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ABSTRACT 

The United Kingdom's Electricity Supply Industry (ESI) was commercially restructured when 

it was privatised in 1990. Its long-term future now depends upon the actions of competing 

companies rather than the political decisions of a nationalised industry. Existing models of the 

industry have not included these market effects as the added complexity has proved difficult to 

include. A new type of model is needed to understand the operation and enable forward 

planning in the ES!. 

There are many approaches to forecasting ranging from individuals' opinions to mathematical 

iterations and, more recently, computationally intelligent techniques. Each of these methods 

has a place in different modelling environments as each has different characteristics. The 

thesis of this study suggests that forecasting the long-term primary energy mix in electricity 

generation is a large non-linear problem that may be solved by a Genetic Algorithm (GA) 

based model. GAs use a combination of selection, breeding and mutation to evolve an 

optimum solution from a population of possible solutions. 

This work reported how a global utility function reduced the large set of non-linear equations, 

that described the ES!, into a single optimisation problem solved by a GA. The GA made 

repeatable optimisations allowing reliable forecasts of different possible future scenarios. The 

model was further improved by the inclusion of new genetic operators that reduced volatility 

and gave the GA a memory of previous generations. 

The model was validated by matching an ex-post forecast with actual past data. It was then 

used to analyse the ESI's sensitivity to changing environments. This was achieved by building 

a picture of the future environment from the combined results of multiple scenario forecasts. 

Although there were politically sensitive outcomes to some scenarios, electricity generation 

met demand in every case. 
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"Although the study of natural evolution and the development of life is 

new and inspiring, the chaotic complexity of the total system is beyond the 

scope of today's science. Only the foolish believe that they truly 

understand all of nature's complexities. So let history serve to warn them, 

who attempt to alter any single aspect of this grand process, and disturb 

nature's balance of selection and diversity." 

B. Biteabout 

Suffolk 1983 
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1. INTRODUCTION 

1.1 Introduction 

The UK Electricity Supply Industry (ES!) developed from a few independent privately owned 

generators at the turn of the century into a centrally controlled interconnected grid system by 

1926. Numerous Acts of Parliament were passed to aid and regulate the expansion of the 

industry which was, until 1947, one third privately and two thirds publicly owned. Energy 

shortage was the major concern during the post-war period up until the early 1950s and 

nationalisation was considered the solution. This was the first swing of a pendulum away 

from the decentralised private sector towards a unified industry which proved to be crucial in 

establishing the UKs status as an independent nuclear power. The period between the mid 

1950s and late 1970s saw great leaps in development and political backing for innovative 

technologies. British industry performed well during the early part of this period which helped 

transform the ESI and bring it into the technological age. The belief that commercial 

competitiveness is the only path towards efficiency has dominated the UK since the 1980s. 

Privatisation and market forces, rather than nationalisation and central planning have shaped 

the industry which was privatised in 1990 which is set to be reorganised further in April 

2000. Although the objective of privatisation was to reduce government intervention, public 

opinion against nuclear power and the imposition of international emissions targets have 

forced the present government to take an active role in the regulation of the ESI. 

Governmental policies towards the generation, supply and sale of electricity have played a key 

role in the recent change in energy trading within the UK. The increase of renewable 

generating capacity has been the result of extra funding provided by both the Non-Fossil Fuel 

Obligation (NFFO) in England and Wales and the Scottish Renewables Order (SRO) in 

Scotland. This government is committed to achieve a target whereby 10% of the UK's 

electricity is generated from renewable sources by the year 2010. This represents 

approximately 9GW of renewable plant capacity, over ten times the current value. Although 

the expanding renewable energies market is becoming more profitable and is fast attracting 

investment this target will only be met through increased government intervention. 

The ES! presently utilises a mixture of primary energies for electricity generation. Each has 

its ideal place in the industry based upon available resource, economic costs, environmental 

impacts and the merit of the generation technology. Since the privatisation of the UK ES! the 
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choice of generation method has included market effects which affects company strategy. In 

order to maintain the most sustainable fuel mix a degree of control over the industry is 

necessary. The new structure of the ESI asserts that this can only be achieved through 

taxation and independent regulation, removing government intervention, and its political bias. 

However the construction and lifetime of electricity generating plant involves time-scales from 

tens to hundreds of years depending on the technology and the amount of time the plant is on-

line compared to its optimum scheduling (lifetime load factor). To regulate successfully in 

such a long term industry a degree of forward planning is vital based on predictions of the 

future shape of the electricity market concerned. In addition, competing companies within the 

industry need forecasts upon which future strategy and plant construction decisions can be 

made. 

Long term forecasts of the variables which describe the UK ESI are readily available to aid 

planning, speculation or risk analysis. These variables are grouped into economic, 

environmental, technical, political and market functions and can be described as: 

• Economic functions that include plant capital and generation costs, taxation structures and 

interest rates. They give a financial view of electricity generation and transmission. 

Forecasts based on these variables alone, such as Least Cost Plan forecasts, omit many of 

the most critical variables mentioned below. 

• Environmental concerns which involve the external costs of generation including pollution, 

decommissioning and resource depletion. They are manifested as emission taxes and 

regulatory constraints which can be enforced through heavy financial penalties. 

• Technical forecasts that predict advances in generating efficiencies and the rise of new, 

unproven, generation methods. These variables alter the shape of the economic values 

associated with existing generation technologies. New technologies can directly replace old 

technologies although the risk costs of new generation technologies are often prohibitive at 

their inception. 

• Political forecasts which encourage or handicap individual generation methods based upon 

the predicted influence on votes that the use of these technologies might have. Political 

influence is usually applied through legislation but has, in the past, involved the direct 

interdiction of particular types of plant construction. This is the least objective of the 

variable categories and is therefore given less influence on final outcomes. However, they 

are especially useful in scenario studies as they allow the analysis of the effects caused by 

proposed government intervention. 
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• Market effects cause competitive strategies which ensure that company efficiency will not 

fall below a critical level beyond which there is a threat of take over. Competition also 

alters risk avoidance policy by promoting hedging contracts, vertical or horizontal 

integration and speculative behaviour. 

At present the influences of different forecasts are weighed up by strategists and a rough 

picture of a single possible future is estimated. Present modelling approaches offer limited 

complexity thus many of the key factors that may influence long-term generation mix are 

omitted, greatly reducing the reliability of results. 

A repeatable quantitative analysis of all influential variables under the new and powerful 

market forces of the privatised industry has, until now, proved unfeasible due to the size of the 

problem and the non-linear nature of the data. The recent exponential increase in 

computational power has allowed the application of innovative modelling algorithms that were 

once considered only as theoretical concepts by both academia and industry. One of these 

techniques, Genetic Algorithms (GAs), evolve optimum solutions to large non-linear problems 

using the rules of selection, breeding and mutation found in nature. This study suggests, and 

goes on to show, that forecasts of the primary energy mix for generation in the UK ES! can be 

modelled as an optimisation problem. It also shows that optimising by GA can give relatively 

rapid results when all of the relevant explanatory variables are included. 

A Genetic Algorithm starts with an initial population of possible solutions that, in this case, 

represents the mix of primary energy used in generation on a yearly basis. The solutions 

survive, die or reproduce due to their ability to satisfy a fitness function made up of the 

factors that drive the electricity market and political, economic, environmental and technical 

variables that describe and regulate the industry. This method allows a computer model to 

explore possible outcomes for feasibility and assesses the probability of these outcomes 

actually happening. This occurs in a manner which disregards groups of solutions deemed 

impossible, whilst optimising all the solutions that are probable. The optimum solution is 

given alongside other solutions which might not satisfy the market functions as accurately as 

the fittest, but are valid and realistic possibilities. This approach enables repeated simulations 

of various scenarios without having to re-solve the mathematical representation every time. 

Such flexibility allows the model to be run and analysed by decision makers, as opposed to 

professional mathematicians who may not be familiar with the operation of the ESI. 
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1.2 Statement of Thesis 

The thesis of this study is that a reliable long-term forecasting model of yearly generation, 

energy resource and available plant mix in UK electricity generation can be constructed using 

a global utility function solved by a Genetic Algorithm (GA) based optimisation. 

This has been made possible by: 

• A change in the decision making process, effecting generation scheduling, that resulted 

from the privatisation of the UK Electricity Supply Industry (ESI). 

• The recent exponential increase in computational processor speeds that has allowed the 

application of GA theory to real life large-scale problems. 

Although it is not possible to foresee every event in the long-term future the Genetic Algorithm 

based Model of Electricity Supply (GAMES), suggested in this thesis, will provide both 

probable and most likely outcomes to suggested future scenarios. 

GAMES can be validated through a comparison of an ex-post forecast and actual data since 

the privatisation of the UK ESI in 1990. The stability of the model can be further assessed by 

performing sensitivity studies on future possible scenarios and through the analysis of these 

results. 
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1.3 Thesis Outline 

This thesis suggests the design of a new architecture for energy planning models through an 

optimisation, by genetic algorithm, that allows a level of complexity that is not currently 

available in a forecasting model. The first three chapters of this report form the introduction, 

giving a background to the UK ES! and an outline to existing approaches to forecasting within 

the industry. The necessity to make forecasts of how electricity will be generated in the future 

is discussed, highlighting the need for a new type of forecasting model. This is followed by 

three chapters that describe a new approach to long-term forecasting through a GA based 

general utility optimisation. The final three chapters explain the application of this new 

forecasting approach, discuss the results from scenario forecasts, and form conclusions based 

upon the methodology and how the model performed. 

Chapter 2 describes the UK ES! and is divided into three sections. The first gives a brief 

history followed by the effect of privatisation on the structure of the ESI. It describes the 

electricity marketplace and trading pool, how the industry is regulated and its future when new 

trading proposals come into effect. The second Section in this chapter concerns generation in 

the UK. Each generation method is described from an energy planning perspective. Each 

technology, its financial costs, resource constraints, environmental impact and political 

implication is discussed in turn. This includes technologies that are not yet proven in the 

electricity industry. The final section concerns forecasting in the UK ES! and highlights the 

differences between forecasting the behaviour of nationalised and privatised industry. 

The third chapter investigates current forecasting techniques and their applications in the 

electricity supply industry. It begins with the old school of opinion based forecasting and the 

process by which a number of experts' personal views could be averaged to give a single 

forecast. Modern mathematical methods of trend regression and extrapolation are then 

explained and their advantages and limitations discussed. This is followed by four prominent 

computer based approaches to modelling and forecasting in the ES!. The final Section 

outlines the major Artificially Intelligent (Al) methods which are currently being used in 

forecasting. Some of these Al techniques are improvements that can be added to traditional 

forecasting methods and some constitute novel approaches to forecasting. The chapter 

concludes with a description of a simple GA and explains why this method of optimisation is 

best suited for large long-term forecasting problems. 

Chapter 4 begins the description of a new model of the UK ESI. It shows a clearly defined 

model structure using exact definitions of functions and data types in order to control the 

complexity needed to describe the ESI accurately. The assumptions made have been clearly 
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highlighted and proven methods of noise reduction, such as aggregation, are discussed. The 

chapter moves on to discuss the need for a new type of global utility function to combine the 

myriad of individual explanatory functions into one large optimisation function. The chapter 

concludes that due to its size, and non-linearity, a GA is found to be the only method available 

to optimise, and solve, this global utility function. 

The use of GAs in long-term forecasting is new and still developing. This thesis suggests that 

GA optimisation is ideally suited to solving large forecasting problems and has many inherent 

advantages. Chapter 5 describes the structure and representation of a forecasting GA and 

highlights the changes to traditional GA methodology necessary for long-term ESI forecasts. 

Each of the standard genetic operators is discussed in turn and the final choice of their settings 

is explained. The final Section in this chapter looks at five advanced genetic operators of 

which two are new. One of these, Recall, applies a genetic process that stores redundant 

genetic code for future use. This new step in the evolution of GAs themselves has emerged 

from this study and could be applied to other GA applications. 

GAs operate by the selection, breeding and mutation of a population of parent solutions to 

create a new population of fitter child solutions that are closer to a global optimum. The 

selection process depends on how close each individual solution is to being the optimum 

solution to the model. This is judged by the fitness function which, in this case, is a global 

utility function that contains all the functions necessary to describe the UK ESI. Chapter 6 

discusses each of these fitness function components from operation costs to risk avoiding 

strategies. Assumptions and limitations are discussed and relevant values referenced or given. 

The final Section describes the global utility function and the fitness value returned to the GA 

for each individual solution that has been assessed. 

Chapter 7 describes the Genetic Algorithm based Model of Electricity Supply (GAMES) and 

the algorithms that operate the user interface. This chapter is not an operation manual, but 

rather a description of the program's data manipulation, genetic operator choices and results 

interface. It explains the effect of changing crossover and mutation rates, seeding the 

algorithm and radiating the population. The chapter ends with a theoretical scenario forecast 

during which programming and graphical interface decisions made during the program's 

creation are explained. 

Chapter 8 discusses the performance of the GA and the forecasting model as a whole. It starts 

with the results of a feasibility study undertaken before the final model and program were 

constructed. This simplistic study assumed a scenario where all electricity was generated by 

gas and coal only. On the basis of these results a full scale model was constructed and its' 

performance is discussed in detail. Firstly the operation of the GA is assessed, and the merits 
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of each genetic operator and their respective settings is discussed. These are represented 

graphically as GA convergence graphs, one for each default setting or new operator. The 

model itself is validated through forecasts. The first is an ex-post forecast from 1988 to 1998 

which is used to make a comparison between the forecasted and actual fuel mix used in 

generation during this period. The remaining results are from five scenario forecasts. Each 

represents a 40 year forecast of different possible generation environments. Each scenario 

outcome is discussed in detail with reference to the model's stability and accuracy. When 

considering these results it must be noted that it is not possible to make single predictions of 

the exact amount of electricity that will be scheduled by each generation method 40 years from 

now. However, it is possible to build up a picture of the critical factors through multiple 

forecasts. For this a quick, large and stable model is necessary. This chapter ends with a 

summary of how GAMES fulfils this task. 

Chapter 9 concludes this thesis. It gives a summary of the new material and concepts that 

have been developed learnt during this study and outlines the thesis' contribution made to 

knowledge. It ends with suggestions for future work. 
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2. THE UK ELECTRICITY SUPPLY INDUSTRY 

2.1 Overview 

This chapter gives a brief description of the UK's Energy Supply Industry (ESI) and outlines 

the major technologies used in electricity generation. It discusses the environment that has 

been modelled, then moves on to give the benefits and drawbacks of each generation method. 

The first Section starts from the creation of the first nationalised electricity generating board 

and ends with current proposals for changes in the electricity market. The second Section 

describes generating methods from the perspective of an energy planner in the existing ESI. 

The final section investigates the differences that privatisation has made upon forecasting. 

2.2 The Market 

The ESI has been changing constantly since the first Electric Lighting Act of 1882. This Act 

aimed to introduce legislation that would protect customers and create a structured 

environment for the rapidly expanding business of electricity generation, transmission and 

distribution. The latest Electricity Act, set to be introduced in April 2000, concerns the 

restructuring of the Electricity Pool and was passed through parliament for the same reasons 

as the 1882 Act. This is not because it has taken 118 years to find a viable system, but is 

rather due to the constant evolution of the ESI as it adapts to new technologies, fuels and 

constraints. Market led policies and new environmental concerns have shaped the present 

industry and the immediate future will be influenced by new European legislation. However 

the only certainty in the long term is that there will be continuing change. 

2.2.1 The Nationalised UK ESI 
The first Electricity Commission was established in 1919 to govern electricity supply in the 

UK. This was the first of many governing bodies dedicated to the regulation and control of 

electricity generation and supply. It was replaced in 1926 by the Central Electricity Board 

which was in charge of promoting and operating a national system of interconnections 

between generators. By 1947 there were 560 separate electricity suppliers of which two thirds 

belonged to local public bodies. This publicly controlled privately owned system of 
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generation was difficult to regulate and lacked the co-operation needed for expansion. The 

Electricity Act of 1947 reorganised the whole ES! by nationalising the remaining private 

companies and creating 14 powerful Area Boards to control distribution, and the Central 

Electrical Authority to organise finance and policy.  The ESI was reorganised again in 1954 

with the separation of the two Scottish Boards. Three years later the Central Electricity 

Generating Board (CEGB), serving England and Wales, the South of Scotland Electricity 

Board (SSEB) and the North of Scotland Hydro-Electricity Board (NSHEB) were founded 

and made responsible for generation, transmission and distribution issues. At its peak the 

CEGB generated and supplied, through the twelve English and Welsh Area Board suppliers, 

94% of its regions total energy requirement. The SSEB and NSHEB performed both 

generation and supply duties in their regions. Figure 2. 1 Shows the structure of the, then 

nationalised, ES!. 

Despite the Energy Acts of 1983 and 1987, aimed to attract private generators back into the 

ES!, the industry was performing badly. The CEGB was accused of bad policy making, 

concerning the construction of nuclear plant against public opinion, and poor customer 

service. Although the CEGB could prove that government intervention was responsible for 

the nuclear program it was privatised, along with the SSEB and NSI-IEB in March 1990. 
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2.2.2 The Privatised UK ESI 
The decision to privatise the ES1 was made to stop the CEGB, SSEB and NSHEB monopolies 

and prevent government intervention. The White Paper "Privatising Electricity" 2 , published in 

1988, outlined the UK governments ES! privatisation plan: 

ES1 supply, excluding Nuclear Electric and Scottish Nuclear, was floated as seventeen 

companies and generation was put under the charge of two companies. National Power and 

PowerGen. The twelve English and Welsh Area Boards became the twelve Regional 

Electricity Companies (RECs). Their role continued as local distribution and supply 

operators. The RECs and their geographical locations are given in Figure 2.2. 
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The joining of transmission, distribution and supply was originally left to the RECs but, in 

1995 the National Grid Company (NGC) was created for this role and floated on the stock 

exchange. The charge of the NGC was to oversee energy trading along with electricity 

distribution and supply. 

The privatisation of Scotland's equivalent ESI followed a different course. Although joined to 

the English grid system, by means of an interconnector, it was considered independently. 

Scottish Hydro-Electric and Scottish Power replaced NSHEB and SSEB respectively and were 

privatised in 1991. These two vertically integrated companies controlled all of Scotland's 

electricity generation, distribution and supply. Figure 2.2 shows the geographical control of the 

RECs, Scottish power companies and Northern Ireland Electric. 

In 1994 the National Coal Board. which was still the largest generation fuel supplier, was split 

into many smaller companies and sold to private investment. Many of these new companies 

were no larger than single collieries. The sale of Nuclear Electric and Scottish Nuclear came 

later as their poor assets, huge debts and the uncertain decommissioning costs would have 

impaired the sale of the whole industry. After much restructuring and debt repayment they 

were combined and sold as British Energy in 1996. 
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Since privatisation in 1990 there have been numerous mergers and take-overs in the UK ES!. 

Recently the DTI blocked some take-over bids on the basis that competition would be reduced 

and therefore the customer would suffer. Successful bids have involved companies from 

outside the ES!, such as Dominion Restaurants take-over of East Midlands Electric in 1997, 

and companies from abroad such as the take over of Yorkshire Electricity by a 50:50 joint 

venture between American Electric Power and New Century Energies. However in 1999 

Yorkshire Electricity's Generation business sold for £94.9 million to PowerGen, one of the 

largest players in the UK ES!. 

The result of these take-overs and mergers has been a reduction in the number of market 

players. This has created a market with a small number of very powerful companies which 

have the ability to control the marketplace. In response the Office of Electricity Regulation 

(OFFER), which has since become part of The Office of Gas and Electricity Markets 

(OFGEM), proposed a new electricity market structure which is to come into effect in April 

2000. 

2.2.3 The Pool 
The Pool was set up as the market place for the buying and selling of electricity. It originally 

provided the commercial link between generators and suppliers but large customers can now 

buy directly from the Pool. It can be described as a commodity spot market for electricity: 

Each generator submits a bid one day in advance. The bid contains the plants price for 

start-up both with and without load, three prices for varying loads, a price for maximum 

load, a half hourly dispatch availability. 

The National Grid Company (NGC), who run the pool, create a demand forecast for the 

following day. The forecast is based on historical data, weather forecasts, large public 

events, estimates of large customer demand, estimates of interconnector flow and pumped 

storage availability. 

An unconstrained (without technical transmission issues) schedule is created from the 

information in the generator's bids and the NGC's forecasts. It does not include the 

technical constraints of the transmission network. The schedule is constructed on a half 

hour basis and consists of lists of plant that must be operational to meet the demand and 

provide a spinning reserve for each half hour period. The scheduled plant is chosen in 

price order, cheapest first, stacking up until the expected demand for that period has been 

met. 

12 



The LIKESI 

The operation schedule is the final schedule based on the grid company's forecast. It is 

derived from the unconstrained schedule but it considers the technical constraints of 

transmission. Some generators included in the unconstrained schedule are omitted and 

others included. The price paid for electricity is based upon this schedule. 

The Pool Purchase Price (PPP) is calculated using the sum of the most expensive 

generator on the half hourly bid and the uplift cost. This figure then is corrected for the 

probability of an incorrect forecast and is then given to all the generators chosen, for that 

half hour, in the operation schedule. 

Through this system of bids and forecasts generators compete to sell electricity. Some 

generators have used bids of zero (bid to supply at 0 p/kW) to ensure they are chosen for 

scheduling. These generators rely on the need for expensive generators in the same period to 

raise the PPP. 

2.2.4 The New Market Arrangements 
In addition to the reduction of competition due to take-overs and mergers the ESI has not 

become a free market as expected. The first problem was that initially only customers with 

peak demands above 1MW could choose their supplier. Smaller customers were confined to 

their own RECs for supply. Competition was therefore limited to the big players who have 

through growth, mergers and take-overs, become very powerful and influential in the 

marketplace. The franchise break in 1994 allowed customers with peak demands below 

1MW, but above 100kW, free choice of supplier. This was supposed to increase competition 

among suppliers but it only had a limited effect. The second franchise break, scheduled for 

1998, was delayed until 1999. This allowed all customers, including those with peak demands 

below 100kW, the freedom to choose their supplier. Many new suppliers have arrived on this 

<100kW market which has helped increase the competitive nature of domestic supply. 

Although some customer services have improved, electricity prices have increased. Since 

privatisation the Pool has raised its selling price from 2.282p/kWh in 1990 to 2.596p/kWh in 

1998, an increase of over 12%. Reduced plant capital costs, fuel costs and the introduction of 

newer, cleaner technologies should have reduced the price of electricity. For example CCGT 

plant capital costs have fallen by 22%, their thermal efficiency has increased by 8% and the 

price of gas has, on average, fallen by 53%. The increase in Pool price could be explained by 

a 12% increase in the System Marginal Price (SMP) during the same period as privatised ES! 

electricity prices should reflect the SMP. If one should increase the other should follow'. 

However this does not explain why the SMP has increased when the cost of generation has 

fallen. It has been argued that SMP increased because the amount by which plant capacity 
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exceeded peak demand (or plant margin) decreased. Although a reduction in plant margin 

could cause the inefficient scheduling of plant, the figures do not correlate; plant margin has 

been increasing since 1996. Therefore SMP must be influenced by more than the costs of 

generation and spinning reserve. 

The increase in SMP can be attributed to the pricing mechanism used in the Pool. SMP is set 

by the highest bid prices which come from the mid merit and peak load stations. This 

category is made up of the UK's coal fired plant, oil fired plant and the older, expensive, gas 

plant. National Power and PowerGen, the largest of the UK's generating companies, own 

90% of these price setting stations. Due to their large market share it is in their interest to 

keep SMIP of all plants, and therefore electricity prices, as high as possible. Other generating 

companies in the market also benefit from the high profit margins as does the National Grid 

Company (NGC), which runs the Pool and earns a percentage of the markets cash flow. 

Therefore there is no incentive to reduce SMP and electricity prices remain high. 

By 1998 it was clear that the Pool was not working as intended. One of the root causes was 

abuse of market power by the large generators'. This has been encouraged by the bidding 

structure in the pool, which is only from one direction (the generators). A total reshaping of 

the Pool was deemed necessary by the DTI's Review of Electricity Trading Arrangements 

(RETA) to enable a fully competitive market. In October 1998 the Government accepted the 

New Electricity Trading Arrangements (NETA) proposed by the DTI. The NETA are set to 

be introduced by April 2000, and will include: 

• A forward and futures market where buyer and seller agree a price today, to be paid on 

the delivery of electricity, on a specified date in the future. Options on futures will be 

used to enhance supply security by allowing traders to offset their individual risks. 

• A short term bilateral market place where electricity is bought and sold between 4 and 24 

hours in advance of each generation period. This will probably be operated via a 

computerised network based system to ensure transparency. 

• A balancing market during the 4 hours preceding each generation period where generation 

will be matched to the exact demand. This will allow the system operator to use cheap 

generation by gas, hydro or wind if available, to meet the peaks in demand. 

• A settlement process that penalises or rewards market participants depending on how well 

they met their commitments. This will be measured as the difference between their 

contractual obligations and their actual generation output. 
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There are concerns that the NETA will not solve all of the electricity market's problems. 

Firstly large players will still be able to manipulate the market by controlling the price of 

futures. Their power to obtain favourable contracts for all of their stations may cause a high 

market SW and therefore high electricity prices. Secondly renewable technologies may be 

forced from the main, futures, market as they cannot guarantee generation at a given time in 

the future. Finally there are fears that that embedded schemes may suffer as there will be no 

incentive to include small generators. Their inclusion will add complexity to the system and 

most suppliers may prefer to enter a single large contract, rather than multiple contracts from 

a multitude of small embedded generators. The Regional Electricity Companies' (RECs) 

history of prohibitively large connection charges for embedded generators will also need to be 

addressed. 

2.2.5 Regulation 
The Office of Electricity Regulation (OFFER), was introduced in the 1989 Electricity Act. 

The main tasks of this regulator were to ensure that customer demand was met at a reasonable 

price and customer service was maintained. It was also responsible for the promotion of 

competition and energy efficiency. The Regulator's control over the electricity companies was 

through licence agreements. Operation within the ES! was dependent on these licences which 

stipulate a minimum acceptable standard of operation. Failure to comply with the licence 

agreement could have resulted in the withdrawal, by the Regulator, of any of these licences. 

However the regulator could not change the licences without the holders consent so new 

regulation was slow to achieve. Rapid intervention was only possible through the Monopolies 

and Mergers Commission or directly through legislation from the Secretary of State. 

In early 1999 OFFER became a part of a general Energy regulator called The Office of Gas 

and Electricity Markets (OFGEM). The key roles of the new regulator as defined by the 

Department of Trade and Industry (DTI), were as follows: 

• To place a single primary duty on the regulators requiring them to protect the interests of 

consumers, incorporating the existing duty to ensure that the regulated companies can 

finance their functions. 

• To issue statutory guidance on social and environmental objectives, including energy—

efficiency objectives. 

• To establish consumer representative bodies on an independent statutory basis, and to 

create gas and electricity. 
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• To merge OFFER, the electricity regulator, and OFGAS , the gas regulator, under a single 

energy regulator OFGEM. 

To provide for separate licences for the supply and distribution of electricity. 

To replace individual regulators by full—time executive boards composed of a chairman 

and two others. 

• To place a duty on the regulators to give collective consideration to matters of common 

interest. 

These directives, published in the DTI's public consultation paper on the future of gas and 

electricity regulation were intended to improve the consistency of gas and electricity regulation 

by combining the expertise of both OFFER and OFGAS within a single energy regulatory 

body, OFGEM6. OFGEM's powers under the NETA are yet to be finalised. It is almost 

certain that the regulator will have increased power through shorter licensing periods, which 

will increase their influence over the electricity companies, and some direct control over the 

market controller, which will .allow regulation through market changes. It is hoped that 

regulation through the market, rather than direct intervention, will be able to encourage 

renewables and embedded generation, whilst maintaining market competition. 

2.3 Generation 

The most notable recent change in the UK ESI has been the increase in gas generation. This 

was partly due to new technology but mainly due to government incentives and the dash for 

gas. Figure 2.4 shows the change in generation methods since the privatisation of the ESI in 

1990. It shows how oil and coal generation has given way to the new Combined Cycle Gas 

Turbine (CCGT) technology which has increased from 1% to over 30% in less than 10 years. 

In addition the renewables, and other fuels like waste combustion, have doubled their 

proportion of the UK's total yearly generation. 

The following Sections, 2.3.1 to 2.3.9, outline the major generating methods that are included 

within this study. The emphasis is towards issues that influence energy planning and the 

mechanisms that influence choice between different generation methods. Topics such as 

efficiency, the availability of resources and environmental impacts are discussed but the data 

16 



The ('K ES1 

used in the final model, and the detailed analysis of the factors that influence primary energy 

choice for generation, can be found in Chapter 6. 
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Figure 2.4 Electricity supplied by fuel type in 1990 and 1998 as percentages'. 

2.3.1 Gas 
Large-scale gas fuelled generation can be split into two categories, the old style Open Cycle 

Gas Turbines (OCGT) and new Combined Cycle Gas turbines (CCGT). OCGT generation 

has served the ES! for many years meeting short term peak loads, providing frequency 

stabilisation in the grid system and providing restart power for large power stations after 

black-outs. Over the past thirty years the unit rating of OCGT has increased from 12MW to 

200MW and the thermal efficiency of this plant has risen from 22% to 34%. This upper 

efficiency is constrained by the properties of the Joule, or Brayton cycle which defines a 

maximum efficiency for an ideal OCGT, if the fresh charge in the compressor due to open fuel 

combustion in air is neglected'. Steam turbine plants have operated with heat recovery boilers 

to provide in-house power and heat. This practice is known as Combined Heat and Power 

(CHP). CCGT delivers this steam from the heat recovery boiler to a steam turbine which 

drives separate steam turbines to produce additional electrical power, without an increase in 

fuel consumption9. This process is constrained by the Rankine cycle which defines a 

maximum efficiency for an ideal steam engine as approximately 32%'°. Therefore the 

maximum efficiency of an ideal CCGT is the sum of both Brayton and Rankine cycles. A 

modern CCGT plant can obtain efficiencies of over 56%. 

Gas powered CCGT and OCGT plant has risen from providing 0.5% of the UKs' annual 

demand in 1990 to 32.5% of the annual UK demand in 1998. The reason for this is simple: 

modem CCGT generation is cheaper than competing generating technologies. The costs for 

new entrants in CCGT generation are presently the least expensive of all the generating 
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methods. Firstly the all-in capital cost of CCGT plant is around £300/kW, approximately one 

third that of coal. Secondly the fuel is cheap: Running on spot gas, an instant gas pricing 

mechanism, the fuel cost of generation would be approximately 0.8p/kWh which is less than 

half that of coal fuel costs which can rise to 1.8p/kWh. Finally maintenance and labour costs 

are low. Maintenance is reduced by the clean nature of gas and the modular design of plant. 

The high degree of automation has reduced labour to the extent that a modern 700MW CCGT 

station can operate with less than 30 staff. A modern coal plant of the same size would need a 

minimum of 80 staff. The total cost of running a new CCGT station at base load could be as 

little 2p/kWh (0.56p fixed and 1.44p variable). Even running at a 60% load factor costs 

would not exceed 2.4p/kWh. 

Figure 2.5 UK gas consumption 1970 to 1998' 

The only drawback is that gas reserves are low. The DTI's current estimate of the UK's 

accessible gas reserves are approximately 2,000 billion cubic metres. It is presently being 

used at a rate of 75 billion cubic metres (or I ,000TWh) per year. Figure 2.5 shows the rapid 

increase in gas usage due to electricity generation, a trend that is not set to end until reserves 

become scarce. At this rate gas depletion will come before 2025 although some new reserves 

may be found'. Depletion will be slowed by the increased costs of producing gas from remote 

and inaccessible fields although elasticity in the market may prove stronger than expected. 

2.3.2 Coal 
Between 1990 and 1998 generation from coal powered plant fell from a level that provided 

66%. to a level that provided 33%, of the UK's total yearly demand. Figure 2.6 shows how 

this 90.8TWh reduction in coal generation was met by a 11 2.4TWh increase in gas 

generation. The difference, a 21 .6TWh gas excess, contributed to over half of the total 

generation increase during this same period. These figures show how gas has been a direct 

replacement for coal. Although the efficiency of CCGT is far greater than that of coal plant 

this change was not due to technical issues alone. 
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At their inception National Power's and PowerGen's coal generation divisions were given 

three year contracts with the RECs to help secure post-privatisation coal generation. These 

contracts were backed up by take or pay contracts with British Coal in which the generating 

companies were required to take approximately 70Mt of coal per year at I 80p/GJ net, 

allowing generation costs of around 2p/kWh. Both companies received substantial fees for 

operating as a pool price cap for the RECs. This risk diverting policy was made possible by 

good fixed coal price and contracted fuel supply security. The returns were a fixed 3.7p/kWh 

for the generators within these contracts giving gross profit margins of around 45%. 

However, when these contracts ended in 1993 a new, a less favourable five year contract was 

put in place. The new contract was designed to provide a secure market for British Coal after 

its privatisation. Although as profitable as the three year vesting contracts, the new 

arrangements only fixed the price for under half the yearly tonnage of coal that was used in 

the years proceeding 1993. Additional coal was purchased at market rates which were higher 

than the contracted value: thus reducing the ability for coal powered generation to compete 

with CCGT generation. Between 1993 and 1998 coal generation dropped by almost 40% and 

was replaced by CCGT which was more competitive than traditional coal generation without a 

favourable fuel purchase contract. 
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Figure 2.6 Fuel mix in electricity generation from 1980 to 1998. 

Environmental concerns have reinforced the switch from coal to gas. The cleanest coal plant 

produces 36 times the amount of NO, twice the amount of CO2 and twice the particulate 

emissions of CCGT plant of similar capacity. Gas generation produces insignificant levels of 
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SO,, whereas coal fired generation produces between 3g1kWh and 6g/kWh of SO,,' 3 . 

Government emission targets will continue to play a significant role in the reduction of coal 

plant. At the Kyoto summit the UK agreed a further 10% reduction in CO 2  levels by 2010. As 

CO2  emissions cannot be cleaned the pressure to stop burning coal will increase. 

2.3.3 Oil 
Generation by oil powered plant has reduced from providing 7% to 2% of the UK's total 

annual demand between 1990 and 1998. The deficit has been made up by the increase in gas 

based generation. Oil, like coal generation, relies on contractual arrangements and although 

oil can be bought on a spot market, the majority of oil purchase involves hedging contracts. 

These contracts act as futures where, for a premium, oil is guaranteed to be sold at today's 

price on a future date. This gives fuel supply security and if prices go up during this period, 

the generator has successfully overcome the price risk associated with the spot market. If the 

oil price goes down the generator must buy at the arranged rate or face a financial penalty". 

Oil usage in 1998 was 144.6 million tonnes, higher than in any year since oil was first 

produced from the North Sea in 1975. This is 44% higher than 1990 production figure 

whereas oil fuelled electricity generation has fallen. This discrepancy is because oil demand 

for electricity generation has little effect on oil production figures. The total oil consumption 

for generation in the UK is 1.8 million tonnes which represents only 0.012% of total oil 

usage". Unfortunately the large amount of oil used in the UK is rapidly depleting known 

reserves. Reserves stand at 4,105 million tonnes which gives under thirty years of secure 

supply. 

Along with volatile oil prices and resource constraints oil generation has become less 

competitive as a result of its high emission levels. Even the most efficient combined cycle oil 

plant, which could have an efficiency of over 50%, would have high emissions per kilowatt 

hour of electricity generated. NO,, emissions from oil combustion are almost three times that 

of CCGT emissions at 0.19g/kWh. SO, emissions are 0.25g/kWh which is less than coal, but 

high compared to the insignificant levels produced by gas combustion. Particulate emission is 

the same as for coal at 0.1 5/kWh but, again, high compared gas combustion which produces 

no particulates. Although the total emissions from oil combustion are lower than that of coal 

combustion the price of coal was only 58% of the price of oil, on a heat equivalent basis, in 

1997. This made coal fired generation cheaper than oil powered generation in that year. 

However this difference was wholly dependent on taxation. Heavy fuel oil used in electricity 

generation was subject to a 34% tax in 1997 whilst the equivalent steam coal was not taxed at 

all that year". Until the environmental taxation of SO, and NO x  emissions penalises coal 

combustion to a greater extent than the combined environmental and fuel taxation of oil 
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combustion, coal powered generation will remain cheaper than oil powered generation. As 

environmental taxes are set to rise dramatically in the near future this critical point, where oil 

combusting plant becomes more competitive than coal fired plant, could occur before UK oil 

reserves are depleted. 

2.3.4 Nuclear 
The UK's nuclear program was started as a means of entering the nuclear weapons race 

independently of the United States. It was continued, and expanded, on the assumption that 

fossil fuel prices would rise in the then near future. Since 1990 the share of energy produced 

in nuclear plants has increased by 35% whilst accounting costs have dropped by 30%. This is 

firstly because of fixed operating costs resulting from the "must take" status given to 

electricity generated by nuclear power as part of the Non Fossil Fuel Agreement (NFFO). 

Secondly much of the massive investment cost was written off in order to make the industry 

attractive to private investment. When the best of the nuclear industry was privatised as 

British Energy in 1996 it was valued at £1 .35bn. With a capacity of 6GW the capital cost for 

investors was 225/kW, a value 25% lower than that of new CCGT plant. This figure is 

approximately one third of the true nuclear capital costs per kW. The low market value 

reflected the uncertain size of decommissioning and radioactive waste liabilities along with the 

urgency with witch the government was selling the industry. 

Among the many fears about the safety of nuclear power from fission are those of radioactive 

waste disposal and of a meltdown scenario. A meltdown occurs when the reactor core exceeds 

a critical temperature and is deformed. Once damaged it is not possible to remove the 

moderator rods (usually made from Boron). These rods encourage the reaction and their 

removal is necessary to shut the reactor off. If the reactor cannot be shut down the heat will 

increase until there is a breach in the reactor and there is a radioactive disaster. Because 

fission only gives heat when two fissile material are in the presence of a mediator the risks of 

meltdown cannot be eliminated. The 1996 meltdown at the Chernobyl power station in the 

Ukraine highlights the problem. 

Many are hoping that nuclear fusion will provide the answer to our energy problems. 

Unfortunately this technology is still only theoretical. However the European Organisation 

For Nuclear Research is using a particle accelerator to bombard fissile material to make 

heat". This novel approach avoids the risk of meltdown as the particle accelerator can be 

turned off an any point in time. A prototype, called the Energy Amplifier, is already running 

and producing heat. It is possible that this will give a new future to nuclear power. 
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2.3.5 Hydro-Electricity 
Hydro power has been used to provide useful energy since the first century BC. Water mills 

provided the majority of mechanical power for the Industrial Revolution and the first large-

scale hydroelectric scheme in the UK was built as far back as 1860. In 1998 5.1TWh was 

generated by the UK's hydroelectric schemes, 2.2TWh down on 1980 generation'. This 

represents a drop from 3% to 1% of the UK's total yearly demand. These figures look small 

against the total estimated hydro power resource of 40TWh per year. However when 

geographical constraints are accounted for this figure drops dramatically: At less than 

lOp/kWh, at an 8% discount rate, the feasible UK resource is estimated at 10. 8TWh  per year, 

approximately 3.7% of the IJKs total electricity requirement in 1997. This can be divided into 

6.9TWh, of large-scale, schemes above 5MW, and 3 .9TWh of small-scale resource. This 

leaves an unexploited yearly resource of 3TWh large-scale and 2.7TWh small-scale. 

Transmission costs and environmental factors make much of this unexploited potential 

capacity unfeasible. The 3TWh large-scale resource would either require reservoir storage or 

is located deep in the Scottish Highlands, far from the centres of high demand. As Scotland 

already has excess plant capacity it is unreasonable to assume that there will be any large-

scale hydro plant construction in the near future. Around 1 TWh of the accessible small-scale 

sites have hydraulic heads below 3m which are uneconomic, unless near an urban population 

or industrial area. This leaves under 2TWh of small-scale hydro potential in the UK which 

could be provided by approximately 750MW of plant". 

The costs of hydro plant can range from £600/kW to £3,000/kW depending on the cost of 

land, civil works and accessibility. Typically the figure is around £900kWh which, due to the 

low running costs, makes hydro a viable option. Running costs for existing large-scale plant 

is around lp/kWh, whereas new small-scale hydro would need around 2.7p/kWh for a 

reasonable profit margin due to the high connection, transportation and civil cost per kW of 

installed plant. Fortunately many new small-scale schemes have come under the Non Fossil 

Fuel Agreement (NFFO) and Scottish Renewables Order (SRO). The NFFO and SRO 

require that RECs must take all or a set minimum amount of electricity from the renewables 

within the contract. The price is also set within the arrangement. This has helped many 

schemes although more recently the prices set for small hydro schemes have been lowered to 

converge on the Pool Purchase Price between 2.8p/kWh and 3.4p/kWh. This has made 

unfeasible many of the schemes being offered these rates as part of the NFFO and SRO. 

