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Abstract 

Work presented in this thesis details the development of new applications for 

molecular crystalline systems using first-principles simulation. In particular work has 

focused on the most important type of intermolecular interactions, the hydrogen bond. A 

new computational procedure to more accurately mimic the crystalline environment has 

been developed and applied to two systems: the test system ammonia and the more unusual 

dihydrogen bonded system BH 3NH3 . Both generated surprising results, which challenged 

the conventional view of bonding in the solid state. 

Work has also focused on the dynamics of the hydrogen bond, resulting in the 

implementation of a constraint molecular dynamics (MD) algorithm for the popular 

simulation package, CASTEP. This code development allows molecular systems to be 

treated as rigid or semi-rigid bodies, thus allowing appreciable increase in the first-

principles MD time step. It also allows interesting chemistry to be explored at the ab-initio 

level, which would be inaccessible by any other route. The method has been applied to the 

phase I structure of ammonia and a full vibrational analysis is reported. 
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Chapter 1 

Introduction 

At the beginning of 19th century, when the world of physics was thought to be very 

much understood, complete and saturated (according to some of the world's experts, 

everything in physics had been solved and there was nothing else to learn), the discovery of 

the theories of relativity (by Einstein, 1905 and onward) and quantum mechanics (led by 

Niels Bohr, 1920s and onward), set the discipline spinning in a new dimension. While 

relativity tried to explain things at a length scale of planets and stars, quantum mechanics 

looked at the fascinating world of atoms, electrons and nuclei. 

Quantum theory has been proven correct over time, and has provided fundamental 

understanding of the laws governing atomic-scale phenomena. These are the laws obeyed by 

the nuclei and electrons of which matter is made. The impact of this was huge. New 

phenomena were discovered, fascinating experiments were demonstrated and theoretical 

understanding of many complicated phenomena were accomplished. Some examples are, 

the understanding of how the electrons orbit around the nucleus, super-fluidity, Bose-

Einstein condensation, superconductivity, the two-slit experiment etc. to name but a few. 

And of course, one that inescapably changed the course of history and shaped the end of the 

last century - the atomic bomb. 

However, amid these big discoveries, a level of frustration remained due to the 

failure to develop a precise working model of even very small systems. The frustration was 

1 
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simply due to the fact that, if the quantum mechanical (QM) wavefunction of a system 

claims to contain all the necessary information to describe it, and the Schrodinger equation 

claims to predict the real time behaviour of these wavefunctions, it should therefore be 

possible to make a precise working model to simulate any atomic scale phenomenon from 

these basic principles of quantum mechanics (aka first-principles). 

There were two main problems holding the scientific community back from such an 

achievement: 

in order to simulate systems of many atoms, all the electrons (1029)  have to be 

treated quantum mechanically. These electrons interact with each other, and the 

motion of one affects the motion of all the others. There are tremendous 

mathematical difficulties to overcome in order to solve such a correlated electron 

system. Indeed such a problem is not possible to solve analytically. New theories 

and sensible approximations were needed to tackle this problem. 

The wavefunction of each electron is represented by a large set of elementary 

functions (basis set). The numerical calculation of a large number of electrons 

and even larger set of basis functions is simply beyond the capability of human 

ability. 

However, with the invention of modem electronic computer in 1950s, such 

numerical calculation seems approachable, which attracted scientists to develop numerical 

tools in order to calculate systems from first-principles. The formulation of Density 

functional Theory (DFT) in 1960s has been a big milestone towards achieving 

computational modelling from first principles, which led to the Nobel Prize in Chemistry 

(Walter Kohn and John A Pople, Nobel Prize, 1998)'. 

'Note that, from the point of theoretical development, DFT is not a QM method. However from the 
point of numerical implementation, it is essentially a QM technique. 



Introduction 

With the very rapid improvement of computer technology in the 1970s, combined 

with the improvement in computational methods in 1980s, the first-prinàiples simulation 

becomes accessible and a frontier of modem research. The pioneering work of Car and 

Parrinello in 1985 has demonstrated, for the first time, the enormous potential of a first-

principles simulation in studying the real time behaviour of atomic scale phenomena with 

electronic level of accuracy. 

Since then, in the last two decades, more and more condensed-matter scientists have 

become gripped by the powerful idea of first principles simulations. The idea is to read the 

atomic numbers of the constituent elements and use the fundamental laws of quantum 

mechanics to produce highly realistic simulations at the atomic scale to predict the physical 

and chemical properties of any given system (solid, liquid or cluster) of moderate size. 

Molecular materials, where individual molecules work as the basic building unit of 

the solid, is one of the very interesting areas of research in the wide community of physics 

and chemistry. First-principles simulation can provide unparalleled insights into this field of 

research, which has never been possible before. There are three general areas of molecular 

materials to look at: 

How the molecules are packed together to form the crystalline structure, i.e. the 

nature of the interaction that holds the molecule together in the solid form, and 

how this changes with pressure. 

How the crystal packing behaves with finite temperature i.e. the vibrational 

property of the lattice, and in turn how this also changes with pressure. 

How the molecular packing of a particular material changes from one phase to 

another with the change in temperature and pressure. 

This thesis is largely concerned with the first two aspects, namely the crystal 

packing and the crystal dynamics of molecular materials, under an inter-disciplinary 

research project between computational physics and chemistry. New computational models 

and methodologies have been developed in this work for the purpose of adapting the 
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existing first-principles mechanism to the needs of molecular materials research. These new 

applications are tested on simple systems, and interesting results were obtained, which are 

discussed in the rest of the thesis according to the following layout: 

S The theory and computational techniques of first-principles simulation are 

introduced in Chapter 2. 

• A new computational model to study the hydrogen bonding in molecular crystals 

has .been developed, and the nature and the strength of the hydrogen bond in 

ammonia phase I structure is studied in Chapter 3. 

• The model developed in Chapter 3 is employed for studying a special type of 

hydrogen bond, the so-called dihydrogen bond in BH 3NH3  in Chapter 4. A 

detailed comparison of our model with the widely used traditional method of 

hydrogen bond study in computational chemistry community has also been made 

in this Chapter. 

• The basic theory and computational techniques of first-principles study of finite 

temperature system are presented in Chapter 5. A brief comparison between the 

Car-Parrinello molecular dynamics (MD) and Born-Oppenheimer MD is also 

presented. 

• In Chapter 6, the detail report of the algorithm developed for constrained Born-

Oppenheimer MD (BOMD) are discussed. 

• The constrained BOMD, developed in Chapter 6, were applied and tested for 

solid ammonia phase I structure. The detail report of this test on the structural 

and dynamical properties of solid ammonia is reported in Chapter 7. 

• A new methodology has been formulated in Chapter 8 in order to study the 

normal modes of lattice vibrations from first-principles based on the constrained 

MD. The detail report of Ammonia lattice frequencies and corresponding eigen-

vectors from first-principles are reported in this chapter. 

• The thesis is concluded with recommendations for future work in Chapter 9. 



Chapter 2 

First-Principles Simulation 

2.1 Introduction 

2.1.1 The importance of the total energy 

The main task of a first-principles simulation is concerned with calculating the total 

energy of a system of electrons and nuclei. The ability of quantum mechanics to do this 

enables one to reap a tremendous benefit, as nearly all properties of matter are related to the 

total energies or to the differences between total energies. This comes from a fundamental 

law of nature that states that at zero temperature and pressure, systems like to stay in their 

lowest energy state. 

This is best described by a simple example, namely the equilibrium lattice constant 

of a cubic crystal, which can be utilised to optimise the lattice structure. According to the 

law of lowest energy state, the optimised structure (see Figure 2.1 in the next page) is 

defined as the solid state structure sitting at the bottom of the minimum in the plot of energy 

vs lattice constant. Thus by minimising the energy (E) of the system to its lowest possible 

state we can guarantee the right lattice constant of the system. Obviously in a real case the 

total energy is a function of many degrees of freedom, and by minimising the energy with 

respect to all of these degrees of freedom, we get most of the physical and chemical 

properties of the system. 

5 
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Energy 

Lattice Constant (A) 

Figure 2.1: Theoretical determination of the equilibrium lattice constant. Calculations (open circles) 
are performed and, a smooth function is fitted through the points. The predicted lattice constant is 
determined by the minimum of the curve. 

For properties not at 0 K, we need to minimise the free energy (F = E - T.S; where 

T is the temperature and S is the entropy), instead of the total energy. This is done in a two 

step process: we first optimise the system at 0 K then we run a molecular dynamics 

simulation to 'heat' the system to the desired temperature. 

System (T#O) = System (T=O) + Molecular Dynamics (0-4T) 

2.1.2 Why first-principles? 

The microscopic description of the physical and chemical properties of a material is 

a very complex problem. There are two computational approaches available to tackle it. In 

general, we have a collection of atoms or molecules interacting with forces derived from 

some potential field. In the first approach the atoms or molecules are conveniently 

considered to be point particles, and the potential is some empirical potential, e.g. the 

Lennard-Jones potential. These potentials are based on some fitted parameters and although 

it saves tremendously on the computational cost required, the accuracy of the result obtained 

depends heavily on the quality of the parameters used. 
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In the second approach, that of first-principles simulation, the ensemble of particles, 

which may be isolated (molecules and clusters), extended (solids, surfaces, wires, and 

liquids), or a combination of both (molecules in solution), are unambiguously described by a 

number of nuclei and electrons interacting through Coulombic (electrostatic) potentials. 

Since no fitted parameters are used, first-principles calculations are more accurate, and can 

be applied to any system without prior knowledge of the atom-atom potential. 

2.1.3 The Schrodinger equation 

Formally, we can write the Hamiltonian operator of above mentioned systems in the 

following general form: 

eqn 2.1: 	H = KE1  + KEe  + Vi  + Vee  + Vi e , 

where KE 1  is the kinetic energy of ions or nuclei, KEe  is the kinetic energy of electron, Vii  is 

the ion-ion interaction energy, Vee is the electron-electron interaction energy and Vi e  is the 

ion-electron interaction energy. In proper quantum mechanical terms this can be written as: 

eqn 2.2: 	H= 
	

V 2M1 1 - 

2N I 

+ e 
	' 

14 
L 1=1 

22P P Z 1 ZJ  

2m 1 	2 1=1 	IRI—Rjl  

P N 	
zI - 	1  

Ir —  r1 1 1=1 i=1 IR I —ri l 

where R = {R,}, I = I.....P; is a set of P nuclear coordinates, and r = {r1  }, i = L. ..N; is a set 

of N electronic coordinates. Z, and M, are the P nuclear charges and masses, respectively. 

Electrons are fermions, so that the total electronic wave function must be anti-symmetric 

with respect to the exchange of two electrons. Nuclei can be fermions, bosons or 

distinguishable particles, according to the particular problem under examination. If all these 
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ingredients are perfectly known and, in principle, all the properties can be derived by 

solving the following Schrodinger equation: 

eqn2.3: 	 HI'(r,R,t)=Ef'(r,R,t), 

where ¶ (r, R) is the total wave function of the system. In practice, this problem is almost 

impossible to treat in a full quantum mechanical framework. Only in a few cases is a 

complete analytic solution available, and numerical solutions are also limited to a very 

small number of particles. There are several features that contribute to this difficulty. First, 

this is a multi-component many-body system, where each component (each nuclear species 

and the electrons) obey a particular statistics. Second, the complete wave function cannot be 

easily factorised because of Coulombic correlation [Fetter, 1971]. In other words, the full 

Schrodinger equation cannot be easily decoupled into a set of equations so that, in general, 

we have to deal with (3P + 3N) coupled degrees of freedom. The dynamics is an even more 

difficult problem, and very few and limited numerical techniques have been devised to solve 

it. The usual choice is to resort to some sensible approximations. 

2.2 The Basic Mathematical Frame-Work 

2.2.1 The adiabatic (Born-Oppenheimer) approximation 

The first observation made is that the time scale associated with the motion of the 

nuclei is usually much slower than that of the electrons. In fact, the mass of an electron 

compared to that of the proton is about 1 in 2000, meaning that its velocity is much larger. 

The electrons can be adequately described as following instantaneously the motion of the 

nuclei, always staying in the same stationary state of the Hamiltonian. This stationary state 

will vary in time because of the Coulombic coupling of the two sets (electronic and ionic) of 

degrees of freedom but, if the electrons were, e.g. in the ground state, they will remain there 

forever. In other words, as the nuclei follow their dynamics, the electrons instantaneously 
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adjust their wave function according to the nuclear wave function. This allows the reduction 

of the full wave function to an expression of the type 

eqn2.4: 	¶(r,R,t)=O(R,t).Y' (r,(R}), 

where 0 (R, t) is the ionic part of the wave function depending on the ionic co-ordinates 

and time; 'F, (r, tR}) is the electronic wave function depending on the electronic co-

ordinate with the ionic positions, (R}, as a set of parameters. This adiabatic assumption also 

sets the first term of the Hamiltonian operator (eqn 2.1 and eqn 2.2), KE1  to zero. The 

immediate consequence of KE, = 0 makes Vi i  a constant of motion, which can then be taken 

out of the Hamiltonian and calculated separately. All of this can be cast in a formal 

mathematical framework (of the Schrodinger equation for the electronic part) by proposing 

a solution to eqn 2.3 of the following form: 

KE1 = 0, 

eqn 2.5: 	 He = 	= KEe + Vee +Vie, 

H ¶(r, R)=Ee V e (r, jR)). 

The total energy of the whole system (electronic plus ionic) then can be written as a simple 

sum 

eqn2.6: 	E= V11 + Ee. 

The total problem of electrons and ions is thus reduced down to two distinct sets. 

The first part is calculating the ion-ion interaction, which is treated classically. This 

calculation is comparatively easy, and well established methods [Allen, 1987] are available 

for dealing with it. The second part is the electronic Hamiltonian problem, which needs to 

be treated quantum mechanically. The prime interest of all first-principles aka ab-initio 

calculations is to predict this electronic part with acceptable accuracy. As it is a very 
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complex problem, many different methods have been developed over time to tackle it. The 

remainder of this chapter is devoted mainly to a discussion of these methods. 

2.2.2 The common. trend: towards the one electron system 

With the help of the adiabatic approximation, the all-electron problem becomes 

much simpler, but even then the Schrodinger equation of a many electron interacting 

system, represented by eqn 2.5, is not exactly solvable. The only system known that can be 

solved exactly is a one electron with one nucleus system (the hydrogenic atoms). 

Unfortunately, as soon as we consider atoms with more than one electron, it becomes 

impossible to do the quantum mechanics exactly, and it is even worse for many atom 

systems. Although we know the exact form of the Hamiltonian in eqn 2.5, it is not possible 

to write down the exact wave function for the many electron system. The main problem 

behind this is the electron-electron interaction term, Vee . 

Although it is not possible to solve the system exactly, the basic trend of all 

quantum mechanical calculations is to resort to some sort of intuitive approximation so that 

the whole system can be described in terms of a new set of non-interacting electrons. This 

way, we simplify the many electron problem to the one electron problem (with many 

nuclei). This new set of electrons will be ideally different from the electrons in the real 

system, but they will still represent the same properties, which we are interested in, of the 

real system. 

To illustrate this further, let us proceed, for the time being, with an ideal system 

with no electron-electron interactions (i.e. Vee = 0). Each electron would behave as if the 

others were not there and we would be back close to a single electron problem (except for 

the presence of multiple nuclei), which can be solved exactly. Removing the cross term, Yee, 

from the Hamiltonian also allows us to write the total electronic Hamiltonian (He) as a sum 

of one-electron Hamiltonians, as 
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eqn2.7: 	 H=h, , where 

	

h2 
\7 	

z I 

	

2 	2 h.=----.—e 
eqn2.8: 	 •' 	2m 	£ 	1=1 1R1-r11 

This simplification in the Hamiltonian immediately enforces great simplification in the total 

wave-function, namely that if the electrons are non-interacting, the total wave-function 

V e (ri, [R)) is just the product of the wave-functions of the individual electrons, 4 1 (rj. All 

of this can be expressed in the following mathematical framework: 

eqn2.9: 	 ' e (T1,T2 ...... ,rN)=f(1 1 4213 ............ 

where q5 1 , 02 ......'1N are the one electron wave functions. In the simplest system when Yee = 

0, we can write 

eqn 2.10: 	 ¶e(T,{R}) = 	1 (r1 )./ 1 (r2 ).t/ 3 (r3 )........ c/ N (rN ) 

which reduces the all electron problem (eqn 2.5) to a one-electron Schrodinger equation of 

the form 

eqn2.li: 	 hcj e (r e ) = Ee4Le(re), 

where h is defined by eqn 2.8, and with total energy given as a simple sum of one electron 

energy fe, as 

eqn2.12: 	 Ee=Ee• 



First-Principles Simulation 	 12 

2.2.3 Solving the one-electron problem 

Although the one-electron approximation allowed us to expand the total wave-

function ¶e  in terms of one-electron wave-functions 4, we do not yet know the nature of 0. 

The task of quantum mechanics is thus to solve eqn 2.11 in order to derive them. Once all 

the 4)'s are known we can construct the overall ¶ and consequently derive all other system 

properties from it. We do this basically by using three mathematical tools: the completeness 

theorem, the variational principle and linear algebra [Riley, 1997]. 

The wave-functions, 4) 

We know the functional form of the one-electron Hamiltonian, h. But to proceed 

any further we also need to have some sort of knowledge of 4). The first task is thus to write 

down one-electron wave-functions 4) in some reasonable form. It should be noted here the 

difference between the single-electron (one nucleus) problem and the one-electron (many 

nuclei) problem: whereas in the first case the solution is standard and known (is, 2p, 3d,...), 

in the second we have to work out the specific solution to the particular ion orientation of 

the system. 

This is where the powerful mathematical theorem of completeness steps in to help, 

which states that if an infinite set of functions are linearly independent (i.e orthogonal to 

each other) and complete (i.e. the set is closed) [Riley, 1997] they form a complete basis set 

(; i-0, 1... oo),  such that their linear combination can be used to construct any reasonable 

functions (the Dirichiet conditions for Fourier series expansion). Thus with a known 

complete ortho-normal basis set we can expand 4) as 

eqn2.13: 
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The advantage of the theorem is that the basis set (also known as basis functions or 

eigen-functions) does not need to be unique. If a different basis set, say (,} is also 

complete, it too can be used to express the one-electron wave-function 4) in the, same way. 

One potential problem is that because such series are infinite, it is not simply possible to 

calculate an infinite set of basis functions { 
cqi  or yj and their co-efficients {aj. However, a 

clever choice of the basis set is believed to converge to the true function 4) rapidly so that 

we can truncate it at a reasonable length. One such complete basis set could be constructed 

from plane waves i.e. expanding 4) simply in terms of the discrete Fourier series, as 

eqn 2.14: 

If we are describing an isolated molecule system, such a choice of basis set would 

be found to converge very slowly. An alternative and better choice for such a system is the 

eigen-functions that are determined for the familiar hydrogenic atomic orbitals, is, 2s, 2p, 

3s, 3p, 3d......, which also forms a complete basis set. In the later case we are actually 

building molecular orbitals (MO) from the atomic orbitals (AO) using the linear 

combination of atomic orbitals (LCAO) approach. Thus with a complete orthonormal set of 

functions available to hand, the whole problem of solving the system quantum mechanically 

is reduced down to solving the equations to determine the unknown co-efficients {a 1 } (real 

values). 

The variational principle 

The variational principle is probably the most important, yet the simplest principle 

in solving this quantum mechanical many body problems. It simply states that the energy of 

a system is bounded from below and the configuration corresponding to the lowest energy is 

the 'ground state' . Notice that this boundedness is a critical feature of quantum mechanical 

systems! In a classical system, one could imagine always finding a state lower in energy 
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than another state by simply 'shrinking the orbits' of electrons to increase the nuclear-

electronic attraction while keeping the kinetic energy constant. 

This is critical, because it gives us enormous freedom from solving the set of Un-

known co-efficients {a,} for a particular choice of basis set (i.e. LCAO, plane waves etc.) 

to choosing the unknown co-efficients {a'}. Suppose we have generated an infinite choice 

of basis set co-efficients for the i'th electron, (a/} 1 ,(a'} 2 . ...... { a1"),. We can take each set 

one at a time and calculate the corresponding energy using eqn 2.8, eqn 2.11, eqn 2.12 and 

eqn 2.13. Since the infinite series includes all the possible combinations of real values, the 

set which gives the lowest energy, c o  will be the correct set of co-efficients to describe the 

wave-function 4, of the i'th electron. 

In reality it is not possible to explore an infinite choice of basis set co-efficients for 

each of the electron, however it is implicit in the variational principle that we can start 

trying from anywhere (i.e. any set of choice fa'}) and move from one set to another in a 

downward energy direction in order to get to the bottom of the well. In this search each new 

set is apparently an improved guess on the previous one, as it lowers the energy. It is like a 

journey of a blind man who only walks down hill. The stage where he can not move further 

downhill (in any possible direction), he knows that he has reached home. 

This can be described by the following mathematical framework. The one-electron 

energy (with any choice of co-efficient set) is defined as 

fcthdr 
eqn 2.15: 	 E 

= 	f 
q)2 dr 	

E0. 

If we continually change towards the minimum E,, by changing the basis set {a 1 '}, the 

minimum of the energy will be met, i.e. F, = F, when 
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eqn 2.16: 	
ö a, 
	 Vi. 

The secular equation 

However, for our simplistic case of l/ = 0, the exact solution could be obtained 

analytically from eqn 2.16 without resorting to the trial and improve method. Using the 

truncated wave-function expansion (eqn 2.13) in the definition of energy in eqn 2.15, we get 

Nb 	 Nb 

S ( ap)h( acp)dr 

eqn 2.17: 	 E = 	N 	 Nb 

simplified to, 

eqn2.18: 	
E = 
	ai ai hij 

a,aj s, 

with the matrix elements 

eqn 2.19: 	 hij = 5 p.hpdr and s = 5 cocodr. 

Nb represents the total number of the basis functions needed to explain the one electron 

wavefunctions. hij  and s,, are known as the 'resonance integral' and the 'overlap integral', 

respectively. They are known values as both the operator h and the basis function ' are 

known. When these values are applied to eqn 2.16, we get 

Nb  

eqn 2.20: 	 a, (h,,, - ESk,) = 0 	Vk, 
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which is a system of Nb (one for each k) equations with Nb unknowns (running over i). [Note 

that we have limited our basis set to sufficient convergence, i = 1. .... Nb] This is now a 

problem of linear algebra. A system of Nb equations with Nb unknowns has a non-trivial 

solution if, and only if, the determinant formed from the co-efficients of ai  is zero, i.e. 

	

h 11 —Es 11 	h 12 —Es 12 
	

h IN — Es IN  

	

h 21 —Es 21 	h 22 —Es 22 
	 h2N — E52N  

eqn 2.21: 	 =0. 

hNl — EsNJ hN2 — ESN2 

Eqn 2.21 is called the secular equation. In general there will be Nb solutions (some 

could be degenerate) of 8 (i.e. e, iv = 1, ... Nb) for which the secular equation holds true. 

Each e will give rise to a different set of co-efficients fa1 }, which can be found by solving 

the set of linear eqn 2.20 using . Subsequently they will define the optimal one electron 

wave function 4from the known basis set functions cp j  using eqn 2.13, as 

eqn 2.22: 

In our simplistic case of Vee  = 0, the lowest energy molecular orbital would thus 

define the ground state for the first electron (or pair of electrons if spin is also taken into 

account). Note that the solution for all the other electrons will give the same set of orbitals 

(as the operator h is the same for all electrons). The remaining electrons will thus take the 

higher energy orbitals (which are excited states for the first electron). Although we have not 

mentioned it, it is worth noting that the variational principle also holds for the excited states 

as 'well i.e. the calculated energy of an excited state will be bounded from below by the true 

excited state energy. [MacDonald, 1933] 
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In summary, to solve the many electron system quantum mechanically, we require 

the following steps: 

I. Reduce the many electron problem (Y') to an equivalent one-electron problem(4)). 

Select a set of Nfr  basis functions I p} to expand 0 in terms of unknown co-efficients 

a,). Determine Nb2  values of both hij  and sf3. 

Form the secular equation and solve it to determine the Nb roots of E. (ed,, tx=l,...N) 

For each a, solve the set of unknown co-efficients {aj a}. Construct one-electron wave-

functions 4 from Ia,.) and {q,}. 

Construct the general wave-function ¶e  from the set of one-electron wave-functions 

{4}. The Y, can then be used to calculate other system properties. 

All the MOs determined this way are mutually orthogonal. Some modern methods 

follow alternative routes to find the correct set of co-efficients, rather than the straight-

forward matrix diagonalisation of the secular equation, in order to speed up the calculation. 

These methods will be discussed later in Section 2.7. Apart from that, all the available 

methods for ab-initio calculations follow more or less the same mathematical framework to 

deduce the all-electron wave-function, and hence the system properties. The basic difference 

appears in the one-electron Hamiltonian, he, as the other improved methods try to calculate a 

more realistic system by including the electron-electron interaction term, and hence the term 

hij  in the secular equation changes from one method to other. 
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2.3 Hartree Theory 

The repulsion between electrons cannot be simply ignored (i.e. Yee # 0). When the 

distance between two electrons is about 1 A, their electrostatic interaction energy is roughly 

14 eV (1350 kJmol 1 ), and ignoring an energy as large as this would lead to completely 

wrong results [Gillan,1997]. Hartree [Hartree, 1928] suggested that although it is not 

possible to break down the many electron system into an equivalent one-electron system 

with the original electron-electron interaction present in the total Hamiltonian H, it is 

however possible to replace it with a static potential VH, and still retain the simplicity of the 

one-electron description. 

The original electron-electron potential for the whole system from the total 

Hamiltonian H is given in eqn 2.2 as 

2 N N 	 N
e 	1 	 2 N 

eqn 2.23: V ee= - 	 V ee i where Veei= 
e Z 	1 

 
2 j=1 joi  Iri — rjl i=1 	 z. 	r1  r 

Hartree proposed the following simplification: 

eqn2.24: VH[p]= - 	f 	di=v 	where VHj ! f PU) 3 d r. 
i 	 i 	 2 	r— 

The integration runs over all r except at r'=r. Note that with this simplification the 

one electron 'electron-electron' potential (vu) only depends on a static density profile rather 

than each individual electron (and in addition, the sum over all other electrons is replaced by 

an integration over space). VH thus represents V ee  only in an average sense. The main point of 

Hartree theory is that we have replaced the correlated electron density p [r, p (r '# r) 1 of 

the real system by a static distribution of the uncorrelated average electron 'density, p(r). 
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With this simplification we can still follow the same mathematical frame work 

described in Section 2.2, with the modification in the one electron Hamiltonian h as 

V 2  _e2 	
Z 	

+ 	 di eqn 2.25: 	hH,— 
2m 	 JR 1  - rJ 	2 	Jr 1 -I 

which is also written in short-hand 

eqn 2.26: 	hH l  = ti+Vie i+VHi 

° Z 
where t i = ----- V 2  and Vie i = —e 2  

2m 	 R 1 —r 1  

2.3.1 The self consistent approach 

The new Hamiltonian hH (also known as the Hartree Hamiltonian) fundamentally 

differs from the previous case of Vee = 0 in that hH [p(r)] now depends on the density of the 

system (yet to be solved!). This makes the whole problem self-consistent. In order to derive 

the total wave-function e,  we need to know the density of the system p(r) first; but to know 

the density we must have the wave-function ¶ as 

eqn2.27: 	 p(r)=fVf*rd3r. 

This simply means that an analytical solution is no longer possible (as in the case of 

Vee = 0) as the resonance integral (h[p(r)], eqn 2.19) in the secular equation being a 

functional of the system density is no longer known. However, the system could be solved 

iteratively using the trial and improve method as discussed in Section 2.2.3. We start with a 

random set of unknown co-efficients (a1 ) for a particular set of basis functions, as 
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eqn2.28: 

which gives us a guess density using eqn 2.27 (and hence most likely to be wrong). Using 

this density we can solve the secular eqn 2.21 and get a new set of co-efficients{á 1 }. Note 

that the new set of co-efficients {a 1 } is an exact solution for the wrong set-up, (a 1 ). Hence, 

although the solved wave-function is an exact solution for our set-up, it is not a correct 

solution of the one-electron Hartree system. However being an exact solution of the starting 

guess state (aj, we expect it ((a,)) to generate a better density profile, which will lower the 

system energy. The new and better density will be used again in the same mathematical 

frame-work to generate an even better density profile. 

Note that, this sort of down-hill motion in the energy landscape is guided by the 

variational principle. This means that repeating the trial and improve method iteratively for 

a sufficiently long time will converge the system to the correct ground-state. 

Few points are important to note here with respect to the Hartree system. One: even 

with a simplistic form of the electron-electron interaction, the analytical solution is not 

available, and the system has to be solved numerically using the SCF approach. Second: the 

dependence of hH on the density. The resonance integral h, and hence the -Hartree 

Hamiltonian are functional of the density of the system. This is because of the 

approximation made for the Hartree system (see eqn 2.24), and not because of the inherent 

nature of the true system (and the reason why Hartree theory could not be classified as a 

form of density functional theory!). Finally, beside missing the exact correlation, Hartree 

approximation V ee  = VH[p], where VH represents Vee in an average sense, suffers 

serious blow due to the existence of strong self-interaction energy in V11. As early as in 

1934, Fermi and Amaldi [Fermi, 1934] had observed the failure of eqn 2.24 to vanish for 

one-electron systems due to spurious self-interaction inherent in it, and proposed the 

following crude correction of the form, V 	V H (p) — NV H (p/N), where N is the 

number of electrons in the systems, and VHiS given by eqn 2.24. 
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2.3.2 Hartree-Fock theory 

Electrons have spin, so the one-electron wave-function must include spin 

information, i.e. we write the new one-electron wave-function as: 

eqn 2.29: 
	

X e  = t) e 0  

So the total wave-function in eqn 2.10 becomes 

eqn 2.30: 
	

XN. 

Such a wave function must therefore be antisymmetric (i.e. should change sign) 

upon exchange of two electronic coordinates, to comply with the Pauli exclusion principle 

(electrons are fermions). This simply means that the simple product wave-function in eqn 

2.10 should be replaced by its Slater determinant [Slater, 1930], 

eqn 2.31: 

X 1  X2 	XN 

1 
X 1  X2 XN 

. 	 . 

X 1  X2 	XN 

This requirement, called 'exchange symmetry', enforces the Pauli exclusion 

principle into the system, which says that two electrons cannot be in the same quantum 

state. It also means that two electrons with the same spin cannot be found at the same place. 

This unsociability of electrons (as it keeps electrons away from each other) lowers the total 

energy and is not included in the Hartree theory. With the above correction in the 

wavefunction the electron-electron interaction energy term take the following form 

eqn2.32 	 V ee 	V H (p) + E 

where V, is same as in eqn 2.24 and E is the exchange energy due to the electron exchange 

symmetry. E consist of two part: the correct exchange energy of the electronic system and 
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the self-exchange energy of the electrons, which exactly cancel the Coulombic self-

interaction present in the Hartree term of eqn 2.32 [Perdew, 1981]. Thus with this correction 

of self-interaction the mean-field Hartree-Fock theory lowers the total energy of the system 

towards the correct value. 

Although the Hartree-Fock (HF) theory makes only a very small relative 

error in the total energy of atoms, it is not suitable for most solid-state and many molecular 

applications. The total energy is dominated by the tightly bound high-density inner-shell 

electrons that are well described by BF theory, but often we are more interested in the low-

density valence electrons, for which correlation may be as important as exchange 

interaction. Although BF theory treats electron exchange exactly, it ignores the electron 

correlation. In addition, the long range of the Coulomb interaction produces unrealistic 

feature in the BF energy eigenvalues, e.g. vanishing density of states at the Fermi level in 

metals, unreliably large band gaps in insulators [Kunz, 19751, etc. While correlation effects 

can be addressed through configuration-interaction [Weiss, 1961] corrections to BF, the 

complexity of these corrections and their remarkable sensitivity to the choice of basis set 

preclude application to large systems. Density functional theory [Hohenberg, 1964; Kohn, 

1965] provides an alternative to this approach. This theory which is exact in principle 

includes both exchange and correlation explicitly in the total energy, and describe them as a 

unique functional of the electronic charge density. 
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2.4 Density Functional Theory (DFT) 

Density functional theory, established by Hohenberg and Kohn [Hohenberg, 1964] 

and then Kohn and Sham [Kohn, 1965], is not an improvement over Hartree-Fock theory, 

but a radically different line of approach. It is at the same time an exact theory for real 

systems (interacting electrons) while retaining the simplicity of the one-electron framework 

described in Section 2.2 for the calculation to be tractable. * 

It is based on two fundamental theorems that allow the exact equivalence of the 

interacting electron system to an apparently non-interacting system of electrons (Kohn-

Sham electrons) in an effective external potential. The effective potential is the non-

interacting potential (as seen in previous theories) plus the missing bit of the potential, 

which makes the system interactive. This 'extra bit' is popularly known as exchange-

correlation. The theorems are 

The total energy of a system of electrons and nuclei is a unique functional of the 

electron density. 

The variational minimum of the energy, with respect to the electron density, is 

exactly equivalent to the true ground state energy. 

