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“Fight on my men”, says Sir Andrew Barton 

“I am hurt, but I am not slain; 

I’ll lay me down and bleed a while 

And then I’ll rise and fight again” 
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Lay Summary 

Several decades ago, a family with an unusually high rate of multiple psychiatric 

disorders was discovered in Scotland. The disorders included schizophrenia, bipolar 

disorder, and recurrent major depressive disorder, which are highly debilitating and 

involve emotional and behavioural problems. It was subsequently found that the 

family also carries a unique genetic mutation, called the t(1:11) translocation, that 

involves the exchange of genetic material between the chromosomes, which carry 

genes. Chromosomes 1 and 11 are affected. The translocation is inherited with very 

high risk of developing the disorders and is a major factor in the family’s risk.  

The exchange of genetic material, DNA, between chromosomes 1 and 11 means that 

large pieces of DNA have broken off at both locations, then exchanged. This now 

means that part of chromosome 1 is on chromosome 11, and vice versa. This has 

disrupted three genes, two which are present and overlap on chromosome 1, and one 

which is on chromosome 11. Of these three, one on chromosome 1 can instruct cells 

to produce a protein, named DISC1. There is a high level of DISC1 protein in cells 

of the brain (neurons) and it increases in presence during the development of neuron 

cell models. The protein is also known to have a role in many cellular processes 

involving the strengthening of connections between neurons in the brain, which is 

known to be important in learning and memory. It also has a role in how the neurons 

organise during brain development, and in how they produce energy. Because of the 

exchange of genetic material between chromosomes 1 and 11, the second half of the 

DISC1 gene is missing and in its place is DNA from chromosome 11. This appears to 

result in lower levels of the DISC1 protein, in addition to changes in movement of 

molecules around the neurons.. 

We now have access to a unique type of neuron which is generated from skin 

samples, donated by members of the family. These neurons are therefore genetically 

matched to the family members that donated them. Members both with and without 

the translocation have made donations, so we can compare the two groups. We also 

have access to a unique mouse model. Mice also have a version of the DISC1 gene. 

Here, this unique mouse model has been artificially altered so that its Disc1 gene is 
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also missing the second half, which has been replaced by human DNA from 

chromosome 11 at the correct breakpoint. We have used mice where either one or 

both of its original Disc1 genes have been altered in this manner.  

This thesis describes the study of these human and mouse models, which have been 

investigated for altered levels of other cellular molecules which could be changed 

due to the mutation. It is shown that these changes are more likely than chance to be 

overlapping with those highlighted by other researchers, and are more likely than 

chance to be involved in various neuron activities relating to strengthening 

connections and moving molecules around the neuron. We also report that there 

appear to be higher levels of DRD2, a protein which antipsychotic drugs block the 

action of. This thesis also describes an investigation to look for different proportions 

of various cell types between the mutant and control samples; little evidence for this 

was found in the human cells. A part of the brain called the cortex shows unusual cell 

type proportion changes in the mouse if both the Disc1 genes are altered. It does also 

appear that some cell types will be worse affected by the mutation than others, in 

activity if not in total number. Overall, this thesis highlights the overlaps between the 

effects of this unique mutation and other more common ones which are known to 

increase risk of schizophrenia. It also highlights some activities of the cells which 

appear to be abnormal and have been previously suspected of being important in 

psychiatric illness, and confirms some differences in key interesting molecules. 
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Abstract 

The t(1;11) translocation is a mutation unique to a Scottish pedigree, members of 

which have been diagnosed with schizophrenia, bipolar disorder, recurrent major 

depressive disorder and other related disorders. The translocation is significantly 

linked to increased risk of these diagnoses. It disrupts three genes, only one of which, 

DISC1, encodes a protein. A number of experiments have explored the function of 

DISC1 as a molecular scaffold and developmental regulator. DISC1 and its 

interactors have roles in processes of relevance to psychiatric disease. These include 

neuronal precursor proliferation, migration and integration in the developing and 

adult brain, neurite outgrowth, mitochondrial activity, which is particularly important 

in neurons due to their high energy demands, and intracellular trafficking, especially 

critical in neurons due to their highly elongated morphology. Although various 

DISC1 mutations have been investigated in the past, it is only with advances in 

technology that neural cells derived directly from translocation carriers, and therefore 

carrying the translocation plus their genetic background, have been generated and 

analysed. In addition a recently described mouse model mimics the effects of the 

translocation upon DISC1 expression. It does so by removing endogenous Disc1 

exons corresponding to those distal to the breakpoint in translocation carriers, and 

fusing the remaining endogenous 5’ Disc1 genomic sequence to human chromosome 

11 genomic sequence distal to the translocation breakpoint. The result is a chimeric 

gene with 5’ mouse Disc1 joined to a segment of human DISC1FP1, the non-coding 

fusion partner of DISC1 located on chromosome 11. This leads to loss of wild-type 

Disc1 and prediction of chimeric transcripts encoding aberrant C-terminally 

truncated forms of Disc1. 

This thesis builds on the work of previous researchers to characterise the RNA-

sequenced transcriptome of ‘cortical’ neurons derived from induced pluripotent stem 

cells from various members of the pedigree. Both heterozygous and homozygous 

mutant mice have also been utilised to generate RNA-sequencing data from the 

hippocampus and cortex. The thesis not only describes the differential expression of 

genes and exons, but also carries out a series of analyses to examine whether 
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proportions of certain cell types are altered, as well as whether differentially 

expressed genes are highly associated with specific cell types.  

RNA-Seq data have been analysed for differential expression at the gene and 

individual exon level using DESeq2 and DEXSeq, respectively. This has revealed 

over 1,200 differentially expressed genes in human neurons carrying the 

translocation, which predict changes to functions relating to intracellular transport 

and synaptic activity. In addition, a number of genes have been verified by RT-qPCR 

as being differentially expressed in these neurons. These include genes of known 

relevance to schizophrenia such as DRD2, which encodes the D2 dopamine receptor, 

NTRK2, which encodes the BDNF receptor NTRK2, and BBS1 which encodes the 

DISC1 interactor and centrosomal protein BBS1. The human neurons also show 

significant overlap with previously published dysregulated genes in human neurons 

carrying other DISC1 mutations, as well as with genes associated with schizophrenia 

by large-scale genome wide association and copy number variation studies. Human 

neuron RNA-Seq data have also been examined for evidence of local effects of the 

translocation upon gene expression, and no obvious strong effect was found. The 

pattern of gene dysregulation in heterozygous mutant mouse cortex overlaps with 

that of the mutant human neurons. Gene expression changes in the mutant mouse 

cortex have also been verified by RT-qPCR in the genes Arc and Avp, and the list of 

implicated genes also shows overlap with genes associated with schizophrenia by 

large-scale genome wide association and copy number variation studies. 

An RNA-Seq deconvolution analysis was carried out to look for evidence of altered 

proportions of cell types at both the broad and more specific cell type level. This 

compared the observed expression of hundreds of genes in in the RNA-Seq samples 

against their expression in publically available RNA-Seq data of specific cell types. 

There does not appear to be any strong and consistent effect of the t(1;11) or mouse 

mutation on cell proportions. However, the data indicate greater than expected 

dysregulation of genes that are highly enriched in specific cell types. This includes 

certain subtypes of astrocyte. Mutant mouse cortex also shows dysregulation of 

genes associated with several subtypes of interneuron and pyramidal neuron, 

including parvalbumin positive interneurons. This indicates that, while the 
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proportions of cell types appears to be unaffected by the translocation or mouse 

mutation, specialised cellular functions may be perturbed. 

To conclude, this thesis highlights a number of processes which appear to be 

disturbed by the translocation and mouse mutation. In all models, RNA-Seq evidence 

suggests signalling pathways of known relevance to psychiatric disease have been 

affected without significant alteration of cell proportions. This concurs with 

histological analyses of the mouse model by previous researchers. This thesis also 

describes the overlap between genes implicated in the study of this unique mutation 

as well as those implicated by studies seeking common or rare mutations 

predisposing to schizophrenia, supporting the hypothesis that different genomic risk 

variants and mutations converge upon certain molecular pathways that are especially 

important in this illness. The implication that the t(1;11) may alter the activities of 

certain cell types is also notable and future work can elucidate the cell-specific 

effects of the translocation. 
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LIST OF ABBREVIATIONS 

Genes and proteins 

ACTB Beta-Actin 

APOE Apolipoprotein E 

APP Amyloid Precursor Protein 

ARC Activity Regulated Cytoskeleton Associated Protein 

AVP Arginine Vasopressin 

BBS1/2/5 Bardet-Biedl Syndrome 1/2/5 

CACNA1C Calcium channel, voltage-dependent, L type, alpha 1C 

CHRNA Neuronal acetylcholine receptor subunit alpha 

CHRNB Neuronal acetylcholine receptor subunit beta 

CPT2 Carnitine palmitoyltransferase II precursor  

DISC1 Disrupted in schizophrenia 1 

DISC1FP1 Disrupted in schizophrenia 1 fusion partner 1 

DISC2 Disrupted in schizophrenia 2 

DLD Dihydrolipoamide dehydrogenase 

DLG2/4 Disks Large homolog 2/4 

DPYSL2/3 Dihydropyrimidinase-Like 2/3 

DRD1/2 Dopamine Receptor D1/D2 

DVL1 Dishevelled 1 

ECI2  Enoyl-CoA Delta Isomerase 2 

ERBB4 Receptor tyrosine-protein kinase erbB-4 

FMRP Fragile X mental retardation protein 

FOXP2 Forkhead box protein P2 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

GCSH Glycine cleavage system H protein, mitochondrial 

GLDC Glycine decarboxylase 

GLRA Glycine receptor, alpha 1 

GPC1/5 Glypican 1/5 

GRIA Glutamate Receptor Ionotropic AMPA 

GRIK Glutamate Receptor Ionotropic Kainate 

HAP1 Huntington's Associated Protein 1 

HIF1A Hypoxia Inducible Factor 1 subunit alpha 

KANSL1 KAT8 Regulatory NSL Complex Subunit 1 

KIF Kinesin family member 

LIS1 Lissencephaly 1 

LYNX1 Ly6/neurotoxin protein 1 

LYPD LY6/Plaur domain-containing protein 

MAG Myelin Associated Glycoprotein 

MBP Myelin Basic Protein 
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METRN Meteorin 

MT2/3 Metallothionein 2/3 

MYO Myosin 

NDE1 Nuclear distribution protein nudE homolog 1 

NDEL1 Nuclear distribution protein nudE-like homolog 1 

NDST3 N-deacetylase/N-sulfotransferase 3 

NMDAR N-methyl-D-aspartate receptor 

NRCAM 

NRG 

Neuronal cell adhesion molecule 

Neuregulin 

NRP Neuropilin 

NRX Neurexin 

NTRK Neurotrophic Receptor Tyrosine Kinase 

OXT Oxytocin 

PDE Phosphodiesterase  

PDYN Prodynorphin 

PSD95 Post synaptic density 95 

QKI Quaking 

SHTN1 Shootin1 

SLC Solute Carrier family 

SYT Synaptotagmin 

SOX 

TRAK1 

Sry-boxes 

Trafficking Kinesin Protein 1 

ZNF Zinc finger nuclear 
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Biochemical molecules 

AMPA 

 

α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid 

ATP Adenosine triphosphate 

cAMP Cyclic adenosine monophosphate 

cDNA 

CO2 

Complementary DNA 

Carbon Dioxide 

DNA 

EDTA 

FGF 

Deoxyribonucleic acid 

Ethylenediaminetetraacetic acid 

Fibroblast Growth Factor 

GABA Gamma-Aminobutyric acid 

mRNA Messenger ribonucleic acid 

NAA N-acetylaspartate 

NMDA 

O2 

N-methyl-D-aspartate 

Oxygen 

RNA Ribonucleic acid 

RNAi RNA interference 

RNA-Seq RNA Sequencing 

ROS Reactive Oxygen Species 

rRNA ribosomal Ribonucleic Acid 

shRNA short hairpin RNA 

siRNA small interfering RNA 

SNP Single Nucleotide Polymorphism 

Physical measurements and currencies 

$ United States Dollars 

% Percentage 

£ Pounds sterling 

€ Euro 

°C Degrees Celsius 

Bp Base pair 

DALYs Disability adjusted life years 

g Gram 

Kb Kilobase, 1000 base pair 

L Litre 

M Molar (mols/litre) 

Mb Megabase, 1,000,000 Bp 

mm Millimetre 

mol Mols 

μg Microgram 

μm Micrometre 
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Biological terms and other abbreviations 

ANOVA Analysis of variance 

BP Bipolar Disorder 

CDCV Common disease common variant 

CDRV Common disease rare variant 

CNV Copy number variant 

CP(1/60/69) 

CPM 

Chimeric protein 1/60/69 

Counts per million 

Der1 

 

DMEM 

Derived chromosome 1, referring to the construct which 

mimics the t(1;11) in mice 

Dulbecco’s Modified Eagle Medium 

DSM-4 Diagnostic and statistical manual of mental disorders 4 

DSM-5 Diagnostic and statistical manual of mental disorders 5 

E18 Embryonic day 18 

EWCE Expression Weighted Cell type enrichment 

FCS Foetal calf serum 

FPKM 

 

Fragments Per Kilobase of transcript per million mapped 

reads 

GO Gene ontology 

GWAS Genome wide associate study 

HET Heterozygote 

HOM Homozygote 

IGMM Institute of Genetics and Molecular Medicine 

iPSC Induced pluripotent stem cells 

ITK Insight 

LOD 

NCBI 

Logarithm of the odds 

National Center for Biotechnology Information 

NPC Neural precursor cell 

Padj 

PBS 

Adjusted P value 

Phosphate buffered saline 

PCA Principal component analysis 

PCR Polymerase chain reaction 

PGC Psychiatric Genetics Consortium 

Poly-A Polyadenylation 

PPI Pre-pulse inhibition 

qRT-PCR Quantitative reverse transcription polymerase chain reaction 

rMDD Recurrent major depressive disorder 

RPKM Reads Per Kilobase of transcript per million mapped reads 

SZ Schizophrenia 

t(1:11) Translocation 1(1;11) 
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UTR Untranslated region 

WHO World Health Organisation 

WT Wild Type 
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1.1 Psychiatric illness 

Psychiatric illnesses are among the major causes of human misery. The World Health 

Organisation estimates that over 800,000 people die by suicide every year
1
. 

However, a more nuanced measure of the burden of psychiatric illness is given by 

Disability Adjusted Life Years (DALYs). DALYs are a useful, if limited, means of 

quantifying harm in terms of years of life lost (YLLs), and years lived with disability 

(YLDs), which take into account time lived with the condition and the negative 

effects on quality of life during that period. Psychiatric illnesses are highly 

significant DALY contributors, with the three relatively common conditions of 

recurrent major depressive disorder (rMDD) (2.5% world total DALYs), 

schizophrenia (SZ) (0.6%), and bipolar disorder (BP) (0.5%) each contributing 

substantial proportions to the world total of DALYs 
2
. As a group, they are also the 

largest single contributor to the world total of YLDs
3
. The true contribution is higher 

when self-harm and increased mortality due to psychiatric illnesses is included
4
. As 

expected given their prevalence and severity, these illnesses have immense social 

and economic implications
5
, with the three conditions above estimated to have cost 

England a combined 16.7 billion pounds in 2007, with 5.5 billion of this in service 

costs and the rest in lost earnings
6
. Despite their severity and chronic nature, 

psychiatric illnesses receive a disproportionately low level of funding, with the 

global median estimated at just under 3% of expenditure compared to the 10% of 

DALYs they contribute (including self-harm)
4
. Phenotypically, psychiatric illnesses 

are characterised by harmful behaviours or abnormal psychological functions, as well 

as altered cognition. 

Schizophrenia is a chronic condition characterised by a multitude of behavioural and 

psychological symptoms. These can be broadly characterised into positive, negative 

and cognitive
7
. Positive symptoms relate to acquired phenotypes such as 

hallucinations and delusions. Negative symptoms are those which relate to a loss of 

normal function, such as apathy, anhedonia and a “flat/blunt affect” (unemotional 

responsiveness and flattened speech). Deficits in cognitive functioning have been 

more recently identified as being present in schizophrenia. The DSM-V has been 

criticised in some quarters, but the kappa values (measurement of the likelihood of 
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agreement on a diagnosis) for DSM-V schizophrenia are relatively high, indicating a 

reliable diagnosis. The editors of the American Journal of Psychiatry note that the 

0.46 kappa value for schizophrenia equates to two clinicians agreeing on a diagnosis 

85% of the time, if 10% of their patients in the clinic have the illness
8
. DSM-IV 

schizophrenia, which is highly similar to DSM-V schizophrenia, is a diagnosis which 

is reliable with 80-90% of individuals diagnosed retaining it for 1-10 years after 

diagnosis
9
. Schizophrenia is therefore a diagnosis which is long lasting, enjoys broad 

but not absolute agreement among clinicians, and is partially treatable with 

recognised symptoms. Active psychosis can be controlled via use of antipsychotics
7
, 

but functional recovery allowing resumption of employment, independent living, 

etc., is less achievable, with estimates ranging from 30-40% of individuals achieving 

this a few years after their first episode of schizophrenia
10

. Bipolar disorder is 

another severe psychiatric illness characterised by behavioural abnormalities. It has 

previously been distinguished from schizophrenia in that patients do not present with 

psychotic symptoms; this is part of the so called-Kraepelian dichotomy separating 

the affective disorders involving episodes of altered mood and affect from the 

psychotic disorders which tend to present earlier and last longer
7,11

. This dichotomy 

has been challenged by some authors
12

. Bipolar disorder is generally diagnosed by 

the presence of manic episodes characterised by hyper-excitability and altered mood, 

along with the presence of depressive episodes involving anhedonia, apathy, and 

other symptoms. There are different subtypes of the disorder; including cyclothymia 

which appears to involve symptoms of reduced intensity; including hypomania rather 

than full mania and depressive symptoms which do not fit the criteria for a 

depressive episode
11

. Bipolar disorder is relatively common; adding the two major 

subtypes (type I and type II) together gives a lifetime prevalence of 1%
13

. The kappa 

values of type I and type II, 0.56 and 0.4, are similar to that of schizophrenia
8
. The 

exact diagnosis of bipolar disorder is difficult, as major depressive disorder has 

phenotypic overlap with bipolar disorder. This is particularly seen in those subtypes 

which are not characterised by periods of mania. Many individuals diagnosed with 

unipolar depression may actually have a form of bipolar disorder and 20% of these 

individuals experience a manic or hypomanic episode within five years
11

. It appears 

an elevated number of these may be found amongst treatment-resistant depression 
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cases
13

. Major depressive disorder itself is characterised by a number of biological 

changes (loss of appetite, loss of desire, changes in sleep patterns), sadness, suicidal 

thoughts, slowing of speech and action, which persist for weeks and cause significant 

disability. It is surprisingly common, with a lifetime prevalence of 17% according to 

the US National Comorbidity study, although this should be tempered with the 

understanding that the diagnosis is difficult to make
14

. The DSM-V kappa value is 

0.28, described as of “questionable agreement” among clinicians
8
. The disorder tends 

to be lifelong in duration and adolescent or childhood presentation is not rare
14

. 

These three conditions cannot be regarded as entirely separate entities. It is clear that 

there is great phenotypic overlap between the manic/psychotic elements of bipolar 

disorder and schizophrenia, while depression is very hard to distinguish from bipolar 

disorder which has not yet been characterised by a manic phase. It is also difficult to 

describe any symptom which is highly specific and sensitive in the diagnosis of these 

psychiatric diseases. Van Os and Kapur 2009 state (italics mine) “Within the cluster 

of diagnostic categories, the term schizophrenia is applied to a syndrome 

characterised by long duration, bizarre delusions, negative symptoms, and few 

affective symptoms” which they contrast with bipolar disorder, which has less 

negative and more affective symptoms. They also note that many symptoms, even of 

schizophrenia, are present in the healthy population at reasonable prevalence. 

Experience of auditory hallucinations and paranoia are common, at 5-8%
7
. Clearly 

fine lines cannot be drawn around psychiatric conditions. Some authors have 

proposed that psychiatric illnesses should be described more as a spectrum
12

. In 

addition to their phenotypic similarities, the conditions have pharmacological 

overlap. Antipsychotics such as clozapine can be used to treat the positive symptoms 

of schizophrenia as well as the manic phase of bipolar disorder, particularly if the 

patient exhibits psychosis. Selective serotonin reuptake inhibitors are key in treating 

the depressive symptoms of bipolar disorder as they are unlikely to cause mania, but 

are also used in the treatment of major depressive disorder
13

. As I describe below, the 

genetics of these conditions are characterised by a similar overlap.  
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1.2 Genetics of psychiatric disease 

The genetic architecture of schizophrenia and other psychiatric illnesses continues to 

be discussed and is mired in controversy. Psychiatric diseases are surprisingly 

common and heritable, yet were hypothesised to have an extreme effect upon 

reproductive fitness via increased mortality and lower fecundity ratios. Both of these 

observations have been proven to be true. Psychiatric diseases are highly injurious, 

reflecting their contribution towards global DALYs. According to one 

epidemiological review, the median mortality rate of individuals with rMDD is 1.7 

times the norm, while it is 2.6 times the norm for individuals with schizophrenia or 

bipolar disorder
15

. The effect is particularly strong in schizophrenia with 13-15 years 

of life typically being lost according to a recent meta-analysis. The authors 

hypothesised that the effect was due to increased suicide rates, but also due to 

cardiovascular and diabetic complications which are known to be more prevalent in 

schizophrenia
16

. Regarding fecundity, Power et al. 2013 have used a cohort of 

2.3x10
6
 individuals to investigate fecundity rates in individuals with autism or 

schizophrenia compared to the undiagnosed (and presumably largely healthy) 

population. Male individuals with autism or schizophrenia have a fecundity ratio ¼ 

of the norm, while female individuals have fecundity ratios about ½ of the norm. 

Bipolar disorder has a lesser effect, but also results in reduced fecundity, especially 

in males. Similarly, male but not female individuals with depression had reduced 

fecundity
17

. It is notable that schizophrenia has an earlier onset and poorer prognosis 

in males
18

, and the incidence rate is higher
19

. Autism also shows gender differences, 

particularly in prevalence
20

. The body of literature discussing the evolution of 

psychiatric disorders is enormous
21

 and discusses possible fitness effects (especially 

in relatives), “parental war” involving allelic imprinting, disorders as emergent 

consequences of the human mind or extremes of normal variation
22

 , and mutation-

selection balances 
23,24

. The study described by Power et al. was interested in sibling 

effects, so as to explore the possibility that variants predisposing to psychiatric 

disease were maintained by balancing selection. They found slight decreases in male 

sibling fertility and increases in female sibling fertility in autism and a decrease in 

male sibling fertility in schizophrenia, which they proposed might reflect sex specific 

allele affects which help to maintain the risk alleles via balancing selection. However 
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this clear male-deficit female-benefit was not seen in bipolar disorder, only partially 

in schizophrenia, and in any case involved fecundity changes of >3%, far too small 

to mean positive selection is an explanation for why these disorders persist despite 

strong selection
17

. For now, it appears that no positive selection effect of these 

diseases has been discovered. One might ask why it is that these diseases therefore 

exist despite obvious negative effects.  

Of relevance to this persistence of schizophrenia is the debate over the genetic 

architecture of the disease, and its evolutionary history. The consensus among 

researchers is that various psychiatric illnesses have moderate to strong heritability 

(typically >0.6, up to 0.8), with that of schizophrenia and autism greater than bipolar 

disorder, and bipolar disorder greater than rMDD
25

. This consensus rests upon classic 

twin studies
26

, and is buttressed by large population studies confirming that the risks 

of schizophrenia and bipolar disorder run in families
27

. As of yet however, there is no 

known psychiatric illness that has a strictly Mendelian inheritance; therefore no allele 

can give diagnostic certainty. Psychiatric diseases therefore exhibit complex 

inheritance. The primary debate is whether this inheritance is made up of very many 

low risk but common (>5% in the population) variants, the basis for genome wide 

association studies (GWAS) due to their commonality
28,29

, or fewer but more highly 

penetrant variants (<1% in the population, typically undetectable by GWAS)
30,31

. 

These hypotheses are referred to as the “common disease common variants” (CDCV) 

model and the “common disease rare variants” model (CDRV) respectively. The 

CDRV model predicts that rare variants increasing risk of disease are unlikely to be 

inherited due to selection against them, and are therefore likely to be caused by de 

novo mutation. Such mutations could run in families for some generations before 

selection inevitably takes its toll. Evidence now exists suggesting de novo mutation 

is higher in cases of psychiatric disease
32,33

, and affects specific pathways known to 

be of interest in these conditions, namely synaptic processes and 

neurodevelopment
34–36

. In addition there are paternal-age effects on the genesis of 

psychiatric illness
37–39

 and on de novo mutation
40

. The degree to which advanced 

paternal age causes psychiatric disease has been questioned, as the reverse can also 

be true for a behavioural condition and has been shown to only need a small effect to 
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explain the observation that older fathers are more likely to have offspring with these 

conditons
41

. However a de novo origin for variants predisposing to schizophrenia 

would also explain the equal prevalence across populations. We therefore have with 

the CDRV model an explanation for the prevalence of the disease; mutation-selection 

balance. The CDCV model is the basis of GWAS, which associate particular alleles 

with conditions. One of the largest GWAS performed so far (with approximately 

37,000 cases and 113,000 controls) has associated 108 loci with SNPs increasing risk 

of schizophrenia
29

. The SNPs associated with schizophrenia are for the most part 

weakly so; selection would have a very mild effect on these variants as they are only 

infrequently associated with the disease state. The CDCV model therefore too 

explains the prevalence of psychiatric disease. Controversy continues over the utility 

of the candidate gene CDRV-driven approach versus that of the GWAS CDCV-

driven approach, although it has been suggested that both hypotheses have merit to 

them and need not be mutually exclusive
42,43

. GWAS, for example, explain very little 

of the heritability of psychiatric disease, and many rare mutations appear to be 

unique or near unique. Together they might explain the genetics of psychiatric 

disease. There are analogous scenarios; breast cancer has at least 86 variants 

associated with moderately increased risk of the disease (typically <2 times the risk), 

yet several cancers are also familial conditions with rare mutations associated with 

vastly increased rates of the disease, such as those in BRCA1
44

. It is evident that both 

rare familial mutations and common variation are at play here, as is the impact of 

environmental risk factors. In addition, the two models can be reconciled with a 

typical hypothesis of how risk of schizophrenia and other psychiatric illnesses is 

understood
43

. This is called the threshold model and a representation is given in 

Figure 1. Under this model, risk of a psychiatric disease is normally distributed, and 

a few individuals are close to the threshold of disease. In reality the threshold does 

not need to be so binary; it may represent individuals who are at appreciable risk of 

developing illness, or those who require a secondary factor to induce it. A high risk 

red population in Figure 1 has a greater proportion of individuals who have crossed 

the threshold than the general population. 
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Figure 1. Representative image of threshold model for risk of psychiatric disease. A high risk population (red) and an 

ordinary population (grey) both have variation in underling risk, and both have individuals who have crossed the 

threshold for disease emergence. This proportion is far greater for the red population. 

We can see how this can reconcile the two models of psychiatric genetics; the 

underlying population risk (possibly represented by an endophenotype, a genetically 

encoded phenotype which varies in the population and is disease associated) is 

underpinned by common variation, the load of which is likely to be normally 

distributed
43

. Meanwhile, the factor that converts a grey population or family to a red 

one can be a rare mutation. Alternatively, the rare mutation may function as a trigger 

factor for the individuals past the threshold. Environmental risk factors also 

undoubtedly play a role.  

Many environmental risk factors for psychiatric disease act during development. 

Maternal stress during pregnancy increases risk of schizophrenia, bipolar disorder, 

and depression in the offspring
45,46

, as does maternal infection in schizophrenia and 

bipolar disorder. The window for these risk factors appears to coincide with critical 
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periods of foetal brain development. Risks can also be postnatal; a wide variety of 

drugs appear to increase risk of bipolar disorder, for example, and hypoxia at birth 

increases the risk of schizophrenia
46,47

. Traumatic events and stress in childhood also 

increase the risk of psychiatric disease
45

. Exactly how environmental risk factors 

impact upon pathways of relevance to psychiatric disease is still being investigated. 

It has been noted that stress alters the HPA axis, a major neuroendocrinal system 

involved in the production of cortisol, a stress related hormone. Stress decreases 

hippocampal dendrites and hippocampal BDNF levels, which may be linked to 

depressive symptoms. Maternal stress has been linked to some cognitive dysfunction, 

hyperactivity, and diminished PPI in a mouse model, as well as altered GABAergic 

interneuron epigenetic markers
45

. Models for other risk factors show some 

schizophrenia related phenotypes as well; rats which underwent perinatal hypoxia 

showed diminished prepulse inhibition in adulthood, a schizophrenia-related 

phenotype which was treatable by the antipsychotic clozapine. Hypoxia may also 

affect myelination, which is a developmental process
45

. 

As mentioned previously, many psychiatric conditions display phenotypic and 

pharmacological overlap. The genetics of such closely related phenomena are 

characterised by similar overlap. Evidence of this is shown in large familial studies. 

Relatives of individuals with bipolar disorder have an enhanced risk of schizophrenia 

as well as bipolar disorder, even if raised in a different environment
27

. This strongly 

suggests that the same genetic lesions are responsible for risk predisposing towards 

multiple psychiatric disease. Copy Number Variants (CNVs) are one such source of 

genetic risk. An early paper by Guilmatre et al. searched for evidence of CNVs at 

several loci containing candidate genes for schizophrenia, autism, and mental 

retardation. They found CNVs likely to be causative for each disorder, and in many 

cases the CNVs appeared to be capable of predisposing to more than one disorder. 

They even detected comorbidity of schizophrenia and mental retardation in some 

individuals carrying certain rearrangements. Many of the CNVs were de novo, but a 

number had been inherited from an unaffected parent, typically from a mother to a 

son. We can see that this study shows risks run in families (some families found had 

multiple affected siblings), that risk is genetic, and that risk for multiple conditions 
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can be caused by the same mutation
48

. A large GWAS looking at variants 

predisposing to multiple disorders appears to have found SNPs which predispose to 

the five disorders of schizophrenia, bipolar disorder, major depressive disorder, 

autism, and ADHD. Of the four SNPs which predispose to all disorders, two are 

located within calcium channel genes, and one has been significantly associated in 

separate disorder specific GWAS for bipolar disorder, schizophrenia, and major 

depressive disorder
49

. The study described in this thesis is an opportunity to see if a 

rare mutation predisposing to schizophrenia displays any overlap with these common 

sources of risk. The question remains how exactly it is that the same mutation can 

associate with different disorders. Answers to the particular question of overlap for 

some pairs of disorders have been offered. For example, an explanation for the 

neuroanatomical, behavioural and epidemiological similarity between autism and 

schizophrenia has been proposed. This explanation suggests the timing and duration 

of neuroinflammation distinguishes schizophrenia from autism
50

. Blocking IL-6 

mediated inflammation does appear to prevent neurological damage caused by 

prenatal LPS exposure. Similarly, an explanation for the differences between bipolar 

disorder and schizophrenia has been offered. Schizophrenia presents with more 

severe premorbid cognitive functioning, and this is apparent even in childhood. Brain 

abnormalities also appear to be greater in cases of schizophrenia, especially in the 

medial temporal lobe. Murray et al. have proposed that since prenatal and perinatal 

risk factors predispose to schizophrenia but not bipolar disorder, it is possible that 

this severe developmental insult places an individual already at high risk of bipolar 

disorder onto a trajectory towards schizophrenia. In this case, the environmental 

insult combines with the genetic liability to result in an exacerbated phenotype
51

. 

This “two-hit” hypothesis has surfaced elsewhere, in which a single CNV 

predisposed to developmental delay, while a second additional CNV within a 

minority of the cohort appeared to cause a more severe phenotype. This has led one 

reviewer to describe psychiatric disease inheritance as possibly being “omnigenic” in 

character
24

. Craddock and Owen have suggested that the overlap we see between 

many pairs of disorders should be viewed in another way; as an overarching 

spectrum of disorders, characterised by partial phenotypic and genetic overlap. In 

this model, psychiatric diseases are unified by some phenotypic overlap, but 



 

     41 

distinguished by severity of developmental abnormality. Intellectual disability and 

autism are on one end of the spectrum, characterised by high developmental 

abnormality, high risk mutation (with larger CNVs), and severe pathology. On the 

other end are affective disorders such as bipolar and major depressive disorder. 

Schizophrenia is proposed as being somewhere in between, so mutation predisposing 

to either bipolar disorder or to autism can also predispose to it, but not typically to 

one another. Mutation and environmental risk can be either specific to a disorder or 

general. One of the strengths of this model is that it can incorporate our observations 

of phenotypic overlap, and give an explanation for why both rare and highly 

deleterious as well as common and less penetrant variation can both exist and cause 

psychiatric disease
12

. 

1.3 Pathways causing psychiatric disease 

The biology of psychiatric disease is still mysterious, although great advances in 

understanding have been made. As mentioned previously, schizophrenia presents 

with anatomical differences including enlarged lateral ventricles and reduced cortical 

grey matter volume which are observable early in life. There are also premorbid 

problems in cognitive functioning. These observations, along with the lack of gliosis 

typically caused by neurodegeneration, have led to the conceptualisation of 

schizophrenia as a neurodevelopmental disorder, rather than a neurodegenerative 

one
52

. As stated earlier, this older conceptualisation fits in perfectly with the newer 

concept of all psychiatric diseases being distinguishable by differing degrees of 

neurodevelopmental pathology. The challenge now is to determine what processes 

are disturbed that might lead to altered development, or altered function in adulthood 

resulting from this altered development. One reasonable approach is genetic; to look 

for what genes carry the rare or common variants discussed earlier. Rare variant 

genes are typically found via investigation of pedigrees with high rates of disease (or 

parent-child trios searching for de novo mutation) while GWAS search for common 

variants. Rare variants often have accompanying mouse models and functional 

studies. A non-exhaustive discussion of genes related to psychiatric disease and the 

pathways they implicate is given below.  
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Given the importance of the synapse in learning, memory, and neuronal activity, we 

might expect that proteins involved in synaptic structure or activity might be 

implicated in psychiatric disease. It has been known for some time that 

neurotransmitters underlie some of the pathology of psychiatric disease. For 

example, high dopamine levels in the prefrontal cortex are believed to underlie the 

positive symptoms of schizophrenia, and blockade of the cognate receptors alleviates 

these symptoms
53

. Similarly, serotonin is believed to have some kind of link to 

signalling pathways involved in depression
54

. NMDAR antagonism by agents such as 

ketamine and PCP results in psychosis highly similar to schizophrenia
55

. 

Interestingly, NMDAR antagonism and agonism are being explored as anti-

depressant therapy
56

. Although the links between NMDAR signalling and psychiatric 

diseases are not yet fully understood, we do know that NMDAR signalling is crucial 

for some types of long term potentiation (LTP), which underlies synaptic plasticity 

via remodelling of the synapse, insertion of AMPARs, and increases in synaptic 

scaffold proteins
57

. This underlies learning and memory. Many synaptic scaffold 

proteins have been linked to schizophrenia by candidate gene studies. Neurexins are 

a group of presynaptic proteins which form trans-synaptic bonds with neuroligins, a 

group of postsynaptic proteins. Both neurexins and neuroligins bind to MAGUK 

proteins such as PSD-95 and are capable of inducing postsynaptic and presynaptic 

specialities in adjacent neuronal cells if they are ectopically expressed in non-

neuronal cells
58

. Mutations in several members of both families have been shown to 

segregate with several disorders ranging from Tourette’s syndrome to schizophrenia 

and autism
58

. De novo CNV studies looking at parent-affected offspring trios have 

found that mutations in NMDAR signalling related genes are enriched in cases of 

schizophrenia, as are mutations in the genes encoding targets of FMRP. This RNA 

binding protein, mutated in Fragile X syndrome, is neuronally expressed and targets 

many genes involved in LTP and synaptic activity such as ARC
59

. 

One of the largest GWAS for schizophrenia so far found 108 single nucleotide 

polymorphism (SNP) loci to be implicated in the inheritance of the disease, with 

genes near these loci having roles in synaptic activity, glutamatergic transmission, 

and calcium signalling, although these have not been functionally validated
29

. A 
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later, larger GWAS found still more loci. These disproportionately included the 

targets of the FMRP protein, showing a convergence between CNV and SNP risk for 

schizophrenia. Genes involved in synaptic activity and calcium ion import were also 

overrepresented, further solidifying the evidence for these processes being involved 

in schizophrenia
60

. Calcium channel proteins have also appeared in GWAS for 

bipolar disorder alone, as well as in GWAS looking for SNPs predisposing to many 

disorders simultaneously
49

. Other neurotransmitter receptors or ion channels such as 

the NMDAR subunit GRIN2A (glutamate) and SCN2A (sodium) have been identified 

as significantly associated with bipolar disorder by the largest GWAS yet for this 

condition. CACNA1C in particular has been consistently associated with the 

condition
61

. The CACNA genes encode subunits of voltage gatedCa
2+

 channels; 

multimeric proteins prevalently expressed in the brain. There is evidence to suggest 

that calcium is depressed in manic bipolar patients and increased during the 

depression pole. Calcium channels are also upregulated in mouse models of 

addiction; agonists can help prevent withdrawal symptoms
62

. The signalling 

pathways are complex; but it is known that drug-mediated activation of dopamine 

receptor D1R activates signalling molecules such as CAMKII, leading to AMPAR 

insertion at the cell surface. As a calcium-activated molecule, this activation of 

CAMKII is via the L type voltage gated calcium channels. Antagonism of the 

channels reduces addiction behaviour in rats
63

. CACNA1C encodes one of the L type 

subunits; conditional null mice lacking hippocampal expression of it have LTP 

deficits. A mutation in the cognate human gene causes a condition characterised by 

autism and cognitive abnormalities
64

. Given its role in NMDAR-independent LTP, 

crucial for learning and memory, it is highly interesting that many studies converge 

on this gene. 

1.4 DISC1 

DISC1 is an example of a gene with rare mutations predisposing to psychiatric 

illness. The focus of much research, including this thesis, is on a t(1;11)(q42.1;q14.3) 

translocation disrupting this gene. The Scottish pedigree in which this translocation 

has been uniquely observed first came to the attention of researchers over four 

decades ago for the unusually high prevalence of psychiatric disease, ranging from 
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alcoholism and conduct disorder to diagnoses of schizophrenia. One major paper 

describing the clinical findings of the entire pedigree, stretching over four 

generations, is that of Blackwood et al.
65

. 67 individuals underwent karyotyping for 

the translocation, as well as psychiatric interviews (or their records were examined, 

were they available). Of 29 with the translocation, 21 were diagnosed with a 

psychiatric illness. A third of these diagnoses were of schizophrenia and 

approximately half were of major depressive disorder. Of 38 without the 

translocation, 5 had diagnoses; one case of alcoholism, one of conduct disorder, and 

three of minor depression. It is evident that both the prevalence and severity of 

psychiatric illness are greatly exacerbated by the translocation, although there may 

well be other genetic and environmental factors at play. A LOD score of 7.1 was 

obtained if the phenotype was modelled as being “schizophrenia, bipolar disorder, 

and major depressive disorder”; the LOD score was 3.6 if it was modelled as just 

“schizophrenia”. The translocation itself involves the exchange of a large amount of 

genetic material between chromosomes 1 and 11; approximately 18Mb and 45Mb 

respectively. The translocation disrupts a total of three genes; two on chromosome 1, 

and one on chromosome 11. The chromosome 1 breakpoint was the first described in 

detail; it consists of two genes on opposite strands. DISC1 is transcribed in the 

breakpoint proximal to distal direction and encodes a protein, DISC1. The opposite 

strand encodes the antisense DISC2, which has no hallmarks of a protein encoding 

gene (no long ORF, exceptionally long candidate 3’UTR) but appears to be 

expressed in some tissues
66

 . The 5’ end of DISC1 remains on chromosome 1 in the 

t(1;11) condition, as does the 3’ end of DISC2. DISC1 is a large protein, and the 

breakpoint is towards the end of the protein, after exon 8
66

. Its function has since 

been elucidated in more detail, in addition to its expression and distribution
67

. 

Multiple protein isoforms of DISC1 exist and it appears to be localised at the 

mitochondria, as disturbing microtubule formation results in aberrant mitochondria 

and DISC1 localisation
67

. However, DISC1 products are also found at the 

centrosome, where they interact with other proteins involved in cell division and 

migration
68

. DISC1 immunoreactivity is also seen at synapses, particularly the post-

synaptic density, and throughout neuropili. DISC1 immunoreactive neurons are seen 

in all layers of the human cortex
69

. Disturbing microtubule formation particularly 
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affects the DISC1 which is found along microtubules non-adjacent to the nucleus
67

. 

The protein is expressed in neural precursor cells as well as neurons, and is 

upregulated during neuronal differentiation
70

. It is expressed in a wide variety of 

human foetal tissues as well as the adult hippocampus. The mouse and monkey 

orthologues show a similar pattern of expression in a variety of brain areas and 

neuron types, suggesting a possible conservation of function
67,71

. Expression of 

DISC1 proximal to the breakpoint is depleted in lymphoblastoid lines carrying the 

t(1;11), suggesting that haploinsufficiency might be responsible in part for the 

phenotype of increased disease risk
72

. Transcripts from the truncated gene would 

produce proteins lacking the C-terminal domain rich in coiled coil regions which aid 

protein assembly. However, studies suggest that the t(1:11) could also have gain of 

function affects.  

Eykelenboom et al. found that the derived 1 chromosome of the t(1:11) translocation 

(consisting of the N terminal end of DISC1 fused to C terminal DISC1FP1) can be 

translated, although given that DISC1 regions proximal to the breakpoint are 

downregulated, this may not be at a high level
72

. The theoretical transcripts also 

contain features which tend to cause nonsense-mediated mRNA decay
72

. 

Hypothetically, the translated protein would consist of the first ~600 amino acids of 

DISC1 fused to either 60 or 69 amino acids from an open reading frame in 

DISC1FP1. These were labelled CP60 and CP69. They appear to have different 

properties to hypothetical truncation proteins containing just the first ~600 amino 

acids. A fragment of DISC1 fused to MBP displayed different properties if the extra 

69 amino acids were included. Dynamic light scattering indicated that the presence 

of these residues caused the DISC1-MBP fusion protein to be larger (non-

significantly p=0.056) and more resistant to heat-induced deformation. Ectopic 

expression of CP60/CP69 results in localisation to the mitochondria and loss of 

mitochondrial membrane potential. This does not co-present with cytosolic 

cytochrome c which would indicate increased apoptosis, however
72

. It must be noted 

that these proteins have not been detected in any of several cell models carrying the 

translocation, including neural precursor cells and neurons, and their existence is still 

hypothetical
70

. 
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1.4.1 DISC1 function 

The function of DISC1 protein involves the maturation and migration of neurons, 

synaptic activity, and centrosomal orientation, amongst many others. DISC1 shows 

no enzymatic capacity itself, but is known to interact with a large number of other 

proteins to exert its effects, which have been dubbed the DISC1-interactome. A Y2H 

screen for potential DISC1 interactors found a large number, with overrepresentation 

among these of GO terms including those relating to cytoskeletal organisation, 

transport, and cell division
73

. Many of these potential interactors are already 

candidate genes for schizophrenia
74

, or are expressed in the developing brain, as is 

DISC1
75

. For example, GSK-3β is a target of lithium chloride, the mood stabiliser 

drug used to aid management of bipolar disorder and related disorders
76

, and is 

important in synapse function. GSK-3β activity is mediated by DISC1 interaction, 

altering neural progenitor proliferation via the stabilisation of pro-growth signalling 

molecules such as β-catenin
77

. In the developing cortex, neural progenitors replicate 

for a time before producing postmitotic neurons and migrating through the cortex. As 

its interaction with GSK-3β shows, DISC1 appears to have a key role in maintaining 

developing cortical cells in their proliferating phase. Experiments show that DISC1 

knockdown increases the rate of cell cycle exit and subsequently increases the 

proportion of cells expressing Cux2, a cortical marker and neuronal transcription 

factor. This indicates that DISC1 acts as a check on early and improper cell 

differentiation. However, it also has a role in helping cells swap to migration via its 

interaction with the centrosome. The centrosome is a structure shown to be key in 

neurodevelopmental processes. Mutations in genes encoding centrosomal proteins 

often have severe consequences
78

, and some are DISC1 interactors. BBS4 is an 

example of a disease gene which encodes a centrosomal protein which is also a 

DISC1 interactor. Mutation in any BBS gene can cause BBS, a multisystem 

developmental disorder characterised by behavioural abnormalities, obesity, and 

retinal degradation among other phenotypes
79,80

. Its interaction with DISC1 is 

phosphorylation dependant. DISC1 interacts with and inhibits GSK-3β to enable 

neural precursor proliferation. However, DISC1 phosphorylation at Ser70 greatly 

reduces the GSK-3β interaction, blocking precursor proliferation. The 

phosphorylated DISC1 then recruits the BBS proteins to the centrosome to stimulate 
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neuronal migration. Mutations in DISC1 alter cell proliferation and migration; those 

in BBS1 only affect migration, consistent with this model
81

. Other DISC1 interactors 

linked to neural processes include LIS1 (causative of lissencephaly), NDEL1, and 

NDE1. These three proteins work together to affect neuronal migration via 

nucleokinesis. This process involves interactions between microtubules and the 

centrosome, where the protein products of NDEL1 and NDE1 reside and interact with 

dynein, gamma-tubulin, and other centrosomal proteins. They both can bind LIS1, 

which interacts with microtubules
82

. Mice with mutations in the LIS1 homologue 

have an unusually patterned cortex and a disorganised hippocampus with more 

scattered cells. Cells carrying a mutation also migrate poorly
83

. The genes also have 

roles in other critical neurodevelopmental processes such as cell proliferation and 

neurite outgrowth, and are regulated by PDE4
84

. PDE4B is another gene linked to 

psychiatric disease via a translocation co-occurring with psychosis as well as 

significance in the most recent large GWAS looking for variants associated with 

schizophrenia
60

. It also linked to DISC1 via direct protein-protein interaction
74

. 

PDE4B is crucial for cAMP regulation, which itself is vital in several neural 

processes, such as synaptic plasticity, memory formation and cognition. Rising 

cAMP levels can trigger dissociation of PDE4B and DISC1 via PKA-mediated 

phosphorylation, which results in higher PDE4B activity and presumably helps 

mediate cAMP signalling via cleavage of cAMP
74,85

. PKA also phosphorylates 

NDE1 on two sites (and may phosphorylate the similar NDEL1 region). This 

phosphorylation causes NDE1-LIS1 co-immunoprecipitation to decrease. This was 

also seen in a NDE1 phosphomimic mutant, which additionally displayed less neurite 

outgrowth. The suggested model is that DISC1’s interaction with PDE4 allows 

cAMP signalling to block neurite outgrowth and LIS1/NDE1 interaction
84

. 

Especially relevant is that a selective inhibitor of PDE4, rolipram, acts as an 

antidepressant
74

.  

A new area of research related to DISC1 is its interactions with NMDARs. As 

described in 1.3, NMDARs are important in psychiatric disease. Their agonism is 

being explored as an anti-depressant therapy, and can induce psychosis
55,56

. They 

have also been linked to the aetiology of schizophrenia by CNV studies and 
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stimulation of NMDARs is crucial for the initiation of the changes leading to 

synaptic plasticity. GluN1, an obligate subunit of the NMDAR, is trafficked to the 

synapse in order to regulate glutamate sensitivity. Such trafficking is necessary for 

NMDAR-dependent synaptic plasticity. A direct link between NMDARs and DISC1 

has now been revealed in a paper by Malavasi et al. using the same models as are 

utilised in this thesis
70

. For disclosure, I am a co-author on this paper. 

GluN1, encoded by GRIN1, is an obligate subunit of all NMDARs. NMDAR 

subunits are seen in the ER, where they reside before assembly and trafficking. It has 

now been shown that DISC1 co-immunoprecipitates with GluN1 via amino acids 

which are encoded proximal to the t(1;11) breakpoint. Exogenous DISC1 co-

localises with GluN1 in hippocampal neurons accordingly, in dendritic locations. It 

was suspected that DISC1 interactors involved in its trafficking role might also 

interact with NMDAR subunits. TRAK1, a DISC1 interactor and trafficking 

molecule which is targeted to the mitochondria, is also shown to co-precipitate with 

exogenous GluN2b in synaptosomes and light membranes when expressed 

exogenously. A portion of exogenous GluN1 co-localises with the exogenous 

GluN2b and TRAK1 in triple transfected cells. Since NMDAR are assembled in the 

ER, the implication is that the co-localising of GluN1 and GluN2B represents 

assembled NMDARs. It was also shown that DISC1 overexpression in hippocampal 

cells resulted in alterations of GluN1 trafficking. Increased fluorescence of distal fast 

moving GluN1 was seen, the speed of which corresponds with actively trafficked 

NMDAR-containing vesicles. The effect was also seen in mouse neurons carrying a 

mutation which models the translocation. Overexpression of a non-TRAK1 

interacting DISC1 mutant resulted in reduction of this fast moving fluorescence. The 

mouse mutation leaves the GluN1 and TRAK1 interacting regions intact. These mice 

also had increased puncta density of GluN1 and GluN2B in the homozygous and 

heterozygous mutation, in addition to increased GluN2A puncta density and 

GluN1/PSD-95 co-localisation in the homozygous state. Total protein levels and 

PSD-95 puncta volume were unchanged, implying differences in NMDAR subunit 

trafficking and subsequent synaptic formation rather than expression. PSD-95 
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distribution was also altered. The result is likely to be aberrations in synaptic 

plasticity.  

1.4.1.1 Mitochondria and DISC1 

The role of mitochondria in psychiatric disease has been recognized. A case study 

has been reported in which mitochondrial DNA mutations co-occur with psychiatric 

disease as well as histories of psychiatric disease on the maternal side of the family
86

. 

Another has been reported in which mitochondria DNA mutations in the tRNALeu 

gene coincide with a maternal family history of psychiatric disease as well as 

cardiomyopathy in a proband
87

. More generally, there are many links between 

mitochondrial dysfunction and psychiatric disease. Mood stabiliser drugs protect 

against mitochondrial damage, while there appears to be aberrant expression of genes 

involved in ATP generation and storage in psychiatric disease, as well as deficits in 

oxidative phosphorylation
88

. Neurons exhibit an unusually high energy demand and 

therefore might be especially sensitive to mitochondrial dysfunction, while the brain 

must supply this demand exclusively through the oxidative phosphorylation of 

glucose, further increasing the importance of mitochondria to brain metabolism
88,89

. 

Given the localisation of DISC1 to the mitochondria, it was not unreasonable to 

expect it might have some kind of function there. It has now been shown by several 

groups that DISC1 has an impact on mitochondrial trafficking. Expression or siRNA 

knockdown of DISC1 respectively increase and decrease the number of motile 

mitochondria in neurons
90

. A particular disease-associated DISC1 polymorphism of a 

conserved residue also rendered the protein incapable of restoring the motility 

deficiency caused by knock down of wild type DISC1
90,91

. Some detail on how 

DISC1 influences trafficking has now been elucidated. A group of proteins on the 

mitochondrial outer membrane, the Miro GTPases, function in mitochondrial 

trafficking
92

. When these are bound by the kinesin and dynein adaptor TRAK1, 

mitochondria can be trafficked along the kinesin/microtubule based transport 

system
92

. TRAK1 and DISC1 co-immunoprecipitate, suggesting some kind of 

interaction occurs between the two
93

. TRAK1/DISC1 co-transfection results in an 

altered localisation of DISC1 compared to DISC1 transfection alone
93

. Mutation of a 

relatively well conserved
94

 arginine-rich N-terminal sequence in DISC1 alters its 
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mitochondrial location as well as its interaction with TRAK1
95

. DISC1 appears to 

interact with other proteins involved in the motor activity of mitochondria, including 

MIRO1
93

 and TRAK2
96

. It is therefore a confirmed interactor of mitochondrial 

membrane proteins and motor protein adaptors. The DISC1 interactors GSK-3β and 

NDE1 also associate with TRAK1, enhancing anterograde or retrograde 

mitochondrial movement respectively, although GSK-3β has been shown to have 

other effects in other studies
95,96

. Given that LIS1/NDE1/NDEL1 interact together 

with dynein and centrosomal proteins to effect microtubule-based nucleokinesis, it is 

unsurprising that these interactions are also seen in microtubule-based mitochondrial 

transport. LIS1 can bind to dynein to promote trafficking, and it had been suspected 

that this would include mitochondrial trafficking
89

. LIS1 or NDEL1 knockdown 

inhibits axonal mitochondrial transport in both directions or just retrograde, 

respectively
96

. It has also been reported that overexpression of LIS1 stimulates 

retrograde organelle transport, and as expected this requires dynein binding
97

. Given 

that TRAK1 co-immunoprecipitates with DISC1, NDE1, and GSK-3β, it has been 

suggested that DISC1 recruits GSK-3β into this complex, which likely contains 

NDEL1 and LIS1 as well
96

. DISC1 overexpression or knockdown increases or 

decreases mitochondrial motility, respectively, but a non-synonymous variant which 

disturbs DISC1-GSK-3β interaction prevents the stimulation of motility
90

. There are 

clearly extensive interactions between mitochondria, motor proteins, and DISC1-

interactors which are also seen at the centrosome. The exact nature of these 

interactions is yet to be fully elucidated. GSK-3β certainly plays a role, as does the 

kinase Cdk5 in rat, which phosphorylates Ndel1 in a manner necessary for organelle 

transport
97

. Given the importance of mitochondrial trafficking it is likely that the 

proteins at the centre of it, including DISC1, have the ability to incorporate signalling 

from multiple pathways. This might include PDE4 enzyme/PKA signalling, which 

has already been shown to be important for AMPAR subunit trafficking. This was 

not via PDE4B
98

. In any case it is clear that a large number of proteins important for 

the linking of mitochondria to motor proteins, or in stimulating their movement, 

appear to interact with DISC1, which appears to have a role in scaffolding these 

proteins and facilitating interactions. As discussed earlier, it also may be the case that 

gain-of-function chimeric DISC1 proteins, with 60 or 69 extra residues, assemble at 
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the mitochondria and cause loss of membrane potential
72

. Either by toxic gain of 

function caused by chimeric DISC1-DISC1FP1 proteins, or by haploinsufficiency of 

DISC1 necessary for assembling transport complexes, the t(1;11) is evidently capable 

of exerting effects upon mitochondrial activity with potential consequences for 

neuronal health.  

1.4.2 DISC1 mutations 

DISC1 mutations have been found elsewhere. An American family has been 

discovered with high rates of major mental illness, as well as a 4bp frameshift 

mutation in DISC1
99

. This family was originally discovered through sequencing of 

DISC1 in schizophrenia probands, leading to the discovery of the pedigree. However, 

inspection of the pedigree revealed that although two siblings with schizophrenia had 

the mutation, as did one with schizoaffective disorder, three of their siblings without 

the mutation had major depressive disorder and schizotypal personality disorder. The 

family’s unaffected father carried the mutation, while the mother, known to not have 

the mutation, had a family member with schizophrenia (who presumably did not 

have the 4bp frameshift of the proband’s pedigree). Although it is highly interesting 

that another mutation in DISC1 has been discovered, the evidence is not yet 

compelling for an association with schizophrenia. There are several key reasons as to 

why this is so, several of which were acknowledged directly or indirectly by the 

original paper. Firstly, the rate of diagnosis of any disorder is equal in carriers and 

non-carriers within the family. Secondly, individuals without the mutation display 

severe psychiatric disorders. Thirdly, the pedigree is too small for generation of LOD 

scores. Fourthly, the unaffected mother, whose family presumably do not have the 

4bp mutation, has a family history of schizophrenia which might partially explain the 

high rate of diagnosis we see. Fifthly, another study showed that this mutation was 

found in none of several hundred schizophrenia cases, but was present in two 

anonymous blood donors in the control group. These individuals did not undergo 

psychiatric evaluation but were unlikely to have a psychiatric diagnosis as they were 

not taking medication
100

. Although the case is highly interesting and is worthy of 

follow up, I argue it should be regarded as a familial case of idiopathic 



Introduction and Literary Review 

52 

schizophrenia, until more evidence, including full familial genotyping and clinical 

examination, emerges. 

Other mutations have been found not by pedigree investigations but by larger 

haplotype association studies. It should be noted that DISC1 is not a hit in either of 

the largest schizophrenia GWAS, a finding which might indicate common variation 

in the gene is less important to schizophrenia risk
29,60

. Some research groups have 

attempted to assess variation within the gene, and whether this variation has any 

phenotypic effect in psychiatric disease. Crowley et al. sequenced DISC1, along with 

9 other candidate genes (such as DRD2, NRG1), for variants in >700 schizophrenia 

cases and >700 controls
101

. Due to constraints, only limited regions of the gene were 

sequenced (exons, UTRs, promoters, splice sites, conserved introns) In addition to 

technical replication to ensure SNP validity, they chose a subset of 92 SNPs in 

DISC1 and other genes to verify in a secondary dataset of >2,000 cases and >2,000 

controls. DISC1 had the highest case:control SNP ratio, and two nonsense SNP 

variants found only in cases (only three such SNPs were found in the 10 genes). 

Despite this, no SNPs were found significantly associated with schizophrenia. 

Crowley et al. noted that they were the fifth group to search association of 

schizophrenia with DISC1 SNPs, and despite using a larger sample size had found no 

significant SNPs after multiple testing. Two previous groups had either failed to 

replicate findings in replicate samples
102

 or had not found significance
103

. Another  of 

the four groups had shown variants in patients which were not in 10,000 controls 

including a particularly interesting variant described below
104

, while the findings of 

the last group involve the DISC1 frameshift described above. The evidence suggests 

if variants other than the t(1;11) involve DISC1 and predispose to schizophrenia, they 

are likely very rare indeed. In contrast, there is evidence suggesting rare mutations in 

DISC1 might be important. Thomson et al sequenced 500kb around the DISC1 locus 

in ~900 cases (schizophrenia, bipolar disorder, and rMDD) and ~650 controls, 

including the entirety of the gene as opposed to just coding and conserved regions
105

. 

They found 2,000 rare variants with a frequency of <1%. A single SNP was 

significant for rMDD in the original dataset and a combined original and replication 

dataset, but not any of three rMDD replication datasets. Thomson et al. noted the 
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abundance of rare variation and low power due to sequencing costs meant it is highly 

difficult to ascertain the current impact of rare variation, particularly for a gene such 

as DISC1 in which variation might be pleiotrophic and only partially penetrant. 

Nevertheless some SNPs are of particular interest and have been shown to have 

direct functional consequences as they encode point mutations. R37W and L607F are 

two such mutations. L607 is a conserved residue from mouse to zebrafish and the 

non-synonymous mutation is within two haplotypes both associated with 

schizoaffective disorder. It is associated with high risk ratio of the disease (>2.4) and 

was located in a region of DISC1 that modulates interaction with ATF4
106

. Another 

study scanned 288 patients with schizophrenia for variation within DISC1 and found 

several mutations not found in 10,000 control alleles, including the mammalian 

conserved R37W
104

. L607F was also found to be not associated with schizophrenia, 

but given that the original study associated it with the related but not identical 

schizoaffective disorder this is less worrying than it might initially appear. Both 37W 

and 607F were subsequently functionally investigated by Malavasi et al.
107

. ATF4 is 

a cAMP-response element binding protein which acts as a transcription factor, 

mediating the effects of cAMP. It has been shown that it is bound by DISC1 and acts 

to effect transcriptional changes involving apoptosis, mitochondrial function, 

synaptic plasticity, and repression of LTP
107

. Both mutations decrease the abundance 

of nuclear DISC1 by approximately 50%, as shown by both immunocytochemistry 

and western blotting. Both approaches also confirmed DISC1 expression is unaltered, 

meaning that differential targeting of DISC1 was responsible. Exogenous DISC1 was 

also shown to inhibit the transcriptional activity of ATF4; both mutations decreased 

this inhibition, although it appeared that in 607F this was due to decreased protein-

protein interaction, while with 37W it was likely due to nuclear exclusion of 

DISC1
107

. In any case this series of papers defined a number of risk-associated 

alleles with confirmed consequences for DISC1 biology.  

1.4.3 IPSC and mouse DISC1 models 

This thesis expands upon previous work by investigating the RNA-Seq profiles of 

neuronal cells derived from iPSCs of members of the t(1;11) pedigree. It also looks 
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at RNA-Seq profiles of neural tissue from a corresponding mouse model, referred to 

as the Der1 model. In this model 100kb of DNA has been removed from the mouse 

chromosome carrying Disc1, with this being removed from downstream of exon 8 

and replaced with 115kb of human DNA corresponding to chromosome 11. The 

effects of the translocation upon DISC1 are therefore mimicked in the altered mouse 

chromosome, which both heterozygous and homozygous carriers of exist
70

. The 

backgrounds of each of these models are discussed in turn with reference to other 

similar models. A summary of the models is given in Figure 2. 

1.4.3.1 Mouse models of Disc1 mutations 

Tomoda et al. have summarised some of the difficulties in exploring mutant Disc1 

mouse models; primarily the fact that it is not yet known exactly how the t(1;11) 

exerts its effects and how this alters DISC1 in human. Numerous point mutation 

studies have indicated particular residues of the Disc1 protein as being particularly 

important in certain interactions, such as the L607 residue and ATF4 interaction 

described earlier
107

. Others have looked at Disc1 knockdown or frameshifts at 

particular developmental stages and the resulting effect on neuronal development, or 

behaviour, or have attempted to replicate some predicted effects of the t(1;11) on 

DISC1. Particularly relevant is the emergence of phenotypes related to psychiatric 

disease in some mouse models
108

, the impact on dopaminergic signalling caused by 

Disc1 abnormalities, and gene-environment interactions with Disc1 mutation and 

known schizophrenia risk factors.  

The early paper described by Clapcote et al. looked at two induced point mutations 

in exon 2, which encodes amino acids that are present in all isoforms and is proximal 

to the point where the t(1:11) occurs in the orthologous DISC1 gene. These 

mutations were Q31L and L100P, and mice carrying these exhibited a large number 

of schizophrenia related phenotypes. Both mutations caused deficiencies in prepulse 

inhibition (PPI), a known phenotype of schizophrenia. Latent inhibition (the 

phenomenon by which a previously encountered stimulus takes longer to acquire a 

new meaning) was also decreased in both mouse models, as was the ability to bind 

the candidate psychosis factor and cAMP regulator PDE4B. Some of these 

behavioural phenotypes could be diminished in severity by antipsychotic or 
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antidepressant drugs, depending on genotype. Both mouse mutants also displayed 

decreased brain volume, another commonly observed phenotype in schizophrenia
108

. 

It was later demonstrated that maternal immune activation during gestation interacted 

with one of these Disc1 mutations
109

. L100P offspring had enhanced IL-6 presence in 

foetal brains compared to WT or Q31L mice upon maternal immune activation. 

Similarly, genotype-alone PPI was normal, as was maternal immune activation alone, 

but both combined resulted in PPI deficits in offspring
109

. Lipina et al. noted that 

maternal immune activation is a risk factor for schizophrenia, which the L100P 

phenotype is putatively similar to, while it is not for depression, which the Q31L 

phenotype is putatively similar to. We therefore see a schizophrenia specific risk 

factor, interacting with a putative schizophrenia related mutation in a known disease 

gene Disc1. Not only this, but the L100P phenotype appears to cause increased 

dopamine release in response to amphetamine, and increased D2R striatal 

expression. Haloperidol, a D2R antagonist, curbed some of the earlier described 

phenotypes of latent inhibition and prepulse inhibition abnormalities
110

, consistent 

with dopamine’s role as a key molecule in the pathology of schizophrenia
53

. Finally, 

the L607F mutation found associated with schizoaffective disorder in humans and 

known to alter ATF4 interaction has recently been modelled in the mouse. The 

orthologous residue mutation L604F was induced by CRISPR and homozygous mice 

had PPI deficits. It will be interesting to see what future experiments with this 

schizoaffective risk allele model show
111

. 

A Disc1 truncating mutation in mice, giving rise to an aberrant short form of Disc1, 

also exhibited phenotypes including reduced prefrontal cortex size and diminished 

short-term potentiation in the CA3:CA1 synapses of the hippocampus
112

. These 

shorter isoforms are of interest as Disc1 is known to self-associate. Truncated 

proteins might therefore exert a dominant negative effect. It must be cautioned 

however that expression of such truncated proteins is not confirmed in the 

t(1;11)
70,113

. The recent L604F mouse model appears to show increased Disc1 

aggregation
111

. In any case, Tomoda et al. have noted that mutations modelling a 

truncated protein effect tend to have consequences for dopaminergic signalling
114

. A 

model in which the dominant Disc1 mutant is expressed in the cortex and 
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hippocampus displayed enhanced D2R receptor binding in the striatum, as well as 

corresponding hypersensitivity to methamphetamine
115

. The group also reported a 

decrease in parvalbumin-positive interneuron staining in the prefrontal cortex
115

. 

These interneurons are notable as both genetic and environmental risk factors for 

schizophrenia have been shown to cause their ablation
116

. Erbb4, encoded by a 

schizophrenia candidate gene, has been shown to play a role in the synaptic pruning 

of excitatory synapses onto these very interneurons during monkey adolescence, with 

lesser but stronger synaptic inputs remaining post pruning
117

. Dominant-negative 

Disc1 displays gene by environment interactions in common with point mutations, 

and as expected for an apparent schizophrenia-risk modelling mutation
118

. Immune 

activation provoked IL-1β, IL-4, and IL-5 release in wild type mice, but IL-2 in 

mutant Disc1 mice. Phenotypes such as hyperactivity, increased swim test 

immobility, and decreased sociability emerged only upon mutant Disc1 and maternal 

immune activation. Abnormalities in brain structure were also detected
118

. 

The final posited effect of the translocation, and one which could conceivably be 

altered by epigenetic factors and the local transcriptomic environment, is altered 

DISC1 expression. In mice, this has been typically modelled by shRNA mediated 

knockdown. Niwa et al. experimented with in utero transfection of shRNA against 

Disc1 in E14 foetal mice and showed that the resulting knockdown of Disc1 was 

transient and confined mainly to pyramidal neurons of the prefrontal cortex
119

. Cell 

migration and proliferation was impaired, as previously shown in Disc1 mutant mice, 

but postnatal mice also displayed dopaminergic phenotypes. Adult mice displayed 

deficiencies in tyrosine hydroxylase positive neurons and dopamine levels in the 

prefrontal cortex, but not until P56. Dopamine levels were corrected by clozapine 

administration, and the altered mice also displayed hypersensitivity to methamine 

administration, a phenotype which did not emerge until P56. One conclusion is that 

the developmental lack of Disc1 results in inappropriate dopaminergic neuronal 

maturation, and a consequential adaptation of the brain to function on this “lower 

dopamine” level. Subsequently dopaminergic stimulation by methamphetamine, or 

readjustment of the system during adolescence (synaptic pruning), might cause an 

abnormal state. Most interesting was the finding of Niwa et al. finding that 
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parvalbumin immunoreactivity at P56 was decreased in the prefrontal cortex; 

implying a reduction of parvalbumin positive interneurons
119

. Disc1 deficiency can 

cause developmental abnormalities even without an exacerbating factor such as 

maternal inflammation, or lead/cannabinoid poisoning, which have also been shown 

to interact with Disc1 in a gene by environmental fashion
114

. A summary of the point 

mutation, truncated, and knockdown models is given in Figure 2. 

 

Figure 2. Illustrated findings utilised mouse models of Disc1 point mutation, truncation, or knockdown. References 

given in text. 

Although the exact effect of the t(1;11) upon DISC1 is unclear, there is evidence that 

point mutations, haploinsufficiency, and truncations all can cause phenotypes of 

interest including dopaminergic and parvalbumin positive interneuron abnormalities. 

It will be particularly interesting to see what role DISC1 dominant negative 

aggregation may play. These phenotypes are of known relevance to psychiatric 

disease, particularly in conjunction with a secondary risk factor.  
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1.4.3.2 IPSC models of DISC1 mutations 

Induced pluripotent stem cells (IPSCs) are a cellular model derived from a non-

pluripotent cell type which has been ‘reprogrammed’ into a pluripotent, or stem cell-

like, state. iPSCs were first generated using mouse fibroblasts in 2006 and from 

human fibroblasts in 2007. They exhibited all the hallmarks of pluripotent cells 

including teratomagenicity, proliferative capacity, stem cell gene expression, 

telomerase activity, and appeared to retain these phenotypes throughout division
120

. 

