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Abstract 
DNA methylation (DNAm) is the covalent modification of DNA by addition of a 

methyl group primarily at the cytosine directly upstream of a guanine. DNAm level 

plays a central role in transcriptional regulation and is linked to disease. Therefore, 

understanding genetic and environmental influences on DNAm level in healthy 

tissue is an important step in the elucidation of trait and disease etiology. However, 

at present only a minority of easy to access human tissues and ethnicities have been 

investigated.  

Therefore, we studied DNAm level measured in five human tissues: cerebellum, 

frontal cortex, pons, temporal cortex and colon in either North American or South 

American samples. We applied a novel statistical approach to estimate the 

heritability attributable to genomic regions (regional heritability, ℎ!,!! ) for DNAm 

level at thousands of individual DNAm sites genome-wide.  

In all five tissues, DNAm level was significantly associated with the local genomic 

region for more DNAm sites than expected by chance. Moreover, DNAm level could 

be predicted from the local sequence variants with an accuracy that scaled with the 

estimated ℎ!,!! .  

Our results inform on molecular mechanisms regulating DNAm level and trait 

etiology in several ways. Firstly, DNAm level at DNAm sites located in genomic risk 

regions and measured in a tissue relevant to the disease can be influenced by the 

local genetic variants. Specifically, we found that genetic variation within a region 

associated with Fluid Intelligence was also associated with local DNAm level at the 

proline-rich coiled-coil 1 (PRRC1) gene in healthy temporal cortex tissue. 

Additionally, we replicated the finding of a Colorectal Cancer risk variant 

(rs4925386) associated with two DNAm sites in healthy colon tissue. More 

generally, we showed that DNAm sites located within a susceptibility region and 

measured in a relevant tissue exhibit a similar overall pattern of estimated ℎ!,!!  to 

DNAm sites outwith a susceptibility region. Secondly, the propensity for DNAm 

level to be associated with the local sequence variation differs with respect to CpG 

dinucleotide density and genic location. Most notably, DNAm sites located in CpG 
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dense regions of the genome are less likely to be heritable than DNAm sites located 

in CpG sparse regions of the genome. Additionally, within both CpG dense and CpG 

sparse regions of the genome intergenic DNAm sites are more likely to be heritable 

than intragenic DNAm sites. Overall, our study suggests that variation in DNAm 

level at some DNAm sites is at least partially controlled by nuclear genetic variation.  

Moreover, DNAm level in healthy tissue has the potential to act as an intermediary in 

trait variation and etiology.  
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Lay Summary 
The DNA sequence encodes the instructions that give rise to life. Extensive research 

has shown that some differences in the DNA sequence between people can influence 

observable characteristics such as susceptibility to disease. Recently studies have 

revealed that there are DNA modifications, known as epigenetic marks, which do not 

alter the sequence but can affect the way in which it is decoded.  One such epigenetic 

mark is DNA methylation (DNAm). Differences in DNAm level between people 

within a tissue has also been linked to disease susceptibility. However, what is less 

known is the extent to which DNAm in healthy tissue is influenced by nature 

(inherited genetic variation) and by nurture (the environment).  

Therefore, we studied DNAm level measured in five human tissues: cerebellum, 

frontal cortex, pons, temporal cortex and colon in either North American or South 

American people. We used a novel statistical approach to determine the degree that 

DNAm level at thousands of individual locations in the DNA sequence is affected by 

genetic variation. 

We found that in all tissues studied, DNAm level at some locations is at least 

partially controlled by the surrounding genetic variation. Therefore, in some cases 

DNAm level can be inherited across generations. In addition we obtained specific 

examples where DNAm level in a relevant tissue is affected by the same genetic 

variation that influences disease. Together these results indicate that DNAm level in 

healthy tissue has the potential to act as an intermediary between genetic variation 

and disease. Our results have implications for studying how disease develops.   
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Chapter 1 Introduction 

1.1 The Discovery of 5-methylcytosine 

5-methylcytosine is formed by the biochemical process of the addition of a methyl 

group (CH3) at the 5th position of the atom ring that constitutes the pyrimidine base, 

cytosine. At the turn of the twentieth century experiments in organic chemistry led to 

the synthesis of 5-methylcytosine in the laboratory [3]. Scientists seeking to 

understand the nature of nucleotide bases knew that hydrolysis of cytosine led to the 

removal of an amine group (deamination) and the formation of uracil, a constituent 

of nucleic acid. At this time, thymine had also been realized as a constituent of 

nucleic acid and chemists hypothesized that a pyrimidine base with that of the 

chemical formula of 5-methylcytosine could deaminate and lead to the formation of 

thymine. Despite success in synthesizing and exploring the chemical properties of 5-

methylcytosine a further 21 years passed before 5-methylcytosine was discovered in 

the nucleic acid of a living organism; Mycobacterium tuberculosis [4]. By adding 

picric acid to a filtrate containing cytosine obtained from the nucleic acid of 

Mycobacterium tuberculosis, 5-methycytosine could be separated from cytosine as 

salt crystals with observable differences [4].   

1.2 Current Techniques for Interrogation of 5-

methycytosine 

With the dawn of the 21st century came the development of assays that could 

interrogate cytosine for methylation at basepair resolution, genome-wide. These 

assays utilize traditional molecular techniques for assaying 5-methylcytosine such as 

immunoprecipitation, methyl-sensitive restriction enzymes or sodium bisulfite 

conversion, coupled with either the latest sequencing or microarray technology 

(reviewed in [5]). These methods, of which there are many variants, all treat DNA 

prior to amplification or hybridization. This is a necessary requirement because 5-
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methylcytosine is not maintained throughout polymerase chain reaction and cannot 

be identified from hybridization alone due to the location of the methyl group with 

respect to the DNA structure (reviewed in [6]). Following treatment of the DNA, 

microarray based methods are efficient in assaying large numbers of samples while 

whole genome sequencing remains a more costly gold standard.  

The treatment of DNA with sodium bisulfite is a popular approach taken by 

researchers’ to interrogate cytosine for methylation, genome-wide. In 1992, a 

seminal paper revealed the utility of sodium bisulfite for measuring 5-methylcytosine 

[7]. In the presence of sodium bisulfite, unmethylated cytosine deaminated to uracil 

whereas methylated cytosine remained essentially unreactive. This changed the 

epigenetic modification into a genetic modification amenable to established assays 

for genetic polymorphism. However, both 5-methylcytosine and the oxidation 

product, 5-hydroxymethylcytosine, do not react to treatment with sodium bisulfite; 

therefore, this assay cannot distinguish between these two forms of methylated 

cytosine (reviewed in [8]). Methylation of cytosine is a binary outcome within a cell 

at a given genomic location on one strand of DNA. However, two double strands of 

DNA within a cell, input of multiple cells within a sample, and polymerase chain 

reaction following bisulphite treatment, means that the occurrence of 5-

methylcytosine is reported as a variable indicating a level of 5-methylcytosine. This 

variable is often the proportion of methylated to total cytosine bases at a genomic 

location (Beta-value) or a transformation of that proportion (M-value) [9].  

1.3 Biological Roles and Importance of 5-

methylcytosine 
5-methylcytosine is a reversible mark that can affect how the DNA sequence is 

decoded. DNA methyltransferases (Table 1) and agents that lead to demethylation of 

5-methylcytosine (Table 2) respectively add and remove 5-methylcytosine at sites 

across the genome. A DNA methyltransferase (DNMT) acts by covalently bonding 

with cytosine to create a negative charge that attracts a CH3 group from the methyl 
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donor, 5-adenosyl-L-methionine. After the CH3 bonds to the cytosine the DNMT is 

released [10]. The process of demethylation is less well characterized than the 

process of methylation; however, several mechanisms have been identified (Table 2).  

 

Table 1 DNA Methyltransferases 

 Function Reference 
DNMT1 Maintenance across mitosis  [11-13] 
DNMT2 Non CpG 5-methylcytosine Reviewed in [14] 
DNMT3A De novo (imprinting) 

De novo (development) 
[15-18] 

DNMT3B De novo (development) [15] 
DNMT3L De novo (Imprinting) [16-18] 
 

 

Table 2 Agents of Demethylation 

Mechanism Description Examples Reference 
Oxidation To 5-

hydroxymethylcytosine 
(and other products 
sequentially) by Tet 
dioxygenases 

Paternal 
genome, 
preimplantation 
embryo 
 

Reviewed 
in [19] 

Base Excision 
Repair and DNA 
Glycosylases 

Bases mismatches 
resulting from 
deamination of 5-
methylcytosine or 
oxidized product are 
targeted for removal 

Imprinted loci 
in Primordial 
Germ Cells 

Reviewed 
in [19,20] 

Methyl Binding 
Proteins 

Direct MBD2 Reviewed 
in [14] 

Replication 
Dependent 

No maintenance 
throughout mitosis  

Maternal 
genome, 
preimplantation 
embryo 

Reviewed 
in [19] 
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5-methylcytosine has a functional role in several crucial biological processes 

including regulation of gene expression level. As early as 1975 Holiday and Pugh 

hypothesized that 5-methylcytosine could be responsible for the changes in the 

expression of developmental genes in a time dependent manner that led to cell 

differentiation [21]. Since this hypothesis, experiments have confirmed that 5-

methylcytosine and chromatin modifications are associated with the transition of 

cells from a pluripotent to unipotent state [8,22]. For instance, a large increase in 

global 5-methylcytosine and methylation of H3K9me3 by G9a has been observed at 

the first differentiation event in embryogenesis when genes that maintain 

pluripotency are down regulated [8,22]. Additionally, 5-methylcytosine at imprinting 

control regions (ICR) has been shown to regulate gene expression level in a parent of 

origin manner. This means that 5-methylcytosine, which occurs on either the paternal 

or maternal haplotype at an ICR, leads to mono-allelic expression at the locus 

(reviewed in [23]). At fertilization the paternal and maternal DNA undergo extensive 

chromatin remodelling and epigenetic changes. These epigenetic changes include a 

global loss of 5-methylcytosine by embryonic day 4 (reviewed in [19]). However, at 

a minority of sites namely in imprinted loci, 5-methylcytosine escapes 

demethylation. In human germ cells, parental imprints are erased in a second wave of 

demethylation occurring between embryonic day 7 and embryonic day 13.5. 

Research showed that the reestablishment of methylation at imprinted loci in female 

mice germ cells occurred after birth and was dependent on the developmental stage 

of the oocyte [24]. In contrast, in male mice, reestablishment of methylation at 

imprinted loci began at embryonic day 14.5 and was almost complete by embryonic 

day 17.5 [25]. 

Despite the important changes in 5-methylcytosine that occur during development, 

after development 5-methylcytosine is stably inherited throughout mitotic cell 

divisions. Studies have assayed the human methylome in differentiated cells. These 

studies provided several results 1) 5-methylcytosine occurred almost exclusively at 

CpG dinucleotides in differentiated cells and on both the forward and reverse strand 

at complementary CpG dinucleotides [26]. 2) level of 5-methylcytosine was highly 
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correlated for CpG sites located up to 1kb apart [27]. 3) Average level of 5-

methylcytosine within amplicons was bimodal with the majority of amplicons 

exhibiting either low or high levels of 5-methylcytosine [27,28]. 4) Level of 5-

methylcytosine varied across different genomic locations. Specifically, CpG sites 

within transcription start sites (TSS) showed lower levels of 5-methylcytosine than 

intragenic CpG sites [27,28] and centromeric CpG sites showed lower levels of 5-

methylcytosine than CpG sites located close to the telomeres [26]. 5) Different 

tissues exhibited a different pattern of level of 5-methylcytosine across the genome 

[26-29]. 6) In some cases, level of 5-methylcytosine associated with gene expression 

level [30,31]. Together these studies highlighted that the level of 5-methylcytosine is 

extensive and variable throughout the genome and across cell types. Moreover, level 

of 5-methylcytosine and level of gene expression are related at some loci in 

differentiated somatic cells.  

Aberrant 5-methylcytosine can be characteristic of disease. Several rare imprinting 

disorders can result from an unusual pattern of 5-methylcytosine. For instance, 

research showed that 2-5% of cases of Angelman syndrome and Prader-Willi 

syndrome resulted from aberrant 5-methylcytosine on the respective maternal and 

paternal allele at 15q11-13 (reviewed in [32]). In addition, defective 5-

methylcytosine at 11p15.5 led respectively to 40% and 40-60% of cases of Silver 

Russel Syndrome and Beckwith-Wiedemann syndrome (reviewed in [32]). Changes 

in 5-methylcytosine are linked to common disease such as cancer. Global 

hypomethylation in tumour cells has been associated with decreased genomic 

stability and changes in level of gene expression (reviewed in [33]). In contrast 

global hypermethylation has been linked to the silencing of genes that are important 

for normal cell maintenance and tumour suppression (reviewed in [33]). Moreover, 

level of 5-methylcytosine at a specific locus can be used as an indicator (biomarker) 

of cancer (reviewed in [34]). Epigenome-wide association studies (EWAS) are now a 

popular method for assessing how changes in 5-methylcytosine relate to variation in 

a common phenotype. An EWAS tests the association of a phenotype with level of 5-

methylcytosine at many individual sites of 5-methylcytosine across the genome. 
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EWASs have been conducted for a number of common diseases including systemic 

lupus, major psychosis and type 1 diabetes nephropathy. These studies identified 

small changes in 5-methylcytosine that were associated with changes in disease risk 

(reviewed in [35] ). The role of 5-methylcytosine in disease makes it of interest to 

clinical and human geneticists. Moreover, now that it is feasible to assay 5-

methylcytosine at hundreds of thousands of individual sites genome-wide, human 

quantitative geneticists can study phenotypic variation in 5-methylcytosine in healthy 

tissue.  

1.4 Quantitative Genetics 
Quantitative genetics is the measurement and classification of the inherited variation 

that comprises variation in complex phenotypes (or traits), which are phenotypes that 

are influenced by multiple genes [36]. Variance in a phenotype can be classified into 

genetic and environmental variance (Equation 1) [37]. The genetic variance is a 

measure of the deviation of genotypic effect from the population mean. The 

genotypic effect for an individual in the population is the total effect of their 

genotype on the phenotype. The genetic variance can be further decomposed into 

additive variance and non-additive variance (Equation 2) [37]. Additive genetic 

variance arises from variation in breeding value within a population. The breeding 

value of an individual within a population is a measure of their genetic effect that can 

be inherited by their offspring. The environmental variance can be further classified 

into general and special environmental variance (Equation 2) [37]. General 

environmental variance arises from variation in the effect of an environmental factor 

that is common to individuals within the population. Special environmental variance 

results from variation in environmental effects that arise from environmental factors 

unique to the individual.  The emergence of quantitative genetics can be traced back 

to the turn of the twentieth centenary. In 1918, building on the work of Darwin, 

Mendel, Galton and Pearson, Fisher hypothesized that many genes each of small 

effect and of Mendelian inheritance lead to the heritable variation observed for 

normally distributed traits [38]. 
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Equation 1 

𝜎!! = 𝜎!! + 𝜎!! 

Equation 2 

𝜎!! = 𝜎!! + 𝜎!! + 𝜎!! + 𝜎!"! + 𝜎!"!  

 

Human quantitative genetics, as the name suggests, is the study of quantitative 

genetics in human populations. The development of sequencing and array 

technology, at the turn of the twenty first century, has enabled the discovery of a vast 

number of genetic variants (or Single Nucleotide Polymorphisms, SNPs) in human 

populations. For instance, in 1990 the landmark U.S Human Genome Project began 

[39]. The Human Genome Organization included over 20 groups worldwide that 

over a time period of 13 years, worked to develop efficient strategies to sequence the 

human genome. The draft sequence from the U.S Human Genome Project was 

published in 2001 [39], and the completed sequence (99% of the genome) 

uncovering more than 1.4 million SNPs followed in 2004 [40]. Following the U.S 

Human Genome Project came studies seeking to assess the extent of variation within 

multiple different human populations, such studies include the International HapMap 

project [41] and The 1000 Genomes Project [42]. These studies and smaller scale 

studies with similar goals (of which there are too many to reference) have generated 

large amounts of genetic data. This has led to the establishment of public on-line data 

repositories for storing genomic data. The ability to download genomic data and 

assay genetic variation in a high throughput manner has revolutionized human 

quantitative genetics. With genotypic data readily attainable human quantitative 

geneticists can now use novel methods to explore the genetic architecture of complex 

traits. 
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1.5 Understanding the Genetic Contribution 

to Variation in Complex Quantitative 

Traits 

One fundamental focus for human quantitative genetics is estimation of the 

heritability of a phenotype. The broad sense heritability is the proportion of the 

phenotypic variance that can be explained by variance in the total genetic effect 

(Equation 3) [37]. In contrast, the narrow sense heritability is the proportion of the 

phenotypic variance explained by variance in additive genetic effects (Equation 4) 

[37]. Several methods have been used to estimate the heritability and the method 

used can influence the estimation. Therefore, results from different study designs 

must be interpreted differently. Common and traditional methods involve using 

measurements of the phenotype and pedigree relationship among relatives to obtain 

an estimate of heritability due to the pedigree relationship (ℎ!"#! ). These pedigree 

based studies capture the full extent of the additive genetic heritability but can be 

biased by un-modelled sources of variation [37]. For instance, the offspring 

phenotypic value can be regressed on the phenotypic value of one of the parents to 

provide an estimate equal to half of the heritability [37]. However, general 

environmental effects can make parents and offspring appear more similar to one 

another than expected due to the sharing of alleles. This scenario would bias the 

heritability estimate upwards. As a second example, human studies often use 

monozygotic (MZ) and dizygotic (DZ) twins to estimate heritability. Twice the 

difference of correlation of MZ twin pairs minus the correlation of DZ twin pairs 

provides an estimate of heritability. However, this estimate of the heritability 

includes genetic variance arising from non-additive effects [37]. Moreover, it 

assumes that the general environmental variance is equal for MZ and DZ sib pairs. 

Un-modelled sources of environmental variance that result in MZ twins being more 

similar to one another than DZ twins will bias the heritability estimate upwards. 

Overall, setting aside sampling variance of individual experiments, pedigree based 
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methods to estimate the heritability can be thought of as providing an upper limit for 

the additive genetic heritability.  

Equation 3 

𝐻! =   
𝜎!!

𝜎!!
 

Equation 4 

ℎ! =
𝜎!!

𝜎!!
 

Within Human Quantitative Genetics a second question is to determine the causal 

effects acting on heritable phenotypes. One commonly used method to tackle this 

question, that has been enabled by the discovery and assay of abundant SNPs within 

the human genome, is a Genome-wide Association Study (GWAS, Single SNP 

Association Approach). A GWAS is a population-based method where SNPs across 

the genome are individually tested for correlation with a phenotype [43]. A SNP is 

used as a marker for causal variants with which it is in linkage disequilibrium (LD). 

This method estimates the effects of causal variation in LD with a marker SNP. 

GWAS have revealed important findings regarding the genetic architecture of 

common complex phenotypes. In some cases, such as with age related macular 

degeneration, several genetic variants have been discovered which have relatively 

large effects (reviewed in [44]). However, in most cases, common complex 

phenotypes appear to be influenced by many genetic variants of intermediate 

frequency and small effect. A classic example is human height where 423 causal loci 

have been identified [45] and together explain 0.16 of the phenotypic variance. 

Moreover, for the majority of traits, estimates of SNP effects from GWASs have 

fallen short of the heritability estimated from family based methods and this is called 

the “missing heritability” problem [46].  

Several explanations have been proposed for the elusive heritability. Firstly, it is 

possible that family based estimates are inflated estimates of the narrow sense 
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heritability. As discussed above, this can occur when factors such as shared 

environmental effects and non-additive genetic effects, including dominance, 

epistasis and genetic by environment interactions, are not accounted for and lead to 

phenotypic covariance among relatives [46]. While this may be the case for some 

phenotypes, it has been shown that is unlikely to be the case for human height [47]. 

Secondly, small effect sizes may not be detected at stringent significance thresholds 

even if the causal variant is in LD with the marker SNP [46]. This hypothesis has 

spurred researchers’ to seek an increased sample size, as this will increase the power 

to detect variants of small effect. Thirdly, the effect of causal genetic variants not 

tagged by marker SNPs on genotyping arrays cannot be captured by GWAS [46]. 

This type of genetic variation includes both rare and common variants. The majority 

of marker SNPs on genotyping arrays are of intermediate frequency in the human 

population [48]. An allele of intermediate frequency cannot have a high correlation 

with an allele of low frequency. Thus a GWAS that uses markers of intermediate 

frequency does not effectively capture the phenotypic variance explained by rare 

genetic variants [46]. The effect of common variants can be missed due to sampling 

variation where by the causal variant is not tagged by a SNP on the genotyping array 

[49].  

In 2010 a pivotal study [49] used human height as an example and provided evidence 

for both the second and third of the above three hypotheses. At this time, GWAS had 

uncovered ~50 genetic variants associated with human height and together these 

variants explained 0.05 of the phenotypic variation. In the 2010 study [49], random 

effects of 294,831 SNPs on height were fit simultaneously within a restricted 

maximum likelihood (REML) framework. The most likely estimate of the variance 

in the phenotype due to additive SNP effects (ℎ!!) was 0.45. Fitting SNPs 

simultaneously led to a 9-fold increase in the proportion of the phenotypic variance 

explained compared to that explained by the individual effects of the known 

associated variants.  The authors’ [49] concluded that this result came from variants 

with small effect that individually would not surpass the significance threshold. 

Therefore, the variants had not been detected in previous GWASs. When the SNP 
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effects were added together they explained a substantial proportion of the phenotypic 

variance. The total proportion of the phenotypic variance explained by the SNPs 

could be detected by fitting the effects of SNPs simultaneously. The authors’ [49] 

went on to show that even when fitting all SNPs simultaneously some causative 

variation could be missed. Firstly, positioning of the tagging SNPs with respect to the 

causative variants meant that some causative effects were missed and the magnitude 

of the discrepancy depended on the number of tagging SNPs. Secondly, the effects of 

causative variation with a minor allele frequency (MAF) < 0.1 were not captured as 

well as causative variation with a MAF < 0.5, when the tagging SNPs each have a 

MAF < 0.5. This indicated that if causative variants had a different allele frequency 

spectrum to that of tagging SNPs then their effects would not be captured. Indeed, 

when the authors’ adjusted for insufficient LD between causative variants with MAF 

< 0.1 and tagging variants with MAF < 0.5 they found ℎ!! of height to be 0.80 [49]. 

Overall, this study revealed that extensive common variation of small effect and rare 

variation could explain the missing heritability. Additionally, fitting the effects of 

SNPs simultaneously could capture common causative variation not identified by 

GWASs. However, the genomic heritability due to (common) tagging SNPs on an 

array may be lower than the additive genetic heritability. This is because the genomic 

heritability is unlikely to capture the effects of rare variants.   

1.6 Challenges and Prospects for Human 

Quantitative Genetics 

Current challenges for human quantitative genetics are finding the source of the 

missing heritability, identifying the genetic variants that underlie phenotypic 

variation and elucidating the relevant biological pathways. There are several 

prospects that could address the questions raised by these challenges. Firstly, insight 

could be gained from the development and application of novel statistical approaches 

to analyse genomic data. Secondly, the relationship between a phenotype (ultimate 
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phenotype, UP), a cellular phenotype (CP) measured in a tissue relevant to the UP 

and genetic variation could be explored (Figure 1).  

 

 

Figure 1 Possible Relationships Among Genetic Variation, A Cellular 

Phenotype and An Ultimate Phenotype.  

Arrows indicate potential causal pathways.   

 

 

 

A relatively well-characterized CP is gene expression level and several approaches 

have been taken to implicate genes that may be involved in the aetiology of an UP. 

Firstly, level of gene expression can be tested for association with an UP. This can be 

done in a high throughput manner. For instance, the expression levels of 23,720 

genes measured in adipose tissue were tested for association with body mass index 

(BMI). A significant association was found for 72% of the genes tested and variation 

in gene expression level at 2,784 genes explained 0.10 of the variation in BMI. This 

suggested a relationship between a large number of genes in adipose tissue and BMI. 

Secondly, the comparison of SNPs associated with an UP (Quantitative Trait Loci, 

QTL) and SNPs associated with gene expression (expression Quantitative Trait Loci, 

eQTL) in a tissue relevant to the UP has been used to identify genes that may be 

involved in the aetiology of the UP. For instance, genetic variants associated with 

CP	  (Relevant	  
Tissue)	  

Gene2c	  
Varia2on	   UP	  
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childhood asthma were also associated in cis with expression levels of ORMDL3 in 

lymphoblastoid cells [50]. This result elucidated a potential mechanism by which the 

genetic variants could influence childhood asthma. Similarly, SNPs associated with 

the expression of genes in the macrophage-enriched metabolic pathway measured in 

adipose tissue associated with BMI, which suggested a link between the group of 

genes and obesity [51]. Overall, these studies have suggested a link between an UP, 

the expression level at genes measured in a relevant tissue and in some cases, genetic 

variation. The results indicted that it was possible that the CP, gene expression level, 

could mediate genetic effects on an UP. However, it should be noted that these 

studies have not proved a causal relationship between gene expression level and the 

UP.  

Information regarding the level of association between SNPs and a CP can be used to 

increase the power to detect the association of SNPs with an UP. In the case of gene 

expression levels, eQTLs have been used to prioritize SNPs to test for an association 

with an UP. For instance, eQTLs from a public database were used to select a subset, 

out of 500 SNPs most strongly associated with Crohn’s disease, for replication 

studies. Out of the 10 SNPs selected three were found significant in an independent 

study [52]. Using eQTLs to prioritize SNPs for association with an UP is predicated 

on the hypothesis that in comparison to the general pool of SNPs, trait associated 

SNPs are more likely to be eQTLs. Under this assumption, using eQTLs will provide 

an enrichment of significant associations between SNPs and a UP. Moreover, there 

may be increased power to detect a specified SNP effect on an CP than on the trait 

the CP influences [53]. This could occur if the CP resulted from a lower number of 

molecular interactions than the UP. The CP would be subject to less biological noise 

than the UP and the estimated SNP effect on the CP would be more precise 

compared the estimated SNP effect on the UP [53]. Therefore, overall genetic 

determination of CPs in a relevant tissue could be helpful in identifying SNPs that 

influence an UP.  
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1.7 Genetic Variation Associated with Level of 

5-methylcytosine 

Level of 5-methylcytosine is a CP less well studied than level of gene expression. 

However, studies have begun to assess inter-individual variability in the level of 5-

methylcytosine and the relationship with genetic variability [2,54-58]. These studies 

have been of small sample size and have been conducted in a minority of tissues, 

typically tissues that are easy to access. In the tissues assayed, ℎ!"#!  has been 

calculated or individual SNPs genome-wide have been tested for association with 

level of 5-methylcytosine at basepair resolution across the genome to identify SNPs 

associated with 5-methylcytosine (methQTLs). In a minority of cases [57,58], ℎ!"#!  

have been compared for CpG sites located in different functional genomic contexts. 

Studies utilizing the pedigree information for MZ and DZ twins have suggested a 

wide range of ℎ!"#!  for 5-methylcytosine [56-58]. Additionally, these studies have 

suggested that the average ℎ!"#!  may be significantly different for different tissues 

[57] and for CpG sites located in different functional genomic contexts [56,58]. 

GWASs for 5-methylcytosine have revealed that a SNP can explain up to 88% of the 

phenotypic variation in level of 5-methylcytosine [2]. Moreover, SNPs local to the 5-

methylcytosine were enriched for higher effect sizes than SNPs distal to the 5-

methylcytosine [2] and the majority of associations detected for 5-methylcytosine 

resulted from local SNPs [54,55].  

1.8 The Aim of this Study 

The overall aim of this work was to explore the heritability of 5-methylcytosine, 

genome-wide in differentiated somatic cells. We used a newly established statistical 

methodology that we anticipated would have increased power over a GWAS 

approach to detect variants with a small effect. Moreover, unlike pedigree-based 

studies this methodology allowed us to determine the contribution of specific regions 

of the genome to variation in level of 5-methylcytosine. We investigated both the 
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effect of local and distal genomic regions on level of 5-methylcytosine. We 

examined variation in the estimate of local genetic effects between CpG sites located 

within different genomic contexts. Finally, we assessed the extent to which genetic 

effects local to a CpG site differ among samples taken from different tissues. Our 

analyses informed on the basic mechanisms that lead to variation in the level of 5-

methylcytosine in differentiated somatic cells. 

 

1.9 Contributions 

Both my supervisors provided comments on drafts of this chapter. 
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Chapter 2 The Effect of Local Genetic 

Variation on DNA Methylation 

Level Measured in Four 

Regions of the Human Brain 

2.1 Introduction 

The occurrence of 5-methylcytosine, from here on defined as DNA methylation 

(DNAm), can be dependent on the genome sequence. A classic example is the 

random methylation of one of the two X chromosomes in females to silence genes 

and to compensate for the higher levels of gene expression that would otherwise 

occur in females relative to males. A second well noted example is DNAm at ICRs in 

a parent of origin manner. Furthermore, studies [2,54-61] have established that 

variation within the genome sequence can affect the binary outcome of DNAm. 

Family based studies [56-60] (Table 3) and GWASs [2,54,55,61] (Table 4) have been 

critical in establishing that genetic variation can influence DNAm level at individual 

CpG sites throughout the genome The results from different GWASs (Table 4) are 

not directly comparable because typically each study uses a different sample size, 

applies a different multiple testing correction, assays different DNAm sites and 

different tissues and defines local variation by a specific number of basepairs 

surrounding a DNAm site. Despite the difficulties in comparing findings from 

multiple GWASs, these studies (Table 4) and others [62,63] have suggested that a 

substantial proportion of the phenotypic variation for DNAm level can be explained 

by SNPs local to the DNAm site. However, currently, published results from 

GWASs (Table 4) are insufficient in providing an estimate of the local heritability 

for the DNAm sites studied. This is because while these studies have provided 

estimates of the proportion of the phenotypic variance explained by SNPs they have 
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not taken into account the effects of rare variants, combinations of variants of small 

effect, or the dependence of effects estimated from SNPs in LD with one another 

(Table 4). 

 

 

Table 3 Twin Studies Assessing Heritability of DNAm Level  

The table shows twin studies where the pedigree relationship was used to calculate 

ℎ!"#  ! for individual DNAm sites. The cell or tissue type in which DNAm level was 

measured is listed (column one) along with location of the DNAm sites assayed 

(column two). The ℎ!"#!  is the average for all the DNAm sites assayed (column 

three). The number of twin pairs provided (column 4) includes pairs of monozygotic 

(MZ) and dizygotic (DZ) twins.  

Cell or Tissue Type DNAm Sites Considered Average ℎ!"#!  Number of Pairs Reference 
Buccal Epithelial  Genome-wide 0.30 20 MZ, 20 DZ [57] 
White Blood  Genome-wide 0.01 20 MZ, 19 DZ [57] 
CD4+ MHC Complex CpG 

Islands 
0.07 49 MZ, 40 DZ [56] 

CD4+ MHC Complex 5 Prime 0.16 49 MZ, 40 DZ [56] 
CD4+ MHC Complex CNC 0.12 49 MZ, 40 DZ [56] 
CD4+ MHC Complex Random 0.02 49 MZ, 40 DZ [56] 
Peripheral Blood 
Lymphocytes 

Genome-wide 0.20 67 MZ [58] 

Whole Blood Genome-wide 0.22 23 MZ, 23 DZ [59] 
Cord Blood 
Mononuclear  

Genome-wide (n=19204) 0.12 18 MZ, 9 DZ [60] 

Human Umbilical 
Vascular Endothelial 

Genome-wide (n=19350) 0.07 14 MZ, 20 DZ [60] 

Placenta Genome-wide (n=26353) 0.05 8 MZ, 7 DZ [60] 
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Table 4 GWAS Assessing Association of SNPs with DNAm level 

GWAS testing the association of SNPs with DNAm level at individual DNAm sites. 

