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Abstract. 

A better understanding of the molecular biology of the essential cellular processes in 

Plasmodiumfalciparum is required if new drug targets are to be discovered against 

malaria. One possible focus for new therapies is DNA replication in the parasite. 

Several genes involved in this process have already been isolated and characterised, 

DNA polymerases a and 8, PCNA, a primase subunit and topoisomerase I and H. 

To continue this work the parasite homologues of three component proteins of the 

replication factor C complex have been isolated and characterised. 

PfRFC 1 is a single copy gene present on chromosome 2. It has an open reading 

frame of 2712bp, which predicts a protein of 904 amino acids with a molecular 

weight of 104kDa. It has a transcript of 4kb. PfRFC2 is also present as a single 

copy gene on chromosome 2. It has an open reading frame of 990bp, which predicts 

a protein of 330 amino acids with a molecular weight of 38kDa. It has a transcript of 

1.6kb. PfRFC3 is present as a single copy on chromosome 14. It has an open 

reading frame of 1032bp, which predicts a protein of 344 amino acids with a 

molecular weight of 39kDa. There is one intron of 250bp present at the 5' end of the 

gene. It has two transcripts of 1.4 and I.M. 

Small fragments of the three genes were expressed as histidine fusion proteins in E. 

coil; these were used to make polyclonal antisera in rabbits. Full-length expression 

of both PfRfcl and PfR.fc2 was attempted in E. coil both as histidine and GST fusion 

proteins. However, only the expression of Pfkfc2was successful. 

Expression of the three genes has been followed during the intraerythrocytic stages 

of the parasites lifecycle. Northern analysis showed that the transcripts of all three 

accumulate in trophozoite and schizont stages. Interestingly, PfRFC2 has two larger 

transcripts of 2.5 and 4kb only present in the schizont sample. The antisera raised 

against the three genes were used in western analysis and immunofluorescence 

assays. A similar pattern was seen here with the proteins accumulating in the 

trophozoite and schizont stages. Anti-PfRfcl recognised two bands of 

approximately 1 OOkDa while anti-PfRfc2 and anti-PfRfc3 both recognised proteins 

of approximately 32kDa. The immunofluorescence assays showed that the proteins 

are localised in the nucleus. 
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The possible use of a bacterial two-hybrid system for screening P. falciparum 

libraries for novel interacting proteins has been evaluated using the interaction of the 

PCNA binding domain of PfRFC 1 with PfPCNA. No interaction was detected with 

the system. When possible reasons for this were investigated it was found that 

neither protein was being expressed. 
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INTRODUCTION. 



1.1 Malaria. 

Malaria is the disease caused by parasites of the genus Plasmodium. Human malaria is 

found in the tropics and sub-tropics and is present in over a hundred countries. 40% of 

the world's population is at risk of malaria and at least 100 million people will develop 

the disease each year leading to 2 million deaths (Brown, 1992; Miller et al., 1994). 

Eighty per cent of these cases occur in sub-Saharan Africa where it mainly affects 

infants and children under the age of five. 

References to the fevers of malaria have been known since ancient times with 

Hippocrates being the first physician to describe the clinical aspects of the disease and 

its complications. The fevers were associated with marshy areas and it was believed that 

the airs (mal:bad, aria:air) coming from the swamps caused the disease. It was not until 

1880 that Laveran, a French army surgeon in Algeria, described malaria parasites in the 

red blood cells of humans; it was then another seventeen years before the mode of 

transmission was discovered. Nearly 120 species of Plasmodia have been identified in a 

wide range of hosts including birds, reptiles, rodents, primates and humans. Four 

species of Plasmodium infect man, P. malaria, P. vivax, P. ovale and the more severe P. 

falciparum (Bruce-Chwatt, 1993). 

The World Health Assembly adopted the idea of malaria eradication in 1955 and two 

years later the campaign went global when it was taken over by the World Health 

Organisation. As part of an eight-year programme, insecticides and anti-malarial drugs 

were used to eradicate the mosquito and treat human reservoirs of the disease. After 

initial success the disease again seemed to be returning to regions that it had been 

eradicated from and by the 1970s malaria was once again endemic in tropical and sub-

tropical regions although it had receded from some more temperate regions (Bruce-

Chwatt, 1993). The main reason for this re-emergence has been the appearance of drug-

resistant parasites, which now affect almost every country, where the disease is endemic. 

Chloroquine is now all but useless in many countries and hale the cases in Thailand are 

resistant to mefloquine, which was only licensed in 1985 (Brown, 1992). 
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1. 2 P.falciparum life cycle. 

The life cycle of P. falciparum consists of an exogenous sexual phase (sporogony) 

within female Anopheles mosquitoes and an endogenous asexual phase (schizogony) in 

the vertebrate host (Bruce-Chwatt, 1993) (figure 1.1). 

Infection in the human host begins when sporozoites from the saliva of an infected 

mosquito are injected into the host's bloodstream during a blood meal. The sporozoites 

invade the hepatocytes and undergo multiplication for between 6-16 days before 

thousands of merozoites rupture the cells to invade erythrocytes and start the 

erythrocytic cycle. The merozoites initially develop into small, circular forms known as 

rings, which grow in size and become irregular in shape as they develop into 

trophozoites. This is the feeding stage as the parasite absorbs the haemoglobin of the 

erythrocyte. After a period of growth the trophozoite undergoes erythrocytic schizogony 

during which the nucleus of the parasite divides three to five times followed by a 

partition of cytoplasm to form a schizont. The cellular forms contained in the schizont 

are merozoites. Once schizogony is completed the red blood cell bursts and the 

merozoites are released into the blood stream resulting in the symptoms of malaria, 

which range from the fevers that coincide with the release of merozoites, to anaemia and 

occlusion of the brain capillaries by infected erythrocytes. 

The released merozoites may re-invade erythrocytes undergoing a further cycle of 

intraerythrocytic schizogony or they may be committed to sexual differentiation as 

gametocytes. It is not known what affects this differentiation but body temperature, host 

immunity and nutrient levels are thought to be involved. A male microgametocyte or a 

female macrogametocyte are formed, and both types of gametocyte are taken up into the 

mosquito mid-gut in a subsequent blood meal. The erythrocyte membrane is shed and 

the parasites complete gametogenesis. The microgametocyte divides three times 

mitotically and a process known as exflagellation results in eight microgametes. The 

female macrogametocyte matures into a macrogamete. Once' nc the gametes are formed 

and escape from the erythrocytes, fertilisation occurs. The zygote is the only 

developmental stage to be diploid as meiosis follows rapidly, and during the next 12-18 
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hours the zygote gives rise to an ookinete. The mature ookinete passes through the mid-

gut epithelium to rest between the basement cell membrane and the basal lamina of the 

mid-gut wall. It then differentiates into an oocyst, which enlarges and matures over the 

next 10-12 days. During this development, thousands of haploid sporozoites are formed 

as the nuclei undergo mitotic divisions. The elongated, motile sporozoites burst through 

the wall of the oocyst and are released into the body cavity from where they can reach 

the salivary glands of the mosquito. They can now be injected into the human host when 

the next blood meal is taken. 

1.3 P. falciparum genome. 

1.3.1 Genome size and DNA composition. 

For most of the life cycle, the P.falciparum genome is haploid with zygote formation 

and meiosis occurring only during the mosquito phase of development (Walliker et al., 

1987). The size of the genome was initially estimated at 1-3x 107  bp  based on the analysis 

of P. falciparum genomic libraries (Goman et al., 1982, Pollack etal., 1982, Wellems et 

al., 1987). However, more recent genome mapping work has pointed to 3x10 7bp being a 

more accurate estimation of the size (Walker-Jonah et al., 1992). The P. falciparum 

genome has an A+T content that averages 69% in coding regions but increases to 90-

95% in non-coding regions. The overall A+T content in the three codon positions 

increases in the order 1st, 2nd, 3rd, position and codons with T or especially A in the 3rd 

position are strongly preferred. No methylated bases seem to be present in the genome 

(Pollack et al., 1982, Weber, 1987). 

'14'A1.3.2 Molecular karyotype and chromosome plasticity. 

Classical cytogenetics is not possible with Plasmodium chromosomes, as they do not 

condense during meiosis (Foote and Kemp, 1989). It was only with the advent of pulsed 

field gel electrophoresis that the chromosomes could be counted. Using this method, 14 

chromosomes, ranging in size from 800kb and 3500kb, were identified in P. falciparum 
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(van der Ploeg et al., 1985, Kemp etal., 1985). The number of kinetochores counted by 

electron microscopy (Prensier and Slomianny, 1986) also confirmed this. 

Size differences of up to 20% have been detected between homologous chromosomes 

from different file isolates and from different laboratory strains of several Plasmodium 

species (Kemp et al., 1985, Sinnis and Wellems, 1988, van der Ploeg et al., 1985). 

These polymorphisms can be generated during both mitosis and meiosis (Corcoran et 

al., 1988). Transcription mapping of the entire chromosome 2 suggested that it was 

compartmentalised with a transcribed central region and silent polymorphic ends, which 

represent 20% of the chromosome. The central 800kb of the chromosome is conserved 

between strains where the housekeeping genes and intraerythrocytic stage genes are 

present while antigen encoding genes map to just inside the sub-telomeric regions 

(Lanzer et al., 1993). The polymorphic regions have been found to contain arrays of 

repetitive sequence elements (deBruin et al., 1994). This suggests that they may be sites 

of preferential chromosome pairing and formation of synaptonemal complexes and 

chiasmata during recombination. Crossing-over and gene conversion between 

subtelomerically located antigen genes could encourage the emergence of genetically 

diverse parasites with novel antigen complements (Vernick et al., 1988). 

1.3.3 Chromatin structure. 

The first demonstration that P. falciparum DNA is organised into nucleosomes came 

when Cary et al., (1994) demonstrated that micrococcal nuclease digestion of genomic 

DNA yielded a ladder of DNA fragments in multiples of 1 8Obp. The multiples of 1 8Obp 

represent the DNA packaged into nucleosomes, which is then protected from the 

nuclease. The gene encoding histone 2A has been isolated from P. falciparum and is 

highly conserved (Creedon et al., 1992) and a set of major proteins have been identified 

from P. falciparum that are similar in size and charge to histories isolated from 

mammalian cells (Cary et al., 1994). It has also been noted that chromosome breakages 

within the KAHIRP gene on chromosome 2 do not occur randomly but follow a regular 

pattern suggesting that the breakage events may occur within the linker regions of 

nucleosomes (Lanzer etal., 1994). 
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1.3.4 Extrachromosomal DNA. 

Like all the apicomplexans, P. falciparum contains two extrachromosomal DNAs: 

multiple copies of the tandemly repeated 6kb element and a single copy of the 35kb 

circle (Wilson and Williamson, 1997). Sub-cellular fractionation has shown that they 

have different compartments in the cell and that the 6kb element resides in the 

mitochondrion (Wilson et al., 1992). The evidence that the 6kb element is maternally 

inherited (Creasey et al., 1994) confirmed this. The 6kb element encodes three 

characteristic mitochondrial genes: cytochrome c oxidase subunits I and III and 

apocytochrome b as well as highly fragmented large and small rRNAs (Feagin, 1994). 

The 6kb element is also polycistronically transcribed, which is consistent with other 

mitochondrial genomes (Ji et al., 1996). 

The 35kb circle was originally thought to be mitochondrial in origin as well (Feagin, 

1994) but more recent evidence suggests that it is a remnant of a plastid genome of a 

photosynthetic eukaryote (Palmer, 1992). The 35kb circle has now been completely 

sequenced and contains genes for duplicated large and small subunit rRNAs, 25 species 

of tRNA, three subunits of eubacterial RNA polymerase, 17 ribosomal proteins and a 

transcription elongation factor. It also contains a member of the Clp family of 

chaperones as well as an open reading frame of unknown function that is found in red 

algal plastids (Wilson et al., 1996). 

1.3.5 Sequencing the genome of P. falciparum. 

A consortium of researchers from the Sanger Centre, UK, The Institute for Genomic 

Research and Naval Medical Research Institute, USA and Stanford University, USA has 

begun to sequence the entire P. falciparum genome. The completion of the malaria 

genome project will provide potential drug and vaccine targets and will lay the 

groundwork for malaria research in the years to come. The project is being carried out 

on separate chromosomes using a random shotgun sequencing approach. The sequence 

of chromosome 2 has been published (Gardner et al., 1998) and chromosomes 3 and 12 

are nearing completion (Carucci et al., 1998). 

7 



1.4 Plasmodium DNA replication. 

1.4.1 DNA replication during the Plasmodium life cycle. 

DNA replication takes place at five points during the life cycle: (1) in the hepatocytes of 

the mammalian host during exo-erythrocytic schizogony; (2) during erythrocytic 

schizogony; (3) during gametogenesis; (4) following fertilisation, before meiosis takes 

place; and (5) in oocysts during the formation of sporozoites (White and Kilbey, 1996). 

Two studies have indicated that DNA synthesis begins in the asexual stages 

approximately 30hours after parasite invasion. DNA replication was found to begin 

during the early trophozoite stages and continue throughout most of schizogony, 

reaching a peak when multinucleate schizonts and segmentors constituted 65% of the 

culture (Gritzmacher and Reese, 1984, Inselburg and Banyal, 1984). These findings 

were similar to those found for P. berghei and P. chabaudi (Janse et al., 1986a, 

Newbold et al., 1982). 

During gametogenesis the DNA content of both micro and macrogametocytes increases 

but this is thought to be due to DNA amplification rather than DNA replication as no 

nuclear segregation takes place (Janse et al., 1986a, 1988). Microgametocytes are 

activated in the midgut and just before exflagellation takes place the DNA is at octoploid 

levels. In P. berghei the three rounds of replication occur in ten minutes which would 

require 1300 origins of replication (Janse etal., 1986a). 

After fertilisation the DNA content of the P. berghei zygote increases from two to four 

times the haploid level in approximately 3 hours; this is consistent with premeiotic 

synthesis (Janse et al., 1986b). Synaptonemal complexes associated with paired 

chromosomes have been detected by electron microscopy at this stage (Sinden et al., 

. 1985).' 

The DNA polymerase inhibitor aphidocolin has been shown to inhibit DNA synthesis in 

both P. falciparum and P. berghei in the developmental stages studied (Inselburg and 

Banyal, 1984, Janse et al., 1986a, 1986b, 1988). The DNA polymerases a, 8 and E are 

all sensitive to aphidocolin suggesting that at least one of them must replicate 

Plasmodium DNA. Attempts to purify these polymerase activities have been made by 
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separating cell extracts on polyacrylamide gels and a stage-specific, aphidocolin-

sensitive DNA polymerase was identified (Abu-Elheiga et al., 1990, Choi and 

Mikkelson, 1991). Antibodies raised against human DNA polymerase a were used to 

precipitate a 1 8OkDa band from parasite extracts, which may represent the P. falciparum 

homologue. Two smaller proteins of 105 and 72kDa had DNA polymerase activity, 

were sensitive to aphidocolin but did not react with the antibody. It was suggested that 

these may be either full-length and degraded DNA polymerase ö or degraded DNA 

polymerase E. 

1.4.2 Cloning the genes for P. falciparum DNA replication proteins. 

The study of chromosomal DNA polymerase activities is complicated by the 

requirement for large numbers of parasites and the presence of contaminating DNA 

polymerase activities from organelles. In this laboratory a different approach is being 

taken and genes encoding the chromosomal DNA replication proteins are being cloned, 

heterologously expressed and the recombinant proteins purified. Chromosomal DNA 

synthesis may then be reconstituted and studied in vitro using these purified recombinant 

proteins. To date, several genes have been cloned, including: DNA polymerases a and 

8, PCNA, topoisomerases I and II, and a primase subunit (Ridley et al., 1991, White et 

al., 1993, Kilbey et al., 1993, Cheesman et al., 1994, Tosh and Kilbey, 1995, 

Prasartkaew et al., 1996). These were identified by screening genomic and cDNA 

libraries with either oligonucleotides designed to conserved regions or heterologous 

probing with S. cerevisiae gene fragments. 

DNA polymerase a. 

Pol a is responsible for initiating DNA replication on both the leading and lagging 

strands (Stillman, 1989, Waga and Stillman, 1994). The enzyme consists of a subunit of 

205kDa containing the polymerase activity, two subunits with primase activity (55-

60kDa and 48-5OkDa) and a 70kDa subunit with unknown function (Wang, 1991). 

The pol a gene from P. falciparum (White et al., 1993) is 5.7kb in length, with a single 

intron of 204bp. It is present on chromosome 4 as a single copy. A transcript of 7kb has 
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been detected and the open reading frame encodes an 1855 residue predicted protein 

with a molecular mass of 205kDa. Examination of the peptide sequence revealed the 

seven sequence motifs, which characterise eukaryotic DNA polymerases and four of the 

five motifs (A-E) identified in poi a sequences are also present. The one motif (A) that 

is absent is also missing from the T brucei DNA polymerase a sequence. 

Primase 53kDa subunit. 

One of the two subunits with primase activity has been isolated from P. falciparum 

(Prasartkaew et al., 1996). The gene has an open reading frame of 1 356bp encoding a 

protein of 452 amino acids. The gene was found to contain 15 introns, which is 

unprecedented for P. falciparum genes, which either contain none, one or two introns. 

Northern blotting identified a single transcript of 2.1kb. The coding sequence was 

expressed using a baculovirus system and the purified recombinant primase protein was 

able to initiate de novo primer formation. 

DNA polytnerase 

Pol 6 is required for the elongation of both the leading and lagging strands during DNA 

replication (Tsurimoto et al., 1990, Waga and Stillman, 1994). The enzyme consists of 

two subunits: a catalytic subunit of 125kDa with polymerase activity and a second 

subunit of 50kDa with an unknown function (Syuaoja et al., 1990). 

The catalytic subunit of pol 6 has been cloned from P. falciparum (Fox and Bzik, 1991, 

Ridley et al., 1991). The gene exists as a single copy on chromosome 10 and it contains 

no introns. The ORF encodes a polypeptide of 1094 amino acids with a predicted 

molecular mass of 120kDa. A major transcript of 5.2kb is detected and also a minor 

transcript of 5.7kb in gametocytes. The sequence contains all seven major motifs used 

to identify DNA polymerases. 

'Ia47JJhe sequence of the 50kDa subunit of pol 6 has also been identified by the malaria 

genome project but has yet to be characterised. 
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Proliferating cell nuclear antigen. 

PCNA is an auxiliary protein required for pot 8 (Tan et al., 1986) where PCNA binds to 

DNA as a homotrimer and acts as a clamp for poi 8 (with RFC acting as the clamp 

loader) (Krishna etal., 1994, Kong etal., 1992). 

PCNA has been cloned from P. falciparum (Kilbey et al., 1993). It is a single copy gene 

of 825bp, located on chromosome 13. There are no introns present in the gene. The 

gene encodes a polypeptide of 275 residues, which predicts a protein of approximately 

30.5kDa. Two transcripts have been reported, a major band at 1.6kb and a minor 

transcript at 2.2kb. 

Topoisomerases I and H. 

DNA topoisomerases alter the topological state of DNA by catalysing the breaking and 

rejoining of DNA strands. They are classified as type-I enzymes if they cut a single 

strand of the DNA duplex and type-II if both strands are cleaved (Liu, 1989). 

Both genes have been cloned from P. falciparum. Topoisomerase II has been localised 

to chromosome 14 with an open reading frame of 4194 nucleotides. A transcript of 

5.8kb has been detected which encodes a polypeptide of 1398 amino acids (Cheesman et 

al., 1994). 

Topoisomerase I has an open reading frame of 2520bp encoding a protein of 839 amino 

acids. The gene is located as a single copy on chromosome 5 and a transcript of 3.8kb 

has been detected (Tosh and Kilbey, 1995). 

1.5 Eukaryotic DNA replication. 

The mechanism of DNA replication has been investigated using the simian virus 40 

• (SV40) origin of replication with either viral or plasmid DNA as the template. This has 

proved a powerful system to investigate the role of the replication proteins as only one 

SV40 protein (large T antigen) is required and all other proteins can come from the 

system under investigation (Waga and Stillman, 1994). 

The table below summarises the current understanding of the proteins involved in DNA 

replication. 



Proteins Functions 
RPA Single-stranded DNA binding; stimulates DNA polymerases; 

facilitates helicase loading. 
PCNA Stimulates DNA polymerases and RFC ATPase. 
RFC DNA-dependent ATPase; primer-template DNA binding; stimulates 

DNA polymerases; PCNA loading. 
Pol ct/primase RNA-DNA primer synthesis. 
Pol DNA polymerase; 3'-5' exonuclease. 
FENI Nuclease for removal of RNA primers. 
RNase HI Nuclease for removal of RNA primers. 
DNA ligase I Ligation of DNA. 
T antigen DNA helicase; primosome assembly. 

Table 1.1 Functions of DNA replication fork proteins (Waga and Stillman, 1998). 

A specific function in replication has not been assigned to DNA polymerase c, although 

it is known to be essential for S-phase progression in S. cerevisiae. 

T antigen is required for the replication of SV40 DNA. Its functional equivalent in 

mammalian cells has not been identified. 

1.5.1 Primosome assembly. 

RPA stimulates T antigen, which then unwinds the duplex DNA at the SV40 origin. 

RPA is a single-stranded DNA binding protein that exists as a heterotrimeric complex 

consisting of subunits of 70, 34 and 1 lkDa. RPA can also stimulate pol cu'primase 

activity and is needed for replication factor C (RFC) and proliferating cell nuclear 

antigen (PCNA) dependent DNA synthesis by poi 8 (Tsurimoto and Stillman, 1991b, 

Kenny et al., 1989, Tsurimoto and Stillman, 1989a, Erdile et al., 1991, Tsurimoto and 

Stillman, 1991a, Braun et al., 1997). Only the 70kDa subunit can bind single stranded 

DNA but it cannot support DNA replication in vitro (Erdile et al., 1991, Gomes and 

Wald, 1995, Kim et al., 1996). 

Once the origin has been recognised and the DNA locally unwound the p01 a/primase 

complex is loaded onto the DNA. The human pol a/primase complex consists of four 

subunits p180, p70, p58 and p48 with the p180 and p48 polypeptides containing the 

polymerase and primase activities respectively (Wang, 1991). Mutation analyses have 
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shown that both the polymerase and primase subunits function in DNA replication in 

vivo and that the primase subunit may have a regulatory role (Longhese et al., 1993, 

Copeland and Tan, 1995, Longhese et al., 1996). The p58 subunit is necessary for the 

stability and activity of the primase subunit (Stadlbauer et al., 1994, Santocanale el al., 

1993, Bakkenist and Cotterill, 1994) and the yeast homologue of the p70 subunit has 

been shown to have an essential function in the initiation of replication (Foiani et al., 

1994). 

The protein-protein interactions that have been demonstrated are between T antigen-pot 

a/primase (p70 and/or p180), RPA p70-primase (p48 and p58) and RPA-T antigen 

(reviewed in Waga and Stillman, 1998). These interactions not only occur during 

initiation of DNA replication at the origin but are also needed for the synthesis of each 

Okazaki fragment. 

1.5.2 Polymerase switching. 

The studies using the SV40 system have shown that two different potymerases are 

involved, poi a/primase and pot 6 in DNA synthesis and pot 6 in the synthesis of both 

the leading and lagging strands. The switching between the polymerases occurs during 

priming of the leading strand (Tsurimoto et al., 1990)) and during synthesis of every 

Okazaki fragment (Waga and Stillman, 1994). 

As shown in figure 1.2 pot cx/primase synthesises a short RNA-DNA primer on the RPA 

coated single-stranded DNA (Bullock et al., 1991, 1994, Eliasson and Reichard, 1978). 

Pol a/ primase is the only enzyme capable of initiating DNA synthesis de novo by first 

synthesising a RNA primer and then extending the primer to produce a short DNA 

extension. The RNA-DNA primer is approximately 40 nucleotides long which includes 

nucleotides of RNA (Nethanel et al., 1988, Matsumoto et al., 1990, Nethanel and 

Kaufmann, 1990, Bullock et al., 1991, Murakami et al., 1992). 

RFC, which is a complex of five subunits and is a DNA-deptident ATPase, then binds 

to the 3' end of this nascent DNA, displacing pol a/primase in the process. The 
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Figure 1.2 Polymerase switching and maturation of Okazaki fragments on a 

lagging-strand DNA template (Waga and Stillman, 1998). 
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displacement is probably due to the nonprocessive nature of the pot alprimase complex 

and by the tight binding of RFC to the primer-template junction (Tsurimoto and 

Stillman, 1991b). RFC binding then leads to the assembly of the primer recognition 

complex through the loading of PCNA and p01 6. 

PCNA is a protein with an apparent mass of 36kDa, which forms a homotrimeric 

complex (Jónsson and HUbscher, 1997, Kelman, 1997). Once RFC has loaded the 

homotrimer, PCNA is topologically linked to the DNA allowing it to track along the 

DNA (Tinker et al., 1994). RFC probably also unloads PCNA when DNA synthesis is 

complete, like the bacterial and T4 homologues (Hacker and Alberts, 1994a, 1994b, 

Stukenberg et al., 1994). 

Pot 6 is a heterodimer consisting of a p125 and p50 subunits with the former being the 

catalytic subunit with polymerase and 3 '-5' exonuclease activities (Syuaoja et a!, 1990). 

The N-terminal region of p125 has been shown to interact with PCNA (Brown and 

Campbell, 1993, Zhang et al., 1995) but studies on the role of p50 are inconclusive; the 

mammalian p50 subunit is required for PCNA stimulation (Zhou et al., 1997) but in S. 

cerevisiae the polymerase activity of the large subunit alone can be stimulated by PCNA 

(Brown and Campbell, 1993). 

The relatively processive pot 6 holoenzyme then extends the DNA strand (Matsumoto et 

al., 1990, Weinberg and Kelly, 1989, Tsurimoto et al., 1990, Tsurimoto and Stillman, 

1991b, Eki et al., 1992). On the leading strand DNA synthesis is continuous for at least 

5-10kb while on the lagging strand DNA synthesis of the Okazaki fragment continues 

until the complex encounters the previously synthesised Okazaki fragment. 

RFC binding seems to be essential for the polymerase switching and it is possible that 

RFC co-ordinates the synthesis of both the leading and lagging strands (Waga and 

Stillman, 1998). 

1.5.3 Maturation of Okazaki fragments. 

This process involves several steps including removal of the RNA primer, DNA gap 

synthesis and sealing together of the two DNAS. Recent studies have shown that many 
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of the proteins involved in this process bind to PCNA suggesting that the steps may be 

co-ordinately regulated (Waga and Stillman, 1998). 

The nucleases RNaseHI and FEN1 are involved in the removal of the RNA primer 

(Waga et al., 1994). It has been shown that PCNA binds to FEN1 and stimulates its 

activity (Li et al., 1995). This suggests that the removal of the RNA primer may be 

triggered by the upstream polymerase complex or by the newly synthesised DNA, 

creating a duplex DNA region upstream of the RNA at the 5' end of the Okazaki 

fragment (Waga and Stillman, 1998). 

FEN1 is a 46kDa polypeptide, 5'-3' exo/endonuclease that is required for Okazaki 

fragment maturation (Bambara et al., 1997, Lieber, 1997). Although the molecular 

weight and subunit structure of RNaseFll is still unknown its enzymatic activity is 

understood. It has a unique substrate specificity in that it can cleave RNA that is 

attached to the 5' end of a DNA strand, for example an Okazaki fragment, leaving a 

single ribonucleotide on the 5' end of the DNA strand (Turchi et al., 1994, Eder and 

Walder, 1991, Huang etal., 1994, Rumbaugh etal., 1997). 

Dna2 helicase has also suggested to be involved through its interaction with FEN1 

(Budd and Campbell, 1997). It may act in conjunction with the polymerase complex to 

displace the RNA primer, thereby creating a flap-like substrate for FEN1 (Bambara et 

al., 1997). Another possibility is that Dna2 may also displace the DNA beyond the 

RNA-DNA primer that was synthesised by pol a. The gap created after FEN1 had 

cleaved the DNA would then be filled in by pol 6. This has an advantage for the cell as 

pol a/primase does not have any proof-reading ability and so can not remove any errors 

it inserts, however, if this region was filled in by pol 6 the proof-reading exonuclease 

from the enzyme would ensure accuracy (Waga and Stillman, 1998). Once the RNA 

primers have been removed and the gaps filled in DNA ligase I can seal the DNAs 

together. 
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1.5.4 DNA Polymerase c. 

Pol e is a multi-subunit complex with a major subunit of 220kDa which has both DNA 

polymerase and exonuclease activities, and several smaller subunits between 70kDa and 

30kDa of unknown function (HUbscher and Thommes, 1992). Studies in vitro and in 

vivo have shown that poi c is not required for SV40 DNA replication (Waga and 

Stillman, 1998, Zlotkin et al., 1996). However, Zlotkin et al., (1996) showed that pol £ 

did crosslink to replicating cell chromosomal DNA which is consistent with the findings 

that the S. cerevisiae pol c (POL2) is essential for cellular DNA replication (Morrison et 

al., 1990, Araki et al., 1992). The suggestion is that pol e almost certainly plays a role 

in cellular chromosomal replication. This system has a different mechanism of initiation 

with many proteins carrying out the role of T antigen. Therefore pol 8 may be involved 

in initiation (Waga and Stillman, 1998). Alternatively, there is evidence that poi 6 and 

pol 8 are involved in replicating different strands of DNA (Shcherbakova and Pavlov, 

1996). It has also been suggested that as pol c is involved in cell-cycle checkpoint 

control it may act at the replication fork to ensure accurate DNA synthesis (Navas et al., 

1995, 1996). 

1.6 Replication factor C. 

As noted above, RFC is a five-subunit complex that can bind to a primer-template 

junction and load PCNA onto the DNA, in the presence of ATP. DNA polymerase 6 is 

then recruited to the site of DNA synthesis. In this section the role of RFC in replication 

will be addressed in greater detail as well as the evidence that suggests that it also plays 

a role in other cellular processes such as transcription, S-phase checkpoint regulation, 

. apoptosis, differentiation and telomere-length regulation. 

RFC was first isolated from 293 cells (Tsurimoto and Stillman, 1989b) and was found to 

be essential for SV40 DNA replication. RFC is the eukaryoc clamp loader but it has 

known homologues in prokaryotic systems which are also complexes made up of five 

subunits and the high sequence similarity between them suggests a similar mode of 
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action (Cullman et al., 1995). The table below summarises the clamp loaders from E. 

coli, T4 bacteriophage and eukaryotic systems. 

Protein 	Composition in 
E. coil 	T4 bacteriophage 	eukaryotes (mammal) 

Clamp loader y complex 	gene 44/62 protein 	RFC consisting of five 
consisting of y, complex, consisting 	subunits, p140, p40, p38, 
6, 6', x and ui. 	of 4 protomers of 	p37 and p36. 

gene 44 protein and 
one copy of gene 62 
protein. 

Table 1.2 Clamp loaders from E. coli, T4 bacteriophage and eukaryotes (adapted 

from Mossi and Hübscher, 1998) 

All five subunits of RFC have been cloned and characterised from humans and S. 

cerevisiae. Each of the S. cerevisiae genes is required for cell viability, in spite of the 

high similarity between the subunits, which might suggest some redundancy in function. 

It can therefore be assumed that each subunit has an individual role to play (Cullman et 

al., 1995). The gene encoding hRFC40 has been localised to 7q1 1.23 which is within the 

Williams syndrome deletion, this is a developmental disorder with multiple system 

manifestations, and it is postulated that reduced efficiency of DNA replication could 

account for growth deficiency as well as developmental disorders (Peoples et al., 1996). 

When the autotrophic archaeon Methanococcus jannaschii was sequenced (Bult et al., 

1996) it was found that it contained two homologues of RFC, one with similarity to the 

large subunit and the other was similar to the human small subunit p40. This suggested 

that the M jannaschil RFC could be formed from one large and four identical small 

subunits. This is similar to the bacteriophage T4. RFC genes have been identified from 

various species including mice, duck, Drosophila, Arxula adeninivorans, 

Schizosaccharomyces pombe, C. eiegans and chicken (Luckow et al., 1994, Guo et al., 

1998, Harrison et al., 1995, Zuo et al., 1997, Stoltenburg et al., 1999, Reynolds et al., 

1999). 
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1.6.1 RFC as a clamp loader and unloader. 

Early footprinting experiments (Tsurimoto and Stillman, 1990) discovered that when 

RFC is bound at the primer-template junction it covers 15 bases of the primer DNA from 

the 3' end and 20 bases of the template DNA. Without ATP, binding of RFC is weak 

but the addition of ATP increases the binding activity several fold (Tsurimoto and 

Stillman, 1991a). A model for PCNA loading by RFC has been suggested and is shown 

in figure 1.3. It is based on the studies by Podust et al., (1995) which proposes that RFC 

binds unspecifically to double stranded DNA, loads PCNA onto the DNA and then 

slides along the DNA until it reaches a 3'OH end. Cross-linking experiments have 

shown that the clamp can track along DNA (Tinker et al., 1994) and studies on the large 

subunit of RFC have shown that it preferentially binds to double stranded DNA rather 

than single stranded DNA (Burbelo et al., 1993, Fotedar et al., 1996, Lu et al., 1993). 

A more recent study set out to follow the fate of RFC after it had loaded PCNA onto the 

template (Podust et al., 1998b). Using gel filtration techniques, they demonstrated that 

RFC dissociates from the DNA after clamp loading or pol 6 holoenzyme assembly while 

PCNA or the PCNA-pol6 complex remained bound. Once PCNA was loaded onto the 

template it was sufficient to tether pol 6 and stimulate DNA replication. When RFC was 

added back it did not further stimulate DNA synthesis. This supports earlier findings 

(Tsurimoto and Stillman, 1991a) that RFC-PCNA and PCNA-pol 6 complexes could be 

detected but RFC-PCNA-pol 6 complex were not. 

