression of CD40, fits with 

other experimental systems that lead to T cell tolerance. Even though the percentage 

of cells producing IL-2 and IFN-y is reduced after administration of CD40' DC, it is 

still greatly increased compared to PBS controls. However, the proliferative 

responses were greatly reduced after administration of CD40' DC compared to PBS 

controls, suggesting proliferative unresponsiveness, but not a complete lack of 

effector function. This has previously been observed after administration of soluble 

peptide (Malvey et al., 1998), and is again reminiscent of tolerance induction by 

soluble peptide explored in previous chapters. 

The results. suggest that the decreased IL-2 production in T cells stimulated with 

CD40' DC leads to an abortive immune response, and T cell death. This is 

supported by the sudden decrease in Ag-reactive T cells 4 days after priming with 

CD40' DC. Consistent with inducing a form of deletional tolerance, administration 

of CD40' DC protected from EAE. This matches a recent report in which 

administration of Ag-loaded RelW DC, which also lack CD40' expression, induced 

Ag-specific T cell tolerance (Martin et al., 2003). However, this study reported the 

induction of an IL-tO producing regulatory T cell population. It is unlikely that this 

explains the protection against EAE we observe, since CD40' DC did not induce an 

IL-lO producing T cell population in our OT-Il adoptive transfer system. 

Interestingly, although pOVA-pulsed B6 DC did not appear to result in decreased 

proliferative capacity upon rechallenge, giving pMOG-pulsed B6 DC prior to EAE 

induction consistently gave some protection from disease. Similar data have been 

obtained using LPS-treated, pMOG-pulsed, bone marrow-derived DC (S. Anderton, 

unpublished observations). T cells can become exhausted upon repeated Ag-

stimulation (Lenardo et al., 1999), resulting in reduced capacity to respond to 

rechallenge. Administration of B6 DC and subsequent challenge with a strong 

adjuvant such as CFA may therefore drive some high avidity self-reactive T cells 
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into activation-induced cell death, reducing the ability to induce disease. 

Alternatively, LPS-treated DC could have expanded an already existing population 

of T reg, which has been observed in other systems (Yamazaki et al., 2003), which 

then conferred some protection against autoimmune pathology. 
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Figure 5.1: 
Experimental outline for experiments of chapter 5 

C134 pOVA-reactive OT-TI cells were CFSE labelled and co-
cultured with LPS-treated, pOVA-loaded B6 or CD40 DC, and 

analysed by FACS on days 1,2,3,4,5 and 6. 
Some mice received CFSE-labelled, CD4 UT-IT cells on day-i, 

before LPS-treated, p0 VA-loaded B6 or CD40 DC on day 0. In the 
case of an adoptive transfer, mice were sacrificed on I ,2,3 and 4 for 
time course analysis of expression of costimulatory markers. In 
either case, mice were tested for pOVA-specific recall responses on 
day 6, or received pOVAICFA on day 6 and were tested for pOVA-
specific recall responses on day 16. 
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Figure 5.2: 
Comparison of T cell activation by bone marrow-derived and 
splenic DC in vitro 
CD4-purified OT-Il cells were co-cultured with bm-derived DC 
(A) or splenic DC (B), and assessed for pOVA-specific 
proliferative responses. Figures in the legend refer to numbers of 
DC/well. 4x104  T cells/well were used. Background levels ranged 
from 105-5646. This experiment was carried out once. 
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Figure 5.3: 
Splenic DC from B6 and CD40' mice display similar phenotypic 
characteristics 
Spleens were treated with collagenase and DNAse, DC were purified 
as described in materials and methods, cultured with LPS for 2 hours 
at 37°C, and stained for MHC class II, CD40. CD80, CD86, CD8a 
and CD4. CD1 lc DC were analysed for expression of these 
molecules. These data are from one of two experiments giving 
consistent results. 

167 



B6 DC 	CD40 DC 
300 	 300 

2 

8.67 
00

J 	
200 

100 	 100 

0 0 
100 	10' 	102 	10' 	10.10. 	10' 	102 	10' 	10' 

200 	 200 

100 

1150 

TA 
150 

 41.8 

75 
100 	

50 50 

_____________________________ 	
0 0 

100 	10' 	10 	10' 	10'10° 	10' 	102 	10' 	10'  

overlay 
100 

80 

60 

40 

20 

0 
100 	10' 	102 	10' 	10' 

I 100 

80 x 
CES 

j 

60 l JJ A 
40j 

201 

100 	10' 	102 	10' 	10' 

LC) 

100 

80 

60 

40 

20 

i i  

I 
 If 

100 	10' 	102 	10' 	10' 100 	10 1 	102 	10' 	10' 
	

100 	10 1 	102 	10' 	10' 

CSFE P' 	
-- B6DC 

- CD40' DC 

Figure 5.4: 
B6 and CD40' spDC show similar T cell activation capacities in 

vitro 
CFSE-labelled CD4 OT-Il T cells were cultured with Ag-loaded 
splenic DC (10:1 T/DC ratio) and analysed at the times indicated. 
These data are from one of three experiments giving consistent 
results. 
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Figure 5.5: 
Comparing costimulatory molecule expression induced by B6 and 
CD4O spDC 
CFSE-labelled CD4 OT-Il T cells (4x10 4  cells per well) were 
cultured with Ag-loaded splenic DC (4x10 3  DC per well). At the 
indicated time-points T cells were sampled and expression of CD69. 
CD25, 0X40 and RANKL analysed. Percentages shown on graphs 
refer to percentages of cells in top left and right, and bottom left 
quadrants. These data are from one of three experiments giving 
consistent results. 
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Figure 5.6: 
Varying, the number of B6 and CD40' spDC does not 
differentially affect their ability to induce T cell expansiOn in vitro 

CFSE-labelled CD4 OT-Il T cells (4x10 4  cells per well) were 
cultured with varying numbers of Ag-loaded splenic DC (50/1 or 
100/1 TIDC ratios) and analysed at the times indicated. Numbers 
shown on graphs refer to percentages of divided cells. These data are 
from one of two experiments giving consistent results. 

170 



I 

	

50/1 	100/1 

	

1

82 	 22 126 c. >. I- _ 
-- He 

1 	4j 

i- 
• 	637 

U) 	
: 	

H259 

cc 

10 
• 	L 	•L L 

CD40' DC 

50/1 	100/1 

:rii 	915i 

1 01_11 	5.92 

10,  

10 	10 	 10 
10 848 	 5 47 

102  

o 70  

10 	1 	 1 	 I 	 IS 

1O217 	 1 1352 

10 	 10 

10 	 10 

I 

	

138 	294 	10 071 	20 

c. 	 10' 

> 	I 	io' 

CD 

	

10 948 	 1 	127 
0 	10 	 10 	10 

0 	 - 137 	
10, 

671 	- 44 

10,  CD H 	 10 

10 

	

16 	 1 	144 

I' 10 
 

10,  

10,  0.19 	0.86 	10 0.12 	0.9 

10' 	 10 

10' 	 10' 

10 	 0 

10 	11.4 	 ij 	 12.6 
10 	10 	10 	10 	10' 10 	10 	10 	10 	10

104  
10' 

1 78 	1.46 	 1.33 	1.56 

10' 	 10' 

10 	123 	 111 
10' 	10 	 10 

10'1064 	H 	 008. 	- 

10' 	 10' 

1U=• 	 °72 

Figure 5.7: 
Comparing costimulatory molecule expression induced by varying 
numbers of B6 and CD40' spDC 
CFSE-labelled CD4 OT-Il T cells (4x10 4  cells per well) were 
cultured with varying numbers of Ag-loaded splenic DC. At the 
indicated time-points T cells were sampled and expression of CD69, 
CD25. 0X40 and RANKL analysed. Shown are the expression of 
CD69 and 0X40. Percentages shown on graphs refer to percentages of 
cells in top left and right, and bottom left quadrants.These data are 
from one of two experiments giving consistent results. 
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Figure 5.8: 
CD40' spDC do not support Ag-specific T cell proliferation in 
vivo 
B6 or CD40 DC were purified and loaded with pOVA as described 
in materials and methods, before i.v. transfer into naïve B6 recipients. 
Six days after DC transfer, splenic lymphoid populations were tested 
for proliferative responses to a dose range of pOVA. These data are 
from one of three experiments giving consistent results. 
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Figure 5.9: 
CD40' spDC administration leads to T cell unresponsiveness in 
vivo 
B6 or CD40 DC were purified and loaded with pOVA as described 
in materials and methods, before transfer into naïve B6 recipients on 
day 0. Mice were immunised on day 6 with pOVA/CFA and draining 
lymph nodes assessed 10 days later for proliferative responses to a 
dose range of pOVA. As indicated some groups also received anti-
0X40 at the time of DC administration and 2 days later. The effects 
seen with ant1 70X40 were not found when using an isotype control 
antibody. These data are from one of three experiments giving 
consistent results. 
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Figure 5.10: 
CD40' spDC do not support sustained T cell expansion in vivo 

B6 mice were seeded with CFSE-labelled OT-Il cells one day prior to 
administration of DC. On days 1,3 and 4 post DC administration, 
lymphoid cells (spleen shown here) were analysed by FACS for CFSE 
profile and CD69 expression by V5+Va2+ OT-lI cells (filled lines 
are V5+Va2+ cells that were stained with streptavidin-APC alone). 
These data are from one of three experiments giving consistent 

results. 