The cell or tissue type in which DNAm level was measured is listed (column one) 

along with location of the DNAm sites assayed (column two) and the SNPs tested for 

association (column three). The proportion of the phenotypic variance explained by 

a SNP is reported (column four) and the number of DNAm sites with at least one 

significantly associated SNP (column five). 

Cell/Tissue Type DNAm Sites 
Considered 

SNP 
Considered 

R2 Number 
Sign. 
DNAm 
Sites 

Number 
Samples 

Ref. 

Cerebellum Genome-wide 
(n=8590) 

Within 
+/- 1MB  

0.17 - 0.73 2046 153 [54] 

Cerebellum Genome-wide 
(n=8590) 

Outwith 
+/- 1MB 

Not 
Reported 

372 153 [54] 

Lymphoblastoid Genome-wide 
(n=22290) 

Within 
+/- 0.5MB 

0.22 - 0.83 180 77 [55] 

Lymphoblastoid Genome-wide 
(n=22290) 

Outwith 
+/- 1MB 

Not 
Reported 

10 77 [55] 

Whole Blood Associated with 
mRNA Levels 
(n=517) 

Within  
+/- 0.5MB 

Not 
Reported 

69 148 [61] 

Whole Blood Associated with 
mRNA Levels 
(n=705) 

Outwith 
+/- 0.5MB 

Not 
Reported 

1 148 [61] 

Cerebellum Genome-wide 
(n=27310) 

Within  
+/- 1MB 

0.23 - 0.88 444 108 [2] 

Cerebellum Genome-wide 
(n=27310) 

Outwith 
+/- 1MB 

0.22 – 0.76 657 108 [2] 

Frontal Cortex Genome-wide 
(n=27532) 

Within  
+/- 1MB 

0.20 – 0.83 420 133 [2] 

Frontal Cortex Genome-wide 
(n=27532) 

Outwith 
+/- 1MB 

0.19 – 0.77 740 133 [2] 

Pons Genome-wide 
(n=27476) 

Within  
+/- 1MB 

0.21 – 0.83 359 125 [2] 

Pons Genome-wide 
(n=27476) 

Outwith 
+/- 1MB 

0.19 – 0.76 774 125 [2] 

Temporal Cortex Genome-wide 
(n=27538) 

Within  
+/- 1MB 

0.21 – 0.86 547 127 [2] 

Temporal Coretx Genome-wide 
(n=27538)  

Outwith 
+/- 1MB 

0.20 – 0.78 886 127 [2] 
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Recently, the genomic heritability method (see 1.5) was adapted so that the effects of 

causal genetic variation could be partition into genomic regions (regional heritability, 

RH, ℎ!,!! ). The effects of SNPs within a genomic region of interest were 

simultaneously modelled as random effects. Simulation experiments revealed that the 

RH approach could capture an increased proportion of the genetic variance relative 

to a GWAS or gene based approaches that simultaneously estimated the effect of 

SNPs within a genomic region [64,65]. The RH approach outperformed a GWAS 

and gene based approaches except when the number of causal variants was extremely 

low [64,65], for instance, less than three within a 10 to 100 SNP window spanning 

between 103 and 1031 KB respectively [65]. In conjunction, the RH approach could 

capture the phenotypic variance explained by low MAF much more effectively than 

GWAS or gene based approaches [64,65].  Moreover, ℎ!,!!  obtained when the 

number of causal loci was not extremely small (less than three), were not 

dramatically affected by the number of causal variants, the variance contributed by 

individual causal variants, the size of the genomic window or the overall heritability 

of the trait [64,65]. Therefore, the RH approach can be used to obtain robust ℎ!,!!  that 

are likely to be more accurate estimates of the true additive heritability than those 

obtained from a GWAS.  

We used the RH approach to estimate the proportion of the phenotypic variance in 

DNAm level that can be explained by genetic variation +/- 1MB of a DNAm site. 

We chose a region of +/- 1MB surrounding a DNAm site in keeping with previous 

GWASs [2,54] that have investigated the effect of cis acting genetic variation on 

variation in DNAm level. We conducted this analysis using publically available data, 

on which others have conducted a GWAS for DNAm level [2]. This dataset, which 

we refer to as the brain dataset, was composed of DNAm level measured at 27,578 

DNAm sites in the cerebellum (CRBL), frontal cortex (FCTX), pons (PONS) and 

temporal cortex (TCTX) for a total of 148 unrelated individuals. We selected a 

subset of the total assayed DNAm sites for RH analysis, choosing the DNAm sites 

located in risk regions for a disease or disorder related to brain function. We 
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prioritized these DNAm sites for analysis because we were interested to establish if 

genetic variation that associated with disease also influenced a change in DNAm 

level measured in a tissue relevant to the disease. We conducted simulation 

experiments that validated the accuracy of the RH approach for obtaining ℎ!,!!  for 

DNAm level in our sample of unrelated individuals. Subsequently, we reported the 

RH results for the selected DNAm sites. Then we used the RH framework and all 

DNAm sites measured within the TCTX to show the extent to which local SNP 

effects could predict DNAm level for the TCTX in our population. Finally, from our 

work we have provided an example where genetic variation may mediate the 

outcome of a trait, fluid intelligence (FI), through changes in DNAm level.   

2.2 Materials and Methods 

2.2.1 Quality Control  

Obtaining accurate analytical results that reflect the true biological situation of study 

depend on the quality of the genotypic and phenotypic data. Technical factors and 

human error could increase variation in the data set, which if not accounted for could 

mask true biological signal. One ramification of this is false positive association, an 

association that falsely leads to the rejection of the null hypothesis of no association. 

A second and less identifiable consequence is false negative association, falsely 

accepting the null hypothesis of no association when in fact there was an association. 

Application of appropriate quality control procedures (Figure 2) can lead to reliable 

measurements of genetic markers and traits. This can reduce the probability of 

obtaining spurious results such as false negatives and false positives in downstream 

analysis.  
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Figure 2 Schematic Diagram of the Quality Control Procedure  

The data obtained from the online repositories consisted of both phenotype and 

genotype data that must be subject to quality control (QC) measures. 

 

 

 

 

2.2.1.1 Genotype Quality Control 

Genotypes for 148 individuals at 561466 marker SNPs obtained from authorized 

access to dbGaP were made available to myself on September 12th 2011. These 

genotypes were subjected to the quality control procedures outlined below using 

PLINK v1.07 [66].  
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2.2.1.1.1 Genotyping Algorithms 

Genotype calling algorithms for SNP arrays determine a genotype at a given SNP by 

using the intensity measure from the probe binding the major allele (X) and the 

intensity measure from the probe binding the alternative allele (Y) and comparing the 

intensity measures (X, Y) across all assayed individuals in 2D space.   

Three clusters representing the three genotypes, A1A1, A1A2, A2A2 should be 

present for a SNP measured with high accuracy.  Proximity to a cluster determines an 

individual’s genotype [67,68].  Problems genotyping specific SNPs, poor quality 

DNA or low concentration of DNA can mean that genotype clusters are not well 

defined. In this case genotyping algorithms cannot specify individual genotypes with 

certainty and genotypes may be miscalled or set to missing. If the proportion and 

type of genotypes set to missing or miscalled is correlated with the trait of interest 

then false positive and false negative associations can occur [67]. There are several 

precautions that can be taken to minimize the effect of missing or miscalled 

genotypes on obtaining false results. Firstly, individuals for which a substantial 

proportion of SNPs are set to missing and SNPs that do not type in substantial 

proportion of the individuals assayed can be removed. Secondly, SNPs that have 

genotype frequencies that deviate from the expectation in a randomly mating 

population and are not in Hardy-Weinberg Equilibrium can be removed. Thirdly, 

SNPs with a low MAF can be excluded [68]. Following classical protocol, samples 

and SNPs with a call rate below 95% were excluded from downstream analysis [69]. 

The expected genotype frequencies were calculated from the observed allele 

frequencies and compared to the observed genotype frequencies using a chi-squared 

test.  SNPs were removed if significantly out of Hardy-Weinberg Equilibrium with a 

P-value < 0.0001 [69]. SNPs with a MAF < 0.01 were also removed. This protocol 

reduced the number of SNPs available for downstream analysis from 561466 to 

530632. No samples were removed based on the missingness threshold set, leaving 

101 male and 47 female samples for analysis. This confirmed that the previous 
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authors’ [2] working with this dataset had removed poor quality samples prior to 

submission to dbGaP.  

2.2.1.1.2 Genotype Sample Mix-up 

If left undetected accidental mislabelling or swapping of samples during the 

genotyping process will result in misalignment of the genotypes with the phenotypes.  

Sample mix-ups can be identified by comparing the recorded sex to the estimate of 

homozygosity by descent on the X chromosome [68,69]. Homozygosity by descent is 

the excess in the number of SNPs that are monomorphic in a sample relative to the 

number of SNPs that are expected by chance to be monomorphic in the sample [66]. 

Homozygosity by descent for an individual based on the X chromosome can be 

calculated from the observed number of homozygous SNPs and the expected number 

of homozygous SNPs due to chance [66]. The expected number of homozygous 

SNPs due to chance is calculated as the sum of the probability of each SNP being 

homozygous following the expectation under Hardy-Weinberg Equilibrium [66]. 

Human males have one X chromosome and with the exception of variation due to 

genotyping error, genotype calling algorithms should observe that these individuals 

are completely homozygous at SNPs on the X chromosome. In contrast, females 

have two X chromosomes and the observed number of homozygous SNPs on the X 

chromosome is likely to be lower than that observed for males. Based on SNPs on 

the X chromosome females typically have a low homozygosity by descent (~0.2) and 

males typically have a high homozygosity by descent (~0.8) [66]. The recorded and 

predicted homozygosity by descent sex for each of the 148 individuals was 

concordant. This indicated that the genotype data was free from human error relating 

to a male sample being swapped with a female sample and vice-versa.  

2.2.1.1.3 Cryptic Relatedness, Population Structure and Ethnicity 

Cryptic relatedness, population structure and ethnicity can be identified by assessing 

the relationship of each individual with each other individual in the population 

sample. The relationship between two individuals in a population can be calculated 
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as the proportion of SNPs at which the two individuals have the same alleles 

(identity by state) or as the proportion of the genome that two individuals share from 

a common ancestor (identity by descent). Identity by state is used to infer identity by 

descent [66]. Calculations of allelic sharing for investigating duplication of samples, 

population structure and ethnicity can be conducted using a set of SNPs pruned for 

LD to increase computational efficiency. 

The pairwise estimates of identity by descent can reveal cryptic relatedness. For 

example, in a population sample containing unrelated individuals, identity by descent 

= 1, an estimate which would be obtained if the two individuals being compared 

where MZ twins, is not expected and is likely to be the result of a duplication of one 

sample’s DNA [68,69]. Using r2>0.1 (r=0.31) we pruned sets of SNPs within a 50Kb 

window for LD. We found a total of 35116 SNPs in linkage equilibrium from an 

initial number of 530632 and we found a maximum identity by descent between two 

samples of 0.07319. Since all individuals shared substantially less of their genome 

than third degree relatives (0.125), we did not remove any samples due to cryptic 

relatedness.   

The average proportion of the genome shared identity by state can be used to 

determine if samples look more dissimilar to one another than what is expected if the 

population sample is homogeneous. The matrix of pairwise identity by state 

estimates can be visually interpreted by multidimensional scaling and by plotting the 

first two multidimensional scaling components. This technique can be conducted 

within the population of interest to identify structure. Additionally, this technique can 

be used to examine the ethnicity of samples when samples of known ethnicity, such 

as samples from the HapMap populations are included. In both cases, the distance 

between samples on the plot represents the genetic distance between the samples. We 

used plink [66] to calculate pairwise identity by state and to conduct 

multidimensional scaling with our samples. By plotting the first two 

multidimensional scaling components we identified visually that there was no 

apparent population stratification. Additionally, pooling our samples and those from 



  
 
 

 25 
  

four HapMap populations [41]  (YRI, Yoruba in Ibadan, Nigeria;  JTP and CHB, 

(Japanese in Tokyo and Han Chinese in Beijing; Utah residents with ancestry from 

northern and western Europe, CEU) validated that our samples all clustered with 

HapMap individuals of European ancestry. 

2.2.1.2 DNAm Level Quality Control 

DNAm level measured on the Beta-value scale (see 1.2) at 27,578 DNAm sites and 

sampled from the four brain regions (BRs: CRBL, FCTX, PONS, TCTX) were 

downloaded from the GEO database (http://www.ncbi.nlm.nih.gov/geo/) (Table 5). 

Two samples from the CRBL region were excluded prior to the phenotype quality 

control procedure because these two individuals were not represented in the genotype 

data. All other individuals present in the phenotypic data were present in genotype 

data (Table 5). 

2.2.1.2.1 Detection of DNA Methylation Level Above Background 

Noise 

Samples had been assayed for DNAm level using the Illumina Infinium 

HumanMethylation27 BeadChip (HM27K). The HM27K assay reports a P-value for 

the significance of the detection of the level of DNAm at each DNAm site above the 

background level of noise measured from negative control probes on the array [70]. 

Following others [2], samples were removed if DNAm level at greater than 5% of 

DNAm sites were not detected above background levels of variation (P = 0.01) 

(Table 5). Similarly, DNAm sites were removed if DNAm level at that site was not 

detected above the background level of variation (P=0.01) in greater than 5% of 

samples (Table 6). 
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Table 5 Samples Available for Analysis after Application of Sequential Quality 

Control Steps 

Each cell in the table gives the number of samples assayed for DNAm level and 

remaining after the sequential quality control steps. The number of samples for each 

brain region is listed separately.  

 CRBL FCTX PONS TCTX 
Downloaded from GEO 121 133 125 127 
No Genotype Data in dbGaP 119 133 125 127 
Detection Above 
Background Variation 

109 132 125 127 

Sample Sex Discrepancy 108 132 125 127 
Cluster Analysis 103 130 121 126 
No Covariate Information 102 129 120 125 

 

 

 

Table 6 DNAm Sites Available for Analysis after the Sequential Application of 

Quality Control Procedures 
 CRBL FCTX PONS TCTX 
Downloaded 27579 27579 27579 27579 
Detection Above 
Background Variation 

27393 27545 27516 27554 

SNPs Within Assay Probe 20722 20843 20820 20848 
+/- 1MB GWAS SNP 
(Autosomal) 

3057 
(3049) 

3072 
(3064) 

3070 
(3062) 

3073 
(3065) 
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2.2.1.2.2 Removal of DNAm Sites Assayed by Probes Containing 

SNP 

Only DNAm sites that did not contain a SNP within the assay probe sequence, as 

documented in the manifest file for the Illumina Infinium HumanMethylation450 

BeadChip (HM450K), were retained for analysis (Table 6)  

2.2.1.2.3 Sample Sex Inconsistencies  

Similar to genotype quality control, the process of phenotyping a sample taken from 

an individual is subject to human error that can lead to samples being incorrectly 

labelled. One way of identifying mislabelled samples is to check the recorded sex for 

an individual against the predicted sex for an individual based on the level of DNAm 

of DNAm sites along the X chromosome [71]. Female samples are expected to 

exhibit hemimethylation of the X chromosome in accordance with the mechanism of 

dosage compensation [71]. Male samples are expected to show low DNAm level on 

the X chromosome in comparison to the hemimethylation exhibited by female 

samples.  We assessed the average DNAm level on the X chromosome for each 

sample. The results indicated that the samples clustered into two groups. Indeed, 

samples recorded as being male typically had a lower estimate of average DNAm 

level and higher variance of the mean estimate of DNAm level than samples 

recorded as female (mean for all 4 BR: males = 0.34, females = 0.48, variance for all 

4 BR: males 0.14, females = 0.07). The results indicated that one sample from the 

CRBL region was likely to have been mislabelled and this individual was removed 

from further analysis (Figure 3, Table 5).  
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Figure 3 Recorded and Phenotypic Estimated Sex for CRBL Samples  

Recorded sex and sex estimated from DNAm level on the X chromosome revealed 

that a sample was potentially mislabelled. One sample reported as male appears to 

have the DNAm level profile of a female. This sample was removed from further 

analyses, as the assay may not have been conducted on the correct sample.  

 

 

 

2.2.1.2.4 Whole Genome Methylation Profiling to Detect Outliers 

We used principal component analysis with autosomal DNAm sites, common to all 

BR, to investigate the phenotypic data for outlying data points. Between 1 and 5 

samples were removed from each BR based on an abnormal DNAm level profile as 

determined by the first three major axis of variation (Figure 4, Table 6)  
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Figure 4 Principal Component Analysis of DNAm Level  

Principal component analyses examining the covariance of DNAm level for all 

autosomal DNAm sites and samples. Within the plots the numbers indicate the 

identity of the samples that were removed due to an aberrant DNAm profile. 
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2.2.1.3 Gene Expression Level Quality Control 

The level of gene expression measured for genes across the genome and in the 

CRBL, FCTX, PONS and TCTX was available for the samples in the brain dataset 

and downloaded from the GEO database (http://www.ncbi.nlm.nih.gov/geo/).  The 

limma [72], Biobase [73] and arrayQualityMetrics [74] packages for the statistical 

program ‘R’ [75] were used to conduct quality control measures for the mRNA 

expression data. Probes measuring mRNA expression were kept for subsequent 

analysis if they were detected above background noise levels at p < 0.05 in ≥ 95% of 

the samples.  A Kolmogorov-Smirnov test comparing the intensity distribution for 

each sample to that of all samples pooled for each tissue was used to detect and 

subsequently remove sample outliers. A total of 145, 146, 144 and 147 samples from 

the CRBL, FCTX, PONS, and TCTX remained for analysis. The mRNA levels for 

samples were quantile normalized within brain tissue type using limma [72]. 

Additionally, the expression levels of each mRNA probe were adjusted for sex, age, 

time lapse between death and taking the sample (post-mortem interval, PMI), brain 

bank each sample came from (study) and genotyping plate (plate) prior to analyses.  

 

2.2.2 Testing the Effect of Explanatory Variables on 

DNAm Level 

In order to accurately assess the strength of an association between the phenotype 

and genotype data it is necessary to include the effects of variables that can explain a 

significant proportion of the phenotypic variation. As discussed in 2.2.1.3 included in 

the brain dataset were measurements for the 5 variables: sex, age, PMI, plate, and 

study for each individual. Sex and age have been found to correlate with DNAm 

level [59]. Additionally, variation in PMI (ranging from 0 to 28 hours after death), 

plate (7 levels), and study (3 levels) may correlate with inter-individual variation in 

DNAm level.  
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The proportion of the variance explained by a full model, including all 5 explanatory 

variables, was compared to a reduced model including only four of the five 

explanatory variables. To test if the fit of the full model was significantly better than 

the fit of the reduced model we used an F-test, P < 0.05 and the drop1 function in R 

[75]. The results for the inclusion of the effect of sex, age and plate were highly 

enriched for significant associations with DNAm level measured in all four BR 

(results not shown). The results for the inclusion of the variable, study, were highly 

enriched for significant associations in the CRBL (results not shown). The results for 

the inclusion of PMI were moderately enriched for significant associations in the 

FCTX and TCTX (results not show).  Based on these results, and the work of others 

who have analysed this dataset [2], we fit all five variables: sex, age, PMI, plate and 

study in subsequent analyses. The consequence was a loss of 11 degrees of freedom.  

Furthermore, we determined that cause of death was not a significant factor 

influencing variation in DNAm level. A total of 50 different causes of death were 

reduced to the four categorical variables that showed highest representation in the 

dataset (control, multiple injuries, cardiovascular disease and other). The proportion 

of variance in DNAm level explained by cause of death was determined by 

comparison of a full model containing sex, age, PMI, plate, study and cause of death 

and a reduced model that did not contain cause of death. Overall, we did not find an 

enrichment of results where the fit of the full model was significantly better than the 

fit of the null model (results not shown). Therefore, in accordance with previous 

authors’ [2] who have analysed this dataset we did not fit cause of death as a 

covariate in further analyses. 

2.2.3 Transformation of DNAm Level 

The results from fitting a linear model are reasonable descriptive statistics if several 

conditions regarding the dataset were met prior to analysis [76]. Firstly, the 

dependent variable must have a linear relationship with the independent variable, 

secondly, for any value of the independent variable the values of the dependent 



  
 
 

 32 
  

variable should be independent and normally distributed, and thirdly the probability 

distribution of the dependent variable for each value of the independent variable 

should have the same standard deviation. In practice, visualization of a plot of the 

residual deviation for each set of data points can be used to check that the third 

assumption is met. However, this is not feasible when one has a large number of 

linear regressions to conduct. Therefore, we used an alternative method to determine 

if our data met the third criteria stated above. We regressed DNAm level on sex, age, 

PMI, study and plate at each DNAm site and we used the Shapiro-wilk test in the 

statistical package R [75] to test if the residual distribution was significantly different 

from a normal distribution. The results suggested that for each brain region 

approximately 80% of the traits did not have normally distributed residuals. 

Therefore, we used a rank transformation to normalize the phenotypic data for each 

DNAm site. After normalization I found that approximately 90% of the DNAm sites 

for each BR had normally distributed residuals as determined by the Shapiro-wilk 

test. The rank transformed Beta-values were used in all analyses in this Chapter 

unless otherwise stated.  

2.2.4 Selection of a Subset of DNA Methylation Sites 

Local to Risk Variants for Disorders and 

Disease of the Brain 

The National Institute of Health full Catalogue of Published Genome-Wide 

Association Studies (http://www.genome.gov/gwastudies/) was downloaded on 

September 30th 2011.  A total of 202 SNPs, representing multiple loci across the 

genome, were listed as being associated with at least one of the following seven brain 

related traits: parkinson’s disease, alzheimer’s disease, bipolar disorder, 

schizophrenia, major depressive disorder, glioma, and neuroblastoma. We identified 

DNAm sites within a 1MB window upstream or downstream of the risk associated 

SNPs.  
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2.2.5 Simulating DNAm Level from the Genotype 

Data 

The phenotype, DNAm level, was simulated for individuals within the brain dataset 

using causal SNPs selected from the genotype data and for a specified heritability. 

We used the GCTA software [77] , which is an earlier version of the REACTA 

software [78] mentioned in 2.2.6. With the --simu-causal-loci command GCTA [77] 

selects effect sizes for each of the causal SNPs from the standard normal distribution. 

Using allele frequencies for these SNPs, calculated from the genotype data, and the 

effect sizes, the total additive genetic variance can be calculated. Specifying a 

heritability for the simulated phenotype facilitates calculation of the environmental 

variance. An environmental deviation for each sample can be obtained from a 

distribution with mean of zero and variance equal to the calculated environmental 

variance. 

2.2.6 Estimating Regional Heritability and 

Prediction of DNAm Level  

Estimation of RH and prediction of DNAm level at an individual DNAm site was 

conducted within a mixed linear model and REML framework using the publically 

available software: REACTA [78]. Below, “total genetic effects” refers to the total 

genetic effects within a region of interest, which except where specified, is +/- 1MB 

of a DNAm site. 

 

 

 

 



  
 
 

 34 
  

2.2.6.1 Estimating Regional Heritability 

Let the following variables be represented: 

𝑦 =  vector of DNAm levels for an individual DNAm site and all samples              

𝑋 =  incidence matrix 

𝐼 =   identity matrix 

𝛽 =  vector of independent effects 

𝑔 =  vector of total genetic effects, one for each sample 

𝜀 =  vector of error terms 

𝑉 =  variance-covariance of 𝑦 

𝐴 = matrix of pairwise genetic relationships for the samples 

𝜎!! =  variance of 𝑔 

𝜎!! =  variance of 𝜀 

 

The variance-covariance in the phenotype, DNAm level, is a function of the 

variance-covariance of the total genetic effects of the samples and the variance-

covariance of an error term (Equation 5) 

Equation 5 

𝐲 = 𝐗𝛃+ 𝐠+ 𝛆;𝐕 = 𝐀𝛔𝐠𝟐 + 𝐈𝛔𝛆𝟐 

The covariance-variance of the total genetic effects of the samples can be related to 

the pairwise genetic relationships between the samples (Equation 6). In our analyses 

the pairwise genetic relationships were calculated from SNP within a region of 

interest (often +/- 1MB of a DNAm site) following a previously defined equation 

[79].   

Equation 6                                       

𝑔~𝑀𝑉𝑁(0,𝐴𝜎!!) 
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Restricted maximum likelihood provides the most likely estimate of the variance in 

the genetic effects for specified phenotypic and genotypic data. When the genotypic 

data provided refers to pairwise genetic relationships calculated from SNP within a 

region of interest then the genetic variance relates to the genetic variance within the 

region of interest. Once the variance components have been estimated ℎ!,!!  can be 

calculated (Equation 7). 

Equation 7 

ℎ!,!! =
𝜎!!

𝜎!! + 𝜎!!
 

The null hypothesis that ℎ!,!!  was not significantly different from zero was tested 

with a Likelihood Ratio Test distributed as 50:50 mixture of Chi-squared 

distributions with 0 and 1 degrees of freedom [80]. If P < 0.05 we rejected the null 

hypothesis and concluded that the DNAm site was heritable. 

2.2.6.2 Prediction of DNAm Level 

Assume the following variables in addition to those specified above: 

 

𝑊 = matrix of the number of reference alleles for each SNP and sample 

𝑁 = total number of SNPs 

𝑢 = vector  of SNP effects 

𝜎!! = variance of SNP effects 

 

Then the mixed model and REML framework (Equation 5) can be utilized to obtain 

individual SNP effects within the genomic region of interest for a given fold of 

samples (Equation 8). In this case the total genetic effect of a sample within the fold 

is a function of the individual SNP effects and the alleles the sample carries at the 

SNPs.  

Equation 8 

𝑔 =𝑊𝑢;   𝜎!! = 𝑁𝜎!!;𝑢~𝑁 0, 𝐼𝜎!!  
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Once the effects of SNP within a fold of samples have been estimated they can be 

used to predict the phenotype of samples outwith the fold (Equation 9). The 

predicted phenotype is a product of the SNP effects estimated within the fold and the 

alleles at the SNPs carried by the sample outwith the fold.  

 

Equation 9 

𝑦 =𝑊𝑢 

2.3 Results 

2.3.1 Validation of the Accuracy of Regional 

Heritability Estimates 

We designed simulation experiments to determine if we could accurately detect 

heritability within our dataset that is a homogeneous population sample of up to 129 

unrelated individuals (where sample size depends on BR) of European Ancestry.  

All our models were based on using non-causal array SNPs to calculate the GRM for 

individuals within our dataset. Overall, we examined a total of four different general 

models, the difference between each being the localization of the causal variation and 

the genomic division used for calculation of the GRM. The four general models were 

1) genome-wide causal variations and a genome-wide GRM, 2) causal variations +/- 

1MB region surrounding a DNAm site  (ℎ!!) and a genome-wide GRM (ℎ!!), 3) 

causal variations +/- 1MB region surrounding a DNAm site and a GRM constructed 

from all SNPs outwith the 2MB region containing the causal variations (ℎ!,!"#$%!  

trans) and 4) causal variations +/- 1MB region surrounding a DNAm site  and GRM 

constructed from all non-causal SNPs within the 2MB causal region (ℎ!,!"#!  cis). We 

contrasted how accurately each approach could capture simulated heritability. 
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Following model 1) we simulated 100 phenotypes from 100 causal SNPs randomly 

distributed across the genome and specifying a heritability of 0.2 and 0.9. In the 

majority of cases, the heritability estimated from genome-wide non-causal SNPs did 

not match the simulated heritability of 0.2 or 0.9 (Figure 5). Most often, the 

estimated heritability was an extreme value of less than 0.05 or greater than 0.95 

(Figure 5) and none of the heritability estimates were significant at P < 0.05. 

Following models 2), 3) and 4) we used genotype information from 200 genomic 

regions of 2MB size to simulate the effect of cis acting SNPs on DNAm level. This 

ensured that we captured different LD structures between SNPs within a 2MB region 

and this was important because lower LD between causal and tagging SNP will result 

in an under estimation of the heritability. Each of the 200 simulations can be thought 

of as a replicate experiment and I refer to them subsequently as simulation 

experiments. Additionally, we sought to simulate multiple different biologically 

plausible models that represented how SNPs may affect DNAm level. Others [2] 

have conducted a GWAS with this dataset and they have shown that on average 20 

SNPs within +/- 1MB of a DNAm site associated with level of DNAm at a DNAm 

site. From the aforementioned analysis it is not clear to what extent the SNPs within 

the +/-1MB region that were associated with DNAm level were capturing signal 

from the same causal variant and it is possible that the total number of causal variants 

is less than 20. Therefore, for each of the simulation experiments we used five 

different numbers of causal variants (20, 10, 5, 3, 1). For each simulation experiment 

the 20 causal variants were selected randomly from the genotyped SNPs within the 

2MB region and the lower number of causal variants was always a random subset of 

the next largest number of causal variants. Each of the five sets of causal variants 

was used to generate a phenotype with a known heritability following the protocol 

outlined in 2.2.5. Due to the reported wide range of SNP effects acting in cis to affect 

DNAm level [2] we specified the simulation of phenotypes based on the following 

heritabilities: 0, 0.2, 0.4 and 0.9. The results indicated that on average, for all 

numbers of causal variants, causal genetic effects simulated from SNPs within the 

2MB region could be captured by non-causal SNPs within the 2MB region (Figure 
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6). In contrast, genome-wide or trans SNPs do not on average capture the heritability 

simulated within a 2MB region (Figure 6). Moreover, the standard errors of ℎ!,!"#!  are 

substantially smaller than of that from ℎ!,!"#$%! ,  ℎ!! (Figure 6). 

As discussed above, with our sample size only one of the four simulation models that 

we tested accurately captured the effect of the simulated causative variation. 

Therefore, we took this model forward for downstream analysis. 

 

 

 

Figure 5 Genome-wide SNP Effects were not Captured by Genome-wide 

Tagging SNPs 

The x-axis is binned in increments of 0.05. 
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Figure 6 Heritability Estimated from Simulation Experiments  

Phenotypes were simulated from different numbers of causal SNPs (20, 10, 5, 3 and 

1) located within a 2MB region for a range of heritabilities (0.0, 0.2, 0.4, and 0.9). 

Non-causal SNPs in cis, trans, or genome-wide were used following the method 

described in 2.2.6 to obtain ℎ!,!! . The results from the simulations using the two most 

extreme numbers of causal SNPs are shown and they indicated that in comparison to 

SNPs in cis, SNPs genome-wide or in trans to the causal variation did not accurately 

or precisely capture the genetic effects. This result is reflected by a discrepancy in 

the mean estimated (black dots within boxplot) and simulated heritability and 

extensive interquartile range when genome-wide and trans SNP are used. 
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2.3.2 Heritability of DNA Methylation Level Due to 

Local Genetic Variation 

Using the RH approach described in 2.2.6 we calculated ℎ!,!!  for +/- 1MB regions 

surrounding the DNAm sites that were autosomal and +/- 1MB of a SNP associated 

with at least one of the seven brain related disorders/diseases listed in 2.2.4. We 

found that at between 9% - 9.7% of the DNAm sites, DNAm level was significantly 

associated with the local genomic region (Table 7). Individual significant local 

genomic regions explained between 6.6% and 97.5% of the phenotypic variation at 

the associated DNAm site and average ℎ!,!!  was 0.27-0.34 (Figure 7, Table 7).  

 

 

Table 7 Regional Heritability Analysis for DNAm level  

 DNAm Sites 
Analyzed (n) 

DNAm Sites (n) 
with significant 

ℎ!,!!  