Although initially iPSCs were created by retroviral transfection of Yamanaka factors 

(a group of key genes expressed by stem cells including Oct3/4, Sox2, c-Myc, Klf4 in 

the original mouse experiment), subsequent experiments have utilised small 

molecules or plasmid constructs to minimise retroviral-induced insertional 

mutagenesis
121,122

. The research potential of induced pluripotent stem cells (IPSCs) 

has become increasingly realised in the post-Yamanaka world
120,122

. iPSCs have been 

used to model neurological and muscular diseases
123

, but also schizophrenia
124

. 

iPSCs are specific to the individual and can generate otherwise hard to obtain neural 

cells, two factors making them of prime importance in the study of pedigrees with 

psychiatric illnesses. This will allow more “true to life” phenotypic analysis. This is a 

must, as laboratory recreations of biological events are not hypothesis free. As 

discussed earlier, several mouse models investigate aspects of DISC1 biology using 

RNAi against all isoforms
125

, point mutations, or truncations to produce dominant 

negative isoforms. The hypothesis that DISC1 knockdown (or dominant negative 

effects) is of relevance to the effects of the t(1:11) translocation is a valid one. Yet 

the model, however efficacious, will not model any other effects such as differential 

methylation of the t(1:11). It has been shown that there is differential methylation 

associated with the t(1;11) in blood samples from carriers and controls, with most of 

the significant loci being at chromosomes 1 and 11 and close to the breakpoints
126

. It 

is unknown if DISC1 disruption alone would replicate these and other effects. 

Indeed, given the importance of epistasis, and the relative ignorance we have of 

psychiatric disease aetiology, the creation of a model with the entire genetic 

background is a must, in order to accurately model any “two-hit” effects. To date the 

t(1;11) remains a well evidenced example of a psychiatric disease causing mutation 

involving DISC1. As discussed already, other mutations involving DISC1 do not 
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have the same calibre of evidence, or are not as penetrant. DISC1 is of valid 

biological interest by itself; but DISC1 disruption is only one of the outcomes of the 

t(1;11). iPSCs allow the close approximation of a real biological scenario, including 

not only well-studied events such as the t(1;11) but all genomic information. In any 

case the complexity of psychiatric disease, involving multiple cell types and 

interacting brain regions
127

, as well as a neurodevelopmental trajectory, will make 

complete reconstitution of phenotypes impossible. There are also significant 

drawbacks to iPSC-derived cell models. Yamanaka summarised some of these issues 

in a review
122

. The first major problem is inherent variability in the generation of 

iPSCs. The process generates mutation, and in any case the cells are derived in a 

clonal process typically from fibroblasts. Whether by production of mutation or 

selection of cells which carry mutation, iPSC-derived cells inevitably carry some 

variants not in the host genome. Yamanaka’s review noted that there is some 

reported variation in iPSC differentiation efficiency and gene expression, but 

suggested much of this might be due to inherent variation from one laboratory to 

another and noted larger studies were less likely to find differences between iPSCs 

and embryonic stem cells
122

. However a later paper did find some differences within 

iPSC lines, which is of more relevance to my approach than iPSC and embryonic 

stem cell differences
128

. 40 iPSC lines were differentiated to neurons, with 

approximately 75% of these showing less than 1% undifferentiated cells after 14 

days. However, a minority, approximately 20% of lines, showed more than 10% 

undifferentiated cells and were designated as “defective”. These lines had differential 

expression of retroviral associated elements. Subsequently, lines were differentiated 

to dopaminergic neurons and implanted in mouse brains. Mice that received a 

“defective” transplant had greater graft sizes and had teratomas in 85% of cases, 

compared to 22% of cases in non-“defective” lines. Finally, many but not all 

“defective” grafts continued to express pluripotent markers despite a 30 day 

differentiation protocol and a 60 day implantation period. We can clearly see that 

there are issues with line variability in iPSCs. The intrinsic variability of iPSC-

derived models is one problem; the other is that many of the phenotypes of interest 

(synaptic strengthening, etc.) change with time. Therefore, differences between cell 

lines may represent differences in culture time, which must be carefully controlled 



Introduction and Literary Review 

60 

for. Another problem is the relative immaturity of iPSC-derived neurons. Dolmetsch 

and Geschwind noted that these neurons are poorly characterised, are usually 

synaptically immature, and few fire action potentials
129

. Since this research project 

began, it has been reported that extended differentiation protocols result in a high 

proportion of electrophysiologically active neurons; such protocols require between 

56 and 70 days of culturing and result in mixed cultures primarily of astrocytes and 

neurons
130

. Another group also reported that they could produce iPSC-derived 

neurons which appeared to have dendritic spines; this production required an equally 

long differentiation time, twice as long as that used in our protocol
131

. Although there 

have evidently been advances in iPSC-neuron techniques, the issues of variability 

remain, and the protocol utilised to generate the neurons described in this thesis does 

not produce neurons with spines. 

Previous researchers have generated and utilised an iPSC-model carrying the t(1;11), 

as well as controls from the family without the translocation. They were 

subsequently differentiated to neural precursor cells, which were then differentiated 

to neurons and harvested for RNA utilised in RNA-Seq (see Materials and Methods). 

1.5 Deconvolution 

RNA-Seq data can be mined for a wealth of information other than the quantification 

of transcript levels for any one gene. Typically, as described in this thesis, RNA-Seq 

data is generated not solely from a unique cell type of interest but from a 

heterogeneous mixture of cells. If cells are collected from tissue, they will be 

heterogeneous given that tissues contain multiple cell types. If grown in vitro 

primary cell culture rarely results in a single cell type. Differentiation of neurons 

from iPSCs generates multiple neuronal cell types as well as non-neuronal cells
132

. 

This creates a challenge; we cannot directly distinguish between transcriptional 

changes caused by a relative change in cell proportions from those changes caused 

by a relative change in cell properties and/or activity. Both scenarios have biological 

relevance. The depletion of a particular subset of cells is of relevance to diseases as 

diverse as type 1 diabetes, Parkinson’s, and possibly schizophrenia
116

. Inappropriate 

or diminished activity of cells, without their relative proportions changing in any 
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way, can also be a pathological mechanism. Common variants predisposing to 

schizophrenia have been suggested to converge on only a few cell types, for 

example. Both schizophrenia associated mutations and environmental risk factors 

affect parvalbumin positive interneurons
116

, while a recent analysis by Skene et al. 

found that SNPs associated with schizophrenia are highly likely to affect genes 

which are specific to, or highly enriched in, certain cell types
3
. In deconvolution, we 

have a single signal comprised of multiple, individual components, a problem also 

presenting in audio signal and image processing, although in the case of RNA-Seq 

the components are cell types
134

. The goal is to “deconvolute” the data, changing it 

from one single convoluted signal into multiple deconvoluted signals. In a mixed cell 

RNA-Seq, each signal will correspond to a particular cell type. This will allow gene 

expression changes caused by variation in cell type to be distinguished from those 

caused by changed cell properties, in theory. 

The mathematics of deconvolution is relatively straightforward. If we have RNA-Seq 

samples for each of the pure cell types that make up the mixed sample, it is assumed 

that the mixed sample will have a gene expression value equivalent to the sums of 

the gene expression values of each pure cell type, weighted by their proportion in the 

mixture. If we have the expression of the gene in every pure cell type, then each gene 

produces an equation which indicates what proportions each cell type are in. If more 

genes than cell types are measured, then these equations can be solved to find out 

what the proportions are. In practice proportions usually cannot be found which 

satisfy the equation for all genes. However this problem is a well-established one in 

mathematics and a method known as the non-negative least linear squares method 

can be utilised to give the proportions that sum to one and minimise error for each 

separate equation. I utilised the DeconRNASeq package developed by Gong et al to 

carry out deconvolution
135

. A further discussion of deconvolution can be found in 

Chapter 5.  

1.6 Key papers 

Various experimental approaches have been taken by several other research groups 

interested in the biological effects of DISC1 mutation. In this thesis, I compare and 
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contrast some of their findings with my own. A discussion of some key papers is 

contained below, and the result of comparisons to those papers follows in the main 

body of the thesis.  

1.6.1 “Disrupted in Schizophrenia 1 Interactome: evidence for the close 

connectivity of risk genes and a potential synaptic basis for 

schizophrenia”-Camargo et al. 2007
73

 

This paper was the first to utilise a yeast two-hybrid screen to identify potential 

DISC1 protein interactors. 34 high-confidence interactors were identified in the 

initial study of full length DISC1 as a bait protein; a second round of yeast two-

hybrid screening was carried out with 8 of these as well as the N-terminal 350aa of 

DISC1 encoded proximal to the breakpoint. In total, 127 proteins were identified as 

interacting with DISC1 or one of the 8 interactors, with some multiple interactors 

identified. As expected, many established interactors such as PDE4B, NDEL1, and 

LIS1 were re-identified by this approach. Overrepresented GO terms among the 

potential DISC1-interactome related especially to cytoskeletal processes such as 

tubulin and dynein interactions, as well as actin based transport. These processes are 

especially relevant to multiple stages of neuronal migration
82

. DISC1 had a 

particularly large number of such overrepresented GO terms among its potential 

interactors. Finally, the group also screened using a DISC1 construct that was 

truncated at the translocation breakpoint. This construct’s interactors were quite 

different from that full length DISC1; only 16 were in common, while it interacted 

with 15 proteins that the full length DISC1 did not. It also lost interactions with over 

20 binding partners, and presumably their binding partners which full length DISC1 

indirectly interacts with (although it is of course possible that some of its novel 

partners interact with these secondary partners). This did not unambiguously suggest 

either a gain of function or loss of function mechanism was at play for the putative 

effects of truncated DISC1, but was a very interesting experiment highlighting that 

either could be responsible.  
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1.6.2 “Modelling schizophrenia using human induced pluripotent stem 

cells”-Brennand et al. 2011
124

 

This paper was the first account of iPSCs being used to study the phenotypes of 

schizophrenia. Researchers at the Gage lab utilised the classic lentiviral transfection 

approach to generate iPSCs from the fibroblasts of individuals with idiopathic 

schizophrenia, as well as age matched controls. Subsequently, the cells were 

differentiated to neural precursor cells, as well as neurons. This has been the usual 

method of generating neurons and our cells have followed a similar route. Brennand 

et al. aimed to determine whether any of the phenotypes observed in post-mortem 

studies were replicated, such as reduced spine density, or whether receptors of 

relevance to schizophrenia were dysregulated. The majority of these phenotypes 

were not replicated, which may be due to the limitations of neural development in a 

2D culture. Levels of synaptic PSD95, as well as VGAT, VGLUT1, GLUR1, and 

SYN were normal or not significantly different, although unlike some other papers 

they did not report a PSD95/SYN1 colocalisation assay. Electrophysiology and 

calcium imaging also did not reveal any difference between cells derived from 

individuals with SZ and those derived from control individuals. However, an RNA 

microarray indicated dysregulation of several hundred genes, 25% of which were 

previously implicated in SZ by post-mortem dysregulation or by association. The 

paper also included an experiment utilising the rabies virus, which spreads via 

synaptic connections. Connectivity (as measured by the ratio of initially infected 

cells to that of secondary infected cells, which could not spread the virus) appeared 

to be lower in the non-control cells, indicating possible deficits in neuronal 

organisation in SZ. 

Although its importance as a new application of iPSC technology to psychiatric 

disease research cannot be doubted, the Brennand et al. paper does have its 

limitations. Many of the disease phenotypes were not replicated, which might be due 

to the high variability of the cell lines (indicated by varying prevalence of GAD67+ 

cells between all lines). Alternatively, phenotypes may be more subtle. The pathways 

implicated by the RNA-array analysis carried out by Brennand et al. included Wnt 

and cAMP signalling, which are of relevance to psychiatric disease. A number of 
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these changes in genes such as WNT7A, TCF4, AXIN2, RAP2A and several 

phosphodiesterases (PDE4 family) were verified by qPCR. The Wnt pathway is 

involved in processes such as β-catenin signalling, inhibited by GSK-3β (itself 

inhibited by Lithium, a mood stabiliser
136

), while cAMP signalling has well 

documented effects on neural transcription and memory
85

. Changes in these 

pathways could lead to phenotypes not entirely obvious in cell culture. DISC1 of 

course, exerts effects on both pathways. 

A second paper from the Gage lab was published in 2014 and focused on the same 

cells, looking at neurotransmitter release
137

. The study was an analysis of basal and 

post KCl-stimulated neurotransmitter release, with technical replications. The cells 

stained positively for enzymes involved in catecholamine processing (such as 

dopamine decarboxylase, dopamine-β-hydroxylase, prohormone convertases and 

cathepsins), and showed that the iPSC-derived neurons originally from schizophrenic 

patients had an increase in the proportion of tyrosine hydroxylase positive neurons. 

This was mirrored by an increase in both basal and KCl stimulated catecholamine 

release. However, the paper also highlighted once again the variation between cell 

lines, even from the same patient source. Although the averages showed clear 

differences between SZ and WT lines, intragroup variation was high and the two 

groups were not cleanly distinguished from one another. This is a recurring issue 

with iPSC-derived models, and is a stumbling point for research. It is also difficult to 

draw conclusions from the tyrosine hydroxylase cell increases; Niwa et al. ‘s earlier 

discussed paper showed that a model of DISC1 mutation had reduced cells of this 

type
119

. Of course, the pathology of schizophrenia is more complex than a simple 

increase or decrease, and what cell type and when these changes occur will be 

important to eventual pathology. 

1.6.3 “Synaptic dysregulation in a human iPS cell model of mental 

disorders”-Wen et al. 2014
132

 

Further papers were to follow on the heels of those of Gage and colleagues. 

“Synaptic dysregulation in a human iPS cell model of mental disorders” by Wen et 

al. was published in 2014 and employed advances in iPSC generation methods, using 
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non-integrating plasmids as gene vectors. The group harvested fibroblasts from a 

small pedigree with a DISC1 frameshift and a high rate of psychiatric disease, 

inducing pluripotency and differentiating the resulting cells to NPCs and neurons. 

The use of a DISC1 frameshift carrying genotype is of obvious relevance to the 

t(1;11), and the group were able to establish that DISC1 protein levels were depleted, 

with a corresponding increase in DISC1 ubiquitination. The group also took control 

and carrier iPSC lines and induced or corrected the DISC1 frameshift, before 

differentiating these lines to neurons. TALEN mediated correction of the frameshift 

in carrier lines replenished levels of DISC1, as expected. In a similar manner, 

TALEN mediated causation of the frameshift caused loss of DISC1 protein in 

neurons. Given DISC1’s role as a scaffold protein, and its presence in the synapse, it 

is not surprising that Wen et al. elected to investigate synaptic phenotypes. They 

observed phenotypes including deficits in PSD95/SYN1 co-localisation (indicating 

decreased levels of synaptic maturity) and reduced levels of synaptic vesicle protein 

2, both capable of being induced or corrected by the presence of absence of the 

DISC1 frameshift. This is strong evidence in favour of DISC1 having an important 

role in synaptic strengthening and formation. The group also carried out RNA-Seq on 

their cells, although the number of lines was limited. Over 2,000 genes were 

differentially regulated, with the top three overrepresented gene ontology terms being 

“synaptic transmission”, “nervous development”, and dendritic spine”. Given the 

problem of variability, the near linearity between the RNA-Seq and qPCR (which 

used different differentiations of the same cell lines) is encouraging and the changes 

they verified by qPCR point towards synaptic dysregulation, matching their protein 

level phenotypic analysis. Changes in our RNA-Seq analysis which point towards the 

synapse and agree with Wen et al. should therefore be regarded with a greater 

measure of trust, especially given the similarities between the t(1;11) and a DISC1 

frameshift. It is also impressive that gene-corrected/altered controls displayed the 

same synaptic phenotypes; although these controls were not subjected to RNA-Seq.  
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1.6.4 “Genomic DISC1 Disruption in hiPSCs Alters Wnt Signaling and 

Neural Cell Fate”-Srikanth et al. 2015
138

 

An interesting paper by Srikanth et al. also looked at the effects of DISC1 

frameshifts. The group induced frameshifts in either exon 2 or exon 8 of DISC1 

using targeted nucleases, resulting in iPSC lines with premature stop codons. The 

resulting iPSC lines were homozygous for exon 2 frameshifts (ex2mm) or had one 

(ex8wm) or two (ex8mm) exon 8 frameshifts. The lines appeared to retain all their 

characteristic iPSC features. A particular strength of this paper was its breadth: the 

group looked at the above three genotypes at two developmental time points, neural 

precursor cell and neuron. They noted that all mutant neural precursor cells displayed 

extensive NMD (nonsense mediated decay) on the more 3’ exons (9, 11, 12/13), with 

only the ex8 mutants continuing to display late exon NMD into the neuronal stage. 

Of particular relevance to the t(1;11) was the discovery that ex8wm cells (d40, 

versus the d50 timepoint for neurons and d17 for neural precursor cells) had 

approximately ½ the wildtype level of DISC1 protein, while ex8mm appeared to 

display a complete absence. Although the ex8wm is not an exact replica of the 

t(1;11) it is interesting that they saw such a clear relation between genotype and 

phenotype. Most interesting of all however, was the observation that ex2mm cells 

had no protein at the 85kb band (WT DISC1 size) but had a novel band at ~64kb. 

Novel transcripts have been detected in the t(1;11), although a corresponding protein 

has not been detected. 

DISC1 frameshifts also appear to impact development. Srikanth et al. found that 

ex8wm, ex8mm, and ex2mm NPCs all had downregulated levels of the cortical 

genes FOXG1 and TBR2, with even more changes found solely in the ex2mm. At the 

neuronal stage the changes in FOXG1 and TBR2 were found to persist, and once 

again an additional set of changes were found in the ex2mm genotype involving 

decreases in neuronal receptors (VGLUT1, GRIN1) and cortical markers (CTIP2, 

TBR1, FEZF2). Srikanth et al. hypothesised that this represented a subtle shift in cell 

fate, and utilising RNA-Seq found that some ventral progenitor markers were 

decreased while dorsal ones were increased, although it should be noted that the 

changes were not universally significant. Believing that the changes may be due to 
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disinhibited Wnt activity, the group displayed by means of a TCF responsive 

luciferase assay that basal and stimulated Wnt signalling was higher in the mutant 

cells, especially the ex2mm. The scenario is evidently quite complex however: the 

Hh inhibitor cyclopamine did not alter the basal or stimulated signalling levels, 

although interestingly it did alter FOXG1 expression. Both Wnt agonism and 

antagonism (applied from days 7-17 of differentiation) exhibited the ability to alter 

cell fate markers in NPCs, although their effects on Wnt signalling were more 

complex, with agonism actually appearing to decrease signalling. Both Wnt agonism 

and antagonism exhibited the ability to alter cell fate markers in NPCs. Wnt 

antagonism increased FOXG1 and TBR2 in these cells, while agonism further 

decreased them and also increased MAP2 (neuronal marker) expression, more 

drastically in the ex8wm cells compared to WT ones. It appears that although the 

relationship between Wnt signalling and cell fate is not exactly a linear, simple one, 

Wnt signalling abnormalities prompted by DISC1 disruption appear to have effects 

on cell fate. The exact timing of the abnormalities appears to be important, with 

altering of signalling resulting in shifted cell fate marker expression even though the 

Wnt signalling levels later appeared to not be greatly affected. 

To summarise, it appears as though several of the papers utilising iPSC-derived 

neurons as a cellular model for SZ agree on some core concepts. Synaptic 

dysregulation is a prevalent theme, while evidence supporting a corresponding 

electrophysiological dysregulation is less strong. In the work of Brennand et al., 

these experiments had the greatest power and showed no positive results, while in 

Wen et al. electrophysiological abnormalities were inconsistent, and usually only 

evident in comparison to a certain control line. Wnt dysregulation is emerging as a 

common theme in DISC1 disruption, with cells often displaying abnormal expression 

of key Wnt signallers. The paper from Srikanth et al. is perhaps the best displayer of 

this trend, although it should be noted that the phenotype is complicated and that Wnt 

antagonism and agonism did not give expected, binary phenotypes. It appears that 

temporal factors are of importance. To an extent the prediction of Brennand et al. in 

2011 is bearing out, as more data becomes available an ever-narrowing number of 
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genes are being consistently disrupted across all models of schizophrenia, perhaps 

hinting at pathways which are ubiquitously disrupted in schizophrenia. 

1.6.5 “Biological insights from 108 schizophrenia-associated genetic 

loci”-Schizophrenia Working Group of the Psychiatric Genomics 

Consortium 2014
29

 

The Common Disease Common Variant model of schizophrenia genetics predicts 

that many variants, each only mildly predisposing to schizophrenia, will exist in the 

population. These will be significantly enriched in schizophrenia cases compared to 

controls but by no means will they be absent from the control population. These 

variants will require large power to detect, and correspondingly large sample sizes. 

At the time, this paper was the largest genome-wide association study (GWAS) for 

schizophrenia. Utilising approximately 37,000 cases and 113,000 controls, this study 

looked at 9.5 million single nucleotide polymorphisms (SNPs). After disregarding 

SNPs in low linkage disequilibrium with more significant SNPs, they found 128 

SNPs implicating 108 loci. SNPs were significantly more likely to be transmitted to 

an affected offspring in parent-offspring trios and more likely to be found significant 

in the replication cohort. Over 300 genes were implicated in these loci, although of 

course it is likely that only one of the genes associated with SNP locus is actually 

affected by the SNP in such a way to increase risk for schizophrenia. It is also, of 

course, possible that the affected gene is at a great distance from the SNP (loci 

boundaries were defined by SNPs which highly correlate with the putative risk SNP). 

40% of loci contained only one gene, and genes included DRD2, many voltage gated 

calcium channels such as CACNA1C, CACNB2, and glutamatergic receptors such as 

GRIA1, GRIN2A, GRM3, some of which have roles in synaptic plasticity. Of 

particular interest was that the genes implicated had significant overlap with those 

found with de novo non-synonymous mutations in schizophrenia, intellectual 

disability, and autism spectrum disorder. As well as offering support to the 

“spectrum” model suggested by Craddock and Owen
12

, this also suggests that rare 

and common mutation converge on certain genes, a finding which bolsters the 

relevance of this thesis.  
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1.6.6 “Common schizophrenia alleles are enriched in mutation-intolerant 

genes and maintained by background selection”-Pardiñas et al. 2016
60

 

This new study, also by the Psychiatric Genomics Consortium, built upon their 

previous paper and utilised some of the same data. Here, the total sample was smaller 

(approximately 11,260 cases and 24,500 controls) but was phenotypically more 

consistent. This sample (derived from the CLOZUK cohort) had been filtered for 

high homogeneity based on genomic ancestry, limiting effects that could be due to 

population differences between cases and controls. Most patients were taking 

clozapine regularly, the exact figure was not given but 96% of the initial 15,000 

were, meaning that of the post-filtered group of 11,260 at least 94.7% must have 

been taking clozapine. 18 loci were discovered as significant. Approximately half of 

the cases and three quarters of the controls were also in the previous study (the PGC 

sample) with 37,000 cases and 113,000 controls; removing these from that group 

gave the PGC independent sample. The PGC independent sample and the CLOZUK 

derived one had high genetic correlation and agreement on the direction of SNP 

effects. Meta-analysis of the CLOZUK sample and the PGC independent sample 

gave 177 significant SNPs at 143 loci, 50 of which were novel. 98 of the loci 

appeared to implicate only a single gene; these included PDE4B, ERBB4, NRXN1, as 

well as CACNA1D and GABBR2, implicating calcium and GABA signalling. Many 

genes from the previous GWAS were also implicated again. Finally, gene set 

enrichment analysis revealed that genes of the sets “targets of FMRP” (discussed 

earlier in this introduction), “5HT2C-receptor complex”, “voltage -gated calcium 

channel complexes”, and those of “abnormal long term potentiation” were 

significantly enriched for hits. This paper not only reaffirmed the importance of 

calcium signalling, but also gave several hits novel for GWAS which implicated 

classic candidate genes and PDE4B, which encodes a DISC1 interactor.  

1.6.7 “Contribution of copy number variants to schizophrenia from a 

genome-wide study of 41,321 subjects”-CNV analysis group of the 

Psychiatric Genomics Consortium 2017
139

 

SNPs had been studied with large sample sizes, and the work of Guilmatre et al. and 

others had shown the importance of CNVs to the genetics of schizophrenia
48

. This 
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large study utilised ~21,000 cases and ~20,000 controls for the study of CNVs 

relating to schizophrenia. They found that in general schizophrenia cases had more 

CNVs (x1.03), which were larger (x1.1), and which contained more genes (x1.2). 

Most CNVs had a modest effect, and a number of rarer CNVs had a novel 

association with schizophrenia. Of 28 gene sets of relevance to schizophrenia, 15 

were enriched for excess CNV loss in cases and four for excess CNV gain in cases. 

None of 8 control sets were enriched in any way. Genes associated with GO terms 

“synapse” and “ARC complex” were highly significantly enriched for CNV loss and 

appeared to drive most of the significance of the other sets. Genes from these sets 

overlapping with CNVs had extensive protein-protein interactions with synaptic 

molecules including pre and postsynaptic markers, as well as glutamatergic 

receptors. They attempted to further delineate the exact loci which drove CNV 

significance and described 8 of these as being of genome-wide significance. 

1.6.8 “Genetic identification of brain cell types underlying 

schizophrenia”-Skene et al. 2018
140

 

Skene et al.attempted to determine what cell types the mutations discovered in the 

above papers might exert their effects in. They used a superset of scRNA-Seq data 

from the Karolinska Institute. Their hypothesis was simple; if schizophrenia affects 

certain cell types, mutations which predispose to schizophrenia should be 

overrepresented in genes which are exclusive or near exclusively expressed in those 

cells. Schizophrenia “genes” could of course be more akin to housekeeping genes 

which are universally expressed. But this did not appear to be the case. Using two 

types of analyses and the entirety of the schizophrenia associated SNPs from 

Pardiñas et al., they showed that enrichment for genes associated with these SNPs 

was found in several groups of genes. These included those highly specific to 

hippocampal CA1 pyramidal cells, striatal medium spiny neurons (MSNs), 

neocortical somatosensory pyramidal cells and cortical interneurons. More 

specifically, the group of genes highly specific to MSNs expressing Drd2, the group 

highly specific to MSNs expressing Drd1, as well as the group highly specific to 

parvalbumin positive interneurons were all heavily enriched for schizophrenia hits. 

This finding appeared to be specific for schizophrenia; depression, years of 
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education, and height related hits produced different significantly enriched groups 

(although MSNs-related genes were significant in the education investigation as 

well). In general, these findings were replicated using other datasets, and the same 

cell types were highlighted as having gene enrichment when instead of GWAS hits 

the input was “genes affected by antipsychotics” or gene sets associated with 

schizophrenia such as “NMDAR complex”, “PSD-95 complex”, and “FMRP 

associated genes”. The effect was not found when gene sets related to Alzheimer’s 

disease or migraine were used. The paper was a highly interesting look at what cell 

types schizophrenia genetics converges on; the emergence once again of 

dopaminergic and parvalbumin positive interneurons as being important to 

schizophrenia is striking. 

1.7 Hypothesis and Aims of the PhD 

It is clear that the genetics of psychiatric illness, although characterised by both 

common and rare variation, have still not been fully elucidated. It is also not entirely 

evident how the t(1;11) exerts its effects. Research has however highlighted 

particular pathways related to synaptic activity and neurodevelopmental as being 

important in pathogenesis. Large CNV and GWAS studies have found some 

candidate genes, while studies of iPSCs and DISC1 have indicated the possible 

importance of cAMP and Wnt signalling in t(1;11) pathogenesis. In addition, new 

computational techniques can be applied to RNA-Seq profiles of iPSC-derived 

neurons, so as to go beyond the gene level changes and see if particular patterns 

emerge. 

The aim of this PhD was to study iPSC-derived neurons of the Scottish pedigree, and 

compare and contrast RNA-Seq profiles of lines with and without the translocation. I 

also planned to utilise the Der1 mouse model. By this I aimed to see 

1) What pathways or genes are altered by the translocation, with particular 

interest in those which are amenable to further investigation. Further 

experiments would depend on the nature of the altered genes.  

2) If there were convergences between genes altered by this unique mutation 

and those altered by more common SNPs and CNVs predisposing to 
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psychiatric illness. This would indicates that the t(1;11) is a good model for 

psychiatric illness more generally, and that insights from its investigation 

might be applicable to the field as a whole. 

3) If there were convergences with DISC1 models, which would be more 

evidence that the translocation exerts effects via effects on DISC1. 

4) If the changes observed could be linked to changes in relative proportions of 

certain cell  types. 

5) If the changes observed could be related dysfunctions in particular cell types 

and what this might mean on the molecular level. 

To answer questions 1-3, I utilised RNA-Seq investigation, comparing and 

contrasting the list of differentially expressed genes to those lists from major 

papers discussed earlier. I verified changes of particular importance utilising 

qRT-PCR with the idea of producing further experimental ideas. I aimed to 

answer question 4 using my deconvolution approach, and question 5 utilising the 

EWCE approach of Skene et al. 
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2 MATERIALS AND METHODS 
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2.1 Generation of induced pluripotent stem cells (iPSC) from 

dermal fibroblasts 

The below text is replicated exactly (excepting formatting and clarification of some 

statements) from the Supplementary Materials of Malavasi et al
70

. I did not 

contribute to the production of the iPSC lines. As stated in my thesis declaration, 

only methods which have an explicit declaration of non-contribution as above were 

not carried out by the author (me). All these methods are clearly noted in the text and 

referenced. For convenience I have stated at the start of each section whether it was 

carried out by me, by collaborators, or in collaboration together. 

Ethical consent relating to the translocation family is as follows: Prior to 2014, 

Lothian Research and Development (2011/P/PSY/09), Scotland A Research Ethics 

Committee (09/MRE00/81); 2014 onwards, Lothian Research and Development 

(2014/0303), Scotland A Research Ethics Committee (14/SS/0039). Fibroblasts were 

cultured in DMEM with 10% FBS (all media and supplements used in 2.1 and 2.2 

from Life Technologies unless stated otherwise) at 37
o
C with 5 % CO2. Fibroblasts 

were reprogrammed by non-integrating methods, using episomal plasmids
141

. For 

episomal reprogramming of some lines we used a protocol adapted by Tilo Kunath, 

(University of Edinburgh) and Roslin Cells (roslincells.com). Other lines were 

reprogrammed by Roslin Cells. Plasmids incorporating Oct3/4, shRNA to p53, 

SOX2, KLF4, L-MYC and LIN28 were electroporated into fibroblasts using 

Nucleofection (Amaxa, Lonza). The episomal plasmids pCXLE-hOCT3/4-shp53-F 

(for OCT3/4 and p53 knockdown), pCXLE-hSK (for SOX2 and KLF4) and pCXLE-

hUL (for L-MYC and LIN28) were a gift from Shinya Yamanaka. (These correspond 

to Addgene plasmids 27077, 27078, 27080). 5 x 10
5
 fibroblasts were transfected with 

1.7ug of pCXLE-hOCT3/4-shp53-F, 1.6ug of pCXLE-hSK and 1.7ug of pCXLE-

hUL using the NHDF Nucleofector kit and Amaxa Nucleofector protocol U-023 

(1,650 V, 10 ms, 3 time pulses), according to the manufacturer’s instructions. Cells 

were then seeded into one well of a gelatin-coated 6 well tissue culture grade plate in 

Opti-MEM (ThermoFisher Scientific) supplemented with 10% FCS and 1% 

Antibiotic Antimycotic Solution (Life Technologies 15240062). All stages of cells 

were maintained in media supplemented with Antibiotic Antimycotic Solution 
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thereafter. The medium was replaced every 2-3 days before cells were replated into a 

10cm Vitronectin/Geltrex (ThermoFisher Scientific) or Matrigel (Life 

Technologies)-coated tissue culture grade dish after 6-7 days.  

The following day the medium was changed to Essential 6 medium (ThermoFisher 

Scientific) with added 100 ng/ml bFGF (Peprotech). The medium was changed every 

2 days until colonies were ready to be picked, at approximately day 25-30. Individual 

colonies were picked and expanded into 12, then 6, well Vitronectin/Geltrex or 

Matrigel-coated tissue culture grade plates in Essential 8 medium (ThermoFisher 

Scientific) with daily medium changes. Cells were passaged using 0.5mM EDTA in 

PBS. iPSCs were generated and cultured at 37
o
C, 5% CO2 and 21% O2. Quality 

control of iPSC lines was performed after clonal passage 10. 

Pluripotency of iPSC lines was assessed using markers SSEA-1 PE, SSEA-4- 

AlexaFluor647 and Oct3/4 PerCP-Cy5.5 and isotype controls using the BD Stemflow 

Human and Mouse Pluripotent Stem Cell Analysis Kit (BD Biosciences, 560477) 

according to the manufacturer’s instructions, or with SSEA-1-APC (301907), SSEA-

4-FITC (330409), TRA-1- 60-PE (330609), TRA-1-81-PE (330707) and isotype 

controls (all BioLegend) as follows: iPSCs were dissociated using StemPro Accutase 

(Life Technologies) and washed with Essential 8 medium. 1x105 cells were 

incubated with antibodies in 2% Fetal Bovine Serum in PBS for 1 hour on ice. Cells 

were washed once with 2% BSA/PBS, centrifuged at 200 x g for 5 min and 

resuspended in 200 ul 2% BSA/PBS. FACS analysis was performed on single cell 

suspensions using a FACS Aria cell sorter (BD Biosciences). Data were analysed 

using FlowJo v10 software. 

EBNA-1 primer sequences and amplification protocol were taken from the Epi5 

Episomal iPSC Reprogramming Kit (Life Technologies, A15960). Genomic DNA 

was extracted from iPSCs using the DNeasy kit (Qiagen). Cells that had not been in 

contact with episomes, were used as negative controls. Positive controls were low 

passage iPSC lines where episomes were still present. A non-template control (NTC) 

was also used. iPSC lines were only taken forward once episomal clearance had been 

confirmed by this method (data not shown). 
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The human Cytoscan 750 K Array (Affymetrix) was used to identify genomic 

abnormalities in the iPSC lines. The array consists of 550,000 unique non-

polymorphic probes and 200,000 SNPs for accurate genotyping. Genomic DNA was 

extracted from iPSC clones using the DNeasy kit (Qiagen) according to 

manufacturer’s instructions. Samples were sent to the NHS Cytogenetics Laboratory 

(Western General Hospital, Edinburgh) for processing of the arrays. Chromosome 

analysis was performed using Chromosome Analysis Suite version 2.0 (Affymetrix). 

Copy number, breakpoints and Loss Of Heterozygosity (LOH) regions were 

determined using the models and algorithms incorporated within the software 

package. To exclude possible false positives due to inherent microarray noise the 

CNV threshold of gains and losses for inclusion in analyses was 10 kilobase pairs 

(kbp) and 10 consecutive markers. iPSC lines with deletions or duplications greater 

than 5 MB, the limit typically applied by G-banding, were excluded from further 

studies. 

2.2 NPC culture and neuronal differentiation 

The below text is replicated exactly (excepting formatting) from the Supplementary 

Materials of Malavasi et al
70

. I did not contribute in the production of the neurons 

which were utilised and described in this thesis. 

iPSCs were converted into neuroectoderm by dual-SMAD signalling inhibition
142

. 

Long-term anterior neural precursor cells were generated and maintained under 

physiological normoxia (3% O2) and in the absence of EGF3. NPCs were cultured at 

37
o
C, with 5% CO2 and 3% O2  on Matrigel (Life Technologies)-coated 6 well tissue 

culture grade plates in Advanced DMEM/F-12 (Life Technologies) with 1% 

Glutamax-1 (Life Technologies), 1% N2 supplement (Life Technologies), 0.1% B27 

supplement (Life Technologies), 10 ng/ml bFGF (PeproTech) and 1% 

antibiotic/antimycotic solution (Life Technologies). NPCs were maintained up to 

passage 30 with feeding every 2-3 days and weekly passages using StemPro 

Accutase (Life Technologies). All NPC lines were tested every week for 

mycoplasma infection. For differentiation into cortical forebrain-like neurons
143

, 

NPCs were plated into Matrigel (Life Technologies) and Laminin (Sigma-Aldrich)-



 

     77 

coated 12 well tissue culture grade plates in Advanced DMEM/F-12 with 0.5% 

Glutamax-1, 0.5% N2 supplement, 0.2% B27 supplement, 2 μg/ml Heparin and 1% 

antibiotic/antimycotic solution (Life Technologies). Neurons were maintained for 5 

weeks with feeding as necessary. During weeks 2 and 3 the neuronal differentiation 

medium was supplemented with Forskolin (Tocris Bioscience). During weeks 4 and 

5 the Forskolin was removed, and the medium was supplemented with BDNF (Life 

Technologies) plus GDNF (Life Technologies) to 5ng/ml each. 

2.3 Human cDNA synthesis 

I carried out synthesis of cDNA to produce standard curves and test primers. cDNA 

was synthesised from human cerebral cortex RNA using a 40µl reaction mix 

comprised as follows: 4µl GeneAmp 10x PCR buffer II, 8.8µl MgCl2 solution (both 

#N8080130, Life Technologies, Paisley, Glasgow, PA4 9RF), 2µl GeneAMP dNTP 

solution (#4303442, Life Technologies, Paisley, Glasgow, PA4 9RF), 0.8µl RNase 

Inhibitor (#N8080119, Life Technologies, Paisley, Glasgow, PA4 9RF), 1µl 

Multiscribe Reverse Transcriptase (#4311235, Life Technologies, Paisley, Glasgow, 

PA4 9RF), 4µl Random Hexamers (#N8080127, Life Technologies, Paisley, 

Glasgow, PA4 9RF), 18.4µl Ultrapure DNase/RNase-Free Distilled Water 

(#10977035, Life Technologies, Paisley, Glasgow, PA4 9RF), and 1µl of human 

cerebral cortex RNA solution (#636561, Takara Bio Europe, Saint-Germane-En-

Layn, France) as supplied by Takara Bio Europe, containing 1µg of RNA. The 

following protocol was utilised. 

The combined RNA and Ultrapure water solution (19.4µl total) was first denatured 

using the following protocol; 

65
o
C 10 minutes 

4
o
C 5 minutes 

And was subsequently placed on ice. The rest of the reagents were added and the 

tube subjected to the following protocol; 

25
o
C 10 minutes 
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48
o
C 30 minutes 

95
o
C 5 minutes 

Tubes were then kept at 40
o
C before being checked for genomic DNA contamination 

via PCR of a suitable region of the genome which gives a different product in cDNA 

and genomic DNA. cDNA preparations without contamination were subsequently 

stored at -20
o
C until use, whereupon they were stored at 4

o
C.  

2.4 Polymerase Chain Reaction 

I carried out PCRs to determine if primers were producing solely the desired product. 

PCRs were carried out using a 20µl reaction mix comprised as follows: 15.4µl U 

Ultrapure DNase/RNase-Free Distilled Water, 2µl 10X PCR Buffer with MgCl2 

(#P2192, Sigma-Aldrich), 0.4µl DNA Taq Polymerase (#18038018, Life 

Technologies), 0.4µl of 10μM forward primer, 0.4µl of 10μM reverse primer, 0.4µl 

of 10mM dNTP mix, and 1μl of cDNA solution (or Ultrapure water as a negative 

control). Unmodified salt purified primers were purchased from Sigma-Aldrich and 

stored as a 100µM solution at -20
0
C. Working solutions of 10µM primer were kept at 

4
0
C. Ultrapure DNase/RNase-Free Distilled Water (#10977035, ThermoFisher 

Scientific (Life Technologies)) was used as the solvent. This mixture was subjected 

to the following PCR protocol, where X is between 55 and 65 depending on the 

primer pairs: 

95
o
C 1 minute  

Then the following three steps repeated 10 times, with X decreasing by 1
o
C every 

time; 

95
o
C 20 seconds 

X+10
o
C 30 seconds 

72
o
C 1 minute 

Then the following three steps repeated 30 times; 
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95
o
C 20 seconds 

X
o
C 30 seconds 

72
o
C 1 minute 

Then; 

72
o
C 10 minutes 

PCR products were then subjected to DNA electrophoresis for purposes of 

examination. 

2.5 DNA Electrophoresis 

I carried out DNA Electrophoresis. DNA electrophoresis was used to assess the size 

of DNA fragments generated by PCR. Gels were created using LMP agarose, diluted 

in TBE Buffer to a concentration of 2%. After melting and casting of the agarose gel 

in a mould, it was left to solidify at room temperature. Subsequently, 5-10μl 

(depending on well width) of DNA loading solution was added to each well. This 

solution consisted of 9 parts PCR product to 1 part DNA Loading Buffer. 5-10μl of 

DNA marker (1 Kb Plus DNA Ladder, Invitrogen) was also pipetted into a well. The 

gel was then placed in an electrophoresis tank (Bioscience Service) and completely 

submerged in TBE buffer. A 100 volt current was applied and the gel was visualised 

after 1 hour, with subsequent visualisations if necessary. The DNA fragments in the 

gel were visualised by UV light illumination using an Uvidoc Lightbox (Uvitec) and 

photographed with the built-in camera. 

If the primers were intended to be used for qPCR, PCR products were subjected to 

DNA electrophoresis for purposes of examination. If the product size matched the 

expected size, and was the only product present, the reaction was deemed “clean” 

and the product was sequenced to ensure primer specificity.  
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2.6 Sequencing of Polymerase Chain Reaction products 

I prepared products for sequencing. Clean PCR products were subjected to 

sequencing. The following reagents were added to the wells of a 96-well plate; 1μl of 

PCR product, 1μl of ExoSapIT, and 3μl of Ultrapure DNase/RNase-Free Distilled 

Water (#10977035, ThermoFisher Scientific (Life Technologies). These were then 

subjected to the following protocol: 

37°C 60 minutes 

80°C 20 minutes 

Subsequently, the following was added to each well; 1μl BigDye, 1μl BigDye x5 

sequencing buffer, 1μl of 3.2μM primer solution, and 2μl Ultrapure DNase/RNase-

Free Distilled Water (#10977035, ThermoFisher Scientific (Life Technologies)). 

Unmodified salt purified primers were purchased from Sigma-Aldrich and stored as a 

100µM solution at -20oC. Working solutions of 10µM primer were kept at 4oC. 

Ultrapure DNase/RNase-Free Distilled Water (#10977035, ThermoFisher Scientific 

(Life Technologies)) was used as the solvent. 3.2μM primer solutions were generated 

from 10μM solutions and the solvent was the sane. The wells were then subjected to 

the following protocol: 

96°C 1 minute 

Then the following three steps repeated 30 times:  

96°C 10 seconds  

50°C 5 seconds 

60°C 4 minutes  

Then each well had the following added, in the order in which they are listed; 2.5μl 

of 125mM EDTAs solution, 30μl of 95% ethanol solution. Then the plate was sealed 

and the following protocol was carried out: 
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Inversion of plate 4 times 

Incubation at room temperature for 15 minutes 

Centrifuge 30 minutes at 3000rpm, at 8oC 

Removal of excess ethanol by inversion of opened plate onto absorbent tissue 

Addition of 30μl of 70% ethanol solution 

Centrifuge 15 minutes at 3000rpm, at 8oC 

Removal of excess ethanol by inversion of opened plate onto absorbent tissue 

Open air drying of plate for 3-5 minutes, then resealing 

Sequencing on a 3730 Genetic Analyzer (Applied Biosystems). This was carried out 

by appropriately trained staff at the IGMM Sequencing Facility, chiefly Stephen 

Brown.  https://www.ed.ac.uk/igmm/facilities/dna-sequencing-facility. 

Ultrapure DNase/RNase-Free Distilled Water (#10977035, ThermoFisher Scientific 

(Life Technologies)) was used as the solvent in all cases. 

Primers which did not produce a single, intended sequence were discarded for the 

purposes of qPCR. 

2.7 Quantitative Polymerase Chain Reaction 

This method is as in Malavasi et al. 2018
70

. qPCRs were carried out both by me and 

by Helen S. Torrance, and the section describing primers indicates gene by gene 

contributions by Helen S. Torrance. Note that housekeeping gene stability was 

assessed as described in Malavasi et al. and I did not contribute to the selection or 

quantification of housekeeping genes. I contributed solely to the selection and 

quantification of genes of interest. 

Non-template and minus reverse transcriptase controls were included in all 

experiments with three technical replicates for all samples. To control for inter-plate 

https://www.ed.ac.uk/igmm/facilities/dna-sequencing-facility
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variation a calibrator sample was included on every plate for normalisation purposes. 

Melting curve analysis was carried out for each primer pair to optimise amplification 

conditions and confirm amplification specificity. Specificity was also confirmed by 

PCR and sequencing (2.4 and 2.6). Melting curves of significant genes and 

housekeeping genes are provided in the Appendix, 9.2 and 9.3. PCR efficiency was 

assessed by running standard curves using serial dilutions of NPC or mouse brain 

samples for human and mouse primers, respectively. All samples were run in 

triplicate, and replications with more than 1 CT difference were discarded. Gene 

expression levels were calculated using the relative standard curve method; with 

normalisation to the geometric mean of the reference housekeeping genes (see 2.8 

and 2.9). They were then averaged for each set of replicates to give the expression 

score for that sample. 

From Malavasi et al. and relating to housekeeping genes which I did not contribute 

towards identifying
70

; For quantification of human gene expression, housekeeping 

gene stability was assessed across samples taken from NPCs through to five week 

neurons for several genes using geNorm (genorm.cmgg.be/). ACTB and GAPDH 

were subsequently selected as the most stable housekeeping genes for use in 

quantitative RT-PCR in these samples. ACTB was used as a reference gene for 

human iPSC-described neuron RNA-Seq follow up. For quantification of mouse 

gene expression, Cyclophilin (Ppib) and Hmbs were found to be stable in the mouse 

brain samples analysed.  

A typical qRT-PCR was as follows and closely follows that recommended by the 

manufacturer. Quantitative Polymerase Chain Reactions were carried out in triplicate 

in a 384-well plate. Each well was loaded with 4.8μl Power Sybre Green PCR 

Master Mix (#4367659, ThermoFisher Scientific (Life Technologies)), 0.6μl 10mM 

forward primer, and 0.6μl 10mM reverse primer, as well as 4μl cDNA sample. Non-

template control replaced cDNA with Ultrapure DNase/RNase-Free Distilled Water 

(#10977035, ThermoFisher Scientific (Life Technologies). Unmodified salt purified 

primers were purchased from Sigma-Aldrich and stored as a 100µM solution at -

20
o
C. Working solutions of 10µM primer were kept at 4

o
C. Ultrapure DNase/RNase-

Free Distilled Water (#10977035, ThermoFisher Scientific (Life Technologies)) was 
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used as the solvent. The plate was spun on a centrifuge for at least 3 minutes to force 

reagents to the ends of the wells. 

The plate was then run on a 7900HT Fast Real-Time PCR System with 384-Well 

Block Module (ThermoFisher Scientific (Applied Biosystems)) using the following 

protocol; 

50°C 5mins 

95°C 10 mins 

Then the following two steps repeated 40 times, with X varying between 57 and 63 

depending on primer pair; 

95°C 15 sec 

X°C 45 sec  

Dissociation curve step; 

95°C 15 sec 

X°C 15 sec 

95°C 15 sec 

QPCR products were occasionally subjected to DNA electrophoresis for purposes of 

examination. 

2.8 Human primers used in this thesis 

All primers were designed using UCSC hg38, at https://genome.ucsc.edu/, and were 

then checked for specificity using BLAST, at https://blast.ncbi.nlm.nih.gov/Blast.cgi. 

Primers which had a product greater than 250bp, or an offsite potential product less 

than 1kb were discarded. All products were examined by DNA electrophoresis to 

ensure correct product size and sequenced to ensure specificity. All primers span an 

exon-exon boundary containing an intron of at least 1kb in size. Note that DRD2, 

https://genome.ucsc.edu/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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ACTB, and GAPDH primer design was carried out by Helen S.Torrance. ACTB was 

selected as a housekeeping gene due to its stable expression; selection of this gene 

and other details are described in Malavasi et al. 2018 and I did not carry out the 

corresponding PCRs
70

. 

Gene Forward Reverse 

ACTB GTTACAGGAAGTCCCTTGCCATCC CACCTCCCCTGTGTGGACTTGGG 

BBS1 TGAAACTCAATGTGCCCCGA GTAGGCGCAGCAGGTATAGG 

CALB1 AATTTCCTGCTGCTCTTCCGA TCTATGAAGCCACTGTGGTCAG 

CHRNA4 GGCCGAAGACACAGACTTCTC AGCAGGCAGACGATGATGAAC 

DRD2 AAGGGCACGTAGAAGGAGAC GGTCACCGTCATGATCTCCA 

GAPDH GAGTCCACTGGCGTCTTCAC ATGACGAACATGGGGGCATC 

GPC1 CCATGCTTGCCACCCAG GCTCTGAGTACAGGTCCCG 

HAP1 GCCCCTAAGCTGATTTCGCA AGAGTGTCGAGTTGAGAGGC 

HIF1A TTTTGGCAGCAACGACACAG  GTGCAGGGTCAGCACTACTT 

KANSL1 GTTACAGCCAGCACATCGC AGACTGAAGATCAACCTCCCG 

METRN GCGACTTCGTAATTCACGGG TGGGGTACGAATGGAGGTCA 

NRP2 GGTGGACCCCTCAACAAAGC GCCGGTACACCATCCAGTC 

NTRK2 CTGGCCTGGAATTGACGATGG CGAGAGATGTTCCCGACCG 

PDYN TGTAAAGACCCAGGATGGTCC AGTCCTCCTTGTCATTGAGCC 

QKI CTAATCACTGTGGAAGATGCTCA TTCTTCAGGCTGTCTTCTCCTT 
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Exon Forward Reverse 

Associated isoform accession 

number 

Location in UCSC 

hg19 

DLG2 
TGCATGTTACT

GTGCACTCCG 

GGGCCTCTTACT

TCGTGGGT 

Isoforms 2 and 6,  NM_001364.3 and 

NM_001300983.1 

-

chr11:84843812-

84844167 

DPYSL2 
CTTCCCGGCAGT

TTTTGCCT 

ATATGTCTGCAT

AGAACGACTGGT 
NM_001197293 

+chr8:26371791-

26372195 

DPYSL3 
TAGAGATCCGG

AGCGCCACC 

TCATTGACGATT

CTGCCTCCCT 
NM_001197294.1 

-

chr5:146889041-

146889098 

DVL1 
CACCAGCTCCTC

CTCACTAACC 

GGCGCTCATGTC

ACTCTTCAC 
NM_001330311.2 

-chr1:1274962-

1275029 

GRIA4 
CAACTCTTGGCA

ATGACACAGC 

TTAGGAATGGTC

GAACAGCG 

NM_001112812.1 and 

NM_001077244.1 

+chr11:10578260

2-105783836 

NTRK2 
TTCTGCTTAAGT

TGGCAAGACAC 

GCACTTCCCGGG

ATAAGCCA 

Isoforms b and f, NM_001007097, and 

NM_001291937.2 

+chr9:87425457-

87430617 

NTRK3 
ATGAGGAACCT

GAGGTCCAG 

AAAAGCCATGAC

GTCCTTTG 
NM_001007156 and NM_001320134.1  

-

chr15:88520598-

88520822 

SHTN1 
TTCGAAAGGCT

GCGAAAGTG 

CCAACACTGGCA

TGGATTTGG 
See explanation below 

-

chr10:118661276

-118661468 

SLC12A2 
CACAAGAGAAA

TCTCCTGGCACC 

TTGAGTTGCAGT

CTTGCCATCC 

Transcript variant 1, NM_001046.2  

and NR_046207.1  

+chr5:127512797

-127512844 

 

 

 

 

 

 

Note that DVL1’s exon matches a second isoform which is poorly annotated and has 

a retained intron. It has neither an associated mRNA nor an EST. The primers of 
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SHTN1 were designed to detect an exon found in multiple isoforms. In humans the 

exon is found in several isoforms distinguished by altered C and N terminals, and is 

only absent from one. See section 3.9.9 for more details on the properties of the 

analogous gene in rodents. NM_001127211, NM_001258298, NM_001258299, 

NM_001258300 are the isoforms listed in NCBI which contain the exon. Locations 

are as given by DEXSeq, with +/- indicating the strand as in UCSC. Note that the 

exons are visually identified in a series of images displayed in theAppendix 9.1. 

2.9 Mouse primers used in this thesis 

All primers were designed using UCSC mm10, at https://genome.ucsc.edu/ and were 

then checked for specificity using BLAST, at https://blast.ncbi.nlm.nih.gov/Blast.cgi. 

Primers which had a product greater than 250bp, or an offsite potential product less 

than 1kb were discarded. All primers span an exon-exon boundary containing an 

intron of at least 1kb in size. All products were examined by DNA electrophoresis to 

ensure correct product size and sequenced to ensure specificity. Note that Hmbs and 

Ppib (cyclophilin) primer design was carried out by Helen S. Torrance. These were 

selected as housekeeping genes due to stable expression; details are described in 

Malavasi et al. 2018 and I did not carry out the corresponding PCRs
70

. 

Gene Forward Reverse 

Apoe GTTGGTCACATTGCTGACAGG CCAGCGCAGGTAATCCCAG 

Arc GGTGAGCTGAAGCCACAAATG ACTTCTCAGCAGCCTTGAGAC 

Avp CACAGTGCCCACCTATGCTCG TTGGTCCGAAGCAGCGTCC 

Hap1 CTAAGGCTGAGACAGCGCAC ATAGCCTTCCAGCCTCAACAC 

Hmbs CCCTGAAGGATGTGCCTACCATA AAGGTTTCCAGGGTCTTTCCAA 

Metrn CCTTCCGTTTTGAACTGCACG AGCTCGGCATCACTGC 

Mt2 CCTGCAAATGCAAACAATGCAA TCGGAAGCCTCTTTGCAGAT 

Nrp2 AGTGAGAAGCCAGCAAGATCC GTTCGGGGGCGTAGACAATC 

Ppib GGAGATGGCACAGGAGGAAAG GCCCGTAGTGCTTCAGCTTGAA 

Slc1a1 ATGATCTCGTCCAGTTCGGC GGTCCAAGCCATTCAGTTGC 

   

https://genome.ucsc.edu/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.10 Harvesting of RNA from iPSC-derived neurons 

I did not carry out the culture or harvesting of the cells used to generate RNA but 

have exactly replicated the relevant text written by collaborators. I claim no credit in 

the production, harvesting, RNA-Sequencing, or initial data processing of the 

samples, which was the work of the following individuals; Kirsty Millar, Helen S. 

Torrance, Marion Bonneau, Susan Anderson, Daniel McCartney, Philippe Gautier, 

and the Wellcome Trust Edinburgh Clinical Research Facility.  

2.10.1 Culture and maintenance of iPSC-derived neurons 

High density neuronal cultures (approximately 2 million cells per well in 12 well 

plates) were differentiated for 5 weeks. Immunofluorescence staining of parallel 

cultures was used to confirm correct NPC morphology and Nestin expression at the 

time of plating, and successful neuronal differentiation by assessing morphology and 

acquisition of βIII-tubulin expression at the time of harvesting, for every culture 

used. Three independent neuronal differentiations were performed per NPC line. 

Neurons were harvested in RNAlater (ThermoFisher Scientific), stored at -80
o
C, then 

processed in batches to extract the RNA. Each batch consisted of one triplicate per 

line to minimise batch effects. 

2.10.2 Processing of RNA samples for RNA sequencing 

All subsequent steps were performed by the Wellcome Trust Edinburgh Clinical 

Research Facility (www.wtcrf.ed.ac.uk) . Total RNA samples were assessed on the 

Agilent Bioanalyser (Agilent Technologies, G2939AA) with the RNA 6000 Nano 

Kit (5067-1511) for quality and integrity of total RNA, and then quantified using the 

Qubit 2.0 Fluorometer (Thermo Fisher Scientific Inc, Q32866) and the Qubit RNA 

BR assay kit (Q10210). Samples were also assessed for DNA contamination using 

the Qubit DNA HS assay Kit (catalogue Q32851). 

http://www.wtcrf.ed.ac.uk/
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Libraries were prepared from each total-RNA sample using the TruSeq Stranded 

Total RNA with Ribo-Zero Gold kit (RS-122-2301) according to the provided 

protocol. 

500ng of total-RNA was processed to deplete rRNA before being purified, 

fragmented and primed with random hexamers. Primed RNA fragments were reverse 

transcribed into first strand cDNA using reverse transcriptase and random primers. 

RNA templates were removed and a replacement strand synthesised incorporating 

dUTP in place of dTTP to generate double-stranded cDNA. AMPure XP beads 

(Beckman Coulter, A63881) were then used to separate the double-stranded cDNA 

from the second strand reaction mix, providing blunt-ended cDNA. A single 'A' 

nucleotide was added to the 3' ends of the blunt fragments to prevent them from 

ligating to another during the subsequent adapter ligation reaction, and a 

corresponding single 'T' nucleotide on the 3' end of the adapter provided a 

complementary overhang for ligating the adapter to the fragment. Multiple indexing 

adapters were then ligated to the ends of the double-stranded cDNA to prepare them 

for hybridisation onto a flow cell, before 15 cycles of PCR were used to selectively 

enrich those DNA fragments that had adapter molecules on both ends and amplify 

the amount of DNA in the library suitable for sequencing. 

Libraries were quantified by PCR using the Kapa Universal Illumina Library 

Quantification kit complete kit (KK4824) and assessed for quality using the Agilent 

Bioanalyser with the DNA HS Kit (5067-4626). Libraries were combined in three 

equimolar pools and sequencing was performed using the NextSeq 500/550 High-

Output v2 (150 cycle) Kit (FC-404-2002) on the NextSeq 550 platform (Illumina Inc. 

SY-415-1002). Sequences were aligned to the human reference genome Hg19 using 

the RNA-Seq Alignment v1.0 application (Illumina Inc.). 

2.11 Harvesting of RNA from mouse brain regions 

I did not carry out the harvesting of the mouse RNA but have exactly replicated the 

relevant text of the thesis of Marion Bonneau, a collaborator and fellow student, here 

to illustrate the sample preparation. I claim no credit in the production or harvesting 

of the samples. I have also replicated text from Malavasi et al in 2.11.1
70

.  2.11.2 and 
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2.11.3 are replicated exactly from Bonneau’s thesis with the exception of formatting. 

2.11.4 was carried out by Yasmin Singh (CeGaT GmbH, Paul-Ehrlich-Straße 23, 

Tübingen, Germany). 

2.11.1 Mouse colony production and maintenance 

I did not carry out this protocol and the text is replicated from Malavasi et al. (2018). 

VelociMouse® technology (Regeneron) was used to target embryonic stem cells and 

microinject them into mouse embryos
144

. In brief, F1H4 (129S6SvEv/C57BL6F1) 

embryonic stem cells were electroporated with the linearized vector construct and 

positive clones were microinjected into 8-cell stage mouse C57BL6 embryos. 

Microinjected embryos were transferred to uteri of pseudopregnant recipient females, 

weaned pups were scored, and high percentage chimera males were selected for 

mating with flp-positive C57BL6 females to remove the selection cassette, to prove 

germ-line transmission, and to generate F1 animals for further breeding. 

Because there is already a mutation (25bp deletion) at the Disc1 allele in exon 6 in 

the 129/Sv strain which causes a truncation of Disc15, F1 progeny were generated 

and a PCR assay which distinguishes the C57BL/6 allele versus the 129/Sv allele 

was employed to determine which F0 mice were correctly targeted to the C57BL/6 

locus (Supplementary Figure 10). Mice which carried the translocation on the 

C57BL/6 allele were then crossed to CMV-Cre mice to remove the Neo cassette via 

Cre-mediated recombination at the flanking loxP sites. Genotyping results were 

confirmed by Loss-of-Native-Allele assay. 

The exclusion of the differentially spliced DISC1FP1 exon 3a6 that is present in a 

minority of transcripts (www.genome.ucsc.edu) precludes production of transcripts 

encoding CP1. The exclusion of the differentially spliced DISC1FP1 exon 7b does 

not affect the potential production of CP60/69 proteins since the stop codon in 

chimeric transcripts encoding these proteins occurs in exon 66. Since the Disc1 allele 

was modified on a mixed background of 129 and C57BL/6J, a congenic breeding 

strategy was adopted to purify the strain background. Following repeated crossing to 

C57BL/6J mice, genotyping of polymorphic markers carried out by the Jackson 
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Laboratory found the mice to be >99.5% C57BL/6J. These mice were then mated to 

C57BL/6J for one final round and the progeny used for subsequent experiments. 

Mice were housed in the Biomedical Research Facility at the University of 

Edinburgh. All mice were maintained in accordance with Home Office regulations, 

and all protocols were approved by the local ethics committee of the University of 

Edinburgh. 

2.11.2 Collection of tissue 

The below text is replicated from the thesis of Marion Bonneau  (2018), and I did not 

participate in the collection of the tissue. 

The tissue was collected from 9 weeks old mice. Each group (wild type, 

heterozygotes, homozygotes) were composed of 4 males and 4 females. Mice were 

culled under the schedule 1 procedure by trained staff at the animal facility. The 

brains were then directly removed and washed in ice-cold PBS. Hippocampi, and 

cortices minus hippocampus, cerebellum and olfactory bulbs, were dissected from 

the right brain hemisphere mice at nine weeks of age. The tissues from the right 

hemisphere were incubated overnight at 4ºC, in 5 volumes of RNA later (Ambion). 

After 24h, the RNA later was discarded to prevent the formation of salt crystals and 

the samples were snap frozen in liquid nitrogen and stored at -80
o
C, then processed 

in batches of mixed genotypes to extract the RNA. 

2.11.3 RNA preparation from tissue samples 

The below text is replicated from the thesis of Marion Bonneau (2018), and I did not 

participate in the preperation of the RNA. 

The samples were purified using QIAGEN RNA extraction kit, according to the 

manufacturer’s instructions. To homogenise the tissues, the Tissueruptor was used. 

Then insoluble materials were removed and nucleoprotein complex dissociated. The 

RNA was re-dissolved in 100 μl of RNA free water. At that point, the RNA 

concentration was assessed using the nanodrop for a first time to assess its quality. 

To obtain the purest RNA possible, RNA clean-up was performed, according to the 

manufacturer’s instructions. Additional On-column DNase digestion was then done 
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by treating the samples with DNase I, as indicated by the manufacturer’s 

instructions. At the end, the RNA was eluted once for the hippocampal samples and 

twice for the cortical samples using 30 μl of RNAse free water, therefore 60 μl of 

pure cortical RNA and 30 μl of pure hippocampal RNA were obtained. 

2.11.4 Sequencing and initial processing of mouse RNA samples 

The below text is replicated from the thesis of Marion Bonneau (2018) and I did not 

contribute. 

Total RNA samples were assessed with a Fragment Analyser (Agilent) for quality 

and integrity of total RNA. Libraries were prepared using 100ng of each total RNA 

sample using the TruSeq Stranded mRNA Library Prep Kit (Illumina). Single end 

RNA Sequencing was carried out to a depth of approximately 60 to more than 100 

million reads. Sequencing was performed on a HighSeq4000 on HighOutput mode. 

Demultiplexing of the sequencing reads was performed with Illumina CASAVA 

(1.8.2). Adapters were trimmed with Skewer (version 0.1.116)
145

. Raw reads were 

mapped to the reference genome mm10 with STAR (Version 2.4.0h)
146

. Further 

analyses were performed with the Cufflinks Tool Suite (Version 2.1.1)
147,148

: 

Cufflinks was used to count mapped reads. FPKM values were computed with 

Cuffdiff using the “pooled-variance“ model, “geometric“ normalization and “multi-

read-correct“ option
149

. The quality of fastQ files was analyzed with FASTQC 

(Version 0.10.1)
150

. 

Cortical reads were as follows; Total average raw read number was 75.39 ±11.9 x10
6

 

for WT, 89.2 ±6.3 x10
6
 for heterozygotes, and 98.7 ±17.3 x10

6
 for homozygotes. 

Hippocampal reads were as follows; Total average raw read number was 83.77 

±13.58 x10
6

 for WT, 82.8 ±13.8 x10
6

 for heterozygotes, and 79.9 ±14.08 x10
6
 for 

homozygotes. 
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2.12 Bioinformatics 

The version of R used varied as updates were released, but was between 3.4. & 3.5.1. 

R Studio versions used varied from to 1.0.153 to 1.1423. A number of different R 

packages were also utilised and details of particular packages are mentioned below. 

2.12.1 Gene and exon analysis 

Philippe Gautier at the IGMM carried out the analyses looking at gene differential 

expression between translocations and controls, or between mice of different Der1 

status. This was done utilising DESeq2 package version 1.2.. This was used with 

default settings enabled. As described in the main body of the thesis, DESEq2 

compares favourably to alternative packages and is effective at detecting genes 

which have been verified as differentially expressed by qRT-PCR. It was developed 

by Love et al.
151

 . When padj is referred to in the text of the thesis, this referes to p-

values produced by DESeq2 which have been adjusted according to the Bejamini-

Hochberg method. I also utilised DESeq2 to compare all human  lines against one 

another sequentially; the idea here was to produce lists of genes which might be 

highly reliably differentially expressed. 

Translocation status/genotype was utilised as the factor of interest and as 

recommended non-normalised counts were inputted for each replicate of each cell 

line, resulting in a 9 vs 9 comparison for the iPSC-derived neuronal cell lines and 6/8 

sex-balanced mice per genotype in the mouse analyses. Mouse wild types per 

compared against heterozygotes for each sample set in turn, then against 

homozygotes.  

Exon level differential expression was assessed by Philippe Gautier using 

DEXSeq
152

. 

2.12.2 Deconvolution analysis 

Deconvolution of the mouse and human samples is described in detail in the 

appropriate chapter, particularly the aspects relating to optimisation and 

troubleshooting. All deconvolution was carried out by me in R using the 

DeconRNASeq R package version 1.24.0. The accuracy of DeconRNASeq was 



 

     93 

assessed by generating pseudosamples from the cell types being utilised. This 

consisted of generating a series of numbers for each pseudosample, which sum to 1. 

The length of the series corresponds to the number of pure cell lines which 

DeconRNASeq is assessing the proportions of. The expression profile of each pure 

line was then multiplied by its corresponding number, and the resulting profiles were 

summed to give a single pseudosample. Series were retained so as to compare the 

predicted proportions according to DeconRNASeq to the actual weightings. If pure 

cell profiles were removed from the roster (for example, during the Zeisel 

deconvolutions looking at the removal of Interneuron 5), fresh pseudosamples using 

the new roster were produced. 

Housekeeping gene normalisation was carried out as follows; a geometric mean of 

the expression of all utilised housekeeping gene was produced for each 

pseudosample/sample/pure cell line profile, then the profile was divided by that 

factor. Selection of housekeeping genes is described in the appropriate chapter. All 

genes except the utilised marker genes were then removed from the profiles prior to 

deconvolution. The datasets utilised in the deconvolution are described below.  

The deconvolution was then carried out with the DeconRNASeq function described 

in the package “DeconRNASeq” by Gong et al. DeconRNASeq implements an 

nonnegative decomposition by quadratic programming, and the function was used in 

R as below; 

DeconRNASeq(datasets, signatures, proportions = NULL, checksig = FALSE, 

known.prop = FALSE, use.scale = TRUE, fig = TRUE) 

datasets were the housekeeping normalised RNA-Seq samples, signatures were the 

housekeeping normalised  expressions of the pure cell types. These two datasets were 

filtered so as to only contain the marker genes. The other options mostly relate to 

illustrating the findings. 

The “Zhang dataset” is described in Zhang et al.
153

. This is deposited in the Gene 

Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo under accession 

no. GSE52564. For each pure cell profile the two provided profiles of that cell type 
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were averaged. Marker genes for the Zhang deconvolution were obtained from 

https://web.stanford.edu/group/barres_lab/brain_rnaseq.html which allows selection 

of genes enriched in one of the cell types versus a selection of other cell types. 

Markers were selected so as to be enriched in one pure cell profile versus all others 

utilised in the deconvolution. 

The comparison datasets in the Zhang deconvolution are as follows; 

The Zhang Two dataset is described in Zhang et al. and the data are deposited in the 

NCBI Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo under 

accession no. GSE73721
154

. 

