
Text Categorization for Intellectual Property

Comparing Balanced Winnow with SVM on Different Document

Representations

Katrien M.B. Beuls

MSc Speech and Language Processing

University of Edinburgh

2009



Thanks to Bernhard Pflugfelder,

for his help in the experimental setup of this study



Abstract. This study investigates the effect of training different categorization algorithms on

various patent document representations. The automation of knowledge and content management

in the intellectual property domain has been experiencing a growing interest in the last decade

[Cai and Hofmann, 2004, Fall et al., 2003, Koster et al., 2003, Krier and Zaccà, 2002],

since the first patent classification system was presented in 1999 by Larkey [Larkey, 1999]. Typical

applications of patent classification systems are: (1) the automatic assignment of a new patent to

the group of patent examiners concerned with the topic, (2) the search for prior art in fields similar

to the incoming patent application and (3) the reclassification of patent specifications. By means of

machine learning techniques, a collection of 1 270 185 patents is used to build a classifier that is able

to classify documents with varyingly large feature spaces. The two algorithms that are compared

are Balanced Winnow and Support Vector Machines (SVMs). A previous study [Zhang, 2000]

found that Winnow achieves a similar accuracy to SVM but it is much faster as the execution time

for Winnow is linear in the number of terms and the number of classes. This primary finding is

verified on a feature space 100 times the size using patent documents instead of news paper articles.

Results show that SVM outperforms Winnow considerably on all considered measures. Moreover,

SVM is found to be a much more robust classifier than Winnow. The parameter tuning that was

carried out for both algorithms confirms this result.
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CHAPTER 1

Introduction

With large numbers of new patents coming in every day to patent offices all over the world,

the automation of some standard every day tasks can save patent officers’ valuable time. As

IP reviewers have different levels of background, assigning categories to a new patent document

often involves multiple categorization steps. Therefore, specific reviewers are responsible to select

the actual IP reviewers who are able to decide on the patent categories related to the described

technology. An automatic assignment system would thus be an interesting application to speed

up the classification process. Especially in small and medium sized offices where there are not

enough experts to cover all domains computer-assisted patent categorization can help to find the

correct IPC categories of a new patent application. Not only finding the appropriate niche in the

patent taxonomy can be a task for a patent classification system, also prior art search relies on an

accurate patent classification. Every granted patent must contain a section on prior art. The prior

art encloses all information that has publicly appeared in any form before a given date that might

be relevant to a patent’s claims of originality.

Patents are text documents and therefore fall within the text categorization problem. Text cat-

egorization is often defined as the task of assigning a Boolean value to each pair 〈dj , ci〉 ∈ D × C,

where D is a domain of documents and C =
{
c1, . . . , c|C|

}
is a set of pre-defined categories

[Sebastiani, 2002]. There are however, specific properties of patents that distinguish them from

the prototypical documents in text categorization (e.g. news paper articles). Patent documents con-

tain for instance few named entities that are in text categorization key terms to assign a category to

a document. Apart from that, the vocabulary of patent documents is in fact much larger than that

of newspaper articles, due to the use of technical terminology such as chemical formulas. Depending

on the used taxonomy and the level the patent documents are categorised at, there exist patents that

can be classified into one or more of 70 000 different categories (e.g. IPC taxonomy, total number of

groups). In previous text categorization experiments [Dagan et al., 1997, Koster et al., 2003],

the number of categories tested is seldom above a hundred. This is because the effectiveness of all

algorithm drops as the number of categories increases. The rate at which the accuracy decreases is
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strongly dependent on (1) the corpus distribution , (2) the terms that were used for training and

(3) the way the categories are defined.

It is exactly those three issues that make patent classification a real challenge. First, there is

the unbalance in class distributions that accounts for a whole range of outliers: classes with either

very few or very many train documents. This makes it difficult for the learning algorithm to build

class models that are robust enough to recognize test documents that belong to one of the smaller

classes. Second, the scalability becomes a big issue in patent classification as the target of the search

is a very small subset of the huge feature space. Experiments included in this paper show that to

build a compatible patent classifier, one has to work with feature space of 1.5 million dimensions.

Third, patents are mostly classified into one main class and multiple secondary classifications. This

is called multi classification. Moreover, as patent categories are defined within a taxonomy, they

can be classified either hierarchically or level-specific.

A number of authors have reported on machine learning methods to classify patent docu-

ments. One of the first important patent categorization systems was developed by [Larkey, 1999]

which is an automatic search and categorization tool for U.S. patent documents according to the

USPTO classification system built on Bayesian classifiers combined with k-nearest-neighbor classi-

fiers [Pflugfelder, 2009]. The system includes a unique ’phrase help’ facility, helping users to find

and add phrases and terms related to those in their query.[Koster et al., 2003] used the LCS to

compare the Rocchio algorithm with Balanced Winnow on mono and multi classification experi-

ments. They detected potential pitfalls in multi classification and presented ways to improve the

accuracy. The classification system used currently at the World International Patent Organisation

(WIPO, located in Geneva (CH)) is described in [Fall et al., 2003] and deploys a proprietary

implementation of the Winnow algorithm. The categorization applications used at the European

Patent Office (EPO, located in Rijswijk (NL)) are documented in [Krier and Zaccà, 2002]. A

recent study [Cai and Hofmann, 2004] implemented SVM classifiers to learn class models based

on either flat or hierarchical classification across the IPC taxonomy. The WIPO-alpha patent col-

lection was used for training, using a title+claim document representation. The number of training

documents, however, was below 15 000.

The most prototypical text categorization algorithm is the Winnow algorithm. Belonging to the

family of on-line learning algorithms such as the Perceptron [Rosenblatt, 1958], Winnow differs

from the latter in the way the algorithm learns the linear separation between examples assigned with

different categories. Winnow learns multiplicatively rather than additively and is therefore very
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fast. As the text categorization problem is linearly separable, Winnow has been used extensively in

this domain. Winnow is however not the most robust learner and experiences problems due to the

big irrelevant portion of the feature space. This paper contrasts a specific implementation of the

Winnow algorithm called Balanced Winnow with an SVM (Support Vector Machine) learner, known

to be a more robust algorithm. The computation of the discriminative function of an SVM happens

by solving an optimization problem based on a maximum margin separation. The separating

function need not to be linear but can be of a higher degree and, therefore, this function actually

forms a hyper plane in the feature space. SVMs are frequently applied in many categorization

applications based on texts, images, music, etc. In text categorization, multiple publications showed

[Joachims, 2002, Joachims, 1998] that SVMs outperforms other usual learning methods in

terms of accuracy but with the down side of needing far more calculation time. The test collection

of previous SVM categorization experiments was never larger than 10 000 documents. This paper

includes results with more than 300 000 test documents.

Extensive comparisons between algorithms have been published in the literature [Hearst, 1998,

Sebastiani, 2002, Yang and Liu, 1999]. Only controlled experiments on the same corpus and

taxonomy can be used to draw comparisons between algorithm accuracies. This study uses a corpus

of 1 270 185 patent documents supplied by the company Matrixware1 and sets up categorization

experiments using the International Patent Classification (IPC) taxonomy [WIPO, 2009a] on

the sub class level (639 classes). Next to comparing two different learning algorithms, Bal-

anced Winnow and learning with SVMs, the effect of training different patent representations is

investigated. Four representations were tested: title+abstract, inventors+title+abstract, ti-

tle+description and inventors+title+abstract+description. The Linguistic Classification System

(LCS) developed at the University of Nijmegen was used as a workbench to carry out the exper-

iments. The LCS represents a full text categorization framework with the possibility to adjust

various different components for optimal adaption based on the categorization problem.

This study is the first to draw a comparison between the prototypical text classification al-

gorithm Winnow and the more general machine learning classifier SVM, while using such a high

dimensional feature space. Chapter 2 describes properties of patent documents in more detail and

focuses on the peculiarities of patent classification in the text categorization domain. A general

description of the methodology of the experiments is included in Chapter 3, clarifying the general

categorization pipeline and the workings of the LCS. The experiments themselves are documented

1http://www.matrixware.com/
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in Chapter 4 whereas Chapter 5 includes a use case that searches for an optimization of either the

precision or the recall using any of both algorithms. Some extensions of the baseline experiments are

included in Chapter 6, where the scalability of the SVM learners is tested and the baseline results

are compared to the accuracy a random classifier could achieve. Finally, Chapter 7 summarizes the

conclusions of this study.
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CHAPTER 2

Text Categorization for Patent Documents

1. Features of Patent Documents

One of the main goals of patent classification systems is to organize and structure patent

documents in a comprehensive patent document repository based on the technology described in the

documents. Patent classification taxonomies have to be defined to offer a suitable structure of those

repositories and usually possess a large number of branches and sub branches to properly represent

existing technical fields and their key categories. Taxonomies therefore contain a large number of

possible patent classes and the categorization of new patent documents requires detailed background

knowledge regarding the described technology as well as how this technology is represented in

the corresponding taxonomy. Also the integration of new technology categories into an existing

taxonomy affects the assignment of patent documents to related classes, as possible revisions of the

underlying taxonomy alter existing relations of patent classes and, thus, the assignments of patent

classes to documents.

The content of a patent is governed by legal agreements and is therefore semi-structured. An

example European patent application document contains the following fields:

- Bibliographic Data

- Abstract

- Description

- Claims

- Legal Status

The bibliographic data contains useful information such as technical details (e.g. the invention

title, citations, . . . ) and a listing of the parties involved (applications, inventors and agents)

but also publication and application references, terms of grant, international convention data and

priority claims. The abstract describes in general terms the content of the application whereas the

description contains more information on the invention. A more thorough documentation of what

has been invented can be found in the description, usually accompanied by multiple tables and

figures that support the arguments of the applicant. The claims section states the prior art and
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the novelty of the patent application and often contains standard expressions. The legal status of

a patent document tells you whether the patent is still an application or whether you are dealing

with an already granted patent.

According to [Mase et al., 2005] the characteristics of patent documents that affect retrieval

accuracy are the following:

(1) Various authors: description style, text length and vocabulary differ strongly

(2) Technical fields are diverse (writing styles differ)

(3) Use of vague expressions in titles and claims (prevent direct term matching in IR)

1.1. The International Patent Classification. Patent documents receive specific codes

that refer to the class they belong to. The International Patent Classification (IPC), established

by the Strasbourg Agreement 1971 and which entered into force on October 7, 1975, provides for

a hierarchical system of language independent symbols for the classification of patents and utility

models according to the different areas of technology to which they pertain [WIPO, 2009b]. In

the past, the IPC has been updated every five years and it is currently in the IPC-2009 edition.

The details of all editions of the IPC are included below as they were found in the IPC Guide

[WIPO, 2009a].

The first edition of the Classification was in force from September 1, 1968 to June 30, 1974,

- the second from July 1, 1974 to December 31, 1979,

- the third from January 1, 1980 to December 31, 1984,

- the fourth from January 1, 1985 to December 31, 1989,

- the fifth from January 1, 1990 to December 31, 1994,

- the sixth from January 1, 1995 to December 31, 1999, and

- the seventh from January 1, 2000 to December 31, 2005.

Following the reform of the IPC [WIPO, 2009a], the Classification was divided into core and

advanced levels. Each edition of the core level is indicated by the year of entry into force of that

edition. IPC-2006 was in force from January 1, 2006, to December 31, 2008, and IPC-2009 entered

into force on January 1, 2009. Each new version of the advanced level of the IPC is indicated by

the year and the month of the entry into force of that version, for example, IPC-2008.01.

Each IPC code is a unique combination of the hierarchical structure codes of the patent identity.

The four levels in the patent hierarchy that are used in this paper are Section (8), Class(121),

Subclass(±625) and Main Group (±6000). There is also a fifth level, called Sub Group, which

comprises of ±69000 categories.
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Table 1. Summary of the IPC statistics [WIPO, 2009c]

Section
No. of classes No. of subclasses No. of main groups No. of subgroups Total no. of groups

CL AL CL AL CL AL CL AL CL AL

A 16 16 84 84 1095 1106 1367 7349 2462 8455

B 37 37 165 167 1782 1978 2361 14595 4143 16573

C 21 21 91 93 1304 1326 1124 13121 2428 14447

D 9 9 39 39 349 350 179 2611 528 2961

E 8 8 31 31 317 318 454 2900 771 3218

F 18 18 95 97 1040 1041 858 7294 1898 8335

G 14 14 79 79 683 696 1861 6805 2544 7501

H 6 6 49 49 532 537 1898 7172 2430 7709

Total 129 129 633 639 7102 7352 10102 61847 17204 69199

Table 1 gives an overview of the occupation of the different levels in the IPC taxonomy for the

version of 2009. CL refers to Core Level and AL to Advanced Level. According to [WIPO, 2009b],

”the core level is intended for general information purposes, for example, dissemination of infor-

mation, and for searching smaller, national patent collections”. The advanced level is explained as

being intended for searching larger, international patent collections. Any industrial property office

can choose to use the advanced level for classifying its published patent documents. The differences

between CL and AL only become visible at main group level. The corpus used in this study exists

of AL classes only.