As hydroelectric power depends on yearly rainfall resource figures are kept to TWh rather than MW. 
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2.3.6 Wind 
Wind turbines only contribute 0.15% of the UK's annual demand. This figure is set to 

increase as NFFO and SRO support helps promote the technology. Modern 1MW turbines 

are replacing the standard older 500kW machines which is reducing the area of land needed 

for generation. A wind farm of 20 machines presently occupies 3 to 4 square kilometres and 

although 99% of this area can still be used agriculturally, the visual and audible impact of 

such thinly spread machines has become the main opposition to this technology. 

Wind power has inherent advantages. There are no gaseous emissions, decommissioning is 

relatively simple and maintenance of modern, modular, systems is cheap. There are also 

advantages in the load profile of UK based wind turbines. The load factor almost doubles 

from 22% during the summer months, to 40% during winter when extra load is needed. Also, 

due to UK specific meteorological conditions, the average daily wind matches daily electricity 

load profiles. Because of this the government intends to use wind as a major contribution to 

the 1500MW renewable target which is a part of the drive to convert 2GW of plant to low 

emission technologies every year until 2010. 

Wind power is presently considered an under exploited resource. The total yearly wind 

generation in the UK is around 0.5TWh which, compared to the accessible resource of 

340TWh19, is very small. Although the environmental impact of exploiting this total resource 

is inconceivable, it does highlight the possibilities of wind power. Taking account of 

environmental issues reduces the resource to 40TWh per year" which would still represent 

12% of the UK's total yearly demand. The UK's wind resource does not end there. If the 

offshore potential is included a further I 4OTWh could be generated every year. 

The cost of wind power is decreasing as its popularity rises. The annual running costs are 

only 0.5p/kwh, the remainder is to cover the high capital costs. Presently a wind farm needs 

to sell at around 4p/kWh to ensure a reasonable profit margin which is noticeably less than 

7p/kWh which was necessary in 1995. This reduction in capital costs has been due to the 

technology becoming more mature leading to the mass production of machine parts, turbine 

blades and towers. This trend is set to continue. 

2.3.7 Imports 
The French interconnector has existed since 1961 but was only upgraded in 1986. It now has 

a 2,000MW capacity which is in constant use. It was supposed to have a two way flow which 

would offset differences between French and British demand patterns and add the equivalent 

of 200MW additional capacity to each system. Access to the interconnector is still governed 

by a protocol originally signed by the CEGB and the French grid operator, the Electricite de 
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France (EdF). Since 1990 the flow through the interconnector has been one way, from France 

to England. The UK has imported an average of I 6.5TWh per year since 1993, which 

represents the equivalent of a 0.95 yearly power factor on the link. Plans to further upgrade 

the link are under development. 

2.3.8 Other Generation 

2% of the UKs total generation comes from a range of small generators. The largest of these 

sources of generation include the combustion of biomass, essentially plant-life or organic 

waste material. It is believed that the combustion of specifically grown forestry could provide 

a contribution to sustainable generation. Although this would displace food crops and other 

land use it would not contribute to the greenhouse effect as the CO 2  released during 

combustion is balanced by absorption during growth. Particulate emissions would cause some 

environmental damage if the appropriate cleaning technology were not employed. 

Ts1 rmevnbla used = 2,31 mMuA tw&Avs of Si! eqn1t 

Figure 2.7 Breakdown of renewable and other generation in 199821 

Figure 2.7 shows the Energy Technology Support Unit's (ETSU) breakdown of existing 

biomass based generation. Landfill or sewage gas collection and combustion, for generation, 

could serve to reduce particulate emissions. However the maximum possible capacity of these 

technologies is small unless specially cultivated energy crops were to be used. This would 

involve establishing a radically different approach to land usage. In addition the resulting 

impact on wildlife and the countryside would be large. 
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2.3.9 Non-Proven Technologies 
The non-proven technologies have been included so that the development, and installation, of 

new technologies can be invested as part of a long-term forecast of primary energy usage in 

the UK ESI. The technologies described in Sections 2.3.9.1 to 2.3.9.5 are all currently under 

development. There are various experimental and theoretical systems, such as super-

conducting electricity storage devices or under sea tidal mills, which are not included as it is 

unlikely that they will be influential in the UK ESI within the next 50 years. 

2.3.9.1 Wave 
Wave power will soon become a feasible generation option. There are many prototypes that 

should be operational within the next decade. With an average power of 50kW per metre of 

wave front across most of Britain's shoreline this technology cannot be ignored. The SRO 

and NFFO have looked favourably on this technology offering must take contracts at 6p/kW 

to viable prototypes. 

There are two main types of wave device, those that are based onshore and those that are 

anchored offshore. Offshore devices need undersea cables for electricity transmission which 

make anchoring a problem. There is also a concern that devices may break loose and cause 

navigational hazards to shipping. Onshore devices are subject to the full force of storms and 

therefore need to be very tough in design. The only device of this kind that has managed to 

withstand the UK's coastal elements is a 180kW prototype on the island of Islay off the West 

coast of Scotland. 

2.3.9.2 Geothermal 
There is no potential for the use of hot aquifers' geothermal energy for electricity generation in 

the UK due to the absence of geological hot spots. However the geothermal temperature 

gradient found in Cornwall's granite rock bed could be exploited to the extent of2lOTWh per 

year. The process would use "hot dry rock" technology which is still in its experimental stage 

of design. Two 10km deep holes are drilled into the granite crust and the rock between them 

is fractured. Cold liquid is pumped down one hole, heated as it passes through the warm 

fractured rock, and vapour is recovered through the second hole. Some changes would have to 

be made to existing steam turbines before they could be used to exploit the low geothermal 

temperature gradients available in Cornwall. The first is that a different fluid must replace 

water so that vaporisation will occur at lower temperatures. The second is that the number of 

cooling towers would need to be far greater; approximately ten towers for every one 

traditionally used would be needed. The environmental impact of pumping I 00kg/sec of 

possibly toxic fluid into the earth through the water table, returning as radioactive vapour, 
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cooled in an array of large towers would probably inhibit the construction of this type of 

power station. 

2.3.9.3 Ocean Thermal 
Ocean Thermal Energy Conversion (OTEC) exploits the temperature difference between the 

sea surface and the sea bed. At present small prototypes are being tested in the tropics where 

the sea surface temperatures are relatively high. The potential of OTEC in British waters is 

considered small because of low surface temperatures and the warm, deep-sea, currents along 

the west coast due to the Gulf stream. The North sea is particularly shallow which limits the 

OTEC potential of the east coast. However as this technology is researched, and efficiencies 

are increased, large-scale OTEC generators may find a place in UK generation. However it is 

unlikely that this technology would have an impact on UK generation within the forecast 

period of this study. 

2.3.9.4 Tidal 
Tidal power involves the damming of large tidal estuaries to create a hydraulic potential 

difference on either side of the barrage as tides rise and fall. This potential is exploited using 

hydroelectric turbines to generate electricity. There are many potential sites in the UK which, 

combined, could produce over 54TWh per year if environmental and population concerns 

were not considered. Due to the site specific nature of the environmental impact of tidal 

schemes each must be considered on a case by case basis. 

The proposed Severn Estuary scheme would produce a peak power of 8,640MW, 

approximately six times that of a coal fired power station. Opposition to the scheme is based 

on the environmental impact of removing the tidal nature of the land above the barrage, 

affecting wildlife, drainage and pollutant concentrations in the area. Fish migrations would 

also be affected by changes in salinity caused by the reduction in water flow. On the other 

hand the scheme would create a new river crossing and provide recreational water sports 

facilities. The final decision on this matter is in the hands of the government who act upon 

public opinion and its affect on their votes. Therefore the future of the Severn Estuary 

barrage will not be decided by its technical merits, but by the media's representation of the 

scheme. Presently public opinion is against this scheme, however if electricity prices increase 

considerably with the depletion of gas reserves, and the only available options become either 

nuclear power or tidal power, public opinion may shift in favour of a barrage across the 

Severn Estuary. 
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2.3.9.5 Solar 
Other than the use of solar panels containing heat exchange units connected to domestic hot 

water tanks, there are two major active solar technologies. The first is the use of large 

reflecting units to concentrate the sun's radiation on a fluid to provide heat. The heat is then 

used in a steam cycle to generate electricity. The second is photovoltaic conversion which 

originally used photovoltaic minerals that directly convert sunlight into electrical current. 

Modem devices use artificially produced, single crystal, semiconductor arrays which has 

dramatically reduced the price of photovoltaic panels. To date small and micro systems are 

commonplace on satellites, calculators and even for lighting in remote areas. However large 

systems are still not economically attractive due to the size and cost of large photovoltaic 

arrays. 

The environmental impact of both heat based and photovoltaic generation is minimal except in 

the construction of photovoltaic cells which is similar to semi-conductor manufacture with its 

related hazards and wastes. If the environmental problems are solved it is believed that 

84TWh could be produced by solar technologies for under lOp/kWh by 2020. Including 

realistic land constraints reduces this figure to below 5TWh per year or 1.7% of the yearly 

UK demand. Much of this could provide power for small systems, such as buildings that use 

air-conditioning during daylight hours. The advantage of using such small-scale DC systems 

would be that fuel cells, or large battery arrays, could store some of the electric power. This 

is currently being achieved for street and security lighting in remote areas with no grid 

connection. Currently the costs of large scale systems are prohibitive. In addition the 

environmental impact of constructing these arrays is large as they are manufactured by a 

chemical process. 

2.4 Forecasting in the UK ESI 

The privatisation of the UK ESI changed more than the ownership of the industry. The new 

structure, which is now based upon an electricity market, has dramatically altered the 

incentives and goals which drive the energy companies and the individuals working within 

them. The result of these changes is that planning decisions now satisfy the company's needs 

and are only constrained by legislation and taxes. This move away from a ministerial led 

decision making has made forecasting these decisions more complicated, but quantifiable. 

Including economic theory, that describes this newly privatised industry, within a model 

should allow accurate forecasts of possible outcomes to future planning decisions. 
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2.4.1 Forecasting Within a Nationalised ESI. 
Before the privatisation of the ESI, the publicly owned industry aimed to "maximise public 

economic welfare". This followed from the industry being the agent for, and therefore 

working in the best interest of, the general public. This implied that it was not in the interest 

of the industry to let a situation arise that might compromise the interests of the wider public. 

However the amount and quality of information that the public, decision makers and ministers 

received was quite varied. These information asymmetries between politicians and voters and 

between voters themselves meant actions to maximise economic efficiency by politicians were 

not proportionally linked to electoral success. As promotion within a period of political 

office was heavily dependent upon the individuals electoral success, ministerial decisions were 

often heavily influenced by media-led public opinion, rather than on technical, social and 

economic evidence. This effect was compounded by high levels of political intervention in 

managerial decisions rather than the arms length relationship between departments and 

managers that was intended in the 1947 Electricity Act, when the ESI was first nationalised. 

The decision process was further complicated by the relatively brief periods that politicians 

held ministerial offices. The lack of long term strategies as a result of this high ministerial 

turnover led to confused and quite random incentive structures for civil servants. The result 

was a greater than minimum unit cost of bureaucratic activity. In addition the size of a 

particular government department's budget, was proved to be proportional to its electoral 

success'. This ensured that decisions which resulted in an increase in the political influence 

of the relevant ministers were considered successful as this led to increased departmental 

budgets. This combination of political interference, information asymmetries and varying 

incentive structures complicated the decision process. Due to the differences in decision 

making processes at each level of the ESI's hierarchy and the significant variances in the 

quality of information used in each decision, theories on decision making in the nationalised 

sector were unable to provide a basis for the analysis necessary for predicting future 

decisions. This was to change when, in the 1987 Conservative Election Manifesto, a 

commitment to privatise the ESI was placed high on the agenda. 

2.4.2 Forecasting Within a Privatised ESI. 
Privatisation has been responsible for considerable restructuring within the ES!. As a result 

of these changes a totally new incentive structure for decision makers has been put in place. 

In addition the new economic structures of Generators has had an effect, although sometimes 

only indirectly, on their public policy. It is widely believed that private ownership implies that 

the firm becomes a profit maximiser, rather than the nationalised goal of creating economic 

welfare. Many ES! forecasts have used the assumption of the Least Cost Plan (LCP); that 

decisions concerning the choice of generating technology and how much to generate rely solely 

on a minimisation of costs in order to maximise profit margins. Although more recently some 
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of these algorithms have included emissions constraints", the use of profit maximisation 

within such constraints has become standard practice. However a study by A. I. ShIyakhter 

on past forecasts in the privatised US energy sector showed that there was a: 

"... 7.5% probability that a value of a parameter predicted by a model would be seven 

standard deviations above or below the true value." 

This proves that there is something fundamentally wrong with traditional forecasting methods 

being applied to the private sector. An example of this is the decision process involved with 

the construction of new renewable energy plants (REPs). Although many REPs promise 

future high returns, profit maximisation at present lies in the installation of combined cycle 

gas turbine generation (CCGT). Profit maximisation would imply that no REPs would be 

used until they became more profitable than CCGTs. Once more profitable REPs would 

totally replace CCGTs. In reality companies have become involved in REPs long before they 

have become the most profitable energy generating method. This is because the basis for 

decision making is more complex than traditional models assume. 

It may be true that all private utilities aim to maximise profit and growth however, as with the 

public goal of economic welfare, the reality is somewhat different. A closer study of the 

decision making process reveals economic inefficiencies that are related to the incentive 

structure of private firms. These inefficiencies are explained using the Principal-Agent theory. 

The theory suggests that there is a conflict of interests between the Principals, who are 

shareholders of electricity generating companies, and the agents, who are the decision makers 

or managers within the companies. The first set of parameters is the agents (managers) 

contract which must be attractive enough to ensure participation but also must contain 

constraints that assume that the agent will behave in a self interested manner. The 

effectiveness of this contract depends on the Principals (shareholders). When there are many 

shareholders, as in the electricity generating companies, the enforcing of managerial contracts 

becomes too costly for an individual shareholder as the returns (r) from such endeavours are 

spread among all the shareholders. An individual shareholder would therefore only interfere in 

the decision making process if 

c < r/n 	 Equation 2.1 

where: n = number of shareholders. 

c = the cost of enforcing the contract. 
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However the monitoring of management is left solely to the directors if 

c > r/n 	 Equation 2.2 

Non executive directors serve as elected agents for the shareholders and enforce managerial 

contracts. Whilst this does attenuate the shareholder-manager monitoring problem it also 

introduces further layers of Principal-agent relationships. The resulting amount of managerial 

freedom within the contract implies a sub optimal managerial utility and therefore the 

company will not be a profit maximiser. The influence on forecasting is that the agents, when 

faced with difficult decisions, often chose the easiest path, rather than the most profitable one. 

There are also two further prime managerial incentives that influence agents' decisions: The 

perceived threats of take-over and bankruptcy. 

The first of these, the perceived threat of take-over, serves in the interest of the Principal in 

that it sets minimum profit levels. One of the situations in which a take-over will occur is 

when the capital gain (G) available to the successful raider is equal to: 

G = n(V- v) - a 	 Equation 2.3 

where: V gives the increased value of shares after an optimum contract is imposed 

v is the original share value, 

n is the number of shares 

a is the total cost of acquisition. 

As the difference between V and v increases the company will become vulnerable to take-over. 

Only a perceived threat is necessary to influence the decision maker so that a manager will 

ensure that V - v is kept small enough that take-over is no longer a concern. This is achieved 

by keeping the company's earnings per share (EPS) above a minimum value. The EPS is 

related to profit margins thus a minimum efficiency is created by the threat of take-over. 

Obtaining a minimum EPS in the ESI often involves high risk, high profit, activities. The 

drive for high risk technologies and a minimum efficiency level does not imply that there are 

any incentives to maximise the firm's efficiency. This suggests that private companies are not 

only profit maximisers. Therefore decision makers in the ESI will not choose the most 

profitable technology if a simpler solution eliminates the perceived threat of take-over". 
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The second incentive is the perceived threat of bankruptcy. Bankruptcy can be assumed to 

occur when the market value of a firm's assets (a) falls below the value of its liabilities (1). To 

avoid the threat of bankruptcy: 

a > 1 +f(u) 	 Equation 2.4 

where: f(u) is an uncertainty function that ensures day to day losses do not cause 

bankruptcy. 

As with the threat of take-over this sets a minimum level of managerial efficiency. The 

methods by which decision makers can avoid bankruptcy vary considerably depending solely 

on incentives. If we assume that the contractual incentives are non-functional and that 

managerial performance is proportional to effort, decisions would be based on making: 

a = 1 +f(u) 	 Equation 2.5 

In this case the value of equity would always be f(u) which is far from profit maximisation. 

To achieve this either 1 could be reduced or a could be increased. The result of the former 

would make the threat of take-over prominent whereas the latter could only be the result of 

managerial efficiencies. By introducing incentive structures such as performance related 

bonuses, the shareholders can influence the managerial decision to increase a rather than 

reduce 1. Such incentives create a minimum, but not create a maximum, asset value as there is 

always a critical point where the effort needed to further increase the company's assets 

exceeds the performance gained from any bonus structure. 

In conclusion it is clear that private firms cannot be assumed to be simple profit maximisers. 

The relationship between Principals and agents not only puts constraints on maximisation but 

also creates sub-optimum returns. Therefore decisions within a private ESI must rely on a 

function other than a simple profit maximisation. Functions that describe managerial 

performance must be added to profit maximisation creating a new function maximising overall 

utility. This overall utility function could also contain factors which describe the environment, 

political influence and the electricity markets. This function would provide a base of 

knowledge covering the theory and experience behind the privatised UK ES! and be used as a 

base from which forecasts could be made. 
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2.5 Summary 

The ES! has recently undergone major restructuring. Much of this has been due to the 

privatisation of the industry and the establishment of an electricity market. Although new 

operating efficiencies have been made, services and electricity prices have not improved as 

they were expected to. A new market structure has been planned for the new millennium 

designed to remove the market power that the large electricity companies presently enjoy. The 

new market arrangements are already subject to much debate as the generators, all of which 

have vested, interests, are divided over the issue of regulation and government intervention 

under the new system. However none of this is new as the ES! has been constantly evolving 

since the first generating plants were connected together and synchronised. The industry 

should therefore be used to structural changes but the current level of uncertainty indicates 

otherwise. The main difference between the proposed pool changes and historical changes is 

that the industry is now in private hands, and speculation upon the effect of the new market 

rules will make or break the utility companies. All of this confirms the need for Regulators, 

and company planners, to look beyond eight year pay-back periods, into the long-term future 

and create a stable industry where investment is rewarded and high standards maintained. 
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3. MODELLING & FORECASTING TECHNIQUES 

3.1 Overview 

This chapter examines the techniques used in modelling and forecasting demand, scheduling 

and primary energy utilisation in the Electricity Supply Industry (ESI). Traditionally 

forecasting was predominantly mathematical in approach, using data assimilation and 

extrapolation. Section 3.2 discusses the traditional techniques that are currently used in 

forecasting models. The Delphi method, discussed in Section 3.2.1, is a statistical method of 

grouping expert opinions. This method does not provide reliable quantitative forecasts and 

represents the old school of opinion-based forecasting. 

Section 3.2.2 looks at the existing purely mathematical models and their various applications 

to small-scale forecasting problems. These models, which include regression and time series 

techniques, provide the correlations between explanatory variables, such as weather data, and 

electricity demand. Extrapolations of these relationships were combined and used in GAMES, 

a large scale model constructed for this study, to forecast trends in the primary fuel mix that 

will be used for electricity generation in the UK. This was achieved by using GAMES to 

perform sensitivity studies on the outcomes to various possible future scenarios bases upon 

these mathematical forecasts. 

The basic computational methods described in Sections 3.2.3.1 to 3.2.3.4 highlight the trend 

away from mathematical models towards computational methods of simulation modelling. 

These dedicated programs represent the current modelling and forecasting tools used in energy 

systems research. These methods can be improved using Artificially Intelligent (Al) 

techniques and Section 3.3 discusses the uses of Al in the ESI and its possible application to 

forecasting. 

3.2 Traditional Forecasting Techniques 

Before the mid 1800s forecasts were purely made upon individual's opinions. The 

introduction of mathematical techniques, in the 1850s, allowed for the construction of models 

which could be improved with time and experience. The early models concerned predictions 
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of human behaviour, and their responses to different events, but the concept of mathematically 

describing a system, that could be extrapolated forwards, has since been proved to be sound. 

Mathematical models now vary from simple linear equations to complex representations. 

Extrapolation techniques are equally numerous but the same theory underlies all of these 

forecasting methods. 

3.2.1 Delphi Method 
Forecasts can be made with or without a model. The simplest methods are simply predictions 

made upon a single person's opinion. The disadvantage is that opinions are always biased to 

some degree. It is not usually possible to compensate for individual's beliefs as they are often 

hidden or difficult to quantify. The Delphi method was an improvement which used a 

statistical analysis of a number of experts' opinions". The Delphi procedure was designed in 

the 1950s to "obtain the most reliable consensus of opinion of a group of experts .....by a 

series of intensive questionnaires interspersed with controlled feedback"". The key Delphi 

elements in the original Delphi method were as follows: 

The selection of experts, or panels of experts, in the relevant fields. 

The development of a first round questionnaire by the Delphi team. 

Transmission of the questionnaire to the panellists. 

Feedback to panellists of the round's results. 

The development of further rounds of questionnaires if necessary. 

Preparation of a final report. 

This method proved especially useful in cases where the relevant experts could not be brought 

together. Initially telex machines were used for distributing questionnaires and their answers, 

then faxes and email became the communication standard. 

During the 1960's the Delphi method was used to formulate opinions on subjects from 

customer opinion to future energy trends. However by 1974 even the designers of the Delphi 

method, RAND corporation, had seen the flaws in its application to forecasting and 

proclaimed: "The future is far too important for the human species to be left to the fortune-

tellers using new versions of old crystal balls. It is time for the oracle to move out and science 

to move in"". The Delphi method may have provided an average opinion from many crystal 

ball users, but the basis was still personal speculation. New methods that used objective data 

analysis were becoming more accessible and would soon replace the subjective in scientific 

forecasting. 
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Until the ES! was privatised in 1990 Delphi method was used to co-ordinate the opinions of 

government ministers and the experts within the electricity industry. However this method 

proved unreliable when applied to long-term forecasting as no individual expert or politician 

could provide a holistic view of the whole industry. 

3.2.2 Trend Extrapolation 
Forecasting through the projection of past and present trends into the future is known as trend 

extrapolation. It assumes that the future will be governed by the same influential factors as 

the past. This assumption is true in many simple physical cases, such as in small electrical 

load flow problems, but fails in complex systems where the weighting of influential factors is 

subject to change. All of the many different trend extrapolation techniques rely on a 

correlation analysis followed by an extrapolation. Correlation extrapolations of short-term 

demand forecasts have been derived through regression and time series techniques with 

varying success. Short-term forecasts, of a few hours to a few weeks, are needed for the 

economic scheduling of generating capacity, fuel purchase and short term maintenance. The 

following sections describe the various load forecasting techniques that are currently applied 

in the ES!. 

3.2.2.1 Regression Techniques 
Regression techniques are used in the ES! to find correlation between data sets. The National 

Grid Company, who run the present electricity pool, use short-term demand profiles based on 

extrapolations of these correlations. The most commonly used regression technique is 

Multiple Linear Regression (MLR). This finds the linear relationship between independent 

explanatory variables, such as weather variables, with demand, a corresponding dependent 

variable. In this case the MLR would take the shape of- 

y(t) = a0  + a1 x1  (t)+ ...... +ax (t) + a(t) 	Equation 3.1 

where: 

y(t) 	= 	Electrical demand at time t 

X, (t) .... x, (t) = 	Explanatory variables such as hourly temperature. 

a(t) 	= 	Regression variable (zero mean and constant variance) 

a0  ,a.....a 	= 	Regression coefficients. 

n 	 = 	Value number 

35 



Modelling & Forecasting Techniques 

The regression coefficients are found using the least square estimation technique and their 

significance is determined using a statistical test. In this manner the correlation between 

explanatory variables and, in this case, demand can be found. 

The accuracy of short-term load forecasting can have significant effects on power systems 

operations, as the daily management of generation and scheduling is based on these forecasts. 

Large forecasting errors can lead to over, or under, estimations the generation necessary to 

meet the actual demand". In order to reduce these errors higher order correlations between 

larger sets of explanatory variables can be added to the forecasts. These added explanatory 

variables often include weather data, the geographical location of the demand and even 

television scheduling. Higher order relationships can be represented using a polynomial 

regression model (PRM). For example the correlation between temperature and demand does 

not fit a straight line and might benefit from the inclusion of polynomials. In this case the 

PRM would follow: 

y(t) = a 0  + a 1 x 1' (t) + ax(t) + a(t) 	Equation 3.2 

where: 

j and k 	= 	The regression polynomials 

Simple non-linear relationships can be found using combined regression models". However, 

large non-linear models often prove too complicated for such mathematical approaches. In the 

case of weather, temperature and demand, polynomial functions prove unreliable because the 

correlation is more heavily influenced by the weather data close to mean weather conditions". 

Hence deviations from average weather cause the polynomial relationship to fail. 

Non-parametric regression has not been used much in the past as it requires a combination of 

numerous mathematical functions that are time consuming to solve without a powerful 

computer. Non-parametric estimation differs from parametric models in that, in paramertics, 

estimates of the assumed function parameters are calculated, whereas non-paramertics 

estimate the entire function directly from the sample. This is achieved using graphical 

correlation to calculate relationships". Non-parametric regression allows the weather-demand 

relationship to be calculated directly from historical data giving an accurate representation 

throughout the range. This method is robust but computationally expensive and large-scale, 

multi-layer problems can prove difficult to solve. 
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3.2.2.2 Time Series Techniques 

Time series models are presently popular in short-term load forecasting. Much has been 

published on this method and its applications including short-term energy usage forecasts. 

Electrical load y(f) is modelled as the output from a linear filter which has a random series 

input a(t), called white noise. The white noise has a zero mean and an unknown fixed 

variance. 

White 	
n 	

Electrical 

	

L 	Linear 	_______ Noise 	 Load 
a(1) 	 Filter y(t) 

Figure 3.1 Time series model 

The linear filter can take can take different characteristics depending on the model. The two 

filters described in this section, and their permutations, are most common in short-term and 

very short-term forecasts". Very short-term forecasts, from a few minutes to an hour ahead 

are needed in the ESI for real-time control and real-time security evaluation. The 

Autoregressive (AR) model determines its current value by a linear extrapolation from 

previous values. This gives an extrapolation from data sets that have been derived through the 

correlation of dependants in historical data. The oldest previous value determines whether the 

series is positive or negative in order. A positive AR would follow: 

y(t) 	- 1) + .b,y(t - 2)+ ........ +Ø, 1 y(t - n) + a(1) 	Equation 3.3 

where: 

n 	= 	Value number 

= 	Autoregression coefficients 

A second approach to the linear filter is the Moving Average (MA) process. Here the current 

value of the time series y(1) is expressed as the linear extrapolation of a noise series a(t). The 

noise series is constructed from the forecast errors, or residuals, when they become available. 

This corrects the errors in a previous extrapolation and ensures that the next value will be 

corrected. It takes the form of 
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y(t) = a(t) - 01 x(t) - 92 a(t - 2)— ....... -ex(t - n) 	Equation 3.4 

where: 

n 	= 	Value number 

= 	Moving Average coefficients 

Combinations of AR and MA are often used to self correct whilst extrapolating. This 

approach is called the Autoregressive Moving Average (ARMA) process. As this method 

assumes that the mean of the series, and the covariance of its data, will not change with time 

its application can be limited. However, many real-life problems have data correlations which 

change with time; for example higher than average temperatures during summer do not affect 

nightly demand as the majority of domestic heating is already switched off in summer. This 

type of correlation can be extrapolated using the Autoregressive Integrated Moving Average 

(ARIMA) which uses the differential forms of AR and MA methods to give an ARMA 

equation in Vy(t) . Although complicated, this self correcting approach does give the most 

accurate very short term forecasts". 

Simple correlations can be extrapolated over longer time periods using ARMA. Large and 

reliable historical data sets are needed in order make long term forecasts by this method and 

the self correction process will only effect the forecasts once new data has been added to the 

model. This type of data is not available for forecasting long term energy mix decisions due to 

the restructuring of the ESI since privatisation in 1990. However possible future ESI 

scenarios can be constructed by combining groups of these forecasts. Each scenario would 

contain values of fuel prices, interest rates, electricity demand, environmental taxation, 

generation costs and regulatory constraints over the forecast period. The GAMES model 

forecasts over a 40 year period and gives sets of the most likely primary energy mix used in 

electricity generation for each of these scenarios. 

3.2.3 Simulation Modelling 
This category of modelling uses a mathematical description of the environment that is solved 

using different variable sets. The description is often so large, and complex, that it becomes 

unfeasible to solve by hand. Computers have made such models possible and through 

repeated runs, under different constraints, predictions of future outcomes can be made". 

3.2.3.1 STELLA II 
Until recently computers were simply used to help solve mathematical problems through 

iterative procedures. Now there are specialised modelling languages that allow the creation of 
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a model without a mathematical representation. The latest development in these modelling 

languages is the iconographic representation model. An example is STELLA H, from High 

Performance Systems Inc., which can create a dynamic model from a graphical representation 

of the environment. STELLA H is a general modelling language which has been applied 

successfully to problems from the spread of epidemics to the modelling of chaotic weather 

patterns. However this modelling program does have some drawbacks. Because it uses a 

flow diagram representation the graphics can become very complicated. The UK ESI model 

contains feedback which adds to this problem. In addition feedback is solved by repeated 

iteration which gives a good approximation to simple problems but errors can occur in large-

scale models with multiple feedback loops. 

3.2.3.2 EXTEND 
EXTEND is, like STELLA H, an iconographic representation program. It uses a system of 

graphical blocks, joined by a flow diagram, to describe the model. The graphics are directly 

converted into code which can be compiled to solve the model. EXTEND has the advantage 

that it includes separate modelling modules which provide specialised icons for different 

industries". This serves to simplify the final graphical model. Even the connections between 

blocks can be altered to improve the model. A balance between graphical complexity and ease 

of understanding can be found using EXTEND. Unfortunately it still suffers from feedback 

problems in models with multiple feedback loops. 

3.2.3.3 ENPEP 
The Energy and Power Evaluation Program (ENPEP) is a specialised modelling program. It 

was designed by the International Atomic Energy Agency in 1996 and can only be used for 

power systems modelling". It is made up of separate modules which cover topics from 

demand forecasting to plant cost calculations. Unfortunately it is a difficult program to grasp, 

and the 700 page manual does not help. It uses a mixture of prompts and commands which 

are numerous and abstract. Although ENPEP would greatly benefit from a Graphical User 

Interface (GUI) it would also need a better representation of results which are given in a raw 

data format. It also seems to ignore the feedback effects in the system. For example if more 

gas is burnt today there will be less in the future, conversely if we know that the gas resource 

is being depleted we will burn less today. 

3.2.3.4 ELFIN 
ELFIN is another example of a specialised Electricity Supply modelling program. It was 

designed by the US Environmental Defence Fund43 . It is more of a language than a program, 

needing long lists of commands and data strings to create a model. Its advantage is its speed 
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in obtaining results, which are given as output files that need to be edited before they can be 

viewed on a spreadsheet. ELFiN's input data must be entered manually and extra fields 

cannot be added. This restricts the explanatory variables to fuel use, marginal energy costs 

and loss-of-load probability; ignoring the environment, risk strategies, market effects and 

political weighting. Even with these limitations the European Commission used ELFIN as a 

basis for sustainability studies completed in 1998. 

3.3 Al Forecasting Techniques 
This section discusses the main artificially intelligent techniques that can be applied to solve 

ESI forecasting problems. Sections 3.3.1 and 3.3.2 Consider Decision Support Systems 

(DSS) and Expert Systems (ES). Both systems are computational subsets of Knowledge 

Based Systems (KBS), a generic term for information access systems that store and pass-on 

knowledge. Although useful for the rapid simulation of simple models both DSS and ES fail 

in three main areas. The first is that they need crisp data and are unable to cope with 

probabilistic, or fuzzy, data sets. The second is that traditional models are unable to learn 

actively, and correct errors, from past data. The final problem is that iterative techniques used 

in DSS and ES limit the size and complexity of the model. Sections 3.3.3 to 3.3.5 look at the 

Al techniques available to deal with these issues when applied to forecasting and modelling 

problems. They cover fuzzy logic, neural networks and genetic algorithms which are all 

currently used in industry. 

3.3.1 Decision Support Systems 
Decision Support Systems (DSS) are a subset of Knowledge Based Systems (KBS) which 

simply allow the user to access previously collated knowledge bases. DSS differ in that the 

knowledge base is in the form of a working computer based model, or set of models. The user 

has access to some of the variables within the model and can alter them to create the 

environment in which the forecast is to be made. Access to these variables is normally 

through a questionnaire styled interface. The answers are used in the model along with 

internal, endogenous, data to provide either a solution, a set of solutions or further questions. 

Decision support systems are regularly used to help address problems and improve design and 

control in fields from transmission and distribution to turbine design. Their application in 

power systems planning has been more limited due to the difficulties in creating large models 

that contain adequate complexity to describe the ES! accurately. A DSS that incorporated 

expansion planning, power system design and transmission design was constructed to be used 

in a least cost planning role. This very large model only considered designs and costs and 
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ignored environmental, taxation and political factors. The result of these omissions was a 

limited forecasting potential 45 . 

Knowledge Base 

Input 	 - 	Output 
Variables 

L±IIIII 
- 	' 	Model 	

Variables
0 	

Data 

Figure 3.2 Decision Support system 

Successful models were designed that gave a smaller range of outputs and so reducing the 

number of necessary explanatory variables. One of these models, Power Plan, attempted to 

model the whole ES! using a minimal number of explanatory data sets. The model gave 

inconsistent results, when compared to existing simulation models, due to the limited 

complexity of the Power Plan. DSSs can be successfully be applied to small-scale problems 

such as simulating electrical faults for grid protection assessments, which use a DSS to 

theoretically test and optimise system protection 47 . Large-scale problems can suffer from 

feedback and non-linearity problems which make the model difficult to solve. Decision 

support systems can be improved by incorporating further Al techniques. Sections 3.3.3 to 

3.3.5 discuss these approaches and their role in forecasting models. 

3.3.2 Expert Systems 
Computational techniques, such as ELFIN and ENPEP have been developed and applied to 

forecasting. They can be described as Expert Systems (ES) as they use a rule base to 

construct a model to the users requirements. An ES is similar in structure to a DSS but it 

uses a knowledge base of rules, rather than a model, to provide solutions. The expert 

knowledge is stored as a number of strict technical rules and rules of thumb that apply to the 

problem. Figure 3.3 shows the general structure of a typical ES. 

The rules are normally divided into separate data bases, each concerning a particular 

discipline. The advantage of this is that single database modules can be added or replaced as 

technology and knowledge moves forwards. The rules are presented to the inference engine 

as if-then-else statements written in plain language to further facilitate corrections and 

modifications. These features make an ES simple to test and maintain. 
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Figure 3.3 Structure of an Expert System 

The inference engine is a separate program that uses pattern matching techniques to apply the 

correct set of rules to the user's problem. This is achieved by matching query information 

with rule data switches. If a good match is found the rule is executed, else a different set of 

rules is sought. The else part of the rule base is usually stored as a second part of each rule in 

its respective data base. The inference engine, which includes the user interface, is the most 

complicated part of an ES. Two expert systems, with identical data bases, can give different 

results depending on the inference engine used. 

As with decision support systems, expert systems fail when linear data sets are used in the 

control of digital systems. An example would be the effect of atmospheric temperature on a 

digital thermostat governed by rules. In addition very large problems, that require a great 

number of rules, can cause inference engine problems and inefficient rule selection. Problems 

caused by model size are further accentuated in systems that contain feedback due to the 

iterative methods employed to approximate such loops. Long-term forecasts of fuel mix in the 

ESI involve large models that contain feedback. Using an Expert systems to make such a 

forecast would ignore the feedback causing errors. This type of error has often gone 

unnoticed as existing Long-term models were rarely validated 49 . 
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3.3.3 Fuzzy Logic 
Data classification is one of the largest problems in forecasting. Linear data usually causes a 

linear response which digital machines and rule based forecasting models cannot solve. For 

example as oil prices rose during the 1968 oil crisis oil usage dropped respectively. A rule 

based model can only simulate this in steps defined by indicators and rules: 

INDICATOR 

If: 	oil price :!~ £50/tonne 

If: 	£50/tonne < oil price £60/tonne 

If: 	£60/tonne < oil price :~; £70/tonne 

If: 	£70/tonne < oil price :!~ £80/tonne 

If: 	£80/tonne < oil price 

RULE 

Rule h, use 20 million tonnes 

Rule i, use 15 million tonnes 

Rulej. use 10 million tonnes 

Rule k, use 8 million tonnes 

Rule 1, use 7 million tonnes 

In reality the response to oil price will be subject to market elasticity constraints, which gives 

an indication of the change in demand for oil as its price varies. Bread, for example, is highly 

elastic as it is necessary at almost any price and sweets are highly inelastic. Fuzzy logic is 

used to blur such data boundaries. It converts linear data into a form that enables logical 

processing and decision making and then converts it back into a linear form. The two 

conversion processes are called fuzzification and defuzzification. 

Input 	 _______________ 	-- 	 - -  

i  Knowledge Base 	
Output 

Data I 	I 	Data ± Rules 	
Response 

(oil price)  
Fuzzifier 	 I 	(oil usage) 

Defuzzifier 

I Fuzzy Inference  

Machine 

Figure 3.4 Fuzzy Logic Operation 

Fuzzification works by grouping the data into fuzzy sets, rather than price blocks which 

would give the same response to £61 /tonne as £70/tonne. Fuzzy sets represent the degree of 

membership to each of the blocks rather than simply classifying weather the data is in or out 

of a particular price range. 

Figure 3.5 shows the fuzzifier for the oil price example. In this case each fuzzy set is 

represented as a triangle. The degree of membership to each rule is given by the intersection 

of oil price and rule boundary. A price of £60/tonne would represent full membership of rule i 

whilst £63/tonne would be a 3/4  member of i and a /4 member off. 
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Once the data has been fuzzified it is passed to the inference engine which collects rules from 

the knowledge base according to the membership of the fuzzified data. All the rules that have 

a member, however small, are used in the inference engine. The rules are then weighted 

accordingly. The final step is defuzzification which applies the weighted rules to give useful 

values. A price of £63/tonne would result in the use of 

	

(% x is) +(% x io) = 13.75 (million tonnes of oil) 	Equation 3.5 

There are many variations to fuzzy logic procedure. Firstly, the sets can be bell shaped, 

trapezoid, irregular or triangular, as in the oil price example. Secondly the weighting can be 

based upon area or centre of gravity, rather than simple intersection values. Finally multiple 

sets of fuzzifiers can be used, and logically combined in the Inference Engine, providing a 

single output response to multiple data sets 50. For example electricity demand could be 

included with oil price to give a more accurate model of oil combustion for generation. 

This study did not use any Fuzzy logic as neither the exogenous data used in the forecasting 

model or the models governing equations were digital, or rule based. 

3.3.4 Artificial Neural Networks 

A forecast can be split into a description of the environment and a forard extrapolation. 

Descriptions of the environment can be achieved using a theoretical model or through past 

data regression techniques. Section 3.2.2.1 outlines some simple parametric regression 

techniques which create descriptive equations from data trends. Because these methods find 
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trends through iterations, non-linear correlations cause large errors that increase with the size 

of the model. Non-parametric regression creates a model from the whole data sample which 

includes any non-linear behaviour. 

Artificial Neural Networks (ANN) are ideally suited to non-parametric regression as their 

learning behaviour is robust. They use a network of nodes that describe the relationships 

between a system's inputs and outputs. The nodes, or neurons, are joined by interconnectors 

which have adjustable weights that allow the network to learn. A typical ANN would be 

constructed in layers as shown in Figure 3.6. 

Xj Inputs 	X2 

,1r 
X3 

1r 
Input layer (Fj(x) 

"
F4(x) Hidden layer 	F5(x) F6  (x)  

F7(X) Output layer 	F8(x) F9 (x)  

Outputs 	Y2 V3 

Figure 3.6 Outline of an Artificial Neural Network 

Each node calculates the sum of the inputs (x). multiplied by their respective interconnector 

weightings (w). If this value exceeds the threshold level (7), the node is fired to give an 

output, otherwise the node's output remains low. A node with n inputs will only fire to give a 

high output (v) if 

> T 	 Equation 3.6 
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Each layer of nodes in the network can have different transfer characteristics. Instead of the 

hard limited, or digital, response shown above the output can increase in a linear or sigmoidal 

fashion i.e. 

if: 
n 

x3 11m = 	x3 w 	 Equation 3.7 
i= 1  

then 

= 	e"" 	
Equation 3.8 

This gives the network a softer response to changes which is necessary when forecasting linear 

events. This type of transfer function could be used to describe the correlation between oil 

price and its usage in electricity generation. 