1.6.2 The RFC boxes. 

The small RFC subunits align with the central part of the large subunits and similar 

regions between the subunits have been named RFC boxes II to VIII, numbering from 

c. !the N-terminus to the C-terminus. The most obvious feature of all the sequences is a 

conserved ATP/GTP binding region. It consists of several motifs in the N terminal half 

of the small subunits and the equivalent region of the large suWunit. The most conserved 

motif (box III) is the phosphate-binding loop; from analyses of p2lras, this is known to 

be involved in the binding of the phosphate groups of the nucleotide. The consensus 

19 



ATP 

 

ATP 

tj 5 .  

ADP + P 

3 

1.3 Mechanism of PCNA loading by RFC (Mossi and Hübscher, 1998). 
RFC (pink) binds to dsDNA in the presence of ATP. After PCNA (blue) loading onto 
DNA, the RFCPCNA complex slides along the DNA until it encounters a 3'OH end. 
Here, upon ATP hydrolysis by the RFC ATPase, the protein-DNA complex possibly 
undergoes a conformational change, allowing the formation of an active DNA 
polymerase (yellow) holoenzyme (ö/c). 
More recent studies (Podust el a!, 1998b) have suggested that RFC may dissociate after 
the holoenzyme has been assembled. 
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sequence of RFC box III is phUUuyGPPGtGKT(S/T)t (where U stands for a bulky, 

aliphatic residue such as I, L, V or M). 

The second most conserved region is RFC box V with the consensus sequence 

(F/HIY)KUUTJUDE(V/A)D. It bears similarity to the DEAD-box proteins; a family of 

putative RNA helicases, which also have P loops and are ATPases. However, there is 

no further similarity between the RFC subunits and the DEAD-box proteins, and RFC 

has no helicase activity. 

The ATP/GTP binding region also includes three other RFC boxes (II, IV and VI), that 

are unique to RFC and related proteins. RFC box II has the consensus sequence 

(LIP)WV(E/D)KYrPxxU. It shows a high degree of similarity between the subunits. 

Box IV has the consensus LEUNaSD. Box VI is different in the large and small 

subunits. Box VIa which is present in the large subunit has the consensus 

gMaGneDRGGUqeL while box VIb present in the small subunits has the consensus 

s(MIL)TxxAQxALRRtmE (Cullman etal., 1995). 

RFC box VII, SRC, is conserved in all the small subunits but only the cysteine is present 

in the large subunit. RFC box VIII has the consensus gdUR.xx(L/I)xxlq with mutations 

in the codons for G and D having been shown to cause a cold-sensitive phenotype in the 

CDC44 gene (Cullman etal., 1995, Howell etal., 1994). 

RFC box I is unique to the large subunits (Bunz et al., 1993, Burbelo et al., 1993, 

Luckow et al., 1994). It is about 90 amino acids and similar boxes can be found in the 

C-terminus of all three prokaryotic DNA ligases and to a lesser extent in all known 

poly(ADP-ribose) polymerases. The region has been designated the ligase homology 

domain. It is not thought that RFC ligates the Okazaki fragments generated during 

lagging strand replication, as all evidence points to DNA ligase I carrying out this role 

(Cullman et al., 1995, Luckow et al., 1994, Lindahi and Barnes, 1992). More recently 

box I has been identified as being distantly related to the BRCT motif which is present 

in many proteins that respond to DNA damage in cells (Bork etal., 1997). 
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1.6.3 RFC complex formation. 

Much work has been carried out using recombinant RFC as this allows for in vitro RFC 

reconstitution without the need for laborious protein purifications. Uhlmann et al., 

(1996) used the in vitro coupled transcription/translation system to express the five 

human RFC .genes and they showed that the gene products could be assembled into a 

complex that resembled native RFC. The recombinant RFC complex was capable in 

vitro of supporting DNA replication in a poi 6-catalysed primer elongation reaction 

dependent on PCNA and RPA. Later work used the baculovirus to system to express the 

RFC genes (Cai etal., 1996, Podust and Fanning, 1997). From these studies a model for 

complex formation has been suggested which is summarised in figure 1.4. p36  and p37 

form a stable dimeric complex and two stable tertiary complexes of p40p37p36 and 

p38.p37.p36 have been detected. This suggests a bifurcated pathway where either p40 

or p38 binds to the p37-p36 dimer to form a tertiary complex. The missing small subunit 

then binds and lastly the large subunit binds to form the active RFC complex (Podust 

and Fanning, 1997). Uhlmann et al., (1996) suggested that p38 is essential for the 

interaction between p40.p37-p36 and the large subunit. 

The p40•p37•p36 complex has been found to contain DNA-dependent ATPase activity 

that is stimulated by PCNA. The complex hydrolyses ATP in a DNA-dependent manner 

with almost 50% of the efficiency of the five subunit complex. p37 together with p36 

and p40 subunits possessed DNA-binding activity essential for the DNA dependence of 

the ATPase activity. As it was previously reported that RFC bound to DNA through the 

large subunit (Tsurimoto and Stillman, 1991a) Cai et al., 1997 suggest that the p140 

subunit mediates the initial DNA binding step followed by a DNA-p40p37p36 

interaction required for the stimulation of ATP hydrolysis. The p40•p37p36 complex 

can unload PCNA as can p40 alone but it cannot load PCNA suggesting an essential role 

for p38 and/or p140 in this process (Cai etal., 1997). 

Further studies by Ellison and Stillman (1998) again using the baculovirus system to 

express the human RFC genes suggested that the RFC complex is organised as two 

"domains". One consists of p40-p37•p36 and the other p140-p38 and that interactions 
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Figure 1.4 A model for assembly of RFC from individual subunits in the 

baculovirus system (Podust and Fanning, 1997). 
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between p40 and p140 and p38 and p37 connect the two, as abolition of these 

interactions results in a loss of complex formation. 

1.6.4 Regions required for complex formation and for DNA replication. 

The in vitro transcription/translation system has also been used to try and understand the 

role each of the subunits plays in the complex and the results are summarised in figure 

1.5. In the large subunit it was found that region between amino acids 822-1142 was 

required for formation of the RFC complex. The small subunits also required sequences 

close to their C-terminus for complex formation. This suggests that the unique 

sequences in these regions are important for the interactions between the subunits. The 

p38 subunit also required sequences close to its N terminus for complex formation. 

When RFC box II was deleted from p140 it resulted in a RFC complex that was devoid 

of replication activity. This was shown to be due to the inability of the deleted p140 to 

load PCNA onto the DNA. Deletion of box II from the small subunits reduced the 

ability of the resulting complex to support DNA synthesis. Deletion of the remaining 

RFC boxes had no further effect. The N-terminal regions of p37 and p40 although 

highly similar could not substitute for each other to restore RFC activity (Uhlmann et 

al., 1997a, 1997b). 

The p140 subunit was shown to contain two independent DNA binding domains. DNA 

binding activity had previously been mapped to the ligase homology domain (RFC box 

I) (Burbelo et al., 1993, Halligan etal., 1995, Fotedar et al., 1996) but a separate region 

between amino acid 687 and the C terminus was found to recognise primer ends. The N 

terminal half of p140 was not required for RFC to load PCNA onto DNA and to support 

elongation. 

1.6.5 The five subunits of RFC. 

The large subunit (p1401RFCJ). 

The large subunit of RFC was first cloned from humans and mice in 1993 (Bunz et al., 

1993, Burbelo et al., 1993). The human RFC p140 encodes a polypeptide of 1148 
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amino acids; the large subunit from mice is slightly smaller at 1131 amino acids. 

hRFC 140 localises to human chromosome 4 and mRFC 140 to mouse chromosome 5. 

Expression was seen to be ubiquitous but was stronger in proliferating tissues (Luckow 

et al., 1994). The sequence contains two bipartite nuclear localisation signals and 

indirect immunofluorescence assays confirmed that the protein was indeed localised to 

the nucleus. 

p140 has also been cloned by screening a HeLa cDNA expression library using the 

cognate DNA binding site of a transcription factor for the pro-opiomelanocortin B gene, 

P0-GA (Lu et at., 1993). Further studies on P0-GA (Lu and Riegel, 1994) 

demonstrated that two mRNA species were present due to the use of alternate poly(A) 

sites. The ratio of the two mRNA species was found to be variable in different tissues 

suggesting that the alternative processing is used as a means of regulating cellular levels 

of the transcripts. 

A murine protein was found that specifically binds to the nonamer portion of the V(D)J 

recombinational signal sequence (RSS) element. Sequence analysis showed that it was 

identical to a portion of the mRFC 140 protein. It is thought that the VDJP cDNA is a 

product of a differentially spliced transcript produced from the RFC locus (Halligan et 

al., 1995). This supports the idea that the RFC gene may encode multiple proteins with 

different biological functions (Lu and Riegel, 1994). 

The large subunit of RFC was identified from S. cerevisiae during analysis of mutants 

with a heat sensitive cell division cycle (Cdc) phenotype. cdc44 mutants were seen to 

arrest as large budded cells prior to nuclear division and their terminal morphology was 

similar to those seen in mutants of DNA replication or chromosome segregation. The 

gene encoding CDC44 was isolated and was found to be a novel, essential 861 amino 

'acid protein with nuclear localisation signals. Database searches revealed homology 

with three small RFC subunits and with P0-GA and CDC44 is now accepted as the large 
to 

subunit of S. cerevisiae RFC (Howell et al., 1994). Mutations in the S. cerevisiae 

POL30 gene (PCNA) have been shown to suppress the DNA replication and cell cycle 

defects observed in cdc44 mutants. This indicates that cell cycle progression requires an 

interaction between the CDC44 and POL30 gene products. 



cdc44 mutants also show a general mutator phenotype (McAlear et al., 1996) and they 

are sensitive to both UV irradiation and the methylating agent methyl methane 

sulphonate (MMS) with mutant cells retaining a higher level of single-stranded DNA 

breaks than wild type cells. This suggests that RFC plays a role in DNA repair as well 

as DNA replication. Reconstitution of nucleotide excision repair had shown previously 

that RFC is required for this process (Aboussekhra et al., 1995, Shivji et al., 1995). 

Using deletion mutants of p140 two motifs have been mapped (Fotedar et al., 1996). 

The DNA binding domain was mapped to amino acids 369-480, which is the ligase 

homology domain. The DNA binding domain was shown to only bind to double 

stranded DNA, not single stranded DNA. The PCNA binding domain was mapped to 

regions 481-728, a region that is highly conserved in all five subunits. The PCNA 

binding domain was shown to inhibit SV40 DNA replication in vitro by preventing 

DNA elongation. It also inhibits RFC dependent loading of PCNA onto DNA and acts 

as dominant negative mutant when expressed in mammalian cells. 

The PCNA binding domain is phosphorylated by the Ca2 /calmodulin-dependent protein 

kinase II (CaMKII), an enzyme required for cell cycle progression, while the DNA 

binding domain is not (Maga et al., 1997). The phosphorylation was dependent on Ca 2  

and calmodulin. Once phosphorylated the PCNA binding domain had a reduced PCNA 

binding activity, while PCNA protected the domain from phosphorylation. The DNA 

binding domain fused to the PCNA binding domain acted as a negative regulator of 

phosphorylation. When the DNA binding domain was bound to DNA it protected the 

PCNA binding domain from phosphorylation. Phosphorylation of the PCNA binding 

domain did not affect the DNA binding ability of the DNA binding domain. CaMKII 

may therefore regulate the interactions of RFC and PCNA. 

The minimal DNA binding domain from the large subunit of D. melanogasrer has been 

delineated as being between amino acids 162 and 314, a region that contains RFC box I. 

Results demonstrated that this domain required the presence ot a duplexed, 5' phosphate 

for efficient DNA binding. The 5' phosphate plays an important role in complex 

formation while a 3' hydroxyl at a primer-template junction is not required. The human 

DNA binding domain showed the same properties. Allen et al., (1998) propose that the 

27 



affinity for phosphorylated DNA ends mirrors the functioning of this domain as an end 

recognition sensor. The domain would allow the RFC complex to recognise when it had 

reached a break in the DNA, the end of a chromosome or perhaps the 5' end of a 

previously synthesised Okazaki fragment. 

RFC may also have a role in apoptosis as the large subunit has been found to be a 

substrate for caspase-3 in vitro and is cleaved by a caspase-3-like protease during Fas-

mediated apoptosis. No cleavage of the small subunits was detected. This was 

surprising, as the proposed consensus sequence (DEAD.iA/S) of caspase-3 is present in 

all the subunits. There was no cleavage site in the first 555 amino acids of p140, a 

region that can inhibit DNA replication in vitro. It is suggested that a 97kDa-cleavage 

product (corresponding to amino acids 1-723) may be produced during apoptosis and act 

as an inhibitor of DNA replication. Other, smaller, cleavage products are likely to 

interfere in RFC complex formation. A fully cleaved p140 molecule could rapidly lead 

to cell cycle arrest during apoptosis (Rhéaume etal., 1997). 

Southwestern screening of a cDNA library with a probe containing a tandem repeat of a 

telomere motif resulted in the isolation of a protein that is identical to the central region 

of p140. The protein contains the DNA ligase domain and the ATP binding site. 

Studies on p140 found that it recognised 5' phosphate groups in telomere repeat 

sequences. Therefore RFC or the large subunit alone may function to stabilise the 

termini or nicks of telomeres and/or to promote telomerase activity by binding to the 5' 

phosphates of telomere repeats (Uchiumi et al., 1996). In addition, certain mutations in 

RFC 1 have been shown to cause increases in telomere length in S. cerevisiae (Adams 

and Holm, 1996). 

p3 7IRFC2. 

- iJhe gene for human p37 encodes a polypeptide of 363 amino acids (Chen et al., 1992b) 

and it has been localised to chromosome 3q27 (Okumura et al., 1995). RFC2 from S. 

cerevisiae encodes a polypeptide of 353 amino acids and is loalised on chromosome X 

(Noskov et al., 1994). Both the yeast and the human protein showed preferential 

binding to a primed template over single stranded DNA. However, while RFC2 has 

weak ATP binding none was detected for p37 (Chen etal., 1992b, Noskov etal., 1994). 
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There is evidence from both S. cerevisiae and S. pombe that RFC2 may play a role in 

checkpoint controls. A thermosensitive mutant in the RFC2 gene has been isolated from 

S. cerevisiae. The mutant cells proceeded through the cell cycle without completion of 

chromosomal DNA replication, resulting in a rapid loss of their viability. This suggests 

that RFC has a role in sensing incomplete DNA replication and transmitting the signal to 

the checkpoint machinery. This mutation is synthetically lethal when it is combined 

with mutations in cdc44 or rft5 (Noskov et al., 1998). 

Deletion of the SpRFC2 gene results in cells proceeding into mitosis with incompletely 

replicated DNA, suggesting that a DNA replication checkpoint is inactive. From their 

results Reynolds et al., (1999) have suggested a model whereby assembly of the RFC 

complex onto the nascent RNA-DNA is the last step required for the establishment of a 

checkpoint competent state. 

p36/RFC3. 

RFC3 from S. cerevisiae encodes a polypeptide of 340 amino acids and it is located on 

the left arm of chromosome XIV. It has an ATPase activity that is stimulated by single-

stranded but not double-stranded DNA (Li and Burgers, 1994a). Human p36 has been 

shown to interact independently with the C-side of PCNA (Mossi et al., 1997) as can 

Rfc3 (Mossi and Hübscher, 1998). 

p40/RFC4. 

Human p40 encodes a polypeptide of 353 amino acids (Chen et al., 1992a) and it is 

located to the chromosome region 7q1 1.23, mutations of which cause Williams 

syndrome (Osborne et al., 1996, Peoples et al., 1996). p40  can bind ATP but has no 

ATPase activity and the interaction between p40 and ATP is reduced by the addition of 

PCNA, which suggests that p40 and PCNA directly interact (Chen et al., 1992a). RFC4 

ncodes a polypeptide of 323 amino acids and is localised to the left arm of chromosome 

XV. Rfc4 has no ATPase activity but it forms a complex with Rfc3 which retains its 

ATPase activity (Li and Burgers, 1994b). 

p38/RFC5. 

RFC5 was the last subunit to be identified from S. cerevisiae and it encodes a 

polypeptide of 354 amino acids (Gary and Burgers, 1995) located on chromosome II. A 
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temperature sensitive mutation of Rfc5 has been identified (Sugimoto et al., 1996) that 

can be suppressed by overexpression of the essential protein kinase Spkl. At the 

restrictive temperature, the Rfc5 mutant cells entered mitosis with unevenly separated or 

fragmented chromosomes resulting in a loss of viability, this suggests that the mutation 

leads to a defect in S phase checkpoint. Overexpression of PCNA could overcome the 

replication defect but not the checkpoint defect. Later reports showed that the mutation 

was sensitive to DNA-damaging agents (Sugimoto et al., 1997) and that Rfc5 is 

necessary for the induction of the repair machinery following DNA damage. They 

suggest that Rfc5 acts upstream of the protein kinase Rad53 that is a signal transducer in 

DNA damage and replication checkpoints. 

One gene that has been found to interact with Rfc5 in the checkpoint pathway is Rad24, 

a gene that has been shown to play a role in the DNA damage checkpoint (Shimomura et 

al., 1998). Overexpression of Rad24 was found to suppress the DNA damage sensitivity 

and Rad53 phosphorylation defect of the Rfc5 mutants. Rad24 has similarities to the 

RFC subunits in three of the eight RFC boxes and it has been shown to interact with 

Rfc2 as well. 

The properties of the RFC subunits from human and yeast are summarised in the table 

below. 
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Human Size Proposed functions of Yeast Size Proposed % Identity 
RFC subunit (kDa) the human subunit in RFC (kDa) functions of the (similarity) 

the complex subunit yeast subunit in 
the complex 

RFC 140 128.3 DNA and PCNA RFC  94.9 DNA and PCNA 35.8 (55.3) 
binding binding 

RFC40 39 ATP and PCNA RFC4 36.2 ATP binding, 60.1 (77.6) 
binding, interaction interaction with 
with pol 8 and RFC3 
RFC37, ATP 
independent PCNA 
unloading 

RFC38 40.5 PCNA binding, RFC5 39.9 unknown 44.6 (63.4) 
interaction with 
RFC 140 

RFC37 39.6 DNA binding at RFC2 39.7 ssDNA, ATP and 50.6 (66.6) 
primer ends, PCNA binding 
interaction with pol e 
and RFC4O. 

RFC36 38.5 PCNA binding RFC3 38.2 5sDNA-dependent 50.5 (72.1) 
ATPase, PCNA 

- binding 

Table 1.3 Known biochemical properties of RFC subunits (Mossi and Hübscher, 

1998). 

1.7 Rationale and scope of thesis. 

Several of the genes encoding proteins involved in the replication machinery of P. 

falciparum have already been isolated and characterised. To take this field of work 

forward it was decided to isolate the RFC complex and characterise the genes. This was 

to be attempted by screening genomic libraries with degenerate oligonucleotides, which 

has proved successful in the past. 

Once the genes had been isolated and characterised their stage-specific expression 

during the intraerythrocytic part of the parasites lifecycle would be studied at the 

transcript and protein levels (using polyclonal antibodies raised in rabbits). 

Attempts would be made to express the full-length genes heterologously. Purified 

proteins could then be used for replication assays alongside PCNA, which has already 

been overexpressed and purified from a baculovirus system. 
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MATERIALS AND METHODS. 



2.1 Materials. 

2.1.1 Chemicals. 

Unless otherwise stated, Sigma Chemical Co. Ltd., UK supplied chemicals. Cell 

culture materials were supplied by Gibco-BRL, UK. FSA Laboratory Supplies, UK, 

supplied solvents. Radiolabelled nucleotides were supplied by Amersham 

International plc, UK. 

2.1.2 Equipment. 

Benchtop centrifugation was carried out using a Heraeus Biofuge 13 (Eppendorf, 

Germany) or Juoan CR322 (Saint-Herbain, France). High-speed spins were made 

using either a Sorvall RC5-B high-speed centrifuge (DuPont Instruments) or Sorvall 

OTB50-B ultracentrifuge (DuPont Instruments). PCR reactions were carried out 

using a GeneE thermal cycler (Techne Instruments). Hybridisations were done in 

HB 1 or HB 1 D heated cabinets (Techne Instruments). Beckton Dickinson Labware, 

UK, supplied plasticware and cell culture materials. 

2.1.3 Restriction and modifying enzymes. 

Unless otherwise stated, Boebringer Mannheim UK (Diagnostics and Biochemicals) 

Ltd, UK supplied restriction endonucleases and buffers. Gibco-BRL, UK, or 

PROMEGA UK supplied modifying enzymes. 

2.1.4 Imaging. 

IBI Molecular Biology Products, UK, supplied KODAK X-OMAT AR and X-

OMAT LS autoradiography film. UV-irradiated ethidium-bromide stained gels were 

photographed using either HP5 film, ILFORD Ltd, UK, or by Mitsubishi Video 

Processor to heat sensitive film. tj 
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2.1.5 Microbiology. 

2.1.5.1 Bacterial strains. 

Strain Genotype Reference 

BL21(DE3) F, hsdS B , A(lacU 169), gal(lcl 857 indl Sam7 Studier and 

nin 5 iacUV5-T7 gene 1), (rB,mB), Moffat (1986) 

ompT, ion. 

[pLysS] Studier (199 1) 

DH5a F', endAl, recAl, hsdRl7(rk, Mk'), Hanahan (1983) 

supE44, thi -1, gyrA96, relAl, 

480diacThM1 5 A(LacZYA-argF), U169, 

deoR. 

DHP1 F, ginV44(AS), recAl, endAl, gyrA96 (Na!1), Hanahan, (1983) 

thil, hsdRl7, spoTl, rJbDl. 

INVa F' F', endA 1, recA 1, hsd Ri 7(rk, Mk'), Hanahan (1983) 

supE44, thi -1, gyrA96, reiAl, 

80d/acZiM15 A(1acZYA-argF), U169, ?C. 

JM109 recAl, endAl, gyrA96, thi, hsdR17(rk , m ),Promega, UK 

reiAl, supE44, A(lac-proAB), [F', traD36, 

proAB, iacF'ZAMI 5]. 

LigATor endA 1, hsdRl 7(rkI2, mkI2), supE44thi- 1, R&D Systems 

competent recA 1, gyrA96, relA 1, !ac[F 'proAB 

cells 15: :Tn 1 0(Tc')]. 

TOP 10 F, mcrA, A(mrr-hsdRMS-mcrBC), Invitrogen BV 

4801acZAM 15, AiacX74, deoR, recA 1, 

araD 139, A(ara-leu)7697, galU, 

galK, rpsL, endAl, nupG. 

TOP 1OF' F', (laclq TnlO (TetR)},  mcrA, A(mrr- Invitrogen BV 

hsdRMS-mcrBC), 801acZAM 15, &acX74, 

recAl, araD 139, A(ara-!eu)7697, galU, 

galK, rpsL, (StrR),  endAl, nupG. 
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2.1.5.2 P. falciparum DNA libraries. 

Library 
	

Source 

pJFE14, cDNA from trophozoites 
	

A. Craig, 1MM, Oxford. 

XhoI linkers. 

2.1.5.3 Plasmids. 

pCR®2.1 Mead etal., 1991. 

pCR®2.1-TOPO Shuman, 1994. 

pCR®-BLUNTBernard etal., 1994. 

pGEM®-T Promega, UK. 

pGEX Smith & Johnson, 1988. 

pLysS Studier, 1991. 

pRSET Schoepfer, 1993. 

pTl8-zip Karimova etal., 1998. 

PT25 -zip 

pTAg 

pUC19 

2.1.6 General stock solutions and media. 

Alkaline Phosphatase Solution. 

100mM sodium chloride, 5mM magnesium chloride and 100mM Tris-I-IC1, pH 9.5. 

Coomassie fixing stain. 

0.25% coomassie brilliant blue R-250 in water: methanol: glacial acetic acid, 5:5:1 

v:v:v. 

Coomassie destain. 	 to 

Water: methanol: glacial acetic acid, 5:5:1 v:v:v. 

Denaturation Solution. 

1.5M sodium chloride and 0.5M sodium hydroxide. 

v. 

Karimova et al., 1998. 

R&D Systems. 

Yanisch-Perron etal., 1985. 
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DNA Loading Buffer (l Ox). 

100mM EDTA pH8, 6% sucrose, 0.1% bromophenol blue and 0.1% xylene cyanol. 

Formaldehyde sample buffer. 

2xMOPS, 50% formamide, 25% formaldehyde, 0.25% bromophenol blue, 0.25% 

xylene cyanol. 

Luria- Bertani medium (LB, supplied by ICMB media service). 

1% bacto-tryptone, 0.5% Bacto-yeast extract, 1% sodium chloride adjusted to pH 7.2 

using I M sodium hydroxide. 

LB agar (supplied by ICMB media service). 

LB supplemented with 1.5% agar. 

Minimal Medium. 

80ml Spitzizen salts (5x - supplied by ICMB media service). 

lOml glucose (20%w/v), lmg/ml vitamin B  and 320m1 sdH 20. 

MOPS (I OX). 

200mM MOPS, 0.05M sodium acetate, 0.01M EDTA. 

Neutralising Solution. 

1M ammonium acetate, 0.02M sodium hydroxide. 

Oligonucleotide Hybridisation Buffer. 
WA- 

 2xSSC, 0.2% SDS, 0.1% sodium pyrophosphate, 500tg/ml heparin. 

tj 
Phosphate Buffered Saline (PBS). 

137mM sodium chloride, 2.7mM potassium chloride, 4.3mM disodium hydrogen 

orthophosphate, 1.4mM potassium dihydrogen orthophosphate. 
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Protein loading buffer - reducing (24 

62.5mM Tris-HC1, pH 6.8, 10% glycerol, 2% SDS (wlv), 5% -Mercaptoethanol and 

0.05% bromophenol blue. 

Random Label Hybridisation Buffer. 

0.25M sodium phosphate pH 7.2, 7% SDS. 

SDS-PAGE running buffer. 

25mM Tris, 192mM glycine, 1% SDS 

Standard Saline Citrate (SSC) 20x stock solution. 

3M sodium chloride, 100mM trisodium citrate pH 7.0. 

SOC medium. 

2% tryptone, 0.5% yeast extract, 10mM sodium chloride, 2.5mM potassium chloride, 

10mM magnesium chloride, 10mM magnesium sulphate and 20mM glucose. 

Tris-Borate-EDTA (TBE) 1 Ox stock solution.. 

0.9M Tris borate, 20mM EDTA pH 8.0. 

Tris-EDTA (TE). 

10mM Tris-HC1 pH 8.0, 1 m EDTA pH 8.0. 

Tris-EDTA-Saline (TES). 

20mM Tris-HC1 pH 7.5, 10mM EDTA, 100mM sodium chloride. 

Tris-Saline. 

10mM Tris-HC1, pH 7.4 and 150mM sodium chloride. 

Tris-Saline-NP40. 

10mM Tris-HC1, pH 7.4, 150mM sodium chloride and 0.05% NP40 (v/v). 
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Tris-Saline-5% Marvel. (blocking solution) 

10mM Tris-HC1, pH 7.4, 150mM sodium chloride and 5% powdered milk (w/v). 

Western blotting transfer buffer 

25mM Tris, 150mM glycine, 20% methanol, 0.1% SDS 

Unless otherwise stated the methods described in the following text were based on 

those found in either Sambrook etal., (1989), Harlow and Lane (1988) or Ausubel et 

al., (1992). 

2.2 DNA Methods. 

2.2.1 Isolation of DNA. 

2.2.1.1 Preparation of P. falciparuni DNA (large scale method). 

A P. falciparum culture was grown until 10 9  parasites were available. The culture 

was harvested by centrifugation (2500xg, 10 minutes, 4°C) and resuspended in 

1xSSC, 0.1% saponin and incubated at room temperature for 20 minutes. The 

released parasites were collected by centrifugation (3000xg, 15 minutes, 4°C) and 

washed with 1xPBS. 

The washed parasites were collected by centrifugation and resuspended in 9ml of 

1 xSSC. 2ml of 20% sodium lauryl sarcosine were added, mixed carefully by 

inversion and the suspension incubated on ice for 5 minutes. The suspension was 

then made up to 21m1 by the addition of 1xSSC containing 20.9g of caesium 

chloride and 0.2ml of ethidium bromide (10mg/mi) and divided into 2 heat sealed 

tubes (11.Sml tubes for Ti50 rotor). The DNA was banded by caesium chloride 

gradient ultracentrifugation (120000xg, 48 hours, 18°C). A single central band, 

visible under an UV light, containing the genomic DNA was collected and the 

ethidium bromide removed by repeated extractions with isoamyl alcohol. The DNA 

was dialysed against 2L of TE overnight at 4°C, ethanol precipitated (2.2.1.7) and 

resuspended in lml of TE. The DNA was analysed using UV spectroscopy (2.2.1.5). 



2.2.1.2 Preparation of P. falciparum DNA (small scale method). 

A P. falciparum culture was grown until 10 9  parasites were available. The culture 

was harvested by centrifugation (2500xg, 10 minutes, 4°C) and resuspended in 

1xSSC, 0.1% saponin and incubated at room temperature for 20 minutes. The 

released parasites were collected by centrifugation (3000xg, 15 minutes, 4°C) and 

washed with 1 xPBS. 

The parasite pellet was resuspended in lysis buffer (40mM Tris-HC1, pH 8.0, 80mM 

EDTA, 2% SDS) followed by phenol-chloroform extraction (2.2.1.6) and ethanol 

precipitation (2.2.1.7). The DNA pellet was resuspended in 300 j.il of TE. The DNA 

was analysed by UV spectrophotometry. (2.2.1.5) 

2.2.1.3 Midipreparation of plasmid DNA. 

Approximately 100ig of plasmid DNA from Escherichia coil was prepared using the 

QIAfilter Plasmid Midi Kit commercially available from QiagenTM. The solutions 

and protocol were supplied with the kit. 

A single colony was used to inoculate 50m1 of LB (supplemented with an appropriate 

antibiotic) and grown overnight at 37°C with shaking. The cells were collected by 

centrifugation (2500xg: 10 minutes, 4°C) and the pellet resuspended in 4m1 of buffer 

P1 (50mM Tris-HC1 pH 8.0, 10mM EDTA, 100tg/ml RNase A). 4m1 of buffer P2 

(200mM sodium hydroxide, 1%SDS) was added and the suspension mixed by 

inverting 4-6 times before being incubated at room temperature for 5 minutes. 4m1 

of chilled buffer P3 (3.OM potassium acetate, pH 5.5) was added to the suspension 

and mixed by inversion. The lysate was then poured into the barrel of the QlAfilter 

Cartridge and incubated at room temperature for 10 minutes. 

• After the incubation period the cell lysate was filtered into a Qiagen Tip- 100 colunm 

which had been equilibrated using 4m1 of buffer QBT (750mM sodium chloride, 

50mM MOPS, pH 7.0, 15% isopropanol, 0.15% Triton X-10) and allowed to enter 

by gravity flow. The column was washed using 2x 1 Omi of buffer QC (IM sodium 

chloride, 50mM MOPS, pH 7.0, 15% isopropanol). The DNA was eluted using 5m1 

of buffer QF (1.25M sodium chloride, 50mM Tris-HC1, p1-I 8.5, 15% isopropanol). 

The DNA was pelleted by the addition of 0.7 volumes of room temperature 
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isopropanol and centrifugation (15000xg, 30 minutes, 4°C). The DNA pellet was 

washed using 2m1 of room temperature 70% ethanol and centrifuged again (1 5000xg, 

10 minutes, 4°C). The DNA pellet was allowed to air dry for 5-10 minutes before 

being resuspended in lOOp.l of 10mM Tris-HC1, p1-1 8.5. The DNA was analysed 

using UV spectrophotometry (2.2.1.5). 

2.2.1.4 Minipreparation of plasmid DNA. 

Approximately 20tg of plasmid DNA from Escherichia coli was made using the 

QlAprep Spin Miniprep Kit commercially available from QiagenTM. The solutions 

and protocol were supplied with the kit. 

A single colony was used to inoculate 5m1 of LB (supplemented with an appropriate 

antibiotic) and grown overnight at 37°C with shaking. 3ml of the cells were pelleted 

using a microcentrifuge (10000xg, 4 minutes) and resuspended in 250tl of buffer P1. 

The cells were lysed by the addition of 250tl of buffer P2 and then neutralised by the 

addition of 350d of buffer N3. The cell debris was pelleted by microcentrifugation 

(10000xg, 10 minutes). The supernatant was decanted into a QlAprep column and 

after centrifugation (10000xg, 60 seconds) the flow through was discarded. The 

column was washed by the addition of 750p1 of Buffer PE and centrifuged as above. 

The flow through was again discarded and the column centrifuged for an additional 1 

minute to remove residual wash buffer. The DNA was eluted from the column by 

the addition of 50.tl of buffer EB. 

2.2.1.5 UV spectrophotometry. 

UV spectrophotometry allows for the ready quantification of nucleic acids and as a 

check of their purity. Typically, a sample of nucleic acid was diluted (1:200) into 
A . 

lml of sdH20. Using the protocol supplied with the Perkin-Elmer X15 machine a 

sample of sdH 20 was scanned between 200 and 300nm to ive a base value against 

which a subsequent scan of the diluted nucleic acid was made. The quantity of DNA 

or RNA within a sample was calculated using the following formula: 



DNA concentration = Absorption at 260nm (A 26) x 50 x dilution factor. 