As can be seen in Table 1, the IPC sections are represented by one of the capital letters A

to H, according to: A: Human necessities; B: Performing operations, transporting; C: Chemistry,

metallurgy; D: Textiles, paper; E: Fixed constructions; F: Mechanical engineering, lighting, heating,

weapons, blasting; G: Physics; H: Electricity. Each section is subdivided into classes, whose symbols

consist of the section symbol followed by a two-digit number, such as C01. In turn, each class is

divided into several subclasses, whose symbols consist of the class symbol followed by a capital

letter, for example, C01B. IPC subclasses are in turn divided into main groups, and then into a

hierarchy of subgroups [Fall et al., 2003]. Table 2 below shows a portion of the IPC specification

at the start of Section C.

The IPC exists in two authentic versions, French and English, which are published in printed

form by WIPO and on-line (http://www.wipo.int/classifications). National industrial property

offices also publish the complete IPC taxonomy in other languages: Spanish, German, Hungarian,
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Table 2. Sample portion of the IPC taxonomy at the start of Section C

Category Symbol Title

Section C CHEMISTRY; METALLURGY

Class C01 INORGANIC CHEMISTRY

Subclass C01B NON-METALLIC ELEMENTS; COMPOUNDS THEREOF

Main group C01B3/00 Hydrogen; Gaseous mixtures containing hydrogen;

(and Separation of hydrogen from mixtures containing it

references (separation of gases by physical means B01D);

for this Purification of hydrogen (production of water-gas or

main synthesis gas from solid carbonaceous material C10J;

group) purifying or modifying the chemical compositions of combustible

gases containing carbon monoxide C10K)

Czech, Polish, Russian, Japanese, Korean and Chinese. According to [Fall et al., 2003] most

updates are made at group and subgroup level.

The advantages of a hand-built document taxonomy are multiple. ”It reduces complexity

and provides an overview of the knowledge contained within the information set. Hierarchical

taxonomies capture information about relationships and are easy to browse. The IPC is however

a complex classification system. Because of its broad scope, non-expert human classifiers have

difficulty using the IPC for manually attributing IPC codes” [WIPO, 2009d]. Automation can

be very useful for streamlining categorization and enhancing productivity.

2. The Text Categorization Problem

The text categorization (i.e. document classification) problem is formulated by [Koster, 2009]

as ”assigning class(es) to unseen documents given a set of classes (also called categories), each

exemplified by a number of documents”. Each document in the collection can thus be classified

into multiple, one or no category at all. By means of Machine Learning techniques classifiers are

learned from the labeled data in order to perform category assignments automatically. This is

supervised learning problem. Each category is seen as a separate binary classification problem that

decides whether a document belongs to the category or not, depending on certain thresholds.

In order to fully understand the choice of certain metrics used in text categorization, one has

to consider its properties first. [Joachims, 2002] includes the following characteristics:
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• High-Dimensional Feature Space: As every word in a document is seen as a possible

feature to train the classifiers, the index of a collection can become extensive due to the

richness of natural language. According to Heaps’ law (1978) the relation between the size

of a document and the number of distinct words can be described by a constant:

V = k.sβ

where k and β depend on the data and s is sufficiently large. Values for β lie typically

between 0.4 and 0.6 and for k between 10 and 100. Although one would expect that the

distribution would level off as the size of the vocabulary increases, new words never cease

to occur as unknown names, spelling mistakes, symbols, numbers etc. are bound to be

infinite.

• Sparse Document Vectors: Due to the large feature space each document in the col-

lection only contains a small fraction of all the features and most entries will be zero.

• Heterogeneous Use of Terms: In text classification we have to take more into ac-

count than just the co-occurrence of terms across multiple documents to decide their class

membership. Also semantic relations are important to determine whether two documents

belong to the same class or not: the use of synonyms and linguistic phrases can add con-

siderable improvements to text categorization. Moreover when document one contains A

and B; document two B and C and document three C and D document one and three can

still be related although they do not cover any similar terms.

• High Level of Redundancy: In order to classify a document there are often more cues

in a document then one needs and therefore terms have to be selected to make documents

distinctive enough to classify (cf. infra)

• Frequency Distribution of Words: Zipf’s law describes the fact that the occurrence

frequencies of words behave in a very stable way. It states that there is a small number

of words that occurs very frequently whereas most words occur infrequently. It has been

found that the frequency distribution of individual documents follow Zipf’s law approxi-

mately. The tail of the distribution sometimes drops off too early.

The above characteristics are also valid for patent classification. Due to the domain-specific

vocabulary, a dimensionality reduction is indispensable to make the learning algorithms workable.

The limits of efficient learning are for Balanced Winnow situated at 50 - 60 000 terms while SVM
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training becomes complicated when more than 20 000 terms are involved in training (p.c. Bernhard

Pflugfelder).

There are, however, some additional peculiarities specific to the classification of intellectual

property documents [Krier and Zaccà, 2002]. First, the documents are relatively large in size. A

full text patent has on average 5000 words (30-50 KB). Second, patent documents at the WIPO may

be written in two official languages, English and French; at the EPO this rises even to three through

the addition of Spanish. Thirdly, patent applications are composed in a well-structured, controlled

and correct language. On the other hand, however, there can be intentional use of non-standard

terminology, vague terms, and legalistic language. There may be stylistic differences between claims

and the description of a patent. Fourth, a patent document contains non-linguistic material that

could contain important pre-classification information: tables, mathematical and chemical formulas,

citations of patents and literature, technical drawings. And fifth, the bibliographic data associated

with a patent can be also important for the pre-classification: applicant name, inventors’ names,

priority and filing dates, etc.

[Fall et al., 2003] add two more difficulties to this list: IPC references and placement rules.

Many categories in the IPC taxonomy contain references and notes, which are included to guide

the classification procedure. Two main types of references are: limitations of scope (point at

related categories where some patents should preferable be classified) and guidance references (list

related categories where similar patents are classified). According to [Fall et al., 2003], Patent

classification is governed by placement rules. This means that ”in certain parts of the IPC, a last-

place rule governs the classification of documents relating to two categories at the same hierarchical

level [...] This rule indicates that the second of two categories should always be selected if two are

found to concord with the subject of the patent application” [Fall et al., 2003].

Another problem already mentioned in the introduction is the fact that we are dealing with

multi classification. Since every patent document is usually not only labeled with a single IPC

category but rather multiple categories (including one main IPC category), every document can be

an example for various class profiles during the training [Pflugfelder, 2009].

All the above issues have to be taken into consideration in the design of a patent categorization

architecture. Chapter 3 presents this process and introduces the LCS, which is the classification

framework used in the experiments.
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CHAPTER 3

Classification Methods

This chapter describes the general framework of the study, including an explanation of the Lin-

guistic Classification System (LCS) and the detailed documentation of the categorization pipeline.

The latter will be described on a theoretical level, focusing on preferable choices for each step in the

architecture. The exact methods used in the experiments are documented in Section 2.2 whereas

detailed parameter settings are included in Appendix A, so the experiments can be repeated in

further research.

1. Linguistic Classification System

The Linguistic Classification System is developed by the University of Nijmegen in the frame-

work of the DORO and PEKING Esprit Projects. It is a system for the automatic classification of

full-text electronic documents. The possibility to adjust various different components for optimal

adaption to the categorization problem makes the framework interesting for research activities.

The LCS manages a collection of class profiles. The adjective ”Linguistic” points at the fact

that one could implement phrase selection instead of single word selection in the preprocessing

stage. Research into phrase extraction in document preparation is still in an experimental stage

[Koster, 2009] and experiments with phrases lie not within the scope of this research paper.

Running the LCS consists of three phases described in the manual delivered with its installation

[Koster, 2009]:

(1) analysis phase

After the documents included in the examples list (documents with labels separated by

whitespaces) are checked for their presence in the files directory, each document is split

into terms by an external analyser component. This preprocessing phase also performs

document profiling to collect statistical data from to documents that is stored in the data

repository. Finally, term selection is carried out. The corpus is now ready to be trained

efficiently and generalization accuracy should be improved.

(2) training phase

11



A classifier is trained for each class and optimal thresholds are computed. The class

profiles are then again stored in the data repository where they can be consulted during

the testing phase.

(3) testing phase or selection phase

In testing the score of ”each document for each class” [Koster, 2009] is computed (full

ranking). Depending on the parameter settings, each test document is assigned to zero or

more classes. Performance (use of time and space) and Accuracy (precision—recall—F-

value) are reported.

With the delivery of a Java API that makes LCS methods easy to implement, the experimental

setup for this study was developed in Eclipse and executed with the use of shell scripts. The LCS

offers one single method to execute all steps of the categorization pipeline without any further

intervention. As a significant number of parameters can be adjusted, the experimenter gets control

over almost all steps of the categorization process. All adjusted parameters have to be stored in

a separate resource file which will be assigned to the main execution function of the LCS. The

LCS system is fully implemented in C++ where a library contains the entire learning functionality

and driver implements I/O operations [Pflugfelder, 2009]. One disadvantage of the system is

its monolithic architecture. It remains for instance impossible to turn off specific parts of the

classification process and include for instance a personal term selector.

2. Classification Architecture

In implementing the LCS a whole range of decisions have to made according to the design of

the experiments. The sections below discuss for each of the main issues the methods that have

been chosen in the preparation of the experiments.

2.1. Preprocessing. The two most frequent options to represent text that has to serve in a

automatic classification task are word and phrase-based representations. It has been shown that

sub word level units as well as units that transcend phrases are either not discriminative enough

or too discriminative for the goals of text classification [Joachims, 2002]. All words/phrases in a

document are treated as a Bag of Words (BoW). This means that order and (therefore) relationships

are neglected and multiple occurrences of words are added as values to the vector entries the BoW

creates. The success stories behind search engines such as Google justify this compromise between

expressiveness and model complexity inherent to the BoW technique [Croft et al., 2009].
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2.2. Feature selection and Term Weighting. As each document will be registered as a

vector by the training algorithm, the original document is transformed into selected, weighted and

normalized vector entries.

The feature selection combats ”overfitting” and can be carried out in two - sometimes com-

plementary - ways: as a feature ”subset” selection process or as a feature construction algorithm.

In the former case, a subset of original features is selected whereas the latter scenario implies new

features that are introduced by combining original features. An effective method to select a sub-

set of the original feature space works by either removing infrequent or highly frequent features

or remove irrelevant features. When frequency is an issue stop word elimination and Document

Frequency (DF) thresholding [Yang and Pedersen, 1997] are two methods that are often used.

DF thresholding works by setting an arbitrary threshold for the number of times words can occur

in the corpus in terms of document frequency, i.e. how many documents contain the word. Mostly

this threshold is kept low (DF 2 or 3). The use of a stop list (i.e. a list of very frequent function

words) should always be treated with care as it is language and often also domain specific and one

might throw away useful information that is necessary to distinguish between documents.

A good overview of feature selection metrics that are commonly used can be found in [Forman, 2003].

The metrics that are of interest to the goals of this study are discussed below. The first two are

available for use in the LCS, the third one is not a standard measure but could be implemented in

future research and is therefore briefly discussed.

• Simple Chi-Square1

t(tp, (tp+ fp)Ppos) + t(fn, (fn+ tn)Ppos) + t(fp, (tp+ fp)Pneg) + t(tn, (fn+ tn)Pneg)

where t(count, expect) = (count− expect)2/expect

This statistic estimates the independence of two variables by measuring the divergence of

the expected word occurrence and the actual scenario if independent feature occurrence is

assumed. A term will be well discriminative if it is highly dependent on one particular class.

For every class, term selection is done on a binary basis. The optimal number of selected

terms is obtained by a likelihood maximization using the defined learning algorithm (cf.

1tp = true positives; fp = false positives; tn = true negatives; fn = false negatives

pos = tp+ fn;neg = tn+ fp;Ppos = pos/all;Pneg = neg/all

13



infra: Winnow or SVM) as a verification (p.c. Bernhard Pflugfelder). [Forman, 2003]

points at the fact that it is a statistical test and does not work well for very small expected

counts, which is often the case for word occurrence features.