DNAm Sites (% ) 
with significant 

ℎ!,!!  

Average  ℎ!,!!  for 
Significant 

Associations 
CRBL 3049 294 9.6 0.34 
FCTX 3064 297 9.7 0.27 
PONS 3062 277 9.0 0.28 
TCTX 3065 292 9.5 0.28 
Total 12240 1160 9.5 0.29 
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Figure 7 Significant estimates of regional heritability  

The distribution of ℎ!,!!  for genomic regions significantly associated with DNAm 

level. 

 

 

2.3.3 Evidence for Genetic Correlation of DNA 

Methylation Level Across Brain Regions 

We have obtained ℎ!,!!  for 3049 DNAm sites common to each of the four BRs. 

However, testing the association of DNAm level measured in each of the four BRs 

with local genomic variation does not constitute four independent experiments. This 
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is because tissue was extracted from the four BRs from a common set of individuals. 

However, assuming four independent experiments one would expect by chance 0.019 

of the DNAm sites to have a significant ℎ!,!!  in all four BRs at P < 0.05 

(3049*0.05*0.05*0.05*0.05). In fact, we found that ℎ!,!!  is significant for 42 of the 

DNAm sites in all four BRs (Figure 8) which is 2210 times larger than expected if 

the measurement of DNAm level in the four BRs was independent. To determine the 

extent of the similarity of the genetic effects across the BRs we investigated the 

correlation of ℎ!,!!  across the DNAm sites for the four BRs, including estimates of 

ℎ!,!!  at all levels of significance (ie. we did not discard non-significant results). The 

overall correlation was between 0.25 and 0.45 depending on the two BRs being 

compared (Table 8). 

 

Figure 8 Heritable DNAm Sites in the Four Brain Regions 

The figure shows the number of DNAm sites with a significant ℎ!,!!  across tissues as 

well as the count of tissue specific associations. 
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Table 8 Correlations of RH Estimates across Brain Regions for the 3049 DNAm 

Sites Analysed 

 CRBL FCTX PONS TCTX 
CRBL     
FCTX 0.26    
PONS 0.19 0.34   
TCTX 0.23 0.45 0.37  

 

 

2.3.4 DNA Methylation Level can be Accurately 

Predicted From Local Genetic Variation 

DNAm level at 1826 autosomal DNAm sites that were heritable in the TCTX was 

predicted from the local SNPs using the statistical methodology outlined in 2.2.6.1. 

This analysis was conducted using the overlapping set of 314434 SNPs genotyped 

for a control dataset for Parkinson’s disease. The set of overlapping SNPs were used 

to facilitate additional analysis that was then conducted by others. Samples used to 

obtain the SNP effects were not used to predict the phenotype and we conducted five 

fold cross validation, with each fold containing 25 samples. Four of the five folds 

(n=100) were used to estimate the SNP effects and one fold (n=25) was then used to 

obtain a prediction of the phenotype. The correlation of the predicted and observed 

phenotype was computed. We used the residual phenotype on the M-value scale to 

estimate SNP effects; therefore, we compared the predicted phenotype to the residual 

phenotype on the M-value scale. The process was repeated so that a correlation of the 

predicted and observed phenotypes was obtained for each of the five folds. The mean 

accuracy for a DNAm site was calculated as the average of the five correlations, one 

from each fold. To facilitate across trait comparison the mean accuracy was 

normalized by dividing by the theoretical upper limit, which is the square root of 

ℎ!,!! . The normalized mean accuracies for the 1826 DNAm sites ranged between        
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-0.0012 and 1.115 with a mean of 0.5409 and approximated a normal distribution 

(Shapiro-Wilk normality test; P-value for the deviation from normality = 0.2402). 

Moreover, the accuracy scaled with the theoretical upper limit (Figure 9). We 

calculated the standard error of the sample variance for each DNAm site using the 

conventional variance among means formula [81] using the accuracy obtained within 

each of five folds. We found that the resulting mean accuracy below zero and greater 

than one, for one and three DNAm sites respectively fell within two standard errors 

of the boundary (0 or 1). Therefore, the mean accuracies below zero and greater than 

one were consistent with sampling variation.  Additionally, we found that the number 

of SNPs used to capture the regional effects did not explain a substantial proportion 

of the variance in the estimates of the normalized accuracy (r2 = 0.0580).  

 

 

Figure 9 Accuracy of Five Fold Cross Validations 

Mean accuracy of five fold cross validations as a function of ℎ!,!!  
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2.3.5 Regional Genetic Variation Affects both Fluid 

Intelligence and Local DNA Methylation 

Levels 

Rowe et al. (unpublished at the time of this research) used the RH approach to test 

the association of overlapping genomic regions with measurements of cognitive 

ability. Fluid intelligence (FI) is a measure of the ability to solve novel problems 

through reasoning and it can be thought of as on the spot thinking [82]. Rowe et al. 

(unpublished at the time of this research) found that the genomic region most 

significantly associated with FI spanned Chromosome 5 at 126711782-127335370 

(ℎ!,!! = 0.02, SE = 0.009). We refer to the dataset used for the aforementioned 

analysis as the FI dataset. The FI dataset contained genotypic information and a 

measurement of FI for 1804 samples. Collaborating with Rowe et al. we investigated 

if heritable variation in the level of DNAm or gene expression within Chromosome 5 

126711782-127335370 and measured in brain tissue could affect FI. 

To this end we followed a three-step process. Firstly, we identified a set of 86 SNPs 

common to both the FI dataset and brain dataset and located within Chromosome 5 

126711782-127335370. We used these SNPs to obtain ℎ!,!!  for  

DNAm sites and gene expression probes within Chromosome 5 126711782-

127335370 and measured in the CRBL, FCTX, PONS or TCTX. Subsequently, we 

identified the CPs with a significant ℎ!,!!  because it is only reasonable to predict a 

phenotype from the genotype if evidence suggests that the phenotype is indeed a 

function of the genotype. Secondly, following 2.2.6.2 in the brain dataset the 

individual effects of the 86 SNPs on the heritable CPs were determined. Thirdly, 

following we 2.2.6.2 used the estimated SNP effects to predict the CPs in the FI 

dataset using the FI genotypes.  

 

In the brain dataset, two DNAm sites, cg04431054 and cg15851800 and two mRNA 

probes, ILMN_1652306 and ILMN_1685140 were located within the region on 
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Chromosome 5 (Table 9). Cg04431054 and cg15851800 are located 381 basepairs 

apart, 277 basepairs upstream and 104 basepairs downstream of the 5` start of 

PRRC1 that spans chromosome 5 at basepair location 126,853,301-126,890,781 

(which is encoded on the forward strand). ILMN_1685140 is designed to target 

transcripts of PRRC1 and ILMN_1652306 transcripts of MEGF10, Chromosome 5: 

126,626,523-126,801,429.  

 

 

 

Table 9 Cellular Phenotypes Located in a Genomic Region Associated with 

Fluid Intelligence 

The cellular phenotype (DNAm site or mRNA probe) is listed by the Illumina 

identification and the location is given in the format of chromosome then basepair 

position in genome build 37. 

Cellular Phenotype Location 
cg04431054 5:126853024 
cg15851800 5:126853405 
ILMN_1685140 5:126886130 
ILMN_1652306 5:126789385 

 

 

 

 

The estimates, ℎ!,!!  were obtained for cg04431054, cg15851800, ILMN_1652306 

and ILMN_1685140 for measurements of DNAm level from each of the four BRs, 

except for ILMN_1652306, which did not pass the quality control procedure for the 

CRBL.  

 

We found that the region on chromosome 5:126711782-127335370 explained a 

significant (p < 0.0001) proportion of the heritability for cg04431054 measured in 
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each of the four BR (Table 10). The estimated heritability and standard error of 

cg04431054 measured in the CRBL, FCTX, PONS and TCTX was 0.463 se 0.124, 

0.237 se 0.104, 0.278 se 0.111 and 0.326 se 0.110 respectively (Table 10). However, 

phenotypic variation in cg15851800, ILMN_1652306 or ILMN_1685140 was not 

significantly associated with genetic variation at chromosome 5:126711782-

127335370 (Table 10).  

 

 

Table 10 Heritability of Cellular Phenotypes Located in a Genomic Region 

Associated with Fluid Intelligence 

The ℎ!,!! for each of the DNAm sites and gene expression probes analysed 

Cellular Phenotype Tissue ℎ!,!!  P 
cg04431054 CRBL 0.463 1.370*10-8 
cg15851800 CRBL 0.000 0.500 
cg04431054 FCTX 0.237 1.190*10-5 
cg15851800 FCTX 0.020 0.325 
cg04431054 PONS 0.278 1.270*10 -5 
cg15851800 PONS 0.003 0.477 
cg04431054 TCTX 0.326 1.020*10-8 
cg15851800 TCTX 0.082 0.063 
ILMN_1685140 CRBL 0.025 0.315 
ILMN_1652306 FCTX 0.000 0.500 
ILMN_1685140 FCTX 0.000 0.500 
ILMN_1652306 PONS 0.000 0.500 
ILMN_1685140 PONS 0.046 0.075 
ILMN_1652306 TCTX 0.000 0.500 
ILMN_1685140 TCTX 0.000 0.500 
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Subsequently, we estimated the individual SNP effects on cg04431054 in the four 

BRs and predicted the DNAm level in the FI dataset. The predicted DNAm level for 

the TCTX was significantly associated with FI and explained 0.5% of the variation in 

FI (Table 11). The regression coefficient was positive (0.295, se =0.004) indicating 

that an increase in DNAm level was associated with increase in FI. A significant 

association between predicted DNAm level in the other three BR and FI was not 

observed (Table 11) 

 

 

Table 11 Association of Predicted cg04431054 with Fluid Intelligence. 

Tissue indicates the region of brain in which DNAm at cg04431054 was measured. 

Tp is the significance of the association of predicted DNAm level with FI and r2 is 

the proportion of the variance in FI explained by predicted DNAm level.  

Tissue Tp r2 
CRBL 0.779 0 
FCTX 0.092 0 
PONS 0.861 0 
TCTX 0.004 0.005 

 

 

2.4 Discussion 

Using simulation experiments, we have shown that effects of causative variation 

within a 2MB region can be accurately and simultaneously captured using tagging 

variation within the same genomic region. This result was true for different 

heritabilities simulated from different numbers of causative SNPs. The most likely 

explanation for this result is that the tagging variation was in sufficient LD with the 

causative variation so that the effects of the causative variation could be detected. In 
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contrast, in our simulation experiments we found that variation in trans with the 

causative variation, or genome-wide variation could not robustly capture causative 

effects within a 2MB region. The trans SNPs were outwith the 2MB causative region 

and thus it is likely that they were not in LD with the causative variation, which 

results in the inability of the trans variation to capture the causative SNP effects. 

Although genome-wide variation spans the causative 2MB region, the majority of the 

genome-wide variation was outwith the causative 2MB region. In this case it is likely 

that SNPs extraneous to the causative region that were not in LD with the causative 

variation added noise to the estimate of the effects accurately captured within the 

causative region. A similar phenomenon is likely to be occurring when we 

unsuccessfully attempted to capture the effects of 100 causative SNP distributed 

across the genome with genome-wide variation. In this last case, the 100 causative 

SNPs were used to simulate a heritability of either 0.2 or 0.9. A simulated heritability 

of 0.9 allowed for some of the (simulated) causative SNPs to have an effect within 

the range exhibited by discovered trans acting effects on DNAm level (r2 of 0.19-

0.78) [2]. Since we could not detect simulated causative genome-wide effects that 

were similar to (non-simulated) true causative genome-wide effects detected by 

others [2], it was unlikely that we could detect true causative genome-wide effects in 

our dataset. Therefore, in our analyses we fitted only a regional variance component, 

which is unlike some other studies using RH analyses [64,65]. These other studies 

[64,65] have fitted both the effects of regional and genome-wide variation using two 

variance components. Therefore, our estimates for the effect of local genetic 

variation on DNAm level were relative to a null model of no effect of local genetic 

variation on DNAm. In studies fitting both a regional and genome-wide variance 

component [64,65] the regional genetic effects on a trait can be compared against a 

null model of the genome-wide effects. The implication for our study is that we did 

not have an estimate of the background genetic effects on DNAm level to which we 

could compare the estimate of local genetic effects.  

We have shown that genetic variation in risk regions for brain related 

disorders/diseases was significantly associated with the DNAm level of a nearby 
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DNAm site in non-diseased brain tissue. Additionally, we have produced estimates 

of the heritability that simultaneously captured the effects of genetic variation +/-

1MB of a DNAm site on DNAm level at the DNAm site. Our results indicated that it 

is possible that genetic variation may lead to disease by first influencing variation in 

DNAm level in a tissue related to disease.  

During the undertaking of this research a paper was published [83] which utilized the 

brain dataset and the methodological framework outlined in 2.2.6 to obtain ℎ!,!!  for 

individual DNAm sites. While this study [83] was similar to our own and fit one 

variance component, it differed in that ℎ!,!!  was obtained for a 50KB window centred 

on a DNAm site. Additionally, DNAm sites genome-wide were analysed rather than 

those selected for location within a risk region for a brain related disorder. Moreover, 

we cannot directly compare the number of significant associations ourselves and the 

authors [83] obtained because we both used different significance thresholds. 

However, generally, both our study and that of Quon et al.[83] were in accordance, 

which highlights the utility of the RH approach to estimate the effects of local 

genetic variation on DNAm level. Despite the difficulties in comparing the exact 

results across our study and that from Quon et al. [83] (as described in the paragraph 

above) several similar trends emerged. Both Quon et al. [83] and ourselves found 

that the percentage of heritable DNAm sites was similar for all four BRs. Quon et al. 

[83] found that 3.0%, 3.1%, 2.9%, and 3.9% of DNAm sites were heritable for the 

CRBL, FCTX, PONS and TCTX respectively while we found that 9.6%, 9.7%, 9.0% 

and 9.5% of DNAm sites were heritable for the CRBL, FCTX, PONS and TCTX 

respectively (Table 7). Additionally, the modal ℎ!,!!  provided by Quon et al. [83] for 

all DNAm sites deemed significantly heritable was ~0.2, which is similar to our 

finding (Figure 7). Quon et al. [83] also examined the correlation between ℎ!,!!  across 

the four BRs. The results the authors [83] obtained were in accordance with our own. 

The TCTX and FCTX were the most highly correlated with respect to ℎ!,!!  and ℎ!,!!  

from the CRBL were least correlated with the other three BRs. There are several 

explanations for this result. Firstly, the power to detect genetic effects could be 
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different for the different BRs. Power can be affected by the sample size and the 

sample size is different for each of the BRs. The standard error of the RH estimate 

will be greater for a smaller sample size and smaller for a larger sample size. In turn 

the magnitude of the correlation between the genetic effects across two BRs could be 

related to the standard error of the RH estimates. Indeed, we found that the two BRs 

with the greatest number of samples had the highest correlation of genetic effects. 

Additionally, the two BRs with the lowest number of samples had the lowest 

correlation of genetic effects. In fact, generally the correlation of genetic effects 

decreased as the number of samples within the two BRs being compared decreased. 

Secondly, the result could be explained by an increase in shared regulatory control of 

the TCTX and FCTX compared to that between the CRBL and the other three BRs. 

For example, genes not expressed in a tissue can be associated with densely packed 

chromatin and extensive DNAm at the promoter region making them inaccessible to 

the transcription machinery [84]. In this case the genes are tightly regulated so that 

they are not expressed and no association between DNAm level at the gene and local 

genetic variation will be observed. However, if the gene is expressed the chromatin 

structure is open to facilitate transcription and in this case local genetic variation has 

an opportunity to affect DNAm level. Given that the majority of SNPs would be 

shared across BRs, an increase in shared open chromatin regions between two BRs 

would lead to an increase in the potential for genetic variation to affect DNAm level 

in both BRs. It is conceivable that the TCTX and FCTX share more open chromatin 

regions than the CRBL does with the other three BRs.   

Finally, we have shown that with 100 unrelated individuals the effects of local SNPs 

on DNAm level can be estimated and used to accurately predict the DNAm level of 

the DNAm site in a separate population sample. Although we conducted our cross 

validations using DNAm level as the phenotype we expect the result to hold for other 

phenotypes that have similar genetic architecture, such as gene expression level. An 

implication of this result is that DNAm level, and possibly other CPs, can be imputed 

into currently available GWAS datasets which contain genotype data and data related 

to a disease. In this situation, following imputation, DNAm level (predicted from 
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SNP effects on DNAm level in non-diseased individuals) can be tested for 

association with the disease. A significant association obtained could suggest a 

causal role for the DNAm site in the aetiology of the disease. This is because the 

phenotypic variation in DNAm level at the DNAm site was present before the onset 

of disease. We have used this ideology and shown that phenotypic variation in 

DNAm level at cg04431054 measured in the TCTX was associated with FI [1]. As 

cg04431054 is located 277 basepairs upstream of PRRC1, it is also possible that 

gene expression of PRRC1 in TCTX could affect FI.  

2.5 Contributions 
Konrad Rawlik provided a script to conduct the quality control of the mRNA data 

and provided the information in 2.2.1.3 outlining the procedure.  

Suzanne Rowe and colleagues [1] provided the information that the region on 

chromosome 5 was associated with FI and the FI dataset. 

Gibbs et al. [2], the Division of Aging Biology, the Division of Geriatrics and 

Clinical Gerontology (NIA) were responsible for collection and initial research on 

the brain dataset. The brain dataset was downloaded from the NCBI Data 

Repositories dbGaP (Accession Number: phs000249.v1.p1) and GEO (GSE15745). 

Both my supervisors provided comments on drafts of this chapter. 
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Chapter 3 Investigation of Trans 

Regulation of DNA Methylation 

Level 

3.1 Introduction 

Genetic variation is associated with DNAm level at some DNAm sites across the 

genome [2,54-62,83]. GWASs, have tested the effect of SNPs with DNAm level at 

individual DNAm sites. These studies have revealed a substantial number of 

associations between SNP and a local DNAm site [2,54,55,61].   

In practice, for hypothesis free GWASs, long-range genetic effects on DNAm level 

are particularly challenging to detect. The increased number of association analyses 

needed to test SNPs genome-wide compared to test only SNPs local to a DNAm site 

requires an increased significance threshold. Assuming a given spectrum of SNP 

effects, an increased significance threshold will lead to a reduction in the proportion 

of significant associations. Therefore, in comparison to a cis analysis, a trans 

analysis will suffer from lower power to discover SNP associations.  

Despite the lower power of a trans analysis compared to a cis analysis, GWASs have 

detected some long range effects on DNAm level [2,54,55] (Table 4). In addition, a 

GWAS showed an enrichment of observed trans acting effects on DNAm level 

beyond chance expectation. This result was visible as inflation above the 1:1 line in a 

uniform qqplot of genome-wide SNP effects on DNAm level at individual DNAm 

sites across the genome [55]. Taken together, GWASs provide evidence that some 

SNPs associate with DNAm level in trans.  

There are numerous mechanisms by which genetic variation could affect DNAm 

level in trans. An example is that genetic variation affects the quality of local gene 

expression that in turn directly influences the DNAm level at distal DNAm sites. 



  
 
 

 54 
  

This has been observed for mutations within genes that play a major role in 

facilitating DNA methylation, such as DNMTs [85,86] and the enzyme, 

Methylenetetrahydrofolate reductase (MTHFR) [87], which is involved with 

synthesizing methyl donors (Table 12). Genetic variation within a gene that may 

interact with DNMTs has also been associated with changes in global DNAm levels. 

Rs10876043 within DIP2B was associated with the first principal component of the 

autosomal DNAm levels [55]. DIP2B contains a DMAP1 domain, DMAP1 has been 

found to form a complex with DMNT1 and the chromatin-modifying enzyme: 

HDAC (reviewed in [88]). Therefore, it seems plausible that variation in DIP2B 

could affect the enzymatic activity of the DMNT1 complex and global DNAm level. 

Additionally, genetic variation could affect DNAm level in trans in a subtler manner 

than by decreasing the enzymatic function of genes that interact with or are 

themselves responsible for ensuring faithful conservation of DNAm. In this case, 

given the complex interaction between gene expression and epigenetic modifications, 

there are in theory multiple scenarios whereby genetic variation perturbing one 

variable in cis could lead to distal changes in DNAm level. Knowledge of genetic 

variation acting in trans to influence DNAm level is a step towards unravelling 1) 

long-range interactions, 2) the interplay between genetic variation, epigenetic 

modifications and gene expression, and 3) regulatory networks. 

In this study, we tested genetic variation across the genome with DNAm level 

measured in the CRBL. Following on from our previous study, Chapter 2, we used 

the RH approach [64] to test the association of 2MB genomic regions across the 

genome with DNAm level at individual DNAm sites. We conducted this analysis for 

a subset of DNAm sites located in a locus associated with a brain related 

disorder/disease (see 2.2.4). In the majority of cases, when compared to a GWAS, 

the RH approach is thought to be a more powerful approach for detecting genetic 

effects (see 2.1). The increased power of the RH approach is thought to come from 

two main sources. Firstly, the RH approach can capture the combined effect of 

variants with small effect size within a genomic region. Secondly, in comparison to a 
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GWAS approach using the RH approach reduces the number of statistical tests. This 

leads to a reduction of the stringency of the multiple testing threshold.  

 

 

Table 12 SNP with Distal and Widespread Effects on DNAm Level 

The table indicates SNP(s) within genes that play a major role in facilitating DNA 

methylation. The SNP(s) within these genes are associated with distal and 

widespread effects on DNAm level. 

Gene  Position of SNP Frequency of 
SNP 

Mechanism Effect Ref. 

DNMT3B 
 

Multiple reported 
in C-terminal 
position 

Rare,  
ICF type 1 and 
usually die 
before 
adulthood 

Decreased 
Enzymatic 
activity of 
DNMT3B 

Centromeric and 
pericentromeric 
hypomethylation 
with classical 
satellite repeats  

[85] 

DNMT3L  Arginine to 
glutamine 
substitution in 
exon 10 within C-
terminal position  

Rare Affects 
interaction with 
DNMT3A 

Telomeric and sub 
telomeric 
hypomethylation 

[86] 

MTHFR C to T 
substitution at 
position 677 

Common Decreased 
enzymatic 
activity of 
MTHFR which 
depends on 
folate for 
synthesizing 
methyl donors  

Hypomethylation 
when folate levels 
are low 

[87] 
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3.2 Materials and Methods 

3.2.1 Defining 2MB Genomic Regions Across the 

Genome for Association with DNAm Level 

We defined 2MB regions across the genome to test for the association with 3049 

DNAm sites that were measured in the CRBL and located within a locus associated 

with a brain related disorder/disease (see 2.2.4). To segment the genome, the length 

of each chromosome was downloaded from the UCSC Genome Browser Database 

[89]. Due to the substantial number of statistical tests to be performed and in order to 

minimize our multiple testing correction threshold, we excluded genomic regions 

where there may have been reduced power to detect an association between the 

genomic region and DNAm level. To this end genomic regions with minimal genetic 

variants were excluded, these regions were those that covered the centromeres or 

contained a low number of SNPs.  Centromeric regions were omitted because these 

regions contain satellite repeats that have not been well characterized in genome 

assemblies; therefore, these regions were unlikely to be represented by many SNPs 

on the array (reviewed in [90]). To define the 2MB regions, each chromosome was 

divided into 2MB regions from the start of the chromosome until the centromere and 

from the centromere until the end of the chromosome. A total of 56 2MB genomic 

regions were removed because they contained 0 SNPs. An additional count of 2, 2, 

and 1 genomic regions were removed because they contained 2, 3 and 6 SNPs 

respectively. This is because given the average extent of LD in the human genome 

[91] it was likely that the sparse SNPs in these regions would insufficiently tag 

casual polymorphism in the 2MB region. This resulted in a total of 1310 genomic 

regions to be tested for the association with DNAm level using the RH method 

outlined in 2.2.6.1. The number of SNPs within the 1310 genomic regions ranged 

from 11 to 1272 with a mean and median of 394 and 380 respectively. 
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3.2.2 Fine Mapping Methylation QTL within a 2MB 

Genomic Region 

The RH approach and a single SNP association approach were used to fine map QTL 

within a 2MB region. To implement the RH approach for fine mapping, the 2MB 

genomic region was divided into smaller window sizes defined by a number of 

SNPs. We used two different window sizes, both 20 and 50 SNPs. The window sizes 

of 20 SNPs and 50SNPs were used for all windows within the 2MB region except the 

final windows, which we allowed to contain greater than the specified number of 

SNPs if necessary. Consecutive windows overlapped by one SNP so that all casual 

variation was located within a window. The RH analysis was conducted as described 

in 2.2.6.1.The single SNP association analysis was carried out in plink v1.06 [66] for 

all SNPs within the 2MB region and on the residuals of the rank transformed (Beta-

value) phenotype.  

3.2.3 Calculation of Lambda for each Genomic 

Region 

The genomic inflation factor is a measure of the average extent to which test 

statistics from a GWAS deviate from the expected null distribution of no association 

between SNPs and a trait (reviewed in [92]). As illustrated by Bell et al. [55] in the 

context of multiple phenotypes, genomic inflation can be used as a measure of the 

enrichment of true positive associations. Similar to the aforementioned concept, for 

the association of each 2MB genomic region with 3049 DNAm sites we measured 

the deviation of the P-values from the distribution expected under the hypothesis of 

no association, the uniform distribution. To calculate lambda, we transformed the P-

values to the –log10 scale and then calculated the expected quantiles from the 

uniform distribution. Subsequently, for each genomic region we applied a linear 

model to the 850 highest (-log10) P-values and calculated the regression slope. We 

used the 850 highest P-values because under the null hypothesis the test statistic is 
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distributed as a 50:50 mixture of chi-squared distributions with zero and one degrees 

of freedom [93] , which results in a P value of 0.5 when the LRT test statistic is zero. 

This truncation of observed P-values at 0.5 means they are not uniformly distributed 

between 0 and 1 as expected under the null hypothesis. Therefore, given a number of 

points from which to calculate the expected quantiles of the uniform distribution (n = 

3049), a subset of the data points, the most non-significant P-values, will be more 

significant than the expectation assuming a range from 0-1. We observed that the 

maximum number of P-values at the truncation point (P = 0.5) for a genomic region 

was 2169. Therefore, by choosing to use only the 850 (3049 – 2169 = 880 > 850) 

most significant P-values we do not let the inflation of P-values at the truncation 

point influence the calculation of lambda.  

3.2.4 Permutation Analysis to Set an Empirical 

Significance Threshold  

To determine an empirical distribution of P-values and lambda values under the null 

hypothesis of no association between regional genetic variation and DNAm level, we 

conducted 100 permutations of the phenotype data with respect to the genotype data. 

To parallel our original analyses, we conserved the phenotypic correlations among 

the observed data and the effects of the explanatory variables on the DNAm sites. To 

do this we permuted the DNAm level at all DNAm sites and the measured 

explanatory variables together for a sample. After each permutation each genomic 

region was tested for association with each of the 3049 DNAm sites using the RH 

method as outlined in 2.2.6.1. Subsequently, the empirical threshold for the 

association of a DNAm site with a genomic region was determined by selecting the 

most significant P-value from each permutation. The 95th percentile of these P-values 

was used to specify the significance threshold. In a similar manner, to determine the 

empirical threshold for lambda we used the 95th percentile of the distribution of the 

highest lambda from each permutation.  
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3.2.5 Investigating Gene Function  

We queried the University of Santa Cruz Table Bowser [89] with defined genome 

coordinates to obtain a list of genes and gene descriptives (Table 13) for the genome 

coordinates.  

 

 

Table 13 Information Queried From the UCSC Table Browser 

The table indicates the fields that were queried using the UCSC Table Browser and 

explains how the fields can be interpreted.  

Field  Explanation 
Gene Symbol Gene Name 
Broad Phenotype Phenotype (Disease) associated with genetic variation within the Gene 
Disease Class Category of Broad Phenotype 
Narrow Phenotype Molecular phenotype associated with genetic variation within the Gene 
Publication  Name of report for the association of genetic variation within the Gene and 

Broad or Narrow Phenotype 
Gene Description  Gene name in full 
Kegg Entrez Kegg Pathway ID and Entrez ID for the Gene 
Event ID Reactome event ID 
Event Description Reactome event explanation 

 

 

 

3.3 Results 

3.3.1 Trans Association of Genomic Regions with 

DNAm Level 

We found no significant association between DNAm level and a genomic region at a 

Bonferroni threshold adjusted for the total number of tests conducted (n = 3994190, 
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P < 1.15*10-8) or at our empirical threshold determined by 100 permutation tests (P < 

1.50*10-8). Despite the lack of statistical significance we explored if there was 

biological evidence to support an association between DNAm level and a genomic 

region in trans. To do this we selected the association most likely not to result from a 

chance correlation, our most significant result, and we investigated if the result 

seemed biologically plausible. The most significant association (P = 5.39*10-6) was 

found between chr8:110100000-112099999 and the DNAm site, cg10002103, on 

chr12:46766730. Cg10002103 is located in the transcription start site of solute 

carrier family 38 member 2 (SLC38A2) which is a gene involved with amino acid 

transport. The genomic region at chr8:110100000-112099999 contained several 

genes (Figure 10).We localized the signal to a 213,665 basepair region at 10460488-

110674152 that contained three genes (Figure 11). We used the UCSC database to 

investigate the function of the three genes (3.2.5). However, we did not find an 

obvious biological role for the interaction of any of the genes with DNAm level at 

SLC38A2 (Table 14). 
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Figure 10 Chromosome 8:110100000-112099999 

The region most significantly associated with DNAm level at a DNAm site 

(cg10002103) in trans using the RH approach. The first track (SNPS) depicts the 

location of SNPs present within our dataset and the second track depicts known 

transcripts (UCSC database). Additional tracks depict the location of common 

variation within the region, SNPs associated with clinical traits, enhancers, the 

histone modification H3K27Ac and transcription factor interactions. There are 

several genes within the region but no obvious connection between regulation of the 

genes and DNAm level at cg10002103.  
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Figure 11 Fine Mapping Association Signal within Chromosome 8:110100000-

112099999 

The association of genetic variation within chr8:110100000-112099999 with 

cg10002103 at chr12:46766730. The x-axis indicates the location of the genetic 

variation tested and the y-axis the significance of the association. Three analyses are 

shown in different windows, the GWAS fitted the effect of SNPs individually whereas 

RH 20SNPs and RH 50SNPs simultaneously fitted the effects of 20 and 50 SNPs 

respectively using the RH method. 
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Table 14 Genes that Localize with Genetic Variation within Chr8110100000-

112099999 Most Strongly Associated with Cg10002103 

Genes that localize to the region of chromosome 8:110100000-112099999 that had 

the strongest signal for association with cg10002103. The gene information was 

retrieved using the UCSC table browser. There is no obvious biological connection 

between DNAm level at cg10002103 and the three genes based on their description. 