RNA concentration = Absorption at 260nm (A 260) x 40 x dilution factor. 

Where an A26°  of 1.0 is equivalent to 50mg/mi of DNA and 40mg/mi of RNA. The 

purity of the nucleic acid sample, with respect  to protein contamination, was made by 

the ratio A 260/A280 , where a value greater than 1.8 indicates that the sample is free 

from protein contamination. 

2.2.1.6 Phenol/chloroform extraction. 

Phenol was saturated and equilibrated with TE pH 7.5 before use in extraction. To 

20m1 of phenol an equal volume of TE pH7.5 was mixed and the phases separated by 

brief centrifugation (2000xg, 5 minutes, room temperature). The process was 

repeated until the TE removed remained at pH 7.5 as tested using litmus paper. An 

equal volume of chloroform (containing 1/25th volume isoamyl alcohol) was then 

added to the phenol before being stored in the dark at 4°C. Fresh phenol/chloroform 

was prepared every 4 months. 

An equal volume of phenol/chloroform was added to the DNA solution to be treated 

and vortexed before microcentrifugation for 1 minute. The upper aqueous phase was 

transferred to a fresh eppendorf tube and a second phenol/chloroform extraction 

made on this. The aqueous phase was collected again and the DNA ethanol 

precipitated (2.2.1.7). 

2.2.1.7 Ethanol precipitation. 

0.1 volumes of 3M sodium acetate (pH 5.0) and 2 volumes of ice-cold 100% ethanol 

• were .added to the DNA solution to be precipitated. The DNA was then pelieted by 
jl 

microcentrifugation for 20 minutes. The DNA pellet was washed with small volumes 

of both 70% and 100% ice-cold ethanol before being tpft to air dry at room 

temperature. The pellet was resuspended in either TE or sdH 20. 
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.c. 

2.2.2 Endonuclease restriction. 

DNA restrictions were typically carried out for 2-3 hours at 37°C using 

commercially available restriction endonucleases. 3-10 units of enzyme were usually 

used to restrict 1 tg of DNA in a 201tl volume of the recommended buffer. For larger 

quantities of DNA the reaction components were scaled up appropriately. 

Restriction endonuclease buffers were supplied at lOx the final concentration. The 

Boehringer Mannheim incubation buffer range (Table 2.1) was used for single 

enzyme restrictions. Where more than one restriction endonuclease was required and 

the buffer compositions were incompatible "One-Phor-All" (Pharmacia) was used 

(100mM Iris-acetate, 100mM magnesium acetate, 500mM potassium acetate pH 

7.5). 

Table 2.1. Composition of Boehringer Mannheim restriction endonuclease buffers. 

(Final concentration in mM) 

Component Buffer 

A B L M H 

Tris-acetate 33 - - - - 

Tris-HC1 - 10 10 10 50 

Magnesium acetate 10 - - - - 

Magnesium chloride - 5 10 10 10 

Potassium acetate - 100 - 50 100 

Dithioerythritol - - 1 1 1 

Dithiothreitol 0.5 - - - - 

-mercaptoethanol - 1 - - - 

pH at 37°C 7.9 8.0 7.5 7.5 7.5 

• SmaI restrictions made at 30°C. 

• KpnI restrictions supplemented with 100tgIml BSA. 
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2.2.3 Agarose gel electrophoresis and DNA fragment isolation. 

2.2.3.1 Preparation of agarose gels. 

Multipurpose agarose was supplied by Boehringer Mannheim. 

Table 2.2 Range of efficient separation of linear DNA molecules in agarose gels of 

different concentration. Sambrook et al., (1989). 

Percentage agarose 

in the gel. 

0.7 

0.9 

1.2 

1.5 

Efficient range of separation 

of linear DNA molecules. 

0.8-lOkbp 

0.5-7kbp 

0.4-6kbp 

0.2-3kbp 

The appropriate amount of agarose as determined using Table 2.2 was dissolved in 

1xTBE (2.1.6) and heated while stirring until the agarose was completely dissolved. 

For each 50m1 of agarose solution ipi of ethidium bromide (10mg/mi) was added. 

The molten gel was poured into the appropriate casting tray and allowed to set at 

room temperature. 

2.2.3.2 Running agarose gels. 

The cast gel was submerged in 1xTBE (2.1.6). Samples and DNA markers (2.2.3.3) 

were mixed with a 0.1 volume of loading buffer. Samples were run in an agarose gel 

J at 1 5V/cm until sufficient separation of the DNA bands of interest was achieved. 
,-.  

2.2.3.3 DNA markers. 

The DNA markers commonly used were; ?.DNA restricted with HindIII supplied by 

New England Biolabs and a lOObp marker supplied by Gibco-BRL. 1ig of the DNA 

markers were used on each gel. 
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2.2.3.4 Imaging of the gel. 

The DNA was visualised using a short-wave UV transilluminator. The image was 

recorded on either heat sensitive film or a negative was produced with HP5 film 

(2.1.4). A ruler was photographed beside any gel, which was to be subsequently 

blotted. 

2.2.3.5 Electroelution of isolated DNA fragments. 

Dialysis tubing was prepared by boiling in 2% sodium bicarbonate, 1mM EDTA for 

10 minutes. After washing repeatedly in fresh sdH 201  the dialysis tubing was boiled 

for 10 minutes in 1mM EDTA. The prepared dialysis tubing was stored at 4°C in 

70% ethanol. 

Before use, the dialysis tubing was washed with sdH 20. The agarose gel fragment 

was placed into a small piece of washed dialysis tubing with 300tl of 1xTBE and the 

ends closed with clips. The tubing was submerged in 1xTBE and a current passed 

through for 30 minutes, typically at 100V. The current was reversed for 2 minutes at 

the end to help remove DNA attached to the dialysis tubing. Elution of the DNA was 

checked using a short wave UV transilluminator. The DNA solution was transferred 

into a fresh eppendorf tube and ethanol precipitated (2.2.1.7). 

2.2.3.6 DNA fragment isolation using spin columns. 

DNA fragments were also isolated from agarose gels using GenEluteTM  Minus EtBr 

Spin Columns, which are commercially available from Sigma. I 00d TE (2.1.6) was 

added to the spin column, which was then placed on top of a microcentrifuge tube 

and centrifuged for 5 seconds at maximum speed in a microcentrifuge. The TE 

collected in the microcentrifuge tube was discarded. The agarose slice containing the 

DNA fragment of interest was placed directly onto the washed spin column. The 

spin column was placed on top of a microcentrifuge tube,,and centrifuged for 10 

minutes at maximum speed in a microcentrifuge. The DNA collected in the tube was 

free of ethidium bromide and was used directly for ligation or labelling reactions. 



2.2.4 Southern transfer. 

2.2.4.1 "Dry" southern transfer. 

This was a quick method of capillary transfer to a nylon membrane when the 

quantity of DNA in an agarose gel was sufficiently large (>75ng per band). The gel 

was submerged in 0.2M hydrochloric acid for 15 minutes to depurinate the DNA. 

The gel was washed several times in sdH 20 before being submerged in denaturing 

solution (2.1.6) for 30 minutes with gentle shaking. The gel was again washed 

several times in sdH 20 before being submerged in neutralising solution (2.1.6) for 

2x 15 minutes with shaking. 

Genescreen Plus membrane (DuPont) cut to the size of the gel was prewetted with 

neutralising solution and placed on the surface of the gel. 4 pieces of Whatman 

(3MM) paper, cut to size, were placed on top. A small stack of paper towels and a 

light weight were then added. 

The transfer of DNA took place over 5-6 hours. The membrane was removed, 

washed in 2xSSC (2.1.6) for 2 minutes and air-dried. It was then ready for 

prehybridisation (2.2.4.3). 

2.2.4.2 "Wet" Southern transfer. 

A "wet" transfer was used when the DNA of interest is present in small amounts (e.g. 

genomic southern analysis). The initial preparation (depurination, denaturation and 

neutralisation) of the gel is as described above for a "dry" Southern transfer (2.2.4.1). 

The prepared gel was placed on a "wick" consisting of 2 pieces of Whatman (3 MM) 

paper cut to the same width as the gel, but longer, so that the ends could be 

submerged in a reservoir of neutralising solution (2.1.6). The gel was surrounded 

with saran wrap to prevent the neutralising solution by-passing the gel into the stack 

of paper towels. A piece of Genescreen Plus membrane (Diont), cut to the correct 

size, was prewetted completely with neutralising solution and placed on the gel 

ensuring that air bubbles were excluded. 8 pieces of Whatman (3MM) paper were 

cut to the correct size. 4 of these were prewetted in neutralising solution and placed 

on the filter and then the remaining 4 pieces were added, again eliminating air 
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bubbles. A stack of paper towels approximately 10cm high were added to the blot 

and a glass plate placed on top. A 300-400g weight was placed on top of the glass 

plate. The transfer was left overnight. 

The next day the blot was carefully taken apart, the membrane washed in 2xSSC 

(2.6.1) for 2 minutes and air-dried. The membrane was then ready for 

prehybridisation (2.2.4.3). 

2.2.4.3 Prehybridisation and hybridisation of radiolabelled probes. 

Prehybridisation and hybridisation were done using the same buffer, although the 

composition of the buffer varied depending upon the type of radiolabelled probe used 

(end-labelled oligonucleotide or random labelled). The membrane was placed in a 

hybridising tube, with 25ml of the appropriate hybridisation solution (2.1.6), and 

incubated overnight. The next day the buffer was replaced, the probe added and the 

membranes incubated with it overnight. 

2.2.4.4 End-labelled oligonucleotide probes. 

These were used for membranes where reasonable quantities of DNA were available 

(>25ng). The prehybridisation and hybridisation were done at 37°C unless an 

oligonucleotide of greater than 20 bases in length was used, in this case 40°C would 

be used. 

1 tl oligonucleotide (20ngI41) 

41fl 5x Forward reaction buffer (300mM Tris-HCI pH 7.8, 50mM magnesium chloride, 

I .65tM ATP, 75mM 2-mercaptoethanol) 

13tlsdH2O 

lJAl [y 32P] ATP (lOmCi/ml) 

1111 T4 polynucleotide kinase (10U/tl) 

The reaction was incubated at 37°C for 1 hour after which flip probe was ready to be 

added (2.2.4.3). 

.. j 
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2.2.4.5 Random-labelled probes. 

Random labelled probes were prepared using the commercially available PrimeItTM 

II Random Primer Labelling Kit from Stratagene. The protocol and materials were 

supplied with the kit. 

1 00ng DNA in X.tl 

1 0tl random primers (9-mers at 8ng/tl) 

sdH20 to a total volume of 36tl. 

These were heated to 95-100°C for 5 minutes before being allowed to cool slowly to 

room temperature. The following were then added; 

10il 5x random label (dCTP) buffer (250mM Tris-HCI pH 8.0, 100mM magnesium 

chloride, 20mM 2-mercaptoethanol, 0.5mM each of dGTP, dTTP and dATP) 

3tl [a 32P] dCTP (lOmCiIml) 

1tl T7 DNA polymerase (8.5U/pi) 

This reaction was incubated at 37°C for 10-60 minutes before 2tl of stop mix (0.5M 

EDTA) were added. 

To remove the unincorporated dNTPs the commercially available NucTrapTM Probe 

Purification Columns from Stratagene were used. 70jil of 1 xTES (2.1.6) was pushed 

slowly through the column using a 1 Omi syringe. 20tl of 1 xTES was added to the 

prepared probe and the 70jtl reaction pushed through the column. Finally a further 

70tl of 1xTES was added to the column and pushed through. The eluate from the 

column was collected and heated to 95-100°C for 5 minutes before being added to 

25ml of fresh random label prehybridising solution (2.2.4.3). Random-labelled 

probes were typically used at a hybridisation temperature of 65°C. 

2.2.4.6 Washing and exposing a membrane. 

End-labelled oligonucleotide probes. 

The probes were decanted and stored at -20°C, either for reuse, or to allow the 

radiolabel to decay before safe disposal. 25m1 washes of 6xSSC,0.l%SDS were 

added to the filter at 37°C. Usually 2-3 washes of 10 minutes were used. 

Monitoring of the membrane with a n-geiger counter was used to ensure that the 

probe was still attached. 
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Random-labelled probes. 

The probes were stored as described for end-labelled oligonucleotides. Before reuse, 

these probes require heating to 95-100°C for 5 minutes. 

25m1 washes at 65°C for 10 minutes each were used. Initial washes would be made 

with 6xSSC,0.1%SDS increasing to a stringency of 0.1-0.2xSSC,0.1%SDS over a 

series of twice repeated washes. Monitoring the filter with a 3-geiger counter 

defined the background noise to signal ratio and indicated whether a more stringent 

wash was required. 

Washed filters were carefully sealed in a thin plastic bag and placed in an 

autoradiographic cassette with an image intensifying screen. The position of the 

filter was indicated using Stratagene fluorescent marker strips. Exposure to 

preflashed film (2.1.4) was made at -70°C. Exposure was usually overnight but 

longer exposures for weaker signals were sometimes required. After the appropriate 

length of exposure the film was developed using an X-OGRAPH Xl (IBI Ltd.) 

automatic X-ray film processor. 

2.2.4.7 Stripping a membrane. 

The membrane to be stripped was placed in a hybridising tube, at 65°C, containing 

lOOml of 0.4M sodium hydroxide. After 30 minutes the sodium hydroxide solution 

was replaced with lOOml of a neutralising solution (0.1xSSC, 0.1%SDS, 200mM 

Tris-HC1 pH 7.5). Two 15 minute incubations, at 65°C, in neutralising solution were 

carried out. The membrane was exposed overnight to ensure all signals had been 

stripped. 

Northerns were stripped by boiling one litre of 0.O1xSSC, 0.01%SDS. The 

membranes were shaken gently in 200m1 aliquots of the solution for 3 minutes. This 

was repeated five times before the membrane was exposed overnight to ensure that 

all signals had been removed. 
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2.2.5 Ligations. 

2.2.5.1 Phosphatase treatment of restricted vector. 

To limit the self-ligation of restricted vector the 5' phosphates were removed using 

calf intestinal alkaline phosphatase (ClAP). The restriction endonuclease was 

removed either by phenol/chloroform extraction (2.2.1.6) or DNA fragment 

purification (2.2.3.5 or 2.2.3.6) and the restricted DNA ethanol precipitated (2.2.1.7) 

The DNA was resuspended in 20.il of 1 xCIAP buffer (50mM Tris-HC1 pH 8.5, 1 m 
EDTA, 1mM magnesium chloride, 1mM zinc chloride) with 1 p1 of ClAP (1 U/tl) 

and incubated at 37°C for 30 minutes. To inactivate the ClAP 2p1 of 0.5M EGTA 

(pH8.0) was added and the reaction incubated at 70°C for 10 minutes. The ClAP 

was removed by phenol/chloroform extraction and the DNA ethanol precipitated 

before use (2.2.1.7). 

2.2.5.2 Ligation reactions. 

The vector and insert DNA molecules were restricted (and phosphatased if necessary, 

(2.2.5.1)) to give compatible ends. Typically 50ng of vector was ligated to insert at a 

range of molar ratios, typically in the range of 3:1 to 10:1 (insert: vector). Vector and 

insert DNA were added to lOx ligation buffer (500mM Tris-HC1 pH 7.5, 100mM 

magnesium chloride, 100mM DTT, 10mM ATP) with 1U of T4 DNA ligase. 

Ligation reactions were carried out in a 1 0tl volume. Reactions were incubated 

overnight at 16°C. 

2.2.5.3 Cloning of PCR fragments. 

• Cloning of PCR products was carried out using various commercially available 

systems. The TAO Cloning kit, (Invitrogen), The LigATor, (R&D Systems) and the 

pGEM®-T Vector Systems, (Promega) all utilise the nontenlate-dependent activity 

of Taq polymerase which adds a single deoxyadenosine (A) to the 3' ends of PCR 

products. The supplied, linearised vectors have a single 3' deoxythymidine (T) 

residue, which allows the PCR inserts to ligate efficiently with the vector. The 

TOPO TA Cloning® kit, (Invitrogen) also uses the nontemplate-dependent activity 
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of Taq polymerase and the vector is again supplied linearized with single 3' 

thymidine overhangs. However the TOPO-CloningTM exploits the ligation reaction 

of topoisomerase I by providing an "activated" linearised TA vector using 

proprietary technology (Shuman, 1994). Ligation of the vector with a PCR product 

containing 3' A overhangs is very efficient and occurs spontaneously within 5 

minutes at room temperature. The Zero Blunt' PCR cloning kit is designed to clone 

blunt PCR fragments. Recombinants are directly selected via disruption of a lethal 

gene. the system is based on vectors containing the lethal E. coli gene, ccdB 

(Bernard et al., 1994). The vector pCR®-BLUNT is supplied linearised and blunt-

ended with the ccdB gene fused to the C-terminus of lacZa. When a PCR product is 

cloned it disrupts expression of the lacZa-ccdB gene fusion permitting growth of 

only positive recombinants after transformation. 

TA Cloning Kit 

1Ot1 ligation reaction set up as follows: 

Fresh PCR product 
	

1-2p.l 

1 Ox ligation buffer 
	

1 .tl 

(60mM Tris-HCI, pH 7.5, 60mM MgCl,, 50mM NaCl, 

1mg/mi bovine serum albumin, 70mM 3-mercaptoethano1, 

1mM ATP, 20mM dithiothreitol, 10mM spermidine) 

pCR02. 1 vector (25ng/.il) 
	

2p1 

Sterile water 	 to a total volume of 9p.l 

T4 DNA Ligase (4.0 Weiss units) 
	

1 l 

The ligation reaction was incubated overnight at 14°C. 

2pi 0.5M -mercaptoethanol and 2jxl of the ligation reaction were added to 50.xl of 

INVaF' competent cells and incubated on ice for 30 minutes. The cells were heat 

. J shocked for exactly 30 seconds at 42°C and then placed back on ice for a further 2 

minutes. 250tl of SOC medium (2.1.6) was added to the cells and incubated at 37°C 

for 1 hour while being agitated by rotation. 50.il and 200p.lirom the transformation 

were spread on LB agar plates containing kanamycin or ampicillin and X-Gal. The 

plates were incubated at 37°C overnight and then placed at 4°C to allow proper 
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colour development. White and light blue colonies were tested for the presence of 

the required insert. 

The LigA Tor Kit. 

10.t1 ligation reaction set up as follows: 

Fresh PCR product 

1 Ox ligation buffer 

(200mM Tris-HCI, pH 7.6, 50mM MgCl,) 

100mM DTT 

10mM ATP 

50ng/il pTAg vector 

Sterile water 

T4 DNA ligase (2-3 Weiss units) 

1-2tl 

1.Otl 

O.5j.il 

0.5 .tl 

1.Otl 

to a total volume of 9p.1 

0.5.t1 

The ligation reaction was incubated overnight at 16°C. 

1 j.tl of the ligation reaction was added to 20t1 of the competent cells and incubated 

on ice for 30 minutes. The cells were heat shocked for exactly 40 seconds at 42°C 

and then placed back on ice for a further 2 minutes. 80p.l of SOC medium (2.1.6) 

was added to the cells and incubated at 37°C for 1 hour while being agitated by 

rotation. 50il of the transformation was spread on a LB agar plate containing 

kanamycin or ampicillin, 15j.tglml tetracycline, IPTG and X-Gal. The plates were 

incubated at 37°C overnight and then placed at 4°C to allow proper colour 

development. White and light blue colonies were tested for the presence of the 

required insert. 

pGEMc-T Vector Systems. 

lOpi ligation reaction set up as follows: 

Fresh PCR product 
	

l-2p.l 

lOx ligation buffer 	 1.0t1 

(300mM Tris-HCI, pH 7.8, 100mM M9Cl 2, 100mM DTT, 10mM ATP) 

50ng/pi pGEM®-T Easy vector 	 1 .Opi 

Sterile water 	 to a total volume of 9t1 

T4 DNA ligase (3 Weiss units) 	 1 .Otl 

The ligation reaction was incubated overnight at 4°C. 

I-i 
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2.il of the ligation reaction was added to 50j.il of JM109 High Efficiency competent 

cells and incubated on ice for 20 minutes. The cells were heat shocked for 45-50 

seconds at 42°C and then placed back on ice for a further 2 minutes. 9501.11 of SOC 

medium (2.1.6) was added to the cells and incubated at 37°C for 1.5 hours while 

being agitated by rotation. 100111 of the transformation was spread on a LB agar 

plate containing ampicillin, IPTG and X-Gal. The plates were incubated at 37°C 

overnight and then placed at 4°C to allow proper colour development. White and 

light blue colonies were tested for the presence of the required insert. 

TOPO TA Cloning Kit. 

5p.l TOPO-Cloning reaction set up as follows: 

Fresh PCR product 
	

0.5-21.tl 

Sterile water 
	 to a total volume of 4.tl 

pCR2. 1 -TOPO vector 
	

1 j.tl 

The TOPO-Cloning reaction was incubated for 5 minutes at room temperature. 

21.tl of 0.5M 3-mercaptoethanol and 2il of the TOPO-Cloning reaction were added to 

50[.1l of TOP1OF' competent cells and incubated on ice for 15 minutes. The cells 

were heat shocked for exactly 30 seconds at 42°C and then placed back on ice for a 

further 2 minutes. 250J.1l of SOC medium (2.1.6) was added to the cells and 

incubated at 37°C for 30 minutes (ampicillin selection) or 1 hour (kanamycin 

selection) while being agitated by rotation. 50tl and 1001.11 of the transformation 

were spread on LB agar plates containing kanamycin or ampicillin, IPTG and X-Gal. 

The plates were incubated at 37°C overnight and analysed as for the TA Cloning Kit. 

The Zero-Blunt PCR Cloning Kit. 

1 Op.l ligation reaction set up as follows. 

• Line.rized, blunt pCR®-BLUNT (25ng) 	 11.11 

Blunt PCR product 	 1-5111 

I Ox ligation buffer (with ATP) 	 1111 

(60mM Tris-HC1, pH 7.5, 60mM MgC12 , 50mM NaCl, 

1mg/mi bovine serum albumin, 70mM -mercaptoethanoI, 

1mM ATP, 20mM dithiothreitoi, 10mM spermidine) 

Sterile water 	 to a total volume of 911 1  
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T4 DNA ligase (4U4.tl) 	 1 j.il 

The ligation reaction was incubated at 16°C for one hour. 

2p.l 0.5M 3-mercaptoethanol and 2.il of the ligation reaction were added to 50p.l of 

TOP 10 competent cells and incubated on ice for 30 minutes. The cells were heat 

shocked for exactly 45 seconds at 42°C and then placed back on ice for a further 2 

minutes. 250j.tl of SOC medium (2.1.6) was added to the cells and incubated at 37°C 

for 1 hour while being agitated by rotation. 10-1 OOj.tl of the transformation was 

spread onto LB plates containing 50.tg/ml kanamycin. The plates were incubated at 

37°C overnight and colonies tested for the presence of the insert. 

2.2.6 Preparation of competent Escherichia coli and transformation. 

2.2.6.1 Preparation of competent E. coli. 

A single colony of DH5a was picked into 5m1 of LB (2.1.6) and incubated, while 

shaking, overnight at 37°C. 0.5ml of the overnight culture was used to inoculate 

50m1 of fresh LB, which was incubated for 2 hours at 37°C while shaking. This 

allowed the cells to reach mid-logarithmic growth before the culture was chilled on 

ice for 30 minutes and collected by centrifugation (1500xg, 10 minutes, 4°C). The 

pelleted cells were resuspended in lOml of ice-cold sterile 100mM magnesium 

chloride and collected by centrifugation (1500xg, 10 minutes, 4°C). The washed 

pellet was resuspended in 1 Oml of 100mM calcium chloride and incubated on ice for 

a minimum of 4 hours. The competent cells were collected by centrifugation 

(1500xg, 10 minutes, 4°C) and resuspended in 2m1 of 100mM calcium chloride, 14% 

glycerol. 200tl aliquots of competent cells were stored for up to 6 - months at -70°C. 

2.2.6.2 Preparation of selective media plates. 

Ampicillin at a concentration of 1 00igIml in LB media was used as a selective 

medium for experiments with DH5a cells. 

Selection of clones from the various PCR cloning kits was made using either 

kanamycin (25tgIml) or ampicillin (100.tgIml) depending on the source of the DNA 

used in the original PCR reaction 
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2.2.6.3 Transformation. 

l-Stl of the ligation reaction was added to 200tl of prepared competent cells 

(2.2.6.1), mixed gently, and incubated on ice for 30 minutes. The cells were heat 

shocked at 42°C for 45 seconds before replacing on ice for 2 minutes. 500jil of LB 

was added before incubation for 1 hour at 37°C while being agitated by rotation. 

Typically 50tl and 200tl of transformed cells were spread on selective media and 

incubated overnight, inverted, at 37°C. 

2.2.7 Colony screening. 

2.2.7.1 Blue/white colour selection. 

The insertion of a DNA fragment into the multiple cloning site of a vector containing 

the lacZ gene which facilitates blue/white colour selection was tested by plating onto 

medium containing 0.004% X-GAL in DMF and 200.tM IPTG. Following 

incubation overnight at 37°C, plates were transferred to 4°C to allow full colour 

development. White and light blue colonies were picked for further analysis. 

2.2.7.2 Colony lifts. 

This protocol was adapted from that described by Buluwela et al., (1989). Hybond-

N (Amersham) membranes, cut to the correct size, were placed on the surface of the 

plates and marked for orientation before being carefully lifted off. The membranes 

were placed colony side up on blotting paper soaked in 2xSSC, 5% SDS for 2 

minutes. The membranes were microwaved at full power for 45 seconds which lyses 

the cells and denatures and fixes the DNA. The membranes were then available for 

• prehybridisation (2.2.4.3). 

2.2.7.3 Patching. 

Small numbers of colonies were screened using this protocol for ease of 

subsequently selecting positive clones. Using autoclaved toothpicks individual 

colonies were scratched across the surface of a Hybond-N (Amersham) membrane, 

which had been stamped with a 100 square matrix and placed on a selective media 
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plate. The same colony was also scratched on a selective media plate at the same 

position as indicated from a matrix stuck to the underside of the plate. Both plates 

were incubated overnight at 37°C. The membrane was treated as described in 

2.2.7.2. 

2.2.8 DNA sequencing and analysis. 

2.2.8.1 Sequencing of double-stranded DNA template. 

DNA sequence determination was made using the chain termination method 

described by Sanger et al., (1977). The commercially available Sequenase®v.II kit 

(USB) was used. Sequencing primers were supplied by OSWEL DNA Service, 

Southampton, UK. 

As double stranded DNA template was always used, the DNA was denatured before 

annealing to the oligonucleotide primers. 1 0tg of template was resuspended in 30tl 

of denaturing solution (200mM sodium hydroxide, 2mM EDTA) and incubated for 

30 minutes at 37°C. The template was ethanol precipitated (2.2.1.7) and resuspended 

in 7jil of sdH20. 

The 7.tl of template was quickly mixed with 2tl of reaction buffer (200mM Tris-HC1 

pH 7.5, 100mM magnesium chloride, 250mM sodium chloride) and 1tl of 

oligonucleotide primer (20ng/tl). The annealing mix was incubated at 37°C for 15 

minutes before the sample was allowed to cool to room temperature. 

The labelling reaction consisted of I 0il annealed primer/template, 2tl of dGTP 

labelling mix (1.5p.M of dGTP, dTTP and dCTP), Ipi of 100mM DTT, 0.5pJ [a 35 S] 

dATP (lOmCi/ml) and 2tl of Sequenase® DNA polymerase (1.6 U/pd). This was 

incubated at room temperature for 2-5 minutes before 3.5p1 aliquots were removed 

and added to 2.5il of each termination mix (ddG, ddA, ddT and ddC) prewarmed to 

37°C. Each termination mix consisted of the following; 80M dGTP, dCTP, dATP 

and dTTP, 50mM sodium chloride and 8tM of the appropriate dideoxynucleoside 

(ddGTP, ddCTP, ddATP and ddTTP). To compensate for the A-T bias in the P. 

falciparum genome, termination mixes containing ddGTP and ddCTP were diluted I 

in 2 compared to 1 in 8 for ddATP and ddTTP. The termination reactions were 
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incubated at 37°C for 2-5 minutes and then stopped by the addition of ice-cold 

loading buffer (95% formaniide, 20mM EDTA, 0.05% bromophenol blue, 0.05% 

xylene cyanol FF) and placing the reaction on ice. 

2.2.8.2 Sequencing gel electrophoresis. 

Sequencing reactions were separated on a 6% polyacrylamide gel (20:1 acrylamide 

:bisacrylamide) containing 7M urea in 1xTBE (2.1.6) available commercially from 

Scotlab. The addition of 240tl of 10% ammonium persulphate and 24.tl TEMED 

polymerised 40m1 of polyacrylamide mix. The gel was cast between a pair of plates 

(380mm x 170mm) separated by 0.3mm spacers. 

2.5j.tl of each termination mix (2.2.8.1) was heated for 5 minutes at 95-100°C before 

being quickly cooled on ice. The termination mixes were loaded onto a "sharks 

tooth" comb, in the order; ddGTP, ddATP, ddTTP and ddCTP. Electrophoresis was 

carried out at a constant 50 Watts. After the appropriate length of run the gel was 

fixed by placing blotting paper soaked in fix (10% glacial acid, 12% methanol) on the 

surface for 10 minutes. The gel was lifted onto Whatman 3MM paper and dried under 

vacuum at 80°C. Gels were exposed to film (2.1.4) overnight at room temperature. 

2.2.8.3 Automated sequencing of double-stranded DNA templates. 

The ABI Prism dRhodamine Terminator Cycle Sequencing Ready Reaction Kit 

(Perkin Elmer) was used for sequencing reactions that were to be run and analysed by 

the AB1 377 automated sequencer (Perkin Elmer Applied Biosystems). 

Oligonucleotide primers were supplied by the OSWEL DNA Service, Southampton, 

UK. 

0.5p.g of double stranded plasmid DNA, 3.2 pmole of primer, 8tl of Terminator 

Ready Reaction Mix (supplied in the kit) and sdH 20 to a final volume of 20p.1 were 

added to a 0.5ml tube. The reaction was overlaid with 40p.l of mineral oil before being 

placed onto the thermal cycler. 

Thermal cycling was conducted as follows, 
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1) 96°C for 30 sec, 2) 50°C for 15 seconds, 3) 60°C for 4 minutes for 25 cycles. The 

maximum ramp rate (1 °C/sec) between each step was used in all reactions. 

The mineral oil was removed and the completed reaction products purified by 

addition of 2p.l of 3M sodium acetate, pH 4.6 and 50il of 100% ethanol to 

precipitate the DNA. Reactions were incubated on ice for 10 minutes before 

centrifugation to pellet the DNA, using a benchtop microfuge at top speed for 30 

minutes. The pellet was washed once with 70% ethanol before air drying. Reactions 

were stored at -20°C for up to two days before being run on the ICMB automated 

sequencing machine by Nicola Preston. 

2.2.8.4 Analysis of DNA sequences prepared by the automated sequencer. 

Sequencing data were downloaded onto a floppy disc and the files analysed using the 

ABI Prism Sequence Navigator Programme version 1.0.1 (Perkin Elmer). 

2.2.8.5 Sequence analysis. 

Storage of sequence, mapping of restriction sites and comparison to other database 

sequences was made using the University of Wisconsin Genetics Computer Group 

Sequence Analysis Software Package v.9.1 (Devereux et al., 1984) and the programs 

available via the BCM search launcher (http://kiwi.imgen.bcm.tmc.edu:8088/search-

launcher/launcher.html).  

2.2.9 Polymerase Chain Reaction (PCR). 

2.2.9.1 Standard PCR. 

A typical PCR reaction (Saiki et al., 1988, Innis et al., 1990) was modified as 

described below to allow for the A-T bias of the template DNA. PCR reactions were 

assembled on ice in SOOpJ  eppendorf tubes. Extreme care was used to ensure that 

contaminants were not introduced into the reactions. 
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I OOng template DNA 	 Xd 

lOx PCR buffer 	 ioi 

(500mM KCI, 100mM Tris-HCI, pH 9.0, 1.0% TritonX- 100) 

Forward primer (20ng4tl) 	 1 0.0.il 

Reverse primer (20ng4tl) 	 1 O.Op.l 

25mM magnesium chloride 	 6.01.11 

40mM dNTP (10mM each of dATP, dTTP, dCTP and dGTP) 	2.5tl 

Taq (Thermus aquaticus) DNA Polymerase (5U/1.tl) 	0.5tl 

sdH20 to a total of l00tl 

Promega supplied the Taq DNA polymerase and buffer. The reaction was overlaid 

with 1 OOi.tl of mineral oil. A typical programme for the thermocycler for a pair of 

1 8-mer oligonucleotide primers using genomic or plasmid DNA template to amplify 

a kilobase product is described below. Modifications were made to this standard 

programme to allow for the optimisation of each reaction. 

Denaturation 	Annealing 	Extension 

95°C 5 mins 	37°C 1 min 	72°C 2 mins 

93°C 3 mins 	37°C 1 min 	72°C 2 mins 

93°C 1 min 	40°C 1 min 	72°C 2 mins 

72°C 5 mins 

Programmes 1, 2 and 4 were all for 1 cycle each while programme 3 was typically 

for 30 cycles. The maximum ramp rate (1 °C/min) between each step was used in all 

PCR reactions. 101.11 of each reaction was analysed by agarose gel electrophoresis 

(2.2.3). 