• Information Gain

e(pos, neg)− [Pword ∗ e(tp, fp) + Pword ∗ e(fn, tn)]

As the name suggests, this metric measures the amount of information particular bits

contribute to a document. More concretely it measures the decrease in entropy when a

feature is given vs. absent [Yang and Pedersen, 1997]. If the entropy decreases after

taking out a feature, this indicates the feature is discriminative for the document.

• Bi-Normal Separation [Forman, 2003]

F−1(tpr)− F−1(fpr)

(F−1 is the z-score)

The BNS measures the distance between the thresholds of the positive and the negative

classes. If the feature is more prevalent in the positive class, then its threshold is further

from the tail of the distribution than that of the negative class. [Forman, 2003] pointed

at the superiority of BNS over other feature selection methods for SVM learning.

Apart from feature selection, feature weighting is also an important part of constructing a document

vector ready to be used by a classifier. In this phase, every remaining feature is given a weight

that indicates its importance for the document. In the LCS four different ”strength” options are

provided:

• Bool: 1 if the document contains the term, 0 otherwise

• Freq: Term frequency of a term in a document

• Sqrt: The square root of Freq

• LTC: (1+ ln Freq) * ln |C|
DF where |C| is the size of the collection and DF the document

frequency of the term in question in the training set

Important here is the normalization by the length of the document as longer documents are biased

towards higher term frequencies than shorter documents. An important formula in this field is the

TF.IDF term weighting metric, in the LCS translated into the LTC metric.
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2.3. Learning task. When the final document vectors are stored in the desired format, the

corpus is split into a training corpus and a test corpus. Divisions of 80%-20% are encountered

frequently and therefore used in this study. The training corpus is used to learn the labels from

the document vectors so we can afterwards predict the labels of the test corpus and measure the

divergence between the predicted and the actual labels. In the past, a whole range of Machine

Learning algorithms have been used in text classification tasks. [Sebastiani, 2002] gives an excel-

lent overview of the machine learning approach to text categorization and the inductive construction

of text classifiers.

Currently the LCS implements two classification algorithms: Rocchio’s algorithm and Balanced

Winnow. Any external algorithms can be coupled to the LCS in the training phase. An example

of such an algorithm that is used in the experiments documented in this paper is the SVMLight

developed by Thorsten Joachims (http://svmlight.joachims.org/). The performance of the SVM

algorithm is compared with the results of LCS training with Winnow. A short description of each

of the algorithms is included below in order to support the interpretation of the results included in

Chapter 4.

2.3.1. Winnow. On-line methods are widely used in text categorization. Based on linear classi-

fiers where on-line methods are used as an alternative to batch methods (e.g. LDA)2 they compute

the categorization value incrementally. This means a classifier is built soon after seeing the very

first document and the algorithm works by performing multiple iterations over all training docu-

ments. In linear classifiers the categorization value consists of calculating the similarity between

the document vector and the class vector for instance by computing the dot product or the cosine

similarity. Important to note is the fact that these algorithms are heuristical, i.e. calling them

twice on the same data set does not lead to exactly the same result.

There are two common implementations of on-line algorithms: weights are either updated

additively or multiplicatively. The weights represent the importance of each term for each class.

Score functions of linear classifiers have the form:

SCj(dj) =
∑
tk∈di

sik ∗ wjk

This function indicates how well a document belongs to a class Cj by taking the dot product of

the strengths of the terms in the document and the weight the terms have in the collection.

2In batch methods a classifier is built by analyzing the training set all at once. More specifically in LDA learning

the stochastic dependence between terms relies on the covariance matrices of various categories.
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The algorithm that learns multiplicatively is called Perceptron [Rosenblatt, 1958]. It is ini-

tialized by setting all the weights to the same positive value. When a training instance comes in,

it is examined and the classifier built so far tries to classify the incoming vector. The result of this

process is examined and when the prediction is wrong the weights are modified additively. Because

of this feedback on-line methods are also called mistake-driven learning methods.

Winnow is a multiplicative weight updating algorithm that just as the Perceptron tries to

find the best linear separator between relevant and irrelevant documents for a class. The im-

plementation of the algorithm reported in this paper is Balanced Winnow [Littlestone, 1988,

Grove et al., 2001]. The classifier consists in this case of weight pairs (positive and negative

weights) that are used to calculate the class membership score of a document. The positive weights

indicate evidence for class membership whereas negative weights provide negative evidence. The

overall weight of a feature is thus the difference between the positive and negative weights:

wjk = w+
jk − w

−
jk

where both parts are initialized as follows:

w+
jk =

2
d

w−jk =
1
d

with d =
STk
|Tj |

This means that for an average document belong to class Cj , the score function SCj would yield

1. STk is the sum of all term strengths occurring in a class. Tj is the collection of all terms belong

to the class.

Again weights are only updated when a mistake is made. If a mistake is made on a positive

example, the positive part of the weight is promoted (w+
ij
← α ∗w+

ij
) while the negative part of the

weight is demoted (w−ij ← β ∗w+
ij

). When a mistake occurs on a negative example the positive part

of the weight is demoted (∗β) and the negative part is promoted (∗α). Apart from promotion and

demotion parameters α and β on-line algorithms also have a threshold θ that forms the decision

criterion for class membership. In Balanced Winnow the thick threshold heuristic is applied. This

means that in training, rather than forcing the score of relevant documents above 1 and irrelevant

documents below 1(θ), we have two thresholds: θ+ > 1.0 and θ− < 1.0. The result is judged

incorrect either if the score of a document is below θ+ although it belongs to the class or if the

document does not belong to the class although its score is above θ−.
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Figure 1. The Winnow Algorithm at work

There are versions of Balanced Winnow where only positive or negative weights are used in

learning. However, as [Dagan et al., 1997] point at, such versions have ”the need to update the

all the weights” rather than only the active features. When working with a sparse high dimensional

space updating only the active features has a big computational advantage.

2.3.2. SVM. In the text categorization process the training data can be separated by at least

one hyperplane h′. This presupposed a weight vector wT and a threshold bT , so that all the

positive examples are on one side, while the negative examples can be located on the other. This

is equivalent to requiring ti(wT ∗xn + bT ) > 0 for each training example (xn,tn). In practice, there

can often be several hyperplanes that separate the data but as Support Vector Machines (SVMs)

are based on the Structural Risk Minimization principle3 [Vapnik, 1999] only the hyperplane that

maximizes the margin δ separating positive and negative examples is selected. This is because the

principle searches for the lowest true error on a hypothesis h. This means that by controlling the

VC-dimension of H, SVMs can minimize the upper bound that connects the true error with the

error on training set and complexity of H. The small set of training examples that determines the

best surface are called the support vectors. They have a distance of exactly δ. Figure 2 illustrates

the binary classification process with SVMs. The support vectors are marked with circles.

Finding the hyperplane with maximized margin comes down to minimizing w and b:

minV (w, b) =
1
2
w ∗wT

3More information on how SVMs implement structural risk minimization can be found in [Joachims, 2002] on

page 38.
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(a) Many hyperplanes separate the

training examples without error

(b) Support Vector Machines find the

maximum margin δ

Figure 2. Binary Classification [Joachims, 2002]

subject to: ∀ni=1 : ti(w ∗ φ(xi) + b) ≥ 1

The constraints make sure that all training examples lie on the correct side of the hyperplane

[Joachims, 2002]. If the equation equals to one the constraints are said to be active, which means

the data point in question is closest to the surface. At least two of those are found when the

margin is maximized. To solve the optimization problem Lagrange Multipliers are introduced (cf.

[Bishop, 2006]). The binary training vectors xi are mapped into a higher dimensional space by

the function φ. SVMs are kernel methods and can operate with different kernel functions. The

simplest kernel function that can be used is a linear kernel where an identity mapping of the kernel

function takes place [Bishop, 2006]:

φ(x) = x⇒ k(x, x′) = xTx′

A linear kernel seems most appropriate for text categorization problems as we are working with a

high-dimensional input space and data that is almost always linearly separable. Moreover, there

are only few irrelevant features and document vectors are sparse. Other kernels that are used

frequently are radial-based functions or polynomial kernels.

One problem with the implementation of SVMs as described above is that training fails when

the training examples are not linearly separable. Even though this is almost never the case in text

categorization, flawless training can result in over generalization of the data and therefore affect the

testing accuracy. This approach is called soft-margin SVM [Cortes and Vapnik, 1995]. When
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training with soft margins, an upper bound on training errors is included in the optimization

function where this bound is minimized simultaneously with the length of the weight vector.

minV (w, b, ξ) =
1
2
wwT + C Σn

i=1ξi

subject to. ∀ni=1 : ti(wT ∗ φ(xi) + b) ≥ 1− ξi

∀ni=1 : ξi > 0

The ξi are called slack variables. They will be greater than 1 if the training example lies on the

”wrong” side of the hyperplane. Therefore Σn
i=1 ξi is an upper bound on the number of training

errors [Joachims, 2002]. The parameter C allows trade-off between training error vs. model

complexity. Small values of C increase the number of training errors, large values tend to behave

like hard-margin SVMs. The best value of C depends on the data and must be found empirically.

In text categorization, the number of negative examples is always much larger than the num-

ber of positive examples. This means that when the classifier predicts everything to be negative

it still achieves a high accuracy. This is why in practice, errors on positive examples should

be penalized stronger than errors on negative examples. The cost of false positives (C−+) vs.

false negatives (C+−) can be incorporated into the SVM by optimizing the following function

[Morik et al., 1999]:

minV (w, b, ξ) =
1
2
‖w‖2 + C−+Σi:ti=1ξi + C+−Σj:tj=−1ξj

subject to ∀k : tk[wT ∗ φ(xk) + b] ≥ 1− ξk

SVMs are universal learners. Independent of the dimensionality of the feature space SVMs can

find all the decision surfaces that separate the positive from the negative training examples. The

complexity is measured only on the margin with which the SVM separates the data and thus not

on the complete feature space. This approach prevents overfitting.

Implementations of the SVM algorithm apply either hard or soft margins in the separation of

the training documents. A hard margin distinguishes between positive and negative documents in

a strict way whereas the use of a soft margin allows some errors in the classification depending on

the value of a slack variable ξ. The soft margin makes the trained model more flexible for variations

between the test and train corpora.
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(a) Training data and an overfitting classier (b) Applying an overfitting classier on testing

data

(c) Training data and a better classier (d) Applying a better classier on testing data

Figure 3. An overfitting classier and a better classier [wei Hsu et al., 2003]

2.3.3. Winnow vs. SVM. The following table summarizes the main characteristics of both

algorithms so the results of the experiments can be interpreted with the different nature of the

learning algorithms in mind.

Both algorithms work with binary classifiers. This means that we have as many trained models

as we have classes and each model is trained on a one-against-the-rest basis. Because of this

limitation, the number of negative examples will be very high in each classifier.
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Winnow SVM

Fix threshold; Directly optimize the Perceptron mistake bound 4

go iteratively through data to update w

Multiplicative on-line learning Convert mistake bounds to generalization bounds

Mistake-driven Batch algorithm

Many irrelevant features [Zhang, 2000] Few irrelevant features

Supervised learning Supervised learning [Joachims, 1998]

Generalizations depend on feature space

Generative training Discriminative training

2.4. Measures of quality. Each document in the test set is relevant to one or more classes.

During testing the classification system assigns zero or more classes to each test document. Taking

into account the class thresholds, the document is then selected for any class for which it crosses

the threshold. The documents tested for each class fall into four categories:

relevant non-relevant

selected True Positive (TP) False Positive (FP)

not selected False Negative (FN) True Negative (TN)

The quality of the classification is often calculated by the following measures:

• The precision is the fraction of relevant documents out of the selected set: P = TP
TP+FP

• The recall measures how many relevant documents were found overall: R = TP
TP+FN

• F measure is a combination of P and R, depending on the β - parameter: F1 = 2
1/R+1/P

To calculate the quality of the complete classification process two averages over all classes can be

calculated:

• The macro average is the harmonic mean of a specific measure over all classes

• The micro average (lumped average [Koster, 2009]) is obtained by summing the

quantities TP etc. over all classes and then computing the above measures over this

aggregated class:

Pmicro = ΣclassesRS
ΣclassesRS+NRS
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CHAPTER 4

Experiments

The following experiments explore what the effects are of training several document represen-

tations and different learners on a corpus of patent documents. The evaluation is done with the

LCS, as introduced in Chapter 3.