Gene  Transcribed Region Description Broad Phenotype 
PKHD1L1 110374705:110543500 Polycystic kidney and hepatic disease 

1 (autosomal recessive)-like 1 
Tobacco Use 
Disorder 

EBAG9 110551928:110577391 Estrogen receptor binding site 
associated, antigen, 9 

Early-stage breast 
cancers 

SYBU 110586404:110661132 Syntabulin (syntaxin-interacting) 
(SYBU), transcript variant 15 

Cholesterol, LDL, 
Fibrinogen, 

 

 

 

3.3.2 Inflation of Expected P-values for Association 

of DNAm Sites with a Genomic Region 

Subsequently, we tested for enrichment of associations between DNAm level at 

DNAm sites genome-wide and an individual 2MB genomic region by calculating the 

variable, lambda (see 3.2.3). We hypothesized that a genomic region with a high 

lambda could be regulating DNAm level in trans at a number of DNAm sites across 

the genome. The distribution of observed lambda ranged from 0.69 to 1.5 with a 

mean of 0.99 (Figure 12). However, an empirically determined threshold of P < 0.05 

set by 100 permutation tests revealed that the observed lambda statistics were not 

significantly different from those obtained by chance association between DNAm 

level and a genomic region (Figure 12). 
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Figure 12 The Observed and Permuted Distribution of Lambda  

The “Observed” window shows the observed distribution (n=1310) of lambda 

values. The highest lambda value from each of the 100 permutations is plotted in the 

window labelled “Permuted”. The dashed line shows the 0.05 threshold at Lambda 

= 1.63 as determined from the 100 permutations. None of the observed values for 

Lambda meet the empirical threshold specified by the permutation analysis. 

 

 

 

3.4 Discussion 
We did not find evidence to support the hypothesis that DNAm level is regulated by 

distal genetic variation. This hypothesis was tested using two different significance 

thresholds, firstly by applying a Bonferroni correction and secondly, by an empirical 

threshold determined by permutation. We used the Bonferroni method to adjust for 

the number of DNAm sites and genomic regions tested; however, we anticipated that 

this threshold would not account for phenotypic correlation among the DNAm sites. 

Phenotypic correlation among the DNAm sites violates the assumption of the 
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Bonferroni method that the statistical tests are independent. A Bonferroni threshold 

that assumes more tests were independent than the reality would be conservative. 

DNAm sites could be phenotypically correlated if they were regulated in a similar 

manner and DNAm sites up to 1KB exhibit similar profiles of DNAm level [27]. 

Given that the analysed DNAm sites were chosen based on location within defined 

genomic regions, risk regions for a brain related disorder/disease (see 2.2.4), it 

seemed plausible that some of the DNAm sites could be phenotypically correlated. 

Therefore, we permutated the labels of the phenotypic data maintaining the 

correlation structure among the DNAm sites. The significance threshold set from the 

permutation analyses accounted for the phenotypic correlation among the DNAm 

sites. The fact that the empirical threshold was only marginally more liberal than the 

Bonferroni threshold (P < 1.50*10-8 and P < 1.15*10-8 respectively) suggested that 

the phenotypic correlation among the DNAm sites was minimal and that in the 

majority of cases the statistical tests were independent.  

Our result of no association between DNAm level and genetic variants in trans 

contrasts the significant trans acting associations found by previous authors’ [2] 

using the same dataset and a GWAS approach. A direct comparison between our 

study and that of Gibbs et al. [2] based on the probability of test statistics is 

challenging given the use of  a different statistical methodology and significance 

threshold. Furthermore, we note that we have used only a small subset (~11%) of the 

total number of DNAm sites analysed by Gibbs et al. [2]. The DNAm sites we chose 

to analyse were enriched for location near genetic variation that confers risk to a 

brain related diosorder/disease and as we showed in 2.3.2 for significant cis ℎ!,!! . If 

indeed the subset of DNAm sites we analyzed were regulated by local genetic 

variation then it is not wholly unsurprising that distal effects were small and went 

undetected. This is because the heritability cannot exceed one. Therefore, 

partitioning the heritability into cis and trans acting genetic effects necessitates that 

as the magnitude of either one of the components increases the other must decrease. 
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We did not find any evidence that indicated that a genomic region regulated DNAm 

level at a number of DNAm sites across the genome. Lambda calculated from our 

observed data was distributed around that expected. Initially, this was an encouraging 

result as it suggested that a proportion of the genomic regions exhibited enrichment 

for association with DNAm level. In conjunction, this conformed to our biological 

hypothesis that only a minority and not all genomic regions could act as trans 

regulatory hubs for DNAm level. However, permutation experiments revealed that 

the observed lambda likely resulted from spurious association between DNAm level 

and the genetic variation within a genomic region.  

 

3.5 Contributions 

Gibbs et al. [2], the Division of Aging Biology, the Division of Geriatrics and 

Clinical Gerontology (NIA) were responsible for collection and initial research on 

the brain dataset. The brain dataset was downloaded from the NCBI Data 

Repositories dbGaP (Accession Number: phs000249.v1.p1) and GEO (GSE15745). 

Both my supervisors provided comments on drafts of this chapter. 
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Chapter 4 The Heritability and Patterns of 

DNA Methylation in Normal 

Human Colorectum 

4.1 Introduction 

Studies have shown that DNAm level is linked to gene expression level [30,31]. At 

promoter regions, within a population of individuals average DNAm level and 

average gene expression level of an associated gene were negatively correlated 

across genes [30]. Additionally, DNAm level has been found to associate with sex 

and age [31,59,94] and several environmental factors including early life 

socioeconomic status and stress [31].  Furthermore, results from GWASs and twin 

studies indicate that the genotype can affect level of DNAm [2,54-58] (Table 3, 

Table 4) and that cis acting genetic variation can explain a substantial proportion of 

the phenotypic variation for some DNAm sites [2,54,55].  

 

Recently, studies have indicated that the extent to which genetic variation affects 

variation in DNAm level may differ within tissue depending on the functional 

genomic context of the DNAm sites. In peripheral blood lymphocytes ℎ!"#!  of 

DNAm level for DNAm sites located in high and low CpG density regions of the 

genome was assessed [58]. This study revealed that estimates in regions of high CpG 

density were on average 0.127 or 0.158, whereas in regions of low CpG density 

estimates were greater, on average 0.235 or 0.223, depending on which probe type 

(Infinium I or Infinium II) was used to assay DNAm level. In human brain tissue, RH 

analysis revealed an increased proportion of heritable DNAm sites in regions of the 

genome with low CpG density compared to high CpG density [83]. In addition, a 

decreased proportion of heritable DNAm sites local to genes upregulated in a tissue 

specific manner compared to genes expressed ubiquitously across tissues was 
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observed [83]. While the aforementioned studies have begun to explore the extent of 

heritability for DNAm sites located in different genomic contexts they have been 

conducted in a minority of tissues and have considered a limited selection of 

functional subgroups for DNAm sites. 

To build on the work of others who have investigated the control of DNAm in 

different genomic contexts, we assayed 196081 DNAm sites with the HM450K in 

healthy colorectum tissue collected from 132 unrelated Colombian subjects who 

attended Colonoscopy examination and with diagnosis of hyperplasic polyp, 

adenoma or carcinoma. We grouped the DNAm sites based on location in relation to 

CpG density, expression status and functional regions of genes. We refer to these 

groups collectively as contextual groups. Within each contextual group we assessed 

the profile of DNAm level calculated across all the 132 samples at individual DNAm 

sites. We estimated the combined effect of local genetic variation +/ 1MB of a 

DNAm site on DNAm level at the DNAm site using the RH approach (see 2.2.6.1). 

We also studied the phenotypic profiles and  ℎ!,!!  for DNAm level of genes expressed 

in epithelial cells obtained from laser capture microdissection (LCM) and whole 

colon biopsy (WCB). In addition we contrasted the distribution of ℎ!,!!  for DNAm 

sites within and outwith known susceptibility loci for Colorectal Cancer (CRC, 

OMIM #114500).  

4.2 Methods 

4.2.1 Ethical Approval 

The study had ethical approval from the Ethics Board of The National Cancer 

Institute of Colombia and from The ethics committee of the General University 

Hospital of Elche. All participants gave informed written consent. 
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4.2.2 Phenotype QC 

Within each colorectal tissue sample the two intensity values that correspond to the 

number of methylated and unmethylated copies of a DNAm were corrected for any 

variation that arose from non-specific binding. This background correction was 

applied by subtracting the median fluorescence measured by the control probes from 

the intensity values treating intensities measured in the two colour channels 

separately and using the Bioconductor package, ‘lumi’ [95]. Subsequently, samples 

for which the assaying process failed were identified as those with a low average 

intensity value (below 2500) measured in either or both of the colour channels and 

were removed. We examined the percentage of probes that were not detected above 

background levels of variation (P = 0.01) for each sample and found that no samples 

exceeded our threshold of 5% for exclusion. Samples where the recorded sex of the 

individual did not match the sex estimated from the levels of DNAm measured on 

the X chromosome were removed. DNAm probes were removed if they contained a 

SNP within the target sequence or at the site of single base extension or if they were 

cross-reactive [96]. Additionally, probes were removed if they were not detected 

above background levels of variation for greater than 5% of samples (P<0.01). Out of 

144 samples and 486428 autosomal probes this procedure resulted in 132 samples 

and 196081 autosomal DNAm probes left for downstream analysis. Colour bias was 

taken into account by comparing for all samples the within sample distribution of 

total intensities measured by the type I probes in the green channel to those measured 

in the red channel. A quantile normalization adjustment was applied within the 

Bioconductor package, ‘lumi’ [95], so that the intensity values measured in the two 

colour channels followed a similar distribution across and within individuals. We 

also applied a correction to account for technical variation due to the probe design 

type using the BMIQ algorithm [97].  

 

We conducted analyses and reported levels of DNAm using the M-value scale. This 

scale reduces the dependence between the variance and mean of site-specific DNAm 

level that is observed on the Beta-value scale [9]. M-values are a logit transformation 
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of the Beta-values and an M-value of 0 equates to a 50% level of DNAm whereas a 

positive and a negative M-value relates to a greater and less than 50% DNAm level 

respectively. 

4.2.3 Genotype QC 

We followed a standard quality control procedure (reviewed in [68]) using Plink [66] 

and genotype data obtained from the Illumina HumanOmniExpress Exome Chip. 

Samples for which greater than 5% of SNPs did not genotype were excluded.  Based 

on the application of three successive filters, SNPs were removed if 1) they failed to 

type in greater than 5% of samples or 2) if they were out of Hardy Weinberg 

Equilibrium (P<0.0001) or 3) if they had a MAF less than 0.01. Additionally, the 

HBD for each sample was calculated from SNPs along the X chromosome and the 

estimate was checked against the recorded sex to identify samples to remove because 

of a discrepancy between the recorded and observed identity. Out of an initial 464 

samples and 944534 SNPs, 451 samples and 682945 remained for downstream 

analysis.  

4.2.4 Testing the Effect of Explanatory Variables on 

DNAm Level 

The explanatory variables sex and age were included in all subsequent analyses 

because they have previously been found to associate with level of DNAm 

[31,59,94]. The 132 samples with quality genotype and phenotype information 

consisted of 65 females and 67 males. The samples ranged in age from 30 to 84 

years, with a mean and median age of 60 and 61 respectively.  

 

We calculated the principal components from the post quality control (autosomal) 

DNAm levels for the 132 samples with genotype and phenotype information. We 

now refer to the principal components of the DNAm levels as eigenprobes and they 

represent a measure of global covariation in DNAm level among the samples. We 

then tested 5 explanatory variables: biopsy location (9 levels), diagnosis (5 levels), 
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city of recruitment (6 levels), genotyping plate (16 levels) and position on the 

genotyping plate (12 levels), to determine if they could explain a significant 

proportion of the variance in the first 20 eigenprobes. In the majority of cases these 

explanatory variables were not found to significantly correlate with global patterns of 

DNAm level as measured by the eigenprobes (Table 15). This result and the fact that 

fitting these explanatory variables would lead to a substantial loss of degrees of 

freedom in our study meant that we chose not to include them in our downstream 

analysis.  
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Table 15 Association of Potential Explanatory Variables with Global DNAm 

Level 

The P-values from an ANOVA testing the variance explained by the additional 

variables on global DNAm level measured by the principal components of the DNAm 

level. Location: biological location from where the sample biopsy was taken, 

diagnosis: stage of malignancy, city: city of recruitment, plate: genotyping chip and 

position: position on the genotyping chip. Italic values indicate those tests that were 

significant at the unadjusted level (P < 0.05) and bold values indicate tests 

significant at the level adjusted for the number of tests conducted for a explanatory 

variable (P < 0.0025). 
  Explanatory Variables 
  Location Diagnosis City Plate Position 

Ph
en

ot
yp

e 
Pr

in
ci

pa
l C

om
po

ne
nt

s 

C1 0.163 0.978 0.451 0.882 0.218 
C2 0.038 0.044 0.277 0.346 0.030 
C3 0.388 0.891 0.568 0.688 0.552 
C4 0.678 0.429 0.231 0.607 <0.001 
C5 0.049 0.215 0.837 0.863 0.053 
C6 <0.001 <0.001 0.100 0.125 0.006 
C7 0.012 0.748 0.483 0.324 0.113 
C8 0.047 0.002 0.810 0.463 0.621 
C9 0.829 0.712 0.014 0.676 0.190 
C10 0.031 0.006 0.706 <0.001 0.857 
C11 0.048 0.067 0.899 0.072 0.731 
C12 0.301 0.764 0.534 0.272 0.268 
C13 0.791 0.815 0.782 0.120 0.377 
C14 0.760 0.475 0.561 0.900 0.043 
C15 0.407 0.191 0.168 0.157 0.173 
C16 0.758 0.668 0.316 0.739 0.692 
C17 0.359 0.940 0.286 0.401 0.011 
C18 0.181 0.985 0.783 0.236 0.507 
C19 0.234 0.299 0.804 0.759 0.817 
C20 0.064 0.447 0.435 0.007 0.238 
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We tested if population admixture, quantified by the genotypic principal 

components, had a significant relationship with the variation in global DNAm levels 

as measured by the eigenprobes. The genotypic principal components for 132 

samples and 343838 autosomal SNPs pruned for linkage disequilibrium (one of a 

pair of adjacent SNPs are removed if r2 > 0.5 in a window of 50 SNPs, the window 

being shifted 5bp along and the process repeated; see plink --indep-pairwise) were 

calculated.  We assessed if the proportion of variance in the eigenprobes explained 

by the genotypic PC was significant by comparison of each of three different full 

models (Equation 10) to one reduced model (Equation 11) for each of the first twenty 

eigenprobes. The three full models (Equation 10) differed only in the number of 

genotypic principal components included either 2,10 or 20 (n). In both the full and 

reduced model  is a vector representing the sample loading. 

Equation 10 

 

Equation 11 

 

Our analysis revealed that neither of the three formulations of the genotypic PC 

explained a significant proportion of the variation in global DNAm levels (Table 16). 

Additionally, we found that if we included the first two principal components the 

estimates of RH obtained were highly similar to those obtained when the two 

genotype principal components were not included (r = 0.965, slope of the regression 

line = 0.992 for y = RH estimate without PC included and x = RH estimate with PC 

included). Therefore, we did not include the genomic PC in our analyses.  
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Table 16 Association of Genotype Principal Components with Variation in 

Global DNAm Level 

Three combinations of genotypic principal components were tested for association 

with each of the first 20 DNAm principal components (eigenprobes). For instance, 

PC1:2 indicates that the first 2 genotype principal components were tested for 

association with each of the first 20 DNAm principal components, denoted by C1 

through C20. The value in each cell is the P-value from the significance test. Values 

in italic indicate those which were significant at the unadjusted threshold (P < 0.05). 

Values in bold indicate a test was significant at a threshold adjusted for the number 

of tests conducted a genotype principal component combination (P < 0.0025). 
  Genotype Principal Components 
  PC1:2 PC1:10 PC1:20 

Ph
en

ot
yp

e 
Pr

in
ci

pa
l C

om
po

ne
nt

s 

C1 0.185 0.202 0.595 
C2 0.601 0.993 0.940 
C3 0.918 0.605 0.756 
C4 0.014 0.003 0.054 
C5 0.701 0.006 0.001 
C6 0.141 0.071 0.247 
C7 0.485 0.273 0.711 
C8 0.036 0.063 0.064 
C9 0.515 0.878 0.988 
C10 0.864 0.994 0.998 
C11 0.267 0.728 0.929 
C12 0.679 0.965 0.978 
C13 0.645 0.509 0.833 
C14 0.937 0.013 0.023 
C15 0.282 0.003 0.001 
C16 0.278 0.004 0.045 
C17 0.010 <0.001 <0.001 
C18 0.709 0.024 0.045 
C19 0.976 0.211 0.033 
C20 0.157 0.071 0.108 
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4.2.5 Identification of Genes Expressed in Colon 

Tissue 

Genes expressed in general colon tissue and specifically in colon epithelial cells were 

identified based on the analysis of normal tissue from biopsies of 12 people 

undergoing colonoscopic examination at General University Hospital of Elche 

(Spain). In order to separate epithelial specific expression, tissue samples were sliced 

with alternate slices assigned to the whole tissue and epithelial conditions. In the 

whole tissue condition combined slices for each individual were assayed for gene 

expression. In the epithelial condition we pooled epithelial cells, isolated using Laser 

Capture Microdisection (MMI CellCutPlus), from each slice for each individual and 

mRNA from the slices was amplified prior to being assayed for gene expression. The 

gene expression assay on the 24 samples was performed using the HumanHT-12 

Expression BeadChip. Quality control indicated failure of four samples (one in the 

whole tissue and three in the epithelial condition) which were removed from 

subsequent analysis. We then identified for each condition mRNA probes which 

were detected above background (P<0.01) in more than 80% of samples, i.e., 9 or 

more of 11 samples and 8 or more of 9 samples for the whole tissue and epithelial 

conditions respectively. This yielded 9223 probes in the whole tissue and 4071 

probes in the epithelial conditions.  Probes were mapped to genes using the Illumina 

provided manifest file for the HumanHT-12 Expression BeadChip platform, yielding 

a list of 8114 genes expressed in general colon tissue and 3754 genes expressed in 

epithelium. As expected a majority of genes identified in the epithelial condition 

were also detected in the whole tissue which contains both the epithelial and other 

cells, with only 10 specific to the epithelial condition.  

4.2.6 Location of a DNAm site with Respect to a 

Gene 

A DNAm site was considered to be located within the transcription start site (TSS) of 

a gene expressed in colon tissue if in the HM450K manifest file the site was recorded 
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as being located within 200bp upstream of the TSS (TSS200) or, within 200-1500bp 

upstream of the TSS (TSS1500) of a gene in our list of expressed genes.  All other 

DNAm sites located within the TSS200 or TSS1500 region of a gene were 

considered as being located within the TSS of a gene not expressed in colon tissue. 

Intragenic DNAm sites were those documented in the HM450K manifest file as 

located within the 5’UTR, 1st exon, gene body or 3’UTR of a gene. Intergenic 

DNAm sites were those not documented as residing within a gene. We applied 

successive filters in the aforementioned order so that each DNAm site fit into one of 

the four mutually exclusive categories.    

4.2.7 Significance Testing of Proportions 

To test if two proportions were significantly different from one another we used the 

prop.test function in R [75]. In brief, this function assumes that the two sample sizes 

are sufficiently large so that the distribution of the first proportion minus the second 

proportion is Gaussian. We applied a two-tailed test because we did not have a prior 

expectation of the relative magnitudes of the two proportions being tested.  

4.3 Results 

4.3.1 Average DNAm Level and Relationship to 

CpG Density, Genic Location and Gene 

Expression  

In the manifest file for the HM450K array each DNAm site is annotated as being 

located either within a CpG island (island), within 2kb upstream or downstream of a 

island (north shore and south shore respectively), within 2-4kb upstream or 

downstream of an island  (north shelf and south shelf respectively) or none of the 

aforementioned categories which we term sea. An island was defined as being 

composed of one or more adjacent sections of the genome each 500bp in length with 

a C and G density greater than 50% and an observed to expected ratio of CpG 
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dinucleotides greater than 0.60 [98]. We grouped our 196081 DNAm sites based on 

aforementioned HM450K array annotation (Table 17) 

 

 

Table 17 DNAm Sites Grouped by Physical Distance from Islands 

The number of DNAm sites within each of six contextual groups defined by distance 

from CpG islands. As described in the body of the thesis, north and south shores 

encompassed up to 2KB upstream and downstream of islands respectively. Regions 

2-4KB upstream and downstream of islands were defined respectively as north and 

south shelves [98]. Sea is any DNAm site not annotated as being located within an 

island, shelf or shore in the HM450K manifest file.  
Genomic Context with 
Relation to CpG Density 

Island North 
Shore 

South 
Shore 

North 
Shelf 

South 
Shelf 

Sea Total 

Number of DNAm Sites 74272 27405 21158 8323 7504 57419 196081 
 

 

 

Using DNAm level adjusted for gender and age we found a substantial difference in 

the distribution of average DNAm level across contextual groups of varying CpG 

density (Figure 13). The average DNAm level of DNAm sites in islands tended to be 

much lower than that of DNAm sites located in the sea (mean and median M-value 

was -2.67 and -3.51, and 2.01 and 1.57 for islands and sea, respectively). 

Additionally, our results showed that the distribution of average DNAm level for 

DNAm sites in the north and south shores were similar to one another and more 

similar to the distribution of average DNAm level for DNAm sites in islands rather 

than DNAm sites in the sea (Figure 13). Conversely, the distribution of average 

DNAm level for DNAm sites located in the north and south shelves were similar to 

one another and were more similar to the distribution observed for DNAm sites 

located within the sea rather than within islands (Figure 13). Additionally, we found 
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that within shores the mean DNAm level was a function of the distance from the 

edge of the island. Mean DNAm level increased with distance from the edge of the 

island in a non-linear fashion (Figure 14). However, this relationship is not observed 

for DNAm sites located within shelves (Figure 14).  

 

 

Figure 13 Distribution of Mean DNAm level with Respect to CpG Density 

Methylation level was measured on the M-value scale where a DNAm level of 0 can 

be interpreted as a 50% DNAm level. A DNAm level < 0 and a DNAm level greater 

than > 0 can be interpreted as lower and greater than 50% DNAm respectively.  The 

majority of DNAm sites in islands exhibited a low average DNAm level, whereas the 

majority of DNAm sites in low density CG regions  (sea) exhibited a high average 

DNAm level.  
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Figure 14 Mean DNAm level as a Function of Distance from the Edge of the 

Island  

The 4000 BP region upstream (north) and downstream (south) of islands was divided 

into bins of 100 BP. The average of the mean DNAm levels for DNAm sites residing 

within each bin is shown as a white circle enclosed by a line indicating +/- 2 

standard errors of the mean. A shore is up to 2000 BP from an island and a shelf is 

between 2000 and 4000BP from an island. 

 

 

 

 

Unless otherwise specified, the following analyses were based on the two most 

extreme cases of CpG density: high CpG density regions (islands) and low CpG 

density regions (sea). We tested if the DNAm level of DNAm sites located in the 

TSS of genes expressed in WCB was different to those located in the TSS of genes 

expressed in cells from the colon epithelium collected using LCM. The genes that 

were expressed in the LCM and the WCB were excluded from the WCB group for 

this analysis. We found that DNAm sites in the TSS of genes expressed in WCB had 

an M-value that was on average 0.16 greater than DNAm sites located in the TSS of 

genes expressed in LCM (mean WCB = -3.30, mean LCM = -3.46, T-test P= 

2.337*10-7).  
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Subsequently, we grouped DNAm sites located within the sea or an island into four 

mutually exclusive sets based on location a) in a transcription start site (TSS) of a 

gene expressed in WCB b) in a TSS of a gene that is not expressed in WCB c) in 

intragenic DNA, where we do not distinguish between genes expressed or not 

expressed in colon because the methylation level of intragenic DNAm sites has not 

been correlated with the expression of the surrounding gene or d) intergenic DNA 

(Table 18).  

 

 

Table 18 Count of DNAm Sites within Each of Eight Contextual Groups 
Genomic Context Island Sea 
TSS Expressed 13838 2074 
TSS Not Expressed 19051 7603 
Intragenic 31355 30108 
Intergenic 10028 17634 
Total 74272 57419 

 

 

 

Additionally, we choose to use the full set of genes expressed and not expressed in 

WCB rather than exclusively in colonic epithelial cells because DNAm level was 

assayed from WCB. We refer to each of the eight contextual groups individually as: 

island TSS expressed (within an island and a TSS of a gene expressed in colon), 

island TSS not expressed (within an island and in a TSS of a gene not expressed in 

colon), island intragenic (within an island and intragenic), island intergenic (within 

an island and intergenic), sea TSS expressed (within the sea and the TSS of a gene 

expressed in colon), sea TSS not expressed (within the sea and the TSS of a gene not 

expressed in colon), sea intragenic (within the sea and intragenic) and sea intergenic 

(within the sea and intergenic). Within each of the eight contextual groups we 

investigated the distribution of mean DNAm level.   
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We found a significant difference in the distribution of mean DNAm level between 

island TSS expressed and island TSS not expressed (Kolmogorov-Smirnov test; 

P<2.16*10-16) and between sea TSS expressed and sea TSS not expressed 

(Kolmogorov-Smirnov test; P<2.16*10-16) (Figure 15). We compared the mean of 

the sea TSS expressed to that of the sea TSS not expressed and we compared the 

mean of the island TSS expressed to that of island TSS not expressed. These two 

comparisons were both statistically significant (T-test, P<2.16*10-16, P<2.16*10-16) 

and in both cases being located in the TSS of genes not expressed in colon led to an 

overall greater mean DNAm level. Additionally, we found that the average of the 

distribution of mean DNAm level for DNAm sites located in intragenic and 

intergenic regions was greater than for DNAm sites located in a TSS of a gene 

(Figure 16).  

 

 

Figure 15 Distribution of Mean DNAm level for Eight Contextual Groups 

There are clear differences in distribution of mean DNAm level between DNAm sites 

located in different genomic contexts, in particular between DNAm sites located in 

the context of high and low CpG density.   
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Figure 16 Moments of the Distributions of Mean DNAm level for Eight 

Contextual Groups  

Mean DNAm level is on average higher at DNAm sites located in the TSS of a gene 

not expressed in WCB than at DNAm sites in the TSS of a gene expressed in WCB. 

Additionally, DNAm sites located intragenically or intergenically had a higher 

Average mean DNAm level than DNAm sites located within the TSS of a gene 

(expressed/not expressed) in WCB. 

 

 

 

 

To assess if the phenotypic variation was adequate for downstream RH analysis, we 

investigated the extent to which DNAm level varied across the 132 samples for the 

full set of 196081 DNAm sites that passed our quality control procedure (Figure 17). 

The coefficient of variation (CV) ranged between 0.032 and 14889. Subsequently, 

we conducted exploratory enrichment analysis for the CV both within contextual 

groups relating to CpG density and genic location (Figure 18, Figure 19). We 
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specified 5 different thresholds for the minimum CV (1, 1.5, 2, 2.5 and 3) to 

determine how sensitive our results were to the magnitude of the chosen threshold. 

We found that for each minimum specified CV there was enrichment for DNAm 

sites located in the sea compared to DNAm sites located in an island (Figure 18). 

Specifically and for example, at a minimum CV threshold of one, the proportion of 

DNAm sites located in the sea was 3.19 fold that of the proportion of DNAm sites 

located in an island and the difference in the two proportions was statistically 

significant (P<2.16*10-16). Additionally, at each threshold within the island location 

we found enrichment for DNAm sites located in intragenic and intergenic regions 

when compared to DNAm sites located in the TSS of a gene (Figure 19). This result 

was not found within the sea location (Figure 19). Within the island contextual 

groups and at a minimum CV of one there was a 1.60 fold enrichment of intergenic 

over intragenic DNAm sites (P<2.16*10-16), a 2.63 fold enrichment of intragenic to 

TSS Not Expressed DNAm sites (P<2.16*10-16) and a 1.18 fold enrichment of TSS 

Not Expressed to TSS Expressed DNAm sites (P = 1.50*10-15). Our analysis 

revealed that DNAm sites located in the sea were more variable than DNAm sites 

located in islands; moreover, within islands the DNAm sites within intergenic and 

intragenic regions were more variable than DNAm sites located in TSS regions and 

this result is not observed for DNAm sites located in the sea.  
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Figure 17 Distribution of the Coefficient of Variation 

The coefficient of variation was calculated for all DNAm sites used in analysis 

(n=196081). The x-axis is binned in 0.02 increments and is limited to a maximum 

value of 3 for aesthetic purposes. Two percent of DNAm sites have a coefficient of 

variation greater than 3. 

 

 

 

Figure 18 Enrichment Analysis for Variability of DNAm level in Islands and 

Sea 

Five different thresholds were specified to determine how sensitive the results were 

to the magnitude of the threshold. The y-axis is the proportion of DNAm sites with a 

coefficient of variation greater or equal to the specified minimum coefficient of 

variation within each genomic context (island and sea). 
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Figure 19 Enrichment Analysis for Variability of DNAm level with Respect to 

Eight Genomic Contexts  

The proportion (y-axis) of DNAm sites within each genic location and island or sea 

with a coefficient of variation greater than the threshold defined on the x-axis 

 

 

 

 

4.3.2 Heritabilities of DNAm Level at Individual 

DNAm Sites 

We found that at 21447 DNAm sites, 10.94% of the 196081 tested, SNPs within 

1MB explained a significant proportion of the variation in DNAm level (nominal P < 

0.05). The percentage of heritable DNAm sites exceeded that expected from a false 

positive rate of 0.05 under the null hypothesis that DNAm level is not associated 

with local genetic variation. For significantly heritable loci, the proportion of the 

phenotypic variance in DNAm level under local genetic control ranged between 0.04 

and 0.99 with a mean of 0.27 and median of 0.23 (Figure 20).  
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Figure 20 Estimated Regional Heritability for Heritable DNAm Sites.  

The distribution of local RH estimates for the DNAm sites with a significant RH (P 

<0.05). Each bar represents a range of 0.05. 

 

 

 

 

We found that the number of SNPs in the local genomic region (Figure 21) explained 

a minute but significant proportion of the variance in RH estimates for the DNAm 

sites with a significant RH (Univariate Linear Regression: R2 = 0.004, slope = 

2.17*10-5, P < 2.2*10-16). For instance, considering the range of the number of SNPs 

within a region (1 to 3037), at the first decile (304 SNPs) and ninth decile (2733 

SNPs) a respective 6.60*10-3 and 5.94*10-2 RH for the DNAm sites found to be 

significantly associated with local genetic variation is expected.   We did not find 

that the variance of DNAm level at each DNAm site, as measured by the CV, was 

related to the variance in RH estimates (Univariate Linear Regression: P =0.068).  
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Figure 21 SNPs in the Local Genomic Region. 

Distribution of the count of SNPs +/- 1MB surrounding the DNAm sites analysed.  

 

 

 

 

4.3.3 Heritability of DNAm Level at genes expressed 

in Whole Colorectal Biopsies and Colorectal 

Epithelial 

We investigated the heritability of DNAm level at genes expressed in LCM and in 

WCB excluding those expressed in LCM (Figure 22). The difference between the 

average of the distribution of mean DNAm level for the significantly heritable 

DNAm sites within the two groups was not significant (mean LCM = 0.251, mean 

WCB = 0.255, T-test P =0.638). Additionally, the proportion of significantly 

heritable DNAm sites in the LCM and WCB group was 0.0768 and 0.0770 

respectively and was not significantly different from one another (P = 0.986).  
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Figure 22 Heritabilities of DNAm Level at Genes Expressed in Whole Colorectal 

Biopsies and Colon Epithelial Cells  

DNAm sites were grouped based on the significance of the RH estimate and their 

location with respect to a gene expressed in whole colorectal biopsy or a gene 

expressed in epithelial cells by laser capture microdissection. DNAm were 

significantly heritable if P<0.05. Genes expressed in both the epithelial and whole 

colorectal biopsy were removed from the whole colorectal biopsy group for this 

analysis. 