The real advantage of using ANNs is that they can be trained on data. In forecasting 

applications ANNs are used to find the correlations between explanatory variables and the 

system's response to their change. The ANN finds the correlations by training on past data. 

There are two training methods, supervised and unsupervised". Both training systems involve 

data input and the calculation of the deviation between the ANN' s response and the actual 

system response. Supervised training uses this feedback to reduce the weighting of erroneous 

nodes until the network matches the ideal system response. The disadvantage is that this 

method can be slow and must be accurate because learning stops after the training period. 

Unsupervised training does not use a given goal but constantly adjusts to satisfy internal rules. 

It has the advantage that it adjusts as environments change and should continue to improve 

with use. There are various training models, such as Backpropagation, Hopfield or Adaptive 

Resonance, which use different methods of weight adjustment and node testing. 

ANNs are adaptive in that they take data and learn from it, inferring solutions and therefore 

reducing development time. Once they have been trained they can generalise using data that 

resembles training data providing a tolerance to noisy, or even incomplete data sets. In 

addition they are non-linear which allows them to capture complex interactions between 

parallel sets of variables. ANNs are currently being used in short-term load forecasting and 

their application has proved successful due to their ability to establish non-parametric 

correlations between large sets of non-linear data". Further improvements have been made 

using fuzzy neural networks which use fuzzy inputs to an ANN in order to classify data more 

efficiently". 
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As with most Al techniques ANNs have their limitations. It can be difficult to account for 

unexpected results as the full relationship between inputs and the derivation of individual 

outputs is not always possible. Also the quality of training data is critical and unreliable data 

whilst training can be difficult to identify. Finally long term energy utilisation forecasting 

using ANNs has not been successful due to the changes in ESI structure since privatisation. 

The changes have rendered training data invalid and, without training, an ANN cannot be used 

in forecasting. 

3.3.5 Genetic Algorithms 
Although the field of Genetic Algorithms (GAs) has been developing rapidly since the early 

1970s GAs remained, until the late 1980s, the theoretical tools of a highly specialised 

computing community. As the understanding of GA theory increased and more powerful 

computers became more widely available GAs were applied to real optimisation problems. 

The past five years has seen a widespread acceptance of these algorithms as analytical tools 

used in industry, finance and academia. 

GAs use selection, breeding and mutation to evolve generations of offspring that are closer to 

an optimum than their parents. They are based on evolution but are similar to bacterial 

growth, not more complex creatures. Before a GA can be applied a fitness function, that can 

evaluate possible solutions must be created. If this function, or set of functions, can be solved 

mathematically then a GA is not necessary. If the function is insoluble due to its size or non-

linearity then the application of a GA may be necessary. 

The first step is initialisation where an initial population of possible solutions, or 

chromosomes, is created. Each member of the population is then assessed and given a fitness 

value depending on how well it matches the fitness function. A number of these chromosomes 

are selected based upon their fitness value. The higher the fitness of a chromosome, the 

greater the chance of selection. The selected chromosomes are then bred to create a new 

population of fitter solutions. Breeding involves the swapping of chromosome segments, or 

genes, between parents. Each member of the population is subjected to a chance of mutation. 

Mutation randomly changes a chromosome and helps keep diversity in the population. This is 

necessary to ensure that all possible solutions are considered. Finally a new population, made 

up of child chromosomes, is created and the process of selection, breeding and mutation 

repeats itself. This continues until the fittest chromosome within the population is no longer 

improving over generations. Temporally high rates of mutation can be used to push this best 

member off its optimum to see if it will return to the same point and confirm that the global 

optimum solution has been found. shows the structure of a simple GA. 
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Figure 3.7 Flow diagram of a Basic Genetic Algorithm 

GAs have been used in power systems optimisation problems with great success. 

Complicated despatch problems have been solved", corrective power flow planning' and 

turbine design are some recent GA applications. Recently a grid service restoration system 

was developed using a GA online for the first time". However their use in long term planning 

has hitherto been limited due to low computer processor speeds. Today's computers have now 

reached the performance necessary for the application of GAs to very large problems. Chapter 

5 discusses the application of GA optimisation to a large long-term forecasting model that 

describes how electricity will generated in a future ESI. 
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3.4 Summary 

Due to the effects of privatisation,, past data on ESI planning issues is no longer relevant. 

This rules out the use of regression techniques or neural networks in long term energy 

forecasting as they all need past data for extrapolation or training. GAs, on the other hand, 

can be used to solve large non-linear models constructed from both theory and experience. 

Unfortunately, due to their nature, there cannot be a black box GA that can be applied to solve 

all problems; the programmer must choose the correct GA structure and then adjust it to 

perform its specified task. Chapter 5 investigates the ideal structure for a GA used in long-

term forecasting. Current GA based software can only be run efficiently by operators with at 

least some knowledge GAs and their operation. The GA suggested in Chapter 5 is pre-set for 

maximum efficiency over the range of optimisations demanded by energy planners. In 

addition energy planners with GA knowledge can manipulate the algorithm itself. The aim is 

to allow the operator to concentrate on the problem being solved and the solutions proposed, 

rather than the GA itself. To achieve this a new model and GA have been constructed that can 

include all of the relevant factors that are involved in the future selection of fuels and plant 

mix in the UK ESI over the next forty years. 
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4. STRUCTURE OF THE ELECTRICITY SUPPLY 
INDUSTRY FORECASTING MODEL 

4.1 Overview 

The proceeding three chapters, 4, 5 and 6, detail the construction of a Genetic Algorithm 

based Model of Electricity Supply (GAMES). This chapter discusses the general structure of 

GAMES, a model that is to be used to forecast the mix of generation methods in a future ES!. 

Chapter 5 explains the GAMES Genetic Algorithm (GA) and details how it solves the large, 

non-linear and discontinuous model of the UK ESI. Chapter 6 details the functions that 

describe the ESI and are included within the GAMES fitness function. 

A model used as a forecasting tool must be transparent so that assumptions are visible. To 

achieve this a rigid structure must be adhered to. The types of functions within the model are 

defined in Section 4.2 and their effects on the model itself are discussed. Because the model 

spans a time horizon it is dynamic and the effects of this are discussed in Section 4.3. 

Dynamic models are complex and it is important that adequate calibration and validation is 

carried out. Section 4.4 investigates methods that ensure confidence in the model is 

maintained. The complexity of the model is further increased when the concept of a purely 

monetarist and perfectly efficient market is dropped and replaced with a more realistic 

theoretical model. A system is put in place that allows the inclusion of these extra, non-linear 

functions. As suggested in the thesis this system uses a global utility function, defined in 

Section 4.5, that allows the analysis of all costs and benefits to occur' simultaneously which 

allows for a solution to be derived by a maximisation of utility. Traditional mathematical 

optimising techniques have proved to be inadequate when used to solve such a large selection 

of non-linear simultaneous equations. A computational optimisation algorithm based on 

evolution (a genetic algorithm) is suggested in Section 4.6. 

4.2 Model structure 

In order to perform a quantitative long term forecast, a model of the system to be studied must 

be created. The construction of a model involves a balance between explaining the system in 

more detail, thus increasing the model's size, and keeping the model manageable both in 
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comprehensibility and in computational power needed to derive solutions. Model size is 

dependent on the proportions of: 

• Endogenous variables; variables calculated within the model. 

• Exogenous variables; variables provided to the model. 

A model with more endogenous than exogenous variables will explain more and be larger. As 

large non-linear models are best solved by computational methods the inclusion of extra 

endogenous variables will slow down these iterative processes and reduce the final accuracy of 

models set to run within a finite number of iterations. 

Endogenous variables are calculated by applying sets of functions which often have 

exogenous variables embedded within them. These functions can be classed in three groups: 

• Behavioural functions, that describe the actions of electricity companies in response to 

market events. For example cheap gas results in an increase in gas fired generation. 

• System functions', that describe systems such as the market structure, taxation mechanisms 

and regulation constraints. 

• Continuous identities, which are the exact relationships that hold for all points in time. 

For example the relationship between the electrical output and the emissions from a 

particular plant. 

Each group of functions is described in more detail in Sections 4.2.1, 4.2.2 and 4.2.3 

respectively. Behavioural, System and continuous functions rely on high quality exogenous 

data to provide accurate solutions. Much of the short-term exogenous data that describes the 

ESI is inherently volatile. A typical example of this volatility would be daily electricity 

demand profile which can alter dramatically with the weather or even television schedule 

changes. However Section 4.2.4 shows that it is possible to accurately predict the average 

yearly demand as the daily deviations can be aggregated. The process of aggregation is 

fundamental to any macroeconomic or long term model. Section 4.2.5 shows how it increases 

reliability as well as reduces the model's size. 

System functions are known in econometrics as technical functions. To avoid confusion this study uses the 
term system function because the term technical function is also used in engineering to describe functions that 
represent engineering processes. 
"Continuous identities are known in econometrics as accounting identities. To avoid confusion this study uses 
the term continuous identity because the term accounting identity could be confused with economic functions 
which describe all economic relationships. 

I .4 
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4.2.1 Behavioural Functions 
Behavioural functions describe the aggregate actions of economic agents such as consumers, 

producers and investors. These functions are useful in long term models as the averaging of 

many individual agents' behaviours reduces a model's size. In GAMES they are derived from 

economic and technical theory and are based on quantitative parameters. An example would 

be the decision not to construct generating plant that may, in the near future, suffer from fuel 

resource constraints. Unfortunately the application of some economic theories to empirical 

models in this manner may be inexact as, in this resource example, some investors would 

construct plant so long as resources held out beyond the pay-back period. The particular data 

available that defines the length of pay-back periods may have slight deviations from 

theoretical values. Many theoretical models do not accept dynamic adjustment and simply fail 

when faced with the smallest errors of this kind. It is therefore normal for such functions to be 

validated using statistical evidence based upon relevant data. It is also important to ensure 

that conclusions about the actions of an individual case are not derived from the aggregate 

solution as this would be subject to error over time, even if the representative individual were 

considered to behave consistently". 

4.2.2 System Functions 
System functions approximate institutional arrangements such as taxation structures related to 

electricity generation costs. They explain the relationships between, and the approximate 

workings of, these institutional arrangements. System functions in the ESI would include 

environmental taxation of generation by fossil fuel combustion or the increase in renewable 

energy generation technologies as a result of NFFO and SRO incentives. They also explain 

conceptually similar variables that are measured in different ways such as with the electricity 

pool selling price indexes and pool purchase price indexes. The parameters of these functions 

are mainly estimated from past data or derived from known system information. As these 

functions are often approximations, an error assessment of system functions is always 

necessary. 

4.2.3 Continuous Identities 
Continuous identities are the exact relationships that hold for all points in time as with 

expenditure being related to fuel usage in a particular plant or plant efficiency whilst working 

at different loads. Continuous identities form the core of most models, and they are more 

reliable than both behavioural and system functions as they are derived from experience and 

are only subject to exogenous data errors. The links between electricity demand and 

generation, or fuel costs and generation variable costs are examples of continuous identity. 
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4.2.4 Aggregation 
Behavioural functions, system functions and, to some extent, continuous identities are all 

subject to aggregation techniques. By averaging the actions of microeconomic systems, such 

as fuel prices or electricity demand over time, many simplifications can be made. This is 

obviously useful in very large scale models such as GAMES". The aggregation approach can 

even be applied to natural effects such as the weather. A long term forecast of the minute by 

minute temperature, to the nearest ±5°C, of a small town within the UK is simply not 

possible! However a long-term view of the average yearly UK temperature to within ±3°C is, 

at present, considered reliable. The GAMES model of the ES! utilises aggregate solutions to 

give: 

• Yearly fuel prices 

• Wind speeds 

• Rain precipitation 

• Temperature 

• Electricity demand (Base and peak loads) 

• Generation costs or particular plant types 

In the case of electricity demand, a yearly aggregate can be made if both peak demand and 

overall yearly load figures are considered separately. This is because peak demand figures 

must give the maximum possible figure, rather than an average of peaks. 

4.2.5 Model Size 
The final size of a particular model is not simply constrained by its manageability but also 

reflects the methodological approach adopted. Some models, such as the Liverpool (LPL) 

model of the UK economy, are straightforward, rational and simple, following a monetarist, or 

neo-classical, view of the world; that most occurrences can be explained by a pure market 

model. This is reflected in its relatively small size of 11 endogenous and 28 exogenous 

variables. In contrast the HIM Treasury (HMT) model of the same system was much larger, 

with 509 variables in total, as it was felt by the treasury essential to model the public sector in 

some detail, including the use of microeconomic theory, to adequately to explain the UK 

economy'. The added variables caused complexities in this model which made it 

mathematically difficult to solve. Therefore there is a limit to the level of complexity that can 

be contained within a traditional model. 

53 



Structure of the ES! Forecasting Model 

As GAMES was solved by an optimisation process, rather than by a mathematical procedure, 

added complexity only increased the time needed for the GA to find an optimum solution. 

Therefore the maximum number of functions and variables was only limited by processor 

speed which is continually increasing. The balance that was found between necessary 

complexity and model size in GAMES was based upon a 1996 Pentium Pro 200 processor. 

Although this balance allowed the inclusion all relevant environmental, technical and 

economic functions new faster processors, which are already currently available, will allow 

the inclusion of additional functions. This will allow sensitivity studies to investigate the 

effects on the ES! of obscure relationships, such as the correlations between global warming 

and electricity demand. 

4.3 Dynamic Modelling 

A model where all endogenous variables respond immediately to changes in exogenous 

variables is described as static. An example of a static model would represent a particular 

phenomenon at a particular time, such as the distribution of electricity demand in the UK. 

Such a static model could give the energy demand or even the rate of change of demand for 

every town or village, for a given year, in the UK. A dynamic model, such as GAMES sets 

out to describe and analyse the process by which the phenomenon occurred. It would give the 

change over time, or the rate of change of energy demand. Thus the demand and the rate of 

change of demand could be given for a set of years rather than at a singular moment of time. 

To achieve this endogenous variables must adjust to changes in both exogenous and other 

endogenous variables over several time periods. This process is referred to as lagged 

adjustment. The presence of lagged adjustment makes the model less simultaneous in nature, 

since the result of each function may not depend on current endogenous values. 

GAMES is a dynamic forecasting tool as it projects exogenous data into the future. The 

result for a particular year depends on these projections along with the solutions from previous 

and possibly future years. This vastly increases the model's complexity and causes non-linear 

and discontinuous relationships that are impossible to solve analytically". Section 4.5 

explains how a general utility function is used in GAMES to transform the discontinuous 

mathematical model into an optimisation problem that can be solved by an artificially 

intelligent search technique. Section 4.6 highlights the advantages of using a Genetic 

Algorithm (GA) to solve this optimisation problem. 
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4.4 Model Based Forecasting 

Forecasting does not necessarily need a formal model. Many forecasts are made by experts 

who have an in-depth knowledge of a system and can use this knowledge to find and forecast 

trends in the same system. A model of the system is necessary when the system is 

interdisciplinary and no single expert can make a forecast or when the system is simply too 

large or complicated do be understood as a single system. In such cases a model is 

constructed which can be used as a forecasting tool. GAMES, which gives a long-term 

forecast of the means by which electricity will be generated in the UK, is very powerful as 

such a tool as it involves a wide range of disciplines: These include technical, economic, 

environmental analysis and an understanding of the effects that market and policy changes 

have on the ES!. 

Model based forecasts can be distinguished into two types, ex-post and ex-ante. Ex-post 

forecasts are predictions by the model for a time period for which there is known data and are 

used for calibration, validation and some sensitivity analysis on the system. Ex-ante forecasts 

are made for a future period where the exogenous variables are unknown and have to be 

projected based on other forecasts or models. In general ex-post forecasts are used in the 

validation of the model and ex-ante forecasts are used to predict future outcomes to possible 

future events. All ex-ante forecasts rely on exogenous variables that have themselves been 

derived from forecasts. The quality and continuity of such data is important to the validity of 

results. Although there are methods by which the quality of exogenous data can be assessed, 

any assumptions made during the derivation of such data must be highlighted. Section 4.4.1 

discusses these assumptions in detail. 

A combination of ex-post and ex-ante techniques are often useful in a single forecast as the 

single set of results can provide the error in the forecast which should be applied to any 

predictions of future events. Some of the error can be reduced through the use of residual 

adjustments which can be calculated using the data from dedicated ex-post forecasts (Section 

4.4.2). The final forecast is made based on sets of results from a calibrated model. Each set 

of results has its place in the forecast and can be divided into three groups. 

Calibration to set residual adjustments. 

Validation to test confidence in predictions. 

Predictions of possible outcomes to different scenarios. 

Any temptation to hold a single set of results as a form of prophecy can only lead to a 

reduction of confidence in the model and the validity of forecasts based on that same model. 
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4.4.1 Exogenous assumptions 
A primary issue in exogenous data collection is continuity. Ideally all data should come from 

one source which would ensure that the same assumptions are applied to each data field (Even 

slight variations in, say, the applied discount rate can give rise to continuity problems). 

Unfortunately this is not possible as the range of exogenous data needed for the GAMES 

model extends across many fields, from interest rates to the environmental impact of 

transmission. To overcome such problems a strategy of data grouping and adjustment is 

adopted: 

The exogenous data must be divided into groups that can be filled from one primary data 

source. In GAMES this has to include the following data: 

• Economic (taxation, interest rates, electricity and fuel prices) 

• Technical* (fixed and variable costs of electricity generation) 

• Energy (remaining resource and electricity demand) 

• Historical (existing plant of different types and its expected life) 

• Externals* (The environmental and social costs of generation) 

• Risk* (The costs associated with reducing risk) 

*(must be adjusted to link with economic) 

The groups must be adjusted so that they are matched chronologically. 

The groups must be adjusted so that they match in standard units. 

The fiscal groups must be adjusted so that all discount rates are standardised. 

Forecasts that consist of a combination of ex-post and ex-ante techniques provide further 

difficulties as historical data is rarely found with forecast data. This problem usually only 

involves standardisation which can be solved using the relevant conversions. 

A second issue concerning exogenous variables is the common assumption of unchanged 

energy policy. Forecasts that adopt this stance assume that present policy will be maintained 

through the forecast period. This is a big assumption that can result in large forecasting 

errors. It is not possible to make direct long-term predictions of energy policy as a proportion 

of government policy making is based on public will, which is complex and difficult to 

predict. The solution is to either explicitly incorporate policy reactions to events, or to 

compile sets of forecasts from different policy scenarios. The explicit method involves using 
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reaction functions which model the authority's reaction to deviations from their policy 

objectives. These functions can be as part of the residual adjustments or as separate entities. 

GAMES does not assume that policy objectives will remain constant and therefore does not 

rely solely on the explicit method. Some of the explicit reaction functions included are: 

Proportional increases in fuel price as resource is depleted. 

Penalties on excess emissions. 

Although the fuel price is predominantly market led, the taxation of fuels for electricity 

generation is soon to become a policy control. GAMES includes a range of exogenous fields 

by which policy scenarios can be simulated. 

4.4.2 Residual adjustments 
Residual adjustments take account of expected factors that are not included within the model 

and are used to calibrate the model against known events in the past. In addition they are 

often used to re-calibrate an existing model where the re-estimation of individual functions is 

not feasible due to instability problems in the old model. The re-estimation of individual 

functions within GAMES is not a problem as it is a newly created model with internal 

functions that have been coded with stability, easy access and manipulation in mind. Residual 

functions within GAMES are therefore only necessary for calibration purposes. 

Residual adjustments are determined by the type of model. If a residual is needed to calibrate 

an ex-post forecast a simple multiple of the result may suffice. This may be constant or vary 

over time. In GAMES most social and economic factors are included directly and therefore 

need little or no residual adjustment. Residual adjustments have been made within the model 

for the calibration of extreme, what if, scenarios where the effects of massive price shocks or 

resource depletion could make the model unstable. If adjustment was needed during a set of 

forecasts it would most likely be the result of errors in the exogenous data used in the political, 

technical and economic risk functions. The political risk data field, which should normally be 

set to zero provides an adequate facility for an end user of GAMES to make additional 

residual adjustments. It must be noted that use of residual adjustment for any other purpose 

other than calibration, such as including the opinions or bias of the forecaster, can lead to the 

forecast becoming a derivative of the forecaster' judgement. Although the forecaster's 

judgement may be valid, such changes can disguise problems with the data or even with the 

model itself. 
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4.4.3 Forecast Evaluation 
There are numerous methods of validating a forecast model. The majority of these methods 

involve the comparison of ex-post forecasts and historical data. Formal test procedures use 

either a mean absolute error (MAE) or a root mean square error (RMSE) to make this 

comparison. 

MAE = 	(Ii, - jT,) / n 	 Equation 4.1 

RMSE = 	- f 
)2 / n 	 Equation 4.2 

where: 	f = ex-post forecast 

h = historical data for the same forecast period. 

n = Number of data points 

As GAMES is a dynamic forecast model, that involves errors spread over a time period which 

are themselves subject to lagged adjustments, standard RMSE evaluation would not give 

adequate information of the error variation over time. Error variation shows the stability of 

the model and gives the errors in trends which GAMES is designed to forecast, rather than 

indicating the residual adjustment error. To incorporate this into error evaluation a time-series 

approach can be used. Applying a time-series model to the RMSE gives: 

In 

-f 
)2  

V 1=1 
RMSE(time  series adjusted) = 	

Equation 4.3 

V 1=1 

To ensure that this method of forecast evaluation is valid two criteria must be held: 

The historical data must be reliable and continuous. 

The historical data used in RMSE evaluation must not be the same as that which was 

used to make residual adjustments as this would only give the calibration error. 

In addition to testing a single forecast, this form of forecast evaluation can be used to compare 

different forecasts of the same period against each other. To achieve this h and  should be 

substituted to represent the two different forecast results. 
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Unfortunately changes due to the recent privatisation of the ESI have diminished the value of 

relevant historical data. It is still possible to evaluate the GAMES forecast model using a 

time-series adjusted RMSE, however some judgement is needed in the interpretation of the 

results. To distinguish between modelling errors and data discontinuity an in-depth 

understanding of the differences between forecasting in a nationalised and privatised ESI is 

essential. Chapter 2 discusses these differences in more detail. 

4.5 Utility Optimisation of the ESI 

To model decisions in the ESI the working system must be defmed. Chapter 2 shows that 

simply assuming that technologies will be chosen solely on their profit maximisation potential 

is unrealistic. A function of company efficiency must be included within the model. This 

efficiency function (f(e)) can be based on knowledge of how Principal-Agent theory affects the 

decision structure in the ESI. There are also resource (f(r)), transmission (f(t)), political 

(f(m)) and ecological (f(E)) constraints which must be included along with the advance of 

technical possibilities (f(7)). The question of how to include all these functions into a single 

model needs to be solved. The solution is found in a theory that has formed the basis of 

modern economics, the Utility Theory, which asserts that: 

"...actions are right in proportion as they tend to promote happiness, wrong as they tend to 

produce the reverse of happiness. By happiness it is intended pleasure, and the privation of 

pain"62 . 

The theory goes on to state that these are the only considerations in the decision making 

process. If this is true then the path chosen by a single decision is the one which results in the 

maximum pleasure (P) and minimum pain (p). This can be described as an maximisation of 

utility (U): 

UF(P-p) 
	

Equation 4.4 

where 

P = P(e) +P(r) +P(t) +P(m) +P(E) +P(T) 	Equation 4.5 

and 

p =p(e)+p(r)+p(t)+p(m)+p(E)+p(T) 	Equation 4.6 
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The utility function is case specific and contains all relevant information known at the time of 

the decision. Within the ES! factors such as the expected capital costs, operating costs, 

energy resource and market structure are most influential in the determination of P and p. 

Each of these factors can be further broken down into constituent parts: interest rates, 

materials and construction costs are needed to determine capital costs and operating costs are 

dependant on fuel costs, maintenance and load factor. Each of these case specific factors are 

derived using economic theory, tested on previous cases, and projections of exogenous 

variables. As it is true that a decision can be defined as an optimisation of exogenous variable 

projections constrained by sets of known laws, the optimisation of this utility function will 

give forecasts of decisions made in response to future environments. 

In addition to economic, environmental, political and technical forces, the utility function 

contains two other factors. First is the management of risks associated with increasing the use 

of each generation method. A high risk reduces P and the probability of a high p is increased. 

Risk is included within the function as a set of constraints that vary depending on the 

probability of a future event. These constraints, for example, ensure that there is some 

horizontal integration of Generators by increasing the probability of a high p in any 

technology that becomes too dominant in the market. This creates a further problem; future 

events will be altered by a preceding decision so forecasts used to make the decision must be 

adjusted as each option is considered. This loop creates non-linearities that traditional 

optimising techniques find difficult to solve. The use of Genetic Algorithms to optimise non-

linear functions is discussed in Section 4.6. 

The second additional factor is the moral, or judgement, variable. For example the decision 

not to store radioactive waste near a town centre includes more than a simple fiscal 

optimisation. Before the privatisation of the ES! these questions were answered as part of a 

single decision making process. The consequence of this was that important moral decisions 

were often left in the hands of a single ministerial office. With the high ministerial turnover in 

the UK there was no standard guide to acceptable behaviour. Privatisation has created a 

separation between moral decisions and utility maximisation. Government legislation is 

imposed on private firms through a system of regulators, removing much of the moral 

responsibility from the firms. 

Assuming that all actions within the laws and rules of energy trading are considered to be 

acceptable and any unacceptable behaviour within the law is allowed, with the only constraint 

being negative publicity, it follows that company policy and legislation can be considered 

separately as long as company policy remains within legislation. This separation of company 

policy and legislation has allowed forecasters to use economic theories, within the constraints 

of known legislation, to predict the outcomes of future decisions. 
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GAMES combines all the functions that describe company plant choice decisions in the UK 

ESI within a global utility function. The optimisation of this single function gives the most 

Rely outcome to these decisions on a yearly basis. 

4.6 Model solving 

Using a global utility function to combine all the discontinuous and non-linear functions that 

describe primary energy usage decisions in the UK ESI transforms this insoluble set of 

simultaneous equations into a single optimisation problem. The optimisation involves finding 

the most likely outcome from the many possible combinations of 8 methods of generation over 

a 40 year period. An unconstrained model would have 10' possible solutions if each method 

of generation was an integer representing between 1% and 100% of demand. However as the 

GAMES model assumes that generation will always equal demand the number of possible 

combinations is constrained to 4x 10416.  Within this large number of possible solutions, or 

search-space, there are many local optima which are often far from the global optimum. In 

addition primary energy usage decisions are very non-linear with many discontinuous 

feedback loops. Traditional optimisation techniques, such as Lagrange's Method, use 

mathematical algorithms to climb gradients or match graphical plots'. These optimisation 

methods suffer from: 

• A limit in the size of the search space. Traditional methods involve many calculations per 

variable so as the number of variables increases the optimisation becomes slow. 

• Local minimum I maximum problems; where localised optima are confused with global 

optimum. 

• Non-linearity assumptions; where non-linear problems have to be assumed a combination 

of linear problems to be solved. 

Another, quite different, approach could be to use a computer to search the whole search-

space for the optimum. Unfortunately even the constrained model would take months on the 

worlds fastest computers. However a constrained search of the search space, using an 

algorithm trained to fmd an optimum based on a pre-defined objective, would reduce the size 

of the problem. If such an algorithm had a built in random search function the problem of 

local optima being assumed as global optima would be overcome. Evolutionary algorithms 

will provide these attributes, specifically a genetic algorithm (GA). GAs are inspired by 

natural evolution, their structure is similar to the decision process and is therefore ideally 

suited to the application of forecasting decisions. A GA consists of populations of possible 
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solutions (chromosomes) from which the fittest, or optimal solutions are combined to make 

new, fitter populations. A system of mutations is used to ensure the whole search space is 

covered. Using a fitness function based on economic theory and past data this optimisation 

method could quickly cover the large number of possible permutations that describe 

technology and resource utilisation in the ES!. 

4.7 Summary 

In order to make reliable forecasts of possible future scenarios a model with a clear structure 

is needed. Continuous identities, system and behavioural functions and all their aggregated 

exogenous data can be combined into a single utility function that describes decisions in the 

ES!. This single, non-linear function cannot be solved mathematically, but can be optimised 

using a GA. This gives a number of near optimum solutions along with the global optimum. 

This is beneficial in real life forecasting because it gives possible deviations from a single 

predicted solution. The actual outcome will lie within the distribution of near optimum 

solutions. 
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5. GENETIC ALGORITHM BASED FORECASTING 

5.1 Overview 

This chapter introduces the genetic algorithm (GA) and then, in Section 5.2, describes its 

place in forecasting the ES1 as stated in the thesis of this study. After outlining the GA's 

structure in Section 5.3 the workings of each generic and advanced genetic operator is 

discussed individually in Sections 5.5 and 5.6 respectively. The actions of the genetic 

operators vary with the method by which the ES1 model is represented in the GA. Section 5.4 

discusses the representation used in creating the GAMES GA. Correct representation is 

critical to the success of the evolutionary process and care must be taken to ensure that the 

model itself is not destabilised by the GA. 

5.2 Program Structure 

The general structure of the ES1 forecasting model is shown in Figure 5.1. Specially created 

data forms are used for the exogenous data input that helps set up the ES1 model within the 

fitness function. The GA uses this function to evaluate the fitness of possible solutions within 

the evolving populations. 

Exogenou 	 Fitness 
Data i/p 	 Function 

o/- 

Figure 5.1 GAMES program structure. 
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The GA and its operators manipulate these possible solutions in order to arrive at an optimum, 

or most likely solution. The genetic operators are adjusted through the genetic input fields. 

When the GA finds the optimum solution it is passed through the fitness (or evaluation) 

function so that relevant results can be calculated and then displayed graphically. In addition 

the current population can be viewed as chromosome data in the genetic output field. The 

genetic operators will run adequately on the default settings in the genetic input field. 

However the optimisation process can be made quicker and more reliable through the 

manipulation of certain operators at runtime by the GAMES user. These genetic operators 

are discussed fully in Sections 5.5 and 5.6. 

5.3 GA Structure 

A Genetic Algorithm is an optimisation method based on evolution. A simple model, based on 

a feasibility study for GAMES, is used to describe the general structure of a GA. In this early 

example the UK Electricity Supply Industry (ESI) is assumed to consist of only coal fired and 

gas fired generating plant. The algorithm consists of a population of chromosomes. In this 

example each chromosome represents a possible fuel-mix between gas and coal generation 

over a selected time period (6 years are shown in Figure 5.2.). Chromosomes are made up of 

strings of genes, each representing a possible single years proportion of gas to coal usage. 

The algorithm passes through a number of phases; 

	

Chromosomes (possible 	 Genes 

solutions) 	 Representing 

a 	 b 	 C 	 d 	 e 	Fuel Mix in: 

F 'tear 1 

'tear 2 

V ear 3 

1 %ear4 

'tearS 

'tear 6 

Figure 5.2 Population of 5 chromosomes made up of 6 genes. Each gene represents the 
proportions of gas and coal based generation needed to meet the yearly demand. Darker 
colours represent more coal whereas lighter colours represent more gas plant. 
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I. Initialisation where a number of chromosomes (possible solutions) are randomly generated. 

These form the initial population which could also be seeded with deliberately good or bad 

possible solutions to push the GA towards or away from certain optima. The process and 

effect of seeding is detailed in Section 5.6.1. 

The evaluation (or fitness) function, which contains the technical, economic and 

environmental functions that describe primary energy choices in the ESI, assigns each new 

chromosome a fitness which affects its probability of selection. There is a higher chance of 

selection for the fitter chromosomes, or better possible solutions to the fuel mix. 

An elitist function is used to mark the fittest chromosome in the population so that it can be 

carried forward if it is fitter than the fittest chromosome in the next generation. 

Each chromosome is given a chance of selection for a new population based on its fitness. 

Fitter chromosomes have a greater chance of being selected for the new population. 

Parents 

a 	 d 

Figure 5.3 Chromosomes a & d are selected as parents 

Chromosomes from this new population are selected in pairs to become parents for the new 

generation. In this case a and have been selected. Each pair of parents breeds subject to a 

user defined crossover rate to create new fuel-mix solutions based upon the constraints of 

the evaluation function. 

The first step in breeding involves splitting strings of genes off two chromosomes and 

swapping them. This is known as crossover. Figure 5.4 shows the two point crossover 

used in both the feasibility study, which only contained gas and coal generation and in 

GAMES, which was a full working model of the UK ES!. This breeding technique 

randomly selects two points along the parent chromosomes and swaps the genes within the 

two crossover points to form the genetic structure of two children. The two children then 
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replace their parents in the next generation. 

Figure 5.4 Breeding of parents (two point crossover) 

A number of the child chromosomes have a random number of genes, or strings of genes, 

randomly mutated. This aids diversity in the population which prevents the GA becoming 

stuck in local optima. The amount of mutations depends on a user defined mutation rate 

and the size of each mutation can be set to reduce as the GA converges (the population 

becomes similar and stops changing). This allows a more refined search in the latter stages 

of the optimisation. 

Parents 	 Children 

a 	d 	 a' 	b' 	c' 

Mutation 

Figure 5.5 Mutation (c' is a mutation of b') 

The flatten operator, an advanced function designed specifically for this study, is described 

fully in Section 5.6.3. It is attached to the mutation operator and investigates the 

possibility of using linear variations where non-linear changes in generation procedure are 

suggested by the GA. This serves to reduce the chance of stop-start (or construct-

decommission) polices which are unlikely in real ESI forward planning strategies. 
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9. Recall also forms part of the mutation process. It is a new, advanced, genetic operator and 

is discussed in Section 5.6.5. Segments of chromosome from previous generations are 

placed within the current population's chromosomes. Although this function is rarely 

called it gives the GA a memory of where it has come from and allows it to backtrack if 

necessary. This operator is based upon living organisms which carry long strings of 

inactive DNA which can become operative through mutation. 

1 O.The GA returns to the evaluation function (phase 2) and assesses the fitness of each 

chromosome in the new population. This process, of evaluation, selection, crossover and 

mutation, continues until the fittest, or most likely, set of possible fuel-mix solutions that 

satisfy the requirements of the fitness function have been found. 

11 .To ensure that the global optimum has been reached a temporarily high mutation rate can 

be used at this stage to push the population away from where it has converged in the search 

space. If it consistently returns to the same point a global optimisation can be assumed. 

The advanced operator that performs this task is called radiate and is discussed in Section 

5.6.4. 

All the operators described above have been specially written for long-term primary energy 

forecasting in the ES!. This was to accommodate the large and complex genetic representation 

of such a large model. The majority of these are based on standard genetic operators and their 

implementation is described in Section 5.5. The flatten and recall operators were designed and 

implemented for this study and represent an extension to existing GA theory. The radiate 

operator uses a novel approach to apply an existing process of increasing mutation to test for 

global optimisation. These three advanced operators are discussed in Section 5.6 along with 

seeding and gene holding. 

5.4 Genetic representation 

The representation of a problem is critical in the design and use of a genetic algorithm. 

Representation is problem specific and an ideal set-up is often only found after some 

experimentation. GAMES uses a similar representation method to that of the feasibility study 

which assumed a UK ES! based on gas and coal generation only. The representation strategy 

is: 

1. Establishment of variables that are to be represented as genes. 
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Combination of the genes into chromosomes. 

Definition of the population. 

Sections 5.4.1, 5.4.2 and 5.4.3 explain how this representation process takes place in 

GAMES. 

5.4.1 Representing Genes 
Since electricity cannot be stored and this study assumes that demand will always be met, 

available capacity must exceed expected generation. To ensure that this is the case there must 

be sufficient resource and plant. As yearly electricity demand is an exogenous data field that 

is set before the optimisation, each gene (G 0) can represent the yearly proportions of 

generation methods that are to be used to meet that yearly demand. This has been 

implemented through splitting each gene into smaller segments called DNA (A).  Each DNA 

segment represents the proportion of demand met by each individual generating method in a 

single gene. The sum of all the DNA segments in a single gene must always equal 100 to 

ensure that the sum of yearly generation by all types of plant meets yearly demand. Therefore 

each gene consists of a string of numbers that must always add to the sum of decimal one 

hundred. 

G. = (D1 , D2 , D3 , D4 , A, 13 6.........D0) 	 Equation 5.1 

where: 	 100 	 Equation 5.2 

and: n = no. of generation types 

Early GAs operated on a binary system which would involve the conversion of decimal D, to 

its binary equivalent. If this was applied to GAMES, each gene would then consist of a string 

of these binary numbers and each chromosome a string of genes. The reasoning behind binary 

conversion originated from early problems which arose during the optimisation of a single 

binary number. Chromosomes represented this single binary number and each gene 

represented an individual binary digit from that same number. Subjecting every bit of the 

binary number to the genetic operators achieved the maximum number of genetic options that 

binary encoding allowedTM. Due to the varying significance of each gene (or bit) other single 

bit codes, such as gray code, also proved popular. Both binary and gray coded GAs offered 

both elegance and flexibility and thus far have dominated GA research. However GAMES 

uses a GA to solve a particular problem, the future generation mix of the ESI, and its results 

depend on the relative accuracy of exogenous data. Using decimal integers for each of the 

proportions of generations dramatically reduces the size of the search space whilst still 
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enabling results to remain within the expected errors due to exogenous data discontinuity. In 

fact such a large problem needs to be constrained in this manner to limit unnecessary 

computational expense caused by an over-sized search space. This method, of using real 

floating point numbers, has proved successful in applied GA applications and has, in spite of 

reduced schema processing, benefited from the resulting reduction in search area". 

5.4.2 Representing Chromosomes 
As yearly aggregates can provide reliable trends in critical data sets, such as electricity price 

and mean climatic temperature, the full time horizon has been split into yearly time periods. 

Using monthly, or daily, time periods would also increase the size of the model which would 

be unnecessary as yearly trends are sufficient for long-term planning decisions. Each gene 

(Ga) represents one year of generation within the forecast period. However the ESI is a non-

linear system that follows dynamic responses to changes in environment. Events that occur 

today have an effect on future events and predicted future events have an effect on what is 

done today. For example no new plant will be constructed if the depletion of its fuel is 

imminent; whilst conversely if no new plant is constructed the resource will last longer. To 

eliminate errors due to this loop any forecast over a time horizon must solve for the whole 

time horizon simultaneously. A GA can evolve an optimum set of variables based on a 

function that describes the problem over the whole time horizon. This is achieved through the 

evolution of possible solutions for each year within the full time horizon. Each possible 

solution is independent, created from previous generations and represents a single 

chromosome (C). 

C = (G1, G2, G3 , G4, G,, G6  . ........ Gm) 	 Equation 5.3 

where: m = no. genes in a chromosome (number of forecast years) 

Inserting the gene representation into the above equation gives the following matrix: 

D11  D12  D13  D14  ... ... Dim  

D21  D22  D23  D24 
... 	 ... 	

D2m  

D31  D32  D33  D34 
... 	 ... 	

D3m  
C C', m  = . 

Equation 5.4 

D 1  D 2  D 3  D 4  ... 	 ... 	 Dnm  

where: m = no. genes in a chromosome (number of forecast years). 

and: n = no. of DNA segments in a gene (methods of electricity generation). 
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This chromosome matrix represents a single possible solution to the yearly mixture of 

generation methods (Dim, D2m.. Dnm) over the length of the forecast period (Dj, D2.. .Dnm). 

By default GAMES forecasts the mixture of 8 primary energy sources used in electricity 

generation over a 40 year forecast period. This chromosome representation would be given by 

an 8 x 40 matrix. If these default settings were changed to a 20 year forecast period,, the 

chromosome representation would be changed to an 8 x 20 matrix. 

5.4.3 Defining the Population 
A population (P) is a collection of chromosomes where: 

P = (C,, C2, C3 , C4, C5 , C6. ........ C,,) 	 Equation 5.5 

where: p = population size. 

And: C,, C,. ........ C,, are separate chromosomes (possible solutions) 

Each member, or chromosome, within the population, (Cl, C2... C,,), represents a possible 

solution to the primary energy mix in generation over the whole forecast period. The 

population represents the group of evolving possible solutions within the GA. As the 

optimisation process continues the GA breeds new, fitter, populations of possible solutions. 

The size of the population is important to the operation of the GA. If the population is too 

small it will converge on a sub-optimum solution too quickly. Conversely if the population is 

too large the GA will waste computational resource and therefore slow the optimisation 

process. The population size in GAMES has been set to 100 as this has been shown to allow 

adequate diversity without excess computational expense. Some GAs use varying population 

sizes" but this approach dramatically increases the complexity of the GA and has proved 

unfeasible for GAMES running on standard PCs. 