The Darmanis dataset is described in Darmanis et al. and the data are deposited in 

the NCBI Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo 

under accession no. GSE67835
155

. 

The Dorsal Root Ganglion sensory neuron dataset is described in Li et al. and the 

data are deposited in the NCBI Gene Expression Omnibus (GEO) database, 

www.ncbi.nlm.nih.gov/geo under accession no. GSE63576
156

. 

The Allen Brain Atlas datasets are described in detail in their white paper as well as 

at the web address http://celltypes.brain-map.org/rnaseq (accessed on 16/10/2018), 

where they are available to download. The human dataset I utilised is comprised of 

single nucleus RNA-Seq of the middle temporal gyrus and is available in CPM form.  

The “Zeisel dataset” is described in Zeisel et al. and is available at 

http://linnarssonlab.org/cortex/ 
157

. The cortical samples were extracted and for each 

pure cell profile all provided profiles of that cell type were averaged. Markers were 

selected so as to be enriched in one pure cell profile versus all others utilised in the 

deconvolution, this was achieved by producing an SI value for each, a measure of the 

proportion of expression across all profiles attributable to that profile. Different SI 

values were experimented with for efficient pseudosample deconvolution. 

The comparison datasets in the Zeisel deconvolution are as follows; 

https://web.stanford.edu/group/barres_lab/brain_rnaseq.html
http://linnarssonlab.org/cortex/
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The Allen Brain Atlas datasets are described in detail in their white paper as well as 

at the web address http://celltypes.brain-map.org/rnaseq (accessed on 16/10/2018), 

where they are available to download. The human dataset I utilised is comprised of 

single nucleus RNA-Seq of the middle temporal gyrus and is available in CPM form. 

I also utilised the mouse primary visual cortex dataset for the mouse deconvolutions.  

2.12.3 EWCE analysis 

EWCE package version 1.2 was utilised, following the manual and script provided 

by the author at  https://github.com/NathanSkene/EWCE/. These analyses were 

carried out by me. Two separate datasets were utilised, the first being the Zeisel 

dataset mentioned above, and the second being the Karolinska Institute (KI) superset. 

These are described in detail in Chapters 6 and 7, respectively. EWCE essentially 

quantifies the “enrichment”, represented by gene specificity, in a target list for all 

queried cell types. It then compares these to the enrichments of a large number of 

lists, each of the same length as the query list but comprised of genes randomly 

selected from the list of background expressed genes. 

The “Zeisel dataset” is described in Zeisel et al. and is available at 

http://linnarssonlab.org/cortex/
157

.There was some initially some difficulty in 

utilising the package effectively, and the Zeisel dataset was loaded from local storage 

(originally obtained from  http://linnarssonlab.org/cortex)  rather than using that 

portion of the script. Reading in the Zeisel data manually must be done with care. 

The function read_celltype_data will only operate on a dataset which is identical in 

dimensions to the Zeisel cortical dataset described in the manual. To read in the 

hippocampal data, false genes and samples were manually added to the hippocampal 

data until it was the same dimensions as the cortical dataset. After this, the false 

genes and samples are removed along with their corresponding data, and SI values 

are subsequently calculated by the instruction in the provided script. The cortical and 

hippocampal datasets were retrieved as above.  

The KI superset data is described in Skene et al. 2018
140

 and data are available at 

http://www.hjerling-leffler-lab.org/data/scz_singlecell/. The KI superset was loaded 

https://github.com/NathanSkene/EWCE/
http://linnarssonlab.org/cortex/
http://linnarssonlab.org/cortex
http://www.hjerling-leffler-lab.org/data/scz_singlecell/
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as an Rda file into R. Embryonic cell types were then removed, and SI values were 

then recalculated by dividing by the sum of SI values for that gene. 

EWCE was carried out as follows. In the case of human gene list to mouse dataset 

comparisons genes were filtered for 1:1 homology using the list provided in the 

EWCE package. Query lists were the same as those utilised in the GO term analysis; 

utilising adjusted p value<0.05, and BaseMean at least half that of DISC1/Disc1. The 

background lists utilised were the remaining genes expressed in each utilised 

dataset.A total of 100,000 background lists of equal length to the query list were 

randomly selected and used to produce a distributuion of enrichment to which the 

query list could be compared for each cell type. The p values were subjected to 

Bonferroni corrections for multiple testing at both the class and subclass level. 

2.12.4 Data visualisation 

Heatmaps of gene expression were generated by me using R (version 3.4.2) and 

RStudio (version 1.0.143). Raw count data for all samples were together subjected to 

a regularised logarithm transformation using the DESeq2 package version 1.16.1. For 

each heat map, the transformed counts for each gene were normalised to Z-scores 

across all samples and subsequently visualised using the pheatmap package version 

1.0.8 (cran.r-project.org/package=pheatmap). 

GOrilla results were displayed using Microsoft PowerPoint. Deconvolution 

pseudosample results were displayed using R’s plot function. qPCR results and 

deconvolution results were displayed using GraphPad Prism 6. EWCE plots were 

generated using R’s “ggplot2”. Details as to numbers of genes and scales are 

displayed in or under each image. 

Volcano plots were produced in R using the “with” and “points” functions. 

2.12.5 Prism 

Figure legends detail the exact statistical test used in each analysis.  

Multiple testing was corrected for using the “Sidak-Bonferroni” option in t-tests, 

which is described at the following link, accessed on 31/7/19. 



 

     97 

https://www.graphpad.com/guides/prism/6/statistics/index.htm?stat_the_method_of_

bonferroni.htm 

Multiple testing was corrected for using the “Sidak-Bonferroni” option in ANOVAs, 

which is described at the following link accessed on 31/7/19. 

https://www.graphpad.com/guides/prism/6/statistics/index.htm?stat_the_methods_of

_tukey_and_dunne.htm 
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3.1 Introduction 

RNA-Seq allows insights into differential gene expression at both the gene and exon 

level, which can implicate particular isoforms of a gene. Differentially expressed 

genes of particular interest include those which link to known pathological processes, 

whether this link is by pedigree studies, gene ontology, or GWAS/CNV predisposing 

to psychiatric illness. Candidate genes can then be examined and the differential 

expression verified by quantitative PCR. The next two chapters describe this process 

for the human iPSC-derived neuron, mouse heterozygous/homozygous Der1 cortex 

and hippocampus RNA-Seq samples. I also hypothesised that there might be some 

regional effects on transcription around the breakpoints in the t(1;11) neurons. It has 

previously been shown that there is differential methylation around the breakpoints 

in the blood of t(1;11) carriers
126

. Chromosomal translocations are also known to 

cause some disturbances in local expression, although these do not affect the entirety 

of the chromosome. This is possibly as only cis-acting elements are directly 

disturbed. Harewood et al. showed that a translocation resulted in local expression 

disturbances, as well as an altered cellular location of the chromosomes
158

, and I 

therefore hypothesised that there might be some similar effects caused by the t(1;11). 

Finally, the effects of the translocation on DISC1 can also be examined by RNA-Seq.  

3.2 Pedigree and neuron generation 

The pedigree and effects of the translocation are described in greater detail in the 

introduction. A subset of the t(1;11) Scottish pedigree is shown in Figure 3 indicating 

prevalence of psychiatric illness. Fibroblasts from three individuals carrying the 

translocation and fibroblasts from three individuals without it were previously used 

to produce iPSCs. Figure 4 illustrates the familial relations between these 

individuals. 
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Figure 3. Subset of the Scottish pedigree carrying the t(1;11) translocation. Individuals with a psychiatric diagnosis are 

in solid black, those without one are in white. Individuals with a red asterisk carry the translocation. Diagnoses are 

given by acronyms; rMDD=recurrent major depressive disorder, CYC=cyclothymia, SCZ=schizophrenia, bipolar 

NOS=bipolar disorder not otherwise specified, gen anxiety=generalised anxiety disorder, ? =translocation status 

unknown 

 

Figure 4. Subset of Scottish pedigree with illustration of lines selected for iPSC, NPC, and neuron generation. Names of 

each cell line are given below the individuals they are derived from. Red indicates translocation lines (T), blue indicates 

controls (C). 

IPSCs were differentiated to neural precursor cells (NPCs). Each of these NPC lines 

was subsequently cultured in triplicate and differentiated to neurons in independent 

experiments. These neurons were harvested for RNA, which was sequenced, quality 

controlled, and aligned to the human genome hg19 commercially. Further details are 
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in the Materials and Methods where the appropriate contributors to each section are 

described. I did not contribute to the stages prior to RNA-Seq data analysis. 

3.2.1 Effects of sex on iPSC-derived neuronal expression  

There is a clear issue with sex imbalances between the three translocation and three 

control pedigree members selected for iPSC-derived neuron generation. Lines C1, 

C2, C3, and T3 were derived from female individuals, while lines T1 and T2 were 

derived from males. Translocation status is therefore highly associated with sex and 

the effects of the two may be difficult to distinguish. I attempted to resolve this 

complication by searching for studies of genes known to be differentially expressed 

between iPSC-derived neurons of individuals of different sexes. I did not find any 

such studies. However, after the submission of this thesis a study by Tiihonen et al. 

was published which examined this very phenomenon
159

. This study could not have 

informed my investigation, but it can critically inform my findings. It will be 

especially useful in identifying possible false positive genes which are altered by sex. 

Genes which may be affected by sex and which are discussed in the chapter have 

also been highlighted so as to be clear about any confounding effects; although as 

this is post hoc it can only exclude experiments I did do rather than inform new ones. 

Tiihonen et al. analysed the iPSC-derived neuronal lines of pairs of monozygotic 

twins discordant for schizophrenia. Like our samples, these neurons were derived 

from iPSC-derived NPCs and are described as “cortical neurons”. Five twin pairs 

(three female pairs, two male pairs) and six unrelated controls (four females, two 

males) were utilised. This study allowed the comparison of twin pairs (schizophrenia 

vs schizophrenia risk background), of unaffected twins vs controls (schizophrenia 

risk background vs no risk background), of affected twins vs controls (schizophrenia 

vs no risk background), and of male controls vs female controls (sex effects). In 

addition, Tiihonen et al. made comparisons of the twin pairs utilising only males and 

only females in turn, to identify if the pathology of the disease differs between the 

sexes. Comparisons of all males vs all females were not carried out. It should be 

noted the neurons were likely more mature than ours, with an 8-12 week 

differentiation protocol vs our five week protocol. It should be noted that the 
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numbers of lines are equivalent to or lower than our 3 vs 3 comparisons, e.g. the 

male only comparisons are only 2 vs 2. Each of our lines was also differentiated 

three times; similar replications were not reported by Tiihonen et al. 

Tiihonen et al. state that 12% of genes were differentially expressed between the 

male and female control samples (a 2 vs 4 comparison), however they only included 

genes that had a twofold or greater change. Including all genes which meet the 

standard I used (an adjusted pvalue of <0.05 and an average expression at least half 

that of DISC1) the number is 4,337, or 22%.  

360 of these genes are also differentially expressed in our study; however in the 

majority of these genes the putative sex effect is in the opposite direction to the 

putative translocation effect and sex is therefore unlikely to be a factor in the 

significance of the gene. However it is possible that sex could affect these genes to 

change in one direction in the Tiihonen et al. study and in the other direction in my 

study. This cannot be ruled out but is difficult to assess the likelihood of. 94 of the 

genes change in the same direction in both studies and these are highly likely to be 

significant on the basis of sex as opposed to the translocation. These are 7% of all 

significant genes. Where any of these genes are discussed they are specifically 

highlighted as potentially being problematic. 

3.3 DESeq2 

The first step in analysing the data was to determine what differences existed 

between the control and translocation carrying neurons. A number of programs have 

been developed to analyse differential gene expression, including DESeq2. DESeq2 

is a popular and user-friendly tool for which a large amount of literature exists, 

making it an ideal option as many further analyses and discussions are available. A 

study carried out by Costa-Silva et al. looked at human brain samples with over 400 

genes verified by RT-qPCR as differentially expressed. They found that DESeq2 

offered a satisfactory balance between low proportion of false positives and detection 

of true positives. Its “True Positive Rate” (true positives/all positives) was the second 

highest, its “Specificity” (true negatives/all negatives) the joint highest, and its 

“Accuracy” (correct predictions/all predictions) the highest of 9 different methods of 
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determining differential gene expression
160

. Although it would be incorrect to 

describe DESeq2 as the “best” package for all situations, it appears that it will be 

among the most satisfactory methods of determining differential gene expression in 

my samples.  

DESeq2 was used to analyse differential expression between all control translocation 

samples, with all XY genes removed from the analysis prior to running DESeq2.This 

resulted in the comparison of 21,916 genes in 9 control samples vs 9 translocation 

samples. It was reported that 1,372 genes were differentially expressed at the whole 

gene level. On examination of the list, it was noted that the BaseMean (a measure of 

the mean of the sequence depth normalised counts of all samples) was very low for a 

number of these genes. GRM6, for example, with BaseMean 4.5, has 0 counts in 4 of 

the 18 samples, and 12 out of 18 have less than 5 counts. At low levels of expression, 

differences between the translocation and controls could easily be due to minor 

differences in sequencing rather than true biological differences. There is also an 

issue of practicality; poorly expressed genes will be very difficult to investigate 

further via qPCR, western blotting, and other experiments. I therefore restricted the 

analysis to genes which had a reasonable level of expression. This was defined as 

being at least approximately half the expression of DISC1, a gene which has 

detectable expression at the transcript and protein level in these cells. The BaseMean 

of DISC1 is 21.8 and the threshold for expression was therefore set at 10. The 

threshold is somewhat arbitrary but has practical relevance considering future 

experiments, and analyses testing this list of differentially expressed genes compared 

it to the list of all expressed genes, not those with BaseMean over 10. A total of 

1,252 genes had whole gene differential expression and passed the BaseMean 

threshold. A volcano plot of the genes analysed by DESeq2 is available in Figure 5. 
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Figure 5. A volcano plot of the DESeq2 for the iPSC-derived neuronal lines for all genes with BaseMean>10. X-axis 

represents the log2 fold change between WT and translocation lines, while the Y axis represents significance (-log base 

10 of p value). Black dots have an adjusted p value above 0.05, blue dots are significant with an adjusted value below 

0.05. Red dots with labels represent genes for which a qPCR was carried out. 

See Figure 6 for a heatmap of the normalised counts of the samples for all 

differentially expressed genes. We can clearly see that the samples cluster by line, 

and then by t(1;11) status. There is some variation in many of the genes but many 

show a reliable change depending on translocation status. 
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Figure 6. Heatmap of all differentially expressed genes with p<0.05 and BaseMean>10. Counts were normalised using 

the “rlog” function, which transforms counts to the log2 scale, normalises for library size, and minimises variation in 

poorly expressed genes. They were then antilogged, and changed to z scores by gene before generation of the heatmap. 

Red indicates z score above the mean, green indicates z scores below the mean. Each row is a gene. 

DISC1 was not a differentially expressed gene. However, transcription of the DISC1 

encoding regions from both the DISC1-DISC1FP1 and DISC1FP1-DISC1 loci on 

chromosomes 1 and 11 could mask effects of the translocation on DISC1 expression. 

The only accurate measure of intact DISC1 RNA is the number of reads which 

contain exon 8-9, and therefore cross the t(1;11) breakpoint. These reads could only 

come from the intact DISC1 allele. The transcript quantification was analysed in 

detail by Philippe Gautier using DEXSeq
152

 and Integrative Genomics Viewer
161

, and 

it was shown that the number of reads which spanned the breakpoints were 

significantly lower in the translocation carriers. See  for a comparison of the reads 

that cross the breakpoint and therefore could only come from an intact DISC1 gene. 

In addition, transcripts which could only have come from the derived chromosomes 

have been shown to exist in these neurons, and were found when searched for by 

Philippe Gautier (private correspondence)
70

. Reads from either side of the 

breakpoints are therefore likely contributing to the apparent non-significance of 
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DISC1. Differential expression of intact DISC1 protein was also confirmed in these 

neurons
70

. For the reasons given above, I do not have concerns about the apparent 

non-significance of DISC1.  

 

Figure 7. Cross comparison of normalised counts that span the t(1;11) breakpoint and therefore could only have come 

from an intact chromosome 1. Lines indicate the mean with smaller bars indicating the standard deviation. Counts 

normalised by dividing total counts spanning the DISC1 breakpoint by millions of total counts. Total spanning counts: 

Control=l90, Translocation=81,  p=0.033.  Total normalised counts: Control=4.19, Translocation=1.86,  p=0.0078. P 

values calculated by Mann-Whitney t test. Counts examined and quantified by Philippe Gautier using DEXSeq and 

Integrative Genomics Viewer. The control with ~1.2 normalised counts is not an outlier, taking outliers as being more 

than 3 standard deviations from the mean. 

The heatmaps show that the samples cluster by cell identity and subsequently by 

translocation identity. Philippe Gautier also generated a Principle Component 

Analysis plot from the DESeq2 data, a modified version of which is displayed in 

Figure 8. We can see that once again the samples cluster by cell identity. 
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Figure 8. PCA of the translocation (red) and control (blue) lines. We can see that the triplicates cluster together for the 

most part, with some digressions. We can also see that PC1 is the separating factor for the controls and PC2 is the 

primary separating factor for the translocations. C2 and T3 are close together; these lines were derived from a mother 

and daughter. This PCA utilised all differentially expressed genes 

In order to inform me as to what genes showed the most reliable differential 

expression, I also carried out DESeq2 comparing all possible combinations of cell 

lines in triplicate vs triplicate comparisons. This resulted in 15 comparisons, 9 

translocation vs control, 3 control vs control, and 3 translocation vs translocation. 

See Table 1 for numbers of differentially expressed genes between translocation and 

control lines. 24 genes were differentially expressed in every translocation vs control 

comparison and 7 of these were not differentially expressed in any other comparison. 

These 7 genes were PDYN, RELB, NUTM2F, MIR4458HG, LRRC37A2, GPC1, and 

BEST1. See Figure 9 for a heatmap of the 24 genes. Of course the greatly reduced 

power of a 3 vs 3 comparison means that these results should only be seen as an aid 

to selecting genes for further analysis. It is also the case that I am searching for 

effects of the t(1;11) generally; the control vs translocation cell lines have different 

genetic backgrounds (some lines are XX and some are XY) and these will be 

reflected in any 3 vs 3 comparison, even when XY genes are removed. 
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Figure 9. Heatmap of genes that are marked by all control vs translocation DESeq2 analyses as being differentially 

expressed. Counts were normalised using the “rlog” function, which transforms counts to the log2 scale, normalises for 

library size, and minimises variation in poorly expressed genes. They were then antilogged, and changed to z scores by 

gene before generation of the heatmap. Red indicates z score above the mean, green indicates z scores below the mean. 

Each row is a gene. 

Line C1 vs C2 vs C3 vs 

T1 4,912 3,995 5,003 

T2 8,633 6,942 7,235 

T3 6,138 1,835 6,688 
Table 1. Number of genes differentially expressed between pairs of triplicates according to DESeq2. 

3.4 DEXSeq  

DEXSeq analyses data for exon-level differential expression, which can be 

subsequently inspected to see if this provides evidence for differential expression of 

certain transcripts
152

. The ideal exon is found in only one transcript or a subset of 

transcripts, which have a defined biological role. The 9 vs 9 DEXSeq was carried out 

by Philippe Gautier, and I carried out subsequent analyses.  
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A total of 2,574 exons were described as differentially expressed at the p=0.1 level, 

with 1,932 of these unambiguously mapping to one gene. At the p=0.05 level 1,368 

exons were differentially expressed with 1,020 exons unambiguously mapping to one 

gene. 

As with the DESeq2 analysis, I carried out DEXSeq analyses comparing all possible 

combinations of lines to see which exons had the highest level of support for 

differential expression. At the p=0.05 level, 5 exons, all of which mapped 

unambiguously to 5 different genes, were significant in all translocation vs control 

comparisons. Three of these were also not significant in any control vs control or 

translocation vs translocation comparison. These three were from the genes 

GUSBP3, NRG1, and LRRC37A2.  

Results of DESeq2 and DEXSeq are summarised in Table 2. 

 Total Detected 
Significantly 

differentially expressed 

Genes 21,916 1,252 

Exons  1,368 in 1,020 genes 
Table 2. Summary of differential expression findings of non-XY genes when utilising DESeq2 (gene level analysis) and 

DEXSeq (exon level analysis), with “Significantly differentially expressed” meaning adjusted p value<0.05 and 

BaseMean>10 for genes. 

3.5 Local expression 

I analysed local expression around the breakpoints, as there is evidence that large 

chromosome rearrangements can result in altered chromosomal position within the 

nucleus. This appears to coincide with transcriptional effects
158

. I analysed this in 

two ways; by looking to see if more differentially expressed genes were found 

around the breakpoints than by chance, and whether expression showed an overall 

change regardless of gene significance.  
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3.5.1 Chromosome 1 

3.5.1.1 Differentially expressed genes 

One way to see if the breakpoints are affecting local expression would be to see if 

there is an unusually high number of differentially expressed genes around the 

breakpoint. I carried out a Monte Carlo simulation. To assess the background level of 

differentially expressed genes I selected 100,000 loci at random. These all came from 

chromosome 1 so as to ensure the background level of gene richness is an 

appropriate comparison. I then calculated the proportion of differentially expressed 

genes around those points within a “window”. I initially set the window size to 40Mb 

but reduced this to 37.5Mb as DISC1 is too close to the end of the chromosome. I 

then repeated this with windows of 20Mb and 10Mb. The results of this analysis are 

in Table 3. There are 273 genes within 20Mb either side of the chromosome 1 

breakpoint. 

Chromosome 1 18.7Mb  10Mb 5Mb 

Proportion of genes significant 

around DISC1 
0.069 0.038 0.051 

Average proportion of genes 

significant around 100,000 points 
0.069 0.070 0.067 

P value for DISC1 window 0.43 0.91 0.58 

Table 3. Assessment for significantly increased proportion of differentially expressed genes in 18.7, 10, and 5Mb 

windows around DISC1, by comparison to 100,000 windows around chromosome 1. 

We can see that for all analyses, shrinking the gene window by half reduces the 

average number of significant genes by about 50%, but does not affect the proportion 

of significant genes at all. It is evident that there is no significant enrichment of 

differentially expressed genes around the breakpoint on chromosome 1.  
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3.5.1.2 Local expression in FPKMs 

Expression in terms of raw counts, FPKMs, and normalised counts using rlog (a 

normalisation method included in the DESeq2 package) was assessed around the 

breakpoints. However, I realised that there were several arguments against assessing 

local expression in any of these terms except FPKMs.  

Raw counts would seem initially an attractive option for mapping the expression, but 

they do not adjust for sequencing depth and are therefore less than ideal. Since I am 

looking for relative change within a sample as I look around the breakpoints, with the 

idea of comparing this change to that of other samples, FPKMs are ideal. I am 

looking for regional changes within each sample, and then comparing these regional 

changes within each sample to those in other samples. I therefore made maps of 

genomic expression using FPKMs for each sample, which allow gene to gene 

comparisons to see areas of high and low expression normalised to sequence depth 

and gene length. 

I selected all the genes within approximately 18.7Mb on both sides of the DISC1 

gene and graphed their expression against their location. A graph was made for each 

of the 18 samples, and they were compared by eye to see local expression changes. A 

condensed version of the result, where averages for each genotype are compared, can 

be seen in Figure 10. There appears to be no pattern of depressed or increased 

expression and I therefore did not investigate further. Looking at the graphs for each 

of the 18 samples, there appears to be no clear pattern of change between 

translocation and control samples. For the sake of brevity these are not reproduced 

here. 
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Figure 10. Genomic expression map of 37.5Mb around DISC1. Note that the chromosome ends approximately 17.5Mb 

after DISC1.Black indicates the average of the control FPKMs, red the average of the translocation FPKMs. Y-axis is in 

local minimum to local maximum expression, each point is a gene. 

3.5.2 Chromosome 11  

3.5.2.1 Differentially expressed genes 

I applied the same methods as in 3.5.1.1. The results are in Table 4. Note that a 

20Mb window was used as the breakpoint is not too close to the end of the 

chromosome to preclude this. There are 260 genes within 20Mb either side of the 

chromosome 11 breakpoint. 

Chromosome 11 20Mb  10Mb 5Mb 

Proportion of genes significant 

around DISC1FP1 

0.088 0.16 0.14 

Average proportion of genes 

significant around 100,000 

points 

0.065 0.068 0.069 

P value for DISC1FP1 window 0.18 0.016 0.11 

Table 4. Assessment for significantly increased proportion of differentially expressed genes in 20, 10, and 5Mb windows 

around DISC1FP1, by comparison to 100,000 windows around chromosome 11. 

The only significant result is the 10Mb window. There are two variants in 

chromosome 11 which may influence psychiatric disease in this family, which are 

located 3Mb upstream and 10Mb downstream from the chr11 breakpoint
162

. Neither 

of the two genes present in these loci which could be examined, CNTN5 and GRM5, 

were significantly differentially expressed
70

. The effect of these loci is not entirely 
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known but they may influence the diversity of phenotypic presentation in the 

Scottish pedigree. We can conclude that the translocation may have an effect on 

medium distance gene expression, although the evidence is weak considering one 

would expect the 5Mb window to also be perturbed if this was the case. One way to 

see if the effect is only on genes a certain distance away (rather than on genes up to a 

certain distance away) would be to redo the analysis with “bands” rather than 

windows, but given the slim evidence for any regional effect I elected not to do this. 

3.5.2.2 Local expression in FPKMs 

I selected all the genes within 20Mb on both sides of the DISC1FP1 gene and 

graphed their expression against their location. A graph was made for each sample, 

and they were compared by eye to see local expression changes. A condensed 

version of the result, where averages for each genotype are compared, can be seen in 

Figure 11. The two averages track one another closely and there appears to be no 

pattern of changed regional expression.  

 

Figure 11. Genomic expression map of 40Mb around DISC1FP1. Black indicates the average of the control FPKMs, red 

the average of the translocation FPKMs. Y-axis is in local minimum to local maximum expression, each point is a gene. 

3.6 GOrilla 

To analyse the data for gene ontology terms that are overrepresented among the 

differentially expressed genes, I utilised GOrilla
163,164

. I compared the differentially 

expressed genes meeting the BaseMean>10 and p<0.05 criteria together with the list 

of genes with a differentially expressed exon at p<0.05. The background was the list 

of all genes detected at the whole gene level. GOrilla analyses overrepresentation of 

terms at the Process, Function, and Component levels. The top 10 significant results 
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by p-value are displayed in Figure 12, Figure 13, and Figure 14 respectively. A full 

discussion of candidate genes for further investigation is elsewhere, but summaries 

for terms of interest in each category are below. It should be noted that I usually do 

not discuss the most significant GO terms, but have selected terms of interest to 

discuss. These terms are usually outside the top 10 GO terms but are far more 

specific. The top GO terms are usually broad in nature, and contain dozens of genes, 

many of which only loosely relate to the term. However even granted this it is true 

that I have been selective in my discussion of GO terms; my primary reason for this 

is that I originally generated GO terms to help produce candidate genes. Topics such 

as “ionotropic glutamate receptor binding” or “intracellular transport” seem more 

amenable to biological experimentation than “cell adhesion” or “nervous system 

development”, which are highly broad terms. In addition, I have provided p values, 

and all GO terms discussed are of course significant both nominally and at FDR-

corrected p values (Benjamini and Hochberg method). All significantly differentially 

expressed genes have also been provided in the supplementary information of 

Malavasi et al
70

. 
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3.6.1 GOrilla Process 

 

Figure 12. Significantly overrepresented Process GO terms for the genes which have a differentially expressed exon or 

are differentially expressed (p<0.05). The enrichment figure is given after each bar and the scale is logarithmic. 

The top GO term is “biological adhesion”, which contains the gene DAG1, discussed 

in the context of “actinin binding” in the GO Function section below. It also contains 

the gene CLDN5, which is potentially involved in schizophrenia and downregulated. 

It is notable for being contained within a region of the genome 22q11.2, which is 

found deleted in patients with a syndrome presenting with cardiac abnormalities, 

craniofacial abnormalities, and an increased risk of schizophrenia
165

. We can see that 

a number of the other entries are similar, but of interest are “cell projection 

organisation” and “intracellular transport”. Intracellular transport of mitochondria is 

known to be affected by DISC1
95

, and the transport of synaptic vesicles containing 

neurotransmitters is necessary for neuronal activity. DISC1 is a known trafficker and 

can also affect GABAAR and NMDAR surface presentation
70,166

. A number of the 

genes with this GO term were good candidates for further investigation, including 

HAP1, SPIRE1, SLIT1, and SYT6. However as stated at the start of this chapter, a 

recent paper has highlighted genes which may be affected by sex. These genes 

include HAP1 and SLIT1. HAP1 is an interactor of the product of the HTT gene, 

which causes Huntington’s disease if mutated. SLIT1 is a guidance molecule which 
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assists neuronal axon directions, while SYT6 is a synaptotagmin, a family of genes 

involved in vesicular exocytosis
167,168

.  

Of particular interest to me was the presence of the BBS2 and BBS5 genes, which are 

mutated in Bardet-Biedl syndrome (BBS). BBS1 is also differentially expressed and a 

fuller discussion is in the introduction. GO terms with significant p values included 

“synapse assembly” (p=2.38x10
-6

, enrichment factor=2.99), which included genes 

such as APP, NRG1, BSN, DRD2 and ERBB4, some of which have relevance as they 

are schizophrenia candidates (ERBB4, NRG1) or are the targets of antipsychotic 

medication (DRD2). APP is best known as the gene encoding the amyloid precursor 

protein, while BSN is a large presynaptic protein involved in vesicle exocytosis and 

trafficking
169,170

. Nervous system development was another GO term (p=5.69x10
-6

, 

enrichment factor=1.86) of interest. However, it is difficult to assess the accuracy of 

this as two Hox genes (DLX2 and DLX6) are likely to be differentially expressed 

according to sex. However two other Hox genes VAX1 and VAX2 in a different GO 

term group were differentially expressed.  
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3.6.2 GOrilla Function 

 

Figure 13. Top 10 significantly overrepresented Function GO terms for the genes which have a differentially expressed 

exon or are differentially expressed (p<0.05). The enrichment figure is given after each bar and the scale is logarithmic. 

ECM=extracellular matrix 

The most significant term is “actinin binding”. A number of genes were contained 

within this term, including a pair of potassium receptors KCNA5 and KCNN2. Both 

potassium receptors and NMDARs have been shown to interact with alpha-actinin
171

. 

Another associated gene DAG1 encodes an interactor of the protein encoded by 

NRXN1, which has mutations associated with autism and schizophrenia
172

. Under the 

“actin binding” term, the fourth most significant, a number of myosin and kinesin 

genes were found, indicating that trafficking molecules are abnormally expressed in 

these cells. An actin nucleator, SPIRE1, was also differentially expressed. Actin is 

important in growth cone organisation and initiating neuronal migration. Changes in 

these actin and cytoskeletal terms are interesting and may reflect possible migratory 

defects, as also evidenced by the dysregulation of centrosomal proteins
82

. The term 

“ionotropic glutamate receptor binding” with an enrichment factor of 3.46 is also 

relevant. Glutamate receptors such as the AMPARs and NMDARs are known to play 

a role in LTP, necessary for learning and memory. NMDAR antagonists such as 
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ketamine also induce psychosis
173

. Mutations in these families of genes have also 

been linked to psychiatric disease
174

. 

3.6.3 GOrilla Component 

 

Figure 14. Top 10 significantly overrepresented Component GO terms for the genes which have a differentially 

expressed exon or are differentially expressed (p<0.05). The enrichment figure is given after each bar and the scale is 

logarithmic. 

GO overrepresented component terms mostly relate to cell parts that are unique to 

the neuron, such as “axon part”, “synapse part”, and terms which relate to cell parts 

which have a special role in neuronal activity such as “vesicle”. This is unsurprising. 

It could be concerning if component terms uniquely related to some non-brain cell 

types had emerged as significant.  

3.7 Comparison to other studies 

It would be of interest to see if the genes differentially expressed in our experiment 

are also changed in analogous experiments. Comparisons can be made to other RNA-

Seq experiments (particularly involving DISC1 mutations and iPSC-derived 

neurons), GWAS, and CNV studies. Microarray studies are also a comparative 

option but have mostly been supplanted by RNA-Seq experiments. A search of the 
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literature was conducted and a number of studies which were apt comparisons were 

utilised.  

3.7.1 Studies used  

These studies are described in greater detail in the Introduction. All studies are in 

human cells or with human samples. 

3.7.1.1 Psychiatric Genomics Consortium GWAS 

GWAS search for genes predisposing to schizophrenia based on the concept of the 

“common disease, common variant” model, where many variants have a small but 

detectable impact on the risk of developing disease. The PGC have published 

multiple papers with ever-larger samples sizes. PGC1 refers to the first paper, 

implicating 108 loci and 348 genes
29

. PGC2-1 refers to the association analysis of the 

second, implicating 145 loci and 481 genes
60

, while PGC2-2 refers to the list of 

genes implicated by MAGMA in that paper (535 genes). 

3.7.1.2 Psychiatric Genomics Consortium CNV study 

The PGC have also searched for copy number variations (CNVs) predisposing to 

schizophrenia. PGC3 refers to this study
139

. I utilised the gene list associated with 

schizophrenia by the Gene-Association analysis carried out in this paper. 

3.7.1.3 Camargo et al. DISC1 interactors 

Camargo et al. utilised a yeast two hybrid screen to identify potential interactors of 

the DISC1 protein
73

. All genes indicated by this study were searched for.  

3.7.1.4 Brennand et al. idiopathic schizophrenia  

Brennand et al. were the first to look at differential expression in iPSC-derived 

neurons
124

. Although the numbers were small, lines were established from patients 

with idiopathic schizophrenia. It utilised a microarray approach to look at expression 

differences and found 596 genes differentially expressed at p<0.05 and fold-change 

>1.3. B refers to this study. 
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3.7.1.5 Wen et al. DISC1 frameshift 

Wen et al. looked at iPSC-derived neurons from a family carrying a DISC1 

frameshift mutation
132

. The number of genotyped family members is small however. 

The frameshift cannot be unambiguously linked with psychiatric illness, while it is 

also the case that members of the pedigree have psychiatric illness but no DISC1 

frameshift. They also did not use as large a number of RNA samples (one control and 

two mutants, all in triplicate). A total of 3,697 genes were differentially expressed in 

their study, although as we have already seen from my 3 vs 3 DESeq2 comparisons 

that smaller numbers appear to give more differentially expressed genes, likely due 

to false positives. W refers to this study. 

3.7.1.6 Srikanth et al. DISC1 truncations 

Srikanth et al. looked at two different timepoints in the production of neurons 

directly from iPSCs
138

, although their protocol is not identical to ours. They induced 

mutations in the iPSC lines prior to neuron differentiation, in exon 2 and exon 8 of 

DISC1. The first mutation should remove all DISC1 isoforms while the second is 

closer in effect to the t(1;11) translocation in its effect on DISC1 by inducing a 

truncation close to the breakpoint. They also looked at heterozygous and 

homozygous carriers of these mutations. S refers to this study, x2 and x8 to the 

mutations, w/m to wild type/mutant status, and 18 or 50 to the timepoints. For 

example, Sx8wm50 refers to the heterozygous carriers of the exon 8 truncation at the 

neuron stage.  
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3.7.2 Results 

Human t(1;11) 

samples 

 

Paper Number of 

genes 

P value Selected genes of interest 

PGC1 32 7E-06 CHRNA4, DRD2 

PGC2-1 37 1E-03  CHRNA4, DRD2 

PGC2-2 47 1.4E-03 DRD2, CHRM4 (gene)  

PDE4B, NTRK3, ERBB4 

(exon) 

PGC3 13 0.36 HOMER2, SHANK1, SYT6 

DI 10 0.31  

B 87 1.8E-03 NRP2, NQO1, COBL 

W 300 4E-07 VAX1, DRD2, COBL, DLX2, 

DLX6 
Sx2mmd50 200 5.6E-07 BBS5, LRRTM1, SLIT1, 

SYT6 
Sx8mmd50 17 0.077  

Sx8wmd50 73 6.4E-04 SEMA3F 

Table 5. Summary of overlap with other papers. Each paper is indicated by the acronym given in 3.7.1. The number of 

genes significant in both our study and the indicated one is given in the first row. The hypergeometric probability is 

given in the second, and a subset of interesting genes within this list of overlapping genes is within the third. 

3.8 Gene level RT-qPCR  

To confirm the results of the RNA-Seq, a number of RT-qPCRs were performed. All 

68 genes with an absolute fold change >2 were considered as candidates. Most had 

no known relevance to major mental illness, while the remainder had poor evidence 

of line difference (e.g. a single line or sample drove significance). Seven were TRIM 

genes (tripartite motif containing), four were olfactory receptor family members, 

while three were prame family members. None of these appeared to be directly 

relevant to psychiatric illness. The largest fold change gene was MIR4458HG, a 

microRNA encoding gene about which little is known. A number of interesting 

candidates were discarded in cases where one line clearly drove the significance of 

the gene. These included genes such as VIPR2, DDC, CCK and NRCAM. All 24 
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genes which were significant in every WT vs t(1;11) line DESeq2 analysis (i.e., three 

samples from one WT line compared against three from a translocation line) were 

also assessed as candidates. Having exhausted these obvious possibilities and finding 

only a few genes, I attempted to select candidates from the remaining bulk of genes. 

Genes were chosen on the basis of high fold change, clear difference between 

genotypes, convergence with other papers, existing evidence of relevance to 

psychiatric disease, and contributing to a GO term of relevance. OMIM and Pubmed 

were also examined for disease associated variants or papers of interested. Of some 

use in selecting candidates was an approach searching for convergences between 

papers; a table displaying the numbers of genes significant between any pair of 

papers described in 3.7.1 as well as in the DESeq2 analysis is displayed as Table 6. 

Descriptions are given for each gene in turn and a table summarising the rationales is 

given in Table 7. Primer design is described in Materials and Methods.  
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Table 6. Table of overlaps. Numbers represent the number of genes significant in our DESeq2 study of human neurons, 

in addition to the two papers in the corresponding row and column. Grey blocks indicate genes from only one paper (the 

same row and column index). Abbreviations as in 3.7.1. 
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Table 7. Highlighted information about candidate genes selected for qPCR. TRUE indicates that the gene is 

differentially expressed in the model of interest. Paper abbreviations are as in 3.7.1. 
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3.8.1 BBS1 

Bardet Biedl Syndrome 1, BBS1, is a one of a number of genes which when mutated 

cause Bardet-Biedl syndrome, characterised by developmental delay, obesity, 

intellectual disability, and retinal problems. These genes participate in the 

construction of the BBSome, a protein complex seen at cilia and centrosomes
175

. In 

cilia it participates in trafficking, and interestingly BBS4 is seen to interact with 

dynactin, the component of the dynein motor complex HAP1 interacts with. At the 

centriole many of the BBS proteins interact with DISC1 along with other 

centrosomal proteins such as PCM1
176

. A number of these proteins are DISC1 

interactors, including BBS1 and BBS4. BBS1, BBS2, and BBS5 are all significantly 

downregulated according to the RNA-Seq data. The interaction with BBS1 is 

particularly interesting; phosphorylation on a key S70 residue of DISC1 results in a 

functional change. Upon phosphorylation of this residue, DISC1 loses its ability to 

enhance Wnt signalling and aids the centrosomal location of BBS1, which aids 

neuronal migration. Blocking this phosphorylation event, knocking down DISC1, or 

BBS1, hinders mouse neuronal migration in the developing cortex
81

. Given its role in 

migratory neurons and direct interaction with DISC1, as well as the downregulation 

of other BBS proteins, BBS1 stands as a good candidate for qPCR analysis as well as 

future study.  

3.8.2 CALB1 

Calbindin is encoded by this gene and is a calcium binding protein abundant in the 

brain. It is found downregulated here
177

. Given calcium’s importance as a secondary 

messenger this presented as an interesting candidate. The protein has a known role in 

buffering calcium increases which may be protective against excitotoxicity
178

. 

Expression of CALB1 in neurons marks them out for survival against neurotoxic 

drugs in a mouse model
179

. Calbindin is known to exert anti-apoptotic roles via 

inhibition of caspase-3 and of calpain, which activates BAX
180

. Its protective effect 

against hyperdopaminergic signalling may be particularly relevant given the 

upregulation of DRD2. Finally, calbindin is known to interact with and enhance the 

activity of inositol monophosphatase, which is a target of lithium. This mechanism is 

hypothesised to be relevant in bipolar disorder treatment using lithium
177

. Myo-
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inositol production catalysed by IMPase is important as inositol is a key substrate for 

the production of many signalling molecules. The hypothesis of inositol and bipolar 

disorder holds that lithium-induced inositol depletion helps reduce deleterious 

signalling. However, in the case of the t(1;11), this fits oddly with the finding that 

CALB1 is downregulated. If the inositol hypothesis of bipolar disorder is correct, 

downregulated calbindin would be beneficial
181

. To further complicate matters, 

calbindin deficient mice show deficits in LTP, possibly via a failure to appropriately 

buffer calcium. In any case there are several lines of evidence tying CALB1 to 

psychiatric pathology, although the evidence is perhaps not as strong as one would 

like and is occasionally contradictory. For example, one group found that calbindin 

had no anti-apoptotic effect and appears to mark surviving cells rather than aid cells 

to survive apoptotic challenge
182

. Nevertheless, this seemed an interesting gene to 

examine. 

3.8.3 CHRNA4 

This gene encodes neuronal acetylcholine receptor subunit alpha-4, a subunit of the 

nicotinic acetylcholine receptor. It was the first gene discovered to be causative of a 

type of frontal lobe epilepsy when mutated. All causative mutations appear to be 

gain-of-function, causing increased acetylcholine sensitivity, and some mutations 

(but not all) are linked to aberrant cognition
183

. The gene is upregulated in our t(1;11) 

samples compared to the WT. Especially interesting is the finding that a particular 

familial mutation in CHRNA4 frequently co-presents with frontal-lobe epilepsy and 

schizophrenia, although the pedigree is small and no LOD score can be calculated. 

This mutation does not appear to be a loss-of-function (it is characterised by an extra 

Leucine residue) and other families with different CHRNA4 mutations have epilepsy 

but no increased incidence of schizophrenia
184

. The product of CHRNA4, α4, is a 

protein that cooperates with a number of other subunits to form functional nicotinic 

acetylcholine receptors. α4β2 is one of the better studied nicotinic receptors 

consisting of alpha-4 and beta-2 protein subunits. These receptors allow the entry of 

cations such as Ca
2+

 and are triggered by acetylcholine, and by the exogenous ligand 

nicotine. This NAcR-triggered calcium influx in particular has been shown to help 

stimulate synaptic LTP
185

. The α4β2 receptor is widely expressed in the brain and is 
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highly expressed in the cerebral cortex, substantia nigra, thalamus, and hippocampus. 

There are also differences in receptor expression across some regions of the brain in 

post-mortem studies of individuals with schizophrenia, with greater expression in the 

striatum and some layers of the cingulate cortex. It is also notable that the prevalence 

of smoking is far greater among schizophrenic patients than the general 

population
186

. Although our cell culture is neither comprised primarily of 

GABAergic interneurons, nor dopaminergic ones, the α4β2 receptor formed by the 

product of CHRNA4 seems to have effects on both these cell types that may be of 

relevance to the pathophysiology of schizophrenia. VTA dopaminergic neurons are 

stimulated greatly by nicotine, via α4-containing receptors, and dopaminergic 

signalling has long been implicated in schizophrenia. However, it cannot be said if 

the α4 increase in our neurons would also be apparent in VTA dopaminergic 

neurons. More directly however, there is evidence that activation of the receptor in 

cortical tissue alters circuit excitability. This could be of relevance to the 

pathophysiology of schizophrenia and other disorders
185

. 

CHRNA4 was indicated by Tiihonen et al. as being differentially expressed 

according to sex in iPSC-derived neurons. The putative change is upregulation in 

females, and here it is downregulated in translocation samples (which are 

disproportionately male). Therefore sex may well be a factor in CHRNA4’s 

significance and the results must be judged critically in this regard. 

3.8.4 DRD2 

DRD2 encoding Dopamine Receptor D2 is perhaps one of the best known genes in 

schizophrenia research. All known antipsychotics that treat the positive symptoms of 

schizophrenia antagonise this dopamine receptor, and it has been recently implicated 

by GWAS
60

. In addition, iPSC-derived neurons from patients with schizophrenia 

show increased secretion of dopamine compared to control neurons, although the 

effects are very variable
137

. It also has relevance to bipolar disorder; both this and 

schizophrenia respond to dopamine bloackade
51

. Finally, other studies of DISC1 

mutants have shown elevated levels of DRD2 binding in mouse brain
115

. All of these 

lines of evidence link perfectly with the observation that DRD2 is significantly 
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upregulated in neurons carrying the t(1;11). Dopamine is a neurotransmitter 

important in diverse neurological activity leading to movement, pleasure, and 

memory
53

. Given the pharmacological relevance, its dysregulation in our cortical 

mouse model and others, as well as the support from GWAS, DRD2 is a natural 

choice for further investigation. 

DRD2 was indicated by Tiihonen et al. as being differentially expressed according to 

sex in iPSC-derived neurons. However, the putative change is upregulation in 

females, whereas here it is upregulated in translocation samples (which are 

predominantly male). Therefore sex does not appear to be a factor in DRD2’s 

significance. 

3.8.5 ERBB4 

The analysis of this gene was carried out by Helen Torrance and Kirsty Millar, but is 

also reported here due to its relevance. Results were previously described in 

Malavasi et al. 2018
70

 . 

ERBB4 is a receptor tyrosine kinase; its ligand is NRG1. The gene encoding NRG1 

is also differentially expressed. It is expressed in the glutamatergic synapse and 

overexpression enhances AMPA currents, while RNAi reduces dendritic spine 

density and size
187

. ERBB4 appears to be the primary receptor for much of NRG1’s 

effects, as null mouse neural progenitors are immune to NRG1-induced 

proliferation
188

. Erbb4 mouse mutants also have behavioural phenotypes, while mice 

null for Erbb2 or Erbb3 do not
189

.  

3.8.6 GPC1 

Glypican-1 is encoded by this gene. It is one of a group of heparan sulfate 

proteoglycans, a type of modified protein which has been studied for its roles in 

development. Of the six glypicans, the one encoded by GPC1 appears to be the most 

widely and highly expressed in the CNS. It appears to be expressed broadly within 

the cell body in TUJ1
+
 cells

190
. GPC1 is perhaps most notable for the phenotype of 

GPC1 homozygote and heterozygote mouse nulls as described by Jen et al.; they 

observed a reduction in brain size proportional to the number of null alleles. 
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Homozygote nulls have an approximately 20% reduction in brain size due to lower 

numbers of cells, not evident at E8.5, but evident at E9.5 through to adulthood. There 

was some evidence suggesting that Fgf signalling was decreased, meaning that 

proliferative neural precursors could be decreased in number, leading to the later 

lower number of cells. Correspondingly, increased numbers of Tuj1
+
 cells were seen 

in the developing brain at E9.5 with no increase of apoptosis, implying that cells 

were differentiating aberrantly
191

. Glypican-1 is also a known interactor of Slit2, 

known for its roles in neuronal guidance and axonal repellence, and the two proteins 

are co-expressed in many areas of the rat brain including cerebral cortex and 

hippocampus
192

.  

What relevance might the downregulation of GPC1 have to the pathology of the 

t(1;11)? As with the case of SLC12A2/Nkcc1 (see 3.9.10), it appears that a 

developmental change is occurring earlier than expected. Oikari et al. looked at 

proteoglycan expression during differentiation of NSCs and found that GPC1 was 

highly upregulated during neuronal differentiation to a TUJ1
+
 phenotype (DCX and

 

NEFM were also
 
upregulated during this differentiation). Interestingly, a NSC GPC1 

knockdown line, at an early stage of differentiation, had downregulations of both the 

NPC markers Nestin and MSI1, and of the neuronal markers TUJ1 and NEFM
190

. 

One hypothesis is that GPC1 downregulation causes two aberrant processes: the first 

being early exit from cell cycle, as elaborated in Jen et al. and causing 

downregulation of NSC markers as in Oikari et al., resulting in less neurons due to a 

reduced precursor pool. The second is possible entrance into an unusual cell fate, 

resulting in less neuronal markers. This would explain the downregulation of both 

marker types. Such a process could well be occurring in our neuronal cultures, 

resulting in premature development leading to a lower number of neurons, or of an 

unusual fate for some of those cells. The gene was significant in every WT vs t(1;11) 

DESeq2 analysis, and never significant in a t(1;11) vs t(1;11) or WT vs WT 

comparison. 
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3.8.7 HAP1 

Huntingtin Associated Protein 1 (HAP1) is a neuronally enriched protein found in 

many areas of the cell, including cell bodies and axons. It was first discovered as an 

interactor of the Huntingtin protein, a protein in which glutamine repeat expansions 

are causative of Huntington’s Disease (HD), a progressive neurological disorder 

characterised by chorea, cognitive decline, and behavioural abnormalities. Hap1 

knockout mice display reduced body weight and thalamic degeneration, as do human 

HD patients and transgenic HD mouse models. HAP1 appears to have roles in 

cellular trafficking. It interacts with dynactin, an essential component of the dynein 

motor complex, as well as KLC2 and synaptic vesicles
193

. The homologue in 

Drosophila is also critical for kinesin dependant anterograde transport of 

mitochondria, although this has yet to be investigated in human cells
193

. Transfected 

HAP1 increases numbers of surface GABARs, apparently by drastically reducing the 

rate of internalized receptor degradation
194

. It is especially interesting that DISC1 

appears to promote GABAAR surface presentation
166

. This is conceivably via HAP1. 

This concept is summarised in Figure 15. 

 

Figure 15. Illustration of theoretical DISC-HAP1-GABAAR interactions. Links between DISC1 and GABAARs described 

by Wei et al.166,links between HAP1 and GABAAR described by Kittler et al.194. DISC1-HAP1 link described in this 

thesis. 
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Particularly of note are the links between HAP1 and BDNF signalling described by 

Gauthier et al.
195

. siRNAs against Htt (the Huntingtin protein) increase the 

proportion of stationary BDNF-containing vesicles in neuronal cells, and cause 

slower movement of the vesicles overall. Transfection of Htt increases vesicular 

trafficking in cortical neurons, while empty vectors or the glutamine-expanded 

deleterious Htt isoform do not aid trafficking. The increase was especially evident in 

neurites and was not displayed by htt lacking the HAP1 interaction domain, strongly 

suggesting that the increase in transport is mediated by HAP1
195

. Htt also interacts 

with the aforementioned dynactin protein, an interaction which is potentiated by 

HAP1. It has been shown that direct HAP1 knockdown or indirect destabilisation 

decreases levels of TrkB, the BDNF receptor encoded by NTRK2, in the cerebellum 

and brainstem of postnatal mice, as well as the phosphorylation of its key signalling 

molecules
196

. 

Given the necessity of transport for extended cells such as neurons, as well as its ties 

to a pathological process, HAP1 presents as a strong candidate for qPCR 

investigation. It is also downregulated in the mouse model of the t(1;11), lending 

further credence to it being genuinely changed and perhaps functioning as the 

“missing link” between DISC1 and GABAAR. Particularly interesting is the role 

HAP1 has in effecting the Htt protein’s functions. Lack of HAP1 has been shown to 

abrogate the stimulatory effects of increased Htt on cellular trafficking; it is possible 

that lack of HAP1 in cells with normal levels of Htt similarly disrupts trafficking. 

I had examined HAP1 via qRT-PCR, but HAP1 was later indicated by Tiihonen et al. 

as being differentially expressed according to sex in iPSC-derived neurons. The 

putative change is upregulation in females, and here it is downregulated in 

translocation samples (which are disproportionately male). Therefore sex may well 

be a factor in HAP1’s significance and the results must be judged critically in this 

regard.  

3.8.8 HIF1A 

Hypoxia-inducible factor 1-alpha (HIF1A) is a transcription factor which acts as the 

master regulator of response to hypoxia
197

. Prenatal and perinatal hypoxia have been 
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established by epidemiological studies as a schizophrenia risk factor, and a large 

number of candidate genes for schizophrenia are related to hypoxia signalling in 

some way. These include BDNF, the ligand for NTRK2, and NRG1, the ligand for 

ERBB4 (described in 3.8.13 and 3.8.11 respectively). They also include COMT 

encoding the dopamine degrading catechol O-methyl transferase, found in the 

22q11.2 deletion region mentioned previously. Finally, these include CHRNA7 

(Cholinergic Receptor Nicotinic Alpha 7 Subunit, mice lacking this gene have 

deficits in parvalbumin positive interneurons
198

), and RELN encoding reelin
199

. Many 

of these appear to be disturbed in the t(1;11) neurons as well. However, it remains to 

be seen in if this remains true in the post-GWAS era. It also appears that neonatal 

hypoxia and genetic propensity for schizophrenia can interact, lending more evidence 

to the importance of hypoxia signalling
200

. It therefore seemed of interest to 

investigate its apparent upregulation further. 

3.8.9 KANSL1 

KANSL1 encodes KAT8 regulatory NSL complex subunit 1. Gene expression is 

increased in the neurons carrying the translocation. It encodes a chromatin modifying 

protein. Haploinsuffiency or point mutation in humans causes a developmental 

phenotype including intellectual disability, hypotonia, and distinctive facial 

morphology
201

. Differential expression of a large number of genes related to cell-cell 

signalling and synaptic transmission is found in cell lines carrying the human 

mutation. Mutation of the Drosophila homolog results in deficits in learning, and 

decreased binding of the protein to chromatin around genes related to those same 

functions, including synaptic transmission
201

. It is interesting that the gene is 

upregulated in our cells, but it could be some kind of compensatory mechanism. The 

gene appears to be involved in endosomal maturation, which could be relevant given 

the role of endosomes in the recycling and clearance of neurotransmitters. Genes 

related to synaptic trafficking, such as SYT6, are also differentially expressed in our 

neurons.  
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3.8.10 METRN 

This gene encodes Meteorin and is highly downregulated in our samples, as well as 

in the model described by Wen et al.
132

. METRN was primarily of interest due to its 

ability to promote axonal extension in neurons. It is expressed in neuronal 

progenitors, and is highly expressed in myelinating oligodendrocytes. It appears to 

have a role in promoting glial differentiation
202,203

. It therefore is of importance to 

neuronal differentiation and the formation of networks, which are processes of 

interest. It is also differentially expressed in the mouse heterozygote cortical model. 

3.8.11 NRG1 

The analysis of this gene, encoding Neuregulin 1, was carried out by Helen Torrance 

and Kirsty Millar, but is reported here due to its relevance. Results were previously 

described in Malavasi et al. 2018
70

 . 

NRG1 and its cognate receptor ERBB4 are both downregulated in the t(1;11) 

neurons, as described in the ERBB4 section 3.8.5.NRG1 has many roles of relevance 

to psychiatric disorder processes; it assists in the migration of cortical neurons, 

progenitor proliferation, and axonal guidance. It also aids synapse formation via 

induction of PSD95, and plasticity
188

. Mouse mutants of Erbb4 or Nrg1 display 

hyperactivity and impaired prepulse inhibition, phenotypes which bear relevance to 

psychiatric disease in humans
204

. NRG1 also has a role in parvalbumin-positive 

interneuron migration, a cell type which is thought to be of relevance to 

schizophrenia in particular
116

. Given its historic relevance as a schizophrenia 

candidate, and its links to multiple processes of relevance to synaptic activity and 

neuronal development, NRG1 is a good choice for qRT-PCR.  

3.8.12 NRP2 

Neuropilin-2 is encoded by this gene and is one of a family of receptors which help 

mediate the chemo-attractive and chemo-repulsive effects of the semaphorin ligands. 

These effects are necessary for neuronal extensions to reach their eventual 

destination and make synaptic connections. Nrp2 deficient mice have been studied, 

and are seizure prone, although this phenotype is of more relevance to epilepsy. They 
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also have fewer interneurons, including parvalbumin positive and GABAergic 

interneurons, which many schizophrenia risk factors converge on
116

. CA1 pyramidal 

neuron dendrites also show decreased length and complexity
205

. It is possible that the 

downregulation of NRP2 causes similar phenotypes here. However, it is unusual that 

the DLX1/2 Hox genes are also downregulated in the t(1;11) neurons. Mouse nulls of 

the DLX homologues are embryonic lethal, with a malformed cortex with impaired 

GABAergic interneuron migration. The Dlx genes appear to promote GABAergic 

interneuron migration via the repression of Nrp2, and downregulation of them causes 

a concurrent upregulation of Nrp2
206

. It is difficult to reconcile these contradictory 

findings of Nrp2’s effects on GABAergic interneuron placement, although the 

answer may have something to do with timing of expression or the importance of 

signalling cues being balanced. However a consistent result from investigation of Dlx 

null mutants is impairment of GABAergic interneuron development, a finding which 

is likely to be of relevance to schizophrenia.  

3.8.13 NTRK2 

NTRK2 encodes a protein named TrkB, a receptor tyrosine kinase which binds the 

neurotrophic ligands BDNF and NT-3. BDNF in particular has important roles in 

neuronal survival, dendritic outgrowth, and synaptic strengthening (LTP). Like all 

receptor tyrosine kinases TrkB must dimerise to become enzymatically active, and 

propagates intracellular signalling cascades via a series of phosphorylation events. 

Isoforms lacking the intracellular phosphorylation domain can inhibit full length 

isoforms and prevent the BDNF-TrkB effects of neurite outgrowth, calcium efflux, 

and gene expression. The full length isoform is well expressed throughout the 

CNS
207,208

.  

Two separate qPCRs were performed for this gene. One differentially expressed 

exon is the unique C terminal exon for a pair of isoforms f and b which truncate early 

and do not have an intracellular signalling domain (referred to as TrkB-T1 in 

PubMed). It is highly downregulated, while the gene itself is also significantly 

downregulated at the whole gene level. Two primer pairs were designed, one pair to 
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match transcripts of isoforms f and b, and one pair for a ubiquitous set of 

extracellular domain exons found in all isoforms.  

One paper has shown that TrkB-T and TrkB have distinct roles in dendritic extension 

in the ferret visual cortex. Transfected full length TrkB promoted proximal dendritic 

branching, while truncated TrkB promoted distal dendrite extension
209

. However, 

even without distinct roles for different isoforms, TrkB oversignalling could have 

pathological consequences. BDNF signalling can make neurons vulnerable to 

excitotoxicity, despite its necessity for neuronal survival and avoidance of apoptosis. 

One hypothesis has proposed that TrkB signalling is enhanced in fragile X syndrome 

not as a pathological process, but as a compensatory one due to the lack of LTP
210

. 

This is a highly interesting idea, and it must be borne in mind that cells are living 

organisms employing homeostatic mechanisms. It will be difficult to discern whether 

enhanced TrkB signalling is a cause or effect of the pathologies we observe in the 

t(1;11) neurons, particularly as BDNF trafficking may also be affected due to HAP1 

dysregulation. Finally, BDNF signalling has been shown to alter the phosphorylation 

of DPYSL2 and DPYSL3, two proteins encoded by genes which have altered exon 

expression in our neurons and which appear to mediate some of the effects of BDNF-

induced neurogenesis
211

. 

NTRK2 was indicated by Tiihonen et al. as being differentially expressed according 

to sex in iPSC-derived neurons. However, the putative change is downregulation in 

females, whereas here it is downregulated in translocation samples (which are 

disproportionately male). Therefore sex does not appear to be a factor in NTRK2’s 

significance. 

3.8.14 PDYN 

PDYN’s product prodynorphin is the precursor protein for several opioid peptides, all 

of which are ligands for the Κ opioid receptor, which is encoded by a significantly 

downregulated gene (OPRK1). Both genes are expressed in many regions of the 

brain, including in certain layers of the cortex and especially in the prefrontal cortex. 

Within the medial prefrontal cortex, their products are seen at presynaptic axon 

terminals and activation decreases release of dopamine, serotonin, and other 
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neurotransmitters
212

. Diminished inhibition of dopaminergic transmission could have 

profound effects on our cultured neurons, especially in synergy with increased DRD2 

expression. The result would be overactive dopamine signalling. However it is 

notable that OPRK1 agonism (rather than antagonism) results in visual disturbances, 

dissociative effects, and other symptoms
213

. This apparently counterintuitive 

observation could be due to the fact that PDYN products mediate the release of a 

number of various neurotransmitters including GABA, and would be present in many 

parts of the brain during administration to human subjects. There is also some 

evidence suggesting that genetic variance in PDYN and OPRK1 predisposes to some 

neuropsychiatric disorders
212

. The gene was significant in every WT vs t(1;11) 

DESeq2 analysis, and never significant in a t(1;11) vs t(1;11) or WT vs WT 

comparison. 

3.8.15 QKI 

QKI encodes a protein named Quaking for its mouse mutant phenotype, which 

includes body tremor and CNS myelination deficits. Quaking protein binds RNA and 

integrates cell signalling by interacting with receptors. It contains a number of SH3 

domains for this purpose and can be phosphorylated by Src family kinases, 

modulating its RNA binding ability
214

. The dysmyelination phenotype is evident 

even in mice which are just lacking two QKI isoforms solely in glial cells. Deletion 

of QKI is embryo lethal. Other mutants have cranial defects and altered development, 

or seizures and possible neurodegeneration
214,215

. Developmentally, the gene is 

initially expressed in many neural precursors but decreases in expression in neurons 

and increases in glial cells, with isoform specific expression changes. The number of 

RNAs Quaking binds is unknown but a possible consensus sequence has been 

generated and in post mortem human frontal cortex expression of QKI is correlated 

with the expression of a number of oligodendrocyte/myelin related genes, the 

expression of which is perturbed in schizophrenia
216

. QKI is downregulated in our 

neurons, leading to a few possible scenarios. Myelination deficits could lead to 

impaired neuronal activity. One scenario is that QKI is downregulated as the cell 

type in which it is highly expressed, oligodendrocytes, is lacking in our cell culture. 

However, our cell model should not contain a large number of oligodendrocytes, 
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although a reasonable expression of immature markers such as PDGFRA and CSPG4 

along with small amounts of mature oligodendrocyte markers such as OLIG1, 

OLIG2, OLIG3, and SOX10 are all expressed. None of these are differentially 

expressed. It is also possible that the oligodendrocytes that are present will be non-

functional due to poor QKI expression. Although QKI is expressed by neural 

precursors, our neurons are past this stage and the dysregulation should be unrelated 

to the typical downregulation seen in the precursor to neural cell fate change
217

. As I 

show in a later chapter, the cell proportions of our various t(1;11) models do not 

appear to be abnormal, implying the deficit is in existing oligodendrocytes rather 

than a lack of the cell type itself. 

3.8.16 Results of RT-qPCR 

qPCRs were carried out on all the aforementioned genes for the three samples of 

each of the six lines. Results were fitted to a standard curve and normalised to the 

scores for BACT expression as described in Materials and Methods. Owing to poor 

expression and the inability of primers to reliably detect it in all cell lines, the results 

of PDYN are not displayed. A summary of the results is shown in Table 8
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 and 

the expression plots are shown in Figure 16 and Figure 17. Samples were averaged 

by line before calculation of p values; a more conservative approach. Note that the 

results of DRD2 have been previously published
70

. We can see that 10 of the 14 

genes were confirmed at the RT-qPCR level, a good level of consistency. The gene 
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NRP2 was also near significant, an observation that reoccurred with the mouse 

orthologue in the mouse cortical heterozygous mutant samples. However it should be 

noted that for some genes the samples may be affected by sex imbalances, as the 

t(1;11) sample which was originally derived from a female patient has the t(1;11) 

value closest to the WT (all originally derived from females). This occurs with the 

genes CALB1, GPC1, METRN and NRP2. This is 4 of 14 genes, close to the expected 

number that would appear by chance (as one of the three t(1;11) samples must be 

closest to the WT samples). Nevertheless, should information emerge that any of 

these genes are also differentially expressed according to sex in iPSC-derived 

neurons, these two facts together are strong evidence in favour of the changes 

observed here being related to sex rather than to translocation status. In addition, the 

significance of HAP1 is suspect and should be disregarded. This is because putative 

sex effects are in the same direction as the putative translocation effects. 
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Figure 16. Expression plots for RT-qPCR results of BBS1, CALB1, CHRNA4, DRD2, ERBB4, GPC1, HAP1, and HIF1A 

differential whole gene expression. P values are given underneath each gene name. Each trio of neuronal samples from 

each line has been averaged. Lines indicate overall genotype average expression with smaller lines indicating one 

standard deviation above and below the mean. Colours indicate genotype and shape indicates line number. Blue=C line, 

Red=T line. Circles indicate 1, squares indicate 2, and triangles indicate 3. Lines C1, C2, C3, and T3 were derived from 

females.The RT-qPCR of ERBB4 was carried out by Helen S. Torrance. N=3. 
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Figure 17. Expression plots for RT-qPCR results of KANSL1, METRN, NRG1, NRP2, NTRK2 PDE4B and QKI 

differential whole gene expression. P values are given underneath gene name. Each trio of neuronal samples from each 

line has been averaged. Lines indicate overall genotype average expression with smaller lines indicating one standard 

deviation above and below the mean. Colours indicate genotype and shape indicates line number. Blue=C line, Red=T 

line. .Circles indicate 1, squares indicate 2, and triangles indicate 3. Lines C1, C2, C3, and T3 were derived from 

females. The RT-qPCRs of was carried out by Helen S. Torrance. The primers used for the RT-qPCR of NTRK2 shown 

here were designed to detect all isoforms of the gene. N=3. 
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RT-qPCR 

results 

P value t(1;11) Fold change 

expression 

Significance 

BBS1 0.010 0.52 * 

CALB1 0.0099 0.25 ** 

CHRNA4 0.09 2.03  

DRD2 0.045 3.98 * 

ERBB4 0.036 0.29 * 

GPC1 0.030 0.54 * 

HAP1 0.041 0.32 * 

HIF1A 0.39 0.93  

KANSL1 0.39 1.03  

METRN 0.041 0.32 * 

NRG1 0.019 0.33 * 

NRP2 0.053 0.50  

NTRK2 0.040 0.50 * 

QKI 0.0030 0.50 ** 

Table 8. Summary of RT-qPCR gene level expression results for human neurons. * =p<0.05, **=p<0.01, ***=p<0.001. 

t(1;11) expression is given as a percentage of the WT expression rounded to the nearest %. P values calculated by t test, 

with each trio of individual differentiation of each iPSC-derived neuronal line being treated as a single averaged sample. 

The three genes ERBB4, NRG1, PDE4B, were analysed by Kirsty Millar and Helen S. Torrence. n=3. 

A measure of how reliable the RNA-Seq findings are is given by how closely the 

RT-qPCR results track their respective samples’ RNA-Seqs scores. In theory, these 

should be linearly related. I looked at the log2 foldchange between translocation and 

WT samples, seen in Figure 18. 
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Figure 18. Graph displaying log2 fold change of normalised counts vs log2 fold change of normalised PCR score for each 

of the 12 genes I carried PCRs out on. Log2FC=Log2 fold change between WT and t(1;11) samples. Positive values 

indicate the t(1;11) samples have a higher score on average. Gene legends on right, differentiated by colour. Counts 

normalised using the “rlog” function in DESeq2 package. R2=0.899 

We can see that most genes show an apparently linear relationship between fold 

change of counts and fold change of qPCR score, showing that although there is 

indeed variance within genotypes, the overall trend is apparent (R
2
=0.899). However, 

HIF1A and KANSL1 show no apparent relationship. Indeed; these are the genes, 

along with CHRNA4, which were not found significant at the qPCR level. Individual 

qPCR results are displayed in Figure 16 and Figure 17. It should be noted that I 

designated one of the three C2 CHRNA4 qPCR results as an outlier; it had a qPCR 

measurement which was 15 times greater than any other with a value 3.6 standard 

deviations from the mean, and if excluded changes the log2fold change from 1.41 to 

-0.68. The gene is non-significant in either case.  
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3.9 Exon level RT-qPCR 

Genes were chosen for investigation on the same basis as the gene level candidates. 