174 



	

CD4O DC 
	

PBS 

10 
	 1c 

loll 	I 

	1.2 	
1031 	I 
	1.1 

CD4_ 

1O 	10 

Ly5.1_ 

A 	B6DC 

5.2 

LO  

1 03j 

> 	9S 

- 

	

D -• 	0 

B 
10, 

68.8 
10 

LI 
C 

?_1o1 	5 3.6

H0 	H lof 

6.8 

Ly5.1_ 

Figure 5.Ila-c: 
Reduced cytokine production after administration of Ag-loaded 
CD4O spDC 
B6 mice were given Ly5.1 OT-Il cells one day prior to 
administration of DC. Lymphoid populations (spleen shown here) 
were analysed on day 6. UT-lI cells were identified by gating on 
CD4, Ly5.l cells (A, percentages of CD4 cells that were Ly5. 1* 
shown) and counterstained for IL-2 (B), or IFN-y (C, percentages 
of CD4Ly5.1 cells that were cytokine-positive shown). These 
data are from one of three experiments giving consistent results. 
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Figure 5.11d,e: 
Reduced cytokine production after administration of Ag-loaded 
CD4O spDC 
B6 mice were given Ly5.1 UT-Il cells one day prior to 
administration of DC. Lymphoid populations (spleen shown here) 
were analysed on day 6. OT-lI cells were identified by gating on 
CD4, Ly5.1 cells as in Fig. 51 la-c, and counterstained for IL-4 
(D), or IL-lO (E, percentages of CD4Ly5.1 cells that were 
cytokine-positive shown). These data are from one of three 
experiments giving consistent results. 
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Figure 5.12: 
Reduced T cell proliferation after administration of Ag-loaded 
CD401  spDC 
B6 mice were given Ly5.1 UT-IT cells one day prior to 
administration of DC on day 0. B6 or CD40 DC were purified and 
loaded with pOVA as described in materials and methods, before 
transfer into naïve B6 recipients. Six days after DC transfer, splenic 
lymphoid populations were tested for proliferative responses to a dose 
range of pOVA. These data are from one of two experiments giving 
consistent results. 
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Figure 5.13: 
CD40 spDC induce unresponsiveness to subsequent rechallenge 
in vivo after adoptive transfer of Ag-specific T cells 

B6 mice were given Ly5.1 OT-Il cells one day prior to 
administration of DC on day 0 as before (Fig. 5.12). Mice were 
immunised with pOVA in CFA on day 6 and in vitro recall responses 
to pOVA in the DLN were assessed on day 16. These data are from 
one of several experiments giving consistent results. 

OT-IT cells were identified by gating on CD4, Ly5. l cells on day 
16. Percentages of OT-Il cells in DLN are shown. 
These data are from one of two experiments giving consistent results. 

178 



0) 
I- 

0 
C.) 
(1)3 
Ui 
4 
LU 

.2 

C.) 
C 

0) 

 

5 	10 	15 	20 	25 	30 

days 

-U pMOG-loaded B6DC 

-0- unloaded CD40 DC 

-.- pMOG-loaded CD40' DC 

Figure 5.14: 
CD40' spDC protect from autoimmune CNS pathology 
Mice received pMOG-loaded B6 or CD40 DC 6 days prior to 
induction of EAE with pMOG in CFA. (p values determined by 
Mann-Whitney U test were: PBS vs. B6: 0.0025, PBS vs. CD40 
+pMOG: <0.0001, B6 vs. CD40+pMOG: <0.0001.) These data are 
from one of two experiments giving consistent results. 
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Figure 5.15: 
Bm-DC from B6 and CD40' mice display similar phenotypic 
characteristics 
B6 and CD40 bone marrow cells were grown for 7 days in the 
presence of GM-CSF, cultured with LPS for 2 hours at 37°C, and 
stained for MHC class II, CD40, CD80, CD86, CD8a and CD4. 
CD1 1c DC were analysed for expression of these molecules. These 
data are from one of two experiments giving consistent results. 
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Figure 5.16: 
CD40' bmDC do not support Ag-specific T cell proliferation in 
vivo 
B6 or CD40 DC were grown and loaded with pMOG as described in 
materials and methods, before transfer into naïve B6 recipients. Six 
days after DC transfer, splenic lymphoid populations were tested for 
proliferative responses to a dose range of pMOG. These data are from 
one of three experiments giving consistent results. 
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Figure 5.17: 
Bone marrow-derived CD40' DC inconsistently induce 
unresponsiveness in vivo 
136 or CD40 1 DC were grown and loaded with pMOG as described in 
materials and methods, before transfer into naïve B6 recipients on day 
0. Mice were immunised on day 6 with pMOG/CFA and draining 
lymph nodes assessed 10 days later for proliferative responses to a 
dose range of pMOG. Shown are two examples of the inconsistent 
results obtained. 
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6. CHAPTER 6— Conclusions and Discussion 

This thesis tested the hypothesis that the CD40-CD154 and the 0X40-OX40L 

interactions are pivotal in the decision between T cell tolerance and T cell immunity. 

The results can be summarised as follows: 

Exogenous ligation of both CD40 and 0X40 prevented the induction of T cell 

tolerance after administration of a tolerogenic stimulus. 

• The activation state of the DC, illustrated by the expression levels of CD40 

and RANK was the primary factor in the decision between tolerance and 

immunity. Increased levels of CD40 and RANK resulted in effective 

immunity, while during the induction of tolerance, CD40 and RANK levels 

on DC remained at steady-state levels. 

• Exposure to spDC lacking expression of CD40 resulted in T cell tolerance 

reminiscent of that induced by administration of soluble peptide, and 

effectively protected mice from autoimmune pathology. 

From these results, it can be concluded that the CD40-CD 154 interaction plays a 

pivotal role in the decision between tolerance and immunity. A lack of this 

interaction leads to tolerance, probably also due to subsequent lack of the 0X40-

OX40L interaction, while signalling through CD40 leading to DC activation results 

in T cell immunity. 

am 



6.1. Which molecules constitute the checkpoint in the 

decision between tolerance and immunity? 

Both peptide-induced tolerance and tolerance to peripherally expressed auto-Ag 

involve an initial phase of T cell activation and proliferation (Huang et al., 2003; 

Kearney et al., 1994). This implicates the costimulatory molecules, that are important 

for sustained T cell activation, as key players in the immunity versus tolerance 

checkpoint. The idea that regulation of CD40 expression might represent a general 

mechanism of maintaining peripheral tolerance is an attractive one, and is supported 

by an increasing amount of data. Interference with the CD40:CD40L interaction 

using blocking anti-CD40L prevents effective T cell priming, sometimes leading to a 

tolerant state (Buhlmann et al., 1995; Honey et al., 1999; Tang et al., 1997). Ligation 

of CD40 on the other hand can induce effective immune responses in a number of 

systems (Diehi et al., 1999; Grohmann et al., 2001; Hawiger et al., 2001; Sotomayor 

et al., 1999). 

In accord with the data obtained in other systems (Diehi et al., 1999; Grohmann et 

al., 2001; Hawiger et al., 2001; Sotomayor et al., 1999), the results presented here 

show that exogenous stimulation of CD40 can prevent the induction of tolerance 

(Chapter 3), and ligation of CD40 leads to upregulation of OX40L, CD80 and CD86 

by DC (Chapter 4). Conversely, administration of splenic DC lacking CD40 induces 

T cell deletion and subsequent tolerance, and protects from development of 

autoimmune pathology (Chapter 5). These results support a model of tolerance 

induction in which failure to provide sufficient ligation of CD40 on DC uncouples 

downstream T cell:DC dialogue involving other members of the TNF and TNF-

receptor families. Efficient CD40 ligation drives the upregulation of OX40L. by the 

DC (Fillatreau and Gray, 2003), allowing ligation of 0X40 that is upregulated by the 

T cell following activation through the TCR. 0X40 signalling results in 

accumulation of the anti-apoptotic proteins Bcl-2 and Bcl-xL promoting T cell 

survival (Rogers et al., 2001). Moreover, exogenous ligation of 0X40 on T cells also 

prevented the induction of tolerance, in this study (Chapter 3) and another (Bansal- 



Pakala et al., 2001), further supporting the hypothesis that the CD40-CD154 and 

0X40-OX40L interactions are pivotal in the decision between tolerance and 

immunity. 

A role for the CD28/CTLA-4-CD80/CD86 interaction in this decision has previously 

been suggested. CD28' mice prime poorly (Linsley and Ledbetter, 1993), and T 

cells lacking CD28 fail to expand upon immunisation (Howland et al., 2000). The 

CD28-CD80/CD86 interaction is thus crucial for initial T cell activation. Since a T 

cell has to become activated and go through several rounds of division in order to 

become tolerant, those costimulatory molecules which are important for initial T cell 

activation are unlikely to determine the outcome of the immune responsç, suggesting 

that the initial interaction between CD28 and CD80/86 is not disrupted en route to 

tolerance. 

However, a role for CTLA-4 for the induction of tolerance cannot be excluded. 

Expression of CD80 and CD86 increased during the induction of immunity, similar 

to levelsof CD40 (Chapter 4). CD80/CD86 bind to CTLA-4 on activated T cells, and 

it is accepted that CTLA-4 plays a role in the maintenance of peripheral tolerance. 