The two theorems could be put in reverse like this: whichever density profile gives 

the lowest energy will therefore give the ground-state energy, and the density which gives 

the ground state is the exact electronic distribution of the system, whether or not the wave-

function associated with that density profile is a true one or has any significance. 

The beauty of DFT is that one does not need to depend on the construction of the 

many-body wave function 'f (however, we will see later that the one electron wave-

function 4) comes into play, but this is only as an auxiliary tool to make the maths work). 

Instead the energy is written in terms of the electron density. This simply means that we 
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can stay away from the fearsome complexity of a multidimensional wavefunction (ii) and 

instead we can deal with a scalar field [p(r)]. 

2.4.1 Theorem 1: the energy is 'a functional of the density 

For an interacting electron system, the electronic part of the total energy (note we 

are still using the adiabatic separation, so the ionic energy, which will also be a functional of 

the density will just be an extra addition to the total energy) is 

eqn 2.33: 	Ee[P(T)]=Tint{P(T)] + Vie[P(T)]  + Vee [P(T)] 

where the terms in the R.H.S. refer, respectively, to the correlated kinetic energy of 

electrons, the ion-electron interaction energy and the correlated electron-electron 

interactions. We should mention that we have no idea about the first and the third terms, 

because of their interacting nature. 

However, theorem one of DFT simply means that whichever way we like to divide 

the individual energy contributions, since the total energy is a functional of the density, each 

component will also be a functional of the density. This offers an enormous flexibility in 

writing the total energy (and hence the Hamiltonian) that we can exploit immediately, i.e. 

eqn2.34: 	Ee[p(T)] = T,[p(r)] + Vie[p(T)]  + VH[p(r)] 

+ zT,[p(r)] + LVee[p(r)] 

Here the first and third terms are the non-interacting parts of the kinetic and 

electron-electron interaction energy (H stands for Hartree), and the last two terms represent 

the missing interacting components from the kinetic and electron-electron interaction 
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energies, respectively. We can simplify this more by combining the last two terms into one, 

as 

eqn 2.35: 	Ee[p(r)]=Tni{p(r)I + Vj [p(r)] + VH[p(r)] + E[p(r)] 

The advantage of writing the equation in this form is that we know exactly the first 

three terms, and although we do not know the last term, we still have some crucial 

information: it is a unique functional of the density. E is known as the exchange-correlation 

functional. The power of the first theorem of DFI' is that it asserts, that such a functional of 

density must exist. What it does not do, however, is tell us the exact nature of that functional 

or, indeed how to find it. 

2.4.2 Theorem 2: the energy minimum can.,be reached in 

terms of the density 

In a later section (Section 2.4.4), we will discuss what reasonable forms the 

exchange-correlation functional may take. For the time being let us assume E., is somehow 

known. The task is then to write down the remaining three terms in eqn 2.35 in explicit 

form of the density, and solve the problem. However, although we have claimed that first 

three terms are known, T i  is only known in a wave-function representation (or particle 

representation), and not known in the density representation. Earlier attempt to find the 

kinetic energy in terms of the density failed [Thomas, 1926; Fermi, 1928]. The second and 

third terms, Vie  and VH, can however be easily expressed in terms of the density as, 

2 	

P 

- —e f d 3 r1p(r1) 	
Z 

V,eEp(r)' - 	

1 	

fdTip(Ti)Vje(Ti) 
j R 1  —r 1  

eqn2.36: 

where 	vi ee (Ti) = — e2 	
1 

i=i IR1-r 
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2 	 p(r1)p(r2) 
V{p(r)} = j-ffd 3 ri d r2 

Jr1 - 	
= fdr2 p(rI )v H (r l ) 

 r2l
eqn2.37: f where 	vH(rI) = 

	
d3r 

2 	p(r2) 
2 

For the simplicity of further mathematical manipulation it is convenient to write the 

first and fourth terms also in a similar fashion, which is possible by defining new variables 

t 1 (r1 ) and E(ri) as the functional derivatives [Riley, 1997] of T 1 and respectively. 

t,(r) 	
6T1[p(r)] 

such that 

eqn2.38: 	

= öp(r1 ) 

T1[p(r)] 	f d3r1p(r1)t1(r1). 

6E[p(r)] 
= 	 , such that 

öp(r 1 ) 

eqn 2.39: 	

E[p(r)} = f d 3 r1 p(r1 )E(r1 ). 

We can then re-write eqn 2.35 in the simplified form: 

eqn 2.40: 	Ee[p] = fp(r 1 )dr 1 [t(r1 ) + Vje(Tj)  + vH(rl)  + E(rI )j 

In eqn 2.35 - eqn 2.39, the term [p(r)] on the L.H.S. appears to reflect the meaning 

that energies are a functional of density, and that density is a function of position. These 

energies should not be confused as the energy at a specific position r in space. In order to 

avoid confusion, we have dropped the position r in denoting the total energy in the L.H.S. of 

eqn 2.40. However, the terms within bracket in the R.H.S. of this equation clearly represent 

the energy concentrated at a particular space position r1  due to its own (i.e. r,) plus 
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interactions from all other places (r2). Integrating these energies at each point of space with 

the appropriate density gives us the correct total electron energy Ee. So eqn 2.40 can be re-

written as 

eqn 2.41: 	E[p] = 
fp(rj)d3r1f(r1) 	where 

eqn 2.42: 	E e (Ti) = t(r1 ) + Vie(Ti)  + vH(rl)  + E 1 (T1) 

Here fAn)  is the energy concentrated at r1 . eqn 2.41 is clearly a position and space 

dependent representation of the total electronic energy Ee . The simplified forms of eqn 2.41 

and eqn 2.42 allow us to apply the Hohenberg-Kohn variational theorem in terms of density, 

in order to define the ground state of the total energy, E. Besides the fact that Ee  is 

stationary with respect the variation of p(r), there is the additional constraint that the 

variation also leaves the total number of electrons, fdrp(r)=N, unchanged at Ee  = Eeo. 

Therefore, according to the variational principle, we have the functional derivative, 

eqn 2.43: 

eqn 2.44: 

•öEe [P1IJN 
= 0, which gives, 

Up(T) 	lEe=Ee,. 

t 1 (r) + Vie(T)  + vH(r)  + 	= p 

Eqn 2.44 is crucial and serves as a model equation for all further discussion. The 

parameter p in eqn 2.44 is the Lagrange Multiplier associated with the particle number 

constraint and represents the chemical potential of the system. It has the physical meaning 

of the energy associated with adding or removing a single particle into the system, or 

simply the energy per particle. Here the subscript, 0', denotes the system is in (or restricted 

to) the ground state configuration. Eqn 2.44 represents a correct model for interacting 

ground-state electron system in a space and position based (i.e. density) representation. 

However, the severe restriction that the kinetic energy t 1(r) is unknown in the density 

representation in eqn 2.44 motivates us to seek a different interpretation of this equation. 
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2.4.3 Kohn-Sham electrons: mapping back to the one-electron scenario 

To overcome the problem with kinetic energy Kohn and Sham [Kohn, 1965] 

suggested that: "the whole problem of N interacting electrons can be exactly mapped to an 

equivalent set of non-interacting fermions, such that they still fulfil eqn 2.44 in order to 

reproduce exactly the same charge density and total energy of the real system." These 

fermions were assigned the same mass, charge and total number as for the real system of 

electrons, and are popularly known as the Kohn-Sham (KS) electrons. 

There are two key reason for the move towards the one-particle Kohn-Sham 

representation. Reason!: eqn 2.44 is the Euler equation for non-interacting electrons in a 

potential V(r) + vH(r) + E(r). This means that it is possible to map these individual energy 

terms at a single point r in space, as if they are the energies due to a single particle at r. 

Reason 2: since the kinetic energy t(r) is so far only solvable in the one-electron 

representation [Segall, 2002], it is desirable to treat the whole system as a non-interacting 

system of N particles. 

The only condition in such a mapping is that, the new energies must add up to the 

same total energies in eqn 2.35 for the ground state, in order to maintain the correct density 

distribution (energy is a sole function of density). This map can be mathematically 

expressed as, 

N. 

eqn 2.45: 	t 1 (r) 	- 	 ti ,' Of  
such that 	E t, 	= T 

U 

N 

eqn 2.46: 	V ie  (r) 	- 	 v lea  such that 	V ie,ct  = V ie  
a 

eqn2.47: 	v 11 (r) 	-* 	v H,a such that 	>VH a = VJJ 
of 
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N 

eqn 2.48: 	E(T) 4 	 such that 	E x, = Exc  
a 

N 

eqn 2.49: 	/1 	Ea 	such that Z Ea Ee0  
a 

Here the subscript cc is chosen (instead of i and j used earlier to represent electrons 

in Section 2.2, 2.3 and 2.4) in order to distinguish the KS fermions from the interacting 

electrons of the. real system. Given that these KS fermions are the same in total number, 

mass and charge, i.e. 

eqn 2.50: 	N a N e N; m a  m e m; q—qe 

we get exactly the same form for v i, and vH,aas in eqn 2.36 and eqn 2.37. Note that so far we 

do not need to implement any quantum mechanical treatment in DFT, almost implying that 

DFT is a step back from our quest to solve the system quantum mechanically. However, the 

kinetic energies of electrons are only obtainable by expressing the KS particles explicitly in 

terms of wave-functions (q 0) at ground state, as 

eqn 2.51: 	t fl j a  = 	 V 	a,O)
2 	

or 

So the one electron map of our model equation (eqn 2.44) is 

h2  
eqn 2.52: 	 Va  la,O) + 

Vi". 
 + V""'+ Exca  = Ea O 

2m 

or more conveniently 

/ 	2 

eqn 2.53. 	
h 	

a + Viea  + Vila  + Excal(PaO = Ea O (Pa O. 
Lm 	 I 
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eqn 2.53 is known as the Kohn-Sham equation. The main feature of this new 

representation is its similarity to the one-electron Schrodinger equation, immediately telling 

us that we can simply plug this equation in to our one-electron framework described in 

Section 2.2. Therefore the system of interacting particles can now be solved self consistently 

(given that E, is known) starting with some trial functions (see Section 2.2.3), where 

eqn 2.54: 	h = -- 	+ 	+ VH + 

is known as the KS Hamiltonian. Hence we see the DFT treatment now reduced to the same 

SCF treatment as in the original Hartree framework, with the only difference being the 

treatment of the resonance integral in secular eqn 2.21. The h (in eqn 2.19) is changed by 

h,,6  as 

eqn2.55: 	 = Kcphkp) 

Charge density and the wave-function 

Note that we have cautiously avoided calling the fictitious particles (KS fermions) 

electrons. However they have the same mass (m), charge (e) and total number (N). They 

have the same total energy, and hence the same density distribution (of the electrons) of the 

true system, at the ground state. The only difference is that their wave-functions (the KS 

wave-function) and their Slater determinant may or may not represent the real system. 

However there is strong evidence that the Kohn-Sham wave-function does have physical 

meaning for the real system, but the interpretations need care. 

With this successful mapping of Kohn-Sham (KS) electrons, the charge density can 

now be expressed as, 

N 

eqn2.56: 	p(r) =(pr)(p(r). 
tx=I 
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Note this the definition of density in terms of KS wave-function is not absolute. It is 

a result of our choice of mapping to the one-electron system (a different mapping might 

have lead to a different definition). This emphasizes the point that in DFT the density is the 

central quantity, whereas the wave-function is an auxiliary quantity in order to assist the 

solution of the many-body problem. 

2.4.4 Exchange-correlation functionals 

With the above prescription we can see DFT is very much alike to the earlier 

Hartree-Fock(HF) theory except that the one electron Hamiltonian contains an extra term, 

the exchange-correlation functional E,, which claims to contain all the missing information 

of the electron correlation in the I-IF level of theory. However, as mentioned earlier, DFT 

does not give any practical prescription to construct such a functional. The power of the 

DFT is that it sets a clear and specific direction to search and postulate such a functional, 

i.e. it is an unique functional of electron density. 

Practical 	functionals are the major approximations made in DFT calculations. 

They are not from first-principles, rather they are postulated from physically reasonable 

assumptions, and their use is justified a posteriori by their success. However, it is surprising 

that simple minded approximations of this functional works, and in many cases, works 

incredibly well. 

The most widely used approximation is the Local Density approximation (LDA), 

which was introduced by Kohn and Sham [Kohn, 1965], along with the KS equation. The 

LDA assumes that the exchange-correlation functional is purely a local quantity, and 

hence can be obtained by assuming that for each infinitesimal element of density p(r)dr, the 

e[p(r)] is that of a uniform electron gas of density p = p(r). So we can have 

eqn 2.57 	 E, = fdTP(r)E(pg) 



First-Principles Simulation 	 32 

where E[pg ] is the exchange-correlation energy in a uniform gas of density Pgi.  Although, 

LDA is wrong as the electron distribution is highly non-uniform around the atoms, it does 

work well for a large range of materials, particularly for those where electrons are more 

delocalised (e.g. metals). Also, our choice is somehow limited as the uniform electron gas is 

the only system for which E can be calculated exactly in order to construct Exc[pgas] 

[Ceperely, 1980]. 

The LDA particularly fails for systems for which spatial variation in the electron 

density is significant (e.g. molecular solids). Functionals that include some information 

regarding the spatial variation of the density in the approximation have been developed to 

tackle this problem. This leads to a new scheme known as generalised-gradient 

approximation (GGA), which besides the density also includes the gradient of the density at 

r in the construction of Exc[Ogas]  [Perdew, 1991]. The GGA functionals highly improve the 

quality of the calculation in predicting the binding and disassociation energies, especially 

for hydrogen-containing systems [Perdew, 1992]. 

Almost all present work reported in the literature involve either LDA or GGA 

functionals, available in many different parameterisation frameworks. However, despite the 

success of LDA and GGA they are far from ideal, and finding an accurate universally 

acceptable functional is probably the greatest challenge for computational modelling today 

[Parr, 1989]. 

2.5 Basis set 

The main focus of this PhD project is to study extended (crystal) systems. As yet 

there has been no mention of how to handle the problem of an infinite number of interacting 

electrons moving in the-static field of an infinite number of ions in a crystal. Essentially, 

there are two difficulties to overcome: first, a wave-function has to be calculated for each of 
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the infinite numbers of electrons, which should ideally extend over the entire space (infinite) 

of the solid, and second, the basis set in which the wave-functions will be expressed will 

have infinite dimension. 

2.5.1 Plane-wave basis set 

The ions in a perfect crystal are arranged in a regular periodic way (at 0 K). 

Therefore the external potential (i.e. the ionic potential) felt by the electrons will also be 

periodic, the period being the same as the length of the unit cell, a. The external potential on 

an electron can therefore. be  expressed as a periodic function of the form: V(r)= V(r+a). This 

is the requirement needed for the use of Bloch's theorem [Ashcroft, 1976], which allows the 

wave-function of an infinite real space crystal to be expressed in terms of wave-functions in 

a finite reciprocal space (k-space) crystal, i.e. the first Brillouin zone. 

Bloch's theorem therefore reduces the infinite number of one-electron problem in a 

crystal to a one-electron problem of finite number, which is simply the number of electrons 

in the unit cell (or half that number if the electronic orbitals are assumed to be doubly 

occupied). Bloch's theorem states that, under a periodic external potential of period R, the 

wave function can be written as the product of a cell periodic part and a wave-like part, i.e. 

eqn 2.58: P k (rI )=exp(ik.r,)f(r I ) 

The second term is periodic, and directly reflects the periodicity of the potential i.e. 

fir1) = f(r1 +R), where R is any lattice vector of the crystal [Ashcroft, 1976]. If we recall our 

discussion of completeness theorem in Section 2.2.3, the second term can be expressed in 

plane waves as 

eqn2.59: 	 f I (r)c,Gexp(iG.r), 
G 
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where G is known as the reciprocal lattice vectors, representing the periodicity of the 

crystal, defined by the relation G.R = 27im for all R and m is any integer. Therefore each 

electronic wave function is written as a sum of plane waves 

eqn 2.60: 	 ,k(T)= 	ck+Gexp1i(G+k).r1 

2.5.2 Brillouin zone sampling 

The first term in eqn 2.58 is the wave-like part, and it clearly introduces new 

degrees of freedom, k, into the one-electron functions (eqn 2.60). As k represents all the co-

ordinates in the continuous space of the first Brillouin zone of the crystal, we have infinite 

k points at which each ,,t has to be calculated. However, it is possible to sample the k-

space and discretise the first Brillouin zone to a finite set of k points. This is often referred 

to as Brillouin zone sampling and the two most common methods are those of Chadi and 

Cohen [Chadi, 1973] and Monkhorst and Pack [Monkhorst, 1976]. 

2.5.3 Cut-off energy 

The electronic wave functions at each k-point are now expressed in terms of a 

discrete plane wave basis Set. In principle the sum over G in eqn 2.60 is infinite. The 

coefficients for the plane waves, CI,k+G, for each G carries a kinetic energy of 

(h 2 /2 m )Ik+G12  , which represents how diffuse or concentrated the electrons are around 

the core. The plane waves with a smaller kinetic energies usually represents the valence 

electrons, and hence have a more important role in determining the chemistry of the system 

than those with a very high kinetic energy, which usually represents the core electrons. The 

introduction of a cut-off in the plane wave basis set in terms of their kinetic energy is thus 

reasonable. We therefore define a cut-off energy for the basis set as 
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eqn 2.61: 	ECUI _ Off  = — Ik+GI2 , 

which reduces the basis set to a finite tractable size. This cut-off will obviously lead to an 

error in the total energy calculation of the system, but in principle it is possible to make this 

error arbitrarily small by increasing the size of the basis set (by setting a larger energy cut-

off). In practice, the cut-off that will be used depends very much on the system under 

investigation. 

2.5.4 Reciprocal-space representation 

Another advantage of expanding the electronic wave-functions in terms of a basis 

set of plane waves is that the one electron equations take a particularly simple form. 

Substitution of eqn 2.60 in to the KS equation (eqn 2.53) gives 

eqn 2.62: 

	

6, 1 	2 

	

{ 	
k+G! 2 o GG , + Vie (GG') + V H (G — G') + E(G— G 

= ECIk+G 	VG. 

This can be written as 

eqn 2.63: E (hkGG . —  EköGG)cK +G. = 0, VG, 	where G=G1  ..... G and 

2 

hkGG. = 	I k+GJ öGG + V(G—G') + VH(G—G')  + 

The system of equations (for all G) represented by èqn 2.63 forms the secular 

equation in k-space, which have a non-trivial solution when the determinant is zero. Hence 
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with the introduction of Bloch's theorem, the electronic structure problem, can be solved 

using the self consistent matrix diagonalisation method (Section 2.2.3) in k-space. Note that 

the size of the determinant matrix, is determined by the cut-off energy (eqn 2.61). 

2.6 Ion-Electron Interactions 

DFT as described above would still prove computationally too difficult for many of 

the systems we would like to study. Further streamlining is necessary to reduce the task to a 

manageable size, and one important way of achieving this is through the use of 

pseudopotentials. These rely on the fact that the core electrons are tightly bound to their host 

nuclei, and only the valence electrons are involved in chemical bonding. It is therefore 

possible to merge the core electronic states (wavefunctions and densities) into the bulk 

nuclear potential, or pseudo-potential, and only deal with the valence electrons directly. 

The presence of true core electrons in any total energy calculation possess two 

major difficulties. The core electron's wavefunctions under the true ionic potential are 

rapidly varying with many nodes (See Figure 2.2), and therefore require a very large number 

of fitting functions to model them accurately. In order to remain orthogonal to the core 

electrons, the valence electrons are also forced to become rapidly oscillating near the atomic 

core, and therefore also require large numbers of fitting functions (e.g. plane waves). As 

seen in eqn 2.63 the size of the determinant to be solved is proportional to N1,,. (where N,,,,. is 

the number of plane-wave coefficients), and hence the matrix diagonalisation would become 

increasingly expensive with the presence of these core electrons. In addition to this, the 

Coulombic interaction energy contribution from the core electrons would tend to swamp 

any total energy calculations, which tries to project on small differences in valence bond 

energies (e.g. hydrogen bond calculations). The pseudo-potential technique overcome all 

these problems by replacing the true core electronic states with pseudo-states or pseudo-

wavefunctions (as a direct consequence of the construction of the pseudo ionic potentials), 

which are smoothly varying and usually nodeless within a certain core radius (See Figure 

2.2), and much lower in energy. 
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Figure 2.2 The radial 4s full- (solid) and pseudo- (dashed) radial wave-functions (in atomic units) 
for Ni atom. It can be seen that the rapidly varying core region has been smoothed in the pseudo-
wavefunction. But beyond the cut-off radius, rc, the pseudo- and all-electron- wavefunctions are 
identical [Ewels, 1997]. 

The need for pseudo-potential become particularly important for the heavier 

elements when the number of core electrons vastly outweighs the valence electrons and for 

which relativistic effects becomes important. The removal of the core electrons allows a 

non-relativistic approach to be maintained. 

Pseudopotentials assume that the localised core states do not take part in bonding, 

and so can be incorporated as a change in the charge state of the nucleus. Between the 

nucleus and some cut-off radius r,  the all-electron valence wavefunctions can be replaced 

with a smoothed form; beyond this radius the pseudo-wavefunction must be identical to the 

full all-electron wavefunction. In addition there will still be exchange interactions between 

core and valence electrons which must be included in the potentials. Finally, if self-

consistency is to be easily achieved in the calculations then the potentials must have the 
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correct atomic charge density outside the core (so called 'norm-conserving' pseudo-

potentials). Generation of such a pseudo-potential satisfies the equation 

rr 

	

C 	 C 

	

eqn 2.64:
f 	 (r)coaii (r)dr=f :se (r) pseo (r)dr do 

	

0 	 0 

where q6 ,11 is the all electron wave-function and q5,eudo  is the pseudo wave-function, 

guarantees the equality of the all electron and pseudo wave-functions outside the core 

region. 

A rather more radical approach to modify the pseudopotential for use in plane-wave 

calculations has been suggested by Vanderbilt [Vanderbilt, 1990]. The basic aim is the same 

as before with the additional factor that the norm-conservation rule is relaxed(so called 

'ultra-soft' pseudo-potentials). The resulting wave function then can be expanded using a 

much smaller plane wave basis set, and hence further reduces the computational cost 

required. 

2.7 Minimisation Techniques 

The main drive in a computational study is not simply to find the solutions of real 

systems more and more accurately, but also to solve them in a faster way in order simulate 

bigger systems in realistic time scales. Due to this demand, many different techniques have 

evolved. The fact that the problem of solving the ground state configuration is a variational 

one i.e. only the minimum of the total-energy landscape matters irrespective of how we get 

there, makes it an open problem to look for increasingly better methods of energy 

minimisation. In this section we briefly introduce the different techniques followed in the 

relaxation of the electronic and ionic degrees of freedom to their lowest energy state. 
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2.7.1 Electronic energy minimisation 

Although the matrix diagonalisation (Section 2.2.3) method provides a correct 

frame of work for the total electronic energy (Ee) minimisation, it is extremely slow and 

limited to systems of a few atoms only. Instead, most of the present computational packages 

makes use of two popular methods: the Car-Parrinello molecular dynamics (CPMD) method 

[Car, 1985] and the conjugate-gradients method [Stitch, 1989; Teter, 1989], which offer 

solution to systems of hundreds of atoms in a realistic time scale. 

The Car-Parrinello molecular dynamics method 

Car-Parrinello Molecular dynamics (CPMD) method of minimising the electronic 

energy follows an indirect scheme, where each of the coefficients a i  of the one-electron KS 

wave-function (see eqn 2.13) is considered as the co-ordinate of a classical 'particle'. The 

idea is that, if {a 1 } can be represented as a set of dynamic variables, they can be treated by 

the standard classical MD technique and the total electronic energy Ee[{ai}]  can be 

minimised by adding an extra damping term to the equations of motion [Car, 1985]. 

Although there is no direct physical interpretation of such a representation, it does work and 

locate the energy minimum much faster than matrix diagonalisation method. 

The Lagrangian of the system is written as 

eqn 2.65: 	L - 	 - Ee [(Pi },R i ] 

where p is the fictitious mass associated with the electronic wave-function and E e  is the sum 

of the total electronic eigenvalues. The value of p is chosen such that it enforces the 

adiabatic separation between the electronic and ionic degrees of freedom. Note that this 

decoupling is generally very hard to obtain in metallic systems, where the band gap vanishes 

and consequently any small energy transfer from ionic to electronic system may cause the 

electronic wavefunction to go into an excited state [Payne, 1992]. Taking the above 

Lagrangian into the standard Lagrange equations of motion 
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eqn2.66: 	d ôL -  8L 

dt a/. - 

we get the equations of motion for our electronic system as, 

eqn2.67: 

If we add the constraint of orthonormality between different electronic state, 

eqn 2.68: 	S P(T) co(r) d 3 r = 

the Lagrangian the equations of motion becomes 

eqn 2.69: 	pq5 1 =—hp + 

A denotes the Lagrange multipliers associated with the constraints. The equations of 

motion than can be solved with any standard integration package (e.g. velocity-Verlet, 

[Swope, 1982]). If we compare eqn 2.67 and eqn 2.69 with Newton's equation of motion (F 

= ma) it looks like the wave-function is constantly being shaped by a forcing agent hKs at a 

constant fictitious energy surface (note from eqn 2.65 the total energy is not the same as the 

Kohn-Sham total energy functional). The energy minimisation could simply be incorporated 

by adding a damping term of the form - y çb 1  in the equations of motion or using some 

other technique [Payne, 1992]. A simulated annealing technique is often followed, where 

the system is periodically heated and then quench back to a lower temperature, in order to 

avoid the system getting trapped in some local minimum [Payne, 1992]. 

The conjugate gradients method 

Both the CPMD and matrix diagonalisation methods are indirect search methods for 

the ground state, E,,0. Instead of directly looking for a lower value of Ee , the downhill 

motion in the energy landscape is driven by the construction of a new Hamiltonian (h) at 

the end of each iterative step (see eqn 2.21 and eqn 2.67). As a result, these methods risks 

becoming unstable, specially when the total energy (Ee) is close to the minimum (E 0) 

[Payne, 1992]. 
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A different and more generic approach often adopted is that of conjugate gradients 

[Stitch, 1989; Teter, .1989], which assess the energy landscape (E) in the phase space of 

NxN,, dimension (where N is the total number of electron and N,, is the total number of basis 

functions to describe each electron) directly and moves in an optimum direction to reach the 

minimum quickly. It was found that the energy minimum E o  could be reached more quickly 

by assessing the value of E. and its gradients at a set of neighbouring points, and moving 

along the direction of large gradients such that the new direction is always independent 

(conjugate) of the previous ones. 

Variation of the conjugate gradients method 

An earlier version of the conjugate gradients method is the steepest descents 

method, which, instead of moving in an independent direction, lowers the functional along 

each dimension (of the phase space) one at a time. Although this approach minimises the 

system in a single dimension much faster than the conjugate gradients, the strict 

orthogonality in search directions incorporates a bigger error in the overall move in the 

multi-dimensional space. 

A more recent variation of the conjugate gradients method is density-mixing 

[Kresse, 1996] which is much faster and works particularly well with metals [Segall, 2002]. 

In this method the sum of the electronic eigenvalues is minimised in the fixed potential 

instead of the self-consistent minimisation of the total energy. The new charge density at the 

end of minimisation is mixed with initial density and the process is repeated until 

convergence is reached. The conjugate gradients approach is used to minimise the sum of 

eigenvalues. The disadvantage of this method is that it is also an indirect search method and 

is reported to be highly unstable in many cases [Segall, 2002]. Instead of using the KS total 

energy functional it uses a different energy functional (Harris functional; [Harris, 1985]), 

which does not necessarily have a variational minimum at the SCF solution. 
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2.7.2 Ionic energy minimisation 

So far, total energy calculations of electronic system (Ee) have been described for a 

fixed set of ionic {R} positions. So the minimum obtained using any of the above electronic 

minimisation scheme is the self consistent minimum (or electronic ground state) 

corresponding to that fixed set of ionic co-ordinates. In order to obtain the ground state of 

the whole system, obviously the ions should also be relaxed to their minimum energy 

configuration. This is generally done in two steps, first: calculate the forces on the ions, and 

second: move the ions according to the force to minimise the energy. 

Force calculation 

The forces on the ion are calculated using the Hellmann-Feynman theorem 

[Feynman, 1939], which states that: when each electronic wave-function is an eigenstate of 

the Hamiltonian (i.e. the electrons are at their electronic ground states), then the partial 

derivative of the total energy with respect to the ionic positions gives the forces on the ions. 

From the standard definition, the force on an ion, P, at a position Rp can be obtained from 

the full derivative of the total energy, E, given by 

eqn 2.70: 	F = - _ dE 
dR 

As the electronic wave-functions change, the force on the ions will be altered, therefore the 

full derivative has to be expressed in terms of changes in the electronic wave-function too, 

- - F 	
öE 	E84ôEô 07.  eqn 2.71: 	

- 	R 	i  0, ô R AT, 	 ô 	3R,. 

Given that the electrons are at their electronic ground states, i.e 

eqn2.72: 	E = ('eIHl'e) 
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taking eqn 2.72 in eqn 2.71 and using simple manipulation, we get the last two terms as, 

eqn2.73:
+ 

ÔE a07 1  
- 	

a 
I [a1aiP 	aaR P 	iP 

Here Ej is the energy of the electronic state 4. This is zero as (4 	) is a constant by 

normalisation. So we can write down the ionic forces as 

aE 
eqn 2.74: 	f =--i-- 

eqn2.75: 	fP =—/'  
\ e 

aRP  

This significantly simplifies the calculation of the wave-function derivatives, and 

the forces on the ions can now be simply calculated from the ground-state electronic 

function by applying the operator a H/8 R. 

Ionic relaxation 

New ionic positions under the influence of the Hellmann-Feynman forces are often 

calculated using one of the following two methods: 

integrating the ionic equations of motions using the standard molecular dynamics 

(MD) methods and performing simulated annealing dynamics, exactly in the same way 

as in the CPMD minimisation of electrons (Section 2.7.1). 

direct minimisation techniques, which involves the optimisation of the Hessian matrix 

(partial second derivative of energy matrix, often known as force constant matrix). The 

most popular of this type of search method is Broydon-Fletcher-Goldfarb-Shanno or 

BFGS method [Broydon, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970]. 
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A natural consequence of the Car-Parrinello (CP) formalism is that the electronic 

and ionic relaxation can take place simultaneously. In a simultaneous optimisation method 

there are two potential dangers that has to be taken care of. (i) The adiabatic separation has 

to be maintained between electrons and ions. This is done by assigning a very small fictious 

mass to the electronic degrees of freedom. (ii) The fact that the process is simultaneous (i.e. 

we are not waiting for electrons to reach their self consistency before calculating the forces 

on the ions), will incur some errors due to the electrons not being in the exact ground state at 

the time of force calculation. However, keeping the time step of the dynamics very small, 

and consequently keeping the error very small and bounded in time (due to error 

cancellation [Remler, 1990]),  this problems can be avoided in CP dynamics. 

Another way to avoid these problems will be to treat both systems separately using 

different optimisation methods, i.e. say conjugate-gradients for electronic minimisation and 

simulated annealing (MD method) for ionic minimisations. There are many different 

methods available for geometry optimisation including Monte Carlo based minimisation 

approach. Any combination of these optimisation techniques could be followed for the ionic 

and electronic part, so long as the two basic condition mentioned in the last paragraph are 

fulfilled. 

2.8 Conclusion 

This chapter has introduced the main features- of first-principles simulation. 

Modeller has a range of tools at their disposal to calculate practically any chemical or 

physical property of a given system at any condition without bias. Impressive results are 

possible in frontier research areas like, bulk and surface properties of both metals and semi-

conductors [Payne, 19901, minerals and oxides [Payne, 1997], molecules, molecular crystal 

and liquid crystals [Clark, 1997], defects [Shah, 1995], finite temperature phenomena 

[Ackland, 2001], phase transition, disorder and polymorphism [Clark, 1995], to name but a 

few. 
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Chapter 3 

The Hydrogen Bond in Crystalline 

Ammonia 

3.1 Introduction 

The hydrogen bond is one of the most important types of intermolecular interaction, 

with its strength and directionality playing a crucial role in the structure, function and 

dynamics of nearly all molecular chemical systems [Steiner, 2002]. It has been a major area 

of research since its discovery nearly 100 years ago. In recent years new concepts have been 

established and the complexity of phenomena considered has increased dramatically, largely 

due to the availability of new computational techniques and increased computing 

performance. 

Estimating the energy of such intermolecular interactions in the solid state by 

experimental means is a complex business, and often all the information a chemist would 

desire cannot be directly measured. For example, in order to identify the principal driving 

forces responsible for crystal packing, it would be necessary to determine the strengths of 

all of the different hydrogen bonds present, rather than an average value that may be 

obtained on the basis of thermochemical measurements. In recent years chemists have 

increasingly turned to computational methods, however a criticism that can be levied at 

traditional computational chemistry methods is that the style of computational modelling 
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most often adopted is not that appropriate for modelling the solid state. That is to say a 

dimer model system, or perhaps a small cluster, is constructed in an attempt to model a 

property of matter that occurs over a three-dimensional network. 