All exons which belonged to genes implicated by the PGC GWAS or CNV studies 

were analysed as potential RT-qPCR candidates, as were exons belonging to genes 

encoding possible DISC1 interactor. Subsequently exons were also inspected to see 

where in the gene they are. Exons that implicated a unique transcript, especially one 

that encoded a protein isoform with a known physiological role, were prioritised. N-

terminal and C-terminal exons which implicated particular transcripts were also 

prioritised. A minority of potential targets were discarded due to the impossibility of 

designing specific primers, or because there is only one isoform in RefSeq according 

to the UCSC Genome Browser, genome hg19 (https://genome.ucsc.edu/). Of some 

use in selecting candidates was an approach searching for convergences between 

papers; a table displaying the numbers of genes significant between any pair of 

papers described in 3.7.1 as well as in the DESeq2 analysis is displayed as Table 9. 

Descriptions of each gene are given in turn and a table summarising the rationales is 

displayed as Table 10. 

 

https://genome.ucsc.edu/
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Table 9. Table of overlaps. Numbers represent the number of genes significant in our DEXSeq study of human neurons, 

in addition to the two papers in the corresponding row and column. Grey blocks indicate genes from only one paper (the 

same row and column index). Abbreviations as in 3.7.1. 
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Table 10. Highlighted information about candidate exons selected for qPCR. TRUE indicates that the gene is 

differentially expressed in the model of interest. Paper abbreviations are as in 3.7.1. 
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3.9.1 DLG2 

This gene encodes the protein PSD-93, and a total of three exons are differentially 

expressed. One leads to a region annotated by UCSC as being intronic, while the 

other two are a unique N terminal exon for a shorter isoform and an exon found 

within but not exclusive to said isoform. The isoform is described in PubMed as 

being the “alpha” isoform. PSD-93 is a synaptic protein that helps the clustering of 

various signalling proteins. It associates with other synaptic proteins such as the 

neuroligins, and associates with NMDARs, increasing their surface expression
218,219

. 

It also forms supercomplexes with NMDARs and PSD-95
220

. It is henceforth 

important to LTP and also associates with AMPARs via proteins like stargazin, 

which facilitate the increased synaptic strength following LTP
221

. Mutant mice 

display impaired LTP
222

. Furthermore, CNVs deleting DLG2 are associated with 

schizophrenia
35

. Although not all the functional effects of the various isoforms are 

fully understood as of yet, DLG2α specifically being upregulated is of interest and 

should be investigated further.  

3.9.2 DPYSL2 

A number of exons are also dysregulated in the homologous mouse gene in the 

cortical heterozygous model. The pattern of exon dysregulation is the same as in the 

related gene DPYSL3 described in the next section; one N terminal exon is 

upregulated and the alternative one is downregulated. The upregulated exon is only 

found in an isoform containing a number of metal binding residues, while the 

downregulated one is only found in isoforms lacking these residues. DPYSL2 binds 

to tubulin molecules to promote microtubule assembly, and promotes axonal 

outgrowth in hippocampal cell culture
223

. Indeed, DPYSL2 overexpression promotes 

the formation of excess axons, a phenotype shared by the overexpression of SHTN1 

(see 3.9.9) 
224

. It is also a possible DISC1 interactor, and may have mutations linked 

to schizophrenia
73,223

. Finally, knockdown of Dpysl2 and Dpysl3 leads to motor 

neuron misplacement, a phenotype also produced by Cdk5 and rescued by 

phosphomimetic Dpysl2
225

. It also incorporates signalling from GSK-3β and fails to 

inhibit axonal growth unless phosphorylated by it
211

, while antipsychotic drugs 

inhibit the phosphorylation of this site, conceivably via GSK-3β
226

. It is clear that 
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DPYSL2 is a gene of importance to axonal development, kinase signalling, and is 

even a possible DISC1 interactor. The rationale for investigating further was clear, 

especially given that the related gene DPYSL3 shows the same pattern of change. A 

PCR was carried out to detect changes in the upregulated exon. 

3.9.3 DPYSL3 

The protein encoded is DPYSL3, or CRMP4 (Collapsin response mediator protein 

4). It is a possible DISC1 interactor according to a Y2H screen
73

. It is localised in 

neurites and axonal growth cones, where it appears to oligomerise and bundle F-

actin
227

. It is also phosphorylated by GSK-3β, as is DPYSL2, and the 

phosphorylation of this site can be blocked by antipsychotic drugs
211,226

. Expression 

is at its highest during peak axonal growth, and mutations in the highly conserved 

nematode homologue cause severe axon defects in all neurons
228

. Cleavage of 

DPYSL3 post excitotoxic NMDA signalling prevents oligomerization and therefore 

actin bundling, which could have implications for the maintenance of axonal growth 

cones
227

. The exon which is upregulated corresponds to the N-terminal exon of an 

isoform which possesses a number of metal ion binding residues, while the 

alternative isoform without these residues has its N terminal exon downregulated. 

The corresponding mouse gene also has some differentially expressed exons. Given 

the alternating N terminal exon pattern and the fact that the isoforms have known 

differences, this is a strong candidate for RT-qPCR. Both DPYSL2 and DPYSL3 

appear to incorporate signalling from multiple kinases known to promote neuronal 

development, which can be modulated by antipsychotic drugs, and are both involved 

in axonal growth. They present as a pair of highly interesting candidates. A PCR was 

carried out to detect transcripts containing the upregulated exon. 

3.9.4 DVL1 

Two isoforms of the encoded protein, Dishevelled-1, are described in the UCSC 

genome browser and are differentiated by differing versions of a central exon. The 

unique segment of one version is upregulated. DVL1 is a highly conserved and 

broadly expressed developmental gene important for Wnt signalling and in 

establishing planar cell polarity. A null Dvl1 mouse model was viable but exhibited 



Generation and initial analysis of human RNA-Seq data 

150 

reduced sociality, altered behaviour, and reduced prepulse inhibition in response to 

acoustic or tactile startles
229

. Given the similarity to some known schizophrenia 

phenotypes, as well as the known links between DISC1 and Wnt signalling, DVL1 

presented as a very interesting candidate for qPCR. 

3.9.5 GRIA4 

A number of exons are differentially expressed in this gene. One in is a C-terminal 

exon found only in isoform 3 of the gene. It is important to note that the “flip” and 

“flop” exons are not altered. GRIA4 encodes GluR4, a glutamate receptor subunit 

found in AMPARs. AMPAR expression and trafficking is believed to underlie 

synaptic plasticity and from this many physiological aspects such as learning and 

memory
230

. The expression of an alternative isoform of GRIA4 may have some 

biological impact on these functions, although the isoform is currently not well 

characterised in terms of a unique biological role. Nevertheless given the relevance 

of the gene it makes sense to investigate expression further. 

3.9.6 NTRK2 

The rationale for investigating NTRK2 is described in detail in 3.8.13. The primers 

used in the following analysis were designed to only detect isoforms with a unique C 

terminal exon resulting in an early truncation of the protein and a corresponding lack 

of an intracellular signalling domain. 

3.9.7 NTRK3 

Like NTRK2, NTRK3 encodes a receptor tyrosine kinase that dimerises to form active 

signalling complexes. As with NTRK2, the exons found only in truncated isoforms 

lacking the intracellular signalling domain are downregulated. NTRK3 encodes a 

protein called TrkC which is the receptor for the neurotrophin NT-3. The truncated 

isoforms may inhibit the full-length ones, but importantly appear to have roles of 

their own. The extracellular domain of TrkC can bind both NT-3 and PTPσ, resulting 

in formation of glutamatergic excitatory synapses. Overexpression of the truncated 

isoforms results in increases in VGLUT1 expression but not VGAT, while 

knockdown of the gene results in decreased VGLUT1-PSD95 co-localisation. This is 



 

     151 

rescuable by expression of the truncated isoforms. This implies a special role for the 

truncated isoforms of TrkC, so it is highly interesting to find these downregulated. 

The ratios of both TrkB and TrkC truncated to non-truncated isoforms increase at the 

peak of synaptogenesis
231

. Overexpression of the full length isoforms in mice results 

in behavioural abnormalities including abnormal responses to threats (increase flight 

response, frozen response, and decreased approach)
232

. The decrease in the truncated 

isoforms’ unique exon is therefore very interesting, and might imply deficits in 

excitatory synapse formation, conceivably linked to altered behaviour. 

3.9.8 PDE4B 

The analysis of this gene was carried out by Helen Torrance and Kirsty Millar, but is 

reported here due to its relevance. Results were previously described in Malavasi et 

al. 2018
70

 . 

PDE4B is another gene linked to psychiatric disease, with a balanced translocation in 

the gene segregating with schizophrenia risk
74

. It is crucial for cAMP regulation, 

which itself is vital in several neural processes, such as memory
74,85

. PDE4B 

interacts with DISC1, and its inhibitor rolipram is a prototypical antidepressant. 

Mutations in the corresponding Drosophila gene cause learning deficits. PDE4B has 

also been shown to have a role in the functions of a number of other DISC1 

interactors such as LIS1, NDE1, NDEL1, the genes of which have been found 

mutated in cases of lissencephaly (a developmental brain malformation) or are linked 

to crucial processes such as neurite outgrowth. Interaction with DISC1 appears to 

inhibit PDE4B’s phosphodiesterase ability, while the subsequently high cAMP levels 

stimulate PKA-mediated phosphorylation of NDE1. NDE1 phosphodead NS-1 cells 

have inferior neurite outgrowth to wild type
84

. We can see that control of PDE4B via 

DISC1 is important for neural processes, yet we know from Drosophila and the 

PDE4B translocation that insufficiency is also problematic. The gene therefore 

presented as an interesting candidate for RT-qPCR. 
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3.9.9 SHTN1 

This gene is also known as KIAA1598 and produces a protein called Shootin1. It has 

a role in axonal sprouting. Studies involving rat hippocampal neurons showed that 

Shootin1 is initially expressed in neurites sprouting from cells. It fluctuates in 

expression but eventually is only expressed in one neurite, which is destined to 

become the neuron’s axon. Knockdown delays axon formation, while overexpression 

results in accelerated accumulation of the protein in neurites and a corresponding 

chance to form multiple axons. It persists in the axonal growth cone where it 

activates PI3K. The authors theorised a model where Shootin1 is actively trafficked 

to neurite termini and passively diffuses back. The longer the neurite, the longer 

Shootin1 stimulated activity continues, and the greater the corresponding effect on 

neurite extension and axon formation. Shootin1 presence therefore determines axonal 

identity in a self-propelling loop
233

. Another paper showed that the formation of 

multiple axons caused by Cdkl5 overexpression in mouse could be mitigated by 

Shtn1 knockdown and that the two genes are found expressed in cortical neurons
234

. 

It also interacts with cortactin, an actin bundling protein. This is enhanced by an 

axonal chemoattractant, netrin-1
235

. Although data on the human isoforms is sparse, 

the isoforms appear to be analogous in the mouse and rat. The differentially 

expressed exon is downregulated in the rat PC12 line, and the isoform containing the 

analogous exon is constitutively expressed. The isoform without the analogous exon 

is expressed after NGF signalling and is necessary for subsequent neurite extension. 

Protein expression of both isoforms subsequently decreases
236

. Given its evident 

importance in neurite outgrowth, as well as a verified different expression pattern for 

the isoform containing the exon (in the rat PC12 line at least), I deemed SHTN1 

worthy of investigation via qRT-PCR. 

3.9.10 SLC12A2 

The product of this gene is known as NKCC1, a protein which is highly expressed in 

developing cortex but declines in expression over the first year of life to a baseline 

level equivalent to that of the adult cortex. This occurs in both rat and human
237

. The 

protein is a chloride transporter maintaining high levels of intracellular Cl
-
, which 

when coupled with low levels of intracellular K
+
 results in a high transmembrane 
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potential. Upon activation of GABA receptors the efflux of charged chloride results 

in neuronal depolarization and firing. The reverse effect is seen in adult tissue. High 

KCC2 expression (a potassium importer) and low NKCC1 expression keeps 

intracellular Cl
-
 low and K

+
 high. GABAR activation here allows chloride ion influx 

resulting in hyperpolarization. Therefore in adult tissue GABA acts as an inhibitory 

neurotransmitter rather than an excitatory one. This GABAergic switch is a key 

developmental step and neonates who have yet to complete the switch are vulnerable 

to GABA-mediated excitatory neuronal activity causing seizures
238

.  

The differentially expressed exon is found in one isoform, NKCC1A, and not the 

other, NKCC1B, although both form functional transporters. NKCC1A is expressed 

in both foetal and adult prefrontal cortex and appears to follow a general trend of 

increasing in expression postnatally, being very poorly expressed foetally
239

. In the 

mouse, the excitatory activity of GABA (and high Nkcc1 expression) is required for 

immature hippocampal neurons to develop properly. Nkcc1 knockdown or Kcc2 

upregulation both result in defective dendrite growth and synapse formation. Disc1 

knockdown, meanwhile, enhances dendrite outgrowth at this stage, which can be 

undone by concurrent Nkcc1 knockdown preventing excitatory GABAergic 

signalling. Complementary experiments showed that GABAR agonists or inhibitors 

of GABA degradation enzymes further enhanced the Disc1 knockdown induced 

dendrite outgrowth. The effect of Disc1 knockdown is eventually lost, but can be 

regained if Kcc2 expression is kept low
240

. Although NKCC1 isoforms have not yet 

been fully characterised, NKCC1A downregulation could indicate that our neuronal 

model is developing aberrantly, with a possible early switch in the role of GABA 

which would have severe consequences. 

3.9.11 Results of RT-qPCR 

qPCRs were carried out on all the aforementioned genes for the three samples of 

each of the six lines. Results were fitted to a standard curve and normalised to the 

scores for BACT expression. A summary of the results is given in  and the expression 

plots are given in Figure 19 and Figure 20. 
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Figure 19. Expression plots for RT-qPCR results of DLG2, DPYSL2, DPYSL3, DVL1,GRIA4 and PDE4B differential 

exon expression. P values are given underneath each gene name. Lines indicate overall genotype average expression with 

smaller lines indicating one standard deviation above and below the mean. Colours indicate genotype and shape 

indicates line number. Blue=C line, Red=T line. Circles indicate 1, squares indicate 2, and triangles indicate 3. Each trio 

of neuronal samples from each line has been averaged. N=3. 
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Figure 20. Expression plots for RT-qPCR results of NTRK2, NTRK3, SHTN1 and SLC12A2 differential exon expression. 

P values are given underneath each gene name. Each trio of neuronal samples from each line has been averaged. Lines 

indicate overall genotype average expression with smaller lines indicating one standard deviation above and below the 

mean. Colours indicate genotype and shape indicates line number. Blue=C line, Red=T line. Circles indicate 1, squares 

indicate 2, and triangles indicate 3.The primers used for the qRT-PCR of NTRK2 shown here were designed to only 

detect the f and b isoforms, which truncate early.n=3. 
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RT-qPCR 

results Exon identity 

P 

value 

t(1:11) 

Fold 

Change Significance 

DPYSL3 Alternative N-terminal exon 0.0054 0.35 ** 

NTRK2 Alternative C-terminal exon 0.031 0.34 * 

PDE4B 
Central exon found in 

isoforms with an 

alternative promoter start 

0.024 0.45 
* 

SLC12A2 Alternative central exon 0.031 0.49 * 

Table 11. Summary of RT-qPCR exon level expression results. * =p<0.05, **=p<0.01, ***=p<0.001. t(1;11) expression is 

given as a percentage of the WT expression. Only significant results are displayed. 

We can see that a much lower proportion of the exon level changes have been 

confirmed; four out of ten as opposed to 10 out of 14 for the gene level changes. The 

reason is difficult to discern but may be due to the fact the counts for any exon are 

likely to be much lower than the counts mapping to a gene, given the vastly 

increased size of a gene compared to an exon. The lower number of counts may 

allow chance variation a greater role, resulting in falsely indicated differentially 

expressed genes. As before it should be noted that for some genes the samples, if 

judged by sex, cluster together (the red triangle with all blue shapes). This occurs 

with the qPCRs for exons in genes NTRK3 and SHTN1. This is 2 of 10 genes, lower 

than the expected number that would appear by chance (as one of the three t(1;11) 

samples must be closest to the WT samples). As before the same conclusion applies. 

If any of these exons are differentially expressed according to sex in iPSC-derived 

neurons, this is evidence in favour of the changes observed here being related to sex 

rather than to translocation status. 
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As with the gene level qPCRs, I looked at how closely the RT-qPCR results track 

their respective samples’ RNA-Seqs scores. Figure 21 shows the relation between 

qPCR score and normalised count for each of the 18 samples for 9 genes

 

Figure 21. Graph displaying log2 fold change of normalised counts vs log2 fold change of normalised PCR score for each 

of the 8 exons I carried PCRs out on. Log2FC=Log2 fold change between WT and t(1;11) samples. Positive values 

indicate the t(1;11) samples have a higher score on average. Gene legends on right, differentiated by colour. Counts 

normalised using the “rlog” function in DESeq2 package. 

There appears to be a more linear relationship between the qPCR and normalised 

count scores when samples are averaged, as in the gene level analysis. There is more 

scatter, and correspondingly less significant genes. However the overall linearity 

indicates that the changes may be genuine, and that the relatively small number of 

samples, as well as the low magnitude of the changes, may be the reason for the lack 

of significance at the qPCR level. As always, larger sample sizes would be ideal. 

Individual qPCR results are shown in Figure 19 and Figure 20. 

3.9.11.1 NTRK2 results 

The qPCR results suggest that both “all transcripts” and truncated transcripts of 

NTRK2 are downregulated. It is entirely possible that the change in one is 

responsible for the apparent change in the other. An estimation of the ratio of 

truncated NTRK2 to full length NTRK2 can be obtained by looking at RNA-Seq 
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counts for unique exons. The C-terminal exon of the fully truncated isoforms b and f 

has an average of over 19,000 reads per WT sample, while the averages of the C-

terminal exons for partial length isoforms d and e and full length isoforms a and c are 

approximately 2,000 and 2,100, respectively. The samples do not display drastically 

different counts for the partial and full length C-terminal exons, while those for the 

truncated C-terminal exon have been confirmed by qPCR as significantly 

downregulated to approximately one third of the levels of the WT samples. 

It appears likely that the change at the “whole gene” level is driven mostly, if not 

entirely, by the downregulation of the truncated transcripts, given that it is the major 

isoform and is confirmed as downregulated. The reduction in the truncated isoforms 

is approximately 70%, while “all isoforms” are reduced by approximately 50%. The 

hypothesis that the change in “all isoforms” is driven entirely by a 70% reduction in 

the truncated isoform bears some relation to the observed ratios of the average counts 

of each C-terminal exon, although there may be some minor changes in partial length 

transcripts. See Table 12. 

C-terminal exon 

counts average 

Truncated 

NM_001007097.2 and 

NM_001291937.1 

Partial Length 

NM_001018065.2 and 

NM_001018066.2 

Full Length 

NM_006180.4 and 

NM_001018064.2 

Total 

counts 

qPCR of 

ubiquitous 

exon 

qPCR 

Truncated 

WT 19644 1977 2109 23730 100% 100% 

t(1;11) 6100 1251 2011 9362 50% 30% 

Table 12. Examination of counts of C-terminal exons unique to each isoform of NTR2. Note that the Total counts 

decreases by 14,000 counts, while Trk-T1 decreases by 13,000. The truncated isoforms are referred to as “b” and “f”, 

the partial length isoforms as “d” and “e”, and the full length isoforms as “a” and “c”. Note that the accession numbers 

are not necessarily an exhaustive list of all accession numbers that may contain the exon. Only 6 transcripts have a 

verified mRNA in Ensembl, 2 have neither an mRNA nor an EST and are similar to isoforms “a” and “c”.  

We can conclude that the ratio of truncated: full NTRK2 transcripts is lower in the 

t(1;11) samples. This would imply that TrkB signalling is enhanced, particularly as 

the full length isoforms appear to be relatively unchanged. 
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3.10 Discussion 

To summarise, over 1,200 genes appear to be differentially expressed between the 

WT and t(1;11) human neurons. There is little evidence to suggest regional effects of 

the translocation, but DISC1 displays the expected phenotype of cross-breakpoint 

reads being halved. Differential expression at the protein level was also confirmed by 

other researchers
70

. The GO terms overrepresented among the differentially 

expressed genes relate to psychiatric disease and there is extensive overlap with other 

researchers using both iPSC-derived neuronal models and GWAS/CNVs. A number 

of candidate genes have been confirmed at the qRT-PCR level and the results are 

generally in good alignment with the RNA-Seq.  

3.10.1 Evaluating the evidence  

There are consistent areas of interest which are implicated by this investigation into 

t(1;11) pathology. These areas have been implicated by GO terms, have associated 

genes which are relevant to disease and/or are DISC1 interactors, and have 

associated genes confirmed at the RT-qPCR level.  

 Intracellular trafficking. Although HAP1 may be sex regulated,other 

differentially expressed genes include KIF1A, MYO10, MYH11 encoding 

kinesin-related and myosin proteins. DISC1 has already been associated with 

this function via recent papers (see Introduction), as well as interactome 

studies
73

. Potential DISC1 interactors include dynactin, NDEL1, FEZ1, and 

KIF1B
241

. DISC1’s confirmed trafficking of GABAARs is also relevant. A 

review by Devine et al. also suggested that HAP1 and DISC1 might 

cooperate in the trafficking of AMPARs
241

. This balance between excitatory 

and inhibitory synaptic activity is relevant to cell-specific disturbed GO 

terms, as I elaborate in the Discussion. Trafficking of mitochondria is 

important for neuronal energy demands, as receptor trafficking is for synaptic 

formation. Both are essential to neuronal function. 
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 Neuronal migration and placement, including BBS1 (and other BBS genes, 

not subjected to qPCR), NRG1, ERBB4. A well established DISC1 function 

(see Introduction). 

 Neuronal developmental in terms of timing of developmental switches and 

dendritic outgrowth, including SLC12A2, SHTN1, GPC1 and METRN , 

PDE4B, DPYSL2/3 respectively. GOrilla Functions which are 

overrepresented are heavily cytoskeletal in nature; including actin nucleators 

such as SPIRE1. This has relevance as the cytoskeleton undergoes 

reorganisation to form axonal growth cones. SHTN1 and DPYSL2/3 have 

functions directly related to this. 

 Synaptic activity including altered plasticity and strengthening including 

NTRK2, DRD2. As elaborated in the Discussion and Introduction, altered 

synaptic plasticity is highly relevant to psychiatric illness. Our research group 

(published as Malavasi et al.) showed that the Der1 mice have altered PSD95 

distribution
70

. Differentially expressed genes include those related to 

neurotransmtter release and receptors, such as SYNJ2, SYT4, SYT6, DNM2 

(synaptojanin, two synaptotagmins, and dynamin), GLRA1, GABRD,GRIN2D 

(receptors for glycine, GABA, and glutamate).  

 Particularly interesting is the emergence of paired genes such as 

OPRK1+PDYN, ERBB4 + NRG1, SHANK1 + HOMER2 (possibly), and 

several examples of paired developmental cue genes such as the semaphorins, 

netrins, and plexins.  

Other interesting genes which I did not carry out a qPCR on include APP, BBS2, 

BBS5, BSN, VAX1, VAX2, amongst others. Many of these are synaptic, are Hox genes 

which play a role in development, are trafficking molecules, or are actin/microtubule 

organisers which will alter dendritic outgrowth. These are all functions of great 

relevance to psychiatric disease aetiology and are further explored in tandem with the 

results of other chapters in the Discussion. 
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4 GENERATION AND INITIAL 

ANALYSIS OF MOUSE RNA-

SEQ DATA 
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4.1 Generation and initial analysis of mouse cortical RNA-Seq 

data 

4.1.1 Introduction 

The mouse data was for the most part analysed using the same methods as the human 

data, utilising differential expression analyses and using GOrilla to analyse gene 

ontology. Local expression changes were not analysed as there is no translocation. 

The cortical samples included much of the brain excepting the hippocampus. 

Philippe Gautier found that one of the WT mice was an outlier in RNA-Seq profiles; 

it was removed from the analyses. A second WT mouse was randomly chosen and 

also removed to balance the sex ratios. 

4.1.2 WT vs heterozygous 

4.1.2.1 DESeq2 

The six WT and eight heterozygous samples were analysed using DESeq2. Since sex 

ratios were balanced, X and Y reads were not removed. A total of 2,112 genes were 

described as significantly differentially expressed between the two sample groups 

with a BaseMean at least half that of Disc1’s. As shown by the volcano plot in Figure 

22, most of these genes showed only a mild difference in fold change with very few 

showing a twofold change. This is particularly evident if this volcano plot is 

contrasted with that of Figure 5. I also produced a heatmap of all differentially 

expressed genes between the wildtype and heterozygous mouse cortices, seen in 

Figure 23. In general, genotypes cluster together but there is an exception. 
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Figure 22. A volcano plot of the cortical DESeq2 for all genes with BaseMean>44 (half that of Disc1). X-axis represents 

the log2 fold change between WT and heterozygous Der1 lines, while the Y axis represents significance (-log base 10 of p 

value). Black dots have an adjusted p value above 0.05, blue dots are significant with an adjusted value below 0.05. Red 

dots with labels represent genes for which a qPCR was carried out. 
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Figure 23. Heatmap of all differentially expressed genes with p<0.05 and at least half the expression of Disc1. Counts 

were normalised using the “rlog” function, which transforms counts to the log2 scale, normalises for library size, and 

minimises variation in poorly expressed genes. They were then antilogged, and changed to z scores by gene before 

generation of the heatmap. Red indicates z score above the mean, green indicates z scores below the mean. Each row is a 

gene. The groups do not cleanly separate by genotype; 7 heterozygotes are the left cluster, while the right cluster consists 

of 6 WTs and one heterozygote designated by an asterisk (*). 

 

4.1.2.2 DEXSeq 

At adjusted p value<0.05, a total of 8,993 exons were differentially expressed, found 

in 3,570 different genes.  

4.1.2.3 GOrilla 

As in the human analysis in 3.6, GOrilla was utilised to analyse gene ontologies 

overrepresented among the differentially expressed genes. This analysis was carried 

out by Marion Bonneau and Kirsty Millar and is described in the corresponding 

thesis.  

4.1.2.4 Comparison to other papers 

An analysis identical to that described in 3.7. was carried out by Kirsty Millar using 

the PGC and CNV papers which found significant overlaps between PGC-1 and the 

list of differentially expressed genes. I carried out an analysis utilising the other 

* 
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papers mentioned in section 3.7. I also searched for RNA-Seq experiments utilising 

Disc1 mouse models but did not find any suitable published papers. In all cases, the 

genes implicated by DESeq2 (BaseMean>10, p<0.05) and DEXSeq (p<0.05) were 

combined, and duplicate gene caused by multiple significant exons, as well as 

duplicates caused by overlap between DESeq2 and DEXSeq, were removed. Where 

DEXSeq assigned one exon to multiple genes, I used UCSC to manually assign the 

exon to the correct genes. Since some genes will have diverged in function, 

significance in overlap between the genes implicated by the Disc1 mutation and 

those implicated in the various papers is less informative than in the human 

translocation study. Nevertheless many genes will have retained their functions and 

may be of relevance to the processes disturbed by psychiatric illness. A summary of 

the results is shown in Table 13. 
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Cortex Heterozygous  

Paper Number of genes 

 

P value Genes of interest 

DI 18 4.3E-02 Dpysl2, 

Dpysl3, 

Kif5a 

B 79 1.3E-02 Nrp2, 

Cobl W 272 1.3E-05 App, 

Gpc1, 

Cobl,  

Sx2mmd17 174 5.8E-03 Slc1a1 

Sx2mmd50 202 6.3E-03 Apoe 

Sx8mmd17 74 8.8E-03 ~ 

Sx8mmd50 14 6.6E-02 ~ 

Sx8wmd17 133 2.7E-03 Apoe 

Sx8wmd50 53 3.9E-03 ~ 
Table 13. Summary of overlap with other papers. Each paper is indicated by the acronym given in 3.7.1. The number of 

genes significant in both our study and the indicated one is given in the first row. The hypergeometric probability is 

given in the second, and a subset of interesting genes within this list of overlapping genes is within the third. 

It is clear that there is significant overlap with other Disc1 mutant models. We can 

see that many genes which have homologues differentially expressed in the human 

cells such as Gpc1 and Nrp2 appear, as do the potential Disc1 interactors encoded by 

Dpysl2 and Dpysl3. Genes which are of interest to neuronal processes, appeared in a 

GO term, were also changed in the human cells, and were implicated by one of the 

above papers were particularly prioritised when looking to validate the RNA-Seq via 

RT-qPCR. A full summary of the overlaps is given in the Appendix. 

4.1.2.5 Gene level RT-qPCR 

To confirm the results of the RNA-Seq, a number of RT-qPCRs were performed. 

Genes were chosen on the same basis as the human neuron gene candidates but 

special attention was paid to genes differentially expressed in both models and many 

of these were examined. A summary of the overlaps between any pair of papers 

described in 3.7.1 and the list of genes significant according to DESeq2 is given in 

Table 14. A description of each gene is given in turn with a summary table given as 

Table 15. 
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Table 14. Table of overlaps. Numbers represent the number of genes significant in our DESeq2 study of 

Der1heterozygous  cortical samples, in addition to the two papers in the corresponding row and column. Grey blocks 

indicate genes from only one paper (the same row and column index). Abbreviations as in 3.7.1. 
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Table 15. Highlighted information about candidate genes selected for qPCR. TRUE indicates that the gene is 

differentially expressed in the model of interest. Paper abbreviations are as in 3.7.1. 

4.1.2.5.1 Arc 

Arc is an immediate early gene, capable of being rapidly translated to protein upon 

cellular signalling. It is expressed following learning, seizures, or LTP caused by 
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BDNF or high frequency afferent stimulation. Antisense Arc oligonucleotides inhibit 

the maintenance but not the induction of LTP. Its mRNA is targeted to the dendrite 

before translation; implying an important role there. It appears to have a role in 

organising actin at the dendrite, which is needed to enlarge dendritic spines. It also 

appears to have a role in AMPA receptor trafficking, particularly in AMPAR 

internalisation in LTD
57

. CNVs predisposing to schizophrenia have also been 

reported as converging on genes involved in Arc signalling
35

. All of this adds up to 

this gene having a crucial role in synaptic plasticity. A number of other immediate 

early genes are also downregulated, including Egr1, Egr2, and Egr4. 

BDNF’s receptor NTRK2 is differentially expressed in the human neurons; it has an 

important role in LTP and appears to stimulate expression of ARC. Interestingly Aβ 

in cortical neurons appears to attenuate this expression increase, and in this context it 

is notable that the Apoe gene, known for a genotype which increases the risk of 

Alzheimer’s disease, is also dysregulated in the mouse cortex
242

. Apoe appears to 

increase the formation of Aβ
243

. 

4.1.2.5.2 Apoe 

Apoe is a lipoprotein known for transporting cholesterol, and is the most abundant 

lipoprotein in the brain. It is perhaps best known for a common variant which 

predisposes to Alzheimer’s disease, with homozygote carriers of this ε4 variant 

suffering from the disease at a rate 8 times higher than the base rate. Apoe is 

important for carrying lipids around the brain and may even bind amyloid 

peptides
244

. Apoe also appears to have effects on neurons which do not appear to be 

directly related to its role in Alzheimer’s pathology. Mouse cortical adult and 

embryonic neurons from Apoe KO mice have shorter dendrites, an effect which may 

be mediated in vivo by the expression of Apoe isoforms from astrocytes. Apoe 

protein is also capable of stimulating neurite outgrowth, and is upregulated here
245

. 
 

4.1.2.5.3 Avp 

This gene encodes arginine vasopressin, a neuropeptide which is both necessary and 

sufficient for pair bonding in a species of vole
246

. Given its immense importance as a 

social neuropeptide I investigated further whether it had any other roles in brain 
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activity. Interestingly, the gene Oxt, encoding oxytocin is also dysregulated in our 

mouse heterozygote cortex. Avp receptor activation is necessary in the ventral 

palladium to allow pair bonding in males, while Oxt receptor activation is necessary 

in the nucleus accumbens to allow the same in females. The two are complementary 

in this regard and both are downregulated in our mouse cortex. Differential 

expression of the cognate receptors across related species appears to determine 

monogamous behaviour in the vole, and the two peptides control other behaviours as 

well, such as parental, aggressive, and in the case of Avp, social recognitive
247

. An 

older study looking at Avp co-administration during ethanol administration in mice 

found that Avp could maintain acquired ethanol tolerance (which otherwise lasted 

less than 6 days). Cessation of Avp administration began the process of losing 

acquired tolerance. The relevance is unknown but it is an interesting finding
248

. In 

any case, I thought it of special interest that both the Avp and Oxt peptides were 

dysregulated and thought this might be indicative of wider dysfunction in 

behaviours, especially social ones.  

4.1.2.5.4 Hap1 

The analogous human gene, HAP1, is differentially expressed in the human neurons 

and the function is more fully explained in the relevant section, 3.8.7. 

However, the apparent convergence of significance in both mouse and human 

samples may be due to sex effects in the human cells. Hap1 was not found 

significant in these mice samples, perhaps suggesting that the sex effects in humans 

and chance effects in mice converged, and that the gene is not truly involved in 

DISC1 pathology. 

4.1.2.5.5 Metrn 

The analogous human gene, METRN, is differentially expressed in the human 

neurons and the function is more fully explained in the relevant section, 3.8.10. 

4.1.2.5.6 Mt2 

This gene encodes metallothionein 2, a protein involved in metal-binding and control 

of oxidative stress. The related gene Mt3 was also differentially expressed. Mt2 

mouse mutants have impaired spatial learning, and the protein appears to be involved 
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in the protective response against brain damage or chemical insult. Correspondingly, 

the mice have higher mortality post brain ischaemia
249

. It and the other 

metallothioneins can be induced by metal exposure. Lack of these proteins results in 

reduced oxidative stress gene expression post arsenic exposure, as well as increased 

cell lethality
250

. They are also involved in the response to non-metallic stress agents 

such as kainic acid, which induces seizures. Lack of metallothioneins here results in 

increased seizure phenotype as well as increased neuronal apoptosis
251

. It has a 

similar protective effect against dopamine toxicity
252

. Clearly the metallothioneins 

are important in protection against a variety of environmental and excitotoxic agents. 

The gene was also analysed as a standard bearer for the other genes; it has one of the 

best separations between the genotypes, as well as a reasonable fold change. RT-

qPCR for this gene would also gauge how reliably differential expression in the 

RNA-Seq can be confirmed at the qRT-PCR level in addition to analysing its 

expression in its own right. 

4.1.2.5.7 Nrp2 

The analogous human gene, NRP2, is differentially expressed in the human neurons 

and the function is more fully explained in the relevant section, 3.8.12. 

4.1.2.5.8 Slc1a1 

Slc1a1 encodes the protein Eaat3, a glutamate transporter expressed in neurons 

which is important in preventing excitotoxicity, over-signalling, and neuronal 

desensitization. It has been found that membrane presentation of the transporter, and 

subsequent increased glutamate uptake, occurs post-LTP
253

. Conversely, 

amphetamine causes the internalization of the receptor in dopaminergic neurons, 

which would presumably cause higher levels of glutamine at the synapse and 

subsequent excitatory signalling
254

. Excessive excitatory signalling in dopaminergic 

neurons has been proposed as being critical to psychosis
53

. Aged Slc1a1 null mice 

have behavioural alterations consistent with neurodegeneration
253

.  

4.1.2.5.9 Results of RT-qPCR 

The expression plots of the genes are displayed in  while a summary is given in 

Table 16.  
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Figure 24. . Expression plots for RT-qPCR results of Arc, Apoe, Avp, Hap1, Metrn, Mt2, Nrp2, and Slc1a1 differential 

gene expression. P values given underneath and gene names above. Results have been normalised to the geomean of 

three housekeeping genes. 
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RT-qPCR results P value Heterozygous Fold Change  Significance 

Arc 0.010 0.44 * 

Avp 0.0099 0.09 * 
Table 16. Summary of RT-qPCR gene level expression results for mouse cortical samples. * =p<0.05, **=p<0.01, 

***=p<0.001.Mutant expression is in percentage of the WT expression. Only significant results are displayed. 

A low proportion of the genes differentially expressed in the mouse heterozygous 

cortex were confirmed by RT-qPCR. Only two of 8 genes were confirmed. This is a 

surprisingly low number. However, the results of the RT-qPCR are not exceptionally 

different from the RNA-Seq. Only 10 genes suffer a reduction in expression of 50% 

or greater in the mouse samples, while no genes double in expression (see  for 

detail). Only a tiny minority of gene expression plots show the heterozygous and WT 

samples separating into two groups which do not overlap. Only 46 genes (including 

Avp) have counts which fulfil this criterion. So it appears as though the effects on the 

mouse cortex are relatively mild or subtle, and do not reliably appear except in a few 

cases. This may be the reason for their failure to replicate in the RT-qPCR. This 

hypothesis is borne out by more detailed analysis of the relationship between qPCR 

and counts shown in Figure 25. 

 

Figure 25. Graph displaying log2 fold change of normalised counts vs log2 fold change of normalised PCR score for each 

of the 8 genes I carried PCRs out on. Positive values indicate the mouse Der1 samples have a higher score on average. 
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Gene legends on right, differentiated by colour. Counts normalised using the “rlog” function in DESeq2 package. 

R2=0.971 

Figure 25 also shows a relatively linear relationship, although for most samples the 

fold changes are very small. Only for those two with larger fold changes (Apoe and 

Arc) was a significant difference found. This therefore lends some credence to the 

hypothesis that the mouse adult brains show relatively subtle changes.  

4.1.3 WT vs homozygous 

4.1.3.1 DESeq2 

The six WT and eight homozygous samples were analysed using DESeq2. Since sex 

ratios were balanced, XY reads were not removed. Only five genes were found 

differentially expressed between WT and homozygous samples. However, it was 

noted by Kirsty Millar that the homozygous samples show a very unusual pattern and 

the results of the subsequent investigation are discussed here with permission. As a 

PCA reveals, clustering of the samples is very unusual. The PCA plot of the 

normalised counts can be seen in Figure 26 and utilises the top 500 most divergent 

genes, as five genes would be uninformative. We can see that the WT samples are 

separated by sex primarily, as in the previous section looking at WT and 

heterozygous mice. A new PCA using only the homozygous samples can be seen in 

Figure 27, where we again see a pattern of 4 pairs of samples. PC1, explaining 43% 

of the variance, separates samples 9, 10, 13 and 14 from samples 11, 12, 15 and 16. 
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Figure 26. PCA of normalised counts for 6 WT (blue) and 8 homozygous (red) mouse hippocampal samples. Triangles 

are male. Circles are female. PCA generated using the top 500 most divergent genes. 

The split is not related to sex as each group is comprised of two males and two 

females. The split in these homozygous cortical samples is interesting. Kirsty Millar 

found that the divergence is due to approximately 200 genes, which are differentially 

expressed in both groups from the WT, but in opposite directions. A DESeq2 

analysis carried out by Philippe Gautier confirmed this and it is discussed in 4.1.3.3.  



Generation and initial analysis of mouse RNA-Seq data 

176 

 

Figure 27. PCA of normalised counts only utilising homozygous samples. Samples 9-12 are male, 13-16 are female. 

Group One is samples 9,10, 13,14, while group Two is 11,12,15,16. PCA generated using the top 500 most divergent 

genes. PC1=43%, PC2=29% variance 

In total, only five genes were differentially expressed between WT and homozygous 

samples and had a BaseMean higher than half that of Disc1’s. The high level of in-

group variation in the homozygous sample is probably contributing to the low 

number of genes found. This is further discussed in section 4.1.3.3. One of the 

differentially expressed genes was Disc1. Given the exceptionally low number of 

differentially expressed genes I opted to concentrate my efforts on the heterozygous 

cortical samples and did not carry out RT-qPCRs. 

4.1.3.2 DEXSeq 

As with DESeq2, few changes are observed between the WT and homozygous 

samples. A total of six exons in three genes had an adjusted p value below 0.05, 

which rose to 10 exons in six genes at adjusted p value<0.1. 

4.1.3.3 Divergence of two homozygote groups 

Philippe Gautier carried out two further comparisons of the WT samples vs each of 

the homozygote groups using DESeq2. I then subsequently used GOrilla to analyse 
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the list of differentially expressed genes in each case, comparing and contrasting the 

two lists against each other and against the heterozygote list. 692 genes were 

differentially expressed by group one, and 2,619 by group two, applying the 

threshold of halved Disc1 expression and Padj<0.05. 249 of these genes are in 

common and the patterns within these were examined by Kirsty Millar. The results 

of this examination are printed in 4.1.3.3.3.  

I searched for potential explanations for the divergence in two homozygote groups. 

Two putative explanations were litter effects (uterine environment and co-dissection 

effects) and circadian rhythms. A full picture of the pedigree is available in Figure 

28. Group One consisted of mice 9, 10, 13, and 14, while Group Two Consisted of 

mice 11, 12, 15, and 16. These are sex-balanced. As seen in Figure 28, there are no 

litters which contain members from both groups. In addition, two litters make up 

each group. These contain mice 9/10/13 and mouse 14 for Group One, in addition to 

mice 11/16 and mice 12/15 for Group Two.  

 

Figure 28. Pedigree of mice used to generate homozygous Der1 cortical samples. Squares indicate male, circles female. 

Blue and pink represent unutilised mice, yellow indicates Group One homozygotes and grey Group Two homozygotes. 

Regrettably, as the dissections for the mice were done by a variety of collaborators 

not all the dissection times are available. These times do point towards potential 
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effects either of circadian rhythms or dissection factors, however. The times are 

given in Table 17. 

Mouse number Group Dissection time Notes 

9 One 2pm Dissected with mouse 10 

10 One 2pm Dissected with mouse 9 

11 Two Not recorded Dissected with mouse 16 

12 Two Not recorded Dissected with mouse 15 

13 One  11:45am  

14 One  12am (Noon)  

15 Two  Not recorded Dissected with mouse 12 

16 Two Not recorded Dissected with mouse 11 

Table 17. Mouse numbers and dissection times, carried out by collaborators Marion Bonneau, Laura Murphy, and Elise 

Malavasi. Times provided by Marion Bonneau (private correspondence).  

Group One litters were dissected either close to midday or at 2pm. The times for 

Group Two mice were not recorded and circadian rhythms can neither be implicated 

nor ruled out from the known times. Given that mouse 13 is part of the litter 

containing 9 and 10 there must have been a delay in processing these two mice. 

However, we can see that for most litters all constituent mice were dissected 

simultaneously, as expected.  It is highly possible that litter effects (uterine 

environment, dissection effects), and possibly circadian rhythms, are responsible for 

the observed phenomenon of two groups. 
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4.1.3.3.1 Group One 

4.1.3.3.1.1 GOrilla Process 

 

Figure 29. Top 10 significantly overrepresented Process GO terms for the genes which are differentially expressed 

(p<0.05). The enrichment figure is given after each bar and the scale is logarithmic. 

There are a number of interesting GO terms, with “behaviour” having perhaps the 

most relevance to our model The genes associated with this GO term include 

interesting candidates, including many that were also seen in other comparisons. 

These included Arc, Apoe, Avp, Oxt, (all mouse heterozygous cortex), Drd2 (human 

neurons), Drd1a, Chrna7 (mouse heterozygous cortex, CNV studies), Synj1, Cacnb4 

(mouse heterozygous hippocampus), Grid1. “Regulation of cation transmembrane 

transport” included many of these genes, but also Shisa6 and five potassium channel 

proteins Kcns2, Kcnc2, Kcna1, Kcnab1, Kcnj2 and the interacting protein Kcnip2. 

Three sodium channels, Scn2b, Scn4b, Scn8a are also seen in the “regulation of ion 

transport” term. 
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4.1.3.3.1.2 GOrilla Function 

 

 

Figure 30. Top 10 significantly overrepresented Function GO terms for the genes which are differentially expressed 

(p<0.05). The enrichment figure is given after each bar and the scale is logarithmic. 

Many of the terms contain the same genes found in the term “GABA-A receptor 

activity”, p value= 3.8x10
-4

. This has the five genes Gabre, Gabrg1, Gabrb2, 

Gabra1, Gabrq, all subunits of the GABAA receptor which mediates inhibitory 

synaptic activity. Gabre and Gabrq encode the subunits ε and θ, which are less 

abundant but appear to be assembled into GABAARs with unusual potency
255

. 
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4.1.3.3.1.3 GOrilla Component 

 

Figure 31. Top 10 significantly overrepresented Component GO terms for the genes which are differentially expressed 

(p<0.05). The enrichment figure is given after each bar and the scale is logarithmic. 

As before, the terms relate to specialised structures of the neuron. Grin2a is one of 

the genes highlighted in “synapse”, and its location on the neuron is known to be 

abnormal in these mice. It is also highlighted by GWAS and is crucial in long term 

potentiation
70

. 
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4.1.3.3.2 Group Two 

4.1.3.3.2.1 GOrilla Process 

 

Figure 32. Top 10 significantly overrepresented Process GO terms for the genes which are differentially expressed 

(p<0.05). The enrichment figure is given after each bar and the scale is logarithmic. 

One term of interest is “translation”, which has 53 genes encoding either 

mitochondrial ribosomal or ribosomal small and large protein subunits. This is a 

highly interesting change and may be of relevance to the needs of neurons, which 

require localised protein translation. “Oxidation-reduction process” may have some 

relevance to mitochondrial dysfunction.  



 

     183 

4.1.3.3.2.2 GOrilla Function 

 

Figure 33. Top 10 significantly overrepresented Function GO terms for the genes which are differentially expressed 

(p<0.05). The enrichment figure is given after each bar and the scale is logarithmic. 

These functions closely relate to the processes described in the previous section, and 

highlight ribosomal and mitochondrial dysfunction as themes, with 12 genes relating 

to oxidoreductase activity.  
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4.1.3.3.2.3 GOrilla Component 

 

Figure 34. Top 10 significantly overrepresented Component GO terms for the genes which are differentially expressed 

(p<0.05). The enrichment figure is given after each bar and the scale is logarithmic. 

The top terms are broad, but terms 10-13 are mitochondria related, and the 

significance of the top terms appears driven by genes within these terms. 

4.1.3.3.3 238 genes in common that diverge 

Of the 249 genes that were differentially expressed between the each group and the 

wild-type, and in common, only 11 change in the same direction in both homozygote 

groups. The following of these 11 are downregulated; Arc, Disc1, Dusp5, Gadd45b, 

Junb, Per1, Plk3, Sertad1, Zfp948. The following are upregulated; Gm2115, Nkx3-1.  

Therefore the majority of the other genes in common are differentially regulated in 

opposite directions, with a difference from the WT being 30% on average. Taking 

the absolute % deviation from the wildtype expression, the difference between Group 

One and Group Two was on average 1.4%. This change was an average of 10% for 

the 11 genes that were in common, and 1% for the 238 which are different in sign. 

Therefore, the changes in opposite directions are strikingly similar in magnitude, 

being about 1% different from one another in terms of wildtype expression, and 

deviating around 30% from the wild type. 115 were increased in Group One, with 
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123 decreased, and these were decreased and increased in Group Two compared to 

wild-type respectively. The 249 genes are highly enriched for GO terms relating to 

“cognition” (5.82, p=1.16x10
-11

), “learning or memory” (5.93, p=6.87x10
-11

), and 

“behaviour” (3.79, p=3.7x10
-10

), among other terms. In addition, 120 are shared with 

the list of genes differentially expressed in the heterozygous Der1 cortex, with the 

vast majority of these having an unexpected division in sign change. Of the 120, 

three changed in the same direction in all lists; Group One and Group Two of the 

homozygotes, and the Heterozygous Der1. These were Disc1, Nkx-3.1, and Zfp948, 

which are downregulated, upregulated, and downregulated respectively. However, all 

120 genes were changed in the same direction in Group Two and in the 

Heterozygous Der1. We therefore see a surprising overlap between these three 

groups of genes, and a highly unusual convergence of sign change between one of 

the homozygous and one of the heterozygous mutations. The changes were also 

similar in magnitude between Group Two and the Heterozygous Der1, with the mean 

difference between the changes being 2% of wildtype expression, and the maximum 

being 35%. This was in Disc1, which is at only 18% of wildtype expression in Group 

Two, but at 53% in the heterozygous Der1. It is interesting that the expression 

remains at 18% despite both loci being mutated; 9% per loci is higher than the 3% of 

expression the damaged locus appears to produce in the Der1 condition. The next 

largest change is 10%, in Zfp948.  

4.1.4 Discussion 

The cortical heterozygous samples show differential expression of a large variety of 

genes compared to the wild type samples. These converge on some particularly 

interesting pathways. The differential expression of AMPAR and NMDAR subunits, 

proteins such as Arc (confirmed by RT-qPCR) and Egr1 involved in learning and 

memory, and trafficking molecules such as the kinesins and myosins indicates that 

there may well be synaptic abnormalities in the mouse cortex. Overlaps with other 

papers highlight Neurexin-1, protocadherins, and other synaptic structural proteins. 

There is therefore evidence for LTP related abnormalities in these cells; from the 

nucleus, to dendritic trafficking, to the synapses themselves. It should be noted that 

the majority of changes are low in absolute level. Many of the differentially 
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expressed genes have low fold changes and the noise inherent to RT-qPCR makes 

detecting them unlikely. As I showed, the qPCR is a good reflection of the RNA-Seq, 

but the small changes make verifying the differential expression difficult, and it is 

quite likely that given the small effect sizes chance is playing a role in the apparent 

differential expression of some genes. 

In contrast, there are very few differentially expressed genes between the wild type 

and homozygote samples when taken as a whole. The minority of genes that are hold 

interest however; Junb is a transcription factor while Per1 encodes a gene key in 

circadian rhythms. One aspect of particular interest is the splitting of the 

homozygous cortical samples into two groups which are not separated by sex, and 

the distinctive phenomenon of about 238 genes with the same fold changes but in 

opposite directions in each group. This set of genes includes many of those 

candidates which were looked at in the cortical heterozygous analysis, which are 

changed in the same direction in Group Two and the cortical heterozygote compared 

to Group One. 

We therefore have a scenario with several groups of genes which must be clearly 

delineated. These are 

1. Genes altered solely in the heterozygous Der1 cortex 

2. Genes altered solely in Group One of the homozygous Der1 cortex 

3. Genes altered solely in Group Two of the homozygous Der1 cortex 

4. Genes which overlap between Group One and Group Two which are changed 

in the same direction. These are the minority, numbering 11, and are 

theoretically the invariant aspects of Der1 homozygous mutation. Three also 

overlap with the heterozygous Der1 cortex mutation and change in the same 

direction there. One is Disc1. 

5. Genes which overlap between Group One and Group Two with changes in 

different directions. These are the majority of overlapping genes, numbering 

238 and the magnitude is nearly the same. They are overrepresented for genes 

involved in behaviour, cognition, and learning. 
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6. Of these 238, there are 117 that overlap with those changed in the 

heterozygous Der1 cortex and move cleanly as a group. 71 are upregulated in 

Group Two and the heterozygous cortex, and downregulated in Group One, 

with vice versa for the other 46. 3 other genes change in the same direction in 

all three. 

There are some theoretical explanations.  

The first is that the aberrant Der1 locus is giving rise to mutant Disc1 proteins, which 

are interfering in the activities of oligomeric Disc1. This hypothesis requires that 

oligomeric and monomeric Disc1 have differing functions which at least in part are 

non-overlapping, and that the mutant Disc1 proteins cannot perturb the wild-type 

Disc1 in its monomer form, only when it oligomerises. The effect of the lost 

oligomeric functions is represented by the differentially expressed gene list in 

common between the homozygote and heterozygote functions, as these will be 

disturbed in both models. These genes included Mt2, Ntrk3, Metrn, Drd2, Chrna7, 

Apoe, Slc1a1. The monomeric functions that full length Disc1 carries out should be 

partially disrupted in the heterozygotes, and fully in the homozygotes, so under this 

model some of these genes may be related to Disc1’s monomeric functions as well. 

However, it is very difficult to explain the very clear phenomenon of a large group of 

genes changing in with the same magnitude but in different directions in the two 

homozygote groups, and that the majority of differentially expressed genes are not 

overlapping between the homozygote groups. As discussed in 4.1.3.3, both litter 

effects and circadian rhythms may be confounding or even causing the observed two 

group phenomenon. It is difficult to identify exactly how many genes might be 

altered by circadian rhythms; a recent study found that 43% of mouse genes showed 

circadian rhythms in translation in at least one of 12 organs, while the database 

CGDB names 9,580 gene as having daily oscillating expression
256,257

. However, I did 

find a list of genes which, when mutated, give behaviour phenotypes in mice relating 

to circadian rhythms
258

. These genes numbered 28. They were listed in Lowrey et al. 

as Bmal1, Bmal2, Ccrn41, Clock, Cry1, Cry2, Cry3, Csnk1a1, Csnk1d, Csnk1e, Dbp, 

Dec1, Dec2, Fbx13, Mtnr1a, Mtnr1b, Npas2, Nrld2, Opn4, Per1, Per2, Per3, Prok2, 
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Rora, Rorb, Rorc. Vip, Vipr2. I searched both Group One and Group Two for these 

genes, using both the above names and the synonyms given in Lowrey et al. Per1 

and Per2 were differentially expressed in Group One, while Cry1, Csnk1a1, Per1, 

Per2, and Rorb were differentially expressed in Group Two. This is evidence in 

favour of circadian rhythms being partially or wholly responsible for the presence of 

two distinct groups. 
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4.2 Generation and initial analysis of mouse hippocampal 

RNA-Seq data 

4.2.1 Introduction 

The mouse hippocampal data was analysed in the same way as the mouse cortical 

data. 

4.2.2 WT vs heterozygous 

4.2.2.1 DESeq2 

As previously mentioned in the cortical analyses, two WT mice had to be removed 

from the analyses due to one being an outlier. The second was randomly chosen and 

removed to balance the sex ratios. This outlier mouse was also used to generate 

hippocampal RNA-Seq data, so two WT mice have therefore been removed from the 

hippocampal analyses as well. A total of 184 genes were found differentially 

expressed, which are displayed in a volcano plot in Figure 35. 

 

Figure 35. A volcano plot of the hippocampal RNA-Seq data for all genes with BaseMean>55. X-axis represents the log2 

fold change between WT and heterozygoys Der1 mice, while the Y axis represents significance (-log base 10 of p value). 

Black dots have an adjusted p value above 0.05, blue dots are significant with an adjusted value below 0.05. Red dots 

with labels represent genes for which a qPCR was carried out. 
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A PCA of the normalised counts for the 14 samples is in Figure 36. The result is very 

similar to that of the WT vs heterozygous comparison for the cortical samples. The 

samples are separated by a factor which corresponds to sex, and then by a factor 

which corresponds to Disc1 mutant status for the females. However this second 

factor does not correspond to mutant status for the males. WT and heterozygotes are 

clearly interspersed. The translocation does not appear to exert as strong an effect 

here as in the cortical samples, where translocation status clearly was associated with 

PC2. This is in some way unsurprising; there were over 2,000 genes differentially 

expressed in the cortical heterozygotes, while here the number is closer to 200. 

 

Figure 36. PCA of normalised counts for 6 WT (blue) and 8 heterozygous (red) mouse hippocampal samples. Triangles 

are male. Circles are female. PCA generated using the top 184 most divergent genes. 

175 genes were significantly differentially expressed and had a BaseMean greater 

than half that of Disc1’s. 

4.2.2.2 DEXSeq 

A total of 136 exons in 131 genes were found differentially expressed between the 

two groups of samples, with adjusted p value below 0.10. This fell to 52 exons in 50 

genes when the filter of p<0.05 was applied.  
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4.2.2.3 GOrilla 

As in the human analysis in 3.6, GOrilla was utilised to analyse gene ontologies 

overrepresented among the differentially expressed genes. This analysis was carried 

out by Marion Bonneau and Kirsty Millar and is described in the corresponding 

thesis. 

4.2.2.4 Comparison to other papers 

I carried out an analysis identical to that described in 3.7. using the same papers. 

Removal of duplicate genes and determination of a match was carried out in the 

same manner as previously. A summary of the results is given in Table 18. 

 

Hippocampus Heterozygous 

Paper Number of 

genes 

P value Selected genes 

of interest PGC1 10 1.2E-04 Cacnb2 

PGC2-1 21 2.9E-10 Erbb4, Ntn5 

PGC-2 15 0.99 Erbb4, Ntn5 
Nrxn1, Cacnb2 

PGC3 2 1.8E-1 Nrxn1 

DI 4 2.2E-03 Disc1, Snap91 

B 18 7.7E-08 Grin2a 

W 56 1.6E-19 Gpc1, Calb2, 
Nrxn1 

Sx2mmd17 22 2.3E-05 Erbb4 

Sx2mmd50 30 1.9E-08 ~ 

Sx8mmd17 9 8.9E-03 ~ 

Sx8mmd50 4 5.8E-03 Nrxn1 

Sx8wmd17 37 1.9E-17 Cacnb2 

Sx8wmd50 4 1.7E-01 ~ 
Table 18. Summary of overlap with other papers. Each paper is indicated by the acronym given in 1.8.1. The number of 

genes significant in both our study and the indicated one is given in the first row. The hypergeometric probability is 

given in the second, and a subset of interesting genes within this list of overlapping genes is within the third. 
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There were some highly interesting findings in this analysis. As with the mouse 

cortical analysis, almost all sets of genes from the papers had significant overlap with 

the list of differentially expressed features, with the exception of a Srikanth et al. 

neuronal model. It is also noteworthy that many genes appear in several studies, such 

as Erbb4, Nrxn1, and Cacnb2. In many cases, the genes are implicated by both a 

GWAS/CNV study and by a RNA-Seq analysis of an iPSC-derived model, indicating 

convergence between these different approaches. Some gene orthologues are also 

differentially expressed in the human t(1;11) neurons, such as GPC1 and ERBB4. 

Snap91 is also differentially expressed in the hippocampus of the homozygous 

mutant. We can see that there is overlap between both models of the t(1;11), as well 

as with other investigations of psychiatric illness.  

4.2.2.5 Genes of interest 

Although I did not carry out qPCRs, I had selected some candidates which are 

described in turn. A summary table of fold changes, etc. is also given in Table 19. 

One primary reason for not carrying out qPCRs was the low fold change (never 

>35%) of samples, as well as the lack of clear distinctions between the WT and Der1 

samples (in no cases did they cluster into two separate groups). 
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Table 19. Highlighted information about possible candidates. TRUE indicates that the gene is differentially expressed in 

the model of interest. Paper abbreviations are as in 3.7.1. 
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4.2.2.5.1 Foxp2 

Foxp2 encodes a transcription factor known for its role in language; it is mutated in 

hereditary language disorders and the human homologue appears to have undergone 

human specific evolution. Foxp2 can induce neurite outgrowth, migration, and 

progenitor proliferation
259

. These are all processes which DISC1 is well known to 

have a role in, and the two genes are further linked by the fact that in human cells 

FOXP2 can repress DISC1 expression. Lack of this repression is found in two alleles 

of the FOXP2 gene which segregate with developmental verbal dyspraxia
260

. It 

seemed interesting that the gene was dysregulated here; it appears to be upregulated. 

Although no direct regulation of FOXP2 by DISC1 has been shown, it is interesting 

that both genes have overlapping functions. It could be possible that the two are 

capable of repressing one another in order to prevent over-stimulation of the relevant 

pathways; this would explain the upregulation of the gene in the mutant mice. 

4.2.2.5.2 Ndst3 

NDST3 (N-acetylase and N-sulfotransferase 3), the human homologue, is 

differentially expressed in the studies of Wen et al., Brennand et al., and the mouse 

heterozygous hippocampus model. It has also previously been implicated by a 

schizophrenia GWAS
124,132,261

. It therefore has support for its role in schizophrenia 

by a wide variety of investigative methods. The function of the encoded protein is to 

alter heparan sulfate, a molecule which is often found attached to various 

extracellular proteins. The modification it carries out is the first step for all other 

heparan sulfate modifications. Heparan sulfate proteoglycans usually have roles in 

the extracellular matrix; one example is GPC1, which is differentially expressed in 

the human neurons, see 3.8.6. It has been suggested that the heparanase/heparan 

sulfatase balance may alter the in/out trafficking of these altered proteins
262

. Heparan 

sulfate can also potentiate FGF-FGF receptor signalling and glycoproteins have roles 

in many other cell signalling processes, including endocytosis and cellular 

adhesion
263

. 

4.2.2.5.3 Ntn5 

Netrin-5 is one of a family of proteins involved in axonal guidance and neuronal 

development. Ntn5 is expressed particularly highly in regions of the brain which 
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undergo neurogenesis after development, including the hippocampus. It is co-

expressed with Dcx and Mash1 in neuroblasts. Expression decreases as the cells 

mature, and some of these cells are destined to become GABAergic interneurons
264

. 

Mutant mice had a phenotype similar to other axonal guidance genes nulls such as 

Nrp2 or Sema6a; ectopic migration of motor neuron cell bodies
265

. Given the 

dysregulation of other axonal guidance molecules, as well as its possible role in the 

hippocampus, Ntn5 seemed like an interesting gene. 

4.2.3 WT vs homozygous 

4.2.3.1 DESeq2 

A PCA of the normalised counts is in Figure 37. The sex of the mice separates the 

samples. The number of differentially expressed genes is one, Disc1; even lower than 

in the WT vs heterozygote comparison, where mutant status did not correspond with 

principalcomponent 2. We can see in Figure 37 that mutant status does not 

correspond with principal component 2 here either. 

 

Figure 37. PCA of normalised counts for 6 WT (blue) and 8 homozygous (red) mouse hippocampal samples. Triangles 

are male. Circles are female. PCA generated using the top 500 most divergent genes. 
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4.2.3.2 DEXSeq 

At adjusted p value<0.1, 305 exons in 251 genes were differentially expressed 

between the two groups of samples. 118 exons in 103 genes met the criterion of 

adjusted p value<0.05. Disc1 has two differentially expressed exons. The two Disc1 

downregulated exons are on both sides of the breakpoint; however the changes are 

more severe after the breakpoint, indicating expression is more severely affected 

here.  

4.2.3.3 GOrilla 

The genes from the DEseq2 and DEXseq were combined to compare against the 

background list of expressed genes. The only gene differentially expressed at the 

whole gene level also has exons differentially expressed. It is Disc1. A total of 103 

genes at the p<0.05 level were implicated by DEXSeq, and these were compared 

against the background list of 27,957 genes detected at the whole gene level. 

Significance was set at p<1x10
-3

. 

4.2.3.3.1 GOrilla Process 

 

Figure 38. Top 10 significantly overrepresented Process GO terms for the genes which have a differentially expressed 

exon or are differentially expressed (p<0.05). The enrichment figure is given after each bar and the scale is logarithmic. 
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The top 10 GO Process terms are displayed in Figure 36. We can see that some of the 

terms in the top 10 are of particular interest to synaptic activity, such as “regulation 

of synaptic vesicle endocytosis”. The genes within this group were Snap91, a 

synaptosome associated protein, Pip5k1, a phosphatidylinositol-4-phosphate 5-

kinase, and Mff, a gene named “mitochondrial fission factor”. The GO terms of 

relevance to apoptosis also seemed of possible relevance and included the well-

known oncogene Src. 

4.2.3.3.2 GOrilla Function 

Two terms were significant. One, “binding”, is too vague to be of any use. The other 

is far more specific, “acetylcholine receptor inhibitor activity” (p value=5.8x10
-4

, 

enrichment factor=53.54), containing the genes Ly6e and Ly6h. 

4.2.3.3.3 GOrilla Component 

Three terms were significant. These were “extrinsic component of endosome 

membrane” (p value=3.1x10
-5

, enrichment factor=46), “postsynaptic density” (p 

value=2.5x10
-4

, enrichment factor=4.8) and “postsynaptic specialization” (p 

value=2.8x10
-4

, enrichment factor=4.8). All of these relate to the synapse, and 

therefore may point towards some sort of synaptic alteration in the mouse 

hippocampus. 

4.2.3.4 Comparison to other papers 

I carried out an analysis identical to that described in 3.7 using the same papers. 

Removal of duplicate genes and determination of a match was carried out in the 

same manner as previously. A summary of the results is given in Table 20. 
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Hippocampus Homozygous  

Paper Number 

of genes 

P value Selected genes of interest 

PGC1 6 6E-04 ~ 

PGC2 

 

13 1.5E-08 ~ 

PGC2-2 7 0.99 Ino80e, Snap91 

PGC3 2 6E-2 Ino80e 

DI 2 2.4E-02 Snap91 

B 6 6.4E-03 Wnt7a 

W 16 3.2E-04 Wnt7a 

Sx2mmd17 14 1.5E-05 Kif1a 

Sx2mmd50 10 6.5E-03 Kif1a 

Sx8mmd17 8 2.4E-04 ~ 

Sx8mmd50 0  ~ 

Sx8wmd17 12 3.4E-05 ~ 

Sx8wmd50 4 3.3E-02 ~ 
Table 20. Summary of overlap with other papers. Each paper is indicated by the acronym given in 3.7.1. The number of 

genes significant in both our study and the indicated one is given in the first row. The hypergeometric probability is 

given in the second, and a subset of interesting genes within this list of overlapping genes is within the third. 

All the implicated genes have only exon level differential expression, perhaps 

indicating subtle splicing changes rather than whole gene differential expression. 

Nevertheless, we see some significant overlaps with other papers, although not as 

many as with the heterozygous mutation hippocampal or cortical samples. Of interest 

is Snap91, which as already mentioned is also differentially expressed in the 

heterozygous mouse hippocampus.  

I also investigated the differentially expressed exon locations within their genes. 

Snap91’s exon is an N-terminal exon which appears to be in all isoforms. Kif1a’s is 

the 40
th

 exon on UCSC, which appears to be in all isoforms. Wnt7a’s exon is the N-

terminal exon which appears to be in all isoforms. Ino80e’s is an alternative N-

terminal exon found in two isoforms; these appear to encode longer proteins than 

other transcripts but there is little functional information.  
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4.2.4 Discussion 

The changes in the hippocampus appear to be of a far lesser number than the changes 

in the human neuron or mouse cortical models, with the total number being only 

about 10% of that in the other models. The heterozygous hippocampus does show 

some interesting changes, and the overlapping genes with other papers are of known 

interest. They are also seen in the mouse cortex as well (Nrxn1) or the human 

neurons (Erbb4, Gpc1). The overall enrichment of synaptic genes corresponds with 

the findings of the mouse heterozygous cortex. 

In the case of the mouse homozygous hippocampus, only Disc1 was differentially 

expressed at the whole gene level, while 103 genes showed splicing differences. It 

was also seen that the PCA did not identify mutation status as being one of the two 

principal components and male and female samples differed greatly from the WT 

samples without clustering together, although sex appeared to be a major component 

of sample differences. The splicing differences in Snap91 (in both heterozygous and 

homozygous samples) and Kif1a might have suggested some kind of alteration with 

synaptic vesicles, but the exons do not appear to have any unique functional 

significance, as they appear in all isoforms. Overall it is difficult to identify a clear 

effect of the translocation in the homozygotes.  
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5 DECONVOLUTION OF THE 

RNA-SEQ DATA USING 

ZHANG ET AL. CELL TYPE 
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5.1 Introduction 

Deconvolution is an approach to extract data from a complex RNA-Seq sample. Each 

gene is a point of information which helps inform the estimated proportions of pure 

cell types making up the complex sample. Deconvolution algorithms are widely 

available. They typically assume that the contribution of each cell type to the mixed 

cell type expression is linearly related to the proportion of the mixed sample that is 

that pure cell type. This is described by the following equation; 

𝑋𝑎𝑗 = ∑ 𝑝𝑠(𝑋𝑠𝑗)

𝑞

𝑠=1

 

Where the transcriptional value X for gene j in pseudosample a is equivalent to the 

linear sum of the respective gene’s values from pure samples Xs….q, multiplied by 

their relative proportion ps….q, with all proportions adding to 1. This of course 

assumes that the transcriptional activity of pure cell types does not alter in the 

presence of other cell types. Each measured gene gives an equation similar to that 

above; if there are more measured genes than cell types the proportions can be 

determined. However, in practice the equations are not correct as it is unlikely that 

proportions can be found which solve the above equation for every gene. Therefore, 

close approximations are given as answers. These optimal proportions can be found 

using a non-negative least linear squares approach, although Cobos et al. discuss 

other approaches and deconvolution as a problem in a useful review
266,267

.s 

To briefly summarise, RNA-Seq deconvolution has three components.  

 The mixed transcriptional profile, M 

 The reference profiles G, each corresponding to one of the pure cell types 

present in the mixed cell population. Most genes are unlikely to be 

specifically expressed in a single cell type and are therefore not informative, 

so a subset of highly informative genes are used for the deconvolution. 