 

 

 

 

4.3.4 Heritability of DNAm Level in Whole 

Colorectal Biopsies by Genomic Context 

The proportion of sites with a significant heritability was higher in the sea than in 

islands (P < 2.20*10-16, Table 19).  This result was driven by the difference between 

DNAm sites located within the TSS of a gene or in intragenic regions. The 

proportion of heritable sites is 1.55 times higher for DNAm located in the TSS of the 
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sea than in the TSS of an island (P < 2.2*10-16); additionally, the proportion of 

heritable DNAm sites is 1.16 times higher for DNAm sites located in the sea 

intragenic than the island intragenic contextual group (P = 7.27*10-10). There was no 

significant difference in the proportion of heritable DNAm sites located in intergenic 

regions when comparing between the sea and island contextual groups (P=0.068).  

 

The proportion of heritable DNAm sites was significantly higher for sea intergenic 

than sea intragenic (P = 3.19*10-10) and was significantly higher for sea TSS not 

expressed than sea intragenic (P = 1.11*10-3). There was no significant difference in 

the proportion of heritable DNAm sites for the remaining comparisons made within 

the sea contextual groups. The proportion of heritable DNAm sites was significantly 

different for all comparisons made within the island contextual groups.  The P-value 

was  < 2.2*10-16 for all comparisons, except the Island TSS Expressed and Island 

TSS Not Expressed comparison where the P-value was = 4.37*10-7 , and the island 

TSS expressed and island intragenic comparison where the P-value was  4.87*10-4. 

Within the island contextual groups the proportion of heritable DNAm sites was as 

follows: intergenic > intragenic > TSS Not expressed > TSS Expressed. 
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Table 19 Proportion of Heritable DNAm Sites and the Corresponding Mean RH 

Estimate 

Overall there were a higher proportion of heritable DNAm sites (P < 0.05) located 

in the sea compared to islands. Additionally, there were a higher proportion of 

heritable DNAm sites located in intergenic regions compared to regions containing a 

TSS and intragenic regions. The average RH estimates were similar across the 

contextual groups. 
 Island Sea 
 Proportion 

Heritable 
Mean ℎ!,!!  Proportion 

Heritable 
Mean ℎ!,!!  

TSS Expressed 0.070 0.250 0.121 0.263 
TSS Not Expressed 0.085 0.257 0.123 0.271 
Intragenic 0.095 0.260 0.110 0.261 
Intergenic 0.137 0.281 0.129 0.277 
Total 0.093 0.262 0.118 0.268 

 

 

 

The proportion of heritable DNAm sites for each contextual group followed a similar 

pattern to the mean local genetic variance for each contextual group (Figure 23). 

Across each four sea and island contextual groups the proportion of heritable DNAm 

sites was correlated with the mean local genetic variance (Pearson’s correlation: r = 

0.802 and r = 0.999 for sea and island respectively).  
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Figure 23 Mean Genetic Variance and the Proportion of Heritable DNAm Sites 

for Eight Contextual Groups.  

The x-axis represents the proportion of heritable DNAm sites (P < 0.05) within each 

contextual group and the average genetic variance for each contextual group. The 

proportion of heritable DNAm sites was correlated with the mean local genetic 

variance. 

 

 

 

 

The average ℎ!,!!  for significantly heritable DNAm sites located within each of the 

genomic contexts was similar (Table 19). DNAm sites significantly associated with 

local genomic variation and located within an island were on average 0.6% less 

heritable than DNAm sites located in the sea.  

4.3.5 Heritability of DNAm Level in Whole 

Colorectal Biopsies with Respect to Loci 

Associated with Colorectal Cancer 

An extensive number of genetic variants have been found to associate with complex 

disease including CRC [99]. However, in the majority of cases how the identified 

genetic risk variants act to increase disease susceptibility is unknown. Genetic 
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variation could increase risk to disease by mediating changes in DNAm level in 

healthy tissue. If an association between a susceptibility SNP and DNAm level in 

healthy tissue is obtained, one possibility is that the variation in DNAm level 

interacts with additional variables, such as environmental factors, to subsequently 

lead to disease. Therefore, we sought to determine if variation in DNAm level in 

healthy colon tissue was associated with genetic variation that incurs susceptibility to 

CRC. To this end a total of 83 unique autosomal SNPs identified as associating with 

CRC were downloaded from the NHGRI GWAS catalogue [99]. We defined a region 

of +/- 1MB surrounding each SNP associated with CRC as a risk region. A total of 

10469 DNAm sites were located within a defined risk region and due to our 

definition of a risk region the calculation of ℎ!,!!  included the effects at the position 

of the risk SNP. Indeed, we found that 10.6% of DNAm sites located within risk 

regions were heritable (P < 0.05) with an average ℎ!,!!  of 0.262. Outwith a risk 

region, 11.0% of DNAm sites were significantly heritable (P < 0.05) with an average 

ℎ!,!!  of 0.267. The proportion of DNAm sites that were significantly heritable within 

and outwith a risk region was not significantly different (P=0.27) and the average 

heritability of DNAm sites located within and outwith risk regions was similar. In 

conjunction, a recent study [100] found that DNAm levels of two DNAm sites 

measured in healthy colorectal tissue, cg15193198 and cg24112000, were associated 

(FDR < 0.05) with the local CRC risk variant rs4925386 located on chromosome 20 

at 60921044 basepairs. In our study, both cg15193198 and cg24112000 were 

significantly heritable with respective ℎ!,!!  estimates of 0.34 (P = 2.05*10-4) and 0.57 

(P = 4.14*10-12) when including rs4925386 in the calculation of the genetic 

relationships and 0.34 (P = 2.64*10-4) and 0.57 (P = 6.74*10-12) when excluding 

rs4925386. We determined that rs4925386 explained 77% and 53% of the estimate, 

ℎ!,!! , for cg15193198 and cg24112000 respectively and ℎ!,!!  was still significant for 

cg24112000 when fitting rs4925386 as a fixed effect (Table 20).  
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Table 20 Effects of rs4925386 and Local Genetic Variation on cg15193198 and 

cg24112000 

The estimate for the full model (ℎ!,!!  Full) and reduced model (ℎ!,!!  Reduced) were 

calculated from all SNPs  +/-1MB of the DNAm site excluding rs4925386. The full 

model included fitting the genotypes at rs4925386 as a fixed effect. The effect of 

rs4925386 on DNAm level is reported as the addition of a single copy of the minor 

allele, Adenine.  

 ℎ!,!!  Full ℎ!,!!  Full  
P-value 

ℎ!,!!  
Reduced 

ℎ!,!!  Reduced  
P-value 

SNP 
Effect 

SNP 
Effect  
SE 

cg15193198 0.075 0.211 0.333 2.64 *10-4 -0.423 0.083 
cg24112000 0.269 3.64*10-3 0.569 6.74*10-12 -0.560 0.088 
 

 

 

4.4 Discussion  

DNAm sites located in different genomic contexts with respect to CpG density and 

genic location exhibited unique phenotypic profiles in the human colorectum. We 

have shown that average DNAm level is related to CpG density. This result has been 

observed for DNAm level measured at promoters in peripheral blood mononuclear 

cells and fibroblasts [31,101] and concurred with that found by a recent study 

profiling DNAm level in 17 somatic tissues [102]. In addition, we found that 

specifically within shores that there is a shift in average DNAm level from 

predominantly unmethylated to methylated as distance increases from the edge of the 

CpG dense islands. This change in DNAm level is suggestive of a transitional zone at 

the edge of islands captured by the definition of shore. Overall, the lower and less 

variable average DNAm level at individual DNAm sites located in islands compared 

to sea is consistent with the traditional view that CpG dense regions of the genome 

persist due to low methylation and a reduced rate of spontaneous deamination and 

transition that is typically higher for methylated CpG dinucleotides [103]. Moreover, 
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within islands we observed enrichment for DNAm sites located in TSS with low 

coefficient of variation (and conversely enrichment for intergenic and intragenic 

DNAm sites with high coefficient of variation). The low coefficient of variation and 

low level of DNAm for DNAm sites located in CpG dense regions of the genome 

and in TSS supports the idea that these DNAm sites target housekeeping genes 

[101,104]. Housekeeping genes are essential for normal cell maintenance and thus 

expression of these genes may be tightly regulated and this could be reflected by the 

low level and low variation of DNAm level at individual DNAm sites in these 

regions. Additionally, DNAm sites located in the TSS of a gene not expressed in 

WCB were on average more methylated than DNAm sites located in the TSS of a 

gene that was expressed in WCB. This result is suggestive of an overall inverse 

correlation between mean gene expression and mean DNAm level. Finally, our 

examination of the relationship of DNAm level with genic location revealed that 

DNAm level was lower in the TSS than within intergenic or intragenic regions. This 

result concurred with what has been observed in H1 embyronic cells where DNAm 

level has been shown to decrease between the promoter and 5’UTR region before 

increasing through the gene body and into the 3’UTR [26]. The level of DNAm has 

also been shown to be greater in intragenic and intergenic regions compared to 

promoter regions in human brain frontal cortex grey matter [105].  

 

We have assessed, on a genome-wide scale, the local heritability of DNAm level at 

individual DNAm sites in normal WCB using unrelated Colombian individuals. A 

total of 10.94% of DNAm sites in WCB were significantly affected by local genetic 

variation. The mean ℎ!,!!  for the heritable sites was 0.27 but the estimates varied 

substantially with some DNAm sites exhibiting a low heritability and some DNAm 

sites exhibiting heritability close to one. The implication is that DNAm level can be 

inherited through the germ-line. These results were consistent with previous 

estimates of the number of DNAm sites across the genome affected by local genetic 

variation and with the wide range of heritability estimates reported for DNAm [83]. 

Indeed, we found that that there were an increased proportion of significantly 
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heritable DNAm sites located in the sea compared to islands. Overall, our finding 

that heritable DNAm sites were enriched for location outside of islands is in 

accordance with what is observed in human brain tissue [83].We hypothesize that the 

substantial difference in the mean estimates of ℎ!"#!  for DNAm sites located in 

islands and in sea obtained in peripheral blood lymphocytes [58] and outlined in the 

background section of this paper may have resulted from a) the inclusion of all 

DNAm sites rather than just those with a significant heritability estimate b) the use of 

the pedigree to estimate the contribution of the whole genome to phenotypic variance 

and/or c) bias due to un-modelled sources of environmental variation.  Additionally, 

the highest proportions of significantly heritable DNAm sites were located in 

intergenic regions as opposed to within the TSS of a gene or intragenic regions.  The 

estimated heritability is not related to the phenotypic variability of the DNAm site as 

measured by the CV and is not solely a function of the number of the SNPs within 

the genomic region. However, the proportion of heritable DNAm sites was correlated 

with the average estimated genetic variance. Therefore, the lower proportion of 

heritable DNAm sites observed for a contextual group(s) such as islands compared to 

other contextual group(s) such as the sea can in part be explained by a reduction in 

the measured genetic variance. Lower genetic variation could result in lower power 

to capture the true causative loci or it could be indicative of lower causal variation 

due to selective constraints.  

 

DNAm level was slightly higher at the TSS of genes expressed in WCB and not 

LCM compared to those expressed in LCM. This result is consistent with the WCB 

samples being enriched for epithelial cells and a negative correlation between gene 

expression and DNAm level. However, the overall RH of DNAm level at the TSS of 

genes expressed in WCB and not LCM compared to those expressed in LCM was 

similar. One possible explanation for these results is that in healthy colonic tissue the 

genes expressed in the colon epithelium are regulated by DNAm level in a similar 

fashion to the genes expressed in the WCB. 
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Finally, we have shown that genetic variants in genomic risk regions for CRC can 

affect DNAm level in healthy colon tissue and that overall DNAm sites within a risk 

region have similar overall RH to DNAm sites outwith an identified risk region. In 

conjunction, we have replicated the previous finding that the CRC risk SNP 

rs4925386 effects DNAm level at cg15193198 and cg24112000.  

We showed that when rs4925386 is excluded the regional genetic variation 

sufficiently captured the causal variation in DNAm level tagged by rs4925386. 

Moreover, rs4925386 alone did not capture all the genetic variance contributing to 

variation of cg24112000 and cg15193198 that is captured by the RH approach. This 

final result highlights the advantage of the RH approach to capture the genetic effects 

on the phenotype, in this case DNAm level.  

 

There are several shortcomings of our study. Firstly, we did not attempt to quantify 

the effects of genetic polymorphism outwith  +/- 1MB of a  DNAm site on variation 

in DNAm level. These long range effects were likely to exist, and studies of larger 

sample size that can overcome the burden of multiple testing are necessary to detect 

their effects.  Secondly, our study has utilized healthy colon tissue from multiple 

locations within the colon and from Colombian subjects attending colonoscopy 

examination and with diagnosis of hyperplasic polyp, adenoma or carcinoma. We 

have shown that diagnosis and location of biopsy had effects on genome wide 

profiles of DNAm level (principal components of DNAm levels); however, the 

reduced sample size would not allow us to estimate heritability for each of the 

diagnoses and biopsy location accurately.  

 

We have identified a subset of DNAm sites genome-wide and measured in healthy 

colon tissue that are influenced by the local genetic variation. Therefore, we have 

contributed to understanding healthy genetically influenced phenotypic variation in 

DNAm level in colon tissue. A number of the DNAm sites which we report as 

heritable are located within CRC risk loci and thus have the potential to mediate 
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genetic susceptibility to CRC. We expect further studies will focus on exploring a 

role for these DNAm sites in disease aetiology.  

4.5 Contributions 

Gustavo Hernandez-Sanchez, Maria Carolina Sanabria and Martha Serrano-Lopez  

collected the Colombian cohort and prepared the biological samples. Konrad Rawlik 

performed the analysis of the gene expression data and wrote 4.2.5 which describes 

that procedure. Jose Luis Soto, Adela Castillejo, Cristina Alenda and Eva 

Hernandez-Illan collected the samples from Spain and performed the LCM and 

sample preparation. James Prendergast, in addition to the aforementioned 

collaborators and my supervisors, read a draft of a manuscript pertaining to the work 

in this chapter.   
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Chapter 5 Across Tissue Comparison of 

Genetic Effects on DNA 

Methylation Level  

5.1 Introduction 

Studies utilizing DNAm level as a quantitative trait have investigated the 

contribution of factors effecting variation in DNAm level. Research assessing the 

genetic basis of inter-individual variation in DNAm level has revealed that 1) the 

genomic heritability and the family-based estimates of heritability are tissue and site-

specific and 2) a substantial proportion of the variation in DNAm level can be 

explained by local genetic factors [2,54-58,83]. In addition, intra-individual variation 

in DNAm level between tissues has been observed. In fact, intra-individual variation 

between tissues appears to be greater that inter-individual variation within a tissue 

and samples clearly cluster by tissue rather than by individual [102,106,107]. 

Moreover, human embryonic stem cells (ES) and ES cell derivatives, primary cells, 

long-term cultured cells and diseased cells can be identified from principal 

component analysis of genome-wide DNAm levels [29]. In conjunction, the 

similarity of DNAm level at DNAm sites across the genome is related to the function 

of the tissues being compared. For example, tissues taken from the same organ 

system typically have more similar DNAm levels across the genome than tissues 

taken from different organ systems [108]. In addition to identifying broad differences 

in the phenotypic profile of tissues, multiple DNAm sites in a region of the genome 

typically less than 500bp in length [29,107,108] or containing up to 50 DNAm 

probes [102] that exhibit a DNAm profile distinctive to a type of tissue (tissue-

specific differentially methylated regions, TS-DMRs) have been identified. 

Moreover, individual DNAm sites that vary across tissues have been identified. For 

instance, one study that comprised 17 different tissues taken from 4 samples found 
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that 17.1% of DNAm sites were either constitutively hypermethylated (Beta-value > 

0.9) or hypomethylated (Beta-value < 0.1) across all tissues and samples and that the 

remaining 82.9% of DNAm sites exhibited variability [102]. A second study 

identified that 15.4% of DNAm sites had a difference in DNAm level of at least 0.3 

on the Beta-value scale in at least one of 18 tissues [108]. The difficulties in 

obtaining a tissue sample from many vital human tissues have meant that studies of 

DNAm level tend to be small and to consider a minority of tissues. However, taken 

together, existing research shows that DNAm level at some DNAm sites varies 

across tissues.  

A locus with a different genetic effect across tissues can be thought of as exhibiting a 

genetic interaction with the environment where the tissue represents the environment. 

Genetic by environment (tissue) interactions across tissues have not been well 

characterized for DNAm level. Recently a study [108] found evidence for difference 

in allele-specific DNAm (ASM) across fat, gastric, psoas, small bowel and spleen 

tissue. This study [108] was limited to three samples for each tissue but the results 

suggested that genetic effects may be tissue specific.  

In this study we contrasted local genetic effects on DNAm level between healthy 

colon tissue and tissue taken from four regions of the human brain using two 

population samples of unrelated individuals. One population sample, defined as the 

colon dataset, consisted of 132 Colombian individuals assayed for healthy colon 

tissue (see Chapter 4). The second population sample, the brain dataset, consisted of 

148 individuals of CEU ancestry assayed for DNAm in the cerebellum (CRBL), 

frontal cortex (FCTX), pons (PONS) and temporal cortex (TCTX) (see Chapter 2). 

We aimed to determine if there is evidence that genetic variants have a different 

effect on DNAm level measured in colon and brain tissue. 



  
 
 

 100 
 

5.2 Materials and Methods 

5.2.1 Data Quality Control 

Colon data 

We used the processed colon dataset data as outlined in Chapter 4.  

Brain data  

We used the brain dataset processed as outlined in Chapter 2, however, we used the 

full set of DNAm sites that pass the quality control procedure rather than a subset 

located within a risk region for a brain related disorder. 

We used DNAm level measured on the M-value scale in both the colon dataset and 

brain dataset. This scale (M-value), as mentioned in 4.1 is a logit transformation of 

the proportion of probes that are methylated on the microarray that target a DNAm 

site [9]  

5.2.2 Estimation of the Regional Genomic 

Heritability 

The ℎ!,!!  for each DNAm site was estimated using the RH approach as outlined in 

2.2.6.1 

As previously described within the brain dataset we adjusted for the explanatory 

variables sex, age, post mortem interval, study, and assay plate. Within the Colon 

dataset we adjusted for sex, age, and the first two genotype principal components. 

We fitted the first two genotype principal components in the RH of DNAm level in 

colon tissue in this chapter merely because it is conventional to use the genotype 

principal components to adjust for population structure and we have an admixed 

population sample. Although, in 4.2.4 we have shown that we do not expect the 

genotype principal components to explain a significant proportion of the variation in 
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DNAm level in the colon dataset. Therefore, although we fitted the first two 

genotype principal components in this chapter and not in Chapter 4, we do not expect 

that the adjustment for these two covariates will have substantially affected the 

magnitude of ℎ!,!! . 

5.2.3 Meta Analysis of the Regional Genomic 

Heritability Across Tissues 

To test the hypothesis that genetic variation within a genomic region has a significant 

effect on DNAm level at an individual DNAm site across multiple tissues we used 

Fisher’s method [109] for combining independent P-values. The probability of 

rejecting the null hypothesis that DNAm level is heritable in multiple tissues is 

related to the probability of DNAm level being heritable within each of the 

individual tissues. Assuming that each tissue represents an independent test of the 

heritability of DNAm level at a given DNAm site, the P-value from Fisher’s method 

test statistic is distributed chi-squared with degrees of freedom equal to 2 multiplied 

by the number of P-values being combined. However, if the assumption of 

independent tests does not hold then the logic of Fisher’s method does not apply. 

Repeated sampling from up to four brain tissues from one individual present in the 

brain dataset could result in covariance in DNAm level among multiple brain tissues. 

Therefore, given that the test of heritability of DNAm level may not be independent 

across the brain tissues we do not combine the P-values from all five tissues together. 

Instead, we conducted an analysis using Fisher’s method on the significance of the 

RH result for DNAm sites in colon tissue and one brain tissue at a time. To reiterate, 

we applied Fisher’s method to the four pairs of datasets, colon and CRBL, colon and 

FCTX, colon and PONS, colon and TCTX. In each case, the –log10(P) of the RH 

estimate of the DNAm site measured in the two tissues was used to calculate the 

natural log(P) and Fisher’s method was applied with four degrees of freedom. This 

procedure is a meta-analysis for the RH of DNAm level across tissues assuming that 

DNAm level at a DNAm site is the same trait measured in the two tissues.  
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5.2.4 Identity of DNAm Sites with Respect to CpG 

Density and Genic Location 

We used the manifest file accompanying the HM450K DNAm array to determine 

location of a DNAm site with respect to CpG density and genic location. A 

description of the information provided in the HM450K manifest file was provided 

in 4.2.6. We determined that out of the 12355 DNAm sites measured in colon and 

brain tissue 3914 mapped to multiple genic locations. As described in the results 

section, we conducted analyses excluding these DNAm sites and without excluding 

these DNAm sites. We did this to determine if DNAm sites that mapped to multiple 

genic locations affected the enrichment analysis that we conducted. We found the 

same trend of enrichment with and without the exclusion of these DNAm sites.  

5.2.5 Testing Regional SNPs for Association with 

Local DNAm Level 

We used the Wald Test implemented in the software Plink [66] to test the effect of 

individual SNPs on DNAm level within a single tissue. DNAm level is regressed on 

the SNP genotype and the Wald test is used to test the null hypothesis that the 

regression coefficient is not significantly different from zero. Rejection of the null 

hypothesis implies that the alternative hypothesis is true and that the SNP has an 

effect on DNAm Level. We specified the significance thresholds we used in the 

results section. 

5.2.6 Determining if Genetic Effects were Different 

Across Tissues  

To determine if SNP effects were different across two tissues we compared the 

regression coefficient at the SNP across the two tissues using Equation 12 [110]. 



  
 
 

 103 
 

Testing this against the standard normal distribution provided an asymptotic P-value 

for the significance of the difference in the SNP effect across the two datasets.  

Equation 12 

𝑍 =
𝑏! − 𝑏!

𝑆𝐸𝑏!
! + 𝑆𝐸𝑏!

!
 

  

5.3 Results 

5.3.1 Regional Genetic Effects on DNAm Level 

Shared Across Colon and Brain Tissue 

A total of 12355 DNAm sites passed quality control procedures in all 5 tissues. 

Within each tissue and for each of the 12355 DNAm sites we took a RH approach 

and partitioned the phenotypic variance into that attributable to local (+/- 1MB) 

genetic effects surrounding the DNAm site (Figure 24).  
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Figure 24 Significance of Regional Genomic Heritability for 5 Tissues 

The figure shows the –log10(P) from the cis RH analysis for a total of 12355 DNAm 

sites across the genome and common to the five tissues. The –log10(P) for each of 

the five tissues is plotted separately.  
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The correlation of the significance of ℎ!,!!  (Table 21) ranged between 0.20 and 0.71 

indicating that genetic effects on some DNAm sites may be shared across tissues. 

Additionally, we found that the correlation of the –log10(P) of the estimates of ℎ!,!!  

were much lower between colon and a brain tissue than between two brain tissues 

(Table 21). Therefore, less genetic effects may be shared across colon and a brain 

tissue than across two brain tissues. Shared genetic effects across tissues could reflect 

common biological regulation of DNAm level. It seems plausible that the regulation 

of DNAm level is more similar within tissues of similar function, such as brain 

tissue, than across tissues with different function, such as brain and colon tissue. 

Alternatively, there may appear to be increased sharing of genetic effects across 

brain tissues compared to across brain and colon tissue due to shared technical 

variation within the brain dataset. The shared technical variation within the brain 

dataset could have resulted from using the same set of individuals to obtain a sample 

from each brain tissue or from using similar experimental protocols to obtain a 

measurement of DNAm level.  

 

 

Table 21 Pearson correlation of the significance (-log10(P)) of the regional 

genomic heritability between tissues 

The correlation of the significance of the RH estimates is lower between colon and a 

brain tissue than between two brain tissues 

 CRBL FCTX PONS TCTX COLON 
CRBL      
FCTX 0.45     
PONS 0.45 0.61    
TCTX 0.43 0.71 0.63   
COLON 0.20 0.30 0.30 0.32  
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To identify DNAm sites heritable in colon or a brain tissue, or both colon and a brain 

tissue we used Fisher’s method and combined the P-values from the RH analysis for 

the colon and CRBL tissue, colon and FCTX tissue, colon and PONS tissue and 

colon and TCTX tissue. We did not combine the four brain tissues together with 

colon tissue because as stated in section 5.2.3 the assumption of independent tests 

may be violated due to repeated sampling from multiple brain tissues for an 

individual. We found that depending on the two tissues being combined between 11-

12 % of DNAm sites were heritable (Table 22). The average of ℎ!,!!  was comparable 

at P < 0.05 for colon and each of the brain tissues.  
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Table 22 Genomic Regions Heritable in Colon and a Brain Tissue 

The table shows the results from Fisher’s method conducted on colon and each brain 

tissue separately. A total of 12355 DNAm sites were tested for association with the 

local genetic variation in each of the tissues and the significance was combined 

across colon and each of the brain tissues using Fisher’s method. The table gives the 

count and proportion of DNAm sites significant after application of Fisher’s method 

using an unadjusted for multiple testing threshold and a threshold adjusted for the 

number of traits tested (n=12355). 

  P<=0.05 Adj. P<=0.05 
Colon and CRBL Count (Proportion) 

Regions 
1467 (0.12) 127 (0.01) 

Average RH Estimate  
colon, CRBL 

0.20, 0.23 0.32, 0.51 

Colon and FCTX Count (Proportion) 
Regions 

1460 (0.12) 115 (0.01) 

Average RH Estimate  
colon, FCTX 

0.20, 0.18 0.36, 0.43 

Colon and PONS Count (Proportion) 
Regions 

1380 (0.11) 114 (0.01) 

Average RH Estimate  
colon, PONS 

0.21, 0.18 0.37, 0.45 

Colon and TCTX Count (Proportion) 
Regions 

1459 (0.12) 143 (0.01) 

Average RH Estimate  
colon, TCTX 

0.20, 0.19 0.34, 0.46 
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Subsequently, we focused on using the colon and FCTX tissue for all downstream 

analyses. We selected the FCTX brain tissue as we have the largest sample size for 

this brain tissue; therefore, heritability estimates may be the most precise for this 

brain tissue.  

Next we investigated the genic location and CpG density at DNAm sites that were 

and were not heritable using ℎ!,!!  from the Fisher’s method analysis with the colon 

and FCTX tissue. At our stringent threshold (corrected for the number of traits 

analysed) we found that the proportion of heritable DNAm sites were depleted within 

CpG islands compared to DNAm sites that were not heritable (P = 1.56*10-11, Figure 

25). Conversely, the proportion of heritable DNAm sites were 1.96 fold enriched for 

location at the edge of CpG Islands (Shores) and 1.06 fold enriched for location in 

areas of low CpG density (Sea) compared to DNAm sites not found to be heritable. 

At a nominal significance (P < 0.05) threshold we found a very similar trend of 

enrichment (results not shown). When we excluded DNAm sites that mapped to 

multiple genic locations and when we used a stringent significance threshold to 

adjust for the number of traits tested, we found that the proportion of heritable 

DNAsites were 1.50 fold enriched 200-1500bp upstream of a TSS (TSS1500) of a 

gene compared to DNAm sites not significant in colon and FCTX tissue (P = 

3.04*10-4) (Figure 26). Again, we found a similar trend of enrichment at a nominal 

significance threshold (P < 0.05) and when we did not exclude DNAm sites that 

mapped to multiple genetic locations (results not shown). Thus, DNAm sites with a 

significant and non-significant RH localize to different genomic regions.    
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Figure 25 CpG Density and RH Significance for DNAm Level measured in 

Colon and FCTX Tissue.  

The proportion of DNAm sites significantly (Adj. P < 0.05) or not significantly 

associated with local genetic variation across colon and FCTX tissue with respect to 

CpG Density. Heritable DNAm sites across colon and FCTX tissue are depleted 

within the CpG dense islands.   
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Figure 26 Genic Location and RH significance for DNAm level measured in the 

colon and FCTX tissue.  

The proportion of DNAm sites significantly (Adj. P < 0.05) or not significantly 

associated with local genetic variation in colon and FCTX tissue with respect to 

genic location. DNAm sites that mapped to multiple locations were removed. DNAm 

sites that are heritable across colon and FCTX tissue are enriched within 200-1500 

basepairs upstream of a TSS.  

 

 

 

 

5.3.2 Location, Significance and Magnitude of SNP 

effects within Heritable Regions Across Colon 

and FCTX Tissue 

We have identified genomic regions where genetic variation affected local DNAm 

level across colon and FCTX tissue. Subsequently, within the heritable genomic 
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regions we wanted to narrow down the associated genetic variation to individual 

SNPs. Therefore we assessed the association of each SNP within the regions that 

were heritable (regions were deemed heritable at a significance threshold adjusted for 

the number of DNAm sites tested Adj. P < 0.05, n=115, Table 22) with the 

corresponding DNAm site. Between 43-691 SNPs (mean = 207 median = 200) per 

genomic region were common to both the datasets and were tested for association 

with a DNAm site.  A total of 23828 SNPs were tested in each of the two tissues. In 

the initial analysis below we used the residual DNAm level as the phenotype. We 

found that SNP effects closer to the DNAm site were more significant with a steep 

rise of the –log10(P) starting at approximately 500KB from the DNAm site (Figure 

27, Figure 28). We also observed a decrease in the effect size as distance from the 

DNAm site decreases, particularly within the first 500KB from the DNAm site 

(Figure 29, Figure 30). 
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Figure 27 Significance of SNP Effect and Distance from DNAm site 

SNPs within +/-1MB of a DNAm site with a significant ℎ!,!!  (Adj. P < 0.05) across 

colon and FCTX tissue were tested for association with the DNAm site. The –

log10(P) from the association tests are shown as a function of the distance of the 

SNPs from the DNAm sites. Results from the colon and FCTX tissue are plotted on 

the graph. A negative and positive distance indicates a distance upstream and 

downstream of the DNAm site respectively. SNP effects on DNAm level are higher 

when the SNP is closer to the DNAm site.    

 

 

Figure 28 Average Significance of SNP Effects and Distance from DNAm site  

The average –log10(P) from the SNP association analyses is calculated within bins 

of 10KB from the DNAm site. SNP effects on DNAm level in colon are on average 

less significant than SNP effects on DNAm level measured in FCTX tissue. 
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Figure 29 SNP Effect and Distance from the DNAm site  

The absolute value of the estimated SNP effects from the SNP association analyses is 

shown as a function of the distance of the SNP from the DNAm site. There is an 

increase in higher effects as the distance between the SNP and the DNAm site 

decreases.   

 

 

Figure 30 Average SNP effects and Distance from the DNAm site  

The average SNP effect is measured within each bin of 10KB from the DNAm site 

and shown as a function of the distance between the SNP and the DNAm site. The 

average SNP effect on DNAm level is consistently different for DNAm level measured 

in the two tissues. 
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We observed that the average SNP effect within 10KB bins +/- 1MB of the DNAm 

site, was consistently larger in colon tissue than in brain tissue (Figure 30). The 

systematic difference in the average SNP effect on DNAm level between colon and 

FCTX tissue could reflect a true biological difference of the effect of SNPs in the 

two tissues. For instance, the environmental variance may be lower for DNAm level 

measured in the colon tissue than in the FCTX tissue. An alternative explanation for 

the systematic difference in the average the of SNP effects on DNAm level measured 

in colon and FCTX tissue is that DNAm level is measured on a different scale in the 

two tissues. Although, the measurements of DNAm level were on the M-value scale 

in the colon and brain datasets, DNAm level was measured with a different array in 

the two datasets (HM27K and HM450K). The two arrays differed in the chemistry 

used to obtain a measurement of DNAm level. In conjunction, different quality 

control procedures were conducted to reduce technical variation within the two 

datasets. Therefore, there was a risk that the systematic difference in average SNP 

effects on DNAm level between colon and FCTX tissue resulted from a difference in 

scale of the phenotype across the two tissues. Therefore, we investigated the 

distribution of residual DNAm level  (DNAm level after the adjustment for the 

explanatory variables named in 5.2.2) at the individual DNAm sites analysed 

(n=115) within colon and FCTX tissue. We found that the mean of the distribution of 

mean residual DNAm level was smaller for colon tissue (-0.79) than for FCTX tissue 

(-0.66). Additionally, we found that the mean of the distribution of the standard 

deviation of residual DNAm level was greater for colon tissue (0.54) than for FCTX 

tissue (0.34). The difference in the residual phenotype across the two tissues could be 

indicative of DNAm level being on a different measurement scale in the two tissues.  
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Figure 31 Mean Residual DNAm Level in colon and FCTX Tissue 

Distribution of mean residual DNAm level across samples for each DNAm site. The 

average of each distribution is different, smaller for colon than for FCTX tissue. 