2.2.9.2 PCR using Pfu DNA polymerase. 

Pfu DNA polymerase is a proof-reading polymerase that was isolated from 

Pyrococcus furiosus that exhibits the lowest error rate of any thermostable DNA 

polymerase. It has been used for gene expression where high fidelity DNA synthesis 

is required. The standard Pfu PCR reaction is as follows. 
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sdH20 80.7t1 

1 O PCR buffer 10.0tl 

(200mM Tris-HCI, p1-18, 20mM MgCl,, 100mM KCI, 

60mM (N1-14)2SO4 , 1% Triton® X-100, 100igIm1 BSA) 

40mMdNTPs 1.3[d 

DNA template (100ng/tl) 1 .Otl 

Forward primer (100ng/tl) 2.5pJ 

Reverse primer (100ng/i1) 2.5tl 

Native Pfu DNA polymerase (2.5U/il) 	 2.Oj.tl 

Stratagene supplied the PCR buffer and native Pfu DNA polymerase. The reaction 

was overlaid with 100tl mineral oil. The standard thermal cycling conditions were 

as follows. 

Denaturation 	Annealing 	Extension 

I. 	94'C 45s 

94°C 45s 	 40°C 45s 	 72°C 2 mins 

72°C lOmins 

Programmes 1 and 3 were for 1 cycle each while programme 3 was typically for 25 

cycles. The maximum ramp rate (1°C/mm) between each step was used in all PCR 

reactions. 10tl of each reaction was analysed by agarose gel electrophoresis (2.2.3). 

2.2.9.3 Inverse PCR. 

Inverse PCR was developed independently by three groups (Ochman et al., 1988, 

Silver and Keerikatte, 1989, Triglia et al., 1988) that allows the amplification of 

DNA flanking a region of known sequence. The technique is based on the simple 

procedures of digestion of genomic DNA with suitable restriction enzymes and 

circularization of cleavage products, under conditions that favour the formation of 

monomeric circles, before amplification using primers in the opposite orientation to 

those normally employed for PCR. The basic method is shown in the figure below. 
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Figure 2.1. Application of inverse PCR, (Ochman et al., 1988). 

Approximately 1 .5.tg of KJ P. falciparum genomic DNA was restricted with SspI in 

a total volume of 30tl for 4 hours at 37C. The restriction digest was checked to see 

if it had gone to completion by analysing 2tl by agarose gel electrophoresis (2.2.3). 

The SspI restricted genomic DNA was then ethanol precipitated (2.2.1.7) before 

being resuspended in 1 7p.l sdH20. 1 unit of T4 DNA ligase was added and incubated 

at 16°C overnight. The ligated SspI restricted DNA was ethanol precipitated 

• (2.2.1.7) and again resuspended in 171.il sdH 20. lp.l of the ligated SspI restricted 

DNA was used in each PCR reaction using standard conditions (2.2.9.1). 
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2.2.9.4 Construction and screening of vectorette libraries. 

Vectorette PCR system. 

Vectorette PCR is a method for performing "unidirectional" PCR, allowing 

amplification of any uncharacterised sequence adjacent to a known region. The 

principle of this method is shown in the figure below. 

(A) R known sequence R R 
I 	 I 	I 

:+ 

\r-r + 	+ — 
SP 

primer binding 	 no primer binding  

(1) Digestion of target DNA with an 
appropriate restriction enzyme (R). 

(2) Ligation of vectorette onto 
the target DNA fragment to 
form a vectorette library. 

(3) In the first round of PCR, 
primer extension is from the 
specific primer (SP), non-specific 
background is avoided as the 
vectorette primer (VP) only binds 
to the product produced by SP. 

sP+- - 
___MVP 

Mismatched region 

(B) 

5_/\_ 
Top strand 

3 ,  
3' 	 / 	5' 

Vectorette primer 

Figure 2.2. A schematic representation of vectorette PCR (A) and vectorette adaptor 

(B). 
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It consists of three basic steps: (1) digestion of target DNA with a suitable restriction 

enzyme, (2) ligation of suitable synthetic vectorette units onto the digested DNA to 

construct the vectorette library, and (3) PCR using a specific primer and a universal 

primer directed towards the vectorette unit. In the first step, target DNA is digested 

with a range of restriction enzymes to maximise the chance of obtaining DNA 

fragments suitable for amplification. In the second step, the vectorette is ligated to 

all digested fragments. The adaptor is only partially double-stranded and contains a 

central mismatched region resulting in a "bubble" to avoid first strand synthesis by 

the vectorette primer. The vectorette PCR primer has an identical sequence to the 

bottom strand of this mismatched region and therefore has no complementary 

sequence to anneal to in the first cycle of PCR in the third step. Consequently only 

the known primer, specific for the sequence of interest will prime DNA synthesis. In 

this way, a specific DNA fragment can be amplified from a complex fragment 

mixture. 

Construction of vectorette libraries. 

Six separate vectorette libraries were constructed from K! genomic DNA according 

to the manufacturer's instructions (Genosys) with some modifications. l.tg  of DNA 

was digested overnight at 37°C in a 50p.l volume containing lOx restriction buffer 

and 10 units of one of the following enzymes: Bc!!, DraI, HincII, Hindill, SspI or 

)thoII. Half of the restriction digest was ligated to 3tM of the corresponding 

vectorette unit in a 50p.1 ligation reaction containing lOx ligation buffer and 1 unit of 

T4 DNA ligase. The ligation reaction was incubated at 20°C for 60 minutes 

followed by 37°C for 30 minutes. This was repeated three times. This is necessary 

to redigest any target DNA fragments which have ligated to each other and not to 

• vectorette units. The cycling therefore ensures optimum ligation of vectorette units 

to DNA fragments. Following ligation 200jil sdH2O was added and the vectorette 

libraries were stored in aliquots at -20°C. 

Screening of the vectorette libraries by PCR. 

Vectorette PCR was carried out according to the manufacturer's instructions. PCR 

reactions were assembled on ice in 500il eppendorf tubes. 
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Vectorette library 1.0i.11 

lOx PCR buffer 1Otl 

40mM dNTPs 2.5tl 

I j.tM vectorette primer Log! 
1p.M specific primer 1.0p.l 

25mM MgCl2 6.0p.l 

sdH20 to a total of 99t.tl 

The reactions were overlaid with 1 00p.l mineral oil and heated to 94°C for 3 minutes 

before 2.5 units of Taq polymerase was added through the oil for a hot-start. This 

step was vital to the specificity of the reaction. The reactions were then subjected to 

the following conditions for 40 cycles. 

1) 94°C 1 minute 	2) 60°C 1 minute 	3) 72°C 2.5 minutes. 

The maximum ramp rate (1 °C/min) between each step was used. 1 0p.l of each 

reaction was analysed by agarose gel electrophoresis (2.2.3). If necessary a second 

(nested) PCR was performed using the vectorette nested primer and a specific nested 

primer and 2.il of 1/200 dilution of the first PCR product under the same conditions. 

2.2.10 Pulsed field gel electrophoresis. 

A P. falciparum culture was grown until approximately 10' parasites were available 

and the culture was harvested by centrifugation (2500xg, 10 minutes, 4°C). The 

erythrocyte pellet was resuspended in 5 volumes of 1xSSC, 0.1% saponin, mixed by 

inversion and incubated at room temperature for 20 minutes. The released parasites 

were collected by centrifugation (3000xg, 10 minutes, 4°C), washed in 1xPBS then 

collected by centrifugation and the parasites were resuspended to a density of 1010 

parasites per ml. An equal volume of 2% low melting point agarose in 0.5 x TBE 

(2.1.6) at 45°C was added and blocks formed in a perspex mould. The block was 

treated with proteinase K at 250mg/mi for 48 hours at 31C in 10mM Tris-HC1, 

pH7.6, 0.5M EDTA, 1% SDS. The block was then loaded onto a 1% agarose gel in 

0.5 x TBE and subject to pulsed field gel electrophoresis in a CHEF II apparatus 

(Biorad) at 80V, 14°C, with pulse times ramped from 3-15 minutes over 3 days. The 

gel was depurinated and wet Southern blotted (2.2.4.2). 
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2.3 RNA Methods. 

2.3.1 Total RNA isolation from P. falciparum. 

Total RNA was isolated using RNAz01TMB  which is commercially available from 

Biogenesis Ltd. The method is based on the acidic guanidinium-phenol-chloroform 

protocol described by Chomczynski and Sacchi (1987). A P. falciparum culture was 

grown until approximately 10 9  parasites were available and the culture was harvested 

by centrifugation (2500xg, 10 minutes, 4°C). The erythrocyte pellet was 

resuspended in 5 volumes of 1xSSC, 0.1% saponin, mixed by inversion and 

incubated at room temperature for 20 minutes. The released parasites were collected 

by centrifugation (3000xg, 10 minutes, 4°C), washed in 1xPBS then collected by 

centrifugation. 

The parasite cells were lysed by the addition of 0.2ml of RNAzo1TMB per 106  cells 

and the RNA solubilized by passing the lysate through the pipette a few times. 0.2m1 

of chloroform was added per 2m1 of homogenate, the samples covered tightly and 

shaken vigorously for 15 seconds. The samples were incubated on ice for 5 minutes 

followed by centrifugation at 12000xg, 4°C for 15 minutes. 

The aqueous phase was removed to a fresh tube and an equal volume of isopropanol 

added. The samples were stored at 4°C for 15 minutes and then centrifuged as 

above. 

The supernatant was removed and the RNA pellet washed once with 75% ethanol by 

vortexing and subsequent centrifugation for 8 minutes (7500xg, 4°C). 

The RNA pellet was resuspended in l00tl of TE, pH 7.2, 0.1%SDS and stored at - 

70°C. The RNA was analysed using UV spectrophotometry (2.2.1.5). 

2.3.2 Northern analysis. 

Total RNA was fractionated on a 1% agarose/1 .85% formalehyde gel prepared and 

run in IxMOPS. Typically 10-20j.tg of total RNA, or 8tg of 9.5-1.4Kb RNA 

markers (Gibco-BRL) were added to an equal volume of formaldehyde sample buffer 

(2.1.6) and incubated at 75°C for 10 minutes. The sample was cooled quickly on ice 

and 1il of a 1:5 dilution of lOmg/ml ethidium bromide added before loading on the 
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gel. The gel was run at 1 OOV for 4 hours using a pump to circulate the 1 xMOPS 

buffer. 

When the run was complete the gel was washed for 10 minutes in 1xSSC to remove 

the formaldehyde, then soaked in 1xSSC, 50mM sodium hydroxide for 10 minutes to 

slightly denature the RNA. A blot was assembled essentially as described for a wet 

southern blot (2.2.4.2) except that the transfer was made with 1OxSSC. The 

following day the Genescreen Plus membrane was washed with 2xSSC before 

prehybridisation. The hybridisation was made using the conditions for a random 

labelled probe (2.2.4.3, 2.2.4.6) at 60°C. 

2.4 Protein methods. 

2.4.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE). 

2.4.1.1 Preparation and running SDS-PAGE. 

Protein extracts were size-fractionated by SDS-PAGE with a discontinuous buffer 

system. Atto gel rigs (GRI Instruments) 150mm x 150mm x 1mm and Mighty Small 

II rigs (Hoefer) 80mm x 70mm x 0.75mm were used. The gel mixes were prepared 

as shown in table 2.3. Large gels were cast with a 130mm resolving gel and a 20mm 

stacking gel while small gels were cast with a 50mm resolving gel and a 10mm 

stacking gel. 

The resolving gel was cast and overlaid with a small volume of water-saturated 

butanol. The stacking gel was allowed to set for an hour before pouring off the 

butanol and washing the top with sdH 20. The stacking gel was cast and the comb 

• added before leaving the stacking gel to set. The comb was removed and the wells 
I 

rinsed with sdH20 before use. 



Table 2.3. SDS-PAGE resolving and stacking gel mixes (Volumes sufficient for 2 

large gels or 5 small gels, in ml). 

Component Resolving gel Stacking gel 

8% 10% 

Acrylamide/bisacrylamide 16 20 2.6 

(30:2:67) 

sdH20 28.7 24.7 12.3 

1.5M Tris-HC1 p1-18.8 15 15 - 

0.5M Tris-HC1 pH6.8 - - 5 

20% SDS 0.3 0.3 0.1 

10% Ammonium persulphate 0.3 0.3 0.09 

TEMED 0.03 0.03 0.018 

Protein samples were added to an equal volume of 2x sample buffer and heated to 

95-100°C for 3 minutes. Gels were run in SDS-PAGE running buffer (2.1.6) at 

20mA per gel and approximately 1 OOV. Small gels were run for approximately 40-

60 minutes and large gels for 3.5 hours, usually until the blue dye reached the bottom 

of the gel. 

2.4.1.2 Protein molecular weight markers. 

Two types of protein markers were used; SDS-6H markers (Sigma) for gels which 

were stained with coomassie brilliant blue or, if the gels were to be western blotted, 

prestained broad range markers (New England Biolabs). 

lOjtl of SDS-6H markers in a sample buffer (0.0625M Tris-HCI pH 6.75, 2% SDS, 

5% 3-mercaptoethanol, 10% glycerol, 0.001% bromophenol blue) were loaded on a 

minigel rig, 20tl were used for the larger Attorigs. The raige of markers included 

were; 205kDa, 1 l6kDa, 97.4kDa, 66kDa, 45kDa and 29kDa. 

5tl of the prestained markers were added to lOp.l of sample buffer (187.5mM Tris- 

HC1 pH 6.8, 50mM sodium chloride, 1mM EDTA, 1mM sodium azide, 125mM 

dithiothreitol) and heated at 95-100°C for 60 seconds before loading on a minigel. 



For a larger gel the volumes were doubled. The range of markers included were; 

175kDa, 83kDa, 62kDa, 47.5 kDa, 32.5kDa, 25kDa, 16.5kDa and 6.5kDa. 

2.4.1.3 Coomassie brilliant blue staining (fixing). 

In order to visualise proteins a gel was submerged in coomassie fixing stain (2.1.6) for 

30 minutes at 37°C. The coomassie fixing stain was decanted and replaced with 

coomassie destain (2.1.6). The destain was replaced every 30 minutes until the 

background was clear. The gels were dried, under a vacuum, against Whatman 3MM 

blotting paper at 80°C. 

2.4.1.4 Isolation of proteins from SDS-polyacrylamide gels. 

Proteins isolated this way were subsequently used for immunisation of rabbits to raise 

polyclonal antiserum. 

Bacterial cells containing the recombinant protein were size fractionated by SDS-

PAGE. The correct protein band was excised from the gel with the aid of non-fixing 

Coomassie blue stain (0.25% coomassie brilliant blue R-250 in water) to visualise the 

proteins (2.4.1.3). The protein gel slice was transferred to a clean tube and 

completely immersed in a solution of PBS/0. 1% SDS and set at 4°C for 1-2 days. 

When all of the protein had leached from the gel, the solution was concentrated using 

a Microsept Filtron 3K microconcentrator, which also removes SDS from the sample. 

The quantity and purity of the sample was assessed by SDS-PAGE. 

2.4.2 Heterologous protein expression and harvesting. 

The pGEX and pRSET vectors were used for heterologous expression of proteins in 

the E. coil strain BL2 I (DE3)[pLysS]. 

A single colony was picked and grown in LB supplemented with ampicillin 

(100.tg/m1) and chloramphenicol (20.xg/ml) overnight at 37°C with shaking. The 

culture was collected by centrifugation (2500xg, 10 minutes, 25°C) and washed in 

LB-ampicillin. The culture was collected as above and resuspended in one-fifth the 

original volume of LB. Half of the resuspension was diluted 1:50 in minimal medium 

supplemented with ampicillin and chioramphenicol (as above) and grown at 
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37°C with shaking until an 0D 600  of 0.7-0.8 was reached. At this point an uninduced 

sample was removed and to the remaining culture 100mM JPTG was added to a final 

concentration of 0.5mM. Cells were then grown for a further three hours before 

being collected by centrifugation as above. Pellets were stored at -20°C until 

required. 

2.4.3 Preparation of total! protein from P. falciparum. 

A P. falciparum culture was grown until approximately 10 9  parasites were available 

when the culture was harvested by centrifugation (2500xg, 10 minutes, 4°C). The 

erythrocyte pellet was resuspended in 5 volumes of 1xSSC, 0.1% saponin, mixed by 

inversion and incubated at room temperature for 20 minutes. The released parasites 

were collected by centrifugation (3000xg, 10 minutes, 4 0C), washed in 1xPBS then 

collected by centrifugation. 

The parasite pellet was lysed by the addition of an equal volume of sdH 20 and an 

equal volume of 2x loading buffer (2.1.6). The lysed parasites were passed through a 

25 gauge needle to break up chromosomal DNA. The parasite preparation was 

stored until use at -70°C. 1 5-30il of parasite preparation was heated at 95-100°C for 

3 to 5 minutes before loading on a polyactylamide gel. 

2.4.4 Indirect immunofluorescence assay (JIFA). 

Thin blood smears were prepared from cultures with a parasitaemia of between 8-

12%, dried overnight at room temperature and stored at -20'C in a bag with silica 

gel. Slides were fixed in acetone for 5 minutes and allowed to dry at room 

temperature then divided into grids using nail varnish. On to each square 40.tl of the 

appropriate first antibodies diluted in PBS were added. The antibodies were 

incubated, in a moist chamber, for 1 hour. The antibodies were aspirated and the 

slide washed twice with PBS and once with sdH 20 for 5 minutes each. The slide was 

then left to dry completely at room temperature. 40pl of a 1:80 dilution of rhodamine 

isothiocyanate conjugate of immunoadsorbant-purified anti-rabbit immunoglobin 

(RTTC-anti IgG, Sigma) containing 5tg/m1 DAPI in PBS was added to each grid. 

The slides were incubated, washed and dried as described above for the first antibody. 



The slide was mounted in Citifluor (City University, London) and examined by 

fluorescence microscopy using a RITC filter set (Leitz). 

2.4.5 Western blot analysis. 

Western blot analysis was done using the method of Towbin et al., (1979) using a 

Hybond-C membrane (Amersham). The SDS-PAGE gel was assembled into a 

sandwich in a blotting cassette, Scotchbrite pad, 2 sheets of blotting paper (cut to the 

size of the gel), the gel, hybond-C membrane (cut to the size of the filter and carefully 

placed on the gel), 2 sheets of blotting paper and a second Scotchbrite pad. The 

blotting cassette was submerged in a transfer chamber (Biorad) containing transfer 

buffer (2.1.6). The gel was blotted at 40mA and approximately bOy for 4 hours. 

The filter was carefully removed from the sandwich and submerged in blocking 

solution (2.1.6) for 30 minutes. The filter was subsequently submerged in blocking 

solution containing the appropriate dilution of the first antibody while being gently 

shaken at room temperature for 2 hours. The filter was washed once with 1 xTS, 

twice with 1 xTS, 0.05% NP-40 and once with 1 xTS for 5 minutes each while gently 

shaking. 

The filter was then submerged in blocking solution containing a 1:7500 dilution of 

alkaline phosphatase conjugated to immunoadsorbant-purified anti-rabbit 

immunoglobin (AP-anti IgG, Promega). This was incubated at room temperature for 

2 hours while gently shaking. The filter was then washed as described for the first 

antibody. 

5m1 of alkaline phosphatase buffer (2.1.6) containing 33.tl of NBT (nito-blue 

tetrazolium) and 16.5j.tl BCIP (5-brom-4-chloro-3-indolyl phosphate) was added to 

the filter. The filter was shaken gently at room temperature while the signal 

developed, for a maximum of 5 minutes. When the signal had developed to a suitable 

extent the reaction was stopped by adding an excess of sdH 20. The filters were then 

washed with sdH20 and left to dry on blotting paper. 
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2.4.6 Pollyclonall antibody production in rabbits. 

New Zealand White rabbits were used for all antibody work conducted in this study. 

All the animals used were barrier raised to prevent Coccidia infections, the antigens 

of which can cross react with malarial antigens. Animal work was conducted either 

by the University of Edinburgh Medical Faculty Animal Area or St. George's Hospital 

Medical School, London. 

2.4.6.1 Immunisation regime. 

1 OmI of pre-immune blood was taken prior to the first immunisation. Protein for the 

immunisations was prepared as described in section 2.4.1.4. Between 50-100.tg of 

recombinant protein was added to 0.5m1 PBS/0.5m1 Freund's Complete Adjuvant. 

The emulsion was injected subcutaneously into each hind-quarter. Three weeks later 

the animal was boosted with 50-60p.g of the same protein, but this time prepared in 

0.5m1 PBS/0.5m1 Freunds Incomplete Adjuvant. Rabbits received three boosts in 

total. 10-14 days after each boost, a 9ml blood sample was taken from the ear. 

Blood samples were prepared by incubating at 37°C for one hour to allow a blood 

clot to form and then incubating at 4°C overnight to allow the clot to contract and 

separate from the serum. The serum was removed the next day and stored in aliquots 

at -20°C. The immune response was monitored by IFA and western blotting. 

2.5 Parasite culture 

2.5.1. Parasite Source. 

The K  isolate of Plasmodium fakiparum (Thiathong and Beale, 198 1) was used 

during the course of this work. Stocks were either from samples stored at -70°C at 

ICMB or from the WHO Registry of Standard Strains of Malaria Parasites held at the 

Centre for Parasite Biology, University of Edinburgh. 
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2.5.2 Human Erythrocytes and Serum. 

The erythrocytes and serum used in this work was obtained from the Edinburgh and 

Southeast Scotland Blood Transfusion Service. Fresh whole blood, group 0 Rh + 

and either pooled serum or Albumax I (Gibco BRL) was used in parasite culture. 

Whole blood was washed 3 times in 4 volumes of incomplete RPMI 1640 medium 

(Gibco-BRL) to remove the citrate with centrifugation (1500xg, 10 minutes, 4°C) 

between washes. The "buffy coat" of white blood cells was removed after each wash 

step. The erythrocyte pellet was resuspended in complete medium (RPMI 1640 

supplemented with 10% human serum (or 0.5% w/v Albumax I), 50pgImI 

gentamycin sulphate, 50.tgIml hypoxanthine, filtered through a 0.22 jim membrane) 

to give a 66% haematocrit. The washed blood was stored at 4°C for up to 2 weeks. 

Human serum packs were pooled, usually 6 to 10 packs, and centrifuged (2000xg, 10 

minutes, 4°C) to pellet any blood cells. The serum was removed and incubated at 

56°C for 1 hour. 50m1 aliquots were stored at -20°C for up to 6 months. 

2.5.3 P. falciparum Asexual Stage Culture. 

This protocol was originally described by Trager and Jensen (1976) and Zoig et al., 

(1982) described a range of conditions, which improve parasite yields. Cultures were 

maintained in 50ml of complete medium (2.5.2) at a 3-5% haematocrit. The average 

percentage parasitaemia, as determined using methanol fixed thin blood smears 

stained with 10% giemsa, was usually kept at 1-2%. Cultures were maintained at 

37°C and gassed with 3%0,, 2CO 2  and 95% N2 . 

When large numbers of parasites were required the average percentage parasitaemia 

would be allowed to increase up to 10%. To maintain a healthy culture the numbers 

of flasks were increased rather than increase the haematocrit within a small number 

of flasks. 

2.5.4 Synchronisation of Asexual Cultures. 

Sorbitol treatment of asexual stages of the parasite to obtain a synchronous culture of 

ring forms was made using a protocol adapted from that described by Lambros and 

Vandenberg (1979). 
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A culture with an average percentage parasitaemia of 5% containing predominantly 

ring forms was used as the starting material. The culture was centrifuged (2000xg, 

10 minutes, 4°C) and the erythrocyte pellet resuspended in 5 volumes of sterile 5% 

sorbitol. The culture was incubated at room temperature for 5 minutes and the 

culture collected by centrifugation (2000xg, 10 minutes, 4°C). The erythrocyte 

pellet was washed in 5 volumes of complete medium (2.5.2), collected by 

centrifugation (2000xg, 10 minutes, 4°C) and resuspended in complete medium at a 

5% haematocrit. The culture was gassed then incubated at 37°C. The culture was 

examined after 48 hours, and if necessary the protocol repeated to ensure tight 

synchrony. 
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ISOLATION OF THE GENES ENCODING PFRFC1, PFRFC2 AND PFRFC3. 



3.1 Cloning the genes encoding TPIflRFC1, PITJFC2 and ]PfRIFC3. 

A better understanding of the molecular biology of the essential cellular processes in 

P. falciparum is required if new drug targets are to be discovered against malaria. 

One possible focus for new therapies is the process of DNA replication in the 

parasite. The work to be described here continues the work in progress of cloning 

and characterising the genes involved in this process. To date, DNA polymerase a, 

DNA polymerase 5 and its small subunit, PCNA, a primase subunit, and 

topoisomerase I and II have been isolated (White et al., 1993, Ridley et al., 1991, 

Prasartkaew et al., 1996, Kilbey et al., 1993, Tosh and Kilbey, 1995, Cheesman et 

al., 1994 and unpublished). 

In this chapter the isolation and characterisation of the genes which encode the 

parasite homologues of three component proteins of the RFC complex will be 

described: 

3.2 Gene cloning strategies. 

Because of the difficulties encountered in screening genomic libraries a variety of 

different approaches have been used to isolate the three genes. These involved PCR 

based methods, trying degenerate oligonucleotides as well as inverse and vectorette 

PCR. In addition a cDNA library was screened and towards the end of the project 

data from the Plasmodiumfalciparum genome project was also used. 

3.3 Cloning of the gene encoding PfRFC1. 

3.3.1 Degenerate PCR product from a eDNA library. 

The peptide sequences of the human and S. cerevisiae RFC subunits are shown as a 

pileup in figure 3.1 and it was decided to design oligonucleotides to match the 

conserved RFC boxes II and V/VI. 
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Figure 3.11. Amino acid sequences in a region of extensive homology of all RFC 

subunits from human (h) and S. cerevisiae (Sc). 

Conserved amino acids are in bold. The arrows indicate the direction and amino acid 

sequences used in the design of oligonucleotides S5614 and P2605. 
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ScRFC4 
hRFC4O 
ScRFC2 
hRFC37 
ScRFC3 
hRFC36 
ScRFC5 
hRFC38 
ScRFC1 
I1RFC14O 

II 
PWVEKYRPQV LSDIVGNKET IDRLQQIA--
PWVBYRPVK LNEIVGNEDT MSRLEVFA--
PWVEKYRPKN LDEVTAQDHA VTVLKKTL - - 
PWVEKYRPKC VDEVAFQEEV VAVLKKSL--
PWVEKYRPET LDEVYGQNEV ITTVRKFV- - 
PWVEKYRPQT LNDLISHQDI LSTIQKFI--
LWVDKYRPKS LNALSHNEEL TNFLKSLS- - 
LWVDKYRPCS LGRLDYHKEQ AAQLRNLV- - 
LWTVKYAPTN LQQVCGNKGS --- VMKLKNW  
LWVDKYKPTS LKTIIGQQGD QSCANKLLRW 

LANWENSKKN SFKHA-----
LRNWQKSSSE DKKHAAKFGK 

ScRFC4 
hRFC4O 
ScRFC2 
hRFC37 
ScRFC3 
hRFC36 
ScRFC5 
hRFC38 
ScRFC1 
hRFC14O 

ScRFC4 
hRFC4O 
ScRFC2 
hRFC37 
ScRFC3 
hRFC36 
ScRFC5 
hRFC38 
ScRFC1 
hRFC14O 

ScRFC4 
hRFC4O 
ScRFC2 
hRFC37 
ScRFC3 
hRFC36 
ScRFC5 
hRFC38 
ScRFC1 
hRFC14O 

S5614 
III 

----KD-GNM PHMIISGMPG IGKTTSVHCL AHELLGRS-Y -ADGV------
----RE-GNV PNIIIAGPPG TGXTTSILCL ARALLG-A-L KDAN ------ 
---- KS-ANL PHMLFYGPPG TGKTSTILAL TKELYGPDLM KSRI ------ 
---- EG-ADL PNLLFYGPPG TGKTSTILIAA ARELFGPELF RLRV 
----DE-GKL PHLLFYGPPG TGXTSTIVAL AREIY-GKNY SNMV ------ 
---- NE-DRL PHLLLYGPPG TGKTSTILAC AKQLYKDKEF GSMV ------ 
---- DQPRDL PHLLLYGPNG TGKKTRCMAL LESIFGPGVY RLKIDVRQFV 

QCGDF PHLLVYGPSG AGKKTRTMCI LRELYGVGVE KLRIEHQTIT 
--GKDGSGVF PAANLYGPPG IGKTTAAHLV AQEL ------ ----------  
FSGKDDGSSF KA.ALLSGPPG VGKTTTASLV CQEL ------ ---------- 

IV 
LEL NASDDRGID- ---VVRNQIK HFAQKKLHLP 
LEL NASNDRGID- ---VVRNKIX MFAQQKVTLP 
LEL NASDERGIS- ---IVREKVX NFARLTVSKP 
LEL NASDERGIQ- ---VVREKVX NFAQLTVSGS 
LEL NASDDRGID- ---VVRNQIK DFASTRQIFS 
LELNASDDRGID- ---IIRGPIL SFASTRTIFK 

TASNRKLELN VVSSPYHLEI TPSDMGNNDR I— -VIQELLK EVAQMEQVDF 
TPSKKKIEIS TIASNYHLEV NPSDAGNSDR V— -VIQEMLK TVAQSQQLET 

GYDILEQ NASDVRSKTL LNAGVKNALD NMS— -VVGYF 
GYSYVEL NASDTRSKSS LKAIVAESLN NTS— -IKGFY 

V 	 VI 
PGKH ------ --- KIVILDE ADSMr 
KGRH ------ --- KIIILDE ADSMT 
SKHDLENYPC PPYKIIILDE ADSMT 
RS --- DGKPC PPFKIVILDE ADSMT 
K --------- - GFKLIILDE ADAMT 
K --------- - GFKLVILDE ADAMT 
QDSK--DGLA HRYKCVIINE ANSLT 
NSQR--D --- -- FKVVLLTE VDKLT 
KHNEEAQNLN GKHFVIIMDE VDGMS 
S-NGAASSVS TKH-ALIMDE VDGMA 

P2605 
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From this information the oligonucleotides were designed with the following 

sequence. 

S5614 5' YTNCCNTGGGTNGARAARTAYMGNCC 

P2605 5' RTACATNGCRTCNGCYTCRTC 

These were used in a standard PCR reaction (2.2.9.1) with a cDNA library as the 

template. The cDNA library used was prepared in pJFE14 and was a kind gift of 

Alister Craig, 1MM, Oxford University. Amplification resulted in a 401bp PCR 

product that was cloned into pCR2. 1 (TA Cloning Kit) (2.2.5.3) and sequenced 

(2.2.8) using universal and reverse primers, which have binding sites in the vector. 

3.3.2 Screening the cDNA library with a random labelled PCR product. 

The eDNA library was transformed into DH5a (2.2.6.3) and screened by colony lifts 

(2.2.7.2) with the product of the degenerate PCR that was random-labelled (2.2.4.5). 

After two rounds of rescreening the colonies on one plate all probed positive. Two 

were picked and DNA prepared using QIAfilter Midiprep Kits (2.2.1.3). The clones 

were restricted with XhoI and it was found that they both contained an insert of 

approximately 1.7kb. The inserts had A overhangs added (by a 10 minute incubation 

with Taq polymerase at 72°C) and they were cloned into the pCR2. 1 vector. The 

clones were then sequenced (2.2.8) using universal and reverse primers and synthetic 

oligonucleotides designed to the new sequence generated. The cloned fragments 

were 1685bp long with the sequence of the PCR product at the 5' end of the clone 

(figure 3.2). The clones had RFC boxes Il-Vill present in the sequence. 

3.3.3 DraI vectorette PCR 

From the sequence obtained above an oligonucleotide was designed with the 

following sequence: 

W8986 5' CCCACAATTGA1TAAGAATTTCG. 

This was used in a DraI vectorette PCR reaction (2.2.9.4) with the vectorette PCR 

primer and resulted in an 800bp PCR product, which was cloned using the TOPO TA 

Cloning Kit (2.2.5.3). The clone was sequenced (2.2.8) again using universal and 

reverse and synthetic oligonucleotides designed to the new sequence. This clone 
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contained RFC box I which is only present in the large subunits of the RFC 

complexes. 

3.3.4 Searching the P. falciparum genome project databases. 

The entire sequence of approximately 2.4kb was used to screen the TIGR Pf 

chromosome 2 database (http://www.tigr.org/tdb/mdb/pfdb/pf2chrsearch.htm1)  by 

BLAST searches and a 657bp clone PF2IS69R was identified that had a 278bp 

overlap with the 5' end of the fragment. From this sequence an oligonucleotide was 

designed 80bp upstream of the putative ATG with the following sequence: A3474 5' 

CATATAAAAGAATATACAC which was used for a standard PCR reaction 

(2.2.9.1) with Pf genomic DNA with the oligonucleotide Z4464 (5' 

CACAACGAGTTTCTCATCTTCC). This resulted in a 457bp PCR product that 

was cloned into pCR2.1 (TA Cloning Kit) (2.2.5.3). This clone was sequenced 

(2.2.8) using universal and reverse primers and oligonucleotides A3474 and Z4464 

and the sequence was found to match that of PF2IS69R 

A 498bp clone PF2IG44R had a 93bp overlap with the 3' end of the sequence. From 

this sequence an oligonucleotide was designed which was located 31 4bp downstream 

of the putative stop codon with the following sequence: A4048 5' 

CTTTTCATCATGGGAAATC which was used for a standard PCR reaction 

(2.2.9.1) on Pf genomic DNA with oligonucleotide W2865 (5' 

CCAAAGAAGACAAGGATG). This resulted in a 424bp PCR product, which was 

cloned into pCR2. 1 (TA Cloning Kit) (2.2.5.3). When this clone was sequenced 

(2.2.8) using universal and reverse primers and oligonucleotides A4048 and W2865 

it was found to match PF2IG44R. 

