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Abstract 

During the elongation of the polypeptide chain in eukaryotic protein 

synthesis, GTP-bound eukaryotic translation elongation factor 1A recruits the 

aminoacyl tRNA to the A-site of the ribosome. The GDP-GTP recycling is catalysed 

by the elongation factor 1B complex (eEF1B) which in higher eukaryotes consists of 

three different subunits: alpha, delta and gamma. Previous studies on eEF1B 

focused mainly on biochemical analysis and reports of overexpression in tumours 

and correlation to decreased survival rate but not a lot is known about is biology. 

The aim of this PhD is to characterise the eEF1B subunits at the molecular level in 

view of their potential involvement in tumourigenesis using a variety of 

bioinformatic and laboratory techniques.  

All three subunits were found to be ubiquitously expressed at mRNA and 

protein levels in all mouse tissues analysed. In addition, eEF1B has several 

transcript variants in mice derived from alternative splicing and multiple isoforms, 

including a brain and testis specific heavier isoform and a muscle-specific form in 

addition to other forms. The characteristics of each eEF1B subunit were catalogued 

by further bioinformatic analysis.  

eEF1B was not detectable at early mouse developmental stages, eEF1B 

showed stronger expression at pre-natal and early post-natal stages than adult stage 

whereas eEF1B is ubiquitously expressed at similar levels throughout mouse 

development. In adult mice and human tissues, eEF1B subunits appeared to be 

expressed in different cell types and cell sub-populations. Surprisingly, cytoplasmic 

and some nuclear expression was observed in vivo. This nuclear expression pattern 

could not be observed in cell lines and it was not related to the cell cycle stage in 

vitro. The expression of eEF1B subunits did not change during the cell cycle except 

eEF1B which was highly expressed in S-phase arrested cells. 

Knockdown by siRNAs of eEF1B subunits leads to decreased proliferation, 

increased number of cells in G0/G1 phase and increase in apoptosis in HeLa, 

HCT116, DLD1 and HepG2 cells. In contrast, overexpression in HeLa cells with a 

V5-tagged constructs lead to increased proliferation, increased number of cells in 

the G2/M phase and increased viability. Knockdown of eEF1B and eEF1B leads to 
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a reduction in eEF1B levels; it is therefore possible that the phenotype shown by 

the knockdown of each subunit individually might be due to the reduced levels of 

eEF1B. However, overexpression of each subunit did not affect the protein levels of 

the other subunits.   

The presence of multiple forms, the complex expression pattern and 

distribution of each eEF1B subunit in mouse and human tissues, and the 

knockdown and overexpression effect on cells suggests that the eEF1B complex 

might have different quaternary forms throughout development and in different 

cell types, possibly a more intricate role in translation, potential non-canonical 

functions any of which may be implicated in the potential role of eEF1B subunits in 

tumourgenesis. 
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Chapter 1 – Introduction 

1.1 Protein synthesis 
The central dogma first suggested by Francis Crick describes the flow of 

biological information in that DNA can be replicated and transcribed into mRNA, 

which in turn will serve as a template for the synthesis of proteins. The information 

from proteins cannot be transferred back to nucleic acid and proteins have a vital 

function in cells.  These facts make the process by which proteins are synthesised an 

essential mechanism. Protein synthesis, also called translation, is conventionally 

divided into three stages. Firstly, all the components required to start translation are 

assembled and the first amino acid is taken to the ribosome, followed by elongation 

of the peptide chain until the complete peptide is released.  

 

Initiation 

For protein synthesis to take place, the ribosome subunits have to be 

assembled onto the mRNA around the start codon AUG. Ribosomes are comprised 

of two subunits: the large (60S in eukaryotes) and the small subunit (40S in 

eukaryotes) and contain binding sites for the transfer RNA (tRNA). Each tRNA, 

composed of around 75 base pairs, contains an amino acid that will be recruited to 

the ribosome and incorporated into the peptide chain as well as an anti-codon 

triplet, specific to that particular amino acid, which is complementary and has the 

ability to bind to the correspondent mRNA codon (amino-acyl tRNA).  

In the initiation stage the initiator itRNA, which contains the amino acid 

methionine (iMet), is recruited to the peptidyl-site (P-site) of the ribosome and the 

translational machinery binds to the start codon (Ghosh and Ghosh, 1972).  In 

eukaryotes multiple protein factors are involved in this highly regulated process 

with many being essential for translation initiation. eIF2 bound to GTP assists the 
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recruitment and binding of the methionyl tRNA to the 40S ribosomal subunit. On 

the other hand, the eIF4 complex is composed of multiple factors that are essential 

for binding of the mRNA to the ribosomes. eIF4A, which has RNA helicase activity, 

together with eIF4B is thought to unwind the RNA secondary structures. Along 

with the cap-binding protein eIF4E and the interaction of eIF3, the scaffolding 

protein eIF4G directs the ribosomal machinery to the mRNA 5’ terminal cap 

structure. Once positioned on the mRNA the ribosome scans through the mRNA 

and upon recognition of a start codon in a favourable context, usually near a 

‘Kozak’ sequence (Kozak and Shatkin, 1978), eIF5B catalyse the joining of the 

ribosomal subunits and translation starts. 

However in some cases, the ribosomal machinery is assembled near or at the 

start codon, with no need for scanning. These internal ribosome entry sites (IRES) 

were first described in viral RNAs, but are now also known to exist in eukaryotes 

(Sonenberg and Meerovitch, 1990). Cap-dependent protein synthesis in animal cells 

is inhibited by heat shock, serum deprivation, metaphase arrest, and infection with 

certain viruses (Mathews et al., 2007).  

Besides mRNA specific regulation by, for example, IRES or miRNAs, 

translation initiation can also be regulated globally by acting on eIF2, eIF4E and 

eIF4G (reviewed at Gebauer and Hentze, 2004). eIF2 is involved in the met-tRNA 

binding to the ribosome, and can be activated by the guanine nucleotide exchange 

factor (GEF) eIF2B complex and inactivated by the GTPase activating protein (GAP) 

eIF5. Moreover, eIF4E binding to eIF4G can blocked by phosphorylation of eIF4E 

binding proteins (4E-BPs) (Proud, 2002).  

 

Elongation 

Once the met-tRNA is on the P-site of the ribosome, another tRNA with a 

anti-codon complementary to the second codon of the mRNA is recruited to the 
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aminoacyl-site (A-site) of the ribosome. The amino acid on the P-site forms a 

covalent bond with the amino acid on the A-site elongating a peptide chain 

catalysed by peptidyl transferase activity of the ribosomal RNA (rRNA)(Grove and 

Johnson, 1974). The tRNA on the P-site moves to the exit-site (E-site), the ribosome 

moves one codon downstream and the tRNA on the A-site with the peptide chain 

moves onto the P-site. That allows another tRNA to be recruited to the available A-

site and the peptide chain continues to grow during the elongation phase (Figure 

1.1).  

Similar to initiation, several protein factors are also involved in elongation. 

Eukaryotic translation elongation factor 1A (eEF1A) bound to GTP recruits the 

amino-acyl-tRNA to the A-site of the ribosome, elongation factor 1 B complex 

(eEF1B) acts as eEF1A guanine nucleotide exchange factor (GEF), the ribosome acts 

as GTPase activating protein (GAP) (Campuzano and Modolell, 1980) but 

translationally controlled tumour protein (TCTP) can also possibly act as eEF1A 

GAP (Cans et al., 2003), and elongation factor 2 (eEF2) is responsible for the 

translocation. At the elongation phase, tRNA discrimination and selection is 

regulated in order to maintain translational fidelity (reviewed in Zaher and Green, 

2009). 

 

Termination 

The peptide chain elongation continues until a stop codon is reached. When 

a stop codon is reached, instead of a tRNA binding to the ribosome A-site, a 

termination release factor binds to it (eRF1 and eRF3) and facilitates the release of 

the completed polypeptide chain. Missing or misinterpretation of a stop codon can 

lead to translation beyond the end of the coding sequence resulting in non-

functional protein or possibly even one that is toxic to the cell. Regulation of the 

nonsense mediated decay (NMD) by release factors (eRF1 and eRF3) and poly A 

binding protein (PABP), amongst other proteins, is essential for the wellbeing of the 

cell (mammalian NMD reviewed in Silva and Romao, 2009).  
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Figure 1.1 Diagram of translation elongation in mammals. A – eEF1A, B – eEF1B, B – eEF1B, B 
– eEF1B.  

 

1.2 Eukaryotic translation elongation factor 1 A 
Eukaryotic translation elongation factor 1A, formerly known as eEF1 and 

equivalent to the bacterial elongation factor transfer unstable (EF-Tu), is responsible 

for the recruitment of the charged amino acylated tRNAs to the ribosomal A-site 

when activated upon GTP binding. GTP is hydrolysed to GDP, and eEF1A:GDP is 

recycled to eEF1A:GTP by eEF1B forming a translation elongation heavy complex 

(eEF1H). In lower eukaryotes such as Saccharomyces cerevisiae, there are at least two 

genes which encode for two eEF1A identical proteins, TEF1 and TEF2, whereas in 

higher eukaryotes, eEF1A exists as two tissue specific variants, eEF1A1 and eEF1A2.  