1. Description of the corpus

1.1. General Statistics. The complete corpus contains 1 270 185 patent documents that are

split up into two sub collections: EP (563 248) and WO (706 937).

Table 1. Statistics after quality check

EP collection WO collection Overall

Available documents 563713 730279 1293992

Different doc numbers 563271 711701 1274972

Valid patent documents 563248 706937 1272868

Invalid patent documents 465 20659 21122

no title 0 4 4

no abstract 342 19296 16953

no description 4 0 4

no inventor name(s) 98 1973 2071

no applicant name(s) 0 5 5

otherwize 21 2064 2085

Number of classes 121 (93.8% of CL) 121 (93.8% of CL) 121 (93.8% of CL)

Number of sub classes 618 (97.2% of CL) 621 (98.1% of CL) 624 (98.6% of CL)

Number of main groups 5846 (82.7% of CL) 6028 (84.9% of CL) 6261 (88.17% of CL)

The patents were provided in XML format under a patent-specific DTD called Alexandria which

was created by Matrixware (http://www.matrixware.com). The collection contains all EP and WO

patent documents in the period 01/01/1985 - 31/12/2006. The experiments were set up to explore
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the effect of selecting different parts of a patent document as the input of the LCS. Therefore,

segmentation processes were carried out using the Java API XOM
TM

, an XML object model that

makes the extraction of tag- and attribute-specific text more flexible. After XML stripping is done,

the LCS takes care of tokenization (e.g. separating punctuation marks from words), parsing of

sentences from documents and the removal of spurious characters.

Documents can have multiple categories assigned to them. The Alexandria collection is built

so that the first category in the list is the main category the patent belongs to. On average

a patent document has 1.920 categories. There is one document with 20 assigned categories:

WO/001997/02/93/19/WO-1997029319-A2 (A23G A23L A23P A24D A45D A61K A61Q B05B B05C

B65D C07K C12C C12G C12N C12Q D06Q F21K F21S F21V F41B). The main category for this doc-

ument is A23G: COCOA; CHOCOLATE; CONFECTIONERY; ICE-CREAM. As the patent doc-

ument is a WIPO patent and carries the kind code A2 we know that this is a patent application

published without a search report. This means that the patent office was paid to carry out a prior

art search. Codes of existing patents that are similar to the patent application have to be included.

1.2. Train and test sets. Train and test sets were separately assembled in terms of IPC sub

class and IPC main group level. Since a couple of sub classes and main groups are represented

by a very low number of examples (or even a single example), only those sub classes and main

groups were considered in the train/test set generation which were represented by 5 examples at

minimum. Consequently, every sub class and main group is linked to 4 patent documents in terms

of the training set and one patent document in the test set respectively. The tables below present

statistics for the sub class train and test sets.

Table 2. Train set

IPC Sub Class Level EP-based Collection WO-based Collection Combined Collection

Number of patents 450682 565491 1016173

diff. sub classes 618 621 624

min examples per sub class 4 4 4

max examples per sub class 26858 75032 97564

avg. examples per sub class 1402.25 1745.53 3126.09

1.3. Variations in corpus size. Additionally, four smaller subsets of the full corpus are built

including 100 000, 200 000, 400 000 and 500 000 patent documents respectively. In order to select
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Table 3. Test set

IPC Sub Class Level EP-based Collection WO-based Collection Combined Collection

Number of patents 112563 141442 254005

diff. sub classes 618 621 624

min examples per sub class 2 1 1

max examples per sub class 6715 18758 24391

avg.examples per sub class 351.08 436.86 782.51

appropriate subsets an application was written that sorts the classes in increasing size and picks N

classes out of each slice of the M-folded list. The application is described in the following steps:

• Collect all categories from the large train/test collection and the number of examples for

each category.

• Group the categories according to the number examples representing each category

• For every group a minimum number of categories must be selected and a overall number

of patent documents must be reached.

Eventually, this application maintains the unbalance in terms of available examples for every

categories which can also be observed in the large collection, even though the number of included

categories decreases. This issue must be considered as it significantly effects the quality of catego-

rization independently from the choice of learning algorithm. The natural unbalance of the corpus

is illustrated in Figure 1.

The sub figures show the distribution of examples over the different categories on sub class level.

In (a) basic statistics are depicted such as the minimum and the maximum number of examples in

one class (1 vs. 33570), the median (511) and the mean (1734). The fact that the median is smaller

than the mean indicates that the distribution has a heavy tail, i.e. there are large outliers that pull

the mean up. This is also illustrated by Figure (b) where the x-axis displays the number of exam-

ples per class and the y-axis the number of classes. The curve decreases rapidly in an almost linear

fashion at the beginning and has a long tail towards the end with the classes that have more than

1000 examples (not visible in (b)). The box plot in (c) shows that D is the section that contains the

categories that are smallest in size. In Section D patents in the field of TEXTILES and PAPER are

collected. The section with the fewest sub classes is E (30) (FIXED CONSTRUCTIONS). Section

H, containing patents on inventions in ELECTRICITY, is the third smallest section if the number

of sub classes (48) is taken into account but has the widest box plot, indicating that the unbalance

in the size of the categories is maximized in this section. The section with most subclasses (166, i.e.
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(c) Class distributions

Figure 1. Sub class statistics

26%) is B: PERFORMING OPERATIONS; TRANSPORTING. The two biggest outliers (outside

the scope of (c)) can be found in section A (HUMAN NECESSITIES): A61K with 94004 exam-

ples (PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES) and A61P with

49363 examples (THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL

PREPARATIONS). The top ten biggest sub classes are included in Appendix B.
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The following sample collection is used in the experiments. The percentages between brackets

indicate the amount of all the IPC categories are trained in each subset. In the complete corpus,

94% of all classes is used and 98% of all subclasses. One can conclude that the corpus is highly

representative for the IPC taxonomy and can be relied on to build a classification system.

Table 4. Training sets

Dataset Num. of docs Num. classes Num. subclasses

100k 103666 52(40%) 70(11%)

200k 179250 70(54%) 120(19%)

400k 400750 109(84%) 400(63%)

500k 509560 120(93%) 600(94%)

1200k 1270185 121(94%) 631(98%)

Figure 2 depicts the five training corpora and their distribution of documents and features for

the tabs document representation. There is a visible jump between 200k and 400k: although the

number of documents is doubled, the number of classes added to the training is more than tripled

(120 → 400). On the other hand, the proportion of added documents between 500k and 1200k is

much bigger than the corresponding difference in class numbers (600→ 631).
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Figure 2. Distribution of documents and subclasses across the different corpora

1.4. Document representation. The four different kinds of document representation that

were selected for the experiments are summarised in Table 5.
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Table 5. Document representations

Doc representation Name

tabs Title + Abstract

tdesc Title + Description

itabs Inventor(s) + Abstract

itabsdesc Inventor(s) + Abstract + Description

2. Test Environment

2.1. Test Server. All the experiments were run on the LDC(Large Data Collider), a server

provided by the IRF. The parallel computing abilities used in the LCS were specifically adapted

for use on the LDC.

This server runs under SUSE Linux Enterprise Server 10 and has the following properties:

• 40 * Dual Core Itanium 2 (1.4 GHz)

• 320 GB Memory

2.2. Parameter Settings. For each experiment, a number of parameters have to be set that

define the way the categorization is carried out. As described in Section 2, a categorization process

exists of multiple phases that have to be tried out chronologically. As the LCS does not have

phrase extraction installed in its standard version yet, there was no choice as to how the textual

data was analyzed and the standard BoW method was therefore used. Any semantic interpretation

whatsoever is thus excluded from the experiments. The standard parameter settings used in the

baseline experiments are briefly explained below. Please note that the default values indicated

below do not correspond to the default LCS parameter settings. The parameters used here were

selected conform with/to the objectives of the baseline experiments.

The settings are presented according to the categorization pipeline:

• The patent documents are stored in the FileDirectory after they were transformed from

the Alexandria XML format into ASCII text documents in an application executed outside

the LCS. Although ASCII encoding does not always suffice for the encoding of patent

documents (as they often contain special characters), the LCS does not yet support other

encodings. Each patent is stored in a single file onto the file system 1.

1As this can cause I/O problems, it could be considered to generate one Master Label File (cf. Speech Recogni-

tion) that contains the complete patent corpus according to the document representation.
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• The only preprocessing steps done by default in the LCS are de-capitalization and removal

of special characters like braces. Numbers are not replaced by a NUM token. As they are

mostly not significant to the class profile a document belongs to, they will not be selected.

• A global, class-independent term selection is applied by selection only terms which occur

in more than three documents. An additionally noise reduction is also done based on

the Uncertainty heuristic. This heuristic defines the implementation of an additional noise

selection that is based on the uncertainty of the class average of the relative term frequency

[Koster, 2009], modeled by a Gaussian distribution. A term is defined to be noisy within

a class if its quality factor is below a certain threshold. A stiff term is a term that occurs

too regularly in the train set (e.g. ”the” in English documents) and has a quality factor

that is higher than the upper threshold.

• The local term selection (class-specific) is done by calculating the Simple Chi Square

heuristic to estimate the independence of a specific term among each of the classes (cf.

2.2).

• Term strengths (i.e. term weights) are computed by the so-called LTC algorithm, a TF.IDF

estimator that is used inside the LCS.

• A term profile is created by a proprietary indexer that extracts the terms. Class profiles

containing the term distributions (per class) are created. These are important in the term

selection step (p.c. Bernhard Pflugfelder).

• Training is done using 10 CPUs of the LDC based on a train/test split of 80/20. The

class distribution in train and test set is kept proportionally similar in order to provide

realistic performance measurements. The train-test split algorithm was favoured against

a cross validation algorithm because of the sufficiently large number of patent documents

available for both training and testing guarantee robust categorization results.

• For both text categorization algorithms, Balanced Winnow and Support Vector Machines,

the learning parameters were chosen based on comparable experiments published in the

literature or on common default parameters. Chapter 5 explores the influence of learning

parameters and reports parameter tuning experiments that were carried out to optimize

the baseline performance.

• The Winnow experiments are conducted with the following parameter settings:
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Table 6. Winnow parameter settings

Promotion(α) Demotion(β) Iterations Θ+ Θ−

1.1 0.9 5 1.1 0.9

These settings are Winnow-specific and chosen based on an evaluation carried out within

the domain of patent categorization [Koster et al., 2003]. The fact that five training

iterations are used means that each example was trained five times.

• Experiments with SVMLight had the following default learning parameters:

Table 7. SVM parameter settings

Soft margin (C) Kernel function Cost (J)

1.5 linear 1.0

A basic evaluation of C using a small subset (±50000 docs) of the corpus revealed C = 1.5

as a good choice in terms of F measure. Figure 3 shows the results of this small parameter

tuning. The F measure reaches its maximum at 1.5. In this graph, the recall is still

increasing whereas the precision decreases slowly. In any case, this fast parameter tuning

does not necessarily yield the best results as the data set is so much smaller than the real

corpus.
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Figure 3. Tuning C on a small scale subset

SVM is known to be efficient in working with many irrelevant features. As opposed to

Winnow, SVMLight uses its own term selection on top of the LCS term selection.

• In order to discover the underlying multi-labeling categorization (cf. IPC taxonomy), two

fundamental meta-learning approaches were applied. The first series of experiments use
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a strategy where an ensemble of a binary classifier is selected where every classifier is

trained on a single class against all the others. The final predictions are then determined

by a specific aggregation of all partial predictions (p.c. Bernhard Pflugfelder). The second

meta-learning approach implements an hierarchical classifier into the experiments. Every

inner node of the IPC taxonomy is defined by the classifier as it decides on every level the

class the document most probably belongs to, without the possibility of a back propagation

of error.

• The last step in the classification process is testing. The two most important parameters

to set here indicate the lower and upper classification bounds of each document. The

maximum number of classifications (default 4) can be chosen to produce a mono or multi

classification depending whether it gets a value that is greater than 1. As it has to be

possible to use this system for commercial goals, the classifier has to suggest at least one

class for a given test document.

• The results are stored on the file system including the plain list of predictions for every

test document as well as all model parameters that can be used to reproduce test results.

3. Results

The parameter settings specified above were used for all the experiments reported in this section.