Hydrogen bonding has also been described as a non-additive effect; that is the 

strength of a network of N interconnected hydrogen bonds is not just the sum of N isolated 

bonds. In these cases, it is therefore unreasonable to split up the network into individual 

hydrogen bonds and calculate the energy of each one. 

Aside from the validity of using isolated dimer or cluster complexes to model solid 

state periodic properties, a further problem arises from the use of localised basis sets, which 

is more appropriate than the plane waves for localised system, to estimate binding energies. 

Any results obtained will suffer from basis set superposition error (BSSE), which will result 

in an overestimation of binding energies and must be corrected for. Attempts to account for 

this effect mostly employ the Counterpoise(CP) method [Boys, 1970], however many 

studies in the literature point to this correction as being rather crude and strongly dependent 

on the quality of basis sets used [Schwenke, 1984]. The effect of BSSE on H-bonded dimers 

has been studied recently in detail by Simon et al. [Simon, 1996] and by Muguet et al. 

[Muguet, 1995], specifically for ammonia dimers. 

For all these reasons, hydrogen bond energies calculated by current computational 

approaches should always be taken with caution. Using a modelling approach that is capable 

of simulating periodic arrays of interacting molecules, such as density functional theory 

with non-localised (i.e. plane-wave) basis sets, offers hope of a better method to determine 

the strength of hydrogen bonds in a periodic lattice. Moreover, this style of computational 

modelling is satisfyingly versatile; once convergence with respect to basis set has been 

achieved the dimensions of the periodic cell used can sufficiently be altered to artificially 

mimic the gas phase or a solid surface or some other chemical environment. This method, 

popularly known as a super-cell calculation, has been used extensively in our work. Taking 

the experimental crystal structure as the starting point, the unit-cell parameters and atomic 
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positions are optimised alternatively until a set of convergence criteria (on energy and 

forces) is met. Removing all but one molecule from the periodic cell, and stretching the cell 

vectors (so that the remaining molecule cannot 'see' its periodic self) will allow the energy 

of one (effectively gas phase) molecule to be determined. As the same basis set and level of 

theory are employed in both cases, comparing the absolute energies obtained is valid, and 

yields information concerning changes in molecular conformation between the solid and gas 

phases and the intermolecular interaction energy. Thus, comparing the energy per molecule 

in the crystal environment (at 0 K, vibration-free) with that of one molecule in a large 

periodic cell without relaxing the atomic positions will generate a calculated value for 

lattice energy. Relaxing the 'gas-phase' model and correcting both phases for the effects of 

zero-point energy vibrations will then generate a value for the sublimation energy. In most 

cases for molecular crystals the sublimation energy is mostly due to hydrogen bonding 1. So 

from knowledge of the sublimation energy and the correct crystallographic information, 

both of which are simultaneously obtained in a plane-wave density functional theory 

calculation, we can predict the strength of hydrogen bonding in molecular solids. 

In this thesis we present the application of plane-wave DFT calculations to 

determine the lattice energies and the strengths of hydrogen bonds present in the solid state 

structures of ammonia and BH 3NH3. The study of the hydrogen bonded structure of solid 

ammonia is discussed in the present chapter, and the study of the dihydrogen bond in 

BH3NH3  will be covered in the following Chapter. 

1-  It is important to note that with presently available DFT functionals we can not calculate 
the energy due to dispersion forces (aka London force, Van der Waals force). This is an 
induced dipole - induced dipole interaction, which depends on the polarisability of the 
interacting molecules and is inversely proportional to the sixth power of their separation. 
Dispersion forces between molecules are the weakest of the intermolecular forces and is 
roughly about 10 to 20% of the weak hydrogen bond strength. 

p 
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3.1.1 Previous works on ammonia 

At ambient temperature and pressure solid ammonia phase-I (see Figure 3.1) is a 

cubic crystal of P23 symmetry [Boese, 1997]. Each unit cell consist of four ammonia 

molecules networked to each-other via tri-furcated hydrogen bonds. Each molecule both 

accepts and donates three hydrogen bonds, each of which deviates significantly (about 20 0) 

from the almost perfectly linear hydrogen bond observed in water ice [Steiner, 20021. 

Figure 3.1 The phased crystal structure of ammonia 

Despite many difficulties and limitations a number of attempts have been made in 

determining the strength of the hydrogen bond for ammonia from experiment. Most 

undergraduate textbooks quote the interaction strength as 17.0 kJmol', although no 

reference is cited as to how this value has been obtained [Shriver, 1994]. A very elegant 

calculation has been reported by Shipman et at. [Shipman, 1976], which highlights all the 

steps necessary to determine the lattice and sublimation energies for the phase I crystal 

lattice on the basis of thermodynamic measurements. Their value for the sublimation energy 

[29.0 ± 4.2 kJmol'] gives an hydrogen bond energy of 9.7 ± 1.4 kJmol', assuming that all 

the interaction energy in the crystal lattice is due to hydrogen bonding and that each 
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ammonia molecule is a three-bond donor and acceptor (see Figure 3.1). Another 

experimental (microwave) study focuses on the gas-phase ammonia dimer [see Figure 3.2 

(c)] and places an upper boundary of 11.7 kJmol' on the bond dissociation energy [Fraser, 

1985]. 

It is worth mentioning at this stage that the interaction present in the ammonia dimer 

(i.e. gas phase) is very different to that which occurs in the condensed state. In the dimer 

model a standard hydrogen bond occurs, where the nitrogen lone pair donates electrons to 

one neighbouring hydrogen atom. In the solid state the lone pair donates electrons to three 

neighbouring hydrogen atoms (i.e. a tri-furcated bond, see Figure 3.1). In any case, 

regardless of whether the measurements relate to the gas or solid phase, both experimental 

results are clearly at odds with the textbook value. 

a) )  

Figure 3.2: (a) classical dimer (C symmetry, linear H-bond); (b) cyclic dimer (C2h symmetry), (c) 
experimental structure from microwave spectroscopy ((C,symmetry, nonlinear H-bond)). 

It is clear from the literature that the potential energy surface created when two 

ammonia molecules interact is very complicated. The three main dimer structures, which 

have been reported on the basis of ab-inito molecular orbital calculations and spectroscopic 

experiments, are shown in Figure 3.2. However, these structures appear with various 

conflicting reports on basis set/level of theory convergence as to which structure represent 
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the correct global minimum of total energy. Subsequently this leads to variations in the 

reported binding energy of the dimers that range from 6.6 to 13.2 kimol' [Langlet, 19951. 

Most ab-inito calculations reported refer to a classical dimer structure with C symmetry and 

a single linear hydrogen bond [see Figure 3.2(a)] [Nelson, 1985]. Other calculations refer to 

a cyclic dimer with C2h symmetry [two hydrogen bonds per dimer, see Figure 3.2(b)] as the 

lowest energy structure [Flirao, 1984]. However, none of these structures are supported by 

the microwave experimental study [Fraser, 1985], which postulates a different dimer 

structure [C5  symmetry, non-linear hydrogen bond, see Figure 3.2(c)] on the basis of 

measured dipole moments. Moreover, many computational studies point to the (NH 3)2  

system as being very sensitive to basis set superposition error, and as such only calculations 

employing very substantial basis sets should be considered in order to minimise the 

Counterpoise correction [Novoa, 1995]. 

Finally, several experiments [Cook, 1979; Lowder, 1970; Lambert, 1950] have 

reported the enthalpy of formation of the ammonia dimer from free ammonia molecules, 

which at 18.0 to 19.3 kJmol 1 , are inconsistent with the upper boundary value of 11.7 kJmol' 

from the microwave study, leading Fraser et al. to conclude that 'the reason for this 

discrepancy is not well understood but these (microwave) results suggests that these 

(thermodynamic) measurements (of enthalpy) of weakly bound complexes are not reliable' 

[Fraser, 1985]. 

From this literature survey it is clear that there is much controversy surrounding the 

geometry of the ammonia dimer system. All these conflicting reports leave the 

determination of the intermolecular interaction energy in solid-state ammonia as an 

interesting challenge. It also strongly questions the acceptance of the traditional 

computational approach (i.e. using ab-inito molecular orbital calculations on dimer systems) 

to infer hydrogen bond strength in the condensed phase, particularly in the case of ammonia 

where the nature of bonding is so very different. 
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3.2 Computational Section 

3.2.1 Crystal lattice calculations 

Total energy density functional theory calculations have been carried out using the 

CASTEP package available through the Materials Studio suite of software [CASTEP, v4.2; 

Payne, 1992]. Periodic boundary conditions allow the valence electronic wave function to 

be expanded in terms of a discrete plane-wave basis set which can be continuously 

improved until a desired convergence level is reached; a considerable advantage over the 

localised basis sets approach [see Figure 3.3(a)]. For ammonia, the basis set expressed at a 

cut-off of 550 eV was found to be sufficient to converge total energies to better than 2.0 

meV per unit cell with a finite basis set error [dE/dlog (E)] [Francis, 1990] 0.17 eV per 

unit cell, which is within the accepted tolerance limits. The electronic core wave function 

was described using the standard ultrasoft pseudopotentials available with the software 

package [Vanderbilt, 19901. 
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Figure 3.3: The total energy per unit cell as a function of cut-off energy and Monkhorst-Pack grid 
parameter. (a) The total energy decreases monotonously with the increase in cut-off energy. (b) 
Total energy per unit cell varies rather inconsistently with different sets of k-points due to 
inadequate sampling of the first Brillouin zone. With sufficiently large set of k-points the total 
energy becomes more consistent, and the range over which it varies diminishes. 
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Bloch's theorem allows the calculation to run in reciprocal space (i.e. k-space) 

which significantly improves calculation efficiency. The symmetry reduced k-point set used 

to sample the reciprocal space was generated using a Monkhorst-Pack grid [Monkhorst, 

1976]. A 6 x 6 x 6 Monkhorst-Pack grid, giving 11 k-points in the symmetry reduced 1St 

Brillouin zone, was found to sufficiently converge the total energy per unit cell within 4.0 

meV [see Figure 3.3 (b)]. The Fast Fourier Transformation (FF1') grid used to communicate 

between real and, reciprocal space was set at 25% in excess of levels -prescribed by the 

program in order to minimise wrap around errors in the transformatiOn [Segall, 2002; 

CASTEP Manual, v4.2]. The GGA functional PW91 was used for the exchange and 

correlation functional [Perdew, 1991]. 

For ammonia, the initial geometry was taken from the X-ray diffraction structure by 

Boese et al. [Boese, 1997] at 160 K and ambient pressure for the phase I cubic crystal 

system [space group P2 2 3, a = 5.1305(8) A, Z = 4] (Figure 3.1). Optimisation of atomic 

positions and unit cell parameters were performed on alternate cycles using the BFGS 

method until the convergence criteria were met (maximum energy change per atom = 5 x 

10 6  eV, maximum RMS force = 0.01 eVk', maximum RMS stress = 0.02 GPa and 

maximum RMS displacement = 5.0 x 10"' A). 

3.2.2 Super cell calculations 

A super cell calculation on a single, isolated ammonia molecule (effectively the gas 

phase) was carried out in order that the interaction energy in the solid state could be 

determined. Zero interaction between the nearest neighbouring cells was obtained by 

increasing the cell size and observing the change in total energy. An 8 x 8 x 8 A 3  cell was 

found to break all intermolecular interactions, without' giving rise to overly long 

computational time. The basis set cut-off energy used previously (550 eV) was sufficiently 

high to avoid the lowering of 'total energy due to increased number of plane waves in the 

basis set (as the cell volume increases) and thus the comparison of energies between the two 

different cell sizes is legitimate. We have estimated any error incurred per hydrogen bond, 
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due to inconsistencies in basis set by calculating the H-bond energy difference due to 

different cell size. The H-bond energy changes by —3.0x10 3  eV (i.e. —0.3 kJmoI') for 

changing the unit cell volume form 8 x 8 x 8 A 3  to 9 x 9 x 9 A 3 , which is negligible 

compared to a weak hydrogen bond strength. 

3.3 Results and Discussion 

Our result matches very closely with the experimental work by Hewat and Rickel 

[Hewat, 1979] on deutero-ammonia at 2 K and also matches very closely with the most 

recent work by Boese et al. [Boese, 1997] at 160 K . Comparison with solid deutero-

ammonia at 2 K is very logical as the isotope effect is almost zero at such a low 

temperature. 

The unit cell volume obtained is within 1.5% of the experimentally determined 

volume by Boese et al. (160 K) and within 6.5% of that determined by Hewat and Riekel 

(2K). The very close match with the value of Boese et al. should not be treated as an 

indication of the accuracy of the simulation as DFT calculations using GGA functionals 

often tends to underbind, and hence overestimate unit cell volume .[Kurth, 1999; Ernzerhof, 

1999; Curtiss, 1997]. The bigger cell volume obtained by Boese et al. is expected due to 

thermal expansion of the unit cell. 
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Table 3.1: Comparison between the experimental and ab-initio structure of Solid 
NH 3 , and H-bond calculation at ambient pressure, OK. 

Experimental 	Calculated results 

Parameters 	
results 	 Plane wave approach 	Gaussian 

aSoljd 	'Gas 	Solid 	'Gas 	'Gas 	eDimer  
phase 	phase 	phase 	phase 	phase 	Model 

Set-up 

Theory/Method Microwave 	PW91 PW91 PW91 B3LYP 

Basis setlE_cut-off [eV] - 	550 550 550 6-31++G 
(2d,2p) 

K-point Grid 	- - 	6x6x6 6x6x6 6x6x6 - 

FBSC/BSSE 	- - 	0.17 -0.0 -0.0 'Very large 

Lattice  

a,b,c 5.048 	- 

y 90.0 	- 

Space/point group P2 1 3 	- 

Cell Volume 128.64 	- 

Geometry [A, 1 

5.156 	8.0 	8.0 	- 

90.0 	90.0 	90.0 	- 

P2 1 3 	P1 	P1 	C. 

137.03 - 	- 	- 

rN-H 1.061(5) 1.008(4) 	1.029 	1.029 

rN .... H 2.357(2) - 	2.329 	- 

rN......N 3.325(2) - 	3.322 	- 

ZH-N-H 107.5(2) 107.4(2) 	107.8 	107.8 

ZN-H ... N 160.0(2) - 	161.8 	- 

1.022 	1.017 

- 	3.295 

108.0 	107.4 

Energy 

Total energy [eV] 

Lattice energy fldmol 1] 	36.4(4) 

Sublimation energy ucjmol - ] 28.9(4) 

H-bond strength [icmoI] 	9.6(14) 

' [Shipman, 1976; Hewat, 1979] 
b  [Weiss, 195 1] 
' Not relaxed, ' Relaxed 
e[Novoa, 19951 

-1286.34248 -321.21804 -321.22068 

35.4 	- 	- 	- 

27.8 	- 	- 	- 

9.3 	- 	- 	11.2 
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3.3.1 Solid-phase geometry 

The N-H distance from Boese et al. is smaller than our value by 0.2 A and the H-

bond is bigger by 0.07 A whereas these values are in very good agreement (within 3-2%) 

with the Hewat and Riekel data. This might be due to the fact that the position of the H atom 

is poorly represented in x-ray diffraction. The N—N distance from our calculation is a very 

good match (within 1%) with all the experiments [Boese, 1997; Hewat, 1979; Olovsson, 

1959; Reed, 1961]. 

Both the H—N—H and N—H ... N angles are in good agreement (within 1%) with the 

experimental values. The H—N—H angle is smaller than the ideal value of 109.5° for sp 3  

hybridisation of the nitrogen atom. This shows that bond bending of NH 3  is also present in 

the solid state geometry. 

3.3.2 Gas-phase geometry 

The molecular geometry of isolated NH 3, calculated using the super-cell approach 

and plane wave basis set, was also very close to the experimental gas phase values reported 

by Weiss et at. [Weiss, 1951], and no less accurate than the most advanced localised basis 

set calculation reported in the literature. For example, we obtained a value for the H—N—H 

angle of 108.00, compared to the range 104.2 0-108.3° reported by various different ab-initio 

molecular orbital calculations [Boese, 1997]. Our calculation therefore demonstrate the 

reliability strength of the supercell approach in plane wave DFT calculations to reproduce 

gas phase geometries. 

3.3.3 Gas phase vs crystal phase 

This work shows the molecular geometry of ammonia changes very little from the 

gas to the solid phase. The H—N—H bond angle decreases by 0.2° and N—H bond distance 



The Hydrogen Bond in Crystalline Ammonia 	 58 

increases by 0.007 A from gas to solid. These changes are in line with experimental findings 

by Hewat et al. [Hewat, 1979] and by Olovsson et el. [Olovsson, 1959], as they justified that 

the N—H bond length should increase from gas to solid due to hydrogen bond formation. But 

the work of Boese et al. [Boese, 1997] and Reed et al. [Reed, 1961] shows the opposite 

effect. It is very hard to analyse different experimental results when the geometrical changes 

are very small and when the experiments are carried Out by different people using different 

approaches. Our simulations do not suffer from this problem as both calculations (gas and 

solid phase) were carried out under the same conditions, and therefore the comparison of the 

results for the two phases is more legitimate. 

3.3.4 Energy 

The lattice energy has been calculated from the difference in energy of a single 

molecule in crystal environment (unit cell energy/Z, Z = 4) and the un-relaxed single 

molecule in a supercell of size 8 x 8 x 8 A3 (effectively gas phase). The lattice energy, 35.4 

kJmol 1 , obtained from our calculation is a close match with the experimental lattice energy, 

36.4(4) kJmol', from the thermodynamic measurement by Shipman et al. [Shipman, 1976], 

and within the limit of experimental error. As it should be, a match between the 

experimental and computational lattice energies should be taken as a crucial test of the 

overall quality of the calculation. 

Two additional steps are required to obtain the sublimation energy from the calculated 

lattice energy: 

relaxing the geometry of the isolated molecule to give the 'proper' gas phase 

geometry, and 

correcting for the zero-point vibration energy (ZPE). (For the detailed method of 

ZPE correction see Shipman, 1976 [Shipman, 1976]) 
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The first step was easily done with a CASTEP calculation and the lattice energy is 

reduced down to 35.1 kJmol' (See Table 3.1). However, for the ZPE correction due to the 

lattice vibrations, we needed to embark on the mammoth task of a full vibrational analysis 

of the system, which was not supported and under-development by CASTEP software 

package during the time of this work. Instead, we adopted the experimental value of 7.3 

kJmol' reported by Shipman et al. [Shipman, 1976] as the approximate zero-point 

vibrational correction. This gives us a sublimation energy of 27.8 kJmOl' for solid 

ammonia. Taking the fact that each ammonia molecule in the crystal is connected to it's 

neighbours by six hydrogen-bond (i.e. the intermolecular bond-order is 3), we estimate the 

average value of H-bond in the ammonia crystal to be 27.8/3 kJmol' = 9.3 kJmol'. 

It is interesting to note that, presently, three years after this work was completed, the 

full vibrational analysis of molecular solids is now supported in the CASTEP material 

studio suite [Segall, 2002]; and also in the later part of this thesis (Chapter 7 and Chapter 8), 

we have subsequently reported a full vibrational analysis of solid NH 3  phase I as a part of 

our development of the constraint first-principles molecular dynamics code. 

Needless to say that the order of the ZPE correction is rather small compared to the 

lattice energy [Shipman, 1976], and hence it is anticipated that any error incurred, will not 

change our final result of H-bond strength (9.3 kJmol') by a great del. Our later work 

(Chapter 8, Section 8.4) has given a value of 38.52 kJmol' for the ZPE of the 21 ammonia 

lattice modes at gamma point; and the difference between the solid phase and gas phase 

molecular mode ZPE is obtained as 2.081 kJmol' (Chapter 7, Table 74). These give the ab-

initio value of ZPE correction as (38.52/4 - 2.081) kJmol' = 7.55 kjmol'. This is 

surprisingly close to the value, 7.3 kJmol', reported by Shipman et al. [Shipman, 1976], 

which was rather crudely calculated from 12 translational mode of average frequency 129 

cm' and 12 librational mode of average frequency 280 cm', with no further consideration 

of ZPE correction from the molecular modes. 
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3.3.5 Electrostatic interaction 

In the traditional view, the lone pair of nitrogen is donated towards the hydrogen 

atom in hydrogen-bond formation, rather than just electrostatically shared [Steiner, 2002]. 

However, the value of 9.3 kJmol' for 'the hydrogen-bond in the ammonia crystal is very 

close to that of the standard hydrogen-bond in the gas phase ammonia dimer. This strongly 

suggests that the nature of the interaction in this particular hydrogen-bonded system is 

electrostatic i.e. the lone pair electron in N is equally shared by all three hydrogen atoms. 

The beauty of DFT is that it gives an unique insight into the electron density of the 

system in order to shed more light on this problem. The error in the electron-density map 

from a DFT simulation is of the same order of magnitude as the error in the total energy 

calculation. As the electron-density is the central quantity in DFT (see Chapter 2), the 

electron density map so obtained is free from any sort of error incurred due to any result 

analysis. From the electron density map it is possible to calculate the Mulliken charges 

[Sanchez, 1995; Segall, 1996; Mulliken, 1955] on each of the ionic positions. 

If the interaction is electrostatic, we would expect the Ewald sum [Allen, 1987] over 

these Mulliken charges in the unit cell to generate the same total interaction energy as that 

of the DFT calculation. From our calculation of the optimised ammonia structure we, get 

Mulliken charges of 0.383 e on each hydrogen and -1.149 e on each nitrogen ionic positions. 

Note that, unlike the electron density, the Mulliken charges are derived quantity [Mulliken, 

1955] from the Kohn-Sham single electron wave-function (written in plane wave basis), 

which itself is an auxiliary quantity in a DFT simulation. However, the Ewald sum over the 

Mulliken charges generated from our ground state optimised structure using GULP (General 

Utility Lattice Program, [Gale, 1997]) gives the total interaction energy as 36.1 kJmol' per 

molecule, which is reasonably close to our DFT calculated value (lattice energy is 35.4 

kJmol', see Table 3.1). This means that the solid ammonia phase I is an ideal electrostatic 

system. Here we emphasise, that this is a very crucial outcome of this work and as far as we 

are aware this is the first comparative study of standard versus tri-furcated hydrogen bond 

strengths. 
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3.4 Conclusion 

This is the first standard ab-inito calculation on a periodic system to reveal the 

hydrogen bond strength in a molecular solid and is in very good agreement with 

experimental findings [Shipman, 1976]. The result (9.3 kJmol' ) was 'surprising' as it 

indicated that the trifurcated N-H. .N bond in solid ammonia was not much weaker than the 

standard interaction observed in the gas phase dimer (11.2 kJmol') [Novoa, 1995]. This 

raised the question that the traditional way of thinking of the nitrogen lone pair of electrons 

as partially shared in hydrogen bond formation for this system is incorrect, and the nature of 

the interaction must be mostly electrostatic. Both results from our periodic lattice model and 

literature isolated dimer models emphasise that the value of the hydrogen bond strength is 

much less than 17.0 kJmol 1 , as reported in most undergraduate chemistry textbooks [e.g. 

Shriver, 1994], which indicate that the texts should be carefully reviewed in light of modern 

computational investigation. 
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Chapter 4 

The Dihydrogen Bond in Crystalline 

BH 3 NH 3  

4.1 Introduction 

Classic hydrogen bonds D—H ... A involve a weak hydrogen bond donor D—H, where 

D is a typical electrostatic atom such as nitrogen or oxygen, and a partner atom with a lone 

pair electrons to act as a hydrogen bond acceptor (e.g. 0, N, S. halides etc). It is surprising 

that a number of transition metal - hydrogen (Y bonds, M—H, are also able to act as proton 

acceptors to give D—H ... H—M interactions with strengths comparable to standard hydrogen 

bonds. This was first described by Richardson and co-workers, and they suggested the term 

dihydrogen bond to describe this type of interaction [Richardson, 1995]. Both inter-and 

intra-molecular versions of this bond have been cited, with typical energies in the range of 

12-28 kJmol' [Crabtree, 1996]. 

In the transition metal cases, however, we could not be sure that the acceptor was 

indeed the M-H a bond because these metals also possess non-bonding valence electrons, 

which could in principle act as alternate H-bond acceptors [Klooster, 1999]. It was 

discovered that the transition metal could be replaced with boron and the resulting contact 

D—H ... H—B was still 'unexpectedly strong' [Richardson, 1995]. This interaction has received 
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special attention as the absence of non-bonding valence electrons on boron negates a 

possible H.. .M interaction that could arise if M were a 'd' block element. The H ... H 

contact must therefore result from a D—H...cr bond type interaction. The simplest system to 

exhibit this interaction is solid BH3NH3: Here the electronegative N pulls e towards itself, 

creating a strong N—H dipolar group. When this approaches a neighbouring BH 3  group it 

interact with the negatively charged H—B bond via N—H ... H—B cr interaction [Klooster, 

1999]. It is important to note that in contrast to N—H bond, both atoms of the B-H bond are 

negatively charged, and the bond is only weakly dipolar with the boron as the negative end 

[Crabtree, 1995]. 

Since the discovery of dihydrogen bonds in solid BH 3NH3 , many theoretical efforts 

have been put forward, especially using a dimer model (see Figure 4.1) as the simplest 

system that contains this interaction. Calculations at the PCI-80IB3LYP level were 

performed by Richardson, Gala, and Crabtree [Richardson, 1995] and Klooster et. al. 

[Klooster, 1999], at the levels of HF/6-3 1 * * and MP2/6-3 1 G**  by Popelier [Popelier, 1998] 

and by Li et. al. [Li, 2002] at the MP2/631+iG**  level. Popelier discussed the 

characteristics of the B—H ... H—N interaction on the basis of electron density. Cramer and 

Gladfelter [Cramer, 1997] made a comparative study of the dimer conformation and binding 

energy with different levels of theory and discussed the potential energy surface. 

All these studies helped open up a new scientific field. But the image obtained for 

dihydrogen bonds is yet not very clear. Do the dihydrogen bonds hold the same 

characteristics of classic H bonds? The question arises as most of the papers cite a 

'surprisingly high' energy value for such an interaction, following on from the main 

computational work carried out by Crabtree and co-workers [Figure 4.1(a); Richardson, 

1995; Klooster, 1999]. They have reported 25.3 kJmol 1  for the dihydrogen bond strength 

from their dimer model calculations, which they then equate to the interaction present in the 

BH3NH3  crystal, i.e. very similar to a medium-strength hydrogen bond, which is at odds 

with that expected compared to standard H-bonds [Steiner, 2002; Jeffery, 1997].This leads 

to an interesting question that, like the ammonia system reported in the previous chapter, 
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inappropriate computational modelling may be resulting in anomalous results for the 

strengths and properties of intermolecular interaction. 

ç t Lç  

 

L; 

Figure 4.1 Dimer models used by (a) Crabtree and co-workers, (b) Li et. al, and (c) Popelier to 
investigate properties of the H ... H contacts. 

Like the ammonia case, there is also no clear agreement over which dimer 

conformation of (BHNH 3)2  is the true minimum. Li et. al. [Figure 4.1(b); Li, 2002] and 

Popelier [Figure 4.1(c); Popelier, 1998] have reported two different conformations, and both 

claim their models reproduce the local geometry of the dihydrogen bond in the crystal. 

However the two different models produce markedly different values for the interaction 

energy at 13.9 kJmol' and 19.0 kJmol', respectively. It therefore looks like the use of the 

dimer model is a bad approach to rationalise the binding energy in the solid state structure 

of BH3 NH3, as the potential energy surface is complex and different minima can be obtained 

[for further detailed discussion, see (Cramer, 1997) where an argument has been submitted 

whether the C 2, Figure 4.1(a), (found by Crabtree et. al.) or C2h  symmetry conformation, 

Figure 4.1(b), of the (BH 3 NH3 ) 2  corresponds to the global minimum]. In addition, we could 
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not find any report of an experimental dimer structure either, which leads to the important 

conclusion that all postulated models are, in all likelihood, completely artificial. 

In reality, of course, the problem we wish to address looking at is one of 

crystallographic packing (see Figure 4.2). The dihydrogen bonds that appear in the dimer 

models (Figure 4.1) are quite different compared to those in the crystal (Figure 4.2). This 

leads to an obvious question, could Crabtrees 'surprisingly large' result just be an artefact of 

an inappropriate dimer model calculation? For this purpose we undertook a study of the 

BH3NH3  crystal using plane-wave DFT to simulate the exact lattice geometry, and thus 

determine the strength of dihydrogen bonds present in a much more relevant model system. 
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Figure 4.2 Crystal structure of BH 3NH3  showing the dihydrogen intermolecular bonding network as 
viewed along (a) the c axis (numbers indicate three different types of H-bond) and (b) the b axes 
[Klooster, 1999]. Note N/B—H geometries along the b and a axes are not crystallographically 
equivalent [Klooster, 1999]. 
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4.2 Computational Section 

4.2.1 Crystal lattice calculations 

Density functional theory calculations have been carried out to simulate the gas and 

solid phase structure of BH3NH 3  and a dimer conformation, using the CASTEP package 

available through the Materials Studio suite of software [CASTEP, v4.2; Payne, 1992]. For 

the BH3NII3 crystal calculation, the basis set expressed at a cut-off of 600 eV was found to 

be sufficient to converge total energies to better than 3.0 meV per unit cell, with a finite 

basis set correction [dE/diog (E)] [Francis, 1990] 0.22 eV per unit cell, which is within 

the accepted tolerance limits. The electronic core wave function was described using the 

standard ultrasoft pseudopotentials available with the software package [Vanderbilt, 1990]. 

The symmetry reduced k-point set used to sample the reciprocal space was generated using 

a Monkhurst-Pack grid [Monkhorst, 1976] (6 x 6 x 6, giving 27 k-points in the symmetry 

reduced 1St  Brillouin zone). The Fast Fourier Transformation (FF1') grid used to 

communicate between real and reciprocal space was set at 25% in excess of levels 

prescribed by the program in order to minimise wrap around errors in the transformation 

[Segall, 2002, CASTEP Manual, v4.2]. The GGA functional PW91 was used for the 

exchange and correlation functional [Perdew, 1991]. 

The initial geometry of the BH3NH3 crystal was taken from the neutron diffraction 

structure by Klooster et. at. [Klooster, 1999] (An orthorhombic crystal system, space group 

Pmn2 1 , a = 5.395(2), b = 4.887(2), c = 4.986(2) A, Z = 2). Optimisation of atomic positions 

and unit cell parameters were performed on alternate cycles using the BFGS method until 

the convergence criteria were met (maximum energy change per atom = 5.0x10 6, maximum 

RMS force 0.03 eV A, maximum RMS stress = 0.02 GPa and maximum RMS 

displacement = 5.0 x10 4  A). 



The Dihydrogen Bond in Crystalline BH 3NH3 	 69 

4.2.2 Super cell calculations 

A super cell calculation on a single, isolated BH3NH3 molecule (effectively the gas 

phase) was carried out in order to determine the total interaction energy in the solid state. 

Zero interaction between the nearest neighbouring cells was ensured by increasing the cell 

size to 10 x 10 x 10 A3 . The basis set cut-off energy (600eV) used previously for the crystal 

phase was sufficiently high to avoid the lowering of total energy due to increased number of 

plane waves in the basis set (as the cell volume increases) and thus the comparison of 

energies between these two different cell sizes is legitimate. 

4.3 Results and Discussion 

4.3.1 Crystal geometry 

Our calculated geometry matches very closely with the experimental data (Table 

4.1) by Klooster et. at. [Klooster, 1999] for the solid phase and by Thorne et. at. [Thorne, 

19831 for the gas phase structure of BH3NH3 . 

The unit cell volume obtained is within 2.3% of the experimentally, determined 

volume by Klooster et. al. (200 K). This is very good match, as DFT calculations using 

GGA functionals often tends to underbind, and hence overestimate the unit cell volume 

[Kurth, 1999; Ernzerhof, 1999; Curtiss, 1997]. The lattice vectors 'a' and 'b' obtained from 

calculation are in very good agreement with the experimentally determined values. However 

the lattice vector 'c' is about 2% bigger than that determined by experiment. This is 

probably due to the lack of strong intermolecular interactions along the 'c' direction that 

DFT could model, as all three dihydrogen bonds lie in the plane containing lattice vectors 

'a' and 'b' (Figure 4.2). 
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Table 4.1 Comparison between the experimental and ab-initio structure of solid 
and gas BH 3 NH 3  and H-bond calculation at ambient pressure, 0 K. 