During early development eEF1A1 is ubiquitously expressed, however 

during early postnatal developmental a switch occurs in mice and rats where 

eEF1A1 levels in skeletal muscle, cardiac muscle and neurons drop to undetectable 

levels and eEF1A2 expression increases in those tissues thus becoming the major 

form (Chambers et al., 1998, Newbery et al., 2007). eEF1A1 and eEF1A2 are 

mutually exclusively expressed except in certain tumour cells and cell lines where 
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eEF1A2 is overexpressed (Tomlinson et al., 2005, Anand et al., 2002). Mice 

homozygous for the wasted mutation (wst), which lack eEF1A2 amongst other 

genes, develop a motor neuron degeneration disease phenotype which coincides 

with the variant expression switch (Chambers et al., 1998). The wasted spontaneous 

autosomal recessive mutation in mice is characterised by vacuolar degeneration of 

motor neurons, weight loss due to loss of muscle bulk, tremors and spleen and 

thymus atrophy leading to death by about 28 days. The deletion of a 15.8 kilobase 

region which includes the eEF1A2 promoter and first non-coding exon as well as 

several other genes, causes loss of eEF1A2 which is in turn fully responsible for the 

wasted phenotype (Chambers et al., 1998, Newbery et al., 2007). 

Besides its role in translation, eEF1A1 has multiple non-canonical roles in 

cytoskeleton remodelling, apoptosis, stress response and protein degradation, that 

will be discussed briefly later (reviewed in Lamberti et al., 2004).  

 

1.3 Eukaryotic translation elongation factor 1 B 
Eukaryotic translation elongation factor 1B complex is responsible for the 

guanine exchange activity of eEF1A. In lower eukaryotes, the complex is formed by 

two subunits, alpha and gamma, whereas in higher eukaryotes it has an additional 

subunit, delta. Both eEF1B and eEF1B have guanine nucleotide exchange activity 

(GEF) whereas eEF1B has no known role in translation. Throughout the last few 

decades since this complex was first purified, the nomenclature of the subunits has 

constantly changed. Bearing in mind that at some point both eEF1B and eEF1B 

were called beta, and for the sake of keeping this thesis as easy to follow as possible, 

only one universal nomenclature, as was suggested by Le Sourd et al., will be used 

(Le Sourd et al., 2006a). This table shows the various names by which eEF1B 

subunits were known (Table 1.1).   
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Table 1.1 Nomenclature of elongation factor 1 B multimer in human  
Nomenclature 

Committee of the 
International 

Union of 
Biochemistry (NC-

IUB) 
nomenclature 

(1988) 

International 
Union of 

Biochemistry and 
Molecular 

Biology (IUBMB) 
nomenclature 

(1996) 

Merrick's 
nomenclature 

(2001) 

Le Sourd's 
nomenclature 

(2006) 

Locus 
symbol 

Molecular 
Weight (kDa) 

eEF-1β eEF1β eEF1Bα EEF1B 28-30 

eEF-1δ eEF1δ eEF1Bβ eEF1Bδ EEF1D 33-36 

eEF-1γ eEF1Bγ EEF1G 47-50 

 
 

1.3.1 eEF1B 

eEF1B was first sequenced and mapped to human chromosome 2 in 1991 

by two independent groups. The sequences differed in their 5’ untranslated region 

(UTR) but encoded an identical protein (Sanders et al., 1991, von der Kammer et al., 

1991) (Figure 1.2). Three other related sequences were mapped on chromosome 15 

(eEF1B1), 5 (eEF1B3) and X chromosome (eEF1B4). eEF1B3 locus was reported to be 

a brain and muscle specific transcript that arose from a pseudogene while eEF1B1 

was suggested to be a recent retrotransposition event (Chambers et al., 2001). 

eEF1B is equivalent to the bacterial elongation factor transfer stable (EF-

Ts). The catalytic site of eEF1B is on the C terminus, which is responsible for 

binding to eEF1A and for GEF activity. eEF1B binding to eEF1A confers a 

conformational change which favours the GDP to be released so that the less 

abundant GTP can bind specifically to eEF1A (Andersen et al., 2001). eEF1B 

protein purified from rat and rabbit liver highly stimulates the exchange of GDP to 

GTP on eEF1A, tRNA binding to the ribosome and phenylalanine synthesis rate 

(Bec et al., 1994, Sheu and Traugh, 1997).  

eEF1B in yeast Saccharomyces cerevisiae is essential for normal survival 

(Hiraga et al., 1993) and interestingly, over expression of eEF1A in yeast overcomes  



                                                                                                  1. INTRODUCTION 

7 
 

 

 

Figure 1.2 – Diagram of the eEF1B gene structure showing three different 5’ UTR that arose by 
alternative splicing. Black bar at the bottom right indicates 100bp. 

 

the eEF1B knockout lethal phenotype but the rescued yeast still possess growth 

defects  and reduced translation fidelity (Kinzy and Woolford, 1995). The absence of 

the eEF1B GEF activity in the C terminus but not the N terminus is responsible for 

the lethal phenotype and the human eEF1B sequence rescues the yeast eEF1B 

knockout lethal phenotype, indicating a highly conserved function (Carr-Schmid et 

al., 1999b). 

 

1.3.2 eEF1B 

The delta subunit of eEF1B complex was first sequenced, mapped to human 

chromosome 8 and found to have a leucine zipper motif in the predicted amino acid 

sequence 53 to 97 in 1993 by Sanders and colleagues (Sanders et al., 1993).  

The C-terminus of eEF1B is almost identical to eEF1B, and eEF1B from 

rat and rabbit liver also possesses GEF activity as seen for eEF1B but with a much 

shorter half-life. Furthermore, in both rat and rabbit liver a portion of the purified 

eEF1B travels as a high molecular weight aggregate, above 1000kDa. The short 

half-life coincides with the formation of the eEF1B aggregates, indicating that they 

might be inactive (Bec et al., 1994, Sheu and Traugh, 1997). 
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 Although it has an almost identical C-terminus to eEF1B, overexpression 

of human eEF1B, which is not present in yeast, does not rescue the yeast eEF1B 

knockout lethal phenotype (Carr-Schmid et al., 1999b). 

 

1.3.3 eEF1B 

Human eEF1B was first sequenced and mapped to chromosome 11 in 1992 

(Kumabe et al., 1992). It is known to have a conserved glutathione S-transferase 

(GST) domain, enzymes which catalyse a variety of substrates and play a role in 

cellular stress, but its ability to possess GST activity is controversial and will be 

discussed later (Koonin et al., 1994). In yeast S. cerevisiae, two genes encode proteins 

homologues to eEF1B, TEF-3 and TEF-4, which are not essential for growth and 

their knockout does not alter translation rate (Kinzy et al., 1994).  

Although eEF1B as a monomer does not affect the GEF rate, when in 

complex with eEF1Bbut not with eEF1B, it leads to an increased GEF rate by 

probably changing the conformation of the eEF1A:eEF1B:eEF1B complex (Bec et 

al., 1994). Together with the fact that eEF1B has affinity with the cytoskeleton and 

membranes, has lead to the suggestion that it serves as an anchor for the eEF1B 

complex (Bec et al., 1994). Moreover, eEF1B was found to exist as a higher form 

complex, possibly a trimer, in rat liver (Bec et al., 1994). 
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1.4 Eukaryotic translation elongation factor 1 B structure and 

regulation 

1.4.1 Models of eEF1B complex quaternary structure and GEF rates 

Purified eEF1A from rat and rabbit liver alone led to a steady but very low 

eEF1A:GDP exchange rate (Bec et al., 1994, Motorin Yu et al., 1988, Venema et al., 

1991b), phenylalanine synthesis rate (Sheu and Traugh, 1997) and efficient binding 

of tRNAs to ribosome which indicates a remote possibility of another eEF1A GEF 

with lower activity existing, however this is most likely due to the presence of a 

small portion of eEF1B complex in the purified fraction. eEF1B complexed with 

eEF1A gives rise to a greater eEF1A GEF rate and tRNA ribosome binding activity 

compared with other complex forms (Bec et al., 1994, Venema et al., 1991b, Motorin 

et al., 1991).  

Interestingly, no interaction was ever found between eEF1B and eEF1B in 

several species by purification of the complex, co-immunoprecipitation or even 

yeast two-hybrid (Bec et al., 1994, Ong et al., 2006, Mansilla et al., 2002). Yeast 

eEF1A was found to interact moderately with human eEF1B and strongly with 

eEF1B (Carr-Schmid et al., 1999b).  

Amino acid tRNA synthetases catalyse the aminoacylation process which 

involves linking an amino acid to a phosphate of ATP, forming aminoacyl-

adenylate and subsequently linking to the 2’ or 3’ terminal hydroxyl groups of the 

tRNA, forming the aminoacyl-tRNA. This ‘charged’ aminoacyl-tRNA can then be 

delivered to the ribosome by eEF1A. Valyl-tRNA synthetase (VARS) is the only 

tRNA synthetase that, when purified in both rat and rabbit, completely co-purifies 

with the eEF1B complex (Motorin Yu et al., 1988, Bec et al., 1994, Venema et al., 

1991b). The exception is one study which reported the purification of valyl-tRNA 

synthetase as monomers in rat liver (Godar and Yang, 1988). VARS:eEF1B shows a 

complex of 700 and 760kDa in rat liver and Xenopus oocytes respectively, and 

VARS:eEF1H complexes ranging from 700kDa in brine shrimp up to 800kDa in rat 

and rabbit tissues (Venema et al., 1991b, Bec et al., 1994, Motorin et al., 1991, 

Brandsma et al., 1995, Minella et al., 1998). Only a portion of the eEF1B complex is 

predicted to be bound to valyl-tRNA synthetase in Xenopus and rabbit liver (Bec et 
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al., 1989, Minella et al., 1998, Venema et al., 1991b). VARS:eEF1B is predicted to give 

a small but clear GEF rate increase and lead to an increase in tRNA ribosome 

binding compared with eEF1B complex alone (Bec et al., 1994, Motorin et al., 1991, 

Peters et al., 1995). 