 

 

Figure 32 Standard Deviation of Residual DNAm Level in colon and FCTX 

Tissue 

Distribution of the standard deviation of residual DNAm level across samples for 

individual DNAm sites. DNAm level measured in the colon tissue is on average more 

variable than DNAm level measured in the FCTX tissue. 
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We aimed to compare individual SNP effects on DNAm level measured in colon and 

brain tissue. It did not make sense to compare individual SNP effects across colon 

and the FCTX tissue given the systematic difference in average SNP effects between 

the two tissues. The systematic difference in average SNP effects would likely lead 

to a widespread difference in individual SNP effects across the two tissues. 

Therefore, to minimize the systematic difference we rank normal transformed the 

residual DNAm levels at a DNAm site within each tissue. After rank normal 

transformation residual DNAm level at each DNAm site was distributed with a mean 

of zero and variance of one. 

After rank normal transformation of the residual DNAm level at a DNAm site within 

each tissue we tested the effect of the SNPs on the rank normal transformed DNAm 

levels. We observed that a small systematic difference in the average estimated SNP 

effects in the two tissues remained (Figure 33A). This difference is likely due to a 

systematic difference in the magnitude of the phenotypic variance prior to rank 

transformation. A different phenotypic variance prior to rank normal transformation 

would lead to the estimated effect being rescaled by a different factor.  

So that we could meaningfully compare individual SNP effects on DNAm level 

measured in colon and FCTX tissue we applied a second normalization procedure to 

further reduce the difference in average estimated SNP effect size across the two 

tissues (Figure 33). In this case, we rescaled the SNP effects so that average SNP 

effect in the two tissues was the same. To do this we adjusted the SNP effects in the 

FCTX by a constant factor that was the ratio of the average absolute value of the 

SNP effects in colon to the average absolute value of the SNP effects in the FCTX. 

We tried two alternative procedures for this adjustment and selected the procedure 

that preformed the best, that is the procedure that reduced the difference in average 

estimated SNP effect size across the two tissues the most. In the first case we 

included all the SNP effects and in the second case we included only the effects of 

SNPs located within +/- 500KB of the DNAm site. We used only SNPs located 

within +/- 500KB of the DNAm site because we observed that this region 
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surrounding the DNAm site exhibited the largest systematic difference in average 

SNP effect between the two tissues (Figure 33). Moreover, there were substantially 

more significant SNP effects within +/- 500KB of the DNAm site than outside +/-

500KB of the DNAm site (Figure 27); therefore, this region is of particular interest 

for studying a difference in genetic effect across tissues. We found that the 

systematic difference in average SNP effect was reduced the most within +/-500KB 

of the DNAm site when we used the second of the two aforementioned procedures, 

that is when we used only SNP effects within +/-500KB of the DNAm site to rescale 

the SNP effects in the FCTX (Figure 33). Therefore, we used the second procedure 

to rescale the SNP effects and the standard error of the SNP effects in the FCTX (for 

SNPs within the 115 genomic regions significantly heritable across colon and FCTX 

tissue at our adjusted threshold P < 0.05/12355). This rescaling of the SNP effects 

and standard error of the SNP effects in FCTX tissue reduced the systematic 

difference in average SNP effect on DNAm level measured in colon and FCTX 

tissue. Now we could meaningfully make pairwise comparisons of the effects of 

individual SNPs across colon and FCTX tissue.   
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Figure 33 Recalibration of SNP effects 

We rank normal transformed residual DNAm level at each DNAm site and in colon 

and FCTX tissue to ensure DNAm level was distributed equally in the two tissues. 

After rank normal transformation of residual DNAm level in colon and FCTX tissue 

a systematic difference in average SNP effects between the two tissues remained 

(Panel A). To minimize this difference the SNP effects in the FCTX tissue were 

rescaled by a constant factor. We used all SNPs within +/- 1MB (Panel B) or within 

+/- 500KB (Panel C) for the recalibration. The second recalibration procedure 

(Panel C) preformed the best at reducing the systematic difference in average SNP 

effects between the two tissues. 

 

 

 

 

5.3.3 Comparison of within Tissue SNP Effects on 

DNAm Level Across Colon and FCTX Tissue 

We aimed to compare the effect of individual SNPs across colon and FCTX tissue. 

For this analysis, we used the SNP effects and the standard error of the SNP effects 

that had been rescaled in the FCTX tissue. Regression analysis of the SNP effects in 
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the FCTX tissue on the SNP effects in colon tissue revealed a highly significant (P < 

2*10-16) positive association between the SNP effects (+/- 500KB of the DNAm site) 

in the two tissues (R2 = 0.18). This suggested that some SNP effects were shared 

across the two tissues. Next we wanted to contrast individual SNP effects across the 

two tissues to establish if there was evidence of tissue specific SNP effects. To this 

end, we first selected the SNPs significantly associated with DNAm level in either or 

both of the tissues. Secondly, we tested if the effect of those SNPs was significantly 

different in the two tissues as described in 5.2.6. In doing the first step, we found that 

546 SNPs were significantly associated with DNAm level in at least one of the two 

tissues at a stringent Bonferroni significance threshold that adjusted for the total 

number of SNPs examined within the 115 +/- 1MB regions (P < 0.05/23828). In the 

second step, we tested if the effect of 546 SNPs was significantly different across the 

two tissues using a stringent threshold that adjusted for the total number of tests 

conducted (P < 0.05/546). We found that 17 SNPs had a significantly different effect 

in colon and FCTX tissue (Table 23,Table 24). These SNPs were associated with 

nine DNAm sites that represented eight loci across six chromosomes (Table 23). 

Within each of the eight loci the SNPs were consistently associated with DNAm 

level in either colon or FCTX tissue but not both tissues (Table 24). This means that 

within a tissue and a locus all the SNPs were either, positively, negatively or not 

associated with DNAm level at the local DNAm site. Additionally, at each locus the 

within tissue association of the SNPs with DNAm level was significant only for 

DNAm level measured in one of the two tissues.   
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Table 23  Genomic Location of Tissue Specific SNP Effects on DNAm level 

The table shows location of the DNAm site and SNP pairs where the SNP was found 

to exhibitg a significantly (Adj. P < 0.05) different effect across colon and FCTX 

tissue. Eight loci across six chromosomes are represented. The distance between the 

SNP and the DNAm site is also provided with a negative and positive value 

indicating the SNP was upstream and downstream of the DNAm site.  

Locus CHR DNAm Site DNAm Site  SNP SNP BP 
 
DIST (BP) 

      BP       

1 
1 cg14356550 18808102 rs3007733 18800911 -7191 
1 cg14356550 18808102 rs2992753 18808292 190 
1 cg14356550 18808102 rs10907313 18814565 6463 

2 1 cg27535305 53392650 rs11206043 53402552 9902 

3 

1 cg08380539 85039702 rs11163981 84953415 -86287 
1 cg08380539 85039702 rs2945152 85048641 8939 
1 cg08380539 85039702 rs2945145 85062615 22913 
1 cg08380539 85039702 rs2911597 85065769 26067 
1 cg08380539 85039702 rs11164023 85089402 49700 

4 6 cg09548084 8436218 rs12210654 8747817 311599 
5 12 cg25229172 96336121 rs6538691 96353507 17386 
6 14 cg24603941 39703302 rs2038281 39915197 211895 
7 15 cg01789267 45545111 rs1706767 45569099 23988 

8 

18 cg09052983 52495605 rs12457718 52499626 4021 
18 cg22105582 52496070 rs4477812 52357470 -138600 
18 cg22105582 52496070 rs9964078 52384590 -111480 
18 cg22105582 52496070 rs12457718 52499626 3556 
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Table 24 Strength of Effect of Tissue Specific SNP Effects on DNAm level 

Values in bold indicate a significant within tissue SNP effect on DNAm level. SNPs 

within each of the eight loci are either significantly associated with colon or FCTX 

tissue but not both tissues. 

 
DNAm Site SNP	   Effect	  	   SE	   P-‐value	   Effect	   SE	   P-‐value	   Z	  Score	   P-‐value	  

     	   Colon	   Colon	   Colon	   FCTX	   FCTX	   FCTX	   GXE	   GXE	  

1 
cg14356550 rs3007733	   1.12	   0.10	   2.20E-‐20	   -‐0.11	   0.12	   3.69E-‐01	   -‐7.82	   5.37E-‐15	  

cg14356550 rs2992753	   1.14	   0.10	   2.33E-‐21	   -‐0.11	   0.12	   3.56E-‐01	   -‐7.99	   1.38E-‐15	  

cg14356550 rs10907313	   0.88	   0.15	   3.63E-‐08	   -‐0.15	   0.13	   2.48E-‐01	   -‐5.21	   1.85E-‐07	  

2 cg27535305 rs11206043	   0.29	   0.12	   1.40E-‐02	   1.00	   0.08	   8.10E-‐26	   5.09	   3.65E-‐07	  

3 

cg08380539 rs11163981	   0.07	   0.12	   5.40E-‐01	   0.97	   0.08	   9.76E-‐24	   6.25	   4.03E-‐10	  

cg08380539 rs2945152	   0.15	   0.13	   2.43E-‐01	   1.01	   0.07	   4.62E-‐27	   5.95	   2.70E-‐09	  

cg08380539 rs2945145	   0.14	   0.13	   2.81E-‐01	   1.02	   0.08	   3.63E-‐25	   5.90	   3.67E-‐09	  

cg08380539 rs2911597	   0.16	   0.13	   2.04E-‐01	   1.02	   0.08	   3.63E-‐25	   5.68	   1.36E-‐08	  

cg08380539 rs11164023	   0.20	   0.13	   1.32E-‐01	   1.06	   0.09	   2.08E-‐20	   5.37	   7.80E-‐08	  

4 cg09548084 rs12210654	   -‐0.13	   0.13	   2.91E-‐01	   -‐0.93	   0.11	   4.55E-‐14	   -‐4.76	   1.96E-‐06	  

5 cg25229172 rs6538691	   -‐0.24	   0.12	   5.18E-‐02	   0.60	   0.11	   2.86E-‐07	   5.10	   3.41E-‐07	  

6 cg24603941 rs2038281	   0.29	   0.14	   3.89E-‐02	   -‐0.67	   0.10	   6.54E-‐10	   -‐5.61	   1.99E-‐08	  

7 cg01789267 rs1706767	   -‐0.78	   0.10	   4.40E-‐12	   0.03	   0.13	   7.87E-‐01	   4.96	   6.95E-‐07	  

8 

cg09052983 rs12457718	   0.09	   0.13	   4.92E-‐01	   0.95	   0.10	   3.49E-‐16	   5.19	   2.13E-‐07	  

cg22105582 rs4477812	   -‐0.15	   0.13	   2.61E-‐01	   0.82	   0.13	   5.45E-‐09	   5.26	   1.47E-‐07	  

cg22105582 rs9964078	   -‐0.08	   0.13	   5.38E-‐01	   0.85	   0.13	   2.06E-‐09	   5.05	   4.48E-‐07	  

cg22105582 rs12457718	   -‐0.09	   0.13	   4.83E-‐01	   1.00	   0.10	   2.48E-‐18	   6.69	   2.31E-‐11	  

 

 

 

5.3.4 Bioinformatics Investigation of methQTL with 

Tissue Specific Effects 

We used online databases to investigate the function of the eight loci that showed 

statistical evidence of tissue specific genetic effects on DNAm level. We aimed to 

determine if there was a biological reason why the eight loci appeared to be regulated 

differently across colon and FCTX tissue and to validate our findings. We identified 
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the gene closest to the DNAm site and information pertaining to the gene using the 

NCBI Gene database (http://www.ncbi.nlm.nih.gov/gene/) (Table 25,Table 26). 

Using the location of our methQTLs, we also identified the closest published SNP in 

the NHGRI-EMBI Catalgoue of Published Genome-wide Association Studies and 

the associated trait (Table 27) ([99]). Subsequently, we discuss the loci where a 

biological interpretation of the statistical evidence for tissue specific genetic effects 

on DNAm level were most evident, based on the information obtained from querying 

the online databases.  

Within Locus 2 both the DNAm site and associated SNP, rs11206043 were located 

within SCP2. SCP2 is a lipid transfer protein (Table 25). Individuals deficient in 

SCP2 may be categorized as having the neurological condition: 

Leukoencephalopathy with Dystonia and Motor Neuropathy (OMIM #613724) 

(Table 25). Additionally, A SNP 180KB downstream of rs11206043 has been found 

to associate with the neurological condition: Hippocampal Atrophy (Table 27). We 

found that the addition of the minor allele of rs11206043 significantly increased 

DNAm level at SCP2 in non-diseased FCTX tissue but not in colon tissue (Table 24). 

Assuming that disease arises from variation in DNAm level measured in a tissue 

relevant to disease, our result support the idea that this locus is involved in the 

aetiology of brain related traits. Additionally, rs11206043 has been found to 

associate with gene expression of SCP2 in Lymphoblastoid cells; however, strength 

of this association was only suggestive as it was below the standard genome-wide 

association study significance threshold (Table 26). However, the aforementioned 

finding suggests that the influence of rs11206043 on cellular phenotypes may not be 

limited to brain tissue. 
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Table 25 Genes Local to DNAm Sites with Tissue Specific QTL 

The gene processes inferred from Gene Ontology [111] is given in column 3, for 

instance if multiple related processes were found for a gene the over arching process 

was reported.  Relationship between the gene and a trait of clinical importance as 

listed in the NCBI Genetic Testing Registry [112] or inferred from publications is 

listed in column 4. 

Loci Gene 
Symbol 

Gene Name Gene Process Gene and Trait 
Relationships 

1 KLHDC7A Kelch domain 
containing 7A 

Protein ubiquitination - 

2 SCP2 Non-specific 
lipid-transfer 
protein 
 

Metabolic Processes 
and Transport 

Deficiency of SCP2 is 
Leukoencephalopathy 
with dystonia and 
motor neuropathy  

3 CTBS chitobiase, di-N-
acetyl- 

Chitin and 
Oligosaccharide 
Catabolic Processes  

SNP in CTBS linked to 
multiple myeloma  

4 SLC35B3 Solute carrier 
family 35, 
member B3 

Metabolic processes, 
Catabolic Processes and 
Transmembrane 
transport 
 

Predominately 
expressed in colon 
cells [113] and have a 
function in cancer 
proliferation [114]  

5 CCDC38  
 
AMDHD1  

Coiled-coil 
domain 
containing 38 
 
Amidohydrolase 
domain 
containing 1 

Not Found 
 
Cellular nitrogen 
compound metabolic 
process and Histidine 
catabolic process 

- 

6 MIA2 Melanoma 
inhibitory activity 
2 

Cholesterol and 
Triglyceride 
Homeostatsis 

- 

7 SLC28A2  Solute carrier 
family 28 

Nucleobase-containing 
compound metabolic 
process, 
Transmembrane 
transport 

- 

8 RAB27B Member RAS 
oncogene family 

Melansome and protein 
transport 
Signal Transduction, 
Positive regulation of 
Exocytosis 

Expression of 
RAB27B is marker for 
gastrointestinal stromal 
tumors [115] and 
breast cancer [116] 
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Table 26 Published eQTL Local to Our Tissue Specific methQTL 

Published eQTL results were found within 5 of the 8 tissue specific methQTL. In 

addition to being a methQTL in our study, one SNP (bold), was found to have a 

marginally significant effect on gene expression within the same locus and in 

Lymphoblastoid cells. 

       
Locus SNP ID SNP  

CHR:BP 
Probe  
CHR:BP 

P-value Tissue Ref 

1 rs12144656 1:18792299 1:18807424 2.26*10-6 Liver [117] 
2 rs11206043 1:53402552 1:53392948 4.10*10-5 Lymphoblastoid 

Cells 
[118] 

3 rs17110590 1:84978431 1:85020222 4.75*10-5 Liver [117] 
5 rs10735337 

 
rs7307113 
 

12:96329933 
 
12:95959233 

12:96260827 
 
12:96337071 

3.87*10-12 
 
1.29*10-3 
 

Liver 
 
Liver 

[117] 

 

 

 Table 27 Significant GWAS Results Local to SNP Associated with Tissue 

Specific DNAm Level 

Distance between the GWAS SNP and the closest SNP associated with tissue specific 

DNAm level in our study is shown. A negative and positive distance indicates the 

GWAS hit was upstream and downstream of our SNP, respectively.   

 GWAS Hit 
Locus Distance (BP) SNP ID Trait P-value Ref 
1 - 5656 rs3007729 Diabetic Retinopathy 5*10-6 [119] 
2 +179118 rs3820201 Hippocampal Atrophy 1*10-6 [120] 
3 -84454 rs604708 IgG Glyosylation 8*10-6 [121] 
4 +250994 rs2064197 Glucose Homeostasis Traits 7*10-6 [122] 
5 -82079 rs1036429 Pulmonary Function 1*10-7 [123] 
6 -894692 rs10498345 Coronary Spasm 9*10-7 [124] 
7 -894692 

 
-69052 

rs2453533 
 
rs765787 

Kidney Diseases 
 
Uric Acid 

5*10-22 
 
3*10-6 

[125] 
 
[126] 

8 +253074 
 
+252391 

rs4801131 
 
rs12966547 

Schizophrenia 
 
Combined Neurological and 
Psychiatric Traits 

1*10-8 
 
3*10-10 

[127] 
 
[128] 



  
 
 

 125 
 

In locus 4, rs12210654 was associated with level of cg09548084 in colon but not 

brain tissue (Table 24). Cg09548084 is located within SLC35B3, which is 

preferentially expressed in colon tissue (Table 25). Our result can be explained by 

assuming that DNAm level is linked to gene expression and chromatin structure and 

that only genetic variation can affect DNAm level and gene expression when the 

chromatin structure is open. For example, open chromatin facilities gene expression 

and can provide an opportunity for genetic variation to perturb level of gene 

expression. In contrast, closed chromatin inhibits the molecules necessary for 

transcription and translation to access the DNA, thus genetic variation in these 

regions may not influence the level of local gene expression. Given these 

circumstances, an expressed gene would more likely be affected by genetic variation 

than a gene that is switched off. Low or no expression of SLC35B3 in tissues other 

than colon could indicate that this gene is switched off in these tissues. In 

comparison, expression of SLC35B3 in colon tissue follows from an open chromatin 

structure that is susceptible to genetic variation altering DNAm level at the locus.  

 

5.4 Discussion 

5.4.1 Regional Heritability Across Colon and A 

Brain Tissue 

Based on the RH analysis of each of the five tissues individually, (see 2.3.2 and 

4.3.2) we found that more DNAm sites were heritable across colon and a brain tissue 

than expected if the heritability of DNAm level at a DNAm site is independent 

across tissues. For instance, we find that  ~10% of DNAm sites have a significant RH 

in colon tissue and in each of the four brain tissues; therefore, by chance we might 

expect DNAm level at 1% of DNAm sites to be significantly heritable in both colon 

and any one of the brain tissues when in fact DNAm level at the DNAm site is not 

heritable in both of the two tissues. However, when we used Fisher’s method and 
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combined the significance of the RH estimates across colon and a brain tissue we 

found that between 11-12% of DNAm sites tested were heritable. This result is likely 

to, in part, reflect the procedure used to determine DNAm sites significantly affected 

by local genetic variation across colon and a brain tissue. Fisher’s method will 

identify DNAm sites with significant RH in both tissues, some DNAm sites with a 

significant RH in one tissue and a small RH in the second tissue and possibly some 

DNAm sites with a small RH in both tissues. The small effect may not have been 

identified in RH analysis on the tissue alone. Therefore, by using Fisher’s method we 

have increased the power to detect effects across tissues compared to if we selected 

DNAm sites with a significant RH in each of the two tissues independently.  

Previously, we have shown that CpG dense regions of the genome contain less 

genetic variation than that observed for the remainder of the genome (see 4.3.1). 

Additionally, we have shown that in colon tissue DNAm sites located in CpG dense 

regions of the genome are less likely to be heritable (see 4.3.1). Given these two 

previous findings, it is not surprising that loci with significant ℎ!,!!  across colon and 

FCTX tissue were depleted for location within CpG dense regions of the genome 

compared to regions of low CpG density. However, given our previous finding in 

colon tissue that DNAm sites located within the TSS of a gene were less likely to be 

heritable than intragenic and intergenic DNAm sites it was surprising that DNAm 

sites with significant ℎ!,!!  across colon and FCTX tissue were enriched for location 

within the TSS of a gene. One possible explanation is that genetic effects on DNAm 

sites located within TSS are smaller than the genetic effects on DNAm sites located 

in intragenic and intergenic regions. In conjunction, the genetic effects on DNAm 

sites in intragenic and intergenic regions are more tissue specific than the genetic 

effects on DNAm sites located with TSS. In this case, when combining information 

across tissues the genetic effects on DNAm sites located in TSS become significant 

where as the tissue specific genetic effects on DNAm sites located in intragenic and 

intergenic regions do not become significant.  



  
 
 

 127 
 

5.4.2 SNP Effects on DNAm Level Measured in 

Colon and FCTX Tissue 

We have shown that that there is an inverse relationship between the distance of a 

SNP from a DNAm site and both the strength of association and the corresponding 

effect size. This relationship has been observed for DNAm level measured in brain 

tissue [2] and in studies of gene expression level. Our results indicated that the 

strength of association and effect size of a SNP declined rapidly within 500KB of the 

DNAm site. In 2.3.1 and 2.4 we have respectively shown and discussed that when 

estimating the RH including extraneous SNPs that do not tag the causal variation can 

lower the power to detect the causal variation. The results from our SNP association 

analyses suggest that in our colon and brain datasets to optimally capture local 

genetic effects using the RH approach a maximum window size of +/- 500KB 

surrounding the DNAm site would be appropriate. To extend this insight to 

additional datasets one would need to consider the extent of LD within the dataset 

and the number of SNPs per proposed region. On average there was 207 SNPs in the 

2MB regions we used. Therefore, a maximum window size in a human dataset, or 

dataset with similar average LD, may have a considerably lower number of SNPs. 

Indeed, others’ that have conducted RH analysis on the brain dataset have found that 

a window size of 50KB centred on the DNAm site provided the highest count of 

significant RH estimates [83]. In the aforementioned study [83] the 50KB region 

contained between 0 and 40 SNPs with a mode of 6. Thus, reducing the region size 

from 2MB and the number of SNPs would likely increase the power to detect 

heritable genomic regions. In turn, this may uncover additional genomic regions 

where the combined genetic effects are not currently significant enough to surpass 

our cut-off threshold.  

We found a systematic difference between the SNP effects estimated from DNAm 

level measured in colon and FCTX tissue. This difference could reflect a true 

biological difference between the regulation of DNAm level in the two tissues. For 

instance, in our initial analysis we found that the average SNP effects were lower for 
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DNAm level measured in colon tissue than in FCTX tissue which could mean that 

overall the environment plays a decreased role in regulating DNAm level in the 

colon tissue compared to the FCTX tissue. However, a different phenotypic 

measurement scale in the two tissues could also lead to a systematic difference in 

SNP effects between the two tissues. In both datasets, DNAm level at a DNAm site 

was measured as the logit transformation of the proportion of methylated 

oligonucleotides (M-value scale) ([9]). Despite using the M-value measurement scale 

for DNAm level we observed a difference in the standard deviation of the residual 

phenotype between the two tissues. On average, the standard deviation of the 

residual phenotype was greater for DNAm level measured in the colon tissue 

compared to in the FCTX tissue. There are several reasons why this result could 

occur. Firstly, it is possible that DNAm level at a DNAm site is more variable in 

colon tissue than in FCTX tissue. Secondly, there may be a different extent of 

random noise in the measurement of DNAm level between the two datasets. Thirdly, 

DNAm level could be measured on a different scale in the two datasets. Different 

arrays were used to measure DNAm level in the two datasets, in the brain dataset the 

HM27K array was used and in the colon dataset the HM450K array was used. 

Similar to the HM27K the use of the HM450K involves bisulfite treatment and 

amplification of genomic DNA, leading to the conversion of an unmethylated 

cytosine to thymine. The proportion of targets containing a thymine to those 

containing a cytosine is quantified from the intensity measures of fluorescently 

labelled nucleotides added to the array. Adenine and thymine are labelled with a red 

fluorescent molecule and guanine and cytosine are labelled with a green fluorescent 

molecule [98]. However, the HM450K differs from the HM27K in that it employs 

two different probe designs to assess methylation level. Each DNAm site on the 

HM450K array is assayed by either the Infinium I design, the design used on the 

HM27K array or the Infinium II design. The majority (90%) of DNAm sites assayed 

on the HM27K array by the Infinium I design are assayed by the Infinium II design 

on the HM450K array [98]. The Infinium II design differs from the Infinium I design 

in the number of bead types and colour channels used to interrogate a DNAm site 
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and the location where the fluorescent nucleotide anneals to the target DNA. The 

Infinium I design uses two probe types to assay DNAm level at a DNAm site, one 

probe to bind to the unmethylayed target and one probe to bind to the methylated 

target. The extent of target binding to the two probes is measured in the same colour 

channel, either red or green. The colour channel used depends on the nucleotide base 

in the probe that is next to the DNAm site being assayed. In contrast the Infinium II 

design uses one probe to assay both the methylated and unmethylated target by single 

base extension complementary to the interrogated cytosine [98]. This design results 

in the incorporation of an adenine complementary to a methylated cytosine and a 

guanine complementary to an unmethylated cytosine; therefore, resulting in the use 

of two colour channels to measure the proportion of methylation at a single DNAm 

site. An additional difference between the Infinium I and Infinium II design is that 

unlike the Infinium I design the Infinium II design can incorporate up to three 

degenerate R bases without compromising the ability of the target to anneal to the 

probe. Therefore, in contrast to the Infinium I, the Infinium II design does not 

assume that DNAm sites within the probe target are of the same phase (methylated or 

unmethylated) to the DNAm site being assayed. However, a limitation of the 

Infinium II probe design being able to incorporate degenerate R bases is that the 

probes are restricted to assaying DNAm level in lower CpG density regions of the 

genome than the Infiunium I design. For instance, there is an enrichment for Infinium 

II probes over Infinium I probes in CpG shores and regions distant to CpG islands, 

but not within CpG islands, reflecting this constraint of the Infinium II design [129]. 

Incorporation of two probes designs, (Infinium I and Infinium II) leads to additional 

quality control steps for the data from the HM450k array (colon dataset) compared to 

the data obtained from the HM27K array (brain dataset). For instance, the use of two 

colour channels to measure DNAm level at a single DNAm site with the Infinium II 

design means that it is necessary to account for colour bias (we used quantile 

normalization see 4.2.2) [130,131]. Additionally, the distribution of beta values 

produced by probes of the Infinium I and II design are different to one another 

[97,98,129,132-135]. This difference is thought to be in part due to technical factors 
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and was corrected for when using data from the HM450K array (we used the BMIQ 

algorithm [97] see 4.2.2). The differences in how the arrays obtained the 

measurement of DNAm level and consequentially different quality control 

procedures for the two arrays could result in DNAm level being measured on a 

different scale across the two arrays. The correlation between DNAm level at DNAm 

sites assayed by the two arrays (25,978 Infinium I on HM27K and 25,978 Infinium I 

and Infinium II on HM450K) is high (r=0.98) [98]. However DNAm level assayed 

by these two arrays does not appear to be on average equal (the regression coefficient 

is not provided in the reference but observation of the graph indicates that for the 

most part the values do not lie on the 1:1 line) [98]. At most of the DNAm sites, 

DNAm level appears to be higher when measured on the 450K array compared to the 

27K array [98]. In the preceding analysis [98] only one sample was assayed so the 

difference in the variance of DNAm level at a DNAm site across the two arrays was 

not reported.  However, the difference in mean could reflect a difference in 

measurement scale across the two arrays. Our samples have been measured on either 

of the two arrays and we have no overlap of samples measured on both arrays. 

Therefore, it is challenging to determine if the difference in phenotypic standard 

deviation and average estimated SNP effect across the two datasets represents a true 

biological difference in the regulation of DNAm level or if it results from the use of a 

different scale of measurement across the two arrays. The risk that measurement of 

DNAm level was scaled differently in the two tissues led us to rank normal transform 

the residual phenotypes. We did this because scale of measurement could affect the 

estimate of the SNP effects and we wanted to meaningfully compare the individual 

SNP effects across the two tissues.  

This transformation of the residual phenotypes reduced the systematic difference in 

average estimated SNP effects between colon and FCTX tissue. The small systematic 

difference that remained after rank normal transformation could be explained as a 

real biological difference between the two datasets or by a systematic difference in 

the magnitude of noise between the two arrays. Rank normal transformation first 

standardizes the residual DNAm level at a DNAm site (z-score) and then ranks the 
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standardized residuals so that they are normally distributed and have a mean of zero 

and variance of 1. If the SNP effect on DNAm level is the same in two tissues but the 

mean level of noise is not, then the residual DNAm level and the SNP effect will be 

rescaled by a different factor. The result is that the effect in the two tissues will 

appear to be different after rank normal transformation. We minimized the 

systematic difference in average SNP effect across the two tissues that may have 

occurred due to a different level of noise in the two datasets by rescaling the SNP 

effects in the FCTX tissue. This allowed us to directly compare the magnitude of the 

SNP effects across the two tissues and identify tissue specific genetic effects.  

In addition, for identifying SNP with a different effect across the two datasets we 

analysed SNP within genomic regions found to have a significant ℎ!,!!  across colon 

and FCTX tissue at our Bonferroni threshold adjusted for the number of traits 

analysed. Compared to the use of a nominal threshold, the use of a stringent 

threshold increased our confidence that the significant regions represented true 

positive associations of genetic variation with DNAm level. In turn, we used a 

conservative Bonferroni adjusted threshold to determine individual SNPs within the 

genomic regions that were associated with DNAm level.  Overall, this meant that we 

could be confident that the within tissue associations of SNP with DNAm level were 

true positive associations and not false positive associations. Therefore, when we 

contrasted the estimated SNP effects across the two tissues we were likely not 

contrasting the effect of SNPs on DNAm level that resulted from chance (ie. false 

positive associations). When we compared the SNP effects across colon and FCTX 

we also used a conservative Bonferroni threshold to identify SNPs with a different 

effect in the two tissues. This meant that we could be confident that our result; 17 

SNPs have a different genetic effect in the two datasets, reflected the true biological 

situation.  

SNPs with a different genetic effect in different tissues can be thought of as 

exhibiting a genetic by environment interaction where the tissue is the environment. 