5.5 Standard GAMES genetic operators 

The GAMES GA uses six core operators, which are standard GA functions, and five non-

standard operators. The standard operators have been tested on a multitude of standardised 

test problems from the prisoners dilemma to the travelling salesman problem. The basis of 

each standard function comes from Z. Michalewice but most have been altered considerably 

or totally re-written. Changes were necessary to convert the original code from C to C++ and 
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to suit the ES! problem which is larger in scope and more complicated than the test problems 

used by Michalewicz. 

5.5.1 Initialisation 
Before the GA can be run a stable environment must be established. All input variables must 

be verified, output file space created and sufficient memory allocated for the population data. 

In addition the starting point for generating a series of pseudo-random integers must be seeded 

using the time, day and month at runtime. This is necessary as standard calls to generate a 

random number in C++ follow an algorithm that, unless seeded, will always start at the same 

point. Once an environment has been established the initial population is initialised. GAMES 

stores each chromosome in a population structure which allows simple reference to single 

segments of DNA within each gene from any chromosome in the current population. The 

initialisation function also sets the upper and lower bounds for DNA data to 0 and 100 

respectively and sets the constraint that the sum of all values (or individual generating 

proportions) within a single gene (or yearly outcome) always equals 100. This ensures that 

the sum of generation in a given year (represented by a gene) is always 100% of yearly 

demand. Once the data boundaries have been set, each gene that has not been seeded (set to a 

known or previous value), is filled with random values within these bounds. 

5.5.2 Fitness Evaluation 
The fitness evaluation function assigns a fitness to each chromosome; where a chromosome 

represents the possible yearly proportions of electricity generation by each generating method 

over the whole 40 year forecast period. The fitness calculation uses a general utility function 

that describes the major, and some of the minor, factors that influence the choice of generation 

mix in a privatised ES!. The general utility function relies on exogenous variables that are 

created by relevant forecasts. Details of the functions that describe how electricity is 

generated within a privatised ESI can be found in Chapter 6. The fitness of each chromosome 

in the population is stored in the penultimate segment of the chromosome structure where it 

can be called by both the elitist and selection operators. The evaluation function is first called 

after initialisation then it is called to evaluate the fitness of every following generation. 

5.5.3 Elitist 
The elitist function first finds the fittest chromosome in the population and stores it as the last 

member in the population structure. It also identifies the least fit chromosome in that 

population. Then, if the fittest member of the current generation is worse than the fittest of the 

previous generation, the latter replaces the least fit member of the current generation. There is 

71 



GA Based Forecasting 

much debate about the advantage of elitist operators. Elitism is often incorrectly viewed as a 

method of filling the current population with the fittest members of previous generations. This 

would impair diversity which is critical for the success of all GAs. Correct usage of elitism 

ensures that the fittest individual is never lost so the population can be kept more diverse 

which aids the breeding of relatively unfit chromosomes. The breeding of relatively unfit 

individuals allows the propagation of, often vital, segments of chromosome that might 

otherwise be lost. Along with mutation this process ensures that the whole search space is 

considered and reduces the risks of confusing local and global optima. 

5.5.4 Selection 
There are numerous evolutionary strategies which vary greatly in structure. There are many 

variations on the mechanisms used to achieve each strategy. However all evolutionary 

processes can be described in terms of selective pressure and diversity'. Selective pressure 

concerns the fitness level needed for survival and breeding; high selective pressure implies that 

only the fittest survive. Diversity concerns the range of individuals (chromosomes) within the 

population and how they represent the whole search space; high diversity implies that the 

population consists of individuals which originate from a variety of different areas in the 

search space. Mechanisms that increase selective pressure decrease diversity and reducing 

selective pressure increases diversity. The reverse is not always true; some mechanisms, such 

as heuristic mutation, that increase diversity do not always reduce the selection pressure. The 

importance of maintaining diversity cannot be underestimated. In biological terms diversity 

forms the essence of survival from disease: An example is the South African Cheetah whose 

present population is so reduced that it has lost the majority of genetic variation that controls 

the enzymes responsible for immune response. The result is that most fatal diseases now 

effect the whole Cheetah population, rather than fractions of the population which was the 

case when population levels, and immune diversity, were high". In computational terms a 

lack of diversity causes the omission of high proportions of possible solutions from the search. 

In this case the algorithm would provide a local optimum in place of the global optimum and 

give incorrect solutions to the optimisation problem considered. 

5.5.4.1 Elitist & Expected Value Selection 
The most basic selection methods are based on the elitist selection method where the fittest 

half of the chromosomes are preserved and the less fit half are removed. The remaining half 

then breed twice to refill the population. Such methods have high selection pressure and 

therefore need large populations and high mutation rates to provide diversity. Large 

populations are computationally intensive and even increasing the mutation rate does not 

eliminate the tendency for the offspring of very fit, or super-chromosomes, to drown out other 

individuals that might otherwise contribute valuable genetic material. Another variation, the 
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expected value model, aims to remove the continuous re-selection of the fittest by counting the 

selection, crossover and mutation operations applied to individual chromosomes and removing 

them from the population when the count reaches a pre-defined number. The removal of fit 

chromosomes once their child or mutated forms exist reduces selective pressure and thus aids 

diversity. The elitist expected value model, a combination of these two methods, gives an 

efficient compromise. 

5.5.4.2 Ranking Selection 
A second method of reducing premature convergence, due to super-chromosomes, uses a 

system where the number of offspring from an individual increases with the order of fitness 

but not proportionally. The chromosomes are ranked in order of fitness then the expected 

offspring are assigned in a manner that the highest ranked obtains less than twice the offspring 

of the mid-ranked chromosome". 

Figure 5.6 shows, along its x axis, a population often chromosomes ranked in ascending order 

of fitness. The graph shows the expected numbers of offspring (over a number of generations) 

that would keep the population at a constant size. The line that passes through the origin 

indicates a proportional relationship between rank and breeding. The lines that start at 0.4 

and 0.8 show reducing advantage given to fitness in the selection process. The gradient of the 

line can be used to control the balance between selective pressure and diversity in the 

population. This balance can be influence to a greater extent by using a non-linear 

relationship between ranking and selection. 

Ranking Selection Schemes 

1.8 
1.6 
1.4 
1.2 - Proportional Ranking 

i( 	

. 	 c , 

 0.6 
0.4 
0.2 

Chromosomes in order of fitness 

Figure 5.6 Selection based on ranking chromosomes. 
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5.5.4.3 Tournament Selection 
A further method of selection based on ranking is tournament selection'. This method 

randomly selects a number (k) of individuals from the population and keeps the fittest for 

breeding and mutation. This process repeats until the number of selected chromosomes is 

equal to the population size. The selected chromosomes undergo breeding and mutation to 

create the next generation. Larger values of k increase the selective pressure but diversity is 

maintained until k approaches the size of the population. The drawback of both ranking and 

tournament methods is that relative fitness of individuals is ignored. For example no account 

is taken of a chromosome that is twenty percent better than the one ranked immediately below 

but only two percent worse than the member above it. 

5.5.4.4 Roulette Wheel Selection 
Including the relative fitness of different chromosomes in selection can prove computationally 

expensive as the difference in fitness value between each adjacent chromosome must be 

calculated. This is especially important in the case of the very large problem of modelling 

generation methods in the ESI. The solution is found in a method of selection known as 

roulette selection which avoids ranking altogether. Roulette selection assigns a probability of 

selection based on the fitness of each chromosome relative to the fitness of the whole 

population. A roulette wheel is constructed with slots sized according to the proportional 

fitness of each chromosome. GAMES uses this method in the following manner: 

The fitness value (j) of each chromosome (C,,) (where n = 1,2,3......Pop Size) is 

calculated. 

The sum off in the population is calculated giving the total population fitness (F) 

POPS-  

where 	 F= Ef, 	 Equation 5.6 
n=1 

Each individual's proportion of total population fitness, or relative fitness (r,,) is calculated. 

where 	 rn  =f. / F 	 Equation 5.7 
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The cumulative fitness (un) is calculated for each chromosome. 

n 

where 	 un  = Z ri 	 Equation 5.8 
1=1 

As all values of u,, lie between 0 and 1 and their spacing is relative to their proportional 

fitness, a random number between 0 and 1 will have a chance of finding each space 

between chromosomes c,,, and c,, that reflects the proportional fitness of the upper 

chromosome c,,. This process of spinning a roulette wheel is repeated over a number of 

times that equals the population size. Each spin selects a chromosome and copies it into a 

new selected population that is the same in size as the previous population. 

The new selected population reflects the proportional fitness of each chromosome and is 

used in the selection of parents for breeding (cross over) and mutations which will finally 

create the next generation. Each member of the selected population has an equal 

opportunity for breeding and mutation although the selected population will contain 

multiple copies of the fitter chromosomes. 

This is the most efficient method of including proportional fitness differences whilst 

maintaining a balance between selective pressure and diversity. The random element keeps 

the selection process true to the Schema Theorem"; that all members of a population must 

have a chance, however small, of breeding. The random element also reduces the premature 

convergence that can be caused by over breeding of super-chromosomes. This problem can be 

further reduced by adjusting the relationship between proportional fitness and selection rate so 

that a twenty percent fitter chromosome may only produce fifteen percent more offspring. 

GAMES uses roulette selection along with a simple elitist function that ensures that the single 

fittest chromosome in the population always has an opportunity to breed. This combination 

along with an equal opportunity for breeding and mutation across the selected population 

provides a stable basis for the evolution of optimum solutions whilst allowing enough control, 

through mutation and crossover rates, for the adaptation of the GA to different ESI scenarios. 

5.5.5 Crossover 
Breeding is achieved through the process of crossover. Crossover involves the creation of 

offspring chromosomes through the combination of parent chromosomes. There are many 

ways by which parents can be combined to create child chromosomes, each with their own 

advantages. These methods of crossover can be grouped into three classes of operator: 
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Arithmetic combination that concerns the value of each gene and uses a combination of 

each parent's genes. 

Heuristic crossover will always create children which are fitter than their parents. In depth 

knowledge of the problem is necessary to be able to apply this method successfully. 

Segment crossover techniques involve the exchange of genes between parents to create 

child chromosomes. 

It has become standard practice for the control of GAs to include a crossover adjustment. 

This is normally in the form of a control over the probability of crossover. The standard term 

for this control is the crossover rate. 

5.5.5.1 Crossover Rate 
Crossover operators act on the selected population which consists of chromosomes whose 

frequency within the population reflects their relative fitness. The probability of crossover is 

dependent on a crossover rate. The crossover rate is simply the probability, between zero and 

one, of a single chromosome within the selected population being chosen for crossover. High 

crossover rates reduce the diversity of the population and can cause premature convergence. 

Crossover rates that are too low restrict the exchange of genetic data between individuals and 

slow down the evolutionary process. An ideal crossover rate balances premature convergence 

with evolutionary progress. Crossover rates are problem specific and should be adjusted 

through experimentation. GAMES uses a figure of 0.8 as a default value as this has proved to 

be a successful figure. The evaluation of this 0.8 crossover rate involved monitoring the 

standard deviation of chromosome fitness' within consecutive populations over numerous 

optimisations. If this deviation was found to drop before an optimum was found a lower 

crossover rate was used. Conversely if the GA did not converge, or if convergence took 

longer than expected, the crossover rate had to be increased. 

5.5.5.2 Arithmetic Crossover 
This class of crossover operator creates child chromosomes through an arithmetic combination 

of the parent's genes". It is often defined as a vector operator although this would not apply 

to the GAMES GA as each chromosome represents more than a single binary number. If the 

standard arithmetic crossover is applied to two parent chromosomes (P1  and P2), each parallel 

pair of genes (x& y, x2& y 2........z,& yr,) is operated upon: 
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P1  = (x i , x2, x3. ...... x) 
	

Equation 5.9 

and 

P2 =(y,,y 2 ,y 3 . ......  yn) 
	

Equation 5.10 

where: n = chromosome size (or number of forecast years in GAMES) 

Standard Arithmetic crossover would give two child chromosomes (C1 and C2): 

C. = (x 'i, X'2, X3 . ...... X ') 
	

Equation 5.11 

and 

C2 = (Y ' l, Y 2, Y 3 . ......  Y ') 
	

Equation 5.12 

That are created subject to the operators: 

x' = rx + (1— r)yn 

and 

Y'n = ry0  + 0— r)x 

where: r = random value 

and: = 0 :!~ r :!~ 1. 

Equation 5.13 

Equation 5.14 

This method is also known as intermediate crossover, linear crossover or guaranteed average 

crossover when r is set to a constant value of 0.5. Arithmetic crossover cannot be applied to 

the GAMES GA as each gene is not a simple arithmetic value that can be manipulated, but a 

complex string of DNA representing a years proportions of electricity generation by different 

methods. 

5.5.5.3 Heuristic Crossover 
Heuristic methods use the fitness of each parent to try to produce child chromosomes that are 

fitter than their parents. Simple hill climbers, which are iterative procedures that find peaks in 

graphs, use heuristic methods where some random fraction of the difference between two 

attempted solutions is added to the greater of the two in the search of a maximisation. As 

there is a high probability that the new solution will fall out with the search space this method 

can prove computationally expensive. In problems with complex GA representation, such as 

with GAMES, the evaluation of individual genes that will provide fitter child chromosomes is 

very difficult. Other Heuristic crossover techniques simply evaluate the offspring and remove 
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children that are less-fit than their parents. This method dramatically increases selection 

pressure and reduces the diversity of the population. Heuristic crossover is therefore only 

used in the fine-tuning of solutions or in cases where the best direction for the search has 

previously been determined by a different GA. 

5.5.5.4 Segment Crossover 
Segment crossover techniques involve the movement but not the changing of gene's values. 

Taking our two parent chromosomes (P and P2): 

P1  = (x 1 , x2 , x3. ..... . x 0) 	 Equation 5.15 

and 

P2 = (y" Y2, Y3. ...... y) 	 Equation 5.16 

where n = chromosome size (or number of forecast years in GAMES) 

The simplest version of this method of breeding is the single point crossover. A single point 

(k) is randomly chosen along the chromosome and all the following genes are swapped 

between parents to create two children (C 1  and C2): 

C1  = (x i , x2 , X3, X, Yk*l, Yk+2, Yk*3 ...... .3'.,) 	 Equation 5.17 

and 

C2  = (yr, Y 2, y3, Yk,  Xk.I, Xk*2, Xk*3 ..... . x.,) 	 Equation 5.18 

This method is not suited to binary chromosomes, that represent a single number where each 

gene represents a single bit, as the offspring may be out with the bounds set for chromosome 

values. Segment crossover is more suited to larger problems, such as GAMES, that use 

complex representation of chromosomes and need to keep gene integrity. Representation 

strategies that use each gene as a value, or group of values, can use segment crossover to 

provide model stability by ensuring that each gene is kept whole. As GAMES fits into this 

representation category it is a perfect candidate for segment crossover and initially used a 

single point crossover. In this case, where each gene represented the yearly primary energy 

mix in generation, the crossover took the first years from one parent and the final years from 

the other parent to make a new solution, or child chromosome. 

The disadvantage of single point crossover is that the offspring always inherit a chromosome 

end from each parent which limits the number of possible children. The simplest solution to 

these limitations is found through the use of two point crossover. This uses the same rules as 
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the single point method, but uses two randomly selected points (k and m) along the 

chromosome, between which genes are swapped to create two children. Using this method on 

two parents P1  and P2  (defined above) would give two offspring: 

C1 = (x 1 , x2 , x,, xk, Yk+I, Yk+2, Yk*3, Ym, xm+i, xm+2, x ......x 0) 	 Equation 5.19 

and 

C2 = (yi, Y2, ), ), X+j, XI+2, Xk*3, Xm, Ymi, Ym2, Ym3 ...... yn) 	Equation 5.20 

This method allows the crossover of any single gene, single group of genes or chromosome 

end in the creation of child chromosomes. This method is simple, efficient and provides a 

good compromise between effectiveness and computational expense. It has proved to be the 

best breeding method for the GAMES GA although forthcoming increases in CPU speeds may 

allow more complex methods of crossover. Two point crossover allows groups of yearly 

primary energy mixes to be passed between parents. The groups can vary in size from a 

single year to chunks as large as the chromosomes themselves. 

A progression that could be implemented would be to use multiple crossover points (even 

numbers only) which, although too computationally expensive at present, might allow the GA 

to explore more possibilities at each generation. A further possibility is the use of uniform 

crossover. This method randomly chooses a probability of crossover which is applied to each 

gene in the parent chromosomes. Individual genes rather than segments are swapped. 

Although sometimes efficient this will, when applied to GAMES, reduce the transfer of small 

trends in generating method. 

5.5.6 Mutation 
Mutation involves the random change of one or more genes in a selected chromosome. The 

probability of a mutation occurring is governed by the mutation rate. Mutations introduce 

extra variability into the chromosomes which increases diversity. It is through this process 

that the whole search space is investigated during a GA search or optimisation. There are 

many forms of mutation with the standard operator being uniform mutation which are defined 

in Section 5.5.6.2. There is a case for a mutation strategy that changes as the optimisation 

process progresses; allowing for a coarse start and a refined end to the search. Non-uniform 

mutation, highlighted in Section 5.5.6.3, allows this in a controllable manner. Other operators 

include problem specific operators such as Flatten and Recall which are discussed in Sections 

5.6.3 and 5.6.5 respectively. 
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5.5.6.1 Mutation Rate 
The mutation rate defines the chance of a single gene, within the whole population of 

chromosomes, undergoing a mutation. Typical values of mutation rate (m) when using a 

uniform mutation strategy are: 

m < I / (no. of genes in a chromosome) 	Equation 5.21 

Higher values of m will result in a mutation in every chromosome which will increase diversity 

to such an extent that convergence on an optimum will become matter of random chance 

rather than by evolution. Within the above constraint higher rates will give a better view of 

the whole search area due to an increased diversity. Lower mutation rates are useful for 

refined searches to finalise the optimum point, as at such times diversity can be reduced to 

bring about a more precise search. A period of forced high mutation rate after the GA has 

converged on an optimum will move it away from local optima but not a global one. This is 

an effective test for premature convergence 

5.5.6.2 Uniform Mutation 
Uniform Mutation is the standard GA mutation operator. Each gene of the new population 

has an equal probability of selection for mutation. This probability is controlled by varying 

the mutation rate. The selected gene (g) then undergoes some random change that will not 

destabilise the model. Normally each gene represents a single number that lies between an 

upper bound (UB) and a lower bound (LB). This must be kept valid through the use of a 

mutation function. The mutated gene (,g) is kept within these bounds by applying a 50% 

chance of: 

g' = g + r(UB - g) 	 Equation 5.22 

or a 50% chance of 

g' = g - r(g - LB) 	 Equation 5.23 

where r = random number that satisfies 0 !~ r < 1 

However each gene in GAMES represents the proportion of demand met by each of the 

included generating methods (DNA) and the sum of these values must always equal 100. This 

complicates the mutation process as a gene that is selected for mutation must always consist 

of DNA members (D) that satisfies: 
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0 :!~ D !~ 100 	 Equation 5.24 

and 

= 100 	 Equation 5.25 

where n = number of DNA members (or generation methods) included in each gene. 

This is achieved by mutating the DNA members (I) ......D0), from the selected GAMES gene 

(G), in randomly chosen pairs (i and k), one negatively and one positively. The mutated gene 

(G) can be found if: 

G = (D1 , D2, D3, D4, D5, D6  ....... D) 	 Equation 5.26 

= (D1 , D2 , {D,+((100 - D3 )r)} , D4, D5 , {Dk-((100 - D3 )r)}, D7,...D) 	Equation 5.27 

where r = random number that satisfies 0 :!~ r < 1 

However if the value of the second chosen DNA is not able to compensate for the alteration of 

the first chosen member and: 

a-((100 - D)r) < 0 	 Equation 5.28 

Then Dk is set to zero and the remaining value (which will be negative) of {Dk-((100 - D)r)} is 

added to another gene. If this DNA goes negative the remainder is, once again, passed on. 

This continues until the whole gene satisfies all constraints. If, after a number of tries, it is 

still not possible to satisfy the DNA constraints the mutation is declared void. 

5.5.6.3 Non-Uniform Mutation 
As large mutations increase diversity it is efficient to include a function that will reduce the 

effect of mutations as the optimisation process progresses. This helps to include the whole 

search space at the start of the optimisation and to allow for a more refined search around the 

optimum when it has been found. This can be achieved by reducing the magnitude of 

individual random mutations (r) near the end of the process. GAMES uses a non-uniform 

mutation operator on each DNA member (D) within the gene that has been selected for 

mutation. As with the uniform mutation method DNA members are chosen in random pairs (f 

and k) and adjusted inversely so that the sum of DNA members always equals 100. The 
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operator is dependent on the ratio of generations that have been completed (t) to the number of 

generations expected (I) and uses this ratio with a mutation factor (F) in the form of a 50% 

chance of the mutated DNA member (D ): 

IY = D +(ioo_ Dj (l_ r('T)) 	 Equation 5.29 

And the corresponding randomly chosen DNA member pair will undergo: 

= Dk _(Dk (1_r') 	 Equation 5.30 

where r = random number that satisfies 0 15; r < I 

F is inserted as the exponent of (1 -t/T) so that it can alter the rate by which mutations are 

reduced as the optimisation nears its end and t/T tends to 1. As the mutation factor tends to 0, 

(1 -t/T) tends to 1 and the operator tends to a uniform mutation. Higher mutation factor values 

exponentially reduce the magnitude of individual mutations as the process nears its end. 

GAMES uses a non-uniform mutation that initially offers a default mutation factor setting of 

four. This default value has proved efficient but can be altered by the user if necessary. This 

is a simple method of improving the mutation operator as it is computationally inexpensive 

and robust. Other mutation strategies use heuristic methods which involve the evaluation of 

mutations before the mutated chromosomes are re-released into the current population. These 

methods waste computational resource whilst also reducing overall diversity: By killing off 

mutated chromosomes that would otherwise have a chance of breeding, and passing on 

possibly vital genetic material, heuristic methods of mutation have not yet proved themselves 

worth their costs". However these methods can be employed towards the end of the 

optimisation process when diversity is not so important. Games contains one heuristic 

mutation operator called flatten. This function is outlined in Section 5.6.3. 

5.6 Advanced GAMES genetic operators 

The inclusion of non-standard operators has caused a discrepancy between the terms Genetic 

Algorithm (GA), Evolutionary Algorithm (EA) and Modified (or hybrid) Genetic Algorithm 

(MGA). Traditionally all GAs were only binary representations of problems and, due to their 

relative simplicity and standard form, they have been well researched and understood. The 
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introduction of non-standard operators has resulted in the re-evaluation of much of that part of 

the previous understanding which is still relevant, but subject to the operators being used 

within the algorithm. GAMES fits into the category of MGAs but efforts have been made to 

keep the GAMES GA within the known theoretical bounds of traditional GAs. The use of 

non-uniform mutation, seeding and fruit machine operators, as discussed in their respective 

Sections 5.5.6.3, 5.6.1, and 5.6.2, does not deviate from this theoretical basis. The exceptions 

to this are the inclusions in GAMES of two new operators, outlined in Section 5.6.3 and 5.6.5, 

called Flatten and Recall respectively. The first of these new operators is the flatten operator 

that utilises a component of robotic control which smoothes a robot's path around obstacles. 

It looks at the yearly generation from a particular primary energy and removes the peaks and 

troughs. As excessive peaks and troughs in yearly generation are rare, this operator simply 

pushes the algorithm along its natural path. The recall operator is also novel and has not been 

used in GA applications. It is fundamentally different to previous GA operators as it allows a 

limited amount of genetic data transfer across generations. This gives the GA a memory of 

where it has been thus allowing it to make multiple backward steps if necessary. 

5.6.1 Seeding 
During the initialisation of a GA the starting population must be set. The simplest way to fill 

this initial population is with random possible solutions. Hopefully this should give a 

representative cross-section of the whole search space. Better diversity could be achieved 

through repeated random selections ensuring that the whole search space is considered. 

Another option is to run the GA with a very large, randomly created, initial population to find 

the region of the optimum within the search space. A high mutation rate would further 

increase the diversity of this large search. Then the GA could be re-run, seeded with a smaller 

population, from within the region of search space known to contain the optimum. This 

second level of optimisation should be set up for a more refined search; low levels of mutation 

and high selective pressure. An old population can also be used as a seed when exogenous 

variables have been slightly changed. This can vastly reduce convergence time as the old 

population should be in the correct region of the search area. To allow this it must be possible 

to store old populations and use them as initial populations. GAMES allows for this whilst 

also allowing the user to edit the initial population. Creating a known population that is far 

from a known optimum is a valid method of searching other areas of the search space. As the 

population moves towards the known optimum its progress can be logged and viewed 

graphically. This is an effective method of assessing the performance of the GA and benefits 

of new operators. 
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5.6.2 Fruit-Machine 
Previous models of the ES! used a yearly iterative process which has to approximate the 

effects of a future event on the present, whilst the present always has an effect on the future. 

For example the more gas used today the less there would be in the future; but if planners 

knew that gas would soon become scarce, and more possibly expensive in the near future, less 

long term gas based generation strategies would be implemented. The GAMES model is 

dynamic and able to solve such inter-dependencies over time. This has been achieved by 

solving across the whole forecast period simultaneously, a task made feasible through the use 

of a dedicated GA. An unavoidable result of this is that the system cannot be shocked by a 

previously unknown events. Energy system planners need to investigate the effects of 

unknown events to test for the stability of their strategies. 

The Fruit-Machine operator, so called because of its user interface in GAMES, allows the 

user to hold individual years by fixing all the genes in the population that represent years that 

are not to be changed. This allows the user to re-run a scenario, with an unexpected event 

added, and hold the preceding years to investigate the outcome of the event. To achieve this 

the user must first run the GA without including the unforeseen event. Each chromosome (C) 

is represented by: 

C = (y, Y2, Yg, Y4, Y5, Y6, 3'7, Y8, Y9 ....... Yp) 	 Equation 5.31 

where p = population size. 

and Yn = an individual gene representing a years generation strategy. 

Once optimised, the population must be saved. The unforeseen event, such as an oil price 

shock, can then be added by altering the exogenous variables. The GA must be seeded with 

the previous population but holding all the years preceding the shock; gene (or year) six in this 

example. All the seeded chromosomes (CI) will now have a number of held genes which can 

not be altered by the genetic operators. 

CIM- held held held held held pnce shock 	
) 	Equation 5.32 - I , Y 	, Y 	, Y 	, Y 	, Ys 	, Y, Ys, Y9 .......YP 

Then the GA can be re-run to investigate the outcome of the shock. As the second forecast 

will contain less genes (years) the length of each chromosome is shortened. Shorter 

chromosomes reduce the size of the search space which increases the speed of the 

optimisation. 
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5.6.3 Flatten 
GAMES is an electricity generation led model; it forecasts the generation by different methods 

then calculates whether there is enough capacity and builds extra plant if necessary. Although 

there is considerable volatility in all privatised electricity markets sudden changes from one 

generating method to another are, without external or resource influence, uncommon'. To 

help the optimisation process include this a function called Flatten has been included in the 

GAMES GA. 

The Flatten operator is similar to smoothing operators used in GA based robotic path finding 

which smoothes the robots path around obstacles. The Flatten operator, used in GAMES, is a 

heuristic mutation function as described in Section 5.5.6.3. It is called with a probability set 

by the mutation rate, which is a user defined figure for the probability of mutation in an 

individual gene within the population, as defined in Section 5.5.6.1. It works by taking a 

random string of genes adjacent to the selected gene and replacing an individual DNA with the 

average values across the chosen genes. In energy terms it randomly selects a section of the 

forecast period, from two years upwards, then it averages out sudden changes in generation 

method. As it is a heuristic method, which can cause a reduction in diversity, it is not used 

until the final stages of an optimisation by using the inverse of the mutation factor described in 

Section 5.5.6.3. 

5.6.4 Radiate 
Radiate is a simple operator that involves pushing the population away from an optimum. If 

the population consistently returns to that same optimum result it can be concluded that the 

global optimum has been found. The operator is called by the operator through the Radiate 

button. It works by temporarily increasing the mutation rate whilst continuing the 

evolutionary process. The high mutation rate increases diversity allowing the GA a better 

view of the whole search space. To ensure that this is effective the mutation factor, defined in 

Section 5.5.6.3, is reduced to zero, providing uniform mutation. Uniform mutation is 

necessary as Radiate is used near the end of an optimisation where mutation factors other than 

zero would reduce the possible size of mutations and therefore limit the ability of the 

algorithm to examine the whole search space. 

5.6.5 Recall 
GAs are based on evolution. Evolution evokes thoughts of Darwin, apes and humans. A 

better analogy is the simplest bacterium, containing a single chromosome that can undergo the 

simplest mutations and reproductive methods. Using a bacterium as a rough guide GM have 

proved efficient in utilising computational power to solve difficult optimisation problems. 
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However the drive to improve on existing GAs continues as the problems attempted to be 

solved by this method, and their solutions, become more complex. It is therefore necessary to 

try and adopt some of the evolutionary mechanisms that differentiate between the simplest 

bacterium and more complex systems. 

It is now widely believed that animals and plants contain more than one set of genetic code. 

Complex life-forms contain both duplicate and old, disused, genetic code although this extra 

information often serves little or no purpose in the life, growth or reproduction of the 

individual. In fact only 4% of human genetic material is used in protein construction, the 

remainder has no apparent use other than genetic storage. The mechanisms by which this 

came about are complex and out-with the scope of this study but the effects are relevant. As 

the unused genetic material is subject to mutation rates similar to those of the used genetic 

material many mutations can occur without causing an immediate effect on the individual. 

This allows the carrying or storing of mutated (sometimes severely) and old information 

without causing deaths and therefore the loss of the mutated information. The result is that 

the population can adapt more quickly to environmental changes; as small mutations (or 

irregularities during breeding) can bring out hidden characteristics within the population. 

It is possible to give a GA extra storage chromosomes to emulate the copies of chromosomes 

that exist in animal and plant life. This has been applied to the GAMES GA through storing 

random chromosomes, that are neither the best or worst in the population, and breeding them 

with the current, visible, population as a rare mutation in the current population. Not only 

does this process aid diversification but also reduces the negative impacts of mapping. By 

allowing the survival of solutions, if only for relatively few generations, that would either die 

or be mapped elsewhere in the search-space the possibility of passing through an improbable 

set of solutions to arrive at a possible optimum is not eliminated. This should become one of 

the steps necessary to help the evolution of GAs from bacterium equivalents into more 

advanced forms. The only disadvantage in the inclusion of this process is the increase in 

computational resource. 

5.7 Summary 

Genetic algorithms are powerful optimisation tools which use the speed of modern computers 

to actively evolve solutions to problems. They are vastly quicker than random searches and 
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enhance the examination of more complex search areas than is possible using simple hill 

climbing techniques. The principle behind hilt climbing algorithms, or all gradient sensitive 

iterative techniques, is that the optimum solution will be found at the highest peak. GAs also 

optimise to the highest peak, or lowest trough, but in addition can operate with multiple hills 

in the search space. This is achieved by the inclusion of the random element in mutation, 

without which GAs are simply inefficient bill climbers. The most effective mutation operators 

are problem specific as they can serve to omit unnecessary areas of search space. This 

chapter has discussed the application and theory behind two new mutation operators. 

Although both of these operators are problem specific the application of flatten and the 

structure of recall should prove useful in this and a multitude of different GA optimisation 

problems. 
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6. FITNESS FUNCTION COMPONENTS 

6.1 Overview 

The functions that describe the ESI have been chosen to satisfy the following requirements: 

. Sufficient complexity has been included to describe the ESI with enough detail to base a 

study into its future. 

• A limit has been imposed on the amount and size of endogenous functions to reduce 

computational expenditure and the time needed to find an optimum solution. 

• Flexibility has been built into the compiled software to allow the user to change the state of 

many of the functions via the exogenous variables at run-time, rather than only by the 

programmer during the building of the model. 

EXOGENOUS 
DATA 

FITNESS 
RESULTS 

Figure 6.1 The ESI Model Within the GA Fitness Function of GAMES. 
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As the ESI forecasting model is solved using a Genetic Algorithm (GA) all the endogenous 

functions that describe the ESI lie within the GA's fitness function. The design of the GA 

itself allows the fitness function to be changed without having consequential effects on the 

optimisation of the model. Conversely the user of GAMES can make large changes to the 

model itself, through the manipulation of exogenous variables, or even by editing the code 

within the fitness function, without having to change the GA that solves the model. 

This chapter takes the GAMES GA, which provides possible solutions and then optimises 

them to find the most likely solution, and separates from it, the fitness function,, which 

describes the ES!. The GAMES fitness function contains the model of the ES!. Each of the 

critical constituent parts of the fitness function are explained and their relevance to the model 

as a whole is discussed. The constituent parts of the ES! fitness function, or evaluation 

functions, are illustrated in Figure 6.1. Exogenous data concerns the variables that will have 

an effect on the model itself. These can be historical, for validation of the model or predicted 

based on possible future scenarios. The evaluation functions are described fully in Sections 

6.2 to 6.22 and are as follows: 

6.2 	Fitness evaluation 

6.3 	Demand for electricity in both peak and yearly values. 

6.4 	Non renewable resource changes due to consumption or scenario changes. 

6.5 	Renewable resources and their relative costs. 

6.6 	Capacity based on plant, resource, and possible emissions constraints. 

6.7 	Generation of electricity within existing capacity to meet a present demand 

6.8 	Plant lifetime load factor calculation and use. 

6.9 	Heat rate and calorific values. 

6.10 Plant construction needed to meet both peak and yearly generation needs. 

6.11 	Operating & maintenance costs 

6.12 	Contractual arrangements and their effects on the ES!. 

6.13 	Externalities and their associated costs. 

6.14 	Fossil fuel combustion for emissions calculations. 

6.15 	Emissions reduction and associated costs. 

6.16 Environmental taxes as fixed and variable costs for each generation method. 

6.17 	Risk strategy and costs. 

6.18 Fixed costs of new or upgraded plant. 

6.19 	Variable costs of generation. 

6.20 	Returns from generation, per unit or contractual. 

6.21 	Beyond the forecast, which allows calculations beyond the forecast period. 

6.22 	Fitness result calculations. 
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These functions are valid within the forecast's time period. In order to eliminate errors due to 

unrealistic outcomes beyond the forecast's time period an additional set of functions are 

needed to continue solving beyond the forecast's time period. These functions, that consider 

events beyond the forecast, operate by recalling selected fitness function parts and applying 

them forwards beyond the forecast. Section 6.21 discusses this process in detail. The fitness 

function's results are used by the GA to evaluate the chances of survival for each attempted 

solution to the generation spread problem. 

6.2 Fitness Evaluation 
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Figure 6.2 Schematic of ESI Fitness Function. 

The fitness, or evaluation, function forms the most critical part of any GA. The structure of 

the GA itself (the selection breeding and mutation strategies) depends on the structure of the 

fitness function. This section details the functions within the GAMES fitness function. 

Figure 6.2 shows the complexity of the function's outline and how the graphical representation 

of large-scale models can be difficult to comprehend. Its task is simply to give a grade, for the 

purpose of comparison, to possible solutions of the forecasting problem. 
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6.3 Demand 

The demand for electricity is rapidly increasing world-wide. In developing countries the rate 

of increase is far greater than that of more developed nations. The demand in developing 

countries is being pushed by the increase of energy consuming products that are replacing 

traditional methods of agriculture, production and transport. The supply and distribution of 

electricity in these countries is often not able to meet the increased demand. The planning of 

new generating facilities is regularly based on a maximum output basis. Figure 1.1 shows 

predictions made in 1991 for the demand for electricity until the year 2010. 

Predicted World Energy Consumption 
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Figure 6.3 Predicted Energy consumption until the year 2010. 83  

In the UK future energy requirements are predicted using models based on past energy usage. 

This is often performed using data from industrial and domestic meter readings. Factors such 

as Gross Domestic Product (GDP), population and consumer goods trends are also used in 

demand modelling. In Britain the demand for electricity varies greatly with climatic 

conditions. In winter the peak load is almost twice that of the summertime peak load. The 

demand for electricity also varies considerably on an hourly basis as industrial and domestic 

sectors use more or less energy. Predicting the demand is therefore very complicated. To 

allow for such a complicated demand curve the scheduling and despatch of plant must be 

flexible to allow for errors in demand forecasts. As electricity cannot be stored some 

generators must be able to synchronise and accept load with little warning to cope with peak 

loads. This generally involves a different type of technology to that of base load generation. 

Therefore plans for constructing new generating plant rely greatly on long term demand 

forecasts. 
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Long term forecasts of electricity demand in GWh (yearly energy usage) can be used to plan 

for the generation needed to satisfy the demand. Yearly generation forecasts can give an 

indication of the minimum plant needed to provide the load however to create an accurate 

model of plant the yearly peak demand (GW) is needed. Peak demand can be predicted using 

similar methods to the yearly demand. However to create a comparison between peak 

demands over a number of years, a correction for the possibility of bad weather coinciding 

with a peak demand period must be made. This is accomplished by using a common weather 

base which includes an average cold spell (ACS) correction. The ACS is defined as "..that 

combination of weather elements which give rise to a level of peak demand within a financial 

year which has a 50% chance of being exceeded by weather variations alone". The 

methodology by which peak demand is corrected for ACS conditions can be considered as two 

separate functions: 

• Firstly the demand/weather coefficients are estimated based on historical demand and 

weather data for the hours 17:00 to 19:30 (high probability hours for UK peak demand) 

during the period from late October to late March (high probability months for ACS 

conditions). 

• Secondly the actual demand is corrected for the ACS using 30 years of standard weather 

conditions obtained from regional weather stations across the UK. This correction is 

derived from the deviation between the demand/weather coefficient and the actual days 

weather conditions. 

Annual Electricity Demand Forecast (TWh) 
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The National Grid Company's seven year statement provides figures for both annual energy 

requirement (TWh) and the ACS adjusted peak demand (GW) until the year 2005 84 . Longer 

term forecasts of these variables can be obtained on a percentile variation basis although the 

latter also requires predicted ACS conditions. These are applied to GAMES as exogenous 

data sets, within the exogenous forecasting data field, which can easily be manipulated to 

create different possible future scenarios upon which sensitivity analysis can be performed. 

64 Non Renewable Resource 

Non renewable methods of electricity generation include the use of fossil and nuclear fuels. 

The former includes the combustion of natural gas, coal or oil to convert the energy into heat 

which is used in a steam cycle to drive turbines. Both natural gas and gassIed coal can be 

used in a combined cycle using the expansion of the gasses along with the steam cycle for a 

more efficient method of generation. The benefits of this process are detailed in Chapter 2. 

Combined cycle generation overcomes the maximum steam engine efficiency limit due to the 

Second law of Thermodynamics and allows efficiencies of over 50% . Electricity generated 

through nuclear fission also involves a steam cycle that is subject to the same thermodynamic 

maximum efficiencies. 

When calculating non renewable resource the possibility of importing the fuel must be 

included with the indigenous reserve. The resource limit is therefore a fiscal one as indigenous 

production costs must be less than the import value to make them viable. Once the indigenous 

reserves near depletion, and become more expensive to obtain, the cost of the fuel can no 

longer be held down by the internal market. The result on electricity generation is a higher 

uncertainty for the continued supply of that particular fuel. As higher risks mean higher unit 

costs, the ability of that method of generation to compete against another is reduced. The 

known domestic and world fossil fuel reserves are as follows: 

OIL GAS COAL 

(million barrels) (cubic metres) (million tonnes) 

UK 4,600 0 . 6x 10 12  3,800 

WORLD 136,700 142x10' 2  1,039,182 

Table 6.1 World and UK fossil tuel 1(esource 
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OIL 

(Btu) 

GAS 

(Btu) 

COAL 

(Btu) 

UK 2.88x10' 6  2.16x10' 6  1.01x10 17  

WORLD 5.468x10' 8  
5.11x10 18  2.77x10 19  

Table 6.2 World and UK fossil tuel Kesource in mu onverwu iuruugu rniuiuu  LUHH~3 "I 

equivalent 40x 1012  Btu 103  teracalories 397x 106  therms). 

Fossil fuels are not used solely for electricity generation. As much as 70% of the UKs crude 

oil goes into the petroleum refineries, 27% is exported and only 0.8% goes to electricity 

generation. Only 20% of natural gas is used in CCGT whilst over 80% of the UKs indigenous 

and imported coal is used in generation. Nuclear fuel is all imported and, except for a tiny 

contribution to research institutions, this fuel goes into the UK's nuclear reactors. Much of 

the spent fuel can be reprocessed and some of this reactive material is converted for reuse 

which increases the overall efficiency of the fuel. 