In vertebrates, no other tRNA synthetase is known to co-purify with eEF1B, 

and valyl-tRNA synthetase does not co-purify with any other tRNA synthetase (Bec 

et al., 1989). However, in S. cerevisiae, valyl-tRNA synthetase does not bind to the 

eEF1B complex (Brandsma et al., 1995). Valyl-tRNA synthetase N-terminus 

extension with a GST domain, which is specific to vertebrates, was found to bind to 

the eEF1B subunit but not to any other subunit in rabbit liver cells (Bec et al., 1994). 

Interestingly, other tRNA synthetases have been found to interact with eEF1B and 

eEF1B subunits by yeast two-hybrid, including leucyl and histidyl-tRNA 

synthetases (Sang Lee et al., 2002).  Furthermore, in higher eukaryotes, nine 

aminoacyl-tRNA synthetases and three auxiliary proteins (p18, p38 and p43) form 

the multisynthetase complex (Kerjan et al., 1994), a poorly characterised complex 

which has no known function. The auxiliary protein, p18, shares an N-terminal 

domain with eEF1B and eEF1B and it has been suggested it should be renamed 

eukaryotic translation elongation factor 1 epsilon (eEF1B) (Quevillon and Mirande, 

1996). However, there is no confirmation of interaction between p18 and any of the 

eEF1B subunits. Interestingly, as well as p18 most tRNA synthetases and the 

auxiliary protein p36 share a domain with eEF1B and eEF1B. Furthermore, eEF1A 

has the ability to bind deacylated tRNAs that belong to the multisynthetase 

complex and stimulate aminoacylation in rabbit (Petrushenko et al., 1997). eEF1A 

can also stimulate VARS aminoacylation, most likely through the interaction of 

eEF1B with VARS since eEF1A does not interact physically with VARS (Negrutskii 

et al., 1999). 

Several quaternary models have been proposed throughout the last few 

years which, besides differing in the actual number of subunits that compose the 

complex, also differ in the interaction sites (N- or C-terminus) between the different 

subunits (Bec et al., 1994, Janssen et al., 1994, Sheu and Traugh, 1999, Mansilla et al., 

2002). A summary diagram of all the eEF1B, eEF1H and eEF1H:VARS structure 

models is given in figure 1.3. 
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Figure 1.3 eEF1B complex quaternary structure models: (a) Bec et. al. 1994, (b) Janssen et. al. 1994, 
(c) Minella et. al. 1998, (d) Sheu and Traugh 1999, (e) Mansila et. al. 2002, and (f) Jiang et. al. 2005. A 
– eEF1A; B – eEF1B; B – eEF1B; B – eEF1B; VARS – Valyl tRNA synthetase  
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1.4.2 Regulation of eEF1B subunits 

There are multiple reports on the ability of eEF1B subunits to be 

phosphorylated by certain stimuli. Phorbol 12-myristate 13-acetate (PMA) which 

mimics induced growth hormone release factor by activating protein kinase C 

(PKC) (Chuang et al., 1998)was found to phosphorylate eEF1A, eEF1B, eEF1B and 

VARS, and to lead to a increase in phenylalanine synthesis in rabbit reticulocytes 

(Venema et al., 1991b). The same phosphorylation sites were phosphorylated in vitro 

by PKC, but only phosphorylation of eEF1B and eEF1B led to increased 

elongation rates and tRNA binding to the ribosome upon growth hormone 

stimulation (Venema et al., 1991a, Peters et al., 1995). More recently, eEF1B was 

found to interact with the dopamine D3 receptor (D3R) and form clusters on the 

plasma membrane, but not with D2R or D4R (Cho et al., 2003). eEF1B was 

phosphorylated in response to stimulation by D3R and depletion of PKC abolished 

eEF1B phosphorylation. Furthermore, activation of PKC resulted in D3R and 

eEF1B phosphorylation but activation of D3R did not activate PKC. This indicates 

that eEF1B is phosphorylated by D3R activation by eEF1B interaction in a PKC 

level dependent manner (Cho et al., 2003). 

eEF1A, eEF1B and eEF1B are phosphorylated by multipotential S6K as a 

result of insulin stimulation (Chang and Traugh, 1997). In the presence of little or no 

eEF1A, phosphorylation of purified eEF1B and eEF1B by S6K leads to an increase 

in phenyalanine synthesis and tRNA binding to the ribosomes by more than 2 fold 

compared with serum-deprived mouse 3T3 cells (Chang and Traugh, 1997). All 

phosphorylation sites on both eEF1B and eEF1B are the same for insulin- and 

S6K-induced phosphorylation (Chang and Traugh, 1998). Phosphorylation of 

eEF1B and eEF1B were stimulated by PMA to a similar extent as that found with 

insulin, and the phosphorylation sites were found to be identical. eEF1B, eEF1B 

and eEF1A1 were identified, by microarray study and confirmed by real time PCR, 

as being regulated in a serum and rapamycin-dependent way by tuberous sclerosis 



                                                                                                  1. INTRODUCTION 

13 
 

1 and 2, TSC1 and TSC2 (Bilanges et al., 2007). Moreover, all human eEF1B genes 

have 5’ terminal oligopyrimidine track (5’ TOP) upstream, a stretch of pyrimidine 

residues that act as cis-acting modulators of translation efficiency and were thought 

to be regulated by S6K1. However TSC1/2 and mTOR affect translation via 

phosphorylation of S6K1 independently from the 5’ TOP status (Iadevaia et al., 

2008).  

Both eEF1B and eEF1B in Xenopus oocytes are major maturation 

promoting factor (or cell division cycle p38 cdc2) substrates (Mulner-Lorillon et al., 

1994, Asselin et al., 1984). eEF1B was found to be phosphorylated by p38 cdc2 in 

mature oocytes but not in prophase-arrested oocytes (Mulner-Lorillon et al., 1992). 

This phosphorylation resulted in decreased rate of incorporation (synthesis) of 

valine and increased synthesis of serine and phenylalanine (Monnier et al., 2001a) 

but did not alter the guanine exchange rate (Mulner-Lorillon et al., 1992, Mulner-

Lorillon et al., 1989). Monnier suggested that p38 cdc2 inactivated eEF1B:VARS 

leaving more freely available eEF1B for protein synthesis (Monnier et al., 2001a). 

Activation of p38 cdc2 is involved in the progression into mitosis and exit of mitosis 

involves its inactivation (discussed later) (Doree, 1990).  

Brine shrimp eEF1B along with Xenopus and rabbit eEF1B and eEF1B are 

phosphorylated by casein kinase II (CKII) (Chen and Traugh, 1995, Palen et al., 

1994, Janssen et al., 1988, Belle et al., 1989). CKII phosphorylation of eEF1B was 

only seen in the presence of GDP whereas eEF1B phosphorylation was stimulated 

by GDP, lysine and arginine (Palen et al., 1994). No change was observed in the 

phenyalanine synthesis rate upon CKII phosphorylation of rabbit recombinant 

eEF1B or eEF1B proteins (Chen and Traugh, 1995). However, in the brine shrimp 

phosphorylation by CKII of eEF1B leads to an increase in eEF1A:GDP of about 

50% (Janssen et al., 1988). Furthermore, CKII is phosphorylated and activated by 

p34 cdc2 in a cell cycle dependent manner upon stimulation by growth factors 

(Homma and Homma, 2005). CKII knockout in yeast and mouse is lethal (Buchou et 
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al., 2003) and besides its involvement in the cell cycle, CKII also phosphorylates a 

wide range of targets upon stress and DNA damage (Ahmed et al., 2002, Keller et 

al., 2001). 

eEF1B is known to be phosphorylated by herpes simplex virus (HSV-1) UL-

13 kinase (Kawaguchi et al., 1998), cytomegalovirus (CMV) UL-97 kinase 

(Kawaguchi et al., 1999) and Epstein-Barr virus (EBV) BGLF4 kinase (Kato et al., 

2001) upon viral infection. The eEF1B phosphorylation site was identified as being 

the same site that is phosphorylated by cdc2, suggesting that viral kinases might 

mimic cdc2 in infected cells (Kawaguchi et al., 2003). eEF1B is also known to 

interact with a transactivator of HSV-1, infected cell protein 0 (ICP0). Co-

immunoprecipitation of ICP0 and eEF1B results in a decrease in the rate of 

incorporation of methionine compared to precipitation of eEF1B alone (Kawaguchi 

et al., 1997). It is also known that eEF1B interaction with HIV-1 Tat mRNA highly 

reduces methionine incorporation rate but not that of viral protein synthesis (Xiao et 

al., 1998). Regulation of eEF1B subunits might play an important role in mitotic 

translation and translation during viral infection. 

In addition to all of the regulation of eEF1B by phosphorylation described 

above, eEF1B was also found to be phosphorylated following addition of the 

chemotherapy drug Paclitaxel (taxol) which stabilizes microtubules and causes 

G2/M arrest-induced apoptosis via c-Jun N-terminal kinase (JNK) activation and B-

cell lymphoma protein 2 (Bcl-2) phosphorylation (Prado et al., 2007). Yeast eEF1B 

dephosphorylation by Ppz1 phosphatase enhances translation fidelity in vitro 

(Aksenova et al., 2007). In addition, all eEF1B subunits were found to be up-

regulated by Myc overexpression in human and chicken tumour cells (Boon et al., 

2001, Neiman et al., 2001). However, in non-transformed rat and mouse cells, no 

change was observed in eEF1B subunits when comparing Myc overexpressing cells 

to Myc null cells (Watson et al., 2002) suggesting that up-regulation might be a due 

to the transformed cancer cell rather than a direct effect of myc overexpression. The 

eEF1B subunits link to tumourigenesis will be further discussed. Figure 1.4 shows a 

summary diagram of all phosphorylation sites in eEF1B subunits. 
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Figure 1.3 Phosphorylation sites of eEF1B subunits and their i nfluence in the translation elongation 
rate by measuring a particular amino acid synthesis and guanine exchange rate indicated by  arrows 
or equal signs where no change was detected. 
     viral;    PKC;      p38 cdc2;     CKII;      S6K;     others. B – eEF1B; B – eEF1B; B – eEF1B ; S – 
Serine; T - Threonine  
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1.5 eEF1B and cancer 
A common mechanism of cancer involves aberrant transcription and 

translation leading to up and down regulation of proteins. Failure to reduce protein 

synthesis can lead to an increased rate of translational errors, increased synthesis of 

oncogenic proteins and consequent transformation of cells (Mathews et al., 2007). 