A genetic by environment interaction (tissue) for DNAm level does not necessarily 
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mean that different biological processes are regulating DNAm level at the DNAm 

site. Assume the following biological model where a SNP affects transcription factor 

(TF) binding and gene expression level that in turn has an inverse affect on DNAm 

level. In this case, the SNP affects DNAm level in all tissues in which the gene is 

transcribed. However, the abundance of circulating TF in a tissue could also affect 

the extent to which the gene is transcribed and consequentially DNAm level. A 

genetic by environment interaction could occur if the SNP affects DNAm level in the 

tissue proportionally to the amount of TF abundance (and TF abundance is different 

in the two tissues). Similarly, a SNP that affects DNAm level in a tissue 

proportionally to the amount of DNMT or methyl donors present in the tissue would 

have a different effect size across the tissues if abundance of the DNMT or methyl 

donors were different. Even a different direction of a SNP effect across tissues does 

not necessitate that the associated DNAm site be regulated differently in the tissues. 

For instance, if a SNP leads to variation in DNAm level in two tissues and in one 

tissue a mechanism takes effect so as to stabilize DNAm level, whereas in a second 

tissue this mechanism does not take effect, then a difference in the direction of SNP 

effect could be seen across the two tissues. The aforementioned examples could be 

viewed as genetic by environment interactions driven by tissue specific stochastic 

variation where the core underlying biological process regulating DNAm level 

remains similar across tissues. However, it is also possible that SNP effects on 

DNAm level differ across tissues due to different processes regulating DNAm level 

in the tissues. For instance, in different tissues different proteins may bind to the 

DNA to regulate DNAm level. Different proteins may be affected by a SNP to a 

varying degree and this would lead to an overall different estimated SNP effect on 

DNAm level across the tissues.  

The 17 SNPs that we found to have a different effect in colon and brain tissue 

represented 8 loci. We queried online data repositories to establish a biological 

explanation for the tissue specific genetic effects on DNAm level; however, this 

proved to be challenging given the sparse knowledge of the function of genes in 

different tissues. However, we provided general plausible explanations for several of 
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our results. We expect increased research assessing the relationship between genetic 

variations, cellular phenotypes and diseases/traits to enhance the functional 

annotation of the genome. This is turn will help biological interpretation of future 

studies similar to our own which has investigated tissue specific genetic effects on 

DNAm level.  

We have identified SNP that have a different effect in colon tissue collected from 

Colombian individuals and FCTX tissue obtained from individuals genetically 

similar to the HapMap CEU population (as determined by cluster analysis, see 

2.2.1.1.3). Therefore, in our analyses tissue is confounded with population. This 

means that we cannot be sure that a genetic by environment interaction results from a 

difference in SNP effect across tissues (colon and FCTX) and it may result from a 

difference across populations (south and north American). Nevertheless, our 

procedure has revealed that genetic by environment interactions for DNAm level do 

exist and we expect larger scale studies of this nature will follow. 

5.5 Contributions 

The colon dataset was collected and prepared by Gustavo Hernandez-Sanchez, Maria 

Carolina Sanabria and Martha Serrano-Lopez, Jose Luis Soto, Adela Castillejo, 

Cristina Alenda and Eva Hernandez-Illan 

Gibbs et al. [2], the Division of Aging Biology, the Division of Geriatrics and 

Clinical Gerontology (NIA) were responsible for collection and initial research on 

the brain dataset. The brain dataset was downloaded from the NCBI Data 

Repositories dbGaP (Accession Number: phs000249.v1.p1) and GEO (GSE15745). 

Both my supervisors provided comments on drafts of this chapter. 
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Chapter 6 Final Discussion and 

Conclusion 

6.1 Findings 

Overall, our RH study suggests that variation in DNAm level at some DNAm sites is 

at least partially controlled by local nuclear genetic variation (Table 28). For 

instance, even at a conservative Bonferroni threshold (P < 2.4*10-7) that adjusted for 

the total number of cis association tests conducted across all five tissues, DNAm 

level was heritable at a number of DNAm sites within each tissue (Table 28).  

 

 

Table 28 Number of Associations between DNAm Level and the Local Genomic 

Region at Different Significance Thresholds.  

Each column heading indicates the Bonferroni adjustment conducted and the 

significance threshold. The number within each cell is the count of DNAm sites 

significant at the specified threshold. 

Tissue Nominal  
 
P < 0.05 

Traits within Tissue 
 
CRBL P < 1.64*10-05 
FCTX P < 1.63*10-05 
PONS P < 1.63*10-05 
TCTX P < 1.63*10-05 
Colon P < 2.5*10-07 

Traits within Tissue Set  
 
Brain P < 4.1*10-06 
Colon P < 2.5*10-07 
 

All Tests 
Conducted  
 
P < 2.4*10-07 

CRBL 294 22 15 8 
FCTX 297 33 23 16 
PONS 277 23 19 12 
TCTX 292 32 28 22 
Colon 21471 920 920 917 
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In conjunction, we used the RH framework and found that DNAm level could be 

predicted from the local sequence variants with an accuracy that scaled with the 

estimated ℎ!,!! . Furthermore, the RH approach was able to capture additional effects 

of cis acting genetic variation beyond that detected by the CRC risk SNP, rs4925386. 

In contrast to the cis effects detected, using our study design we found no evidence 

that suggested that DNAm level was associated with regional genetic variants in 

trans.  

We examined the local ℎ!,!!  of DNAm sites located within and outwith a disease 

susceptibility region and measured in a relevant tissue and found that the two sets 

exhibited a similar overall pattern of estimated ℎ!,!! . 

Additionally the propensity for DNAm level to be associated with the local sequence 

variation differed with respect to CpG dinucleotide density and genic location. Most 

notably, DNAm sites located in CpG dense regions of the genome were less likely to 

be heritable than DNAm sites located in CpG sparse regions of the genome. 

Additionally, within both CpG dense and CpG sparse regions of the genome 

intergenic DNAm sites were more likely to be heritable than intragenic DNAm sites.  

Finally, we found evidence that genetic effects on DNAm level differed between 

DNAm level measured in colon tissue from South American individuals and DNAm 

level measured in FCTX tissue from North American individuals.  

6.2 Implications 

6.2.1 Regional Heritability is a Useful Approach for 

Estimating Genetic Effects on Cellular 

Phenotypes such as DNAm Level. 

The successful application of the RH method to DNAm level using a small sample of 

nominally unrelated individuals has implications for estimating the genetic effects on 
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other cellular phenotypes. There are several characteristics of the phenotypic and 

genotypic data and RH approach which provide power for ℎ!,!!  . Firstly, while 

unrelated individuals share a small proportion of their whole genome in common, 

regionally, the proportion shared between two individuals can vary substantially in 

the population (and from genomic region to genomic region). Secondly, 

simultaneously testing all SNPs within a genomic region compared to testing SNPs 

individually for association with a trait allows for small effects to be combined to a 

measureable estimate. Moreover, the use of regions rather than single SNPs can 

reduce the number of statistical tests conducted and allow for a less stringent 

significance threshold. Thirdly, genetic effects on DNAm level are relatively large in 

comparison to those observed for ultimate phenotypes (UPs) and they are enriched 

locally to the DNAm site. Given this last point, we expect the RH method will be of 

utility in estimating the genomic contribution to cellular phenotypes (CPs) with a 

similar overall genetic architecture to DNAm level, such as level of gene expression. 

Moreover, the observation that risk SNP contributed to a proportion of the local 

ℎ!,!!   for DNAm level in healthy tissue has implications for predictive genetic models. 

This result highlighted that in comparison to use of single SNP, the RH approach can 

pick up additional genetic effects in a relevant healthy tissue which may mediate 

susceptibility to an UP. Therefore, genetic models that aim to predict an UP or 

DNAm level could benefit from using regional genetic variation rather than single 

SNP.  

6.2.2 Genetic Variation and DNAm Level at an 

Associated DNAm site can be used to 

Determine if DNAm level Causes Disease 

One implication of DNAm level being heritable is that genetic variation associated 

with DNAm level can be used to determine if DNAm level causes disease using the 

Mendelian randomization framework (Figure 34). Correlation between DNAm level 
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and a disease, such as that which may be obtained from EWAS, can arise from 

several scenarios. For instance, changes in DNAm level may cause changes in 

disease status or vice-versa. Additionally, the change in DNAm level and disease 

status could independently be caused by an additional factor (confounding). An 

assumption of Mendelian randomization is that the SNP is not correlated with 

unmeasured factors associated with an exposure (DNAm level) and an outcome 

(disease). Therefore, if the SNP is associated with the exposure (DNAm level) it can 

be used as a proxy for the exposure (DNAm level), which negates the effects of the 

confounding variable(s). A second assumption of Mendelian randomization is that 

the SNP is independent of the outcome (disease) given the exposure (DNAm level) 

[136]. Given these assumptions, then an association between the SNP and the 

outcome (disease) indicates that the exposure (DNAm level) causes disease. Our 

research has indicated that cis rather than trans acting genetic effects on DNAm level 

predominate. The substantial cis acting associations uncovered reveal that cis acting 

genetic variation is a promising pool of genetic variation to use in Mendelian 

randomization experiments.  

Mendelian randomization studies are of particular utility for identifying targets for 

therapy. Unlike studies that uncover association between DNAm level and disease 

but provide no insight into the direction of causality, MR can identify potential 

exposures that cause disease. Understanding the cause and effect relationship 

between DNAm level and disease is of interest to the medical community because 

DNAm level is a modifiable exposure that can be targeted for therapy. 
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Figure 34 Mendelian Randomization Framework  

A SNP associated with DNAm level can be used to determine the causal relationship 

between DNAm level and disease status. It is assumed that the SNP is not associated 

with the confounding factors, that is it associated with DNAm level and that the only 

association with disease is through DNAm level. In this case, association of the SNP 

with disease status suggests that change in disease status is caused by change in 

DNAm level.  

 

 

 

 

6.2.3 Methods for Increasing the Power to Detect 

Genetic Effects on Ultimate Phenotypes 

Our research has implications when considering QTL to prioritize for association 

with an UP. The location of a DNAm site with respect to susceptibility regions was 

independent of the likelihood of DNAm level being heritable and the heritability 

estimate (see 4.3.5). Therefore, using QTL associated with DNAm level (methQTL) 

to prioritize genomic regions for association with an UP would not provide 

enrichment for significant associations beyond that which would be obtained from a 

random set of genomic regions. Prioritization by this method would be an inefficient 
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strategy for reducing the significance threshold as a means for increasing the power 

to detect the effects of genetic variation in an association study. Interestingly, this 

finding contrasts that found in studies of gene expression. GWAS results at P <10-5 

were enriched for eQTLs in blood [137] and schizophrenia susceptibility SNPs were 

enriched for eQTLs in human brain [138]. Additional studies [52,139] have indicated 

that susceptibility SNPs are enriched for eQTLs and they have used eQTL results to 

prioritize sub significant QTL from GWAS for replication. One explanation for the 

difference in enrichment of eQTLs compared to methQTLs in susceptibility QTL 

could be related to the functional consequence of QTL. For instance, QTL may more 

often influence an UP by acting directly on level of gene expression rather than on 

level of DNAm. Further studies could provide evidence for this hypothesis and 

validate our finding that QTLs (for UPs) are not enriched for methQTLs. Our study 

has focused on using regional genetic variation local to DNAm sites within and 

outwith susceptibility loci, where a susceptibility locus is defined as +/- 1MB of 

susceptibility SNP. The aforementioned eQTL research has been conducted using a 

single SNP approach. Enrichment analysis using the RH method with gene 

expression level and the single SNP approach with methylation level could help 

resolve if the difference is an artefact of the use of different experimental design. 

6.2.4 DNAm Level does not Always Need to be 

Assayed to be used in an Analysis  

An implication of accurate prediction of DNAm level in healthy tissue is that it is not 

always necessary for DNAm level to be directly assayed. DNAm level could be 

accurately predicted in the currently abundant large GWAS datasets. Predicted 

DNAm level could then be tested for association with an UP. This would provide a 

set of DNAm sites putatively associated with the UP in healthy tissue for replication 

at a reduced significance threshold. Moreover, because the predicted DNAm level is 

based on genetic effects estimated in healthy tissue relevant to disease an association 

between predicted DNAm level and a disease will reflect variation in DNAm level 

which exists prior to disease. Hence, unlike EWAS, this type of study can provide 
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highly suggestive evidence for variation in DNAm level causing disease. However, 

in order to predict DNAm level in a disparate dataset the regional SNP effects must 

first be estimated. We have shown that a small number of samples can be used to 

obtain accurate estimates for SNPs effects within a 2MB region and local to a 

DNAm site. While local SNP effects on DNAm level are thought to be tissue 

specific, provided sufficient power, the effects need only be estimated once within 

each tissue to facilitate prediction of DNAm level into a large number of datasets. 

Therefore, it would be of utility to the research community to store regional SNP 

effects on DNAm level in the public domain. The data repository, GRASP [140], 

currently contains results from association of SNP with CPs. However, this database 

is not optimally designed to hold regional SNP effects and overall it contains limited 

information regarding methQTL.  For instance only one single SNP methQTL study 

conducted in one tissue is represented in GRASP [140] and the direction of the effect 

of SNP on DNAm level is not noted. A database containing the location and size of 

the region analysed, ℎ!,!! , tissue, population and effect of SNPs within the genomic 

region would be of benefit to the research community. 

6.2.5 DNAm Sites in Different Genomic Contexts 

may have Different Functional Roles 

Finding that the local RH of DNAm Level is related to the location of the DNAm site 

with respect to defined genomic contexts has implications for understanding the 

function of the human genome. Functional elements of the genome can be 

determined by several different scientific approaches and each approach will 

necessitate a slightly different interpretation of what it means for an element to be 

‘functional’ (reviewed in [141]). Firstly, evolutionary methods that measure the 

extent of neutral or positive selection can define functional elements in the genome. 

Assays that measure biochemical activity at regions of the genome provide a second 

measure of functionality. Thirdly, genetic variation can be defined as functional if it 

is associated with a phenotype (reviewed in [141]). Our study can primarily inform 



  
 
 

 141 
 

on functional genetic variation based on this third definition. For instance, our RH 

analyses determined that genetic variation can have a functional effect on DNAm 

level for DNAm sites located in the eight genomic contexts we studied (see Chapter 

4 in particular 4.3.4). However, we also showed that the probability of genetic 

variation having a functional effect on DNAm level is related to the genomic context 

of the DNAm site (see 4.3.4). The propensity of a genomic context to be functional 

may be related to the biological role of DNAm level at DNAm sites located within 

the genomic context. In this view, DNAm level is related to fitness (by affecting an 

UP) and to a different extent within different genomic contexts. In conjunction, the 

lower probability of DNAm level being heritable reflects lower genetic variation due 

to negative selection acting to purge SNP with effects that decrease fitness.  

6.3 Further Research 

Broadly, further research will focus on using healthy tissue to understand the genetic 

and environmental component of DNAm level, the molecular role of DNAm level 

and how these factors and variation in DNAm level relate to disease and trait 

aetiology.  

6.3.1 Estimating Genetic Effects on DNAm Level 

To date, studies exploring the genetic architecture of DNAm level have concentrated 

on the analysis of cis acting genetic variation. This is primarily due to the 

determination that a substantial proportion of the phenotypic variation in DNAm 

level can be explained by local genetic variation and that these effects are relatively 

easy to quantify. In contrast, less attention has been paid to understanding the 

contribution of trans acting genetic variation on DNAm level. This is likely a 

consequence of needing to adopt a more stringent significance threshold to test 

genetic variation genome-wide compared to when testing local genetic variation. 

With a given number of samples, adopting a more stringent significance threshold 

leads to decreased power to detect genetic effects and an increased minimum 

detectable effect size.  Therefore, if the distributions of effect sizes are similar for 
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trans and cis acting genetic variation, then the proportion of trans acting effects 

detected will be smaller than the proportion of cis effects detected. Indeed, this is 

what we have observed in our studies (see 2.3.2, Chapter 3 and 4.3.2) and what 

others’ [2,54,55,61] who have assessed the effects of both cis and trans acting 

variation on DNAm level have shown. 

Currently, research assaying DNAm level has typically been limited to using a small 

set of samples. This is because the ability to quantify DNAm level at individual sites 

genome-wide is relatively new and samples from many tissues are challenging to 

obtain and can take years to accumulate. As studies get larger in sample size, 

providing the multiple testing threshold does not dramatically change, we expect 

there to be an increase in the number of trans acting variants discovered both with 

the single SNP and RH approach. Moreover, within the RH framework a larger 

sample size would facilitate the fitting of a second variance component to estimate 

the total effect of trans acting variation on DNAm level.  

However, there is scope for studies of small sample size to investigate trans acting 

effects on DNAm level; although based on our work and the publish literature we 

suggest developing a novel approach.  For instance, we would consider using the RH 

approach with different window sizes. Little information regarding the genetic 

architecture of trans acting variation makes it challenging to determine the optimal 

window size for analysis. For instance and as previously discussed, unlike a single 

SNP approach the RH approach can capture the combined effect of multiple small 

effect variants acting within a region. However, inclusion of extraneous genetic 

variants can induce noise and reduce the power of the RH approach. In conjunction, 

in the case of one or few causal genetic variants acting on a phenotype, the power of 

the RH approach may be decreased in comparison to a single SNP approach. 

Therefore, based on the underlying genetic architecture of the causal variation the 

size of the genomic region tested will affect the power to detect an association. An 

additional approach that could be undertaken either within the RH framework or the 

single SNP framework is targeted analysis. Targeted analysis would involve testing 
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the effect of a subset of genetic variation that is a priori thought to affect DNAm 

level in trans. If one hypothesizes that 1) genetic variation that affects gene 

expression will also affect DNAm level at the gene and 2) genes that are co-

expressed will be to some extent affected by the same genetic variation, then gene 

networks could be used to prioritize genetic variation. For instance, genes involved 

with a process related to the tissue in which DNAm level is measured could be used 

to select genomic regions of interest. Within these regions, genetic variation could be 

tested for association with DNAm level. Finally, if one assumes only the first of the 

two hypotheses above then genetic variation found to have a trans effect on gene 

expression level could be prioritized for association with DNAm level measured in 

the same tissue. This last point necessitates that trans effects on gene expression 

level have been tested and reported in the tissue of interest. In the case of our brain 

dataset this has occurred; therefore, it would be relatively straightforward for us to 

conduct the outlined experiment in human brain tissue.  

Our finding that in most cases DNAm level is not solely determined by genetic 

variation raises the question of what environmental factors influence variation in 

DNAm level. Often datasets are limited in the number of environmental factors that 

are measured, measuring only those with a probable effect or those that are simple to 

measure. This makes examination of putative environmental effects in the primary 

study challenging. One environmental factor not analysed in our study of the colon 

dataset presented in Chapter 4 is the location of biopsy with respect to what is 

clinically defined as proximal and distal colon. There are several differences between 

the proximal and distal colon (reviewed in [142]); therefore, they could be thought of 

as different cellular environments. We hypothesize that these two environments lead 

to variation in DNAm level. Following the investigation of the RH of DNAm level in 

colon tissue presented in Chapter 4, proximal and distal colon has been classified and 

is being analysed for association with DNAm level by Konrad Rawlik.  

In addition, further studies that investigate if genetic effects on DNAm level differ 

across tissues will aid in our understanding of the regulation of DNAm level. Based 
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on our work (see Chapter 5) and that of others’ [2] we would suggest focusing on 

investigating the effects of SNPs within +/- 500KB of a DNAm site on the DNAm 

level. To conduct the meta-analysis, one could use summary statistics from within 

tissue association analyses or one could follow a new method for meta-analysing 

correlated traits [143].  This new method [143] could be used to meta-analyse 

DNAm level measured in the brain dataset and our colon dataset, using the 

measurements from the four brain regions simultaneously.  

6.3.2 Understanding the Molecular Role of DNAm 

Level 

We have shown that the genetic variation local to a DNAm site could explain a 

proportion of the phenotypic variation in DNAm level. This result leads naturally to 

the question of the molecular role of DNAm level in cellular processes and how this 

role is perturbed by genetic variation. For instance, does genetic variation alter 

DNAm level directly or does it first alter other CPs such as gene expression that 

consequentially leads to a change in DNAm level? Ideally, to investigate these 

questions the more types of CPs measured (gene expression, different chromatin 

marks) the better and preferably in the same individuals. Consider the underlying 

assumption that DNAm level will phenotypically co-vary with a CP that it works in 

concert with to regulate cellular processes. In this case, genetic variation that affects 

DNAm level will also affect the CP with which DNAm level co-varies. Therefore, 

examining genetic effects on DNAm level and co-varying CPs could provide an 

indication of the molecular role of DNAm level. An example of a particular study 

design that could be used is a bivariate or multivariate analysis with the RH 

approach. If the dataset is not of adequate power to facilitate the use of a multivariate 

analysis then one could conduct separate genetic association analysis for each CP 

and examine the correlation of the resulting P-values. While these preceding two 

approaches may provide an indication of CPs that interact, they do not inform on the 

cause and effect relationship between the CPs. However, A two-step MR process 
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[144] could help resolve causal pathways.  These lines of research could be explored 

now in the brain dataset using gene expression level and DNAm level.  

An important consideration is a ‘dynamic’ role of DNAm level where DNAm level 

functions differently with respect to other CPs under certain circumstances, such as 

location of the DNAm site in the genome. Indeed, we showed a different propensity 

for DNAm level to be heritable across different genomic contexts. It would be 

interesting to determine if the probability of other CPs being heritable, such as gene 

expression level, varies accordingly. A difference in the extent of genetic co-variance 

in different contextual groups could be indicative of a different molecular role for 

DNAm level across those groups. However, the extent of genetic variation could 

affect the power to detect genetic effects and also the estimate of genetic co-

variation. Overlaying information of evolutionary conservation and positive selection 

would help determine if estimates of the genetic effects were influenced by the extent 

of genetic variation. Moreover, understanding the evolution of the DNA sequence 

with respect to the heritability of DNAm level (and the genetic co-variance of 

DNAm level and CPs) could provide valuable insight into the functional role of 

DNAm level.  

6.3.3 Determining if DNAm Level is Causal for 

Disease 

Our study (see 4.3.2) has provided a list of DNAm sites where DNAm level 

measured in healthy colon tissue is associated with local genetic variation.  There are 

several different methods that could be used to try and discern which, if any, of these 

heritable DNAm sites are causal for disease of the colon such as CRC. Firstly, as 

described in 2.2.6.2 the cis acting SNP effects on DNAm level could be estimated. 

Subsequently, the estimated SNP effects could be used in a disparate dataset 

containing genotypic and case control status for CRC to predict DNAm level. 

Predicted DNAm level could be tested for association with disease outcome to 

provide a set of candidate DNAm sites causal for CRC. Secondly, a GWAS could be 
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used to identify the SNP within the local region most strongly associated with 

DNAm level. The SNP could then be used in a one step mendelian randomization 

process in a dataset containing genotypic information, measurements of DNAm level 

and CRC status.  Thirdly, longitudinal data could provide an indication of changes in 

DNAm level occurring prior to disease onset. This last study is clearly challenging to 

undertake. It would take years to acquire the required data or it would necessitate that 

the relevant tissue have been measured and the disease status recorded in a pre-

existing longitudinal study. However, the preceding first two lines of 

experimentation are quite easily facilitated and could be conducted using our colon 

dataset. This is because in the colon dataset we have used only a subset of the 

samples for which we have extracted tissue.  

6.4 Final Words 

Understanding the genetic basis of disease is fundamental to advancement in 

personalized medicine. Currently, many human diseases are proving challenging to 

predict from the genotype alone. Understanding how phenotypic variation in DNAm 

level relates to genetic variation and disease susceptibility is a promising avenue of 

research to progress personalized medicine. For instance, DNAm level correlated 

with disease and under genetic control could be used to suggest individuals to target 

for prospective treatment. In addition, DNAm level which causes disease can itself 

be used as a target for therapy. With the extensive datasets and computational 

resources now available, this era is likely to bring many pivotal discoveries in human 

genetics.  

6.5 Contributions 
Albert Tenesa provided comments on drafts of this Chapter 
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Introduction

Loss of cognitive function is one of the most feared aspects of
growing old. Intelligence and the rate of age related cognitive
change vary widely in healthy individuals and have been
associated with health status, longevity and quality of life
[1,2,3,4,5,6]. As the general population ages, cognitive health is
of paramount importance, and understanding the underlying
mechanisms of general intelligence and age-related decline has
wide-ranging social and economic implications. Although patho-
logical cognitive decline has been studied in diseases such as
Alzheimer’s [7], available phenotypic measures for lifetime
changes in cognitive abilities of healthy individuals are rare. An

important part of the variation in human general intelligence and
in non-pathological, age-associated cognitive decline [8,9] can be
attributed to heritable genetic variation. Identifying the genes and
loci that contribute to the estimated genetic variance would offer
new biological insight, with opportunities to develop tailored
interventions and to inform policy makers.

Here we analyse the genetic contributions to complex variation
in three measures of intelligence: (i) crystallised intelligence; (ii)
fluid general intelligence; and (iii) lifetime change in intelligence.
We use three Scottish birth cohorts whose intelligence was
measured in childhood (age 11 years) and again in late adulthood
(age 65 to 79 years). Crystallised intelligence (gc) is typically
assessed using vocabulary and knowledge-based tests, and tends to
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remain stable with age. Fluid intelligence (gf) is assessed using tests
that require on-the-spot thinking — often with abstract materials
and under time pressure — and tends to peak in early adulthood
and decline thereafter [10,11]. Here, cognitive change was
measured as fluid intelligence in old age adjusted for intelligence
measured at age 11 as described in Deary et al. [9], who showed,
using the same data, that the lower bound estimate for the
proportion of variation in lifetime change of intelligence explained
by genetic factors was 0.24.

To date, as is seen in many complex traits, and despite
moderate-to-high heritability estimates, genomic studies have
yielded little knowledge of the underlying genetic factors
affecting cognitive traits. Although studies for other complex
traits have been successful at garnering the few common genetic
variants that explain a sizeable amount of variation, genome
wide association studies (GWAS) have generally failed to
capture a large proportion of the genetic variation in complex
traits [12,13,14]. A recent GWAS for crystallised and fluid
intelligence did not result in any replicable genome-wide
significant association despite moderately high heritability
estimates of 0.4 (s.e. 0.11) and 0.51(s.e. 0.11) for gc and gf

respectively for the population under study [8]. To address this
gap, we have applied a recently proposed analytical approach
[15] that captures the combined effect of multiple genetic
variants at a region of the genome, thereby identifying some of
the heritability missing when applying standard ‘one at a time’
SNP analyses [16,17]. This approach has the potential to
overcome stringent multiple testing penalties and has been
shown to be more powerful than the ‘one at a time’ SNP
approach in simulated and real data [15]. We hypothesise that
combinations of common and rare variants, that are not in
complete LD with common tagging SNPs, may account for a
substantial part of the missing heritability and that these will be
best captured by estimating the genetic variation from an entire
‘region’ or geographically co-located set of SNPs. The trade-off
comes between capturing as much variation as possible, whilst
having the resolution to locate causal effects. Here we divide the
genome in two ways (regionally and functionally): firstly, into
overlapping regions of 101 SNPs; and secondly by chromosome,
separating SNPs that lie within genes and SNPs that map
outside a 5 kb boundary of genes. We examine the genetic
variation explained by each region or chromosome for
crystallised and fluid intelligence and for the lifetime change
in fluid intelligence, and we compare that to the most significant
results obtained from the ‘one SNP at a time’ association
approach.

Materials and Methods

Phenotypic Data
Ethical approval for all the projects was obtained from the

Lothian Research Ethics Committee. Data were gathered
from three longitudinal studies of relatively healthy older
individuals with detailed cognitive phenotypes: the Lothian
Birth Cohorts of 1921 (LBC1921, N = 550) and 1936
(LBC1936, N = 1091), and the Aberdeen Birth Cohort of
1936 (ABC1936, N = 548). The years 1921 and 1936 refer to
the participant’s year of birth. Participants took a validated
intelligence test at a mean age of 11 years: the Moray House
Test No. 12 (MHT), which is a test of general intelligence
[18,19] and detailed follow-up assessments at a mean age (sd)
of 79.1 (0.6), 69.5 (0.8) and 64.6 (0.9) for LBC1921, LBC1936
and ABC1936, respectively. Cognitive test scores from age 11
and old age were available.

Construction of phenotypes
Selection of individuals, ethical consent, and full details of the

assessments have been described in previous studies
[8,9,18,19,20,21]. In brief, for each cohort, cognitive phenotypes
of fluid-type and crystallized-type intelligence were constructed
[19,20]. The final measure of lifetime cognitive change was
constructed by adjusting fluid intelligence in old age for prior
cognitive ability providing a quantitative measure of cognitive
change from age 11 to old age. Phenotypes were adjusted within
cohort for age and standardised within gender, and are further
defined in Appendix 1.

Genotypic data
Following informed consent, venesected whole blood was

collected for DNA extraction. A total of 599,011 single nucleotide
polymorphisms (SNPs) were genotyped using the Illumina610-
Quadv1 chip as described previously [8]. Quality control (QC)
procedures were performed per SNP and per sample. Individuals
were excluded from further analysis if genetic and reported gender
did not agree. Samples with a call rate #0.95, and those showing
evidence of non-European descent by multidimensional scaling
analysis, were also removed. SNPs were included in the analyses if
they met the following conditions: call rate $0.98, minor allele
frequency $0.01, and Hardy-Weinberg equilibrium test with
p$0.001. To avoid bias from hidden family structure, if a pair of
individuals shared more than 2.5% of the genome in common, one
individual was omitted from the analysis. After QC, 1804
individuals (ABC1936, N = 376; LBC1921, N = 484; LBC1936,
N = 944), and 547,750 autosomal SNPs were included in the
analysis.

Estimation of regional and functional genetic
contribution

In a population of unrelated individuals, SNP genotypes can be
used to estimate shared co-ancestry or identity by state between
individuals with rare SNPs weighted more heavily. Under certain
assumptions it can be shown that a region that is shown to be
identical by state will also be identical by descent [22]. The n6n
genomic relationship matrix (GRM) of relatedness at a population
level between n individuals gives the covariance structure for the
phenotype based on the premise that the more related two
individuals are, or the greater the amount of the genome they
share in common, the greater the expectation of phenotypic
similarity.

Using theory adapted from standard variance components or
pedigree based linkage analysis [23,24,25] and further developed
for genomic prediction [26,27,28], a GRM containing information
from the genotypes of m SNPs can be used to solve a linear mixed
model [Model 1] and partition the phenotypic variance into
estimates of the genetic and environmental variance [15,29]. To
avoid confusion with the well-known family-based estimates of
heritability [30] we define the amount of phenotypic variance
captured by the genotypes of unrelated individuals as population-
sense heritability (h2

ps). The linear mixed model (LMM) is:

Y~XbzIuze ðModel 1Þ

Where Y is an n61 vector of phenotypes for n individuals; Xn621 is
the incidence matrix relating the regression coefficients for 20
principal components and gender to the n individuals; b is a 2161
vector of fixed effects; u is a n61 vector of the additive genomic
random effects where u,N(0,Gs2

u), G is an n6n genomic
relationship matrix estimated from the SNP genotypes and s2

u
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is the genetic variance captured by the SNPs used to estimate the
relationships among the n individuals; I is an n6n identity matrix;
and e is an n61 vector of individual residual effects. The variance
of Y is var (Y) = Gs2

u+Is2
e. G is calculated following Van Raden

(2008) [28]. In short, an n6m matrix, W, is constructed where m is
the number of SNPs available. The elements of W, wij, are defined

as wij~(xij-2pj)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pj(1-pj)

p
with xij being 0, 1 or 2 for the three

possible SNP genotypes for the j-th SNP of the i-th individual and
pj being the allele frequency of the j-th SNP. G is calculated as

WW’/m.
An extension of this to a bivariate analysis [Model 2] was used

to estimate phenotypic and genetic covariances amongst measures
of intelligence.