3.3.5 Sequence Analysis of the PfRFC1 Gene. 

All the clones were sequenced with universal and reverse primers and the primers 

used for the initial PCR reactions. A series of synthetic primers (figure 3.4) were 

then designed from the data obtained to extend the sequence which was determined 

for both DNA strands (2.2.8). Each PCR reaction was carried out twice so that the 

sequence of independent clones could be checked in case the PCR had introduced 

any mutations. The overlapping clones were arranged using UWGCG sequence 
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analysis (Devereux et al., 1984) and the programs available via the BCM Search 

Launcher (http://kiwi.imgen.bcm.tmc.edu:  808 8/search-launcher/launcher.html). The 

sequence revealed an open reading frame of 2712 nucleotides which predicts a 

protein of 904aa (figure 3.3) and a molecular mass of 104kDa. The open reading 

frame is 74% AT, which is consistent with other P. falciparum genes (Goman et. al., 

1982). The first ATG of the open reading frame was designated as the putative 

translational start, it is immediately preceded by an in frame stop site. From 

examination of the upstream sequence it was not thought that an intron was present 

in the gene. 

A comparison of the P. falciparum, D. melanogaster, S. cerevisiae, S. pombe and 

human RFC1 amino acid sequences were made (figure 3.5). It was found that the 

PfRFC1 was similar in size to the Drosophila homologue. The highest degrees of 

conservation were seen in the RFC boxes (Cullman et al., 1995) which are covered 

by the two larger areas of conservation, the DNA binding domain and the PCNA 

binding domain first described by Fotedar etal. (1996). 

Sequence comparisons of PfRFC 1 were made with the large subunit of RFC from 

other species (Table 3.1). The D. melanogaster amino acid sequence shows the 

highest level of identity with PfRFC 1. 

% identity -EMBL accession number 

Human 24.5 P35251 

D. melanogaster 27.7 P35600 

S. cerevisiae 27.2 P38630 

S. pombe 26.7 060182 

Table 3.1 The homology between PfRFC1 and other large subunits of RFC. 
-4; J 
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Figure 3.2 An overview of the cloning of PfRFC1. A key is shown below. 
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Figure 3.3 The complete nucleotide sequence of PfRFC1. 

The translated amino acid sequence is shown below the nucleotide sequence. 

Nucleotide and amino acid positions are on the right side of the figure. 

M. 



CATATAAAAGAATATACAC 
ATATTATCTTTTTGAATTCATTTTTTTTTAACTTTGTGAGTTTATATTTTTACTTCATAA 
ATGAGTTCGAAGGACAAAAACTTATTCAGCGATGACGAAAGCCATGATGGTAGGAAAAAG 	60 
M S S K D K N L F S D D E S D D G R K K 	20 

T½AGAGGCTGAAAAAAGTATCTAGTTCCTTATTCCATGATGACGATGATGATAATTTTATA 120 
K 	R 	L 	K 	K 	V 	5 	5 	5 	L 	F 	H 	D 	D 	D 	D 	D 	N 	F 	I 40 

AGTAATAAAAAAGTGG?\AAAATCCAAATCGAAAAAJ\AAAAGTGACGCTATATATATTGAT 180 

S 	N 	K 	K 	V 	E 	K 	S 	K 	S 	K 	K 	K 	S 	D 	A 	I 	Y 	I 	D 60 

GATAATGAAAGCAATAATAATAACAAT TATAATAATACTAATAAAAGTAGTAATAGGAAA 240 

O 	N 	E 	S 	N 	N 	N 	N 	N 	Y 	N 	N 	T 	N 	K 	S 	S 	N 	R 	K 80 

TCATTAGAAAATAAATCATCGAAAACGTCACCGAAATTTTATGATATAACATCCTTTTTT 300 

S 	L 	F 	N 	K 	S 	S 	K 	T 	S 	P 	K 	F 	Y 	D 	I 	T 	S 	F 	F 100 

AAACCCTCTTCAAAAAAACTTCAGGATAATAACACTATGAAGAAATCTAATAGTAAGGAA 360 

K 	P 	5 	5 	K 	K 	L 	E 	0 	N 	N 	T 	M 	K 	K 	S 	N 	S 	K 	E 120 

GATGAGAAACTCGTTGTGAATAATCTTAATGACTATTTTAATATATTACAAAATGATAAT 420 

O 	E 	K 	L 	V 	V 	N 	N 	L 	N 	0 	Y 	F 	N 	I 	L 	Q 	N 	D 	N 140 

AAGGTCACTAAAGAAGACACAAAAAGTAACAACGTTAGTCCTAAAAATGAAATCAATAAA 480 

K 	V 	T 	K 	F 	D 	T 	K 	S 	N 	N 	V 	S 	P 	K 	N 	F 	I 	N 	K 160 

TCAAATGTTAAAGAGAAAGAGAAAGTGAACAATATGAAATTAGTAGTGAAAACGATACA 540 

S 	N 	V 	K 	R 	E 	R 	E 	S 	E 	Q 	Y 	F 	I 	S 	S 	F 	N 	0 	T 180 

GTTTCAAGTAAAAAAAATGTTCTTATATCTCCTGCAAAAAAACAAAAAACTCAAAATAAT 600 
V 	S 	S 	K 	K 	N 	V 	L 	I 	S 	P 	A 	K 	K 	Q 	K 	T 	Q 	N 	N 200 

AATAATGAAGATTTACAAAAATTTGATTATTTACCTTTTCATAATCAAAAATTTGTAATT 660 

N 	N 	F 	D 	L 	Q 	K 	F 	D 	Y 	L 	P 	F 	H 	N 	Q 	K 	F 	V 	I 220 

ACAGGAGTATTCAAAAATTTTACAAGAGATGAATTACAGTCTAAAATTAAAGAACATGGA 720 

T 	G 	V 	F 	K 	N 	F 	T 	R 	D 	F 	L 	Q 	S 	K 	I 	K 	F 	H 	G 240 

GGTAGTGTAATGACAGCTGTATCGACTAAAACGAATTATCTAGTCCATGGGGAATATCTA 780 

G 	S 	V 	M 	T 	A 	V 	S 	T 	K 	T 	N 	Y 	L 	V 	H 	G 	F 	Y 	L 260 

GAAGATGGAAGATTATTTAACGAAGCTAGAAAATATACTAAAGCTTTTGAATTACAACAA 840 

E 	D 	G 	R 	L 	F 	N 	E 	G 	R 	K 	Y 	T 	K 	A 	F 	E 	L 	Q 	Q 280 

CAAAACAAATCTAATATCAAAATATTAAATGAAGAAGAACTTTTGPAATTATTACCACAA 900 
Q N K S N I K I L N F F F L L K L L P Q 	300 

-dr 14 ACT GATCAAACACAAGAAAATGATAAAACATATCCATCTGATACAATTAAAACGGAAAAT 960 
T D Q T Q E N 0 K T Y A S D T I K T F N 	320 

AAAGATAAAAATTATAATTATGAAAAGAAAGATAAAAATTATAATTATAAAGAAAGCT 1020 
K 0 K N Y N Y E K K D K N Y N Y E K K A 	340 

ACACATAATACACAAAACGAAATTCTTAATCAATTGTGGGTAGAAAAATATAGACCTAAA 1080 
T H N T Q N F I L N Q L W V F K Y R P K 	360 

AATCTCAACGAATTAGTAGGTAATAATCAAAATGTAATAAAATTACAAAATTGGCTTGCT 1140 
N L N E L V G N N Q N V I K L Q N W L A 	380 



AGTTGGGAAGATGTATGTATTAAAGGAATAAAGAAACCAGCACAAAAAACATTTAGAGGA 1200 
S W E D V C I K G I K K P A Q K T F R G 	400 

ATTTTCGAAAATGTAAATGCAAGATGTGCTTTATTAAGCGGTCCAGCAGGAATAGGAAAA 1260 
I F E N V N A R C A L L S G P A G I G K 	420 

ACTACTACAGCCAAAATTGTTTCAGAAGCATCTGGTTATAATGTTATCGAATTTAATGCA 1320 
T T T A K I V S E A S G Y N V I E F N A 	440 

TCTGATGAAAGAAACAAAGCTGCCGTTGAAAAAATTAGTGAAATGGCTACAGGTGGATAT 1380 
S D E R N K A A V E K I S E M A T G G Y 	460 

TCCATAATGTCATTAAATAATCGTAAATTAACAAAAACTTGTATTATTATGGATGAAGTA 1440 
S I M S L N N R K L T K T C I I N 0 E V 	480 

GATGGTATGTCTAGTGGTGATAAAGGTGGGAGTACAGCCATATTGAAATTAATAGAAAAA 1500 
D G N S S G 0 K G G S T A I L K L I E K 	500 

ACAAAATGTCCAATAATATGTATATGTAATGATAGACAAAATAATAAGATGAGAACAT TA 1560 
T K C P I I C I C N D R Q N N K N R T L 	520 

GCAAATAAATGTTATGATTTAAAATTTAGTATGCCTCAAAAAAATAGTGTTGTTAAAAGA 1620 
A N K C Y 0 L K F S M P Q K N S V V K R 	540 

TTATTAGAAATATGTAAAAAAGAAGGAATCATGATGCAACCAAATGCTTTGGAATTATTA 1680 
L L E I C K K E C I M M E P N A L E L L 	560 

TGGGAAAGTACATGTGGTGATATAAGACAAATGTTGAATACTTTACAATTATTATCTAAA 1740 
W E S T C G D I R Q  N L N T L Q L L S K 	580 

ACATATACAAGAATACAATTCTTGGATTTAAAAAAAGAATTAAATAATTCTAATAAAAAT 1800 
T Y T R I Q F L D L K K E L N N S N K N 	600 

GTACAATCATTAGCAAACCCATTTGAAATTACATTAAAATTATTAAATTTTAATGAATCA 1860 
V Q S L A N P F F I T L K L L N F N E 5 	620 

TCCAAATTAAATATAAGAGAAATTATGGATCTTTTTTTTGTTGATTATGAATTAATTCCA 1920 
S K L N I R F I M D L F F V D Y F L I P 	640 

TATTTTATTAGTCAAAATTATACAAATGTTTTTAATGAAACAGATAAATCATCTGCATCT 1980 
Y F I S F N Y T N V F N E T D K S S A S 	660 

TTAAATAAATGGAATGTATTCTCACAAATTGCACATGATTTATCATTAGCTGATAAAATT 2040 
L N K W N V F S Q I A H D L S L A D K I 	680 

AAATATAATATCAAPITCAAATATCGATTTTGCTCTATTACCTCATTTCGCTATTTTATCA 2100 
K Y N M K S N M D F A L L P H F A I L S 	700 

TGTGTTTGTCCAGTTATGAGAATAAAAATATTAAAATCATTTATGTCTGGAAGAGTTAAT 2160 
C V C P V N R I K I L K S F N S 	R V N 	720 

id 

TTCCCAACAGCATTTGGTAAAATTTCCACATTTAATAAAAATAAAAGATTACTAAATGAA 2220 
F P T A F G K I S T F N K N 1< R L L N E 	740 

CTATGTTTTAATCTATCATATAAATTAAATGTATGCCCTAAATATATGGTCACATCTCGA 2280 
L C F N L S Y K L N V C P K Y N V T S G 	760 

TTCATAAATTATATGTATTTTTATATTATGACACCTTTACATAAACCAGATGTAAATCAA 2340 
F I N Y N Y F Y I M T P L H K A 0 V N Q 	780 
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GCTATCCAI½ATTATGGAAGAATACAGTATTACGCGAGAAATGGTAACCGAAAATTTACCT 2400 
A I Q  I M E K Y S I T R E M V T E N L P 	800 

TGCCTTAGATTACCAAATCAAGAAAACCTATATGATAAACTAGATACAAAACTTAAATCA 2460 
C L R L P N Q  K N L Y 0 K L D T K L K S 	820 

TCCTTTACCAGACTTTATAACTCTTCACATGTTATCAAAATTGATCCTAATTCTATGAAA 2520 
S F T R L Y N S S H V I K I D P N S fri K 	840 

AAAGGATTAAAATCAAGTGAAAAAAAAACAACATTTAAATTAAATGAGTTCGAGTCTGAC 2580 
K G L K S S E K K T T F K L N E F E S D 	860 

GAAGATATTTATGAACTAAGTGAATCCAAAGAAGACAAGGATGATGATGTTCTAATCAAA 2640 
K D I Y E L S E S K K 0 K 0 0 D V L I K 	880 

ACAGAAATAGACAGAAAGGGTACCTTAAAAACAAAACCTTCTACAT½AAGTAAAATCTATG 2700 
T K I D R K G T L K T K P 5 T K V K S frI 	900 

AAAAAAGCAAAATAA 
	

2712 
K K A K * 
	

904 

AAACAATAATATTTCAAACGGACCTATAAAAATATATATACAAATATATATTTTTATGTA 
AGTTTCTTTTTTTTTTTCCCCCCATATAAACATTATATACTTACAATAAGGAATATATT 
TTGTCATATATACCTTAAATAAATACGTTAT TGTAAATATATAAT TACACATATATATAT 
ATATATATTTATTTATTTATTTATTTATATAATATTACAAGTGATATCCTTTTTTTATAT 
AATATAATGATGATATTATTGTCTATATTTATTTTTATAAACAAATATTTTAAAAGATT 
TCCCATGATGAAAPIG 
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Figure 3.4 Reiresentatioui of the PfflFC1 gene. 

The location of synthetic oligonucleotide primers designed towards the sense DNA 

strand in the 5' to 3' direction (—* ) and the antisense strand, also in the 5' to 3' 

direction (— ) are indicated. Key restriction enzyme recognition sites are also 

represented. The figure is drawn to scale where 10mm represents 20 nucleotides. 
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Figure 3.5 ClluiistalX alignment of Rfci amino acid sequences- from human, D. 

meknogaster, S. cerevisiae, S. pombe, and P. falciparum. 

The DNA binding domain is underlined and the PCNA binding domain is double 

underlined (Fotedar et al., 1996) while the RFC boxes (Cullman et al., 1995) are 

highlighted in different colours. 

indicates positions which have a single, fully conserved residue. 

indicates that one of the following 'strong' groups is fully conserved. 

STA 
NEQK 
NHQK 
NDEQ 
QHRK 
MILV 
MILF 
HY 
FYW 

indicates that one of the following 'weaker' groups is fully conserved. 

CSA 
ATV 
SAG 
STNK 
STPA 
SGND 
SNDEQK 
NDEQHK 
NEQHRK 
FVLIM 
HFY 



HsRFC1 MDIRKFFGVIPSGKK LVSETVKKNEKTKSD EETLKAKKGIKEIKV NSSRKEDDFKQKQPS KKKRIIYDSDSESEE TLQVKNAKKPPEKLP 	90 
DmRFC1 ---------------- --------------- --------------- - MQRGIDSFFKRLA KAK ---- SAE?ENGE T---------PSKAP 31 
SpR8C]. ------ --------- -------------- - MSNSDIRSFFGGGNA QKK ---- PKVSPTPT S --------- PKPKP. 32 
ScRFC1------------------------------------------------------------------------------------------ 0 
PfRC1 --------------- --------------- --------------- ------------ MSS KDK--NLFSDDESDD G---------RKKKR 22 

HRFc1 VSSKPGKISR-QD?V TYISETDEEDDFMCK KAASKSKENGRSTNS HLGTSNMKKNEENTK TKNKP-LSPIK--LT PTSVLDYFGTGSVQR 176 
DRFC1 KRRKAVIISSDEDEV VSEPETK ------- }ç RASKT-----ASSED DWAATPEIAKKAR NGQKPALSKLKRHVD PT---ELFG--G 102 
SpRFC1 SLKKKRIVLS-DDED GTIENSK -------- VASKSKVQKRNESE DISI-ISLPSIVI-iEDDK LVGSD --- GVS--TT PDEYFEQQSTRS 105 
SaR'C1 --------------- --------------- --------------- -- MVNISDFFGKNKK SVRSS ---- TS --- R PT --- RQVG ------ 27 
PfR'C1 LKKVSS$LFHDDtDD NISNKK -------- VKSKSK---KKSDA IYIDDNESNNNNNYN NTNKS- - SNRK--SL EN --- KSSKTS 90 

HsRC1 SNKKMVASKIKELSQ NTDESGLNDEAIAKQ LQLDEDAELERQLHE DEEFARTLAIvILDEEP KTKKARKDTEAGETF SSVQANLSKAKHKY 266 
DnRFC1 ETKRVIVPKPK ---- ------------ TK 	VEFENEDIDRSLME VD--------LDESI K -------- EAAP-- --------------- 43 
SpRFC1 RSKPRIISNKE ---- ------------- TT TSKDVVHPVKTENFA ND--------LDTTS D --------- SKF-- --------------- .44 

00 	 ScRF'Ci SSKPVIDLDT ---- ------------- ES DESTNKTPKKMPVS NV--------IDVSE T -------- PEGE -- --------------- 67 
PfR'C1 PKFDIT$FFK ---- ------------- PS S(KLENNTMKKSNS KE---------DEKL 

* 
V --------- VNN -- --------------- 128 

HsR'C1 PHKVI(TAQVSDERKS Y$PRI<QS}cYS$1cE5 QFISKSSAPKIGEVS SPKASSKLAIMKRKK ESSYKEIEPVA$KRK ENAIKLKGETKTPKK 356 
Dr9RC1 -- - - - ------EKKV I-1$ITRS -------- S --------------P SF --------- KRAK NSSPEPPK'KSTKSK ATTPRVKKE-FAAD 190 
SpRFC1 - - - - --- - --VVHQT RATRKP --------- -------------- A QP---------KAEK STTSKSKSHTTTATT I-iTSRSSKSKGLFRFS 192 
SaRFC1 - - - - - - - ---KKLPL PAKRKA --------- -------------- S SF ------- TVKPAS SKKTKPSSKSSDSAS NITAQDVLDKIPSLD 117 
PfRFC1 -----------LNDY FNILQN --------- -------------- D SK---------VTKE DTKSNNVSPKNEINK SNVKRERESEQYEIS 175 

HsRFC1 TKSSPAKKESVS?ED SKKRTNYQAYRSYL NEGF_KAL:Y:Ii. I 	I 445 
DrnRF'Cl LESSVLTDE-----Ep. HR1RASAVLYQKYK RSSC-LNpGSKEJp  KGSPDCLSGLTFVVT GVLESMEREEAESVI KEYGGKVMrVvGKKL 275 
SpRF'Cl DEVSALKN --- VPL IDVDSMGVMAPGTFY ERAATTQTPGSKPVP EGNSDCLSGISFVIT GILETLTRQEATDLI KQYGGKVTGAPSVRT 279 
SaRFC1 LSNVEVkN---Ak FDFKSANSNADPDEI V$EIG-----S--FP EGKPNCLLGLTIVFT GVLE'TLERGASEALA KRYGARVTKSISSKT 196 
PfRFC1 SENDTVSSK ---- KH VISPAKKQKTQNNN NEL4IQ ------ ----  KFDYLPFHNQKFVIT GVFKNFTGDELQSKI KEFIGGSEMTAVSTKT 251 

: 



HsRFC1 NYLVNGR--DSGQSK SDKATALGTKIIDED GLLNLIRTMPGKKSK YEIAVETEMKKESKL ERTPQKNVQGKRKIS PSKKESESKKSRPTS 533 
DrnRFC1 KYLVVGE--EAGPKK LAVAEELNIPILSED GLFDLIRE1SIAKQ VEEKSFKKEHSS EKGKKEVKTSRRS DKKEKEATKLKYGE 361 
SpRFC1 DFILLGE--NAGPRK VETIKQHKIPAINED GLFYLITHLPASGGT GAPQQQK ----- ------- K ------- --- HQEEKKILETVA 345 
ScRFC1 SVVVLGD--EAGPKK LEKIKQLKIKAIDEE GFKQLIAGMPAEGD GAAEKARRKLEEQH N ------ IATKEAL LVKKEEERSKKLAT 278 
PfRFC1 NYLVHGEYLEDGRLF NEGRKYTKAFELQQQ NKSNIKILI'TEEELLK LLPQTDQTQENDKTY AS --- DTIKTNKDK NYNYEKKDKNYNYEK 338 

• 	* • 	•• • • 

Ti 

HsRFC1 KRDSLAK-------T IKKET-----DVFWK SLDFKEQVAEETSGD SKARNLADDSSENKV_ENLIWVDK1 KTIIGQQGDQSCANKL 611 
DmRFC1 KHD-IAKHKVKEEHT S?KETKDKLNDVPAV TLKVKKEPSSQKEMP 448 
SpRFC1 R1'4D -------- D--S NKKS ---------- --- QFSQ -------- --------------- --- IWTSKYAPTiI DICGNKG --- VVQKL 383 
ScRFC1 RVS--GG-------H LERDN ---------- -- VVREE -------- -------- DK -----  LWTVXYAPTNiQQVcGNG --- SVMKL 320 
PfRFCI KAT-----------H NTQNE ---------- --- ILNQ -------- --------------- --- LWVEKYRPKNLN ELVNNQ --- NyIKL 375 

* 	-4. • 	*. 	• 	** 

Iv 
1-IsRFC1 LRWLPJWQKSSSD1 KHAAKFGKFSGKDDG SSFK FFTASLVCQLG5 YVELNASDTRSKSSL çVAE$LIIKG 701 
PmRFC1 MNWLSKWYVNHDGNK K- PQRPNPWAKNDDG SFYK 	LLSGPPGIG KT 	ATLVVKELGFD AVEFNASDTRSKRLL KDEVSTLLSNKSLSG 537 
SpRFC1 QcWIQPYHKNRKSNF N-------KPGPDGL GLYK•:LLSGPPGIG KT:AHLVAKLEGYD VLELNASDTRSKRLL DEQLFGVTDSQSLAG 466 
ScRFC1 KFWEN3JJ(N5F K - - -- - --HGKD 	VF- ::ILYGPPGIGK' yAgEG1D ILEQNASDVRSKTLL ALDNM$\Jyc 403 
FfRFC1 QRWLASWEDVCIGI }cKPPQKT - 'RGIFEN VNA, 	•LSGPAGIG KI 	AJUVSESGVIEFNASDERNKMVEKISEMATGGY5 IMS 464 

•-4 	.: 	• : :..: 	-4-' :* 	:* 	: 	*:. :* 	**** 	. 	: • 	 •. 
V 	 VIa 

Ms RFC 1 S 	MSTKHALIMDEVDGMAGNEDRGGIQLIHT KI Fl CMCNDRNJjK MMM- IRS LV 	FDLRFQR P RVEQI KGAMM  789 
DraRFC1 SIP 	NNDPHPK IRSL4V 	YDLRFQRPRLQIGKIMSICF 624 
SpRFC1 'FGTKNPyDMAKSRLVLIMDEIDGMSSG- DRGGvGQLNMIIKKS MIPIICNDRAHPK LRPLD 	FDLRFRR PPANSMRflVISIAY 555 
ScRFC1 YFKJ-INEEAQNLNGKH FVIIMDEVDGMSGG- DRGGVGQLAQFCRKT STPLILICNEPNLPK MRPFD 	LDIQFRR PDANSIKSRLMTIAI 492 
PfRFC1 INN ------ RKLTK- TCIIMDEVDGMSSG- DKGGSTAILKLIEKT KcPIIcICNDRQNNK MRTLA 	YDLKFSM PQ<NSVVKRLLEICK 546 

• 	..: *:* 	:**:* 	* .*. 	 • * 	:. 	:: 
VIII 

HsRFC1 }ILGQtIRQYLFNLS MWCARSKALTYDQAK ADSHRFKKDIK--MG PFDVARKVFAAG--- - HETAHMSLVDKSDL 873 
EmRFC1 KKVKISPAKIIANDIRQINHIA_LLSAKHDAS ---- QK SGQQVATKDLK--LG PWEVVRKVFTA ---- - PEHKHMSFADKSDL 703 
SpRFC1 AVIKNSEKHIV--MK PWDICSRYLHGGMF- - HPSSISTINDKLEL 641 
ScRFC1 REKKLPJIDRLI_QTTGDI RQVINLLS TISTTTKTJiHENIN EISKAWEKNIA-- LK PFDIAHKMLDGQIYS DIGSR1'FTLNDKIAL 580 
PfRFcl KGI 	PNATTW_ESTCGEIRQMLNTLQ USKTYTRTQFLDLK KELNNSNKNVQSLAN PFEITLKLLNFN----- ESSKLNREIMDL 631 

: 	* 	:: 	: : 	:: : : 	*.: *::: 	: 	: : 	•: 	: 	* 

89 



H s RFC 1 
DmRFC1 
SpRFC1 
Sc RFC 1 
PtRFC1 

FFHDYS IAPLFVQEN 
F F H DYS LAPL F VQQN 
YFNDHEFSYLMVQEN 
YFDDFDFTPLMIQEN 
FFVDYELIPYFISEN 
.* 	*: 

YIHVKPVAA-----G GDMKKHLMLLSRAAD SICDGDLVDSQIRS- KQNWSLLPAQAIThS VLP---GELMRGYMT 954 
YLQVLP--------Q GNKKDVLAKVAAThD ALSLGDLVEKRIRA- NSAWSLLPTQAFFSS VLP --- GEHMCGHFT 781 
YLNTTPDRIRQEPPK MSHLKHLELISSAAN SFSDSDLVDSMIHGP QQHWSLMPTHALMSC VRP --- ASFVAGSGS 728 

YLSTRP--S ---- VL KPGQSHLEAVAEAAN CISLGDIVEKKIRSS EQLWSLLPLHAVLSS VYP---ASKVAGHMA 661 
YTNVFNETD ---- KS 
* 

SASLNKWNVFSQIAH 
* 

DLSLADKIKYNMKS- NMDFALLPHFAILSC 
.•*•* 

VCPVMRIKILKSFMS 
* 	* 	

: 

716 

HsRFC1 
DmRFC1 
SpRFC1 
ScRF'Cl 
P f R FC 1 

Q FPT F PS WLGKHS ST 
GQINFPGWLGKNSKS 
RQI RFTNWLGNNSKT 
GRI NFTAWLGQNSKS 
GRVNFPTAFGKISTF 

GKHDRIVQDLALHMS LRTYSS-KRTVNMDY LSLLRDALVQPLTSQ GVDGVQDVVALMDTY 
GKRARLAQELHDHTR VCTSGS-RLSVRLDY APFLLDNIVRPLAKD GQEGVPAALDVMKDY 
NKLYRMLREIQVHMR LKVSAN-KLDLRQHY IPILYESLPVKLSTG HSDVVPEIIEU4DEY 
AKYYRLLQEIHYHTR LGTSTD-KIGLRLDY LPTFRKRLLDPFLKQ GADAISSVIEVMDDY 
NKNKRLLNELCFNLS YKLNVCPKYMVTSGF INYMYFYIMTPLHKA DVN --- QAIQIMEEY 

YLMKEDFENIMEISS 1043 
HLLREDLDSLVELTS 	870 
YLNREDFDSITELVL 	817 
YLTKEDWDSIMEFFV 	750 
SITREMVTENLPCLR 	803 

.* 

HsRFC1 WGGKPSPFSKLDP-K VKAPSTRAYNKEAHL TPYSLQA--IKASRH STSPSLDSEYNEELN EDD ------ SQSDEI< DQDA-IETDAMIK-- 1121 
DmRFC1 WPGKK5PLDAVDG-R VKAALTRSYNKEV4A YSYSAQAG-IKKKKS EAAGADDDYLDEGPG EEDGAGGHLSSEEDE DKDNLELDSLIKAK 957 
SpRFC1 PADAGEKLMKTIPTA AKSIFTRKYNSSSHP IAFFGSSD-VLPMKG SAQREVPDVEDAIEA EDEMLEEASDSEAAN EEDIDLSKDKFISVP 	906 
ScRFC1 GPDVTTAIIKKIPAT VKSGFTRKYNSMTHP VAIYRTGSTIGGGGV GTSTSTPDFEDVVDA DDNPVP--ADDEETQ DSSTDLKKDKLIKQK 	838 
PfRFC1 L?NQENLYDKLDT-K LKSSFTRLYNS-SHV IKIDPNS--MKKGLK SSEKKTTFKLNEFES DEDIYE --- LSESKE DKDD ---- DVLIK- - 	880 

HsRFC1 KKTKSSKPS --- KPE 
DmRFC1 KRTTTSKASGGSKKA 
SpRFC1 KKPKKRTKAKAEASS 
ScRFC1 AKPTKRKTA --- TSK 
PfRFC1 -TEIDRKJ --- LKT 

KDKEPRKGKGKSSKK 1148 
TSSTASKSKAKAKK 	986 
SSSTSRRSRKKTA- 	934 
PGGSK-KRKTKP-- 	861 
KPSTKVKSMKKAK- 	904 

*. 
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3.4 Cloning of the gene encoding PfRFC2. 

3.4.1 Degenerate PCR product from a eDNA library. 

The degenerate PCR reaction described in 3.3.1 was used again and the PCR product 

cloned into pTAg (LigATor Kit) (2.2.5.3). To ensure that the PfRFC1 clone was not 

isolated again colonies were patched and probed with an oligonucleotide against the 

PfRFCI sequence, DNA was prepared from negative colonies and sequenced (2.2.8) 

using universal and reverse primers. A 365bp product was isolated which was found 

to contain RFC boxes 11-VI. 

3.4.2 Dra! Vectorette PCR. 

From the sequence obtained above an oligonucleotide was designed with the 

following sequence: W8989 5' CCTCACAACTTCCTTTAACATC. This was used 

in a DraI vectorette PCR reaction (2.2.9.4) with the vectorette primer and gave a 

PCR product of approximately 400bp, which was cloned into pCR2.1 (TA Cloning 

Kit) (2.2.5.3). When it had been sequenced (2.2.8) using universal and reverse 

primers it was found that the 5' end of the gene had been cloned. 

3.4.3 Hind!!! Vectorette PCR. 

From the sequence obtained following degenerate PCR an oligonucleotide was 

designed to try and obtain sequence towards the 3' end of the gene. The 

oligonucleotide had the following sequence: 

W8990 5' GGCTCATGAATTGTTTGGAAAG. This was used in a Hindill 

vectorette PCR reaction (2.2.9.4) with the vectorette primer and resulted in a 650bp 

PCR product, which was cloned into pCR2.1 (TA Cloning Kit) (2.2.5.3). When this 

was sequenced (2.2.8) using universal, reverse and synthetic primers designed to the 

new sequence it was found that the clone covered RFC boxes TV-Vu. 

3.4.4 Ssp! Vectorette PCR. 

From the new sequence obtained as a result of the Hindlll vectorette PCR an 

oligonucleotide was designed with the following sequence: 

Y4388 5' CGGAAGGTGATTTAAGAAGAGC. 

q 



This was used for a SspI vectorette PCR reaction (2.2.9.4) with the vectorette primer 

and resulted in a 350bp PCR product, which was cloned into pGEM-T (2.2.5.3). 

This clone was sequenced (2.2.8) using universal and reverse primers and was found 

to contain RFC box VIII but it did not include the 3' end of the coding sequence. 

3.4.5 Searching the P. falciparum genome project databases. 

The entire sequence generated from the above was used to screen the TIGR Pf 

chromosome 2 database (http://www.tigr.org/tdb/mdb/pfdb/pf2_chr_search.html)  by 

BLAST searches. 

A 555bp clone PF2HI25F was found that had a 210bp overlap with the 3' end of the 

ascertained sequence. Using the database information an oligonucleotide was 

designed with the following sequence: 

A4049 5' GAACATAATGGAATATGG approximately 170bp downstream of the 

putative stop codon. This was used in a standard PCR reaction (2.2.9.1) with Z4465 

(5' GTTACGAACACAGAATATGAAG) and Pf genomic DNA as the template. A 

300bp PCR product was obtained which was cloned into pCR2. I (TA Cloning Kit) 

(2.2.5.3) and when the clone was sequenced (2.2.8) using universal and reverse 

primers the sequence was found to match that of Pf2HI25F. 

3.4.6 Sequence Analysis of the PfRFC2 Gene. 

All the clones were sequenced with universal, reverse and the primers used for the 

initial PCR reactions. A series of synthetic primers (figure 3.9) were then designed 

from the data obtained to extend the sequence which was determined for both DNA 

strands (2.2.8). Each PCR reaction was carried out twice so that the sequence of 

independent clones could be checked in case the PCR had introduced any mutations. 

The overlapping clones were arranged using UWGCG sequence analysis (Devereux 

et al., 1984) and the programs available via the BCM Search Launcher 

(http :1/kiwi. imgen.bcm.tmc.edu:  8O88/search-launcher/launcler.html). The sequence 

revealed an open reading frame of 990 nucleotides which predicts a protein of 330aa 

(figure 3.8) and a molecular mass of 37.9kDa. The open reading frame is 72% AT, 

which is consistent with other P. falciparum genes (Goman et al., 1982). The first 
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ATG of the open reading frame was designated as the putative translational start site. 

The first in frame stop site is approximately 20bp upstream. 

A comparison of the P. falciparum, S. cerevisiae, S. pombe, C. elegans and human 

RFC2 amino acid sequences was made (figure 3.10). It was found that the PfRFC2 

was slightly smaller in size than the human and yeast homologues due to a truncated 

N terminus. As with PfRFCI the highest degrees of conservation were seen in the 

RFC boxes (Cullman et al., 1995). 