The initiation factors known to be highly regulated and alter translation rate have 

been extensively studied for their involvement in transformation and 

tumourigenesis (reviewed in Clemens, 2004).  

The elongation rate is known to be regulated by serum or insulin 

stimulation (eEF1B, eEF1B and eEF2)(Proud and Denton, 1997), heat shock 

(eEF1A1) (Theodorakis et al., 1988), and might even be cell-cycle dependent (eEF1B 

and eEF1B)(Cormier et al., 2003). Plus, an increase in translation elongation rate of 

the protein synthesis has been previous linked to increased protein translation 

errors (Carr-Schmid et al., 1999a). On the one hand, the oncogene prostate tumour 

inducing protein-1 (PTI-1), a eEF1A1 truncated form which has 5’UTR homologous 

to 23S rRNA (Shen et al., 1995), has been reported to reduce translational fidelity 

leading to tumourigenesis (Gopalkrishnan et al., 1999). eEF1A1 has also been 

suggested to be a regulator of apoptosis and susceptible to chemical and radiation-

induced transformation (reviewed in Lamberti et al., 2004). On the other hand, 

eEF1A2 is overexpressed in ovarian, breast and pancreatic tumours (Anand et al., 

2002, Tomlinson et al., 2007, Tomlinson et al., 2005, Cao et al., 2009). 

 

1.5.1 eEF1B 

eEF1B mRNA has been found to be overexpressed more than 20 fold in a 

number of transformed cells compared with non-transformed cells (Sanders et al., 

1992) and 2 to 3 fold in breast cancer cell lines compared with non-transformed cell 

lines (Al-Maghrebi et al., 2005), but protein levels were not looked into. So far, only 
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one study mentions eEF1B protein overexpression in relation to highly metastatic 

prostate cancer cells (PC3M-LN4) compared with low metastatic cells (PC3M) 

(Everley et al., 2004). 

 

1.5.2 eEF1B 

eEF1B has been reported to be overexpressed in a large range of tumour 

and cancer cells compared with non-cancerous cells. It showed a 2 fold increase in 

human primary ductal carcinoma cells, breast carcinoma cells (T-47), and breast 

adenocarcinoma cells (MCF-7 and MDA-MB-361) compared with non-transformed 

cell lines (Joseph et al., 2004). eEF1B was also shown by Northern blot to be 

overexpressed in all the mammary and ovarian cancer cell lines tested compared 

with non-transformed cells (Jacob et al., 1996). As well as eEF1B, eEF1B protein 

was also found to be overexpressed in highly metastatic prostate cancer cells 

(PC3M-LN4) compared with low metastatic cells (PC3M) (Everley et al., 2004). The 

relationship between eEF1B and overexpression of several oncogenes was studied 

further. eEF1B mRNA expression levels did not change with overexpression of 

oncogenes c-erbB, tumour growth factor , viral-src, viral-myc nor viral-FBJ murine 

osteosarcoma (v-Fos) (Kolettas et al., 1998). However, the expression levels were 

reduced by 3 to 5 fold by overexpression of viral-ras in human keratinocytes but not 

in human diploid fibroblasts, with no obvious reason for this effect and specificity 

(Kolettas et al., 1998). 

eEF1B mRNA was found to be overexpressed in 73% of 52 patients with 

both benign and malignant oesophageal tumours (Ogawa et al., 2004). The eEF1B 

overexpression was found to a greater extent in cancerous tissues compared with 

non-cancerous. Furthermore, eEF1B overexpression significantly correlated with 

the presence of lymph node metastases, advanced stage cancer and poor prognosis 

(Ogawa et al., 2004). eEF1B was identified as being overexpressed in all 10 gastric 
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carcinoma tissues compared with adjacent normal tissues (Zeng et al., 2007). Zeng 

and colleagues suggested that eEF1B expression could be used as a biomarker for 

gastric cancer (Zeng et al., 2007). 

In hepatocellular carcinoma, eEF1B has been reported to be overexpressed 

more than 2 fold and by almost 5 fold in hepatitis B virus associated hepatocellular 

carcinoma compared to adjacent normal liver tissues (Shuda et al., 2000, Blanc et al., 

2005). It has also been identified as a colon tumour antigen recognised by the 

humoral immune system (Scanlan et al., 1998) and found to be up-regulated in 

protein expression profiles of colon tumours compared with adjacent tissues 

(Roblick et al., 2004). 

In a study which investigated chromosomal copy number aberrations in 

medulloblastoma, a gain of the 8p chromosomal region was associated with worse 

overall survival rate in 71 tumour samples. Overexpression of myc, encoded by a 

gene in the same amplified region, could not be entirely responsible for the worse 

survival rate. However, amplification and mRNA overexpression of eEF1B and 

two ribosomal proteins were found to be statistically significantly associated with 

the worst survival rate (De Bortoli et al., 2006). De Bortoli and colleagues also found 

that eEF1B mRNA up-regulation was associated with worst survival in most 

medulloblastomas even when chromosome 8p was not amplified, but the protein 

level was not investigated. However, in a different study, eEF1B protein was also 

found to be up-regulated in medulloblastomas compared with adjacent normal 

tissues (Peyrl et al., 2003). In six lung adenoma cell lines, eEF1B was also found to 

have increased genomic copy number and to be up-regulated at the mRNA level 

but not at the protein level compared with normal bronchial epithelial cell lines (Li 

et al., 2006). However, in non-small cell lung cancer, eEF1B protein is up-regulated 

up to 4 fold compared to normal bronchial epithelial cells (Liu et al., 2004). 

Moreover, eEF1B protein overexpression is correlated with high metastatic status 

compared with less invasive squamous lung cancer cell lines (Keenan et al., 2009). 
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eEF1B is known to interact with the FBJ osteosarcoma oncogene (Fos) in 

mice (Miyamoto-Sato et al., 2005), to interact with human translationally controlled 

tumour protein (TCTP, (Langdon et al., 2004), and has been implicated in chemical, 

radiation-induced transformation and drug resistance (discussed bellow). A 2D-

electrophoresis model was used to identify proteins associated with the 

development of chemo resistance in malignant melanoma, where eEF1B was found 

to be overexpressed in comparison with non-resistant melanoma (Sinha et al., 2000). 

Furthermore, the eEF1B protein level but not the mRNA level as well as that of 

eEF1A and eEF1B decreased by more than 50% upon treatment with all-trans-

retinoic acid (ATRA) which induces growth inhibition, differentiation and apoptosis 

in cancer cells and is often used to treat acute promyelocytic leukaemia (APL) 

(Harris et al., 2004).  

Joseph et al. suggested that cell transformation and tumourigenesis induced 

by cadmium is in part due to eEF1Bδ overexpression since eEF1Bδ is up regulated 

in BALB/c NIH-3T3 cells transformed with cadmium and the oncogenic potential 

was reversed by transfection with eEF1B antisense oligonucleotides (Joseph et al., 

2002). Subsequently, Joseph et al showed that overexpression of the delta subunit of 

eEF1B by transfection was oncogenic in NIH3T3 cells as evidenced by the 

appearance of transformed foci exhibiting anchorage-independent growth and the 

potential for the cells to grow as tumours in nude mice. In 2002, another 

independent study over-expressed eEF1B in non-transformed NIH3T3 cells, which 

resulted in the transformation of cells and this effect was able to be reversed by 

transfecting cells with eEF1B antisense oligonucleotides (Lei et al., 2002). Although 

no study focused on changes in protein synthesis and hence it is unknown if the 

protein synthesis was elevated in those cancer samples, both of these studies 

suggest that eEF1B has oncogenic potential by itself. 
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1.5.3 eEF1B 

eEF1B mRNA was found to be up-regulated 2 to 3 fold in breast cancer cell 

lines compared with non transformed cell lines (Al-Maghrebi et al., 2005, Joseph et 

al., 2004), but the protein levels were not examined. eEF1B, as well as eEF1B and 

eEF1B, showed overexpression at the protein level in highly metastatic prostate 

cancer cells (PC3M-LN4) compared with low metastatic cells (PC3M) (Everley et al., 

2004). 

In lung adenoma cell lines, eEF1B was found to have increased genomic 

copy number, and overexpressed at the mRNA and protein level compared with 

normal bronchial epithelial cell lines (Li et al., 2006). Only four genes were found to 

have increased genomic copy number and overexpressed at both mRNA and 

protein levels, which included eEF1A2, and were further studied. However, eEF1B 

was not further examined although their data suggested that it fulfiled the criteria. 

It is likely that eEF1B was misidentified since although eEF1B was the only gene 

that showed increased copy number and overexpression at mRNA level according 

to supplementary data, it was not included in the main findings table (Li et al., 

2006). 

Furthermore, eEF1B mRNA was found to be overexpressed in 22 of 30 

(73%) gastric carcinomas compared with adjacent normal mucosa. No correlation 

was found between overexpression and grading of the tumour or invasiveness but 

there is a trend towards correlation with vascular permeation (Mimori et al., 1995). 