 The relative proportions of the cell types, C, which have their expression 

profiles described by G.  
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 Given any two of these components we can derive the third, assuming that 

there is a relationship between the proportion of cell types and their 

representation in the sequenced sample. Such a relationship is likely to be 

linear. 

DISC1 immuno-reactive neurons have been found throughout all layers of the human 

cortex, but also in rat cortical astrocytes, neurons, oligodendrocytes, and 

microglia
69,268

. Hence, there is potential for the t(1;11)/Der1 to impact a wide variety 

of cell types, not just neurons. I first sought to deconvolute the wild-type and 

heterozygous Der1 mouse RNA-Seq profiles. My interest in this was primarily to see 

if there were any differences in relative cell types caused by the Der1 mutation. This 

could be due to altered cell development and differentiation, or degeneration, 

resulting in unusual levels of some cell types. Due to the importance of 

neurodevelopment to the aetiology of psychiatric illness, it seemed a plausible 

method by which the Der1 exerted its effects. I initially aimed to deconvolute the 

profiles on a gross scale, looking for changes not within subtypes of neurons but for 

changes in neuronal vs various non-neuronal cell types such as astrocytes, 

oligodendrocytes, microglia, and endothelial cells. 

I next sought to deconvolute the iPSC-derived cell profiles. Although the cultures are 

primarily neuronal in nature, it has been shown by Bilican et al. that the efficiency of 

the neuronal differentiation is not total. About 86% of cells are TUJ1
+
 neurons, and 

glial cells are present. GFAP
+
 cells (astrocytes) constitute 5-10% of cells

143
. I 

hypothesised changes in broad classes (astrocytes, oligodendrocytes, etc.) might be 

present, and describe my efforts to investigate this in this chapter. In the next chapter 

I looked at more detailed subclasses of neuron, interneuron, and other cell types.  

5.2 Deconvolution datasets and program 

5.2.1 Selection of an appropriate reference dataset 

Regardless of the program used, successful deconvolution of mixed RNA-Seq data 

samples requires pure cell RNA-Seq data, G. For practical reasons I determined to 

use freely available data sets, which also fulfilled the following criteria:  
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 They utilized a variety of brain cell types. 

 The identification of each cell type was trustworthy. This is important so as to 

determine which genes are “markers” for the cell types of interest. It is likely 

that there will be some contaminating cells even within each “single-origin” 

RNA-Seq profile. 

 The sequencing depth was comparable to our own. 

Sequencing depth is especially important. Even post normalisation to total read 

number, samples sequenced to different depths are not directly comparable. There 

are two main reasons. It can be immediately appreciated that with increased 

sequencing depth comes an increase in the number of detected genes, as poorly 

expressed RNA features now have a greater likelihood of being sequenced. This 

alone can lead to false positive claims of differential expression between two 

biologically identical samples of different sequencing depth, as it will now appear 

that the gene is expressed in one sample and not in the other. For example, Tarazona 

et al. noted that regardless of total sequencing depth (from 20 million up to 200 

million), increased depth always increased the number of genes with at least five 

counts
269

. Furthermore, this increase was especially pronounced the lower the total 

number of reads. The comparison of a 20 million sequencing depth sample to a 60 

million depth sample will therefore be more problematic than the comparison of a 60 

million depth sample to a 100 million depth sample. Secondly, genes with lower 

expression are more dramatically affected by increased sequencing depth, even post 

normalisation. Mortazavi et al. showed that after only 8 million reads, over 95% of 

the most highly expressed genes had RPKM normalised values within 5% of the 

values they would have at 40 million reads. Of the genes with the lowest expression, 

approximately only 50% had RPKM values within 5% of the value they would have 

at 40 million reads 
270

. Since RPKM values are normalised to total sequencing depth, 

a comparison between sequencing at eight and 40 million reads might lead to the 

erroneous conclusion that these poorly expressed genes are differentially expressed, 

given that over half have differences in RPKM of over 5%. We can conclude that 

even normalising for the increase in sequencing depth, genes with low expression 
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show changes that are more dramatic in apparent expression as sequencing depth 

increases. 

I conducted a search of the literature to find a comparable data set for deconvolution 

of mouse samples, and chose the data set described in Zhang et al.
153

. This is 

accessible through the NCBI GEO under accession number GSE52564. These data 

were obtained via sequencing of 100bp paired-end reads, with 65.6 ± 5.4 million 

reads sequenced (mean ± standard deviation). In comparison, the data from our 

mouse cortices were obtained via sequencing of 100bp single-end reads, so the 

length and therefore the number of mapped reads should be similar. For six WT 

samples, 75.3 ± 11.9 million reads were sequenced, for eight heterozygous Der1 

samples 89.2 ± 6.3 million reads were sequenced, and for eight homozygous Der1 

samples 98.7 ± 17.3 million reads were sequenced. 

The sample generation method described by Zhang et al. is summarised in Figure 39. 

They pooled dissected cerebral cortices from three to twelve mice for each cell type, 

before purifying cell types via immunopanning and FACS, which they stated were 

equally viable and effective methods of cell purification with no discernible 

differences in expression profiles in purified cells. Astrocytes and endothelial cells 

were FACS-purified, while neurons, microglia, and oligodendrocyte lineage cells 

were purified by immunopanning. Oligodendrocyte lineage cells were isolated from 

P17 mouse brains, while astrocytes, endothelial cells, and neurons were isolated from 

P7 mouse brains. In total seven different RNA-Seq profiles were generated, from 

astrocytes, neurons, oligodendrocyte precursor cells, newly formed oligodendrocytes, 

myelinating oligodendrocytes, microglia, and endothelial cells. Two pools were 

generated for each cell type and I averaged these for each of the seven enriched 

RNA-Seq profiles. It should be noted that the ages of the mice utilised by Zhang et 

al. are not the same as our own; it is the case with astrocytes at least that age alters 

transcriptional profiles; Zhang et al. produced a follow up paper which segregated 

astrocytes by age and found differences
271

. This is likely to be the case with other 

cell types as well. 
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Figure 39. Adapted from Zhang et al. 2014203. Summary of Zhang et al. sample generation method. The Oligodendrocyte 

samples were further purified into Oligodendrocyte Precursor Cells, Newly Formed Oligodendrocytes, and Myelinating 

Oligodendrocytes before sequencing.  

5.2.1.1 Comparing units across datasets 

I sought to use values of RNA-Seq expression which are comparable across samples 

in an experiment. Zhang et al. have provided their data as Cufflinks-generated 

FPKMs (version 1.3.0) as well as in raw format. Cufflinks-generated FPKMs 

(version 2.2.1) were also provided for all our WT and Der1 mouse RNA-Seq 

experiments as part of the commercial RNA-Seq data generation process. I therefore 

initially opted to use the conveniently generated FPKMs, which are comparable 

across samples as they have been normalised to total millions of reads for each 

sample. FPKM estimations appear to be near-identical regardless of Cufflink version 

number, see (http://cole-trapnell-lab.github.io/cufflinks/benchmarks/ visited on 

14/6/18). However, deconvolution carried out on Cufflinks-generated FPKMs 

underperforms compared to deconvolution carried out on many other measurements 

of gene expression. Jin et al. undertook a comparative analysis of deconvolution 

utilising several expression quantification methods including Cufflinks. They utilised 
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RNA-Seq of pure RNA (universal reference human RNA and brain RNA), as well as 

RNA-Seq of mixed RNA of the two pure samples, mixed in a 3:1 ratio. They then 

compared projected values of expression (0.75)(Universal reference expression) + 

(0.25)(Brain expression) against the actual value of expression of the mixture. See 

Figure 40
272

. Jin et al. have here analysed the RNA-Seq profiles with a number of 

diffierent quantification methods including EdgeR, Salmon, Kallisto, and FPKMs 

generated by Cufflinks. They then display the rank of each gene or isoform’s 

expression as projected by the 3:1 ratio of universal:brain against the rank of the 

gene in the RNA-Seq of the 3:1 mixed RNA. We can see that for some quantification 

methods, such as RSEM.count, the predicted by deconvolution and actual rank are 

highly similar for all genes. In general there is a strong linear relationship between 

predicted and actual rank, but this is weaker in isoforms than in genes and especially 

weak in FPKM-generated cufflinks. By this we can state that the use of Cufflinks as 

a quantification tool greatly deviates predicted gene expression from actual 

expression in deconvolution approaches. It can also be observed that more poorly 

expressed genes/isoforms are more likely to deviate from linearity.  
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Figure 40. Comparison of expected versus observed gene expression generated by different programs at the gene level 

(A) and isoform level (B). Here, a gene/isoform’s expression rank has been normalised by total number of 

genes/isoforms. The Y axis indicates the normalised rank as predicted by linear weighting of the pure reference sample 

expression according to their proportion in the mixture, while the X axis indicates the actual normalised rank of a 

mixture utilising those proportions. Figure replicated from Jin et al.272. 

However, upon using the FPKMs, I discovered some error had evidently occurred 

during the production of FPKMs from the raw counts. I describe this in more detail 

in the relevant section.  

5.2.1.2 Selection of marker genes 

Deconvolution is faster, more accurate, and less variable if only the most useful 

subset of the pure cell transcriptome is utilised. Many transcripts do not inform 

deconvolution and may in fact introduce noise, making their exclusion desirable. The 

most informative transcripts of all for deconvolution are those which are uniquely 

expressed in a cell type of interest, and which also display low variation across 

replicates. A minimum level of expression, so as to be free of low count biological 

noise, is also to be desired. Transcripts such as these are referred to as “markers”, 

although given the paucity of such clear identifiers, in practice transcripts which 
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show high expression in a single cell type and reliably low expression in others are 

used as markers
266

. Expression values at both the gene and isoform level can be 

utilised. Isoform-level markers may add discriminating power, especially where the 

overall transcriptomic profile of the cells within the convoluted sample is quite 

similar and may be distinguished more by alternative splicing rather than by 

alternative gene transcription. I used genes as identifiers, given that the Zhang et al. 

cell types are broadly distinguished and the gene level data is already available.  

Zhang et al. identified marker genes as having a FPKM >5 and carried out analyses 

using this benchmark. Given the ready availability of their data I used these marker 

gene lists as a starting point and further narrowed the lists to increase accuracy. 

5.2.1.3 Range filtering of data 

Filtering of the upper and lower bounds of marker gene expression prior to 

deconvolution has been investigated as a means to improve deconvolution accuracy. 

Genes with low expression can be unreliable, as the variation between cell types 

might be due to poor transcript detection rather than absence of the transcripts. A 

practical approach to this was taken by Mohammadi et al. in their review of 

deconvolution methods
134

. They noted that for microarray data, a theoretical upper 

and lower bound can be established. Upper limits are bounded by microarray 

sensitivity, while below a certain threshold, the assumption of linearity between 

transcript prevalence and measured expression has been shown to not exactly hold. 

However these limits do not offer any practical guidance as most values are not close 

to them and cannot be excluded on this basis. RNA-Seq data is even more untethered 

from a fixed standard, as the sequencing of a particular transcript does not become 

“saturated” as a fluorescent signal can. Mohammadi et al. attempted to establish 

upper and lower limits for marker expression filtering, but often found that these 

limits diminished the quality of the deconvolution rather than enhancing it. Even a 

method they described as “adaptive filtering”, in which limits were delineated based 

on sudden changes of expression between a gene and the next highest/lowest 

expressed gene, was often detrimental in deconvolution quality, although it did 

occasionally outperform bluntly selecting cut off points without prior information. It 

appeared that approximately half of the datasets showed improved deconvolution, 
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while half showed inferior deconvolution (measured by the mean difference between 

all estimated cell frequencies and their respective true frequencies for all samples).  

It is intuitive that range bounding could have a negative effect on deconvolution. The 

optimal situation would be to have very many moderately expressed, cell type 

unique, low cell to cell variance transcripts as markers. However, markers can also 

be highly expressed. A marker gene may well have a biological role in the cell type it 

marks, and therefore can be highly expressed in order to carry out that role. Range 

bounding therefore is highly likely to exclude the very genes which are informative 

marker genes. If the optimal moderately expressed markers were extremely 

prevalent, then bounding would likely have a positive effect on deconvolution. 

Improvements in deconvolution from range bounding likely result from the exclusion 

of genes which might well be cell-specific but are too variable in expression within 

the cell type they mark, introducing inaccuracy. It is therefore imperative to adopt a 

heuristic, flexible approach. 

Given that even sophisticated range bounding is often detrimental to deconvolution, I 

opted for a simple approach. For all sets of marker genes for all cell types, I imposed 

different range bounding, or none, and observed what combinations resulted in the 

superior deconvolution of in silico convoluted pseudosamples (see 5.2.2.1). This 

approach is conceptually simple and is easily carried out, allowing a full comparison 

of possible combinations of range bounding. 

5.2.2 Selection of deconvolution programme 

I searched the literature for a deconvolution software package that I could utilise. 

DeconRNASeq described by Gong et al. was one example. Like most deconvolution 

methods it assumes that the formula described below accurately describes the 

relationship of a mixed sample’s transcriptional values to those of the pure samples 

of which it is a mixture
135

. Their algorithm then determines the values for all cell 

proportions by solving the non –negative least squares problem for each marker 

transcript. Since all proportions are assumed to add up to 1, the algorithm cannot 

account for “missing” cell types. The data are also scaled to prevent highly expressed 

genes from becoming overwhelmingly weighty (since there is a squaring 
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component). Their paper showed good deconvolution for samples with over 5% 

prevalence of each cell type. 

5.2.2.1 In silico generation of 100 convoluted samples 

In order to assess the accuracy of the deconvolution, I generated pseudosamples. By 

producing these pseudosamples, I could assess the accuracy of deconvolution on 

samples of known mixed proportions. Each pseudosample was comprised of values 

for all genes measured in the samples described in Zhang et al., so that 

𝑋𝑎𝑗 = ∑ 𝑝𝑠(𝑋𝑠𝑗)

𝑞

𝑠=1

 

Where the transcriptional value X (FPKMs, reads per million (RPMs), etc) for gene j 

in pseudosample a is equivalent to the linear sum of the respective gene’s values 

from pure samples Xs….q provided by Zhang et al., multiplied by their relative 

proportion ps….q, with all proportions adding to 1. The generation of pseudosamples 

operates under the same linearity assumption which underlies most deconvolution 

models. Relative proportions were generated randomly in R.  

The concept behind utilising pseudosamples was to benchmark the performance of 

the deconvolution. Although it is impossible to know the true extent of cell 

proportion changes (if any), the use of pseudosamples is proof that the deconvolution 

of similar depth samples can be carried out, and that the error between the 

deconvolution predicted proportions and actual pseudosample proportion can be 

quantified. As I show in this chapter, use of optimal settings brought the mean 

absolute difference between predicted proportion and actual proportion to >7% of the 

actual proportion for deconvolution of mouse cortical, mouse hippocampal, and 

human iPSC-derived neuronal samples.  

5.3 Initial DeconRNASeq and troubleshooting using FPKMs 

My initial investigation utilised FPKMs, but did not examine comparison datasets as 

I did not initially know how to compare these datasets on different scales. 
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5.3.1.1 Optimising the approach by utilising pseudosamples 

I performed DeconRNASeq using different sets of marker genes from Zhang et al.. I 

also applied a number of different “top and tail” filters to the marker gene data, 

excluding marker genes if their expression in the cell type they mark fell outside of 

the filter. Different marker gene sets produced by different filters were evaluated on 

the basis of how well the deconvolution performed on the in silico pseudosamples for 

each cell line. 

5.3.1.1.1 Pseudosample results  

I used DeconRNASeq to deconvolute my 100 pseudosamples, each generated from 

random proportions of the enriched cell RNA-Seq FPKM profiles from Zhang et al.. 

The cell types included were all of those investigated by Zhang et al., namely 

astrocytes, neurons, oligodendrocyte precursor cells, newly myelinating 

oligodendrocytes, mature oligodendrocytes, microglia, and endothelial cells. I used 

different marker genes for each cell type, and used varying numbers of marker genes. 

This first deconvolution was performed three times, once with 40 marker genes per 

cell type, once with 125, and once with 500. This meant that my “pure” RNA-Seq 

profiles generated from the data of Zhang et al. utilised 280, 875, and 3500 genes in 

each comparison, as there are seven different cell profiles.  

The results of the deconvolution were initially very poor, both overestimating and 

underestimating the actual proportions for each cell type. In astrocytes, the maximum 

overestimation was by a factor >300, in a pseudosample with relatively low astrocyte 

proportions. The standard deviation of the estimated/actual ratio was also very high. 

An optimum would be an average ratio of 1, and a standard deviation of 0, indicating 

perfect prediction. The average ratio was typically very high across the 100 samples 

and across cell types. I found that the standard deviation varied by cell type but no 

value was lower than 3, indicating the vast majority of samples had extremely poorly 

predicted levels of each cell type. Briefly experimenting with maximum and 

minimum expression filters did improve the results, but the range of ratios still 

varied. Two examples are given in Table 21 and Table 22, for the deconvolutions 

using 125 marker genes. We can see that the results are initially extremely incorrect, 

largely overestimating cell types. With filtering, they begin to fail to predict some 
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cell types’ presence at all. We can see as an example that oligodendrocyte precursor 

cell estimated/actual ratios vary from 0.02 to 3.16 across the 100 pseudosamples. 

Biologically, variance in cell types to this degree would be grossly pathological. I did 

not find these results satisfactory and decided that a greater number of measures 

needed to be taken to ensure accuracy. 

 

Astrocytes Neuron OPC MO Microglia 
Endothelial 

Cells 

Max 314.7 66.2 8.57 219.73 23.3 66.09 

Min 0.63 0.58 0.102 0.35 0.73 0.53 

Standard 

deviation 

31.2 6.61 1.23 21.85 2.62 7.22 

Table 21. Average maximum, minimum, and standard deviations of the ratio of estimated:actual proportions of each 

cell type for 100 pseudosample deconvolutions using 125 marker genes. 1 is optimum for max and min, 0 is optimum for 

standard deviation. OPC=Oligodendrocyte precursor cell, MO=Myelinating oligodendrocyte 

 

Astrocytes Neuron OPC MO Microglia 
Endothelial 

Cells 

Max 3.11 2.1 3.16 3.26 1.16 1.88 

Min 0 0 0.03 0.08 0.05 0.09 

Standard 

deviation 
0.65 0.48 0.72 0.71 0.23 0.44 

Table 22. Average maximum, minimum, and standard deviations of the ratio of estimated:actual proportions of each 

cell type for 100 pseudosample deconvolutions using 125 marker genes, filtering marker gene expression for those with a 

value between 5 and 5000 FPKMs in the cell type they mark. 1 is optimum for max and min, 0 is optimum for standard 

deviation. OPC=Oligodendrocyte precursor cell, MO=Myelinating oligodendrocyte 

5.3.1.1.2 Pseudosample results restricting cell type proportions to greater than 0.1 

Given the highly inaccurate results of the initial deconvolution, some means of 

improving the predictions were necessary. Since the estimates were extremely 

inaccurate, I reasoned that selecting different numbers of marker genes for each line 

would not by itself improve deconvolution to an acceptable degree. 
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However I noted that if cell proportions were very low (<5%) the estimated 

proportions were highly incorrect. Gong et al. have also struggled to detect cell types 

which are less than 5% of the mixed cell population
267

. I therefore decided to 

optimise deconvolution with the assumption that all cell types would be greater than 

10% of the overall population. I believe that this is the best approach as cells with a 

low proportion will be incorrectly predicted anyway and many research groups have 

experienced difficulties with predicting these low proportion cell types at all. The 

increased difficulty in optimising for the <10% scenario offsets the potential gains in 

accuracy, which would not be great in any case. Finally, I am comparing genotypes 

for relative changes to cell types, not for absolute prevalence of each cell type. I 

therefore determined to limit all proportions in my pseudosample generation, so that 

each cell type contributed a minimum of 10% towards the in silico RNA-Seq profile 

of each pseudosample. I also removed the newly myelinating oligodendrocytes from 

the pseudosamples, reasoning that these cells would not be prevalent at greater than 

10%.  

I then reassessed the profiles for marker genes, using data from Zhang et al. to find 

the genes with the largest fold changes between the marked cell type and all other 

cell types. See Figure 41, Figure 42, and Figure 43 for heatmaps of the marker gene 

profiles using 40, 125, and 500 markers per cell type (240, 750, and 3,000 markers 

total). Each marker gene block is distinguished by high expression in the cell type it 

marks, and is characterised by low expression in other cell types. 
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Figure 41. Heatmap of expression for the top 240 marker genes for cell types from Zhang et al. with each row 

representing a gene and columns indicating cell types. Scale is in Z scores (standard deviations from the mean), with red 

indicating expression higher than the mean of all cell types and green lower. Note that a minority of marker genes for 

astrocytes and OPCs in particular are not quite as specific.  OPC=Oligodendrocyte precursor cell, MO=myelinating 

oligodendrocyte. 

  

Figure 42. Heatmap of expression for the top 750 marker genes for cell types from Zhang et al. with each row 

representing a gene and columns indicating cell types. Scale is in Z scores (standard deviations from the mean), with red 

indicating expression higher than the mean of all cell types and green lower. Note that a greater number of genes have 

moderate expression in cells other than the cell type they mark. OPC=Oligodendrocyte precursor cell, MO=myelinating 

oligodendrocyte. 
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Figure 43. Heatmap of expression for the top 3,000 marker genes for cell types from Zhang et al. with each row 

representing a gene and columns indicating cell types. Scale is in Z scores (standard deviations from the mean), with red 

indicating expression higher than the mean of all cell types and green lower. Note that a large number of genes have 

reasonable expression in many cell types. It is unlikely that this will be the number of marker genes which will give 

optimum deconvolution.  

Figure 44 displays the results of the deconvolution, using varying numbers of marker 

genes for each of the six cell lines. Several facts can be observed. Firstly, a larger 

number of marker genes appears to introduce greater variation in the ratio of 

estimated/actual proportions of each cell line. At 40 genes per line, there is very little 

variation in five out of six cell line estimations, whereas variation is greater at 125 

genes (indicated by broader peaks) and is even larger at 500 genes. We can also see 

that microglia, indicated by orange, are often overpredicted, except when 500 genes 

are used. Finally, when using 500 genes for each line, DeconRNASEQ fails to detect 

endothelial cells (indicated by green) at all.  
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Figure 44. Deconvolution of 100 pseudosamples, shown as a density plot. Each cell type is represented by a different 

colour; Astrocytes=Red, Neurons=Blue, Oligodendrocyte Precursor Cells=Green, Myelinating 

Oligodendrocytes=Purple, Microglia=Orange, Endothelial Cells=Yellow. X axis = deconvolution prediction of cell 

proportion divided by actual cell proportion. Optimum is 1. Y axis = frequency of this ratio, displayed as a density plot. 

Each graph indicates the results using a different number of marker genes for each cell line, always using the markers 

with the largest fold changes. 

We can conclude that restricting each cell type’s proportion to 10% or greater 

exerted a large effect on the accuracy of the deconvolution, and that an increase in 

the number of marker genes appeared to initially bring the deconvolution ratios 

closer to one, but also introduced other variation. 

5.3.1.1.3 Pseudosample results filtering marker genes, restricting cell type 
proportions to greater than 0.1 

I aimed to further increase the accuracy of the deconvolution by combining the 

previous steps, but using differing numbers of marker genes, with a new step, 

filtering marker genes for high and low expression. I evaluated deconvolution with 

different variations of these criteria. Mohammadi et al. had shown that expression 

filtering improved deconvolution only about half of the time, so it was doubtful 

whether I would observe any improvements
134

. A subset of the results is displayed in 

Figure 45.  
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Figure 45. Results of the deconvolution using between 150 and 400 marker genes per line. In all cases the genes with the 

greatest fold changes between the marked line and other lines were utilised. Filters for expression are indicated in the 

titles of each graph by MaxFPKM, indicating the maximum expression allowed for a marker gene in the cell it marks, 

and MinFPKM, the relative minimum expression. Each cell type is indicated by a different colour; Astrocytes=Red, 

Neurons=Blue, Oligodendrocyte Precursor Cells=Green, Myelinating Oligodendrocytes=Purple, Microglia=Orange, 

Endothelial Cells=Yellow. 
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There are several findings to be observed. Firstly, if the number of marker genes per 

cell line is low, microglia, indicated by orange, are overestimated. Secondly, if the 

number of marker genes per cell line is high, oligodendrocyte cells, indicated by 

green, are not detected at all, indicated by the line being at 0. This is undone by 

excluding marker genes with an expression above 5000 FPKM in the line they mark. 

Excluding genes with less than 5 FPKMs appeared to result in no change. On further 

investigation it was evident this was due to a lack of marker genes with expression 

below this level. Several settings are about equal in accuracy, not overestimating or 

underestimating any lines to a degree of >4 or <0.25. These include all 100, 150, and 

200 gene settings, and all higher marker gene number settings which have the FPKM 

5000 maximum expression filter. Given the ambiguous results of expression 

filtering, I opted to not continue using it.  

5.3.1.1.4 Initial deconvolution of mouse cortical samples using FPKMs 

I deconvoluted my mouse cortical RNA-Seq profiles to investigate whether any of 

the six cell types were changed due to the Der1 mutation. I used different numbers of 

marker genes as there were no clearly superior sets. I used both Cufflinks-generated 

FPKM values to deconvolute my data. Using FPKMs is a natural choice as the data 

described in Zhang et al. are in FPKMs. However, as we shall see, it became evident 

to me that a serious error had occurred in the generation of the Der1 mouse cortical 

FPKMs. 

In the process of the FPKM deconvolution I noted that a minority (<10%) of the 

marker genes had expression in all the mouse samples which was greater than the 

expression in my pure Zhang et al. samples. This is likely due to a number of factors; 

different sequencing depths, different origin of RNA (brain tissue vs enriched plated 

cells). Given that these markers are a minority I opted to remove them, as they 

clearly invalidate the assumption that the markers will have their maximum 

expression in the cell type that they mark. My concerns about this process were a 

major factor in later deciding to utilise housekeeping gene normalisation (see 5.4 for 

a full discussion). I emphasise that no particular cell type was singled out to have 

certain markers removed-all markers with greater expression in the samples versus 

the cell type they mark were removed.  
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5.3.1.1.4.1 Results 

Regardless of the number of marker genes utilised, we can see a distinctive split in 

the samples (see Figure 46). One group of samples has a moderate proportion of 

many cell types, and is reported as being approximately 50% neurons; close to 

reported biological reality
273,274

. The second is reported as being approximately 70% 

myelinating oligodendrocytes. The two groups are not separated by genotype, with 

the oligodendrocyte heavy group consisting of two wild-type, three heterozygous, 

and two homozygous mouse samples. The two groups are also not distinguished by 

the sex of the mice. We can also see that there is little variation in the estimation of 

all cell types between samples of different genotypes within the two groups. We can 

also see that the number of marker genes seems to have little if any effect on the 

estimations of the various cell type proportions.  

 

Figure 46. Deconvolution of the Der1 mouse cortical sample FPKMs using 100, 150, or 200 marker genes. Genotypes are 

differentiated by colours. 

The reported proportion of a number of the samples being mostly myelinating 

oligodendrocytes when using FPKMs is very surprising. This proportion is not close 

to most histological estimates by researchers looking at mouse cortex, and seems 

biologically impossible. It also seems unlikely that such enormous variation could 
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present in such a binary fashion within genotypes. I investigated the samples further 

and found that the FPKM expression of the myelinating oligodendrocyte marker, 

Mbp, encoding myelin basic protein, varied enormously and in a binary fashion. The 

samples reporting high myelinating oligodendrocyte proportions had high FPKM 

expression of this gene (it is the highest expressed gene of all), while those reporting 

lower proportions had near nil expression. The fold change between the two groups 

was over 800. I subsequently inspected the RNA-Seq counts directly and found that 

all samples had similar count values (variation <5%). It is not possible that the 

FPKMs of the samples are genuinely different to this degree. It was evident that 

some error had been made in the processing of the RNA-Seq data which caused Mbp 

to have large variation between samples despite the counts varying very little. 

Removal of Mbp from the list of marker genes resulted in predicted proportions 

which were biologically plausible and similar in all samples, regardless of genotype 

(data not shown). The extremely potent power of Mbp is likely due to its high 

expression, as well as the stark contrast between the samples. I have not yet 

discerned what the processing error is and the miscounting of Mbp calls into question 

the Cufflinks-generated FPKMs from Der1 cortex as the units of deconvolution, as 

many other genes may also have been affected. 

5.3.1.1.4.2 Rejection of FPKM deconvolution as a valid approach 

The Der1 FPKM deconvolution is clearly untrustworthy. Although I have noted a 

problem with Mbp, other problems may still be present. It is also true that Cufflinks-

FPKMs are the worst possible units to carry out deconvolution with, as shown by the 

research of Jin et al. (see Figure 40) showing these units give the highest variation in 

deconvolution estimates compared to other measurements
272

.  

However, RPM units may not be ideal either, as the data described in Zhang et al. are 

in the form of Cufflinks-generated FPKMs. Since FPKMs are normalised to both 

transcript length and sequencing depth, the scale of FPKMs will be entirely different 

to the scale of RPMs which are normalised to the number of base reads. It is also not 

a simple matter to relate the two, as Cufflinks does not utilise a predetermined set of 

transcript lengths but rather empirically determines the length of transcripts from the 
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data. It is possible given Mbp’s complex splicing arrangement that the error in 

quantifying the transcript occurs due to different estimated transcript lengths. 

Finally, there is the question of the <10% of genes that were removed because their 

expression in the samples was greater than their expression in pure cell types. This 

was a concerning finding, and was a major reason for my redoing the deconvolution 

in the next section, using housekeeping gene based normalisation, which I believed 

would result in all genes being on a similar scale of expression. This would also 

allow me to look at other datasets to assess the accuracy of the deconvolution. 

It was also evident to me that there were other issues. Although I had generated 

pseudosample data and carried out the deconvolution using DeconRNASeq, I had not 

at any stage verified the deconvolution by testing it on a secondary dataset. Going 

forward, I would also need to do the deconvolution using RPMs, as there had clearly 

been an error with FPKM generation. I would need to develop a method allowing the 

comparison of multiple data types so as to continue using the Zhang et al. dataset. I 

describe in the next sections my solutions for these three challenges. 

5.4 Mouse Cortical RNA-Seq deconvolution 

5.4.1 Housekeeping gene normalisation to compare multiple datasets 

5.4.1.1 Introduction 

To compare the Zhang et al. dataset to others, I needed some method of 

normalisation. I decided to see if housekeeping gene based normalisation could work 

to ensure easy comparison between pseudosamples and an exterior dataset. I could 

empirically test this by comparing the efficiency of housekeeping gene normalised 

pseudosample deconvolution to non-normalised deconvolution. I utilised an 

objective method to do this. 

5.4.1.2 Selection of housekeeping genes 

Housekeeping genes (HKs) should be as uniformly expressed as possible, as well as 

being expressed in all cell types. In order to gauge the suitability of genes as 

housekeeping genes, I calculated the coefficient of variation (standard deviation 
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divided by mean, referred to as CV) for each gene across all Zhang cell types and 

within my Der1 mouse samples. Each Zhang et al. cell type has only two high depth 

replicates, so it seemed wise not to average by cell type. I calculated two CVs: the 

ZhangCV, the CV for all of Zhang’s samples for a gene, and the mouseCV, the CV 

of the gene across my cortical Der1 mouse samples. The geometric mean of these 

two values was calculated and used to rank the genes as putative housekeeping 

genes. I also restricted housekeeping gene selection to those genes which had a no 

greater than fourfold difference between the maximum and minimum values in both 

the mouse and Zhang sets. This seemed like a good approach to filter out otherwise 

good housekeeping genes which had extraordinary expression in a single mouse 

sample or cell culture, which would result in this cell type or sample giving 

erroneous results. Genes which were not universally expressed were also discarded 

as potential housekeeping genes. The criteria for expression were more counts than 

Disc1 in the case of the cortical mouse samples and at least 5 FPKM in the Zhang 

samples (I chose this as Zhang et al. had chosen it as the cut off level for marker 

gene expression). Of the >19,000 genes expressed in both sample sets, approximately 

3800 met al.l the criteria. The geometric means varied from 0.004 to 0.356. I selected 

housekeeping genes from this list, starting with those with the lowest geometric 

mean. 

I subsequently used GOrilla to check the ranked housekeeping gene list for 

overrepresented ontologies. I expected that overrepresented gene functions would 

relate to typical housekeeping gene functions such as translation, transcription, and 

cell metabolism. If ontologies related to particular brain cell types appeared, such as 

synapse formation (related to neurons, but not to microglia) then this would be 

alarming and would indicate that my selection of housekeeping genes was faulty. 

For the Cortical vs Zhang comparison, the top 10 ontologies overrepresented at the 

top of the list of ranked potential housekeeping genes can be seen in the Appendix. 

Although Process and Component were as expected for housekeeping genes, I was 

unsure of what some of the Functional ontologies related to. The BAT3 complex 

appears to be involved in the insertion of proteins into the ER membrane
275

. 

Agmatinase is an enzyme which produces precursors for polyamines, while its target 
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agmatine is brain-expressed and may have a role in depression. However Agmatinase 

is expressed in a wide variety of cell types according to Meylan et al.
276

, so I decided 

to retain it. The two genes related to angiostatin binding are ATP-synthase subunits, 

which would likely be expressed in a non-cell specific manner. To summarise, with 

the possible exception of Agmatinase, there did not appear to be any alarming gene 

ontologies among my putative housekeeping genes. I also manually looked at the top 

100 genes, which housekeeping genes were selected from. Three seemed initially 

alarming as their functions might be related to neuronal activity; these were Wisp1, 

Creb3, and Fxr2. However the first two appear to function in stress response, while 

Fxr2’s functions are not yet well understood. Nevertheless the low variation in all the 

genes across all samples means that there are unlikely to be any issues in 

normalisation. 

5.4.1.3 Measures of error 

I needed a more objective method of analysing pseudosample deconvolution. In all 

my deconvolution optimizations, I analysed error using two measures. The mean 

absolute difference, MAD, is given by the following formula: 

𝑀𝐴𝐷𝑖 = ∑((𝑥𝑠𝑖/𝑝𝑠𝑖) − 1

𝑞

𝑠=1

)/𝑞 

So that the MAD for pseudosample i, MADi , is equivalent to the sum of the 

deviations of the predicted to actual ratios of cell types s…q from one, divided by the 

total number of cell types. However, since I used 100 pseudosamples, MAD will 

always, unless specifically stated otherwise, refer to the average MAD of 100 

pseudosamples. 

The other measure I used was root mean squared error, RMSE, given by the 

following formulae: 

RMSEi = ∑(xsi/psi)
2

q

s=1
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RMSE = (
∑ RMSEi 

j
i=1

qj
)1/2 

Therefore the RMSE for a deconvolution is the square root of the sum of the squares 

of the relative difference between the predicted and actual proportions across all cell 

types across all pseudosamples. Both MAD and RMSE are discussed in Mohammadi 

et al.
134

. MAD in particular seemed like an intuitive way to describe the accuracy of 

a deconvolution in a single figure. 

5.4.2 Deconvolution using housekeeping gene normalised data of Zhang 

et al. 

5.4.2.1 Initial deconvolution 

Initially, I used a number of marker genes, ranging from 25 to 500 in increments of 

25, and numbers of housekeeping genes ranging from 10 to 100 in increments of ten. 

This meant that a total of 200 deconvolutions were carried out to determine the 

optimum settings. Since range filtering had not been especially helpful previously, I 

elected not to use this. This decision is in line with the evidence provided by 

Mohammadi et al.
134

. 

The results showed superior deconvolution to non-housekeeping gene normalisation. 

Figure 47 shows the effect of varying Marker Gene#, while Figure 48 shows the 

effect of varying Housekeeping Gene#. The best deconvolution is shown in detail in 

Figure 49. The minimum MAD was 0.059 (marker #=25, HK=40) and the maximum 

was 0.096 (marker #=500, HK=90). 
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Figure 47. Set of ratio of predicted to actual proportions for 100 pseudosamples against density of estimates, for the 

deconvolutions where HK#=40 and Marker gene # varies from 25 to 500. Optimum is 25 as shown in more detail in 

Figure 49. Each cell type is indicated by a different colour. Astrocytes=Red, Neurons=Blue, Oligodendrocyte Precursor 

Cells=Green, Myelinating Oligodendrocytes=Purple, Microglia=Orange, Endothelial Cells=Yellow. The ideal scenario 

would be a straight line at 1, indicating perfect invariant deconvolution. 
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Figure 48. Set of ratio of predicted to actual proportions for 100 pseudosamples against density of estimates, for the 

deconvolutions where Marker gene #=25 and HK # varies from 10 to 100. Optimum is 40 as shown in more detail in 

Figure 49. Each cell type is indicated by a different colour. Astrocytes=Red, Neurons=Blue, Oligodendrocyte Precursor 

Cells=Green, Myelinating Oligodendrocytes=Purple, Microglia=Orange, Endothelial Cells=Yellow. The ideal scenario 

would be a straight line at 1, indicating perfect invariant deconvolution. 

 

Figure 49. Detailed look at ratio of predicted to actual proportions for 100 pseudosamples against density of estimates, 

for the optimum deconvolution where HK#=40 and Marker gene#=25. Each cell type is indicated by a different colour. 

Astrocytes=red, Neurons=Blue, Oligodendrocyte Precursor Cells=Green, Myelinating Oligodendrocytes=Purple, 

Microglia=Orange, Endothelial Cells=Yellow. 

As the number of marker genes increased the optimum HK decreased. The MAD 

values were low enough that I felt further optimisation was not necessary; an error 

range within 6% is quite good, and the limiting factors beyond this are unlikely to be 

resolved by better deconvolution parameters. Importantly, the estimations also 
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cluster relatively well, even when inaccurate. For example, in the marker#=25 

KH=40 deconvolution, myelinating oligodendrocytes are consistently 

underestimated, but the estimates are always between 84 and 91% of the actual 

proportion, a quite small range. Since it is differences in relative cell type proportions 

between samples I am looking for, not absolute differences, it is more important that 

the deconvolution treats highly similar cells in the same way, although estimates 

varying between 97 and 104% would obviously be more ideal. We can also see in 

Figure 47 that the deconvolution of astrocytes, neurons, endothelial cells and 

microglia is very good, with the estimates for these four cell types varying between 

93% (an astrocyte estimate) and 104% (a neuron estimate) of the actual proportions.  

5.4.3 Deconvolution of comparison datasets to verify deconvolution 

To ensure that my deconvolution was accurate it was imperative to test it on other 

datasets where the cellular composition has already been determined. Since the 

composition of my experimental samples was unknown, there was no other way to 

know whether the deconvolution was accurate. I searched for comparison datasets 

which fulfilled some of the criteria described in 5.2. They had to have similar RNA-

Seq depth, and they had to have identified the cells in a trustworthy manner. I 

deemed it of less importance that the same dataset provide all cell types, although 

this would obviously be optimal. I could not find a truly independent dataset 

providing data from all brain cell types at an appropriate sequencing depth. I did find 

several which, together, provided pure RNA-Seq profiles of neurons, 

oligodendrocytes, astrocytes, microglia, and endothelial cells, from both human and 

mouse and at various ages and disease states. I decided to use these data sets to 

determine whether my deconvolution was accurate. If it was, it should predict each 

pure cell profile from each of these experiments as being entirely or almost entirely 

of that cell type. 

5.4.3.1 Zhang Two  

I had decided to use the dataset described in 5.2 by Zhang et al. for carrying out 

deconvolution
153

. The same research group released a follow up paper in 2016, 

looking at a number of human and mouse astrocytes from various disease states. 
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They also used immunopanning to isolate neurons, oligodendrocyte precursor cells, 

myelinating oligodendrocytes, and endothelial cells and subjected these to RNA-

Sequencing (at a lower sequencing depth than previously). In some cases, different 

antibodies were used in the immunopanning process, but they were often the same as 

in the prior paper (CD45 for microglia, BSL-1 for endothelial cells, O4 for 

oligodendrocyte precursor cells). In particular, it should be noted that the antibody 

used to select astrocytes was specifically selected using the information from the 

previous paper by Zhang et al.. They also found, as expected, that each cell uniquely 

expressed a set of classic markers along with the marker used to isolate it. For 

example, neurons isolated using Thy1 expressed Vglut1, Stmn2, Syt1, and Syn1 at 

high levels, while other cells did not express these. 

The second paper by Zhang et al. is not a completely independent comparison. Being 

from the same research group, many of the culture techniques and methods of cell 

isolation are identical, and the data from the first paper even informed the selection 

of the astrocyte marker. Accurate deconvolution of these cells will show that the 

deconvolution is applicable to another closely related dataset, although testing 

against a more independent dataset is also necessary to show it is also applicable to 

our samples. Nevertheless this is an important step to show basic reliability as well as 

aid in troubleshooting. For the sake of clarity,the second dataset described by the 

2016 paper by Zhang et al.
271

 will be referred to as “Zhang Two”.  

I carried out a series of deconvolutions of the Zhang Two dataset using all possible 

settings and examined the predictions of each cell types. In total, there are 6 astrocyte 

samples of varying ages and sorting methods, along with two of each other cell type 

and three whole cortex samples. I made several observations. Firstly, regardless of 

marker gene or housekeeping gene number, neurons, oligodendrocyte precursor 

cells, myelinating oligodendrocytes, microglia, and endothelial cells are highly 

predicted as being their respective cell type. Usually the prediction was >95%, with 

the exception of one myelinating oligodendrocyte sample which consistently 

remained at 80%. The main changes observed were in astrocytes and in the whole 

cortical samples. The differences between deconvolutions with the same marker gene 

number but different housekeeping gene numbers was difficult to discern. Changing 
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housekeeping gene number appeared to have relatively little effect at any stage, 

unlike marker gene number.  

At 300 marker genes and over, astrocytes began to be poorly predicted, with 

predictions between 50-90%. Above 425 markers, this dropped to 50-70%. This was 

also seen for the 125 marker gene deconvolutions, regardless of housekeeping gene 

number, where the astrocyte prediction for astrocytes was 60-90%. The rest of the 

prediction was typically a mix of endothelial cells and microglia. A few astrocytes 

(the immunopanned ones) always had less than optimal deconvolution, even at lower 

marker gene numbers. They were typically predicted as 60-80% astrocytes. However 

between 150-275 markers they tended to be better predicted with less variation 

between immunopanned samples and values above 80%. Examples of all cell types 

are given in Figure 50. 
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Figure 50. Set of predictions of Zhang Two dataset for the deconvolutions where HK#=40 and Marker gene # varies 

from 25 to 500. Optimum is 25. Each cell type is indicated by a different colour. Astrocytes=Red, Neurons=Blue, 

Oligodendrocyte Precursor Cells=Green, Myelinating Oligodendrocytes=Purple, Microglia=Orange, Endothelial 

Cells=Yellow, Whole Cortex=Black. Predicted cell types are on X axis and proportions are on the Y. 

Whole cortex samples followed a pattern as well, which is described in Table 23.  
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Marker Genes Astrocyte Neuron OPC  

25 – 75 45% dropping 

to 30% 

12% 35% increasing to 42% 

100 20% 30% 40% 

125 30% 30% 30% 

150 – 500 30% gradually 

dropping to 

20% 

40% to 45% 20% to 30% 

Table 23. Description of proportions predicted by DeconRNASeq when varying marker gene number. OPC= 

oligodendrocyte precursor cell. All percentages approximate averages of the three samples across all housekeeping gene 

numbers. 

The results of the deconvolution are displayed in Table 24 using the optimum 

settings of marker gene number=25 and HK#=40. 

 

Table 24. Results of the deconvolution of the Zhang Two dataset using cortical optimum settings. OPC=Oligodendrocyte 

precursor cell, MO=Myelinating oligodendrocyte  

We can see that in general the cells are predicted very well, with 10 of 16 cells 

predicted as a mixture comprised of >95% of the actual cell type. Three of the most 
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problematic predictions are of aged astrocytes, so it is possible that the maturation 

process results in more distinctive cell profiles due to differentiation. The best 

deconvolution setting for the 16 Zhang Two samples is HK=10, Marker Gene=225, 

which gives the lowest deviation from 1 for the 16 cell samples (average deviation 

3.8%). Regardless of HK number, Marker Gene=225 is always best. 

Three datasets from whole cortex from the Zhang Two paper were also deconvoluted 

and had highly similar profiles to one another. For the optimal deconvolution, the 

estimates were of a mixed cell profile consisting of an average of 49% astrocytes, 

12% neurons, 30% oligodendrocyte precursor cells, 1.6% myelinating 

oligodendrocytes, 1.4% microglia and 5.7% endothelial cells (does not sum to 1 due 

to rounding up). The average difference between the highest and lowest estimates for 

the three samples for all cell types was 0.9% and the largest was 2.5%, for neurons.  

However, these levels are at odds with the expected proportions for mouse cortical 

samples. It has been estimated by modern counting methods, using isotrophic 

fractionation and calculating the resulting neuronal:non-neuronal nuclei ratio, that 

the mouse cerebral cortex consists of 54% neurons by number, and 68% neuron by 

mass
274

. Other estimates looking at a variety of sources, including staining, estimate 

that mouse cortical neurons are slightly less, at 42%. It must be noted that the 

staining densities used to estimate this have high variability
273

. It is also true that 

more endothelial cells should be predicted; no setting predicts more than a small 

minority of endothelial cells. It is possible that they do not contribute many reads to 

the RNA-Seq, either due to loss during tissue harvesting or little transcriptomic 

activity. With this in mind, I reassessed the results of the Zhang Two deconvolution 

and have given a full discussion in the section before the Der1 deconvolution. 

The best deconvolution of the Zhang pseudosamples was obtained using HK=40, 

Marker Gene=25, MAD=0.059. In the Zhang Two dataset this gave a deviation of 

6.7% from perfect prediction of the 16 individual cell samples, and predicted whole 

cortex as being ~12% neuron, ~45% astrocyte, and ~35% oligodendrocyte. The best 

deconvolution of the Zhang Two individual cell samples was obtained using HK=10, 

Marker Gene=225. This gave a MAD=0.073, and a deviation of 3.8% from perfect 
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prediction of the 16 Zhang Two samples. However, using these settings the 

prediction of mouse whole cortex samples was closer to values suggested by 

empirical data and informed the settings I eventually used. 

5.4.3.2 Dorsal Root Ganglion Neurons 

I also found a dataset generated by Li et al. in 2016, describing the RNA-Seq results 

of approximately 200 dorsal root ganglion neurons from WT mice
156

. Dorsal root 

ganglion neurons are a type of sensory neuron found in the spine; so these cells are 

clearly distinct from the cortical and hippocampal cells we have sequenced. The 

comparison is therefore less than ideal, but if the deconvolution can accurately 

identify these neurons it is evidence that the general neuron markers are acceptable. 

It also indicates that the markers for other cell types do not have appreciable 

expression either in the cortical/hippocampal cells they will be optimised for, or in 

these more distinct sensory neurons. There are other arguments for using this dataset 

as a comparison for the Zhang deconvolution. The sequencing depth is an average of 

58.2 x10
6
 mapped reads, highly comparable to the average of 65.6 x10

6 
sequenced 

reads described by Zhang et al. (on average 87% of these map, giving around 57x10
6
 

mapped reads). The comparison is therefore very apt. Another reason is the quantity 

of cells. Li et al. carried out this high depth sequencing on nearly 200 neurons. I can 

therefore be confident in the accuracy of the deconvolution, should it reliably 

identify these neurons as being a “mixture” comprised mainly of neurons. 

I carried out deconvolution of the roughly 200 neurons described in the Li et al. 2016 

paper
156

 using the same spread of HK and marker gene numbers. Each RNA-Seq 

sample was normalised to total mapped reads, and then to the geomean of the 

housekeeping gene expressions. Some samples could not be included in the analysis. 

Since the housekeeping normalising factor is the geometric mean of multiple 

housekeeping expressions, if any one of these is zero then the normalising factor is 

nonsensical. A minority of samples, between 10-20% depending on housekeeping 

gene number, do not express every housekeeping gene and therefore become 

excluded from the analysis. With increasing housekeeping gene number, this 

proportion increases. The designation of a gene as “housekeeping” was defined by 
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the original Zhang sample and the mouse Der1 cortical samples, so it is inevitable 

that some cells are excluded.  

Regardless of the number of housekeeping genes used, a distinct trend was evident. 

All ~200 samples had very similar values for the predicted proportion of neuron 

across all settings. This proportion was typically low, especially if only a few 

markers were used. If 25 markers (150 total since there are 6 cell types) were used, 

the overall average predicted neuron proportion across all samples was 0.102 to 

0.111, depending on the housekeeping gene number. This increased to an average of 

0.164 at 50 markers (the average of approximately 1800 measurements, 180 in each 

housekeeping gene number group). At 75 this was 0.217, but at 100 it leaped to 

0.5948 and increased unevenly, with another leap to 0.899 at 300 markers. A graph 

of all averages is seen in Figure 51. 

The number of housekeeping genes has little effect on the average amount predicted 

to be neurons. This is a reasonable finding; 10 is a large number of housekeeping 

genes to normalise to initially. Since these genes are chosen specifically because of 

minimal variation in Zhang et al. and in our samples, it is reasonable that they show 

less variation in this new group of samples too (as all three sample groups are of the 

same tissue and species). I was surprised that there seemed to be no effect of 

housekeeping gene number at all; to investigate further I looked at the standard 

deviation of the neuron proportion across the >150 neuron deconvolutions. The result 

of this is displayed in Figure 52. We see that in all cases, having only 10 

housekeeping genes for normalisation results in greater deviation in the proportion 

predicted to be neuron, although the average does not change much. It also appears 

that having 100 is inferior to having 20-80. It is also notable that the standard 

deviation drops considerably at the 300 marker gene level, where the prediction of 

average neuron proportion reaches its peak.  
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Figure 51. Graph displaying how neuronal prediction of >150 dorsal root ganglion RNA-Seq profiles using Zhang et al. 

cell types varies with housekeeping and marker gene number. The Y axis indicates the average proportion predicted to 

be neuron across >150 dorsal root ganglion RNA-Seq profiles; if identification is always perfect, it would be 1. The X-

axis indicates the quantity of marker genes (per cell type) used in the deconvolution, while colour indicates the number 

of housekeeping genes utilised. Since six cell types were used, the total marker gene number varies from 150 to 3,000. 

Housekeeping genes chosen using Zhang and mouse cortical datasets. 
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Figure 52. Graph displaying how neuronal prediction of >150 dorsal root ganglion RNA-Seq profiles using Zhang et al. 

cell types varies with housekeeping and marker gene number. The Y axis indicates the standard deviation in the 

proportion predicted to be neuron across >150 dorsal root ganglion RNA-Seq profiles; if identification is always perfect, 

it would be 1. The X-axis indicates the quantity of marker genes (per cell type) used in the deconvolution, while colour 

indicates the number of housekeeping genes utilised. Since six cell types were used, the total marker gene number varies 

from 150 to 3,000. Housekeeping genes chosen using Zhang and mouse cortical datasets. 

Similar graphs to Figure 51 and Figure 52 looking at the maximum and minimum 

predicted proportion show similar findings. Although the maximum predicted 

proportion is of course 1 (with most HK numbers achieving this at 100 markers and 

all by 175), the minimum predicted proportion remains below 0.4 until 300 markers, 

where it increases to an average of about 0.7 across HK numbers, with the outlier of 

10 HK which remains with a minimum of about 0.5. We can conclude that in general 

more markers are better, with a particular leap at the 300 marker level. As to why 

this is, it is possible that the markers selected prior to the 300 level are those which 

relate to function found in cortical neurons specifically. Markers were chosen on the 

basis of the Zhang et al. dataset; comparing cortical neurons to cortical astrocytes, 

glia, etc. The top neuron markers include genes such as Reln, Dlx2, Nkx2.1 as well as 

other Lhx and Dlx genes. These genes are known to have roles in the formation of the 

cortex and therefore may not be particularly well expressed in terminally 

differentiated sensory neurons. This appears to be the case; when ranking genes by 

expression, the neuronal marker genes occupy much higher rankings in the Zhang 
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dataset than they do in this sensory neuron dataset compared in both cases to the list 

of all expressed genes (see Table 25). 

 

Rank of expression in Zhang Neurons Rank of expression in Sensory Neurons 

Reln 2 17 

Sst 6 18 

Npy 8 50 

Uchl1 18 58 

Stmn3 25 71 

Stmn2 27 80 

Atp1a3 31 92 

Gap43 32 134 

Tubb3 36 139 

Nsg2 37 142 

Snhg11 43 147 
Table 25. Comparative ranking of marker genes in Zhang and sensory neuron datasets, for the top 10 marker genes 

expressed in both datasets. It can clearly be seen that the genes have higher expression in the Zhang dataset. The 

average position of the first 10 genes is 22.2 vs 80.1, the first 100 is 526 vs 1333, and all genes have average rankings of 

4746 vs 8251 in the Zhang and sensory neuron datasets, respectively. 

The pressing question is how to integrate this information into the selection of the 

optimal deconvolution. Looking at the DRG deconvolution using 300 marker genes, 

housekeeping gene number does not greatly alter the average neuron proportion. 

However, the optimal number of marker genes in the deconvolution of my 

pseudosamples was 25, with HK=40, at a MAD of 0.059. There is no conflict with 

HK number as 40 is not inferior to any other number in the DRG deconvolution. 

Using 300 marker genes takes the MAD up to 0.074 (this is across all cell types, not 

just neurons). 

I conclude that my explanation regarding neuron marker genes is likely why more 

markers are better in the deconvolution of the DRG neurons, and less is better for the 

pseudosamples. We can see that the change in deconvolution of the pseudosamples is 

not severe (MAD goes from 5.9% to 7.4%) with these extra markers. A side by side 
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comparison is given in Figure 53. It is likely that if I found a more apt dataset, I 

could use fewer markers and securely know that the deconvolution is adequate. 

However a full discussion in the context of the Zhang Two deconvolution is given in 

the next section.   

 

Figure 53. Detailed look at ratio of predicted to actual proportions for 100 pseudosamples against density of estimates 

for two deconvolutions. Labels above indicate housekeeping gene (HK) and marker gene numbers. HK#=40 and Marker 

gene#=25 is the overall optimum in terms of MAD. Each cell type is indicated by a different colour. Astrocytes=Red, 

Neurons=Blue, Oligodendrocyte Precursor Cells=Green, Myelinating Oligodendrocytes=Purple, Microglia=Orange, 

Endothelial Cells=Yellow. 

5.4.4 Deconvolution of mouse Der1 cortical samples 

It was important to evaluate all the evidence I had received in choosing the optimal 

settings for the deconvolution. There are three sets; the Zhang pseudosample 

deconvolution, the Zhang Two deconvolution of comparative samples and whole 

cortex, and the Dorsal Sensory neuron deconvolution. There are several factors to 

consider; how a deconvolution setting alters predictions of the 100 pseudosamples, 

how it alters identification of the Zhang Two samples and neurons, how it predicts 

the whole cortical samples and whether these predictions are similar to biological 

reality. 
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 The Zhang pseudosample deconvolution revealed good deconvolution with all 

settings, from the best (HK=40, Marker Gene=25) with a MAD of 0.059, to the worst 

(HK=90, Marker Gene=500) with a MAD of 0.095. In general, MAD increased 

slowly and steadily with increasing Marker Gene number and with deviation of HK 

from 40. The conclusion is that the settings should be kept as close to HK=40, 

Marker Gene=25 as possible but the worst possible settings are only 50% less 

accurate than the best. 

The Zhang Two dataset gives the conclusion that most cells are well identified, but 

over 300 marker genes results in poor astrocyte identification. Correspondingly, 

there is a major jump in inaccuracy with the increase from 275 to 300 marker genes 

(from average of 5.2% to 13.3% across housekeeping gene settings). More important 

is the relation to whole cortex samples, which our Der1 samples will presumably be 

similar to. In general, higher markers give more neuronal proportion in the cortical 

samples, with 275 markers giving 40% neuron and the highest, 500 markers, giving 

45% where HK=10. 

The Dorsal Sensory neuron deconvolution confirms a finding already seen in the 

Zhang and Zhang Two deconvolutions; changing housekeeping gene number does 

not substantially alter the results in any way. However, it states that neuronal 

prediction leaps up at 300 markers, and above. As discussed in that section, this is 

possibly due to the lower expression of the markers in these more distinctive sensory 

neurons.  

Given the uncertainties inherent in the deconvolution, I concluded that the best 

approach was to select a variety of high accuracy settings, starting with the marker 

gene number first, then the housekeeping gene number. A finding that appeared in all 

of the settings would be reliable. 275 marker genes gives the most accurate 

prediction of whole cortical samples with neuronal proportions approaching 

biologically plausible levels, but does not veer into underestimation of astrocytes. 

275 is also a better predictor of the dorsal sensory neurons than lower marker gene 

numbers, although 250 is nearly as accurate. For both the Zhang and Zhang Two 

deconvolutions, the optimal HK is 10 for 275 marker genes, with a MAD of 6.9% 
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and a deviation from perfect prediction of 4.5%, respectively. HK=40 is a close 

contender in each case.  

I therefore deconvoluted the Der1 mouse cortical samples using six different 

settings, HK=10, HK=40 and Marker gene #=250, 275, or 300. I deconvoluted the 

depth normalised count data. The results can be seen in Figure 54. 

Importantly, we can see that the samples are behaving the same way, proving that the 

existence of two groups seen in the FPKM deconvolution, one with many MOs, is an 

artefact of the process of generating Cufflinks-FPKMs. Removing Mbp has little 

effect on the deconvolution (data not shown); as expected given its low variance. 

This confirms that the issue seen before was due to that effects of FPKM generation. 

The higher accuracy of this deconvolution, as shown by superior performance in 

pseudosamples, makes this a trustworthy result. 
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Figure 54. Deconvolution of mouse Der1 cortical samples, showing cell types against proportions for four settings 

varying in marker gene and housekeeping gene numbers. WT=Wild-type, Het=Heterozygous, Hom=Homozygous, 

colours are green red and blue respectively. OPC=Oligodendrocyte precursor cell, MO=Myelinating oligodendrocyte, 

EC=Endothelial Cell 
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An ANOVA for each cell type was performed to determine the effects of genotype 

on each of the cell proportions. There was a significant effect of genotype on the 

proportion of astrocytes in all comparisons except for the HK=40, Marker 

Gene=250, and of neuron proportions in half of the deconvolutions. Post-hoc testing 

using Tukey’s multiple comparisons test found no significance for pairwise 

comparisons between any genotype in any deconvolution. 

As described in the corresponding chapter, there had appeared to be an internal 

structure within the homozygous samples. I therefore looked at these two groups, 

distinguished as shown by PCA in Chapter 2. Figure 54 is repeated in Figure 55 with 

the split in the homozygotes highlighted. I again carried out ANOVAs for each cell 

type and subsequent pairwise comparison testing, splitting the Homozygotes into two 

groups. There was a significant effect of genotype on the proportion of 

oligodendrocyte precursor cell proportions in the HK=10, Marker Gene=250 

comparison, but post-hoc testing using Tukey’s multiple comparisons test found no 

significance for pairwise comparisons between any genotype.  

The two homozygote groups are shown alone in Figure 56. Pairwise t-tests for each 

cell type revealed significant differences in neurons, astrocytes, and myelinating 

oligodendrocytes in all HK=10 deconvolutions, and the HK=40, Marker Gene=275 

deconvolution. 

P values HK10M250 HK10M275 HK10M300 HK40M250 HK40M275 HK40M300 

Astrocyte 0.0012 0.0008 0.0004 ns 0.0012 ns 

Neuron 0.0018 0.00043 < 0.0001 ns 0.00019 ns 

MO 0.0028 0.0027 0.0025 ns 0.0030 ns 

EC ns ns 0.0004 Ns ns ns 

Table 26. Results for homozygote pairwise t-tests, with Sidak-Bonferroni correction for multiple testing within each 

deconvolution. MO=Myelinating Oligodendrocytes, EC=Endothelial Cells, ns=non significant 
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Figure 55. Deconvolution of mouse Der1 cortical samples, showing cell types against proportions for four settings 

varying in marker gene and housekeeping gene numbers. WT=Wild-type, Het=Heterozygous, Hom Group 

1=Homozygous Group 1, Hom Group 2=Homozygous Group 2, colours are green red, dark blue and light blue 

respectively. OPC=Oligodendrocyte precursor cell, MO=Myelinating oligodendrocyte, EC=Endothelial Cell. 



 

     245 

M o u s e  t(1 ;1 1 ) c o r t ic a l  d e c o n v o lu tio n  u s in g  Z h a n g  p ro f ile s

H o m o z y g o u s  s u b s e t,  H K # = 1 0 ,  M a r k e r  G e n e # = 2 5 0

A
s

tr
o

c
y

te
s

N
e

u
r
o

n

O
P

C

M
O

M
ic

r
o

g
li

a

E
C

0 .0

0 .2

0 .4

0 .6

H o m  G ro u p  1

H o m  G ro u p  2

C e ll ty p e

P
r
o

p
o

r
ti

o
n

M o u s e  t(1 ;1 1 ) c o r t ic a l  d e c o n v o lu tio n  u s in g  Z h a n g  p ro f ile s

H o m o z y g o u s  s u b s e t,  H K # = 4 0 ,  M a r k e r  G e n e # = 2 5 0

A
s

tr
o

c
y

te
s

N
e

u
r
o

n

O
P

C

M
O

M
ic

r
o

g
li

a

E
C

0 .0

0 .2

0 .4

0 .6

0 .8

H o m  G ro u p  1

H o m  G ro u p  2

C e ll ty p e

P
r
o

p
o

r
ti

o
n

M o u s e  t(1 ;1 1 ) c o r t ic a l  d e c o n v o lu tio n  u s in g  Z h a n g  p ro f ile s

H o m o z y g o u s  s u b s e t,  H K # = 1 0 ,  M a r k e r  G e n e # = 2 7 5

A
s

tr
o

c
y

te
s

N
e

u
r
o

n

O
P

C

M
O

M
ic

r
o

g
li

a

E
C

0 .0

0 .2

0 .4

0 .6

0 .8

H o m  G ro u p  1

H o m  G ro u p  2

C e ll ty p e

P
r
o

p
o

r
ti

o
n

M o u s e  t(1 ;1 1 ) c o r t ic a l  d e c o n v o lu tio n  u s in g  Z h a n g  p ro f ile s

H o m o z y g o u s  s u b s e t,  H K # = 4 0 ,  M a r k e r  G e n e # = 2 7 5

A
s

tr
o

c
y

te
s

N
e

u
r
o

n

O
P

C

M
O

M
ic

r
o

g
li

a

E
C

0 .0

0 .2

0 .4

0 .6

0 .8

H o m  G ro u p  1

H o m  G ro u p  2

C e ll ty p e

P
r
o

p
o

r
ti

o
n

M o u s e  t(1 ;1 1 ) c o r t ic a l  d e c o n v o lu tio n  u s in g  Z h a n g  p ro f ile s

H o m o z y g o u s  s u b s e t,  H K # = 1 0 ,  M a r k e r  G e n e # = 3 0 0

A
s

tr
o

c
y

te
s

N
e

u
r
o

n

O
P

C

M
O

M
ic

r
o

g
li

a

E
C

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

H o m  G ro u p  1

H o m  G ro u p  2

C e ll ty p e

P
r
o

p
o

r
ti

o
n

M o u s e  t(1 ;1 1 ) c o r t ic a l  d e c o n v o lu tio n  u s in g  Z h a n g  p ro f ile s

H o m o z y g o u s  s u b s e t,  H K # = 4 0 ,  M a r k e r  G e n e # = 3 0 0

A
s

tr
o

c
y

te
s

N
e

u
r
o

n

O
P

C

M
O

M
ic

r
o

g
li

a

E
C

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

H o m  G ro u p  1

H o m  G ro u p  2

C e ll ty p e

P
r
o

p
o

r
ti

o
n

 

Figure 56. Deconvolution of mouse Der1 cortical samples, showing cell types against proportions for four settings 

varying in marker gene and housekeeping gene numbers. Hom Group 1=Homozygous Group 1, Hom Group 

2=Homozygous Group 2, colours are grey and yellow respectively. OPC=Oligodendrocyte precursor cell, 

MO=Myelinating oligodendrocyte, EC=Endothelial Cell. 
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5.5 Mouse Hippocampal RNA-Seq deconvolution 

Since the cortical deconvolution had low MAD for the pseudosamples and Zhang 

Two dataset, I continued on to the Der1 hippocampal samples, utilising the same 

methods. The difference here is that I am comparing the hippocampal samples to 

cortical datasets, and I am making the assumption that the cell types will closely 

relate across these two brain regions. Since FPKMs were confirmed as not being 

reliable, I moved straight to housekeeping-normalisation based deconvolution of the 

depth normalised counts. I also did not use marker gene range filtering as it had not 

been useful in the cortical deconvolution. Although the marker genes are the same, 

the housekeeping genes will be different as they are selected based on the enriched 

cell profiles and the mouse samples. Both marker genes and housekeeping genes 

were selected as in the cortical deconvolution. 

For six WT samples 83.877 ± 13.58 million reads were sequenced, for eight 

heterozygous Der1 samples 82.81 ± 13.84 million reads were sequenced, and for 

eight homozygous Der1 samples 79.9 ± 14.08 million reads were sequenced. 

Housekeeping genes were filtered for universal expression, less than fourfold 

variation, and an average minimum expression. A similar number of genes matched 

these criteria as in the cortical housekeeping gene selection. Of approximately 17,000 

genes expressed in both sample sets, 3,832 met al.l the criteria and were ranked in 

order of the geometric mean of both coefficients of variation. This list was subjected 

to ranked GO term analysis using GOrilla. The results of this are displayed in the 

Appendix. As with the cortical set, there were no alarming results. None of the terms 

related to specialised components of nervous cells, particular processes unique to a 

subset of them, or functions which are other than general housekeeping ones.  

5.5.1 Deconvolution using housekeeping gene normalised data from 

Zhang et al. 

The measure of inaccuracy used was MAD. Since Zhang et al. only used a few cell 

types, graphs were also utilised and examined by eye. 
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5.5.1.1 Initial deconvolution 

As in the cortical deconvolution, I used housekeeping gene numbers from 

10,20,30…100, and marker gene numbers 25,50,75….500 for a total of 200 

deconvolutions. The results were of a similar quality to the cortical deconvolution 

and the min and max MAD values were similar. The minimum MAD was 0.0498 

(marker=25, HK=10) and the maximum was 0.103 (marker=500, HK=100). Figure 

57 and Figure 58 show the effects of varying marker gene number and HK, 

respectively. 

 

Figure 57. Set of ratio of predicted to actual proportions for 100 pseudosamples against density of estimates, for the 

deconvolutions where HK#=10 and Marker gene # varies from 25 to 500. Optimum is 25 as shown in more detail in 

Figure 59. Each cell type is indicated by a different colour. Astrocytes=Red, Neurons=Blue, Oligodendrocyte Precursor 

Cells=Green, Myelinating Oligodendrocytes=Purple, Microglia=Orange, Endothelial Cells=Yellow. The ideal scenario 

would be a straight line at 1, indicating perfect invariant deconvolution. 
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Figure 58. Set of ratio of predicted to actual proportions for 100 pseudosamples against density of estimates, for the 

deconvolutions where Marker gene #=25 and HK # varies from 10 to 100. Optimum is 40 as shown in more detail in 

Figure 59. Each cell type is indicated by a different colour. Astrocytes=Red, Neurons=Blue, Oligodendrocyte Precursor 

Cells=Green, Myelinating Oligodendrocytes=Purple, Microglia=Orange, Endothelial Cells=Yellow. The ideal scenario 

would be a straight line at 1, indicating perfect invariant deconvolution. 

The results of the best deconvolution can be seen in Figure 59. 

 

Figure 59. Set of ratio of predicted to actual proportions for 100 pseudosamples against density of estimates, for the 

deconvolution in which marker=25, HK=10. Each cell type is indicated by a different colour. Astrocytes=Red, 

Neurons=Blue, Oligodendrocyte Precursor Cells=Green, Myelinating Oligodendrocytes=Purple, Microglia=Orange, 

Endothelial Cells=Yellow. The ideal scenario would be a straight line at 1, indicating perfect invariant deconvolution. 
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It can be seen that the difference between the maximum and minimum estimate for 

each cell type is relatively close. With the exception of oligodendrocyte precursor 

cells, the difference is less than 0.05, while the actual estimates themselves vary with 

averages of 0.93 (astrocytes), 1 (neurons), 1.07 (oligodendrocyte precursor cells), 

0.92 (myelinating oligodendrocytes), 1.02 (microglia) and 1.05 (endothelial cells). 