GAMES includes non renewable resources within the exogenous forecasting data field. The 

existing available resource (an) in year 1 (n = 1) for each non renewable method of generation 

is included, in TWh, before the first year of the forecast period. Each consecutive year 

calculates the energy used in generation (en) and subtracts this from the existing available 

resource. In addition the available resource is reduced by an exogenous value of resource 

usage by industries other than the ESI (i,) converted into TWh. The result gives the resource 

available for generation in the following year (a+i) i.e.: 

= a. - - i, (TWh) 	Equation 6.1 

where: n = year of forecast 

There is also a facility to force an increase, or decrease in the known available resource in any 

year. This is achieved by altering i, the yearly exogenous value of resource usage by 

industries other than the ES!. 

6.5 Renewable Resources 

There is enough renewable energy potential within the UK to easily satisfy the present demand 

for electricity. Figure 2.2 shows how the largest resource lies in offshore wind energy. 

Unfortunately having a windy coast line does not, in itself, provide electricity. In fact the 

costs involved in building and maintaining an offshore wind farm are presently so high that 

02 1 



Fitness Function Components 

large scale generation using this resource is not competitive. The location of a renewable 

resource is also critical. For example the transmission costs involved in transporting 

electricity from the Highlands of Scotland are sufficient to make many possible hydro projects 

unfeasible. 
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Figure 6.5 Accessible renewable resource at a cost of less than IO U/KWh or less using 8% 

discount in 1992 (note that the current market price for electricity 2.7p/kWh). 

Improvements in technology will increase the availability of many resources in the near future. 

However there will always be a difference between the gross theoretical resources and the net 

exploitable potential. Obtaining a practicable value for renewable resources in the UK 

includes many factors that are difficult to quantify such as: 

• The cost of covering our landscape with wind turbines beyond simple calculations for land 

values. 

• Unpredictable shoreline erosion patterns due to tidal or wave schemes. 

• Irrigation issues resulting from hydro schemes 

• Reduction of stability problems in the National Grid and connected generators resulting 

from the numerous embedded plant, specifically the use of induction machines in wind 

turbines. 
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There have been many studies that include these issues in a qualitative manner. Quantitative 

analysis has proved more difficult and the results are therefore varied. A study by the Energy 

Technology Support Unit (ETSU), part of the Department of Trade and Industry (DTI) shows 

possible renewable resource figures for the year 2005, based on an 8% discount rate (Figure 

6.6). The results show a marked difference between the accessible and practicable 

renewable resource. It must be noted that the inclusion of 90 TWh/Year of energy producing 

crops could only occur if there was a major change in the UK and European agricultural 

policies. 

P* ?SSS 

ISU 
- 

1 U 
- 	 4 •p.dI4 

•L*-ø 	HØ 

Oss4*ip* 

't 	jr 

Figure 6.6 Practicable Resource for RETs at a cost of less than lOp/kWh or less using 8% 

discount in 2005. 

Unlike fossil fuel resources the long term depletion of available renewable resource (a,) is, 

with the exception of waste combustion, linked to the capacity of the generation method that 

utilises that resource. It is worth noting that in the short-term hydro resource can be linked to 

the water stored in the reservoirs although the long-term resource figures include sites with 

sufficient yearly, or seasonal, water run-off to sustain a hydro plant. In addition hydro plant 

must be connected to the electricity grid system without unrealistic transmission costs 

As with non renewable primary energy resource GAMES includes renewable resources within 

the exogenous forecasting data field. The existing available resource for each renewable 

method of generation is included, in TWh, before each year in the forecast period. These 

values can easily be altered during or between optimisations. The resource constraint on wind 

power, hydro power and non-proven technologies concerns the maximum amount of 

renewable power resource (ii)  that could be constructed in GW. This is also included within 

the GAMES exogenous forecasting data field. This value is calculated on a yearly basis 

starting with an initial exogenous value at year I. Each year the exploited power resource is 
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calculated by subtracting the plant constructed (c,1) during the previous year and adding any 

exogenous increases in this resource (4)  due to increases in the efficiencies of these 

technologies: 

p,+, =p, - Ca  + I (GW) 	 Equation 6.2 

where: n = year of forecast 

6.6 Capacity 

Capacity sets the limits for generation and is used to calculate the extra plant needed so that 

generation will meet demand. It is calculated based on available plant, expected outages and 

resource limitations. The GAMES model sets two capacity limits. The first is peak capacity 

which is measured in GW, which limits generation by an individual method at any instance. 

The second is yearly capacity which limits the yearly TWh of generation by any method. 

Both maximum and yearly capacities are described in detail below: 

6.6.1 Peak Capacity 
The GAMES model is generation led; in that it allocates generation to the most efficient 

generation methods. To allow for increases in generation, and the decommissioning of old 

power stations, new plant can be added to the system if necessary. The generation limit for 

any instant is set by the peak capacity (p,) at that time. Peak capacity for each generation 

method is the sum, in GW, of existing plant and any new plant (w,,) of the same type working 

at a maximum plant lifetime power factor (including outage time). This figure is subject to 

the resource limitations outlined in Sections 6.4 and 6.5. 

p,+, =p,, + w,, (6W) 	 Equation 6.3 

constrained by: 

Pn+i < Resource (GW) 	 Equation 6.4 

where: n = year of forecast 
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6.6.2 Yearly Capacity 
The Yearly capacity (yr)  is defmed as the maximum possible yearly generation (in TWh) for a 

particular type of plant using all available plant at maximum lifetime plant power factor, 

compensating for planned outages, that does not exceed resource limitations. Yearly capacity 

differs from peak capacity in that it gives a yearly limit to generation rather than setting a 

maximum for a particular instant within that year. Yearly capacity is calculated as the sum of 

existing capacity and capacity installed in the previous year (1,). 

y,,+, =y,, + in  (TWh) 	 Equation 6.5 

constrained by: 	
< Resource (TWh) 	 Equation 6.6 

where: n = year of forecast 

6.7 Generation 

The primary assumption in GAMES is that electricity demand will always be met by 

generation. The proportion of each different type of generation scheduled to meet this demand 

is set by the GAMES GA. The proportion of each generating method is therefore, as a result 

of the primary assumption, the same proportion of the demand. Thus the actual generation 

figures for each generation method can be calculated. 

Electricity Demand is given as the ACS (Average Cold Spell) demand and the yearly demand 

which is described in Section 6.3. The ACS demand represents the peak, cold spell adjusted, 

demand and is given in GW. Peak generation (pn) must meet this peak demand without 

exceeding the peak capacity constraints for each generation method i.e.: 

Pn = ACS (GW) 	 Equation 6.7 

constrained by: 
P. < Resource (GW) 	 Equation 6.8 

where: n = year of forecast 

The yearly demand (y,) , which represents the electricity demanded on a yearly basis, must be 

met by yearly generation (g,) without exceeding the yearly capacity constraints for each 

generation method i.e.: 
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gn y,, (TWh) 	 Equation 6.9 

constrained by: 

gn < Resource (TWh) 	 Equation 6.10 

where: n = year of forecast 

If, due to resource constraints, a particular generation method exceeds its capacity (either peak 

or yearly capacity) the allocated generation values given by the GA are declared void. If a 

void result was passed from the fitness function to the GA operators every time a generation 

method with depleted resource was called to generate the program would spend much of its 

time passing void messages. In order to speed up the optimisation process a technique called 

Mapping has been adopted. Mapping involves eliminating void solutions by mapping them 

into feasible areas of search space. GAMES achieves this by taking the shortfall in generation 

that was caused by a resource limit and spreading it evenly across the remaining valid 

generation methods. As such a solution is unlikely to be a global optimum the GA will 

continue to evolve fitter solutions from the new "mapped" point in th search spac& ° . 

6.8 Plant Lifetime Load Factor 

The Plant Lifetime Load Factor (PLLF) gives an indication of the usage of a particular plant. 

It is defined as the proportion of electricity generated, in TWh, by the plant (g,), in a specific 

time period, against the total amount of electricity, in TWh, that could have been produced if 

the plant had been running at maximum output for the same time period (m,). (Note: PLLFs 

are often expressed as a percentage). 

FLLF = 
	 Equation 6.11 

where: 	n = time period 

A yearly PLLF of 0.85 - 0.95 (85% - 95%) indicates base load plant running flat out. The 

missing 5% - 15% is due to scheduled maintenance and forced outages. In the case of a base 

load station, such as nuclear plant generation into the present UK electricity pool, the PLLF 

can give an indication of the reliability. In GAMES the load factor is used in variable cost, 

resource and plant lifetime calculations. Plant lifetimes are based on both expected and actual 

PLLFs for all the plant in the ES! model. 
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As the PLLF is based on plant usage, the type of plant and how it is used in the electricity 

market influences the PLLF. Most plant has an optimum PLLF that includes forced and 

scheduled outages. At this PLLF the financial returns from generation are at a maximum. 

Demanding more than optimal load from a particular plant increases the unit cost of 

generation and reduces the competitiveness, within the market, of that plant. Market forces 

imply that a less competitive type of plant will be scheduled less often which will force the 

PLLF back to optimum. However demanding less than optimum load from that same plant 

will also increase unit costs and reduce competitiveness. In this case the PLLF will be further 

reduced forcing it away from its optimum. Therefore maximum economic efficiency for a 

plant is achieved by keeping it at or above, but never below, its optimum PLLF. 

6.9 Heat Rate 

An indication of the efficiency of generation by combustion is the heat rate. The heat rate is 

given by the ratio of input to output energy in a plant using a particular fuel. Because 

generation is measured as electrical power, in kWh, heat rate is given by the energy needed to 

generate a unit of electrical power, or Btu/kWh. The actual value of heat rate depends on the 

fuel, plant size and the load factor. The following three tables show heat rates for coal, oil 

and gas combustion generating plants". 

Plant Rating 

(MV) 

Heat Rate at 

100% Load Factor 

Heat Rate at 

80% Load Factor 

Heat Rate at 

60% Load Factor 

Heat Rate at 

40% Load Factor 

Heat Rate at 

25% Load Factor 

50 11000 Btu/kWh 11088 Btu/kWh 11429 Btu/kWh 12166 Btu/kWh 13409 Btu/kWh 

200 9500 Btu/kWh 9576 Btu/kWh 9871 Btu/kWh 10507 Btu/kWh 11581 Btu/kWh 

400 9000 Btu/kWh 9045 Btu/kWh 9252 Btu/kWh 9783 Btu/kWh 10674 Btu/kWh 

600 8900 Btu/kWh 8989 Btu/kWh 9265 Btu/kWh 9843 Btu/kWh 10814 Btu/kWh 

800-1200 1 	8750 Btu/kWh 1 8803 Btu/kWh 9048 Btu/kWh 9625 Btu/kWh N/A 

Table 6.1 Typical coal plant heat rates. 

Plant Rating 

(MW) 

Heat Rate at 

100% Load Factor 

Heat Rate at 

80% Load Factor 

Heat Rate at 

60% Load Factor 

Heat Rate at 

40% Load Factor 

Heat Rate at 

25% Load Factor 

50 11500 Btu/kWh 11592 Btu/kWh 11949 Btu/kWh 12719Btu/kWh 14019 Btu/kWh 

200 9900 Btu/kWh 9979 Btu/kWh 10282 Btu/kWh 10949 Btu/kWh 12068 Btu/kWh 

400 9400 Btu/kWh 9447 Btu/kWh 9663 Btu/kWh 10218 Btu/kWh 11148 Btu/kWh 

600 9300 Btu/kWh 9393 Btu/kWh 9681 Btu/kWh 10286 Btu/kWh 11300 Btu/kWh 

800-1200 9100 Btu/kWh 9155 Btu/kWh 9409 Btu/kWh 10010 Btu/kWh N/A 

Table 6.2 Typical oil plant heat rates. 
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Plant Rating 

(MW) 

Heat Rate at 

100% Load Factor 

Heat Rate at 

80% Load Factor 

Heat Rate at 

60% Load Factor 

Heat Rate at 

40% Load Factor 

Heat Rate at 

25% Load Factor 

50 11000 Btu/kWh 11794 Btu/kWh 12156 Btu/kWh 12940 Btu/kWh 14262 Btu/kWh 

200 10050 Btu/kWh 10130 Btu/kWh 10442 Btu/kWh 11115 Btu/kWh 12251 Btu/kWh 

400 9500 Btu/kWh 9548 Btu/kWh 9766 Btu/kWh 10327 Btu/kWh 11267 Btu/kWh 

600 9400 Btu/kWh 9494 Btu/kWh 9785 Btu/kWh 10396 Btu/kWh 11421 Btu/kWh 

800-1200 9200 Btu/kWh 9255 Btu/kWh 9513 Btu/kWh 10120 Btu/kWh N/A 

Table 6.3 Typical gas plant heat rates. 

Heat rate is used to calculate the fuel needed to ensure that yearly demand is met by yearly 

generation. This is necessary for the yearly resource calculations, described in Section 6.4, 

and in order to calculate fuel costs. 

6.10 Plant 

This study assumes that plant is constructed to meet or exceed the forecast peak and yearly 

electricity that will be generated by each of the 8 plant types. This value includes outage time 

due to maintenance and the excess, or spinning reserve needed to account for unexpected 

deviations from forecasts. This follows from the primary assumption in GAMES, that 

demand will always be met by generation. 

The model does allow for excess plant to remain off-line. This minimises the variable costs 

and, in some cases, the only outgoing payments are interest payments on the initial capital. In 

this way plant can also be decommissioned before the natural plant life is exceeded. This 

would only happen if technology, in the form of more successful competing generating 

methods, overtakes the older plant or if the political risk becomes too high for a particular 

type of plant to be allowed to continue operating. 

Expected plant life is technology specific and is subject to change throughout the lifetime of 

any particular plant. This is often caused by legislation penalising older, or ageing, plant in 

order to reduce pollution or risks of accidents. The result is that the expected plant life is 

usually calculated to be shorter than the expected physical life of the machinery, usually 25-30 

years for combustion based generation, 15-50 for the mechanical parts of hydro power plant 

(although the civil engineering normally lasts much longer) and 15 - 25 years for most wind 

turbines. 
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The extra peak plant needed (pn) to provide a yearly generation that meets peak demand is 

calculated by subtracting the value of existing plant (p,,j), in GW, from the peak generation 

(kr), in GW. In addition the average outage (o,), the spinning reserve (sr) and the expected 

plant decommissioning (d) are added to the extra plant needed to meet peak generation. The 

final result is also subject to the Plant Lifetime Load factor (PLLF). 

pn = (kn - 	+ Sn  + O + d) + PLLF (6W) 	Equation 6.12 

where: n = year of forecast 

The extra plant generating capacity needed (ca), in TWh, to insure that yearly generation (gn) 

is met is calculated in a similar manner. This is to ensure that there is enough plant capacity 

to meet average outage (ta), the spinning reserve (rn) and the expected plant decommissioning 

(sr). The existing plant generating capacity (c j) is subtracted from the yearly generation in 

TWIi which is constrained by the available resource. 

C. = (g. -  c1 + r, + 1, + s) - PLLF (TWh) 	Equation 6.13 

where: n = year of forecast. 

This value of plant generating capacity is then converted from yearly TWhs into the GW of 

plant that would be needed to provide this amount of energy. This value is then compared 

with the peak plant needed and the extra plant that is to be constructed in year n is taken from 

the larger of these values. 

When the expected plant life is reached there are the options of keeping the plant operating for 

peak load times only, upgrading the plant to extend its life or decommissioning the plant. The 

choice involves an analysis of the costs of adopting each strategy. Demolition and rebuilding 

new plant on, or close to, the same site offers the advantage of lower capital costs for 

infrastructure (roads etc.), lower repairs and maintenance costs and the salvage value of old 

plant is deducted from the capital costs of the new plant. 

6.11 Operating & Maintenance costs 

Operating and maintenance costs are included as exogenous inputs in GAMES. As defined in 

the Factories Act 1961 an acceptable standard of maintenance is "one that sustains the utility 

and value of the facility". However in the UK ESI, the regulation of such a vague statement 

is separated into health and safety issues and emissions controls. Both of these can be 
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incorporated, with the operating costs, into the variable costs through the inclusion of planned 

outages and planned renovation or upgrading of generating plant. Some added capital costs 

may also be incurred for necessary safety and environmental control equipment. The actual 

expenditure on operation and maintenance (O&M) must both meet the regulatory requirements 

and satisfy a cost-benefit analysis for the plant. The regulatory requirements serve to apply 

an absolute minimum, with possible penalties for non-compliance. The cost-benefit analysis 

balances the reduction of forced outages, equipment damage and loss of revenue with the high 

costs of O&M. As the GAMES model is based on a GA this cost benefit analysis is achieved 

by the assessment of different solutions. The GA passes a number of possible solutions, of 

the primary energy mix in generation over a 40 year period, to the fitness function. Those 

possible solutions that achieve an ideal cost-benefit relationship are deemed fitter, survive and 

are chosen for the next generation of optimisation. The actual costs involved, and resulting 

fitness of the possible solution, vary depending on the type of plant and its usage which is 

discussed in Section 6.6. Typically O&M costs are around 3%-7% of the capital costs for 

fossil fuel plant, 0.5%-3.5% of the capital costs for wind and hydroelectric plants. These 

figures do increase with the age of the plant so the expected life of a plant is critical in 

calculating the extent of regular maintenance. 

6.12 Contractual arrangements 

The new electricity market structure in the UK will include a large scope for individual 

contractual arrangements between players in the market, typically between the generators and 

the suppliers who provide electricity for the consumers. GAMES includes the facility to add 

extra contractual arrangements as they arise in the electricity market. They are split into long-

term, medium-term and market-price contracts in accordance to the new pool rules described 

in Chapter 2. 

6.12.1 Long-Term Contracts 
Long-Term contracts cover periods longer than one year. They can offer the supplier a 

maximum price limit (or price cap) for electricity whilst providing a guaranteed demand for 

energy produced by that generator. In the near future contracts will include price sharing 

strategies that will divide the risk of the demand falling below predicted values between the 

suppliers and generators. A typical cause of an over estimated demand is a mild winter, or 

early spring. In this case the risk share could even include an industry that consumes 

electricity but benefits from warmer than average weather. Ice cream manufacturers are an 

example. Contracts of this type are included in the model within the calculation of returns 
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from generation. A maximum market price is set for electricity generated within price cap 

contracts. Risk sharing contracts are implemented through the inclusion of a minimum yearly 

revenue from plant included within these arraignments for the contract period. 

In the UK renewable energy incentives such as the Non Fossil Fuel Obligation (NFFO) for 

England and Wales and the Scottish Renewables Order (SRO) in Scotland have created the 

must-take contracts. Successful applicants to the NFFO and SRO are provided with must-

take contracts which guarantees that all the electricity generated by these stations must be 

purchased, by the electricity pool, at a price scale agreed for 15 years. This price is set as an 

exogenous input and can include a sliding scale when the contract period has ended. The 

majority of renewable generation and all of nuclear generation is under must-take obligations. 

6.12.2 Medium-Term Contracts 
Medium-term contracts extend from one day to a couple of years. They guarantee a supply at 

a defined price, or price structure, for a short period. Their advantage over long-term 

contracts is that they allow both parties to play the market and benefit from either seasonal or 

simply market led fluctuations in electricity price. The disadvantage is that this form of 

speculation can increase the volatility in the market. 

6.12.3 Market-Price Contracts 
Presently market-price contracts are the contractual obligations of all the players in the 

market. Regulatory bodies will limit the cost of electricity for the consumer and maintain the 

obligation to provide electricity to remote areas. Within this scope the suppliers and 

generators will operate a half-hourly spot market for electricity. The yearly average market 

price is supplied to GAMES as an exogenous variable although if capacity greatly exceeds 

demand this price is reduced. 

6.13 Externalities 

The drive to include environmental costs in decision making and the cost-benefit analysis 

involved in plant mix choices has led to an increased awareness of the impact of 

environmental issues. As the scope of environmental issues in electricity generation is large a 

full quantitative analysis is not possible. However it is possible to identify the key issues and 

assess their impacts on energy usage in generation. It is important to note that the 

preservation of the environment has become an exceedingly political issue and that the UK 
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policy towards environmental issues in electricity generation, specifically towards renewable 

technologies, is no exception . 

The understanding of environmental economics has increased over the past decade as 

governments have acknowledged the costs, in financial terms, of environmental damage. The 

use of energy can be linked to the damage of natural ecosystems, human health, livestock and 

man-made structures. The associated costs of this damage is referred to as the external costs, 

or externalities of energy, as it is not reflected in the market price for the energy that caused 

the damage. In the case of electricity generation a regulatory policy of emissions control, with 

the power to penalise or even shut down plant, has been adopted. The amount and type of 

regulation is based on external costs along with market and political concerns. Through 

regulation electricity generators are becoming more accountable for their external costs, it is 

highly probable that this trend will increase. As accountability does increase it will also 

become more direct through taxation structures that penalise by the exact external costs 

incurred by each generator. Although this in itself will help with the liberalisation of the 

electricity market some control over the trading of externalities might be necessary. 

A comprehensive study of the external costs in electricity generation in was started by the 

European Commission in 1991. The project was called ExternE Externalities of Energy95  and 

contains the following: 

The integration of environmental concerns in the choosing of fuels and energy technologies. 

. The evaluation of the costs and benefits of strict environmental standards. 

The development of indicators of environmental standards of different technologies to 

enable direct comparisons. 

o The investigation of policy initiatives to encourage competition and market mechanism in 

the energy sector. 

All of the above factors include the "quantification of the environmental and health impacts 

of energy use... " Which is one of the study's primary objectives. 

The inclusion of externalities into the GAMES model was centred around the findings of the 

ExternE project. Using the quantitative analysis provided by the study on the external costs of 

generation using different fuels, sets of functions were derived and included in the GAMES 

forecasting model. The externalities included can be split into two categories: 
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Quantifiable Damage 

• Public health (including disease). 

• Occupational health (including disease). 

• Crops as a result of atmospheric pollution. 

. Forests 

• Terrestrial ecosystems 

• Fisheries due to acidic deposition 

Quantifiable impact to Environments 

• Water quality 

• Air Quality 

• Global warming 

• Noise Pollution 

• The destruction of sites of historical or cultural importance 

The external functions in GAMES that solve the externalities are split into f(Efied) and 

fn(Evariai,ie) where f1 .n)(Elix I) and f . n
)(Eiue) represent the external functions for each 

method of electricity generation (1 . . . n) providing indices for both the fixed and variable costs 

for each generation. This accommodates the proportional link between some of the 

externalities and generation increases along with the proportional link between other 

externalities and the construction of new plant. The total external (f(E)) cost of each 

generation method, in standardised financial units, is given by: 

f(E) fn(Efixed) +fn(E abIe) 	 Equation 6.14 

The total external costs can therefore be given by: 

fn  (E) 	 Equation 6.15 

where: n is the number of generation methods under analysis in the model. 

The external costs provide a vital addition to the model as they are a reality. Their inclusion 

can dramatically change the outcome of a scenario and therefore great care is needed when 

deriving their values. This is primarily as many external costs, such as the impact on the 

National Health Service caused by air pollution, are not currently accounted for by direct 

regulation or taxation of the generators but are included within the government's treasury 
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budget. Some externalities, such as the depletion of natural gas, are presently not accounted 

for and are simply taken from the country's assets. 

6.14 Fossil Fuel Combustion 

The determination of emissions from a particular power station can be monitored directly. As 

GAMES is a fuel based model emissions calculations can be made using the amount of fuel 

that is used and the method of its combustion. This is achieved through the calculation of the 

mass of pollutant that is created through the combustion of a single tonne of fuel, or emissions 

factor. The model contains these values, which are derived in Sections 6.14.1, 6.14.2 and 

6.14.3, and uses them to calculate the yearly emissions from each method of fossil fuel 

combustion. This is achieved by multiplying the emissions factor by the amount of fuel 

needed to achieve the required generation, which is itself derived from heat rate in Section 6.9. 

As the issue of combustion is very complex and a full analysis is beyond the scope of this 

study the following assumptions are used: 

• Aggregate values for the constituents of each fuel can be used to give the combustion 

equations for each typical UK fuel. These figures are subject to change as the domestic 

resources are used and as economic factors change. 

• Fuels can be defined on an elemental basis and the constituent parts that are not included 

within the elements of carbon, sulphur and nitrogen can be considered of negligible effect 

and are not taxable. The exception being that of particulates which are included as ash 

and taxed for their landfill value. Although this is a large simplification of very complex 

paths of combustion the relatively large percentage of CO 2  SO2  and NO emissions 

makes this assumption valid. 

• All combustible elements of the fuel will be fully oxidised to form gaseous emissions and 

all the oxygen necessary to fully burn the fuel will be available for this process. This 

assumption is valid for carbon and sulphur as their uptake ranges from 85%-90% 

however nitrogen has a lower uptake of oxygen and nitrogen from the atmosphere often 

reacts to form NO x  at high temperatures. 

• Combustion of a given mass of fuel releases the fuel's full calorific value within the plant's 

combustion area. This assumption is ensured by the long time periods that fuel spends in 

the combustion area, typically ten times the combustion time for coal with an adequate 

supply of air. 
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6.14.1 Gas Combustion 
The percentage masses of the main constituents of the gas used in the UK's gas fired power 

stations, their molecular masses and their reaction formulae when combusted in air are as 

follows: 

Constituent of Gas %Mass of 

Gas 

Molecular 

Mass 

Combustion Equations 

methane 91.98 19 Cl-I4  + 202 —3 CO2 + 2H20 

ethane 4.50 30 2C2H6  + 702 —* 4CO2  + 6H20 

propane 1.38 44 C3H8  + 502 —+ 3CO2  + 41-120 

butane 0.25 58 2C41-1 10  + 1302 —3 8CO2  + 10H20 

pentane 0.03 72 C51112 + 802 —+ 5CO2  + 61-120 

hexane 0.01 86 2C6H14  + 1902  —3 12CO2  + 141-120 

Table 6.4 Molecular, Percentage masses & combustion equations for constituents 01 natural gas. 

Table 6.4 shows how we can approximate that the alkanes are totally oxidised giving only 

carbon dioxide (CO2)  and water vapour (1-120) if total combustion is assumed. Assuming total 

combustion implies that there is an excess of air throughout the fuel mixture so levels of 

carbon monoxide (CO) are negligible. In addition the effects of increased temperature within 

the reaction are ignored as this results in the formation of small quantities of nitric oxides 

(NO) from the atmosphere 97 . 

Table 6.4 gives the Molecular masses and the combustion equations for over 98% of the 

constituent parts of natural gas. It is assumed that the 2% are impurities that are either inert or 

have a negligible effect. As the molecular mass of CO2 is 44 and the molar proportions can be 

taken from the combustion equations it follows that: 

I mole CO2 	I mole methane 

= 	44kgCO2 	16kgCH4 

As methane forms 91.98% of natural gas 

1 kg of natural gas will give: 

(44 x 0.9198'\ 

16 	) = 
2.5295 kg 	 Equation 6.16 

Of CO2 due to the constituent methane when fully combusted. Table 6.5 completes this 

process for the remaining constituents. 
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Constituent of Gas CO2 Emission from the Combustion of 

One Tonne of Natural Gas 

methane 2.5295 tonnes 

ethane 0.1173 tonnes 

propane 0.0414 tonnes 

butane 0.0075 tonnes 

pentane 0.0092 tonnes 

hexane 0.0003 tonnes 

TOTAL 2.7052 tonnes 

Table 6.5 Constituent CO 2  Emission from the Combustion of I Tonne of Natural Gas. 

Table 6.5 uses the above method to give the constituent contribution to CO 2  emissions for the 

combustion of natural gas in the production of electricity. The average efficiency of CCGT 

plant is 45%. If the calorific value of natural gas is 50MJIkg and in 1997 99,080 GWh of 

electricity were produced by the combustion of gas then: 

99080x 109  

50000 x 0.45 = 
4.4x 109  tonnes of gas were burnt in 1997 	Equation 6.17 

as the combustion of one tonne of natural gas gives 2.7052 tonnes of CO 2  the total amount of 

CO2 emissions due to the combustion of natural gas in 1997 was: 

4.4x109  x 2.7052 = 1.19x 1010  tonnes of CO 2 	 Equation 6.18 

6.14.2 Coal Combustion 
The percentage masses of the main constituents of the coal used in the UK's coal fired power 

stations, their molecular masses and their reaction formulae when combusted in air are as 

follows: 

Constituent of Coal %Mass of Coal Molecular Mass Combustion Equations 

carbon 79.7 12 C+02  —* CO2  

sulphur 0.8 32 S + 02 —* SO2 

nitrogen 0.9 14 2N + 02 —* 2N0 

ash 9.6 - - 

Table 6.6 Molecular, percentage masses and combustion equations for constituents ot UK coal. 
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Assuming total combustion as with natural gas: 

• Assuming excess air during combustion carbon is completely oxidised to carbon dioxide 

and levels of carbon monoxide (CO) are negligible. 

• Sulphur is completely oxidised to sulphur dioxide and the air levels are not so high as they 

aid the formation of sulphur trioxide (SO 3). 

• Nitrogen is completely oxidised to nitric oxide (NO) and the effects of increased 

temperature within the reaction are ignored, although this results in the formation of small 

quantities of nitric oxides (NOx) from the atmosphere. 

Table 6.6 gives the Molecular masses and the combustion equations for 91% of the 

constituent parts of the UK's coal - resource. The shortfall represents the moisture content. It 

is assumed that impurities other than nitrogen and sulphur are either inert or have a negligible 

effect. 

It is accepted that there are variations in the purity of coals. Calorific values range from 

21 .28MJ/kg in Westfield mined coal to 26.9MJ/kg in Rashiehill & Backshot mined coal. In 

addition the sulphur content from these two mines is 1.8% and 0.9% respectively. The ash 

nitrogen and moisture levels also vary between mines. GAMES uses an average figure for 

these values which can be varied depending on the quantity of the UK's coal resource. 

As the molecular mass of CO 2  is 44 and the molar proportions can be taken from the 

combustion equations it follows that: 

I mole CO2 	: I mole carbon 

44kgCO2 	: 12kgC 

As carbon forms 79.7% of UK coal 

1 kg of coal will give: 

(44 x O.797' 

12 	) 
= 2.92 kg 	 Equation 6.19 

Of CO2  when combusted. 
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Table 6.7 completes this process for the remaining constituents. 

Constituent of Coal Emission from the Combustion of One 

Tonne of Coal 

carbon 2.92 tonnes CO 2  

sulphur 0.0 16 tonnes SO2  

nitrogen 0.01 9tonnes NO 

ash 0.0096 tonnes ash' 

Table 6.7 Constituent CO 2  Emission from the Combustion of One Tonne of UK coal. 

Table 6.7 uses the above method to give the constituent contribution to emissions for the 

combustion of coal in the production of electricity. The average efficiency of coal plant is 

30%. If the calorific value of this sample of coal is 26MJ/kg and in 1997 110,151 GWh of 

electricity were produced by the combustion of coal then: 

110151x 10 9  
= 1.412x10 10  tonnes of coal combusted 	Equation 6.20 

26000 x 0.30 

as the combustion of one tonne of coal creates the emissions given in Table 6.7 it follows that 

the emissions due to coal combustion in 1997 were approximately: 

1.412x 1010  x 2.92 = 3.23x10' ° tonnes of CO2 	 Equation 6.21 

1.412x10'°  x 0.016 = 2.26xlO8 tonnes of SO2 	 Equation 6.22 

1.412x10'°  x 0.019 = 2.68xlO8 tonnes of NO 	 Equation 6.23 

1.412x 10' 0  x 0.0096 = 1.36xl08 tonnes of ash 	 Equation 6.24 

6.14.3 Oil Combustion 
The calculations for oil emissions, when being burnt for electricity generation, are similar to 

those of coal. The major difference is that the ash and nitrogen content of oil is assumed to be 

negligible, therefore only CO2 and SO2 calculations are performed for oil emissions. 

Ash is given as a percentage of combusted weight of material. 
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Constituent of Oil %Mass of Oil Molecular Mass Combustion Equations 

carbon 84.6 12 C+02  —* CO2  

sulphur 4 32 S + 02 —> SO2 

Table 6.8 Percentages, molecular masses and combustion equations for the constituents of oil. 

As with coal the following assumptions have been made: 

• Assuming total combustion as with coal, carbon is completely oxidised to carbon dioxide 

and levels of carbon monoxide (CO) are negligible. 

• Sulphur is completely oxidised to sulphur dioxide and the air levels are not so high as they 

aid the formation of sulphur trioxide (S0 3). 

• The differences between the oils used in electricity generation can be aggregated so that the 

UK's total emissions from this fuel can be calculated. The percentages of the constituents 

in oil are subject to change with economic and resource changes. 

Table 6.8 gives the Molecular masses and the combustion equations for 88.6% of the 

constituent parts of the UK's oil resource. It is assumed that impurities other than nitrogen 

and sulphur are have a negligible effect on the environment or will not be subject to taxation in 

the foreseeable future. 

As the molecular mass of CO 2  is 44 and the molar proportions can be taken from the 

combustion equations it follows that: 

I mole CO2 	: 1 mole carbon 

=> 	44kgCO2 	: 12kgC 

As carbon forms 84.6% of combustible oil 

1 kg of oil will give: 

(44 x 0.846 

12 	) 
= 3.102 kg 	 Equation 6.25 

Of CO2  when combusted. 
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Table 6.7 completes this process for the remaining constituents. 

Constituent of Oil Emission from the Combustion of One 

Tonne of Oil 

carbon 2.92 tonnes CO2 

sulphur 0.08 tonnes SO2  

Table 6.9 Constituent CO 2  Emission from the Combustion of One Tonne of oil. 

Table 6.9 uses the above method to give the constituent contribution to emissions for the 

combustion of oil in the production of electricity. The average efficiency of oil plant is 38%. 

If the calorific value of this sample of oil is 39MJ/kg and in 1997 4,889 GWh of electricity 

were produced by the combustion of oil then: 

4889x iø 
= 3.299x i09  tonnes of oil combusted 	Equation 6.26 

39000 x 0.38 

as the combustion of one tonne of oil creates the emissions given in Table 6.8 it follows that 

the emissions due to oil combustion in 1997 were approximately: 

3.299x109  x 3.102 = 1.02x10 10 tonnes of CO2 	 Equation 6.27 

and 

3.299x 109  x 0.08 = 2.64xlO8 tonnes of SO 2 	 Equation 6.28 

6.15 Emissions Reduction 

The reduction of emissions involves an increase in both capital and operation costs. An 

example of this is the £400,000,000 that Drax, Europe's largest coal-fired power station, 

invested to install sulphur dioxide scrubbers. In addition the unit cost of electricity increased 

by 0.6 pence when the scrubbers were operational. In order to remain competitive it was often 

necessary to generate without the use of the scrubbers. 

The costs of reducing emissions can be included into capital costs and as a function of the 

running costs. These costs are called Ambient Costs (AC) and can be calculated for any 

particular plant by: 
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ACT,, = G( ACco2  + AC so2  + ACN02 + ACh) 	Equation 6.29 

where: G = Generation in kWh 

Ambient control costs must be balanced against any incentives to reduce emissions or 

penalties for pollutants. The final expenditure on ambient control is proportional to the 

present, and predicted future, taxation of emissions. GAMES assumes that in regards to the 

extent of its emissions control strategy, privatised generating utilities will maximise their 

profits through the cost-benefit analysis of emissions control against emissions taxation. This 

is implemented through the inclusion of emissions taxes or emissions control costs. As The 

GAMES GA assesses the fitness of each possible solution of generation mix over a 40 year 

period, the fittest solution will contain the most profitable combination of emissions control 

costs and the costs incurred through emissions taxation. 

6.16 Environmental Taxes 

Taxation of fossil fuels can be incorporated into the overall fuel costs for each kWh generated 

by its combustion. However the taxation of the emissions from combustion based generation 

is plant specific. Past trends can give an indication of these levels and an approximation 

based on real and theoretical values can give the average percentage of each taxable pollutant 

for each generation method. An adjustment is included within GAMES that allows for an 

increase in the pollutants within the fossil fuel as the UK's resources are depleted. Once the 

domestic resource is depleted the pollutant levels can be set to a European average. 

Emissions taxation from domestic fuels are calculated as follows: 

Tax Cost = mass of pollutant x tax rate x pollutant factor 	Equation 6.30 

where: 

pollutant factor oc {f(domestic resource)' + F(fuel price)} x {proportion of pollutant} 

Equation 6.31 

GAMES groups emissions taxes into five separate fields. Each field can be adjusted 

independently and are outlined in Sections 6.16.1 through to 6.16.4. The five Taxation fields 

include: 
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6.16.1 Fossil fuel levy. 

6.16.2 Carbon Tax. 

6.16.3 NO,, Tax. 

6.16.3 SO,, Tax. 

6.16.4 Ash Tax. 

6.16.1 Fossil Fuel Levy 
The fossil fuel levy was introduced to provide support for renewable technologies at the cost 

of the larger fossil fuel combusting plant. The intention was to allow the smaller, less 

polluting schemes compete against the larger established generating methods. The tax was 

originally set at 10% of revenue from fossil fuel combustion but was reduced in 1998 to 1% 

after criticism by the European Commission that the levy was subsidising the nuclear industry. 

Of the funds raised by the levy 96% went to the Nuclear industry and the remainder went to 

the renewable technologies. The new rate of 1% pays for the present and future NFFO and 

SRO projects although nuclear subsidies still continue through the allocation of must take 

contracts which are described in Section 6.12. 

6.16.2 Carbon Tax 
The idea of carbon taxation was introduced to encourage utilities to move away from high 

carbon content fuels and thus reduce CO 2  emissions. Although the unilateral introduction of 

this tax has as yet been rejected by the UK, it is highly likely that it will be introduced Europe 

wide in the near future as a measure to achieve the 1997 Kyoto summit targets. The 

calculation of this tax involves the multiplication of the carbon content of combusted fuel by 

the taxation level. This is done on a yearly basis and the user of GAMES can alter the yearly 

taxation levels applied on a year by year basis. 

6.16.3 Nitrogen & Sulphur Taxes 
Sulphur and Nitrogen emissions are also not yet taxable, although penalties for excess 

emissions do exist. As with carbon taxation (Section 6.16.2) this is set to change and the 

facility to directly tax for SO, and NO x  emissions is built into GAMES as a direct yearly tax 

on these emissions. 

6.16.4 Ash Tax 
Ash is taxed by its landfill costs. The present cost in the UK is £3 per tonne of ash and this 

figure is set to rise to over £10 per tonne within the next decade. The amount of ash produced 

by coal combustion depends on the quality, or ash content, of the coal. A yearly aggregate 
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value is used in GAMES which can be altered to investigate the impact of using different 

types of coal. Variations in ash content and yearly ash tax rate can be entered as exogenous 

data on a year by year basis. The yearly taxation costs involve the multiplication of these 

figures with the mass of coal used in generation in that same year. 

6.17 Risk 

All electricity generation has associated with it elements of risk. Risks can be associated with 

human life, the environment or technological aspects. Each of these risks is often forecasted 

and given a monetary value. The costs of reducing each risk is then compared to this value to 

prove its viability. In addition these values are added to the investment risk to give a final 

total risk. The total risk gives an indication of the project's worst case profit margin (be it 

negative or positive). There are many methods by which this worst case scenario can be 

avoided. 

GAMES assumes that risk management strategies are utilised to limit worst case scenarios to 

acceptable levels. This is achieved through a structure of penalties which penalise possible 

solutions to the long-term primary energy mix in generation that do not follow risk avoidance 

strategies. The level of these penalties can be altered on a year by year basis using the 

exogenous externalities data field. When investigating the feasibility or the sustainability of a 

technology the risks and methods of dealing with them must be known. This is so that a 

realistic worst case, adjusted by risk management strategies, can be used". The risks that 

have a primary affect on generation choices can be divided into three main groups: Market 

risk, technological risk and political risk. Sections 6.17.1, 6.17.2 and 6. 7.3 describe these 

risks and the method by which GAMES includes them into the ES! model. 

6.17.1 Market Risk 
A free market in electricity will allow speculation. Speculation causes market volatility which 

increases the risks involved in playing the market. Presently the UK pool also experiences 

volatility as a result of having to meet an uncertain short-term (hourly, daily and weekly) 

demand. GAMES makes the assumption that generators use contractual arrangements to 

reduce the impact of excess volatility. Most contracts involve agreements that span a time-

scale that will not be affected by short term market fluctuations. GAMES allows for long 

term Must Take contracts that ensure that all the electricity generated by the particular power 

station is purchased by the grid. The result is that plant that has a must take contract can 

generate at capacity based on the knowledge that there is a fixed unit price. This has a similar 
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effect on the market as the base load generators had under the former nationalised generation 

network. 

A second method of reducing market risk is vertical integration. This involves investments 

along the supply chain. The result is that the risks of unexpected fuel price rises are 

eliminated and can even be exploited by vertically integrated generators. As this strategy does 

not directly affect the decision to build a particular type of plant it is not included within 

games. However vertical integration along the fuel supply chain does affect fuel price which 

is one of the exogenous variables included in the GAMES forecasting model. 