CTLA-4-deficient mice develop lymphoproliferative diseases, suggesting CTLA-4 

plays a role in limiting autoimmune responses. In some systems, T cells lacking 

CTLA-4 can be tolerised (Frauwirth et al., 2000; Frauwirth et àl., 2001), while in 

others, CTLA-4 was required for tolerance induction (Greenwald et al., 2001; Perez 

et al., 1997). Most data investigating CD4 T cell tolerance suggests that CTLA-4 is 

required for inhibition of proliferation of the activated T cell and subsequent 

tolerance, suggesting that CD80/CD86 signalling to the T cell via CTLA-4 is 

required for tolerance induction. CD80 and CD86 levels increased during immunity, 

but were found at basal levels during tolerance induction. All activated T cells 

upregulate CTLA-4 after activation (Oosterwegel et al., 1999), and signalling 

through CD80 and CD86 acts as a negative regulator for T cell activation. It is 

possible that basal CD80 and CD86 signalling via CTLA-4 in the absence of positive 

signals to the T cell results in tolerance induction. During the induction of immunity, 



the positive signals outweight the negative signals and en effective immune response 

is initiated. Data on the expression of CTLA-4 during tolerance induction in vivo 

exists, showing that CTLA-4 expression peaked 2 days after i.n. administration of 

soluble peptide, and had decreased to basal levels by day 6 (Metzler et al., 1999). 

CD80 and CD86 expression was highest at day I after i.v. Ag administration in the 

system used here, and decreased to basal levels by day 4. It will be important to 

investigate the timing of expression of CTLA-4 in our system in order to further 

comment on the precise role of CTLA-4 in the induction of tolerance. 

Nevertheless, it was shown here that the absence of CD40 on DC, even in the 

presence of high levels of CD80 and CD86 resulted in T cell tolerance (Chapter 5). 

This indicates that tolerance can be induced in the presence of strong CD28 

signalling (i.e. tolerance probably arises from disruption of other CD40-dependant 

costimulatory events such as 0X40-OX40L signalling). Although CD80 and CD86 

signalling via CTLA-4 may have a role in tolerance induction, the absence of CD40 

has a far greater effect on the outcome of the immune response. If the main effect of 

lack of CD40 signalling is a lack of OX40L upregulation, experiments using DC 

from OX40L-deficient mice should also induce tolerance. These mice have recently 

been acquired, allowing us to further test our hypothesis in the near future. Others 

have shown that the presence of CD80 and CD86 on immunising APC is required for 

the induction of T cell immunity (Lohr et al., 2003), and the presence of basal CD80 

and .CD86 expression is required for maintenance of peripheral tolerance and the T 

reg population (Lohr et al., 2003; Paust et al., 2004). A picture emerges where CD80 

and CD86 are important in the maintenance of peripheral tolerance, possibly through 

inducing T reg populations and/or through interactions with CTLA-4. CD40 ligation 

on the other hand, leads to DC activation and upregulation of costimulatory 

molecules on the DC, and acts as a "master regulator" for the decision between 

immunity and tolerance. 



6.2. Ligation of CD40 versus provision of LPS in the 

prevention of tolerance 

It has previously been suggested that LPS provides a qualitatively different signal 

from CD40 and/or 0X40 costimulation (Maxwell et al., 2002). The data presented 

here provides further evidence that although ligation of CD40 or provision of LPS 

both lead to prevention of tolerance, they do so in different manners. Provision of 

agonistic anti-CD40 has previously been shown to not only enhance immune 

responses (Maxwell et al., 1999), but also to convert tolerogenic Ag presentation by 

DC into immunogenic presentation in some systems (Hawiger et al., 2001), and to 

induce effective tumour immunity in others (Diehi et al., 1999; Grohmann et al., 

2001). It has also been shown that an effective CD8 T cell response develops after 

administration of soluble Ag and anti-CD40 (Lefrancois et al., 2000). However, it 

was shown here that co-administration of soluble Ag and anti-CD40 did not by itself 

result in effective CD4 T cell immunity (Chapter 3). Nonetheless, exogenous 

ligation of CD40 appeared to prevent the tolerance program, and subsequent 

immunisation with Ag/CFA thus allowed efficient recall responses. 

Exogenous ligation of CD40 induced OX40L expression. 0X40 was expressed at 

high levels on day 1 after administration of soluble Ag and anti-CD40, and at lower 

levels on day 2, while OX40L was expressed on day 2 and 3 after administration of 

soluble Ag and anti-CD40. This gives a time window in which the T cell could have 

received a survival signal from the DC, preventing induction of tolerance. In 

contrast, co-administration of LPS and soluble Ag led to effective T cell immunity, 

as has been shown in other systems (Maxwell et al., 2002). Administration of LPS 

increased expression of CD80, CD86, CD40 and RANK, but expression of OX40L 

could not be detected. Whether this was simply due to practical limitation in our 

FACS and histological approaches remains to be investigated. Nevertheless, 

upregulation of all the other costimulatory molecules at a time when their ligands 

were also present on the T cells allowed effective T cell activation. 
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Although early data suggested that CD40 ligation of DC alone was optimal to induce 

DC maturation and licensing to induce an effective T cell response (Mackey et al., 

1998), more recent studies show that co-ligation of TLR and CD40 is necessary to 

induce IL-12 p70 production (i.e. functional IL-12) in vitro or in vivo (Schulz et al., 

2000). Co-ligation of CD40 and TLR also enhances the frequency of peptide-reactive 

CD8 T cells by more than tenfold (Quezada et al., 2004). The importance of 

combined TLR and CD40 signalling becomes evident when considering the 

histological impact of TLR ligation on DC migration. LPS administration induces 

rapid DC migration from the splenic marginal zone into PALS (De Smedt et al., 

1996), and once in the T cell area, DC have a short half life unless they receive 

CD154 signalling (Miga et al., 2001). This may explain why, although CD40 ligation 

activated DC in vivo and induced increased or de novo expression of CD80, CD86 

and OX40L, subsequent TLR ligation through components found in CFA seemed to 

be necessary to induce an effective immune response. This again raises the question 

of when the administered antibodies are having their effects, which remains to be 

investigated. 

6.3. RANKL: An indication for retrograde signalling 

inducing T cell tolerance? 

While Chapter 5 shows that the lack of CD40 led to tolerance, Chapter 3 shows that 

provision of CD40 and 0X40 signals (i.e. providing a signal that was lacking) could 

prevent tolerance. Chapter 4, on the other hand, suggests that tolerance may be more 

than just the absence of signalling from the DC. The early and increased expression 

of RANKL by T cells heading for tolerance was a surprising finding, and it is 

intriguing to speculate what the significance of this tolerance-specific effect may be. 

It could be that RANKL might have been expressed early on T cells during the 

induction of tolerance because a signal from the DC is missing, which is needed to 

control the correct timing of RANKL expression. It is clear from the data presented 

here as well as other studies of tolerance induction with soluble Ag, that transient T 

cell proliferation is intrinsic to the tolerance program (Hoyne et al., 1996; Switzer et 



al., 1998). Tolerance may therefore be an active choice of the immune system, rather 

than just a lack of costimulatory signalling. Another possibility is thus the existence 

of a second receptor for RANKL on the DC. Retrograde signalling from the DC to 

the T cell could (possibly in the absence of other signals, such as CD 154 or 0X40) 

deliver negative signals to the T cell resulting in tolerance - an exciting option. 

The existence of a second receptor for RANKL was therefore investigated. 

Incubation of DC with a recombinant RANKL with a histidine tag, followed by 

incubation with a PE-conjugated anti-histidine antibody, was used in an attempt to 

identify a possibly second receptor for RANKL. Unfortunately, this approach did not 

result in staining on DC known to express RANK, and was therefore not used any 

further. A RANKL fusion protein has already been shown to enhance mucosal 

tolerance induction in vivo, and incubation with DC isolated from the spleen or 

mesenteric lymph nodes (MLN) showed differential DC cytokine production in 

response to RANKL, even though both sets of DC expressed similar levels of RANK 

(Williamson et al., 2002). Splenic DC showed IL-12 production, while MLN DC 

showed IL-10 production (Williamson et al., 2002), which was interpreted to show 

differential responsiveness to RANKL. However, it may be that MLN DC, although, 

very likely predisposed to inducing tolerance rather than immunity due to their 

surroundings, might express a second receptor to RANKL, which further promotes 

tolerance rather than immunity. A RANK fusion protein, which has been used 

previously to look at its effects on osteoclastic bone resorption (Oyajobi et al., 2001), 

may further elucidate whether or not signalling through RANKL could indeed give 

tolerogenic signals to T cells. 

6.4. Lessons learned from comparing in vitro and in vivo 

Although the in vitro requirements for T cell activation have been studied 

extensively, the initiation •of an immune response in vivo takes place within a 

complex microenvironment, in which the interplay between DC and T cells is 
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restricted by anatomical constraints. Data obtained from in vitro experiments may 

therefore not always directly correlate with those from in vivo models, which is 

further illustrated by results presented here. Chapter 4 showed the timing of 

expression of CD 154, 0X40 and RANKL on T cells after administration of soluble 

Ag with or without LPS. CD154 expression had previously been investigated in vitro 

after CD3 stimulation, and was found to peak at 6-8 hours, returning to resting levels 

between 24 and 48 hours (Roy et al., 1993). In vivo however, expression was found 

at day I (approximately 18 hours after Ag administration), but levels stayed 

increased until at least 48 hours. 