The results included in this section are the consequences of changing the input data directory in

the parameter file (size of corpus + document representation), the learning algorithm (Balanced

Winnow or SVMLight), the training method (Flat or Hierarchical) and the parts file (Multi or

Mono). The latter can either be a file that contains multiple classes for each document or just one

single main class and therefore make the training a mono-classification process, whereas testing

remains multi-classification. Performance is measured according to the MICRO precision, recall

and F1 of the results. The baseline experiments are carried out with the following settings:

Algorithm Corpus Size Doc Representation Train Method Catalog

Winnow 100k Title + Abstract Flat Multi

3.1. Corpus Size. As the full corpus consists of 1293993 documents shared by the collections

EP and WO, an application was written to create sub samples that could be compared against each

other. In order to select appropriate subgroups of the complete corpus the application sorted the

classes in increasing size and picked N classes out of each slice of the M-folded list. Experiments

30



showed that the fewer documents (and therefore categories) were used, the better the performance.

With fewer classes to train, fewer mistakes can be made and consistency in classification tends to

be higher. When using 100k, the feature space is more than ten times smaller than when training

with the full corpus (±1 200 000 docs) and only 70 instead of 631 classes are trained.

Figure 4 shows that there is a similarity between 100k and 200k, whereas there is a sharp

downfall to 400k followed by a relatively flat tail. The change from 500k to 1200k documents

is compared to the difference between 200k and 400k relatively stable. This is due to the small

difference in classes that were used to train both corpora (600 vs. 631). The big challenge lies thus

in dealing with a high number of classes rather than with an elevated number of documents.

Depending on the size of the corpus, either the precision or the recall takes the overhand.

Whereas the recall is highest when the number of classes stays small (77.87% recall vs. 72.75%

precision at 100k (70 classes)), in the steepest part of the curve, when adding 280 classes to the 120

we had, the recall decreased much more than the precision and the latter became the best scoring

measure (59.20% vs. 57.77% at 400k). In the tail of the curve, the recall keeps on decreasing

more rapidly than the precision. When the full corpus is trained, the precision strands on 56.43%

(−2.77% from 400k) while the recall reaches only 52.81% (−4.96% from 400k).
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Figure 4. Effect of the corpus size on classification performance

3.2. Document representation. Four document representations were given as an input to

the classifier: tabs, itabs, tdesc and itabsdesc. Statistics of the collections can be found in

Section 4. Figure 5 summarizes the results of the experiments with a baseline training. It becomes
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clear that training with larger data representations, i.e. more features to define a document and

to build thresholds for class assignment, leads to a better performance. The relative difference

between training with the least extracted fields (tabs) and the most extracted (itabsdesc) lies at

7.31% in terms of F1 measure. The backside of this level of performance is the time cost of training

and testing, which increases with the number of added features.

What is more remarkable is the effect of adding the inventor names to the training. Although

this can in the most extreme scenario only add two extra words to the document representation

(name + last name of the inventor), it is these words that are discriminative in training and

classifying unseen documents. The difference in performance between tabs and itabs is minor but

visible. Their means (F1 over all document sizes) are situated respectively at 63.3 and 64.9. For

the 100k experiments, the difference in feature number between tabs and itabs is 7.6 words on

average. In percentage of F1 value is the difference less than 1% (0.81%). The biggest difference is

situated in the 400k collection where it amounts to 2.36%.
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Figure 5. Document representation (baseline)

When only using title and abstract, the addition of inventor names seems to have a much bigger

impact than when the description is included in the data representation. The difference between

tdesc and itabsdesc, the latter even containing two additional data fields, is only minor. This

result points at two different things. First, the role of the features found in the patent’s description

is important as both representations that contain the description score considerably higher than

the ones without this field.

Second, the slight difference in F1 value could point to the fact that perhaps the abstract

itself does not contain such discriminative information as one would assume. On the 100k corpus,
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the difference in feature number between tdesc and itabsdesc is situated at 8.7 words (vs. 7.6

between tabs and itabs). Although it is generally expected of abstracts to be precise and contain

words that are carefully chosen, this does not hold for most patent abstracts. On the contrary,

lawyers use inclusive and general language to summarize the patent application. This argument

can also be found in the literature [Koster et al., 2003]. On the other hand, one could argue that

once the description is part of the document representation, the abstract does not really add an

extra value to the document as words that occur in the abstract will probably also appear in the

description. Figure 5(b) shows that the difference in features that are selected for the training is

almost negligible between tdesc and itabsdesc. The biggest difference in feature number occurs in

the full corpus training. itabsdesc has significantly more features than tdesc at 1200k compared

to 400k. Also the difference between tabs and itabs is significant and even proportionally larger

than itabsdesc/tdesc. Whereas the tabs feature number fluctuates between 20767 and 66508

across the different corpora, the itabs documents collect more features when the size of the corpus

increases: 34466 at 100k and 174923 at 1200k.

Statistical significance tests are included further in this chapter (Section 4).

3.3. Learning algorithm.

3.3.1. Subsamples. The graphs in Figure 6 show that training with SVM (in red) is always su-

perior to Winnow training (in blue) in terms of F1 measure. Results for all the different collections

are included 2 as the differences between the two learners are not exactly the same for each subset.

When the 100k collection is considered, F1 measures are on average (over all document represen-

tations) 2.66% higher for SVM trained categorisers, whereas this number rises up to 3.71% for the

400k collection. Figure 7(a) illustrates this difference. If one compares the difference between 100k

and 400k in terms of classes (70 vs. 400), one could argue that this increase influences the way

training reacts in both algorithms. When another 200 classes are added (500k), the difference in F1

score decreases again slightly. It seems thus that Winnow reacts stronger on the increase of classes.

This suggests that Winnow tuning should happen on the basis of the class number rather than the

document representation (and therefore feature number) as was done in [Koster et al., 2003].

2The results of the experiment SVM 1200k itabsdesc were not available at the time of handing in this

document, due to the extremely long training time of SVM with a corpus of over 1 million documents. They will be

added as soon as the training finishes.

33



60,00

65,00

70,00

75,00

80,00

85,00

100k F1

50,00

55,00

60,00

65,00

70,00

75,00

80,00

85,00

tabs itabs itabsdesc tdesc

100k F1

100k F1 Winnow 100k F1 SVM

(a)

60,00

65,00

70,00

75,00

80,00

85,00

200k F1

50,00

55,00

60,00

65,00

70,00

75,00

80,00

85,00

tabs itabs itabsdesc tdesc

200k F1

200k F1 Winnow 200k F1 SVM

(b)

60,00

65,00

70,00

75,00

80,00

85,00

400k F1

50,00

55,00

60,00

65,00

70,00

75,00

80,00

85,00

tabs itabs itabsdesc tdesc

400k F1

400k F1 Winnow 400k F1 SVM

(c)

60,00

65,00

70,00

75,00

80,00

85,00

500k F1

50,00

55,00

60,00

65,00

70,00

75,00

80,00

85,00

tabs itabs itabsdesc tdesc

500k F1

500k F1 Winnow 500k F1 SVM

(d)

60,00

65,00

70,00

75,00

80,00

85,00

1200k F1

50,00

55,00

60,00

65,00

70,00

75,00

80,00

85,00

tabs itabs itabsdesc tdesc

1200k F1

1200k F1 Winnow 1200k F1 SVM

(e)

Figure 6. Comparison of SVM and Winnow in terms of the corpus size (F1)
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3.3.2. Feature space. Figure 7(b) illustrates the effect of the document representation on the

performance of the learner. The gap in F1 measure appears to be biggest in the briefest representa-

tion, i.e. tabs, and lowest in itabsdesc and tdesc (−1.5%). This suggests that Winnow can work

effectively with a large feature space. If we look at the 100k collection, the difference between tabs

and itabsdesc mounts to 7.31% when Winnow is used while SVM training only yields a difference

of 5.88%. An increase of features, in contrast with an increase of classes, seems to have a smaller

impact on the Winnow algorithm than on SVM training. With a bigger feature space, the SVM

optimisation problem becomes more complex. The question arises whether reducing the feature

size of document representations such as itabsdesc to a fixed number of terms (e.g. 600) would

increase the SVM performance to the same amount as training did for Winnow with the default

itabsdesc representation.
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Figure 7. The relative difference between SVM and Winnow training

One more thing that can be shown by Figure 7(b) is that the margins between tabs and

itabsdesc across the different collections is always bigger for Winnow. Only for the 500k collection,

the difference between the margins of SVM and Winnow training is insignificant. As parameter

tuning is concerned, one can say that while tuning the 100k tabs collection can already predict

something about bigger collections in the case of SVM, this is not the case for a Winnow learner.

SVM is thus a more robust learner and not that sensitive to fluctuations of the corpus as Winnow.

3.3.3. 200k → 400k. Figure 8 shows the different reactions of the biggest classes increase (70

classes in 200k, 400 in 400k) that occurs in the subsets. Both in the dimension of the learning

algorithms as in the document representations differences appear. One similarity that can be found

is the fact that the gap in F1 measure between training with 200k and training with 400k narrows
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when more features are used. An increase in classes introduces finer distinctions between them,

which becomes easier with more features available. The size of this narrowing gap, however, is

dependent on the learning algorithm that was used.
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Figure 8. Difference in F1 measure in training with the 200k and 400k corpora

When the feature space is smallest, Winnow is slightly more affected by the increase of classes

than SVM. Running from small to largest feature space, the SVM curve decreases more steeply

than the Winnow curve. Whereas in Winnow training, the addition of inventors to the document

representation has a bigger effect on the adaptation to an increase in classes than the addition of

the description, SVM reacts more strongly on the explosion of the feature space when itabsdesc

is used. The difference between 200k and 400k across the learning algorithms is maximized at this

point. Again, this shows that SVM is more robust to the enlargement of the feature space than

Winnow.

If only the F1 measure is taken into account, it can be concluded that although the SVM

algorithm was implemented ad hoc, i.e. without testing the optimal parameters for each corpus,

the results are already better than the experiments with the fine-tuned Winnow parameters (cf.

[Koster et al., 2003]). For Winnow, parameters could also be tuned for each collection separately

as the algorithm reacts stronger to changes in the feature space. A tuning for the 100k tabs corpus

is included in Chapter 5.
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Table 8. Relative difference in margins in Winnow and SVM training

corpus algorithm tabs itabsdesc difference

100k
SVM 78.93 84.81 5.88

Winnow 75.23 82.54 7.31

200k
SVM 76.57 83.14 6.57

Winnow 72.33 80.81 8.48

400k
SVM 63.07 71.68 8.61

Winnow 58.48 68.75 10.27

500k
SVM 59.32 67.92 8.6

Winnow 55.90 64.72 8.82

1200k Winnow 54.56 62.8 8.24

3.3.4. Precision and recall. However, if one also considers precision and recall, rather than F1

only, more differences show up. The complete results are included in Tables 9 and 10. Figure 9

depicts the two tendencies that are at work in both algorithms.
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Figure 9. Precision/recall for 100k tabs and full corpus tabs trained with Winnow/SVM

First, both precision curves (dark colours) expose a less steep decrease in accuracy than the

recall curves (fluorescent colours). Whereas recall drops with 26.27% for SVM and 25.06% for

Winnow training, the difference in SVM precision is only 8.76%. Winnow precision, on the other

hand, decreases by double the percentage of SVM precision, namely 16.32%. This rather indicates

the extremely high precision of SVM training. Second, both of the Winnow curves (reddish ones)

are situated between the SVM curves, indicating the extreme results of the SVM training. This
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Table 9. Training results with Winnow

Coll. Classes Repr.
MICRO MACRO

precision recall F1 precision recall F1

100k

66 tabs 72.75 77.87 75.23 61.23 64.10 62.38

67 itabs 73.67 78.57 76.04 62.81 64.55 63.26

66 itabsdesc 80.86 84.30 82.54 74.61 77.20 75.63

66 tdesc 80.71 84.67 82.64 76.46 77.87 76.88

200k

115 tabs 70.29 74.49 72.33 56.23 59.31 57.39

114 itabs 71.84 75.07 73.42 58.37 59.34 58.45

115 itabsdesc 79.66 81.99 80.81 72.50 71.31 71.41

116 tdesc 79.48 81.82 80.63 71.28 70.10 70.24

400k

375 tabs 59.20 57.77 58.48 46.93 43.24 44.58

384 itabs 62.03 59.68 60.84 49.93 45.94 47.47

380 itabsdesc 70.30 67.27 68.75 64.55 56.67 59.41

381 tdesc 69.83 66.97 68.37 62.95 56.32 58.72

500k

574 tabs 58.14 53.83 55.90 45.88 40.55 42.61

571 itabs 60.37 54.85 57.48 48.95 41.90 44.71

575 itabsdesc 68.22 61.57 64.72 61.95 50.83 55.00

573 tdesc 67.74 61.46 64.45 62.11 50.68 54.98

1200k

613 tabs 56.43 52.81 54.56 42.86 38.80 40.42

615 itabs 59.64 53.94 56.65 46.47 40.66 43.03

66 itabsdesc 66.37 59.59 62.8 59 48.75 52.75

66 tdesc 65.63 59.49 62.41 58.51 48.61 52.53

raises the question as to whether parameter tuning could increase the recall without lowering the

precision too much. A use case is included in Chapter 5.