6.17.2 Technology risk 
The reliability of plant continues to be a major handicap against investment in new renewable 

generation schemes. The only notable example is the exploitation of large and medium-scale 

hydro power. A simple function is included in GAMES to reduce the returns from unreliable, 

or non-proven, plant in order to assimilate the extra costs of unscheduled outages and 

maintenance. The technology risk function simply adds a user defined sum to the cost of 

every kWh generated by unreliable plant.. 

The risks associated with technology are not limited to non-proven methods of generation. 

Even established generation methods are liable to be superseded by advances in technology. 

The modular design of most CCGT power plant should enable such advances to be adopted 

quickly. In reality the expense of going off-line and modernising plant is so great it only 

happens when the existing plant has already reached the end of its expected life. The larger 

generating utilities are able to adopt strategies to reduce the impact of plant becoming 

redundant or even failing. The most common responses to technological risk are horizontal 

integration, risk sharing and diversification described in Sections 6.17.2.1, 6.17.2.2 and 

6.17.2.3 respectively. 

6.17.2.1 Horizontal Integration 
This method aims to increase market share by absorbing the competition and utilising their 

technologies. Horizontal integration relies upon the assumption that if one operation is doing 

badly the other will be doing well. This provides a buffer by which poorly performing 

generating plant, that is temporarily returning low profits, can be sustained until the market 

returns to its favour. Therefore a result of horizontal integration is an increase in 

diversification. To account for this effect GAMES includes a function that sets a minimum 

amount of diversity in generation. Possible solutions that contain less diversity than this 

minimum level incur a user defined penalty. 
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6.17.2.2 Risk sharing 
Typically this occurs by sharing the risk through joint ventures. Often expensive and risky 

ventures are shared by competing companies which would be unable to accept the risk 

individually. This strategy has not yet been adopted in the generation side of the electricity 

market. At present risk sharing has been limited to oil exploration but extensive research into 

weather associated risks, due to both global warming and local effects, may result in risk 

sharing between utilities that benefit from periods of abnormally high temperatures and 

utilities that benefit from low temperatures. 

6.17.2.3 Diversification 
This involves swapping a specific risk for a general market risk. Most generating utilities own 

generating plants that rely on different fuels to reduce the effect of a failure of an individual 

fuel supply. In addition diversity is kept because each method of generation has its place in 

the market. The GAMES diversity function assumes that at any one time there is a limit to 

the proportion of any one generation method. This figure can be adjusted by the user but is 

typically around 70% based on historical data. The penalties for lack of diversification follow 

a linear increase with percentage value over the set maximum. 

6.17.3 Political Risk 
Political risk is closely related to environmental and technological hazards. Although often 

media led public opinion affects political policy decisions. Even if the information that forms 

public opinion is of a low quality politicians will often act to satisfy the voters demands. 

Accurate forecasting of such an indirect and inefficient process is not feasible, however to 

allow for political trends GAMES includes a weighting that can be used to handicap a 

generation method on a yearly basis. This tool is likely to be misused subjectively and is 

therefore normally set to zero unless the effects of political risk are being assessed. Valid 

examples of its use include the modelling of the 1996 Labour election manifesto promises of 

ending the "dash for gas""' and to cease the construction of new nuclear power generating 

plant. The implications of this are the application of a heavy weighting against the 

construction of new nuclear plant and a lesser weight applied against CCGT plant. The 

resulting costs increases in a linear fashion with every GW of new plant commissioned. The 

size of the weight is user defined for each generating method. 
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6.18 Capital Costs 

The initial, capital, costs of building a new electricity generating plant are made up from a 

variety of sources. Different plant types have different costs associated with them. The 

installed costs of wind power are very site specific due to terrain, road access and distances 

from national distribution and transmission grid. Wind power technology itself is relatively 

new which causes up to a 20% variation in manufacturing costs". High head mini hydro 

plants have capital costs associated with civil engineering and installation along with 

manufacturing and connection costs applied to all embedded generation schemes. 

Wind power capital costs are mostly based on blade swept area. This does not allow for 

comparisons between different energy producing technologies. To compare different 

technologies the capital cost per installed kW is needed. An example of different costs per 

installed kW is shown in Table 3.1. The payment procedure for capital costs is quite 

complex. Normally yearly payments are made that include the interest for the capital and 

capital sum based on a prearranged repayment formulae. 

EXAMPLES OF APPROXIMATE CAPITAL COSTS 

Energy Producing Technology 	 1/kW 

Wind Farm (400kW turbines) 	 800 - 1200 
High Head Mini Hydro (200m, 200kW) 	 950 
Large Gas Power Station (with 600MW Generators) 	750 
Large Oil Power Station (with 600MW Generators) 	800 
Large Coal Power Station (with 600MW Generators) 	900 

IA 

Table 6.10 Examples of capital costs invoivea in ainerent types in eieviuuiiy gucIaIIuu 

During the forecast period payment calculations are made on a yearly basis with each plant 

type being subject to the same repayment conditions that are set by the user. At the end of the 

forecast period any plant that has not exceeded its pay-back period, in that it has outstanding 

debt, is charged for the borrowed capital. In order to make comparisons between competing 

plant types a net-present value (NPV) calculation is made. All suggested plant construction 

capital costs are discounted equally to make a fair playing field. This is done using a single 

payment present worth function shown in below. 

Payment Due = Remaining debt x [(I
+ d)"] 	

Equation 6.32 
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The yearly capital and interest payments along with the remaining NPV end payment are 

added to the yearly fixed costs. 

6.19 Yearly Costs 

The yearly cost of generating electricity varies between differing electricity generating 

technologies. These costs can be separated into fixed costs and variable costs. Fixed costs 

are not dependant on generation and include loan repayments, local rates, land rental, 

connection charges, insurance and general site maintenance. 

The total yearly fixed costs (F), in pounds sterling, depend on plant capacity (p), in GW ie: 

F = pZ f5 (fixed) 	 Equation 6.33 

where: f5(Fixed) = an explanatory function, in £IMW, that describe a particular fixed costs. 

and: n = number of explanatory fixed cost functions 

Variable costs are those that are directly influenced by plant output and include fuel costs, 

reactive power charges, a proportion of maintenance costs and emissions taxes. The total 

yearly variable costs (V), in pounds sterling, depend on yearly generation output (g), in MWh 

ie: 

F = gZ f5 (Variable) 	 Equation 6.34 

where: f( Variable) = an explanatory function, in £IMWh, that describe a particular variable 

costs. 

and: n = number of explanatory fixed cost functions 

Non renewables have high proportion of variable costs due to the cost of fuel and emissions. 

Conversely renewables have a high proportion of fixed costs as their major costs include loan 

repayments, general maintenance, local rates, land rental and insurance, which all electricity 

generators must pay for. For example a wind farm will have variable costs of around 2.5% of 

the total fixed costs per annum or alternatively 0.5p/kWh with an additional reactive charge of 
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0.3p/kWh (where, in the case of induction generators, reactive power demand is assumed to be 

approximately 30% of the energy produced by each turbine)". 

The model uses the sum of yearly fixed and variable costs give the overall yearly costs. In 

addition the interest payments on the money used for the capital costs must be accounted for. 

Although these interest payments vary due to interest rate changes during the plants life they 

are not considered to be variable costs. Low renewable variable costs means that these 

payments, discounted at a user defined interest rate, form a major part of the overall yearly 

costs for the technology. 

6.20 Returns 

The returns from electricity generation depend on the amount of electricity sold to the 

electricity pool and the pool price during that period. The UK pool rules, in force at the time 

of writing this thesis, allow each generator to offer a half hour selling price for electricity 24 

hours in advance". The pool takes as many generation bids as it needs to satisfy the expected 

half hourly demand starting from the cheapest bids. The final price paid by the pool to the 

generators is the highest bid price reached as they accept bids to meet the expected demand. 

The pool price, is highly volatile but yearly averages are more predictable. GAMES uses a 

yearly aggregate value of pool price (p) in p/kWh. The return from generation (r) is therefore 

given by the product of this value and the yearly generation by each method of generation (g). 

r =p x  g 	 Equation 6.35 

The UK electricity market is set to be changed by the year 2000 to a system that is more 

contractual and less volatile. This will enable generators to sell electricity at a lower unit 

price under long and medium-term contracts. This will reduce their market risk which will, 

over the contract period, compensate for the lower returns. Although generators selling on the 

short term market will obtain higher prices for electricity their market risk price will increase 

accordingly. This has been incorporated into the model by allowing fixed, reduced or capped 

prices for electricity. 
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6.21 Beyond the Forecast 

If the model were to stop optimising at the end of the forecast period and ignore what happens 

after that time it would suggest diminishing our fossil fuel reserves regardless of the costs of 

having redundant plant the year after the forecast period has ended. To account for this 

GAMES continues its optimisation for twice the forecast period. The exogenous data needed 

to continue the forecast is extrapolated from the final years of the forecast period. The costs 

and revenues are calculated for this extra time period and added to the fitness result as 

described in Section 6.22. Although this is a large approximation the cost of maintaining or 

decommissioning redundant plant is high which makes the continuation of the model beyond 

the set forecast period necessary. 

6.22 Fitness Result 

The value returned from the fitness function is given by the sum of all the revenues from 

electricity generation minus the sum of all the costs. This also applies to the revenues and 

costs generated after the forecast period as described in Section 6.21. The return value also 

includes the sum of all externalities political functions and risks and penalties for exceeding 

technical and market constraints. This figure is therefore not representative of the actual 

profits within the ES! as many of these functions within this macroeconomic model represent 

weights, penalties and cost conversions. These weights and penalties are used to keep the 

optimisation within a realistic search space. They are not to adjust the importance of internal 

functions in order to influence the final results. 

The fitness result gives a grade to the chromosome, or possible solution that has been 

evaluated. The fitness value affects the chances of this chromosome surviving to breed and 

have an influence over the next generation of chromosomes. In this manner those possible 

solutions which have high fitness results survive and those with low results are lost. The 

functions outlined in this chapter operate by contributing to the overall fitness result of each 

chromosome. Although the combination of these functions is non-linear and discontinuous, 

due to imposed constraints, they do not pose a problem to the optimisation process. This is 

because the GA only needs to assess the fitness of each possible solution, rather than create a 

mathematical solution to the simultaneous combination of these functions. 
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6.23 Summary 

The functions, constraints and weighting mechanisms described within this chapter are 

included within the GAMES fitness function and represents the overall utility function which 

forms the core of the forecasting model. This function is used to assess the fitness of possible 

solutions passed from the GA selection operators. High fitness results imply that the possible 

solution is nearer to the optimum than low fitness results. However because the GA selection 

is based on the relative fitness of possible solutions, the actual values are not relevant. 
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7. THE G.A.M.E.S. PROGRAM 

7.1 Overview 

GAMES has been created using Microsoft Visual C++" version 4. It has been compiled for 

use with Microsoft®  Windows NT". This takes advantage of dedicated 32 bit technology, pre-

emptive multitasking and overall platform stability which is not fully available in Windows 

95' and Windows 98w . 

GAMES has been designed to look like and run like standard Windows software and is easy to 

operate. Section 7.2 outlines the basic operational skills needed to run GAMES. Data 

manipulation is similar to that of common spreadsheets and is divided into Historical, 

Forecasting and External data sheets outlined in Section 7.3. Before running the genetic 

algorithm (GA) the user is given access to critical genetic operator functions. The 

manipulation of each of these operators is described in Section 7.4. The user can view the 

progress of the GA both during and after the optimisation process. The GA's progress can be 

assessed by analysis of the population or by viewing the model's output results. Section 7.5 

concerns the results which can be displayed graphically or sent to a text file that can be 

viewed using Microsoft Excel or any text editor or spreadsheet. Viewing by spreadsheet has 

been simplified by a Microsoft Excel Macro that has been created to automatically read, and 

graphically represent these text files. 

7.2 Starting GAMES 

GAMES has been created with a Windows user in mind. Any Windows user who can operate 

the most basic functions in Windows Excel can easily master all the GAMES controls. 

GAMES can be operated without any knowledge of GAs as the default settings are set for 

optimum overall performance. For advanced use and manipulation of the genetic algorithm 

itself an understanding of GAs and their operators is needed. Altering the genetic operators 

can improve the quality of results and the time taken to generate them. It must be noted that 

the misuse of these options may compromise results. 
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7.2.1 Opening GAMES 
To start GAMES the user needs to double click the GAMES icon on their desktop. The icon 

is shown below: 

Figure 7.1 GAMES icon. 

This brings the initial screen: 

laxr 

Figure 7.2 The initial GAMES option screen 

The initial screen offers four choices: 

Edit Variables; which starts the exogenous data editing wizard. 

Look. which opens previous results and displays them as text or graphically. 

Go GA Go: which is only enabled after the Edit Variables wizard is complete and allows 

the user to start the model immediately or manipulate the GA before starting the model. 

Quit; which ends GAMES. 
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7.2.2 Priority Setting 
GAMES does not interfere with any other applications whilst open and running. However the 

evolutionary process of the GA has been given a high processor priority to reduce the time 

needed for the model to achieve its goals. 
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Figure 7.3 Using Windows NT Task Manager to set GAMES priority to low. 

It is advisable to use the Windows NT Task manager to set the GAMES priority to low if the 

computer GAMES is running on will be needed for other processor intensive tasks. The Task 

Manager is opened by pressing Girl + Alt + Del. Once Task Manager has been opened use 

the right mouse button to click on GAMES.exe then choose Se! Priority then left mouse button 

click on Low. GAMES will now run in the background with a low priority status. 

7.3 Data Input 

Data that is made available to the model is called exogenous data; in that it is derived 

externally to the model. The format by which this data is accessed and physically entered into 

the model designed to be intuitive as GAMES is intended for use by specialists in energy 

planning, not information technology. Exogenous data is split into three data sets, each with a 
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separate data form. Each form represents separate exogenous data sources, or reference 

material. The three groups are: 

Historical Data 

Forecasting Data 

Externalities 

Historical data, discussed in Section 7.3.1, concerns occurrences before the time period of the 

model. Forecasting data includes the initial configuration of the model along with the 

exogenous data that describes possible future changes in the economy or technical experience 

in the energy sector. The majority of ES! sensitivity analysis performed using GAMES 

depends on changes to this data set which is described in Section 7.3.2. Section 7.3.3 looks at 

the final form. Externalities that provides the data necessary for the inclusion of political, 

technical. economic and environmental functions that lie out-with present simplistic long term 

models of the ES!. 

7.3.1 Historical Data 
A user of GAMES might wish to make forecasts that start before the present date (ex-post) 

and extend into the future (ex-ante). Correlations can be made between real and forecast 

scenarios and the error in the scenario can be assessed. An example of an ex-post/ex-ante 

forecast would use past data until year five and then rely on exogenous variable projections 

from year five to the end of the time period. 

Model Scope 

past Data Past Data Forecast Yr. Forecast Yr. Forecast Yr. Forecast Yr. 	Forecast Yr. Forecast Yr. 

Yr.-I0 I Yr.-5 5 10 15 2() 	 25 30 

Preseni 1)a 

Figure 7.4 Using historical data in a forecast. 

Due to the privatisation of the ES!, and its subsequent changes in structure, GAMES can not 

use past data to find probable trends in future events. However some historical data is 

necessary to create accurate scenarios. To reliably model electricity generation a starting 

point is needed. To achieve this the model must know the present generating capacity for each 

energy source. This includes generating plant that is not yet on-line but will be in the near 

future. In order to account for existing plant going off-line due to simply exceeding the its 

natural plant lifetime, the expected lifetime of all existing plant within the system is needed. 
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Historical data is placed into the model using the "Historical data" input sheet. The sheet is 

an integral part of the GAMES program but behaves in a similar manner to a spreadsheet. 

This includes the saving and loading of data along with cutting and pasting facilities. 

GAMES's familiar interface serves to minimise user training. The data is used in the fitness 

function to control the decommissioning, due to age, of plant along with providing a starting 

point for the plant forecast. The Historical Data Sheet is shown in Figure 7.5. 
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Figure 7.5 GAMES Input Historical Data Form. 

The drop down menu bar can be used to open a new or existing sheet or save the displayed 

sheet. 

GAMES Historical Data 

Ftle 

Wr 

CIA 

Figure 7.6 The GAMES Historical Data menu bar. 
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A standard Windows File Open or File Save window is called by clicking Open or Save As on 

the menu bar. All file access and saving in GAMES can be performed in this manner. 
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Figure 7.7 The GAMES File Open window. 

7.3.2 Forecast Data 
Forecast data uses a similar form to that of Historical data outlined in Section 7.3.1: in that it 

is based on a spreadsheet and is manipulated using the same tools. The form includes fields 

for all the data that the model needs to give the most likely generation spread for any possible 

scenario in the future. Data that results from historical events, such as the initial plant values, 

are displayed automatically; the remaining fields must be edited by hand or obtained from a 

file. 

The data needed by GAMES to create the forecast model is varied and therefore not available 

from a single data source. This could result in a lack of continuity as all the data in this form 

has a direct effect on the scenario. To keep model integrity the continuity of data must be 

rigorously checked before it is used. 

The Forecasting Variables include the annual and peak demands during the time period of the 

model, the energy resource available for each technology, technical information such as 

expected life and expected lifetime load factor for each generation method and the finance of 

generation. The Demand values are an initial value followed by a yearly percentile change 

whereas real values are taken for all other input fields. 
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Figure 7.8 GAMES Input Forecasting Variables Data Form. 

7.3.3 Externalities 
The Externalities data form is manipulated in an identical manner to that of the Historical and 

Forecasting Data forms (Sections 7.3.1 and 7.3.2). It is constructed to perform like a 

spreadsheet that can be loaded from and saved to file, manipulated with the mouse or 

keyboard and scrolled to view and edit the data. 

A general definition of Externalities is: 

The costs and benefits that arise when the social or economic activities of one group of 

people have an impact on another, and when the first group fail to fully account for their 

impacts. When applied to the ESI, externalities concern the associated costs of electricity 

generation that are not directly reflected in the market price for the energy. 
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Figure 7.9 GAMES Input Externalities Data Form. 

In addition this form also includes some of the less direct economic influences in energy 

trading. The first is the deviation from normal market response due to the risk alleviating 

measures taken by the majority of players. The second influence concerns contractual 

obligations that have been, or could be at a later stage, entered into that restrict the workings 

of the electricity market. Both contractual and risk functions are included within the GAMES 

model. 

7.4 Genetic Inputs 

Before running the GA the genetic operators must be set. The user can set the number of 

generations, accept the default settings, and then click on Go. The default settings are: 

• Population 	 Randomly generated 

• Crossover Rate 	 0.8 

• Mutation Rate 	 0.25 (High as the mutation is non-uniform) 

• Mutation Factor 	 4 
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Crossover rate, mutation rate and mutation factor can be edited on the GA operator form 

shown in Figure 7.10. Manipulating the population is performed using a separate form. 
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Figure 7.10 The GAMES GA operator adjustment and start form. 

7.4.1 Population Manipulation 
The GAMES (IA uses a population of 100 chromosomes, or possible solutions. All, or a 

percentage, of these can be seeded before the optimisation is started. This allows the user to 

continue a previous optimisation based on a saved population. In addition the user can edit 

chromosomes from previous populations manually. Using an old population with a more 

refined set of genetic mutation and crossover operators can give a more focused view of a 

smaller search area resulting in a more accurate final optimum. An old population can also be 

used when exogenous variables have been slightly changed. This can vastly reduce 

convergence time as the old population should be in the correct region of the search area. 

However care must be taken to ensure that a local optimum from the previous set of 

exogenous data is not confused with the new global optimum. It is often advisable to start a 

new optimisation with a non-random population that is far from any optima. This will ensure 

that the whole search space is considered by the algorithm and any attempts by the GA to 

quickly converge on a sub-optimal peak will be clearly visible in the populations history. 
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To seed a population the Initial Population must be opened by clicking on Set Population in 

the Genetic Operator adjustment form. Clicking on Seed at the top of the page allows the 

selection of the percentage of the population that is to be seeded manually. The remaining 

population will be filled with data from an old population or a random population. Old or 

random populations are selected by clicking Use Old Population or Use Random Population 

respectively. The chromosome manipulation table will now be enabled and can be edited. 

Each box represents the proportion of yearly generation by each generating method. There is a 

maximum of 98% for an individual generating method as it is unreasonable to assume that the 

whole UK ESI will rely on over 98% generation by one fuel alone. Values greater than 98% 

would not comply with the risk strategies built into games and could result in model 

instability. The generation methods that have been edited must be fixed by clicking the 

relevant check boxes in the HOLD field. The seed is finally planted, and the remaining 

unfixed boxes in the chromosome automatically filled by clicking Plant Seed. Clicking OK 

returns the user to the Genetic Operator adjustment form. 
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Figure 7.11 GAMES Population manipulation form used to seed a GA population. 

GAMES is designed to optimise for the whole forecast period to allow for forwards and 

backwards dependencies in the model. This implies that, under normal operation, the model 

can never be shocked by an unexpected event, such as the 1991 Gulf War. To overcome this 

the user can run the scenario without the unexpected event, then add the unexpected event data 

and hold all the results from the time periods before the changed data. The GA is then set to 

optimise the effects of the unexpected event. This is achieved using the Hold/Year field in the 

133 



lht i  j till 

Population Manipulation form. Figure 7.12 shows how this field uses a binary code where a 

"I" tells the GA not to optimise that years genes. Normal use would involve a string of holds 

until the date of the unexpected event in the scenario. Holding individual independent groups 

of years is also possible. 

rur 	- 

-ii 

M In l2 13 114 i, 	11€ 117 
1 	1 	1 	1 	1 	1 	1 

s* Old PaPAdlm I 
QK 

Figure 7.12 GAMES Population manipulation form used HOLD years to investigate the affect 

of an unexpected event. 

7.4.2 Crossover Manipulation 
Crossover involves the creation of child chromosomes through the cross-combination of 

parent's genes. There are many types of crossover, each with different benefits and shortfalls. 

GAMES uses a two point crossover. A two point crossover selects two crossing sites in the 

chromosome and swaps the genetic material between them. If P. and P2  are the selected 

parents that represent the binary chromosomes 

P = (0 LO. 1.000 111010 	 Equation 7.1 

P2  = (02 0202 12 1202 1202 120202) 	 Equation 7.2 

and the two randomly selected points are after the 3rd and 6th genes (or bits in the string) i.e. 

P1  = (0. 1.0,1 1 . 0 1 0 1 tO i  I 1.0. I.) 	 Equation 7.3 
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P, = (02 02 02 11 2  12 02112 02 12 02 02) 	 Equation 7.4 

then the two children C1 and C2 that result from the two point crossover are given by: 

C1 = (0 1, 01 12 12 0201 11 11 01 1) 	 Equation 7.5 

C2 = (020202 11 Ot 01 1202 120202) 	 Equation 7.6 

Two point crossover offers the opportunity for any of the first parent's individual, or group of 

individual, genes to be exchanged with their respective genes in the second parent. It is a 

simple and quick method of crossover that will not destabilise the model as chromosome 

integrity is always kept. 

The crossover rate is the probability (from 0 to 1) of each chromosome in the population 

undergoing crossover. A high crossover rate enables quicker hill climbing and population 

convergence. Ideally the population should only converge once the exact area of the global 

optimum is found. However if the crossover rate is too high the standard deviation of the 

population will reduce before a global optimum is found. This will reduce the efficiency of 

the GA and could dramatically degrade the optimisation. 

7.4.3 Mutation Manipulation 
Mutation involves the random alteration of individual genes in a chromosome to ensure that 

the whole search space is considered in the optimisation. A single gene in GAMES represents, 

as a percentage, a single years proportional usage of each of the generation methods. To 

satisfy the assumption that demand is always met by generation the total sum of generation 

method proportions must always equal 100% in every gene. GAMES achieves this by 

mutation in pairs; as one generation method is increased by a random value another, within the 

same gene, is reduced by an equal amount. 

The mutation rate always lies between 0 and land represents the chance of an individual gene 

undergoing mutation. A standard value is given by: 

mutation rate = "(No of genes in the chromosome) 	Equation 7.7 

A higher mutation rate gives a better view of the whole search area but does not help the final 

stages of the optimisation where a lower rate of mutation would give a more refined search. 
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Changing the mutation rate during the optimisation process can give good results: High 

mutation rates, that reduce with convergence are very efficient if local optima convergence is 

not confused with convergence on the global optimum. A period of high mutation rate after 

the GA has converged on an optimum will move it away from local optima but not a global 

one this can be achieved by pressing the Radiate button on the operator adjustment form. 

7.4.4 Mutation Factor 
Large mutations are efficient at the beginning of an optimisation as they increase the diversity 

of the population. A method of refining an optimisation is to reduce the size of random 

mutations near the end of the process. GAMES uses a non-uniform mutation operator on 

each generation method within the gene, or year, that is to be mutated. The operator is 

dependent on the ratio of generations that have been completed (t) to the number of 

generations expected (I). The higher the ratio of completed generations (tIT) the smaller the 

effect of each mutation. This is achieved by scaling the random mutation value (r) by: 

1— r'" 	 Equation 7.8 

where: 	 O<r<1 

The user can alter the rate by which this scaling down occurs through the use of a mutation 

factor (F) which exponentially increases, or decreases, the scaling function. It is implemented 

as shown below: 
1 1/F 

1 - r /TJI 	 Equation 7.9 

where: 	 F~:O 

A mutation factor of zero would follow a simple uniform mutation as described in Section 

7.4.3. The default mutation factor of four has been chosen as it was proven to be efficient in 

most cases. Higher mutation factors quicken the rate of mutation down-scaling near the end 

of the optimisation. 

The mutation factor is also used to define the probability of a chromosome undergoing the 

GAMES specific function flatten. Flatten is a heuristic mutation operator which only changes 

the chromosome if the resultant, mutant, is fitter. As this could result in a reduction in 

diversity it is only implemented towards the end of the evolutionary process. This is achieved 

by using the inverse of the non-uniform mutation described above to ensure that it only has a 

small impact until the end of a search. 
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7.5 Viewing Results 

The optimisation is started by clicking GO and can be paused and restarted an any time by 

clicking either Pause and Resume respectively. 

D 
Save papulabm 	TIC 	 ALGO 
SeOApi 	I 

Genffatiom- 

Figure 7.13 Saving Population or Output results. 

The population and the output results can be saved whilst the GA is paused or stopped. 

Saving the population allows the user to return to that particular part of the optimisation 

process. Whilst paused the progress of the GA can be viewed. Clicking View Progress opens 

a text sheet that gives for each generation: 

• Best value of fittest chromosome in the population. 

• Average fitness of the population. 

• Standard deviation of chromosomes in the population. 

• The value of each gene in the fittest chromosome when the GA was paused. 

• The value of the fittest chromosome when the GA was paused. 

The results can also be seen at this stage. This can be done through Microsoft Excel by 

clicking the Excel based buttons View Graphs and View Convergence. These buttons open 

Microsoft Excel 7 macros which view the output results, population data or the convergence 

graphs for the GA. The ability to use a spreadsheet to view results allows further 

manipulation of that data. GAMES does include its own integral result viewing form. This 

can be accessed by clicking View Graphs in the GA operator adjustment form. Alternatively 

saved results can be seen by clicking Look on the GAMES title screen which opens the View 

Results form (Figure 7.14). Once the relevant files are opened the user is offered a choice of 

View in Excel or View as Graphs. By clicking the View as Graphs button the user opens the 

Output form. Figures 7.15 to 7.19 are examples of the results from GAMES scenario studies. 

They do not necessary represent a global optimum, and the most likely solution, but represent 

possible future outcomes to test scenarios. 
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Figure 7.14 GAMES View Results Form. 

The Output form has five tabs and three control buttons. The first control button allows the 

user to switch the graphs to Black & White, for black and white only printing. The remaining 

two control buttons allow the user to Print to File and Print the displayed graph. 
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Figure 7.15 GAMES output graphic indicating yearly proportions of generation methods. 
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The First tab, Proportions, is a graphical representation of the fittest member of the 

population. Each generation method is given a colour and the yearly distribution of these 

colours represents the proportion of generation given, on a yearly basis, to each generation 

method. The Proportions graphic is useful in spotting trends in the results. It allows a quick 

estimation of where the optimisation is heading and clearly shows the change from unfeasible 

solutions to likely outcomes as the GA progresses. Figure 7.1 5 shows a possible solution to a 

scenario that includes external costs and clearly indicates the transitions, over time. between 

different generating methods. The results do not represent a crystal ball view into the future 

but give an indication of one of the most likely outcomes to a pre-defined future scenario. 
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Figure 7.16 GAMES output graph of extra plant provided on a yearly basis. 

The second tab. Extra plan!, gives the extra plant built so that capacity will meet expected 

yearly generation demands. Each spike represents new plant that is due to come on-line that 

year. Figure 7.16 is a solution that sees an initial increase in wind powered generation and 

interconnector capacity due to high levels of environmental taxation. No new gas powered 

CCGT plant is constructed but gas reserves are depleted by year 30 due to generation by 

existing plant. At this point in time gas powered plant is replaced by coal plant, some wind 

turbines and even a small amount of non-proven generation schemes are used to make up for 

the shortfall. 
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Figure 7.17 GAMES output graph of forecasted resource. 

The third tab. Resource Forecast, shows the resource available to the UK ESI and clearly 

shows the depletion of gas reserves. This graph can be misleading if the UK resource and the 

world resource available to the UK are confused. As all the fissile material needed for nuclear 

fission is imported from a world market Figure 7.17 seems to show a disproportionately high 

nuclear resource. However these figures do account for world usage of these materials. 
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Figure 7.18 GAMES output graph of forecasted generation on a yearly basis. 
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The Generation Forecast tab shows the yearly forecasts for generation by each generation 

method. The depletion of UK gas supplies is clearly visible in Figure 7.18 and the resulting 

generation increases in coal, imported electricity, wind and non-proven technologies are 

shown. Due to its high external costs, coal generation is initially set to zero. Gas generation 

is used heavily as it has less external costs and is cheaper than coal until, in year 28, UK gas 

supplies start to run low. The model suggests that the generation shortfall, while the 

remaining gas power stations are being replaced by coal fired plant, is taken up by an increase 

in imported electricity from France. This would involve increasing the capacity of the 

interconnector between England and France. Because nuclear powered generation is under a 

must-take obligation the graph shows a straight line representing optimum yearly load factor. 
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Figure 7.19 GAMES output graph of forecasted plant mix in black & white. 

Figure 7.19 shows the final tab, Plant Forecast, in black and white mode. This mode is 

useful when printing without a colour or grey scale facility. The graph shows that no new gas 

plant is built during the forecast time period. The total gas capacity gradually reduces as old 

plant is decommissioned, and not replaced. However, it is clear that using the full extent of 

existing capacity is sufficient to cause the depletion of UK reserves within 30 years. Initially 

coal plant reduces quickly as it is not used until gas reserves become scarce and new coal 

plant is needed to meet the shortfall. The most prominent feature of all these graphs is the 

high usage of imported electricity. This is because French generation is not subject to the 

same environmental taxation as the UK in this scenario. This is interesting as it shows how 
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future electricity trading within Europe might be affected by different taxation structures 

among the member states. 

76 Summary 

This chapter follows the operation of GAMES. Although it is has not been written as a user 

manual it gives an outline of the basic functions of the program. The data sets used as inputs 

and the results given are examples of possible scenario forecasts which are detailed in chapter 

8. They show the application of the program to long-term energy planning in the UK ES!. 

The chapter also highlights the interface between the user and the GA. This is important 

because there are very few GA based programs that allow the user to change the nature of the 

genetic operators in an intuitive manner. For example the interface that controls the seeding 

and holding of genes was based on a fruit machine, with hold buttons under each relevant gene 

on the graphical display. This novel approach is an example of the effort to make GA 

applications accessible to users with a limited knowledge of GAs. 
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8. DISCUSSION OF RESULTS 

8.1 Overview 

This chapter discusses the results of a number of simulations completed by the Genetic 

Algorithm based Model of Electricity Supply (GAMES). The results validate GAMES as an 

ESI forecasting model. The first Section 8.2 looks at the results from the initial feasibility 

study. These results show how a simple GA was able to evolve solutions to a complex 

forecasting problem and are important as the foundations of GAMES were built upon this 

initial study. Section 8.3 discusses the GA's performance and shows how each genetic 

operator affects the overall optimisation process. Each operator has been designed and set up 

to aid the evolutionary process for the particular problem of forecasting electricity generation 

methods. Deviations from this optimum are also discussed. Section 8.4, on the model's 

performance, displays and discusses examples of forecasts made using GAMES. It gives the 

results of an ex-post validation forecast and five separate scenario studies. Each scenario 

investigates sensitivities in the model whilst also giving predictions as to the future of 

electricity generation in the UK. These particular scenarios were chosen because each 

represents a different aspect of the industry: The first extrapolates current political opinion 

concerning nuclear power and gas generation. The second forecast takes an environmentalists 

approach and charges the generators for the environmental costs of generation. The third 

investigates a change in expected resource constraints as an oil pipeline brings cheap oil into 

Europe. The fourth scenario looks at the possibility of a technical fault in the British-French 

interconnector and its effects on UK supply. The final scenario shows how the sensitive 

adjustment of taxation and regulation can result in a balanced long-term approach to 

generation in the UK. 

8.2 Feasibility Study 

A test model was initially created to investigate the feasibility of using a GA in ESI 

forecasting. This model assumed that all UK electricity was generated using either coal or 

gas. It incorporated forecasts such as emissions taxes, resource costs, technical advances and 

UK electricity demand; all of which could be altered for sensitivity analysis. The fitness 

function was constructed using functions based on economic theory and knowledge of the ESI. 

All functions were subject to environmental and technical constraints. The model's GA 
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(Evolver by Axcelis) was constructed using a fifty chromosomes population. Each 

chromosome represented an outcome of possible gas to coal mix over a forty year period. The 

chromosome itself consisted of forty genes, each representing a possible single years 

percentage of gas and coal generation. All, bar one, of the chromosomes started with random 

values assigned to each gene. The remaining chromosome could be seeded with a fit or unfit 

solution; the former to speed convergence and the latter to aid divergence. 

Figure 8.1 shows the effect of a single chromosome seeded with 50% gas and 50% coal before 

the GA optimisation has started. This seed represents a possible, but highly unlikely, outcome 

that assumes all extra plant capacity will be met equally by gas and coal. The graph shows 

how this 50:50 fuel mix continues until year 21 when UK gas reserves are exceeded. At year 

21 the model corrects the seed and replaces all of the, now redundant, gas fired plant with coal 

plant. This is represented by the peak in the extra output from coal plant. Although this 

solution is possible, and meets all the model's constraints, it is a highly improbable solution. 

An optimum solution was created through the evolution of a population of unlikely solutions 

into a population of optimised or highly likely solutions. The evolutionary process was 

controlled by a GA which used standard selection, breeding and mutation operators. 

1OOEi-9 

Coal 

:  

Year 

Figure 8.1 Starting (before optimisation at 0 Generations) 50% Coal 50% Gas Seed of a GA 
Based Forecast of Extra Output Needed from Additional Coal and Gas Plant. 

Selection was based on a standard roulette wheel method which gives proportionally higher 

breeding rates to fitter chromosomes. Once selected, breeding was performed using a two 

point crossover to allow the passing down of market and technical trends through successive 

generations. This involved randomly selecting two points along the breeding chromosomes 

and swapping the sections within these points. Both parents and children were then re-inserted 

into the population replacing the two least fit solutions. 
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The mutation rate was manually altered during runs. It was increased after initial 

convergence to help ensure that a global, not local, optimum had been found. When an 

increased mutation rate had no further effect, it would be set to almost zero to aid final 

convergence. Figure 8.2 shows the GA's progression towards convergence on an effective 

energy resource utilisation plan. The sharp peak that represents the sudden replacement of 

gas plant with coal plant has been reduced and a trend towards building more gas than coal 

plant initially can be seen. This is consistent with what is expected from a gas and coal only 

ESI as the cheaper gas resource is there to be used so long as the financial lifetime of plant 

does not exceed the availability of resource. 

Figure 8.2 Mid point (2,000 Generations) GA Based Forecast 01 Extra output lNeeaea irom 

Additional Coal and Gas Plant Needed 

The model converged on an optimum solution after 200,000 generations. As the number of 

possible solutions was 10 0  the GA was considered very effective. Figure 8.3 shows the 

optimum extra gas and coal plant needed to replace old plant whilst meeting a growing 

demand. The results indicate a change in strategy from gas to coal based on resource 

depletion. Initially gas plant construction is increased and then remains high over the next six 

years before dropping away between years six and thirteen. Gas plant construction beyond 

this period would be unlikely as the plant life would exceed present UK gas resources. To 

accommodate the resulting capacity shortfall extra coal plant construction is suggested to start 

in year five. 
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This scaled test model proved that by predicting the results of yearly generation mix decisions, 

a clear picture of the shape of a future ES! was possible. Using a GA based model allowed 

the inclusion of economic, technical and environmental constraints that otherwise proved 

insoluble using conventional mathematics due to their size and non-linear nature. The ability 

of GAs to solve large, non-linear, problems allowed rapid and comprehensive sensitivity 

analyses on the forecast model. The sensitivity studies showed stability in the model when 

fuel price, interest rate, taxation and electricity demand predictions were altered to examine 

their effect on future generation fuel-mix. 

120E#8 

1 .00E*8 

•D 	8.00E+7 4 

	'I 

E 	 -Coal 
2. 6.00Ei7 	

Gas 

0.2 4OOE+7 
0 

2.00E4-7 

< 	O.00E+O 
,- 	r- 

Year 

Figure 8.3 Convergence (200,000 Generations) GA Based Forecast of Extra Output Needed 
from Additional Coal and Gas Plant. 

As a result of the success of the feasibility study a full size model was created. Unfortunately 

due to slow processor speeds and the memory intensive use of Microsoft Excel by Evolver it 

was not possible to expand the existing test model. To include extra generating methods and 

real data, a comprehensive model of the ES! was written from scratch on a new platform. 

Although the general structure of the GA used to solve this model was based on a standard 

GA by Z. Michalewicz 107  all of the genetic operators were re-written for this specific 

application. This Genetic Algorithm based Model of Electricity Supply (GAMES) was 

written in C++ using Microsoft Visual C++ 4. C++ was chosen as its object oriented 

structure facilitates rapid code alteration along with aiding intuitive GA design. GAMES was 

designed to run on Windows NT which is the most stable of the windows operating systems in 

common industrial use. Windows NT also offers pre-emptive multitasking and dedicated 32 

bit technology which helped speed up the evolutionary process and give added stability to the 

GAMES GA. 
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8.3 GA Performance 

A Standard GA uses selection, crossover and mutation to evolve solutions to the fitness 

function. Better solutions evolve with the passing of consecutive generations. The efficiency 

of the evolutionary process can be increased through the manipulation of these standard 

functions and the inclusion of further evolutionary operators. The benefit of any additions to 

the standard GA must be greater than their computational expense as changes to the standard 

GA often increase computation, and therefore also the time, needed to complete each 

generation. This section discusses the performance of the GAMES GA and how new 

functions work both independently and in combination with standard operators to improve the 

optimisation process. 

The performance of any GA can be tested by monitoring the fitness of the best individual in 

the population, the average fitness of the population and the standard deviation of individuals 

within the population over a number of generations. The fitness of the best individual 

indicates the speed with which the GA can find an optimum. Steps in the best fitness indicate 

local optima found by the GA. Although a steeper slope indicates rapid convergence on an 

optimum, it can also indicate a lack of diversity due to excessive selective pressure. The 

average fitness of the population shows how the whole population's fitness compares to the 

best individual's fitness. It should increase along with the best value as the difference between 

the average and best gives an indication of where the population lies in the search space. The 

average should vary but should never converge on the best value as this would indicate a lack 

of diversity. If the selective pressure is too high the average will rise until it reaches the best 

value indicating that the whole population has become multiple copies of the same 

chromosome. The actual spread within the population is given by the standard deviation. 

This shows the diversity of the population and although it can vary from generation to 

generation it should not rise or fall over the course of a normal GA optimisation. Operators 

such as non-uniform mutation have can the effect of reducing the standard deviation within the 

population as they reduce the effect of individual mutations. For this reason the non-uniform 

mutation operator used in GAMES is adjusted to only have a dominant effect near the end of 

the optimisation. 

The GA performance indicators, mentioned above, were used to test the performance of 

individual genetic operators. This was achieved by isolating the effects of each operator. 

GAMES was run eight times, with one operator changed each time. Because some operators 

rely on the existence of others, the test procedure started with a core GA and was built up 

operator by operator until the final GAMES GA structure was created. The test procedure 

was as follows: 
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Control with standard GA mutation and crossover rates. 

Flatten operator test, which is a heuristic mutation operator 

Non-Uniform Mutation Test which investigated the inclusion of non-uniform mutation. 

Recall Test which investigated the addition of the Recall operator to test number three. 

Mutation Rate Tests that investigated changes in mutation rate. 