However, it was also found to be overexpressed 2-fold in 5 of 36 (14%) oesophageal 

carcinoma compared with adjacent tissue and the overexpression was highly 

correlated with the presence of several lymph node metastases and grade of the 

tumour (Mimori et al., 1996). In hepatocellular carcinoma, on the other hand, 

eEF1B has been reported to be overexpressed 1.5 to 2 fold in carcinoma compared 

to adjacent normal liver tissues (Shuda et al., 2000).  
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eEF1B has been reported to be overexpressed 2 fold or more in 86% of 29 

colorectal carcinomas compared with adjacent normal tissues (Chi et al., 1992) and 

in 56% of colorectal carcinomas compared with corresponding normal-appearing 

distant tissue from patients without familial adenomatous polyposis (Ender et al., 

1993).  Moreover, eEF1B was observed to be overexpressed in colorectal carcinoma 

Dukes Stage B, C and D tumours in 17 of 27 patients (63%) when compared with 

adjacent normal tissues. No overexpression was detected in the two patients with 

Dukes Stage A (Mathur et al., 1998). At the mRNA level, eEF1B was found to be 

overexpressed in 7 out of 9 pancreatic adenocarcinoma tissues compared with 

normal adjacent pancreatic tissues (Lew et al., 1992).  The mechanisms by which 

eEF1B is overexpressed have been studied by Frazier and colleagues. They found 

no gene amplification or rearrangement in colorectal carcinomas and pancreatic 

adenocarcinomas, so the overexpression mechanism remains unknown (Frazier et 

al., 1998). A mutation was identified, L158 -> S, but only in one colorectal tumour. 

This mutation was not identified in any of the other tumours and hence was 

considered to have a low frequency which does not match the frequency of 

overexpression (Frazier et al., 1998). 

eEF1B as described earlier, gets phosphorylated uppon the addition of 

chemotherapy drug Paclitaxel (taxol) (Prado et al., 2007) as well as showing greater 

than 50% reduction in the protein level but not mRNA level upon treatment with 

the chemotherapy drug all-trans-retinoic acid (ATRA) (Harris et al., 2004). 

 

The oncogenic status and cancer progression stage seem to be correlated 
with increased levels of eEF1B subunits, in particular eEF1B and eEF1B, which 
may be due to their role in translation or their potential oncogenicity. Summary 
table of the different tumours and cancer cells in which overexpression of eEF1B 
subunits have been associated to on table 1.2. 
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1.6 eEF1B and other functions 

1.6.1 eEF1B and DNA repair/cellular stress 

All eEF1B subunits have been reported to be regulated upon treatment with 

radiation, have DNA and RNA binding properties and change expression during 

DNA damage or stress under specific conditions, suggesting a possible involvement 

in oxidative stress mechanisms (Malone and Ullrich, 2007, Olarewaju et al., 2004, 

Shenton and Grant, 2003, Matsuoka et al., 2007). eEF1B subunits display DNA 

binding activity to damaged DNA on treatment with chromium- and the 

chemotherapy drug transplatin but not in response to the chemotherapy drug 

cysplatin, suggesting that the eEF1B complex can bind specifically to different DNA 

damage conformations in ovarian carcinoma cells (Wang et al., 1997). eEF1B has 

the ability to bind to the HIV-1 Tat mRNA although the biological significance of 

this interaction is unknown (Xiao et al., 1998). Furthermore, the T-cell-restricted 

intracellular antigen-1 like RNA-binding protein TIAR, which is thought to inhibit 

protein synthesis by promoting formation of stress granules(Mazan-Mamczarz et 

al., 2006), selectively binds to the 3’UTR of eEF1B but not eEF1B or eEF1B in 

human cells, suppressing the translation of eEF1B in response to low levels of 

short-wavelength UV (UVC) irradiation (Mazan-Mamczarz et al., 2006). Moreover, 

eEF1B was found to be down regulated after exposure of human mammary 

epithelial cells to ionizing gamma radiation that induces double strand DNA breaks 

or base oxidations (Malone and Ullrich, 2007).  

In slime mold, hyperosmotic stress induces cell volume reduction and 

induces ubiquitination of cellular proteins and leads to differences in membrane 

and cytoskeletal fractions but not in protein levels (Zischka et al., 1999). Both eEF1A 

and eEF1B are up-regulated upon hyperosmotic stress in the cytoskeletal fraction 

compared with the membrane fraction (Zischka et al., 1999). They suggested that 

association of eEF1A and eEF1B with the cytoskeletal fraction reduces translation 

since this becomes rate-limiting based on reduced rate of incorporation of 
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methionine when eEF1A is associated with actin (Edmonds et al., 1998, Liu et al., 

1996) although they did not test this hypothesis. In yeast cells, eEF1B was found to 

be regulated in response to cadmium in yeast cells where both thiol redox systems, 

glutathione and thioredoxin are involved (Vido et al., 2001). eEF1B knockout in 

yeast cells which overexpress eEF1A show a even greater resistance to CdSO4 and 

H2O2 but not overexpression of eEF1A alone (Olarewaju et al., 2004). eEF1B was 

further identified to be down-regulated immediately after exposure to H2O2 in S. 

cerevisiae cells (Godon et al., 1998). Moreover, S-thiolation also leads to a down-

regulation of the eEF1B protein in response to oxidative stress (Shenton and Grant, 

2003). A similar down-regulation at both mRNA and protein levels is seen 

following heat shock in rice (Lin et al., 2005).  

Compared with eEF1B, eEF1B showed an opposite response to ionizing 

radiation, reaching the highest peak of expression 8h after radiation  (Jung et al., 

1994a) just before G2 arrest (Jung et al., 1994b). As previously described, eEF1B is 

overexpressed in cadmium-induced transformation (Joseph et al., 2002). In addition, 

mouse eEF1B is phosphorylated in response to DNA damage on consensus sites 

recognized by ATM and ATR (Matsuoka et al., 2007), which may indicate a possible 

DNA damage response mechanism. 

In yeast, loss of eEF1B (TEF3) or eEF1B homologue (TEF4) gives a greater 

stress resistance to cadmium and H2O2 (Olarewaju et al., 2004). TEF4 also regulates 

methionine sulfoxide reductase A (MsrA) by binding to its promoter and enhancing 

the MsrA activity which protects cells against oxidative stress (Hanbauer 2003). In 

slime mold, overexpression of eEF1B causes resistance to the antidepressant drug 

clomipramine, suggesting involvement in the detoxification in vivo of toxins 

(Billaut-Mulot et al., 1997). Since eEF1B has a GST like domain, several studies 

have focused on determining if it actually has the ability to catalyse reactions 

important for detoxification. GST activity was detected in the purified eEF1B 

complex and in the monomeric eEF1B recombinant protein in rice but to a much 
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lower extent (50 fold less) than GST (Kobayashi et al., 2001). In addition, silk worm 

eEF1B was found to be able to bind to glutathione (Kamiie et al., 2002) and in 

Trypanosome cruzi, overexpression of eEF1B causes increased resistance to 

clomopramine, a lipophilic compound that is detoxificated by GSTs (Billaut-Mulot 

et al., 1997). Furthermore, eEF1A, eEF1B and eEF1B from trypanosome were 

found to be part of the trypanothione S-transferase complex, have GST activity only 

as a complex not as monomers and were bound directly to the GST complex by 

eEF1B (Vickers and Fairlamb, 2004, Vickers et al., 2004). However, Jeppesen et al. 

solved the N-terminus GST-like domain structure of yeast eEF1B, also assayed for 

GST activity but no GST activity was detected in vitro (Jeppesen et al., 2003). No 

studies have reported to investigate GST activity in eEF1B in higher eukaryotes. 

Besides eEF1B subunits, eEF1A has also been shown to be involved in 

cellular stress response. eEF1A together with heat shock RNA-1 (HSR-1) is essential 

for heat shock transcription factor 1 (HSF1) activation and consequence induction of 

heat shock proteins during heat shock (Shamovsky et al., 2006). eEF1A2 interaction 

with Prdx1 increases resistance against oxidative stress by hydrogen peroxidase 

treatment (Chang and Wang, 2007). eEF1A1 knockdown increased resistance to 

hydrogen peroxidase treatment (Borradaile et al., 2006).  
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1.6.2 eEF1B and the cell cycle 

As described above, eEF1B up-regulation coincides with G2/M cell arrest 

under exposure to ionising radiation, suggesting that eEF1B might be involved in 

cell cycle dependent response to DNA damage (Jung et al., 1994a). Furthermore, in 

sea urchin early embryonic cell cycles the eEF1B protein level does not change, 

although a fraction of eEF1B changes location (Boulben et al., 2003). At the S-phase 

and just before nuclear membrane breakdown, a pool of eEF1B was shown as a 

ring around the nucleus and during mitosis as two large spheres around the spindle 

pole which could influence the availability of eEF1B for translation.  

Proteolysis plays an important role in the regulation of meiotic and mitotic 

cell cycles during early oocyte maturation (G2/M transition) and metaphase. The 

26S proteasome is involved in the ubiquitin dependent proteolytic process. eEF1B 

was present in a fraction of the 26S proteasome purified upon Xenopus oocytes 

maturation. In addition all eEF1B subunits co-immunoprecipitated with the 

matured Xenopus oocytes 26S proteasome, and eEF1B and eEF1B with the 20S 

proteasome (Tokumoto et al., 2003). Furthermore, eEF1B gets phosphorylated by 

cdc2 only when it is associated with 26S proteasome in a cell-cycle dependent 

manner (Tokumoto et al., 2003). 