Sequence comparisons of PfRFC2 were made with its homologues from other 

species (Table 3.2). The S. cerevisiae amino acid sequence shows the highest level 

of identity with the PfRFC2. 

% identity 	EMBL accession number 

Human 36.7 P35249 

S. cerevisiae 38.4 P40348 

S. pombe 36.6 Q09843 

C. elegans 37.2 pers. comm. 

Table 3.2 The homology between PJERFC2 and its homologues from human and S. 

cerevisiae. 
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Figure 3.6. An overview of the cloning of PfRFC2. A key is shown below. 
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AAAACCTGTATAATTTTTTTTTTTTTTTTT 
TTTTTTGGCTAGTCATATAAAATAATATATATATAAATAAATAAAAAATATA AATTAACA  
TAAATATATACATACATATATACATATATATATACATACATATATACATACATATATACA 
TACATATACACATATATATATATATATATATATATATATTTTTTTTTTTTTTTG 
ATGGAAAATATTC CGTGGGTTGAJ AJGTACCGACCA?JGAGGTTGGATGACATCGTTCAT 	60 
MEN I P W 	E' K Y R P K R L D D I V H 	20 

CAAkTAATGCTGTTGATGTTGGJGTTGTGAGGACJGTATGCCTCATTTA 120 
Q 	N 	N 	A 	V 	M 	M 	L 	K 	E 	v 	V 	R 	T 	K 	N 	MPH 	L 40 

180 
I 	F 	H 	G 	P 	P 	G 	T 	G 	K 	T 	S 	A 	I 	N 	A 	L 	A 	H 	E 60 

TTGTTTGGAAAGGAGAATATAAGTGAGAGGGTATTAGAATTGAATGCTTCTGATGATAGA 240 
L 	F 	G 	K 	E 	N 	I 	S 	E 	R 	v 	L 	E 	L 	N 	A 	S 	D 	D 	R 80 

300 
G 	I 	N 	v 	V 	R 	E 	K 	I 	K 	A 	Y 	T 	R 	I 	S 	I 	S 	K 	N 100 

AAATCCATAGCGAACPGAGGTATTACCTTCATGGAJTTGGTTGTATTGGATGJJ 360 
K 	I 	H 	S 	E 	T 	K 	E 	V 	L 	P 	S 	W 	K 	L 	v 	V 	L 	D 	E 120 

GCTGkTATGATGACAGkGkTGCACTTAGCATTG TAGATATATTCT 420 
A 	D 	M 	M 	T 	E 	D 	A 	Q 	L 	A 	L 	R 	R 	I 	I 	E 	I 	Y 	S 140 

480 
N 	v 	T 	R 	F 	I 	L 	I 	C 	N 	Y 	I 	H 	K 	I 	S 	D 	P 	I 	F 160 

AGTAGATGTTCTTGTTATAGGTTTCAATCAATACCTATTAATATTAAAAAGGAAAAATTA 540 
S 	R 	C 	S 	C 	Y 	R 	F 	Q 	S 	I 	P 	I 	N 	I 	K 	K 	E 	K 	L 180 

CTTTATATATGTCAAAATGAAAATATTGATATAGTAGACGATGCTTTAGAAAAAATTATT 600 
L 	Y 	I 	C 	Q 	N 	E 	N 	I 	D 	I 	V 	D 	D 	A 	L 	E 	K 	I 	I 200 

GAAACAACGGAAGGTGATTTAAGAAGAGCAGTTTCTATATTACAATTATGTTCATGTATT 660 
E 	T 	T 	E 	G 	D 	L 	R 	R 	A 	V 	S 	I 	L 	Q 	L 	C 	S 	C 	I 220 

AATACGAAATTACATTMATTCTGTTTTAGATGTATCTGGATTACCATCAGATTATC 720 
N 	T 	K 	I 	T 	L 	N 	S 	v 	L 	D 	v 	S 	G 	L 	P 	S 	D 	N 	I 240 

GTATATAAATTATTGATGCATGT?TGPTTTAGCTTGTGJJCAGTA 780 
V 	Y 	K 	I 	I 	D 	A 	C 	K 	M 	K 	D 	L 	K 	L 	V 	E 	K 	T 	v 260 

CAAGATATTATT GAJGATGGTTTTGTTGTAGCTTATATTTTTATCATTTPJTJJTTAT 840 
Q 	D 	I 	I 	ED 	G 	F 	V 	VA 	Y 	IF 	K 	SF 	N 	NY 280 

TGTTACGAACACAGAATATGAAGATTCTTTAAAATATCAAATATTATTAGAACTTTCC 900 
F 	V 	T 	N 	T 	E 	Y 	E 	D 	S 	L 	K 	Y 	Q 	I 	L 	L 	E 	L 	S 300 

AGACATGATTATCGATTACATTGTGGTGCCACACTACATAC?ACTTTTGTTTTGCT 
R 	H 	D 	Y 	R 	L 	H 	C 	G 	A 	T 	Q 	Y 	I 	Q 	L 	L 	S 	F 	A 

960 
320 

TCATCGGTACATTCGTTATTJTAGTGTATJ 990 
S 	S 	V 	H 	S 	L 	L 	N 	S 	V 	* 

330 
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GAPLPAAAAATATTCAATAAAALTTGAATATATATAAPLTCkPA1GATATATATATATATAT 
ATATATATATATTTTTATACTTTATTTTTACTTATTTATCAGATTTGTTTAAAPJkTGTGA 
ACTTTTTATTCCAATGTCTTAkTTCCATATTCCATTATGTTC 

Ifi 



TFigiin ire 3.9 Representation of the JP1I1JFC2 gene. 

The location of synthetic oligonucleotide primers designed towards the sense DNA 

strand in the 5' to 3' direction (—* ) and the antisense strand, also in the 5' to 3' 

direction (<- ) are indicated. Key restriction enzyme recognition sites are also 

represented. The figure is drawn to scale where 10mm represents 20 nucleotides. 
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Figure 3.10 CllunstallX alignment of 1fc2 amino acid sequences from llriuiiman 9  S. 

cerevisiae, S. pobe, C elegans and P. falcipar&u'n. 

The RFC boxes (Cullman etal., 1995) are highlighted in different colours. 

indicates positions which have a single, fully conserved residue. 

indicates that one of the following 'strong' groups is fully conserved. 

STA 
NEQK 
NHQK 
NDEQ 
QHRK 
MIlL V 
MILF 
HY 
FYW 

'.' indicates that one of the following 'weaker' groups is fully conserved. 

CSA 
ATV 
SAG 
STNK 
STPA 
SGND 
SNDEQK 
NDEQHK 
NEQHRK 
FYLIM 
HFY 

00 



ii 
SpRfc2 ---------MSFFAP RNKK----------T EQEAKKSIPWVELYR PKTDQVSSQESTVQ VLKKTLLSNNLPHML FYGSPGTGKTSTILA 71 
ScRfc2 --------MFEGFGP NKKRI< ----- ISKLA AEQSLAQQPWVEKYR KLDEVTAQDMAVT VLKKTLKSANLPJML FYGPPGTGKTSTILA 77 
HsRfc2 MQAFLKGTSISTKPP LTKDRGVISAGSSG ENKKAKPVPWVEKYR PKCVDEVAFQEEVVA VLKKSLEGADLPNLL FYGPPGTGKT'TILA 90 
PfRFC2 --------------- --------------- ---- MENIPWVEKYR PKRLDDIVHQNNAVM MLKEVVRTKN1vIP -ILI FHGPPGTGKT..:.INA 56 
CeRfc2 -----------MEEP MEVD ----------- - NKRPKVLTWTEKYR PKTLDDIAYQDEVVT MLKGALQGRDLPHLL FYGPPGTGKTSIALA 67 

IV V 	 VIb 
SpP.fc2 LSRELFGPQLMKSRV LELNASDERGISIIR EKVXSFAKTTVTN-- --KVDGYPCPPFKII ILDEADSMTQDAQAP LRRTMESYAP.ITRFC 157 
ScRfc2 LTKELYGPDLMKSRI LELNASDERGISIVR EKVKNFARLTVSKPS KHDLENYPCPPYKII ILDEADSMTADAQSA LRRTMETYSGTRFC 167 
HsRfc2 AARELFGPELFRLRV LELNASDERGIQVVR EKVKNFAQLTVSGS- --RSDGKPCPPFKIV ILDEADSMTSAAQAPI LRRTMEKESKTTRFC 177 
PfRFC2 LAHELFGKENISERV LELMASDDRGINVVR EKIKAYTRISISKNK IHSETKEVLPSWKLV VLDEADMNTEDAQLA LRRIIEIYSNVTRFI 146 
CeRfc2 FCRQLFPKNIFHDRV LDLNASDERGIAWR QKIQSFSKSSLGH -- --- SHREDVLKLKII ILDEVDAMTREAQAA MRRVIEDFSKTTRFI 152 

:***.* 	*4  

VIII 
SpRfc2 LICNYMTRIIDPLS SKYRFKPLDNENM VKRLEFIAADQAVSM EPGVVNALVECSGGD MRKAITFLQSAAN-- --LHQGTPITISSVE 243 
ScRfc2 LICNYVTRIIDPLA IDRLP.FISEQEMVKC DDGVLERILDISAGD LRRGITLLQSAS}(GA QYLGDGKNITSTQVE 257 
HsRfc2 LICNYVSRIIEPLT. SKFRFKPLSDKIQ QQRLLDIAKKNVPI SI-IRGIAYLVKVSEGD LRKAITFLQSATR-- LTGGKEITEKVIT 263 
PfRFC2 LICNYIHKISDPIF SCYRFQSIPINIK KEKLLYICQNENIDI VDDALEKIIETTEGD LRP.AVSILQLCSC -- ---- INTKITLNSVL 230 
CeRfc2 LICNYVSRLIPPVV AKFPFKSLPAEIQ VQRLRTICDAEGTPM SDDELKQVMEYSEGD LRPAVCTLQSLAP-- -ILKSGDDNARN--C 237 

SpRfc2 ELAGAVPYNIIRSLL DTAYTKNVSNIETLS RDVAAEGYSTGIILS QLHDVLLKEETLSSP VKYKIFMKLSEVDKR LNDGADETLQLLDLL 333 
ScRfc2 ELAGVVPHDILIEIV EKVKSGDFDEIKKYV NTFMKSGWSAASVVN QLHEYYITNDNFDTN FKNQISWLLFTTDSR LNNGTMEHIQLLNLL 347 
HsRfc2 HIAGVIPAEKIDGVF AACQSGSFDKLEAVV KDLIDEGHAATQLVN QLHDVVVENN-LSDK QKSIITGELAEVDKC LAEGADEHLQLISLC 352 
PfRFC2 DVSGLPSDNIVYKII DACKMKDLKLVEKTV QDIIEDGFVVAYIFK SFNNYFVTNTEYEDS LKYQILLELSRHDYR LHCGATQYIQLLSFA 320 
CeRfc2 YLRGSSDSLLISNVC KSILTADVPQIIALT KDITKSCTGVAFIRR CFQQLMDEDV-INDE NIGVMGKLVATCEKR ILDGCDLENNLLDFL 326 

* 	: 	: • 	: • 	: • : 	: : 	* 	:*:• 

SpP.fc2 SSISVVC---- 	340 
ScRfc2 VKISQL-----353 
HsRfc2 ATVMQQLSQNC 	363 
PfRFC2 SSVHSLLNSV 	330 
CeRfc2 LTLRETIQ 	334 



3.5 Cloning of the gene encoding PfRFC3. 

3.5.1 Degenerate PCR product from a eDNA library. 

The degenerate PCR reaction described in 3.3. 1 was repeated and the PCR product 

cloned into pCR2. I (TA Cloning Kit) (2.2.5.3). To ensure that the sequences 

corresponding to PfRFC I and PfRFC2 were not isolated again, colonies were 

patched and probed with oligonucleotides against PIER.FC1 and PfRFC2 sequences, 

DNA was prepared from negative colonies and sequenced with universal and reverse 

primers. A 345bp product was isolated and found to contain RFC boxes II-VI as 

expected. 

3.5.2 SspI inverse PCR. 

From the sequence obtained by the degenerate PCR product the following 

oligonucleotides were designed: 

W5694 5' GQACTTCTCTTATCTCC 

V0831 5' CATTATACAACATGTG. 

These were used for an inverse PCR reaction with Sspl digested and religated 

genomic DNA (2.2.9.3). This resulted in a 700bp PCR product, which was cloned 

into pCR2.1 (TA Cloning Kit) (2.2.5.3). When the clone was sequenced (2.2.8) 

(using universal, reverse and synthetic primers designed to the new sequence) it was 

found to contain the PCR product obtained in 3.5.1 above and gave 354bp additional 

sequence downstream, covering all the RFC boxes but not reaching the 3' end of the 

gene. A further ôObp of sequence was obtained at the 5' end of the gene. The 

sequence here did not continue in the open reading frame and there was no obvious 

sign of a frameshifi mutation, which could have been introduced by the 

polymerisation steps, and the possibility that the gene may contain an intron was 

considered. 

3.5.3 Searching the P. falciparum genome project databases. 

The entire sequence generated from the above was used to screen the TIGR Pf 

chromosome 14 database (http//www.tigr.org/tdb/mdb/pfdb/pfl4_seq_search.htmi)  

by BLAST searches. 
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A 665bp clone PNAKF09TR was found that had a 227bp overlap at the 3' end of the 

sequence obtained by inverse PCR. An oligonucleotide with the following sequence 

C3207 5' CGATTACAGTTTTTCCATCGG 

was designed I 23bp downstream of the putative stop codon and this was used in a 

standard PCR reaction (2.2.9.1) with Pf genomic DNA and the oligonucleotide 

A0583 (5' CAACATTAGATATCCCATTACC). This gave a PCR product of 

SOObp, which was cloned into pCR2.1 (TA Cloning Kit) (2.2.5.3). Sequencing 

(2.2.8) using universal and reverse primers and the primers used for the PCR reaction 

showed that it matched PNAKF09TR. 

A 642bp clone PNAKE I 4TR had a 77bp overlap with the potential intron sequence. 

An oligonucleotide was designed C7211 (5' GTGTAATAAGAATGACCG) which 

subtends the potential start site of the gene. This was used in a standard PCR 

reaction (2.2.9.1) with W5694 (5' GGACTTCTCTTATCTCC) with the cDNA 

library and Pf genomic DNA as templates. The PCR product from cDNA as the 

template was 250bp long and when genomic DNA was used it was SOObp. Both 

products were cloned into pCR2. I (TA Cloning Kit) (2.2.5.3) and sequenced (2.2.8) 

using universal and reverse primers and the presence of a 250bp sequence only 

present in the genomic clone was confirmed with the splice sites occurring in the 

middle of RFC box II. The sequence possessed typical intron boundary features. 

A. 

consensus NAITNT/AAAAG GTAAG/AA/TAAIT 

PfRFC3 	CCC C A TGG GTAT A TAG 

exon 	 intron 

F" 

consensus TTTT/ATTTTTTTT/ATAG ATAAITNTNN 

PfRFC3 	TTT T TTTTATT T TAG GT T G AAAA 

exon 
	 intron 

Figure 3.11 Splice sites of PfRFC3 and P falciparum coilsensus (Vinkenoog et 

al., 1995). 

5' splice site. 

3' splice site. 
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3.5.4 Sequence Analysis of the PfRFC3 Gene. 

All the clones were sequenced with universal and reverse primers and the primers 

used for the initial PCR reactions. A series of synthetic primers (figure 3.14) were 

also designed from the known sequence to extend the sequence, which was 

determined for both DNA strands (2.2.8). Each PCR reaction was carried out twice 

so that the sequence of independent clones could be checked in case the PCR had 

introduced any mutations. The overlapping clones were arranged using UWGCG 

version 9.1 sequence analysis (Devereux etal., 1984) and the programs available via 

the BCM Search Launcher (http://kiwi.imgen.bcm.tmc.edu:  8088/search-

launcher/launcher.html). The sequence revealed an open reading frame of 1032 

nucleotides which predicts a protein of 344aa (figure 3.13) and a molecular mass of 

39.2kDa. The open reading frame is 71% AT (the intron sequence is 88% AT) which 

is consistent with other P. falciparum genes (Goman et al., 1982). The first ATG of 

the open reading frame was designated as the putative translational start site. The 

first in frame stop site is approximately 90bp upstream, set in a region which is 92% 

AT. 

A comparison of the P. falczparum, S. cerevisiae, S. pombe, A. adeninivorans, C. 

elegans and human RFC3 amino acid sequences were made (figure 3.15). It was 

found that the PfRFC3 was similar in size to the human and yeast homologues. As 

with the other two genes the highest degrees of conservation were seen in the RFC 

boxes (Cullman et al., 1995). 

Sequence comparisons of P{RFC3 were made with its homologues from other 

species (Table 3.3). The human amino acid sequence shows the highest level of 

identity with the PfRFC3. 
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Human 

S. cerevisiae 

A. adeninivorans 

S. pombe 

C. elegans 

% id 

43.2 

40.7 

41.0 

39.7 

31.6 

EMBL accession number 

P40937 

P38629 

AJ007712 

AJ012839 

pers. comm. 

Table 3.3 The homology between PfRFC3 and its homologues from human and 

S. cerevisiae. 
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Figure 3.12. An overview of the cloning of PfRFC3. A key is shown below. 

1282 

intron 
exon 1 

296-631 

I _] 231-993 

1-320 

954-1406 

Inverse PCR 

Chromosome 14 database 

F-1  Degenerate PCR 
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GTGTAATAAGA 
ATGkCCGAAGTTGACA?CAPAGAGGAAGTGAACTAPCCCCATGG 	45 

M T E V E Q Q R G S E L T P W 	15 

GTATATAGAAkkGATTACGAATGATTATATAAAAAGAGTTATATTTTTTATATATATGAA 
AATGTGTATTATTATAAATTATATTTTGATTTGTTTCCATTTATATATAATAP.AATGAGA 
AATGGAATTATATATATATATATATATATATATATATTTATTTATCTAATTTTTGAACAC 
TTGTAATATTTGTTGAACAAAAPTAGTCATACATATATTATTTTTAATTTATATTTTTTT 

TTTTATTTTAG 
GTTGA1LAAATATAGACCAAATGTACTAPATGATATAATATCGCATGAACAAGTAATATCA 105 
V E K Y R P N V L N D I I S H E Q V I S 	35 

ACTATTAAAAGATTCGTTCAGAAAGGTGAGTTACCACATTTACTTTTACATGGTCCCCCA 165 
T I K R F V Q K G E L P H L L L H G P P 	55 

GGTACAGGGAAAACGTCTACGATATTGGCTGTGTGTAALGAATTATATGGAGPLTA1GAGA 225 
G T G K T S T I L A V C K E L Y G D K R 	75 

AGTCCATTTGTTTTAGAATTGAATGCTTCTGATGATAGAGGTATAAACGTTATTCGTGAT 285 
S P F V L E L N A S D D R G I N V I R ID 	95 

CAATAAAAACATTTGCTGAATCAWAATCATTATACAACATGTGAAAAAPLCAACTTTA 345 
Q 1K T FA ES K N H Y T T CE K T T L 	115 

AAATTAATTATTTTAGATGAkGCAGATCATATGACATATCCTGCTCAAAACGCTATGAGA 405 
K L I I L ID E A D H M T Y P A Q N A M R 	135 

AGGATTATGGAGAPLCTATGCTAAAAATGTGCGTTTTTGTTTGTTATGTAATTATGTAAAT 465 
R I M E N Y A K N V R F C L L C N Y V N 	155 

AAAATAPLCTCCAGCAATACAATCTAGATGTACGGCTTTTCGTTTTGCCCCTTTAPAA1\AA 525 

K I T P A I Q S R C T A F R F A P L K K 	175 

GAATATATGAAAAATAMGCACTAGATATAGCAAAPLTCTGAGAATGTAAATCTAACTGAA 585 
E Y M K N K A L D I A K S E N V N L T E 	195 

GGAGGATAGATAGTCTTATACGTGTAGGACATGGAGATATGAGAAGAATTTTATTGT 645 
G G I D S L I R V G H G D M R R I L N C 	215 

TTACAAGTAGTATCATTAPLGTCATAAAAATCTTGTCATTGATGAAA1TGTTATTTTATCA 705 
L Q V V S L S H K N L V I ID E N V I L S 	235 

ACATTAGATATCCCATTACCTAGTGAAACCAAGAAAATATTGGAATATTTTACAAAGGT 765 
T L D I P L P S E T K K I L E Y F T K G 	255 

TCTATAAAGAATCATACGAATTTGTTAGTAATTTACAATATGATAGTATTCCA 825 
S I K E S Y E F V S N L Q Y D K G Y S T 	275 

AAAGATATTATGATGTGTTTATATGAATCAGTTTTAACATATGATTTCCCTGATTCGGCT 885 
K ID I M M C L Y E S V L T Y D F P 	S A 	295 

TTTTGTCTTCTACTTAAAAATTTTGGTGAPJ1LTAGPAGAAAGATGTTCTTCTGGAGCTAGC 945 
F C L L L K N F G E I E E R C S S G A 5 	315 

GACAATTACTTTATCTGCTTTAATTAGTGCATTCGTAGTTTCGCAGCTTTTC 1005 
E Q I T L S A L I S A F V E F R T E L F 	335 

AAATTAAAATATGATAT GAGCAACATATAA 	 1032 

K L K Y ID M S N I * 	 344 



ATTATATAATAAAGAATATALACATATATATATATATTTCTTACATTAATTTATAAPA1 
TATATATATATATATATATAT CAAT GT T GT CT TAAT TAAT TAT C CGAT GGAAAAACT GTA 



JFiganire 3.114 Representation of the JF'fflIFC3 gene. 

The location of synthetic oligonucleotide primers designed towards the sense DNA 

strand in the 5' to 3' direction (—* ) and the antisense strand, also in the 5' to 3' 

direction (*— ) are indicated. Key restriction enzyme recognition sites are also 

represented. The figure is drawn to scale where 10mm represents 20 nucleotides. 
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lFiganrre 3.15 Claiisthllx alligimuneuiit of IEIJI'c3 amino acid sequences from human, S. 

cerevisiae, S. poiiabe, C elegans, A. adeünivorans and P. falciparuwe. 

The RFC boxes (Cullman et al., 1995) are highlighted in different colours. 

indicates positions which have a single, fully conserved residue. 

indicates that one of the following strong' groups is fully conserved. 

STA 
NEQK 
NHQK 
NDEQ 
QHRK 
MIlL V 
MIILF 
HY 
FYW 

indicates that one of the following 'weaker' groups is fully conserved. 

CSA 
ATV 
SAG 
STNK 
STPA 
SGND 
SNDEQK 
NDEQHK 
NEQHRK 
FVLIM 
HFY 

i 13 



PAATKIRNLP WVEKYRPQTINDLIS I-IQDILST --- IQKFI NEDRLPHLLLYGPPG TGKTSTILPCAKQLY 78 

LNLTKMTTTTASNLP WVEKYRPSEJDELVA HEQIVKTYILVTKFI ENRTLPHLLFYGPPG TGKTTTVLAARQMY 90 

---TSTEKRSKENLP WVEXYRPETLDEVG QNEVITT---VRKFV DEGKLPHLLFYGPPG TGKTSTIVALAREIY 71 

---VETVEKQENSLP WVEKYRPTTLDEVAG HEGVITT --- IKKFV EEGKLPHLLFHGPPG TGKTTTIIAVARQIY 75 

---IDLPLGSESTLP WVEKYRPANLEDVVS MKDIIST --- LEKFI SSNRVPHMLFYGPPG TGKTSTILkCARKIY 81 

QQRGSELTr l,,jVEKYPPNVLNDIIS HEQVIST --- IKRFV 
* 	* 	............. 

QKGEL: ILAVCKELY 
* 	• * 

71 

V 
DDRGIDIIRGPILSF ASTR------TIFKK G---FKLVILDEAft IT! Q.!1 - -------------- ------ 139 

DERGIDVVNTIVNF AQTKGLQAFSTSSNT GTVPFKLVILDEADA MTKLAQNALRRLE'KT IHYFc.1IHUvNIYE 180 

DDRGIDVVNQIKDF ASTR------QIFSK G --- FKLIILDEADA MTNAAQNAL1 ------------------ -- 131 

DERGIDVVRDQIKTF AST ------QIFSS G --- FKLVILDEADA MTN?JQNALR ----- --------------- 135 
DDRGIDAVREQIKNF ASTR------QIFAS T --- FKNIILDEADA MTLJVQNALR ----- --------------- 142 

DDRGINVIRDQIKTF AESK ----- NIYTTC EKTTLKLIILDEADH MTYPAQMAMP-  ----- --------------- 135 

HsRfc3 METSALKQQEQ----
CeRfc3 MGSRTGSREEHSLQF 
ScRfc3 
AaRfc3 ------ MDKGKK --- 
SpRfc3 MSIEKGKGRAI'4D --- 
PfRFC3 ------- MTEVE --- 

Iv 
HsRfc3 KDKEFGSMVLELNAS 
CeRfc3 SPTKMPSMVLELNAS 
ScRfc3 GKN-YSNMVLELNAS 
AaRfc3 GKN-YRNMILELNAS 
SpRfc3 GPN-YRNQLMELNAS 

tJ 
	 PfRFC3 GDK-RSPFVLELNAS 

HsRfc3 }'iIEKFTENTRFCLI CNYLSKIIPALQ 
CeRfc3 RVIEKYTDNVRFCII CNYLASIVPAIQ 
ScRfc3 RVIERYTKMTRFCVL ANYAHKLTPALL 
AaRfc3 RIIEKYSAI-ITRFCIL ANYTHKLN?ALL 
SpRfc3 RVIEKYTKNVRFCII CNYINKISPAIQ 
PfRFC3 RIMENYAKNVRFCLL CNYVNKITPAIQ 

• ***•• 	** 	• 

VIII 

TRFRFGPLTPELMVP RLEI-[VVEEEKVDISE DGMKALVTLSSGDMR PALNILQSTNMAFGK 229 
TRFRFAPLDQKLIVP RLEYIVETEQLKMTP DGKDALLIVSKGDMR TVINTLQSTAMSFDT 270 
TRFRFQPLPQEAIER RIANVLVI-IEKLKLS? NAEKALIELSI'GDMR RVLNVLQSCKATLDN 221 
TRFRFSPLKEDAIKF RLHVIEQESVDLSP EAFQSLLHLSSGDMR RLNVLQACYASVDA 225 
TRFRFQPLPPKEIEK TVDHVIQSEHCNIDP DAKMAVLRLSKGDMR KALNILQACHAAYDH 232 
TAFRFAPLKKEYMKN KALDIAKSENVNLTE GGIDSLIRVGHGDMR RILNCLQWSLSHKN 225 
* 	** 	: * 	: • 	: 	: 	: 	: :* 	** 

T-TsRfc3 VT ----- EETVYTCT GHPLKSDIANILDWM LNQDFTTAYRNITEL KTLKGLALHDILTEI HLFVHRVDFPSSVR IHLLTKNADIEYRLS 313 

CeRfc3 VS-----ENTVYQCI GQPTPKEMKEVVKTL LNDPSKKCMNTIQTK LFENGYALQDVITHL HDFVFTLDIPD-EAN SAIITGLGEVEENLS 354 

ScRfc3 PDEDEISDDVIYECC GAPRPSDLKAVLKSI LEDDWGTAHYTLNKV RSAKGLALIDLIEGI VKILEDYELQNEETR VFILLTKLADIEYSIS 311 

AaRfc3 G--EQISEELVYDCV GSPRPADIRTVLQAV LDGSWESALHTFSYI KQSKGLALADMLTAF AVEFQKLDLQNKTR IALLDGLSEIEWLS 312 

SpRfc3 ID-----VSAIYNCV GHPHPSDIDYFLKSI MNDEFVIAFNTISSI KQQKGLALQDILTCI FEALDELEIKPNAK IFILDQLATIEHBNS 316 

PfRFC3 LVID --- ENVILSTL DIE'LPSETKKILEYF TKGSIKESYEFVSNL QYDKGYSTKDIICL YESVLTYDFPD-SAF CLLLKNFGEIEERCS 311 
• 	 •:• 	• • 	• :* 	: :: 	•. :: 	:. 	:* 	* 



HsRfc3 VGTNEKIQLSSLIAA FQRDLIV 340 

CeRfc3 TGCSNETQLAAVVAA FFEAKPPMNPNQPPN YE'PGNPNQPPPFPPT PYYPMYQAGMPMPYI PQSPQYPQPGPPGGP FPFMGIQSEALAGNI 444 

ScRfc3 KGGNDQIQGSAVIGA IKASFENETVKANV - --------------- --------------- --------------- --------------- 
340 

AaRfc3 SGGNESIQTSATIGV IKQSMELEASS ---- --------------- --------------- --------------- --------------- 338 

SpRfc3 FGCSEKIQLSAMIAS IKTGVDLAAKVN --- --------------- --------------- --------------- --------------- 343 

PfRFC3 SGASEQITLSALISA FVEFRTELFKLKYDM SNI ------------ --------------- --------------- --------------- 344 
* 

HsRfc3 	--- 340 
CeRfc3 	MQK 447 
ScRfc3 	--- 340 
AaRfc3 	--- 338 
SpRfc3 	--- 343 
PfRFC3 	--- 344 
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3.6 Gene Copy Number 

Southern analysis of KI genomic DNA digested with EcoRI, BamHl and HindlII 

was carried out for each of the three genes. 

For PfRFC1 the blot was hybridised with a random-primed 1.7kb fragment of DNA 

(the product of library screening, see section 3.3.2), (figure 3.16). The restriction 

enzymes used do not have restriction recognition sites within the PfRFCI ORF 

except for HindIII. However, the fragment used as a probe does not include this 

region of sequence. The results show a single band in each lane, which suggests that 

the gene is present as a single copy. 

For PfRFC2 the blot was hybridised with a random-primed 1kb PCR product 

corresponding to the entire open reading frame (PCR between the primers A5836 

and A5837, figure 3.9), (figure 3.17). Only HindIII has a restriction site within the 

coding region. For EcoRI and BamI-H there is a single band while for HindIII there 

are two bands. The HindIll site is towards one end of the gene which explains why 

the smaller band (-750bp overlap) has a stronger signal than the larger one (-250bp 

overlap). The results suggest that the gene is present as a single copy. 

For PIERFC3 the blot was hybridised with a random-primed 0.4kb PCR product (PCR 

between the primers S5614 and P2605, see section 3.5.1), (figure 3.18). None of the 

restriction enzymes used have a site within the coding region of PfRFC3 and all gave 

a single band. The results suggest that the gene is present as a single copy. 
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Figure 3.16 Gene copy number of Pf'RFCI. 

Genomic DNA was restricted with the enzymes BamHI (B), EcoRl (E) and H/ndIH 

(H), Southern blotted and hybridised with a fragment of DNA frornPfRFC 1. The 

size of the ?JIindIH DNA markers are indicated in kb. 
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Figure 3.17 Gene copy number of PfRFC2. 

Genomic DNA was restricted with the enzymes BamHI (B). LLQRI (E) and J/indlII 

(H), Southern blotted and hybridised with a fragment of DNA fromPfRFC2. The 

size of the ?JJindIfl DNA markers are indicated in kh 

MI 
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Figure 3.18 Gene copy number of PfRFC3. 

Genomic DNA was restricted with the enzymes BamI-H (B), EcoRI (E) and Hindlll 

(H), Southern blotted and hybridised with a fragment of DNA fromPfRFC3. The 

size of the A.HindIH DNA markers are indicated in kb. 
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3.7 Chromosomal Location 

Malarial parasites have 14 chromosomes, which range in size from between 630kb 

and 3Mb and carry a total of around 30Mb of genetic information (Goman et al., 

1982). In comparison, the human genome is approximately 3000Mb and the E. coli 

genome around 4Mb in size. The chromosomes of different parasite isolates vary in 

size due to the unstable nature of the repetitive sequences at the subtelomeric regions 

(Foote and Kemp, 1989). 

Chromosomes from 3D7, Hb 3, Ki and T994 parasites separated by PFGE (2.2.10) 

and blotted to Hybond-N membranes were kindly supplied by Pedro Cravo, ICAPB, 

University of Edinburgh. 

Preliminary results suggested that PIRFC 1 and PtRFC2 were both present on 

chromosome 2 (data not shown) but this was not pursued after the publication by 

Gardner etal. (1998) of the complete sequence of chromosome 2 and the localisation 

therein ofPIRFC1 and PfRFC2. 

For P±RFC3, the blot was hybridised with a random-labelled 0.6kb PCR product 

(primers W5692-A1907, figure 3.14). The probe hybridised to chromosome 14 in all 

the isolates (figure 3.19). This was verified by stripping the membrane (2.2.4.7) and 

reprobing it with a fragment of DNA encoding PfTopoll (Cheesman et al., 1994) 

which is known to be present on chromosome 14. The signal does not seem to be 

equal in the four lanes but when the ethidium bromide stained gel is studied it can be 

seen that there is less DNA in the Ki and T 994 lanes. 
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lFiguiiire 3.119 Chromosome Location of JFfRJFC3. 

Four P. falciparum isolates 3137, Hb3, Ki and 1994 were run on PFGE to separate 

the chromosomes. The gel was stained with ethidium bromide (A) and Southern 

blotted. The membranes were probed with a fragment of DNA from PfRFC3 (B) 

then stripped and reprobed with a fragment of DNA from PfTopoll (C). 
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3.8 Northern analysis 

Total RNA was isolated from unsynchronised Ki parasites (2.3.1) and 10.ig was 

used to prepare a northern blot (2.3.2). 