5.5.2 Deconvolution of comparison datasets 

5.5.2.1 Zhang Two 

I carried out a series of deconvolutions of the Zhang Two dataset using all possible 

settings and examined the predictions of each cell types, as in the cortical analysis. 

Since many of the housekeeping genes are the same, I expected the results would be 

similar. With the exception of poorer astrocyte predictions if there were 300 or more 

marker genes, all settings were highly predictive. The results were near identical to 

the cortical deconvolution. All trends were the same and the conclusions reached in 

the corresponding cortical section apply here too.  

Using the optimum settings of marker=25 and HK=10, the deconvolution of the 

“Zhang Two” dataset is shown in Table 27. 

 

Table 27. Results of the deconvolution of the Zhang Two dataset using hippocampal optimum settings. 

OPC=Oligodendrocyte precursor cell, MO=Myelinating oligodendrocyte. 
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The results are highly similar to those of the cortical deconvolution, with 11 of 16 

cells predicted as >95% of the cell type that they are. As before, astrocytes were 

increasingly poorly predicted with age. 

Zhang Two’s three cortical datasets were also deconvoluted using the optimal 

hippocampal settings and had highly similar profiles to those predicted by the 

optimal cortical deconvolution. Profile estimates averaged at 51% astrocytes (2% 

more from cortical), 11% neurons (1% less), 30% oligodendrocyte precursor cells 

(same), 1.6% myelinating oligodendrocytes (same), 2.8% microglia (1.4% more) and 

5.7% endothelial cells (1.4% less). The average difference between the highest and 

lowest estimates for all cell types was 0.8% and the largest was 1.7%, for neurons. In 

general these results are very similar to the cortical data, although they are less 

variable. The issues of predicting whole cortex samples will likely apply here as 

well. 

5.5.2.2 Dorsal Root Ganglion Neurons 

As in the cortical deconvolution testing, I carried out deconvolution of the roughly 

200 neurons described in the Li et al. 2016 paper
156

 using the same spread of HK and 

marker gene numbers. Each RNA-Seq sample was normalised to total mapped reads, 

and then to the geometric mean of the housekeeping gene expression. Since some 

samples (usually 10-20%) did not have all the housekeeping genes expressed, some 

samples could not be included in the analysis. 

Given that the marker genes are the same, I expected a similar result to that of the 

cortical settings deconvolution; housekeeping genes not having much impact, and a 

sudden jump in neuron identification at 300 markers. This is exactly what I observed 

in Figure 60 and Figure 61, looking at the average and standard deviation neuron 

proportion in the deconvolution of >150 DRG neurons using the hippocampal 

settings. One difference is that having a low number of housekeeping genes (red) 

appears to give better neuron prediction at the 100-275 marker gene settings. 

However, the results are essentially the same and the same conclusions can be drawn 

as in the analysis which looked at the cortical settings.  
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Figure 60. Graph displaying how neuronal prediction of >150 dorsal root ganglion RNA-Seq profiles using Zhang et al. 

cell types varies with housekeeping and marker gene number. The Y axis indicates the average proportion predicted to 

be neuron across >150 dorsal root ganglion RNA-Seq profiles; if identification is always perfect, it would be 1. The X-

axis indicates the quantity of marker genes (per cell type) used in the deconvolution, while colour indicates the number 

of housekeeping genes utilised. Since six cell types were used, the total marker gene number varies from 150 to 3,000. 

Housekeeping genes chosen using Zhang and mouse hippocampal datasets. 
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Figure 61. Graph displaying how neuronal prediction of >150 dorsal root ganglion RNA-Seq profiles using Zhang et al. 

cell types varies with housekeeping and marker gene number. The Y axis indicates the standard deviation in the 

proportion predicted to be neuron across >150 dorsal root ganglion RNA-Seq profiles; if identification is always perfect, 

it would be 1. The X-axis indicates the quantity of marker genes (per cell type) used in the deconvolution, while colour 

indicates the number of housekeeping genes utilised. Since six cell types were used, the total marker gene number varies 

from 150 to 3,000. Housekeeping genes chosen using Zhang and mouse hippocampal datasets. 

The ramifications for the hippocampal deconvolution are similar to those of the 

cortical deconvolution. The 300 marker gene number appears to give optimal neuron 

deconvolution as in the cortical analysis. This is unsurprising given that these are the 

same 300 genes as in the cortical deconvolution. Looking at the deconvolution of the 

Zhang pseudosamples, the optimal setting always had 10 housekeeping genes 

regardless of marker gene number. There is no major issue here, although the 

standard deviation of the estimates with >300 markers is larger if 10 housekeeping 

genes were utilised. Taking HK=10, the minimum MAD was 0.049, at marker=25. 

At marker=300, the MAD is 0.059, a not tremendous increase in error. The 

comparison is displayed in Figure 62 where it is evident that there are only minor 

changes, mainly in neuronal prediction.  
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Figure 62. Detailed look at ratio of predicted to actual proportions for 100 pseudosamples against density of estimates 

for two deconvolutions. Labels above indicate housekeeping gene (HK) and marker gene numbers. HK#=10 and Marker 

gene#=25 is the overall optimum in terms of MAD. Each cell type is indicated by a different colour. Astrocytes=Red, 

Neurons=Blue, OligodendrocytePrecursorCells=Green, Myelinating Oligodendrocytes=Purple, Microglia=Orange, 

Endothelial Cells=Yellow 

5.5.3 Deconvolution of mouse Der1 hippocampal samples 

Given that all the conclusions from each set of deconvolutions are the same as in the 

cortical deconvolution (unsurprisingly as most housekeeping genes and all markers 

are the same), the same rationales apply. Correspondingly, there is a major jump in 

inaccuracy with the increase from 275 to 300 marker genes (from average of 4.3% to 

13.6% across housekeeping gene settings). As before, higher markers give more 

neuronal proportion in the cortical samples, with 275 markers giving 45% neuron 

and the highest, 500 markers, giving 47% where HK=40, but at the cost of poor 

astrocyte prediction. The rationales are therefore the same as before in choosing 275 

markers, with the best housekeeping gene set. Zhang pseudosamples have MADs of 

5.8% if HK=10, with a mild increase of MAD with HK. Zhang Two’s best 

deconvolution is if HK=40, with a deviation of 3.91% from perfect identification. 

The second best is if HK=10, with a deviation of 3.92%, a minor difference. 

Therefore the optimal settings are marker=275, HK=10, the same as in the cortical 
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deconvolution. This maximises pseudosample deconvolution accuracy and is almost 

identical in quality to the Zhang Two deconvolution. 

I deconvoluted the mouse hippocampal samples using the same spread of marker and 

housekeeping genes as in the cortical deconvolutions, given the similarities. The 

results can be seen in Figure 63. An ANOVA for each cell type was performed to 

determine the effects of genotype on each of the cell proportions. There was no 

significant effect of genotype on the proportion of any cell type in any 

deconvolution.  
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Figure 63. Deconvolution of mouse Der1 hippocampal samples, showing cell types against proportions. WT=Wild-type, 

Het=Heterozygous, Hom=Homozygous, colours are green red and blue respectively. OPC=Oligodendrocyte precursor 

cell, MO=Myelinating oligodendrocyte, EC=Endothelial Cell 
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5.6 Human iPSC-derived neuron deconvolution 

I moved on to deconvoluting the human t(1;11) samples. Housekeeping gene 

normalisation of the datasets prior to deconvolution was carried out exactly as 

before. I excluded genes with a fourfold difference between the maximum and 

minimum samples values, took the geometric mean of the coefficient of variations 

for both datasets, and used the geometric mean of several genes as a normalisation 

quotient. In addition, if the deconvolution reference dataset was mouse, then only 

orthologous genes were utilised.  

5.6.1 Selection of appropriate datasets for human deconvolution 

5.6.1.1 Zhang et al.  

I decided to use the Zhang et al. dataset as it has several advantages over other 

datasets I examined. The read depth is high and comparable to that of our human 

neurons, unlike the Darmanis et al. dataset which I next describe. There are relatively 

few cell types, but their identification is trustworthy and they have many marker 

genes, ensuring the deconvolution should be relatively accurate. However, the main 

disadvantage is that this dataset was derived using mouse cells. 

5.6.1.2 Darmanis et al.  

I did not find a high read depth dataset of human cortical cell types, although many 

datasets exist which employ single cell RNA-Seq of hundreds or even thousands of 

human cortical cells. One such dataset is described by Darmanis et al.
155

. In this 

paper, they describe their analysis of several hundred cortical cells obtained via 

surgical resection of adult human brain, as well as a complementary set of cells 

obtained from foetal cortex. The adult humans were undergoing surgery for mesial 

temporal sclerosis and associated intractable seizures. RNA-Seq data was generated 

from 466 cells with a minimum sequencing depth of 4x10
5
 reads, with an average of 

2.83x10
6
. Reads were 75bp and paired-end.  

Darmanis et al. performed biased and unbiased clustering analyses, which were in 

broad agreement about cell cluster identities. They found that unbiased clustering 

gave 10 groups. The biased clustering approach used the top 50 cell markers from 
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Zhang et al. to separate the cells into a total of 7 groups, which matched to 8 of the 

unbiased groups, with the other two appearing to consist of a hybrid of cell types. 

The cell groups are distinguished by expression of many marker genes and both of 

their analyses show very broad agreement on which group a cell clusters with. 

Subsequent sub-clustering of the neuronal group (defined as cells clustered as 

neurons by both analyses) gave rise to two excitatory and five interneuron groups
155

. 

Regrettably neither the paper nor its supplementary information is sufficient to 

identify which subgroup the neuronal cells belong to, so this paper will not be useful 

for identifying neuronal subtypes. 

To utilise the dataset, I obtained the RNA-Seq counts for all 466 cells described in 

the Darmanis et al. paper. I then removed those which were classified as “foetal 

quiescent” or “foetal replicating”, leaving 331 cells in classes astrocyte, neuron, 

oligodendrocyte, oligodendrocyte precursor cell (OPC), hybrid, microglia, 

endothelial. I then normalised to read depth for each single cell RNA-Seq sample. I 

then generated pseudosamples using the Darmanis et al. dataset in the same manner 

as with the Zhang et al. dataset. 

The dataset has one key advantage over the Zhang et al. dataset, in that it is 

generated from human cells. The cells are resected from living brain tissue rather 

than grown in cell culture like our own, and in contrast to the Zhang et al. cells 

which have spent some time in cell culture. However, the sequencing depth is far 

lower than our dataset. With this in mind, I decided to utilise both the datasets 

described by Zhang et al. and Darmanis et al.. 

5.6.1.3 Allen et al. datasets  

The Allen Brain Atlas datasets are described in detail in their white paper as well as 

at the web address http://celltypes.brain-map.org/rnaseq (accessed on 16/10/2018). 

The human dataset I utilised is comprised of single nucleus RNA-Seq of the middle 

temporal gyrus. Single nucleus RNA-Seq is somewhat less than ideal as many 

transcripts in human neurons are locally translated at dendrites and other non-nuclear 

locations. These transcripts number as high as 2,550, although of course many of 

these may also be partially translated in the nucleus and will appear in the datasets
277

. 
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It is clear that single nucleus sequencing, as opposed to single cell sequencing, will 

not capture all the information available. There are 15,928 nuclei derived from 8 

post-mortem human adult brains. The average sequencing depth is 2.63x10
6 

reads, 

comparable to Darmanis et al. but only about a tenth of the depth of our samples. 

Accordingly, far fewer genes were detected, ranging from 6,186 to 9,937, depending 

on the cell subclass (GABAergic, glutamatergic, unassigned, non-neuronal).  

5.6.2 Zhang et al. deconvolution 

I first utilised the Zhang et al. dataset, optimising the deconvolution by 

deconvoluting Zhang pseudosamples, the Zhang Two dataset, and the Dorsal Root 

Ganglion neurons. The t(1;11) samples were then deconvoluted using the settings 

these datasets suggested were optimal. 

For the Zhang et al. deconvolution, pseudosamples were deconvoluted using a 

variety of marker gene numbers (25 to 500 in increments of 25) per cell line, and HK 

values ranging from 1-10, and then 15 to 50 in increments of 5. It should be noted 

that these pseudosamples and marker genes are identical to those used in the mouse 

cortical deconvolution; the difference is that different housekeeping genes are being 

utilised, and that the marker genes have been filtered beforehand so that only genes 

orthologous between human and mouse have been retained. I chose to filter for 

orthology before selecting the genes; therefore the deconvolution with 50 genes 

utilises the top 50 orthologues for each sample rather than the top 50 overall. I chose 

to do this as I had observed that having the same number of marker genes per cell 

line had given good deconvolution in the mouse deconvolutions.  

MAD ranged from 0.07 (marker=100, HK=2) to 0.23 (marker=425, HK=50). 

Increasing marker numbers or HK numbers appeared to cause a gradual and gentle 

increase in MAD. The results of the two deconvolutions with the lowest and highest 

MADs are shown in Figure 64. We can see the clear contrast between the two results. 

The best deconvolution has narrow peaks for all cell types, five of which peak within 

0.1 of the optimal value of 1. The worst has broad graphs indicating a wide variety of 

estimations, and none of these have peaked within 0.1 of the optimum of 1. It is 
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notable that the lowest MAD is lower than that in either of the mouse deconvolutions 

with the Zhang et al. dataset. 

 

Figure 64. Set of ratio of predicted to actual proportions for 100 pseudosamples against density of estimates. On the left 

is the best deconvolution, while on the right is the worst. Each cell type is indicated by a different colour. 

Astrocytes=Red, Neurons=Blue, Oligodendrocyte Precursor Cells=Green, Myelinating Oligodendrocytes=Purple, 

Microglia=Orange, Endothelial Cells=Yellow. The ideal scenario would be a straight line at 1, indicating perfect 

invariant deconvolution. 

5.6.2.1 Deconvolution of comparison samples 

5.6.2.1.1 Zhang Two 

I deconvoluted the Zhang Two dataset using all settings. When calculating MAD 

from this deconvolution, for 16/20 marker gene numbers the optimal MAD was seen 

if HK was 3 or less. The lowest MAD was 0.0413 at HK=1, marker=150, while the 

largest was 0.291 at HK=40, marker=425. MAD increased sharply at HK=25 or 

more and Marker Gene=250, where it roughly doubles across HK, or 350, where it 

roughly increases by 50%. Overall the results as marker gene varies are similar to the 

deconvolution of the Zhang pseudosamples, as expected. Examples are shown in 

Figure 65. The graphs are highly similar to the mouse cortical Zhang Two 

deconvolution. However, the results when marker=100, or 125, are not very similar 

and show a different prediction of the mouse whole cortex samples.  
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Figure 65. Set of predictions of Zhang Two dataset for the deconvolutions where HK#=2 and Marker gene # varies from 

25 to 500. Optimum is 100. Each cell type is indicated by a different colour. Astrocytes=Red, Neurons=Blue, 

Oligodendrocyte Precursor Cells=Green, Myelinating Oligodendrocytes=Purple, Microglia=Orange, Endothelial 

Cells=Yellow, Whole Cortex=Black. Predicted cell types are on X axis and proportions are on the Y. 

Using the optimum Zhang pseudosample settings of marker=100 and HK=2, I 

deconvoluted the Zhang Two dataset. The deconvolution of the “Zhang Two” dataset 
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is shown in Table 28. We can see that all cell types are quite well predicted; most are 

at >90% predicted as being what they are, with a mixed result for newly formed 

oligodendrocytes as being between oligodendrocyte precursor cells and myelinating 

oligodendrocytes. 

 

Table 28. Results of the deconvolution of the Zhang Two dataset using human optimum settings. *Newly Formed 

Oligodendrocytes were matched to Oligodendrocyte Precursor cells. They also were predicted as 0.205 and 0.241 

proportions of Myelinating Oligodendrocyte. Each row represents a different Zhang Two sample. 

A full discussion of what settings were chosen is in the corresponding t(1:11) 

deconvolution section. 

5.6.2.1.2 Dorsal Root Ganglion Neurons 

As in the mouse deconvolution testing, I carried out deconvolution of the roughly 

200 neurons described in the Li et al. 2016 paper
278

 using a spread of HK and marker 

gene numbers. Since some samples (usually 10-20%) did not have all the 

housekeeping genes expressed, some samples could not be included in the analysis. 

As with the deconvolutions of this dataset using the mouse cortical and hippocampal 

optimum settings, I have displayed the average estimations (Figure 66) and standard 
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deviations (Figure 67) of the neuron content of the >150 neurons using all 

combinations of HK and marker gene numbers.  

 

Figure 66. Graph displaying how neuronal prediction of >150 dorsal root ganglion RNA-Seq profiles using Zhang et al. 

cell types varies with housekeeping and marker gene number. The Y axis indicates the average proportion predicted to 

be neuron across >150 dorsal root ganglion RNA-Seq profiles; if identification is always perfect, it would be 1. The X-

axis indicates the quantity of marker genes (per cell type) used in the deconvolution, while colour indicates the number 

of housekeeping genes utilised. Since six cell types were used, the total marker gene number varies from 150 to 3,000. 

Housekeeping genes chosen using Zhang and human datasets. 
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Figure 67. Graph displaying how neuronal prediction of >150 dorsal root ganglion RNA-Seq profiles using Zhang et al. 

cell types varies with housekeeping and marker gene number. The Y axis indicates the standard deviation in the 

proportion predicted to be neuron across >150 dorsal root ganglion RNA-Seq profiles; if identification is always perfect, 

it would be 1. The X-axis indicates the quantity of marker genes (per cell type) used in the deconvolution, while colour 

indicates the number of housekeeping genes utilised. Since six cell types were used, the total marker gene number varies 

from 150 to 3,000. Housekeeping genes chosen using Zhang and human datasets. 

The maximum predicted proportions start at 250 marker genes and from then on 

there is no increase in predicted proportion with increased marker gene numbers. 

There is a similar pattern with standard deviation of estimates; the variation increases 

from 100-150 and then decreases until 250, when it steadies. We also see that one 

deconvolution has a particularly high standard deviation across all marker gene 

options; this corresponds to the deconvolution with 1 housekeeping gene. The pattern 

is similar to the deconvolution using the mouse cortical and hippocampal 

housekeeping sets, although the change is at 250 markers instead of 300.  

Although the optimal for pseudosample deconvolution was marker=100, HK=2, it 

appears that these settings do not give the lowest standard deviation in neuron 

prediction rates. I examined the MAD of the deconvolutions of the pseudosamples in 

more detail, as initially described in 5.6.2.1. The optimal MAD was 0.07376, but at 

marker=250, HK=2, it increased merely to 0.0768, a 4% increase in what was 

already a very small MAD. A comparison of the two is shown in Figure 68. 
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Figure 68. Set of ratio of predicted to actual proportions for 100 pseudosamples against density of estimates. On the left 

is the best deconvolution, while on the right is that with the same HK but more markers so as to minimise standard 

deviation. Each cell type is indicated by a different colour. Red=Astrocytes, Blue=Neurons, 

OligodendrocytePrecursorCells=Green, Myelinating Oligodendrocytes=Purple, Microglia=Orange, Endothelial 

Cells=Yellow. The ideal scenario would be a straight line at 1, indicating perfect invariant deconvolution. 

5.6.2.1.3 Deconvolution of human t(1;11) samples using Zhang et al. datasets 

As with the mouse Der1 samples, it is important to use the settings that give accurate 

deconvolution of whole cortical samples and have high accuracy in Zhang 

pseudosample deconvolution and Zhang Two identification. In all cases, the optimal 

settings were suggested by low HKs, but not HK=1. 

The Dorsal root ganglion proportion estimates suggest that 250 marker genes would 

be ideal to avoid underestimation of neurons. However, it is at this change, from 225 

to 250 marker genes, where inaccuracy most sharply increases across deconvolution 

of the Zhang Two dataset. This is particularly at lower HKs and is mainly driven by 

poor astrocyte prediction. Marker gene changes have a far less dramatic effect on the 

Zhang pseudosamples, especially at HK 1-10 where the difference between the 

optimal and least optimal marker gene number for each HK changes MAD by ~1%. 

The mouse whole cortex samples are deconvoluted differently across changing 

marker gene numbers, as expected. As numbers over 350 show exceptionally poor 
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astrocyte prediction, these can be ruled out. Astrocyte prediction is also poor over 

250. Numbers up to 175 show very low neuron prediction in the whole cortical 

samples, which should be predicted as at least 40%, with isotropic fractionation 

estimates being much higher. This leaves numbers 200-250 as being plausible 

choices, with 200 having larger sensory neuron estimate deviation than 225 or 250. 

Both 225 and 250 have similar estimates for whole cortex; 30/33% astrocyte, 45/48% 

neuron, 17%/17% oligodendrocyte precursor cell, and minor amounts of the other 

cell types. The increase in MAD is drastic at the 250 marker for Zhang Two, but not 

for the Zhang dataset. I chose to utilise the three marker gene sets 200, 225, and 250, 

with HK=2 which is the optimum in each case. 
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Figure 69. Deconvolution of human t(1;11) samples using Zhang et al. datasets, with data for separate cell lines shown. 

Controls are in blue and translocations in red, with different shapes for each cell line. The mean for each cell line is 

indicated by a black line and the three samples for each of the six lines are displayed.. 

The deconvolution predicts a mixed neuronal-immature oligodendrocyte culture with 

a minority of astrocytes. In addition, t-tests detected a significant change in astrocyte 

levels between the C and T genotypes for all deconvolutions, and a change in 

neurons in the HK=2, Marker Gene=250 genotype. The astrocytic change was a 

decrease in 5%/6.5%/20% with p values of 1.1x10
-4

/4.5x10
-4

/3.6x10
-4

, depending on 

the deconvolution. In all cases Sidak-Bonferroni correction for multiple testing was 

applied. 
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5.6.3 Darmanis et al. deconvolution 

Next, I deconvoluted the t(1;11) samples using the Darmanis datasets. Darmanis 

pseudosamples, and the comparison Allen dataset were deconvoluted, then the 

t(1;11) samples.  

As before, housekeeping genes were selected based on less than a fourfold difference 

between the maximum and minimum values of a sample, then the coefficients of 

variation in both our t(1;11) samples and the pure cell profiles of Darmanis et al. 

were used to rank genes by minimal variation. Only 18 genes met the fourfold 

variation criteria in both groups and were expressed in all samples and profiles. I 

therefore varied the number of housekeeping genes from 1 to 18 and the marker gene 

numbers from 25 to 500, in increments of 25. 

The minimum MAD was found for the HK=16, Marker Gene number=225 

deconvolution at 0.069, while the largest was found at HK=1, Marker Gene 

number=500 at 0.209. The optimal MAD is quite good, comparable to the Zhang et 

al. deconvolutions of the mouse samples (0.059 and 0.049 for cortical and 

hippocampal settings). 

 



Deconvolution of the RNA-Seq data using Zhang et al. Cell type enriched datasets 

268 

 

Figure 70. Set of ratio of predicted to actual proportions for 100 pseudosamples against density of estimates for the best 

deconvolution. Each cell type is indicated by a different colour. Astrocytes=red, Neurons=Blue, Oligodendrocyte 

Precursor Cells=Green, Myelinating Oligodendrocytes=Purple, Microglia=Orange, Endothelial Cells=Yellow, 

Grey/Black=Hybrid. The ideal scenario would be a straight line at 1, indicating perfect invariant deconvolutions 

5.6.3.1 Deconvolution of comparison samples 

5.6.3.1.1 Allen dataset 

I carried out deconvolution of Allen samples using the same variety of HK and 

marker gene numbers and the Darmanis dataset, so as to test the deconvolution. Due 

to constraints on computing power, I was unable to utilise the entirety of the Allen 

dataset. I therefore randomly selected 4,000 cells from the dataset and carried out the 

deconvolution on these. 2,571 were “Glutamatergic”, 1,083 “GABAergic”, 234 

“Non-Neuronal”, while 112 were described as “No Class”.  

The first observation I made was of an extremely high dropout rate of cells with 

increasing HK, due to lack of expression of one or more of these housekeeping 

genes. The “Non-Neuronal” cells were particularly badly affected; even at HK=2 

only 23 of these remained. In general oligodendrocytes were predicted accurately 

with HK=2, Marker Gene=225 predicting them as being 67% oligodendrocyte, 

changing to 69% at Marker Gene=250. Oligodendrocyte precursor cells were 
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predicted as a hybrid cell type rather than as a oligodendrocyte; 62% and 55% at the 

above settings. Astrocytes were less well predicted, as were microglia. Regardless of 

setting, several observations could be made. These are primarily regarding the 

GABAergic and Glutamatergic cell types of the Allen dataset; as described earlier, 

most other cells quickly dropped out due to lack of housekeeping gene expression. 

At no setting were these cells predicted as having an average of >~5% of either the 

endothelial or microglia cell types. A minority did have a larger predicted cell 

proportion of endothelial cells at high marker and housekeeping gene numbers, up to 

about 20%. I observed that at higher marker gene numbers the cells were predicted 

consistently and mostly as neurons; this appeared to plateau at 250 markers for 

HK=16, as might be expected from the previous deconvolutions. Low marker gene 

numbers predicted neuron proportion poorly, again reaffirming that these were not 

ideal settings. At these lower HKs, where non-neuronal cells were still included, it 

could be seen these cells had increasingly predicted neuronal proportion at high 

marker gene numbers, >400. 

To conclude, these deconvolutions reaffirm that high marker gene numbers are 

suboptimal for non-neuronal cell types, but neurons are relatively well predicted at 

lower marker gene numbers of 250. The jump from 225 to 250 marker genes appears 

to mark the last step in increasing neuron prediction. At HK=16, there were 20 

GABAergic neurons and 139 glutamatergic. The 20 GABAergic neurons were 

predicted as 78% neuron and 10% hybrid at marker gene=225, while at 250 this 

changed to 89% and 5%. The 139 glutamatergic neurons also changed from 83% 

neuron, 11% astrocyte to 88% neuron 7% astrocyte. Clearly, there is an increase in 

accurate prediction from what was already a relatively high number. This trend is 

also seen at other HK numbers, e.g. increases of 64% and 70% for the two cell types 

to 74% and 79% at HK=2. AT HK=16, much lower marker gene numbers result in 

large predictions of hybrid cell type, clearly inaccurately. This deconvolution 

therefore reaffirms that the choice is between 225 and 250 marker genes, where the 

increase at HK=16 in the Darmanis pseudosample deconvolution brings MAD from 

0.069 to 0.085. I therefore deconvoluted using both settings. 
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Figure 71 displays the results of the deconvolution using HK=16, Marker Gene=225 

and 250. T tests for differences in cell proportion across genotype revealed no 

significant differences in any cell. However, we can see that there is evidently much 

more variation in these iPSC-derived neuron samples than there was in the mouse 

Der1 samples, as might be expected in non-genetically homogenous samples that 

may differentiate to slightly different extents, as is typical of iPSC-derived neurons. 

This makes the outcome somewhat unreliable; it is possible that the samples are just 

too variable to accurately assess the proportions. The high similarity of the two 

deconvolutions highlights that the variability is likely a product of the cells rather 

than of the deconvolution.  

 

Figure 71. Deconvolution of human t(1;11) samples using Darmanis et al. datasets, with data for separate cell lines 

shown. Controls are in blue and translocations in red, with different shapes for each cell line. The mean for each cell line 

is indicated by a black line. Settings used were HK=16, Marker=225. 

5.7 Summary of findings and discussion  

There is little evidence from this investigation to suggest that the t(1;11) has an effect 

on cell proportions, and the same applies with the mouse hippocampus Der1. No 

pairwise effects were determined in the cortical analysis. Overall, the results suggest 

that the t(1;11)/Der1 do not exert their effects via altering cell proportions. However, 

caveats do apply. For a start, the accuracy and power of the deconvolution is difficult 

to quantify. It can certainly be said from the pseudosample analysis that 

pseudosamples of appropriate RNA-Seq depth were accurately deconvoluted with 
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MADs at or below 7% in all cases. We can also confidently state that actual RNA-

Seq profiles of similar depth (the Zhang Two datasets) were accurately identified in 

cases of pure cell types, and plausible cell proportions were given in the case of 

whole cortical samples. Should changes in magnitude be lower than 7%, or if they 

are in cell types which make up less than 10% of the total cell mixture (as 

pseudosamples had >10% of all cell types due to intrinsic limitations), then the 

power to detect these would be very low. I therefore cannot make any comment on 

whether such changes exist. It must be stated that a better method of quantifying cells 

would be to count them via staining or perhaps FACS sorting. Nevertheless, this 

limited analysis indicates that large changes in cell proportions are unlikely to be 

caused by the t(1;11) or Der1. 
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6 DECONVOLUTION OF THE 

RNA-SEQ DATA USING 

ZEISEL ET AL. SCRNA-SEQ 

DATASETS 
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6.1 Selection of a single cell RNA-Seq dataset to examine 

specific cell subclasses 

6.1.1 Introduction 

It is accepted that the brain is comprised of a large number of distinctive cell types, 

including subsets of various neuronal types. As discussed in the Introduction, some 

psychiatric illnesses may be caused by disturbances in only a particular subset of 

cells. A database described by Zeisel et al.
157

 is available at http://linnarssonlab.org/ 

and contains single-cell RNA-Seq data for about 3,000 cells, taken from both the 

somatosensory cortex and hippocampus of wild-type mice. Given that the data are 

generated from cells from both the cortex and hippocampus, this dataset can be used 

to deconvolute both my cortical and hippocampal RNA-Seq samples. I therefore 

used the cortical cell profiles described by Zeisel et al. in the deconvolution of my 

cortical Der1 and t(1;11) datasets, and likewise used the hippocampal cell profiles in 

the deconvolution of my hippocampal Der1 dataset.  

The cortical subset of the dataset described by Zeisel et al. consists of 1,515 single-

cell RNA-Seq profiles. There are a total of 8 major classes (interneuron, 

astrocyte/ependymal, oligodendrocyte, 3 classes of pyramidal neuron, microglia, and 

pericytes/vascular smooth muscle cells together known as mural cells) which further 

divided into 41 subclasses, all distinguished by the clustering method used by Zeisel 

et al.. The hippocampal subset is similar in size and character, consisting of 1,390 

cells of 6 major classes (as above, but only one class of pyramidal neuron) divided 

into 38 subclasses. Subclasses are typically distinguished from one another by the 

expression of combinations of transcription factors. I used these subclasses for my 

deconvolution. Every subclass was found in at least two mice, and the total number 

of cells for each subclass ranged from 2 (for Interneuron 3) to 337 (for 

Oligodendrocyte 6) within each dataset, although some cell subclasses such as Int13 

were present in only one dataset.  

The data utilised by Zeisel et al. are not in the standard form of counts. Rather, they 

used a form of transcript tagging where each sequenced read has a unique molecular 

identifier (UMI) attached to its 5’ end. This means that they eliminate some sources 
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of technical error, important when sequencing at a low depth. Given that my samples 

were normalised to total sequencing depth, I consider that the analogous 

normalisation for the data of Zeisel et al. is to divide by total number of molecules 

sequenced. The median number was 24,287 and the average was 27,154.62. Each 

cell was normalised in this manner before being averaged with other cells of the 

same subclass to give the “pure” class or subclass profile.  

6.1.1.1 Caveats 

There are two issues with using the dataset described by Zeisel et al.. The first is 

intrinsic to using a large number of cell types in deconvolution; the low accuracy of 

DeConRNASEQ if cell proportions are low. Gong et al. have reported reasonable 

accuracy in deconvolution with cell proportions over 5%
135

. We can clearly see that 

the majority of cell types will be under 5% if there are 41 cell types. Since all cell 

proportions must sum to 1, severe over or underestimations of low cell types will 

result in “knock on” effects and will cause inaccuracies even in cell types which have 

reasonable prevalence. For this reason the deconvolution of a large number of cell 

types is intrinsically inaccurate.  

The second possible issue is the low sequencing depth of the samples used by Zeisel 

et al. . I was unable to find high depth datasets with the same number of cell types as 

Zeisel et al., which is to be expected given that they sequenced over 3,000 cells to 

retrieve these cell types. As discussed in the previous chapter, differences in 

sequencing depth cannot be accounted for just by normalising to sequence depth, 

especially for genes which are not among the most highly expressed. The issue here 

is that the internal structure of the dataset will differ between two datasets of 

different sequencing depth. However, there is one advantage in that since all the cell 

profiles are low-depth, they should be affected equally. In addition, I am looking for 

differences between samples rather than absolute proportions of cells. Therefore, I 

believe this issue should be relatively minor but warranted a discussion. More 

importantly, the low sequencing depth of the samples used by Zeisel et al. may also 

lead to problems with marker gene identification, as a gene may be moderately 

expressed in many cell types, yet only appear in the ones it is more highly expressed 

in due to lack of sequencing depth. For example, in the data described by Zeisel et al. 
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Disc1 is only found expressed in the cortical cell type S1PyrL4, a pyramidal neuron 

found in layer 4 of the cortex. However, Disc1 is known to be expressed in a wide 

variety of cortical cell types
268

. It is likely that only in S1PyrL4 is expression high 

enough to result in some Disc1 transcripts being sequenced. Disc1 therefore appears 

to be a marker gene, but we know that it is probably not specific to that cell type at 

the higher sequencing depth. Therefore its power to accurately predict that cell type’s 

prevalence in the deconvoluted datasets may be low, unless of course it is genuinely 

a marker gene and there is substantial enrichment in S1PyrL4. My solution to this 

will be to use a wide variety of settings, as before, and attempt to maximise 

deconvolution accuracy, particularly by using markers settings with high enrichment.  

6.1.1.2 Markers  

I experimented with another method of marker gene selection which was of use with 

the deconvolution of the Zeisel dataset. I hypothesised that one source of error was 

the expression of marker genes in cell types other than the line that they were 

supposed to be a marker for. To illustrate this, see Figure 42. Using Oligodendrocyte 

precursor cells as an example, we can see that many markers have quite good 

expression in neurons, and a minority have reasonable expression in astrocytes and 

endothelial cells. I was aware from the data described by Zhang et al. that fold 

changes for markers between the marked cell type and other cell types typically vary 

greatly. There was not a paucity of good marker genes. Most of the top marker genes 

have an expression level in their marked line several hundredfold larger than the 

average expression level of the other cell types, and even the least differentially 

expressed marker gene (Piga3, the 500
th

 myelinating oligodendrocyte marker) has an 

expression at least threefold above the average of the other cell types. I saw that the 

problem might be that a marker had a large fold change between its marked line and 

all other lines on average, but might have reasonable expression in one of those other 

lines. High prevalence of a marker would then indicate either moderate levels of the 

primary cell type, or high levels of the secondary one. The marker would no longer 

function as a unique delineator for a single cell type. A better marker would even be 

one with high expression in one cell type and moderate but invariant expression in all 

others-but this gene would not be a sensitive detector, only a reliable one. Using 
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highly enriched markers would likely solve this problem, taking highly enriched as 

meaning not only much higher than in the next cell type but very high compared to 

the summed expression in all other cell types. 

There is a second issue with the Zeisel dataset and markers. Unlike the Zhang 

dataset, where each of the six cell classes has several hundred markers with moderate 

fold changes >3, and several dozen with much larger fold changes, the cell 

subclasses are not similarly positioned here. The 41 cortical subclasses identified by 

Zeisel et al. are different in nature. Some, like Int3, Int4, and Int5, have one entirely 

specific marker each, while Oligo6 has 241. Therefore, picking any arbitrary number 

of markers and using this for each cell line either includes inferior markers, or leaves 

a large number of perfectly good ones out. I wanted to use a metric for maker 

selection which could flexibly integrate large numbers of markers if they were of an 

acceptable quality but exclude poor markers for other cell lines which did not have a 

similar number. Using a known metric rather than just picking numbers also means 

that all the marker genes are held to a certain standard.  

I calculated a factor for all genes that I refer to as the specificity index (SI). The SI 

for a marker gene is equivalent to the maximum expression (the expression in the 

marked line) divided by the total expression of all lines. I decided to use markers 

with a specific SI, rather than ranking and taking the same number of genes for each 

cell subclasses. By filtering for markers above a certain SI, I could be sure that all 

cell subclasses had a number of markers above a threshold of specificity, and that 

there would not be issues due to one subclass having a handful of excellent, near-

entirely specific markers. I thought this appropriate for the Zeisel dataset, where 

there were a large number of cell subclasses which had different numbers of markers. 

SI is functionally equivalent to “enrichment” as calculated by many papers; an 

SI=0.75 is equivalent to a fold enrichment of 3, while an SI=0.8 is equivalent to 4, 

SI=0.875 equivalent to 7, and SI=0.9 equivalent to 9. Using the same SI means that 

all the markers are at a certain standard of enrichment, but different lines have 

different numbers of markers if they are a suitable standard. The validity of this 

approach is shown by the reasonable MADs I found produced by the method.  
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6.1.2 Selection of comparison datasets to verify deconvolution 

6.1.2.1 Introduction 

As in the previous chapter, it was important to have datasets that could verify the 

accuracy of my deconvolution. For this, they needed to be similar in composition to 

the Zeisel et al. dataset in terms of RNA-Seq depth, and they had to have identified 

the cells in a trustworthy manner. 

6.1.2.2 Allen Brain Atlas 

The Allen Brain Atlas consists of several types of data including a database of single 

cell RNA-Seq for regions of the mouse, human, and macaque brains. Currently, cell 

type calls for the human middle temporal gyrus, mouse primary visual cortex and 

mouse anterior lateral motor area are available, along with the RNA-Seq results 

themselves. Several other datasets are soon to be released with cell type calls, but as 

it stands the datasets provide a large number of comparison cells to test my 

deconvolution on. I decided to use the human middle temporal gyrus and mouse 

primary visual cortex datasets. 

The Allen Brain Atlas datasets are described in detail in their white paper as well as 

at the web address http://celltypes.brain-map.org/rnaseq (accessed on 16/10/2018). 

Mouse cells were harvested from P51-P59 animals for the most part, and then 

subjected to FACS sorting with neurons identified by expression of NeuN. The 

mouse dataset consists of over 15,000 cells, of 117 neuronal types and 16 non-

neuronal types. The human middle temporal gyrus dataset was produced from post-

mortem samples and has over 15,000 cells, which have been FACS sorted into 

neurons (90%) and non-neurons by the presence of NeuN. RNA was then harvested, 

converted to cDNA, and sequenced. All datasets are described as using 50bp paired 

end reads and were sequenced on a HiSeq 2500 instrument, so the technical details 

are somewhat different from our dataset. There are also some issues in that the brain 

regions in the Allen datasets are not hippocampus and cortex. The mouse dataset is 

cortical, but there is not a hippocampal dataset to match. There are many cell types 

which are only found in certain brain regions, and it must be noted that the cell types 

used in deconvolution are defined as such in the paper they originate from. This 
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means that the datasets in Zeisel et al. and Allen et al. will differ on the number of 

interneurons, pyramidal, etc cell subtypes they identify, depending on how different 

their clustering methods are. It will not be the case that each Allen subclass will 

easily map to a Zeisel subclass. It therefore seems likely that the Zeisel et al. 

deconvolution will misidentify many of the Allen categories in terms of subclass, 

although it should not misidentify them within the class of cells that they belong to. 

For example, an Allen cell being identified as a mixture of Interneuron subclasses 2 

and 3 may not be biologically worrying (as these cell types may indeed be highly 

similar), but being identified as 40% Astrocyte 1 and 60% Pyramidal Cell 3 is 

worrying. Having access to so many cell profiles will be helpful. 

6.1.3 Housekeeping gene normalisation to compare multiple datasets 

6.1.3.1 Introduction 

As it had successfully improved deconvolution using the Zhang dataset, and the 

rationales were the same, I decided to also use housekeeping gene normalisation to 

compare datasets here. 

6.1.3.2 Selection of housekeeping genes 

The rationale for housekeeping gene (HK) selection is the same as in the Zhang et al. 

deconvolution. They should be as uniformly expressed as possible, as well as being 

expressed in all cell subclasses.  

In order to gauge the suitability of genes as housekeeping genes, I calculated the 

coefficient of variation (standard deviation divided by mean, referred to as CV) in 

the following manner for the datasets from the Zeisel et al. paper; I calculated the 

CV of the averages of each cell subclass (AvCV). In this case each cell profile was 

represented by the average of the cells within that profile, so that the 380 cells within 

the CA1Pyr1 group, for example, were averaged to give the CA1Pyr1 profile. The 

same was repeated with all cell subclasses, so that I had approximately 40 profiles. 

The AvCV of a gene is the CV of the gene across these profiles. Next, I determined 

the mouseCV, which is the CV for the gene across the Der1 mouse samples. Since 

both CVs are directly comparable, I then determined the geometric mean of the 
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AvCV and mouseCV and ranked the genes by this measure as putative housekeeping 

genes from lowest geometric mean of the CVs to highest. As in the Zhang et al. 

dataset, I also restricted housekeeping gene selection to those genes which had a no 

greater than fourfold difference between the maximum and minimum values in both 

the mouseCV and the AvCV. Genes which were not universally expressed were also 

discarded as potential housekeeping genes. I also used GOrilla to check the gene 

ontologies of my putative housekeeping genes. 

For the Cortical vs Zeisel comparison, the top 10 ontologies overrepresented at the 

top of the list of ranked potential housekeeping genes can be seen in the Appendix. It 

appears that none of the ontologies for process, function, or component are unique to 

any cell type in particular but rather denote general cell maintenance, exactly as 

expected for housekeeping genes.  

I generated pseudosamples of the averaged cell subclasses described by Zeisel et al. 

in the same manner as in the Zhang deconvolution. I selected various numbers of 

housekeeping genes to use for normalisation, and I also varied the number of marker 

genes I utilised by SI. This was used to determine the optimal HK/SI settings for 

pseudosample deconvolution, and subsequently for comparison dataset 

deconvolution.  

6.1.4 Measures of error 

MAD and RMSE were calculated as in the Zhang deconvolution and utilised to 

determine pseudosample deconvolution efficiency. 

6.2 Mouse Cortical RNA-Seq Deconvolution 

6.2.1 Initial deconvolution of pseudosamples 

After generation of 100 pseudosamples using the 41 cell subclasses found in the 

cortical dataset, I normalised both pure cell subclasses and the pseudosamples to a 

number of different housekeeping genes. The normalisation factor was equivalent to 

the geometric mean of all the utilized housekeeping gene values, selecting genes by 

the least variable genes first. I carried out the deconvolution using 1-10 housekeeping 
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genes, then 15, 20, 25…50. I also utilised marker genes, selecting these by SI value. I 

utilised marker genes with the specificity values of 0.75-0.95, at intervals of 0.025, 

as well as a final comparison with genes of values >0.999. There are therefore 10 

different marker gene specificity indexes (SIs), and 18 different numbers of 

housekeeping genes (HKs), so this deconvolution of 100 pseudosamples has been 

carried out 198 times.  

Examination of the deconvolution results indicated that the lowest MAD value was 

0.22 (SI=0.925, HK=45) and the largest was 0.33 (SI=0.75, HK=3), indicating 

relatively good deconvolution, with estimates usually being less than 30% wrong. 

This is better than expected given the difficulty with predicting rarer cell types. In 

general increasing the SI appeared to increase the accuracy of the deconvolution. 15 

of 18 HK deconvolutions had their maximum accuracy if SI=0.925, a pattern also 

seen in the RMSE (14/18 deconvolutions most accurate at SI=0.925). 8 of 10 SI 

deconvolutions had their maximum accuracy if HK=45. Since RMSE values seemed 

to reflect the MAD patterns, I therefore just looked at MAD for subsequent 

deconvolutions. I looked at the SI=0.925, HK=45 deconvolution in more detail. 

Across the 100 pseudosamples a source of particular error stood out. Each 

pseudosample is comprised of 41 cell subclass and has ratios of estimated:actual 

proportions for each cell subclass. Across these 100 pseudosamples and 41 

subclasses, the average ratio per cell subclass is 1.09, the average minimum is 0.946, 

and the average maximum is 5.46. Given that the optimum is 1, this is a surprisingly 

accurate deconvolution, although it appears to be prone to overestimation. Looking 

in greater detail, I saw that the Interneuron 5 cell subclass was consistently 

overestimated. The average ratio across 100 pseudosamples was 3, meaning this cell 

subclass is usually overestimated by 300%. The maximum ratio was 26, and the 

minimum 1.5. In total, there are 101 out of 4100 cell estimation ratios which are 

greater than 2, 49 of which are of Interneuron 5. The issue was clearly with this cell 

subclass. If I could cause it to be deconvoluted correctly, I would have an accurate 

deconvolution of the cell subclasses, despite their low proportions. Why this 

particular celltype is prone to overestimation is difficult to assess. However it may be 

due to a poor number of markers for the cell. Int5 has only one marker, Ltb, which is 
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solely expressed in this cell type. It does not express any markers of other cell types. 

Int3 has the next lowest number of markers, 2, and also does not express any markers 

of other cell types. It is likely this combination of poor marker number and lack of 

expression of other genes which combine to make it extremely difficult to assess the 

proportions of Int5, as it intrinsically has a low amount of data points that can inform 

its possible prevalence. Int3 is not characterised by similar overestimation; it is 

estimated at being on average 0.93 of the true proportion across 100 pseudosamples. 

6.2.2 Removal of Interneuron 5 

My first potential solution was crude; I removed the Interneuron 5 line from the cell 

subclasses, re-generated new pseudosamples without Interneuron 5, and 

deconvoluted them using the same spread of HKs and SIs as before. 

The results were relatively similar to those with Interneuron 5 retained. The lowest 

MAD was 0.28 (SI=0.999, HK=15) and the largest 0.41 (SI=0.725, HK=3). I looked 

at the best deconvolution in more detail. 

Across these 100 pseudosamples and 40 subclasses, the average ratio per cell 

subclass is 1.16, the average minimum is 0.95, and the average maximum is 9.59. It 

is evident that this deconvolution is more error prone than the previous one, as 

reflected in the larger MAD. The major difference between this deconvolution and 

the previous is that the error is not concentrated in any particular cell subclass. The 

cell subclass with the largest number of estimations which are more than twice or 

less than half the true proportion is Oligo6. It has 15 out of 100 samples which meet 

either of these criteria. In the previous deconvolution, Int5 had 49 of 100 samples 

meeting either of these criteria. 

I also looked at the deconvolution with SI=0.925 and HK=45, as this was optimal 

when Int5 was retained. The average ratio per cell subclass is 1.19, the average 

minimum is 0.92, and the average maximum is 11.8, brought up by a handful of 

extremely large overestimations.  
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6.2.3 Merging Interneuron 5, 6 ,7, 8 cell types 

Since removing Interneuron 5 had clearly exerted an effect on the other 

deconvolutions, changing not only the optimum settings but also causing other cell 

subclasses to be incorrectly predicted, I looked for another option to minimise the 

error introduced by Int5. One option would be to merge the cell subclass with other, 

similar cell subclasses, and see if this amalgamated subclass would be accurately 

deconvoluted. Looking at Zeisel et al., we can see that their clustering analysis 

places Interneuron 5 with another group of interneurons. These are distinguished by 

the expression of certain genes and Interneurons 5, 6, 7 and 8 form a clade. I 

therefore decided to average the profiles of all cells from the subclasses Interneuron 

5, 6, 7 and 8, to make a new subclass Interneuron 5678. I then generated 100 

pseudosamples using this subclass, and the other 37, and deconvoluted these 

pseudosamples using the sample range of SIs and HKs as before. 

MAD values were broadly similar to those of the initial deconvolution. The smallest 

was 0.286 (SI=0.99, HK=10) and the largest 0.398. 7 of 10 SI values gave their 

lowest MAD if the HK was 10, while the best SI value across HKs was 0.95 (8/18 

times) or 0.999 (10/18 times). The optimum SI and HK was similar to that of the 

previous section, where Interneuron 5 was just removed. I therefore looked at the 

SI=0.99, HK=10 deconvolution in more detail. 

Across the 100 pseudosamples and 38 cell subclasses, the average ratio of 

estimated:actual proportion was 1.16, slightly worse than the unmerged interneuron 

deconvolution. The average minimum estimate was 0.95 and the average maximum 

8.98 (brought up by one particularly egregious overestimation by a factor of 65). 

Although these figures appear to show that the deconvolution is inferior to the 

unmerged interneuron deconvolution, there are some advantages. 

Firstly, the source of error is not concentrated in any particular cell subclass. 88 out 

of 3800 cell proportion estimations are greater than 2. This is almost exactly the 

same proportion with this degree of error as in the unmerged deconvolution (0.023 vs 

0.024). However the error is less concentrated. 18 of these estimates are of the 

Oligo6 subclass, 11 are in the Interneuron 15 subclass, and the rest are dispersed 
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throughout the various subclasses, with 1 in the merged Interneuron 5678 subclass. 

We can conclude that the merged deconvolution is less accurate overall, but the 

unmerged deconvolution is extremely inaccurate in the prediction of Interneuron 5. 

The results are quite similar to those where Interneuron 5 was merely removed. 

I concluded that the best approach would be to carry out deconvolution of my mouse 

cortical samples using all options at their respective optimum settings; the unmerged, 

removed Int5, and merged Int5 profiles of the cell subclasses. I thought it likely but 

not a certainty that there would be errors in the prediction of Interneuron 5, so the 

other deconvolutions are likely to be more reliable but less informative due to less 

detailed information on the interneurons. 

6.2.4 Deconvolution of Allen comparison dataset 

I first tested the deconvolution using the cortical subset of the Allen Brain Atlas 

dataset. I utilised the same range of HK values to normalise as well as the same range 

of SI values to select marker genes. Although there are 15,000 RNA-Seq single cell 

profiles, not all of these were retained during the deconvolution process. Since the 

housekeeping genes I utilised were selected by expression in the Zeisel and 

heterozygous Der1 cortex datasets, they are not all expressed in every Allen 

subclass. I noted that non-neuronal Allen subclasses particularly tended to lack 

expression of some of the housekeeping genes, although many of these cells did 

express all housekeeping genes and were correspondingly retained for the 

deconvolution. Cells not expressing all the required housekeeping genes were 

discarded. A number of cells were also removed on the basis of intermediate subclass 

characterisation (not being part of the “Core” cluster for each subclass). Although it 

would be interesting to see how these intermediate cells were deconvoluted, the 

Allen dataset does not note what they are intermediate to, only what they were 

primarily identified as being. They are therefore not useful for deconvolution. 

I thought it likely that there will be Allen cells which are predicted to be a mixture of 

several Zeisel subclasses. This could be due to a lack of one to one relationship 

between Allen categories and Zeisel subclasses. However, we should expect at least 

that Allen cells will not present as a mixture of classes, i.e., Astrocytic and 
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Interneuronal, Oligodendrocytic and Interneuronal, etc. To analyse the efficacy of the 

deconvolution, I took all estimations for all cell subclasses across the thousands of 

Allen cells, then summed the Zeisel subclass estimates for each Zeisel class 

(“Oligo”, “Interneuron”, etc). I then produced violin plots for all classes. This 

allowed me to observe the Allen identification against the spread of predicted 

proportions for each cell class. 

For the several thousand cells which have been deconvoluted, there are several 

different classes and subclasses according to Allen et al.. The classes are 

“Glutamatergic”, “GABAergic”, “Non-Neuronal”, “Endothelial”, “No Class”, and 

“Non-Neuronal”. The Allen subclasses are typically named according to the 

expression of certain markers such as parvalbumin, or are given a designation if the 

cell is well characterised (e.g., “Astro” and “Oligo” for astrocyte and 

oligodendrocyte, both subclasses in the “Non-Neuronal” class). In the results below, 

cells are divided by Allen subclass, coloured by Allen class, and have the spread of 

predicted proportions for each Zeisel class graphed (with each Zeisel class proportion 

defined as the sum of Zeisel subclass proportions within that Zeisel class). The 

question is how well the optimum setting performs. If it shows exceptionally poor 

identification of each cell type compared to other settings, this is strong evidence that 

this line of inquiry should be abandoned. 

6.2.4.1 Results 

It is not possible to assign a single measure of accuracy, such as MAD, to each 

deconvolution. As stated before, the list of housekeeping genes is generated from the 

Zeisel and Der1 datasets, and therefore these are not necessarily housekeeping genes 

across the Allen cells. The different conditions will in some cases mean they are not 

expressed. I found that non-neuronal cells particularly lacked expression of the 

housekeeping genes when higher numbers of housekeepers were required. Different 

deconvolutions might optimise identification for a subset of cells but predict the 

majority very poorly. I elected to examine all deconvolutions by eye and particularly 

note how well the optimum settings performed. An example result is given in Figure 

72, which contains the violin plots of the predicted proportions of the Zeisel class 

“Interneuron”, which is the sum of the Zeisel subclasses “Int1”, “Int2”….“Int16”. 
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This is for the SI=0.7, HK=7 deconvolution. Violin plots were used as this allows the 

display of a large amount of data simultaneously. 

 

Figure 72. Violin plots of predicted Interneuron proportion for 23 subclasses of Allen cell, colour coded by class. 

Red=Endothelial, Yellow=GABAergic, Green=Glutamatergic, Blue=No class, Purple=Non-Neuronal. These results are 

of the SI=0.7, HK=7 deconvolution. Subclass types are as in the Allen dataset. The thickness of the violin plot at each 

predicted proportion represents its frequency according to the kernel density estimation of the deconvolution results for 

each subclass type. 

We can see that there is a large spread of results regardless of Allen class type. Non-

neuronal cells appear to be randomly distributed in their predicted “Interneuron” 

proportion, with the exception of macrophages which are mostly predicted as having 

a high level of interneurons. All GABAergic cells have a high probability of being 

predicted as mostly interneuron, while it appears glutamatergic cells have a broad 

spread. The perfect result would of course be that all cells except GABAergic ones 

had all results at 0 for the GABAergic cell proportion.  
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Figure 73. Violin plots of predicted Neuron proportion for 23 subclasses of Allen cell, colour coded by class. 

Red=Endothelial, Yellow=GABAergic, Green=Glutamatergic, Blue=No class, Purple=Non-Neuronal. These results are 

of the SI=0.7, HK=7 deconvolution. Subclass types are as in the Allen dataset. 

Figure 73 is of the same deconvolution result but displays the predicted sums for the 

Zeisel class “Neuron”. Here we see that most oligodendrocytes are predicted to be 

about 20% neuron, while most astrocytes are predicted as near 0%. The neuron 

classes have varying degrees of predicted neuron proportion but for most Allen 

subclasses (which correspond to cortical layers) cells are highly likely to have a 

predicted proportion below 50%. In general these deconvolution settings are not 

great but do display that when looking at any cell class, the cells which are of that 

class will have higher predicted proportions of it than cells of other classes do.  

I noticed several trends across deconvolutions. The first was that the largest 

proportion of predicted cell type was typically Interneuron. Initially this was 

regardless of cell type, but with increasing SI the levels of predicted Interneuron in 

non-GABAergic cell type typically fell, as did the levels in Interneuron in 

GABAergic cell types (but to a lesser degree and from a higher initial proportion). I 

noted this at the HK values 20, 25, 30, 35, and 45. Low HK values typically gave 

erratic results with a large scatter of predicted proportions in each Zeisel class 
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regardless of actual cell identity. At SI<0.9, this large scatter was also generally seen 

in predictions except those of Neuron and Interneuron. 

 

Figure 74. Violin plots of all 6 Zeisel class proportions for 18 subclasses of Allen cell, colour coded by Allen class. 

Red=GABAergic, Yellow=Glutamatergic, Blue=No class, Purple=Non-Neuronal. These results are of the SI=0.925, 

HK=45 deconvolution. Note different colours to Figure 72 and Figure 73 

The SI=0.925, HK=45 deconvolution is shown in Figure 74. Note the decreased 

number of Allen subclasses compared to Figure 72 and Figure 73 due to the lesser 

number of cells and cell types which express all housekeeping genes. There are 

several observations to be made, in conjunction with the summarised non-graphic 

results as shown in Table 29. First, we can see that astrocytes and microglia are 

predicted as being essentially absent from the Allen cells. This is reasonable; there 

are neither astrocytes nor microglia within the cells which express all 45 

housekeeping genes. Oligodendrocytes are most likely to be predicted as 0 in all 

glutamatergic and GABAergic cell types, but many of these cells are predicted as 

containing reasonable proportions of oligodendrocytes, or even as being 100% 

oligodendrocyte. Due to the low number of actual oligodendrocytes (four) the 

efficiency of prediction is hard to gauge; the average for these four is 42%, but for 
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two of them it is 0% and the other two are from the same subclass of 

oligodendrocytes (Oligo Synpyr) and have an average of 85%.  

Predicted as 

being (on 

average): 

Number 

of cells Astrocytes Other Neuron Interneuron Microglia Oligodendrocyte 

GABAergic 3,709 3.5% 3.9% 18.8% 51.6% 0.49% 23.7% 

Glutamatergic 5,340 4.8% 3.5% 42.9% 28.7% 0.5% 19.1% 

Non Neuronal 5 ~ 3.5% * * * * 

Table 29. Table of the average predicted proportions of each Zeisel class within each Allen class with SI=0.925, HK=45 

the best deconvolution for the pseudosamples. Due to the low number of non-neuronal cells, these have been described 

verbally. The “No class” group has been removed as this has no information as to the quality of the deconvolution. *=1 

oligodendrocyte predicted as 68% neuron,1 oligodendrocyte predicted as 30% interneuron, 1 cell identified as 100% 

microglia. 1 oligodendrocyte predicted as 84% microglia.,2 oligodendrocytes predicted as 85% oligodendrocyte. 

To further understand the quality of the deconvolution of the Allen samples, I took a 

look at the deconvolution which produced the highest MAD in the original 

deconvolution of pseudosamples. This was HK=3, SI=0.75 and the results are 

summarised in Table 30. 
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Predicted as 

being (on 

average): 

Number 

of cells Astrocytes Other Neuron Interneuron Microglia Oligodendrocyte 

GABAergic 5,178 0.73% 3.4% 12% 82% 0.5% 4.8% 

Glutamatergic 6,709 0.8% 2.6% 41.3% 58.1% 0.47% 1.2% 

Non Neuronal 182 9.8% 8.1% 22.3% 51.4% 5.9% 2.2% 

Endothelial 44 ~ 11% 21.9% 30.7% 1.2% 1.3% 

Table 30. Table of the average predicted proportions of each Zeisel class within each Allen class with SI=0.75, HK=3. the 

worst deconvolution for the pseudosamples. The “No class” group has been removed as this has no information as to the 

quality of the deconvolution. 

We can see that the average proportion of interneurons has been inflated across all 

cell types. Endothelial cells have also made an appearance as they now fit the criteria 

for inclusion by expression of all 3 of the housekeeping genes, as opposed to the 45 

they would have needed in the previous deconvolution. None of the cells (except 

GABAergic cells which will contain interneurons) are on average predicted to be 

mostly the cell type that they are.  

The overall accuracy is low, but there is at least a trend towards increasing accuracy 

with the better deconvolutions. The housekeeping gene selection in particular 

influences the deconvolution outcome, and given that the selection is based upon the 

variation within our mouse samples and the Zeisel et al. deconvolution profiles, the 

accuracy will be suboptimal for other datasets. It is extremely difficult to draw 

recommendations from the Allen dataset, and given that the deconvolution has not 

been accurate in identifying Allen cells it is difficult to trust its findings when 

applied to the mouse and t(1;11) samples, particularly given their different sample 

depth. I therefore suggest that the results found should be viewed as preliminary- 

although it is gratifying that the pseudosample deconvolution was relatively accurate. 

It should also be noted that housekeeping genes were selected based on validity 

across the samples and the Zeisel profiles; the deconvolution will be correspondingly 

more accurate. The methods used by the Allen institute to generate scRNA-Seq 
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should also be borne in mind. Neurons were distinguished by NeuN, which is a 

neuronal specific but not a neuronal universal marker
279,280

. However, if some 

neurons are being incorrectly identified as non-neuronal cell types, this doesn’t 

explain the poor recognition of non-neuronal cells by my analysis. Cells were also 

sampled to a reasonable degree; at least 16 cells per type (133 types), and many cell 

types were specifically selected for using Cre recombinase mice. I therefore do not 

have doubts about the validity of the Allen dataset in this regard, and although the 

sequencing depth is low, so is that of the Zeisel dataset.  

6.2.5 Deconvolution of mouse t(1:11) cortical samples 

Deconvolution of the cortical samples was carried out in three analyses, once with 

marker genes from 41 pure cell subclasses, once with markers from 40 pure 

subclasses (lacking Int5), and once with marker genes from 38 subclasses, one of 

which represents the merged Interneuron subclasses 5, 6, 7, and 8. Since the HK 

genes were chosen for minimal variation in both Zeisel et al. datasets and those of 

the mouse cortical Der1 carriers, they were the same in both the pseudosample 

deconvolution and in the mouse cortical Der1 deconvolution. Deconvolution was 

performed on 8 heterozygous, 8 homozygous, and 6 wild-type mouse cortical 

samples. For each analysis I used a variety of settings, as the Allen deconvolution 

had been quite poor. I utilised HK and SI numbers which were optimal for each of 

the three analyses in turn, but also applied them in every combination across all 

analyses, giving a total of 9 deconvolutions per analysis. As discussed previously, the 

homozygous samples appear to have an unusual interior structure; therefore ANOVA 

was carried out with both the homozygotes kept together, and with them split into 

two groups.  

6.2.5.1 Unmerged deconvolution results 

Although an issue with overestimation of Interneuron 5 was expected, this does not 

appear to have materialised at the HK=45 settings, which were optimal for this 

deconvolution. There is a high degree of variation in cell estimations for many cell 

subclasses, particularly interneurons. One-way ANOVAs were carried out for each 

cell subclass to examine the effects of genotype on proportion. It should be noted that 
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there are a total of 41x9=369 ANOVAs and results are therefore expected by chance. 

There were statistically significant differences between group means as determined 

by one-way ANOVA for several cell types in various deconvolutions. S1Pyrl5a was 

significant in both the SI=0.9, HK=10 and SI=0.925, HK=45 deconvolutions, and 

Vend2 appears three times, in every deconvolution where SI=0.925. However, 

Tukey’s posthoc test for difference between groups did not in any case find a 

significant group difference for any comparison. In total, 7 cell findings were 

significant in the ANOVA across all 9 deconvolutions.  

Given the findings, and given that there is a known difference between the 

homozygous samples, which divide into two groups, I carried out one-way ANOVAs 

in which the homozygous samples were split into their two groups, Group One and 

Group Two. A total of 29 ANOVAs were found significant across the 41 cell 

subclasses and 9 deconvolutions. Of these, Tukey’s posthoc test for difference 

between groups found a significant difference in cell type S1PyrL6 between Group 

One of the homozygotes and Group Two (p=0.029), and between Group One and the 

heterozygous samples (p=0.045). This was in the SI=0.9, HK=10 deconvolution. The 

results can be viewed in Figure 75. 



 

     293 

 

Figure 75. Deconvolution of mouse cortical samples using profiles from Zeisel et al., with all cell profiles retained. 

WT=Wild-type, Het=Heterozygous, Hom=Homozygous, colours are green red and blue respectively. 
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6.2.5.2 Interneuron 5 removed results 

The results can be viewed in Figure 76. One-way ANOVAs were carried out for each 

cell subclass to examine the effects of genotype on proportion. There were 

statistically significant differences between 4 group means as determined by one-way 

ANOVA for several subclasses, bearing a high degree of similarity to the previous 

deconvolution. Vend2 was again significant in every SI=0.925 deconvolution. As 

before, Tukey’s posthoc test found no significant combinations. 

I then carried out one-way ANOVAs in which the homozygous samples were split 

into Group One and Group Two. There were significant differences between 20 

group means, which were strikingly similar to the previous deconvolution and are 

therefore discussed in length in the discussion section. No pairwise comparisons 

were significant.  
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Figure 76. Deconvolution of mouse cortical samples using profiles from Zeisel et al., with Int5 cell profile removed. 

WT=Wild-type, Het=Heterozygous, Hom=Homozygous, colours are green red and blue respectively. 
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6.2.5.3 Merged Interneuron 5-6-7-8 results 

The results are displayed in Figure 77. The results are highly similar to the 

deconvolution without Interneuron 5. One-way ANOVAs were carried out for each 

cell subclass to examine the effects of genotype on proportion. There were 

statistically significant differences between 5 group means as determined by one-way 

ANOVA the same subclasses of Vend2 and S1PyrL5a, in the same deconvolutions as 

before. Once again, Tukey’s posthoc test found no significant differences in pairwise 

comparisons. 

I then carried out one-way ANOVAs in which the homozygous samples were split 

into Group One and Group Two. There were 15 statistically significant differences 

between group means, which again bore a close resemblance to previous analyses.  
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Figure 77. Deconvolution of mouse cortical samples using profiles from Zeisel et al., with Interneurons 5, 6 , 7 and 8 

merged. WT=Wild-type, Het=Heterozygous, Hom=Homozygous, colours are green red and blue respectively. 
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6.2.5.4 Conclusion 

The results of the three deconvolutions are typically in agreement across one another, 

but across only some deconvolutions. Statistically significant differences were found 

in the comparisons and appeared in all three of the deconvolution approaches, 

summarised in Table 31. Note that only one deconvolution showed pairwise 

significance for genotype comparisons, and that in only one cell subclass. 
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 ANOVA   ANOVA split    

Cell 

subclass 

Unaltered No Int5 Int5678  Unaltered No Int5 Int5678 

Int3    1 1  1  

Int4       

Int5    3   

Int10    6 6 6 

Int12       

Int13       

Int14 1   3 1  

Int15      5 1 1 

Oligo2    5 5  

Peric 

 

       

Vend2 3 3 3 3 2 3 

S1PyrDL    2 2 1 

S1PyrL5       

S1PyrL5a 2 1 2 1 1 2 

S1PyrL6 

 

   1 1 1 

Table 31. Condensed summary of deconvolution results. #=Number of ANOVA significances with p<0.05 in that set of 9 

deconvolutions. Results with the homozygotes treated as one group are on the left, those in which they were split into 

two groups are on the right under “ANOVA split”. 
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6.3 Mouse Hippocampal RNA-Seq deconvolution 

6.3.1 Initial deconvolution of pseudosamples 

The hippocampal dataset described in Zeisel et al. 1,301 single cell RNA-Seq 

profiles from 6 classes of cell and 38 subclasses. The data were treated in the same 

manner as the cortical subset of data; normalised to total transcripts sequenced, then 

averaged by subclass to give 38 subclass profiles. 

For housekeeping normalisation, only 51 genes meet al.l the criteria laid out in 

5.4.1.2. Therefore, when carrying out my deconvolution, the SI ranged from 

0.7,0.725,0.75….0.975 and 0.999, and the HK ranged from 1 to 10, 15, 20, 25….50, 

51. Pseudosamples were generated in the same manner as previously and error was 

measured in MAD. 

The minimum MAD was 0.24 (at SI=0.975, HK=1) and the maximum was 0.98 

(SI=0.999, HK=50). Increasing HK resulted in a roughly linear increase in MAD, 

and increasing SI resulted in small decreases, except for SI=0.999 which had the 

largest MAD for all HKs. I looked at the SI=0.975, HK=1 deconvolution in more 

detail, although using one housekeeping gene for normalisation is problematic. 

Increasing the number of housekeeping genes increased the number of cell types for 

which the average estimate was more than twofold greater than the actual proportion 

(at HK=1 one cell type met this criterion, at HK=3 three did, at HK=5 four did). 

In the SI=0.975, HK=1 deconvolution the error seemed to be concentrated in one 

subclass, Choroid. Every single pseudosample underestimated its proportions by at 

least 50%. The only other subclass which was occasionally mis-estimated by a factor 

of 2 was Int12, with 16 proportions mis-estimated by this factor. It appears the issue 

may be with sufficient cell numbers as the hippocampal subset of  the Zeisel et al. 

dataset only contains one Choroid cell. 

6.3.2 Removal of Choroid 

I removed the Choroid cell from the dataset, recalculated the pseudosamples, and 

deconvoluted with the same spread of SI and HK values. 
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As before, the minimum MAD was at HK=1, where it equalled 0.23 (SI=0.85). 

Maximum was 0.475, indicating that deconvolution is overall more accurate if 

Choroid is removed. I then looked at the HK=1 SI=0.85 deconvolution in more 

detail. 