As mentioned earlier, eEF1B subunits are regulated by kinases which are 

involved or directly regulated in the cell cycle. Phosphorylation of eEF1B and 

eEF1B by p38cdc2 and of eEF1B and eEF1B by CKII coincide with highly 

reduced cap-dependent protein synthesis during mitosis (Monnier et al., 2001b) and 

increased translation of cap-independent IRES-containing mRNAs (Qin and 

Sarnow, 2004), 5’TOP genes (Hamilton et al., 2006) and with viral infection 

(Kawaguchi et al., 2003).  
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1.6.3 eEF1B and the cytoskeleton 

Minella and colleagues studied the sub-cellular localisation of eEF1B 

subunits in human cell lines and determined that eEF1B subunits only co-localised 

to the endoplasmic reticulum (Minella et al., 1996a). However several studies have 

found eEF1B subunits to interact with and even suggested a possible role for eEF1B 

in cytoskeleton remodelling. 

eEF1B has been identified as a major physical interactor with 

unpolymerised actin (Furukawa et al., 2001). It was shown that in slime mold 

eEF1B expression is diffused through the cytosol with a fraction concentrated in 

the cortical cytoskeleton. Monomeric eEF1B stimulates actin assembly but not in a 

concentration dependent manner, whereas the wheat eEF1B:eEF1B complex 

stimulates actin assembly in a concentration dependent manner. Hence, eEF1B 

may promote the nucleation phase of the actin assembly reaction. However, in yeast 

S. cerevisiae, only cells overexpressing eEF1A, and not eEF1B, show altered actin 

localisation, larger and rounder cells and increased number of unbedded cells 

(Munshi et al., 2001), which might indicate that eEF1B may not, at least as a 

monomer, affect the assembly of actin in yeast. Interestingly, eEF1A is involved in 

actin remodelling in yeast (Gross and Kinzy, 2005, Munshi et al., 2001). In human 

cell lines, it has been suggested that eEF1A2 is involved in Akt and PI3K-dependent 

cytoskeleton remodelling during tumourigenesis (Amiri et al., 2007). 

When purifying tubulin, eEF1B and eEF1B are often associated with 

tubulin in brine shrimp (Janssen and Moller, 1988). eEF1B co-precipitates with 

tubulin, as does eEF1B to a lesser extent (Janssen and Moller, 1988). They 

suggested that the binding of tubulin to eEF1B is competitive with eEF1B binding 

and hence the interaction region must be the same or overlapping. Furthermore, 

they estimated that 5% of the eEF1B:eEF1B complex was found to be present in 

the membrane fraction where no eEF1A was present. The authors suggested that 
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eEF1B may help to anchor eEF1B to the membrane and microtubules in brine 

shrimp.  

During the cell cycle in sea urchins, eEF1B does not co-localise with 

microtubules at interphase, however at metaphase, anaphase and telophase eEF1B 

is expressed around the astral microtubules but not the spindle microtubules 

(Boulben et al., 2003). In addition, upon treatment with taxol (paclitaxel), which 

stabilizes microtubules against depolymerisation, and nocodazol, which 

depolymerise microtubules, the expression pattern of eEF1B was completely 

disrupted. This indicates that eEF1B localisation in the cell is dependent on 

microtubule dynamic structures. As described earlier, treatment with taxol 

phosphorylates human eEF1B but the expression level and pattern was not 

investigated (Prado et al., 2007). Kinectin, a microtubule-dependent membrane 

anchor for several targets including kinesin, has been found to bind eEF1B and 

anchor eEF1B complex to the endoplasmatic reticulum (ER) in vivo and in vitro (Ong 

et al., 2003). Overexpression of kinectin and treatment with nocodazol once again 

disrupted the eEF1B expression pattern in human cells but not the ER structure 

(Ong et al., 2003). eEF1B and eEF1B did not interact with kinectin by yeast-2-

hybrid or co-immunoprecipitation with endogenous and exogenous protein (Ong et 

al., 2006). However, knockdown of the kinectin isoform that interacts with eEF1B 

reduced all eEF1B subunits protein levels by around 40% and the ER-like staining of 

the subunits was reduced near the cell periphery while microtubules and ER were 

not disrupted (Ong et al., 2006). Cells lacking this particular kinectin isoform also 

showed increased cytosolic protein synthesis and reduced membrane protein 

synthesis (Ong et al., 2006). These results demonstrate a direct link between 

cytoskeleton dynamics and protein synthesis, at least in part due to eEF1B complex 

disruption via eEF1B. 

eEF1B and eEF1B were also found to co-immunoprecipitate and co-

localise with endogenous cytoskeleton keratin intermediate filaments in 
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keratinocytes from newborn mice (Kim et al., 2007). The N-terminus (185-223) of 

eEF1B interacts with K6-K17 in human epithelial cells. Transient knockdown of 

eEF1B reduced protein synthesis rate, monitored by the incorporation of labelled 

methionine and cysteine, and increased 80S ribosomal peak, indicating an increase 

in freely available ribosomes and a defect in translation initiation (Kim et al., 2007). 

This phenotype is similar to the knockout of actin-regulating proteins in yeast 

including eEF1A mutants (Gross and Kinzy, 2007). A similar effect was observed 

when the interaction of eEF1B and keratin was disrupted (Kim et al., 2007). It was 

suggested by the authors that binding of eEF1B via eEF1B and eEF1A to the 

cytoskeleton while eEF1A is still in excess, it decreases eEF1B availability of for the 

cytosolic protein synthesis and becoming rate limiting and causing translation 

initiation block (Kim et al., 2007).  

 In summary, kinectin binding seems to be specific to eEF1B and the 

disruption in the other subunits indicates that kinectin anchors the eEF1B complex 

via eEF1B to the ER, whereas the eEF1B complex is anchored to keratin by eEF1B, 

although eEF1B was not investigated. These two particular studies provide 

evidence of specific binding of eEF1B subunits to particular cytoskeleton filaments 

and also evidence for the involvement of not just eEF1B but also eEF1B in 

stabilising the complex structure. In several studies interaction between eEF1A and 

eEF1B subunits with cytoskeletal proteins seems to decrease cytosolic protein 

synthesis, implying a much greater role of the cytoskeleton regulation in protein 

synthesis. Furthermore, during hyperosmotic stress which induces cytoskeleton 

reorganisation in slime mold, both eEF1A and eEF1B were found to be 

overexpressed in the cytoskeletal fraction compared with the membrane fraction 

(Zischka et al., 1999). Based on previous studies of eEF1A and its interaction with 

the cytoskeleton, the authors also suggest that upon hyperosmotic stress, eEF1A 

and eEF1B bind to the cytoskeleton and become rate-limiting. This might provide 

a link between cellular stress, cytoskeleton regulation and protein synthesis. 
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1.6.4 eEF1B and translation fidelity 

Yeast S. cerevisiae eEF1B knockout is lethal, but the lethal phenotype can be 

overcome by overexpression of eEF1A, resulting in slow growth and reduced 

translational fidelity (Hiraga et al., 1993, Kinzy and Woolford, 1995). Mutations in 

the eEF1B GEF domain lead to a decreased translation rate and increased 

translation non-sense suppression in all three nonsense codons (Carr-Schmid et al., 

1999b). Further investigation identified mutations that affected translation rate but 

not necessarily fidelity (Andersen et al., 2000). Overexpression of eEF1B 

overcomes the protein phosphatase Ppz1 overexpression slow growth phenotype 

by interacting with Ppz1 (de Nadal et al., 2001). Furthermore, Ppz1 phosphatase, as 

described earlier, dephosphorylates eEF1B at S86, corresponding to human 

residue S106, and increases translation fidelity in vitro (Aksenova et al., 2007). 

Individually, in yeast, overexpression of eEF1A and eEF1B does not affect 

fidelity, however when co-expressed they increase fidelity (Munshi et al., 2001). 

Overexpression of eEF1B does not alter GEF rate (Carr-Schmid et al., 1999b) but 

causes loss of non-sense suppression hence reduced fidelity (Benko et al., 2000). 

Regulation of several translation factors, including eEF1A, also cause 

changes in translation fidelity (Munshi et al., 2001, Carr-Schmid et al., 1999a, 

Sandbaken and Culbertson, 1988, Liebman et al., 1995). 
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1.7 RNAi 
Just over ten years ago, Andrew Fire and Craig Mello showed how gene 

expression could be regulated in the worm Caenorhabditis elegans by double 

stranded RNA molecules that had the ability to silence the gene in a sequence 

specific way (Fire et al., 1998). This RNA interference (RNAi) was later found to be 

conserved amongst eukaryotes, and is thought to have evolved as a protection 

mechanism against viral infections. The RNAi machinery is now used as a valuable 

tool in molecular biology and medicine in silencing gene expression. 

RNAi can be triggered by long double stranded RNA, plasmid-based short 

hairpin RNAs (shRNAs) and microRNAs (miRNAs). The endonuclease Dicer 

cleaves RNA molecules into small interfering RNAs (siRNAs) of around 21 

nucleotides (Bernstein et al., 2001). The RNA-induced silencing complex (RISC) 

unwinds the duplex siRNAs into single-stranded molecules. This in turn guides 

RISC to the complementary RNA sequence where RISC cleaves the target RNA at a 

specific site leading to RNA degradation (Boutla et al., 2001).  

Tuschl and colleagues chemically synthesised 21 nucleotide siRNAs that 

were able to trigger RNAi (Tuschl et al., 1999). Antisense oligonucleotides had been 

used before to silence genes in the same manner as siRNAs. Antisense 

oligonucleotides are single stranded DNA molecules, which induce cleavage by 

activation of RNaseH in the nucleus, whereas RNAi induce cleavage of the target 

RNA molecule in the cytoplasm (Tuschl et al., 1999). It is thought that the use of an 

endogenous system by RNAi accounts for the much higher efficiency compared 

with antisense oligonucleotides (Grunweller et al., 2003). 

The degradation of the target RNA usually begins immediately after the 

siRNA delivery to the cell (Zamore et al., 2000). The decrease in the protein level 

depends on the target protein half-life and generally inhibition of the protein can be 

seen by approximately 48h after transfection (Morris, 2008). However, siRNA effects 
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are transient, usually lasting for about five to seven days since the siRNAs degrade 

over time and become attenuated by cell division (Morris, 2008). Off-target effects 

can be reduced by the use of lower concentrations of siRNA and by careful design 

of the siRNA: by generally designing an siRNA that is specific to the target and not 

to any other molecule and by paying particular attention to the design of the seed 

region, nucleotides 2 to 8, of the siRNA complementary to a region of the target 

RNA that differs from other RNA molecules (Birmingham et al., 2006).  