3.3.5. Detail MICRO Winnow. When the MICRO result tables are looked at in greater detail,

there are a couple more interesting trends visible. The training results for Winnow show that over

the collection sizes, the recall is higher than the precision for 100k whereas the opposite scenario is

found for the 1200k corpus. The recall thus decreases much more rapidly than the precision when

the number of classes is increased. Moreover, the bandwidth between the smallest feature space

and the biggest feature space varies in size between precision and recall. Averaged out over the 5
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Table 10. Training results with SVM

Coll. Classes Repr.
MICRO MACRO

precision recall F1 precision recall F1

100k

66 tabs 87.97 71.58 78.93 85.92 52.55 62.28

65 itabs 88.18 70.80 78.54 84.88 51.77 61.99

66 itabsdesc 90.40 79.86 84.81 92.03 65.33 74.39

65 tdesc 90.31 79.9 84.79 92.26 65.64 74.65

200k

114 tabs 88.07 67.72 76.57 84.94 47.42 58.16

114 itabs 88.42 68.48 77.18 84.82 48.48 59.00

115 itabsdesc 90.61 76.80 83.14 90.66 58.54 68.04

113 tdesc 90.51 76.79 83.09 86.16 58.63 67.5

400k

380 tabs 82.38 51.09 63.07 75.93 33.66 43.72

383 itabs 83.18 52.59 64.44 77.11 35.19 45.54

380 itabsdesc 84.47 62.26 71.68 81.32 45.77 55.70

381 tdesc 84.31 61.84 71.35 81.53 45.58 55.68

500k

574 tabs 81.01 46.79 59.32 73.91 30.46 40.21

574 itabs 82.13 48.27 60.81 77.50 31.58 41.79

573 itabsdesc 83 57.48 67.92 80.14 41.37 51.57

1200k
615 tabs 79.21 45.31 57.64 74.84 28.26 38.02

618 itabs 80.08 47.57 59.69 76.53 30.23 40.45

corpus sizes, the relative distance in precision is situated at 9.72% whereas this number is more

than 2% lower for recall (7.59%). The addition of features (inventors and description) has thus

a greater effect on the precision values than on the recall, which seems to be more stable in this

regard.

3.3.6. Detail MICRO SVM. The SVM table repeats the finding that the precision is always

greater than the recall, regardless of the size of the corpus. The gap between both measures does

become bigger as the collection grows. This is due to the parameter settings of the SVMLight

learner. Chapter 5 explores better settings to improve the recall. The settings used in the baseline

are the ones where F1 is maximized and therefore a good option for an ad hoc system. As opposed

to the Winnow training results, the differences in feature space are much larger for recall than

for precision: 9.81% vs. 2.26%. Worth noting is the fact that the increase of classes, i.e. corpus
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size, is not perceptible in the precision scores that if the difference between itabsdesc and tabs is

considered. SVM precision for 400k is situated at 84.47% for itabsdesc and at 82.38% for tabs,

resulting in a difference of 2.09%. For Winnow, this difference lies at 11.10%, almost exact the same

value as the SVM recall itabsdesc-tabs result (11.17%). One can conclude that if only precision

is taken into account, training with SVM on a big corpus is extremely advantageous as SVM is a

very robust learner and can deal with a large feature space without problems.

3.3.7. MACRO. Investigating the MACRO results, it becomes clear that also the Macro preci-

sion stays up very high in the SVM experiments. As the Macro measures take the harmonic mean

over all the classes, this result suggests that SVM can learn examples that occur only in a few

classes. On the contrary, training with Winnow works well on classes that have many examples but

fails on sparsely populated classes. The Winnow algorithm is thus more effected by the imbalance

in the training collection than SVM.

The following figures illustrate that the SVM classifier is able to learn most of the sub classes

with a quite similar precision, even though the numbers of examples strongly vary among the sub

classes, whereas the Winnow classifier is not that stable. The orange/red lines depict the precision

values, while the blue curves represent the corresponding number of examples used in the training.
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Figure 10. precision bandwidth with SVM vs. Winnow according to the number

of training examples

The boxplot in Figure 11 illustrates the difference in bandwidth between SVM and Winnow

precision results. The SVM plot is much more narrow but has more outliers than the Winnow plot.

The detailed results reveal that the precision is 8 times 0.00% for the Winnow learner whereas
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Figure 11. Boxplot of SVM(1) and Winnow(2) precision across classes

SVM training yields this value 43 times. At the other end, i.e. precision reaching 100%, we see

that SVM achieves this 59 times while Winnow never reaches a precision that is up so high.

A typical example where SVM training yielded 100% is in the case of class A23P. SVM selected

three train examples less than Winnow, 413 as opposed to 416. In total, 765 documents belong to

class A23P. The reason why SVM precision is maximized is due to the fact that there were only 3

examples selected for class A23P, all of which were relevant. The Winnow results show that only

17 out of 100 selected examples were relevant, therefore yielding a precision score of 17%. What is

also visible is that the SVM learner leaves aside more relevant examples as Winnow: 199 vs. 180

Relevant Not Selected.

Over the whole corpus, the RNS count for SVM is higher than the RS count (RNS 306787 >

RS 278366), while the opposite result is found for Winnow training (RNS 269705 < RS 315804).

The high precision of SVM training is reflected in the low number of false positives (NRS): 69243.

Winnow training yields three times as many NRS documents: 213697.

Table 11. Detailed results for class A23P

learner train ex. precision recall RS RNS NRS

Winnow 416 17,00% 8,63% 17 180 83

SVM 413 100,00% 1,49% 3 199 0

3.4. Classification method. A single learning algorithm in a multi-label categorization usu-

ally produces poorer categorization results compared with a combination of multiple learning algo-

rithms applied on the same categorization problem [Dietterich, 2000] (p.c. Bernhard Pflugfelder).

41



All the experiments described above were produced with ensemble (flat) learning. This section

briefly introduces the second meta-learning approach: hierarchical learning. Here, the categoriser

first decides on the section level, then on the class level, etc. There are thus less possibilities to be

considered at each level. The results in Figure 3.4 show that the performance of the hierarchical

learners is in fact worse than the flat learners when the F1 measures are taken into account. This is

probably due to the fact that there was no back propagation of error used in the algorithm. Once

it has made a wrong decision, it is impossible to jump back to an earlier node in order to readjust

the path through the hierarchy.
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Figure 12. Hierarchical vs. Flat Classification

The positive element in this approach is the exponential time savings at both learning and

classification time [Esuli et al., 2008]. This is due to the ”local” policy for selection negative

examples [id.]:

given a category c, its negative training examples are by default identified with

the training examples that are negative for c and positive for the categories sibling

to c in the hierarchy.

3.5. Time estimation. Although SVM scores generally better than Winnow there is one

downside, namely its speed. This is related to the difference in architecture of both algorithms.

The Winnow algorithm is in fact extremely simple. It changes its discrimination function by multi-

plication and is linear in the number of features it can process. Moreover, ”the time complexity of

the Winnow algorithm does not depend on the number of features, but rather on the average num-

ber of non-zero features per data, which is usually quite small” [Tzhang et al., 2002]. Although

the SVMs used in the experiments all had linear kernels, the algorithm has a squared complexity

in the number of features.
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The CPU times of the experiments have been measured by the LCS application itself. Not sur-

prisingly, the calculation time increases drastically when the description is added to the document

representation.

Figure 13 summarizes the CPU times for tabs, itabs and itabsdesc Winnow and SVM

experiments across all five document representations. If the smallest document representations, i.e.

models with the smaller feature spaces, are considered, the calculation times of LCS Winnow and

SVM are quite similar where both algorithms have needed approximately 24 hours to process an

experiment. Contrarily, the itabsdesc document representation (large number of terms) causes

a strong increase of the calculation time for both the LCS Winnow and SVM . The CPU time of

LCS Winnow is, however, still far more limited and, for instance, in case of the sample collection

500k the time proportion is already close to 1:2 compared with SVM.

The absolute time an experiment needs is even higher because the import of the data and the

pre-processing of the train and test collection strongly depend on the I/O speed. On the LDC

a quite slow I/O rate has been observed due to some other heavy I/O-related processes (e.g. an

index process) that were running at this time. The training time can definitely be reduced if a

separate machine will be used having also fast hard discs. Also a multi-threading training would

be promising. Although the LCS claims to use multi-threading it appears to be insufficiently

implemented as no significant time gain was observable compared with single process run.

However, a time frame of 10 day for training a categoriser might be still acceptable if the

categoriser need not to be updated in short intervals. For instance the categoriser used at the

WIPO has not been retrained over the last years and, therefore, the training time should not be a

decisive decision factor.

4. Significance Testing

In order to verify the validity of some of the results presented above, statistical significance

tests were implemented by means of the statistical package R (http://www.r-project.org/). The

two main issues that needed statistical backup were:

• Document representation: distance of F1 curves

• Learning algorithm: difference Winnow/SVM

4.1. Document Representation. Figure 5(a) depicts the accuracy the Winnow algorithm

achieves across the different corpus sizes and document representations. In order to know whether

the distance between the different document representation curves is significant, there are a range
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Figure 13. CPU time

of parametric and non-parametric statistical tests that can be applied. First of all, it has to be

found out whether or not we are dealing normal distributions. Therefore, a Shapiro-Wilk normality

test was carried out. As the null hypothesis holds that the population normally distributed and

the alpha level was set to 0.05, the alternative hypothesis (i.e. the sample does not come from a

normal distribution) can be accepted if p ≤ 0.05. The results of the normality test are summarised

in Table 12 and show that the null hypothesis cannot be rejected for any of the samples. This

implies that all document representations are normally distributed across the corpus sizes.

Table 12. Shapiro-Wilk normality test (doc representation)

sample p-value

tabs 0.1358

itabs 0.1459

tdesc 0.2219

itabsdesc 0.2343

Because of this normal distribution, a parametric statistical test can be carried out. The

student’s t-test was used here to test the divergence in means across the different document rep-

resentations. Figure 14 illustrates the distribution of the means (black horizontal line) and the

standard deviations (boxes) in the samples. Note the skewedness of the distributions towards the

smaller accuracies.

The null hypothesis of the t-test is that sample A and B come from the same distribution.

Two samples become significantly different if the alternative hypothesis can be accepted, i.e. if
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Table 13. P-values of the t-test

tabs itabs tdesc itabsdesc

tabs – 0.7975 0.2013 0.1873

itabs 0.7975 – 0.2781 0.2597

tdesc 0.2013 0.2781 – 0.9704

itabsdesc 0.1873 0.2597 0.9704 –

Table 14. P-values of the Wilcoxon rank sum test (doc representation)

tabs itabs tdesc itabsdesc

tabs – 0.5476 0.2222 0.2222

itabs 0.5476 – 0.2222 0.2222

tdesc 0.2222 0.2222 – 0.8413

itabsdesc 0.2222 0.2222 0.8413 –

the two means differ significantly. Results are included in Table 13. It becomes clear that none of

the p-values is smaller than the 0.05. Therefore the differences in accuracy between the document

representations cannot be judged significant. However, there is indeed a difference in means, as can

be seen in Figure 14 and from the additional information R provides for the Welch Two Sample

t-test. The means for tabs, itabs, tdesc and itabsdesc are respectively: 63.3, 64.9, 71.7 and

71.9.
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Table 15. Shapiro-Wilk normality test (learning algorithm)

100k 200k 400k 500k 1200k

winnow 0.07448 0.09275 0.2001 0.3223 0.4707

svm 0.04522 0.0616 0.1338 0.3110 –

Table 16. P-values of the Wilcoxon rank sum test (learning algorithm)

100k 200k 400k 500k 1200k

0.3429 0.3429 0.3429 0.4 0.3333

However, the acceptance of the null hypothesis can be caused by another factor. The size

of the samples is rather small as we only have one F1 measure for each corpus size, resulting in

five data points per sample. Now, each of the samples was duplicated so it contained ten data

points instead of five. The results showed this time a significant difference between tabs and

itabsdesc (t = -2.1633, df = 17.94, p-value = 0.04426). The difference between tabs and itabs

remains insignificant, although their means differ by 1.6 %. We can thus conclude that the only

real significantly better performing document representation is itabsdesc, as also the difference

between duplicated tabs and tdesc is insignificant (t = -2.089, df = 17.972, p-value = 0.05121).