Experimental results 	Calculated result 	Gaussian 
Values 	 Periodic approach 	approach 

aSolid phase 'Gas phase Solid phase Gas phase cDimer  

Set-up 
Theory/Method Neutron Microwave 	DFT-PW9 1 DFT-PW9 1 PCI-80/ 

Diffraction Study B3LYP 
Basis setlE_cut-off - - 	 600 eV 600 eV Double 	P 
K-point Grid - - 	 6x6x6 4x4x4 - 

FBSCIBSSE - - 	 0.22 -0.0 Not Reported 

Lattice  
5.395(2) - 	 5.366 10 - a 

b 4.887(2) - 	 4.914 10 - 

4.986(2) - 	 5.100 10 - 
C 

a, l, 'y 90.0 - 	 90.0 90.0 - 

Z 2 - 	 2 1 - 

Volume 131.5(16) - 	 134.5 1000 - 

Space/point group Pmn2 1  - 	 Pmn2 1  P1 C2  

Geometry [A, 
rB-N 1.58(2) 1.6576(16) 1.580 1.624 N/A 
rN-H 1.07(4)", 0.96(3)e  1.0140(20) 1.029, 1.034*  1.026 N/A 
rB-H 1. 15(3)d 	1 . 18(3)e 1.2160(17) 1.218, 1.210 1.205 N/A 
LB-N-H 106(4)", 	11 1(2) 110.28(14) 113.0, 111.1 111.2, 110.7 N/A 
ZN-B-H 114(2)d, 	112( I)e 104.69(11) 107.4, 109.2 105.8, 105.5 N/A 
LH-N-H 113(3), 	104(3)9 108.65(14) 107.2, 107.4 108.0 N/A 
LH-B-H 102(2)", 	1 i6(3) 113.80(11) 110.3, 110.2 112.9 N/A 
bond:1 	rH ... H 2.02(3) - 1.909 - 1.82 

ZN-H ... H 156(3) - 157.8 - 158.7 
LB-H ... H 106(1) - 100.4 - 98.8 

bond:2 rH ... H 2.21(4) - 2.271 - - 

LN-H ... H 130(1) - 131.8  
LB-H.. .H 156(3) - 157.9 - - 

bond:3 	rH ... H 2.23(4) - 2.174 - - 

ZN-H.. .H 137(2) - 135.0 - - 

LB-H ... H 94(2) - 87.6 - - 

Energy 
Total energy [eV] -896.439167 -447.431416 
Total interaction energy [kJmol'] - 76.0 - 50.6 
H-bond strength [kJmol'] - 12.7 - 25.3 

a [Klooster, 1999] '[Thome, 1983] '[Richardson, 1995] 
d  Geometry relates to the atom H8  in Fig.4.2 Geometry relates to the atom HA in Fig. 4.2 

Geometry relates to HB-N/B-HA angle in Fig.4.2 9  Geometry relates to HA-NIB-HA angle in Fig. 4.2 
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The calculated B–N distance in the solid phase is identical as that obtained in the 

experiment to within the experimental error and shorter than that of the gas phase. The N–H, 

B–H distances and H–N–H, H–B–H angles are in reasonable agreement with the 

experimental values by Klooster et. at. - 

Three crystallographically distinct dihydrogen bonds (Figure 4.2) are present in the 

crystal lattice, with bond distances 2.02(3) A, 2.21(4) A and 2.23(4) A, which are all 

reproduced in the calculation to within 0.1 A. The corresponding bond angles (BIN—H ... H) 

are also in reasonable agreement (within 1-8%) with experimental data. Although there is a 

reasonable agreement between the experimental and calculated geometries; as the reported 

experimental structure shows large estimated standard deviations [Klooster, 1999], we 

believe that a better structure could be obtained experimentally. 

4.3.2 Gas-phase Geometry 

The geometry obtained in the supercell calculation of gas phase BH3NH 3  is as 

accurate as that obtained with advanced-level Gaussian basis sets [Thorne, 1983]. The B–N 

distance of BH3NH3 is 1.624 A, within 0.04 A of the experimental value, and bigger than the 

calculated value in the solid phase, which is presumably shortened due to a-bond co-

operativity. 

4.3.3 Energy 

The total interaction energy has been calculated from the difference in the energy of 

a single molecule in the crystal environment (unit cell energy/Z, Z = 2) and the relaxed 

single molecule in the supercell of size 10 x 10 x 10 A 3  (effectively gas phase). The value 

(kJmol') obtained from our calculation does not include the zero-point vibrational energy 

(ZPE) correction. As mentioned earlier for ammonia (Chapter 3), at the time this work was 

carried out we did not have access to the proper tools in the CASTEP software package to 
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carry out a full vibrational analysis on BH 3NH3  crystal [CASTEP, v. 4.2; Payne, 1992]. 

From the literature there were no normal mode analysis of solid BH 3NH3  available. Also, 

quite unfortunately, there were no experimental sublimation energy available in the 

literature for comparison with our calculated value. 

As each BH3NH3 molecule in the crystal lattice is connected by twelve inter-

molecular dihydrogen bonds to its neighbours (i.e. an intermolecular bond order of 6, see 

Figure 4.2) we estimate the average value for the dihydrogen bond present in the crystal 

structure to be 76.06/6 = 12.7 kJmoF'. As just mentioned we neglect the ZPE correction, 

however we expect that this correction should be rather small compared to the total 

interaction energy, and any error incurred would not change the final result (12.7 kJmol t ) 

by a great deal. Note that our calculated value of the dihydrogen bond strength is about half 

of that [25.3 kJmol'] reported by the dimer model calculation of Crabtree and co-workers 

[Richardson, 1995]. 
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4.4 Testing The Dimer Model 

The weaker dihydrogen bond found in our study may simply be due to the failure of 

the supercell approach in the plane-wave DFT calculation, or an underestimation of binding 

energies using a plane-wave basis set. But we can test if this is the case by running a 

calculation on a dimer model using the supercell approach within plane-wave DFT. If a 

similar binding energy is obtained to that found for localised Gaussian basis sets, we will 

know that the error lies in the choice of model (Figure 4. 1), not with the calculation method. 

It is very important to remember that the potential energy surface in the dimer model is very 

different to that of the solid state and the intermolecular interactions are not solely governed 

by the local geometry of the dihydrogen bond but rather by the whole packing arrangement 

of the crystal. Our calculations will thus test whether a match between local geometry i.e. 

D—H, H ... A bond distance and D—H ... A bond angle of a dimer model, which has been the 

method pursued for so long in traditional ab-initio molecular orbital calculation, is sufficient 

to mimic the real hydrogen bond strength in the crystal. 

4.4.1 Computational technique 

Series of localised basis set (LBS) calculation were carried out using the 

Gaussian98 package [Frisch, 1998] in order to reproduce the literature conformations (due 

to Crabtree et.al., Lie et.al. and Poplier; Figure 4.1) of BH 3NH3  dimer. Most successful 

calculation (the lowest energy minima) were obtained for the C2h structure reported by Li 

et.al. The dimer-monomer calculation were performed on this (C2h) dimer in order to 

compute the dimer binding energy in localised basis set method. 

The Geometry optimisation of the Li structure (C2h dimer) were then repeated using 

the plane wave (PW) supercell technique (using CASTEP package) in periodic supercells of 

12 x 12 x 12 A3 . The dimer-monomer (See Section 4.2.2 for detailed method) calculation 

were performed in order to estimate the dimer binding energy in plane wave method. 



The Dihydrogen Bond in Crystalline BH3NH3 	 74 

Both localised basis set (isolated space) and plane wave (periodic space) 

calculations were carried out using DFT theory (PW91 functional). In both cases the basis 

set taken were extensively large (Table 4.2) in order to minimise the error due to an 

insufficient basis set. The finite basis set correction (FBSC) is close to zero for plane wave 

calculation, and the localised basis set calculations were corrected for basis set 

superposition error, which was also very low (0.4 kJmol 1). Very large supercells (12 x 12 x 

12 A3) ensures zero-interaction between neighbouring cells in PW calculation. 

4.4.2 Results and discussion 

Both the periodic dimer (plane wave) and the isolated dimer (localised basis set) 

calculations show the global minima (or minimum total energy) for the cyclic C2h structure 

[Figure 4.1(b)]. Attempts to reproduce the geometry proposed by Crabtree et. al. were not 

successful even with very large Gaussian basis set. Li et. al. has also reported such difficulty 

with reproducing the Crabtree structure [Richardson, 1995]. The Table 4.2 in the next page 

summarises the important results obtained from the simulations. 
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Table: 4.2 Comparison between the ab-initio molecular orbital and plane-wave 
DFT calculations, obtained for BH3NH 3 dimer [Figure 4.1(b)]. 

Values Localised basis set approach Plane-wave supercell approach 

Dimer phase Gas phase Dimer phase Gas phase 

Set-up 

Theory Level/Method B3-PW91 B3-PW91 DFT-PW91 DFT-PW91 
Basis set / Ecut-off 6-311++G* 6-311++G* 600 eV 600 eV 
K-point Grid - - 3x3x3 3x3x3 
FBSC/BSSE 0.4 kJmol' - —0.0 —0.0 
Lattice [A, °, A31 
a, b, c - - 12.0 12.0 

y - - 90.0 90.0 
Z - - 2 1 

Volume - - 1728.0 1728.0 

Space/point group - C2h - Pm P1 
Geometry [A, °] 
rH ... H 2.03 - 1.94 - 

ZN—H ... H 146.2 - 145.2 - 

LB—H ... H 88.6 - 87.4 - 

Energy 
Total energy —166.426496 —83.203111 —895.502512 —447.417497 

Hartree Hartree eV eV 

Dissociation Energy [kJmol'] 26.3 32.2 

H-bond strength [kJmol'] 	13.2 16.2 

Geometry 

The plane wave geometry optimisation reproduces the same minimum energy 

structure as that of the localised basis set calculations, which is a C2h symmetry structure 

with four equivalent dihydrogen bonds (Table 4.2).The dihydrogen bond geometry obtained• 

is very close to that of the first dihydrogen bond seen in the solid (See Table 4.1). Its length 

1.94 A, is a bit shorter (4%) than that obtained from the localised basis set calculation, and 

hence the bond strength in the periodic calculation is expected to be a bit stronger. 
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Energy 

Table 4.2 shows that two different computational approaches on the same dimer 

conformation give very similar geometries and similar strengths of the dihydrogen bond. 

The dihydrogen bond strength in the periodic dimer conformation was a bit higher (3 kJmoY 

')than the isolated dimer conformation as a result of the slightly shorter interaction distance, 

which is a reasonable difference. Thus we can conclude that the plane-wave (periodic space) 

DFT calculations are capable of determining reasonable binding energies for the (BH3NH3) 2  

system at the same level as the localised basis set calculation, and so should be valid for the 

BH3NH3 crystal. So we refer to the value, 12.7 kJmol 1 , calculated using plane wave DFT 

approach listed in Table 4.1 as the correct dihydrogen bond strength in BH3NH3 crystal and 

previously reported surprisingly high value, 25.3 kJmoL 1 , of dihydrogen bohd is an artefact 

of the dimer model. 

4.5 Conclusion 

This work demonstrates that a more realistic model of solid BH 3NH3  reassigns the 

dihydrogen bond as a weak-moderate H-bond of strength 12.7 kJmol', in line with the 

general prediction by the classical H-bond theory [Steiner, 2002; Jeffery, 1997]. A clear 

message from this detailed study is that the hydrogen bond strength in the solid is not a sole 

function of its local geometry (i.e. D—H, H ... A bond distance and D—H ... A bond angle). 

The potential map of the crystal where the true hydrogen bond lies is in general very 

different from that of simple dimer model. The use of dimer models to mimic the solid state 

can therefore at best be regarded on a trial and error basis. 
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Chapter 5 

An Introduction to First-Principles 

Molecular Dynamics 

5.1 Introduction 

Molecular dynamics simulation is a computational technique to move ions, atoms or 

molecules under the action of realistic forces. This allows us to observe the evolution of a 

desired system (see Figure 5.1) at a microscopic level (i.e. the detailed conformation or 

phase points, F) in its phase space (6N dimensional space comprising 3N position co-

ordinates and 3N momentum co-ordinates, where N is total number of atoms in the system). 

In real life, a system in equilibrium visits all possible phase points in a particular phase, 

with the probability p(F) given by the Boltzmann distribution. The probability distribution 

is defined by the macroscopic parameters of the system (i.e. the thermodynamic state, e.g. 

NF1', NVT etc.). Such a system is termed 'ergodic' and the collection of the phase points (F) 

for which the probability, p(f'), is non-zero is regarded as an ensemble of that 

thermodynamic state. Molecular dynamics (MD) can allow us to explore this phase space of 

the real-life system by following its equations of motion. Care should be taken in the choice 

of the MD algorithm to ensure the ergodicity [Martyna, 19921. Averaging the desired 

properties over the phase trajectory (the collection of phase points generated by the 

equations of motion of the system) for a sufficiently long time therefore gives us valuable 

information about the dynamical properties of the system of interest. 

78 
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Figure 5.1: Phase space for one dimensional linear harmonic oscillator, showing a trajectory 
followed clockwise in time. Obviously, the phase space trajectory for a truly macroscopic system 
with 6N (e.g. 1023)  degrees of freedom will be very complex. 

Molecular dynamics is a purely classical simulation of the atomic motion. The 

system's dynamics is solved using the classical equation of motion, with forces derived from 

the total energy of the system from all types of interaction, E. 

eqn5.l: 	F = —VE, 

The total energy of the system could be either derived from a model potential V 

[Allen, 1987], or from a DFT-based quantum mechanical calculation using the Hellmann-

Feynman theorem [Feynman,1939]. From Taylor's expansion we can write the position of 

an ion at a time (t+h) linked to its position at previous time t by 

2 .. 	h 3 ... eqn 5.2: 	r(t+h) = r(t) + ht(t) + h —r(t) + —r (t)+ 
2! 	3! 

+ O(h"). 
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This is an exact relation. Therefore, if we know the position of the particle at time r, 

and all the higher derivatives of the position r, we can calculate the particle position at a 

later time t+h. In other words, if we know the system (r (t)} at time t, we can derive the 

system configuration (r,(t+h)} at a later time t+h if we know all the higher derivatives of 

( ri ). In this way systems become completely deterministic and the "true trajectory" of the 

system can be predicted for any desired period of time from a precisely known initial 

condition. 

However this is not possible in a real life simulation. We can deal with the first few 

derivatives of position but it is impossible to know all the higher derivatives. The first 

derivative, r is the velocity and can be easily derived. The second derivative, () is 

acceleration of the ion, which can be obtained from the force exerted on that ion from 

Newton's equation of motion: 

eqn5.3: 	F = mr, 

where forces are derived from either an empirical potential or from quantum mechanical 

- calculations. We have very little or no idea about other higher derivatives of r (change of 

force with time), i.e. 	r". 

If, however, h is very small such that h3  and all higher powers of h are close to zero, 

then we can cut down the higher terms in the Taylor expansion to give the truncated 

equation 

eqn5.4: 	r(t+h) 	r(t) + ht(t) + 

Here the parameter h, known as the time step of molecular dynamics simulation, 

plays a central role. The parameter h has to be adjusted so that it is small enough to maintain 

the above prediction of eqn 5.4. This is ensured by testing that the time step is small enough 

to sufficiently sample the fastest mode present in the system. 
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5.1.1 Integrating the equations of motion 

In short, a molecular dynamics calculation is all about integrating Newtons 

equations of motion (eqn 5.3) with the forces derived from total energy (eqn 5.1). A good 

integration algorithm is crucial for a good molecular dynamics simulation. All the available 

integration schemes are based on Taylor expansions (as in eqn 5.4) of different dynamical 

quantities connected together in a slightly different approach. In this work we have used the 

velocity-Verlet algorithm [Swope, 1982], which is not only one of the simplest, but also 

usually the best available MD algorithm. The Taylor expansion is used to estimate position 

and velocities, accurate to order h3  - 

eqn5.5: 	r(t+h) = r(t) + ht(t) + 
h 
 P (t) + 0(h3 ), 

eqn5.6: 	(t+h) = i (t) + h(t) + 	+ 0(h3 ). 

Using forward difference approximation, 	can be written as 

eqn5.7: 	(t) = 
1(t+h) -. 1(t) 

h 
-I- 0(h) 

This allows us to rewrite eqn 5.6 as 

eqn5.6: 	1(t+h) = t(t) + -i(t) + 	i(t+h) + 0(h3 ). 

If we define a new variable, q, as 

eqn5.8: 	q = t(t) + h 

eqn 5.5 and 5.6 can be finally written as 
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eqn5.9: 	r(t+h) = r(t) + h.q + 0(h3 ), 

eqn 5.10: 	i(t+h) = q + 	i(t+h) + 0(h3 ). 

The newly defined variable, q, is often referred to as the mid-velocity. The equations eqn 

5.8 - 5.10 forms the basic structure of the velocity-Verlet algorithm. 

5.1.2 The two-step algorithm 

One of the main features of the velocity-Verlet algorithm is that it is a two step 

method, with a force calculation in between. The obvious advantage is in terms of memory 

storage and clarity of the coding. This algorithm requires memory storage for only three 

variables: position, velocity and acceleration (9N data storage). For the first step, the mid 

velocities {q 1 } are calculated using eqn 5.8 and then the new positions {r(t-+-h)) are 

calculated using eqn 5.9. This step is often referred to as velocity-Verlet position update. 

At the intermediate stage, the forces and corresponding accelerations at time t+h are then 

computed (eqn 5.1 and eqn 5.3) from the knowledge of total energy (i.e. total internal 

energy) due to the new conformation {r(t-i-h)J. 

The second step is the velocity-Verlet velocity update. The velocities are updated at 

time t+h from the knowledge of the new positions and forces (at t+h) using eqn 5.10. At 

this point, the kinetic energy of the system at time t+h is available. 

The local error with this algorithm is of order h3  and the global error of this 

simulation is of order h2  [Swope, 1982]. Since the velocities appear explicitly in this 

method, it is more suitable to simulate velocity-dependent phenomena. The numerical 

stability, convenience and simplicity makes it perhaps the most attractive method of choice 

[Allen, 1987]. 



An Introduction to First Principles Molecular Dynamics 	 83 

5.1.3 Conservation criteria for numerical algorithm 

While the exact solution of a Hamiltonian system follows certain conservation laws, 

discrete numerical scheme, in general, tends to violate it. Particular importance is the time 

reversible symmetry (corresponds to energy conservation) and the conservation of phase 

space density. For a successful MD simulation it is important to prove that these two criteria 

are met. 

The velocity-Verlet algorithm meets both of these criteria. Recently Tuckerman et. 

al. [Tuckerman, 1992] have demonstrated how to systematically derive time-reversible, area 

preserving MD algorithms from Liouville formulation of dynamical mechanics. Let us 

consider a phase point F [p"(t), e(t)] represents a classical system of N particle, where the 

term F depends on time implicitly. The time derivative of F is given by 

eqn5.11 	F 	r  ar + j ar 
	

iLF, where 
ar 	ap 

. ap 
a 

eqn 5.12 	iL = r - ar + p - 	lL  .+ iL 
.  

iL is known as the Liouville operator, which acts as an operator to move the Hamiltonian 

system along its MD trajectory. By integrating the eqn 5.12 we get the operator of time 

evolution exp(i Lt) of the MD system: 

eqn5.13 	F{ps(t),rN(t)] = exp(iLt)F{p"(0),r"(0)J 

It is clear from eqn 5.13 that the evolution operator completely retains the time 

reversible symmetry, as exp{iL(-t)}.exp(iLt) F(0) = F(0), i.e. the exact Hamiltonian 

dynamics is time reversible. Now to prove that the velocity-Verlet scheme also retains this 
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property, we need to split the evolution operator iL into the position update operator lLr  and 

the velocity update operator iL (see eqn 5.12). Although iL, and iL are noncommuting, i.e. 

eqn 5.14 	exp(iL,.t + iLt) # exp(iLt)exp(iL P t) , 

we can still use the Trotter identity [Frenkel, 2002], which gives 

eqn 5.15 	exp(iL,.t + iLt) = exp(iLt/2) exp(iL r t) exp(iLt/2) + 0(t 3 ). 

The error of the order t comes as a penalty to override the noncommuting property of iL, 

and iL in eqn 5.14 [Tuckerman, 1992]. Now the new form of time evolution operator, 

which moves the system forward by a time step t, is 

eqn5.16 	 = exp(iLtI2)exp(iLt)exp(iLt/2), 

which is exactly the two step velocity-Verlet integration scheme. From eqn 5.16 it is clear 

that the velocity-Verlet is time reversible, as 	F(0) = T(0). 

Another important property of a Hamiltonian system is that the natural time 

evolution of the system corresponds to a symplectic co-ordinate transformation [Frenkel, 

2002], which means: a) each MD step produced by the evolution operator (i.e. velocity-

Verlet method) corresponds to a canonical transformation of co-ordinates from {p''(0), r' 

(0)} to {pA'(t),  e(t)). b) The size of the volume element associated with T in the phase space 

does not change by the transformation. 

While most of the integration algorithm maintain the canonical transformation, i.e. 

the newly generated co-ordinates also comply with the Hamiltonian equations of motions, 
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many algorithm does not comply with the second condition of the incompressibility of the 

phase space. The symplectic condition is maintained in an MD step if the Jacobian of the 

co-ordinate transformation (i.e. co-ordinate update forward in time) is one [Frenkel, 2002]. 

For the velocity-Verlet algorithm, Jacobian of the transformation from F [pN(0) ,  rN(0)] to F 

[PN(t) rN(t)] is simply the product of the Jacobians of the three elementary transformations 

(eqn 5.16). As each of these Jacobians is equal to one, the overall Jacobian is also one 

[Tuckerman, 1992]. 

5.2 The Correct MD 

The above discussion explained the basic mathematical framework of a molecular 

dynamics integration scheme. However, apart from that, there are some conceptual issues 

that have to be met by an MD simulation in order to produce correct statistical predictions 

of the system of interest. The criterion is based on "how closely" the generated 

computational trajectory matches the "true trajectory" of the system. In what follows, this 

key issue, dominating the accuracy of a MD, will be addressed. 

To have an algorithm that accurately predicts the trajectory of the system in its 

phase space, for both short and long times, would appear to be the most important criterion. 

In fact, no such algorithm exists. This is because of the approximate character of the 

integration algorithm (eqn 5.4) used. Although the integration error caused by the discrete 

algorithm is very small (but not zero) at the initial stage of the computation, it builds up as 

the computation proceeds, finally causing the system to deviate strongly from the true 

trajectory. We should therefore expect that any integration error, no matter how small, will 

always cause our simulated trajectory to diverge exponentially from the true trajectory 

compatible with the same initial condition. The deviation follows the so-called Lyapunov 

instability [Frenkel, 2002] 

eqn 5.17: 	 Eexp(At) 
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Here is a small difference in the initial condition [r(0), p(0)] of a particle (say i) in 

two separate simulation runs, and Ar(t) is their separation at time t. Eqn 5.17 illustrates the 

extreme sensitivity of the trajectories to small perturbations in the initial conditions. 

The Lyapunov instability would be a major blow to an MD simulation, if the aim 

were to predict precisely what will happen to a system that has been prepared in a precisely 

known initial condition, but fortunately we are only interested in statistical predictions. We 

wish to predict the average behaviour of the system that was prepared in an initial state, or 

in other words, our aim is to sample the particular phase region of the phase space (e.g. the 

liquid phase ensemble in the phase space of water) of the system in an efficient way so that 

the average quantities extracted from the simulation represents the true system. So long as 

the error in the trajectory due to the Lyapunov instability is very small, the system remains 

bound in the correct ensemble of the phase space, and the statistical properties extracted 

from such trajectories will be correct. In this respect, an MD simulation differs 

fundamentally from the numerical schemes used for predicting the trajectory of a satellite 

through space; in the latter case, we really wish to predict the true trajectory. Hence we can 

conclude that for a good statistical prediction, although an MD simulation does not need to 

follow the true trajectory precisely, it is necessary that the trajectories obtained numerically 

are close to the true ones. 

For three key reasons, an MD simulation may deviate strongly from, rather than 

follow closely, the true trajectory. Firstly, since the molecular dynamics is a classical 

approach, it can only accurately describe a real system, which obeys the laws of classical 

mechanics. This is usually acceptable, apart from the cases where the quantum effect 

[Cramer, 2003] becomes significant for light atoms and molecules in a system. This usually 

happens at low temperature when the de Broglie wavelength for the light particles becomes 

comparable to the atomic radius (i.e. of the order of 1 A). Secondly, the time step of the 

molecular dynamics simulation has to be sufficiently small to keep the integration error 

within acceptable range. An infinitely small time step seems to be the ideal, but would lead 

to very extensive computation. Thirdly, the derived forces have to be very close to the 
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correct forces exerted by the true system. This is an essential requirement in order that our 

simulated system will follow the true trajectory closely, and is a very complex and central 

issue in any MD calculation. Forces derived from the classical model potentials suffers from 

the limitations due to parameterisation, whereas forces derived from first-principles also 

suffers from the limitations in its computational technique and due to lack of exact 

knowledge of the Exchange-Correlation functional. In the following sections we will discuss 

the limitations imposed by the modelling of potentials, which opens up the discussion for 

the state-of-art first-principles MD or ab-inito MD. 

5.3 Classical MD 

For the traditional MD simulation, more familiarly known as classical ,  MD, forces 

are derived from a model potential that is written in terms of the atomic co-ordinates (their 

position, orientation and other properties) and a number of fitted parameters [Wallqvist, 

1999]. Such a potential is based on intellectual guess and experimental evidence, and the 

parameters are fitted so that they can predict most of the known results. In this way once a 

credible model has emerged, it is used to predict the other chemical and statistical 

behaviours of the system, such as protein folding, cluster formations in liquid mixture, ion 

transport in biological system etc., which may not be amenable to experimentation. 

The success for such an empirical potential depends on how good it is at describing 

the known properties of the system. Although empirical potentials are of great value, they 

are limited by the fact that they can only describe a system to the accuracy of the 

parameterisation of the potential. In general they are good at describing the interactions of 

the system to which their parameters were fitted but their transferability to other 

environments can be quite poor. In fact in many cases it becomes very complicated to 

design a single model that can predict all the known behaviour of a chosen system and 

consequently the researcher has to resort to different models to predict different properties 

even for a single system. A very well known example is the molecular dynamics simulation 



An Introduction to First Principles Molecular Dynamics 	 88 

of liquid water with empirical potentials. Despite it being one of the best and earliest known 

systems, and seemingly endless efforts to build an unique potential, there is as yet no single 

potential that can describe all the properties of liquid water well [Gordon, 2002]. Even if a 

parametrised potential succeeds in describing most of the observed properties with 

reasonable accuracy, it cannot guarantee the correctness of its prediction for yet unknown 

results. 

5.4 First-Principles MD 

To overcome the limitations of the classical MD and to explore desired systems 

with greater accuracy, an approach at a more fundamental level is required. One must turn 

to the big task of solving the system quantum mechanically (that is solving the Schrodinger 

equation for the whole system) at an electronic level to extract the forces. The forces 

obtained this way are free from any sort of parameterisation and no a priori information 

about the system interaction is needed. 

With the discovery of Density Functional Theory (DFT) by Kohn, Hohenberg and 

Sham [Hohenberg, 1964; Kohn, 19651, such an electronic level calculation became 

computationally attainable. In the mid-eighties, Car and Parrinello [Car, 1985] showed how 

to combine the accuracy of ab-initio density functional methods with force calculations and 

molecular dynamics (MD) techniques. This lead to a new computational technique, 

popularly known as first-principles or ab-initio Molecular Dynamics, for calculating 

dynamical properties of comparatively small systems with an electronic level of accuracy. 

In a nutshell, in ab initio MD, the nuclei are still treated as classical particles whereas the 

forces are calculated from first-principles using DFT. 

Whereas an empirical-potential-based classical MD gives very little or no 

information about the electron density distribution of the system, it is the fundamental 
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quantity in an ab-initio MD calculation. The inter-atomic potential is determined directly by 

the electronic structure of the system rather than modelling the interactions in terms of a 

classical or semi-classical potential with fitted parameters. For these reasons, along with the 

continual increase of computational power, ab-initio MD became the method of choice to 

study a wide range of phenomena, especially where accuracy is highly desired [Alavi, 1994; 

Curioni, 1997; Car, 1985]. 

However, this accuracy is gained at the expense of high computation time. Each 

step requires an extensive force calculation, compared to the straight-forward force 

evaluation from a simple function in the case of classical MD. Before evaluating the forces 

on the ions, a massive minimisation calculation is required in the extremely large phase 

space of the basis set of the electronic wave functions. The size of this minimisation 

calculation overwhelms the time taken in an MD integration step. This imposes a severe 

restriction on the applications of ab-initio DFT to larger systems. For example, where an ab-

initio MD calculation approaches the limit for size with only 10 3  atoms, an empirical 

calculation of a similar scale would be using —iO or more particles. Currently the state of 

the art ab-initio MD simulation can simulate systems of a few hundreds of atoms for a pico-

second time scale. 

In Section 2.7.1 the methods for optimising the electronic configuration to reach the 

ground state configuration with respect to a fixed ionic configuration were discussed. Later 

in Section 2.7.2, the method for relaxing ion to their local minima was discussed. Two 

distinctive approaches came out of those discussions: first, the Car-Parrinello based MD 

method of indirect relaxation (see Section 2.7. 1) of electrons to their ground state, and ions 

and cell variables to the local minima; second, a conjugate gradient scheme for directly 

minimising (see Section 2.7.1) the Kohn-Sham energy functional to the ground state and a 

different minimisation scheme to relax ions and cell variable to the local minima. Global 

minima can be obtained by repeating one of these approaches with a simulated annealing 

procedure. 
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Despite the advantages and disadvantages of both the Car-Parrinello and conjugate-

gradient approach, they stand out to be the widely accepted optimisation methods. Once the 

system is optimised to its ground state first-principles forces on ions and cell variables are 

derived using the Hellmann-Feynman theorem [Feynman,1939]. There are therefore two ab-

initio MD procedures based on the two different minimisation approaches. In this work we 

have used the conjugate-gradient based molecular dynamics but for the sake of 

completeness both methods are discussed in the following Section. 

5.4.1 Car-Parrinello MD 

The Car-Parrinello dynamics [Car, 1985] scheme can be thought of as a natural 

extension of the Car-Parrinello MD method of relaxing ions and electrons to the ground 

state'. Instead of quenching the heat out of the system, the system is allowed to explore its 

6N dimensional phase space at a chosen temperature (see Section 2.7.2). 

The Hellmann-Feynman theorem is used to calculate forces on ions and cell 

variables from a single total-energy functional at ground state. The theorem simplifies the 

calculation of the physical forces on the ions and the integrated stresses on the unit cell. 

However, the calculated forces are the true physical forces only when the electrons are in 

their ground-state configuration [Feynman, 1939]. Therefore, electrons must be relaxed to 

their ground-state first at each ionic time step to generate the correct dynamical trajectories. 

The Car-Parrinello method can be used to ensure the instantaneous ground-state electronic 

configuration is obtained, but it would be an extremely expensive computation to obtain 

dynamical simulations of ionic systems. However there is an alternative approach to 

performing dynamical simulations using this method. Rather than insisting that the 

electronic configuration be in the exact ground-state at each ionic time step, one may be 

able to perform dynamical simulations if the electronic configuration is only close to the 

exact ground-state. Although this implies that there are errors in the Hellmann-Feynman 

1 Historically CP dynamics came first and was subsequently taken as a tool for the minimisation of the Kohn-

Sham energy functional later on [Car, 1985; Payne, 1992]. 
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forces at each time step, dynamical simulations will be successful provided that the errors in 

the forces remain small and that the effect of these error remain bounded in time. The CP-

MD method can fulfil (by error cancellation') both these criteria [Remler, 1990; Pastore, 

1991]. 

Limitations of CP-MD simulations 

Despite the success of Car-Parrinello dynamics, it has major drawbacks. Firstly, as 

the approach is based on an indirect search (see Section 2.7) for the minimum of the Kohn-

Sham Hamiltonian, the procedure may lead to serious instability in the search for the ground 

state if a long time step is used. Unfortunately the critical time step at which this instability 

starts to grow decreases as the system size increases [Payne, 1992]. Secondly, to have 

accurate Car-Parrinello dynamics it is essential to have the ionic and electronic time step 

decoupled. Although there are many system for which this is the case, this decoupling is 

generally difficult to obtain in metallic systems [Payne, 1992]. 

5.4.2 Conjugate gradient dynamics 

An alternative approach to CP-MD is the conjugate-gradient based electronic 

relaxation [Arias; 1992], where the electronic structure is relaxed to its ground state using 

the conjugate-gradient scheme. At the ground state configuration of the electrons, the 

Hellmann-Feynman forces are equal to the true forces, which are then plugged into the 

classical integration algorithm. However, as in the Car-Parrinello dynamics scheme, it is 

also extremely computationally expensive to ensure that the correct electronic ground state 

is obtained with the conjugate-gradient scheme at each time-step. Moreover, a conjugate-

gradient scheme does not benefit from the error cancellation described above when the 

Hellmann-Feynman requirements [Feynman,1939] are not strictly met. 
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A solution to this problem is achieved by moving the initial electronic configuration 

closer to the instantaneous ground state configuration rather than starting from a random 

one. Hellmann-Feynman requirements still have to be met but much less computational 

effort is required to converge to the exact electronic ground state, and hence a faster 

dynamical simulation is possible. The method has been developed by Arias et al. [Arias, 

1992], where the new electronic configuration at the start of a new ionic step is predicted by 

extrapolating forward from the previous ground-state configuration of electrons. This 

method of extrapolation has been found to bring the initial electronic configuration about 

two orders of magnitude closer to the minimum of the Kohn-Sham total energy functional, 

thus reducing the total computational effort by a factor of two [Arias; 1992]. The conjugate-

gradient method combined with the wave-function extrapolation technique, often known as 

Born-Oppenheimer molecular dynamics (BO-MD) simulation, results in a dynamical 

simulation comparable to the speed of a Car-Parrinello dynamical simulation (CP-MD). 