A greater contrast between in vitro and in vivo findings were observed looking at 

expression of 0X40. 0X40 was reported to be upregulated later than CD154, 

peaking at 3-4 days after initial T cell activation in vitro (Gramaglia et al., 1998). As 

clearly shown in Chapter 4, 0X40 was upregulated in vivo within 24 hours of Ag 

administration, but had disappeared again by day 3. Similarly, RANKL was 

suggested to act sequentially after CD154, having been found to peak in expression 

48 hours after in vitro T cell stimulation, and remaining high in expression until 96 

hours (Josien et al., 1999). In the system used here, RANKL was found to be 

expressed at day I after administration of Ag alone, and at day 2 after administration 

of Ag and LPS, and had greatly decreased in expression by day 3 (i.e. well before 96 

hours). These differences show that the actual in vivo expression of costimulatory 

molecules greatly differs from in vitro experiments, and probably also varies when 

different immunisation routes are used. Intravenous administration of soluble Ag 

allows almost immediate access of Ag for uptake and/or binding to DC, while s.c. 

administration of Ag/CFA is likely to require DC activation at the site of CFA 

administration, and subsequent migration to DLN, before efficient T cell activation. 

Chapter 5 describes attempts to design an in vitro model to investigate the 

importance of CD40 on DC for T cell priming. Stimulating T cells in vitro with B6 

or CD40' DC showed CD69 expression over period of several days, and 0X40 and 

RANKL expression peaked by day 3 after stimulation, and was still found by day 4 
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(not shown). In vivo however, CD69 expression peaked at day 1, and by day 4, a 

large proportion of T cells activated by CD40' DC had disappeared. The findings of 

in vitro experiments may give an indication of the requirements for T cell activation 

in vivo, but testing of in vitro findings in an in vivo setting is essential. Nevertheless, 

there are of course potential benefits to the development of appropriate in vitro 

models of T cell activation versus tolerance, particularly considering animal welfare, 

and further research should be conducted in an effort to increase the validity of such 

models. 

Identification of the molecules and pathways that drive the T cell response towards 

tolerance rather than immunity is crucial for future design of therapy. A number of 

human trials have shown the effectiveness of administration of allergen peptides to 

reduce allergy symptoms (Norman et al., 1996; Oldfield et al., 2002). Mouse studies 

have already indicated the therapeutic potential of targeting costimulatory molecules 

in either preventing disease or inducing effective immunity. The results presented in 

this thesis provide important information on the kinetics of the basic molecular 

interactions leading to immunity versus tolerance in vivo. These data will hopefully 

contribute to the rational design of therapies that either boost or block immune 

responses, and which may allow treatment of autoimmunity, allergy or tumours in 

the future. 
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Appendix Fig. 1: 
CD69 expression on T cells after administration of pOVA, 
pOVA+LPS or PBS 
B6 mice received Ly5. 1 1  OT-IT cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 1, 2 and 3 post Ag administration, spleen cells were 
analysed by FACS for CD69 expression by Ly5.l CD4 OT-Il 
cells (filled histograms are Ly5.1 CD4 OT-Il cells stained with 
streptavidin-APC alone). Percentages of Ly5. V CD4 OT-TI cells 
positive for CD69 are shown on each graph. These data are from 
one of several .experiments giving consistent results. 
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Appendix Fig. 2: 
DC phenotype after purification in the presence of polymyxin, 
or or after negative selection using Dyna!  beads 
DC were purified from naïve B6 mice, either by positive selection 
in the absence (full lines) or the presence of polymyxin (dotted 
lines) or by negative selection using Dynal beads (dashed lines). 
CD1 1c DC were analysed for expression of CD40, CD80 and 
CD86. Filled histograms are CD1 1c cells stained with an isotype 
control antibody. 
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Appendix Fig. 3: 
CD40 expression on DC after administration of pOVA, 
pOVA+CpG or PBS 
B6 mice received Ly5. 1 1  OT-Il cells one day prior to 
administration of pOVA, pOVA+CpG or PBS. 
On days 1, 2 and 3 post Ag administration, CD1 I cl DC were 
purified from the spleen. CD1 1c cells were analysed by FACS for 
CD40 expression on days 1, 2 and 3 (filled histograms are CDI 1c 
cells stained with an isotype control antibody). Median 
fluorescence values of CD40 stained DC are shown on each graph. 
These data are from one of several experiments giving consistent 
results. 
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Appendix Fig.4: 
OX40L expression on DC after administration of pOVA, 
pOVA+CpG or PBS 
B6 mice received Ly5. 1 1  OT-Il cells one day prior to 
administration of pOVA, pOVA+CpG or PBS. 
On days1, 2 and 3 post Ag administration,CD11c DC were 
purified from the spleen. CD11c cells were analysed by FACS for 
OX40L expression on days 1, 2 and 3 (filled histograms are 
CD1 1c cells stained with an isotype control antibody). Median 
fluorescence values of OX40L stained DC are shown on each 
graph. These data are from one of several experiments giving 
consistent results. 

0 
0' 
0 
+ 

> 
0 
0 

218 



100 	10 	102 	10' 	10' 100 	10' 	102 	10' 	10' 

5.21 

0  x 
Cz 

ru 

Dayl  

5.02 
100 

80 

60 

40 

20 

100 
 10' 102  10' 10' 

Day2 	Day3 

100 
6.63 

80 

60 

40 

20 

0. 
D' 	100 	10' 	10° 	103 	0' 

6.5 

100 	10 1 102 	10' 	10' 

0 1  
a- 
0 
+ 

> 
0 
a- 

100 	101 	102 	10' 	10' 	100 	10 1 	102 	10' 	10' 	100 	10' 	102 	10' 	10' 

	

RANK 	10 

Appendix Fig. 5: 
RANK expression on DC after administration of pOVA, 
pOVA-1-CpG or PBS 
B6 mice received Ly5.1 UT-TI cells one day prior to 
administration of pOVA, pOVA+CpG or PBS. 
On days 1, 2 and 3 post Ag administration, CD1 lc DC were 
purified from the spleen. CD1 I cl cells were analysed by FACS for 
RANK expression on days 1, 2 and 3 (filled histograms are CDllc 
cells stained with an isotype control antibody). Median 
fluorescence values of RANK stained DC are shown on each graph. 
These data are from one of several experiments giving consistent 
results. 
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Appendix Fig. 6: 
0X40 expression on T cells after administration of pOVA, 
pOVA+CpG or PBS 
B6 mice received Ly5. 1 1  OT-Il cells one day prior to administration 
of pOVA, pOVA+CpG or PBS. 
On days 1, 2 and 3 post Ag administration, spleen cells were 
analysed by FACS for 0X40 expression by Ly5. 1 CD4 OT-Il 
cells (filled histograms are Ly5.1 CD4 OT-Il cells stained with 
streptavidin-APC alone). Percentages of Ly5. V CD4 OT-Il cells 
positive for RANKL are shown on each graph. These data are from 
one of several experiments giving consistent results. 
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Appendix Fig. 7: 
RANKL expression on T cells after administration of pOVA, 
pOVA+CpG or PBS 
B6 mice received Ly5.1 OT-Il cells one day prior to administration 
of pOVA, pOVA+CpG or PBS. 
On days 1, 2 and 3 post Ag administration, spleen cells were 
analysed by FACS for RANKL expression by Ly5.1 CD4 OT-Il 
cells (filled histograms are Ly5.1 CD4 OT-Il cells stained with 
streptavidin-APC alone). Percentages of Ly5. 1 CD4 OT-Il cells 
positive for RANKL are shown on each graph. These data are from 
one of several experiments giving consistent results. 

221 



60 

C.) 

0 - 40 
)< 

E 
a. 

20 

0 
io 	10 2 	10 0 	10 2  

-0- pOVA 

-0- pOVA+LPS 

-f--PBS 

Appendix Fig. 8: 
Administration of pOVA+LPS leads to successful priming in 
CD154' mice 
Naïve CD154 mice received a single dose of 500tg pOVA, 
pOVA+50pg LPS, or PBS i.v. on day 0. Spleen were assessed 5 
days later for proliferative responses to a dose range of pOVA. 
Background levels were as follows: pOVA: 4862, pOVA+LPS: 
6504, PBS: 4837. 

222 



100 

80 

60 

40 

20 

0 
100 	10' 	102 	103 	10' 	100 	10' 	102 	103 	10' 	100 	10' 	102 	103 	10' 

0X40 

100 
3.37 

80 

60 

40 

201 

100 	10' 102  103 
 10' 100 	10' 	102 	103 	104 	100 	10' 	102 	103 	10' 

Dayl 	Day2 	Day3 

100 

80 

60 

Co °- 	
:: 

0 
100  

1.6 I 
	

'EE 	2 

40 

20 

101 	101 	100 	10' 	102 	10' 	10' 	100 	10' 	102 	10° 

0  x 
Cz 

(J) 
a- 
-J 
+ 
4: > 
0 
a- 

Appendix Fig. 9: 
Tolerance of CD154' T cells is not due to the absence of 0X40 
on T cells 
CD 154-1-  mice received CD154'xOT-ll cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 1, 2 and 3 post Ag administration, spleen cells were 
analysed by FACS for 0X40 expression by Va2, Vl35  CD4 OT-
II cells (filled histograms are V(x2, V05 CD4 OT-TI cells stained 
with streptavidin-APC alone). Percentages of Va2, Vi35  CD4 
OT-II cells positive for 0X40 are shown on each graph. These data 
are from one of several experiments giving consistent results. 