P-values of a non-parametric test are included for reference in Table 14. The Wilcoxon rank

sum test was used to double check the results of the t-test. Also here tests with the five point sample

data set were insignificant. In the duplicated tests, the difference between tabs and itabsdesc was

equal to 0.05, and could therefore not cancel out the null hypothesis (W = 24, p-value = 0.053).

4.2. Learning Algorithm. To test whether there is a significant difference in using a Winnow

algorithm or SVMs, the data from Figure 6 was used as 10 data samples, each with 3 to 4 data

points. Each sample represents an algorithm trained on one of the five corpus sizes (2*5) evaluated

for 3 or 4 document representations. As the samples are so small, the results of the normality test

have to be treated with care. A t-test cannot be carried out as the 100k SVM sample does not

correspond to a normal distribution.

Results of the Wilcoxon rank sum test in Table 16 show that the difference between Winnow

and SVM training was never significant. However, this result should perhaps not be taken too

strictly as the sample sizes were so small.
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CHAPTER 5

Use Case

The results in Chapter 4 showed that, although training with SVM always yielded a higher

accuracy, the experiments were run using ad hoc parameter settings that caused the precision

to stay up relatively high while the recall dropped under 50%. Depending on the goal of the

experiment, such a low level of recall may not be ideal. Therefore, the first section in this chapter

focuses on improving recall in SVM experiments. The second section goes into parameter tuning

for Winnow experiments.

1. SVM Tuning

Our previous experiments were conducted with three parameters that affected the workings

of the SVMlight package: the soft margin parameter (C), the cost parameter (J) and the type of

kernel (T). The latter is kept at its default value, i.e. linear. As the type of problem we are trying

to solve is linearly separable, using a polynomial or radial-based kernel would not bring an increase

in accuracy but rather delay the classification even more.

The parameter tuning was carried out with the smallest collection (100k) to speed up the

process. Looking back at Section 3.3, the robustness of SVM training will probably guarantee the

validity of the results for bigger sized corpora.

1.1. C tuning. The default setting for the soft margin parameter in SVM lightis [avg.x∗x]−1.

This parameter setting tries to find the line that best separates the positive and negative training

examples. To maximise this difference (x), the value is squared and inverted. This is done for every

training example that has a counterexample in its neighbourhood, i.e. only for support vectors. In

general, C can be any floating number that is bigger than 0. In order to get a first impression of

possible effects of the C parameter, values were tested between 2.5 and 50 with a step size of 2.5.

At first sight, it becomes clear that precision stays higher than recall across the complete

interval. Both curves are separated neatly from each other by the green F1 curve that stays quite

stable in the course of the tuning (max. 78.8, min. 73.69). While the precision drops more than

10% for C values that ly between 2.5 and 15, the recall rises less than 3%. The results between 15
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and 50 do not add much more to the parameter tuning: precision fluctuates in a slightly downward

trend from 77.96% to 76.2%; recall finds its maximum at C=17.5 (72.81%) and fluctuates up and

down across the interval (71.38% at C=50).

Most of the changes take place in the beginning of Figure 1.1. Therefore, a more detailed

parameter tuning between 0.1 and 2.5 with steps of 0.1 is carried out. The C value used in the

baseline experiments is marked in yellow. This is the point where the F value reaches its maximum.
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Table 1. Results of the C parameter tuning

C=1.5 max

recall 71.56 73.16 (C=7.5)

precision 88.56 92.43 (C=0.1)

F1 79.16 79.16 (C=1.5)

For the smallest values of C, the distance between precision and recall is greatest. The maximum

precision (92.43%) and minimum recall (48.06%) values are situated at C=0.1. The recall curve

then rises rapidly between 0.1 and 1 up to 69.78% (+ 21.72%). Precision drops only by 3.5%. The

highest recall in this interval is situated at C=2 (72.22%).

The results of the C parameter tuning did not reveal results that can be taken as significant

proof for a better recall level than the one reached in the baseline experiments. An increase in

recall of 1.6% can be reached by using C=7.5. Note that this result holds for the tabs 100k

corpus. Although SVM is a robust learner and similar improvements will probably be found for

larger corpora, this was not explicitly verified here. Table 1 summarises the maximum attainable

precision, recall and F1 values and compares them to the baseline.

1.2. J tuning. The second parameter that can be changed in the SVM algorithm used in

the experiments is the cost factor. By changing J, the misclassification of a positive example

can be punished more or less severely. The cost of misclassifying a positive example is deter-

mined as C −+ = J ∗ C, while the misclassification cost of a negative example remains unaltered

[Joachims, 2002]. By default J equals 1.0.

Figure 1.2 shows the results of a tuning in the interval [1,10] with step sizes of 1. The highest

recall value is found at J=8. Although the goal of this parameter tuning is to get the recall possibly

at its highest level, the precision, and therefore F1, value should in the best cases not drop too

much after all. Therefore, J=5 seems a reasonable choice. In general, the curve between J=5 and

J=10 does not change that much to the accuracy anymore.

Remarkable is the shape of the curves at J=4. The recall increases along the complete curve,

only between J=3 and J=4 it decreases. At J=4 precision, recall and F1 are almost equal (preci-

sion= 75.44; recall = 76.22, F1 = 75.83).

When the two parameter settings where the recall is highest are combined in an experiment

(C=7.5, J=8), the accuracy is lower as when either C or J is set to its default value. precision

lies at 77.14, recall at 73.71 and the F1 measure at 75.39. Two large parameter settings do not
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Table 2. Results of the J parameter tuning

J=1 max

recall 69.19 80.63 (J=8)

precision 88.78 88.78 (J=1)

F1 77.77 79.61 (J=2)

seem to work extremely well. Therefore, other pairs of C and J were tried out. At the point where

the recall curve does not change that much anymore (J=5), different settings of the soft margin

parameter are experimented with. The results can be analyzed in Figure 4.

The figure shows that the bigger the C values are, the closer precision and recall grow. When

J values are taken into account, it becomes clear that the smallest settings are mirrored by the

smallest distance between both curves: when J equals 5, the precision and recall curves are the

middlemost of all curves when C = 0.5 and 1. At larger values of C, the recall curve overlaps with

J=6 and J=8. If recall is important, a large J setting and a small C setting are preferable. The

highest recall level achieved in this tuning was 83.27% with settings C=0.5 and J=8. This

value can possibly be increased when even bigger values of J are tried in combination with smaller

C parameters. precision was highest at J=5 and C=2 (77,25%). This is more than 10% below

the maximal precision value (92.43%) that was achieved with settings C=0.1 and J=1. This
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means that no extra cost was incorporated and the soft margin value is very small (i.e. almost a

hard margin (C=0)).

As it looks as if the curves are not yet at a point of convergence at the left side of the x-axis

(small values of C), two more experiments were conducted that were expected to improve the recall

even more (and worsen the precision). Results are summarised in the following table.

Table 3. Optimal recall Settings

Settings precision recall F1

J=10; C=0.25 68.54% 85.21% 75.97%

J=12; C=0.05 62.46% 85.55% 72.20%

1.3. Test on bigger corpus. It was verified how the best precision/recall settings on the 100k

would score on the 500k corpus. Is the accuracy on 500k still proportionally higher with tuning

as without? To maximize the precision, the values C= 0.1 and J= 1.0 were used. The maximum

recall was in the 100k tests achieved with C= 0.25 and J = 10.0. These values were tested on the

500k itabsdesc corpus. Results are summarised in the table below.

The experiment that was run with the optimal precision settings yielded an accuracy score

of 89.34% on the 500k corpus, which is 6.3% higher than the baseline run on the 500k itabsdesc

corpus. On the 100k corpus, the difference between the baseline and the optimal precision settings
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Table 4. Maximum precision and recall settings on itabsdesc 500k

precision recall F1

max P 89.34% 30.97% 46%

max R 62.92% 73.5% 66.14%

baseline 83% 57.48% 67.92%

was situated at 3.6%. This shows that the optimal precision settings hold for a bigger corpus as

well. Moreover, they even seem to widen the difference between baseline and tuning even more.

The maximum recall settings yielded an increase in accuracy of 16.02% on top of the baseline.

Also here the gap between baseline and tuning is bigger for the 500k itabsdesc corpus than it was

for the 100k tabs (13.63%). A last thing to note is the stability of the F1 value, losing only just

over 1% of accuracy after the tuning has taken place.

2. Winnow Tuning

Although there are two good reasons that would make a grid search for the Winnow parameters

unnecessary, a tuning for α and β is nevertheless included below. Firstly, the parameter settings

used in the baseline experiments were borrowed from [Koster and Beney, 2007], who performed

various Winnow tests with patent applications on the LCS. The corpora they used were, however,

quantitatively from a different kind than the material used in our baseline experiments. They

used abstracts (average length of 143 words) and full-text (±2000 words) patent applications from

the European Patent Office but only classified on 16 classes with 1000 documents/class, therefore

ignoring the unbalancedness that exists between EPO classes. With only 16 000 documents, it

is difficult to estimate the workings of their parameter tuning results on a corpus of 1 250 000

documents.

Secondly, a tuning might not be ideal due to the type learner that Winnow proved to be

in the experiments. As the Winnow results were more affected by an increase of classes, i.e. a

bigger corpus in our case, parameter generalizations are rather hard to draw. Despite these two

arguments, a tuning on the 100k tabs corpus was carried out, in order to get an impression whether

the Koster parameters were valid on a corpus that was almost 10 times bigger than the one used

the [Koster and Beney, 2007] paper.

The thick threshold was kept at 0.2, i.e. θ+ = 1.1 and θ− = 0.9 and only α and β were tuned.

In the first tuning experiments it became clear that a constraint had to be built in as the LCS got

stuck in calculating thresholds that were enormously big. This constraint was chosen based on the
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Figure 5. Primary results of Winnow tuning

primary results included in Figure 5. The accuracy consistently dropped down at points where α

was smaller than 1
β : e.g. α=1.4, β=0.75 ( 1

β = 1.333 . . . < α). Therefore the tuning application

was written so it did not consider parameter pairs if β < 1.0/α. As α has to be bigger than 1 and

β smaller than 1, following parameter range was tried:

α ∈ [1.02, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95,

2.0, 3.0]

β ∈ [0.1, 0.20.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

Both graphs in Figure 6 show that the larger β becomes (x-axis), the higher the accuracy climbs

up. Three α parameters reach the top right of the figures: α=1.02, α=1.05 and α=1.1 (the default

value). For recall, the highest accuracy (78.73%) is reached with α=1.05 and β=0.9. The default

settings (α=1.1 and β=0.9) achieve the second highest recall value: 78%. It is only at the highest

β value that the α=1.05 curve takes the overhand. The third highest recall is found for the steepest

ascending curve: α=1.02 (76.84%). The form of the recall curves tell us that learning with α=1.05

and β=0.95 could perhaps add some extra points to the accuracy.

Precision on the 100k tabs corpus has slightly less distinctive top results as recall: α=1.1:

72.23% α=1.05: 71.43% and α=1.02: 70.93%. The maximum accuracy for precision also lies

considerably lower than the maximum level of recall that was achieved. This result contrasts

sharply to the SVM tuning, where recall could be optimized to 85% but the maximum precision

value was even situated at 92%.

The F1 accuracy (graph not included) was almost the same for α=1.1 and α=1.05 (75.0% vs.

74.9%). The default values achieve thus the highest F1 results. In general, it can be said that the

Koster parameters seem to hold for a bigger corpus. The biggest question of course is whether

53



these values are also optimal for the full (1200k) corpus. An automated corpus-based tuning would

be the best way to get to the optimal results.

3. Discussion

As Koster and Beney [Koster and Beney, 2007] wrote, ”Tuning is much more important

than term selection”. We have indeed seen that especially for SVM parameters, a increase in

accuracy of 14% on top of the baseline can be achieved, depending on what the preferences of the

user are.