For PfRFC1, the membrane was probed with a random-primed 1.88kb fragment 

(corresponding to XbaI - KpnI, figure 3.4). A single band of approximately 4kb was 

identified (figure 3.20). 

For PfRFC2, the membrane was probed with a random-primed 1kb PCR product 

corresponding to the entire open reading frame (primers A5836-A5837, figure 3.9). 

A single band of approximately 1.6kb was identified (figure 3.21). 

For PfRFC3, the membrane was hybridised with a random-primed 0.6kb PCR 

product (primers W5692-A1907, figure 3.14). Two bands of approximately 1.4kb 

and 1.8kb were identified (figure 3.22). These could either be polymorphic 

messages of this single copy gene or the larger transcript could be a precursor RNA 

molecule. 

Malarial mRNAs tend to be unusually long (1kb larger than coding sequence is not 

uncommon) when compared to those of most other eukaryotic genes (Levitt et al. 

1993). However, smaller transcripts have also been reported. This is the case with 

the calmodulin gene (Robson and Jennings, 1991) where the transcription start site 

was mapped 62 nucleotides upstream of the initial ATG. 

Results of stage specific Northern blots are shown in chapter 5. 
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Figure 3.21 Northern analysis of PfRFC2. 

Size fractionated total RNA probed with a random-labelled fragment of PfRFC2. 

The positions of the Gibco-BRL size markers are indicated in kb. 
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Figure 3.22 Northern analysis of PfRFC3. 

Size fractionated total RNA probed with a random-labelled fragment of PfRFC3. 

The positions of the Gibco-BRL size markers are indicated in kb. 
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3 9 Conclusions. 

The genes encoding PfRFC 1, PfRFC2 and PJERFC3 have been isolated by several 

methods such as degenerate, inverse and vectorette PCR, library screening and 

searching the databases of the P. falciparum genome project. 

PfRFC1 is present as a single copy on chromosome 2. It has an open reading frame 

of 2712bp that predicts a protein of 904 amino acids with a molecular weight of 

104kDa. The transcript of PIRFCI is approximately 4kb. There are no introns 

present in the gene. The amino acid sequence was compared to the large subunit of 

RFC I from human, D. melanogaster, S. cerevisiae and S. pombe. The overall level 

of identity was quite low at around 25% but the degree of conservation was seen to 

be much higher in the central region of the protein where the RFC boxes are situated 

(Cullman etal., 1995). 

Pfl.FC2 is also present as a single copy gene on chromosome 2. PtRFC2 has an 

open reading frame of 990bp that predicts a protein of 330 amino acids with a 

molecular weight of 37. 9kDa. The transcript of PfRFC2 is approximately 1.6kb. As 

with P±RFC1 there are no introns present in the gene. The amino acid sequence was 

compared to hRFC37, ScRFC2, SpRFC2 and CeRFC2 and it was found that the 

protein was slightly smaller with the difference being at the N terminus. The level of 

identity here was just under 40%. 

Polycistronic genes are not common in eukaryotes and PfRFC1 and PfRFC2 are no 

exception. Once the sequences on the database had been organised into contigs they 

were searched with the two gene sequences to see where they lay. They were found 

to be separated by approximately 40kb. The following figure shows the locus of 

each gene on chromosome 2 and that they are transcribed in the opposite directions. 



738kb 	 779kb 
I 	 jNG 3 CC 	I 	I 

LI2 
PFBO84Ow 

PFBO895c 

1kb 

Figure 3.7 Partial gene map of P. falciparum chromosome 2 (adapted from 

Gardner et al., 1998). 

PFB0840w is PIRFC2 and PFB0895c represents PfRFC I The letters CC and NG 

followed by numerals indicate the number of predicted coiled-coil and nonglobular 

domains present in the proteins. 

PfRFC3 is present as a single copy on chromosome 14. It has an open reading frame 

of 1032bp which encodes a protein of 344 amino acids with a predicted molecular 

weight of 39.2kDa. There is one intron of 250bp present at the 5' of the gene. Not 

many genes in P. faiciparum contain introns and if they do they usually only have 

one although there are exceptions such as the primase subunit, which has 15 

(Prasartkaew el al., 1996). Plasmodium introns tend to be much smaller than those 

of higher eukaryotes but the splice donor and acceptor sites seem to be the conserved 

GU---AG nucleotides. PfRFC3 has two transcripts of approximately 1.4 and 1.8kb. 

These could be polymorphic messages of this single copy gene or the larger 

transcript could be a precursor RNA. This was found to be the case with the 

calmodulin gene (Robson and Jennings, 1991). They identified two transcripts of 0.5 

and I kb but when the northern blot was reprobed with an intron specific probe only 

the larger transcript was detected. The amino acid sequence was compared with its 

homologues from human, S. cerevisiae, S. pombe, C. elegans and A. adeninivorans 

and it was seen that the proteins are of a similar size. They also had the highest level 

of identity at just over 40%. 

The transcript of PIERFCI is over one kb larger than the coding sequence which is in 

line with other P. falciparum genes while the transcripts of the other two genes are 

approximately 500nucleotides larger. Several functions have been suggested for 



these large untranslated regions of RNA such as the regulation of transcript stability, 

stage specific expression (Lanzer et al., 1993) or interaction with ribosomes or 

regulatory proteins (Levitt, 1993). 
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HETEROLOGOUS EXPRESSION OF PFRFC1, PFRFC2 AND PFRFC3. 



4.1 Introduction 

In this chapter the heterologous expression of PfRFC 1, PfRFC2 and PfRFC3 in E. 

co/i will be discussed. The work falls into two sections: 

The expression of fragments of the PfRFC1, PfRFC2 and PfRFC3 genes in E. 

co/i and their use to make polyclonal antiserum in rabbits. 

The figure below summarises the regions the antisera were raised against. 

I 	 II III 	IV VVI VII VIII 

i i -n-rJ4i-U14-fl 
I 	Ii 

f.1-L1-EI-ftI-+11--------- 
I 	12 

-!II-LJ---1II-!IIII-ll-EJ----------- 	PfRFC3 

I 	13 

Figure 4.11 Schematic representation of the genes encoding PfRFC1, 

PfRFC2 and PfRFC3. 

The black line represents the open reading frames of the three genes. White 

boxes represent the eight RFC boxes while the yellow boxes are the areas the 

antisera were raised against. 

Full length expression ofPfRFCI and PIRFC2. Due to time limitations the full-

length expression of PfRFC3 was not attempted. 

The pRSET expression system (figure 4.1). 

The pRSET vectors (Schoepfer, 1993) were designed for high level prokaryotic 

expression. The sequence for expression is fused to vector sequences, which contain 

an ATG and the codons for an N terminal hexahistidine tag. The fused sequences 

are driven by the strong bacteriophage T7 promoter. Termination of translation is 

accomplished by nonsense codons in each of the three frames downstream from the 

expression cassette. The N-terminal histidine tag facilitates the affinity purification 

of the expressed protein using Ni-agarose columns. 
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Figure 4.1 The pRSET vectors. 
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The pGEX expression system (figure 4.2). 

The pGEX plasmids (Smith and Johnson, 1988) were designed for inducible, high-

level expression to overcome the difficulties encountered with the expression of 

toxic proteins in E. coli. The sequence to be expressed is fused to the C-terminus of 

the Schistosomajaponicum sequence encoding glutathione S-transferase that in turn 

is under the - control of the strong tac promoter. The presence of the/act 1  allele of the 

lac repressor ensures that this promoter remains completely repressed until induced 

with ]PTG. As with the pRSET vectors, translation is terminated by the presence of 

nonsense codons in each of the reading frames. 

E. co/i strain BL21 (DE3)pLysS (figure 4.3). 

E. co/i BL21 cells were chosen because they lack the /on protease and the ompT 

outer membrane protease that can degrade foreign proteins during purification. DE3 

is a phage lambda derivative that carries the gene for Ti RNA polymerase (gene 1) 

in the chromosome under control of the inducible /acUV5 promoter (Studier and 

Moffat, 1986). Addition of IPTG induces the promoter to produce the T7 RNA 

polymerase that in turn initiates high level expression of target genes under the 

control of a T7 promoter. The plasmid pLysS supplies low levels of T7 lysozyme 

that reduces basal expression of recombinant genes by inhibiting basal levels of T7 

RNA polymerase (Studier, 1991). The pLysS plasmid aids in the production of cell 

extracts as the Ti lysozyme cleaves the bond between N-acetylmuramic acid and L-

alanine in the cell wall of E. co/i (Inouye et a/., 1973) and so treatments, such as 

freezing, that disrupt the cell membranes cause lysis of the cells. 

4.2 Expression of a 401bp fragment of PfRFC1. 

As described in the previous chapter a 401bp fragment of PfRFC1 corresponding to 

nucleotides 1054-1455 was amplified by PCR and cloned into pCR2.1 (2.2.5.3). An 

EcoRI restriction digest released this fragment which was subsequently gel purified 

and ligated in frame into the EcoRI site in the pRSETA polylinker. The ligation was 

used to transform competent DH5a cells. DNA was prepared from approximately 

10 colonies and recombinants were detected by restriction analysis. As ligation into 
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Figure 4.2 The pGEX vectors. 
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Figure 4.3 Components of BL21(DE3)pLysS. 
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the EcoRI site could result in the fragment in either orientation recombinants were 

sequenced to check the cloning boundaries to ensure that the fragment was correctly 

oriented and in-frame with the vector-encoded ATG. Suitable recombinants were 

transformed into BL2 1 (DE3 )pLysS for expression. 

4.2.1 Confirmation of expression of 181kDa fragment of PfRfcl. 

In order to test for expression of the fragment, transformants containing either the 

recombinant plasmid or the parental plasmid alone were inoculated into minimal 

medium and grown at 37°C until the 0D600 was in the range of 0.7-0.8. Cultures 

were then grown in the presence or absence of JIPTO for 1-3 hours (2.4.2). Small 

samples were removed and tested by SDS-PAGE for the presence of a novel 1 8kDa 

band, the size predicted by the amino acid composition of the fragment. A clear 

band in the expected size range was seen only in recombinant fractions and seems to 

be entirely insoluble (compare lanes 5 and 6 in figure 4.4). To confirm that the novel 

band was indeed the recombinant PIERfc1 fragment, a western blot was carried out on 

the samples using a commercially available mouse monoclonal anti-His antibody 

(Sigma). This recognises the vector encoded N-terminal hexahistidine tag and so 

also detects the recombinant fusion protein. Figure 4.5 shows that the novel band 

seen on the coomassie stained gel is also recognised by the antibody. A small 

amount of protein was also detected in the uninduced sample and this is probably 

due to leaky expression. The western blot also detects low levels of the protein in 

the soluble fraction and some degradation products are visible. The higher molecular 

weight bands seen faintly in lane 4 and more clearly in lane 6 are probably non-

denaturable aggregates of the recombinant protein. 

473 Expression of a 212bp fragment of PfRFC2. 

The work to be described in this section was carried out in collaboration with 

Lindsay Morrison, an Honours student in the laboratory. A 212bp fragment of 

PfRFC2 (corresponding to nucleotides 650-862) was amplified by PCR using 

primers A1904 (5' GTTCATGTATTAATACGAC) and A1905 (5' 

CATATTCTGTGTTCGTAAC) and cloned into pCR2.1 (2.2.5.3). The fragment 

was released by EcoRI restriction digest, gel purified and ligated into pRSETC at the 
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Figure 4.4 Coomassie stained gel of pRSIETA-lRIcl (18kDa fragment). 

Lane 1 Markers (sizes shown in kDa). 

Lane 2 pRSETA 

Lane 3 pRSETA-RFC 1 uninduced 

Lane 4 pRSETA-RFC1 1 hour induced total cell lysate 

Lane 5 pRSETA-RFC 1 3 hours induced soluble fraction 

Lane 6 pRSETA-RFC 1 3 hours induced insoluble fraction. 

The recombinant protein is indicated with an arrow. 

Figure 4.5 Western Not of pRSIIETA-Rfcl (18kDa fragment). 

Lanes as above. 

Anti-His antibody used at 1:7500 dilution. 

The recombinant protein is indicated with an arrow. 
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EcoRI site in the polylinker. Recombinants were selected as before and the 

orientation of the fragment checked by sequencing. 

4.3.1 Confirmation of expression of 13kDa fragment of PfRfc2. 

The recombinant and parental plasmids were inoculated into minimal medium and 

grown as described above in the presence and absence of IPTG. Small samples were 

removed and tested by SDS-PAGE for the presence of a novel l3kDa band, the size 

predicted by the amino acid composition of the fragment. When figure 4.6 is 

examined a clear band in the expected size range is seen in recombinant fractions 

only and seems to be entirely insoluble (compare lanes 4, 5 and 6). 

To confirm that the novel band was indeed the recombinant PfRfc2 fragment, a 

western blot was carried out on the samples using a mouse monoclonal anti-His 

antibody (Sigma). Figure 4.7 shows that the novel band seen on the coomassie 

stained gel is also recognised by the antibody. A small amount of protein is detected 

in the uninduced sample, this is probably due to leaky expression. The western blot 

also detects low levels of the protein in the soluble fraction. Again some degradation 

product and aggregates are seen. 

4.4 Expression of a 234bp fragment of PfRFC3. 

The work to be described in this section was carried out in collaboration with James 

Wood, an Honours student in the laboratory. 

A 234bp fragment of PIRFC3 (corresponding to nucleotides 497-731) was amplified 

by PCR using primers A1906 (5' CGGCTTTTCGTTTTGCCCC) and A1907 (5' 

CACTAGGTAATGGGATATC) and cloned into pCR2.1-TOPO (2.2.5.3). The 

fragment was released by EcoRI restriction digest, gel purified and ligated into 

pRSETA at the EcoRI site in the polylinker. Recombinants were selected and 

checked for orientation as before. 

4.4.1 Confirmation of expression of 13kDa fragment of PfRfc3. 

The recombinant and parental plasmids were inoculated into minimal medium and 

grown as described above in the presence and absence of IPTG. Small samples were 

removed and tested by SDS-PAGE for the presence of a novel 1 3kDa band, the size 

44 



Figure 41.6 Coomassie stained gel of pRS1ETC-1lfc2 (13ldIa fragment). 

Lane I Markers (sizes shown in kDa) 

Lane 2 pRSETC 

Lane 3 pRSETC-RFC2 uninduced 

Lane 4 pRSETC-RFC2 induced total cell extracts 

Lane 5 pRSETC-RFC2 induced soluble fraction 

Lane 6 pRSETC-RFC2 induced insoluble fraction. 

The recombinant protein is indicated with an arrow. 

Figure 4.7 Western blot of pRSIETC-Rfc2 (13kDa fragment) 

Anti His antibody used at 1:7500 dilution. 

Lane 1 Markers (sizes shown in kDa) 

Lane 2 pRSETC-RFC2 uninduced 

Lane 3 pRSETC-RFC2 induced total cell extracts 

Lane 4 pRSETC-RFC2 induced soluble fraction 

Lane 5 pRSETC-RFC2 induced insoluble fraction 

Lane 6 pRSETC. 

The recombinant protein is indicated with an arrow. 
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predicted by the amino acid composition of the fragment. A faint band in the 

expected size range is seen only in the insoluble fraction (lane 6 - figure 4.8), the 

novel protein is possibly comigrating with a native E. coil protein which is making it 

difficult to detect in other lanes. 

To confirm that this band was indeed the recombinant PfRfc3 fragment, a western 

blot was carried out on the samples using a mouse monoclonal anti-His antibody 

(Sigma). Figure 4.9 shows that the band seen on the coomassie stained gel is also 

recognised by the antibody. The protein is detected in all pRSETA-Rfc3 samples but 

is present in the largest amount in the insoluble fraction (compare lanes 5 and 6) 

which confirms that the band seen with the coomassie stain is the recombinant 

protein. 

4.5 Purilliation of the recombinant fragments of PfRfcl, iPfRfc2 and PfRfc3. 

As the recombinant proteins were found to be almost entirely insoluble, enough pure 

protein to immunise rabbits was obtained by isolating the recombinant protein 

directly from SDS-polyacrylamide gels. Total cell protein from a large scale induced 

culture, was size fractionated using SDS-PAGE on two 10%  gels. The gels were 

stained with non-fixing Coomassie blue and the appropriate band was excised. The 

proteins were eluted from the gel slices into PBS/O. 1% SDS. The recombinant 

proteins were concentrated and the SDS removed with a microconcentrator (3k), and 

the purity of the sample confirmed by SDS-PAGE. 

New Zealand White rabbits were immunised with approximately lOOp.g of 

recombinant purified protein emulsified in 0.5m1 Freund's complete adjuvant and 

0.5m1 of PBS. Pre-immune serum was taken prior to the first immunisation. 

Qualified individuals under Home Office Regulations followed the immunisation 

regime described in section 2.4.6.1. 

4.6 Primary screening of antiserum. 

Antiserum obtained after the second and subsequent immunisations from each rabbit 

were tested for the presence of PfRFC1, PIRFC2 and PfRFC3 specific antibodies. 

This was done by screening western blots of the fusion proteins immobilised on 
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Figure 4.8 Coomassie stained gel of pRSIETA-]RJTc3 (13kDa fragment) 

Lane 1 Markers (sizes shown in kDa) 

Lane 2 pRSETA 

Lane 3 pRSETA-RFC3 uninduced 

Lane 4 pRSETA-RFC3 induced total cell extracts 

Lane 5 pRSETA-RFC3 induced soluble fraction 

Lane 6 pRSETA-RFC3 induced insoluble fraction. 

The recombinant protein is indicated with an arrow. 

Figure 4.9 Western Not of pRSIETA-lRfc3 (13kDa fragment) 

Anti His antibody used at 1:7500 dilution. 

Lanes as above. 

The recombinant protein is indicated with an arrow 
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nitrocellulose with appropriate dilutions of the antiserum. Figure 4.10 shows the 

result of these experiments. The insoluble fraction of each fusion protein was probed 

with the appropriate antiserum and with its preimmune serum. It can be seen that the 

PfRFC 1 antiserum recognises a protein of approximately 1 8kDa and that both the 

PfRFC2 and PfRFC3 antisera recognise proteins of approximately l3kDa. When 

lanes 2 and 3 are compared it can be seen that the preimmune sera do not recognise 

the same bands. As in figures 4.5, 4.7 and 4.9 higher molecular weight bands can be 

seen which are presumably nondenaturable aggregates of the fusion protein. Taken 

together these results indicate that each rabbit has produced antibodies against the 

PfRFC subunit it was challenged with 

4.6.1 Western blot analysis of Pf parasite extracts. 

Figure 4.12 shows western blots of size fractionated parasite proteins (10% SDS-

PAGE) obtained from unsynchronised blood-stage cultures. The antiserum against 

PfRfcl recognises two proteins of approximately lOOkDa and the antisera against 

Pfltfc2 and PfRfc3 both recognise proteins with apparent mobility of around 35kDa. 

Only the western blot probed with anti-Rfc2 gives one clear band, in the other two 

there are several other bands that hybridise to some degree. From figure 4.11 it can 

be seen that the regions of PfRFC 1 and PfRFC3 that the antisera were raised against 

include some of the RFC boxes while the area that was used to raise an antiserum 

against PIERFC2 is divergent. This suggests that anti-Rfcl and anti-R&3 are 

recognising some of the other subunits. It is possible that the four faint bands in the 

30-45kDa size range recognised by anti-Rfcl may be the four small Rfc subunits. 

None of the preimmune sera recognised parasite proteins on the western blots. 



IFigure 4U0 

pRSETA-Rfc I. 

pRSETC-Rfc2. 

pRSETA-Rfc3. 

Lane 1 Markers (sizes shown in kDa). 

Lane 2 Fusion protein probed with pre-immune serum at a 1:350 dilution. 

Lane 3 Fusion protein probed with immune serum at a 1:350 dilution. 

An arrow indicates the recombinant proteins detected by the antisera. 
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Figure 4.12 NN estern Not analysis of size fractionated parasite proteins. 

Panel a shows anti-PfRfcl, Panel b, anti-PfRfc2 and panel c, anti-PfRfc3 

In each panel the markers (sizes in kDa) are indicated in lane 1, the preiminunc scUd 

in lane 2 and the antisera in lane 
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4.6.2 PfRfcl, PfRfc2 and PflRfc3 all Ilocallise to the parasite nucleus. 

Figure 4.13a shows a thin smear of parasitised blood displaying the intraerythrocytic 

stages of P. falciparum (ring, trophozoite and schizont) cultured in human blood. 

The parasites were stained with Giemsa (2.5.3). Antisera (from each of the rabbits) 

were used at a dilution of 1:80 in PBS to screen thin blood smears of parasitised 

human erythrocytes using the standard immunofluorescence assay (2.4.4) (figure 

4.13b, c and d). Pre-immune serum, diluted similarly, was also tested. IFAs showed 

that the pre-immune serum from each rabbit failed to cross-react with 

intraerythrocytic parasites (result not shown), in contrast with the signals from each 

of the PfRfc antisera. A strong fluorescence is seen in the nucleus of the parasites 

but also a more diffuse staining throughout the whole of the parasite. Stage-specific 

expression of the three proteins is described in chapter 5. 

4.7 Expression of the full-length PIRFC1 gene in E. coiL 

Before the gene could be heterologously expressed in E. coli the coding sequence of 

the gene had to be assembled from the fragments used to complete its sequence (see 

figures 3.2 and 3.4). The fragment corresponding to nucleotides 300-1060 was 

released from pCR2. 1-TOPO by a MunJJEcoRV restriction digest (MunI is at 

nucleotide 1051 and EcoRV is present in the polylinker of the vector). This 

fragment was gel purified and ligated together with pCR2.1-RFC1(1000-2712) 

which had also been restricted with MunI/EcoRV. This resulted in pCR2.1-

RFC1(300-2712). A XbaJIKpnI (sites at nucleotides 777 and 2663 respectively) 

restriction digest was carried out on this construct, the fragment gel purified and 

ligated into pUC19 at XbaIIKpnI. The 5' end of the gene was amplified by PCR 

from genomic DNA with the following oligonucleotides: 

A5832 
PstI 	 BamHl 

STGCACTGCAGTGCACGGGATCCCGCCACCATGTCTTCGAC 
AC 3' 

A5833 
XbaI 

5' CCATCTTCTAGATATTCCCC 3' 

755 



IFflgiuire 4.13 

Panel A shows Giemsa stained thin smear of parasitised blood displaying the 

intraerythrocytic stages of P. falciparum (ring, trophozoite and schizont) taken from 

a culture containing human red blood cells. Rings (A), mature trophozoites (B) and 

schizonts (C) are indicated. 

The left hand side of panels B, C and D show trophozoite stage parasites stained with 

DAPI while the right hand side panels show the reaction with anti Rfcl, anti Rfc2 

and anti Rfc3 respectively. 
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This resulted in an 800bp product that was cloned into pCR2. I and sequenced to 

make sure the PCR had not introduced any mutations. The construct was restricted 

with PstIJXbaI, the fragment gel purified and ligated into pUC19-RFC1XK at 

PstI/XbaI sites. 

The 3' end of the gene was also amplified by PCR with genomic DNA as the 

template with the following oligonucleotides. 

A5834 
IqnI 

5' CAGAAAGGGTACCTTAAAAAC .3' 

A5835 
Sad 	 BamHl 

5' GCGCGAGCTCGCGCGQGATCCCGGACAAAATTATATTCCTTATTG 3' 

This resulted in a 200bp product that was cloned into pCR2. 1 and sequenced to make 

sure that the PCR had not introduced any mutations. The construct was restricted 

with KpnIlSacI, the fragment gel purified and ligated into pUC19-RFC1PK at 

KpnIJSacI sites. The gene was sequenced across the cloning junctions to check the 

process had gone to plan. The entire ORF of PfRFC 1 was subcloned in frame into 

pRSETB at the BamHT site in the polylinker. The ligation reactions were 

transformed into E. coli DH5a competent cells. DNA was prepared from 

approximately 10 colonies and recombinants identified by restriction digests. As the 

ORF could have been cloned in either orientation the junctions were sequenced to 

ensure that the fragment was correctly orientated in frame with the vector-encoded 

ATG. Suitable recombinants were then transformed into BL21(DE3)pLysS for 

expression. 

4.7.1 Characterisation of expression of pRSETB-Rfcl. 

BL21(DE3)pLysS cells harbouring the PfRFC1 gene in pRSETB were grown to an 

0D600 of 0.8, prior to induction with IPTG for periods of 1-3 hours. Cells were 

harvested by centrifugation, lysed, and analysed by S1)S-PAGE to monitor 

expression. Uninduced cultures containing the PfRFC 1 gene, together with cultures 

containing the parent plasmid alone were used as controls. 

The PIERFC 1 gene encodes a protein with an anticipated size of 104 kDa. No 

evidence of a product of this size was observed after Coomassie blue staining of SDS 



protein gels (figure 4.14). It was possible that the recombinant protein could have 

been co-migrating with a native E. coil protein on the SDS-PAGE and so was not 

detected by Coomassie staining. A western blot of the samples was carried out using 

the mouse monoclonal anti-His antibody described before. 

Figure 4.14 shows the result of this. A band can be seen only in the induced samples 

(lanes 4-6) but it is around 25kDa in size. This may indicate that either the protein is 

undergoing premature transcriptional and/or translational termination in vivo or that 

the full-length protein is made in small amounts but is rapidly degraded in vivo. 

4.7.2 Characterisation of expression of pGEX1-RFC1. 

Since full length expression of the PfRFC1 genes as a histidine fusion product was 

not successful expression of the full length fused C terminally to GST was 

attempted. Previous experience has shown that fusion proteins with GST are 

frequently stable as well as being expressed at a high level. Also, a rabbit polyclonal 

antiserum against GST and the PfR.fcl antiserum could be used to detect the 

recombinant proteins. 

The open reading frame of PfltFC1 was cloned into pGEX1 using the BamHl sites 

and the ligation reactions were transformed into DH5a. Recombinants were detected 

by restriction digest and the cloning boundaries were sequenced to ensure the 

fragment was orientated in-frame. Suitable recombinants were then transformed into 

BL21(DE3)pLysS for expression. 

Cultures of pGEX1 alone and pGEX1-RFC1 were grown at 37°C until an 0D600 of 

0.8 was reached and then induced by the addition of IPTG for 1-3 hours. The 

cultures were then analysed by SDS-PAGE using coomassie blue to stain the gels or 

by western analysis using the commercially available polyclonal antiserum against 

•. $iST. No novel bands can be seen in the Coomassie blue stained gel (figure 4.16) 

suggesting that if a recombinant protein is being produced it is co-migrating with a 

native E. coil protein. 
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Figure 4.114 Coomassie stained gell of pRSIETIB-Rfcl OR]F. 

Lane 1 Markers (sizes indicated in kDa). 

Lane 2 pRSETB alone. 

Lane 3 pRSETB-Rfcl uninduced. 

Lane 4 pRSETB-Rfcl induced total cell extracts. 

Lane 5 pRSETB-Rfcl induced soluble fractions. 

Lane 6 pRSETB-Rfcl induced insoluble fractions. 

Figure 4.115 Western analysis of pRSIET3-lRfcl ORF. 

Anti His antibody used at 1:7500 dilution. 

Lanes as above. 
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Figure 4.17a shows a western blot in which the immobilised proteins were probed 

with anti-GST polyclonal serum at a dilution of 1:1000; cross reactive proteins were 

then detected using anti-rabbit IgG alkaline phosphatase conjugate at 1:7500. The 

anti-GST serum detects the presence of a predominant protein of around 27 kDa in 

all the lanes. This protein is most likely to be GST on the basis of the expected size 

of 27.5 kDa and reactivity with anti-GST serum. Addition of IPTG to the culture 

containing the PfRFCI gene construct results in the appearance (in lanes 4-6) of a 

GST-cross reacting protein of approximately 35kDa (expected size of the fusion 

protein was approximately 130kDa). This could be the result of full length PfRfcl 

being made that has undergone C-terminal degradation. Alternatively truncated 

versions of the protein may have been expressed. It is possible that expression of the 

recombinant protein may be deleterious or toxic to the cell, a situation that might 

lead to in vivo proteolytic degradation. 

Figure 4.16b shows the same samples immobilised on nitrocellulose but here the first 

antibody used was anti-PfRFC1 at a dilution of 1:350. The band at '-35kDa seen in 

figure 4.16a is not recognised here. This is perhaps not surprising as this would only 

represent the first lOkDa of PfRFC1 (GST is 27.5kDa) and the antiserum was not 

raised against that portion of the protein. The antiserum does recognise smaller 

bands in all lanes but this may be cross-reaction with native histidine rich E. co/i 

proteins. 

This could not be pursued further in the time available. 

4.8 Expression of the full length PIRFC2 gene in E. coli. 

The entire gene was amplified by PCR with oligonucleotides designed with tags 

containing restriction enzyme sites to be used in subcloning. 

A5836 
5' CGCGGATCCGCGCCACCATGQAAAATATTCCGTGTTG 3  

BamHI 
A5837 
5' CGCGGATCCGCGTACACTATTTAATAACGTG 3' 

BamHl 

This resulted in a PCR product of approximately 1kb that was cloned into pCR2. I 

(2.2.5.3). The sequence was checked to ensure that the PCR had not introduced any 

10 



Figure 4.116 Coomassie blue stained gel of pGEX1-Rfd constructs. 

Lane 1 Markers (sizes shown in kDa). 

Lane 2 pGEX1. 

Lane 3 pGEX1-Rfcl uninduced. 

Lane 4 pGEX1-Rfcl induced 1 hour. 

Lane 5 pGEXI-Rfcl induced 2 hours. 

Lane 6 pGEX1-Rfcl induced 3 hours. 

iFigure 4.117 Western analysis of pGEXI1-Rfcl constructs. 

Panel a GST antiserum used at 1:1000 dilution. 

Panel b PfRfcl antiserum used at 1:350 dilution. 

Lanes are as above. 
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mutations before a BamHI restriction digest was carried out, the 1kb fragment gel 

purified and cloned into pRSETC at the BamHI site. Ligation reaction products were 

transformed into DH5a, DNA prepared from approximately 10 transformants and 

the presence of the insert checked by means of restriction analysis. As the 1kb insert 

could have been cloned in either orientation the cloning junctions were sequenced to 

check that the fragment was in-frame with the vector-encoded ATG. Suitable 

recombinants were then transformed into BL21(DE3)pLysS cells for expression. 

4.8.1 Characterisation of expression of pRSETC-Rfc2. 

Samples of pRSETC alone and pRSETC containing the PfRFC2 gene were grown at 

37°C in minimal medium until 0D600 reached 0.8 before being induced by IPTG. 

After 1-3 hours induction the cultures were analysed on SD S-PAGE. 

The recombinant protein was expected to be 42kDa in size and in figure 4.18 a novel 

band of approximately this size was detected (lane 6) by Coomassie blue staining. 

To confirm that this band was indeed the expressed protein the same samples were 

immobilised on nitrocellulose and probed with a mouse monoclonal anti-His 

antibody. Figure 4.19 shows the result of this experiment. It can be seen that there 

is a recombinant protein being produced in all lanes where the construct contains the 

PfRFC2 gene. The protein seems to be only slightly soluble and there is also 

evidence of degradation. 

4.8.2 Characterisation of expression of pGEX3-Rfc2. 

To see if the antiserum raised against PfRfc2 recognised the full-length expressed 

protein the construct had to be made using the pGEX system. As the antiserum was 

raised against a pRSET fusion product there would obviously be a cross-reaction if it 

was used against the full-length pRSETC-Rfc2 product. 

The gel purified RFC2 fragment described before was cloned into pGEX3 at the 

BamHI site and transformed into DH5a competent cells. DNA was prepared from 

the colonies and recombinants were selected by restriction digest. Because the RFC2 

fragment could have been cloned in either orientation the junctions were sequenced 

to check that the insert was in the correct orientation and in-frame. Suitable 

recombinants were then transformed into BL21(DE3)pLysS cells for expression. 
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Figure 4.18 Coomassie blue stained SDS-PAGE of pRSJETC-1lfc2. 

Lane I Markers (sizes in kDa). 

Lane 2 pRSETC. 

Lane 3 pRSETC-Rfc2 uninduced. 

Lane 4 pRSETC-Rfc2 induced total cell extracts. 

Lane 5 pRSETC-Rfc2 induced soluble fraction. 

Lane 6 pRSETC-Rfc2 induced insoluble fraction. 

The recombinant protein is indicated with an arrow. 

Figure 4.11.8 Western blot analysis of pRSIETC-Rfc2. 

Anti His antibody used at 1:7500 dilution. 

Lanes as above. 

The recombinant protein is indicated with an arrow. 
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Cultures containing either pGEX3 alone or pGEX3-Rfc2 were grown at 37°C in the 

presence or absence of IPTG and samples were analysed by SDS-PAGE. Figure 

4.20 shows a Coomassie blue stained gel. No novel proteins in the expected size 

range of 67kDa can be detected. This means that if the full-length gene is being 

expressed it will be co-migrating with a native E. co/i protein. To see if the full-

length construct was being expressed the samples were immobilised on 

nitrocellulose and probed with either anti-GST or anti-PfR.FC2. Figure 4.21a shows 

that full-length RFC2 is being produced but that it is co-migrating with a native E. 

coil protein that is recognised by the GST antiserum (lanes 4-6). Previous 

experience suggests that this is GroEL. This band can also be detected in all lanes in 

figure 4.17a. The GST protein alone is only detected in lane 2. Figure 4.21b shows 

that anti-RFC2 does recognise the full-length protein but does not recognise the co-

migrating GroEL or the GST protein alone. 
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Figure 4.20 Coomassie blue stained SJflS-?AGE of pGTlX3-ThTc2. 