223 



Dayl 
	

Day2 	Day3 

100 
1.09 

1001 

80 801 rn 
Ct) 60 6 

20 

10° 	10' 	102 	103 	10 	100 	10' 	10' 	10' 	1Cr 	I EY, 	10' 	lir 	Br 	IU 

it..I 	
1 	

46.2 	
100 	_________ 

100 	10' 	102 	10' 	10' 	100 	10' 	102 	10' 	10' 	100 	10' 	102 	10' 	10' 

! 

0 L ± 	

__________  

10° 	10' 	102 	10' 	10' 	100 	10' 	102  

RANKL 

Appendix Fig. 10: 
Tolerance of CD154' T cells is not due to the absence of 
RANKL on T cells 
CD154 mice received CD154'xOT-H cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 1, 2 and 3 post Ag administration, spleen cells were 
analysed by FACS for RANKL expression by Va2t VF35 CD4 
OT-TI cells (filled histograms are V(x2, VI35  CD4 OT-IT cells 
stained with streptavidin-APC alone). Percentages of Va2, V1 35  
C134 OT-il cells positive for RANKL are shown on each graph. 
These data are from one of several experiments giving consistent 
results. 
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Appendix Fig 11: 
CD40 expression is upregulated on DC during the induction of 
immunity in CD154' mice 
CD 154' mice received CD154xOT-H cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 1, 2 and 3 post Ag administration, CDl1c DC were 
purified from the spleen. CDI Ic cells were analysed by FACS for 
CD40 expression on days 1, 2 and 3 (filled histograms are CDI Ic 
cells stained with an isotype control antibody). Median 
fluorescence values of CD40 stained DC are shown on each graph. 
These data are from one of several experiments giving consistent 
results. 
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Appendix Fig.12: 
OX40L expression on DC during the induction of tolerance or 
immunity in CD154' mice 
CD 154 -1-  mice received CD154xOT-ll cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 1, 2 and 3 post Ag administration, CD1 lc DC were 
purified from the spleen. CD11c cells were analysed by FAGS for 
OX40L expression on days 1, 2 and 3 (filled histograms are 
CD1 1c cells stained with an isotype control antibody). Median 
fluorescence values of OX40L stained DC are shown on each 
graph. These data are from one of several experiments giving 
consistent results. 
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Appendix Fig. 13: 
RANK expression is upregulated on DC during the induction of 
immunity in CD154 mice 
CD154 mice received CD154'xOT-ll cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 1, 2 and 3 post Ag administration, CDllc DC were 
purified from the spleen. CD1 lc cells were analysed by FACS for 
OX40L expression on days 1, 2 and 3 (filled histograms are 
CDI lc cells stained with an isotype control antibody). Median 
fluorescence values of RANK stained DC are shown on each graph. 
These data are from one of several experiments giving consistent 
results. 
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Appendix Fig. 14: 
Tolerance in B cell-deficient mice in not due to the absence of 
0X40 on T cells 
pMT mice received Ly5.1 OT-Il cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 1, 2 and 3 post Ag administration, spleen cells were 
analysed by FACS for 0X40 expression by Ly5.1 + CD4 OT-Il 
cells (filled histograms are Ly5. V CD4 OT-Il cells stained with 
streptavidin-APC alone). Percentages of Ly5. V CD4 UT-Il cells 
positive for 0X40 are shown on each graph. These data are from 
one of several experiments giving consistent results. 
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Appendix Fig. 15: 
Tolerance in B cell-deficient mice is not due to the absence of 
RANKL on T cells 
.tMT mice received Ly5. 1 1  OT-Il cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 1, 2 and 3 post Ag administration, spleen cells were 
analysed by FACS for RANKL expression by Ly5.P CD4 OT-IT 
cells (filled histograms are Ly5.l CD4 OT-Il cells stained with 
streptavidin-APC alone). Percentages of Ly5.l CD4 OT-JI cells 
positive for RANKL are shown on each graph. These data are from 
one of several experiments giving consistent results. 
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Appendix Fig. 16: 
CD40 expression is upregulated on DC during the induction of 
immunity in B cell-deficient mice 
.tMT mice received Ly5. 1 1  OT-Il cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 1, 2 and 3 post Ag administration, CD1lc DC were 
purified from the spleen. CD1 lc cells were analysed by FACS for 
CD40 expression on days 1, 2 and 3 (filled histograms are CDI lc 
cells stained with an isotype control antibody). Median 
fluorescence values of CD40 stained DC are shown on each graph. 
These data are from one of several experiments giving consistent 
results. 
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Appendix Fig. 17: 
RANK expression is upregulated on DC during the induction of 
immunity in B cell-deficient mice 
i.MT mice received Ly5.1 OT-Il cells one day prior to 
administration of pOVA, pOVA+LPS or PBS. 
On days 1, 2 and 3 post Ag administration, CDllc DC were 
purified from the spleen. CDI 1c cells were analysed by FACS for 
RANK expression on days 1, 2 and 3 (filled histograms are CDI lc 
cells stained with an isotype control antibody). Median 
fluorescence values of RANK stained DC are shown on each graph. 
These data are from one of several experiments giving consistent 
results. 
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Systemic administration of antigen-loaded CD40-
deficient dendritic cells mimics soluble antigen 
administration 

Kristin Hochweller and Stephen M. Anderton 

ICAPB, University of Edinburgh, Edinburgh, GB 

The decision to mount a T cell response to antigen (Ag) is dependent on the cellular context 
in which the Ag is presented. Activated dendritic cells (DC) are potent stimulators of immune 
responses, an ability which is linked to their high expression of several costimulatory mole-
cules. In contrast, resting DC have been implicated in the generation of self tolerance, pre-
sumably due to their reduced costimulatory capacity. However, the precise molecular basis 
for the choice between Ag-induced immunity and unresponsiveness remains unclear. We 
show here thét CD40 plays an important role in this decision. Systemic administration of Ag-
loaded, CD40-deficient DC failed to induce a productive primary T cell expansion and ren-
dered mice relatively unresponsive to subsequent immunization with Ag in adjuvant. Using a 
TCR-transgenic T cell transfer system, we found that CD40 DC triggered an initial T cell 
activation that could not be sustained, resulting in loss of Ag-reactive T cells and reduced 
cytokine production by those T cells that did persist. Furthermore, administration of CD40 
DC that had been loaded with a central nervous system autoantigen was found to protect 
mice from autoimmune pathology. These data implicate the CD40:CD40L interaction as a 
key checkpoint in the development of T cell immunity rather than tolerance. 
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1 Introduction 

The adaptive immune response is dependent on com-
plex interactions between APC and CD4 T cells. In vitro 
and in vivo studies have shown that dendritic cells (DC) 
are the most efficient APC at activating naive T cells [1]. 
This capacity is linked to the ability of DC to sense 
pathogen-derived molecular triggers or inflammatory 
mediators, resulting in DC "activation" as characterized 
by increased expression of MHC and costimulatory mol-
ecules. Experimental provision of protein or peptide anti-
gens in the absence of DC activation (by in vivo adminis-
tration of soluble Ag) fails to induce sustained T cell acti-
vation, but instead leads to T cell tolerance [2, 3]. The 
consensus view is that the activation state of the DC is 
crucial in determining the outcome of antigenic chal-
lenge, i.e. the development of either productive T cell 
immunity or tolerance. Resting and activated DC show 
marked differences in their expression of various costim-
ulatory molecules [4]. Notably, CD40 is expressed at 

[DOl 10.1 002/eji.200324782] 

Abbreviations: pOVA: 323-339 peptide of OVA B6: 
C57BL16 

very low levels by resting DC, but is rapidly up-regulated 
upon activation [5, 6]. Ligation of CD40 leads to further 
DC maturation and up-regulation of CD80, CD86 and 
OX40L which all serve to boost T cell activation and 
expansion [7-10]. 

Experiments using CD40- or CD40L-deficient mice have 
shown clear defects in T cell priming in vivo when this 
interaction is absent [11-13]. This has led to the view that 
ineffective DC stimulation through CD40 may, at least in 
part, account for T cell tolerance that results from admin-
istration of Ag in the absence of adjuvant. Consistent 
with this, triggering CD40 using agonistic anti-CD40 in 
vivo has been shown in several studies to convert a tole-
rogenic antigenic stimulus into an immunogenic one 
[14-16]. If the CD40:CD40L interaction is truly a critical 
checkpoint in the immunity versus tolerance decision, 
then administration of Ag-loaded CD40-deficient DC 
should lead to Ag-specific T cell tolerance reminiscent of 
that induced by soluble Ag. Previous studies that have 
addressed this by administration of DC s.c. concluded 
that, whilst CD40 DC failed to lead to productive T cell 
immunity, T cell tolerance was also not evident [17]. 
However, a key factor for the induction of effective T cell 
tolerance with soluble Ag is the use of a systemic route 
[3]. We would therefore have predicted that the previous 
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study using the sub-cutaneous route would not lead to a 
global tolerogenic effect. 