As the goals of the study were trying to estimate the effects of different document representations

and two different learning algorithms, there are still many questions that remain open: what

happens for other forms of Term Selection? What is the effect of tuning on MACRO instead of

MICRO-average, i.e. when small categories are emphasized instead of big ones? Also the effect

of Term Weighting and Document Size Normalization technique could be investigated? More

theoretical analysis is needed in those fields.
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CHAPTER 6

Baseline extensions

Next to the parameter tuning, there are more experiments possible that could improve the

baseline results. One problem for instance with the SVM experiments, for instance, was the scal-

ability of the model. The more terms, the more expensive the optimization function becomes.

Therefore, one extension could be to perform an aggressive terms selection on the train set before

training the model. Experiments with the itabsdesc 100k corpus are presented in Section 1. The

second extension exists of a validation of the baseline results. A random categoriser was built that

delivered similar results as the LCS Winnow classifier. Similar in a sense that the amount of classes

a test document was given was simulated as well as the probability distribution of the class labels.

The results of the experiments with the random categoriser are included in Section 2.

1. Aggressive Term Selection for SVM

As the collection size was growing, SVM needed much longer than Winnow to train the classi-

fication model. This could mainly be due to the increased feature space the classifier had to deal

with. Figure 13 in Section 3.5 showed that, whereas for the small corpus collections the CPU time

for SVM and Winnow are relatively equal, the calculation time of SVM will increase to approx-

imately the double of LCS Winnow when the feature space grows significantly. To cut the time

calculation, a more aggressive selection of terms could improve the scalability of the SVM classifier.

The experiments in this section illustrate how this is possible and what the effects are.

First, the actual term distribution has to be considered before any experiments can be set

up. The terms used in the training set of the itabsdesc 500k collection are displayed in Figure

1. There are seven classes that contain more than 80 000 terms in their profile: A61P (140915),

C07D (128693), C12N (113284), C07K (105757), C08L (83381), C07C (97610) and G01N (99025).

The biggest sub class according to the number of terms is A61P. This class comes second in the

document ranking with 49363 examples. The class with the highest number of examples was A61K,

absent in the 500k collection.

In order for SVM to work more efficiently it was decided to cut the number of terms per class,

i.e. the local term maximum, down to at least 20 000. This means for the 500k collection that 91
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Figure 1. The distribution of terms for the itabsdesc 500k collection

Table 1. Statistics of various MaxTerms settings for 100k itabsdesc

MaxTerms
% of affected total number total number nb of terms % of terms

classes of affected classes of terms reduced affected

5000 80% 53 310896 606699 66%

10000 44% 29 504671 412924 45%

12500 35% 23 566748 350847 38%

15000 24% 16 615645 301950 33%

17500 21% 14 653069 264526 29%

20000 14% 9 678171 239424 26%

classes would have to be reduced in terms. This number corresponds to 16% of the total number

of classes.

Second, experiments with smaller samples were set up as to get an idea of what term selection

can actually do to the accuracy and performance of an algorithm. The 100k corpus of itabsdesc

was used for this task, as it had a training that was 20 times faster than the 500k corpus on the

SVM baseline experiments. One would assume that an upper bound of 20 000 would be relatively

loose for this corpus as there are much less terms involved (917 595 vs. 7 508 385). However,

the construction of the subsets was done so that the proportion of big and small classes would be

similar in all the corpora.
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Table 2. Accuracy + CPU time on the 100k corpus

MaxTerms
MICRO MACRO

CPU time
precision recall F1 precision recall F1

local 5000 90.50 79.98 84.91 90.12 64.54 72.85 12949

local 10000 90.19 79.66 84.6 90.92 64.98 73.75 13881

local 12500 90.28 79.59 84.6 90.62 64.39 73.05 13920

local 15000 90.25 79.59 84.59 90.99 64.62 73.16 13959

local 17500 90.28 79.89 84.76 90.05 63.9 72.52 14063

local 20000 90.62 79.74 84.83 89.69 65.65 73.96 16007

baseline 90.40 79.86 84.81 92.03 65.33 74.39 16052

Table 1 shows the number of affected classes for six different local MaxTerms settings on the

100k corpus. The baseline system for 100k itabsdesc contains 66 classes and 917595 terms in total.

There are different degrees of term selection, depending on the aggressiveness. The percentage of

classes that is cut to a lower number of terms ranges from 14% for MaxTerms 20000 to 80% when

maximally only 5000 terms are selected. The latter functions with one third of the amount of global

terms of the baseline system.

If exactly the same percentages of affected classes are chosen for the 500k corpus, the following

MaxTerms settings arise: 4677, 9406, 11107, 15510, 16782 and 21727. As these settings, as well

as the percentage of reduced terms, do not diverge that much from the ones used on the 100k

corpus, they can reliably be used for the bigger corpus. It was chosen here to work with the same

MaxTerms numbers, and therefore only approximating the relative percentages.

The accuracy of the aggressive term selection on the 100k corpus as well as the CPU time are

included in Table 2. When only the micro results are considered, all percentages are equal for

precision (90%), recall (79%) and F1 (84%). It seems thus that even the most aggressive cut in

terms does not affect the accuracy at all. The only difference lies in the CPU time of the different

training runs. Training with a maximum of 5000 terms per class needs ±3000 seconds less than

with the baseline system, or even with 20 000 MaxTerms. This is a time reduction of ±20%. Also

the macro results do not differ very much across the different term limits.

It should of course be tested now whether the results on the 100k corpus also hold on a bigger

corpus. This was not tried out in this study as it would take up too much time and memory on the

server to rerun such a big experiment. However, a time reduction of 20% would still not be sufficient
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to equal Winnow CPU time on the 500k itabsdesc corpus. The baseline SVM experiments needed

almost double the amount of time needed for a Winnow experiment with the same corpus size.

Aggressive term selection can thus be a step in the right direction but other methods to cut the

CPU time could be considered too. An example would be to change the maximum quality degree

on class level. This could lead to the elimination of more noisy terms if the threshold is raised by

a certain amount. Further research is necessary to find out the exact threshold levels that would

make further contributions to the time reduction problem.

2. Random classification

The opposite of a research-driven classifier is a system that predicts categories at random for a

given document. No meticulous engineering but rather a good dose of luck is the key to a random

classification engine. If our baseline system as presented in Chapter 4 is able to render a better

classification than a random categoriser, the results presented earlier are more than mere chance

and can be reproduced in future research.

An application that could simulate a random categoriser was written in Java using the Colt

library (http://acs.lbl.gov/ hoschek/colt/). A train catalog was taken as input file (document

name + categories to which it belongs) to build a probability density function (pdf) of the training

distribution. Next, the test catalog was read in and a discrete random sampler selected a number

from the pdf that could then be linked to a category name that had exactly the selected number

of training documents. The amount of classes that each test document could get assigned was also

generated randomly from another pdf that captured the distribution of the number of categories per

training document. As mentioned earlier, each training document had on average 1.9 categories.

The results included in Figure 2 were generated using the itabsdesc 1200k collection based on

Winnow preprocessing. The train and test catalogs1 that are delivered just before the LCS Winnow

training starts, were extracted and used as input to the random classifier. The difference between

the baseline classifier and the random one is big. For the smallest collection, the F1 measure of

the random classifier reached 6.81%, while the LCS achieved 82.54%. The difference between 100k

and 200k is proportionally also bigger for the random classifier. More classes means more chance

to be wrong in randomly picking a category. There are only minor differences between the 400k,

500k and 1200k collections. This is probably related to the increase of classes at 400k, that makes

further smaller increases less significant.

1A catalog is a file in which each line starts with a document name followed by a list of class names the document

belongs to.
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Figure 2. F1 results random vs. LCS Winnow classification

All results are summarised in Table 3. As the results are very low in general, Micro and Macro

results do not differ much this time. precision is always higher than recall which indicates that

the random classifier is slightly better in returning correct classes than making sure that as many

correct classes as possible are found.

Table 3. Results from the random classifier

MICRO MACRO

Size precision recall F1 precision recall F1

100k 7.13 6.51 6.81 7.14 6.46 6.68

200k 5.27 4.69 4.96 5.26 4.76 4.89

400k 1.46 1.12 1.27 1.49 1.13 1.20

500k 1.23 0.90 1.04 1.22 0.90 0.92

1200k 2.07 1.50 1.74 2.07 1.47 1.50

The gap between the random classifier and the LCS experiments is huge. A random application

is successful if the results it generates are more than chance (> 50%). In the case of multi-

classification, however, the scenario is more complicated as there are multiple categories that the

classifier has to predict.
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CHAPTER 7

Conclusions

This study investigated the effect of different document representations in combination with

two machine learning algorithms, Balanced Winnow and SVM. Both algorithms try to find a

discriminative function between positive and negative training examples but do so in a very different

way. Winnow works by changing the separating line up and downwards (promote vs. demote) as

the weights of the features are either multiplied by a promoting or a demoting factor, depending

on whether they are on the right or the wrong side of the line. This is fast and flexible. SVM has

a more complicated optimization function. The distance to the discriminative function has to be

calculated for each example and the largest margin between the support vectors has to be found.

The construction of an SVM model is time-consuming and restricted to a smaller feature space.

Comparing the results for both algorithms, the following key conclusions can be made (cf.

[Pflugfelder, 2009]). The LCS Winnow experiments can be summarised as follows:

• Moderate to low micro-averaged precision and recall results have been achieved

• Moderate robustness in case of an increasing corpus size

• The representation itabsdesc significantly outperforms all other document representa-

tions.

• Parameter tuning can be done to improve precision (and probably recall)

• Training time is acceptable with approximately 10 hours CPU time on the LDC.

The SVM experiments, on the other hand, entail the following conclusions:

• High precision has been found over all sample collections.

• Exceptional balancing of the precision values over all sub classes.

• SVM is highly robust in terms of number of sub classes to be learned.

• The representation itabsdesc significantly outperforms all other document representa-

tions.

• Parameter tuning is indispensable

As has been shown, a careful parameter tuning on the training corpus can have a positive

effect on the classification results. Therefore, every practical classification system should be made
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self-tuning. Rather than using default values, automatic tuning methods are the best way to deal

with variation in corpora or applications consistently. Moreover, depending on the needs of the

user, precision or recall directed tuning can be made possible.

In order to speed up the training process, farming could be used more efficiently. The creation

of the index can happen on several machines (different documents on different machines) and the

multiple sub-indexes can be merged into one final index (cf. Google’s MapReduce). Also in learning

class profiles, classes can be trained separately, i.e. independent from each other, and data can be

mirrored in order to avoid memory problems. The final testing then, once the model is stored, can

be done on one machine.

Other than a bag of single words, the use of semantic information in the creation of the index

is another issue that deserves attention in future investigation. The incorporation of such linguistic

information is the next component that will be added to the LCS. Primary research into the use

of phrases has been conducted by Koster et al. [Koster and Seutter, 2003].
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APPENDIX A

Parameter Settings

[Basic classifier settings]

– FileDirectory is the path where the text files can be found

– DataDirectory is the path in which all temporary data is stored

– PartsList is a file in which each line consists of a document name and its respective

classes

– OutputLocation is the path where the results are stored

– Algorithm sets the learning algorithm (Winnow or SVM)

– TrainMethod defines whether the training is Flat or Hierarchical (default Flat)

[Document preprocessing]

– MinDocTerms minimum number of terms in a document for it to be considered suitable

for training (default 1)

– MinClassSize minimum number of documents in a class for it to be considered suit-

able for training (default 10)

– TermSel sets the term selection algorithm to SimpleChiSquare or InfoGain (default

SimpleChiSquare)

– Strength sets algorithm for strength calculation (default Ltc)

– Normalize sets normalization method (default Vector)

[Global term selection]

– GlobalMinQuality sets the minimum Q-value for global noise elimination (default 0)

– GlobalMaxQuality sets the maximum Q-value for global noise elimination (default

100)

– GlobalTermFreq sets the minimum number of occurrences of individual terms for

global TF selection (default 3)

– GlobalDocFreq sets the minimum number of documents that an individual term

should be in for global DF selection (default 3)

[Local term selection]

– LocalMinQuality sets the minimum Q-value for local noise elimination (default 1)
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– LocalMaxQuality sets the maximum Q-value for local noise elimination (default 100)

– MaxTerms Local sets the maximum number of documents in a class for it to be

considered suitable for training (default 2147483647)

[Class assignment]

– MinRanks minimum number of classifications for each document (testing) (default 1)

– MaxRanks maximum number of classifications for each document (testing) (default 4)

[Miscellaneous]

– NumCpus specify number of parallel threads for training (default 10)

– SplitRatio set train/test split ratio (default 80% train 20% test)
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