Lane 1 Markers (sizes shown in kDa). 

Lane 2 pGEX3. 

Lane 3 pGEX3-Rfc2 uninduced. 

Lane 4 pGEX3-Rfc2 induced total cell extracts. 

Lane 5 pGEX3-Rfc2 induced soluble fraction. 

Lane 6 pGEX3-Rfc2 induced insoluble fraction. 

Figure 4.20 Western analysis of pGFX3-J1JFC2. 

Panel a anti-GST used at 1:7500 dilution. 

Panel b anti-RFC2 used at 1:500 dilution. 

Lanes are as above. 

Arrows indicate proteins. 
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4.9 Conclusions. 

Antisera have been raised against small fragments of PfRFC 1, PfRFC2 and PIRFC3. 

On western blots of parasite proteins it was seen that anti-PfRfcl recognised two 

bands of approximately lOOkDa while anti-PfRfc2 and anti-PfRfc3 both recognised 

proteins of approximately 32kDa. The anti-PfRfcl and anti-PfRfc3 also recognised 

other bands while anti-PfRfc2 did not. This may have been due to the fact that the 

regions the anti-sera were raised against for Rfcl and Rfc3 contained some of the 

RFC boxes. This may have resulted in weaker recognition with some of the other 

RFC subunits. The region of fluorescence seen co-localised with the nuclear stain 

DAPI but a more diffuse fluorescence was seen throughout the parasite. Each of the 

antisera also cross-reacts with the antigenic fusion protein that was used to immunise 

the rabbits. The stage-specific expression of the three proteins will be discussed in 

chapter 5. 

Although a small fragment of PfRFC I was successfully expressed in E. co/i, full-

length expression of the gene was unsuccessful. No evidence of full-length 

recombinant protein was observed when the gene was co-expressed with T7 RNA 

polymerase in pRSETB from a T7 promoter. Using the commercially available 

monoclonal anti-His antibody a protein was detected in induced samples of 

approximately 25kDa. The nature of this product, whether a degradation product or 

a truncated version of the full-length protein has not been determined. 

Full-length expression of PfRFC1 was also attempted using the pGEX1 plasmid. 

The advantage of using this system is that GST is reported to increase the stability of 

its fusion partners. PfRfcl might therefore have a better chance of surviving intact. 

When the expression was monitored using a commercially available antiserum 

against GST a protein of 3 5k.Da was detected. However, this was not detected by the 

anti-PfRfcl antiserum suggesting that it may have been a degradation product, which 

did not contain the portion of the protein that the antiserum was raised against. 

Expression of full-length PfRfc2 was achieved using both the pRSETC and pGEX3 

vectors with a higher yield seen with pRSETC. With the pGEX system the 

recombinant protein was seen to co-migrate with a native E. co/i protein. Previous 

experience suggested that this may be GroEL which is known to co-purify with GST, 
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however, the use of anti-PtRfc2 confirmed that full-length protein was being 

produced. 

It is interesting to note that leaky expression was always seen with the pRSET vector 

systems but that the control of expression was much tighter with the pGEX system 

due to the presence of the lacF allele of the lac repressor. 

Time limitations have precluded the further investigation of the causes of PfRfcl not 

being successfully expressed and attempts at full-length expression of Pfltfc3. 
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STAGE SPECIFIC EXPRESSION OF PFRFC1, PFRFC2 AND PFRFC3. 



5.1 Introduction. 

As described previously the genes encoding PCNA, DNA polymerase 8, 

topoisomerase I and topoisomerase II have been cloned. As part of this work their 

expression during the erythrocytic stage of the parasite's lifecycle has been studied. 

DNA replication takes place at five distinct points during the lifecycle (White and 

Kilbey, 1996). One of these is during erythrocytic schizogony where replication first 

starts in the trophozoite and continues into the schizont stage Up to four rounds of 

nuclear division result in a schizont with up to sixteen nuclei (Tilney and Tilney 

1996). Cytokinesis then gives rise to merozoites, which are able to invade more 

erythrocytes after the schizont bursts. It would therefore be expected that the genes 

encoding the replication proteins would be transcribed and translated at this stage. 

Horrocks et al., (1996) showed that both PfPol8 and PfPCNA proteins accumulate in 

trophozoites and persist into schizonts. Their transcripts are also both present at the 

trophozoite stage. However, nuclear run on analysis showed that PfPol6 promoter 

activity was absent in rings but present in trophozoites and schizonts while the 

PfPCNA promoter was active throughout the intraerythrocytic cycle. This suggests 

that although the transcript and protein levels increase together the mechanism by 

which they do must be different. PfPol8 message levels are probably regulated at the 

level of transcription initiation while those of PIPCNA are regulated post- 

transcriptionally. 

The pattern of expression of PfFopoll is most like that of PfPol6 (Cheesman et al., 

1998). The promoter is active at low levels in rings but reaches high levels during 

trophozoite and schizont stages. The steady-state transcript are also present at low 

levels in rings, accumulate in trophozoites but are undetectable in schizonts. 

Antiserum raised against PfTopoII recognised a triplet of bands in trophozoite and 

schizont preparations but only the largest of the bands was seen in ring stages. 

PfTopol again shows a similar pattern to PfPol (Tosh et al., 1999). The promoter is 

only active during the trophozoite and schizont stages, the transcript starts to 

accumulate in the trophozoite stages and then decreases again in schizont stages 

while the protein is present at low levels in rings and accumulates to approximately 

equal levels in trophozoite and schizont stages. 
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The pattern of expression of PiRfel, PfRfc2 and PfRfc3 in relation to the 

intraerythrocytic lifecycle of the parasite will be discussed here. 

5.2 IPfRFC1, PIRFC2 and PfRJFC3 transcripts accumulate in trophozoite and 

schizont stages. 
Intraerythrocytic stage parasite cultures were synchronised using sorbitol treatment 

and harvested at the ring, trophozoite or schizont stage as described in section 

(2.5.4). The degree of synchrony was checked by microscopic analysis of Giemsa 

stained parasites (2.5.3). RNA from each stage was prepared (2.3.1) and 10tg was 

size fractionated on a formaldehyde gel (2.3.2) alongside RNA size standards 

(Gibco-BRL). The gel was blotted to Genescreen Plus membrane and probed with 

gene-specific DNA sequences (figure 5. la). 

A signal of 4 kb was seen faintly in the trophozoite stages which increased 

dramatically in the schizont stages when the blot was probed with a random-primed 

1.88kb XbaJIKpnI fragment of PtRFC1 (figure 5.1b). When the blot was probed 

with a random-primed PCR product corresponding to the full-length PfRFC2 

(primers A5836-A5837) a faint signal of approximately 1.6kb was detected in the 

ring sample which increased in the trophozoite and schizont stages. In the schizont 

preparation two larger transcripts of 2.5 and 4kb also appear (figure 5.1c). Two 

transcripts of 1.4 and 1.8kb are seen faintly in the ring stages but accumulate in the 

trophozoite and schizont stages (figure 5.1d) as revealed when the blot was probed 

with a random-primed 0.6kb PCR product (primers W5692-A1907) of PfRFC3. 

Due to problems of RNA preparation two different samples were used for these 

experiments. For the PIRFC 1 and PfR..FC2 probes it was found that the ring sample 

contained a 4% trophozoite and 2% schizont contamination; the trophozoite sample 

contained a 14% ring and 6% schizont contamination; and the schizont sample 

contained 13% rings and 1% trophozoites. For the PIRFC3 probe the samples were 

as follows: rings 91%R:8%T: 1%S, trophozoites 14%R:80%T:6%S and schizonts 

10%R:24%T:66%S. In order to confirm the pattern of transcript accumulation a 

series of probes derived from genes with well-known stage-specific patterns of 

expression were used to probe the PfRFC3 northern blot. The pattern of expression 
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Figure 5.1 Northern anallysis of JPfflJFC1, PfflFC2 and NThFC3. 

Panel a shows an ethidium bromide stained gel of RNA from ring (R), trophozoite 

(T) and schizont (S) stage parasites. The positions of the Gibco-BRL size markers 

are indicated in kb. 

Panel b Northern blot probed with PfRFC I. 

Panel c PfRFC2 probe. 

Panel d PfRFC3 probe. 

Panel e Actin I probe. 

Panel fGBP13O probe. 

Panel g 3.8 gene probe. 

For panels b and c the composition of each stage was rings 94%R:4%T:2%S, 

trophozoites 1 4%R: 80%T:6%S and schizonts 1 3%R: 1 %T:86%S. 

For panels d-g the composition was rings 91%R:8%T: l%S, trophozoites 

1 4%R: 80%T:6%S and schizonts 1 O%R:24%T:66%S. 
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of the 3.8 gene probe (Lanzer et al., 1992) is as expected for rings and trophozoites 

but it is also present in the schizont preparation due to the large trophozoite 

contamination. This is also the case for GBP130 (Lanzer et al., 1992) which is 

trophozoite specific but here is present also in schizonts. However, even after a long 

exposure it is not present in the ring sample suggesting that the result for PJERFC2 

and PfRFC3 is due to the rings and not the small trophozoite contamination present. 

The actin I probe (Wesseling et al., 1989) gives rise to signals of exactly the same 

intensity in all three samples as expected, confirming that almost exactly equal 

amounts of RNA were loaded in each track. Taken together these results suggest 

that PfRFC1, PfRFC2 and PtRFC3 transcripts accumulate in trophozoite and 

schizont stage parasites. 

5.3 PfRfcl, PfRfc2 and PfRfc3 protein levels are highest in trophozoite and 

schizont stage parasites. 

The antisera raised against the three genes were used to probe western blots (10% 

SDS-PAGE) of equal numbers of size-fractionated parasites synchronised in ring, 

trophozoite and schizont stages. Figure 5.2 shows a similar result to that seen in 

figure 4.12 where asynchronous parasite extracts were probed. Almost equivalent 

amounts of the proteins are recognised in the trophozoite and schizont stage parasites 

with less protein being detected in the ring stages. When samples of the parasites 

were examined microscopically it was found that the ring sample contained a 7% 

trophozoite contamination, the trophozoite sample contained 6% schizonts and the 

schizont sample contained 14% rings and 2% trophozoites. 

5.3.1 PfRfcl, PfRfc2 and PflUc3 antisera only recognise trophozoite and 

schizont parasites. 

An immunofluorescence assay (2.4.4) was carried out on unsynchronised parasite 

populations using each antiserum and their respective pre-immune sera counter 

stained with DAPI. Figures 5.3 (PfRfcl), 5.4 (PfRfc2) and 5.5 (PfRfc3) show that 

each antiserum recognises trophozoite and schizont parasites only. No fluorescence 

was detected in ring stage parasites. This suggests that the signal detected in the ring 
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Figunire5.2 Wester ñ blots Of ring, frophozoite and schizont stage parasites. 

Panel a PfRfc 1 antiserum. 

Panel b PfRfc2 antiserum. 

Panel c PfRfc3 antiserum. 

Markers (sizes shown in kDa) are indicated to the left of each blot. 

An arrow indicates the proteins. 
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stages in the western blots may have been due to the trophozoite contamination of 

the sample or the ring parasites may contain a very low level of protein that wasn't 

detected by the immunofluorescence assay. None of the pre-immune sera recognised 

any stages of parasites. 
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Figure 5.3 Immunofluorescence assay using PfRfcl antisera. 

(a), (c) and (e) parasite nuclei stained with DAPI. 

(b) PfRfcl pre-immune serum does not recognise any parasite proteins. 

(d) PfRfcI antiserum recognises trophozoite but not ring stage parasites. 

(f) PfRfc I antiserum recognises schizont 
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Figure 5.4 Immunofluorescence assay using PfRfc2 antisera. 

(a), (c) and (e) parasite nuclei stained with DAPI. 

(b) and (d) PfRfc2 pre-immune serum does not recognise any parasite proteins. 

(f) PfRfcl antiserum recognises trophozoites and schizonts but not ring stage 

parasites. 
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Figure 5.5 Immunolluorescence assay using ItR1c anIici. 

(a), (c) and (e) parasite nuclei stained with DA !I 

(b) and (d) PfRfc3 pre-immune serum does not ueognisc an' parasite 

(f) Pf'Rfc3 antiscnirn recoiniscs tronhn,oites and schizontc but nu. I 11L 
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5.4 Conclusions. 

The stage-specific expression of PfRFC 1, PfRFC2 and PIERFC3 throughout the 

intraerythrocytic life cycle of P. falciparum has been analysed. The steady state 

transcript of PfRFC1 is absent from rings, present at low levels in trophozoites and 

increases in schizont stage parasites while the transcripts of PfRFC2 and PfRFC3 are 

present at low levels in rings and increase during trophozoites and schizonts. In the 

case of P±RFC2 two extra transcripts are only seen in the schizont sample. This is 

similar to what is seen with PfTopoll where three transcripts of 6, 7 and 8kb are seen 

in trophozoites but only the major 6kb transcript is also present in rings. As 

discussed earlier polymorphic transcripts are not uncommon in P. falciparum. It is 

possible that PtRFC1 is not transcribed in the early stages because it is not required 

until the small subunits have been assembled. This would fit with the model for 

assembly of RFC subunits suggested by Podust and Fanning (1997) using a 

baculovirus system to express all five subunits individually. p37 and p36 (human 

homologues of PfRFC2 and PfRFC3) are proposed to form the first intermediate, 

then either p38 or p40 can join to form a stable tertiary complex. The missing fourth 

small subunit then binds forming a quaternary complex. The large subunit then 

binds to form the catalytically competent five subunit complex. 

Antisera raised against the three proteins were used to determine the stages at which 

they were present. Immunofluorescence assays suggested that the proteins were only 

present in the trophozoite and schizont stages. Western analysis showed that they 

were present at a low level in ring stages also but this may have been due to the 

trophozoite contamination in the sample. 

The results obtained are as expected with both the transcripts and the proteins being 

present in the stages where DNA replication takes place. It will be interesting to find 

whether the promoters of the three genes are active throughout the intraerythrocytic 

lifecycle as PIEPCNA is or whether it is only active during the later stages like 

PfPol& 
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EVALUATION OF A BACTERIAL TWO-HYBRID SYSTEM FOR USE WITH 

P. FALC[PARUM PROTEINS. 



6.1 Introduction. 

When expressing recombinant replication proteins with the aim of assembling all or 

part of the replisome it is important to know that the individual proteins are 

interacting with each other. One powerful tool, which is used to screen for protein-

protein interactions in vivo, is the yeast two-hybrid system (Fields and Song, 1998). 

The method utilises the properties of the GAL4 protein, which consists of two 

domains. Plasmids were designed consisting of the GAL4 DNA-binding domain 

fused to protein X and the other the GAL4 activation domain fused to protein Y. The 

two plasmids are then introduced into yeast and if proteins X and Y interact a 

reporter gene with a promoter containing a binding site for GAL4 is transcriptionally 

activated. The system has three main applications (i) to test available genes for 

pairwise combinations that interact. (ii) A positive signal for interaction gives a 

rapid test for the specific domains involved in the interaction. (iii) A library can be 

constructed and screened to detect novel proteins that interact with a given target 

(Chien et al., 1991). 

The yeast two-hybrid system is not a good option for P. falciparum as experience in 

our laboratory has shown that the proteins do not express well in yeast. One 

important factor affecting expression is the presence of several elements within the 

AT-rich gene sequence that act together to produce very efficient transcriptional 

termination signals in yeast. When the 4.2kb PfTOPII gene was expressed in yeast a 

376bp transcript was formed. The sequences that could have contributed to this 

termination were remodelled by PCR mutagenesis and a transcript of 61 7bp was 

observed (Sibley et al., 1997). The full-length PfTOPII gene is now being 

resynthesised using a yeast codon bias which it is hoped will facilitate expression in 

S. cerevisiae (pers. comm.). 

Recently a bacterial two-hybrid system (Karimova et al., 1998) has been described 

that may be of use in studying the interactions of P. falciparim proteins in vivo. The 

catalytic domain of the calmodulin dependent adenylate cyclase (cyaA) gene from 

Bordetella pertussis can be proteolytically cleaved into two fragments, T25 and Tl 8, 

which will only remain associated in the presence of calmodulin. The principle 

behind the system (represented in figure 6.1) is that if T25 and T 1 were fused to 
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Figure 6.1 Principle of an E. coli two-hybrid system based on functional 

complementation of CyaA fragments (Karimova et al., 1998). 

T25 and 118 correspond to amino acids 1-224 and 225-399 of the CyaA protein. In 

the full-length catalytic domain expressed in E. coli results in cAMP synthesis. In 

the fragments are expressed as independent polypeptides and so no cAMP 

synthesis occurs. In C, due to the interaction of proteins X and Y, 125 and Ti 8 are 

brought into close proximity resulting in complementation followed by cAMP 

synthesis. In D, the resulting cAMP binds to the catabolite gene activator protein 

(CAP). This complex then recognises specific promoters and can switch on the 
ft 

transcription of reporter genes such as lacZ or mat. 
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putative interacting proteins, they would reassociate and lead to cAMP synthesis 

when expressed in an adenyl ate cyclase deficient E. coil strain such as DHP 1 

(Hanahan, 1983), (E. coil lacks calmodulin or calmodulin related proteins). cAM1P 

binds to thecatabolite activator protein and the resulting complex can then recognise 

and switch on specific reporter genes such as iacZ or mal. 

In order to test this bacterial two-hybrid system for its potential use with P. 

faiclparum proteins, experiments have been carried out to test for the putative 

interaction between the PCNA binding domain of P±RFC 1 and PIPCNA. 

The gene encoding PtPCNA was cloned in the laboratory (Kilbey et al., 1993). It is 

825bp, which predicts a protein of 30kDa. It has been successfully expressed in E. 

coli but does not express in S. cerevisiae (pers. comm.). 

6.2 Using a bacterial two-hybrid system to study the interaction of PfRfcl and 

JIffCNA. 

Dr. Ladant, Pasteur Institute, Paris kindly supplied the vectors pT25-zip and pTl8-zip 

(figure 6.2). The zip fragments are a 35aa long leucine zipper cloned in frame with 

the T25 and T18 fragments. The zip fragments were removed by a KpnI digest, the 

vector was gel-purified and self-ligated. The ligation reactions were transformed into 

DH5a competent cells and recombinants were checked by restriction analysis. As 

full-length PfRfcl was not successfully expressed in E. coil only the putative PCNA 

binding domain was used for this experiment. The PCNA binding domain of hRFC 1 

was mapped by deletion analysis by Fotedar et al., (1996) to amino acids 481-728, a 

region that is highly conserved in the P. faiciparum homologue. Oligonucleotides 

were designed to amplify the PCNA binding domain of PfRFC1 (RFC1PB), 

nucleotides 1039-1767. They contained )thol and Sail restriction sites to allow for 

the subcloning of RFC IPB into pTi8. 

D1277 

5' CCCTCGAGQQQQGAAATTCTTAATCAATTGTGO 3' 
ThoI 

Di278 

5' CGTCGACCTCCCATCCAAGAATTGTATTCTTGTATATG 3' 

Sail 
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Figure 6.2 pT25-zip. 

11051 46 

HindlIl 34 
Clal 34 

Eco571 34 

  

173 

176 

LI 190 

LgI 264 

atil 301 
3saHI 301 

NruI 416 497 

 

I;i 

 

1568 	PstI 
1575 Iii 

KpnI 708 

SapI 748 
SacI 751 

-KpnI 822 

hAI 1018 

ori pl5A 
pT25-zip 

3804 bp 

 

zip 

SgrAI 2630f 7 

XmnI 2597// 

cat (Cm) 
Bstll07I 2556/ 

NheI 2545 

BsaAI 2272 

Psp 14061 1877 

..JNaeI 1075 

_...\EcoO109I 1105 

BsaBI 1159 

Bell 1259 
Bsu361 1309 

Scal 1548 

NcoI '1662 
Sty! 1662 

193 



Figure 6.3 pT18-zip. 
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The fragment was amplified by PCR using the proofreading enzyme Pfu (2.2.9.2) 

and cloned into pCR-Blunt (2.2.5.3). A XlioI-Sall restriction digest released this 

fragment which was subsequently gel purified and ligated in-frame into pT 18 at the 

)thol-SàlI sites. The multiple cloning site of pT18 is derived from pBluescript 

resulting in RFC 1 PB cloned downstream of the 3-galactosidase ATG. The ligation 

was used to transform DH5a competent cells and recombinant colonies were 

detected by hybridisation to the 32P end-labelled oligonucleotide A9088. The cloning 

junctions were sequenced to ensure that the fragment was cloned in-frame. 

Oligonucleotides, containing BamHI sites for subcloning, were designed to amplify 

PfPCNA. 

D1283 

5' CCGGATCCGGGGATGTTAGAGGCCAAATTAAAT 3' 
BamHI 

D1284 

5' CGGATCCGGGGGATCTTTATTATCCATATCGTC 3' 
BamHI 

The fragment was amplified by PCR using Pfu and cloned into pCR-Blunt as before. 

A BamHI restriction digest released this fragment which was subsequently • gel 

purified and ligated in-frame into pT25 at the BamHI site. The ligation reaction was 

used to transform DH5ct competent cells and recombinants were selected by 

restriction analysis. As ligation into the BamHI site could result in the fragment in 

either orientation recombinants were sequenced to check the cloning boundaries to 

ensure that the fragment was correctly oriented and in-frame with the T25 fragment. 

DHPI competent cells were transformed with the following vectors and spread on 

LB plates containing 1 0Opg/ml ampicillin, 30.tg/ml chloramphenicol, 40p.g/ml X-gal 

WA and 0.5mM IPTG. Plates were incubated at 30°C. 

Vectors 	 Phenotype on LB amp. cmp. X-gal, IPTG 

pTl8-zip + pT25-zip 

pT18-RFCIPB + pT25-PCNA 

pTl8-RFC1PB + pT25 

pTl8 + pT25-PCNA 

pT28+pT25 

Blue/30hours 

White/3 Ohours 

White/3 Ohours 

White/3 Ohours 

White/3 Ohours 
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Figure 6.4 shows DHPI cells co-transformed with (a) pT18-zip + pT25-zip and (b) 

pTl 8-RFC I PB + pT25-PCNA. The bacterial two-hybrid system does not work well 

at 37'C, which may be due to a higher aggregation/insolubility of the hybrid 

proteins. If this is the case then carrying out the experiment at temperatures less than 

30°C may be successful. However when it was repeated at 25°C the results were as 

above. 

6.2.1 Are pTl8-RFC1PB and pT25-PCNA being expressed? 

As no interaction was seen between the two proteins western analysis was carried out 

on the two plasmids to see if they were being expressed. DHP I cells transformed 

with either pT18-RFC1PB or p25-PCNA were grown overnight in LB and the cells 

collected by centrifugation (3000xg, 10 minutes, 4°C). The bacterial pellet was lysed 

by the addition of equal volumes of sdH 20 and 2x loading buffer (2.1.6). The lysed 

cells were passed through a 25-gauge needle to break up chromosomal DNA. Small 

samples of the lysates were immobilised on nitrocellulose and probed with anti-Rfc 1, 

anti-PCNA or their respective pre-immune serum. All antisera were used at a 1:750 

dilution. The results are shown in figure 6.5. The same pattern of expression is seen 

in each of the western blots suggesting that each antiserum is binding non-

specifically. A dark smear is seen when the blots were probed with anti-Rfcl and 

anti-PCNA suggesting that the proteins may be being degraded. 
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Figure 6.5 Western analysis of pTl8-RFC1PB and pT25-PCNA. 

Lane 1 Markers (sizes indicated in kDa). 

Upper panels are pTl8-RFC1PB probed with (a) PfRfcl pre-immune serum and (b) 

anti-PfRfcl serum. 

Lower panels are pT25-PCNA probed with (c) PfPCNA pre-immune serum and (d) 

anti-PfPCNA serum. 
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6.3 Conclusions. 

The possible use of a bacterial two-hybrid system for screening P. falciparum libraries 

has been evaluated using the interaction of the PCNA binding domain of PfRFC I and 

PfPCNA. The PCNA binding domain was delineated in the human RFC 1 gene by 

deletion analysis and as this region of the gene is highly conserved (it covers RFC 

boxes 11-VIII) it is likely that the same region of the P. faiciparum homologue would 

also bind PCNA. 

However, when DHP1 cells were co-transformed with pT18-RFC1PB and pT25-

PCNA no interaction was detected. The positive control of pT18-zip and pT25-zip 

and various negative controls were always carried out as a check on the cells and on 

the detection system and behaved as expected. 

To see if the proteins were being expressed or not, western analysis was carried out 

on the cell lysates using antisera directed against PfRfcl and PfPCNA. The 

recognition seen was the same whether the pre-immune sera or the antisera were used 

suggesting a non-specific response. It is likely that the proteins have been degraded. 

Although P±PCNA and a small fragment of PfIRFC 1 have previously been successfully 

expressed in E. coil they have always been under tight repression during bacterial 

growth and induced immediately prior to cell lysis. Here they were constitutively 

expressed which may have led to their degradation. 

Unfortunately time precluded a more detailed examination of the utility of this method 

which might have included a study of (1) mRNA production, (2) the role of fusion 

protein size on the success of the interaction and (3) insolubility of the recombinant 

proteins. 



DISCUSSION. 



7.1 Isolation of PfRFC1, PfRFC2 and PfRFC3. 

The genes encoding PfRFC1, PfRFC2 and PfRFC3 have been isolated using several 

methods due to the difficulties encountered using conventional genomic library 

screening. Various PCR based methods proved successful, as was the screening of a 

cDNA library. Towards the end of the project data from the P. falciparum genome 

project became available and was also used. 

PfRFCI is a single copy gene present on chromosome 2. The open reading frame is 

271 2bp, which predicts a protein of 904 amino acids with a molecular weight of 

1 O4kDa. There are no introns present in the gene. A transcript of 4kb was detected 

by northern analysis. PfRFC1 has around 25% identity with its homologues from 

other species. 

PJERFC2 is also present as a single copy gene on chromosome 2 but the two genes are 

approximately 40kb apart and are transcribed in opposite directions. PfRFC2 has an 

open reading frame of 990bp that predicts a protein of 330 amino acids with a 

molecular weight of 38kDa. Again, there are no introns present in this gene. 

Northern analysis detected a transcript of 1.6kb. PIERFC2 has approximately 40% 

identity with other RFC2 genes. 

PfRFC3 is present as a single copy on chromosome 14. It has an open reading frame 

of 1032bp, which encodes a protein of 344 amino acids with a predicted molecular 

weight of 39kDa. There is one intron of 250bp which has the conserved GU---AG 

nucleotides at the splice donor and acceptor sites. PfRFC3 has two transcripts of 1.4 

and 1.8kb. Multiple transcripts are not unknown in P. falciparum genes. They could 

be polymorphic messages of this single copy gene or it is possible that the larger 

transcript is a precursor RNA. PIERFC3 has approximately 40% identity with its 

homologues. 

The archaeon Methanococcusjannaschii (Bult et al., 1996) seems to have only two 

RFC subunits, which are putative homologues of the human p140 and p40 subunits. 

It is proposed that the large subunit and a tetramer of the small subunit could form 

the M jannaschii RFC. As two different small subunits have been isolated from P. 

falciparum it is likely that the other two will also be isolated and that as with other 

eukaryotic systems the P. falciparum RFC complex will be made up of one large and 

four small subunits. 
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7.2 Heterologous expression of PfRFC1, PfRFC2 and PfRFC3. 

Small fragments of PfRFC1, PfRFC2 and PfRFC3 have been successfully expressed 

in E. coli as fusion proteins with an N-terminal hexahistidine tag and used to make 

polyclonal antisera in rabbits. If the recombinant proteins had been soluble then this 

tag would have been used to facilitate the affinity purification of the proteins using 

Ni-agarose columns. However, all three recombinant proteins were insoluble so they 

were purified from SDS polyacrylamide gels. Each antiserum recognised the fusion 

protein it was raised against. The antisera were then used on western blots against 

parasite extracts and for immunofluorescence assays. 

Anti-PfRfcl recognised two bands of approximately lOOkDa while anti-PfRfc2 and 

anti-PfRfc3 both recognised proteins of approximately 32kDa. Anti-PfRfcl and 

anti-PfRfc3 also recognised other parasite proteins while anti-PfRfc2 did not. This 

may have been due to the difficulty of avoiding conserved regions of the genes when 

the fusion proteins were prepared. The areas of PfRfc 1 and PfRfc3 expressed 

contained some of the RFC boxes while anti-PfRfc2 was raised against the divergent 

C-terminus of the protein. The inimunofluorescence assays showed that while the 

proteins did co-localise with the nuclear stain DAPI there was also a more diffuse 

fluorescence seen throughout the parasite although this may have been an artefact 

from the fixing of the parasites. 

Although a small fragment of PfRFC 1 was successfully expressed in E. coli, full-

length expression of the gene was unsuccessful. This was attempted using both 

pRSET and pOEX expression vectors. Small fragments of induced proteins were 

detected by western blots but their nature, whether degradation products or a 

truncated version of the full-length protein, has not been determined. 

PfRFC2 has been successfully expressed using both pRSET and pGEX vectors. 

These were detected with the commercially available anti-His and anti-GST 

antibodies. With the pGEX system the recombinant protein was seen to co-migrate 

with a native E. coli protein. Previous experience sugg&ed that this might be 

GroEL, which is, known to co-purify with GST, however, the use of anti-PfRfc2 

confirmed that the full-length protein was being produced. 
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7.3 Intraerythrocytic expression of PfRC1, PfRFC2 and PfRFC3. 

The stage-specific expression of PfRFC 1, PfRFC2 and PfRFC3 has been analysed at 

the RNA and protein level. The steady state transcript of PfRFC I is absent from 

rings, present at low levels in trophozoites and increases in schizont stage parasites 

while the transcripts of PfRFC2 and PfRFC3 are present at low levels in rings and 

increase during trophozoites. In the case of PJERFC2, two extra transcripts (2.5 and 

4kb) are seen in the schizont sample only. This is similar to what is seen with 

PfTopoII where three transcripts of 6, 7 and 8kb are seen in trophozoites but only the 

major transcript of 6kb is detected in rings (Cheesman etal., 1998). 

The antisera raised against fragments of the three proteins were used for 

immunofluorescence assays and for western blots. The immunofluorescence 

experiments suggested that the proteins were only present at the trophozoite and 

schizont stages while the western blots detected a low level of expression in ring 

stages as well although this may have been due to the trophozoite contamination in 

the sample. 

These results are as expected with both the transcripts and the proteins being present 

when DNA replication occurs, the results are also similar to those found for PfPol, 

PfPCNA, PfTopol and PfTopoII (Horrocks et al., 1996; Tosh et al., 1999; Cheesman 

et al., 1998). It will be interesting to find whether the promoters of the three genes 

are active throughout the intraerythrocytic lifecycle as PfPCNA is or whether they 

only become active during the later stages of development like PfPol& 

7.4 Evaluation of a bacterial two-hybrid system using the interaction between 

PIRFC1 and PfPCNA. 

The yeast two-hybrid system has proved to be a useful tool for studying the 

interactions between proteins in vivo. However, due to problems associated with the 

heterologous expression of P. falciparum proteins in S. cere'isiae it has not been an 

option. The recent report of a bacterial two-hybrid system based on a reconstituted 

signal transduction pathway was therefore encouraging, as several P. falciparum 

proteins are already known to express well in E. co!i. If the system were to be 

adapted for detecting protein-protein interactions it would be an invaluable tool for 
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malarial workers as 43% of the genes sequenced by the genome project so far have 

unknown functions (Gardner etal., 1998). 

The PCNA binding domain of PfRFC 1 and PtPCNA were subcloned into the vectors 

supplied for the two-hybrid system. The plasmids were sequenced to ensure the 

fragments were in-frame and that no stop codons were present. However, no 

interaction was detected between the two proteins. This could have been due to 

various factors, such as the proteins not being in the correct conformation, post-

translational modifications being required for the interaction, the proteins being 

insoluble or the proteins not being expressed. When western blots were carried out 

on cell lysates it was found that the latter was the case. PfPCNA has been 

successfully expressed in E. coli but under tight control, in this case the proteins 

would have been constitutively expressed and they may have been toxic to the cell. 

The demonstration of an expected interaction between two known P. falciparum 

proteins is a necessary step to the adaptation of this method for use with P. 

falciparum. 

7.5 Further work. 

The isolation of PfRFC4 and PfRFC5 would be the obvious next step but as the P. 

falciparum genome project is moving forward so quickly (Table 7.1 summarises the 

status of the genome project as of March 1999) it is likely that the sequences will 

soon be available. 

Chromosome Status 
1 Closure 
2 Published 
3 Contiguous 
4 Closure 
5 Shotgun 
6 Library construction 
7 Library construction 
8 Library construction 
9 Shotgun 
10 Library constructed 
11 Shotgun 
12 Shotgun 
13 Shotgun complete 
14 Shotgun complete 

Table 7.1 Current status of the P. falciparum gcnome project (March 1999). 
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To allow further work to be carried out on the proteins they will need to be 

heterologously expressed. The expression of PfRFC3 could be attempted in E. coli 

or the baculovirus system could be approached. The baculovirus expression system 

has several advantages, functionality of the recombinant protein, post-translational 

modifications, high-level expression, capacity of large insertions and simultaneous 

expression of multiple genes. If all three genes could be heterologously expressed 

and purified then several in vitro assays could be carried out on them alone and also 

in combination with PfPCNA, which has been purified using the baculovirus system. 

To conclude the stage-specific expression work nuclear run on analyses would be 

carried out to determine at which stages the promoters of PfRFC 1, PfRFC2 and 

PfRFC3 are active. 

.1%  
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