To re-address this question we have administered Ag-
loaded CD40-sufficient or -deficient DC i.v. and 
assessed their influence on the fate of Ag-reactive T cells 
by using TCR-transgenic transfer systems and by moni-
toring the development of CD4 T cell-mediated CNS 
autoimmunity. We show that CD40 expression was not 
necessary for initial T cell expansion in vivo, but was 
essential for sustaining this expansion past day 3 after 
DC administration. This correlated with a decreased pro-
portion of T cells producing IL-2 and IFN-y when using 
CD40 DC. Importantly these deficits were evident even 
though the CD40 DC had elevated expression of other 
costimulatory molecules (CD80, CD86). Furthermore, 
using EAE, we show that this approach conferred effec-
tive protection against the development of autoimmune 
pathology. From these data, we conclude that the sys-
temic administration of CD40-deficient DC leads to inhi-
bition of T cell activation and deletional tolerance that is 
reminiscent of that seen following administration of solu-
ble Ag. 

2 Results 

2.1 Wild-type and CD40 splenic DC have 
similar phenotypic characteristics 

Using wild-type and CD40 mice as sources of DC, we 
have examined the consequences of the lack of CD40 
expression by DO on the kinetics of T cell activation and 
expansion. In order to exclude the possibility that subse-
quent results were due to variation in expression of other 
costimulatory molecules or in the proportions of DC sub-
sets, we analyzed the surface phenotype of splenic DC 
isolated from C57BLJ6 (136) or CD40 mice. These two 
DC populations expressed similar levels of CD80 and 
CD86 immediately after purification (Fig. 1). Similar per-
centages of CD8a and CD4 DC subsets were also 
found in each population. A large proportion of DC dis-
played a mature phenotype, as illustrated by MHC class 
II expression and high levels of CD40 on B6 cells, sug-
gesting that the purification procedure we used resulted 
in significant DC activation. 

2.2 CD40-deficient splenic DC induce T cell 
activation and expansion in vitro 

We next tested whether CD40 DC could activate a pri-
mary T cell response in vitro using OT-Il T cells that rec-
ognize the 323-339 peptide of OVA (pOVA) [18]. CD4 
OT-Il T cells (from OT-llxCD40r' mice to avoid contami- 
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Fig. 1. Splenic DC from B6 and CD40 display similar phe-
notypic characteristics. Spleens were treated with collage-
nase and DNase, DC were purified as described in Sect. 4, 
cultured with LPS for 2 h at 37°C, and stained for CD80, 
CD86, CD40, OX40L, MHC class II, CD8a and CD4. 

nating CD40' cells) were CFSE-Iabeled, and cultured 
with pOVA-pulsed DC from B6 or CD40 mice. The 
CFSE profile was assessed after 2, 3, 4, and 5 days of 
culture, together with expression of CD69 and CD25 
(Fig. 2). Stimulation with CD40 4  DC consistently led to a 
lower percentage of T cells undergoing division at early 
time points (days 2 and 3 of culture) compared with cul-
tures using B6 DC. This was reflected in the percentages 
of T cells showing up-regulation of CD69 and CD25 at 
these time points (Fig. 2). However, those T cells that had 
entered the proliferative cycle had undergone similar 
numbers of cell divisions in both groups, irrespective of 
the DC used for stimulation. Moreover, although down-
regulation of levels of CD69 expression occurred more 
rapidly after stimulation with CD40 DC compared to B6 
DC, by day 5 of culture, a similar number of T cells in 
both sets of cultures had undergone substantial cell divi-
sion (Fig. 2). In summary, these experiments suggest that 
CD40 DC were less efficient at triggering initial CD4 T 
cell expansion in vitro, but that this defect was overcome 
with time, possibly due to costimulation via CD80 and 
CD86, which were displayed at similar levels on both B6 
and CD40 DC (Fig. 1). Experiments using a range of 
DC numbers indicated that these modest differences in T 
cell activation were no more pronounced when DC num-
bers were limiting (data not shown). 
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Fig. 2. B6 and CD40 DC show similar T cell activation 
capacities in vitro. CFSE-labeled CD4 OT-Il T cells were cul-
tured with Ag-loaded splenic DC. At the indicated time 
points T cells were sampled and expression of CD69 and 
CD25 analyzed. These data are from one of three experi-
ments giving consistent results. Left hand panels: solid line: 
CD40 DC, dotted line: B6 DC. Percentages of T cells that 
had undergone one or more division(s) were: day 2, B6: 
35.7%, CD40: 25.8%; day 3, 136: 78.7%, CD40: 57.2%. 
Percentages of T cells expressing activation markers are 
shown. 

2.3 CD40-deficient splenic DC induce abortive T 
cell activation and subsequent 
unresponsiveness in vivo 

Since CD40 DC appeared capable of supporting pri-

mary T cell expansion in vitro, we continued by testing 

their ability to initiate productive T cell immunity in vivo. 
DC from CD40 or B6 mice were pulsed in vitro with 

pOVA, prior to i.v. administration to naive B6 mice. After 

6 days, peripheral LN and spleen cells were examined 

for in vitro recall responses to pOVA. Ag-specific prolifer-

ation was observed in lymphoid populations taken from 

mice that had received pOVA-pulsed B6 DC, but not 

those that had received CD404  DC (Fig. 3A). One effect 

of CD40 ligation is the up-regulation of OX40L on the 

surface of DC [10]. Ligation of 0X40, (up-regulated on 

the I cell in response to TCR signaling) has been 
reported to lead to elevated T cell expression of survival 

factors such as Bcl-2 and Bcl-xL [19] and to prevent 

peripheral I cell tolerance induction [20]. We therefore 
reasoned that provision of 0X40-signalling using an ago-

nistic anti-0X40 monoclonal antibody might overcome 

the deficit in T cell activation seen after CD40 DC 

administration. However, we found no pOVA-reactive 
proliferative response in lymphoid populations from mice 

treated using this approach (Fig. 3A). 

The above findings indicated a lack of I cell responsive- 

ness as a result of primary in vivo stimulation with Ag- 

loaded CD40 DC. However, a more rigorous assess- 

50- 

101 102 100  102 	10 10.2  10° 10° 

C 86 DC alone [pOVAItM 

-0- pOVA-pulsed 86 DC 

-2- pOVA-pulsed CD40 DC 

-,- pOVA-pulsed CD40° DC and anti-0X40 

Fig. 3. CD404  DC administration leads to T cell unrespon-
siveness in vivo. B6 or CD40 DC were purified and loaded 
with pOVA as described in Sect. 4, before transfer into naive 
B6 recipients. Six days after DC transfer, splenic lymphoid 
populations were tested for proliferative responses to a dose 
range of pOVA (A). Further groups of mice were immunized 
on day 6 with pOVNCFA and draining lymph nodes 
assessed 10 days later for proliferative responses to a dose 
range of pOVA (B). As indicated some groups also received 
anti-0X40 at the time of DC administration and 2 days later. 
The effects seen with anti-0X40 were not found when using 
an isotype control antibody. These data are from one of 
three experiments giving consistent results. 

ment of potential tolerance induction requires analysis of 

I cell reactivity upon subsequent in vivo rechallenge with 

Ag in adjuvant. We therefore immunized mice with pOVA 

in CFA 6 days after administration of DC. Lymphoid pop-
ulations from mice that initially received CD40 DC were 

clearly impaired in their ability to proliferate to pOVA in 
vitro compared with those from mice that had received 
B6 DC (Fig. 313), or from control mice that received no 

DC. In this setting, the provision of anti-0X40 at the time 

of CD40 DC administration allowed in vitro recall 

responsiveness to be evident after immunization with 

pOVA in CFA. 

A lack of T cell responsiveness may reflect an absence of 
Ag-reactive cells or their functional inactivation. To 

address this issue we followed the expansion and phe-

notypic changes of pOVA-specific T cells in vivo using a 

transfer system in which naive B6 mice were seeded with 
CFSE-labeled OT-Il T cells. One day after transfer, the 

recipient mice received an i.v. injection of pOVA-pulsed 

86 or CD40 DC as described above. Flow cytometry 
revealed similar changes in the levels of CD69 expres-

sion by 01-I1l cells in the first 3 days after administration 

of either B6 or CD40 DC. However, although CD40 

DC induced T cell proliferation in vivo, this was not sus-

tained past 3 days after DC administration (Fig. 4). OT-Il 

T cell numbers were greatly reduced at the day 4 time 
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Fig. 4. CD40 DC do not support sustained T cell expansion 
in vivo. B6 mice were seeded with CFSE-labeled OT-Il cells 
1 day prior to administration of DC. On days 1, 3 and 4 post-
DC administration, lymphoid cells (spleen shown here) were 
analyzed by FACS for CFSE profile and CD69 expression by 

V135 Vci2  OT-Il cells (filled lines are Vi5Va2  cells that were 
stained with streptavidin-allophycocyanin alone). These 
data are from one of several experiments giving consistent 
results. 

point in the spleens of mice that received CD40 DC, 

compared with a continued T cell expansion from day 3 
to 4 in mice that received B6 DC (Fig. 4). 

2.4 Reduced IL-2 and IFN-y production and 
reduced proliferative capacity as a result of 
exposure to Ag-loaded C1340 DC 

The above data indicated a more rapid loss of Ag-
reactive cells after exposure to Ag on CD40 DC. To 

determine whether disruption of CD40 signaling also had 
an influence on T cell cytokine-producing capacity, we 

measured intracellular cytokine production by OT-Il T 

cells 6 days after DC administration. We did not detect 

production of IL-10 and production of lL-4 was minimal 

after administration of either DC group (data not shown). 