5.4.3 Comparison between CP-MD and BO-MD 

The Car-Parrinello and Born-Oppenheimer schemes for performing dynamical 

simulations are very different, and it is important to understand these differences in order to 

apply either technique successfully. The most important point is the difference between the 

time-steps used in the two methods. In this respect Born-Oppenheimer dynamics is closer to 

conventional dynamical simulations, in which the time step is chosen to ensure an accurate 

integration of the ionic equations of motion. In simulations employing empirical potentials 

and those using the Born-Oppenheimer scheme, the forces on the ions are, to a high 

precision, true derivatives of the total potential energy of the ions. In the case of empirical 

potentials, the only differences between the computed forces and the derivative of the total 

ionic energy are rounding errors due to finite machine accuracy, but in the case of Born-

Oppenheimer (BO) simulations, the difference also includes a contribution due to the failure 

of the Hellmann-Feynman theorem [Feynman, 1939] because the electronic system is not 

exactly converged to its ground state. 



An Introduction to First Principles Molecular Dynamics 	 93 

In the Car-Parrinello (CP) simulation, at each time step there are significantly larger 

errors in the Hellmann-Feynman forces, because the electronic configuration is not 

maintained close to its exact ground state configuration. To ensure the stability of the 

indirect search for the self-consistent Kohn-Sham Hamiltonian, the time step used in a CP 

simulation has to be much shorter than the one used in the BO approach (see Section 2.7.2). 

Additionally the longest time period in the electronic system must be much less than the 

shortest time period in the ionic system in a CP simulation, to ensure that the error in the 

Hellmann-Feynman forces [Feynman, 1939] average to zero along the ionic trajectories 

[Payne, 1992]. 

At first sight the Car-Parrinello method and the wave-function extrapolation based 

conjugate-gradient relaxation (Born-Oppenheimer scheme) are rather similar, in that each 

essentially performs an integration of wave-functions forward in time. However, the spirit 

of each technique and the behaviour of the electronic wave-function co-efficients in the two 

cases are different. In the case of conjugate-gradient dynamics, the wave function is 

propagated as close as possible to the instantaneous ground state, in order to reduce the 

effort to fully relax them to the ground state [Arias, 1992]. In the Car-Parrinello method, a 

delicate adiabatic separation between the ionic and electronic degrees of freedom is 

preserved using two very different time scales (for details, see Section 2.7.1). The electronic 

co-efficients oscillate artificially about their ground state values, which leads to a 

cancellation of the errors in the ionic forces [Remler, 1990; Pastore, 1991]. 
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5.5 Conclusion 

Both the Car-Parrinello and the Born-Oppenheimer dynamics simulation are now 

popularly used by both the academic and the commercial communities, and exciting new 

scientific discoveries have been made through the application of these methods [Andreoni, 

2000; Payne, 1989; Tarnow, 1989]. New functionalities are also being regularly added to 

improve the level of efficiency, as well as to tackle more theoretical issues in an attempt to 

cover wider area of research. In this PhD project, we have worked with the conjugate-

gradient based Born-Oppenheimer dynamics in an attempt to achieve constraint dynamics 

from first-principles, which will be discussed in the following Chapters. 
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Chapter 6 

Implementation of Constrained 

Dynamics in First-Principles MD 

6.1 Introduction 

From the previous Chapter it is clear that the high precision, parameterisation-free 

forces in a first-principles MD are only obtained at the expense of a mammoth computation: 

minimizing the electrons to their instantaneous ground state at each step of ionic dynamics. 

This calculation approach is thus slower than the empirical potential dynamical. simulation 

by several orders of magnitude, consequently only small systems can be simulated in a 

reasonable time scale. Although ab-initio MD has very widespread use in the scientific 

community, for much wider applications it is necessary to explore any technical detail that 

may offer speed up in the calculation. 

Eliminating the high frequency modes of vibrations in the dynamics of molecular 

systems seems to be one such technical detail. High frequency modes need very short 

integration time steps and very often we are simply not interested in them. It is interesting to 

note that the problem of integrating fast vibrational modes has also been encountered in 

classical MD simulations, where the common practice is to speed up the simulation by 

introducing constraints in the system. In polyatomic molecules, the fast internal vibrations 

are usually decoupled from the rotational and translational motions of the molecule and can, 
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therefore, be 'frozen out' by introducing, a certain number of rigid bonds and angles in the 

skeleton of the molecule [Ryckeart, 1977]. Moreover, since quantum effects can be 

significant in these high frequency modes it is not clear that the standard classical MD 

actually offers a more realistic treatment than the simplified rigid body MD approach. 

In the classical treatment of vibrations, the energy involved in different modes of 

vibration is a continuous function, E,lassical = 1/2(mw2 x2 ). The presence of any 

anharmonicity allows the "classical oscillators" to couple with each other, and so even an 

infinitesimal amount of energy can be transferred between two different modes by 

anharmonic effects. However, in the real case all crystal vibrations are quantized over 

phonon modes of vibration (quantum oscillators). A coupling between two different 

frequency modes occurs only when the thermal energy (kBT12) is comparable to the 

transition energy L\ E = h A w, which is quite big compared to k8T at room 

temperature for the high frequency modes. Therefore, it can be reasonably assumed that 

high frequency modes are fairly decoupled from the low frequency molecular modes of 

vibration, and freezing out those fast modes by introducing constraints may actually also 

improve the dynamical description of the system. Hence the constraint dynamics also brings 

the classical system closer to the quantum description of the system, as well as improving 

the time step of the dynamics. 

Table 6.1: Time-step required to sample different vibrational modes. 

Mode of vibration Typical frequency 

range (cm') 

aTimestep required 

(10' 5 sec) 

X—H bond stretching Ca. 3600 - 3000 Ca. 0.6 - 0.75 

Bond stretching ca. 2000 - 1000 Ca. 1.1 - 2.20 

Bond bending Ca. 1500 - 	 700 Ca. 1.5 -3.00 

Torsion and other lattice modes below 700 Ca. 3.15 

aThe  number of complete oscillations per time step is set to 15. 
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Table 6.1 shows how much computer time could be gained depending on the 

particular choice of constraints applied to a typical molecular system. Constraining any 

particular mode (and all higher modes) allows us to use a much bigger time step, as we only 

need to integrate any modes slower than the one constrained. 

6.1.1 Constraints and MD methods 

Since the electronic degrees of freedom in Car-Parrinello [Car, 1985] dynamics are 

even faster moving than high-frequency molecular vibrations, it was believed that using 

any constraint in the skeleton of molecules would not allow any increase in the time step. To 

prevent any coupling with the ionic degrees of freedom, which could cause inaccuracy in a 

CP simulation, a relatively small fictitious electronic mass needs to be used. This leads to a 

time step of the order of 0.01 femto-second in a CP simulation, ten times smaller than 

required for molecular vibrations in the case where electrons are not explicitly treated in the 

dynamics of the system. However very recent work on liquid water by Allesch et. al. 

[Allesch, 20041 demonstrated the fact that a higher electron mass could be used if the high 

frequency ionic modes could be constrained. Using the rigid water approximation, they have 

gained about a three-fold increase in the time step compared to the flexible water 

simulation. The observed properties with the rigid water model simulation were found to be 

in better agreement with the experimental measurements [Sorenson, 2000; Soper, 2000] 

than the corresponding CP simulations using a flexible water model. 

In contrast to CP-MD, the Born-Oppenheimer MD simulation allows a straight-, 

forward implementation of constrained dynamics as it does not include the fast electronic 

degrees of freedom in the integration algorithm. It is therefore much closer to conventional 

classical MD simulations, in which the time step is chosen to ensure accurate integration of 

the ionic degrees of freedoms. 
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In the present Chapter we have presented a method for applying constraints in the 

Born-Oppenheimer type ab-initio MD in an attempt to investigate the gain in integration 

time-step, and thus to allow access to bigger systems for longer time scales on an ab-initio 

level. The implementation, coding and testing of this constrained -MD approach within the 

CASTEP program has been a key part of this PhD project. 

6.1.2 Choice of algorithms 

There are a number of ways to introduce the rigid molecule approximation in an 

MD simulation. The classical way is to treat the constrained system in terms of generalised 

co-ordinates obeying constraint-free equations of motion (the so-called Lagrange-

Hamiltonian formalism). This method is quite efficient for simple molecules with few 

degrees of freedom [Ryckeart, 1975]. However as the number of internal degrees of 

freedom increases it rapidly become harder to write down explicitly the appropriate 

equation of motion. For any molecule of moderate complexity, such an approach would be 

very complicated. 

An alternative method for constrained dynamics is to use the methods devised by 

Ryckeart et. al. [Ryckeart, 1977], the most familiar of which is called SHAKE. SHAKE is 

based on the Verlet algorithm [Verlet, 1967], and has some drawbacks as it does not 

explicitly include the velocities in the integration of the equations of motion. The constraint 

technique for the velocity version of the Verlet algorithm [Swope, 1982] (which is used in 

this work) is an up-date of the SHAKE algorithm, called RATTLE, which also include the 

velocity constraints. SHAKE and RATTLE retain the simplicity of cartesian co-ordinates 

and avoids many of the complications of Euler angles and quaternions, while incorporating 

the effect of constraining the geometry of a molecule. 
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6.2 SHAKE and RATTLE 

In the SHAKE and RATTLE algorithm, constraints appear explicitly in the Lagrangian in 

cartesian co-ordinates associated with the appropriate multipliers. 

eqn6.1: 	LT—V—A 1 u 1 —A 2 ci 2 —A 3 o- 3 ..... 

where A 1 , A2. ... ... A, are the I Lagrange multipliers associated with the I constraints 

° 1' U2 1  ... ... 0', in a system. These constraints may represent rigid bonds, bond-angles 

and dihedral-angles of molecules in the system. However, all the constraints are defined in 

terms of fixed inter-atomic distances, i.e. 

eqn 6.2: 	crk({r(t)}) = {r(t)_r,(t)T 2 _d2ii  = 0, J  

where the subscript k stand for a pair of atoms (say i and j). It is thus more convenient to 

express cik  as u,1  and ?.k as Xjj  The time derivative of the constraint equations give the velocity 

constraints, 

eqn6.3: 	dij 	{i(t) - i(t)).{r,(t) - r(t)) = 0. 

This means that when constraining a bond-angle or dihedral angle in a molecule, we 

also constrain any atomic distances that are dependent on this parameter (see Figure 6.1). 

This may seem an unwanted limitation, but in any real system the bond stretching is always 

a faster mode of vibration than a bond bending mode, and in turn the bond bending mode is 

always faster than a torsional mode. It would be non-physical to leave the bonds 

unconstrained while the angle containing these bonds is rigid and the same argument applies 

for fixing a torsional mode associated with the dihedral arrangement of atoms in a molecule. 
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MWIR 

Figure 6.1: To impose a fixed HOH.angle in a water molecule, we need to constrain all three 
distances, H 1 0, H20 and H 1 H2 . 

Taking the new Lagrangian (eqn 6.1) into the fundamental form of the Lagrangian equation 

of motion in Cartesian co-ordinates, 

eqn6.4: 	
d ÔL 
- 	- 8L  = 0, 
dt a 4k aq 

where q is the position co-ordinate r and q is the velocity 1, yields the 3N Lagrangian 

equation of motion where the forces of constraint (G1) appear explicitly. 

eqn 6.5: 	m i ff = F+G = —Vi V- 

Taking the definition of constraints from eqn 6.2 into eqn 6.5 we get the new acceleration 

eqn6.6: 	i= —{ F, - 2A,(t)r,(t)} . 

These new accelerations (eqn 6.6) contain the original forces plus the exact correction terms 

due to the constraints. When these constrained accelerations are used in the velocity-Verlet 

integration (see Section 5.1.2), they therefore generate the desired constrained dynamics of 

the system. 

Is/. 

H 1  
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Taking these new accelerations into the velocity-Verlet integration algorithm 

explained in Chapter 5 (Section 5.1.2; eqn 5.8 - 5.10) we get the constrained version of the 

velocity-Verlet with the constrained mid-velocity and position update as 

eqn 6.7 

eqn 6.8 

h 
q 	/ 1 (t) + —F1(t) - h  —dA,J(t)rU(t) 2m 1  

h2 	 2 
r7(t +h) = r 7 (t) + h,  (t) + —F1(t) - 

2 m, 	M i  

and the constrained velocity update as, 

eqn6.9: 	i(t+h) = q. + LF(t+h) - 

Here rc, qC tC and r, q, r represents the constrained and unconstrained position, mid- 

velocity and velocity, respectively. Comparing eqn 6.7, eqn 6.8 and eqn 6.9 with the 

standard velocity-Verlet integration (eqn 5.8, eqn 5.9 and eqn 5.10), the constrained values 

can be expressed as a correction over the un-constrained values as 

eqn 6.10: 
	 = q, - 

eqn 6.11 

eqn 6.12 

2 
r7(t+h) = r1(t+h) - !!._ 	rij 

v •C(t+h) = i(t+h) - h — A(t+h)r(t+h). 
M i  

In essence, the technique solves the equations of motion for one time step in the 

absence of the constraint forces (Chapter 5, eqn 5.8-5.l0) to get the unconstrained positions 

r,(t+h) and velocities t(t+h). The unknown multipliers, {A(t)} and {A,(t+h)}, are then 
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calculated from these unconstrained values by taking eqn 6.11 and 6.12 in eqn 6.2 and eqn 

6.3. This is followed by a step where the constrained positions, rf(t+h) and the velocities, 

are then calculated from eqn 6.10 - 6.12. 

There are two ways to perform these co-ordinate corrections. The straightforward 

way is to solve all the unknown parameters [e.g. {A(t))] to match all the constraints [e.g. Tic 

(t)] simultaneously. This is a single step process, i.e. all the position and velocity co-

ordinates will be corrected' to meet their constraints all together. This method, known as the 

method of undetermined multipliers, requires matrix inversion of an lxl matrix (where / is 

the total number of constraints), and could be very computationally expensive. 

An alternative and faster approach, which is used in SHAKE and RATTLE, is to go 

through the constraints (eqn 6.2, eqn 6.3) one by one, cyclically, 'updating' the velocity and 

the atomic co-ordinate, so as to satisfy each constraint in turn. We specifically use the 

phrase 'updating the co-ordinates', instead of 'correcting the co-ordinates' as the SHAKE and 

RATTLE techniques do not correct all the co-ordinates simultaneously. It 'updates' the 

whole set of 6N co-ordinates (3N positions and 3N velocities) towards the correct result. By 

iterating such co-ordinate 'updates' to self-consistence, this drastic approximation proves to 

converge rather rapidly to the 'correct' configuration where all constraints are met. 

6.2.1 The approximation 

The SHAKE and RATTLE algorithm is therefore based on treating each constraint 

and its linked pair of atoms one at a time. This is achieved simply by removing the sum over 

all the constraints in eqn 6. 10, eqn 6.11 and eqn 6.12 in order that the constraints are no 

longer linked. This avoids the time consuming matrix inversion at each time step of ion 

dynamics. The deviation in position and velocity from the constrained configuration is 

approximated as follows 
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eqn 6.13: 	- --A 1 (t)r 1 (t) 	- 	-A (1 (t)r 1 (t) 

eqn 6.14: 	- 	 - 

The removal of the summation sign in the approximations means that each atom is 

linked to one single constraint at a time, i.e. when the constraint forces from one constraint, 

say o on atoms i and j are calculated, the contributions from all the other constraints on 

atoms i andj have been ignored. Let us define, for a particular constraint,. o 

eqn 6.15: 	g ij  = A(t), k,1  = A(t+h). 

The SHAKE version of the velocity-Verlet integration algorithm for atom i due to aij  is then 

h 
eqn6.16: 	q j  = q, - —gr,.(t), 

M i  

eqn 6.17: 	r7(t+h) = r 1 (t+h) - 
	

gij  
m. 

eqn 6.18: 	 t(t+h) - 	kr(t+h). 
M i  

For the same constraint crq  the atom  is moved as 

eqn6.19: 	qc = q - h 
M

i  

eqn 6.20: 	r(t+h) = r(t+h) - 
M

i  

eqn 6.21: 	 = 	- 
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Since the constraint associated with a particular pair of atoms, say i and j, is 

uniquely determined [Goldstein, 19801 i.e. o J =ofl  and dii  = dji , the associated 

Lagrange multipliers are also uniquely determined, which gives g=g,and k=k 1 in eqn 6.19 - 

- 6.21. We can, therefore, drop the subscript, i.e. gij  =g and kij  =k, when referring to the same 

pair of atoms. With r, = - rfl , we get the constrained values for thej'th atom as 

Ii 
eqn6.22: 	 = q. + —gr(t), 

2  
eqn 6.23: 	r(t+h) = r 1 (t±h) + h  — gr(t) 

m 

eqn 6.24: 	,c( t+h) = 	+ ---kr7 (t+h). 
m. 

In a physical picture this means that the constraint forces of equal magnitudes and opposite 

orientations are applied to the particles i and j, in the direction of the bond between i and j. 

6.2.2 The iterative technique 

Position corrections 

First the unconstrained equation of motion is solved to give the unconstrained 

positions {r1(t+h)} using standard velocity-Verlet integration (eqn 5.9, Chapter 5). We then 

pick.a constraint, say aij  atom i and j. Letr  (t+h) = r (t+h) - r(t-i-h). 

Then r,(t+h) is the initial approximation for the vector displacement of atom i and]. 

If 	r,(t+h)I2 - d differs from zero (see eqn 6.2) by an amount less than an 

acceptable tolerance, we move to a different constraint. If not, we need to generate 

constrained values of them, i.e. r7 (t + h) and r (t + h) using the SHAKE equations for 
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position correction (eqn 6.17 and eqn 6.23), such that they satisfy the constraints exactly, 

i.e. 

eqn 6.25: 	 r1(t+h)—r(t+h)j2 - d = 0, 

which gives the much needed value of g (taking the positions from eqn 6.17 and eqn 6.23 

into eqn 6.25) 

2 r(t+h) - d,, 
eqn6.26: 	

g = 2h2 {r,(t+h).r,1 (t)} (1/m+1/m 1 )' 

where we have neglected the quantities of order g2 . Once g is obtained the constrained 

position is calculated using eqn 6.17 and eqn 6.23, and we move to a different constraint say 

(Tjk, and repeat the same correction. In this way the correction procedure is carried out for all 

constraints in the system. 

However in a real system (apart from the case of a diatomic molecule) one atom can 

be involved in several constraints. A local solution to a particular constraint o, will always 

give rise to an additional deviation to its linked constraint, say o. Once all the constraints 

in the system have been treated one by one, those new or additional deviations will be left in 

the system. These correction procedure is iterated until all the constraints are satisfied to 

within a given tolerance. There is rigorous mathematical proof that such iterative 

corrections does converge to the.correct results after sufficient iteration. At each stage of the 

iterative procedure, the positions are corrected by an amount of the proper form, and the 

procedure terminates when all the constraints are satisfied to within a desired accuracy. 

Velocity corrections 

At the next stage the constrained velocities i 1"(t+h), Vi, are solved by a 

similar iterative procedure. First the unconstrained velocities, i ( t + h), V i, are 
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generated using the standard velocity-Verlet integration (eqn 5. 10, Chapter 5). We then pick 

a constraint, say (T ij  for atoms i and j. The velocity constraint for the atom pair is then 

eqn 6.27: 	(i(t+h) - i(t+h)).tr(t+h)) = 0. 

Note that positions rc(t+h) are already constrained from the procedure described in 

previous section. If the newly generated velocities r (t + h) are also constrained, d ii  

should be zero (eqn 6.3). If it differs from zero by less than an acceptable tolerance, we 

move to a different constraint. If not, we need to generate constrained velocities 

c(t+h) and if(t+h) using the RATTLE [Andersen, 19831 equation for velocity 

correction (eqn 6.18 and eqn 6.24), such that they satisfy the constraints exactly, i.e. 

eqn 6.28: 	°ij 	I i i-  (t+h) - ,c(t+h)}.r(t+h) = 0. 

Taking i(t+h) and ,c(t+h) from eqn 6.18 and eqn 6.24 into eqn 6.28 we get the 

value of k, 

eqn 6.29: 	k = 
ti(t+h) - 

hd (1/m 1+1/m 1 ) 

Once the value of k is obtained the constrained velocities for atoms i and j are then 

calculated from eqn 6.18 and 6.24. All the velocities linked with all the constraints in the 

system are than corrected in the same way with this approximate Lagrange parameter. 

As discussed in the case for the position constraints, once all the constraints in the 

system have been treated one by one, new or additional deviations will be left in the system. 

However if the whole procedure is iterated, system velocities will converge to the correct 

result. At each stage of the iterative procedure, the velocities, i,(t+h) are corrected by 

an amount of the proper form, and the procedure terminates when all the constraints 

((c}) are satisfied to within desired accuracy levels. 
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6.3 The Constrained Dynamics Code for the NVE Ensemble 

In this section we present the algorithm for the constraint MD using the velocity-

Verlet algorithm for NVE ensemble as discussed so far. The expansion of this to the NVT 

Nose-Hoover and NVT Langevin dynamics is fairly straight forward. However, the 

expansion of constrained dynamics to constant pressure (NPT) ab-initio dynamics needs to 

address some further theoretical questions, which have not been covered in this work. 

Part 1: Initialization 

Read the positions {r0 ) and velocities {v 0 } of all the atoms at time t, from an input file. 

Each of these variables is an array of 3N element, where N is the total number of atoms 

or ions in the system. 

If velocities are not provided, generate {v o } according to the Boltzmann distribution for 

a given temperature, T. 

Calculate the forces {f(ro)) and acceleration {a o } for the initial positions of the atoms 

using a DFT code. 

Read the bonds to be constrained from an input file and define the bond distance, 

d(i,j)—fr 0 (i)—r 0 (j), for the initial position of the atoms. We would like to 

constrain atoms in these initial separations, d (i,j), throughout the MD simulation. 

Part 2: Velocity-Verlet position update 

1. Do the first step of the velocity-Verlet algorithm (eqn 5.8 and eqn 5.9, Chapter 5). First 

calculate the mid velocity and store it to a new array (v} (this will reduce the extra 

effort in using another 3N variables), 

V P (i) = v 0 (i) + 
h
—a 0 (i) 

2. Update the position of the particle ito the next time r(t +h) using eqn 5.9 as 
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r(i) = r0 (i) + hv(i) 

3. Repeat these updates for y and z co-ordinate of the i'th atom, and then for all atoms in 

the system. 

Part 3: Constrain new positions (see the flow chart in Section 6.3. 1) 

Pick a single bond, k, linked to the atoms i and  and calculate the deviation caused by 

the velocity-Verlet position update, 

D_rr(i)—r(j)I2 - d 2 (i,j) 

If D_r> 'r, the tolerance for the constraint to converge, apply the correction to the 

position and the mid-velocity for the particles i and j using the following steps. 

Otherwise pick a new bond and repeat the procedure. If no bond is found with D_r> T 

for all i and j (i.e. all constraints have been matched), then the calculation moves to the 

next stage of the velocity update, covered in Part 4. 

Calculate A = { r0 (i) - r0(j)}.{r(i) - r(j)j. If A = 0, the SHAKE 

correction to the position will not work for this bond. Pick a new bond and repeat the 

procedure. The chance that the calculation will meet A = 0 is very small. However, if A = 

0 occurs repeatedly (i.e. the bond has rotated through a 900  angle), stop the calculation 

and repeat the simulation with a smaller time step. 

Calculate g'= D_r1(2pA), where y= 11m(i) +1/m(j). Then define 

dx =—g'.{ro(i)—ro(i)}, 

dy =—g'.{ryo(i) - rU)}, 

dz =—g.{rzo(i) - ro(j)). 

Correct the position of atoms i andj linked by bond k as 

r(i) = r(i) + dx/m(i) 
and similar corrections for  and z co-ordinates. 

r(j) = r(j) - dx/m(j)  

Correct the mid-velocity as 



Implementation of Constrained Dynamics in First-Principles MD 	 110 

dX 

hm(i) 
and similar corrections for y and z co-ordinates.

dx  
v(j) = v(j) - ______ 

h.m(j) 

Pick a new bond and correct positions and mid-velocities to its linked atoms (step I to 6) 

to match the constraint. Do this for all bonds to be constrained. 

Repeat steps 1 to 7 iteratively until a situation arises when no further bonds (identified in 

step 2) require the correction. 

Part 4: Ab-initio force calculation at new positions 

1. Using first principle calculation, calculate the new forces {f(r)} and acceleration (a) at 

these new positions, {r}. Note this is the most time consuming step in an ab-initio MD 

simulation. 

Part 5: Velocity-Verlet velocity update 

1. Update the mid-velocities to the velocities at next time step v(t+h) using eqn 5.10 (see 

Section 5.1.2, Chapter 5) as 

V P  (i) = v(i) + (hl 2)a(i) , for all atoms in the system. 

Part 6: Constrain new velocities (see the flow chart in Section 6.3.2) 

Pick a bond, k, linked to the atom i and j and calculate the deviation caused by the 

velocity-Verlet velocity update, 

D_v = (r(i) - r(j)}.v(i) - v(j)} 

If D_v> T, the tolerance for the constraint to converge, apply the correction to the new 

velocities, v (i) and v, (j) using the following steps. Otherwise pick a new bond If no 

bond is found with D_V> T, both the position and velocity constraint is satisfied and the 

calculation can move to the next MD step. 
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Calculate k' = 
D_v

Then define 
pd2 (i,j) 

dv_x = - k'(r(i) - r(j)), 

dv_y = - k'{r(i) - r(j)}, 

dv_z = - k'{r(i) - r(j)}. 

Correct the velocities of atoms I andj linked to bond k as 

v(i) = v(i) + dv_x/m(i) 

(j) - dv_x/m(j) 
and similar corrections for  and z co-ordinates. 

v(j) = v  

Repeat steps 1 to 4 for all the bonds to be constrained. 

Repeat steps I to 5 iteratively until all the bonds match the constraints. (No bond is 

available for correction in step 3). 

At this point store the new constrained velocities and positions to the original variables 

r 0 =rp 	v 0 =v,,, a 0 =a; 

and move back to start of Part 2 for the next MD step. 
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6.3.1 Flow chart for part 3: constrain new positions 

Set logical variable for tolerance 
Tol_all = true 

Pick a new bond, 
Bond = 1, bond—max 

d(ij) =Ir  (i)— r0(j)I 

Tol_individual = true 
Tol_all = Tol_all .and. 

Tol individual 

Calculate the deviation from constraint 
D_r = 1r(i) —r(i)1 2  - d2(ij) 

D_r > ,r (tolerance 
FALSE 

'TRUE 
,'If count> 10,000 

Tol_individual = false 	1 
V ST 

Tol_all = Tol_all .and. Tol individual 

A = r(ij). r0(ij) 

If A =0 

FALSE __T' 	TRUE 

g = D_r / (2,uA) 
dr .= - g r(U) 

r (i) = r (i) + dr/m(i); 	r (j) = r (j) - dr/m(j) 	I P 	p 	 p 	p 

vp (i) = vp  (i) + dr/h.m(i); vp  (j) = vp  (j) - dr/h.m(j) 

If Tol_all <t 

FALSE 
TRUE 

V 

count = count +1 
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6.3.2 Flow chart for part 6: constrain new velocities 

Set logical variable for tolerance 
Tol_all = true 

Pick anew bond, 
Bond = 1, bond—max 

d(ij) =Ir (i)— r(j)I 

Tol_individual = true 
Tol_all = Tol_all .and. 

- 	 Tol_individual 

Calculate deviation from velocity constraint 
D_v = {r(i) —r (j)}.{v (i) - v(j)} 

D_v > ,r (tolerance) 
FALSE 

TRUE 

Tol_individual = false 
Tol_all = Tol_all .and. Tol_individual 

k F D_v / Cu d2(ij)) 
dv = - k r(ij) 

vp  (i) = vp  (i) + dv/m(i); v(j) = v(j) - dv/m(i) 

FALSE 	
çIf1o1al1<l1t 

TRUE 
V 
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6.4 The Constrained Dynamics Code for the NVT Ensemble 

In an NVT simulation, molecular dynamics is performed at a constant temperature. 

From a statistical mechanical point of view, we impose a temperature on the system by 

bringing it into thermal contact with a large heat bath. Under this situation the probability of 

finding the system in a given energy state is given by the Boltzmann distribution. This does 

not simply mean that the kinetic energy per particle is fixed at kBT, rather they fluctuate 

around the equipartition energy according to the Boltzmann distribution. The instantaneous 

kinetic temperature thus also fluctuates around the imposed temperature,T. 

From the numerical point of view the main difference in an NVT simulation 

compared to an NVE simulation is that the velocities of the particles in the system are 

rescaled either directly or via a stochastic collision with the heat bath (true forces are 

modified by random kick) to generate a canonical ensemble at constant temperature [Allen, 

1987]. This means that only the second step of the velocity-Verlet algorithm (Section 6.3, 

Part 5) has to be modified to adapt with the velocity rescaling. 

There exist two major NVT algorithms, depending on whether the velocities are 

rescaled directly using a thermostat or via stochastic forces. The NVT Nose-Hoover chain 

algorithm used in CASTEP computational package introduces two new degrees of freedom, 

which act as a thermostat for the rest of the system to maintain the desired temperature 

[Nose, 1984; Hoover, 1985; Martyna, 1992]. The implementation used 'effectively' rescales 

the velocities at each step of MD by a common factor, which is calculated using the Nose-

Hoover chain method [Martyna, 1996]. This velocity rescaling takes place immediately 

after the velocity update in the second step (i.e. after Part 5 1  Section 6.3) of velocity-Verlet 

algorithm, as r = r * a, where a is the Nose-Hoover re-scaling factor. Everything else 

remains the same. The success of the Nose-Hoover chain algorithm therefore lies in proper 

calculation of the scaling factor. 
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The NVT Nose-Hoover algorithm is fully compatible with the SHAKE and 

RATTLE constrain algorithm as the bond velocity constraint expressed in eqn 6.3, 

eqn6.3 dii = i(t+h).r(t+h) = 0,ii 

is independent of the scaling. If the velocity component if is zero along the bond, the 

velocity component of ot * , C 
is also zero along the bond. In a constrained NYT Nose- 

Hoover algorithm the procedure is as follows: first, the velocities are updated to the next 

time step without constraint (Part 5, Section 6.3), second, the constraints are then applied to 

the velocities (Part 6, Section 6.3). The scaling factor will be calculated using the Nose-

Hoover chain for those constrained velocities. Since the calculation of the scaling factor 

inputs the constrained velocities rather than the unconstrained velocities, it will 

automatically results in the correct temperature for the reduced degrees of freedom. 

In Langevin dynamics the NVT ensemble is generated using a stochastic collision of 

the atoms in the system with an imaginary heat bath from time to time to reflect a 

Boltzmann distribution of velocities [Chandrasekhar, 1943]. This is done by adding a 

fluctuation term to the calculated forces just before the 2nd  step of velocity-Verlet velocity 

update (i.e. at Part 4, Section 6.3). Apart from the addition of these fictitious forces, 

everything else remain the same as in the NVE algorithm. A change in the forces will lead 

to additional velocities along the constrained bonds. When these velocities are corrected for 

the constraints according to SHAKE and RATTLE, velocity components along the 

constrained bonds are zeroed, and the overall kinetic energy will therefore be reduced for 

that step. However the reduced kinetic energy counts for the reduced degrees of freedom 

and the temperature remains the same. 

The nature of the iterative minimisation approach in SHAKE and RATTLE is such 

that the constraint forces (the forces arising from the Lagrange multipliers in eqn 6.1) are 

always central (see eqn 6.16 - 6.18 and eqn 6.22 - 24). Such a correction is justified when 

the origin of deviation from the constraint is also a central field, which is the case for 



Implementation of Constrained Dynamics in First-Principles MD 	 117 

6.5 Code Implementation within CASTEP 

As a result of this work the position and velocity constraint algorithm have now 

been implemented for the commercially available first-principles calculation package, 

CASTEP, under the UK Car-Parrinello agreement. The two step velocity-Verlet algorithm 

in the CASTEP MD package is carried out in two separate subroutine (md_vvl and 

md_vv2, which corresponds to Parts 2 and 5 respectively of the algorithm discussed in 

Section 6.3). The implementation of the constrained dynamics is done using two separate 

call Subroutines (constrain—position and constrain—velocity) for SHAKE position and 

RATTLE velocity corrections, respectively. These subroutines correspond to Parts 3 and 6 

respectively, of the algorithm described Section 6.3. 

At the start of MD simulation the initial velocities (generated according to the 

Boltzmann distribution) are constrained by the subroutine call 'constrain—velocity'. This 

ensures that the initial input velocities are constrained. The call for .the 'constrain—position' 

subroutine is made immediately after the first step of the velocity-Verlet position update 

(i.e. after Part 2, Section 6.3) and before performing any other property calculation. 

Similarly, the 'constrain—velocity' subroutine is called immediately after the second step of 

the velocity-Verlet velocity update (i.e after Part 5, Section 6.3) and before undertaking any 

other property calculation or velocity rescaling in the case of Nose-Hoover NVT 

simulation. 