Y1~X1b1zIu1ze1

Y2~X2b2zIu2ze2 ðModel 2Þ

Where 1 and 2 refer to trait 1 and trait 2, u1 and u2 are n61
vectors of additive genomic random effects. G is the genomic
relationship matrix between all individuals as described above.
The additive genetic covariance of Y1 and Y2 - cov(u1,
u2) =s2

u12 and the environmental covariance cov (e1, e2) is
s2

e12. The additive genetic correlation of Y1 and Y2 is s2
u12/

su1 su2, and the variance-covariance matrix for Y = [Y1, Y2] is

V~
Gs2

u1zIs2
e1 Gs2

u12

Gs2
u12 Gs2

u2zIs2
e2

" #
. A full derivation of the

estimation of the genetic covariance is given in [31].

Regional population-sense heritability
Yang et al. [32] implement the linear mixed model [Model 1] in

the software package GCTA and have shown that the method can
be used to partition the genetic variation across chromosomes and
functional regions of the genome such as genes [15].

By combining information on multiple SNPs within a genomic
region we aim to capture a substantial part of the heritability
missed by traditional ‘one SNP at a time’ approaches. Identifying
those regions of the genome that capture most variation is an
efficient way of selecting candidate regions for high throughput
sequencing that could complement whole-exome sequencing
experiments until whole genome sequencing is feasible for large
numbers of samples. Here, autosomal SNPs were ranked by
genomic location and divided into regions spanning 101 consec-
utive SNPs. Regions were overlapping to allow for the possibility
that genetic variation is distributed among two or more windows,
with a shared region between two consecutive regions spanning 50
SNPs, resulting in 10,908 overlapping regions from 547,750 SNPs.
Each region was fitted individually in the linear mixed model
[Model 3].

Y~XbzIuRze ðModel 3Þ

Where R is the genomic region. uR is a vector of n additive
genomic random effects from the region, n is the number of
individuals and I is the identity matrix as described above.

Var(Y )~GRs2
uRzIs2

e ; where GR is a GRM derived only from
SNPs within the defined region.

Functional population-sense heritability
Genes are the most important functional units of the genome. In

order to investigate their contribution to variation in cognition we

partitioned, for each of the autosomes, the genetic variance
captured by SNPs located inside and outside genes. SNPs mapping
to each autosome were separated into those that mapped within
5 kb of the transcription start and end sites of a gene (i.e. within
genes) and those that mapped outside these limits. Genome build
37 was used to identify genes and gene limits. A linear mixed
model was used to fit forty-four variance components simulta-
neously, capturing SNPs within genes and SNPs outside genes on
each of the 22 human autosomes [Model 4].

Y~Xbz
X22

c~1

Iuin
c z

X22

c~1

Iuout
c ze ðModel 4Þ

Where uc
in is the vector of additive genomic random effects which

for each chromosome is solved using a GRM derived from SNPs
which lie within genes or within a 5 kb boundary of a gene on that
chromosome c; uc

out is a vector of additive genomic random
effects solved using a GRM derived from SNPs which lie outside
genes on that chromosome c.

For comparison we grouped SNPs by chromosome and the
population-sense heritability was estimated for individual chro-
mosomes [Model 5]. This approach was used previously in a meta-
analysis of five cohorts including those described here for adult
fluid and crystallised intelligence [8] but not for cognitive change.

Y~Xbz
X22

c~1

Iucze ðModel 5Þ

Where uc is the vector of additive genomic random effects on
chromosome c solved for each chromosome using a GRM derived
from SNPs which lie on that chromosome c.

Model fitting
Initially all SNPs were fitted in the model to estimate the genetic

variance and overall heritability for the three cognitive traits in the
population. Bivariate analyses to estimate covariances amongst the
three cognitive measures were performed using ASReml 2
software [33]. To avoid confounding of genetic variation of the
trait and potential variation due to population stratification,
eigenvectors were estimated from the genetic relationship matrix
and the first 20 principal components were fitted as covariates in
the linear mixed model. Sex was also fitted into the model.
Analyses were subsequently carried out fitting the regions defined
above to estimate regional and functional population-sense
heritability.

GCTA/ACTA [34] solves the LMM and obtains estimates of
genetic and residual variances by restricted maximum likelihood
(REML) using the average information (AI) algorithm.

Test statistics were obtained using a standard likelihood ratio
test (LRT) statistic calculated as twice the difference between the
log likelihoods of the full model and a null or reduced model that
did not fit a genetic component. For a single test, the expectation
of the LRT for testing one extra variance component is a 50:50
mixture of a point mass of 0 and a chi square distribution with 1df
[35]. This is so because under the null hypothesis the true value of
the variance components is on the boundary of the parameter
space defined by the alternative hypothesis.

Results from the 10,908 regions were ranked by likelihood ratio
test statistic. The top ten non –overlapping or approximately 0.1%
of regions were fitted back into a linear model with an eleventh
‘polygenic’ variance component comprising all the available
autosomal SNPs. This model was tested against a null model
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containing only the polygenic variance component under the
expectation that the likelihood ratio test is distributed as a chi-
square with ten degrees of freedom. We repeated the analyses
without the ‘polygenic’ variance component and obtained virtually
the same results.

Finally, the contribution of the identified top ten regions for
each of the traits were analysed for putative pleiotropic effects
across cognitive phenotypes.

Permutation analysis
To date there is little evidence for the empirical distribution of a

suitable threshold for the LRT statistic when testing multiple
genomic regions. Rowe et al. [36] showed that for variance
components based QTL mapping methods, the test statistic and
the variance explained can be hugely inflated if multiple testing
and the underlying genetic architecture are not properly
accounted for. Given that over 10 000 tests were performed,
many of which were highly correlated due to the overlap of
regions, and the novelty of the approach, we derived the empirical
distribution of the test statistic using ACTA [34] to perform 100
permutations for each of the traits resulting in empirical thresholds
for individual tests ranging from 17.6 for gf to 18.8 for gc for a type
1 error rate of 5%. As 100 permutations is not sufficient to ensure
a stable estimate of the threshold, but testing 10,908 regions for
three traits hundreds of times is computationally intensive, we
repeated the analyses using non-overlapping windows and carried
out a further 500 permutations. A permutation involved randomly
permuting the phenotypic and genotypic data and testing 5454
alternate or non-over-lapping regions on the permuted data set.
For each set of permuted data; i) regional population-sense
heritabilities were estimated for all regions (each spanning 101
SNPs) and ii) The top ten regions ranked by LRT test statistic from
each permutation were simultaneously fitted into a linear model to
determine their combined contribution. These were fitted with
and without a ‘polygenic’ component. This gave the empirical
distribution of the test statistic under the null hypothesis for fitting
a single region and for when the ten top ranking regions are fitted
simultaneously.

‘One SNP at a time’ genome-wide association analysis
The software package PLINK [37] was used to carry out single

SNP association tests to assess whether the SNPs of greatest
significance were associated with the regions from [4] that
explained the greatest amount of genetic variation.

Results

Variance captured by all autosomal SNPs or population-
sense heritability

For simplicity we define the proportion of phenotypic variance
captured by SNP genotypes in unrelated individuals as population-
sense heritability (h2

ps) to distinguish it from the often used narrow
and broad sense heritability [29]. Heritabilities, phenotypic and
genetic correlations are given in Table 1. Population-sense
heritability estimates for cognitive traits ranged from 0.19 (s.e.
0.2) to 0.37 (s.e. 0.19). Estimates for crystallised intelligence are
similar to those from the larger previous study [8]. Fluid
intelligence estimates differ slightly due to differences in sample
size, study design and population demographics. Fluid intelligence
was highly genetically correlated to both cognitive change
rA = 0.95 (s.e. 0.25), and to crystallised intelligence rA = 0.66 (s.e.
0.34) (i.e. the amount of correlation emerging from pleiotropy is
high). There was little genetic correlation between crystallised
intelligence and cognitive change rA = 0.008 (s.e. 0.53).

Regional population-sense heritability
The distributions of regional population-sense heritability

estimates for the three traits are similar. Most regions explain
variance close to zero with 1.7 to 2.5% explaining greater than 1%
of variation, 0.07 to 0.18% explaining greater than 2%, and only
0.02% explaining greater than 3%.

The likelihood ratio test statistic for the regional heritability scan
across the genome and the most significant hits from the genome
wide association analyses (2log10P-value.2.7) are given in
Figure 1. Table 2 gives details of the top ten regions for each
trait ranked by LRT and appendix 2 gives the known genes for
each of these regions and pathway analysis. The top ten single
SNP associations for the three traits were all within regions with
h2

ps.1% (Table S1 in File S1). The correlation between the
greatest 2log10 (P-value) for SNP association in each region and
2log10 P-value from the LRT test for each region was 0.52
(Figure 2). When regions were ranked by LRT a region on
chromosome 6 ranking 3rd and 4th for cognitive change and fluid
intelligence respectively also contained the top SNP in the GWAS
for cognitive change. For fluid intelligence, the top ranking region
on chromosome 5 spanned the third ranking single SNP
association (P,3.41E-06). This region on chromosome 5 associ-
ated with fluid intelligence was the only region for all three traits to
exceed genome-wide significance at the P,0.10 threshold. When
the top ten regions (Table 2) from each trait were fitted together in
a LMM they explained 13% (Pperm = 0.58), 15% (Pperm = 0.11)
and 18% (Pperm = 0.43) of the phenotypic variation for crystallised
intelligence, fluid intelligence, and cognitive change respectively.
Table 3 shows regions that explained greater than 1% of
phenotypic variation in more than 1 trait including regions on
chromosome 9 and 11 that potentially have pleiotropic effects on
all three traits.

Regions were defined by number of SNPs; hence there was
variation in physical length of regions across the genome, with the
average region spanning 534 kb. No relationship was found
between the physical length of a region and its significance or the
amount of additive genetic variation explained (Figure S1 in File
S1).

Permutation analyses
To estimate empirical thresholds, phenotypic data for each of

the three traits were permuted 500 times to attain an estimate of
the null distribution when genotype and phenotype were randomly
assorted. We performed 5,454 REML analyses across the genome
for each of the permuted data sets resulting in over 8.2 million
single tests. The results were ranked by log likelihood and
compared to a null model using an LRT. The resulting genome-
wide significance thresholds for the LRT (P,0.05) were 17.2 for
crystallised intelligence, 17.5 for fluid intelligence and 17.08 for
cognitive change Figure 3 shows that the distributions of the test
statistic for the three traits were very similar and that they were
highly inflated when compared to the expectation of the null
distribution for a single test. Thresholds were close to those for the
10,908 tests but less conservative than a Bonferroni correction for
5,454 independent tests which would result in a 5% threshold of
19.7. Table 4 shows that the genome-wide threshold values were
stable after 300 permutations indicating that 500 permutations was
sufficient to estimate 5 and 10% genome-wide thresholds.

The distributions from the permutation analysis (Figure 3) show
that by chance in 5% of cases the variance explained by a region
exceeded 3.8, 3.8 and 4.0% for gc, gf and cognitive change
respectively.

For each permutation the top ten regions were identified, i.e.
those with the greatest likelihoods and fitted simultaneously into a
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LMM. An LRT was calculated as twice the difference between the
log likelihood of a model fitting ten regions and a null model
without a genetic effect, and we did not fit a polygenic model when
testing the top ten regions. The 95th percentile was used to
estimate a 5% genome-wide threshold for significance of the LRT
between a model fitting the top ten regions of the genome; and a
null model. The polygenic component was omitted as the original
genetic structure was removed by the permutation of genotypes
and phenotypes. The 5% genome-wide threshold was P,3.3E-24
for crystallised intelligence, P,1.42E-24 for fluid intelligence and
P,1.03 E-24.

Functional population-sense heritability
Figure 4 shows estimates of population-sense heritability for

each of the 22 autosomes, and for h2
ps estimates using information

from SNPs inside genes and estimates using information from
SNPs outside genes for each chromosome and trait. For
crystallised intelligence heritability estimates from SNPs on
autosomes 3, 5, 11, 15 and 19 were significantly different from
zero. When divided further chromosomes 9, 15 and 19 had
significant estimates for h2

ps within genes. For fluid intelligence,
estimates of h2

ps on chromosomes 3, 9 and 10 were significant,
explaining 6, 5, and 8% phenotypic variance, respectively.

Table 1. Population-sense heritability (diagonal), phenotypic (upper diagonal) and genetic (lower diagonal) correlations for
measures of general intelligence and cognitive decline estimated from relationship matrices based on 547,750 SNP genotypes.

Trait Crystallised Intelligence Fluid Intelligence Cognitive change

Crystallised intelligence (n = 1791) 0.36 (0.19) 0.59 (0.01) 0.22 (0.02)

Fluid intelligence (n = 1706) 0.66 (0.34) 0.19(0.20) 0.78 (0.009)

Cognitive change (n = 1602) 0.0084(0.53) 0.95 (0.25) 0.26(0.22)

Heritabilities on diagonal, genetic correlations below diagonal, phenotypic correlations above diagonal and standard errors given in brackets.
doi:10.1371/journal.pone.0081189.t001

Figure 1. Plot of likelihood ratio test for phenotypic variance explained by each of 10,908 regions (groups of 101 consecutive
SNPS) (bars) and 2log10 P-values.2.7 for single SNP association (circles). Dashed line is 1% nominal significance threshold for LRT for
individual regions, dotted line is 5% genome-wide significance threshold for individual regions obtained by permutation analysis. A crystallised
intelligence n = 1791, B fluid intelligence n = 1706 , and C cognitive change n = 1602.
doi:10.1371/journal.pone.0081189.g001
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Autosomal h2
ps within genes was significant for chromosomes 9,

14 and 15 and outside genes for chromosomes 3, 16 and 22. For
cognitive change chromosomes 4 and 10 had significant estimates
of h2

ps with chromosome 6 significant for h2
ps outside genes.

Genetic variation of the traits differed across autosomes and for
SNPs within or outside genes. SNPs within genes explained 48, 64
and 38% of the total genetic variation for gc, gf and cognitive
change respectively. There was no correlation between estimates
of autosomal heritability and the number of SNPs used to estimate
each genetic relationship matrix (Table S2 in File S1). Distribu-
tions of allele frequencies for SNPs inside and outside genes did
not differ P,0.99).

Brain-related intermediate traits
The top region associated with gf was genome-wide signifi-

cant at the 10%, however, even if the locus was truly associated
with gf we were not expecting a high level of statistical support
due to the small sample size of the study. In order to gather
further independent evidence that could support or reject the
association of the locus with gf we assembled previously
published data of brain-measured intermediate phenotypes
[38]. Within the chromosome 5 region we found two DNAm
sites, cg04431054 and cg15851800 and two mRNA probes
ILMN_1652306 and ILMN_1685140. DNAm sites cg04431054
and cg15851800 are located 381 base-pairs apart, cg04431054
is 277 base-pairs upstream of PRRC1, and cg15851800 is 104
base-pairs downstream of the transcription start site of PRRC1,

which spans chromosome 5 at base-pair location 126,853,301–
126,890,781. ILMN_1685140 targets transcripts of PRRC1
(Proline-Rich Coiled-Coil 1) and ILMN_1652306 transcripts of
MEGF10, a receptor for amyloid beta uptake, located between
position 126,626,523 and 126,801,429. All four intermediate
phenotypes were measured on tissue from the Cerebellum
(CRBL), Frontal Cortex (FCTX), the Pons (PONS) and the
Temporal Cortex (TCTX). ILMN_1652306 did not pass our
quality control procedure for the CRBL and thus was excluded
from further analyses. Regional genetic relationships were
estimated from 86 available SNPs located within the top 101
SNPs region associated with gf. h2

ps was estimated with ACTA
[34].

The 86 SNPs located on chromosome 5 between 126711782–
127335370 base-pairs explain a significant (P,0.0001) proportion
of the phenotypic variation of cg04431054 for each of the four
brain tissues (Table 5). h2

ps of cg04431054 measured in the CRBL,
FCTX, PONS and TCTX brain regions was 0.46, 0.24, 0.28 and
0.33, respectively.

So far, we have shown that the 623 kb region of chromosome 5
associated with gf is associated with cg04431054 levels in the
CRBL, FCTX, PONS and TCTX brain regions. However, we
have not yet shown a direct link between cg04431054 levels and gf.
To do that, we estimate the effect of the 86 SNPs on the brain
phenotypes and construct a genetic score [39] for each individual
with gf phenotypes. A significant regression of genetic score for
cg04431054 with gf would indicate a link between the levels of

Figure 2. Comparison of significance of region and top SNP within region. Scatter plot of 2log10 P-values for single SNP association of
greatest significance in region and significance of LRT test for variance explained by entire region (each region contains 101 SNPs). Correlation
coefficient is 0.52.
doi:10.1371/journal.pone.0081189.g002
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cg04431054 and gf. Only one of the four brain regions (TCTX)
showed a significant association with gf (P = 0.004), and explained
0.5% of the phenotypic variance. The regression coefficient was
positive (0.295, se = 0.004) indicating a positive correlation
between methylation levels and gf. Hence, our analyses of brain-
related intermediate phenotypes provides supporting evidence of
the region being truly associated with gf, uncovers the likely target
region of the brain associated with gf and identifies PRRC1 as a
candidate gene for gf.

Discussion

We implemented a recently proposed method of genome
scanning by expanding single SNP analysis to the estimation of
genetic variance explained by regions spanning 101 co-located
SNPs. After deriving empirical thresholds by permutation analysis
we show that stringent thresholds close to that of a bonferroni
correction are necessary for evaluating the likelihood ratio test
statistic and that the distribution of multiple tests is highly inflated

Table 2. Variance explained for top ten regions ranked by significance or LRT for crystallised and fluid intelligence and cognitive
decline.

Chr
region
start (bp)

region
end (bp)

h2
ps

region s.e
h2

ps full
modela s.e. LRT

Greatest single SNP
association in region
2LOG10 (P)

SNP
Var (r2)

Crystallised Intelligence

10 84493034 84943238 0.01 0.008 0.011b 0.007 14.08 4.4 0.009

5 153024650 153532086 0.02 0.01 0.017 0.009 12.07 2.45 0.003

10 84323605 84670475 0.02 0.012 - - 11.85 3.78 0.008

13 57449351 58113705 0.01 0.008 0.01 0.006 10.48 4.45 0.008

9 78430995 78767837 0.01 0.008 0.008 0.006 10.08 3.56 0.008

10 17430161 17790975 0.01 0.008 0.015 0.008 9.95 4.79 0.008

11 102565882 102978790 0.02 0.01 0.015 0.008 9.72 2.43 0.005

14 20640453 21072443 0.03 0.014 0.02 0.012 9.57 2.42 0.004

6 51858157 52238923 0.01 0.008 0.007 0.006 9.55 2.46 0.005

2 84702898 85301342 0.01 0.008 0.013 0.008 9.49 1.59 0.003

13 100772901 101089435 0.02 0.009 0.014 0.008 8.78 2.97 0.002

Fluid Intelligence

5 126711782 127335370 0.02 0.009 0.013 0.008 16.00 5.47 0.013

6 39140691 39378453 0.03 0.013 0.016 0.012 14.10 3.74 0.009

13 65117143 65633593 0.02 0.01 0.015 0.01 14.07 4.15 0.009

6 740414 1013400 0.02 0.009 0.013 0.008 12.36 4.74 0.011

6 39236400 39493104 0.04 0.018 - - 12.34 3.52 0.008

11 102565882 102978790 0.02 0.009 0.015 0.008 11.55 4.42 0.010

9 78430995 78767837 0.01 0.009 0.01 0.007 11.07 3.25 0.007

11 102824059 103220693 0.01 0.007 - - 10.91 3.34 0.007

3 101162780 101999012 0.02 0.011 0.02 0.011 10.55 5.04 0.012

5 33703559 34034521 0.02 0.012 0.016 0.01 9.44 0 0.005

2 151358558 151655394 0.02 0.01 0.012 0.008 9.37 3.43 0.008

5 127010643 127650653 0.01 0.009 0.015 0.008 9.33 0.91 0.007

Cognitive Change

4 53606097 54158143 0.02 0.009 0.01 0.008 10.44 4.4 0.011

15 90960003 91404141 0.02 0.011 0.017 0.011 10.15 4.83 0.012

6 740414 1013400 0.02 0.009 0.014 0.009 10.08 5.57 0.014

4 62441864 63300488 0.03 0.014 0.024 0.012 9.50 2.57 0.006

6 891665 1138987 0.02 0.009 - - 8.77 1.56 0.003

6 12418779 12930959 0.02 0.009 0.014 0.009 8.70 4.02 0.010

2 237734083 238123037 0.02 0.011 0.016 0.006 8.30 3.6 0.009

13 98189341 98677491 0.04 0.022 0.035 0.018 8.12 2.59 0.006

14 64270578 64666246 0.02 0.011 0.016 0.01 8.10 2.77 0.006

6 88043140 88678348 0.01 0.007 0.008 0.007 8.08 3.37 0.008

4 148617678 149254898 0.02 0.01 0.023 0.013 7.92 2.71 0.006

aheritability of region when full model fitting 11 variance components first ten independent (i.e. non overlapping) regions and rest of genome.
bOnly the best supported of multiple overlapping regions was fitted.
doi:10.1371/journal.pone.0081189.t002
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when compared to the null distribution for a single test. This is also
true for estimates of heritability (h2

ps). Table 2 shows that within
the top ten regions ranked by LRT, only a region on chromosome
6 for fluid intelligence and a region on chromosome 13 for
cognitive change explained a greater proportion of the genetic
variance (h2

ps) than 95% of the ranked permutation analyses.
Despite this the LRT for the comparison of the linear models did
not achieve genome wide significance for either of these regions.

We did find a genome wide significant region (P,0.10) for the
LRT statistic on chromosome 5 associated with fluid intelligence.
The region spans the CTXN3 gene (cortexin 3) (Figure 5), a brain
(including foetal brain) and kidney specific integral membrane
protein, highly enriched in cortex and located on 5q23. This gene
has been previously identified as a candidate for schizophrenia and
measures of cognitive change [40]. In the GWAS, the third highest
ranking SNP rs790837 (P,1026) is located at position 127004506,
10 kb away from this gene.

The CTXN3-SLC12A2 region is a strong candidate region and
has been linked to brain function and schizophrenia in multiple
studies [41,42,43]. The relationship between pre-morbid measures
of intelligence and the risk of schizophrenia is also documented as
greater than with many other psychoses [44,45]. Although the
overlapping region containing SLC12A2 ranked within the top ten
regions with an LRT of 9.33 (Table 2), here the region containing

cortexin 3 (LRT = 16) was the only region to achieve genome wide
significance (P,0.10). Nonetheless, the strongest evidence suggests
that variation of methylation levels at the promoter region of
PRRC1 are mediating variation if gf. The function of the Golgi-
associated PRRC1 gene in the brain is unknown and will require
follow-up functional studies.

The population-sense heritabilities for fluid intelligence are
lower than those previously reported possibly due to an older
demographic. Family based (narrow-sense) estimates of heritability
for IQ related traits have been shown to decline somewhat with
age [46]. This, in part, will be due to an increase in environmental
variance.

Autosomal heritability
In general the estimates of genomic heritability for chromo-

somes reflected the analysis of smaller regions in that the regions
with the highest test statistics are located on chromosomes
explaining the greatest variance. The sum of heritability estimates
for individual chromosomes was inflated by 20–50% compared to
estimating the heritability for the entire genome. When heritabil-
ities were estimated from SNPs inside and outside genes (i.e. fitting
44 variance components) heritability for fluid intelligence was
doubled when compared to fitting the 22 autosomes (Table S3 in

Table 3. Pleiotropic regions affecting multiple traits.

Chr region start (bp) region end (bp) h2 Crystallised s.e. h2 Fluid s.e. h2 Cog change s.e.

6 740414 1013400 0.00 0.01 0.02 0.01 0.01 0.01

14 64270578 64666246 0.00 0.00 0.02 0.01 0.02 0.01

9 78430995 78767837 0.01 0.01 0.01 0.01 0.02 0.00

10 17430161 17790975 0.01 0.01 0.02 0.00 0.00 0.01

11 102565882 102978790 0.02 0.01 0.02 0.01 0.01 0.01

11 102824059 103220693 0.02 0.01 0.02 0.01 0.01 0.01

doi:10.1371/journal.pone.0081189.t003

Figure 3. Distribution of the likelihood ratio test and variance explained under the null hypothesis. Comparison of the distribution of
likelihood ratio test and variance explained for 5454 regions spanning 101 SNPs for fluid intelligence, crystallised intelligence and cognitive change.
Lower set of distributions for each plot are from the real data, upper set are the 5% genome-wide significance threshold from each of 500 permuted
data sets i.e. empirical null distribution.
doi:10.1371/journal.pone.0081189.g003

Complex Variation of Intelligence

PLOS ONE | www.plosone.org 8 December 2013 | Volume 8 | Issue 12 | e81189



  
 
 

 155 
 

 

File S1). This could be due to fitting so many correlated variance
components simultaneously; however, estimates for crystallised
intelligence remained stable. It is also possible that this is due to
the lack of independence of SNPs within chromosomes inflating
estimates, although fitting all 44 variance components simulta-
neously should account for this. It is probable that more
information from a greater number of individuals would enable
more precise estimates of covariances and therefore more accurate
estimation and partition of variance components. It is also possible

that crystallised intelligence is a more polygenic trait with some
genetic variance contributed from most chromosomes whereas
fluid intelligence and cognitive change show variation around
many autosomal estimates which are truly zero.

Pleiotropy
Only 2.5% of regions show an h2

ps greater than 1%. Despite
this there is much overlap between the three traits with top regions
affecting multiple traits (Table 3). This suggests that the three traits
are likely to be affected by the same genes and biological pathways.
However, the direction of the effects in these regions will tend to
be different for traits such as cognitive change and crystallised
intelligence that show a genetic correlation close to zero (Table 1).
A single region might also contain linked QTL alleles or regulatory
factors in coupling or cis.

It is also feasible that regional significance is biased by other
factors making a region more or less likely to explain variation in
one or multiple traits. We found no relationship between physical
length of region and test statistic. Yang et al. [29] proposed that
the genetic variation explained by a region was proportional to the
total length of genes. We did not find this in the current study. The
unadjusted r2 values for the relationship between heritability of
autosomes and total length of known genes on each chromosome
was 0.14, 0.02, and 0.01 for crystallised intelligence, fluid
intelligence, and cognitive change with corresponding p-values
of 0.07, 0.54, and 0.65. It is possible that this is dependent on the
heritability and the genetic architecture of the trait, i.e. the more

Table 4. Genome wide thresholds for the Likelihood Ratio
Test (LRT) derived from N permutations.

Genome-wide threshold for LRT

Fluid intelligence
Crystallised
intelligence Cognitive Change

N P,0.05 P,0.10 P,0.05 P,0.10 P,0.05 P,0.10

100 19.0 16.5 19.4 16.3 18.0 16.6

200 17.8 15.8 18.1 16.3 17.6 16.5

300 17.5 15.8 17.6 16 17.0 16.1

400 17.4 15.8 17.1 15.8 17.3 16.3

500 17.5 15.8 17.1 15.9 17.2 16.2

doi:10.1371/journal.pone.0081189.t004

Figure 4. Distribution of population sense-heritability inside and outside genes. Distribution of heritability estimated from all SNPs, SNPs
inside genes and SNPs outside genes by chromosome for crystallised intelligence, fluid intelligence and cognitive decline.
doi:10.1371/journal.pone.0081189.g004
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polygenic the trait the higher the correlation between the amount
of heritable genetic material on each chromosome and the
estimate of heritability. This is reflected in Yang et al.’s report
where, although height and BMI were highly correlated with the
length of genes, there was variation amongst traits with an r2 value
of only 0.02 for von Willebrand factor.

Distributions of the regional heritability test statistic (2log10 P-
value) were compared across traits and gender using a Kolmo-
gorov-Smirnov test. Cognitive change differed from fluid and
crystallised intelligence (P,2.2E-16 and P,5.0E-11, respectively).
Differences between crystallised and fluid intelligence were less
marked (P,0.01). Interestingly, we found some evidence that the

distribution of heritability across the genome for cognitive change
differs in males and females. Genetic variation was higher in
females and the Kolmogorov-Smirnov test of the distributions of
heritabilities for the 10,908 regions in males (n = 871) and females
(n = 933) was suggestive at P-value of 0.06, although the test does
not account for the correlation of the regions and is likely to be
inflated. A previous study showed higher variation within males for
a measure of general intelligence [47]. It is possible that the
increased environmental variance attributable to old age happens
sooner in males than females.

It is not clear from this study whether there is utility in a method
which expands single SNP analyses to encompass genomic regions

Table 5. Population-sense regional heritability for each brain-measured intermediate phenotype within the top gf associated
region on chromosome 5.

Regional heritability of brain-measured intermediate traits

Intermediate Phenotype Tissue h2
ps SE P

cg04431054 CRBL 0.463 0.124 1.370E-08

cg15851800 CRBL 0.000 0.075 0.500

cg04431054 FCTX 0.237 0.104 1.190E-05

cg15851800 FCTX 0.020 0.050 0.325

cg04431054 PONS 0.278 0.111 1.270E-05

cg15851800 PONS 0.003 0.046 0.477

cg04431054 TCTX 0.326 0.110 1.020E-08

cg15851800 TCTX 0.082 0.078 0.063

ILMN_1685140 CRBL 0.025 0.053 0.315

ILMN_1652306 FCTX 0.000 0.049 0.500

ILMN_1685140 FCTX 0.000 0.041 0.500

ILMN_1652306 PONS 0.000 0.033 0.500

ILMN_1685140 PONS 0.046 0.051 0.075

ILMN_1652306 TCTX 0.000 0.079 0.500

ILMN_1685140 TCTX 0.000 0.045 0.500

Tissue: brain region, h2
ps: estimated regional population-sense heritability, SE: estimated standard error of the regional population-sense heritability. P:p-value from the

LRT test testing the significance of the genetic variance component.
doi:10.1371/journal.pone.0081189.t005

Figure 5. Region on chromosome 5 significantly associated with fluid intelligence. Annotation from Ensembl genome browser.
doi:10.1371/journal.pone.0081189.g005
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and that it is able to capture complex local genetic architectures.
We acknowledge the limitations of our analysis. Statistical power
and accuracy of estimation of variance components is most
certainly an issue. Fluid intelligence and cognitive change are
important traits and to date lifetime measurements are rare. This
limits our ability to increase the sample size. We have shown that
the heritability of a region or autosome is not merely a function of
its length or the number of genes contained therein. It will be
desirable to test the methodology with much larger data sets. It
would be interesting to assess whether the regions of greatest
significance are enriched for psychiatric genes in comparison to
randomly selected regions. Gene set enrichment analyses devel-
oped for microarray analysis could be a useful tool for this.

Conclusions

Using a recently proposed population-based linkage scan of the
genome we have conducted a search for regions significantly
associated with measures of cognition and age related cognitive
change. Permutation analysis shows that test statistics and variance
explained by a single window were highly inflated when compared
to the assumption of a chi square distribution for a single test. We
found a significant region on chromosome 5 associated with fluid
intelligence explaining 2% of phenotypic variation.

Although single SNP and regional analysis have similar profiles,
the ranking of the top regions differ. The regions with the highest
test statistic although not genome-wide significant did affect
multiple traits and encompass biologically plausible and interesting
putative candidate genes. These regions indicate areas of the
genome where re-sequencing efforts could be focused to disen-
tangle the fine scale contribution of linked genes and pathways.

Although our methodology would benefit from larger sample sizes
and increased power, the results give new insights into the study of
general intelligence and the underlying mechanisms of cognitive
change.
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