Production of both lL-2 and IFN-y was clearly evident 

after administration of B6 DC. Fewer OT-Il cells were pro-

ducing IL-2 and IFN-y, however, after CD40 DC admin-

istration (Fig. 5B, C). Consistent with our earlier findings 

using B6 mice without OT-Il transfer (Fig. 3), we found 
that lymphoid populations from mice harboring OT-Il T 

cells showed a greatly reduced proliferative capacity 

upon in vitro culture with pOVA after CD40 DC admin-

istration compared with those from mice receiving B6 

DC. The response in the CD40 DC group showed a low 

level of proliferation mirroring that seen in control mice 

that received PBS rather than DC (Fig. 5D). 
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Fig. 5. Reduced T cell proliferation and cytokine production 
after administration of Ag-loaded CD40 DC. B6 mice were 
given Ly5.1' OT-Il cells 1 day prior to administration of DC. 
Lymphoid populations (spleen shown here) were analyzed 
on day 6. OT-ll cells were identified by gating on CD4Ly5.1' 
cells (A, percentages of CD4 cells that were Ly5.1 shown) 
and counterstained for lL-2 (B), or IFN-y (C, percentages of 
CD4Ly5.1 cells that were cytokine-positive shown). (D) 
Proliferation in response to a dose range of pOVA. Further 
groups of mice were immunized with pOVA in CFA on day 6 
and in vitro recall, responses to pOVA were assessed 
10 days later (E). These data are from one of several experi-
ments giving consistent results. 

As above, we then immunized mice with pOVNCFA 

6 days after they had received DC. Ten days after immu-

nization, we found diminished in vitro recall proliferative 

responses to pOVA and a decreased frequency of pOVA-

reactive T cells in mice that received CD40 DC, remi-

niscent of tolerance induced by soluble peptides 
(Fig. 5E). These data suggest that administration of 

CD40" DC results in an abortive activation of Ag-

reactive T cells, with the remaining cells being less able 
to produce lL-2, IFN-?, or to proliferate in response to 

Ag. 

2.5 Administration of CD40-d6ficient DC protects 
from CNS autoimmune pathology 

Our data thus far had indicated that exposure to Ag in 

the absence of the CD40:CD40L interaction induced a 

transient T cell activation followed by a substantial loss 

in Ag-reactive T cell numbers. Those T cells that did per-

sist had a reduced ability to proliferate and produce 
cytokines. The net effect of these processes was to ren-

der the mouse relatively unresponsive to subsequent 

immunogenic challenge in vivo. To determine the signifi-

cance of this unresponsiveness in a pathogenic setting, 

we tested the capacity of autoantigen-loaded CD40 

DC to modulate the development of EAE induced with 

the p35-55 peptide of myelin oligoden1rocyte glycopro-

tein (MOG) [21]. Mice received either B6 or CD40 DC 
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Fig. 6. CD40' DC protect from autoimmune CNS pathology. 
Mice received p35-55-loaded B6 or CD40 DC 7 days prior 
to induction of EAE with p35-55 in CFA. p values determined 
by Mann-Whitney U test were: PBS vs. B6: p=0.0025, PBS 
vs. CD40' + p35-55: p<0.0001, B6 vs. CD40 + p35-55: 
p<0.0001). These data are from one of two experiments giv-
ing consistent results. 

that had been loaded in vitro with the p35-55 peptide 
and 6 days later EAE was induced by immunization with 
p35-55/CFA. Both B6 and CD40 DC consistently con-
ferred a degree of protection against EAE compared to 
mice that did not receive DC. However, CD401  DC 
clearly gave a more pronounced protection than B6 DC 
(Fig. 6). 

3 Discussion 

Presentation of peptide-MHC complexes by resting DC 
is generally accepted to be the key to I cell tolerance 
induction [22]. The rapid activation and proliferation of 
Ag-reactive I cells that is consistently reported after sol-
uble peptide administration [23-25] suggests that the ini-
tial interaction between CD28 and CD80/86 is not dis-
rupted on route to tolerance. This is consistent with 
reports that the CD28-CD80/86 interaction is required for 
initial T cell activation, but that other receptor-ligand 
interactions are important in sustaining T cell expansion 
[26]. In contrast, exogenous stimulation of CD40 (using 
agonistic anti-CD40) can convert an Ag-specific inter-
vention that would otherwise lead to tolerance into one 
that produces immunity [14, 15]. If CD40 truly is a crucial 
checkpoint between tolerance and immunity, administra-
tion of Ag-loaded APC that lack CD40 ought to lead to I 
cell tolerance. Alloantigen-specific tolerance has been 
reported after iv. injection of either CD40 B cells into 
wild-type allogeneic hosts [27], or CD40' allogeneic B 
cells into CD40L hosts [28]. However, the ability of 
CD40 DC to induce T cell tolerance after systemic 
administration had not been formally tested. Our data 
show that this approach leads to an abortive activation 
of Ag-reactive T cells that ultimately leads to an unre-
sponsive state similar to that seen after systemic admir,- 

istration of peptide in solution. Moreover, administration 
of p35-55-loaded CD40 DC rendered mice resistant to 
subsequent attempts to induce EAE. 

Previous studies have shown that ligation of CD40 leads 
to up-regulation of CD80 and CD86 by DC [7]. It is impor -
tant to note that the splenic DC used for this study 
expressed high levels of both CD80 and CD86. We do 
not therefore believe that the failure of the CD40 DC to 
provoke a sustained T cell expansion in vivo stems from 
insufficient CD28 signaling. Instead our results support a 
model of tolerance induction in which failure to provide 
sufficient ligation of CD40 on DC uncouples downstream 
T ceII:DC dialogue involving other members of the TNF 
and TNF receptor families. Efficient CD40 ligation drives 
the up-regulation of OX40L by the DC [10], allowing liga-
tion of 0X40 that is up-regulated by the T cell following 
activation through the TCR. 0X40 signaling results in 
accumulation of the anti-apoptotic proteins BcI-2 and 
BcI-xL promoting T cell survival [19]. Moreover, exoge-
nous ligation of OX40 on T cells can override the tolero-
genic program that follows soluble peptide administra-
tion, allowing T cells to remain Ag-responsive ([20], and 
our own unpublished observations). We found here that 
administration of Ag-loaded CD40 DC under the cover 
of agonistic anti-0X40 did not lead to an expansion of 
Ag-reactive T cells. However, provision of anti-0X40 did 
allow for the development of a productive immune 
response upon subsequent immunization with Ag/CFA. 
Therefore 0X40 signaling appears to prevent the toler -
ance program, but does not in itself promote full T cell 
responsiveness. 

Our finding that CD40 DC were unable to support a 
sustained I cell expansion compared with their CD40-
sufficient counterparts is consistent with an earlier study 
in which DC were administered by a s.c. route [17]. This 
previous study, however, did not report any unrespon-
siveness in the Ag-reactive I cells that persisted after 
CD40 DC administration. The obvious difference 
between these two studies is that we deliberately chose 
to give our DC i.v., allowing access to the spleen, based 
on our previous experience that systemic delivery is 
most effective at inducing T cell tolerance with peptide 
[29]. Inefficient I cell priming after s.c. injection of 
CD40 DC has been reported to be associated with their 
accelerated loss from the draining lymph node. Studies 
of tolerance induction with peptides indicate that, whilst 
establishment of a fully unresponsive state takes 4 to 
5 days [30], the key events that initiate the tolerogenic 
program probably occur within hours of TCR recognition 
[25, 31]. This being the case, we would argue that the 
issue of how many days B6 versus CD40 DC persist in 
the spleen after i.v. administration is unlikely to be the 
key to the T cell unresponsiveness we observe. 
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Our results suggest that the decreased IL-2 production 
in T cells stimulated with CD40 DC leads to an abortive 
immune response, and T cell death. This is supported by 
the sudden decrease in Ag-reactive T cells 4 days after 
priming with CD404  DC. Consistent with inducing a 
form of deletional tolerance, administration of CD404  
DC protected from EAE. This matches a recent report in 
which administration of Ag-loaded RelB DC, which ,  

also lack CD404  expression, induced Ag-specific T cell 
tolerance [32]. However, this study reported the induc-
tion of an IL-i 0-producing regulatory T cell population. It 
is unlikely that this explains the protection against EAE 
we observe, since CD404  DC did not induce an IL-b-
producing T cell population in our OT-Il adoptive transfer 
system. Interestingly, although pOVA-pulsed B6 DC did 
not appear to result in decreased proliferative capacity 
upon rechallenge, giving p35-55-pulsed B6 DC prior to 
EAE induction consistently gave some protection from 
disease. T cells can become exhausted upon repeated 
Ag-stimulation [33], resulting in reduced capacity to 
respond to rechallenge. Administration of B6 DC and 
subsequent challenge with a strong adjuvant such as 
CFA may therefore drive some high avidity self-reactive T 
cells into activation-induced cell death, reducing the 
ability to induce disease. Bone marrow-derived CD40 
DC also lead to T cell unresponsiveness in vivo (data not 
shown), suggesting the use of cultured "tolerogenic" DC 
as a possible therapeutic approach in man. 