As discussed before all the constraints (either rigid bond, angle or dihedral) are 

expressed in terms of rigid bonds or a combination of rigid bonds. A separate input file is 

supplied alongside the standard CASTEP input files (<seed>.param and <seed>.cell file) to 

define all the constraints in the systems in terms of rigid bonds. Below is a typical 

constraint input file for and MD simulation of solid Ammonia (unit cell comprising four 

molecules) where all the N-H bonds are fixed. 
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6.5.1 Input file for constraint dynamics, 

comment : 4 ammonia molecules in a box 
constrain : true 
bond—tot : 	 12 
pos_to! : 0.0000001 
vel_tol : 0.0000001 
max_itrn : 10000 

%BLOCK constraint 

bond N 1 	: H I 

bond N 1 	: H 5 

bond N 1 	: H 9 

bond N 2 	: H 2 

bond N 2 	: H 7 

bond N 2 	: H 12 

bond N 3 	: H 3 

bond N 3 	: H 8 

bond N 3 	: H 10 

bond N 4 	: H 4 

bond N 4 	: H 6 

bond N 4 	: H 11 
%ENDBLOCK constraint 

The first line is a comment line for the user. The second line contains the new 

logical variable, constrain. If it is true' the constraint dynamics will be executed. The third 

line contain the total number of rigid bonds in the system. This is the same as the total 

number of lines within the constraint block. The next two lines allows the user to define 

tolerance levels for the convergence of position and velocity constraints in the iterative 

minimisation procedure. The last line of the first block gives an upper bound for the 

iterative minimisation technique. If either the position or the velocity constraints are not met 

within this number of iterations, the calculation will terminate. Each single iteration 

involves a complete SHAKE and RATTLE correction cycle for all the fixed bonds in the 

system. Each line in the block in between "%BLOCK constraint" and "%ENDBLOCK 

constraint": 

e.g. 	bond 	N 	1 	: 	H 
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defines a rigid bond in the system that needs to be constrained. Each bond is declared with a 

keyword "bond" followed by the atom symbol and atom number of both atoms 

(participating in that bond) separated by a colon. The atom number has to be the serial 

number of the atom as .it appears in the CASTEP <seed>.cell input file. The first nitrogen 

atom listed in the cell file will be Ni and so on; similarly the first hydrogen atom listed in 

the cell file will be H 1 and so on. 

6.6 Conclusion 

The application of constrained dynamics in the Car-Parrinello MD (CPMD5 method 

has been recently demonstrated by Allesh et. al. [Allesh, 2004 ] for the rigid liquid water 

system. The work presented here describes the implementation of constrained MD for the 

Born-Oppenheimer Molecular Dynamics Method, which provides an important advantage 

for first-principles simulations of molecular systems (solid and liquid) where chemical 

reactions do not take place, and opens up the exciting possibility of investigating 

phenomena which would otherwise be intractable to calculation. 
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Chapter 7 

Constrained Dynamics of Solid 

Ammonia (Phase I) 

7.1 introduction 

In Chapter 6, we have reported an algorithm for constrained dynamics, which is now 

ready to be implemented into the Born-Oppenheimer first-principles calculation. This 

algorithm, which is an implementation of Shake and Rattle [Ryckeart, 1977; Andersen, 

1983], provides an iterative minimisation technique of constraining bonds, angles and 

dihedrals of a molecular system during its dynamical trajectory. The technique is 

particularly helpful in systems where the high frequency modes (i.e. bond stretching and 

bond bending) are usually decoupled from the low frequency modes (e.g. lattice modes) of 

vibration. Depending on the particular system of interest, a time step gain of about 4 to 10 

times is possible (see Table 6. 1, Chapter 6) under the constrained dynamics scheme. In the 

present chapter, we report the practical implementation of this algorithm to increase the 

time step of a molecular dynamics simulation, thus allowing access to bigger systems for a 

longer time scale on a quantum mechanical level. 

This work reports the detailed insight obtained by this new technique for the solid-

state phase I structure of ammonia at ambient pressure (-0.1 GPa) and at a temperature 

around lOOK. The rich physical and chemical properties of ammonia have attracted a large 

121 
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number of theoretical and experimental studies on both the solid (at different temperatures 

and pressures) and gas phases (monomer and dimer structures). The geometrical structure 

and dynamical behaviour of both these phases is well understood from many advanced 

experiments [Binbrek, 1972; Reding, 1951: Boese, 1997; Helminger, 1971]. Recent 

advances in first principles simulations have now attracted many physicists to cast a fresh 

eye on modelling ammonia at the microscopic level [Morrison, 2003; Fortes, 2003; Boese, 

2003]. 

Figure 7.1 The phase-1 crystal structure of ammonia 

In this work we have looked at a different aspect of the solid ammonia phase-I 

structure, specifically to investigate how the dynamical and structural properties of 

ammonia are affected upon 'freezing out' its slow moving internal degrees of freedom. The 

phase-I ammonia structure is a cubic crystal of P2 1 3 symmetry with lattice constant a = 

5.1305(8) A [Boese, 1997]. Each unit cell consists of four ammonia molecules networked to 

each other by tri-furcated hydrogen bonds (Figure 7.1), each of strength 9.3 kJmol' 

[Morrison, 20031. Therefore, each molecule therefore both accepts and donates three 
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hydrogen bonds, which deviate significantly (by _.200)  from the almost perfectly linear 

hydrogen bond observed in water ice [Ebbing, 1987]. Although each lone pair orbital on the 

nitrogen atom is being shared between three nearest neighbours, our work (see Chapter 3 for 

details) showed that a tri-furcated hydrogen bond in solid ammonia is as strong as a standard 

hydrogen bond occurring in an ammonia dimer. We infer from this that the hydrogen 

bonding in solid ammonia is largely electrostatic [Morrison, 2003]. 

The intra-molecular vibrations, i.e. the N-H stretch (ca. 3300 cm - ') and H-N-H 

angle bends (Ca. 1000 cm' and 1700 cm - ') [Binbrek, 1972] in solid ammonia, are much 

faster than the other inter-molecular modes attributed to molecular rotation and translation 

(known as lattice modes). It can be assumed that these higher frequency modes are fairly de-

coupled from the lattice vibrational modes [Ryckeart, 1977]. Moreover in the gas phase the 

high frequency N-H stretch (ca. 3400 cm') is fairly decoupled from the H-N-H angle bend 

modes (ca. 900 cm' and 1600 cm') for the isolated molecule [Reding, 1951]. Thus solid 

ammonia is an ideal system to apply molecular constraints to, either partially (N-H bond 

only) or fully (rigid ammonia), and to study the effect of constraining the dynamical and 

structural properties of the whole system. 

Since each N-H bond in ammonia is connected to its neighbours by N-H.. 

hydrogen bonds, constraining one may indirectly affect the other. According to covalent 

bond theory it seems reasonable to assume that the electron density around the N-H bond re-

distributes with the change in the bond length and orientation. This then raises the 

interesting possibility that the associated hydrogen bonds may be affected by this re-

distribution ofelectron density (due to the N-H bond stretching motion). If this is true, the 

dynamics of the whole system should be affected by the application of rigidity to the 

molecular skeleton. 

Since such a dynamic coupling between the covalent bond and hydrogen bond 

interactions would be an electronic level phenomena, the empirical-potential based classical 

MD simulations cannot shed any light on it. On the other hand, at the time of the start of this 
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project, the available first-principles simulation packages (e.g. CASTEP [Segall, 2002], 

VAsP [Kresse, 1996], CPMD etc.) did not not allow the application of molecular 

constraints'. The constrained dynamics algorithm developed in this work therefore gives us 

a chance to probe the chemistry of the phase I ammonia crystal. By applying constraints to 

the bond lengths (and consequently on their associated electronic distribution) we can now 

investigate the net effect of N-H bond constraints on the dynamics of the hydrogen bonds at 

the electronic level. 

The primary aim of this chapter is to report on the effect of increasing the 

integration time step in BO-MD simulations of solid ammonia. To this end we have carried 

out a series of calculations using fixed-bond and rigid molecule approximations, and 

compare results with those obtained from flexible ammonia simulations (i.e without 

imposing any constraints). We discuss in detail the structural and dynamical properties (i.e. 

vibrational spectra) of solid ammonia and consider the effects of constraints. Although it is 

not the aim of this chapter, we also present the available experimental dynamical and 

structural properties alongside the simulation results for basic comparison. A more 

detailed comparison of the vibrational properties of solid ammonia will follow in the 

next chapter. 

1 At the same time that this work was undertaken, constraint dynamics was also developed within the 

frame work of the CPMID program [Allesch, 2004]. 
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7.2 Computational Method 

For ammonia, the initial geometry was taken from the X-ray diffraction structure by 

Boese et al. at 160 K [Boese, 1997] (see Figure 7.1). The experimental structure was 

optimised at 0 K and ambient pressure using the standard plane-wave total-energy density-

functional-theory (DFT) calculation package, available through the UK Car-Parrinello 

agreement [CASTEP, v4.2; Payne, 19921. Details of this calculation are available in Chapter 

2. 

The MD simulations were performed using the new CASTEP package [new 

CASTEP, v2.2; Segall, 2002] on a 2x2x2 super-cell (of the optimised unit cell) with P1 

symmetry, containing 32 molecules (128 atoms) in a cubic box of lateral dimension 10.311 

A. Running simulations on a super-cell is necessary in order to visualise possible lattice 

vibrations of the crystal system, which have a periodic repeat length greater than the 

crystallographic lxlxl cell. This will also help in spotting/indicating the LO-TO active 

modes [Ashcroft, 1976]. An MD simulation run from an unit cell would not show any LO-

TO splitting due to the fact that long-range polarization field are not compatible with the 

periodic boundary condition of a single unit cell. Usually large/elongated supercells are used 

to recover the long range polarisation effect (i.e. LO-TO splitting) in an ab-initio calculation 

[Sarnthein, 1997]. However, the long range polarisation fields are artificially suppressed in 

such a supercell calculation (due to the missing very long range component of the 

electrostatic interaction). In a 2x2x2 supercell of ammonia, although the main contribution 

of the long range field will be missing, we might expect to see small build up of polarisation 

over the supercell, with the LO branch more likely to be wrongly positioned as the size of 

the LO-TO splitting will be artificially reduced. 

The calculations were performed with the GGA-PBE functional [Perdew, 1996] to 

describe the exchange-correlation potential and the ultra-soft pseudo-potentials [Vanderbilt, 

1990] to describe the wave-functions of the individual atoms. The accuracy in the 

description of the electronic system can be continuously improved by increasing the basis 
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set cut-off energy until a desired convergence level is reached. For the MD simulations 

reported here, a plane-wave basis set cut-off energy of 300 eV was found to be sufficient as 

it converges the forces on the atoms to less than 0.1 eV/,k per atom, well within the level of 

acceptance in a typical MD simulation. Further improvements in the cut-off energy to 350 

eV resulted in only very small changes in the forces (ca. 0.01 eV/A for hydrogen and 0.02 

eV/A for nitrogen) The finite basis set correction [dEldlog (E)] [Francis, 1990] for the 

300 eV cut-off was 0.125 eV per atom, which is again within accepted tolerance limits. 

With respect to k-point sampling of the first Brillouin zone, four k-points, generated 

using a 2x2x2 Monkhorst-Pack grid [Monkhorst, 1976], were found to show convergence 

[with forces on an average atom at its relaxed position changing by just 0.000 1 eV/A due to 

further improving the Monkhurst-Pack grid to 3x3x3 (14 k points)]. The Fast Fourier 

Transform Grid was used to communicate between real and reciprocal space. CASTEP grid 

parameter was set to 1.50 as prescribed by the package to minimise the wrap around error in 

the transformation [Segall, 2002; CASTEP Manual, v4.2]. 

At the start of the MD simulation the initial electronic configuration was generated 

from a random choice of weighting co-efficients for the plane waves used to describe the 

electronic wave-function. The coefficients were then optimised using the density mixing 

conjugate gradient optimisation method [Kresse, 1996] to generate the lowest energy 

configuration. At each successive time step of the ionic dynamics, instead of a completely 

random choice, the new initial electronic configuration was generated by extrapolating 

forward from the previous ground-state electronic configuration of the last ionic step 

[Arias, 1992]. 

The forces on the ions were calculated from the ground-state electronic 

configuration using the Hellman-Feynman theorem [Feynman, 1939]. These forces were 

then used by the velocity-verlet algorithm to generate the MD trajectory for the next ionic 

configuration. Three different MD trajectories were generated starting from the same initial 

configuration of the 2x2x2 ammonia super-cell to investigate the effects of constraining the 
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dynamics of the system. The time step for each simulation was chosen such that each 

complete oscillation of the fastest available mode of vibration is sampled at least 20 times 

during the simulation. The fastest mode in a flexible ammonia simulation is the asymmetric 

N-H stretch of 3370 cm'; for the bond fixed simulation it is the asymmetric H-N-H angle 

bend mode of 1679 cm' [Binbrek, 1972]; and finally for the rigid ammonia simulation the 

fastest mode is expected to fall below 800 cm - '. Thus, time steps of 0.5 fs seconds for the 

first, Ifs for the second and 2.0 fs for the third simulation were anticipated to be appropriate 

to integrate the dynamics of these systems correctly. All three different simulations were run 

to generate NVE ensembles from the same initial temperature, 200 K. The type and 

description of all the constraints to be applied were read from a separate constraint input file 

(see Section 6.5.1, Chapter 6). The constraints were then applied using-the Shake and Rattle 

algorithm (see Section 6.3 and 6.4, Chapter 6) developed for CASTEP in the course of this 

work. 

7.3 Results and Discussion 

The systems tended to equilibrate (i.e. the kinetic energy and potential energy 

become constant) very fast (at around 100 K) upon initiating the MD simulation from the 

optimised ammonia structure. We equilibrated the systems for I ps, before collecting the 

MD data for ca. 7 Ps for the fixed-bond and rigid ammonia simulations, and for 5 ps for the 

flexible ammonia system. Although we initialised the velocities with the same starting 

temperature (200 K) and from the same initial geometry, the temperatures of the three 

different simulations (and hence the pressures) were slightly different because of the 

different constraints applied to the three different systems. After equilibration the 

temperature of the fixed-bond simulation stabilised about 100 K, whilst both the flexible 

and rigid ammonia simulations stabilised about 107 K. Since the initial box size for these 

simulations corresponded to the optimised structure at 0 K, the fixed volume simulations at 

higher temperature obviously generates some pressure (of about 0.1 GPa) on both 

constrained and unconstrained systems (see Figure 7.2). 
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Figure 7.2: The pressure of the flexible ammonia system at 110 K 

Figure 7.2 shows the pressure variation of the 2x2x2 flexible ammonia system along 

the simulation trajectory. The solid black line shows the pressure at each time step. For 

clarity, we have also drawn the average pressure (solid red line), which is the average of 

instantaneous pressure over every ten time steps along the simulation length. From previous 

theoretical and experimental work [Eckert, 1984; Gauthier, 1986; Yurtseven, 2004] it has 

been confirmed that the ammonia phase I structure is stable at temperatures up to 217 K and 

pressure up to 1.4 GPa (14 kbar). Therefore despite a pressure of 0.1 GPa, our simulation 

systems stay well within the stability region expected for phase-I ammonia. 
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7.3.1 Conservation of energy and temperature - justifying the 

time steps 

The time steps for the three simulations were confirmed by careful observation of 

the thermodynamic quantities, energies and temperature, of the system. We analysed the 

conservation of each of these quantities by plotting their averages over every 100 fs of the 

simulation length. 

The 0.5 fs time step was confirmed as adequate for the flexible ammonia simulation 

as the average total energy stayed almost constant, with only a very slight tendency to 

increase. The average temperature over the whole simulation run is 107.91 K with a 

standard deviation of 5.87 K [see Figure 7.3(a)]. For the constrained N-H bond simulation, 

the chosen time step of 1.0 fs was found to produce very good stability in the energy and 

temperature curves [see Figure 7.3(b)]. The average total energy stayed fixed, and average 

temperature over the whole simulatiOn run is 100.12 K with a standard deviation of 6.35 K. 

Finally, the energy and temperature curves for the fully constrained simulation [see Figure 

7.3(c)] show that a 2.0 fs time step, representing a four-fold increase compared to the first 

simulation, is possible. Energy conservation is still maintained with temperature at 106.91 

± 9.08 K. In all three cases, the temperature fluctuation stays well within the prescribed 

theoretical value, i.e. of the order of l/vlV, which is about 11 K in this case (N is the total 

number of particles in the system). Note that the slightly larger fluctuation in the fixed bond 

and the rigid ammonia simulation temperature is attributed to the reduction in the total 

number of degrees of freedom available to the system. 
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Figure 7.3: The instantaneous energies and temperatures for the (a) flexible, (b) fixed-bond and (C) 

rigid ammonia simulations over 5ps. 
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The maximum deviations in the total energy curves were found to be -.0.22 eV, 

—0.04 eV and —0.25 eV for the above flexible, bond fixed and rigid ammonia simulations 

respectively; over 5 Ps simulation length after equilibration. The use of a time step greater 

than 2.0 fs for the rigid ammonia simulation was found to create an instability in the energy 

and the temperature curves (see Figure 7.4). For a time step of 3 fs, the average total energy 

and temperature (over every 100 fs) shows a clear upward trend, indicating that the 

maximum gain in time step possible for the ammonia system due to the introduction of 

molecular constraints is a four-fold increase (i.e. a time step no greater than 2.0 fs). 
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Figure 7.4: The instantaneous energies and temperature for the rigid ammonia simulation over 5 
ps, with a time step increment of 3 fs. 

It is important to note that no thermostat was used in these calculations. The energy 

drifts seen here would be trivially corrected by the use of thermostat, which is the normal 

procedure in ab-initio MD. 

7.3.2 Structural properties of the ammonia crystal 

The structure of a molecular system in a dynamical simulation is best described by a 

set of distribution functions for the positions and orientations of atoms in (the same or 

different) molecules. The simplest and most commonly used distribution functions are the 

atom-atom radial distribution functions, g(r), and the angular distribution functions, g(0) 
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[Allen, 1987]. In this work, we have calculated the nitrogen-nitrogen, hydrogen-nitrogen, 

hydrogen-hydrogen radial distribution functions (RDF), and the angular distribution 

functions for the nitrogen atoms and the hydrogen bonds, from the atomic trajectories 

generated by the ab-initio simulations. The results for the flexible, fixed-bond and rigid 

molecule simulations are discussed in turn in the following sections. 

The N-N radial distribution and the N-N-N angular distribution functions 

The nitrogen-nitrogen radial distribution and its angular distribution in the first and 

second co-ordination shells, form a complete representation of the crystal packing 

arrangement in solid ammonia phase-I at temperature -110 K and -lkbar pressure (see 

Figure 7.5 and Figure 7.6). 
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Figure 7.5: Nitrogen-nitrogen radial distribution functions from MD at -100 K. The solid, dashed 
and dotted lines show the flexible, fixed-bond and rigid molecule results, respectively. The red bars 
represent the experimental values and the blue bars represent the ab-initio optimised structure 
values. 

0. 

0. 

00 

0. 



Constrained Dynamics of Solid Ammonia (Phase I) 
	

133 

The peak positions of the nitrogen-nitrogen radial distribution functions from the 

three different simulations were found to be within 0.02 % of each other, indicating the fact 

that the geometrical effects of imposing molecular constraints on the system are minimal. 

Figure 7.5 shows the first peak at 3.325(1) A, the second peak at 4.025(1) A and the third 

peak at 5.125(1) A. The N-N peak positions from the MID simulations are in very good 

agreement with the experimental values at 160 K (maximum shift is found as 1.9%, for the 

second peak) [Boese, 1997]. The MD peak positions also show very small,shifts from the 

ab-initio optimised structure values at 0 K. The first peak is very close to the first N-N 

distance in the optimised structure at 0 K, the second and third peaks, however, are shifted 

to lower distances (by 1.75% and by 0.6%, respectively). 

The angular distribution of ammonia molecules in the lattice were investigated for 

both the first nearest neighbour distance [gN(el), Figure 7.6(a)] and second nearest 

neighbour distance [gNNN(e2), Figure 7.6(b)] with respect to the nitrogen atom, which is 

taken as the reference centre for each ammonia molecule. Both distributions show five 

distinct peaks, suggesting that the nearest neighbour nitrogen atoms are distributed around 

five distinct angles: 60.0(0.7) ° , 74.2(0.5) ° , 101.0(1.0) ° , 117.0(1.5) °  and 133.2(0.7) °  in the 

first co-ordination shell, and 48.5(0.5) ° , 60.2(0.3) °, 79.0(0.5) ° , 108.1(1.2) °  and 1 17.5(l.5)' in 

the second co-ordination shell (Figure 7.6). The nitrogen orientation along the 60 °  

orientation are found exceptionally strong in both first and second co-ordination shells. All 

the other orientation angles (in both first and second co-ordination shells) show a slight shift 

from their corresponding experimental [Boese, 1997] and ab-initio optimised structure 

values [Morrison, 2003]. The second peak at first co-ordination shell shows the maximum 

shift from the experimental (by 3.25%) and ab-initio optimised structure (by 3.00%) values. 
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There is, of course, an obvious difference between the three data sets: the 

experimental structure refers to 160 K [Boese,1997], whilst the ab-initio optimised structure 

is at 0 K, and the ab-initio MD structure distribution has an averaged ensemble temperature 

of —110K. However, the results from all three cases are found to be very close to each Other 

for the case of nitrogen-nitrogen radial and angular distribution. This reflects the fact that 

the crystal packing in solid ammonia phase I structure is quite stable, even with lattice 

vibrations and an increase in temperature and pressure, particularly in relation to the first 

co-ordination shell and along the 60°  orientation. We can also postulate that the minor 

discrepancies in the RDFs between the experimental structure (at 160 K) and the MD data 

(at —110 K) can be reasonably attributed to the calculated pressure rise in the MD simulation 

of —lkbar (Figure 7.2). 

Beside these agreements with the experimental and the ab-initio optimised structure, 

the agreement within the three simulations with different level of constraints is very close. 

Figure 7.5 and Figure 7.6(a,b) clearly show that there is almost no variation in crystal 

packing between the constrained and unconstrained structures. This reflects our assumption 

that constraining the fast N-H vibration and internal geometry of the ammonia molecule 

does not affect the crystal packing of the system, nor does it appear to disrupt the nature of 

the hydrogen bonding network. 

The N-H radial distribution function 

The first peak at 1.025 A in the nitrogen-hydrogen radial distribution curve (see 

Figure 7.7) relates to the internal geometry of the ammonia molecule. The peak is single 

valued in the case of the fixed-bond and rigid molecule simulations, thus assuring that the 

N-H distance isproperly constrained in these two calculations. Although this distance is of 

course unconstrained in the flexible molecule MD simulation, the first peak is very sharp, 

around the value of the constrained distance (see Figure 7.7); an indication that constraining 

the fast N-H vibration will have little effect on the overall system dynamics. The second 

peak at 2.35 A overlaps almost exactly in all three simulations and corresponds to the 
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hydrogen bond distance in the static solid structure. The high degree of coincidence for the 

three simulations recorded for the second peak is again testament to the fact that the 

constraint does not have any observed effect on the hydrogen bond distance, or on the 

overall structure of the ammonia solid at finite temperature. 
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Figure 7.7 : The nitrogen-hydrogen radial distribution functions. The solid, dashed and dotted 
curve show the flexible, fixed-bond and the rigid molecule results, respectively. The red bars 
represent the experimental values and the blue bars represent the ab-initio optimised structure 
values. 

The H-H radial distribution function 

The first peak at 1.675 A in the hydrogen-hydrogen radial distribution curve (see 

Figure 7.8) represents the non-bonded hydrogen-hydrogen distance within the ammonia 

molecule. A single valued peak in the case of the rigid molecule simulation thus reflects that 

the H-N-H intra-molecular angle is properly constrained. The second peak distance 

corresponds to the non-bonded distance between hydrogen atoms of two neighbouring 

hydrogen-bonded ammonia molecules. The fact that the second (and subsequent peaks) in 
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the H-H radial distribution curves from the flexible, fixed-bond and rigid molecule 

simulations almost superimpose on each other, reflects once again that constraining the fast 

moving intra-molecular bonds and angles in the ammonia molecules does not affect the 

overall crystal structure. 
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Figure 7.8: The hydrogen-hydrogen radial distribution functions. The solid, dashed and dotted 
curve show the flexible, fixed-bond and the rigid molecule results, respectively. The red bars 
represent the experimental values and the blue bars represent the ab-initio optimised structure 
values. 

Angular distribution function of the N-H..N hydrogen bond 

The hydrogen-bond angle (i.e. N-H --- N angular distribution, Figure 7.9), with peak 

value at 160.0(1.1) ° , are distributed similarly in the constrained and unconstrained cases. 

This, as well as the second peak of the N-H radial distribution function, is again consistent 

with our hypothesis that the hydrogen-bonded network in the ammonia crystal is not 

effected by the introduction of rigidity in the molecular structure. This is a very important 

observation for a molecular crystal from a quantum mechanical level of calculation. 
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Figure 7.9 : The angular distribution of the hydrogen-bond angle. The solid, dashed and dotted 
curves show the flexible, fixed-bond and the rigid molecule results, respectively. 

Since the ab-initio MD simulation is based on an electronic structure calculation, the 

implication of any rigidity in the molecular skeleton could possibly affect the el&ctronic 

configuration and hence the system's dynamics (which is dominated by the dynamics of the 

hydrogen bonds) directly. If the N-H intra-molecular bonds and N---H inter-molecular 

hydrogen bonds are linked in such a way, the ab initio dynamical simulation should have 

picked it up. However a very close match is observed between the N---H radial distribution 

curves (second peak in Figure 7.7) and the N-H --- N angular distribution curves (Figure 7.9) 

from the constrained and un-constrained cases, demonstrating that no such links exist. This 

also confirms our previous view that the hydrogen bonding in ammonia is largely 

electrostatic (see Section 3.4, Chapter 3). 
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We can summarise the findings of our variable constraint MD simulations in the 

following Table. The static structure from X-ray and neutron diffraction experiment as well 

as the calculated geometry at 0 K is presented for basic comparison. 

Table 7.1: The Atom-Atom radial distributions compared with optimised ab-initio 
and experimental structures 

Atom Group Peak positions at —110 K aOptimised b)çray  cNeutron  

(Flexible, Fixed-bond Structure at structure at Diffraction 

and Rigid simulations) 0 K 160 K Structure at 77 K 

N-N 3.325(1) 3.322 3.375 3.342(8) 

4.025(1) 4.097 3.949 d 

5.125(1) 5.155 5.131 - 

N-H 1.025 1.029 0.838 1.039(9) 

2.350(25) 2.330 2.564 2.393(9) 

H-H 1.675 1.663 1.364 - 

2.450(25) 2.328 2.490 - 

N-H---N 160.0(1.1) 161.8 164.1 160.7(6) 
a  [Table 3. 1, Chapter 3] b  [Boese, 1997], c[Hewat  1979] , d0 reported 

The first peaks of the N-H and H-H distributions simply represent the molecular 

geometry of the ammonia molecule; whilst their second peaks, the N-H --- N angular 

distributions and the N-N distribution summarise the inter-molecular interactions in the 

crystal lattice (Table 7.1). The geometry information from the three different simulations 

(constrained and unconstrained) have been listed in a single column (2'" column, Table 7. 1), 

as their peak positions.shows almost no change from each other. The peak positions for the 

molecular geometry (i.e. the first peaks of N-H and H-H distributions) from the three 

simulations were found to match exactly; and those corresponding to the inter-molecular 

distribution were found to match within 1%. 

Table 7.1 show that the peak positions from the dynamical simulations are in close 

agreement with the ab-initio optimised structure at 0 K (see 3 '  column, Table 7.1). This 

reflects the fact that the crystal geometry of the dynamic system (constrained and 
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unconstrained) at —110 K does not change much from the static structure at 0 K due to the 

temperature rise, and the 0 K structure serves well as a starting equilibrium structure for the 

MD simulation. 

However, the peak positions, except for the case of N-N distribution, from the 

simulations differ significantly from the X-ray diffraction structure at 160 K (see 4' 

column, Table 7.1) [Boese, 1997]. This is, most likely, due to the difficulty in locating 

reliable hydrogen 'positions in an X-ray diffraction experiment, where distances relate to the 

electron density, rather then the nuclear positions. Thus the hydrogen atom, with its sole 

electron, is always located experimentally with a degree of uncertainty, and usually close to 

the atom to which it is bonded. 

The N-H and H-H first peaks are out by Ca. 22% from the corresponding X-ray 

structure value (see Table 7.1). Due to the electro-negativity effect, the valence electron of 

the hydrogen is shifted towards the highly electro-negative nitrogen atom. As X-rays counts 

the distance from the electron-density maxima points rather than the nuclear positions, X-

ray experiment typically sees a bond-length less than 1 A whereas alternative methods based 

on nuclear positions (e.g. neutron diffraction or ab-initio calculations) find a bond-length 

(e.g. N-H bond-length in Table 7.1) greater than 1 A. Thus we see, the peak positions are in 

better agreement with the neutron powder-diffraction study (see Table 7.1) by Hewat et. el. 

at 77 K [Hewat, 1979]. 

A less pronounced effect in the hydrogen-hydrogen (and even less pronounced in 

nitrogen-hydrogen) radial distribution curves (Figures 7.8 and 7.7) is that the second and 

subsequent peak heights and depths are slightly decreased in the rigid molecule simulation 

compared to that obtained in the flexible molecule case, showing that the rigid molecule 

approximation causes an overall decrease in the order of the crystal; a phenomenon also 

observed by Allesh et al. in the constrained simulation of liquid water [Allesh, 2004]. 

However this effect is not obvious in our fixed-bond (partially constrained) simulation and 

so can be attributed to the bond angle constraint. . 
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7.3.3 Dynamical properties of the ammonia crystal 

The effect of the constraints on the dynamical behaviour of the system can also be 

observed from the normal mode analysis of the crystal dynamics. At finite temperature the 

dynamics of each atom in a crystal is not random, but rather are highly correlated to one 

another. The motion of each atom in a crystal can be described fully in terms of a set of 3N 

eigenvectors of the solid system. Although these. eigenvectors are quite hard to investigate, 

each is associated with an experimentally observable eigen-mode or normal-mode 

frequency. The dynamical properties of any molecular crystal can therefore be represented 

by its normal mode frequency distribution (also known as the Phonon Density of States), or 

the vibrational spectra of the crystal, which will be a characteristic for that system only. 

Group theory analysis of ammonia normal modes 

The structure and symmetry of the gas [Helminger, 1971] and solid [Hewat, 1979; 

Boese, 1997] phases for ammonia are well known. A full group theory analysis for the 

hase I structure, detailing the total number of normal modes, their respective symmetry 

type and full breakdown into translational, rotational and molecular modes for the primitive 

unit cell is also available from the literature [Reding, 1951]. 

The gas phase dynamics of a single ammonia molecule shows four (2A + 2E) 

distinct normal modes of vibrations, labelled v 3 , v 1 , v 41  V 2 . These are the asymmetric (E) 

and symmetric stretching (A) modes of the N-H bonds at 3450 cm' and 3336 cm 1 , 

respectively; and the asymmetric (E) and symmetric (A) bending modes of the H-N-H bond-

angle at 1627.5 cm' and 968.1 cm t , respectively. These four modes also account for the 

main features observed in the solid state vibrational spectra, with additional features arising 

from the effect of the crystalline field on the molecules and from various couplings of the 

motions of the molecules. 
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Solid ammonia Phase I crystallises in the primitive cubic group P2 1 3 (T4) and has 

four molecules of C 3  symmetry in the unit cell on special positions of C 3  symmetry. Each 

molecule is oriented with its principal axis along one of the (1111 Miller index directions, 

i.e. the body diagonal of the cube. In the solid ammonia cubic primitive cell there are 

therefore 48 normal modes (three times the number of atoms, 16, in the super-cell), out of 

which 24 modes, known as molecular modes, are split into the fourfundaméntal bands [2A 

+ 2E] corresponding to those mentioned above, coupled with lattice motions [F] (as shown 

in Table 7.2). 

Table 7.2: Group theoretical prescription of the molecular modes of vibration in 
solid ammonia. 

Normal 

Mode 

Symmetry 

Coordinates 

 Symmetry Total 

number of Isolated Lattice Crystal 
Frequency molecule, C3v  Translation, T modes 

V3 Asymmetric stretch E E + 2F 2 + 6  
V1 Symmetric stretch A 1  F A + F 1 + 3 
V4 Asymmetric bending E E + 2F 2 + 6  
V2 Symmetric bending I 	A2  A + F 1 + 3 

The remaining 24 modes arise due to inter-molecular interaction in the lattice, and 

hence known as lattice modes. Three out of the 24 lattice modes are acoustic modes. At 

gamma point these correspond to rigid translation of the crystal and have zero frequency 

[Ashcroft, 1976]. The remaining 21 zone centre normal modes are classified as: nine lattice 

translational normal modes [A + E + 2F] and 12 lattice librational modes [A + E + 3F]. Tak-

ing degeneracy into account means that only nine peaks (i.e. four translational and five lib-

rational) will be visible in the vibrational spectrum of the ammonia crystal, as summarised 

in Table 7.3. 
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Table 73: Group theoretical prescription of the lattice modes of vibration in 
solid ammonia [Anderson, 1965]. 