Plasmid expressed short hairpin RNAs (shRNAs) can be used instead of 

chemically synthesised siRNAs to extend gene silencing. Furthermore, a resistance 

gene in the plasmid can be used to select cells with the construct. Moreover, an 

inducible system, such as tetracycline or an adapted Cre-lox system, can give 

specific temporal control over the silencing of the gene. Plasmid based shRNAs can 

be used to create stable cell lines or even transgenic animals.  

Endogenous miRNAs, however, function slightly different from the other 

RNA silencing molecules. The miRNA precursors (pre-miRNAs) are present usually 

in noncoding RNAs or in introns that are excised by Drosha, processed by Dicer, 

used as guide to the target RNA by RISC, binds to partially identical RNA targets, 

usually around the 3’UTR, and causes gene silencing by inhibiting translation, and 

accelerating mRNA deadenylation and decay (Wu et al., 2006, Giraldez et al., 2006). 

Each miRNA is able to silence several RNA targets and it is thought that they 

regulate about 30% of mammalian genes. They have been implicated in many 

diseases such as cancer, diabetes and cardiac diseases (reviewed in Perron and 

Provost, 2009).  

In most cases the majority, but not all, of the target RNA molecules are 

cleaved, hence RNAi is said to be a knockdown and not a knockout. The advantage 

of using shRNA transgenic animals is that they might better reflect the outcome of a 

drug therapy targeting the gene and obtaining only a partial, rather than a complete 
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knockout. However, shRNA transgenic animals may not reflect the phenotype of 

knockout animals since reduced levels of protein might lead to different 

compensation mechanisms compared with total loss of protein. 

 

Applications of RNAi 

The RNAi mechanism can be used to investigate a particular gene function 

by silencing the product of the gene. To minimise potential off-target effects careful 

design of the siRNA is essential, as well as the use of controls such as by siRNA 

targeting a known gene, a non-targeting siRNA, to determine the lowest effective 

concentration of siRNA, and the use of multiple siRNAs targeting the same gene. It 

can also be used for screening in large-scale studies using siRNA libraries. With the 

evidence of the potential of RNAi demonstrated in basic science applications, RNAi 

can also be used as a therapeutic drug for viral infections (reviewed in Martinez, 

2009; Haasnoot and Berkhout, 2009), cancer (reviewed in Canaani, 2009; Lage, 2009) 

and other diseases (reviewed in Moschos et al. 2008; Lee and Chiang, 2008). 

Although siRNA and shRNA delivery in cells can be carried out by transfection, in 

vivo these methods are often toxic. Currently in mammals, siRNA or shRNA 

therapy are delivered directly to the diseased tissue by injection or ingestion or 

inhalation, and non-viral methods such as lipids are becoming more popular where 

the big challenge is to deliver to a specific cell type.  
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1.8 Aims 
The large majority of studies that mentioned eEF1B subunits were large-

scale studies which provide relatively little specific information. Only a few studies 

actually address structure and possible function of eEF1B subunits and most of 

these were performed in yeast, Xenopus oocytes, sea urchin and brine shrimp. Taken 

together, little is known about the characteristics, expression and function of eEF1B 

subunits, particularly in mammals. 

The aim of this project is to characterise eEF1B subunits at the molecular 

level in view of their potential involvement in tumourigenesis using a variety of 

bioinformatic tools and laboratory based techniques. These are used to study 

expression at mRNA and protein levels as well as to evaluate the biological changes 

that result from down and up-regulation of eEF1B subunits by siRNA-mediated 

knockdown and overexpression of each eEF1B subunit. 
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2. Materials and methods 

2.1 Bioinformatics 
In silico prediction and analysis of eEF1B subunits characteristics involved a 

variety of webtools and software as well as the design of two Perl scripts. 

 

2.1.1 Identification of related sequences 

Database similarity searching allows us to determine which of the hundreds 

of thousands of sequences present in the database are potentially related to a 

particular sequence of interest. This is achieved by aligning a query sequence to 

each subject sequence in the database. The Basic Local Alignment Search Tool 

(BLAST) (Altschul et al., 1990) is a popular method of ascertaining sequence 

similarity, by searching a query sequence supplied by the user against a database; 

results are reported as ranked hit list. BLAST searches were carried out with the 

eEF1B subunits’ DNA, mRNA or protein sequences against GenBank databases 

(Benson et al., 2009), the universal protein database (UNIPROT) (UniProt 

Consortium, 2009) and the protein structure databank (PBD) (Berman et al., 2000). 

These searches were restricted to organisms, reference or non-reference sequences, 

as well as DNA, ESTs, mRNA and protein sequences. Several variants of BLAST 

were used, each distinguished by the type of sequence of the query and database 

sequence (Table 2.1). 

 

Table 2.1 The variants of BLAST searches according to different the query sequence and database 
type of sequence.  

Program Query sequence Database 
BLASTn Nucleotide nucleotide 
BLASTx nucleotide (translated) protein 
BLASTp Protein protein 
tBLASTn Protein nucleotide 
tBLASTx Nucleotide (six frames translated) Nucleotide (six frames translated) 

PSI-BLAST Protein protein patterns 
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2.1.2 Alignment of similar sequences 

Sequence alignment is useful to check for sufficient similarity such that the 

sequences can be considered to share a common evolutionary history or share a 

domain that might indicate similar function. Sequences can be aligned along the 

entire sequence length (global) or aligned in sub-sequences (local) which is useful 

for identification of similar parts of a sequence such as domains and exons/introns. 

DiAlign (Morgenstern, 2004) and Spidey (Wheelan et al., 2001) was used to perform 

local multiple sequence alignments, whereas ClustalW (Thompson et al., 1994) and 

Muscle (Edgar, 2004) were used to compare multiple sequences along the full 

length. All of these tools required sequences in FASTA format as the input. FASTA 

format contains a definition line which starts with a “greater than” sign (>) and is 

usually followed by the sequence name and description. The sequence itself starts 

on the next line. Default values were used for producing all the sequence 

alignments. The Jemboss Alignment Editor (Carver and Mullan, 2005) was used for 

visualisation, editing of sequences alignments and obtaining identity information. 

 

2.1.3 Genomic DNA and mRNA characteristics 

 In order to predict if genes encoding eEF1B subunits only transcribe one 

transcript variant, the gene structure and alternative splices were predicted by 

GeneScan (Burge and Karlin, 1998), GeneID (Blanco and Abril, 2009), GeneSplicer 

(Pertea et al., 2001) and Alternative Splice Site Predictor (ASSP) (Wang and Marin, 

2006). Since none of the tools predicted a different gene structure from the one 

already known for each of the eEF1B subunits and there was evidence for more 

transcript variants, a script in Perl was designed to predict the eEF1B gene 

structure (section 2.1.7). Furthermore, the location of single nucleotide 

polymorphisms (SNPs) shown on Ensembl (Hubbard et al., 2009) and UCSC 

genome (Kuhn et al., 2009) browsers was identified to reduce future problems that 

might arise from polymorphisms.  
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2.1.3.1 Promoter and transcription factors 

The promoter region and the regulatory elements that bind to it is important 

in regulating the gene expression. The promoters of the genes encoding eEF1B 

subunits were predicted by using FirstEF (Davuluri, 2003), Ensembl own promoter 

prediction (Hubbard et al., 2009) and El Dourado which is part of MatInspector 

(Cartharius et al., 2005). It was also complemented with the prediction of CpG 

islands using the EMBOSS CpG tool (Rice et al., 2000). Once the putative promoter 

region was identified, it was used as the input sequence for P-Match search 

(Chekmenev et al., 2005) against the transcription factors database, TRANSFAC 

(Matys et al., 2006). The P-Match retrieves the most likely transcription factors to 

bind to a particular region based on the transcription factor binding pattern and 

frequency of that pattern in the human genome. 

 

2.1.3.2 Other regulatory motifs 

Other regulatory elements present in the mRNA are also important, such as 

those in UTRs. UTRScan (Mignone et al., 2005) was used to compare eEF1B subunit 

UTR sequences against a database of UTR regulatory elements sites. RegRNA 

(Huang et al., 2006), as well as searching for UTR regulatory elements, was also 

used to predict upstream open reading frames and 5’ TOP sequences. Although 

RegRNA also predicts miRNA binding sites, microCOSM from miRBASE (Griffiths-

Jones et al., 2008) was used to retrieve all putative miRNA binding sites since its 

prediction is based on a comprehensive miRNA database. The poly A signal was 

predicted by Poly (A) signal miner (Liu et al., 2005) which compares the input 

sequence with more than 2000 known poly A signals.  
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2.1.3.3 Expression data 

Small mRNA tags, expressed sequence tags (ESTs) and serial analysis of 

gene expression (SAGE) tags can be retrieved to determine which tissue they were 

extracted from and hence build up a knowledge of gene expression at the mRNA 

level. The GenBank gene expression profile (Benson et al., 2009) and the Cancer 

Genome Anatomy Project (CGAP) (Hess, 2003) were searched for eEF1B subunit 

ESTs and SAGE derived sequences’ tissue source. However, these databases can 

only be searched by the gene name and do not distinguish between transcript 

variants. For this reason, a script in Perl was designed to analyse the ESTs 

expression in a exon specific manner (section 2.1.7). 