Various mechanisms exist in the periphery in order to 
maintain T cell tolerance, and avoid autoimmune dis-
eases. The idea that regulation of CD40 expression 
might represent a general mechanism of maintaining 
peripheral tolerance is an attractive one, and is sup-
ported by an increasing amount of data. Interference 
with the CD40:CD40L interaction using blocking anti-
CD40L prevents effective T cell priming, sometimes 
leading to a tolerant state [28, 34, 35]. Recent data have 
shown that in the absence of inflammatory stimuli/n vivo, 
DC play an important role in the maintenance of periph-
eral tolerance [22, 36-38]. The ability of DC to induce tol-
erance or immunity appears to depend on their matura-
tion stage [39, 40]. Unmanipulated DC in vivo express lit-
tle CD40 [6, 41], and DC constitutively take up Ag in the 
periphery and present them to T cells in lymphoid organs 
in a tolerogenic fashion, which can be converted into 
immunogenic presentation after DC activation through 
CD40 [14, 16]. Our results clearly show that CD40 DC 
provoke a proliferative burst in Ag-reactive T cells that 
lasts for 3 days. Several studies using the transfer of 
TCR-transgenic T cells into hosts that also express a 
transgenic Ag have shown an initial T cell expansion 
prior to the development of unresponsiveness [42-44]. 
This presumably is due to presentation of Ag by resting 
DC in the lymphoid organs draining the organ that 

expresses the transgenic Ag. Also it is clear from studies 
of tolerance induction with soluble Ag (another situation 
in which the Ag should be presented by resting DC) that 
transient T cell proliferation is intrinsic to the tolerance 
program [24, 25]. Therefore the initial proliferation we see 
using CD404  DC fits with other experimental systems 
that lead to T cell tolerance. 

In summary we show that the systemic administration of 
Ag-loaded CD40 DC leads to abortive T cell activation 
and subsequent unresponsiveness reminiscent of that 
seen after systemic administration of soluble peptide Ag. 
This approach was robust enough to provide effective 
protection against CNS autoimmunity. These data pro-
vide insights into the effects of DC that may lead to the 
use of costimulation-deficient DC as a future therapeutic 
approach. 

4 Materials and methods 

4.1 Mice, Ag, immunizations and reagents 

C57BL/6 (1216), CD40 (1­12b) [45], B6 Ly5.1 congenic mice 
and OT-Il mice expressing an Abrestricted,  transgenic 
pOVA-reactive TCR [18] were bred at the Institute of Cell, 
Animal and Population Biology, University of Edinburgh. 0T-
IIxCD40 mice were generated by back-crossing OT-Il with 
CD40 mice. Similarly, OT-IIxLy5.1 mice were generated by 
crossing OT-Il mice with Ly5.11 mice. Sex-matched, 6-8-
week-old mice were used for all experiments. 

Peptides (pOVA and p35-55) were synthesized by the 
Advanced Biotechnology Centre, Imperial College London. 
For experiments analyzing T cell activation, mice were 
immunized s.c. with 20 jig pOVA emulsified in CFA (Sigma, 
Poole, GB). After 10 days, spleens and draining inguinal and 
popliteal LN were removed, disaggregated and used as a 
source of primed lymphoid populations. Tissue culture 
medium was RPMI 1640 medium containing 2 mM L-

glutamine, 5x10 M 2-ME, 100 ig/ml penicillin, 100 U/mI 
streptomycin (all from Gibco, Life Technologies, Paisley, GB) 
(RPM I) supplemented with a source of serum. The OX-86 
hybridoma, that produces anti-0X40, and the MAC-49 iso-
type control hybridoma were obtained from the European 
Collection of Cell Culture (ECACC, Wiltshire, GB). 

4.2 Isolation of DC and naive T cell populations 

CD4 T cells were isolated by positive selection from LN and 
spleen of naive OT-IIxCD40 mice using anti-CD4-
conjugated MACS beads (Miltenyi Biotec, Bisley, GB), 
according to the manufacturers instructions. Splenic DC 
were isolated from naive B6 or CD40 mice by initial diges-
tion in 10 ml RPMI without serum, supplemented with 
2.4 mg/mI collagenase D (Worthington Biochemical) and 
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1 mg/mI DNase (Sigma) for 30 min at 37°C. CD11c cells 
were isolated by positive selection using anti-CD11c-

conjugated MACS beads (Miltenyi Biotec), according to the 
manufacturers instructions, with a consistent purity of 

>85% CD1 1 c*  as confirmed by flow cytometry. 

4.3 In vitro assays of primary T cell activation 

Ag-loaded DC were prepared by incubation with 50 iM 

pOVA in RPMI plus 1% normal mouse serum at 37°C for 2 h 

in the presence of 0.1 tg/ml LPS (Sigma). Naive OT-
llxCD40 T cells were labeled with 5 .tM CFSE (Molecular 

Probes), prior to culture with pOVA-loaded DC (4x10 4  T cells 
+ 4x103  DC per well) in 96-well flat-bottom plates (Becton 

Dickinson) using RPMI + 5% FCS. Cells were harvested for 
FACS analysis as described in the figure legends. 

4.4 Cell transfers 

DC were purified from naive B6 or CD40 mice as 

described above and pulsed with either pOVA or p35-55 

(50 tM) in the presence of LPS as above for 2 h prior to i.v. 
injection into B6 recipients (500 5  DC/mouse). Some mice 
also received 200 tg anti-0X40 on the day of DC injection 
and 2 days later, as indicated. For T cell transfers, single cell 

suspensions were prepared from LN of naive OT-Il or OT-

llxLy5.1 donor mice. In some cases, LN cells from naive OT-
II mice were labeled with CFSE as above before 5x10 6  cells 
were injected i.v. into syngeneic B6 recipients. 

4.5 Flow cytometric analysis 

All samples were incubated with the 2.4.G2 anti-Fc receptor 
antibody to prevent nonspecific binding via Fc receptors, 

prior to incubations with other antibodies. All samples were 
collected on a Becton Dickinson FACScan (Mountain View, 

CA) flow cytometer and analyzed using FlowJo Software 
(TreeStar, USA). All antibodies were obtained from BD Phar-
Mingen (Oxford, GB) unless stated otherwise. DC purity was 

assessed with FITC-conjugated anti-CD1 1 c. Costimulatory 

molecules on DC were identified using biotinylated primary 

antibodies specific for CD80, CD86, CD40, or OX40L, fol-

lowed by streptavidin-allophycocyanin conjugate. 

In experiments involving transfer of OT-Il LNC the pOVA-
reactive I cells were identified using biotinylated anti-V5 

followed by allophycocyanin- or FITC-conjugated streptavi-

din and PE-conjugated anti-Va2. Transferred OT-lIxLy5.1 

cells were identified using allophycocyanin-conjugated anti-
CD4 together with FITC-conjugated anti-Ly5.1 . T cell activa-

tion was assessed using biotinylated anti-CD69, anti-CD25, 

or anti-0X40, all followed by allophycocyanin-conjugated 
streptavidin. 

Intracellular cytokine production was measured ex vivo in 
splenocytes by flow cytometric staining as described [46]. 

Briefly, splenocytes were stimulated with PMPiionomycin in 

the presence of GolgiStop (BD PharMingen) for 4 h at 37°C, 
before staining with biotinylated anti-V05 followed by 
allophycocyanin-conjugated streptavidin, and FITC-

conjugated anti-Vcz2, or al lophycocyan i n-conju gated anti-

CD4 together with FITC-conjugated anti-Ly5.1, as indicated. 

Cells were then fixed for 20 min on ice, washed with cyto-

perm wash buffer (BD PharMingen) and stained with PE-

conjugated anti-IL-2, anti-IL-4, anti-IL-lO or anti-IFN-y for 

30 min on ice. 

4.6 Recall proliferation assays 

Lymphoid cell suspensions were cultured in 96-well flat-

bottom microtiter plates (Becton Dickinson) at 600 5  LN 
cells/well or 8x10 5  spleen cells/well using X-vivo15 serum-

free medium (BioWhittaker, Maidenhead, GB) supplemented 

with 2 mM L-glutamine and 5x10 5  M 2-ME. Cultures were 

stimulated with a dose range of pOVA or p35-55 for 48 h 

prior to addition of rH]dThd (0.5 iCi/well). After a further 
18 h, cultures were harvested and dThd incorporation mea-

sured using a liquid scintillation j-counter 1alIac). Results 

are expressed as mean cpm of triplicate cultures. In some 
experiments, spleen cells were labeled with CFSE as above 

and stimulated for 72 h with 1 tM pOVA before flow cyto-
metric assessment of proliferation. 

4.7 Induction and assessment of EAE 

EAE was induced with s.c. injection of 100 ig p35-55 in a 

total of 100 jil CFA containing 1 mg heat-killed Mycobacte-
rium tuberculosis (50 I into each hind leg). Mice also 
received 200 ng pertussis toxin (ECACC) i.p. in 0.5 ml PBS 

on the same day and 2 days later. Clinical signs of EAE were 
assessed using the following scoring index: 0, no signs; 1, 

flaccid tail: 2, impaired righting reflex and/or impaired gate; 

3, partial hind leg paralysis; 4, total hind leg paralysis; 5, hind 
and fore leg paralysis; 6, moribund or dead. Differences in 
total disease burden between groups were determined 
using the Mann-Whitney U test. 
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