Type of free 

molecule motion 

Symmetry Total number 

of modes Molecular,C3V  Site, C3  Crystal 

Translational A 1  A A + E + 2F 1+2+6  

E EJ 
Rotation A2  A A + F 1 +3 

E E E+2F 2+6 

Normal mode calculations 

The spectral distribution of a crystal can be obtained from three main sources: 

spectroscopic investigation using Raman, Infra-red or neutron scatterings; 

the dynamical matrix or force constant calculation, using empirical (molecular 

mechanics force field models), semi-empirical (AM 1, PM3) or first-principles 

(Finite Displacement Method, Linear Response method) methods; 

and finally from the auto-correlation functions from classical and quantum 

mechanical molecular dynamics simulations. 

Out of all these methods, the ab-initio MD calculation provides a unique opportunity for an 

authentic investigation of the effect of "constraints in a molecule" on the lattice dynamics. 

The experimental techniques usually offer very little flexibility in their set-up, compared to 

computational methods. The dynamical matrix calculation imposes the harmonic 

approximation on the lattice dynamics, which can introduce significant error for hydrogen-

bonded systems. Although the MD technique is free from these limitations, it generally 

requires calculation on a larger system for a very long time to achieve reasonable statistical 

sampling. DFT-based quantum mechanical simulation is obviously free from 

parameterisation of potentials as in classical MD, and with the continuous advance in 

techniques and computer power it is now possible to generate sufficient sampling in 

reasonably short CPU time. However it is still a hard task to simulate larger systems for a 

longer time with ab-initio MD, and so every effort to improve the speed of calculation is 

highly desired. 
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The basic quantity for calculating the phonon distribution of a crystal in an MD 

simulation is the simplified form of the velocity time auto-correlation function [Allen, 1987] 

eqn7.1: 	C,(t) = (V(t)V(0)) = 	V(t 0 ).V(t 0  + t), 
tMar 10=1 

where V is the ionic velocity. Once the auto-correlation function [C(t)] of the system has 

been calculated for a sufficiently large duration of time, the Fourier transform of the data 

[C(t)] produces the occupied phonon density of states (Phonon DOS x Boltzmann factor) 

i.e. the desired vibrational spectra of the system. However, the following points need 

particular consideration. 

A direct consequence of using a larger cell size (the 2x2x2 super-cell) is that our 

generated velocity auto-correlation function [C(t)] produces the normal mode distribution 

at all available k points in the first Brillouin zone, which in this case is the obvious zone 

centre k point (k = 1,1,1; frequently known as gamma point) plus the k points at zone 

boundaries [k{ l/2,0,0}, {1/2,1/2,0}, (1/2,1/2,1/2)]. Information from all the k-points can be 

used to draw the phonon dispersion relation of solid ammonia from the ab-initio MD route. 

Figure 7.10 shows a typical phonon-dispersion relation along the high symmetry directions 

in diamond [Ashcroft, 1976]. The lower branches in Figure 7.10 that crosses the origin are 
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Figure 7.10: Schematic phonon dispersion curve along the high-symmetry directions in diamond.-  
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called acoustic phonon branch, as their frequencies become small at the long wavelengths 

(small k) and correspond to sound waves in the lattice. All the upper branches, known as 

optical phonon branch, always have some minimum frequency even at very small k, and in 

ionic crystals they can interact with electro-magnetic waves. In practice, frequencies at each 

of the k-point along the high symmetry directions, i.e. at a very large number of k-points are 

needed to draw a dispersion curve (see Figure 7.10). In present case, this means that a very 

large supercell calculation and consequently a very intensive calculation is required to 

extract the dispersion relation using ab-initio MD method. Alternative first principles 

techniques, i.e. force constant methods are thus generally preferred to study the phonon 

dispersions of solids. 

Nevertheless, the vibrational frequencies at zone centre k point (gamma point, 

k=1,1,1) are also very crucial in testing the properties of a particular substance, and can be 

used in order to make a direct comparison with group theoretical predictions and other 

reported experimental works. In this work, in order to extract the normal modes at gamma 

point, we have thus projected the velocity data onto the gamma point before calculating the 

normal modes for each of the three simulations of solid ammonia. 

As our simulation runs are finite, the truncation of C(t) after a finite time (t,,,,) 

poses further difficulty in the Fourier transform. Spurious features are obtained in the 

vibrational spectrum, which can obscure the true feature of the spectrum. In particular, the 

truncation causes rapidly varying side lobes around a peak, and loss of resolution [Allen, 

19871. In order to avoid such problem, we have used 'windowing functions', which are 

weighting functions applied to C(t) to reduce the order of discontinuity at the truncation 

point tmw. A detail comparison of different windowing functions is presented by Harris 

[Harris, 1978]. In this work we have used Blackman window, which means that each value 

of C(t) was multiplied by the windowing function before carrying out the Fourier 

transformation. 

eqn7.2: 	C(t) ' C(t)W(t) where 

Tr t '27Tt 
eqn 7.3: 	W(t) = 0.42 - 0.5 cost - I + 0.08 cos( 	I. 

\trncx) 	\ tj ,J 

The final result is shown in Figure 7.11. Note that peak heights and widths are an arbitrary 

function of the sampling time; The important feature of this figure is the peak positions.. 
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Figure 7.11: The normal mode frequencies of solid ammonia I, at gamma point calculated from ab 
initio MD. The black, blue and red lines show the flexible, fixed-bond and the rigid ammonia 
calculation, respectively. 

Molecular modes of the ammonia crystal at gamma point 

The frequencies above 800 cm correspond to the molecular modes of motion, 

whereas those below 800 cm' are the lattice vibrational modes. The rigid molecule 

simulation obviously shows no peaks in the molecular mode region as all the internal 

motions in each molecule have been frozen using rigid bonds and angles. Similarly the bond 

stretching modes are absent in the fixed-bond simulation. The flexible ammonia simulation 

clearly shows all four molecular modes (Figure 7.11). 
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The solid state and gas phase experimental values, along with our calculated values 

of the molecular modes are presented in Table 7.4 for direct comparison. Our calculated 

normal modes are reasonably close to the experimental findings: the stretching modes are 

within 6.5% and the bending modes are within 2.0% of the experimental values quoted by 

Binbrek and Anderson [Binbrek, 1972]. 

Table 7.4: Molecular modes of vibration for solid and gas phase ammonia 

Assigned Motion Calculated Frequencies aRaman  

spectra at 

bGas  Phase 

JR spectra 

Gas Phase' 

Calculation Flexible Fixed Bond 

80K  

symmetric stretch 3555(10) - 3369.5(6.5) 3450 3584.7 

Symmetric stretch 3415(15) - 3204(36) 3336 3463.4 

Asymmetric bending 1645(5) 1655(5) 1679(8) 1627.5 1751.1 

Symmetric bending 1095(8) 1084(10) 1072(14) 968.1 1124.7 

a  [Binberk, 1972] , 
b  [Reding, 1951], C  this work, b3lyp/6-3 1 1G* 

Although the frequency shifts are comparatively small between the gas and the 

crystal phase spectra, the experimental study shows that the stretching mode frequencies 

decrease while the bending mode frequencies increase due to the effect of crystallisation 

(see 4'  and 5"  columns of Table 7.4). 

In order to study the effect of the hydrogen bond network on the internal modes, a 

hybrid DFT calculation using the b3lyp functional and 6-31 1G*  basis set was carried Out 

using GAUSSIAN'98 [Frisch, 1998]. The result is shown in Table 7.4. In line with the 

experimental observation, our calculations also show that the ammonia stretching 

frequencies decreases upon crystal formation. However the b3lyp/6-3 11 G*  calculation for 

the isolated ammonia molecule shows higher values for the bending modes. This is not 

unexpected, as the isolated molecule calculations are, in general, reported to produce higher 

values for the internal modes due to inadequate modelling of the electron correlation effect 

[Rauhut, 1995]. This is fairly well documented for isolated molecule calculations at the ab- 
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initio SCF level (for both, ab-initio and hybrid DFT methods) and has resulted in the use of 

scaling factors to reduce the calculated values of molecular modes [Baker, 1998]. 

On the other hand, the pure DFT functionals used in the solid state calculation 

includes a more complete description of the total electron correlation, although in a 

somewhat empirical fashion, than the pure ab-initio or hybrid DFT methods [Baker, 1998]. 

We should also consider that the ab-initio SCF level calculation is a force constant 

calculation; it misses out the anharmonic effect, which usually lowers the normal mode 

frequencies [Rauhut, 19951. 

The most important aspect of this calculation is that the bending mode frequencies 

from the fixed bond calculation match those from the flexible ammonia simulations within 

their calculation error (see Table 7.4). This clearly demonstrates that there is very little or no 

coupling between the N-H stretching and the H-N-H bending motions from an ab-initio 

perspective. Eliminating the N-H stretch in the fixed-bond simulation does not shift the H-

N-H bending mode. Both the flexible and the fixed-bond simulations show the bending 

mode at the same value within the limit of calculation uncertainty. 

Lattice vibrations of the ammonia crystal at gamma point 

Sampling the velocity data for a sufficiently large duration of time is particularly 

crucial for the correct prediction of the lattice modes. We found at least 7 ps of MD data 

(after equilibration) is needed in order to to produce a good spectrum of lattice modes. 

Because of the very short time step (0.5 fs) required for the flexible molecule simulation, we 

only managed to collate 5 ps of data during the course of this work, which in turn 

incorporated a larger uncertainty in the peak positions. This is why upon comparison much 

broader peaks were observed for the lattice modes of flexible ammonia, particularly in the 

translational region. Figure 7.12, shows the extended view of the lattice modes obtained 

from the three different simulations. 



Constrained Dynamics of Solid Ammonia (Phase I) 
	

149 

'H 

It 
I: 

- 

;I 

II 	I 

II 

' 1 

I I  

I: 
ii ii 

i 
• II 

I 
1 t  

S 
i  

I: 
I, 

I 	I 
- 

' 	 I 

2C 0i 

I.-. 

I5-O5 

0 

IC 05 

0 

o 5c06 

I (JO 	2(0 	300 	 400 	500 	 &JO 

Frequency I cm* I 

Figure 7.12: Expanded view of the low frequency region of Figure 7.11, The vibrational lattice mode 
of solid ammonia I at gamma point. The black, blue and red curve show the flexible, fixed-bond and 
the rigid ammonia calculation, respectively. The green bars represent the experimental results from 
Binbrek and Anderson. 

Our results are compared with the most illustrated and cited work on the ammonia 

vibrational spectrum by Binbrek and Anderson [Binbrek, 1972] obtained using both IR and 

Raman spectroscopy (see Table 7.5). Both works show good agreement with the group 

theory predictions. We saw the nine total distinct modes expected in the lattice region, well 

separated in terms of four translational and five librational modes. There is also a good 

agreement between most of our calculated frequencies and the experimental result. The 

calculated lattice modes as well as their experimental counter-parts are listed in Table 7.5 

for basic comparison. 
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Table 7.5: The lattice modes of phase I ammonia crystal 

a  Assigned "First principles MD values (cm') aRaman  afra. red 

Flexible Fixed-bond Rigid Symmetry frequencies frequencies 

(5 ps) (7 ps) (7 ps) at 80 K at 107 K 

{cm'l [cm- '] [cm'l [cm- '] [cm'] 

A 100(5) 97(3) 99(3) 107 - 

E 120(2) 122(1) 127(4) 138 - 

F 145(5) 136(5) 140(3) - 138 

F 182(9) 179(6) 179(5) - 181 

F(?) - 260 258 

A 290 - 340 290(6) 296(4) 298 - 

E 290-340 310(10) 310(3) (313 at 18K) - 

F 350(2), 372(6) 349(3), 365(5) 340 - 370 358 361 

F 445(5) 435-460 445(5),460(5) 426 - 

F 	1 612(8) 616(4) 622(8) - 532 
a[Binbrek, 1972], '[This work]. 

However some significant issues arise from our calculations. A very crucial 

disagreement is that all of our three calculations completely fail to assign a lattice mode at 

260 cm', which was reported in both experiments but as a very weak signal [Binbrek, 

1972]. Another disagreement follows from the Binbrek and Anderson's observation of a 

doublet at 360 cm' (F), which they ignored to be a possible LO-TO splitting of 360 cm' 

mode. Rather they have suggested that their observed mode at 426 cm' is the LO branch of 

the 360 cm' (F) mode. In the Fourier analysis of ab initio supercell simulation, although we 

expect to see the LO-TO splitting, we do not expect to see any doublet due to combination 

or overtone band. However doublets are observed for both 352 cm' and 432 cm'. This, as 

well as the fact that we could not observe one of the nine lattice frequencies at 260 cm' 

predicted by the experiments, points us towards considering that both 352 cm' and 432 cm' 

could be separate fundamental of F modes, which accounts for the full 21 lattice modes at 

gamma point. Finally, the last lattice mode is found at a much higher value, 617 cm', than 

the experimental prediction at 530 cm'. A more detailed comparison with the experimental 

works will follow in the next chapter. 
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However, the main feature of these results is that the lattice mode frequencies 

calculated from flexible, partially constrained and fully constrained ammonia systems are 

just the same (see Figure 7.12 and Table 7.5). We have also calculated the lattice vibrations 

at the Brillouin zone boundaries. They all agree with our central argument that the lattice 

dynamics of ammonia are unaffected by the intra-molecular constraints. 
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Figure 7.13: The vibrational lattice mode of solid ammonia I at k = (1/2,1/2,1/2). The solid, dashed 
and dotted curve show the flexible, fixed-bond and the rigid ammonia calculation, respectively. 
(The details of how this is done are discussed in the next chapter). 

Indeed, we see a better agreement between constrained and un-constrained 

dynamics at the k = (112, 1/2, 1/2) zone boundary. For clarity of comparison lattice 

frequencies are shown only up to 1800 cm 1 , at k = (1/2, 1/2, 1/2) in Figure 7.13. 
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7.4 Conclusions 

The main conclusion of this chapter is that the structure and the dynamics of the 

ammonia phase I crystal is unaffected due to the application of molecular constraints. As the 

crystal lattice of the ammonia molecule is mainly dominated by hydrogen bonding, it 

implies that there is no significant link between the internal flexibility of the molecules and 

their associated hydrogen bond network. This removes the possibility that the electron 

density around the N-H bond could be coupled to its associated hydrogen bond during the 

stretching motion. This finding is in line with our previous result that the nature of the 

hydrogen bonding is electrostatic for this system. Thus our implementation of the 

constrained MD algorithm has given us unique insight to the chemistry of solid ammonia, 

which would have been impossible to obtain by any other route. 

This work thus clearly demonstrates the strength of constrained dynamics in ab-

initio MD simulation. Where the CPU time scale of an ab-initio simulation is weeks or 

months, a four-to-five fold gain in the total computational time using constrained dynamics 

simulation offers a much better chance to explore bigger systems using first-principles 

simulations. 
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Chapter 8 

Phonon Modes of Ammonia, 
construction of a new methodologyfromfirst-principles 

KTAX 

8.1 Introduction 

In the last chapter we reported on the full vibrational analysis for solid ammonia 

phase I in order to explain the effect of constraints on the dynamical properties of the 

system. This valuable information was obtained from the Fourier transformed auto-

correlation function of the ionic velocities. However, new approaches had to be developed 

and some careful post-data analysis had to be carried out in order to successfully report on 

the values of the vibrational frequencies (Figures 7.11, 7.12; Tables 7.4, 7.5; Chapter 7). A 

fuller report of the methodologies developed are therefore presented in this chapter. 

Although our principal aim is to gain a clear insight into the ammonia lattice vibrations at 

the gamma point (irrespective of constraints), this new methodology can be pursued for 

other molecular materials. 

A detailed review of the previous works is presented alongside our findings to 

assess the strength of the constrained ab-initio MD simulation in correctly reproducing the 

ammonia normal modes. Once the vibrational frequencies are known, it is also possible to 

extract the eigenvectors for each of these modes from the positional or velocity data. The 

155 	 -- 
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extracted eigenvectors reveal invaluable information on the exact nature of the normal 

mode vibrations that have not previously been extracted from ab initio molecular dynamics 

in any system and thus acts to solve some of the discrepancies with previous works raised 

by our calculation. 

8.2 Eigenvalue Extraction 

The eigenvalues of lattice vibration (i.e. the lattice frequencies) are routinely 

calculated from the velocity auto-correlation, c.,. For a single atom it is defined as 

eqn 8.1: 	
c(t) = (V(t+to) . V (to) %ime -  (1') me  

(v)ti —(V) 2  me 	time 

where the averages are defined over a sufficiently large finite time, as 

eqn 8.2: 
1 

(V). = 	V(t 0 ) , 

tOmax t0 1 

eqn 8.3: 
to,S, S'  

(V(t+t 0 ). V(t0) )time =V(t+t0 ). V(t 0 ). 
t t 0 max to = I 

When t0 ,,, is very large, for the ergodic system, the time average for a single atom 

approaches it's true ensemble average. c(t) is also known as the normalised auto-

correlation function, and ranges from zero to one. The temporal Fourier transform of the 

velocity auto-correlation produces the desired spectrum, 

oo 

eqn8.4: 	 (w) = 2fdtcv(t)e_iwt 
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which is proportional (according to the Boltzmann factor) to the occupied density of normal 

modes, and is often referred to as the occupied phonon density of states (Phonon DOS) in 

solids [Allen, 1987]. We have taken the limit from zero to infinity as the classical ,auto-

correlation c,,(t) is an even function of time [Allen, 1987]. 

The time independent terms in the velocity auto-correlation c(t) (eqn 8.1) will be 

constants of integration in the final spectra produced by eqn 8.4. Since we are only 

interested in the spread and positions of the peaks of the vibrational spectrum, it is easier to 

work with the non-normalised functions extracted directly from molecular dynamics, and 

projected onto a particular velocity component of atom i as 

eqn8.5: 	 C(t) = (v(t+t0 ) • V i (t0 )) time  

The final spectra will thus be 

to- 
eqn8.6: 	 = 2Rfdtett I V(t+t0).V,(t 0 ) 

0 	 t,=1 

This will produce the phonon spectrum projected onto a particular atom, say i, at all 

available wave-vectors permitted by the size of the supercell used in the simulation. The 

ensemble average can be obtained by summing C (w) for all atoms in the system. 

8.2.1 Problem with the standard technique 

The spectrum obtained using the above standard method, from a supercell bigger 

than the unit cell, is a mix of normal mode frequencies from all the k-points compatible with 

the supercell size. In other words, a supercell calculation produces phonons whose 

wavelengths (2ii-Ik) 'fit' the supercell; thus in our simulation of the 2x2x2 ammonia 

supercell we get phonon modes at the k-points (in units of 2irla, where a is the lattice 

constant): (0,0,0), (1/2, 0, 0), (0, 1/2, 0), (0, 0, 1/2), (1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2), 

(1/2, 1/2, 1/2). - 



Phonon Modes of Ammonia 	 158 

In order to extract a meaningful set of frequencies, we need to have well-defined 

peaks disentangled from each other. However, with the contribution from as many as 8 k-

points the overall picture is very crude. The resultant spectrum is a superposition of eight 

different sets of normal modes, a total of 3x8x4x4 = 192 modes for the 2x2x2 ammonia 

supercell. This makes it difficult to assign individual peak values to particular phonon 

modes. 

Note that, if all the phonon eigenvectors were known, a definitive solution would be 

to extract the frequencies by projecting the atomic velocities onto each individual eigen-

vectors. However, while the full set of eigenvectors might be known from the symmetry for 

simple systems (with few atoms in the unit cell), for our NH 3  supercell this is much too 

complex. 

In this work, a theory has been developed in order to project the phonon spectrum 

onto a particular k-point and thereby obtain a much clearer picture of the spectrum. This 

gives us the added advantage of comparing our result with the experimental spectra at the 

gamma point, e.g. JR and Raman spectra. Such a comparison with the already available 

results gives a much deeper insight into the dynamical behaviour of solid ammonia and 

provides an obvious benchmark against which to test the accuracy of our simulation. 

8.2.2 Theory of k-point separation 

In order to extract the spectrum at a particular k-point, we need to project the basic 

dynamical quantity (i.e. the ionic velocities) on to the desired k-point. We seek a 

transformation of the form 

eqn8.7: 	 V1 = V Ik  

To achieve this, it is convenient to label individual atoms (say i) in terms of its lattice vector 

R and basis vector b, mathematically 
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eqn 8.8: 	 VbR - V i  

These velocities in a crystal environment are not independent. According to the 

classical theory of harmonic crystal the atoms, under the influence of a phonon of wave 

vector k and frequency w, move according to the following pattern, 

eqn 8.9: 	 [VbR(t)Jk 	= Ebk W  

where Eb,Icw  is the velocity eigenvector of the basis atoms b corresponding to a particular 

phonon (k, w). For a mono-atomic basis this is just a 3D vector, but for a complicated basis 

like four NH3  molecules it has 3x4x4 = 48 components and is unknown, although Group 

Theory may give some indications. The observed velocity of the atoms under all the phonon 

modes would be 

ik. R 
eqn 8.10: 	 V b , R (t) = 	V bk (t) e 

k 

where 

—iwt 
eqn 8.11: 	 b,kt 

= 	
e 

Here Vb,k(t) is the velocity component at a particular wave-vector k due to all normal 

modes. The velocity component Vb,k(t) does not depend on the unit cell R in question: the 

pattern of velocites in each cell is identical, differing only in phase (e). Thus despite the 

lack of information about Eb, we can still isolate all the modes at a particular wave vector 

k by using the identity for the crystal lattice [Ashcroft, 1976], 

eqn 8.12: 	 Le 	 = Nök , o  
IR) 

where N is the total number of unit cells and R is the lattice vector. By multiplying both 

sides of eqn 8.10 with a phase factor (e?)  of the desired wave vector k and summing up 

over all the lattice vectors ({R}) we get 
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eqn 8.13: 	Z V(t) 	= 	(z V(t) eR)e_ikR 

(RI 	 (R(k 

Since Vb,k(t) is the same for all the unit cells, we can re-write this as 

eqn 8.14: 	Z V,(t) e_ik'R = Z V b, k W (1. e_k')R), 

(R) 	 k 	(RI 

and using the identity of eqn 8.12 in eqn 8.14, we get the desired transformation (see eqn 

8.7) of the velocities at a particular k-point. 

eqn 8.15: 	-- 	Vb,R(t) e_ik' 	Vbk(t), N 

where R runs over all the unit cells of the super-cell used. Instead of using the phase 

independent velocities to calculate the velocity-correlation, we can now use the velocities 

projected onto a specific k vector (eqn 8.15), which will produce a spectra for the specific 

k- point only. So the vibrational spectrum at a specific k-point would be 

eqn 8.16: 	Ck(w) = 2 9R f dte_1wt 	V b , k (t+to ). V bk (to ) 	2T f dte_iwhlk(t) 

to— 
where Ik (t) = 	V bk (t+to ).V bk (to), and Vb, k(t)is given byeqn 8.15. In order to 

10 =1 

obtain a much stronger spectrum we can add up all the spectra from each of the basis atoms 

in a unit cell according to their mass ratio, i.e. 

eqn 8.17: 	 = 	mbCk(w), 
b 

where mb is the mass of atom at basis b. Note that this ensures equal contributions to Ik(t) 

from each particle at t=O. Eqn 8.17 will give a much clearer spectrum at any desired k-point 
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and comparison with experimental work is now possible. Figure 8.1 shows the vibrational 

spectrum from the raw velocity data (using eqn 8.6) and the spectrum projected at the 

Brillouin zone centre (using eqn 8.16). 

Frequency / cm -1  

Figure 8.1: The lattice mode frequencies as obtained from fully constrained ammonia simulation 
(2x2x2 supercell). Note that the gamma point spectrum is shown inverted for the clarity of 
comparison and symmetry is assigned to it according to Binbrek and Anderson [Binbrek, 1972]. 

From the all k-point' spectrum in Figure 8.1, it is not possible to distinguish the 

nine independent lattice modes (classified as 2A + 2E + 5F, excluding the three acoustic 

modes. See Section 7.3.3) predicted by the Group Theory analysis of solid ammonia phase I 

structure. However, after the spectrum is projected onto the gamma point (Figure 8.1) the 

presence of these nine modes is clearly visible. Further analysis was carried out in the 

vicinity of each peak in the projected spectrum in order to clarify the position of each peak 

from the surrounding noise, which is described in the following section. 
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8.2.3 Statistical analysis for frequencies 

The infinite limit in eqn 8.16 means that there is always a shortage of data in any 

MD simulation as the theoretical delta function peaks are broadened. Although with the 

advantage of computational power this is no longer a problem for classical MID, the shortage 

of enough CPU time is still acute for any first principles MID simulations. This results in a 

poorer sampling of the system and error in the overall prediction of any dynamical property. 

In the present case this means that even the projected spectrum (Figure 8.1) is not 

easy to interpret. A straightforward interpretation would lead to very large uncertainty in the 

result. To overcome such a problem and to gain a greater confidence in the predicted results 

it is important to understand the source and nature of the error involved in the vibrational 

analysis at each' stage of the statistical interpretation. 

The first set of errors comes from eqn 8.5, the calculation of the auto-correlation C(t) 

eqn8.18: 	KV(t+ to) V(t ø )) tjme = 
tO nlax  f 0 =1 

	 where 

eqn 8.19: 	t0 max  +t = t. 

Given that we have a fixed range of data, say up to tm (e.g. 5 ps for rigid ammonia 

simulation) after the equilibration, for every choice of t we can average C(t) from a 

maximum of t0 ,,, = (tm t) terms [in fact the total number of effective terms is even less: 

- t)/ ,r, where r is the correlation length of the dataset. The value of r depends very much 

on the system of interest]. Thus while the short time correlation may be determined with 

greater statistical precision, the long time correlations become less and less reliable as t 

increases [inversely proportional to the square root of N, where N = (t,,,, - t)k]; with the 

extreme case of Qt = we have only one term in the summation of eqn 8.18. 
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1000 	 2000 	 3000 

Correlation time length / 2 fs 

Figure 8.2: The velocity auto-correlation of a H atom from the rigid ammonia simulation. 
The maximum available time step for calculating the auto-correlation is 3700 (7.4 ps). The 
accuracy of the data falls sharply as the correlation time length, t, approaches tm= 7.4 ps. 

The problem could be avoided by truncating C(t) at a maximum tolerable length of 

time, say t 01 (in Figure 8.2). However, truncating an already limited data set (due to limited 

CPU time) poses a new error in next stage of the statistical interpretation i.e. in evaluating 

eqn 8.16, which now becomes 

eqn 8.20: 	 6k  W = 21fdtC'(t)e-iwl  

where C'(t) is the velocity auto-correlation data projected at a specific k-point and 

corrected with the Blackman windowing function (see Section' 7.3.3) for abrupt truncation at 

the t,01. Choosing a very low tolerance (t 01), although offering a better supply of quality data 

(from eqn 8.18), will incorporate a - large uncertainty in the Fourier transformation (from eqn 

8.20). Ideally we would want t,01 to be infinity. This leads to an optimal choice of the time 

length, say t0  in Figure 8.2, which will be long enough to pick up the desired frequency 

upon Fourier transformation, while the noise contained in such a length of data is tolerable. 
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There is, however, no straightforward way to define such an optimal choice of time 

length for all the modes in the spectrum. Rather, it appears that the optimal length is 

different for different modes. The different vibrational modes are different in their strengths 

of amplitudes and time periods. Vibrations with large amplitudes are more tolerant to the 

noise and can cope with a much longer data set for C'_(t) (eqn 8.18), whereas fast vibrations 

have very small time-periods and a shorter data set is sufficient to nicely pick up the mode 

in its Fourier transform (eqn 8.20). Consequently the small amplitude and the low frequency 

vibrations are the most difficult to interpret. 

A lack of clear knowledge of the vibrational spectrum of ammonia means that we 

had to start with a poor guess of t, for the whole series. Once the peak positions were 

roughly defined, they were subsequently refined by individually targeting each of the 

vibrational modes and looking at their response with changes in t,,,. 
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Figure 8.3: The normal mode at around 620 cm - ' for rigid ammonia simulation with 
different choice of correlation time length, t,, from Figure 8.2. The maximum available 
time length is 7.4 Ps as in Figure 8.2. The vibrational spectra from all the basis atoms 
were added together to get a stronger response. 
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Figure 8.2 shows 5 different spectra for 5 different values of top, where we aim to 

refine the peak position for the normal mode at around 620 cm'. The best result is obtained 

for the blue peak at t0 , = 4 Ps (Figure 8.3). For top, less than 4 ps we see a flattening of the 

peak due to a poor FT; using a longer data set (say t0,,, = 5 ps, see Figure 8.3) results in 

symmetric ripples appearing on both sides of the main peak due to poor quality of data, C' 

(t). The symmetric appearance of ripples reflects the fact that the errors in C'(t) are of 

random nature, and are becoming significant. With even longer t0,,, (say t0,,, = 7 ps, see Figure 

8.3) the ripples starts to grow, and might even take on the appearance of major peaks. Once 

the peak position is successfully identified, the maximum variation of the peak position 

(arising due to the change in the length of the data set) is reported within brackets, for 

example in this case the value is 622(8) cm'. Therefore a small number within the brackets 

will mean the peak is defined with much greater confidence, as the peak positions varies 

only slightly with change in t0 ,. However, in cases where the peak positions varied widely 

with t0 ,,, along with any ambiguity in the total number of peaks, the whole range is reported, 

e.g. 340 - 370 cm' in our fully constrained (rigid) simulation (Table 7.5, Chapter 7). 

Such an analysis was found to be very reassuring as we were limited by a 

reasonable but comparatively small amount of data. Following this careful analysis 

we have identified the following lattice frequencies: 99(3), 127(4), 140(3), 179(5), 

296(4), 310(3), 340-370, 445(5), 460(5) and 622(8) cm' from the fully constrained 

(rigid ammonia) simulation of 2x2x2 supercell (Table 7.5, Chapter 7). Further 

valuable insight about the nature of these modes is gained upon careful review and 

comparison of all the previous experimental work on gamma point vibrational 

spectra. 
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8.2.4 Temperature and pressure effects 

As we expect our results to differ slightly from the experimental values due to the 

fact that our simulations were run under slightly different conditions of temperature (-100 	- 

K) and pressure (0.1 GPa), it is important to have some understanding of the effect that 

temperature and pressure will have on the lattice mode values. The effect of pressure on 

lattice mode frequencies is measured in terms of the Gruneisen parameter, 'y, given by, 

eqn8.21: 	 y = - alnw 
alnV 

where w is the frequency and V is the molar volume [Nye, 1985]. These parameters are 

critically dependent on the form of the intermolecular potential of the particular system. The 

pressure effect on the lattice modes of ammonia has been investigated in detail by Nye and 

Medina [Nye, 1985]; their investigation on three particular lattice modes is summarised in 

Table 8.1. 

Table 8.1: The effect of pressure on ammonia lattice modes: 98.5 cm', 128.4cm - ' 
and 276.4 cm' at 195 K 

aMO l&  volume bPressure  bTrans lational bLibrational 

(cm 3/mol) Change (kbar) Frequencies (cm - ') frequencies (cm - ') 

20.62 Ref. Pressure 98.5 128.4 276.4 

20.35 0.76(1) 102.1 132.5 279.4 

20.29 0.93(1) 102.7 133.2 280.0 

aGruneisen  parameters 	- 2.7(1) 2.7(1) 2.4(1) 

'[Nye, 1985] 
b  Pressure change has been calculated from molar volume using the reported bulk 

modulus, 5.8(6) GPa at 195 K, of solid ammonia phase I [Fortes, 2003] 

The Table shows that for phase I solid ammonia the lattice mode frequencies 

increase by a few cm' due to a pressure rise of —1 kbar. From the Raman frequency 

experiment by Yurtsven, 2004 [Yurtsven, 2004] the 268 cm' lattice mode of phase II solid 

ammonia (at 224.1 K and 0.365 GPa) also shows a frequency shift of similar magnitude. 
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Similarly, the 268 cm' librational mode increases by 10 cm' due to an increase in pressure 

of about 3 kbar (0.3 GPa). The pressure of our calculated sample increased by'about 0.1 GPa 

(i.e. 1 kbar) due to fixed volume simulation. According to these results we might expect an 

upward frequency shift in the translational modes of the order of 5 cm'. It is also pointed 

out by Nye and Medina [Nye, 1985] that the frequency shift for librational modes are much 

smaller than for the translational modes. 

The effect of temperature on the frequency shift of lattice modes was also well-

studied [Nye, 1987]. This showed that the frequency falls by a few cm' for a significant rise 

in the temperature [e.g. the 141.0(4) cm' translational modes at 18 K falls to 130.9(16) cm' 

at 213.5 K]. As our simulation temperature is higher than the experimental temperature of 

Binbrek and Anderson [Binbrek, 1972] by only a few degrees (10 - 20 K), any effect, which 

we expect to be small, should counter-balance the frequency rise in our simulation due to 

slightly higher pressure. 
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8.2.5 Review of previous work 

It is now timely to compile a brief summary of relevant literature work. The most 

cited experimental work for ammonia phonon modes are the IR and Raman experiments by 

Binbrek and Anderson {Binbrek, 1972]. Many other works are based on this reference, 

either to clarify some unsolved findings by them, or to gain more insight into the vibrational 

properties of crystalline ammonia. 