The mean of the average of the 100 estimation ratios per cell subclass was 1.17, 

while the average of the minimums was 0.87, and the maximum was 8.64. This is 

relatively poor compared to the unaltered deconvolution, where the figures were 

1.002, 0.94, and 1.088. The main difference appeared to be that the altered 

deconvolution occasionally produces estimates which are highly inaccurate (ranging 

as high as x227 fold overestimated) while the unaltered deconvolution does not (it’s 

highest overestimation is x2 fold). On this basis, it does not appear that removing the 

Choroid subclass is a satisfactory solution. 

6.3.3 Merging Choroid and Ependymal cell types 

Since the results had been favourable in the cortical deconvolution, I merged the 

Choroid subclass with the other subclass it clustered with, Epend, and recalculated 

pseudosamples. 

The minimum MAD was 0.235 (SI=0.925, HK=1) and the maximum was 0.495 

(SI=0.725, HK=50). I examined the best deconvolution in more detail. Several 

subclasses, including CA1PyrInt, Choroid/Epend and Vsmc, were consistently 

underestimated with maximum estimates of 0.56, 0.75, and 0.74 respectively. 

However, the mean of the average estimation ratios per cell subclass was 1.0009, 

while redoing the deconvolution with more housekeeping genes resulted in a higher 

“average of averages”. It appeared that averaging the Choroid and Epend subclasses 

had barely improved Choroid deconvolution, but had introduced an equally severe 

problem with the CA1PyrInt subclass and a lesser one with Vsmc. I therefore elected 

not to deconvolute by merging these lines.  

6.3.4 Deconvolution of Allen comparison dataset 

I deconvoluted the Allen dataset using the same spread of HK and SI values as used 

in the Zeisel deconvolution. These are cortical cells, so the deconvolution is not 



Deconvolution of the RNA-Seq data using Zeisel et al. scRNA-Seq datasets 

302 

likely to be as accurate as it would otherwise be. The greatly decreased number and 

quality of housekeeping genes may also result in inferior deconvolution compared to 

the cortical Allen deconvolution. As with that deconvolution, the goal here is to 

ensure that a minimum level of accuracy is retained. The discussion in 6.2.4 is 

relevant to this deconvolution as well, and the results are presented in the same 

manner.  

6.3.4.1 Results 

I deconvoluted the Allen dataset with the same housekeeping genes, and range of HK 

and SI values as in the pseudosample deconvolution. The minimum MAD there was 

at SI=0.975, HK=1, while the maximum was SI=0.999, HK=50. A summary of the 

results of these Allen deconvolutions using these settings are shown in Table 32 and 

Table 33 respectively. 

Predicted as 
being (on 
average): 

Number 
of cells 

Astrocytes Other Neuron Interneuron Microglia Oligodendrocyte 

GABAergic 5,288 11.60% 23.20% 33.70% 42.50% 0.37% 5.80% 

Glutamatergic 6,736 8.60% 33.30% 48.70% 20.70% 0.97% 11% 

Non Neuronal 431 8.90% 20% 39.90% 19.80% 9.30% 9.60% 

Endothelial 144 2.50% 47.90% 14.90% 6.90% 0.99% 16.70% 

Table 32. Results of deconvolution of SI=0.975, HK=1 deconvolution, the most accurate settings for pseudosample 

deconvolution. 

We can see that at the minimum MAD settings the GABAergic and glutamatergic 

cells have a relatively high average predicted proportion. The Non-Neuronal cells are 

heavily predicted as being neurons; this is concerning as these are mostly astrocytes 

and oligodendrocytes.  
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Predicted as 

being (on 

average): 

Number 

of cells Astrocytes Other Neuron Interneuron Microglia Oligodendrocyte 

GABAergic 2,626 25.1% 16.3% 31% 38% 2.2 % 2.8% 

Glutamatergic 5,340 14.4% 22.5% 57.2% 19.6% 1.3% 6.6% 

Non Neuronal 2 ~ 1 * ~ ~ ~ 

Table 33. Results of deconvolution of SI=0.999, HK=50 deconvolution, the least accurate settings for pseudosample 

deconvolution. *=1 VLMC cell predicted as 89% due to 89% predicted as VSMC. Both are smooth muscle cells.*= 1 

oligodendrocyte predicted as 71% 

At the maximum MAD settings, the settings are if anything slightly better at 

predicting each cell type identity, although it is possible that this is due to the higher 

HK settings removing more cells, leaving only those which are closer in character to 

those of the Zeisel dataset.  

I thought it might be of use to look at the standard deviation of each guess, as this 

would indicate whether similar cells (by Class) gave similar values. The results of 

this are given in Table 34 and Table 35 for the most and least optimal deconvolution 

settings in terms of MAD, respectively. 

Predicted as 

being (on 

average): 

Number 

of cells Astrocytes Other Neuron Interneuron Microglia Oligodendrocyte 

GABAergic 5,288 0.172 0.311 0.338 0.386 0.022 0.15 

Glutamatergic 6,736 0.148 0.351 0.346 0.311 0.026 0.239 

Non Neuronal 431 0.261 0.329 0.404 0.328 0.246 0.249 

Endothelial 144 0.135 0.415 0.289 0.188 0.046 0.345 

Table 34. Results of deconvolution of SI=0.975, HK=1 deconvolution, the most accurate settings for pseudosample 

deconvolution. 
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Standard 
deviation 
for: 

Number 
of cells 

Astrocytes Other Neuron Interneuron Microglia Oligodendrocyte 

GABAergic 2,626 0.231 0.238 0.305 0.338 0.044 0.126 

Glutamatergic 5,340 0.154 0.262 0.323 0.285 0.037 0.186 

Non Neuronal 2 0 0.266 0.357 0.082 0.021 0.05 

Table 35. Standard deviation of deconvolution of SI=0.999, HK=50 deconvolution, the least accurate settings for 

pseudosample deconvolution. 

There does not appear to be any particular pattern of standard deviation; the better 

settings do not give any noticeable decrease in standard deviation and occasionally 

have a higher value, indicating more variation. The same findings as in the cortical 

deconvolution apply- the analysis must be viewed with caution. 

6.3.5 Deconvolution of mouse Der1 hippocampal samples 

6.3.5.1 Unmerged deconvolution results 

As before, I deconvoluted using a variety of settings. I had shown that increasing HK 

increased MAD in pseudosample deconvolution, and that SI=0.99 also had very high 

MAD. The lowest MAD was at SI=0.975. I therefore utilised the settings of 

SI=0.925, 0.95, 0.975, and HK=1, 2, and 5. The results of the deconvolution can be 

seen in Figure 78. There is also large variation in the proportion of the CA1Pyr1 

subclasses in the HK=1 deconvolutions. Both these issues are possibly due to using 

just one housekeeping gene in normalisation. One-way ANOVAs were carried out 

for each cell type to examine the effects of genotype on proportion. There were 15 

statistically significant differences between group means as determined by one-way 

ANOVA. Tukey’s posthoc test for difference between groups found that no pairwise 

differences were significant. Int4 and Int14 were each significant 5 and 4 times 

respectively, while Peric was 3 times, and Int3 was twice. Int12 was significant in a 

single deconvolution. 
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Figure 78. Deconvolution of mouse hippocampal samples using profiles from Zeisel et al.. WT=Wild-type, 

Het=Heterozygous, Hom=Homozygous, colours are green red and blue respectively. 
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6.4 Human iPSC-derived neuron deconvolution 

As it had shown itself to be an acceptable method of comparing datasets, and gave 

superior deconvolution, I carried out housekeeping gene normalisation of the datasets 

prior to deconvolution. This was carried out exactly as before; excluding genes with 

a fourfold difference between the maximum and minimum samples values, taking the 

geomean of the coefficient of variations for both datasets, and taking a number of 

genes to take the geomean of as a normalisation quotient. In addition, if the 

deconvolution dataset was mouse, then only orthologous genes were utilised.  

6.4.1 Selection of appropriate datasets for human deconvolution 

6.4.1.1 Zeisel et al. dataset 

The Zeisel et al. dataset has been previously described and was utilised in addition to 

the Zhang et al. dataset. The cortical subset of this dataset was utilised as this is the 

most appropriate comparison for the human neurons. 

6.4.1.2 Allen et al. datasets  

The Allen Brain Atlas datasets are described in detail in their white paper as well as 

at the web address http://celltypes.brain-map.org/rnaseq (accessed on 16/10/2018). 

The human dataset I utilised is comprised of single nuclei RNA-Seq of the middle 

temporal gyrus. Single nuclei RNA-Seq is somewhat less than ideal as many 

transcripts in human neurons are locally translated at dendrites and other non-nuclear 

locations. These locally translated transcripts number as high as 2,550, although of 

course many of these may also be nuclearly translated and will be partially 

represented in the Allen datasets
277

. It is clear that single nuclei sequencing, as 

opposed to single cell, will not capture all the information available. There are 

15,928 nuclei derived from 8 post-mortem human adult brains. The average 

sequencing depth is 2.63x106 reads, comparable to Darmanis et al. but only about a 

tenth of the depth of our samples. Accordingly, far fewer genes were detected, 

ranging from 6,186 to 9,937, depending on the cell subclass (GABAergic, 

glutamatergic, unassigned, non-neuronal). The dataset therefore suffers from many 

of the same issues as the Zeisel et al. dataset used in the examination of detailed cell 
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subclasses in the mouse deconvolutions, but it has the advantage of being of human 

origin. 

6.4.2 Deconvolution of pseudosamples 

I carried out deconvolution of pseudosamples using a variety of SI and HK gene 

values. The values for SI ranged from 0.725, 0.75, 0.775… up to 0.975 and 0.999. 

HK values ranged from 1 to 10, then 15, 20, 25….50. A total of 216 deconvolutions 

were therefore carried out.  

As with the analogous mouse deconvolutions, increasing SI tended to increase the 

accuracy of the deconvolution. This could be because genes involved in specialised 

subclass functions have tended to be well conserved, so comparisons to a new 

species do not heavily alter the pattern of deconvolution. Deconvolution was actually 

superior in terms of MAD; the minimum was 0.14 (SI=0.925, HK=2) and the 

maximum was 0.26 (SI=0.725, HK=50). This compares to a low of 0.22 up to a high 

of 0.33 in the mouse cortical deconvolution. The optimum SI was always 0.925, 

while the next was always 0.95 or 0.975. It is noteworthy that the largest number of 

housekeeping genes and the most loosely defined markers gave the worst 

deconvolution; a result which makes sense. Although high SIs are typically superior 

in other deconvolutions, high HK numbers are not always. 

I examined the optimum deconvolution in more detail. There were no cell subclasses 

with over 10 estimations which were more than twofold incorrect, although as with 

the mouse deconvolution the “Int5” subclass was the worst predicted with a 

maximum overestimation of 7.49 fold and an average overestimation of 1.75 fold. 

On average though, cell subclasses were well predicted. The average of the average 

estimated:actual proportion for each cell subclass across 100 pseudosamples was 

1.02, while the average of the minimum and maximums were 0.96 and 2.16. All in 

all, these are reasonable deconvolutions. I decided to not attempt to remove “Int5”, 

as this had not helped in the mouse deconvolution to any great degree. I also looked 

at the deconvolution with SI=0.925 and HK=15, which has a MAD of 0.199. I was 

interested in whether this would be a useful alternative setting due to concerns about 

using two housekeeping genes to normalise. Unfortunately the “Int5” subclass was 
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badly overestimated here with an average estimation of 2.75 times the correct 

proportion and with one third of samples having an estimation which was at least 

twofold incorrect. I therefore elected to continue with the SI=0.925 HK=2 settings, 

although I would first need to see how these deconvoluted another dataset.  

6.4.3 Deconvolution of Allen comparison dataset 

I used the same range of settings for SI and HK, and the dataset described in 5.6.1.3. 

As described in the Allen section in the mouse cortical and hippocampal 

deconvolutions, the data is presented as violin plots where appropriate. 

Although I expected some cells to be dropped as HK increased (due to lack of 

expression for some of these genes) the dropout rate was extremely high. By HK=20, 

only 43 cells were left in the analysis, all of them Glutamatergic. It is possible that 

this is reflected in the fact that the human optimal HK number is frequently low 

regardless of the deconvoluting dataset, while the mouse deconvolution optimal 

varies but is 45 in the cortical Zeisel deconvolution and 40 or 25 in the cortical and 

hippocampal Zhang deconvolutions, respectively. Another likely factor is the 

relatively restricted number of cell types (primarily astrocytic and neuronal) in an 

iPSC-derived neuronal culture compared to an adult mouse brain; selection of 

housekeepers from this will likely discriminate against non-neuronal cell types. By 

HK=10, 3806 cells remain, and at HK=15, it is 500.  

It was very difficult to discern a pattern across deconvolutions at the lower HK 

numbers, especially if I looked at Allen subclasses. To resolve this I looked at class 

level rather than subclass level. See results of the optimal deconvolution in terms of 

MAD, SI=0.925, HK=2, in Figure 79. Cell types had what appeared to be a nearly 

binary split between cells that were 100% of that type and those that were 0%.  
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Figure 79. Violin plots of all 6 Zeisel class proportions for 4 classes of Allen cell, colour coded by Allen class. 

Red=GABAergic, Yellow=Glutamatergic, Blue=No class, Purple=Non-Neuronal. These results are of the SI=0.925 HK=2 

deconvolution. Allen classes are shown rather than classes for ease of viewing.  

We can see that all classes show a clear split between these binary options, regardless 

of actual cell identity. This is most pronounced in the “Interneuron” proportion and 

least in the “Astrocyte”. I also observed that in general, very low SI values (0.725 

chiefly) had a high propensity for higher levels of Interneuron prediction across all 

cell types, although a substantial proportion of cells were still reporting 0 proportion 

of this. In addition, there was little change in deconvolution proportions with 

increasing SI after SI=0.925, across almost all HK values. Finally, there was no 

deconvolution which had a majority of cells of any type predicted as mostly being of 

that cell type.  

To conclude; it does appear that the deconvolution as applied to other datasets gives 

very poor results. This is probably partially due to the choice of “housekeeping” 

genes, as these were chosen specifically for each dataset and the human t(1;11) 

samples. I believe this is the case as the majority of Allen cells do not even express 

all of these housekeeping genes. There are some notable facts; firstly, that the 
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deconvolution giving the optimal pseudosample deconvolution is in no way inferior 

to other deconvolutions, and that no deconvolution gives even majority correct 

proportions for each cell type. Secondly, the deconvolution appears to “settle” at 

SI=0.925, probably indicating that this is at least a stable if not optimal setting for 

gene specificity. Given this, I decided to press ahead and deconvolute the human 

t(1;11) samples.  

6.4.4 Deconvolution of human t(1;11) samples 

I carried out the deconvolution of the human t(1;11) samples using a variety of 

settings, normalising to total count depth for all samples. The results are displayed in 

Figure 80.  
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Figure 80. Deconvolution of human t(1;11) samples using profiles from Zeisel et al.. WT=Wild-type, t(1;11)=carrier, 

colours are green and red respectively.  

T-test revealed that no cell type was significantly different in proportion across the 

two genotypes once multiple testing correction (Sidak-Bonferroni) was applied.  

Discussion of the three deconvolutions is in the Discussion chapter, but the overall 

findings are of low reliability. 
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7.1 Introduction 

Expression weighted cell type enrichment (EWCE) is a method developed by Skene 

et al. to determine whether a list of genes, or SNPs associated with genes, have 

greater expression in a particular cell type than expected by chance
281

. In addition to 

a list of genes of interest, the approach requires a database of expression profiles for 

reliably identified cell types such as that of Zeisel et al. Skene et al. have applied this 

method with success to investigate whether genomic variants associated with 

schizophrenia converge on particular cell types
133

. The rationale behind this approach 

is to determine which cell types are of particular relevance to disease, which will be 

of use in drug design and disease modelling. EWCE essentially sums for a list of 

genes the specificity values (similar to SI) in each cell type to give a set of specificity 

scores, then selects a large number of lists of equal length from the background list 

of expressed genes to give a probability distribution of scores for each cell type. One 

can then see how whether a list of interest contains more highly specific genes for a 

particular type cell than the background rate of specificity in a large number of lists. 

Skene et al. recommend utilising at least 10,000 background lists to give a fair 

sampling of specificity.  

Skene et al. used a large database from the Karolinska Institute, of which the Zeisel 

et al. dataset is a subset. This encompassed mouse scRNA-Seq datasets generated 

from nearly 10,000 cells, identified by hierarchical clustering, originating from the 

midbrain, hypothalamus, striatum, cortical interneurons, an oligodendrocyte dataset, 

and the somatosensory cortex and hippocampal datasets described by Zeisel et al. 

Data were generated in the same manner as Zeisel et al. They found that hits from 

the CLOZUK and PGC GWAS (both schizophrenia GWAS) were significantly 

enriched in the broader cell classes of striatal medium spiny neurons, cortical 

interneurons, neocortical somatosensory pyramidal cells, and CA1 hippocampal 

pyramidal cells, and looked at more specifically defined subclasses as well
29,60

. For 

depression they found enrichment for genes specific to GABAergic and 

dopaminergic interneurons. It should be noted that they didn’t impose a minimum 

value for what was considered a “specific gene”, as the values are summed across all 

genes for each cell type, although they did exclude genes with low expression. They 
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also found that genes that encoded proteins which are i) Antipsychotic drug targets 

ii) loss of function mutation intolerant iii) part of the postsynaptic density and iv) 

RBFOX binding were significantly enriched for specificity in the aforementioned 

medium spiny neurons and pyramidal cell types. Finally, it should be noted that they 

carried out further analyses controlling for the enrichments found in significant cell 

types- a way to see if the significance signals were overlapping. This analysis 

showed that the significance of the hippocampal and cortical pyramidal cells were 

not independent, i.e., were caused by the same genes. This implies a common 

pyramidal cell dysfunction in schizophrenia. 

I wanted to investigate whether the lists of differentially expressed genes from my 

mouse and human RNA-Seq t(1;11) and controls showed any enrichment for genes 

specific to particular cell types. My question was simpler to answer than that posed 

by Skene et al.. Since I do not have GWAS level data, but only lists of differentially 

expressed genes from particular brain regions or tissue cultures, I do not need to 

consider factors such as LD, ambiguously placed SNPs, or gene length. I was 

particularly interested in whether there would be any convergence between my 

results looking at a unique and highly penetrant translocation, and those of Skene et 

al., who used information from GWAS looking for common variation associated 

with mental illness.  Given that pyramidal cells seemed to be of particular 

importance in the Skene et al. analysis, I was especially curious to see if this would 

re-emerge. If there were overlaps, this would imply that the aetiology of the t(1;11) 

related psychiatric illness is similar to that of psychiatric illness related to common 

variation. If not, this could imply that a different route to the disease state is found in 

each scenario, meaning that the same phenotype is reached through different 

biological processes. There are some drawbacks; Skene et al. were able to look at 

schizophrenia and depression associated variants separately, while in the Scottish 

pedigree the t(1;11) predisposes to both and accounts for most of the genetic risk for 

psychiatric disease. The genetic aetiology across family members with the 

translocation is likely to be very similar and it will not be possible to parse out risk to 

the different disorders, as Skene et al. did.  
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It should also be made explicit what this study is and what it is not. EWCE does not 

mean that the alterations necessarily exert their effects in the cell types indicated by 

the analysis; just that those cell types highly express those altered genes. It is of 

course likely that these genes would have important functions for that cell type, and 

it would be the logical starting point when searching for altered physiology. There 

are similarities to the deconvolution approach in that both look for altered genes 

associated with particular cell types; however there are key differences. First is that 

input and output of deconvolution is quantitative, even if only roughly so. Second is 

that the downregulation or upregulation of a gene associated with a particular cell 

type both implicate it in EWCE; while these signals have opposing effects in 

deconvolution approaches. Thirdly, the comparison dataset is important. It should be 

as close as possible in nature to the sample the gene list originated from. A test may 

indeed highlight certain cell types as significant; but if these cell types don’t exist in 

the original sample it is questionable how useful this is. Since the approach utilised 

by Skene et al. uses gene enrichments; including new cell types can alter the relative 

strength of each cell type signal.  

Skene et al. utilised the full Karolinska Institute Superset of data, of which the Zeisel 

et al. cortex and hippocampus datasets constitute a subset. This superset has 24 cell 

classes and 149 cell subclasses from diverse regions and cell types of the brain. All 

cells were sequenced in the same manner, using UMI tags as described earlier in this 

thesis so as to allow accurate quantification. The cells were then clustered in the 

same hierarchical clustering method as Zeisel et al., which generated classes and 

subclasses. Skene et al. then identified these using known marker expression, 

histology, or molecular studies
133

. It also contains some embryonic cell types. 

It is key to note that the samples I am using for the EWCE are cortical-like in the 

case of the t(1;11) cells, and are hippocampal and cortical (including most of the 

whole brain except hippocampus) for the mouse samples. Skene et al. are asking a 

broader question relating to many regions of the brain, whereas I have lists of 

differentially expressed genes from the hippocampal region of the brain or brain 

minus hippocampus, or a neuronal cortical like culture. Skene et al. used lists of 

genes associated with major mental illness by GWAS or MAGMA studies as they 
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were seeking in which brain regions and which cells these mutations exerted their 

effects (assuming a cell with high expression of the gene would be affected by the 

mutation). Hits from GWAS or MAGMA are not definitively associated with any 

brain region (indeed, this was what Skene et al. were interested in), so it was 

appropriate for Skene et al. to use datasets from all parts of the brain. In contrast my 

lists of differentially expressed genes are tied to the culture or brain region their 

samples originate from. In this sense it is more sensible to compare them to a similar 

cell dataset if possible. A positive result for a gene list from a culture or a brain 

region highly similar to the region the cells are from is more informative; it means 

that this perturbed gene list from a particular type of culture corresponds to a 

particular cell type. Given that I could not rebuild the Karolinska dataset to remove 

certain brain areas, I was left with three choices for each gene list; whether to 

compare to the KI superset (with or without embryonic cells), to the Zeisel 

hippocampal dataset, or to the Zeisel somatosensory cortex dataset. 

I also investigated whether it would be possible to rebuild a new dataset from the 

datasets indicated in Skene et al.. This would contain the majority of the cell types 

across many brain regions, but not the cells from the hippocampus (contributing both 

to hippocampal-unique classes and common classes), and would therefore be a better 

comparison for the cortical gene lists than the KI superset. However, not all of the 

data is released to the public yet and only the cell profiles, not the individual data for 

each of the thousands of cells used to make those profiles, are available. I had 

considered removing the hippocampal cells from the superset as well, but without the 

individual cell data from all papers, not just Zeisel et al., there is no way to remove 

the contribution of each brain region to the cell profiles or much more importantly 

know whether any of the cell profiles are brain region specific. Of the 149 cell 

subclasses, I do not know how many cells were used to produce each cell subclass, or 

where in the brain these cells were derived from, or whether the subclasses are 

present in all parts of the brain or only some. I therefore did not alter the KI superset 

in removing the hippocampal specific lines. Given that common cell types clustered 

together by group this likely means that they are largely similar across brain regions 

and are not pressing problems. I did remove embryonic cell types from the analysis 
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as these are not relevant to adult cells and the relevant cell types are clearly 

designated; the specificity values for each gene were then recalculated. The results 

for the cortical lists are also highly similar if hippocampal cells are removed (data 

not shown). 

I also argue that two issues are particularly important in considering the appropriate 

comparison. The first concerns risks of false positives, the second risks of false 

negatives. 

 Genes randomly selected from the list of expressed genes in brain region X 

are more likely to be specific to/enriched in brain region X, compared to 

genes randomly selected from the list of expressed genes in all brain regions. 

This is because the list of X-expressed genes is a subset of all expressed 

genes. It is by definition enriched for X-specific genes if they exist. As 

EWCE utilises gene specificity, this means that cell types which are highly 

enriched for these X-specific genes will appear significant. These cell types 

will also by definition be X-specific. As differentially expressed genes 

between sample A and B of region X can only include genes expressed in 

region X, this list of differentially expressed genes therefore will appear 

enriched for genes and cell types specific to X if compared to similar length 

lists drawn from all across the brain. There is therefore an unknown risk of 

false positives in comparing to a larger dataset. A larger dataset al.so requires 

a greater multiple testing correction; therefore only the correct comparison 

should be utilised, as over-comparing will dilute significance due to including 

spurious cell types, while under-comparing will inflate significance.  

 If most cell types are genuinely targeted by the mutation, then it will be 

difficult to assess cell type significance as there is no “non-significant” 

baseline to compare to. One would in this case just say that specific genes in 

general are targeted, but this could be due to other, unknown factors.  

 

As the cortical samples we utilised consisted of large tracts of the mouse brain, a 

comparison to the entire KI superset seemed most appropriate rather than using the 

somatosensory cortex dataset described by Zeisel et al.. I removed embryonic cell 



 

  319 

types. Although psychiatric illnesses are neurodevelopmental conditions, the 

corresponding cell types are no longer represented in the mouse RNA-Seq profiles as 

they were produced from adult mice. I also used the KI superset, similarly without 

embryonic cell types, to analyse the hippocampal gene lists. However I urge caution 

in interpreting the results due to the issue of p value inflation I raise above. However, 

convergence between this and other studies of the Der1 hippocampus mean that there 

is supporting evidence for what I eventually found, and as the more informative 

comparison it made sense to utilise the larger dataset. I therefore used the KI superset 

without embryonic cell types to analyse the mouse derived gene lists.  

I used the Zeisel et al. cortical profiles to analyse the t(1;11) gene list, as the cells 

have been described as being “foetal cortical” in nature. I considered using the KI 

superset either in its totality, or just utilising embryonic cell types. There are eight 

embryonic-unique cell types in total. They are limited in their scope; there are three 

dopaminergic cell types, three GABAergic cell types, oculomotor and trochlear 

nucleus embryonic neuorns, and red nucleus embryonic neurons. As described 

above, the astrocytes, oligodendrocytes, etc. profiles are generated from all regions 

of the brain and all samples, and it is not possible to separate out the contributions 

from embryonic cell types. It is therefore not possible to create new cell profiles 

using just embryonic cell types for embryonic astrocytes, embryonic 

oligodendrocytes, etc. from the KI superset, although these “embryonic” versions of 

adult cell types surely exist. An embryonic dataset is therefore extremely limited in 

scope. I therefore had to choose between using the entire KI superset or the Zeisel 

cortical dataset. The former gives inaccurate comparisons as the cell types are from 

the whole brain, and only a few are embryonic. The Zeisel dataset is non-embryonic 

but does include a variety of cell types. I opted to use it.  

It is important to recall DISC1’s involvement in a diverse array of processes 

including cellular migration, development, and mitochondrial activity (see 

Introduction). DISC1 immuno-reactive neurons have been found throughout all 

layers of the human cortex, and in rat cortical astrocytes, neurons, oligodendrocytes, 

and microglia
69,268

. Hence, there is a potential for the t(1;11)/Der1 to alter the 

activities of a wide variety of cell types.  
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Figure 81 is taken from Zeisel et al. describing their cell profiles from both 

hippocampal and cortical samples
157

. It shows some of the transcription factor genes 

highly expressed in each of their cell subtypes, as well as some pan-type 

transcription factors. As many of these, including the orthologues of Dlx6, Dlx1, 

Lhx9, Epas1 are differentially expressed in the t(1;11) samples it is likely some of 

these cell types will be highlighted by the analysis. 

 

Figure 81. Figure from Zeisel et al.157. Each cell type is colour coded and subtypes are labelled. Inteneuron=Red, 

Neuron=Blue, Orange/Yellow=Endothelial/Mural, Microglia=Green, Astrocyte/Ependymal=Purple/Dark Green, 

Oligodendrocyte=Pink. Bars indicate how widespread a gene is, with narrow bars being specific to only a few subtypes.  

7.2 Results 

In general I found that the class level identifications closely tracked the subclass 

results in terms of significance. All human derived gene lists were compared against 

the Zeisel cortical dataset. The Der1 cortical and hippocampal mouse data were 

compared against the KI superset minus embryonic samples. In all cases I used genes 
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implicated by DESeq2; those which are differentially expressed at the whole gene 

level with a BaseMean greater than half that of DISC1/Disc1 and an adjusted p 

value<0.05. This is the appropriate list of genes to use as the reference datasets use 

gene level not exon level expression. Genes were used regardless of direction or 

magnitude of fold change, as the goal of EWCE is just to see what cells might have 

transcriptional alterations. All comparisons used 1x10
5 

lists selected from the 

background to build up a background distribution of gene specificity. Bonferroni 

corrections were used for multiple testing. It should be noted in some cases that the 

actual list of altered gene was more enriched for cell types than any of 1x10
5 

lists 

selected from the background. A Monte-Carlo based analysis I developed also 

closely concurred with the significance of all cell types (data not shown); this was 

initially developed as there were issues with utilising the “EWCE” package. These 

issues were eventually overcome. 

7.3 Human iPSC-derived neuron data 

I looked for enrichments of specific genes in both the 8 class level identifications of 

the data described in Zeisel et al.(interneuron, astrocyte/ependymal, etc) and the 41 

subclass level identifications. Given that Skene et al. have used more datasets, their 

class and subclass identifications are different. 

The results of this analysis are displayed in Figure 82. The sample list contained 

1,252 genes. We can see that a variety of cell types have significant enrichment for 

the genes differentially expressed in iPSC-derived neurons carrying the t(1;11). It is 

of course not necessarily the case that these cells actually exist in the iPSC-derived 

culture. Notably, only a single type of pyramidal cell showed significant enrichment. 

This was SS_S1PyrL23. These cells are distinguished by mainly being expressed in 

Layers 2 and 3 of the cortex and for having high staining of the Rasgrf2 gene 

compared to other cells. They lack expression of deeper cell markers such as Synpr2, 

Foxp2, Cplx3, or Rorb. 
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Figure 82. Results of EWCE for list of human iPSC-derived neuron differentially expressed genes in t(1;11) cells 

compared to cortical dataset. Cell subclasses are coloured by class; Red=Astrocyte/Ependymal, Purple=Interneuron, 

Orange=Microglia, Green=Oligodendrocyte, Yeloow=Endothelial/Mural, Blue=Pyramidal Neuron (all classes). The 

dark blue line indicates the threshold for significance , Bonferroni corrected p value<0.05. The light blue line indicates p 

values of <1x10-5 as there were no background lists with as much specificity as the differentially expressed gene list. 

Results above this line cannot be graphed on a log scale as the –log10 of 0 is not defined.  

The changes in Oligodendrocyte expressed genes are also interesting. Zeisel et al. 

hypothesised that the 6 oligodendrocyte subclasses represented different stages in 

oligodendrocyte maturation. Oligo1 does not express the genes associated with 

oligodendrocyte precursor cells, so they hypothesised it is the first post-mitotic state 

for oligodendrocytes. Figure 83 displays the differential expression of the Oligo 

subclasses according to Zeisel et al.. However the significance appears to be driven 

by genes expressed in all oligodendrocyte subclasses, rather than by genes which are 

highly significant in a single cell type. Genes such as these typically have a low SI in 

several subclasses and a high SI in a single class. The top two markers for the 5 

significant subclasses are ATP8B1, GNA12 (Oligo2, SIs 0.2, 0.19), GSTP1, METRN 

(Oligo3, SIs 0.07, 0.08), HGBZ, COL11A2 (Oligo4, SIs 0.21, 0.18), S100B, APOD 

(Oligo5 SIs 0.32, 0.23), CAR2, APOD (Oligo6, SIs 0.18, 0.16). Overall these are low 

scores, and the presence of APOD twice offers the clue that markers driving 

significance are oligodendrocyte-wide as opposed to subclass specific. 

Oligodendrocyte-wide markers which are differentially expressed include DCT 

(SI=0.87), CNP (SI=0.83), GPR37 (SI=0.76), SEMA3D (SI=0.75), SLC44A1 
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(SI=0.75), CAR2 (SI=0.7), APOD (SI=0.68). As can be seen in Figure 83, most of the 

subclass markers show non-zero expression in other Oligodendrocyte cell types too. 

DCT and CNP show similar oligodendrocyte class specificity to classic genes such as 

MBP, MOG, and MOPB, which have SIs in the mid-80s, for the broad 

Oligodendrocyte class but are not differentially expressed.  

 

Figure 83. Adapted from Zeisel et al. 2015 figure 3157. A heatmap of genes showing differential and progressive 

expression across the Oligo1 to Oligo6 classes. Red=high expression, blue=low (scale not given by Zeisel et al.). 

In addition, Astro1 and Astro2 subclasses are noted as having enrichment. These 

subclasses were distinguished by Zeisel et al. by differential expression of a number 

of markers, and also show different localisation, as displayed in Figure 84. 
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Figure 84. Adapted from Zeisel et al. 2015 figure 3157. Left is differential expression of a number of cell markers for 

Astro1 and Astro2. Right shows immunohistochemistry for glial fibrillary acidic protein (red, Astro1) and MFGE8 

(green, Astro2), heavily associated with Astro1 and Astro2 respectively. 

7.3.1 Gene ontology analysis 

I also carried out a gene ontology analysis to see if the genes associated with 

particular cell types highlighted by the EWCE analysis were associated with specific 

functions, components, or processes. I used GOrilla to carry out this analysis. Gene 

lists were retrieved by filtering the list of KI Superset genes for those differentially 

expressed in t(1;11) iPSC-derived neurons. For each significant cell class, the list of 

genes which have their maximum expression in that class were extracted and used 

for GOrilla. The approach has some drawbacks in that some genes contribute to 

multiple cell classes but as they can only have their maximum expression in one line, 

they only appear in one. The analysis is therefore less than optimal. However a flat 

approach of using a certain number of genes will not work due to the differing 

number of specific genes per cell line.  

The concept was to see if the differentially expressed genes known to be highly 

specific to certain cell types converged on any distinctive processes in those cells. 

Although the functions of the cell types are known, it is possible that disturbances 

caused by t(1;11)/Der1 affect only a subset of cell activities. This could lead to 

potential pathways or functions to investigate in future experiments. Hook et al. had 

shown, for example, that catecholamine release appeared to be highly abnormal in 

iPSC-derived neurons of patients with schizophrenia
137

. I hoped to indicate if 

particular pathways in particular cell types might be disturbed. It is beneficial to 

know not only what cell types differentially expressed genes are specific to, but also 
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what activities within those cell types they are involved in. Although the approach is 

inferior to actually culturing those cell types and assumes that the genes are relevant 

solely to those cells they are most specific to, it is informative particularly if 

converges are observed. 

The PyrSS class has three significant Processes including “negative regulation of 

gonadotropin secretion”, “opioid receptor signaling pathway” driven by genes 

INHBA, SIGMAR1, OPRK1, and a single significant related Function “opioid 

receptor activity”. The only significant component is “synapse part” with p value 

3.9x10
-4

 driven by genes KCNIP3, ERC2, IGSF21, CAP2, DDN, WFS1, SLITRK1, 

SIGMAR1. However in all these cases the FDRs are quite high, ranging from 0.74 to 

1, due to the relatively low number of 46 genes. Nevertheless this might indicate 

some kind of opioid related dysfunction in the t(1;11) neurons. There also appear to 

some metabolic dysfunctions in other cell types. The AstrocyteEpendymal class has 

significance for the terms “fatty acid beta-oxidation”, p=1.62x10
-4

, and 

“neurotransmitter metabolic process”, p=7.33x10
-4

, which has genes such as GLDC, 

NQO1, SLC1A3. Oligodendrocytes also appear particularly affected, with 28 Process 

terms significant. 13 of these contain the word “metabolic” and 8 the word 

“biosynthetic”. Oligodendrocytes are of course responsible for myelination of axonal 

sheaths. Although myelination is not a significant GO term it is possible that some of 

the metabolic GO terms relate to dysfunctions either in the biosynthetic process or in 

the cells in general, which would impair their ability to carry out this function. 
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7.4 Mouse cortical data 

7.4.1 Mouse cortex Heterozygous 

A number of classes were found significant for enrichment in the list of genes 

differentially expressed in the Der1 heterozygous cortex, as shown in Figure 85. The 

sample list contained 2,112 genes. Given that both Avp and Oxt were found 

differentially expressed, it is no surprise that their corresponding neuron class of 

“Oxytocin and Vasopressin Expressing Neurons” is implicated. Cxcl14, Sema3c, are 

genes highly expressed in the Interneuron class, while the Hypothalamic 

Dopaminergic Neurons class is of particular relevance to schizophrenia and is 

associated with the genes Hap1, Gabrq, Pomc.  

 

Figure 85. Results of EWCE for list of differentially expressed genes in Der1 heterozygous cortex compared to WT 

cortical dataset. The dark blue line indicates the threshold for significance using the KI superset analysis, Bonferroni 

corrected p value<0.05. All of the indicated cell types are also significant if the hippocampal-specific classes are removed 

(except pyramidal CA1 which is removed as a class). The light blue line indicates p values of <1x10-5 as there were no 

background lists with as much specificity as the differentially expressed gene list. Results above this line cannot be 

graphed on a log scale as the –log10 of 0 is not defined. 

The subclass results are displayed in Figure 86.  
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Figure 86. Results of EWCE for list of differentially expressed genes in Der1 heterozygous cortex compared to WT 

cortical dataset at subclass level. The dark blue line indicates the threshold for significance using the KI superset 

analysis, Bonferroni corrected p value<0.05. Note it is higher than in class analysis as there are more cell types to correct 

for. The light blue line indicates p values of <1x10-5 as there were no background lists with as much specificity as the 

differentially expressed gene list. Results above this line cannot be graphed on a log scale as the –log10 of 0 is not 

defined. 
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7.4.1.1 Gene ontology analysis 

I carried out a gene ontology analysis as above on the classes. Some of the results 

were predictable; the “Oxytocin and Vasopressin expressing Neuron” class had 

processes all of relevance to the functions of these proteins and containing both Oxt 

and Avp. Others were more novel. “Hypothalamic dopaminergic neurons” and 

“Striatal Interneurons” had processes linked to the GABAergic signalling pathway 

(two subunits of GABAAR) and butyrate metabolism (only one gene, Acads) 

respectively. It should be noted that due to the low number of genes in the above 

processes, the FDRs are quite high. “Dopaminergic Adult” also has terms of high 

relevance to the cell type, indicating dysfunction of this specialised cell type as well.  

The “AstrocyteEpendymal” class has some differences and some similarities 

compared to the human t(1;11) GO terms of the same class. Many of the terms relate 

to fatty acid metabolism, and transport also emerges as a theme amongst less 

significant GO terms. “Regulation of transport” has p value=1.3x10
-4

 and contains 

the transport genes Slc1a2, Slc9a3rl, Slc38a3, and the gene Slc25a18 is also 

dysregulated. The “PyrSS” class shows a very clear convergence on terms relating to 

protein trafficking and localisation within the cell, with genes such as Dlg4 (related 

to the gene encoding PSD-95) and Bsn (a synaptic release protein) altered. Cacnb3 

and Cacng3 were also altered. 

7.4.2 Mouse cortex Group One 

No cell types were associated with the list of genes differentially expressed between 

mouse homozygous cortical and WT samples. However, as discussed in the 

appropriate chapter, the homozygous cortical Der1 samples separate into two groups. 

I examined the associations with the list of genes differentially expressed in each of 

these groups. The results of the Group One analysis are shown in Figure 87, while 

the results for the Group Two analysis are shown in Figure 89. 

The class level results are shown in Figure 87. The sample list contained 692 genes. 

The strongest signal is coming from the “Medium Spiny Neuron” and “pyramidal 

CA1” classes. A number of interesting genes are differentially expressed and 

associated with the “Medium Spiny Neuron”, including Drd1. Also associated and 
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differentially expressed are a large number of phosphodiesterases associated with 

signal transduction; Pde7b, Pde1b, Pde10a, which range in specificity from 0.45 to 

0.67. Gpr88 and Gpr6 are also seen; the former appears to control Medium Spiny 

Neuron firing, with knockout mice having decreased GABAergic and increased 

glutamatergic signalling efficiency. Interestingly, this knockout mouse had 

differential expression of Rgs4 protein, a possible regulator of synaptic plasticity
282

. 

Rgs4 maximum specificity across the 24 classes is 0.29 in “Pyramidal SS” neurons, 

the second highest is 0.17 in “Medium Spiny Neurons”. It too is differentially 

expressed here. 

 

Figure 87. Results of EWCE for list of differentially expressed genes in Der1 homozygous cortex Group One compared 

to WT cortical dataset. The dark blue line indicates the threshold for significance using KI superset analysis, Bonferroni 

corrected p value<0.05. All of the above cell types are also significant if the hippocampal-specific classes are removed 

(except pyramidal CA1 which is removed as a class). The light blue line indicates p values of <1x10-5 as there were no 

background lists with as much specificity as the differentially expressed gene list. Results above this line cannot be 

graphed on a log scale as the –log10 of 0 is not defined. Note that pyramidal SS is significant. 

Both subclasses of the “medium spiny neuron” class are significant as shown in 

Figure 88, which displays the results of the subclass analysis.  
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Figure 88. Results of EWCE for list of differentially expressed genes in Der1 homozygous cortex Group One compared 

to WT cortical dataset at subclass level. The dark blue line indicates the threshold for significance using the KI superset 

analysis, Bonferroni corrected p value<0.05. Note it is higher as there are more cell types to correct for. The light blue 

line indicates p values of <1x10-5 as there were no background lists with as much specificity as the differentially 

expressed gene list. Results above this line cannot be graphed on a log scale as the –log10 of 0 is not defined. 
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These two subclasses correspond to D1R and D2R, but many of the genes are 

reasonably expressed in both cell subclasses with a few diverging genes like Drd1 

and Adora2a showing preferences for each subclass. The Astro2, CA1Pyr1, 

CA1Pyr2, CA1PyrInt, and CA2Pyr2 subclasses are also significantly enriched. This 

is probably due to similar processes being highlighted between the CA1 pyramidal 

neurons and the SS pyramidal neurons.  

7.4.2.1 Gene ontology analysis 

I carried out a gene ontology analysis as above on the classes. The 

“AstrocyteEpendymal” class has some differences and some similarities compared to 

the human t(1;11) GO terms of the same class. Notably, “Transport” is the top 

significant term at p=5.25x10
-6

 with genes such as Apoe, Sdc4 (syndecan-4, a 

heparan sulfate proteoglycan), and Dbi, a lipid metaboliser which acts on 

Diazepam/Valium. Fatty acid metabolism also appears, with Cpt2, the gene encoding 

carnitine palmitoyltransferase II, differentially expressed. The human homologue is 

also differentially expressed and associated with a similar GO term. The two genes 

Apoe, Agt (angiotensin), both relate to the GO term “cholesterol esterification”. 

Finally, the PyrSS class has many terms driven by potassium and calcium receptor 

subunits (Cacnb4, Kcnb1, Kcns2, Kcna1)., and the ATPases which power them. The 

12
th

 term in this cell subclass is “transport”, p=6.23x10
-4

, which includes not only 

these metal ion transporters but also a kinesin Kif3c and the neurotransmitter 

transporter Slc6a17. The human homologue of this gene is found at dendritic 

spines
283

. PyrSS also includes the Arc gene.  

7.4.3 Mouse cortex Group Two 

The class results are displayed in Figure 89. The sample list contained 2,619 genes. 

Many classes appear significant in both Group One and Group Two. Many of the 

genes driving the Medium Spiny Neuron significance are the same as in Group One, 

namely Adora2a, Gpr88, Scn4b, Nexn, Actn2, Pde10a, Drd1. This observation led 

me to carry out an analysis using just the overlapping genes, which is described later. 

Astrocyte_Ependymal significance is notably due to Gfap, the marker for these cell 

types.  
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Figure 89. Results of EWCE for list of differentially expressed genes in Der1 homozygous cortex Group Two compared 

to WT cortical dataset. The dark blue line indicates the threshold for significance the KI superset analysis., Bonferroni 

corrected p value<0.05. All of the above cell types are also significant if the hippocampal-specific classes are removed, as 

is the class “Striatal Interneruon”, except pyramidal CA1 which is removed as a class. The light blue line indicates p 

values of <1x10-5 as there were no background lists with as much specificity as the differentially expressed gene list. 

Results above this line cannot be graphed on a log scale as the –log10 of 0 is not defined. Striatal Interneuron is 

significant. 

Subclass results are shown in Figure 90. In addition to the subclasses enriched in 

Group One, Group Two also has the Astro1 subclass significantly enriched, along 

with 8 types of oligodendrocyte.  
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Figure 90. Results of EWCE for list of differentially expressed genes in Der1 homozygous cortex Group Two compared 

to WT cortical dataset at subclass level. The dark blue line indicates the threshold for significance using the KI superset 

analysis, Bonferroni corrected p value<0.05. Note it is higher as there are more cell types to correct for. The light blue 

line indicates p values of <1x10-5 as there were no background lists with as much specificity as the differentially 

expressed gene list. Results above this line cannot be graphed on a log scale as the –log10 of 0 is not defined. 
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Significant oligodendrocytes include 6 types of “Mature Oligodendrocyte” and two 

types of “Myelin-forming Oligodendrocyte”. This appears to be due to the classic 

markers Mog, Mobp, with the appearance of the genes Selenoi, Selenop, Selenok as 

well. These selenium related proteins are not well studied, but one paper has shown 

that male mice deficient in Selenop and in another selenium metabolism protein Scly 

show neurodegeneration, apparently due to a failure of GABAergic inhibition 

development
284

. This shows some similarities to the observed differences in 

GABAergic-maturation related genes described elsewhere. As in the Group One 

comparison, the subclasses Astro2, CA1Pyr1, CA1Pyr2, CA1PyrInt, and CA2Pyr2 

subclasses are also significantly enriched along with both “Medium Spiny Neuron” 

subclasses. 

7.4.3.1 Gene ontology analysis 

I carried out a gene ontology analysis as above on the classes. The same classes are 

involved as previously; however, the number of involved genes is far greater and the 

GO terms have correspondingly smaller associated p-values. The terms themselves 

bear similarities in the “AstrocyteEpendymal” class, and many of the genes overlap. 

However, other classes have GO terms diverging from those they have in other 

sample sets. “Striatal Interneuron” has the GO term “response to estradiol” with 

genes Pam, Ramp3, Socs2, a contrast to the related terms in the heterozygous cortex. 

The activation of estradiol receptors appears to be necessary for long-term 

potentiation in striatal interneurons, so despite the low number of associated genes 

this is a highly intersting finding
285

. 

The “PyrCA1” class also has entirely new GO terms, relating to metabolism, 

particularly that of RNA, and gene expression. 116 genes relate to gene expression. 

Two are bromodomain proteins, while the previously mentioned Ntrk3 appears too, 

as does Bbs7 in the RNA metabolism GO term. Camk2a and Dendrin are also 

encoded by differentially expressed genes related to this cell type, and they have 

roles in plasticity.  
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“Oligodendrocytes” appears as a significant class, in agreement with the human 

(t1:11). Unlike there however, its GO terms are highly specific to the function of 

myelination. Dysregulation of Mag (myelin-associated protein), Mbp (myelin basic 

protein), Plp1 (a type of myelin protein) and a claudin Cldn11 associated with 

myelin all point towards a serious defect in the myelinating propetries of these cells. 

7.4.4 Mouse cortex overlapping Group One and Group Two 

This list of genes is those differentially expressed in both groups. As described 

previously, they show an unusual pattern in expression. The sample list contained 

249 genes. The class results are shown in Figure 91, while subclass results are in 

Figure 92. 

 

Figure 91. Results of EWCE for list of differentially expressed genes overlapping between Group One and Group Two 

of homozygous Der1 cortex compared to WT cortical dataset. The dark blue line indicates the threshold for significance 

using the KI superset analysis, Bonferroni corrected p value<0.05. All of the above cell types are also significant if the 

hippocampal-specific classes are removed (except pyramidal CA1 which is removed as a class). The light blue line 

indicates p values of <1x10-5 as there were no background lists with as much specificity as the differentially expressed 

gene list. Results above this line cannot be graphed on a log scale as the –log10 of 0 is not defined. 

In addition to the subclasses enriched in Group One, the list overlapping with Group 

Two also has the Astro1 subclass significantly enriched. As described in the previous 

section, a large number of genes show reasonable expression in both Medium Spiny 

Neuron subclasses, with further genes being primarily expressed in one.  
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Figure 92. Results of EWCE for list of differentially expressed genes in both Der1 homozygous cortex Group One and 

Group Two, when each is separately compared to WT cortical dataset at subclass level. The dark blue line indicates the 

threshold for significance using the KI superset analysis, Bonferroni corrected p value<0.05. The light blue line indicates 

p values of <1x10-5 as there were no background lists with as much specificity as the differentially expressed gene list. 

Results above this line cannot be graphed on a log scale as the –log10 of 0 is not defined. 
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7.4.5 Mouse cortex overlapping Group One, Group Two, and cortex 

heterozygotes 

This list is a subset of the previous; also overlapping with the cortex heterozygous 

list. The sample list contained 120 genes. Class results are in Figure 93, while 

subclass results are in Figure 94. Only one class is significantly enriched in the 

subset of genes differentially expressed in all models; “Astrocytes_ependymal”. 

Genes highly enriched in this class include Apoe, S100a1, Mlc1, Fxyd1, Slc25a18. At 

the subclass level, both subclasses of Astrocyte are significantly associated with the 

gene list, with the aforementioned genes showing good expression in both classes. In 

addition, CA1 pyramidal neurons have emerged as significant, although given that 

the SS neurons are not also altered this may not point to identical pyramidal 

dysfunction across all Der1 groups.  

 

Figure 93. Results of EWCE for list of differentially expressed genes overlapping between Group One and Group Two 

of homozygous Der1 cortex, as well as with heterozygous Der1 cortex compared to WT cortical dataset. The dark blue 

line indicates the threshold for significance the KI superset analysis., Bonferroni corrected p value<0.05. The light blue 

line indicates p values of <1x10-5 as there were no background lists with as much specificity as the differentially 

expressed gene list. Results above this line cannot be graphed on a log scale as the –log10 of 0 is not defined. 

Less subclasses are significant in this analysis; with only Astro1, Astro2, and 

CA1PyrInt appearing significant. This makes Astro1 and Astro2 among the most 

consistent subclasses to have enriched genes overrepresented among differentially 

expressed genes. 
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Figure 94. Results of EWCE for list of differentially expressed genes overlapping between Group One, Group Two, and 

Cortex Heterozygotes when each is compared to WT cortical dataset at subclass level. The dark blue line indicates the 

threshold for significance using the KI superset analysis, Bonferroni corrected p value<0.05. Note it is higher as there 

are more cell types to correct for. The light blue line indicates p values of <1x10-5 as there were no background lists with 

as much specificity as the differentially expressed gene list. Results above this line cannot be graphed on a log scale as 

the –log10 of 0 is not defined. 
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7.5 Mouse hippocampal data 

The number of differentially expressed genes between mouse heterozygous t(1;11) 

carriers and wild type controls is 175. The results of the class analysis are displayed 

in Figure 95.  

 

 

Figure 95. Results of EWCE for list of mouse hippocampal differentially expressed genes compared to KI superset. The 

dark blue line indicates the threshold for significance using the KI superset analysis, Bonferroni corrected p value<0.05. 

The light blue line indicates p values of <1x10-5 as there were no background lists with as much specificity as the 

differentially expressed gene list. Results above this line cannot be graphed on a log scale as the –log10 of 0 is not 

defined. 

The same classes appear to be affected as in the cortex; “Medium Spiny Neurons” 

and pyramidal cells. In addition, “Interneuron” has emerged as a significant class. 

The subclass results are displayed in Figure 96. Only a single subclass, S1PyrL5a, is 

significant.  
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Figure 96. Results of EWCE for list of differentially expressed genes in Der1 heterozygous hippocampus compared to 

WT hippocampal dataset at subclass level. The dark blue line indicates the threshold for significance using the KI 

superset analysis, Bonferroni corrected p value<0.05. Note it is higher as there are more cell types to correct for. The 

light blue line indicates p values of <1x10-5 as there were no background lists with as much specificity as the 

differentially expressed gene list. Results above this line cannot be graphed on a log scale as the –log10 of 0 is not 

defined. 
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7.5.1 Gene ontology analysis 

I carried out a gene ontology analysis as above on the classes. The classes have very 

distinctive and obvious patterns. “Medium Spiny Neuron” related GO terms are all of 

relation to synaptic transmission, although the number of genes involved is low, only 

Syt2 and Unc13c. “PyrSS” has two stronger patterns, each with more related genes. 

The first is related to neuronal apoptosis, driven by Thrb, Scn2a1, Cit, Bok. Cit and 

Thrb arte also related to the second process with multiple GOterms; development. 

These terms are also driven by the genes Sox5, Plxnd1 (a plexin, the interacting 

partner of semaphorins which aid neuronal direction) and Cask. Cask, as a member 

of the superfamily which includes Dlg genes, encodes a MAGUK protein. Cask-null 

mice are embryonic lethal and Cask-deficient neurons appear to have abnormal 

levels of neurexins and neuroligins (important synaptic molecules), although the 

experiment showing this had a relatively small sample size
286

. 

No cell types were associated with the list of genes differentially expressed between 

mouse homozygous hippocampal and WT samples. However, the number of 

differentially expressed genes in this analysis was extremely low, and Der1 status did 

not even register as the first or second component in principal component analysis. 

Therefore, a lack of results is not surprising here. 

7.6 Differentially expressed genes from published papers 

GO term analyses were not possible as neither Wen et al. nor Srikanth et al. provided 

a list of all expressed genes, just lists of differentially expressed genes
132,287

. 

7.6.1 Wen et al. 

Wen et al. looked at iPSC-derived neurons from a family carrying a DISC1 

frameshift mutation
132

. The family is small however, and the frameshift is not 

unambiguously linked with psychiatric illness, as in addition members of the 

pedigree have psychiatric illness but no DISC1 frameshift. A total of 3,697 genes 

were differentially expressed in their study, although they did not use as large a 

number of RNA samples as our study (one control and two mutants, all in triplicate). 

A further description is given in the Introduction. 
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The results of this analysis are displayed in Figure 97. It is clear that genes highly 

associated with a broad range of cells are affected, similar to the mouse cortical 

analysis. In addition, both the Astrocyte subclasses have re-emerged as significant, as 

in the t(1;11) analysis. Three subclasses of the endothelial/mural cell class are also 

implicated; this class is distinguished from other cell groups chiefly by high 

expression of Cldn5. Many cell types are apparently affected. 

 

Figure 97. Results of EWCE for list of differentially expressed genes found by Wen et al.  compared to cortical dataset. 

Cell subclasses are coloured by class; Red=Astrocyte/Ependymal, Purple=Interneuron, Orange=Microglia, 

Green=Oligodendrocyte, Yeloow=Endothelial/Mural, Blue=Pyramidal Neuron (all classes). The dark blue line indicates 

the threshold for significance , Bonferroni corrected p value<0.05. The light blue line indicates p values of <1x10-5. 

7.6.2 Brennand et al. 

The study of Brennand et al. was the first to look at differential expression in iPSC-

derived neurons from psychiatric patients
124

. Lines were established from patients 

with idiopathic schizophrenia, although the sample numbers were small. It utilised a 

microarray approach to look at expression differences and found 596 genes 

differentially expressed at p<0.05 and fold-change >1.3, which I searched for 

association with here. A further description is given in the Introduction. 

The results of this analysis are displayed in Figure 98. As with the t(1;11) samples, 

the list of genes shows enrichment for both Astrocyte types (also significant in my 

analysis), and almost all oligodendrocyte maturation stages. Two Interneuron 
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subclasses are implicated; Int1 and Int14. Both subclasses are characterised by high 

expression of Neuropeptide Y, with Int14 also having high expression of Gda 

compared to other cell types. Gda encodes Cypin, a PSD-95 interactor with 

homology to DPYSL1, a protein related to DPYSL2 and DPYSL3
288

. Int14 also has 

relatively high expression of the chromatin modifiers Tox and Tox3, which are 

differentially expressed. Int1 meanwhile is characterised among the interneuron 

subclasses by the highest expression of Sst, which encodes somatostatin. This cell 

type is highly restricted to the somatosensory cortex. All subclasses of the 

endothelial/mural cell class are also implicated; these are distinguished from other 

cell groups chiefly by high expression of Cldn5. This is not a differentially expressed 

gene however; although genes that are include IFI44, CYYR1, SLC16A9 and LEF1, 

the homologues of which show high expression in both “Vend1” and “Vend2”, as 

well as pericytes in the case of CYYR1. 

 

Figure 98. Results of EWCE for list of differentially expressed genes found by Brennend et al.  compared to cortical 

dataset. Cell subclasses are coloured by class; Red=Astrocyte/Ependymal, Purple=Interneuron, Orange=Microglia, 

Green=Oligodendrocyte, Yeloow=Endothelial/Mural, Blue=Pyramidal Neuron (all classes). The dark blue line indicates 

the threshold for significance, Bonferroni corrected p value<0.05. The light blue line indicates p values of <1x10-5-. 

Differential expression of genes associated with both subclasses of astrocytes is also 

observed; genes contributing to this include Gfap and Aqp4, known astrocytic genes.  
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7.6.3 Srikanth et al.  

Srikanth et al. looked at two different timepoints in the production of neurons 

directly from iPSCs
138

, a protocol that differs from ours which utilises neural 

precursor intermediates. They induced mutations in the iPSC lines prior to neuron 

differentiation, in exon 2 and exon 8 of DISC1. The first mutation should remove all 

DISC1 isoforms while the second is closer in its effect on DISC1 by inducing a 

truncation close to the breakpoint. They also looked at heterozygous and 

homozygous carriers of these mutations. Sx2 and Sx8 refer to the mutations, w/m to 

wild type/mutant status, and 18 or 50 to the timepoints. For example, Sx8wm50 

refers to the heterozygous carriers of the exon 8 truncation at the day 50 stage. I used 

these lists to generate EWCE data. The Sx2mmd50, Sx8mmd50, and Sx8wmd50 

results are displayed in turn. 

7.6.3.1 Sx2mmd50 

The results of this analysis are displayed in Figure 99. This mutation, which would 

presumably have the greatest effect on DISC1 expression, appears to have caused the 

dysregulation of genes highly expressed in a very broad variety of cell types. A total 

of 1,393 genes were dysregulated. Most pyramidal cell subclasses are significant 

along with most interneuron cell subclasses, possibly indicating dysregulation of a 

number of broadly expressed markers for each cell class. 
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Figure 99. Results of EWCE for list of differentially expressed genes found by Srikanth et al.  for the Sx2mmd50 model 

compared to cortical dataset. Cell subclasses are coloured by class; Red=Astrocyte/Ependymal, Purple=Interneuron, 

Orange=Microglia, Green=Oligodendrocyte, Yeloow=Endothelial/Mural, Blue=Pyramidal Neuron (all classes). The 

dark blue line indicates the threshold for significance, Bonferroni corrected p value<0.05. The light blue line indicates p 

values of <1x10-5. 

7.6.3.2 Sx8mmd50 

The results of this analysis are displayed in Figure 100. The effects are quite 

interesting. The list of affected genes, totalling 116 genes, is only highly enriched in 

pyramidal cells, but is enriched in all of these cell subclasses. This is essentially a 

subset of the cell subclasses enriched in the Sx2mmd50 dataset. I looked to see if the 

same genes might be responsible; of the 27 genes differentially expressed in both 

experiments and expressed in the Zeisel dataset; a handful have high expression 

confined to the pyramidal neuron class. These include Neurod2, Neurod6, Kcnip3, 

which have an SI of 0.6 or more for this class. Both of the Neurod genes encode 

bHLH neurogenic transcription factors.  

It is difficult to work out the contribution of these 27 overlapping genes. However, I 

did note that the total SI for the neuronal subclasses of the 114 genes differentially 

expressed in the Sx8mmd50 dataset was 21.2, while the corresponding figure for the 

1,391 genes of the Sx2mmd50 dataset was 189.8. The 27 genes contribute 6.7 in 

each case. This corresponds to 31% of contribution for 23.6% of genes in the 

Sx8mmd50 dataset, and 3.5% of contribution for 1.94% of genes in the Sx2mmd50 
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dataset, which is not particularly strong evidence in favour of these overlapping 

genes being key. 

 

Figure 100. Results of EWCE for list of differentially expressed genes found by Srikanth et al. for the Sx8mmd50 model 

compared to cortical dataset. Cell subclasses are coloured by class; Red=Astrocyte/Ependymal, Purple=Interneuron, 

Orange=Microglia, Green=Oligodendrocyte, Yeloow=Endothelial/Mural, Blue=Pyramidal Neuron (all classes). The 

dark blue line indicates the threshold for significance, Bonferroni corrected p value<0.05. The light blue line indicates p 

values of <1x10-5. 

7.6.3.3 Sx8wmd50 

The results of this analysis are displayed in Figure 101. This final Srikanth gene list 

is generated from a model which has the effect on full length DISC1 closest to that of 

the t(1;11), although it does not result in gene fusion. 487 genes were dysregulated. 

We can see that Astrocyte subclass 1, Oligo subclass 6 (corresponding to mature 

myelinating oligodendrocytes), and two endothelial cell types are among those 

subclasses which are enriched for genes showing differential expression.  
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Figure 101. Results of EWCE for list of differentially expressed genes found by Srikanth et al. for the Sx8wmd50 model 

compared to cortical dataset. Cell subclasses are coloured by class; Red=Astrocyte/Ependymal, Purple=Interneuron, 

Orange=Microglia, Green=Oligodendrocyte, Yeloow=Endothelial/Mural, Blue=Pyramidal Neuron (both classes). The 

dark blue line indicates the threshold for significance, Bonferroni corrected p value<0.05. The light blue line indicates p 

values of <1x10-5. 

7.7 Discussion 

7.7.1 IPSC-derived neuron data 

Comparisons between EWCE data for the t(1;11) neurons and neurons carrying 

DISC1 mutations reveal that many of the cell types implicated by one analysis 

reappear in others. A full overview of the enrichments using the Zeisel et al. cortical 

dataset is given in Table 36 and a view of the overlaps between gene sets for 

enrichment is given in the Appendix. 

 

Table 36. Evaluation of cell types with associated genes significantly enriched among differentially expressed genes in 

each list according to the EWCE analysis using the Zeisel dataset. Classes are as in the Zeisel et al. dataset. 

These cross comparisons reveal that there are substantial overlaps and some 

differences between the cells highlighted by the analyses of each human neuron 

model. The cells that most appear are Astro1, Oligo6, Vsmc (5 occurrences), Oligo2, 

Pyr2/3, Pyr4, (4 occurrences), and several with 3 occurrences including Astro2, 

Choroid, Int1, Int14, and other Pyramidal and Oligodendrocytic cell types. It is 
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worthwhile to note which cells did not appear in any analysis; these are the 

microglial subtypes Mgl2, Pvm1, and Pvm2. The disturbance of genes associated 

with the astrocyte subclasses Astro1 and Astro2 are consistent findings and appear to 

be genuine; indicating possible dysregulation of astrocytic activity in the presumably 

early developmental stage the iPSC-derived neurons represent. As discussed below, 

these also appear in several mouse cortex lists as well, so the disturbances appear to 

be present in both relatively immature human iPSC-neuron models and the mature 

mutant mouse cortex model. It is also compelling that the Srikanth homozygous 

DISC1 mutation at exon 8 has effects which are a subset of those caused by the 

homozygous exon 2 mutation, which should affect all isoforms.  

There are some conclusions to be drawn from the data and it is possible to a limited 

extent to discuss these changes in the context of cortical architecture. It must be 

stressed that as the iPSC-derived cells are highly immature and are in an essentially 

2D culture it is inaccurate to speak of them as having any kind of cortical 

architecture. However I initially found it notable that frequent dysregulation of genes 

associated with Astro1 and Astro2 was found, which Zeisel et al. described as 

astrocytes associated with different sides of the layer I/II cortical boundaries. I also 

noted that the Pyramidal II/III subclass was frequently dysregulated as well, and 

thought this might be a significant co-occurrence. Yet in the Sx8wm50 neuron 

cultures, the Astro1 significance does not concur with a II/III significance. Similarly, 

these two subclasses are not both seen significant in any mouse analysis. 

7.7.2 Mutant mouse data 

In the Der1 mouse cortex the cell classes “astroyctes_ependymal”, “medium spiny 

neuron”, and pyramidal cells are significantly enriched in every gene list. At the 

subclass level, the Astro1, Astro2, CA1Pyr1, CA1Pyr2, CA2Pyr2, and CA1PyrInt 

subclasses are all significant in the heterozygous Der1 comparison. In addition, both 

subclasses of the medium spiny neuron, Astro2, CA1Pyr1, CA1Pyr2, and CA1PyrInt 

subclasses are also significantly enriched in both homozygote groups, as well as the 

list of genes overlapping between both homozygote groups and the heterozygote 

group. We see that the lists appear to converge on the same few cell types across the 
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mouse brain, perhaps indicating a consistent pathological effect of the Der1 in the 

cortex. Astro1 or Astro2 significance does not co-present with layer-specific 

pyramidal dysfunction but only with general pyramidal cells dysfunction at the class 

level, so it does not appear that there has been a layer specific dysfunction as I 

hypothesised in the previous section. 

The hippocampal data shows similarity to the cortical; with the pyramidal classes 

and medium spiny neurons implicated. In contrast the Interneuron class is newly 

significant, while there is no evidence of astrocyte_ependymal significance. 

These results should be discussed in the context of the findings of my colleague, 

Marion Bonneau, who has studied the anatomical morphology of the Der1 cortex and 

hippocampus. Bonneau found that there were no gross changes in hippocampal size 

in heterozygous Der1 mice. There was a trend towards cortical thinness and 

significantly increased lateral ventricle size in the heterozygotes. However, these 

findings were not apparent in an MRI study which used a larger sample size. 

Bonneau also found that there was no difference in the staining of a particular cell 

type, parvalbumin positive interneurons, in the prefrontal cortex of either the 

heterozygous or homozygous Der1 mice. However, there was an overall increase in 

these interneurons in the hippocampus. These cells possibly correspond to the cell 

type Int2 (a hippocampal cell type) or IntPvalb; both of which highly express 

parvalbumin. Neither appeared significant in my mouse hippocampal heterozygous 

analysis; although the class of Interneuron did. The fact that some cell types have 

emerged as significant in the EWCE approach suggests that changes in expression of 

specific markers are both up and down; indicating general dysfunction rather than 

cellular absence. This is in agreement with Bonneau’s data as well. 

7.7.3 Conclusion 

Dysfunction may not affect all cells equally. The persistent significance of 

Astrocytes is highly interesting; Astro1 is significant in every single analysis with the 

exception of the mouse heterozygous Der1 hippocampus and the iPSC-derived 

neuron with two exon8 altered DISC1 alleles. Astro2 is nearly as broadly disturbed. 

Astrocytes release neurotransmitters and have been associated with synapses for 
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some time; it was suggested two decades ago that they should be considered part of a 

“tripartite synapse”
289

. More recently, mouse studies have shown that the release of 

D-serine (an NMDAR co-agonist) by hippocampal astrocytes increases during 

wakefulness, and mice further into wakefulness are more adept at learning contextual 

fear memory. Given the link between NMDAR and learning/memory, the author’s 

conclusion was that astrocytes can modulate neuronal sensitivity to memory 

formation
290

. The release of D-serine was mediated by α7 nicotinic acetylcholine 

receptors. Their disruption here is potentially important in this regard and has 

relevance to the phenotypes of major mental illness. 

The Srikanth cell line with two mutations in Exon2 had particularly broad disruption 

across interneuron and pyramidal cell lines, while many other iPSC-neuron models, 

including our own, had pyramidal disruption. The evidence also suggests that in 

adult life the mouse cortex continues to exhibit some cellular abnormalities. It is 

possible that misplacement of developing cells, indicated by the mouse dysregulation 

of Hox genes including Dlx2, Dlx6, Vax1, Vax2, as well as guidance genes like Ntn5, 

Slit1 and Slit3, could result in a phenotype without gross pathology, which Bonneau 

did not detect, but with subtle wiring and transcriptomic differences. This would 

make sense in the context of psychiatric disease being developmental but is a 

speculative explanation currently. We also saw some emergence of significance in 

the t(1;11) neurons of many oligodendrocyte classes, particularly relating to 

metabolic processes, whereas these did not appear altered at all in the Der1 mouse 

models. This also points towards a developmental role for astrocytes and 

oligodendrocytes in the aetiology of t(1;11) pathology. As a final comment, this 

investigation has not revealed a single “smoking gun” cell type responsible for the 

effects of the t(1;11), or for those of other DISC1/Der1 mutations. This is not entirely 

surprising given DISC1’s expression in a variety of cell types. Genes associated with 

many cell types, particularly many neuronal subclasses, appear to be dysregulated 

and developmental aspects will almost certainly be involved.  