Crossover Rate Test which assessed the effects of crossover rate changes. 

Radiate Test that looked into the use of the Radiate function. 

Radiate Test with a destructive seed added to ensure global optimisation. 

The results from each of these tests are shown and discussed in Sections 8.3.1 to 8.3.8 

respectfully. The results show how each operator aided the optimisation process and how the 

model remained stable through out testing. 

8.3.1 GA control 
Settings 

Flatten Mutation 	= Not Applied 

Mutation Factor 	= 0 (Uniform Mutation) 

Recall 	 = Not applied 

Mutation Rate 	= 0.025 

Crossover Rate 	= 0.8 

Radiate 	 = Not Applied 

Seed 	 = Not Applied 

The control test was used to standardise the GA performance tests. It does not use the 

specially designed GAMES operators Radiate, Recall, Seed or Flatten. Figure 8.4 shows the 

first 3000 generations of a 5000 generation run as this is the most interesting phase of the 

optimisation process. Both the rate of initial optimisation and the final stages of the search 

can be seen within this number of generations. 

Due to the elitist function the best chromosome is always kept. This causes the gradient of the 

best value graph to be positive or zero, but never negative. In this control the best value 

increased gradually which proves that the GA is operational. The crossover and mutation 

rates were set to achieve an average performance for the whole search, remaining constant 

throughout the search, and therefore the overall optimisation process was slow. An optimum 

result was found if the search was continued to around 20,000 generations. The average 

fitness went both up and down as the population travelled between local optima. This curve 
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roughly followed the direction of the best value trace. The standard deviation remained 

constant which shows a good choice of mutation and crossover rates. 
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Figure 8.4 Graph of Standard GA Performance represented by the best fitness value, average 

fitness and standard deviation of chromosomes. This Graph is used as a control for the testing 

of other operators and only contains the vital components of the GAMES GA. 

8.3.2 Flatten Operator Test 
Settings 

Flatten Mutation 	= Active 

Mutation Factor 	= 0 (Uniform Mutation) 

Recall 	 = Not applied 

Mutation Rate 	= 0.025 

Crossover Rate 	= 0.8 

Radiate 	 = Not Applied 

Seed 	 = Not Applied 

The Flatten operator was specially created to speed up the GAMES optimisation process. It 

is a heuristic mutation operator, added to the existing mutation operator, that is subject to the 

same mutation rates. It mutates a chromosome by removing excessive peaks and troughs in 

consecutive gene fragments (DNA) or yearly generation procedures. Although this increased 

the total amount of mutation the heuristic part did not increase diversity to the same extent as 

random mutation. The increase in diversity within the population can be seen in Figure 8.5 as 

the standard deviation of chromosome values is higher than that of the control in Figure 84. 
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Because this operator was added to the existing uniform mutation operator the slightly slower 

final convergence was due to the total increase in mutations. Section 8.3.3 investigates the 

addition of a non-uniform mutation which eliminated this effect. 

GA Performance 
Flatten Mutation 

1.4E+12  

1.2::1: 

1E+12 best value 

8E411 'average 
fitness 

- 	 6E+11 I standard 
deviatiori. 

4E+11 

2E+11 

o . .................................. 

Generation 

Figure 8.5 Graph showing the best fitness value, average fitness and standard deviation of 
chromosomes in a standardised run of GAMES with a heuristic flatten mutation operator 
added to the existing uniform mutation operator. 

The major advantage of the flatten operator was that it accelerated the initial climb peaks in 

the search space. This can be seen by the high fitness value after only 100 generations. 

However, if left long enough, the penalties within the fitness function for inefficient generation 

schedules had the same effect as the flatten operator. The extra speed in the initial stages 

allows the rapid creation of approximate results which is useful for energy planners. 

8.3.3 Non-Uniform Mutation Test 
Settings 

Flatten Mutation 
	 Active 

Mutation Factor 
	 (Non-Uniform Mutation) 

Recall 
	

Not applied 

Mutation Rate 
	

0.025 

Crossover Rate 
	

0.8 

Radiate 
	 Not Applied 

Seed 
	

Not Applied 
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This test investigated the use of a non-uniform mutation operator along with the flatten 

operator discussed in Section 8.3.2. The operator reduced the size of mutations as the 

optimisation process neared its end. The reduction was an exponent of the fraction of 

generations completed raised to the power of the mutation factor. Figure 8.6 shows the 

average value began to converge on the best value at around 2500 generations. The operator 

improved the optimisation by increasing the selective pressure and reducing the diversity of 

the population during the final stages of the optimisation. 
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Figure 8.6 Graph showing the best fitness value, average fitness and standard deviation of 
chromosomes in a standardised run of GAMES with a non-uniform mutation operator. 

Although non-uniform mutation only increased selective pressure towards the end of the 

search its benefits were also found in the initial search phases. This was due to initially higher 

mutation rates being acceptable as their effect was automatically diminished during the latter 

parts of the optimisation process. The net result was higher diversity in the initial stages 

where it was most useful. Because the flatten operator was also active the initial mutation 

rate was, in effect, doubled. The best value graph shows this improvement clearly between 

600 and 1600 generations. It was therefore possible to use even higher mutation rates with 

non-uniform mutation in cases where a refined search was needed. 
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8.3.4 Recall Test 
Settings 

Flatten Mutation 
	 Active 

Mutation Factor 
	 5 (Non-Uniform Mutation) 

Recall 
	

Active 

Mutation Rate 
	

0.025 

Crossover Rate 
	

0.8 

Radiate 
	 Not Applied 

Seed 
	

Not Applied 

The Recall operator was a new operator specially designed for GAMES. It allowed old 

segments of chromosome to be stored and replaced into current chromosomes subject to 

mutation rates. This test also included Flatten and Non-uniform mutation operators as 

discussed in Sections 8.3.2 and 8.3.3. Recall provided a steeper initial best value curve 

without having increased the selective pressure. This is a good result as rapid optimisation is 

normally associated with convergence on local optima due to high selective pressure. The 

separation between the average and best fitness values reflects the low selective pressure, and 

high diversity, during this test. 
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Figure 8.7 Graph showing the best fitness value, average fitness and standard deviation of 
chromosomes in a standardised run of GAMES with non-uniform mutation and Recall 

operators. 
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This operator increases the memory usage of the whole program. However as processor speed 

is the critical factor in optimisation times, this was not a great problem. The benefits due to 

the reduction in generations needed outweighed the drawbacks of increased time to process 

each generation. The overall time needed to find the optimum solution was therefore reduced. 

8.3.5 Mutation Rate Test 
Settings 

Flatten Mutation 
	

Active 

Mutation Factor 
	

5 (Non-Uniform Mutation) 

Recall 
	

Active 

Mutation Rate 
	

0.5 

Crossover Rate 
	

0.8 

Radiate 
	

Not Applied 

Seed 
	

Not Applied 
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Figure 8.8 Graph showing the best fitness value, average fitness and standard deviation of 
chromosomes in a standardised run of GAMES with all GAMES operators. This graph shows 
the effect of a high mutation rate. 

This test investigated the effect of an unusually high mutation rate. The test used non-uniform 

mutation and included the GAMES specific Flatten and Recall operators. The high mutation 

rate increased the random element of the evolutionary process to such an extent that the 

iterative procedure of crossover was almost nullified. The best value increases in steps 
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reflecting large, possibly randomly found, improvements in chromosome fitness. Once a 

reasonably good solution was found no further improvements were made. The average fitness 

was especially low which indicated that it was thinly spread over the whole search area. The 

high standard deviation through out the search confirmed this. This proved that there was a 

maximum acceptable level of diversity against selective pressure which was exceeded in this 

case. The proportion of diversity to selective pressure and the size of both factors against 

population and problem size is critical. There are no absolute rules in GA theory to govern 

mutation and crossover rates to set these factors. 

8.3.6 Crossover Rate Test 
Settings 

Flatten Mutation 
	

Active 

Mutation Factor 
	

5 (Non-Uniform Mutation) 

Recall 
	

Active 

Mutation Rate 
	

0.025 

Crossover Rate 
	

0.02 

Radiate 
	

Not Applied 

Seed 
	

Not Applied 

GA Performance 
Low Crossover Rate 
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Figure 8.9 Graph showing the best fitness value, average fitness and standard deviation of 
chromosomes in a standardised run of GAMES with all GAMES operators. This graph shows 

the effect of a low crossover rate. 
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This test was performed to investigate the effects of lowering the crossover rate whilst using 

Flatten, Recall and Non-uniform Mutation operators. The test investigated a reduction in 

crossover whilst maintaining the previous mutation rate of 0.025. This increased the 

difference between selective pressure and diversity but reduced both these values against the 

population size. The reduced selective pressure balanced the level of diversity giving a higher 

optimum value. The average value trace followed the best value but did not converge on it, 

reducing diversity. The standard deviation remained constant and low throughout the 

optimisation which shows that the spread of the population remained even. 

8.3.7 Radiate Test 
Settings 

Flatten Mutation 
	

Active 

Mutation Factor 
	

5 (Non-Uniform Mutation) 

Recall 
	

Active 

Mutation Rate 
	

0.025 

Crossover Rate 
	

0.8 

Radiate 
	 From 5000 to 7000 generations 

Seed 
	

Not Applied 

GA Performance 
Radiate 

1.60E+12 
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Figure 8.10 Graph showing the best fitness value, average fitness and standard deviation of 
chromosomes in a standardised run of GAMES. This graph shows the use of the Radiate 
operator applied between generations 5000 and 5700. Radiate is used to ensure that a global 
optimum has been found. 
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The Radiate operator is activated by the user by pressing the Radiate button on the GAMES 

GA graphical interface and deactivated by pressing the Stop Radiate button. The operator, 

when activated, increases mutation rates and sets the mutation factor to zero (uniform 

mutation). It was used between generations 5000 and 5700 to test if a local or a global 

optimum had been found. Figure 8.10 shows how this affects the evolutionary process. 

Because the GAMES GA uses an elitist function the best value cannot be reduced so the best 

value graph remained constant. Whilst activated the operator dramatically reduced the 

average fitness of the population indicating that the population had been pushed away from an 

optimum. The increase in standard deviation showed that the population's spread also 

increased during this period. Because the GA returned to the same optimum after Radiate had 

been deactivated it could be concluded that the GA was climbing the highest peak in the 

search space. It could also have been that Radiate could not find a better chromosome than 

the saved value and therefore the GA returned to that same point. This is quite possible as the 

high mutation rate would have limited the best value achievable whilst Radiate was active. To 

eliminate this the whole population was seeded with a known unlikely solution when Radiate 

was activated. The results from this further test are discussed in Section 8.3.8. 

8.3.8 Radiate With Seed 
Settings 

Flatten Mutation 

Mutation Factor 

Recall 

Mutation Rate 

Crossover Rate 

Radiate 

Seed 

Active 

5 (Non-Uniform Mutation) 

Active 

0.025 

0.8 

From 20000 to 25000 generations 

From 20000 to 25000 generations 

This version of Radiate seeded the population with a known unlikely solution each time the 

operator was activated. The test was run over a longer time-scale to give a better view of the 

operator's effects. As in the first Radiate test, Section 8.3.7, there was a massive reduction in 

the average fitness of the population and an increase in the standard deviation showing 

increased diversity and population spread. The addition of a seed removed the effect of the 

elitist function allowing the best value to drop. The result was that when the Radiate operator 

was deactivated the GA continued in a totally different area of the search space. It took the 

GA approximately 3000 generations to return to the optimum found before the operator was 

activated. This point can be declared the global optimum. 
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Figure 8.11 Graph showing the best fitness value, average fitness and standard deviation of 
chromosomes in a standardised run of GAMES. This graph shows the use of the Radiate 
operator applied between generations 20000 and 25000. In this case the best value was deleted 
when radiate was switched on so the climb back to an optimum can be seen more clearly. 

8.4 Model Performance 

This section serves to validate the GAMES model by comparing an ex-post forecast with 

actual data and by studying the results from five scenarios. The comparison between ex post 

and actual data could only extent back as far as the privatisation of the UK ES! in 1990. This 

result shows the accuracy of the model and validate the thesis that utility optimisation by GA 

can be used in forecasting. Each of the five scenario studies investigates a separate part of the 

model and tests the models sensitivity to different data inputs. These results show the stability 

of the model and prove the thesis that utility optimisation by GA is a reliable method of 

modelling in the long term. 

8.4.1 Ex-.Post Forecast 
Ex-post forecasts are used to make comparisons between modelled and actual historical 

events. Such comparisons are mainly used to calibrate and validate models. The validation of 

GAMES cannot rely on a forty year ex-post forecast of the UK ES! as the industry, for which 

it was designed, was privatised in 1990. Privatisation changed the decision making process 

within the ES! and therefore ex-post forecasts before this time are not valid. Chapter four 

discusses the differences between forecasts of a nationalised and privatised industry. A 
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comparison can be made between ex-post forecasts and past data during the period from 

initial privatisation in 1990 to 1998, the last date for public access data. Although it must be 

recognised that although the ESI had been privatised by 1990 the effect of privatisation on 

generation mix would be subject to a delay. This delay was due to the time taken to construct 

new Dlant and the inertia in replacing current plant. 
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Figure 8.12 Graph of Actual UK Plant Capacity from 1988 to 1998 111, 	units given in 
MW to conform with actual data. 
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Figure 8.13 Ex-Post Forecast of UK Plant Capacity From 1900 to 1998 made using GAMES. 
Units converted to MW to conform with actual data. 
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Figure 8.12 shows the actual plant capacity as it varied between 1988 and 1998. Figure 8.13 

shows a forecast of the same period. Note that the output from GAMES was set to give 

forecasted plant capacity in MW units to match the historical data provided whereas normal 

GAMES plant forecasts use GW units. 

The trends shown by both graphs are very similar. As GAMES was designed to show trends 

this is good proof ESI that forecasts can be made using this method. Although the actual 

values are not as important as these trends an error analysis was performed on the data 

represented by the two graphs. The analysis was performed using a time series adjusted 

RMSE as described in Section 4.4.3. Table 8.1 gives the results of the time series errors: 

Plant: 

Time Series RMSE: 

Gas Coal Oil Nuclear Hydro Wind + 

non-proven 

Imports 

From 1988 to 1998 1.67 1.16 0.87 1.03 1 1.34 0.92 

From 1993 to 1998 1.68 1.18 1.65 1.05 1 1.33 0.76 

From 1995 to 1998 1.47 1.27 0.78 1.05 1 1.37 0.78 

From 1996 to 1998 1.4 1.26 0.77 0.98 1 1.47 1 

Table 8.1 Time series RMSE figures for the error between ex-post forecasts and historical data. 

The time series RMSE errors given in this table show the variation of error with time. A 

value of 1 represents no change which proves that the error between these two graphs does not 

change with time. The only discrepancy is between the oil plant figures between 1998 and 

1993. This is due to the differences between the nationalised policy of encouraging the North 

Sea oil fields and market led influences which only came into effect in 1990 and would not 

have had an impact on plant construction until at least 1995. 

Differences in the amount of coal, nuclear and oil plant between 1988 and 1992 can also be 

attributed to the delay in upgrading and converting plant to satisfy the change in market 

structure due to privatisation. There is also a discrepancy in the amount wind plant 

constructed from 1994. This is probably due to the recent increase in efficiency and decrease 

in capital costs for this type of plant; the model is aware that wind generation will become 

profitable and therefore associates a smaller risk cost to earlier turbines. In addition small 

variations in value can be attributed to the small scale of the data collection. A large. scale 

data collection would have been beyond the scope of this study. Even with these discrepancies 

the trend correlation between the forecasted and actual results prove the thesis that accurate 

forecasting is possible through utility optimisation by GA. 
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8.4.2 Scenario I (Continuation of present policy) 
Policy statements from this government in 1997 promise that 10% of the UK's electricity 

demand will be met from renewable generation by the year 2010. Targets for reductions in 

CO2 emissions, set by the 1997 Kyoto agreement"', should put pressure on fossil fuel 

combustion. In addition the present government has placed a hold both on nuclear and CCGT 

plant construction. The former due to political incentives and the latter to end the "dash for 

gas" 112  created by the previous government. If these policies are upheld there will be a strong 

drive towards renewables. However the United States has already withdrawn from the 

original Kyoto agreement. Although the UK continues to work towards the 10% reduction in 

CO2  by 2010 much of the momentum created by Kyoto has been lost. 
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Figure 8.14 GAMES yearly point forecast, from 1995, of plant following present UK generation 
policy. 

Figure 8.14 shows the plant forecast for scenario one; it starts in 1995 and represents an ex-

post / ex-ante forecast projecting present policy into the future. It shows how the proportion 

of coal fired plant will drop as old plant is decommissioned and not replaced. This will 

continue until year thirty (2025) when gas generation becomes too expensive due to resource 

constraints. Coal fired generation is given as the major replacement for gas. In addition to 

coal, wind, oil and imported capacity will be increased to meet the generation deficit. Nuclear 

plant continues to be reduced following the obligation not to construct new plant. The 

reduction in hydro power is due to the ageing of Scotland's hydro plant. Although the 

generating plant can be easily replaced., the dams themselves weaken with time and are 
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prohibitively expensive to replace. Most new possible hydro sites are a distance from the grid 

system where transmission costs become critical. 

8.4.3 Scenario 2 (External Costs of Generation) 
Scenario two was ex-post / ex-ante forecast from 1995 following the forecast in Section 8.4. I. 

It assumed that the external costs of generation starts to influence electricity prices by year 

ten. This is a highly likely event as electricity companies are already offering green electricity 

to customers at an increased tariff. The acceptance of this customer driven push towards less 

polluting generation methods serves to subsidise renewables and penalise those methods that 

have higher external costs. 

Legislation will be influential in including external costs of generation. Taxation structures 

that will replace the Non-fossil fuel levy. Non Fossil Fuel Obligation (NFFO) and Scottish 

Renewables Order (SRO) are presently being discussed on a European level. These will also 

serve to penalise electricity generation that damages the environment and encourage methods 

that do not. The magnitude of these penalties should reflect the actual cost of environmental 

damage incurred along with the cost associated to the potential risks of each generation 

method. 
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Figure 8.15 GAMES yearly point forecast, from 1995, of plant assuming the inclusion of 
external costs of generation are applicable from year ten. 
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Coal fired generating plant almost disappears by year 20 (2015); some of this plant is 

replaced by gas fired plant and the remainder is decommissioned. The reduction in overall 

plant caused by reducing the capacity of coal fired power stations is met by a combination of 

generation methods. Figure 8.15 shows how this consists of wind, oil, nuclear and to a small 

extent gas generation. Figure 8.16 gives the generation figures for this period and shows how 

gas generation reduces suddenly five years after the reduction in coal fired generation. This 

deficit is first met by an increase in imported electricity then by nuclear generation. To obtain 

such a large proportion of nuclear powered generation over 40 GW of nuclear plant comes on 

line in the space of two years which sounds unrealistic. However the quantity of nuclear plant 

suggested from this scenario is similar to that of France in 1994 where 395TWh, over 75% of 

the total electricity generated, was provided by nuclear power"' 
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Figure 8.16 GAMES yearly point forecast, from 1995, of generation assuming the inclusion of 
external costs of generation are applicable from year ten. 

This scenario shows the effect of charging electricity generators for the total cost of 

generation including environmental, risk and resource costs. Some of these costs, such as 

risk and some environmental costs are already included in the electricity market and taxation 

structure. Although it is unlikely that all external costs will be accounted for it gives a good 

idea of the ESI's sensitivity to the inclusion of external costs. The results clearly show the 

role of nuclear power in an ESI that imposes heavy penalties on fossil fuel combustion. 

However nuclear power is politically sensitive and the threat of a nuclear accident increases 

the risk cost of this technology. If the apparent risk of nuclear generation were to increase, 

due to an incident, and nuclear generation was to cease, this model would suggest importing a 
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large proportion of electricity from France. This represents the limitations of the data used in 

these scenarios as the majority of electricity imported from France is generated by nuclear 

power. Only by including data from France, and other European nations could this problem 

be solved. Such an increase in model and data size would not destabilise the model itself 

although the GA and its optimisation process would be slowed down. 

8.4.4 Scenario 3 (European Oil Pipeline) 

Scenario three was also an ex-post I ex-ante forecast from 1995 following the forecast in 

Section 8.4.1. Generators were expected to pay for the majority of their external costs by year 

ten (2005). The scenario also included the building of an oil pipeline from the Black Sea 

states into Europe. Oil from former Soviet states that is presently shipped down the Black 

Sea, through Turkey, then out into the Mediterranean would be piped directly into Europe. 

British Petroleum (BP) has been planning such a pipeline but political instability in the region 

has delayed in-depth feasibility studies. Scenario three assumed that this pipeline is 

operational by year thirty (2025). This was set to coincide with the depletion of easily 

accessible North Sea gas reserves. 
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Figure 8.17 GAMES yearly point plant forecast, from 1995, that includes external costs of 
generation by year 10 and the completion of a European oil pipeline from the black sea by year 
30. The model assumes that coal generation continues to decline due political influence and 

import insecurity. 
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The first twenty years plant capacity is similar to that of scenario two; a steady reduction in 

coal plant made up by an increased usage of nuclear, gas, oil and wind plant for generation. 

Imports also increase to meet the increasing demand. Oil plant is constructed between years 

twenty and thirty with the majority coming on line, in year thirty, with an oil pipeline bringing 

oil from the former Soviet states into Europe. 25TW of wind power plant is shown to come 

on line by year twenty. Figure 8.18 shows the generation figures for this time period. 

Although a large amount of wind plant has been constructed, the primary generation methods 

remain as nuclear, oil and imported electricity. The excess wind plant is used as a renewable 

lop up to ensure that international agreements are met. 
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Figure 8.18 GAMES yearly point generation forecast, from 1995, that includes external costs 
of generation by year 10 and the completion of a European oil pipeline from the black sea by 
year 30. The forecast also assumes that coal generation continues to decline due political 
influence and import insecurity. 

North Sea gas reserves are seen to become scarce by year twenty six. An initial increase in 

Imports, nuclear and wind powered generation make up for the immediate shortfall. The extra 

oil entering Europe by pipeline allows for a long term generation base of nuclear and oil 

powered generation. 

8.4.5 Scenario 4 (Cross Channel Interconnector Fault) 
Scenario four used the same ex-post / ex-ante forecast from 1995. Again the external costs of 

generation were applied to the generators in year ten. Once these external costs of generation 

had been included along with capital, operational., and maintenance costs the profitability of 
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electricity generation was substantially reduced. However the implementation of these taxes 

will differ between countries. These differences in legislation and taxation structures across 

Europe will increase the incentive to import or export electricity. The major problems with 

this strategy are the risks in relying on a single set of interconnectors and the risks associated 

with foreign politics. As generators within the European community will be in competition a 

long term cheap imported supply cannot be guaranteed. Scenario four investigated a sudden 

closure of the cross channel interconnector in year 20 (2015) that does not reopen for five 

years (2020). 
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Figure 8.19 GAMES yearly point plant forecast, from 1995, that includes external costs of 

generation from year 10 and has the UK - French Interconnector go inoperational between 

years 20 and 25. 

Figure 8.19 indicates a drop in coal fired plant with an increase in interconnector size to make 

up for the shortfall. This is most apparent between years ten and twenty due to the inclusion 

of external costs of generation. When the lnterconnector is shut down new gas plant is built to 

take up the shortfall. However the graph shows a delay in gas plant construction as the 

halting of imports is an unforeseen event. In year twenty three imports are resumed but the 

rapid growth in interconnector capacity seen before the closure is not continued. This is 

because the apparent risk of importing electricity has increased. Coal generation will increase 

after the import crisis and the extra coal plant built between years twenty eight and forty will 

be used to take up the shortfall as cheap North Sea gas becomes scarce. 
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8.4.6 Scenario 5 (A Future for Renewable Energy) 

Finding a balance in electricity generation is not easy. Legislation is the only control that a 

government has over the generation mix in a privatised ES!. Market forces can serve to 

promote non-renewables if left alone. This scenario was the result of gentle taxation 

structures that reflected the total costs of generation. This was fully implemented by year ten 

in an ex-post / ex-ante forecast that started in 1995. In addition it assumes that research and 

development of presently non-proven technologies is partly met by all the players in the 

industry. 
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Figure 8.20 GAMES yearly point plant forecast, from 1995, that includes external costs of 
generation, must take contracts for all renewable generation and considers advances in 
unproven technologies such as solar, wave and waste combustion. 

Figure 8.20 indicates a reduction in coal plant that continues until year 19 (2014). The 

generating fuel mixture then becomes diverse and balanced. Although the largest plant is gas 

fired plant each generation method reflects its overall costs and resource constraints. If the 

reduction in coal plant was continued past year twenty the deficit would be partly augmented 

by renewables. However the incentives to reduce fossil fuel combustion promote importing 

electricity and generation with nuclear power along with aiding the growth of renewables. If 

the pressure to reduce fossil fuel combustion is high. and electricity demand continues to 

increase, the incentive to import increases exponentially. Therefore when North Sea gas 

reserves diminish care must be taken to keep diversity in generation as the incentive to rely on 

another countries generation or solely on nuclear power will be great. This scenario shows 

that a balance can be reached using a mixture of renewables and existing fossil fuels. In this 
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case there will be a place for approximately 7 GW of plant from presently unfeasible 

technologies. This will occur gradually starting in year 14 (2009). Even if the cost of such 

technologies is presently prohibitive the reduction of environmental impact should cover much 

of the extra cost. 

8,5 Summary of Discussion 

The feasibility study proved that long-term ES! forecasting using a GA optimisation process 

was possible. It led to the construction of a full-sized model which forecasted the mix between 

8 generating methods over a forty year period. This model contained functions that described 

the EST's market, finances, political influences, technical constraints and environmental 

impacts. It represents the first long-term forecasting model that contains all these factors in a 

manner that allows for feedback within the system and the creation of a number of equally 

likely outcomes to each scenario forecast. 

Before the model was validated through a combination of ex-post and ex-ante forecasts the 

performance of the GA, and its ability to optimise such a large-scale model was assessed. 

Each genetic operator, and its relevant settings, were tested for their effect on the speed and 

quality of the optimisation process. The benefits, and drawbacks of each individual operator 

was discussed as they were added, in turn, to an initial control optimisation. This analysis 

was based on three statistical graphs for each test. The first was the rate of convergence of 

the best chromosome in the population on the global optimum, which indicated the rate of 

optimisation with respect to the number of generations passed by the GA. Secondly the 

average fitness of the population was assessed, giving an indication of the population's 

diversity as the optimisation process continued. Finally the standard deviation of the 

population was used to analyse the spread of chromosomes within the population. The results 

showed the added value of the new operators flatten and recall and showed the operation of the 

radiate function and how it tested for a global, rather than a local, optimum. 

The validation results given in this chapter represent a selection of the outcomes to five 

different scenario forecasts that highlight critical issues for the ES! in the near, and distant, 

future. The first was an ex-post forecast of the generation mix in the UK ES! between 1988 

and 1998. When compared to the real data for this time period large errors were found 

between 1988 and 1993. This was because this model was designed to forecast a privatised 

industry rather than a nationalised ES!. The privatisation of the ES! took place in 1990, but 

due to the lag needed to construct new plant, and decommission old plant, there should have 

been discrepancies between these two graphs until at least 1995. The fact that the general 
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trends match from as far back as 1993 proves the power of GA optimisation based forecasting 

and the initial thesis that this method of forecasting can provide accurate forecasts of the ESI. 

The five scenario forecasts describe different possible futures for the ESI. Their stability 

proves the thesis that GA based forecasting can provide reliable long-term solutions to 

possible future scenarios. The combination of all these forecasts allows an analysis of the 

critical factors that most influence the industry. The efficiency of CCGT plant and the price 

of its fuel are not the only factors that have made this technology so attractive to investment. 

The relatively short pay-back periods, the must-take contractual agreements between CCGT 

generators and suppliers and the low emission costs have established this method of generation 

at the cost of coal fired, oil fired and nuclear powered generation. Although, in the short-term, 

this represents an efficient and relatively clean generation policy the inevitable depletion of the 

UK's gas reserves within approximately 35 years indicates that this dash for gas is not 

sustainable. 

As gas reserves run low replacement plant will be needed. It is inevitable that environmental 

pressure within Europe will have established stringent emissions regulation and taxation by 

this time. The gas replacement will need to meet an increasing electrical demand without 

exceeding these environmental constraints. Unless low NO,, coal burners and flue gas 

desuiphurisation plant becomes more efficient and less expensive coal generation will not be 

able to meet the capacity deficit left by gas resource depletion without breaking emissions 

targets. The only feasible solution may be the construction of new nuclear plant to provide 

over 60% of UK load. This figure could be reduced through the increased use of renewables 

and imports from France. 

Of the renewable potential in the UK, wind power is the only proven technology that has yet to 

be fully exploited. The majority of large and medium scale hydropower potential has been 

used, or is too remote to facilitate economic grid connection. There is much potential for 

offshore wind and wave power however, the technology needed to exploit these primary 

renewable energy sources remains unproven. 
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9. CONCLUSIONS 

9.1 Overview 

The conclusions given in this chapter are drawn from the results of the work detailed in this 

thesis. They include and identify contributions to knowledge in the fields of modelling and 

forecasting, Genetic Algorithm research and long-term planning in the privatised UK 

Electricity Supply Industry (ES!). This chapter starts with a detailed discussion of the 

conclusions drawn from the construction of a large-scale model of the ESI in Section 9.2; 

from the development of Genetic Algorithm (GA) and optimisation based forecasting in 

Section 9.3; and from the construction of the Genetic Algorithm based Model of Electricity 

Supply (GAMES) in Section 9.4. Section 9.5 draws conclusions from the results of the 

scenario forecasts given in Chapter 8. This is followed by a final summary of general 

conclusions from this thesis in Section 9.6. Section 9.7 concludes the thesis and the final 

Section, 9.8, gives recommendations for future work. 

9.2 Large-Scale modelling 

Mathematical models have been used to describe events from falling apples to share prices. 

Some of these models are more reliable than others. Larger models tend to be less stable, 

contain more errors and can be difficult to use. The errors in GAMES, a large-scale model of 

the ESI, came from two main sources: The first was data error, which could be amplified if 

the system suffered from positive feedback. This was minimised by selective data acquisition 

and the avoidance of mathematical expressions that might have amplified these errors. 

However, the large number of explanatory functions, which describe the ESI, and the 

difficulties in acquiring reliable and continuous data also caused some small discrepancies 

between ex-post forecasts and historical events. These modelling errors could have been 

reduced by increasing the number, and accuracy, of internal functions and including a 

statistical analysis of all exogenous data. Such a rigorous analysis would have been beyond 

the scope of this study which was to investigate the use, and best application, of GA 

optimisation in long-term forecasting in the ES!. The second "cause of errors was due to the 

trade-off between complexity and the ability to solve the model. A high degree of accuracy 

could be obtained through the inclusion of all relevant factors. Unfortunately every function 
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added increased the model's complexity. With complexity came the problem of organising 

and solving the model. It was important that the model had a pre-defined structure and that 

each function was classed correctly. If the model had become organic it would not have been 

possible to trace the origin, and therefore the validity, of the results; thus conclusions based on 

these results would have been void. 

The use of a general utility function played a critical role in maintaining control of all the 

GAMES model's functions. The large number of functions that were needed to describe the 

ES! accurately created a non-linear set of simultaneous equations that could not be solved 

mathematically. In addition the number of possible solutions to these equations covered such 

a wide search space that they caused traditional iterative methods fall down. Using a GA to 

solve the model proved successful. Not only because it was able to solve such a large problem 

relatively quickly, but also because it allowed changes to be made in the model without 

manually re-solving sets of simultaneous equations. This combination of a general utility 

function solved by GA optimisation allowed easy reference and editing of functions, simple 

comprehension of the model's workings and a solid platform for scenario based forecasting. 

9.3 Genetic Algorithm based Forecasting 

Exact predictions of future events are notoriously erroneous. This study aimed to prove that 

the trends in electricity generation could be modelled and used to make forecasts of outcomes 

to possible future scenarios. Previous models that based forecasts on a handful of critical 

functions, such as least cost planning, were shown to be too simplistic and unreliable. A 

reliable forecasting model needed to include all relevant factors from politics to resources and 

use them in a complete study of the sensitivity of the system. This could only be achieved if 

the model was able to run quickly so that many results of different scenarios could be 

examined. The final forecasts would be the net result from the many sets of results. 

It was found that it was not possible to solve the equations, containing the relevant factors 

needed to obtain a valid model,, using traditional mathematical or computational methods. A 

feasibility study on a simplified model showed how a GA could be used to evolve an optimum 

solution to this large, non-linear problem. A full scale model was then created and tested. 

The results proved that GAs were ideally suited to the problem of long term forecasts 

especially in the ES! where the number of relevant factors was large. The time needed to 

obtain reliable results using GAMES varied from two to eight hours depending on the 

particular problem and accuracy needed. These tests were performed on an Intel Pentium Pro 

200 processor which operates at one fifth the speed of today's fastest PC processors. 
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Although GAMES has not been tested on a faster machine it is reasonable to expect that 

reasonable results would available within 25 minutes. 

9.4 The GAMES Forecast Model 

The GAMES program was designed to be intuitive and easy to use without compromising the 

program's flexibility and power. The input fields were constructed to allow expansion 

without reprogramming the visual graphical user interface (GUI). The program itself was 

designed with expansion in mind and is therefore of an object oriented nature. The type of 

user that would be using GAMES was also carefully considered. The program was found to 

be suitable for energy planners with no prior knowledge of genetic algorithms; as the default 

GA settings achieved satisfactory results. Users with GA experience were able to edit, and 

make efficient use of, the genetic functions during the program's runtime. 

Users of GAMES found the spreadsheet feel of the data fields intuitive and simple to use. The 

users had no problems obtaining and viewing results with little or no explanation. However 

there were no online help files as this study was concerned with whether such a package was 

feasible and was not dedicated to the creation of a commercial program. Producing a 

commercial GA based ES! forecasting model has been suggested as future work from this 

thesis. 

9.5 UK Generation and Supply 

This study aimed to use a GA to construct a reliable model of the ES! and prove that it could 

be used to make forecasts of how electricity will be generated in differing, but possible, future 

scenarios. The results given in Chapter 8 were some of these forecasts. They were not 

definitive forecasts of what will happen in the future, as exact predictions could not be made 

in such a complex system. They represented possible outcomes to pre-defined future events 

which, when considered together, gave a clear assessment of the critical influences within the 

industry. Sections 9.5.1 to 9.5.9 discuss each of the eight generating methods involved in the 

forecast scenarios. These sections represent relevant knowledge derived from the creation of 

the model and the combined results from scenario tests. 
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9.5.1 Gas Generation 
Gas fired generation has been the generation method of the nineties. In 1990 0.5% of the 

UK's electricity was produced by gas, a figure that rose to 32.5% in 1998. The National Grid 

Company expect that by 2005 41% of the UK's electricity will be produced by CCGT" 4. The 

DTI believe that by 2020 gas generation will have peaked at 57%U5•  GAMES scenario 

forecasts corroborate this data. This increase in gas usage was mainly due to new, highly 

efficient, CCGT technology and the dash for gas policies of the last government. Gas 

generation proved to be the most lucrative of the 1990's generating methods and thus has 

succeeded in the privatised UK ESI. This trend was set to continue so long as there were no 

changes to legislation. Legislation changes came when, in 1997, the present government put a 

freeze on the construction of any new gas plant. This was due to the finite nature of the UK's 

gas supplies. If gas was burnt following predicted levels the North Sea's gas supply would 

only have lasted another thirty to forty years. This problem would be compounded by demand 

from countries that are presently considered to be developing. These countries are set to 

increase the global gas demand by as much as 60% before 2010W 6. New reserves may be 

found and new mining techniques may create new gas and oil field opportunities. 

Unfortunately these possibilities cannot be relied upon. 

If market forces are left to decide gas combustion issues changes in the trend to gas depletion 

will only arrive when reserves have become scarce and expensive. Gas is vital to industry, in 

the home and for electricity generation as a part of an integrated supply. Only through 

controlling the large scale combustion of gas can this finite supply be conserved for the future. 

This does not seem likely as CCGT plant is the cleanest of the fossil fuels and will always be 

subject to less taxation than oil and coal combustion. 

9.5.2 Coal Generation 
In 1993 coal fired power stations accounted for over 50% of the UK's electricity generation. 

This figure now stands at 35% and is expected to fall to below 27% by 2005. GAMES 

scenarios that included a comprehensive accountability for all environmental costs put coal 

generation as low as 2% of the UK's total by 2015. Forecasts that assume it is unlikely that 

all external costs will be charged to the generators predict a minimum level of 18% for coal 

that will be reached in 2015. Coal generation will not disappear altogether as it will be a 

primary substitute for gas powered generation when these reserves run low. However directly 

replacing CCGT with coal fired plant will cause an increase in NON, SO, and CO 2  emissions 

making government target levels difficult to meet. Fortunately, new combined cycle coal 

turbines, using gassified coal, are cleaner and more efficient than traditional coal power plant. 

There are also many new technologies dedicated to the cleaning of emissions from coal 

combustion. 
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9.5.3 Oil Generation 
Oil generation, like coal generation has been on the decline over the past ten years. It has not 

had government support and CCGT technology has left it behind. The figures speak for 

themselves: Oil fired power plant dropped from 7.5% of total UK generation in 1993 to 2.5% 

in 1997. Most forecasts do not expect this figure to rise in the near future. GAMES based 

forecasts attribute this to high fuel costs and the range of environmental penalties attributable 

to oil combustion. 

The concept of using Oil as a substitute for gas is not new. The third scenario showed how 

the construction of an European oil pipeline would facilitate this substitution. This scenario 

did include a gradual increase in base oil price as demand from the developing world 

increased. The exact extent of this increase is not yet known but if the increase was more than 

4% per year, index adjusted and above yearly oil price deviations, GAMES suggested that oil 

will cease to be used as a major generating resource. The average annual oil price rise has 

been 1.5% per year since 1987". However the price of oil products rose and fell by over 

50% between 1978 and 1986. Memories of the 1970 oil crisis also add to the risk costs of oil 

powered generation as there is always an element of uncertainty in the fuel supply. 

9.5.4 Nuclear Power 
Nuclear power has been the most contentious of the generation issues since its inception in the 

1950s. The benefits of nuclear power are that it does not cause the type of pollution that 

causes global warming, acid rain or local health problems. The power stations themselves are 

compact and the majority in the UK, which are based in coastal regions, do not have large 

cooling stacks that onlookers incorrectly associate with pollution. They are ideal base load 

generators that have proved reliable. Their safety statistics are far better than those of fossil 

fuel generating plant although there is the unknown effect of the numerous small scale leaks 

that are not included in the published figures"'. Although uranium supplies are similar to 

those of oil"', nuclear power resources will out-last fossil fuels as the reprocessing of spent 

fuel rods is highly efficient. 

The drawbacks of nuclear power are as numerous as the benefits. The main issue is safety, 

although uranium supply problems do exist. The safety issues concern the mining and 

transportation of uranium, the process of fission to generate heat and the disposal of 

radioactive waste materials. Reprocessing the spent fuel adds further complications, 

especially when waste from abroad is shipped into the UK. The main fear is of a repetition of 

the accident at Chernobyl. The Chernobyl accident in 1986 highlighted the risk of a 

meltdown, where the chain reaction goes beyond a critical point and cannot be recovered due 

to the deformation of the reaction chamber itself. A year later, against international safety 
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advice, the plants number three reactor was back in service. Thirteen years later the 

surrounding countryside is still deemed unsafe. The total loss of life on this radioactive land is 

still unknown. Leaks from ageing radioactive dumps also pose a great threat to public safely. 

Coastal dump sites in the UK have recently come under scrutiny as water ingress has 

compromised the safety at some of these sites. 

The political nature of nuclear power makes forecasting its usage difficult. France and the 

UK have placed a moratorium on nuclear plant construction and the USA is closing down 

plant, without replacing it. Meanwhile Japan is extending its nuclear plant capacity. The 

present UK government has decided that the risks do not warrant new plant construction. 

However this will change as the cost of electricity generation increases and new technology 

makes nuclear powered generation safer. New fission methods are under test and much work 

is going into the possibility of fusion. When UK gas reserves become scarce a nuclear 

alternative will be necessary. This will be as part of an integrated supply and will probably 

include new and safer nuclear technology. 

9.5.5 Hydro-Electric Power 
Hydro-electric power is a well proven renewable energy source. Both pumped storage and 

traditional turbines have a place in future generation. Successful hydro schemes need the 

correct geographic formations and hydrological resources. The UK has used much of its 

feasible mountainous resource. Prohibitively high transmission costs have ruled out many 

ideal sites in the Scottish Highlands. In addition the threat of global warming increases the 

risk costs of hydro power. This, with high capital costs and long lead times, diverts 

investment from hydro power to generation methods with shorter pay-back periods and low 

capital costs, such as CCGT. 