Righini et. al. [Righini, 1978] made a successful attempt to recalculate these values 

using an empirical model calculation (often referred to as an atom-atom, multipole-

multipole potential model). This calculation [Righini, 1978] tries to best-fit their model in 

order to closely reproduce the experimental work and by doing so they gained, valuable 

insight of the system. Powell et. al. [Powell, 1980] used coherent inelastic neutron scattering 

(C-INS) in conjunction with the atom-atom empirical model to explore other k-points as 

well as the gamma point spectrum in order to systematically study the presence and absence 

of certain modes over different k-points. This technique gives a comprehensive answer for 

the symmetry assignment of normal modes. Both the empirical model calculation [Righini, 

1978] and the C-INS spectra [Powell, 1980] were found to be in good agreement with the 

earlier work of Binbrek and Anderson [Binbrek, 1972], except that they suggested some 

changes in the original symmetry assignment made by the earlier work. Some other earlier 

attempts to resolve the spectra include: near-JR and Raman experiments by Reding and 

Hornig [Reding, 1951; Reding, 1954], far-JR work by Anderson and Walmsley [Anderson, 

1965] and an inelastic neutron scattering (INS) study by Goya] et.al. [Goyal, 1972]. 

Although there are slight disagreements about frequencies and symmetry 

assignments between these mentioned works, they have established a clear picture of the 

lattice dynamics of ammonia. The work presented in this thesis is the first-known attempt to 

investigate the ammonia lattice modes from first-principles. We found much in accord with 

the established picture but a number of interesting disagreements were unearthed, which are 

reported in the following Sections. 
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The first few modes in the range -100 cm' to —160 cm' 

Table 8.2 below lists all the peaks in the range -100 em' to -160 cm' from 

previous works and our MD simulation of rigid ammonia. 

Table 8.2: Ammonia lattice mode frequencies in the range -100 cm - ' to -160 cm'. 

Method 	 Ammonia 	Deutero-Ammonia 	Ratio 

'Reding and Hornig 

Near-IR (83 K) 

Raman (191 K) 99 s, 129 m 91.5 s, 121 m, 1.08, 1.06, 

142-161vw - 

bBinbrek and Anderson; 'Anderson and Walmsley 

Far-IR(77K) 138w 132w 1.04 
IR(107K) 138(10) 131(10) 1.07 
Raman (80 K) 107(5), 138(6) 100(4), 129.5(5) 1.07, 1.07 

dAtom .. atom  model 122, 130, 113, 122, 1.08, 1.07 

143 131 1.09 

ecs (95 K) 106.5, 141.5 98.6(0.7), 131(2.3) 1.08** 

Ab initio MD 99(3) s, 127(4) vs, - - 

(-110K) 140(3)m 

Approximated values were obtained from corresponding ND 3  values using the standard 
ratio of pure translational modes. 

vs = very strong, s = strong, m = medium, w = weak, vw = very weak. 
a[Reding,  1951; Reding, 1954], b[Bi nbrek 1972], '[Anderson, 1965], d[Righifli 1978], 
'[Powell, 1980]. 

The fourth column of the Table 8.2 lists the ratio of the frequencies between 

ammonia and deutero-ammonia lattice modes. The combined result from ammonia and 

deutero-ammonia gives significant evidence to predict any mixing between the translational 

and librational modes. The ratios of vibrational frequencies between solid ammonia and 

deutero-ammonia should be 1.08 (square root of the ratio of molecular masses) for pure 
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translational modes, and -1.4 (square root of the ratio of molecular moment of inertia) for 

pure librational modes. If any significant mixing between translational and vibrational 

motion appears in a certain ammonia mode the ratio will differ significantly from these 

standard values. 

From the Table 8.2 it is immediately clear that all• the vibrational modes appear in 

the range, -100 cm' to -160 cm', are purely translational. Binbrek and Anderson [Binbrek, 

1972] assigned them to the following symmetry movement as 

A (107 cm') , E (138 cm - ') and F (138 cm - ') symmetry. 

The empirical model calculation [Righini, 1978] found similar values but their 

model predicted a different order of symmetry that is, 

E (122 cm- '), F (130 cm') and A ('143cm -1 ) symmetry. 

This confusion in the symmetry assignment was then lifted by the coherent INS 

work [Powell, 1980], which shows (using selection rules for intensities at multiple k-points) 

that the original assignment by Binbrek and Anderson [Binbrek, 1972] was correct. For 

deutero- ammonia the C-INS work claimed 

A (98.6 cm'), E (98.6 cm') and F (131 cm') symmetry. 

However, unlike Binbrek and Anderson's prediction, which claims the second peak 

lies very close to the third peak, the coherent INS [Powell, 1980] work 'claims that the 

second peak actually lies very close to the first peak. They found the lower peak splits at 

low temperature and reveals the presence of two different modes [Powell, 1980] as, 

A (99.33 cm'), E (101.33 cm') and F (133.6 cm') symmetry at 20 K. 

From our calculation we find all three peaks are well distinguished from each other 

(-99 cm', -127 cm', -140 cm - ') and matches rather closely with the Raman work by 

Reding and Horning. 	- 
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Lattice modes within the range -160 cm' to -280 cm' 

Table 8.3 below shows all the peaks in the range -100 cm' to -160 cm'. 

Table 83: Ammonia lattice mode frequencies in the range -160 cm' to -280 cm - '. 

Method 	 Ammonia 	 Deutero-Ammonia 	Ratio 

Reding and Hornig 

Near-JR (83 K) 	250 	 200 	 1.25 

Raman (191 K) 	- 	 - 	 - 

Binbrek and Anderson; Anderson and Walmsley 

Far-JR (77 K) 180 w, 268 w 167 w, 200w 1.08, 1.34 

IR(107K) 181(14),258(12) 171(14),193(14) 1.08 

Raman (80 K) 260(5) 192(9) 1.34 

Atom-atom model 181,273 168, 196 1.08, 1.4 

GINS (95 K) 179.9, 166.6(1.7), 1.08, 

201.5/261.24** 186.6(6.7) 1.08/1.4** 

AbinitioMD(-11OK) 179 vs - - 	 - 

Not directly observed. Observed in combination band. 
**Approximated values were obtained from corresponding ND 3  values using the standard 
ratio of pure translationalllibrational modes. 
vs = very strong, w = weak, vw = very weak. 

From Table 8.3, a common agreement of the peak at around 180 cm' is very clear 

and there is a indication for the second peak at around 260 cm'. All previous works agreed 

on F symmetry for these two modes. From their ratio with the corresponding deutero-

ammonia mode, we can further suggest that the mode at around 180 cm' is the last 

translational mode of the series and the second peak at around 260 cm' is the first 

librational peak. The large gap between -180 cm' and -260 cm' [Goyal, 1972] is also 

consistent with the non-mixing between the translation and librational modes of solid 

ammonia. 
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Uncertainty in the 260 cm' mode 

It is quite surprising that although the ab-initio calculation matched the other 

experimental peaks quite successfully, it clearly shows no possibility of any peak occuring 

around 260 cm'. 

However, the confirmation of the second peak around 260 cm' in the range is also 

not evident from experiments. It was first suggested by Reding and Hornig from their near-

JR (83 K) experiment [Reding, 1951]. The presence of this peak (at 250 cm - ') in their work 

was derived from the combination bands, rather than detected directly from the scattering. 

A very weak band at 268 cm' was first observed by Anderson and Walmsley 

[Anderson, 1965] in the far-IR spectra (77 K) but they could not detect the peak in their 

deutero-ammonia spectra. In their words: "Assuming the cubic structure for JR-work also, 

it is felt that 268 cm' represents a separate fundamental." 

The presence of a mode at —260 cm' was then confirmed using both Raman and IR 

data by Binbrek and Anderson [Binbrek, 1972] for both ammonia and deutero-ammonia 

samples. Close observation, however, shows that the mode registering in their work 

[Binbrek, 1972] is of very, very weak intensity, and could easily be considered to be within 

the error limit of the experiment. The 260 cm' mode was later reproduced by the atom-

atom, multipole-multipole potential model calculation [Righini, 1978] and the coherent 

inelastic scattering [Powell, 1980] at 186.6 cm' for deutero-ammonia (186.6 times 1.4 gives 

260.4 for the ammonia). 

However, the presence of the 260 cm' peak in ammonia cannot be verified from the 

appearance of the 186.6 cm' peak in deutero-ammonia in the C-INS experiment [Powell, 

1980] due to the following two reasons: 
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the C-INS spectra shows only one peak (instead of two) in this range of interest 

with two insignificant shoulders, one of which is 166 cm' (claimed as the 

translational F mode) whereas the other shoulder was ignored. 	- 

While the 166 cm' shoulder can be attributed to error in the experiment, the peak 

186.6 cm' can be matched to either a translational F mode (a choice of ratio, 1.08 

predicts the mode at 201.5 cm- ') or a librational F mode (a different choice of 

ratio, 1.4 predicts the mode at 260.4 cm') of ammonia. 

Two peaks at about 300 cm - ' 

Table 8.4 below compares all the modes observed near 300 cm'. 

Table 8.4: Ammonia lattice mode frequencies in the range -280 cm' to -320 cm -1 . 

Method 	 Ammonia 	Deutero-Ammonia 	Ratio 

Reding and Hornig 

Near-JR (83 K) 	 - 	 - 	 - 

Raman(191K) 	 284 vs 	 213 vs 	 1.33 

Binbrek and Anderson; Anderson and Walmsley 

Far-JR (77 K) 	 - 	 - 	 - 

IR(107K) 	 - 	 - 	 - 

Raman (80 K) 	 298(8), 310(9) 	227.5(5.5), 242(-) 	1.31, 1.3 

Atom-atom model 	299,306 	 219,223 	 - 1.37, 1.37 

GINS (95 K) 	 295.1, 315.9" 	227(1.7), 243(3.3) 	1.3" 

Ab initio MD (-110K) 	290 m, 310 m 	- 	 - 

Approximated values were obtained from their corresponding ND 3  values using the ratio 
observed in Raman(80 K) experiment. 
vs = very strong, m = medium. 
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The existence of two closely-spaced peaks around 300 cm' is agreed by all the 

experiments and our ab-initio MD result. The initial symmetry assignment by Binbrek and 

Anderson [Binbrek, 1972] was 

A (298 cm - ') and E (3 10 cm' ) symmetry. 

This assignment, however, did not match the atom-atom, multipole-multipole 

potential model calculation as their calculation predicted the correct distribution only if the 

symmetry assignments were interchanged [Righini, 1978], that is - 

E (299 cm- ') and A (306 cm') symmetry. 

This observation was supported by a more rigorous Coherent INS experiment on 

deutero-ammonia [Powell, 1980]. As they claimed: "Our observations also suggest that the 

A- and E-mode identification of Binbrek and Anderson, at 231 [corresponds to 298 cm -' in 

NH3] and 246 cm' [corresponds to 310 cm' in NH 3] respectively, should be interchanged. 

Their identification scheme would lead, ..., to a large predicted neutron intensity for the 

mode at 231 cm- ' [corresponds to 298 cm' in NH 3 ] at reciprocal lattice point (220), whereas 

no intensity is observed, and would also predict zero intensity for the mode at 246 cm - ' 

[corresponds to 310 cm' in NH3], whereas intense scattering is observed. Interchanging the 

two modes resolves this difficulty." 
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F modes in the range 320 cm -1  to 500 cm' 

All the works generally agrees to the presence of two distinct peaks in this range, 

one around 360 cm' and the other one around 430 cm' (See table 8.5). 

The first peak is assigned to an F-mode. However, the assignment to the second 

peak around 430 cm' is not very clear from previous works. Binbrek and Anderson 

[Binbrek, 1972] first suggested that this could be attributed to either a combination mode or 

an LO branch of the 360 cm' mode. From the very strong presence of the 360 cm' mode in 

the JR spectrum, and the absence of the 430 cm' mode in the JR spectrum, Binbrek and 

Anderson concluded that such a large LO-TO splitting (-70 cm - ') could be possible. 

Table 8.5: Ammonia lattice mode frequencies in the range -320 cm - ' to -500 cm -1 . 

Method 	Ammonia 	 Deutero-Ammonia 	Ratio 

340_370* s, 440_465 s 	- 

splits in 445(5) and 460(5) 

Reding and Hornig 

Near-JR (83 K) 	362s 

Raman (191 K) 	325-375 w, 

430-462 vw 

Binbrek and Anderson; Anderson and Walmsley 

Far-JR (77 K) 	362s, -  

IR(84K) 	361(26),- 

Raman (80 K) 	358(21), 426(27) 

Atom-atom model 360,423 

GINS (95 K) 
	

373.8, 457.8 

Ab initio MD 

(-110K) 

280-312 w, 	1.6-1.2 

330-380w 

297s, -  1.22, -  

271(30),- 1.33,- 

267(16), 3 15(20) 1.34, 1.35 

262,306 1.38, 1.38 

267(3.3), 327(3.3) 1.4** 

iiows POSSIORILY ot more wan one peak in me range. 
- Approximated values of the ammonia modes obtained using the standard ratio of pure 
librational modes in NH3  and ND, solid. 
s = strong, w = weak, vw = very weak. 

/ 
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The empirical model calculation by Righini et. al. [Righini, 1978] later claimed that 

the suggested LO-TO splitting of the 360 cm' mode is in good agreement with their nodel. 

However, the dipole moment of the system was changed by 0.06x10' 8  e.s.0 from the gas 

phase value in their calculation to improve the initial splitting from 43 to 63 cm' [Righini, 

1978]. Although, the change in the dipole moment was made in an attempt to increase the 

observed LO-TO splitting, no physical interpretation of this change in dipole moment were 

presented. The more comprehensive work of GINS [Powell, 19801 spectroscopy also 

claims these two modes [at 371.8 cm' and the 457.8 cm' (Table 8.5)] as LO-TO branches of 

an F-mode. It is important to note that LO-TO splitting of F modes in GINS work is also 

predicted using the empirical model proposed by Righini et. al. [Righini, 1978; Powell, 

1980]. 

Cl 

C', 

C 

Cl 

C 

C 

350 	 400 	 450 	 500 

Frequency I cm,  I 

Figure 8.4: The lattice modes at around 350 and 450 cm from fixed-bond and rigid 
ammonia simulation for a dataset C(t) of length 5ps. (Note that, both simulations, however, 
exhibit the possibility of doublets at both frequency ranges.) 

Although there is no clear evidence from previous works that these two frequencies 

are the LO-TO counterpart of a single F-mode (or two different fundamental modes), the 

MD simulation of a 2x2x2 supercell is expected to pick up a significant part of the long 
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range interactions and thus should be able to predict any such splitting. From our 

simulation (see Figure 8.4) we see clear presence of at least two broad peaks in the range 

340-370 cm' and 440-465 cm', which, in line with the previous works, could be considered 

as LO-TO branch of the suggested F mode. 

An alternative assignment (of 340-370 cm' and 440-465 cm -1) 

A closer investigation of our data, however, reveals that each of these broad peaks 

(340-370 cm' and 440-465 cm') are further divided into doublets (narrow splitting of broad 

peaks). The doublets appear rather consistently in our constrained and unconstrained 

simulations (see Table 8.5 and also Table 7.5, Chapter 7), which therefore rules out the 

possibility of them appearing simply due to poor data quality [i.e. ripples appearing as a 

major peak in the form of doublets (see Figure 8.5)]. The previous assignments [Binbrek, 

1972; Righini, 1978;Powell, 1980] of 340-370 cm' range to an LO branch, and 440-465 

cm' range to a TO branch of a single F-mode, thus leaves an open question to these distinct 

splittings (of -15 cm - ') of each peaks. 

1.2e-OS 
2 8e-06 I. 	 F] 

Ie-05 
I-5psI 

I-' 
 

I-P'I 
/ 3ps _._ 	-. 	P. 

:EeE
'Ks i':L 

330 340 350 360 370 380 390 	420 430 440 450 460 470 48C 
Frequency I cm 	 Frequency / cm- I 

Figure 8.5: The presence of doublets becomes evident with increase in the length of dataset C(t), at 
-350 cm - ' for fixed bond simulation and at -450 cm - ' for rigid ammonia simulation. 
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A doublet was also observed for the lower range (at around 360 cm) by Binbrek 

and Anderson [Binbrek, 1972], but they did not attribute this to LO-TO splitting as they 

have observed the splitting in both IR and Raman spectra. (IR is insensitive to such an 

effect). Very broad peaks were also observed by Reding and Hornig in their Raman (191 K) 

spectra [Reding, 19541 in both of these two ranges for both solid NH 3 and ND- (Table 8.5), 

also suggesting the possibility of more than one peak in each of these ranges (340-370 cm' 

and 440-465 cm') of spectrum. 

A different conclusion might be possible, where each range (340-370 cm' and 440-

465 cm -1 ) represents two separate F modes, based on the following reasons: 

it explains the doublets observed at each of these ranges. Combination or 

overtone bands will not be detected by Fourier analysis of the MD simulation, 

therefore the only possibility of these doublets are to be LO-TO splitting of two 

individual F-modes. 

The large gap [70 cm' in Raman experiment (80 K) and 85 cm' in C-INS spectra 

(95 K)] between these two modes seems quite out of place compared to the LO-

TO splitting of all the other F modes of ammonia, which are very small or show 

no splitting effect {Binbrek, 1972; Powell, 19801. 

Finally, considering them as two separate modes counts for the full nine 

independent lattice modes from our ab-initio MD simulation (as our ab-initio 

MD simulation completely misses the presence of a peak around 260 cm-') 
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Lattice mode above 500 cm' 

Only one lattice vibrational mode was observed above 450 cm'. 

Table 8.6: Ammonia lattice mode frequencies above 500 cm'. 

Method 	 Ammonia 	Deutero-Ammonia 	Ratio 

Reding and Hornig 

Near-IR (83 K) 	 527 vs 	 406 vs 	 1.3 

Raman (l9lK) 	 - 	 - 	 - 

Binbrek and Anderson; Anderson and Walmsley 

Far-IR (77 K) 	 - 	 - 	 - 

JR (84 K) 	 532(18) 	 405(14) 	 1.31 

Raman (80 K) 	 - 	 - 	 - 

Atom-atom model 	 524 	 383 	 1.37 

C-INS (20 K) 	 574" 	 410(3.3) 	 1.4" 

A  initio MD (-.1 10K) 	622(8) vs 	- 	 - 

Approximated values were obtained from the corresponding ND 3  values using the 
standard ratio of pure librational modes. 
vs = very strong. 

The normal mode of F symmetry at around 530 cm' was only observed by two 

experimental works (see Table 8.6) of IR spectra [Reding, 1951; Binbrek, 1972]. They, 

however, strongly suspected it as an overtone of 260 cm - ' or a combination band. The atom-

atom empirical model [Righini, 1978] and the C-INS [Powell, 1980] work later confirmed it 

as a fundamental F mode. However, the C-INS spectra gives a much higher value (574 cm -

'). The presence of a peak within 500 to 600 cm' is clearly absent in our calculation; rather 

we see a very sharp peak at 622(8) cm'. 

In summary, from the careful review of previous works we propose the following 

assignment of the nine modes for phase I solid ammonia at gamma point: A-99(3), E- 127 

(4), F-140(3), F-179(5), E-296(4), A-310(3), F-340-370, F(TO)-445(5), F(LO)-460 

(5) and F-622(8) cm'. (Note that the symmetry assignment are not from first-principles, 

they are simply a best match to the reports available form earlier works). 
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8.3 Eigenvector Extraction 

Given that the gamma point frequencies are now known, it is now possible to 

proceed further and extract their corresponding eigenvectors. The theory assembled in this 

work to achieve this aim is reported in the remainder of this Section. 

8.3.1 The theory 

According to the classical theory of harmonic crystal the motion of an atom in a 

crystal follows the particular pattern, 

( \ - 	 i(k.R-wr) 
eqn 8.22: 	 'b,Rtt) - 	Ebk W  e 

k w 

where VbR is the velocity of an atom, say i, of basis b at a lattice site R. -b4,, is the velocity 

eigenvector of the normal mode (k, w), and is same for all atoms with same basis, b. 

The first step to extract the eigenvector of a normal mode at a specific (k, w), is to 

project the velocity data at the desired k. In this case we are particularly interested in 

gamma modes at k = (0,0,0), which could be obtained using the method described in Section 

8.2.3 (eqn 8.15), as 

eqn 8.23: 	 1 Vb.R(t) = V(t) 

So the projected velocity at gamma point would be 

eqn 8.24: 	 Vbr(t) = 	Ebr w e 
Ct) 

Each atom would have its initial phase (at time t = 0) for each individual mode, (F, to). 

Including the phase the velocity at the gamma point due to all modes would be 
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'ç' 	0 -ait4 

eqn 8.25: 	 Vb . r(t) = L Eb . r .W  e 

Multiplying the projected velocity at gamma point (Vb,r) with the phase factor of the known 

frequency of the crystal e"°°', and taking a normalised sum over all the available data 

range, gives us 

1 
eqn 8.26: 	- 	V 1 (t)e 	= 	 e0)t + 

N,0, t=O 	 N irn  1=0 a, 	 / 

where N,0, = t,0,/Lt and At is the time step of the simulation. Eqn 8.26 could be re-written as 

eqn 8.27: 	 V 1 (t)e"° " 	 E a, e' 	e'0_t) 
a,i 	0 t 	 CO 	 Na,, ,= 

For very short time step (,At —i 0, which is true for the MD to produce correct trajectory) 

and very long interval (t,,, —' ), the term in brackets will represent the Kronecker delta 

function, as 

eqn 8.28: 	lim N 	 e''° ° ' = ,. 	a, a, 
tt t=0 

Taking this identity in eqn 8.27, 

eqn 8.29: 	lim 	 V(t)e'°' = Ebr a, e'' 
N tor  1=0 

Eqn 8.29 is our working equation to extract the eigenvectors at desired frequency w 0 . We 

have worked with the velocity data as it is easier to handle in this particular case. However, 

once the velocity eigenvector is extracted the position eigenvector can easily be derived 

using the relation 
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eqn 8.30: 	
1b.k.w = 

where 1bk  is a position eigenvector and w(k) is the frequency at the particular value of k. 

8.3.2 Limitations 

Although the above mechanism should allow us to extract the eigenvectors at 

desired frequencies, limitations in both theory and simulation makes it rather complex. The 

first difficulty comes from the limited range of the data set. Eqn 8.29 is exact only at an 

infinite limit. Consequently the error in the sum of eqn 8.29 becomes tolerable only for an 

extensively large (ideally infinite) data set, but such a long dataset is hard to achieve from 

first-principles simulation. 

The fact that the eigenvectors are extracted only at a particular frequency and k-

point, is often inadequate. If a normal mode is degenerate (e.g. F mode) the above method 

would extract a linear combination of all the degenerate modes at this frequency, which 

would then be rather hard to assign with symmetry. 

Given these shortcomings, the method derived for eigenvector extraction gives a 

unique way to gain much a closer look into the crystal vibration. Although it may not reveal 

all the detailed information with exact certainty, nevertheless, it would undoubtedly extract 

the main features of the desired eigenmodes. 

8.3.3 Viewing the eigenvectors 

Eqn 8.29 and eqn 8.30 gives the eigenvectors entangled with the initial phase of the 

the mode, at the start time t,,0 ,-, = 0. Removing the phase is, however, not straightforward. 

Taking the real and imaginary part of eqn 8.29 we have, 
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eqn 8.31: 	A 	 V r(t)e") 	E 	 COS 
tot 1=0 

eqn 8.32: 	B 	slim N 	 V 1 (t)e"°°' = - EbT W  SIfl r  
tot 1=0 

From the ratio of A and B, the phase of the eigenvectors could be extracted as, 

eqn 8.33: 	 = arctan(__) 

However, the true phase information gets lost here in eqn 8.33 as the arctan function is 

bound between O0_1800 .  This make it impossible to remove the initial phase, 4, from the 

eigenvectors analytically. 

Alternatively we can Construct the complete time evolution of each mode from eqn 

8.31 by repeating the process of calculations over many times, using slightly different start 

times at each stage. The 3N set of vectors (N is number of atoms in the unit cell), 

Ebr, Cos4r 1,, ,  in eqn 8.31 represents the true displacement of the system at the time 

i = t due to a single mode under consideration (designated by the frequency, w). Thus 

changing the ts,a, successively over the length of its complete time period (2Tr/w) will 

generate successive displacement of the system under that particular mode over its whole 

period. The results is, however, not easily presentable in this thesis format and hence 

supplied (with comments and explanations) in electronic form [as animated gif (Graphics 

Interchange Format) file and also as xyz data file] for the purpose of assessment. The 

material (in a compact disc) is available in a pocket inside the back cover of the thesis. The 

result is also available for viewing at the following URL(universal resource locator): 

http://www.ph.ed.ac.uk/—gjalAmmonia_Modes.html, provided by the School of Physics, 

The University of Edinburgh official website. 
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8.3.4 Results from solid ammonia simulation 

The complete motion of the system (over a whole time period) were extracted for 

each of the molecular modes at frequencies, w = 3555(asymmetric stretch), 3415 

(symmetric stretch), 1645(asymmetric bending) and 1095(symmetric bending) cm' from the 

fully flexible ammonia simulation. The original motion had to be amplified for clearer 

observation, and are available as animated gif files within the supplementary materials. The 

result clearly shows the six molecular modes (including the degeneracy) with each molecule 

differing in phase from the others. This is due to the fact that the four molecules in the unit 

cell give rise to an additional four fold degeneracy resulting in a total of 6x4 = 24 molecular 

modes per unit cell of ammonia. 

Our extracted motions show very good match with the results available in the 

standard texts for these molecular modes [Ebsworth, 19911. The error was found to be 

almost negligible. For example, the ammonia stretching modes show less than 0.010  change 

in the H—N—H angle and the bending modes show less than 0.001 A change in the N—H bond 

length. The strong match between the extracted modes with the established picture of gas 

phase ammonia modes serves as a test of accuracy of the method developed and provides 

the essential confidence to interpret the results further for the lattice vibrations. 

The complete set of eigenvectors (available as animated gif files within the 

supplementary materials) were also extracted at each of the calculated lattice frequencies in 

the earlier sections (Section 8.2) from the fully constrained (rigid) simulation. It is now 

timely to put forward a detailed report of the symmetry assignments obtained using these 

extracted eigenvectors. An in depth analysis of the symmetry of the phase I ammonia 

structure is needed in order to establish the desired match between the observed motion and 

symmetry, which at this stage is, however, beyond the scope of this PhD project. From our 

limited analysis we would, however, like to address the following interesting conclusions: 
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For the non-degenerate translational modes, we expect the atoms to approach the 

equilibrium position once at every half cycle. For degenerate translational 

modes, however, due to the initial phase difference of constituent modes, atoms 

will come to equilibrium once at a complete cycle. 

Based on these criteria, 127 cm' clearly demonstrates itself as a non-degenerate 

translational mode, which is surprisingly in contrast with all the previous 

predictions [Binbrek, 1972; Righini, 1978; Powell, 1980]. On the other hand, the 

nitrogen atoms at mode 99 cm' mode shows slight elliptical motions, which is 

only possible if two or more non-degenerate translational modes are mixed. We 

therefore strongly suggest reconsidering these two modes as 

E (99 cm') and A (127 cm') symmetry. 

From our observation of extracted lattice modes (particularly the motions of 

Nitrogen atoms), it is clear that the 99(3), 127(4), 140(3) and 179(5) cm' 

modes are translational modes, and the higher ones are librational modes, which 

confirms all the previous predictions. It is strongly felt that a further symmetry 

analysis will also reveal the level of mixing between the translation and 

librational modes. 

From our obtained spectrum in Section 8.2 (Figure 8.1) we do not obtain peaks at 

260 and 532 cm' as predicted by experiments [Binbrek, 1972]. In search for a 

definitive answer to this anomaly we extracted the atomic motions corresponding 

to these values (irrespective to the existence of any peak). The obtained motion 

was found much (3 to 10 times) weaker compared to the motions extracted at 

distinguished peaks, which validates our findings that 260 and 532 cm' do not 

represent any real phonon mode. 
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However, when the extracted motions at 260 and 532 cm' were amplified many 

fold, their motions were found to bear some distinct patterns, rather than showing 

random oscillation. This is, however, not surprising, as a closer look shows that 

they actually bear the patterns of the neighbouring modes, reflecting the fact that 

these values (260 and 532 cm - ') indeed lie on the tails of other peaks. The 260. 

cm' motions show a mixture of weak translational and strong librational motion, 

which indicate that the librational tail of 296 cm' is much stronger than the 

translational tail of 179 cm' at this value. 

This effect is also evident even far away from the presence of strong peaks. The 

extracted motion at 700 cm', where we expect to see no systematic motion, 

although very weak bears a resemblance to the 622 cm' mode. 

The mixing of different modes due to the extended tails of the phonon peaks 

(Figure 8.1) has made it hard to distinguish the non-degenerate modes from the 

degenerate ones in the librational region (based on the criteria that the rotational 

amplitudes of different molecules under degenerate mode would be different due 

to the initial phase difference of the constituent modes). Particular effort has 

been made to distinguish between the LO-TO modes but no clear conclusion 

could be drawn. 

Although the level of error and/or mixing between different modes (due to each of 

the peaks having extended tails) could be significant, from the above findings it is strongly 

felt the residual effect from other modes could be removed with due assistance from the 

symmetry analysis. 
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8.4 Conclusion 

The methodology formulated in this chapter allows us to study the lattice dynamics 

of molecular materials in a comprehensive way from first principles'. The methodology is 

applied successfully to cubic ammonia phase I structure and reveals all the nine eigen-

modes of ammonia at gamma points, which are E-99(3), A-127(4), F-140(3), F-179(5), 

E-296(4), A-310(3), F-340-370, F(TO)-445(5), F(LO)-460(5) and F-622(8) cm' as 

prescribed by the Group Theory analysis. (Note that, the assignment of the first two 

modes has been interchanged from what has been assigned previously in Section 8.2.4 from 

the review of previous works). 

Phonon eigenvectors are not experimentally accessible, so theoretical work can 

complement experimental investigation, for example by following the changing nature of 

modes under pressure [Hsueh, 1995; Hsueh, 1996]. Although in this chapter, we have 

restricted ourselves from the symmetry analysis of those extracted eigenvectors, which will 

vary much depend on the system under study, nevertheless this work establishes a general 

method of complete phonon analysis from first-principles MD. The use of constraint 

dynamics has made this method well comparable to the other first principles techniques 

(e.g. the linear response theory and the force constant calculation from first principles), and 

even better in some respects (e.g. in treating anharmonic modes). 

tTheories developed in Sections 8.2.2 and 8.3.1 (eqn 8.16 and eqn 8.29) are original works 

of this thesis. During the course this thesis was produced, we were not aware of any similar 

work reported on k-point projection and eigen vector extraction for periodic solid systems. 

However, on completion of this thesis, we have now come across some analogous works by 

Boon and Yip [Boon, 1980] for liquid systems. 
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Chapter 9 

Future Work 

And if all the trees on earth were pens, and the sea [were] ink, with 
seven [more] seas yet added to it, the words of God would not be 
exhausted: for, verily, God is almighty, wise. [The Qur'an, 31, 27] 

During the course of this PhD work, a powerful tool of constrained molecular 

dynamics (MD) has been developed that will allow the study of bigger systems for longer 

time scales than was not previously accessible from first-principles. This has been 

implemented for one of the most popular first-principles packages, CASTEP, which is 

utilised globally by both the academic and commercial communities. 

It is therefore anticipated that many exciting and innovative research projects will 

benefit directly from this work. One example, which is of immediate interest to us is the 

cluster formation of methanol in water at various methanol-water ratios. There has been a 

strong indication from empirical model simulations that the nature of cluster formation at 

different ratios is entropy driven, i.e. the inter-molecular interactions play the main role 

[Dixit, 2002; Finney, 2003]. Realistic modelling of such systems will require simulations of 

the order of 100 Ps with a few hundreds of atoms [van Erp, 2001], and can therefore only be 

achievable from first-principles using the constrained dynamics method. 
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Another interesting area ripe for future work follows from our successful 

development of a methodology for extracting phonon modes from first-principles MD 

calculations. This will allow direct observation of how the lattice vibrational properties 

change with variable conditions of temperature and pressure. The real-time change in an 

anharmonic vibration (called mode softening) which can be reliably observed only by the 

MD route, has a key role to play in predicting possible phase transitions [Warren, 1998]. 

From the observation of a change in eigen-vectors, this will also allow us to study directly 

from first-principles the mechanism for such transitions (e.g. the motion of particular atoms 

triggering the transition) [Clark, 1997]. This tool therefore offers much promise in offering 

unique insight into the study of systems under extreme conditions (i.e. at high pressure and 

temperature) [Karki, 1997]. 
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Conference and Poster Presentations 
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London, July, 2002 (includes poster presentation). 
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