It is highly notable that the mouse cortical gene lists consistently implicated 

pyramidal cells, and in the homozygous Der1 groups only, Medium Spiny Neurons. 

It is these cell groups that were highlighted by Skene et al. in their original analysis 
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using common variation, although they also implicated cortical interneurons (with 

weaker signal), which this analysis did not indicate as clearly. This different signal 

could be due to simply different aetiologies between common disease-mutation and 

our unique mutation. Alternatively developmental timing may be responsible, i.e., we 

are looking at particular cultures and mouse samples, which can only correspond 

(even if roughly so) to a single time point. In contrast, mutations predisposing to 

schizophrenia might exert their effects at a different time point, and indeed the KI 

superset is comprised of datasets of various ages
157,291–293

.  

The GO term analysis offers some clues as to what functions might be disrupted in 

the various cell types, and whether these functions, and the genes driving them, differ 

across models. In the “AstrocyteEpendymal” cell class, we can see that many terms 

bear high similarity between the Der1 heterozygous cortex (CHet) and the Der1 

homozygous cortex Group Two (G2), with the first group (G1) and the human 

t(1;11) neurons (HTN) being more divergent. 23 and 39 genes drive the term 

“carboxylic acid catabolic process” in CHet and G2, respectively, and 15 are 

overlapping. These include Aldoc, Glul, Gldc, and Sardh. Two are also altered in the 

same G1 GO term. These are Acaa2 and Sardh. However, particularly of interest are 

the “Medium Spiny Neuron” and pyramidal classes. In G1 and G2, the GO terms of 

the MSNs are near-identical and gene numbers are large enough that the FDRs are 

quite low. The term “regulation of metal ion transport” has 14 and 13 genes 

associated respectively; 9 of these are identical and include Drd1a, Rgs9, Scn4b, and 

Adora2a. In addition, all 14 genes of G1 are upregulated, while all 13 of G2 are 

downregulated in comparison to the WT. The term “regulation of long term synaptic 

potentiation” is significant in both groups, with p=1.73x10
-4

 and p=5.22x10
-5

, and 

contains the same genes, Ptpn5 Mme, Adora2a, Drd1a. As before, all these genes are 

upregulated in G1 and downregulated in G2. The human homologue of Ptpn5 

encodes STEP, a brain specific phosphatase which acts on both AMPAR and 

NMDAR subunits to oppose synaptic strengthening. It has been proposed that 

abnormally high and abnormally low expression of STEP is harmful. Stimulation of 

α7 receptors by Aβ appears to result in STEP over-activity, and STEP is inactivated 

by antipsychotic agents. Conversely, sufficient expression of STEP appears 
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necessary for stress resilience
294

. STEP’s relevance to synaptic plasticity is obvious 

and the fact that it is disturbed in both homozygotes, albeit in opposite directions, is 

interesting.  

Finally, pyramidal cells were notably disturbed in several models. In the CA1 

pyramidal neuron class, the Chet model displays terms related to cell metabolism and 

basic activities. Although these are vague terms, more specific terms such as 

“negative regulation of cell morphogenesis involved in differentiation” (p=7.91x10
-4

) 

point towards development as being abnormal in these mice. Genes here include 

Slit1, Nrp1, and Sema3e, while another term relating to development is dendrite 

morphogenesis (p=1.68x10
-5

), with genes Chrna7, Nrp1, Camk2a, Slitrk5, Rock2. 

The top 10 Process terms in the G1refer to synaptic activity and ion transport, and 

include some of the same genes such as Chrna7 and Sema3e. In contrast, the G2 and 

hippocampus have diverging changes. The G2 changes revolve around transcription 

factor disruption and fundamental RNA-related activity, while the hippocampus has 

only 3 genes driving its GO terms; Cnih2, Greb1l, Crlf1. The SS changes show a 

similar pattern, although this class is not significant in G2. Chet terms relate to 

protein trafficking and localisation, while the hippocampal terms relate to neuronal 

death, development, and differentiation. The G1 top term is “regulation of 

transmembrane transport”, with 11 genes driving the term including Arc, Cacnb4, 

Rgs4, which have been discussed elsewhere in this thesis, and three potassium 

receptor subunits Kcna1, Kcnb1, Kcns2. Transport evidently emerges as a theme in 

the cortical samples. In addition to widespread pyramidal cell disruption, the facts 

remain that astrocytes have emerged as being implicated in schizophrenia pathology 

by this analysis. We also see clear convergences of our Der1 homozygous model and 

common variation on Medium Spiny Neurons, a cell type of relevance. 
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8 DISCUSSION AND 

CONCLUSIONS 
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8.1 Thesis 

This thesis describes the analysis of RNA-Seq data from two models relating to 

psychiatric illness. The first is the iPSC-derived neuronal model of the t(1;11), a 

translocation which segregates with highly increased risk of psychiatric illness in a 

Scottish pedigree. The translocation disrupts three genes, DISC1 and DISC2 on 

chromosome 1, and DISC1FP1 on chromosome 11. Only DISC1 is known to encode 

a protein
66

. The second model is a corresponding mouse model, referred to as Der1 

and described in detail by Malavasi et al. 2018
70

. Creation of the model involved the 

insertion of 150kb of human genetic material 3’ to the t(1;11) chromosome 1 

breakpoint downstream of the analogous location in the mouse Disc1 gene, removing 

98kb in the process
70

. Both models were subjected to RNA sequencing of 

comparable sequencing depth. Neurons carrying the t(1;11), and two brain regions of 

the mouse, were harvested and sequenced. RNA-Seq data were analysed for regional 

effects where appropriate, for differential expression, and some selected 

differentially expressed genes were verified by RT-qPCR. It also describes the 

overlaps seen with studies of interest and overrepresentation of specific GO terms, 

especially those relevant to psychiatric illness. Data from both the iPSC-derived 

neuronal and mouse models were also used in two separate analyses, the first to 

detect whether the relative proportions of cells were altered in the samples, and the 

second to examine if the differentially expressed genes were found associated with 

any particular cell types, and if so, whether these cell associated genes were 

associated with particular functions.  

8.2 DESeq2 and DEXSeq analysis 

The DESeq2 analysis of the human and mouse datasets has confirmed a number of 

interesting changes, while rejecting some hypotheses. Both iPSC-derived neurons 

and Der1 mice displayed the expected effects on DISC1/Disc1 expression, and were 

clearly affected by the translocation/Der1. Over 1,200 genes were found 

differentially expressed in the human neurons, with over 2,000 in the heterozygous 

Der1 mouse cortex, and a significantly lower number of 175 in the hippocampus. 

The effect on the homozygotes was less clear, but they differed from the WT 

samples. The cortex samples showed a surprising splitting into two groups which is 
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discussed in detail in the relevant chapter. It can also be stated that there is no 

evidence for the t(1;11) causing regional expression effects, or for significant 

transcriptional alterations of potential DISC1 interactors. There is ample evidence for 

extensive overlap with analogous experiments utilising iPSC-derived neurons with 

DISC1 mutations, and with genes implicated by studies searching for common 

mutation predisposing to schizophrenia. This was seen in both the human and mouse 

cortex datasets. Potential Disc1 interactors in the mouse were altered at a rate greater 

than expected by chance
73

. 

qPCR results confirmed changes in a number of genes, while also confirming the 

reliability of the human RNA-Seq analysis. The qPCR results in the mouse cortex 

showed a looser relationship between qPCR score and gene counts, suggesting that 

the mouse analysis is less reliable. This apparent imbalance may simply be due to the 

larger variation in total sequencing depth across mouse samples, however. In both 

datasets the changes show a general linear trend between the overall log2fold change 

of the qPCR score and counts between genotypes, so this is reassuring as to the 

validity of the data. The changes in the mouse were also more subtle and rarely 

resulted in the doubling or halving of a gene’s expression. Finally it must be noted 

that PCAs showed that mouse sex was a significant factor in differentiating the 

samples; correlating with the second largest factor after genotype. It is possible that 

this is a factor in non-significance of genes and the appropriate solution would be to 

utilise a larger sample set. As it stands if the samples were split by sex, 4 Hets vs 3 

WTs would not be an adequate sample size for multiple qPCRs. As to the genes 

which were actually confirmed, a number of highly relevant genes were shown to be 

differentially expressed. These findings and their possible relevance are discussed 

below, along with other differentially expressed genes and the gene ontologies 

overrepresented among them. In order to give a full and complete discussion, 

reference is made to the results of the EWCE analysis, a summary of which is given 

in the relevant chapter. This discussion therefore covers i) the altered genes, ii) which 

cells and activities these appear to be related to, and iii) how this might result in 

deleterious phenotypes.  
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Human genes I confirmed by qPCR included BBS1, CALB1, DRD2, GPC1,METRN, 

NTRK2, QKI, with confirmed exon level changes in DPYSL3, NTRK2, and SLC12A2. 

All of these, except for DRD2, were downregulated. Mouse confirmed cortical 

changes included Arc and Avp, both in the heterozygote, both downregulated. 

Summaries of all genes can be found in the relevant sections of Chapters 3 and 4. 

8.3 Deconvolution analysis 

The purpose of the deconvolution analysis, utilising DeconRNASeq developed by 

Gong et  al., was to search for changes in cell specific marker expression indicating 

differences in prevalence of these cell types
135

. Unlike the EWCE analysis of Skene 

et al., this is roughly quantitative and takes account of the direction of gene 

expression changes, and makes the assumption that consistent changes in expression 

of sets of cell specific markers indicate changes in cell proportions. Two separate 

sets of analyses were carried out for the deconvolution analysis for both mouse 

datasets as well as the human dataset. The first utilised the RNA-Seq data of enriched 

profiles described by Zhang et al. and looked at broad class level differences in the 

prevalence of each cell type
203

. The second looked at scRNA-Seq data generated by 

Zeisel et al., and looked at subclass level differences
157

. A third, minor analysis 

involved the use of data generated by Darmanis et al., specifically to give a human to 

human comparison for class level data
295

. In all cases, different numbers of marker 

genes and housekeeping normalising genes were utilised, and these settings were 

verified using pseudosamples. 

The Zhang cortical analysis was characterised by quite high accuracy in the 

deconvolution of pseudosamples, with mean absolute difference in proportion of the 

6 cell types being an average of around 6% between predicted and actual 

proportions. The comparison dataset, Zhang Two, was also highly well predicted and 

these enriched samples were identified as being over 95% of the correct cell type, 

except at high marker numbers which tend to incorporate markers of reduced 

specificity. The cortical samples in the Zhang Two dataset bear high similarity in cell 

proportions, to the proportions found in our sample deconvolutions. The 

hippocampal deconvolution was highly similar, with even better accuracy of 
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pseudosample deconvolution, as were the human Zhang and Darmanis 

deconvolutions. These all also noted that higher marker numbers were suboptimal. 

Overall these are reassuring proofs as to the validity of the deconvolution. There was 

no genotype effect on any cell type in the hippocampal or cortical Der1 samples that 

showed pairwise significance. The human results however bore some significances; 

the Zhang analysis showed a mild but universally significant effect on astrocyte 

proportions (decreased in t(1;11)) which survived multiple testing correction (Sidak-

Bonferroni). Astrocytes had also been shown to be frequently significant in the 

mouse cortical analysis, though never in pairwise comparisons. In contrast, the 

highly variable Darmanis deconvolution had no clear effect.  

To conclude, there are no changes which survived post-hoc significance testing in the 

Der1 mouse samples. However, it is possible that astrocytic proportions or 

transcriptional activity are altered in the human cells. The Group One and Group 

Two of the cortical homozygotes also were more divergent from one another when t-

tests were carried out, indicating greater dysfunction. This ties in with the results of 

the EWCE implicating astrocytes universally, and indicates that the dysfunction 

thereof is due to decreased cell numbers or activity.  

The Zeisel analysis had diverging results. In all cases, confidence in these results 

must be lower, as the comparative dataset deconvolution showed very poor 

prediction, and in any case poor housekeeping expression across the comparative 

Allen dataset means there were few cells of some types to compare to. Mean absolute 

difference for pseudosamples was also worse than in the Zhang analysis; minimums 

of 20% for cortical, 24% for hippocampal, 14% for human. These are, in real terms, 

quite large margins of error. This is to be expected given the larger number of cell 

types. The cortical analyses were highly dependent on whether Der1 homozygous 

cortical samples were split into two groups; this is an indication of the difference of 

these two sample sets, as also shown by the Zhang analysis. Results were also quite 

dependant on deconvolution settings; there were no cell types which displayed 

universal significance according to an ANOVA test, and only one pairwise 

difference between genotypes was ever reported significant (out of a large number). 

The cell type exhibiting the most common agreement on significance was Int10, with 
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a total of two thirds of the deconvolutions regarding it as significant when cortex 

homozygotes were split into two groups. Three variations were used for the cortical 

deconvolution, leaving out or merging certain cell types, and the Der1 sample 

proportions were quite similar regardless of this, with most cell types not changing a 

great deal if the deconvolution settings were the same. In contrast, changing 

deconvolution settings resulted in large changes in overall predicted cellular 

proportions. The hippocampal analysis was characterised by similar variation, 

particularly if the number of normalising housekeeping genes was altered, and no 

cell type displayed universal significance or posthoc testing significance. Int4 and 

Int14 showed the highest degree of support. The human analysis displayed no 

evidence for any cell types being significant.  

To conclude, it would be irresponsible to not be suspicious of the Zeisel 

deconvolution results. The high variation in pseudosample deconvolution and poor 

Allen prediction means they should not be relied upon. In any case, no cell type 

possessed universal significance across the deconvolution settings in any of the three 

analyses. As stated earlier, this poor prediction is an inevitable consequence of large 

numbers of cell types. In this light it is unsurprising that I could not carry out a 

reliable analysis. I do note that the cortical analyses changed drastically when the 

homozygote samples were split into groups or kept together; highlighting the 

divergence between these two groups.  

8.4 EWCE analysis 

The EWCE analysis revealed that differentially expressed genes were associated 

with a variety of cell classes, “AstrocyteEpendymal”, “PyrSS”, “Oligodendrocytes”, 

and “EndothelialMural” being significantly implicated in the human cells. The 

challenge is now to explore and explain the functional relevance of these 

implications. 

Pyramidal cells were significant in most analyses, although the exact GO terms and 

genes implicated tended to differ across the models. The human PyrSS genes were 

few in number and related primarily to gonadotrophin signalling. Those of the 

hippocampal heterozygous Der1 were primarily cell death related. The Der1 mouse 
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het cortex had a number of highly interesting and related genes altered, which in 

many cases converge on calcium influx. In addition to the subunits encoded by 

Cacnb3 and Cacng3, I noticed a co-dysregulation of Chnra7 (down), Chrnb2 (down), 

Lynx1 (up), and Lypd6 (up). There is a wealth of research into the latter two genes, 

which are related to the toxins in snake venoms and function as endogenous 

modulators of nicotinic acetylcholinergic receptors
296

. Lypd6 is highly enriched in 

neuronal tissue, and overexpression enhances nicotine-evoked calcium influx 

through nAChRs, while knockdown decreases this influx
296

. In contrast, knockdown 

of Lynx1 appears to enhance this influx. The authors also suggested that Lynx1 could 

exert a neuroprotective effect by preventing nAChRs-mediated excitotoxicity 
297

 

Lynx1 also controls dendritic spine dynamics; knockdown appears to increase the 

rate of dendritic spine formation and removal
298

, It has been referred to as a 

“cholinergic brake”, which rises in expression in adult life to block plasticity in the 

mouse visual cortex
299

.  

The nAchRs are described as having quite divergent effects on neuronal activity; 

expression of them in interneurons in cortical layers 2/3 means they have an 

inhibitory effect on pyramidal cells, whereas they appear to have an different role in 

layer 6 as they are expressed directly by the pyramidal cells themselves
300

. This 

appears to be via receptors containing the subunit encoded by Chrnb2, and results in 

the strengthening of glutamatergic synapses. Nicotine can stimulate LTP in L6 

neurons, but not the shallower layers, and the subunit composition of the receptor is 

important too. For example α7 encoded by Chrna7 is not necessary for nicotine-LTP 

in L6
300

. However, it is the case that the Der1 cortical samples and the t(1;11) 

neurons are not distinctly associated with any layer, and it is therefore premature to 

draw conclusions about the effect of disrupted cholinergic transmission on cells, 

given its layer specific effects. It is also the case that differential expression of Lynx1 

and Lypd6 in various cell types may modulate the effects of endogenous 

acetylcholine. One research group found these two “proto-toxins” are expressed in 

parvalbumin positive and somatostatin positive interneurons, respectively, and not 

co-expressed. Mice lacking Chrna7 also show deficits in parvalbumin positive 

interneurons, and that gene is downregulated in the Der1 heterozygous cortex
198

. The 
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Karolinska Institute dataset shows that Lynx1 is broadly and near equally expressed 

in pyramidal cells from multiple layers of the cortex, while Lypd6 is much more 

associated with interneurons (especially Sst
+
 ones). 

However it is highly interesting that Lynx1 is upregulated in the Der1 cortex while 

Chrnb2 is downregulated, implying diminished cholinergic receptor activity. A 

possible outcome from this would be diminished capacity for LTP in the mouse 

heterozygous cortex in the appropriate layers. Is the same situation occurring in the 

mouse heterozygous hippocampus? The pyramidal cells show clear convergences on 

cell death here, and surprisingly both Chrna4 and Lypd6b are upregulated. α4 

(upregulated in the het hippocampus) and β2 (downregulated in the het cortex) 

subunits together form a nicotinic receptor. Unfortunately there is little information 

available on Lypd6b at present, but if it is similar to Lypd6 this is evidence that the 

nicotinic situation is reversed in the hippocampus compared to the cortex. 

Excitotoxicity could be the cause of the dysregulated cell death genes we observe. It 

must be stressed that this is a preliminary theory; there are of course many processes 

at work in neurons, and the dysregulations could be by chance. It must also be noted 

that in each brain region only one of the pair of subunits is dysregulated, but there are 

some interesting convergences on the theme of diminished synaptic activity in the 

cortex from other cell types. 

As mentioned previously, astrocytes are of immense importance to neuronal 

function, and have been designated as part of a “tripartite synapse” by some 

researchers. It has been shown that fluctuations in Ca
2+

 cytosolic concentration alter 

astrocytic activity, and that in vivo elevations of this concentration have been 

observed in response to synaptic release of norepinephrine and glutamate in the 

cortex
301

. Of direct relevance might be the role of astrocytes in clearing 

neurotransmitters, preventing excitotoxicity, and maintaining homeostasis. A number 

of differentially expressed genes which are most highly expressed in the 

“AstrocyteEpendymal” class are related to this very function. Glutamate is a 

particularly potent excitotoxic agent which is removed from the synaptic cleft by 

glutamate transporters EAAT1-4, with the first two being primary involved in this 

function and expressed in astrocytes
302

. SLC1A3, encoding EAAT1, is differentially 
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expressed, as is SLC1A6, encoding EAAT4, although this is described as a neuronal 

gene and correspondingly does not have its maximum expression in 

“AstrocyteEpendymal” cells
302

. Nevertheless downregulation of the gene in neurons 

would have a similar effect of excess synaptic glutamate. A similar scenario is seen 

with glycine, another neurotransmitter. Three of the four genes involved in the 

glycine cleavage/synthesis system are differentially expressed, as is the receptor 

GLRA1. Of the three, GLDC has maximum expression in astrocytes, while the other 

subunits DLD, GCSH, as well as GLRA1 are expressed across a variety of neurons. 

All the genes mentioned above are downregulated in the t(1;11) samples, with the 

exception of GLRA1. The functional implications of these changes would mean 

excess glutamate and glycine; possibly at the “trisynapse” given the role of 

astrocytes in clearing these neurotransmitters here and the fact that most of the genes 

are astrocyte-associated. The imbalance might have the effect of unusual synaptic 

plasticity, as synaptic NMDARs must be activated for both LTP/LTD and NMDAR-

mediated cell death
303

. However, it has been shown that these synaptic NMDARs 

exhibit a preference for D-serine rather than glycine as a co-agonist
303

, and in 

addition that high levels of glycine can stimulate LTD in opposition to LTP
304

. 

Astrocytes themselves do release neurotransmitters, including D-serine and 

glutamate in response to neuronal activity
301

. This has been shown to modulate 

plasticity via NMDARs, and it is the case that impaired clearance of 

neurotransmitters, regardless of neuronal or astrocytic source, could result in aberrant 

plasticity or even cell death. The dysregulation of both the glycine and glutamate 

neurotransmitters is therefore some evidence for aberrant activity of NMDARs. The 

findings of our research group, published as Malavasi et al. 2018, showed evidence 

for potential weaker synaptic activity in Der1 mice; as suggested by total PSD-95 

prevalence being unchanged but its distribution shifted towards less nanodomains per 

PSD-95 cluster
70

. In this context, the human t(1;11) alterations fit perfectly and give 

a potential explanation for this finding; aberrant LTD. The calcium/nicotinergic 

transcriptional alterations seen in the mouse Der1 cortical heterozygote also fit well 

with the phenotypes observed by Malavasi et al.. 
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A second theme in the universally altered “AstrocyteEpendymal” cell set was fatty 

acid and lipid metabolism. Human genes included CPT2, ECI2 (fatty acid oxidisers), 

GPC5, and IMPA2 (lipid phosphatase). Cpt2 was also changed in the mouse 

homozygous G1 group, as was Cpt1a in the mouse heterozygote. Apoe was altered in 

all three mouse groups, although I could not confirm this with qPCR in the mouse 

cortical heterozygote. Myelin is an unusually lipid-heavy construct; 70% of the dry 

weight is composed of lipid. Astrocytes can promote the myelination of neurons in 

oligodendrocyte-neuron culture, and it has been shown that they are a source of the 

lipids needed to form myelin. SCAP, the sterol sensor which activates cholesterol 

and fatty acid related transcription factors in astrocytes, is important for myelination 

formation in mice. Mice with SCAP
-
 oligodendrocytes have a neurological 

phenotype (microcephaly, tremors, increased lethality) and hypomyelination. Mice 

lacking the same protein in astrocytes also displayed microcephaly, hypomyelination, 

and downregulated Mag and Mbp
305

. This has crucial implications for proper 

neuronal functioning. Cholesterol has been shown to have effects on synapse 

formation too. Both glial-derived media containing cholesterol, and cholesterol itself, 

increase electrophysiological activity and synapsin/glutamate receptor staining in 

neurites
306

. It has been suggested that the carrying agent for this cholesterol is Apoe-

positive lipoproteins
307

. More recent papers have shown that increased cholesterol 

elimination boosts dendritic output, which suggests that less cholesterol is better for 

synaptic activity
308

. These authors also reported increased phosphorylation of Trk 

compared to TrkB, although total levels of TrkB (encoded by Ntrk2, homologue 

confirmed differentially expressed in t(1;11) neurons by qPCR) were not reported. 

The authors suggested that this might be related to the distribution of lipids and TrkB 

in the cell membrane
308

. This also suggests that fatty acid metabolism in neurons 

alone, even without accompanying glia, is important. Therefore whether in neurons 

or astrocytes (which should be present in some proportion in our samples) the 

alterations in fatty acid metabolism matter. Given the deficit in lipid metabolism by 

astrocyte-associated genes, and the dysregulation of Apoe in all mouse models 

examined here, one might expect it to be the case that the t(1;11) and Der1 models 

display myelination deficits. It must be noted that as the Apoe changes were not 

significant at qPCR level, the changes are either minor, not genuine, or the small 
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sample size makes discovery difficult. Expression was also not investigated in the 

cortical homozygotes.  

The human cells, as well as the Der1 homozygote cortex Group Two, had the cell 

type “Oligodendrocytes” significantly associated with differentially expressed genes. 

The Der1 cortex Group Two oligodendrocyte genes have a clear association with 

myelination, with Mbp, Mag, and Plpl1 being differentially expressed and associated 

with this term. Similarly, this thesis shows that the human gene QKI, a regulator of 

these crucial myelination genes, is differentially expressed in the t(1;11) cultures
216

. 

There is no evidence of differential proportions of oligodendrocytes as shown by my 

deconvolution analysis. The t(1;11) cultures should not contain a large number of 

oligodendrocytes, but as described earlier in the QKI section of Chapter 3 reasonable 

expression of immature markers is observed. Qk (the QKI homologue) is also 

reasonably expressed across cell types in the Karolinska Institute superset; mostly in 

astrocytes and oligodendrocytes, but with some expression in pyramidal and neural 

progenitor cells. Also dysregulated in the human neurons are NRG1 and ERBB4
70

. 

Interestingly, multiple papers have shown that inadequate signalling of this receptor-

ligand pair results in myelination deficits. NRG1 promotes the survival, migration, 

and proliferation of Schwann cells, while mouse lines with dominant-negative Erbb 

receptors in oligodendrocytes and myelinating cells have thinner neurons, abnormal 

myelination forming, and abnormal expression of myelination proteins including 

Mbp (but not Mag)
309

. The group went on to show these mice had hypersensitivity to 

amphetamine, greater dopamine-induced signalling, and increased dopamine receptor 

expression (type 1 significant, no stated distinction between receptors within this 

type)
310

. Drd1 and Drd2 are both dysregulated in the cortical Der1 homozygotes 

(both up in Group One, down in Group Two), and DRD2 is qPCR confirmed as 

differentially expressed in the t(1;11) neurons. It is, to reiterate, a target of anti-

psychotic medication.  

Relevant to this cell type is the publication of a recent paper examining iPSC-derived 

t(1;11) carrying oligodendrocytes, as well as myelination phenotypes of the Der1 

mice, and members of the Scottish pedigree
311

. They found t(1;11) carriers of the 

pedigree, 8 in total, all with a psychiatric diagnosis, had altered white matter 
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connectivity compared to 13 controls (12 without a diagnosis, one with). The white 

matter tracts connecting grey matter nodes were decreased in strength and in number, 

by a mean of 1.81% and 1.64% respectively. iPSC-derived oligodendrocytes carrying 

the t(1;11) had a lower proportion of KI-67
+
 differentiating cells after three weeks, as 

well as drastically reduced DISC1, expressed at 30% of the WT level. This implies 

erroneous early development; as also suggested in t(1;11) neurons by my findings 

that the differentiation stage expressed genes GPC1, METRN, SLC12A2 (exon level) 

are downregulated. RNA-Seq showed differential expression of 228 genes, with GO 

terms such as “nervous system development” and “myelination” overrepresented. 

Oligodendrocytes were smaller in t(1;11) carrying lines, and the Der1 mouse 

heterozygous cortex showed unusual myelination, with more myelin sheaths and 

shorter myelin internode lengths. The authors also noted that oligodendrocytes have 

been associated with schizophrenia in particular previously
311

. 

To summarise these papers, EWCE findings, and qPCR results; 

i. Other researchers have shown abnormalities of white matter in the t(1;11) 

family, and that the Der1 mouse cortex and t(1;11) carrying oligodendrocytes 

are abnormal. The mice have deficits in myelination, while the cells are 

smaller and appear to differentiate abnormally, apparently earlier. 

ii. Researchers have also shown that myelination deficits result from impaired 

Nrg1/Erbb4 signalling, and the consequences include amphetamine 

sensitization caused by upregulated dopamine receptors. 

iii. Other researchers have shown that astrocytes are a crucial source of fatty 

acids for the synthesis of myelin in oligodendrocytes. 

iv. Astrocytes are also important for the buffering of glutamate, glycine, and 

other neurotransmitters, which aids in synaptic plasticity. They also produce 

cholesterol, carried by Apoe, which can cause TrkB phosphorylation ratio 

changes and also impacts on synaptic plasticity. 
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v. I have demonstrated here the dysregulation of functions relating to these 

factors. Downregulation of QKI (point i, myelination), of 

SLC12A2/GPC1/METRN (point i, development), of NTRK2 (point iv, both 

gene and exon) were proven by qPCR. Notably, Apoe could not be confirmed 

in the mouse, but Arc downregulation may have relevance to synaptic 

plasticity. 

vi. The RNA-Seq implicates astrocyte neurotransmitter homeostasis in both 

mouse and human datasets (point iv), as well as astrocyte fatty acid 

metabolism (point iii, leading to point i and ii). 

vii.  Previously described were the downregulation of ERBB4 and NRG1, with 

the co-occurring upregulation of DRD2 (point ii)
70

.  

These papers, EWCE findings, and qPCR results are summarised in image form in 

Figure 102. 
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Figure 102. Conclusions of discussion. Cell types indicated by EWEC are represented by blue squares. Genes which are 

qPCR verified as differentially expressed in the t(1;11) iPSC-derived neurons are represented by circles; red indicating 

downregulated in t(1;11), green indicating upregulated in t(1;11).  

A logical conclusion can be developed from these findings and the links between 

them. The recent finding that myelin and white matter integrity is altered in 

oligodendrocytes and carriers of the t(1;11) fits cleanly with the convergence of two 

separate pathways on myelin production. The first is ERBB4/NRG1 signalling, 

leading to upregulation of dopamine receptor signalling and impaired myelination, 

while the second is astrocytic malfunction. This not only can alter the supply of fatty 

acids needed to produce myelin but also has effects on synaptic plasticity. There is 

evidence for altered synaptic activity in the Der1 mice and verified qPCR changes in 

related genes in the t(1;11) and Der1 samples. There is therefore a strong case for 

myelination and synaptogenesis being altered by t(1;11)/Der1, likely via one or both 

of the pathways of astrocytic malfunction and ERBB4/NRG1 signalling causing 

hyperdopaminergic signalling. 
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Exactly how myelination and synaptogenesis, and hypomyelination and synaptic 

weakening specifically, are related is difficult to say. However, a review by 

O’Rourke et al. notes that “OPCs are the only glial cell type to receive direct 

synaptic input from neurons…and glutamatergic synaptic signalling can direct the 

local translation of a myelin protein (myelin basic protein) at the site of axon-OPC 

contact in vitro”. There are clearly links between the two processes which enhance 

the communicative aspects of neuronal activity, and the findings of this thesis and 

recent papers point towards these links as potentially being important in major 

mental illness. 

8.5 Future directions 

This thesis has highlighted the disruption of many functions in the t(1;11) neuron 

cultures, and described a plausible dysregulation in the activity or proportion of 

astrocytes or related functions. The high level of overlap between the t(1;11) neuron 

cultures and Der1 mice, especially as regards the EWCE analyses, implies that the 

Der1 mouse accurately models some aspects of the t(;11). As described above, there 

are extensive links between synaptic dysregulation (notably dopaminergic 

hyperfunctioning and ERBB4/NRG1 signalling), myelination, and astrocyte 

homeostasis and metabolic support. Future approaches involving the t(1;11) could be 

biochemical and investigate these disturbed processes, although the relative 

immaturity of the iPSC-derived neurons make this difficult. Responses of the cells to 

dopamine, glutamate, and other neurotransmitters, as well as drugs, would be highly 

interesting and could utilise the Der1 if the t(1;11) neurons are not sufficiently 

mature. Other potential avenues of experimentation could involve the BBS subunits, 

which are important for early cellular migration and division. Dendritic outgrowth is 

also a target for future work. One drawback of the “cells-in-a-dish” approach is the 

difficulty in accessing the cell-specific effects of receptors such as the nAchRs; as 

described above, these have diverging effects in different layers of the cortex.  

Now that an oligodendrocyte t(1;11) model has been made which displays abnormal 

phenotypes, the obvious next move is to examine an astrocytic t(1;11) model. This 

would be of high interest; interactions between t(1;11) astrocytes and other cell types 
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(neurons, oligodendrocytes) could be examined by co-culture and compared to WT 

astrocytes. Indeed, t(1;11) neurons and oligodendrocytes would allow the examining 

of emergent phenotypes only evident when several cell types carry a mutation. In 

nature, all these cells have the t(1;11), and the most accurate insights will come from 

an experimental design that acknowledges this. Astrocytes have already been 

generated from iPSCs with protocols that report near universal expression of 

astrocytic markers and efficient generation
312

. Some of these papers, which mainly 

focus on neurodegenerative diseases, have specifically sought to examine the non-

cell autonomous nature of those diseases. They therefore utilised cell co-cultures, 

examining phenotypes of relevance to neurodegeneration
313

. Could this be extended 

to RNA-Seq? There exist bioinformatics methods to extract the individual RNA-Seq 

profiles of mixed cultures, where each cell type originates from a different species
314

. 

In theory, this could be used to examine the status of each cell type, e.g., t(1;11) 

neurons and Der1 mouse astrocytes cultured together vs t(1;11) neurons and WT 

mouse astrocytes. This would sacrifice some accuracy (as mouse astrocytes are not 

human astrocytes) but would allow RNA-Seq analysis of individual cell types. The 

added advantage is that both of these models already exist, and as this thesis shows, 

astrocytes appear to be highly important to t(1;11) pathology. 
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9 APPENDIX 
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9.1 Exon illustrations in selected qPCR DEXSeq candidates 

Differentially expressed exons which were targeted with primer pairs are highlighted 

with a red circle. Images taken from UCSC Genome Browser. 

9.1.1 DLG2 

 

9.1.2 DPYSL2 

  

9.1.3 DPYSL3 
 

  

9.1.4 DVL1 

Note that two related exons are within the circle. The non-overlapping part of the 

larger exon is where one primer was located, while the second was in an adjacent 

exon. 
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9.1.5 GRIA4 
 

 

9.1.6 NTRK2 

 

9.1.7 NTRK3 

 

9.1.8 SHTN1 

 

9.1.9 SLC12A2 
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9.2 Dissociation curves of human qRT-PCR products, showing 

a single product (flat lines are negative controls). 
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Process P-value FDR q-value Enrichment Function P-value FDR q-value Enrichment Component P-value FDR q-value Enrichment

cellular metabolic process 5.51E-20 8.45E-16 1.61 binding 3.49E-11 1.58E-07 1.21 intracellular organelle part 4.53E-34 8.79E-31 1.73

macromolecule metabolic process 6.58E-19 5.05E-15 1.7 ubiquitin-like protein binding 2.11E-09 4.76E-06 6.59 intracellular part 7.28E-33 7.05E-30 1.33

metabolic process 6.28E-18 3.21E-14 1.51 organic cyclic compound binding 9.16E-09 1.38E-05 1.44 organelle part 2.26E-31 1.46E-28 1.67

nitrogen compound metabolic process 8.58E-18 3.29E-14 1.61 RNA binding 1.20E-08 1.36E-05 2.19 membrane-bounded organelle 4.95E-29 2.40E-26 1.46

primary metabolic process 2.10E-16 6.44E-13 1.54 heterocyclic compound binding 2.41E-08 2.18E-05 1.43 intracellular membrane-bounded organelle 1.06E-28 4.11E-26 1.5

macromolecule catabolic process 2.28E-16 5.83E-13 3.2 ubiquitin binding 3.33E-08 2.51E-05 6.98 protein-containing complex 7.75E-27 2.50E-24 1.81

organic substance metabolic process 2.76E-15 6.05E-12 1.5 nucleoside phosphate binding 1.30E-07 8.36E-05 1.73 intracellular organelle 4.96E-25 1.37E-22 1.39

cellular macromolecule metabolic process 1.88E-14 3.61E-11 1.72 nucleotide binding 1.30E-07 7.31E-05 1.73 organelle 5.04E-24 1.22E-21 1.37

proteolysis involved in cellular protein catabolic process 2.69E-14 4.59E-11 3.54 catalytic activity 1.57E-07 7.86E-05 1.37 nuclear part 6.27E-22 1.35E-19 1.92

cellular macromolecule catabolic process 9.32E-14 1.43E-10 3.18 small molecule binding 6.79E-07 3.06E-04 1.62 cytoplasmic part 1.15E-20 2.23E-18 1.49

modification-dependent macromolecule catabolic process 1.36E-13 1.90E-10 3.63 ubiquitin-like protein ligase binding 1.07E-06 4.39E-04 3.01 catalytic complex 1.09E-18 1.92E-16 2.7

protein metabolic process 1.69E-13 2.16E-10 1.76 ubiquitin protein ligase binding 1.32E-06 4.98E-04 3.06 cell part 3.05E-18 4.93E-16 1.19

modification-dependent protein catabolic process 2.88E-13 3.40E-10 3.62 protein binding 2.50E-06 8.67E-04 1.23 proteasome accessory complex 5.27E-14 7.85E-12 23.99

ubiquitin-dependent protein catabolic process 4.82E-13 5.28E-10 3.64 modification-dependent protein binding 2.81E-06 9.05E-04 4.21 mitochondrial part 1.66E-13 2.30E-11 2.87

cellular localization 7.50E-13 7.66E-10 2.09 purine ribonucleoside triphosphate binding 3.49E-06 1.05E-03 1.7 mitochondrial protein complex 6.75E-13 8.72E-11 4.73

proteolysis 6.92E-12 6.63E-09 2.48 ribonucleotide binding 5.34E-06 1.51E-03 1.67 mitochondrion 8.14E-13 9.86E-11 2.14

cellular catabolic process 9.71E-12 8.76E-09 2.24 purine ribonucleotide binding 7.39E-06 1.96E-03 1.66 peptidase complex 8.96E-13 1.02E-10 8.29

macromolecule localization 1.51E-11 1.29E-08 2.04 proteasome-activating ATPase activity 7.51E-06 1.88E-03 24.72 nucleoplasm 1.82E-12 1.96E-10 2.02

catabolic process 1.76E-11 1.42E-08 2.12 nucleoside-triphosphatase activity 7.82E-06 1.86E-03 2.04 nucleus 2.25E-12 2.29E-10 1.48

intracellular transport 3.84E-11 2.94E-08 2.31 purine nucleotide binding 9.30E-06 2.10E-03 1.65 proteasome regulatory particle 1.14E-11 1.10E-09 29.66

organonitrogen compound metabolic process 5.26E-11 3.84E-08 1.57 pyrophosphatase activity 1.48E-05 3.17E-03 1.97 organelle membrane 2.10E-11 1.94E-09 2.17

protein localization 1.01E-10 7.04E-08 1.99 hydrolase activity, acting on acid anhydrides 1.61E-05 3.31E-03 1.96 proteasome complex 5.32E-11 4.68E-09 9.12

protein catabolic process 1.37E-10 9.15E-08 3.5 hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides 1.61E-05 3.16E-03 1.96 endopeptidase complex 6.84E-11 5.77E-09 8.97

establishment of protein localization 1.39E-10 8.85E-08 2.23 ubiquitin-specific protease binding 2.29E-05 4.31E-03 13.24 ribonucleoprotein complex 1.06E-10 8.58E-09 2.51

organic substance catabolic process 2.65E-10 1.63E-07 2.15 ATP binding 2.31E-05 4.18E-03 1.71 proteasome regulatory particle, base subcomplex 1.19E-10 9.24E-09 24.72

9.3 Dissociation curves of mouse qRT-PCR products, showing 

a single product in all qPCRs (and blue flat lines in negative 

controls). 

 

9.4 Top 25 GO terms for housekeeping genes chosen in 

deconvolution, by Process, Function, and Component 

9.4.1 Cortex Zhang 

 

9.4.2 Cortex Zeisel 

 

Process P-value FDR q-value Enrichment Function P-value FDR q-value Enrichment Component P-value FDR q-value Enrichment

translation 3.59E-51 5.50E-47 9.44 structural constituent of ribosome 2.19E-47 9.91E-44 12.25 protein-containing complex 1.11E-67 2.16E-64 2.31

peptide biosynthetic process 2.80E-49 2.14E-45 8.93 RNA binding 2.89E-36 6.54E-33 3.9 intracellular organelle part 8.91E-63 8.69E-60 1.98

peptide metabolic process 1.26E-44 6.44E-41 6.98 structural molecule activity 5.66E-27 8.53E-24 4.26 organelle part 1.25E-59 8.16E-57 1.91

amide biosynthetic process 7.68E-43 2.94E-39 7.09 rRNA binding 1.54E-17 1.74E-14 11.06 intracellular part 3.00E-58 1.46E-55 1.41

cellular amide metabolic process 1.71E-36 5.25E-33 5.04 mRNA binding 4.73E-17 4.28E-14 5.39 ribonucleoprotein complex 2.79E-55 1.09E-52 5.18

cellular nitrogen compound biosynthetic process 7.06E-35 1.80E-31 3.71 nucleic acid binding 6.03E-17 4.55E-14 1.92 ribosome 5.02E-54 1.63E-51 12.61

cellular macromolecule biosynthetic process 7.64E-34 1.67E-30 4.17 heterocyclic compound binding 4.86E-14 3.14E-11 1.59 cytoplasmic part 1.01E-49 2.80E-47 1.75

cellular nitrogen compound metabolic process 6.76E-33 1.29E-29 2.42 organic cyclic compound binding 1.35E-13 7.61E-11 1.57 intracellular organelle 6.18E-48 1.51E-45 1.52

macromolecule biosynthetic process 8.26E-33 1.41E-29 3.9 ribonucleoprotein complex binding 1.17E-12 5.88E-10 6.08 organelle 2.71E-45 5.88E-43 1.49

organonitrogen compound biosynthetic process 1.35E-32 2.07E-29 4.11 unfolded protein binding 1.21E-12 5.46E-10 7.6 cytosolic part 1.69E-42 3.29E-40 8.51

cellular metabolic process 2.36E-31 3.29E-28 1.77 protein-containing complex binding 1.24E-12 5.10E-10 2.36 ribosomal subunit 5.78E-42 1.03E-39 9.84

metabolic process 9.57E-29 1.22E-25 1.65 enzyme binding 1.31E-11 4.92E-09 1.86 intracellular membrane-bounded organelle 3.11E-36 5.06E-34 1.55

cellular biosynthetic process 5.82E-25 6.86E-22 2.64 translation factor activity, RNA binding 2.61E-10 9.08E-08 7.52 cell part 1.52E-35 2.29E-33 1.25

macromolecule metabolic process 9.04E-25 9.90E-22 1.8 translation initiation factor activity 3.30E-10 1.07E-07 9.88 membrane-bounded organelle 2.79E-32 3.89E-30 1.48

nitrogen compound metabolic process 2.85E-24 2.92E-21 1.71 threonine-type endopeptidase activity 2.15E-09 6.49E-07 15.3 cytosolic large ribosomal subunit 1.96E-30 2.54E-28 14.73

cellular macromolecule metabolic process 8.23E-24 7.89E-21 1.95 threonine-type peptidase activity 2.15E-09 6.08E-07 15.3 mitochondrial part 4.10E-27 4.99E-25 3.86

cellular process 2.47E-23 2.23E-20 1.3 ubiquitin-like protein ligase binding 3.28E-09 8.73E-07 3.48 intracellular non-membrane-bounded organelle 4.74E-27 5.44E-25 2.23

organic substance biosynthetic process 1.57E-22 1.34E-19 2.48 ubiquitin protein ligase binding 3.87E-09 9.71E-07 3.55 non-membrane-bounded organelle 1.20E-26 1.30E-24 2.21

biosynthetic process 8.40E-22 6.78E-19 2.42 protein tag 3.88E-09 9.24E-07 22.72 inner mitochondrial membrane protein complex 8.28E-26 8.51E-24 10.65

organic substance metabolic process 1.45E-20 1.11E-17 1.58 NADH dehydrogenase (ubiquinone) activity 2.06E-08 4.67E-06 15.04 large ribosomal subunit 3.94E-25 3.84E-23 9.38

cellular protein metabolic process 1.61E-20 1.18E-17 2.14 NADH dehydrogenase (quinone) activity 2.06E-08 4.44E-06 15.04 mitochondrial membrane part 3.99E-24 3.71E-22 7.39

primary metabolic process 1.95E-19 1.36E-16 1.59 electron transfer activity 2.95E-08 6.07E-06 7.03 mitochondrial protein complex 2.59E-23 2.29E-21 6.47

protein metabolic process 5.00E-19 3.33E-16 1.91 large ribosomal subunit rRNA binding 3.66E-08 7.20E-06 23.81 catalytic complex 8.49E-23 7.20E-21 2.88

organonitrogen compound metabolic process 1.58E-17 1.01E-14 1.74 NADH dehydrogenase activity 8.11E-08 1.53E-05 12.98 mitochondrial inner membrane 9.00E-23 7.32E-21 5.09

cellular protein-containing complex assembly 2.33E-17 1.43E-14 3.36 proton transmembrane transporter activity 9.07E-08 1.64E-05 5.1 mitochondrial membrane 1.14E-21 8.88E-20 4.14



Appendix 

374  

9.4.3 Hippocampus Zhang 

 

9.4.4 Hippocampus Zeisel 

 

9.4.5 t(1;11) neurons Zhang 

 

9.4.6 t(1;11) neurons Zeisel 

 

Process P-value FDR q-value Enrichment Function P-value FDR q-value Enrichment Component P-value FDR q-value Enrichment

cellular metabolic process 4.29E-26 6.57E-22 1.71 binding 3.49E-11 1.58E-07 1.21 intracellular organelle part 4.53E-34 8.79E-31 1.73

macromolecule metabolic process 9.43E-25 7.23E-21 1.82 ubiquitin-like protein binding 2.11E-09 4.76E-06 6.59 intracellular part 7.28E-33 7.05E-30 1.33

nitrogen compound metabolic process 9.06E-24 4.63E-20 1.72 organic cyclic compound binding 9.16E-09 1.38E-05 1.44 organelle part 2.26E-31 1.46E-28 1.67

metabolic process 2.89E-22 1.11E-18 1.58 RNA binding 1.20E-08 1.36E-05 2.19 membrane-bounded organelle 4.95E-29 2.40E-26 1.46

primary metabolic process 9.90E-22 3.03E-18 1.64 heterocyclic compound binding 2.41E-08 2.18E-05 1.43 intracellular membrane-bounded organelle 1.06E-28 4.11E-26 1.5

organic substance metabolic process 3.71E-21 9.47E-18 1.6 ubiquitin binding 3.33E-08 2.51E-05 6.98 protein-containing complex 7.75E-27 2.50E-24 1.81

cellular macromolecule metabolic process 3.34E-18 7.30E-15 1.83 nucleoside phosphate binding 1.30E-07 8.36E-05 1.73 intracellular organelle 4.96E-25 1.37E-22 1.39

protein metabolic process 2.43E-17 4.66E-14 1.88 nucleotide binding 1.30E-07 7.31E-05 1.73 organelle 5.04E-24 1.22E-21 1.37

macromolecule catabolic process 6.09E-17 1.04E-13 3.25 catalytic activity 1.57E-07 7.86E-05 1.37 nuclear part 6.27E-22 1.35E-19 1.92

proteolysis involved in cellular protein catabolic process 6.16E-17 9.44E-14 3.85 small molecule binding 6.79E-07 3.06E-04 1.62 cytoplasmic part 1.15E-20 2.23E-18 1.49

modification-dependent macromolecule catabolic process 6.21E-17 8.65E-14 4.05 ubiquitin-like protein ligase binding 1.07E-06 4.39E-04 3.01 catalytic complex 1.09E-18 1.92E-16 2.7

modification-dependent protein catabolic process 1.33E-16 1.70E-13 4.05 ubiquitin protein ligase binding 1.32E-06 4.98E-04 3.06 cell part 3.05E-18 4.93E-16 1.19

ubiquitin-dependent protein catabolic process 2.17E-16 2.56E-13 4.08 protein binding 2.50E-06 8.67E-04 1.23 proteasome accessory complex 5.27E-14 7.85E-12 23.99

proteolysis 5.06E-16 5.54E-13 2.81 modification-dependent protein binding 2.81E-06 9.05E-04 4.21 mitochondrial part 1.66E-13 2.30E-11 2.87

cellular macromolecule catabolic process 1.55E-15 1.58E-12 3.36 purine ribonucleoside triphosphate binding 3.49E-06 1.05E-03 1.7 mitochondrial protein complex 6.75E-13 8.72E-11 4.73

organonitrogen compound metabolic process 2.75E-15 2.64E-12 1.7 ribonucleotide binding 5.34E-06 1.51E-03 1.67 mitochondrion 8.14E-13 9.86E-11 2.14

cellular localization 7.20E-15 6.49E-12 2.19 purine ribonucleotide binding 7.39E-06 1.96E-03 1.66 peptidase complex 8.96E-13 1.02E-10 8.29

macromolecule localization 1.62E-13 1.38E-10 2.14 proteasome-activating ATPase activity 7.51E-06 1.88E-03 24.72 nucleoplasm 1.82E-12 1.96E-10 2.02

protein catabolic process 4.58E-13 3.69E-10 3.88 nucleoside-triphosphatase activity 7.82E-06 1.86E-03 2.04 nucleus 2.25E-12 2.29E-10 1.48

intracellular transport 6.91E-13 5.29E-10 2.44 purine nucleotide binding 9.30E-06 2.10E-03 1.65 proteasome regulatory particle 1.14E-11 1.10E-09 29.66

cellular protein metabolic process 2.40E-12 1.75E-09 1.86 pyrophosphatase activity 1.48E-05 3.17E-03 1.97 organelle membrane 2.10E-11 1.94E-09 2.17

protein localization 3.14E-12 2.19E-09 2.08 hydrolase activity, acting on acid anhydrides 1.61E-05 3.31E-03 1.96 proteasome complex 5.32E-11 4.68E-09 9.12

proteasomal protein catabolic process 1.48E-11 9.87E-09 4.09 as above, in phosphorus-containing anhydrides 1.61E-05 3.16E-03 1.96 endopeptidase complex 6.84E-11 5.77E-09 8.97

cellular nitrogen compound metabolic process 2.93E-11 1.87E-08 1.76 ubiquitin-specific protease binding 2.29E-05 4.31E-03 13.24 ribonucleoprotein complex 1.06E-10 8.58E-09 2.51

catabolic process 4.59E-11 2.82E-08 2.09 ATP binding 2.31E-05 4.18E-03 1.71 proteasome regulatory particle, base subcomplex 1.19E-10 9.24E-09 24.72

Process P-value FDR q-value Enrichment Function P-value FDR q-value Enrichment Component P-value FDR q-value Enrichment

translation 1.55E-11 2.38E-07 15.09 RNA binding 1.23E-10 5.54E-07 6.32 protein-containing complex 8.90E-11 1.72E-07 2.57

peptide biosynthetic process 2.97E-11 2.28E-07 14.27 mRNA binding 2.64E-08 5.96E-05 12.94 ribonucleoprotein complex 1.07E-10 1.04E-07 6.95

cellular nitrogen compound biosynthetic process 4.20E-11 2.15E-07 6.22 heterocyclic compound binding 4.31E-08 6.48E-05 2.41 ribosome 2.25E-09 1.45E-06 17.16

cellular macromolecule biosynthetic process 4.91E-11 1.88E-07 7.31 nucleic acid binding 4.71E-08 5.31E-05 3.05 myelin sheath 5.16E-08 2.50E-05 15.09

macromolecule biosynthetic process 2.67E-10 8.18E-07 6.55 organic cyclic compound binding 6.48E-08 5.85E-05 2.37 intracellular part 6.16E-08 2.39E-05 1.44

amide biosynthetic process 5.65E-10 1.44E-06 11.05 translation factor activity, RNA binding 7.48E-08 5.63E-05 27.69 intracellular non-membrane-bounded organelle 1.67E-07 5.38E-05 2.98

peptide metabolic process 1.20E-09 2.62E-06 10.34 nucleoside-triphosphatase activity 1.99E-07 1.28E-04 5.84 non-membrane-bounded organelle 1.93E-07 5.36E-05 2.96

cellular biosynthetic process 1.44E-08 2.76E-05 4.13 pyrophosphatase activity 3.88E-07 2.19E-04 5.51 cytoplasmic part 3.73E-07 9.03E-05 1.82

organonitrogen compound biosynthetic process 4.11E-08 7.00E-05 6.03 hydrolase activity, acting on acid anhydrides 4.04E-07 2.03E-04 5.49 intracellular organelle 6.56E-07 1.41E-04 1.56

organic substance biosynthetic process 4.24E-08 6.50E-05 3.88 as above, in phosphorus-containing anhydrides 4.04E-07 1.83E-04 5.49 organelle 1.49E-06 2.90E-04 1.53

cellular nitrogen compound metabolic process 6.45E-08 8.98E-05 3.13 structural constituent of ribosome 4.50E-07 1.85E-04 14.7 intracellular organelle part 6.30E-06 1.11E-03 1.84

biosynthetic process 7.19E-08 9.18E-05 3.76 unfolded protein binding 7.01E-06 2.64E-03 18.66 organelle part 6.38E-06 1.03E-03 1.8

cellular amide metabolic process 9.75E-08 1.15E-04 6.96 purine ribonucleoside triphosphate binding 7.45E-06 2.59E-03 3.43 cytosolic part 1.26E-05 1.88E-03 8.9

nitrogen compound metabolic process 1.88E-06 2.06E-03 2.07 CTP binding 7.97E-06 2.57E-03 350.77 cell part 2.87E-05 3.97E-03 1.26

cellular macromolecule metabolic process 4.91E-06 5.01E-03 2.41 purine ribonucleotide binding 1.21E-05 3.65E-03 3.3 intracellular membrane-bounded organelle 2.87E-05 3.71E-03 1.58

protein localization 1.14E-05 1.09E-02 3.32 purine nucleotide binding 1.32E-05 3.72E-03 3.28 ribosomal subunit 2.99E-05 3.63E-03 9.93

cellular metabolic process 1.21E-05 1.09E-02 1.92 ribonucleotide binding 1.35E-05 3.58E-03 3.27 polysomal ribosome 6.81E-05 7.76E-03 37.58

macromolecule localization 1.33E-05 1.13E-02 3.28 translation elongation factor activity 1.44E-05 3.62E-03 61.9 cytosolic large ribosomal subunit 7.17E-05 7.72E-03 17.99

primary metabolic process 1.34E-05 1.08E-02 1.91 ATPase activity 2.18E-05 5.17E-03 6.73 smooth endoplasmic reticulum 9.28E-05 9.47E-03 33.95

establishment of localization in cell 1.54E-05 1.18E-02 3.67 sulfonylurea receptor binding 2.39E-05 5.39E-03 233.85 membrane-bounded organelle 2.24E-04 2.17E-02 1.47

macromolecule metabolic process 1.67E-05 1.22E-02 2.08 GTP binding 3.39E-05 7.28E-03 7.63 ribonucleoprotein granule 2.64E-04 2.44E-02 8.73

metabolic process 2.17E-05 1.51E-02 1.79 purine ribonucleoside binding 3.74E-05 7.67E-03 7.51 perinuclear region of cytoplasm 2.87E-04 2.53E-02 4.65

cellular protein metabolic process 2.34E-05 1.56E-02 2.72 purine nucleoside binding 4.04E-05 7.92E-03 7.42 mitochondrial proton-transporting ATP synthase complex, coupling factor F(o) 3.54E-04 2.98E-02 70.15

protein metabolic process 2.72E-05 1.74E-02 2.4 ribonucleoside binding 4.11E-05 7.74E-03 7.4 proton-transporting ATP synthase complex, coupling factor F(o) 4.31E-04 3.48E-02 63.78

organonitrogen compound metabolic process 3.29E-05 2.02E-02 2.17 rRNA binding 4.69E-05 8.46E-03 20.04 proteasome regulatory particle, base subcomplex 5.17E-04 4.00E-02 58.46

Process P-value FDR q-value Enrichment Function P-value FDR q-value Enrichment Component P-value FDR q-value Enrichment

regulation of mRNA metabolic process 1.47E-15 2.27E-11 10.09 RNA binding 1.56E-12 7.09E-09 3.44 protein-containing complex 3.83E-16 7.47E-13 2.22

mRNA processing 1.59E-14 1.22E-10 8.32 protein binding 1.01E-09 2.30E-06 1.41 catalytic complex 4.59E-12 4.48E-09 3.92

RNA splicing 7.83E-14 4.02E-10 8.91 threonine-type endopeptidase activity 1.87E-07 2.84E-04 36.88 intracellular organelle part 5.17E-11 3.37E-08 1.57

non-canonical Wnt signaling pathway 3.52E-12 1.35E-08 14.98 threonine-type peptidase activity 1.87E-07 2.13E-04 36.88 proteasome complex 2.08E-10 1.02E-07 22.5

regulation of cellular amino acid metabolic process 7.81E-12 2.40E-08 24.59 heterocyclic compound binding 4.37E-07 3.97E-04 1.69 endopeptidase complex 2.44E-10 9.51E-08 22.13

mRNA metabolic process 6.62E-11 1.70E-07 5.47 organic cyclic compound binding 7.43E-07 5.62E-04 1.67 organelle part 4.19E-10 1.36E-07 1.52

regulation of cellular amine metabolic process 1.18E-10 2.59E-07 18.91 nucleic acid binding 1.42E-06 9.22E-04 1.88 nuclear speck 4.74E-10 1.32E-07 6.8

regulation of transcription from RNA polymerase II promoter in response to stress 1.88E-10 3.61E-07 14.89 cytochrome-c oxidase activity 1.10E-05 6.23E-03 28.1 nucleoplasm 1.10E-09 2.69E-07 2.37

negative regulation of G2/M transition of mitotic cell cycle 2.81E-10 4.81E-07 17.36 oxidoreductase activity, acting on a heme group of donors, oxygen as acceptor 1.10E-05 5.54E-03 28.1 intracellular part 2.73E-09 5.93E-07 1.25

regulation of DNA-templated transcription in response to stress 3.06E-10 4.71E-07 14.23 heme-copper terminal oxidase activity 1.10E-05 4.98E-03 28.1 peptidase complex 3.82E-09 7.45E-07 16.39

regulation of G2/M transition of mitotic cell cycle 4.28E-10 5.98E-07 10.26 oxidoreductase activity, acting on a heme group of donors 1.33E-05 5.51E-03 26.82 nuclear part 3.89E-09 6.91E-07 1.97

regulation of mRNA catabolic process 4.57E-10 5.86E-07 10.2 enzyme binding 9.21E-05 3.49E-02 2.07 ribonucleoprotein complex 8.64E-09 1.41E-06 3.59

Wnt signaling pathway, planar cell polarity pathway 5.59E-10 6.61E-07 16.21 ATPase activity, coupled 1.11E-04 3.89E-02 4.31 cytosol 1.15E-08 1.73E-06 1.92

regulation of hematopoietic stem cell differentiation 6.77E-10 7.45E-07 19.82 proton transmembrane transporter activity 1.44E-04 4.69E-02 7.57 spliceosomal complex 1.38E-08 1.93E-06 9.96

NIK/NF-kappaB signaling 6.77E-10 6.95E-07 19.82 molecular_function 2.46E-04 7.45E-02 1.1 respiratory chain complex 1.63E-08 2.12E-06 17.61

positive regulation of Wnt signaling pathway 9.38E-10 9.02E-07 11 copper chaperone activity 2.71E-04 7.69E-02 73.76 membrane-bounded organelle 2.94E-08 3.59E-06 1.46

Fc receptor signaling pathway 9.38E-10 8.49E-07 11 ATP binding 3.77E-04 1.01E-01 2.24 nuclear body 7.22E-08 8.29E-06 4.1

negative regulation of cell cycle G2/M phase transition 9.53E-10 8.15E-07 15.37 cuprous ion binding 4.49E-04 1.13E-01 59.01 nucleoplasm part 8.89E-08 9.64E-06 3.42

antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent 1.15E-09 9.34E-07 18.7 electron transfer activity 5.92E-04 1.41E-01 7.38 catalytic step 2 spliceosome 9.90E-08 1.02E-05 14.05

regulation of cell cycle G2/M phase transition 1.18E-09 9.05E-07 9.45 ATPase activity 6.17E-04 1.40E-01 3.48 intracellular organelle 1.27E-07 1.24E-05 1.43

positive regulation of canonical Wnt signaling pathway 1.37E-09 1.00E-06 12.39 adenyl ribonucleotide binding 6.30E-04 1.36E-01 2.15 proteasome core complex 1.41E-07 1.31E-05 38.82

regulation of transcription from RNA polymerase II promoter in response to hypoxia 1.68E-09 1.18E-06 17.94 mRNA binding 6.30E-04 1.30E-01 3.79 nucleus 2.85E-07 2.53E-05 1.77

antigen processing and presentation of exogenous peptide antigen via MHC class I 1.90E-09 1.27E-06 17.7 nucleotide binding 6.55E-04 1.29E-01 1.94 organelle 4.34E-07 3.68E-05 1.35

Fc-epsilon receptor signaling pathway 1.92E-09 1.23E-06 14.32 nucleoside phosphate binding 6.60E-04 1.25E-01 1.93 intracellular membrane-bounded organelle 4.55E-07 3.70E-05 1.52

regulation of establishment of planar polarity 2.11E-09 1.30E-06 14.18 proteasome-activating ATPase activity 6.71E-04 1.22E-01 49.17 cytochrome complex 5.03E-07 3.93E-05 30.73

Process P-value FDR q-value Enrichment Function P-value FDR q-value Enrichment Component P-value FDR q-valueEnrichment

translational initiation 4.69E-38 7.22E-34 13.48 RNA binding 8.50E-50 3.86E-46 3.6 protein-containing complex 1.19E-53 2.31E-50 2.16

mRNA metabolic process 1.94E-37 1.49E-33 5.36 structural constituent of ribosome 2.66E-29 6.03E-26 10.21 intracellular organelle part 5.14E-45 5.02E-42 1.61

protein targeting to ER 1.87E-33 9.60E-30 14.46 nucleic acid binding 2.09E-19 3.16E-16 1.83 organelle part 7.37E-42 4.80E-39 1.57

establishment of protein localization to endoplasmic reticulum 1.07E-32 4.11E-29 13.89 protein binding 1.69E-17 1.92E-14 1.29 ribonucleoprotein complex 5.02E-35 2.45E-32 3.84

protein localization to endoplasmic reticulum 2.80E-32 8.62E-29 12.99 structural molecule activity 2.39E-16 2.18E-13 3.31 cytoplasmic part 6.54E-34 2.55E-31 1.53

cotranslational protein targeting to membrane 5.00E-31 1.28E-27 14.63 heterocyclic compound binding 3.34E-15 2.53E-12 1.54 intracellular part 1.68E-28 5.46E-26 1.23

SRP-dependent cotranslational protein targeting to membrane 1.27E-30 2.79E-27 15.04 NADH dehydrogenase (ubiquinone) activity 1.26E-14 8.20E-12 15.12 ribosomal subunit 1.77E-28 4.93E-26 9.09

intracellular transport 1.16E-28 2.23E-25 3.13 NADH dehydrogenase (quinone) activity 1.26E-14 7.18E-12 15.12 cytosol 1.82E-28 4.44E-26 1.9

nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 1.51E-28 2.58E-25 12.08 organic cyclic compound binding 1.69E-14 8.52E-12 1.52 cytosolic part 7.03E-26 1.53E-23 7.42

establishment of localization in cell 1.28E-27 1.97E-24 2.88 NADH dehydrogenase activity 2.01E-14 9.11E-12 14.73 catalytic complex 6.43E-25 1.26E-22 3.08

translation 1.52E-27 2.13E-24 8.65 oxidoreductase activity, acting on NAD(P)H, quinone or similar compound as acceptor 1.56E-13 6.46E-11 11.78 membrane-bounded organelle 3.10E-24 5.50E-22 1.43

cellular metabolic process 3.04E-27 3.90E-24 1.6 rRNA binding 2.54E-10 9.63E-08 9.09 ribosome 4.24E-23 6.90E-21 11.45

viral transcription 2.50E-26 2.96E-23 11.59 translation initiation factor activity 6.38E-10 2.23E-07 10.69 organelle 5.08E-23 7.63E-21 1.35

cellular macromolecule catabolic process 2.77E-26 3.05E-23 3.98 molecular_function 6.43E-10 2.09E-07 1.09 intracellular organelle 6.00E-22 8.37E-20 1.4

intracellular protein transport 5.09E-26 5.22E-23 3.95 threonine-type endopeptidase activity 6.78E-10 2.05E-07 17.23 extracellular exosome 2.73E-21 3.55E-19 2.42

peptide biosynthetic process 6.31E-26 6.07E-23 7.92 threonine-type peptidase activity 6.78E-10 1.92E-07 17.23 extracellular vesicle 6.24E-21 7.62E-19 2.39

nuclear-transcribed mRNA catabolic process 1.06E-25 9.63E-23 8.37 translation factor activity, RNA binding 7.69E-10 2.05E-07 7.66 extracellular organelle 6.52E-21 7.48E-19 2.39

protein targeting to membrane 1.70E-24 1.45E-21 9.44 mRNA binding 3.19E-09 8.06E-07 3.39 respiratory chain complex 4.05E-20 4.39E-18 13.15

peptide metabolic process 2.34E-24 1.89E-21 6 oxidoreductase activity, acting on NAD(P)H 3.48E-09 8.33E-07 6.38 vesicle 5.35E-20 5.49E-18 2.04

mRNA catabolic process 3.10E-24 2.39E-21 7.7 enzyme binding 9.51E-09 2.16E-06 1.78 intracellular membrane-bounded organelle 1.13E-18 1.10E-16 1.46

viral process 3.77E-24 2.76E-21 4.37 ubiquitin-like protein ligase binding 1.37E-08 2.96E-06 3.54 mitochondrial membrane 4.15E-17 3.86E-15 3.75

symbiont process 3.77E-24 2.63E-21 4.37 ubiquitin protein ligase binding 1.50E-08 3.10E-06 3.63 cytosolic large ribosomal subunit 9.91E-17 8.79E-15 12.99

macromolecule catabolic process 8.22E-24 5.50E-21 3.49 electron transfer activity 4.70E-08 9.29E-06 5.74 mitochondrial inner membrane 1.69E-16 1.44E-14 4.56

metabolic process 1.11E-23 7.14E-21 1.51 protein tag 1.27E-07 2.40E-05 20.89 nuclear part 2.64E-16 2.15E-14 1.67

protein targeting 1.55E-23 9.52E-21 6.04 binding 1.32E-07 2.41E-05 1.12 proteasome complex 3.03E-16 2.37E-14 12.33
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9.4.7 t(1;11) neurons Darmanis 

 

Process P-value FDR q-value Enrichment Function P-value FDR q-value Enrichment Component P-value FDR q-value Enrichment

RNA splicing 8.03E-07 1.24E-02 17.08 RNA binding 1.54E-04 7.00E-01 4.51 intracellular organelle part 6.49E-06 1.27E-02 1.94

mRNA processing 2.09E-06 1.61E-02 14.5 pre-mRNA binding 7.70E-04 1.00E+00 48.33 organelle part 1.11E-05 1.09E-02 1.88

regulation of RNA splicing 7.93E-06 4.07E-02 30.16 intracellular organelle 1.97E-05 1.28E-02 1.82

mRNA metabolic process 2.30E-05 8.87E-02 9.54 catalytic step 2 spliceosome 9.06E-05 4.42E-02 33.66

establishment of Golgi localization 2.97E-05 9.13E-02 235.62 organelle 1.37E-04 5.35E-02 1.64

RNA splicing, via transesterification reactions 9.12E-05 2.34E-01 16.18 nucleoplasm part 4.97E-04 1.62E-01 5.47

 with bulged adenosine as nucleophile nuclear speck 5.29E-04 1.48E-01 10.22

mRNA splicing, via spliceosome 9.12E-05 2.01E-01 16.18 ribonucleoprotein complex 5.91E-04 1.44E-01 5.29

Golgi localization 9.60E-05 1.85E-01 134.64 spliceosomal complex 6.39E-04 1.39E-01 17.35

RNA splicing, via transesterification reactions 9.90E-05 1.69E-01 15.84 nuclear body 7.33E-04 1.43E-01 6.55

establishment of localization in cell 1.10E-04 1.70E-01 4.73 intracellular membrane-bounded organelle 9.19E-04 1.63E-01 1.86

regulation of mRNA splicing, via spliceosome 1.19E-04 1.66E-01 30.73

cellular component assembly 1.75E-04 2.24E-01 3.83

regulation of mRNA metabolic process 2.63E-04 3.12E-01 12.28

negative regulation of RNA splicing 2.65E-04 2.92E-01 81.96

Golgi organization 2.94E-04 3.02E-01 22.62

intracellular transport 3.20E-04 3.07E-01 4.81

regulation of mRNA processing 3.22E-04 2.92E-01 21.92

cellular localization 5.41E-04 4.63E-01 3.77

RNA processing 6.62E-04 5.36E-01 5.18

regulation of viral process 9.23E-04 7.10E-01 15.28

interleukin-12-mediated signaling pathway 9.36E-04 6.86E-01 43.84
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9.5 Full GO Process terms for cell types, as in EWCE analysis. 
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