In 1997 hydro plant produced 1% of electricity generated in the UK. This was a 50% 

reduction on 1993 figures. As hydro dams age they weaken. As they weaken less water can 

be held in the reservoir behind them. Once the maximum allowable water head drops below a 

critical value generation becomes unprofitable. Strengthening the dam is presently too 

expensive and therefore the old dams are simply left in place. The result is a dwindling large-

scale hydro capacity. Conversely small-scale hydro is on the increase. The new market, 

NFFO and SRO subsidies have provided a base for this proven technology. Unfortunately 

grid companies are resisting this drive towards embedded generation as the additional expense 

of managing and protecting such plant costs them money. It is likely that this will be 

overcome in the near future and that small hydro schemes will make a significant contribution 

to the UK's total renewable capacity. 
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9.5.6 Wind Power 
Although there is some opposition to wind turbines, due to their visual and audible impact 

they are quickly becoming viable generators. The new standard for turbine output is 1MW 

which is twice the size of turbines constructed three years ago. There are some 1.5MW 

machines in operation. They can be used on a small scale, as a single turbine, or as part of a 

large farm of wind turbines. Over the past five years the cost of electricity generated by wind 

has fallen from 7p/kWh to 4p/kWh, comparable to the mainstream generators. The UK also 

benefits from the correlation between domestic demand and wind power availability. Due to 

the UK's island type climate the wind, on average, peaks in time with the midday and 

afternoon demand profile peaks. In addition winter months see substantially higher wind 

speeds, matching cold spell demand. 

Scenario studies showed how wind turbines could be used to offset environmental taxation. 

Wind generation of up to 25TWh of electricity per year helped reach government emissions 

targets. Possible future European Commission penalties on excess emissions were avoided by 

employing such strategies. Onshore wind power is already increasing as the technology 

develops. The only problem is that onshore resource limitations and the technology for the 

anchoring of offshore wind turbines is still undergoing tests. The future of this technology is 

almost certain as it has proven to be a vital part of a future integrated UK electricity supply. 

9.5.7 Non-Proven Technologies 
This category includes offshore wind, wave power and solar power along with any technology 

that does not yet exist. It does not include advances in already proven technologies. This field 

was used for scenarios that investigated the impacts of new technologies on existing 

generating methods. Nuclear fusion is considered a non-proven technology and its impact on 

future generation was investigated using GAMES. Although there was no actual data for 

these untested generation methods the ESI's sensitivity to such change was investigated. As 

expected new technologies took time to be established unless their overall utility was far 

greater than existing methods. 

9.5.8 Imported Electricity 
The present the cross channel interconnector capacity between the UK and France is 

1,988MW. Although expensive additional under-sea cable can be laid to increase this 

capacity. There is no maximum future interconnector capacity so long as there is power to 

send down it. It will prove useful in controlling the taxation structures of individual countries 
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as imports are not subject to environmental taxation. Including imported generation did show 

the present limitations of the model. Because UK based environmental taxation did not apply 

to imported electricity, and the difficulties in collecting reliable French policy data, The model 

often suggested importing electricity as a means of avoiding taxation. This effect was reduced 

by including an import tax that correlated to expected French taxation policy. The sensitivity 

of this was proved to be low and imports remained a significant portion of the UK's future 

integrated supply. 

9.5.9 Integrated Generation 
The key issues in maintaining a reliable supply of electricity are security and diversity of 

supply. The security issue concerns the availability of substitute generation and the delay in 

these generators coming on line. This is due to the fundamental problems of power storage 

and the time lag in spinning up and synchronising plant. Small faults in the final electricity 

supply can have a catastrophic effect on industry, commerce and public safety. Therefore 

there must always be enough capacity to meet both expected and unexpected demand. This 

type of extra reserve capacity is not wanted by investors and market forces, without 

regulation, cannot guarantee that this margin will always exist. All the scenarios followed the 

models primary assumption that demand will always be met by supply. However, on some 

occasions, the model suggested reducing all reserve plant, sustaining large penalties instead. 

This proved that legislation is needed to ensure that there is enough plant to cover forced 

outages and sudden, long term closure. 

Generation diversity plays an important role in securing supply. Resource, technological, 

environmental and political changes can remove a whole generating method from the grid 

system within a few years. An example is the UK's rapidly diminishing coal capacity; coal 

plant is being replaced by gas plant which will, in turn, need to be replaced itself. The 

scenario studies show a high probability that some of the capacity deficit resulting from gas 

depletion will be met by coal. The ideal solution is one where each method of generation is 

used by its merits and no individual method is asked to take the whole load. Such a future is 

possible so long as legislation and taxation are used wisely as part of a long term plan. 
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9.6 Summary of Conclusions 

The ESI has performed a full circle from private ownership, through nationalisation and 

government control, and back to being a privatised industry. History has shown that 

government led intervention and regulation has always played an important role although some 

politicians like to state otherwise. Along with these changes in market and ownership, 

technologies, environmental impact assessments and resource constraints are also under 

constant change. Chapter 2 highlights the need for forward planning in this environment of 

change and concludes that a robust long-term model is needed to investigate the effects of 

changes to policy, market, environment and technology on the primary energy usage for 

generation in the ESI. 

Chapter 3 outlines the many mathematical techniques that have been used to forecast small 

scale correlations, such as weather temperature and electricity demand, in the ESI. These 

techniques are limited by the number of possible explanatory variables and the necessity of 

linear data sets. Computer based forecasts, that apply non-parametric regression, can 

correlate non-linear data. These forecasts can be improved using Al techniques which enable 

the classification of data through fuzzy logic, the learning of complex correlations using 

artificial neural networks and the evolving of optimum solutions by genetic algorithm. The 

chapter concludes that GA optimisation is necessary for long-term forecasting of generation in 

the ESI due to the lack of relevant past data, the size of the problem and the non-linear nature 

of the relevant explanatory equations. 

Chapter 4 concerns the theory behind long-term primary energy forecasting and the 

application of a new, utility based, model. It proves that a rigid structure is necessary to 

organise such a large scale model based upon the separation of exogenous and endogenous 

functions, and the classification of the latter by their role in the model. The chapter concludes 

that grouping all these functions, that together described the UK ES!, in a global utility 

function allows the conversion of the multitude of non-linear simultaneous equations into a 

single optimisation problem. This novel approach to energy forecasting unifies fiscal and 

relative numeric values in order to combine financial, environmental, technical and political 

factors in a single model. 

Because the global utility function was non-linear with over 4x 
10416  possible solutions it could 

not be solved repeatably by any other means than an intelligent search method. Chapter 5 

proved that a GA was the most suitable intelligent search method and described the GA that 

was specifically created to optimise the global utility function. The chapter outlined 

improvements which could, in this case, be made over the standard selection, crossover and 
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mutation operators by using two point crossover, non-uniform mutation and including two 

new operators "flatten" and "recall". It can be concluded from the construction and testing of 

a Genetic Algorithm based Model of Electricity Supply (GAMES) that flatten, the heuristic 

mutation operator, made forecasts more realistic by removing unlikely peaks and troughs from 

trends in primary energy utilisation. In addition the recall operator gave the population a 

memory of previous generations allowing, through mutations, the reuse of old genetic material 

which improved the overall optimisation time. Both operators should be applied to other 

large-scale evolutionary algorithm applications. 

GAMES was constructed for use by energy planners and used an intuitive approach to the 

user interface. Chapter 7 showed that the use of spreadsheet styled forms for data input 

allowed the easy access and editing of data sets. The default settings of genetic operator 

variables were adjusted to enable the use of the program without any prior knowledge of GAs 

and their operation. Users with some GA knowledge were able to manipulate these variables 

through novel interfaces, such as the hold operator interface, which represents genes as items 

in a fruit machine. The chapter also showed the program's facility to radiate the population 

and temporarily increase the level of diversity in the population to ensure that a global 

optimum, rather than a local optimum, had been found. Although this method of testing the 

optimum solution was not new, it had never been used as an integral part of a forecasting tool 

in this manner. The importance of a GUI is often underestimated resulting in forecasting tools 

that are difficult to use. This chapter shows the advantages of a simple, yet intuitive, GUI and 

concludes that, for real applications, the accessibility of a program decides its use to the same 

extent as its ability to solve the problem at hand. 

It has never been possible to make exact predictions as to the future shape of the ESI. 

Existing models, which attempt to give an exact view of the future, have generated notoriously 

inaccurate forecasts. It can be concluded that this innovative approach, of forecasting through 

an optimisation process, enables the creation of multiple sets of near optimum solutions. This 

provides the energy planner with various, equally likely, outcomes to scenario forecasts and 

creates a wider picture of possible future events. Combining the results from a number of 

scenario forecasts gives enough information to assess the factors that will influence the future 

of electricity generation in the UK ESI. This extra analysis should prove critical in future 

forward planning decisions. 

The results discussed in Chapter 8 represent the analysis of multiple sets of outcomes from 

five different scenario forecasts. The conclusions given below are based upon this sensitivity 

analysis and give a clear picture of the critical influences in future plant construction and 

generation scheduling choices. The continuity in these forecasts proves the stability and 
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accuracy of the GAMES forecasting model and the theory behind using utility optimisation in 

long-term forecasting. 

From the analysis of results given by the GAMES forecasting model it can be concluded that, 

in the short-term, Combined Cycle Gas Turbine (CCGT) generation has attracted private 

investment in the UK ESI because of the efficiency of the technology, the low fuel prices and 

attractive contract opportunities. In the long-term, the depletion of UK gas reserves will be a 

major energy issue in the next millennium. Gas depletion will have a direct impact on both 

industrial and domestic gas users, and an indirect impact on generation and the environment as 

contingency measures to meet the generation shortfall constrain planning possibilities. The 

main large-scale replacements for CCGT will be coal and nuclear powered generation. Oil 

prices are expected to rise due to increased demand from developing countries and the UKs 

available hydropower potential is already nearly fully exploited. Coal generation suffers from 

both gaseous and ash emissions which impact heavily on the environment. Unfortunately the 

technology needed to remove these emissions is expensive. It costs over £160 million to install 

flue gas desulphurisation on a 1000MW of coal fired plant which removes a high percentage 

of SO, but still leaves NO and CO 2  emissions. Nuclear power does not have any emission 

problems and could be used to replace CCGT without breaking environmental targets. 

Unfortunately the potential hazards of current nuclear technology, and the issues relating to 

the disposal of radioactive waste cannot be ignored. History proves that accidents do happen 

and increasing the UKs nuclear capacity can only increase this risk. 

Renewable generating technologies, which currently account for less than 2% of the UK total 

capacity, are encouraged through favourable contractual arrangements, European based 

financing and a high media profile. Their maximum potential is large but, as with all 

generation, the renewables have a specific place in the industry. Hydropower turbines can 

come on-line very rapidly, whilst wind power must be exploited whenever it is available. 

These are the critical constraints, along with taxation and resource usage that must be given a 

priority if renewables are to become influential in the future. 

The UK is fortunate in that it has the resource, technical knowledge and wealth to enable it to 

formulate and execute a long-term future for electricity generation. This future could be 

sustainable if efficient use is made of domestic resources and adequate funds are made 

available for researching improvements in existing generating methods and developing new 

generation technologies. 
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9.7 Conclusion of Thesis 

The thesis of this study, that a reliable long-term forecasting model of yearly generation, 

energy resource and available plant mix in UK electricity generation can be constructed using 

a global utility function solved by a Genetic Algorithm (GA) based optimisation has been 

proved. The removal of moral decisions from the energy planners, to the legislators, made it 

possible to model future plant scheduling decisions by optimising economic, technical and 

environmental functions within the constraints of known, or predicted legislation. This large, 

non-linear and discontinuous optimisation was solved efficiently and reliably using a dedicated 

GA. The comparison of an ex-post forecast against real historical data proved the accuracy 

of using this approach. The five scenario studies proved the long-term stability of the model 

and completed the validation of the GAMES forecasting model. 
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9.8 Recommendations For Future Work 

This study has proved the application of GAs to complex long-term forecast problems and 

shows how the advantages of using a GA, rather than a traditional iterative technique, 

increases as the model's size, non-linearity and complexity increases. Therefore the 

recommendations for future work concern the application of the GAMES model structure and 

GA to existing and larger forecasting problems. The first recommendation is to use the 

existing GAMES model to continue the study of the UK ESI and explore the factors that will 

influence its future structure. The second is to increase the model's scope to include the 

European Community (EC). The third is to change the emphasis from generation to load flow 

through interconnectors across the whole European continent. Finally the fourth suggestion is 

to extend the knowledge behind GA based optimisation in large-scale problems. 

9.8.1 UK based Studies Using GAMES 
This study was primarily concerned with the development of a new type of model that could 

be used in long-term primary energy utilisation in UK electricity generation. Although the 

results obtained are valid, the objective of the work that produced them was to prove that the 

model was stable, reliable and able to predict outcomes to possible future scenarios. A full 

study of all possible scenarios, in order to find an ideal planning policy for the UK ESI, could 

be performed using GAMES as the forecasting tool. Such a study could include additional 

generating methods and their descriptive functions along with extra data and exogenous 

forecasts. France should be included within this study as environmental concerns in France 

apply to the UK which purchases electricity from France. 

9.8.2 European Forecast Model 
As computer processor speeds increase, so do the possibilities for applying GA based 

forecasting techniques. A forecasting model that encompassed the whole of the EC, with 

enough detail to provide accurate forecasts to possible future scenarios could aid the European 

Commission in their forward planning energy strategy. The vast amount of data needed for 

such a model would put this recommendation beyond the scope of a single researcher. A team 

of energy planners would be needed to construct, apply and derive planning strategies from a 

model that size. 
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9.8.3 European Interconnection Study 
As the EC develops a network of interconnectors, between individual European nations, will 

be established. Each nation will be in direct competition for electricity generation and supply. 

A model which will be able to predict which nations will have an excess, or deficit, of 

generation capacity would prove invaluable in such a market. The economics, taxation 

structures, technical ability, and resource constraints of each nation would have to be included 

along with the costs of transmission across such a large geographical area. This large project 

would be ideal for multinational energy companies who are already investing in European 

generating companies. 

9.8.4 Extension of GA Theory for Large-Scale Problems 
During the past thirty years Genetic and evolutionary algorithm research has increased 

rapidly. Until recently this was on a theoretical basis as computer CPU speeds limited the 

application of these techniques to small, theoretical, problems. The standard tests for new GA 

operators are currently based on their ability to solve these traditionally small problems. The 

most popular of these is the Travelling Salesman Problem (TSP) which concerns the cheapest 

route that a salesman can travel between a set of cities based upon the transportation costs 

between each city. However, this history of proving GA theory through simple problems 

limits the addition of complex operators which benefit large-scale problems, but are inefficient 

in small-scale problems. Many biological theories, such as reversible mutation or the 

inclusion of dominant and recessive heredity, could be tested on large-scale problems. If 

CPU speeds continue to increase as they have over the past twenty years evolutionary 

algorithms will be regularly used to optimise complex large scale problems and in order to do 

so they themselves must evolve additional complexity. 
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Appendix 1 

APPLICATION OF GENETIC ALGORITHMS 
TO LONG-TERM GENERATION FUEL RESOURCE MANAGEMENT 

C.L. Silverton and A.R. Wallace. 

Energy Systems Group, Department of Electrical Engineering, University of Edinburgh, UK. 
ABSTRACT 

This paper discusses the problems associated with long-term fuel resource forecasting within 
the UK privatised electricity supply industry (ESI) and suggests the inclusion of market and 
economic effects along with emissions tax, plant and generation costs. A Genetic Algorithm 
(GA) based solution is offered as a means of modelling these non-linear factors to give 
proportions of energy sources to be utilised in electricity generation. A simple GA has been 
implemented to forecast the fuel mix between gas and coal as a means of testing the feasibility 
of such an approach. Results suggest that GAs are ideally suited to modelling long term fuel 
resource usage as this approach allows dynamic updating of input data. 

These factors include: 

INTRODUCTION 
• Emissions Taxes 

UK electricity generating capacity must 
increase to satisfy a steadily increasing 
demand for energy. In conflict, the future 
of fossil fuel generation is somewhat 
uncertain as these resources become scarce, 
expensive and emissions taxes rise. These 
so-called environmental taxes have, in the 
short-term, helped the growth of many 
renewable energy technologies (RETs) 
which are not subject to this type of 
taxation [1]. However the long term effects 
of these taxes are unknown. The ideal 
scenario would be that the ESI met 
electricity demand with minimal 
environmental impact. However, if the 
result is a future ESI that relies too heavily 
on a single unreliable technology or energy 
source, the impact on UK industry, 
economy and environment could be 
disastrous. To ensure that this does not 
happen there needs to be a coherent 
plan upon which future new plants and 
electricity generation mix can be 
based. To create such a plan the factors 
that influence decisions involving energy 
resource utilisation must be fully analysed. 

. Fuel Resources and Prices 

Electricity Demand & Existing Capacity 

• Costs & Benefits of Technologies 

Managerial Strategy 

A model based on the relationships between 
these factors and the choice to utilise each 
method of electricity generation could be used to 
predict the long term fuel-mix in the UK. Such 
a model must be active so that it can be adapted 
to investigate the effects of different taxation 
structures along with changes of environmental 
constants and technical developments. This can 
be done by taking forecasts of each factor and 
including them into a model that predicts, on a 
yearly basis, the proportions of electricity 
generated by each energy source. Although the 
accuracy of any long term forecast is entirely 
dependent on the quality of the input data, 
sensitivity studies on such a model will show the 
results of unexpected changes in the future. 
Such an investigation into the effect of these 
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changes on the long term generation mix 
will give the factors most critical in energy 
resource planning. It is this sensitivity 
analysis, on a long term forecasting model, 
that will prove crucial in the validation of 
different long term plans for electricity 
generation in the UK. 

PRIVATISATION OF THE UK ESI 

Privatisation brought with it considerable 
restructuring within the ES!. The new 
economic structures of Regional Electricity 
Companies and Generators has affected, 
although sometimes only indirectly, their 
public policy [2]. Privatisation has 
transferred public responsibility from these 
private companies to a system of regulators 
and government legislation. This has 
created a separation between many of the 
firm's public obligations and the 
maximisation of economic performance: 
Until the majority of customers can choose 
their electricity supplier, all actions within 
the laws and rules of energy trading will be 
considered acceptable. As energy 
legislation is well defined and private firms' 
performances can be estimated, the removal 
of public responsibility from the firm has 
made it possible for ESI forecasters to use 
complex theories within the constraints of 
known legislation to model the outcomes of 
future fuel-mix decisions [3]. The 
reliability of such models depends on the 
industry - and market - specific 
assumptions made in the forecasting 
method. 

FORECASTING IN THE 
PR1VATISED ESI 

It is widely assumed that private ownership 
implies profit maximisation. Existing ESI 
forecasting methods assume a Least Cost 
Plan (LCP); that decisions concerning the 
choice of generating methods rely solely on 
a maximisation of generation profit. 
Although more recently some of these 

algorithms have included emissions constraints 
[4], Shlyakhter's study [5] on past forecasts in 
the US private energy sector showed that there 
was a "... 7.5% probability that a value of a 
parameter predicted by a model would be seven 
standard deviations above or below the true 
value" suggesting something is fundamentally 
wrong with traditional LCP forecasting methods 
being applied to the ES!. For example many 
RETs only promise future high returns whilst 
profit maximisation, due to "dash for gas" 
policies [6], lies in combined cycle gas turbine 
(CCGT) generation. LCP models would predict 
that no RETs would be used until they became 
more profitable than CCGTs. In reality, the 
decision process is far more complex and 
companies have become involved in RETs long 
before they have become the most profitable 
forms of generating technologies. 

Deviations from profit maximisation are related 
to economic inefficiencies in the decision making 
process created by the incentive structure of 
private firms. These inefficiencies are explained 
using the Principal-Agent theory [7]. The theory 
suggests that there is a conflict of interests 
between Principals (the shareholders in 
electricity generating companies) and Agents 
(the decision makers or managers within those 
companies). To incorporate this effect in a 
forecasting model sets of additional constraints 
must be added to the forecasting method. These 
constraints are derived from the major 
managerial decision making processes: 

Contracts 
In the electricity generating companies, where 
there are many shareholders, enforcing 
managerial contracts becomes too costly for the 
individual as the returns from such endeavours 
are shared. This limits managerial efficiency and 
so implies productivity constraints must be 
added to the model. 

Threat of takeover 
A perceived threat of takeover will set a 
minimum efficiency. However to avoid takeover 
a manager must often take action to manipulate 
profits and share prices. This constrains a firms 
growth. 

193 



Appendix 1 

SOLUTIONS TO FORECASTING 
PROBLEMS 

As any fuel-mix decision can be described as an 
optimisation based on forecasts and a set of 
known laws, predictions of such decisions must 
rely on a function other than simple profit 
maximisation [8]. Although adding the above 
constraints to profit maximisation creates non-
linearities it gives a more accurate forecasting 
method. Optimising such a function cannot be 
time-dependent as these constraints vary 
depending on past and predicted future events. 
Complex non-linear, time-independent functions 
have traditionally proved difficult to solve. 

The solutions to these forecasting problems lie 
within the construction of the forecasting model 
itself. To include the cause and effect of present 
and future events the model must solve for the 
whole time period at each iteration rather than 
solving on a yearly basis. Using this approach 
along with the inclusion of technical, economic 
and environmental constraints increases the 
models complexity. A complete ESI model, 
including a mix of eight generating methods over 
a forty year period, would have 10321  possible 
solutions. The algorithm most suited to solving 
the non-linear combinations of functions over 
the massive search space that describes the ideal 
ESI forecast method is the Genetic Algorithm 
(GA) [9]. 

GA REPRESENTATION OF ES! 
FORECASTS 

A GA is an optimisation method based on 
evolution. The algorithm consists of a 
population of chromosomes. In this example 
each chromosomes represents a possible fuel-
mix between gas and coal generation over a 
selected time period (6 years are shown in fig. 
1). Chromosomes are made up of a strings of 
genes, each representing a possible single years 
proportion of gas to coal usage. 

1. A number of chromosomes (possible 
solutions) are randomly generated 

Threat of bankruptcy 
A perceived threat of bankruptcy causes a 
manager to either increase assets (through 
investment) or reduce liabilities (as a means 
of reducing debts). This will cause, at least, 
nominal investment constraints. 

Risk management 
Risk management strategies that do not 
follow profit maximisation are adopted to 
avoid worst case scenarios. These include: 

• Long term contracts that span a time-
scale that will not be affected by short 
term market fluctuations. 

• Vertical integration through investing 
along the supply chain guards against 
supply price variance. 

• Horizontal integration that aims to 
increase market share by absorbing the 
competition. 

• Risk sharing by companies who would 
be unable to individually accept the risk 
of exploratory work 

• Diversification by swapping a specific 
risk for a general market risk. 

• Hedging to eliminate unwanted risks by 
offsetting one risk against another. 

Risk management strategies must be 
included within the forecast as a set of 
constraints that vary depending on the 
probability of a future event. For example: 
reducing the probability of utilising 
generation methods that are too dominant 
in the market ensures diversification. This 
creates further forecasting problems; 
present decisions are altered by predictions 
of future events yet these events rely on 
those same decisions. This loop creates 
non-linearities that traditional optimising 
techniques find difficult to solve. 
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Figure 4 Mutation (c' is a mutation of b') 
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Figure I Population ot ( bromosomes 

The 	fitness 	function. 	containint. 
technical, economic and environmental 
functions assigns each new chromosome 
a fitness which affects its probability of 
selection. Two chromosomes are then 
selected as parents to be used in 
breeding new and better, against the 
constraints of the fitness function, fuel-
mix solutions. 

Parents 
d 

Figure 2 Chromosomes are selected as 
parents 

Breeding involves splitting strings of 
genes off two chromosomes and 
swapping them. This is known as 
crossover (fig. 3). The children then 
replace the least fit solutions in the 
population. 

Parents 	 Children 

a 	 d 	 a 	b' 

Figure 3 Breeding of parents (single point 
crossover) 

4. A small number of the child chromosomes 
have a random number of genes, or strings 
of genes, randomly mutated (fig.4). This 
prevents the GA becoming stuck in local 
optima. 

Children 

Parents 
a 	d 	 a' 	b' 	c' 

5. The GA returns to the fitness function (phase 
2). This continues until the whole population 
converges (the population becomes similar 
and stops changing), providing the fittest or 
most likely set of possible fuel-mix solutions 
that satisfy the requirements of the fitness 
function. 

l'Pl\I(. A GA To FSl FORFICASTING  

.\ ict iiidel st 	tutiaII 	created to 111\Cs11 1La1C 

the kasibility of using a GA in ES! forecasting. 
This model assumed that all UK electricity was 
generated using either coal or gas. It 
incorporated forecasts such as emissions taxes, 
resource costs, technical advances and UK 
electricity demand, all of which could be altered 
for sensitivity analysis. The fitness function was 
constructed using functions based on economic 
theory and a knowledge of the ES! under 
environmental and technical constraints. The 
model's GA (Evolver by Axcelis) was 
constructed using fifty chromosomes, or 
outcomes of possible gas to coal mixes over a 
forty year period. These chromosomes consisted 
Of forty genes, each representing a possible 
ingie years percentage of gas and coal 

generation. 
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final convergence. Figure 6 shows the GA's 
progression towards convergence on an effective 
energy resource utilisation plan (fig. 7). 

• - - 

I • , 	_____________________ 

Figure 5 Starting (0 Generations) 50% Coal 
50% Gas Seed of a GA Based Forecast of 
Extra Coal and Gas Plant Needed 

All, bar one, of the chromosomes started 
with random values assigned to each gene. 
The remaining chromosome could be 
seeded with a fit or unfit solution; the 
former to speed convergence and the latter 
to aid divergence (fig. 5). 

Selection was based on a standard roulette 
method which gives slightly higher breeding 
rates to fitter chromosomes. Once selected, 
breeding was performed using a two point 
crossover to allow the passing down of 
market and technical trends through 
generations. This involved randomly 
selecting two points along the breeding 
chromosomes and swapping the sections 
within these points. Both parents and 
children were then re-inserted into the 
population replacing the two least fit 
solutions. 

s+7 	 EtGraFt,tte.SdIWtj 

E 4+7 

9 9 2 2 9 2 2 5 5 2 

Figure 7 Convergence (200,000 Generations) GA 
Based Forecast of Extra Coal and Gas Plant 

Needed 

The model converged after 200,000 generations. 
As the number of possible solutions was 1041  the 
GA was considered very effective. The results, 
for this scenario, indicated an increase in CCGT 
plant construction over the next six years. 
Further CCGT construction would be unlikely 
as the plant life would exceed present UK gas 
resources. To accommodate the resulting 
capacity shortfall extra coal plant construction 
would need to start in year five (fig. 7). 

Sensitivity studies showed stability in the model 
when changes in fuel price, interest rate, 
taxation and electricity demand predictions were 
altered to see their effect on future generation 
fuel-mix. This was helped by the speed at which 
the algorithm adapted to these changes during 
run-time. 

CONCLUSIONS 

• By predicting the results of yearly energy 
utilisation decisions, a clear picture of the 
shape of a future ESI is possible. 

• Existing ESI forecasting models are either 
too simplistic or insoluble using conventional 
mathematics. 

• Using a GA based model allows the inclusion 
of economic, technical and environmental 
constraints. 

• The ability of GAs to solve massive, non-
linear, problems quickly allows 
comprehensive sensitivity analyses on 
forecast models. 

IEcpI..iw9j 

- . .. 

2 5 5 9 

Figure 6 Mid point (2,000 Generations) GA 
Based Forecast of Extra Coal and Gas Plant 

Needed 

The mutation rate was manually altered 
during runs. It was increased after initial 
convergence to help ensure a global, not 
local, optimum had been found. When an 
increased mutation rate had no further 
effect, it would be set to almost zero to aid 
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• A scaled test model proved that this 
approach provided consistent and stable 
results suitable for sensitivity analysis. 

A future model will consider 8 energy 
sources, each with up to 32 variables, over 
a 40 year period. Sustainability and the 
role of renewable energy technologies 
(RETs) will be tested when subjected to 
predicted and random changes such as: 
global-warming reduction of large hydro 
resources; price shocks in heavy 
hydrocarbon fuels; depletion of gas reserves 
and emissions-taxed pollution reduction. 
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CONSTRUCTION OF A GENETIC ALGORITHM 
BASED MODEL OF ENERGY SYSTEMS 
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ABSTRACT 

This paper discusses the construction of a long-term UK fuel resource forecasting model. The 
model gives likely fuel mixes in the privatised UK electricity supply industry (ES!) and includes 
market and economic effects along with emissions tax, plant and generation costs. A Genetic 
Algorithm (GA) based solution is given to model these non-linear factors to give proportions of 
energy sources to be utilised in electricity generation. The GA has been implemented to forecast 
the fuel mix between gas, coal, oil, nuclear, hydroelectric, wind and non-proven generation 
methods. These are set into competition along with imported electricity as a means of finding fuel 
mix outcomes over the next forty years. Results suggest that GAs are ideally suited to modelling 
long term fuel resource usage as this approach allows the inclusion of many non-linear functions 
and the dynamic updating of input data. 

. Coal 880 g/kWh 
INTRODUCTION 	 • Lignite 1166 gfkWh 

UK energy policy preaches reductions 
in emissions, more renewables, 
sustainable electricity generation, and 
effective energy efficiency. 
Unfortunately commitment to one of 
these policies can have an adverse 
affect on another. The recent hold on 
combined cycle gas turbine (CCGT) 
plant construction will bring an end to 
the "dash for gas" [1] and will 
arguably increase the long term 
sustainability of the UK ES!. However 
increasing the combustion of Coal, the 
suggested replacement for CCGT, will 
make the 1997 Kyoto CO 2  emissions 
targets harder to achieve. 

Total fuel cycle CO 2  emissions[2]: 
• Natural gas 401 gfkWh 

Environmental taxes and incentives such as 
the Non-Fossil Fuel Obligation (NFFO) and 
Scottish Renewables Order (SRO) have, in 
the short-term, helped the growth of many 
renewable energy technologies (RETs) [3]. 
However the long-term effects are unknown. 
Ideally the ESI would meet electricity 
demand with minimal environmental impact. 
However, if the result is a future ES1 that 
relies too heavily on a single unreliable 
technology or energy source, the impact on 
UK industry, economy and environment could 
be disastrous. 

There needs to be a coherent long-term plan 
upon which future new plants and electricity 
generation mix can be based. To aid such a 
plan a model based on the relationships 
between social, economic, environmental and 
technical factors and the choice to utilise each 
method of electricity generation has been 
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created. The model, Genetic Algorithm 
Model of Energy Systems 
(GAMES)[4], is active so that it can be 
adapted to investigate the effects of 
different taxation structures along with 
changes of environmental constants and 
technical developments. A Genetic 
Algorithm (GA) is used to solve the 
model due to the non-linearity of the 
many functions and the massive search 
space (I 0321  possible solutions). 
Relevant predictions of interest rates, 
emissions taxes, fixed and variable 
costs, external costs [2] and technical 
advances are used as inputs. GAMES 
predicts, on a yearly basis, the 
proportions of electricity provided by 
eight different energy sources. 
Although the accuracy of any long term 
forecast is entirely dependent on the 
quality of the input data, sensitivity 
studies on the model show the results of 
unexpected changes in the future. It is 
this sensitivity analysis, on a long term 
forecasting model, that will prove 
crucial in the validation of different 
long term plans for electricity 
generation in the UK 

MODEL STRUCTURE 

In order to perform a quantitative, long 
term, forecast of energy utilisation for 
electricity generation, a model of the 
system, that is solved by the GAMES 
GA, was created. The construction of 
this model involved a balance between 
defming the system in greater detail, 
thus increasing the model's size, and 
keeping the model manageable in both 
understanding and in computational 
expense. Model size is dependent on 
the proportions of: 

• Endogenous variables; calculated 
within the model. The functions that 
perform these calculations are 
known as endogenous functions. 

• Exogenous variables; variables provided 
to the model. 

A model with more endogenous than 
exogenous variables will explain more but 
will be larger[5]. As the problem of energy 
utilisation is multi-dimensional and non-linear 
its model can only be solved by iterative 
methods, in this case using a GA. The 
inclusion of extra endogenous variables slows 
down the GA and reduces the final accuracy 
of the model when set to run within a finite 
number of iterations. 

The calculation of endogenous variables is 
performed by the application of sets of 
functions which often have exogenous 
variables embedded within them. These 
functions can be classed in three groups: 

• Behavioural functions that describe the 
aggregate actions of economic agents such 
as consumers, producers and investors. 

• Technical functions which approximate 
institutional arrangements such as taxation 
structures related to electricity generation 
costs. 

• Accounting identities which are exact 
relationships that hold for all points in 
time. These are usually variable costs 
based on fuel usage, emissions, 
distribution, being related to fuel 
expenditure in a particular plant. 

AGGREGATION 

Behavioural functions, technical functions 
and, to some extent, accounting identities are 
all subject to aggregation, or averaging over 
time, techniques. By averaging the actions of 
microeconomics systems, such as, fuel prices 
over time many simplifications can be made 
in a large scale model. The aggregation 
approach can even be applied to natural 
effects such as the weather. A long term 
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forecast of the minute by minute 
temperature, to the nearest ±5°C, of a 
small town within the 15K is simply not 
possible! However an long term view 
of the average yearly UK temperature 
to within ±3°C is, at present, 
considered reliable. The model of the 
ESI utilises aggregate solutions to 
give: 

• Yearly fuel prices 
• Wind speeds 
• Rain precipitation 
• Temperature 
• Electricity demand (Base and peak 

loads) 
• Generation costs or particular plant 

types 
• Plant life expectancy in relation to 

the plant's lifetime load factor 

privatisation, the new economic structures of 
Regional Electricity Companies and 
Generators has affected, although sometimes 
only indirectly, their public policy [6]. As a 
result there is no reliable past data. The 
derivation of endogenous functions for the 
GAMES model must therefore be theoretical, 
using proven economic and technical theories 
to describe the new market for electricity and 
how it affects the competitiveness of different 
methods of electricity generation. 
Privatisation has transferred primary public 
responsibility from these private companies to 
a system of regulators and government 
legislation. This has created a separation 
between many of the firm's public obligations 
and the maximisation of economic 
performance: Until the majority of customers 
can choose their electricity supplier, all 
actions within the laws and rules of energy 
trading will be considered acceptable [4]. As 
energy legislation is well defined and private 
firms' performances can be estimated, the 
removal of public responsibility from the firm 
has made it possible to use complex theories 
within the constraints of known legislation to 
model the outcomes of future fuel-mix 
decisions [7]. 

OPTIMISATION OF FUNCTIONS 

As any fuel-mix decision can be described as 
an optimisation based on forecasts and a set 
of known laws, predictions of such decisions 
must rely on a function other than simple 
profit maximisation [8]. Although adding 
political and environmental constraints to 
profit maximisation creates non-linearities it 
gives a more accurate forecasting method. 
Optimising such a function cannot be time-
dependent as these constraints vary depending 
on past and predicted future events. Complex 
non-linear, time-independent functions have 
traditionally proved difficult to solve. 

The solutions to these forecasting problems lie 
within The construction of the GAMES 
forecasting model itself. To include the cause 

DERIVING FUNCTIONS 

Some of the exogenous variables, used 
in GAMES, have to be separately 
derived if the behaviour of that 
particular system is complex. For 
example forecasts of UK electricity 
demand are based on many variables 
such as weather, prosperity and 
industrial output and there are not 
enough known endogenous functions to 
provide an accurate model. Such 
exogenous variables are calculated by 
looking at past data to find the trends in 
the relationships between relevant input 
data and finding the outcomes that 
result from these relationships. 
Processes such as simulated annealing, 
or the application of neural networks 
have proved successful for the 
derivation of endogenous functions. 

The structure of the UK generating 
system has recently undergone 
substantial changes as a result of 
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and effect of present and future events 
GAMES solves for the whole time 
period at each iteration rather than 
solving on a yearly basis. However 
using this approach along with the 
inclusion of technical, economic and 
environmental constraints increased the 
complexity of the model. The complete 
ESI model, including a mix of eight 
generating methods over a forty year 
period, has 10321 possible solutions. 
Because GAMES uses a GA it can 
solve the non-linear combinations of 
functions over the massive search space 
that describes the ESI forecast model 
[9]. 

randomly or seeded to influence the starting 
direction of the GA. Each chromosome 
consists of a number of genes. As it is 
assumed that electricity demand will always 
be met, each gene represents the distribution 
of additional generating capacity needed to 
satisfy the demand by each of the eight 
generating methods. 

Fitness 
The fitness function, containing endogenous 
technical, economic and environmental 
functions assigns each new chromosome a 
fitness which affects its probability of 
selection. The exogenous variables that effect 
the fitness function can be adjusted before and 
during the running of the GA. 

Selection 
By evaluating the fitness of each chromosome 
and the fitness of the whole population, the 
probability of selection can be assigned to 
each chromosome. This method of selection 
is called Roulette selection as the fitter 
chromosomes have a higher chance of 
selection but are not guaranteed success. 

Breeding 
Breeding involves splitting strings of genes off 
two chromosomes and swapping them. This is 
known as crossover. A two point crossover, 
as used in this model, takes two random 
points along the length of the chromosome 
and swaps the genes between the points. This 
method allows much diversity whilst still 
keeping some linking between genes. A new 
population is made from the children, 
although the fittest parents have a chance of 
surviving themselves. 

Mutation 
A small number of the child chromosomes 
have a random number of genes, or strings of 
genes, randomly mutated. The mutation rate 
(chance of mutation) takes a non-uniform 
distribution that reduces the mutation rate as 
the GA reaches a pre-defmed number of 
generations. This aids convergence in later 
populations thus allowing for greater 

GA OPTIMISATION OF 
FUNCTIONS 

A GA is an optimisation method based 
on evolution. This model uses an 
evolutionary process to forecast the 
distribution of eight electricity 
generating methods over a forty year 
period. These include: 

• Gas fuelled generation 
• Coal fuelled generation 
• Oil fuelled generation 
• Nuclear powered generation 
• Hydroelectric generation 
• Wind powered generation 
• Generation from non-proven 

technologies 
• Imported electricity 

The GA used in GAMES is based on 
one described by Michalewicz[ 10]. 
The GA operators (described below) 
have been chosen to provide the most 
effective GA representation of the 
model. 

Population 
A number of possible solutions 
(chromosomes) are generated, either 
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mutation initially. 

Next Generation 
The GA returns to the fitness 
calculations, then selects and breeds. 
This continues until the whole 
population converges (the population 
becomes similar and stops changing), 
providing the finest or most likely set 
of possible fuel-mix solutions that 
satisfy the requirements of the fitness 
function. It is then possible to restart 
the GA with a large mutation rate to 
insure that a global optima has been 
found. 

RESULTS 

In addition to a GAs ability to solve 
large non-linear functions their 
flexibility is invaluable in modelling. 
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Figure 1. Sensitivity Forecast of electricity 
generation and imports over forty years 
(endogenous risk functions NOT included) 

Because a GA is used to solve the 
energy model the addition of 
endogenous functions to GAMES is a 
simple process. A non-linear 
endogenous function can easily be 
added to the fitness function in the form 
of a constraint or as part of the 

optimisation. 

Figures one and two are separate forecasts for 
generating plant over a forty year period. The 
first forecast (fig I) includes no risk reducing 
policy. The second (fig 2) includes risk 
management strategies within the forecast as 
a set of constraints that vary depending on the 
probability of a future event. For example: 
reducing the probability of utilising generation 
methods that are too dominant in the market 
to ensure diversification. This was done 
through sets of penalties in the GA's fitness 
function that apply to over usage of any 
individual generating method at the expense of 
other generating methods. 
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Figure 2 Sensitivity Forecast of electricity 

generation and imports over forty years 

(endogenous risk functions included) 

This sensitivity study on the GAMES model 
shows how the inclusion of endogenous risk 
functions (fig 2) results in a diverse ES! 
which would prove a robust strategy. It can 
be seen that even if the forecast started from a 
predominately coal based generation scenario 
the model returned to give a mixed generation 
outcome. Conversely omitting risk analysis 
results in a purely coal based generation after 
thirty eight years even if the forecast is started 
from a mixed generation scenario (figI). 
Only after a complete sensitivity analysis of 
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the GAMES forecasting model will any 
results derived from its use be valid for 
UK energy resource planning. 

CONCLUSIONS 

• By predicting the results of energy 
utilisation decisions, a clear picture 
of the shape of a future ES1 is 
possible. 

• Using a GA based model allows the 
inclusion of economic, technical and 
environmental constraints. 

• The ability of GAs to solve massive, 
non-linear, problems quickly allows 
comprehensive sensitivity analyses 
on forecast models. 

• Sensitivity analysis on the GAMES 
model have proven it to be robust 
and useful as an energy planning 
tool 
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