 

2.1.4 Protein characteristics 

Protein amino acid properties such as charge, accessibility, conservation, 

hydropathy, ability to form low-complexity regions, disordered regions and 

particular secondary structures were catalogued for each eEF1B subunit. If the 

protein sequence was not available, the mRNA sequence was translated into protein 

sequence by Expasy Translate tool (Gasteiger et al., 2003). Residues chemical 

properties and hydropathy were plotted using EMBOSS PepInfo (Rice et al., 2000). 

Low complexity and disordered regions were predicted by SEG (Ryden and Hunt, 

1993) and DisEMBL (Linding et al., 2003) respectively. And the ability to form 

disulphide bonds was predicted by Predict Protein DiSulFind (Ceroni et al., 2006). 

To predict the ability to directed to a particular organelle SignalP 3.0 (Emanuelsson 

et al., 2007) prediction was carried out. 
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2.1.4.1 Domains 

Assigning sequences to protein families is a very valuable way of predicting 

protein function. Database searches can also be used to find specific protein families 

or domains through the use of profiles. Protein profiles are built from common 

patterns observed in multiple sequence alignments of related sequences. Position-

specific iterated BLAST (PSI-BLAST) (section 2.1.1) was used to search for profiles 

similar to eEF1B subunits. Many proteins are built up from domains in a modular 

architecture. eEF1B subunits were also compared to a protein family database, Pfam 

database (Finn et al., 2008), and to an integrated resource of protein families and 

domains, InterPro (Hunter et al., 2009).  

 

2.1.4.2 Post-translational modifications and other motifs 

Motifs are any conserved element of a sequence alignment, which is likely to 

be a structural/functional region. Putative motif sequences were identified by 

comparing the eEF1B subunit sequences against Mini-Motif Miner (MnM) 

(Rajasekaran et al., 2009), Human Protein Reference Database (HPRD) (Keshava 

Prasad et al., 2009), PROSITE (Hulo et al., 2006), ELM Functional Sites in Proteins 

database (Puntervoll et al., 2003). To identify possible post-translational 

modifications motifs, several specific tools were used and these are shown in table 

2.2. 

Table 2.2 Post-translational modification prediction tools used. 
Tool name Post-translational modification predicted Reference 

NetPhos Phosphorylation sites (Blom et al., 1999) 
NetPhosK Kinase specific phosphorylation sites (Blom et al., 2004) 
DisPhos Phosphorylation sites based on disordered regions (Iakoucheva et al., 2004) 

NetGlycate Glycation (Johansen et al., 2006) 
NetNGlyc N-glycosylation (Blom et al., 2004) 
NetOGlyc N-Acetylgalactosamine O-glycosylation (Julenius et al., 2005) 
Sulfinator Sulfation (Monigatti et al., 2002) 

SUMOsp 2.0 Sumoylation (Ren et al., 2009) 
NetAcet Acetylation (Kiemer et al., 2005) 
NetCGlyc C-mannosylation glycosylation (Julenius, 2007) 
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 In order to obtain information on all phosphorylation sites experimentally 

determined by large-scale studies a search at the PhosphoSitePlus (Hornbeck et al., 

2004) database was carried out.  

 

2.1.5 Protein structure 

There are four main levels of protein structure. The amino acid sequence is 

generally referred to as the primary structure. The secondary structure occurs when 

the sequence of amino acids is linked by hydrogen bonds, forming mainly alpha 

helices, beta strands and loops or coils. The secondary helical, strand and loop 

structures interact with each other to assemble into a compact globular structure 

called the tertiary structure or fold. Proteins composed of more than one peptide 

chain, their organisation and interconnections is called the quaternary structure. 

 

2.1.5.1 Secondary structure 

There are several methods available for predicting the ability of a sequence 

to form alpha-helices and beta-strands. Jpred (Cuff et al., 1998), PHD Predict Protein 

(Rost et al., 2004) and PSIPRED (McGuffin et al., 2000) were used to predict the 

eEF1B subunit secondary structures by using the default values. Jpred receives the 

amino acid sequence as an input, and predicts the secondary structure based on two 

neural networks systems, a form of learning method, and filtered by PSI-BLAST. 

PHD Predict Protein uses three neural networks also filtered by PSI-BLAST whilst 

PSI-PRED incorporates a four-level system of neural networks to increase 

prediction accuracy of the secondary structure prediction based also on output 

obtained from PSI-BLAST. Furthermore, the tool COILS (Lupas et al., 1991) was 

used to predict coiled regions by comparing the input sequence with a database of 

known parallel two-stranded coiled-coils.  
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Transmembrane helices in integral membrane proteins are composed of 

stretches of predominantly hydrophobic residues separated by polar connecting 

loops and were predicted by PHDhtm Predict Protein (Rost et al., 2004) and by TM 

Pred (Hofmann and Stoffel, 1993).  

 

2.1.5.2 3D structure 

The protein data bank (PDB) (Berman et al., 2000) is the primary resource for 

protein structural data, containing three-dimensional structures of proteins, nucleic 

acids and carbohydrates. The data have been derived experimentally from X-ray 

crystallography and nuclear magnetic resonance (NMR) studies. PDB was searched 

by a BLAST search to identify known eEF1Bsubunit 3D structures. In order to 

search for proteins with similar structures compared to eEF1B subunits, the 

prediction-based threading tool PredictProtein Agape (Rost et al., 2004) was used. 

Modeller (Eswar et al., 2008) can also be used to predict proteins with similar 

structures, however besides this, it can also be used to build a structural model in 

3D by comparison with a protein with known structure. Modeller was used to 

produce a 3D structure model for the C-terminus of eEF1B based on its similarity 

to the C-terminus of eEF1B using the default settings. Furthermore, ProFunc 

(Jensen et al., 2003) was used to predict protein binding and interaction clefts for 

both eEF1B and eEF1B C-termini.  

 

2.1.6 Protein-protein interactions 

Proteins can interact with other proteins forming pathways and these 

interactions are stored in specific databases. APID2NET (Hernandez-Toro et al., 

2007) and CytoScape (Cline et al., 2007) integrate several of these databases. All the 

protein-protein interaction information for each eEF1B subunit was combined and 

visualised using CytoScape. BINGO CytoScape plugin (Maere et al., 2005) was used 
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to retrieve the Gene Ontology classifications (Ashburner et al., 2000) of all the 

interactors and compared them to the gene classification frequencies in the human 

genome. 

 

2.1.7 Perl scripts 

The multiple local alignment tool Spidey (Wheelan et al., 2001) used to align 

ESTs to the genomic DNA gave a complex output. The Spidey output was used as 

the input for the Perl script. The script then searched for the ESTs accession 

numbers and the corresponding genomic sequence location to which each exon was 

identical (appendix 1.1). In this case, ESTs were searched for the presence of each of 

the eEF1B exons. The output was in a text table format which could be imported 

by Microsoft Excel. Once in table format, the number of ESTs sequences that is 

derived from particular exons were counted.  

Another Perl script was designed to further explore the ESTs expression 

data displayed in the GenBank EST profile. Firstly, all the GenBank profiles from 

each EST were collected and used as input for the Perl script (appendix 1.2). They 

were then simplified into an output table that distinguished sequence length, sex, 

developmental stage, mouse strain, tissue and the EST nucleotide sequence. The 

table was then imported into Microsoft Excel and the ESTs could be grouped by 

feature and counted. 
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2.2 Materials 

2.2.1 Solutions and buffers 

The buffers and solutions recipes are listed in table 2.3. Unless stated 

otherwise all chemicals were obtained from Sigma-Aldrich. Suppliers names and 

addressed can be found on appendix 2.  

Table 2.3 Recipes of all the solutions and buffers used for the methods described in this chapter. 

Radioimmunoprecipitation 
assay (RIPA) buffer 

50mM Tris-HCL (pH 7.5), 150mM Sodium chloride, 1% NP-40, 0.5% 
Sodium deoxycholate, 0.1% SDS. Stored at 4 OC before the addition and 

at -20 OC after addition of 1 tablet of complete protease inhibitors 
cocktail (Roche) 

TE buffer 
10ml 1M Tris-HCL (pH 7.5), 2ml 500mM EDTA and up to 1l with dH2O. 

Stored at room temperature. 
Primers storing buffer 5% TE buffer, 5% DMSO, 5% glycerol and up to 5ml dH2O 

10x Tris Buffered saline 
(TBS) 

40g Sodium chloride, 100ml 1M Tris (pH 7.5) and up to 500ml dH2O. 
Stored at room temperature 

Phosphate Buffer Saline 
(PBS) 

1 PBS tablet (Sigma) dissolved in 100ml of dH2O and autoclaved. 

PBS-tween-20 
(PBS-T) 

As above and 0.1% (v/v) Tween-20 (Sigma) 

2x Laemmli loading buffer 60nM Tris HCl (pH 6.8), 2% SDS, 0.1% bromophenol blue, 10% glycerol 
10x Laemmli running 

buffer 
250mM Tris HCl (pH 8.3), 1.9M Glycine and 10% SDS 

Transfer buffer 200ml of 1x Laemmli loading buffer, 200ml of methanol up to 1l dH2O 

TBE (Tris Borate-EDTA) 
108g Tris, 55g Boric acid and 9.3g of Na4EDTA in 1l of dH2O 

90mM Tris-Borate and 2mM of EDTA (pH 8.0) 
Lithium carbonate 5g (67.7mM) lithium carbonate per 1l dH2O 

LB (Luria-Bertani) medium 
1.0% tryptone, 0.5% yeast extract, 1.0% NaCl (pH 7.0). Medium was 

autoclaved. 
LB agar plates Prepared has above with additional 15g/l agar before autoclaving 

Peroxidase blocking 
solution 

2ml 30% H2O2, 10% Sodium azide and up to 400ml dH2O 

Lysis buffer 
10 mM HEPES, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT, 0.5% NP40 

and adjust pH 7.5. Stored at 4 OC before the addition and at -20 OC after 
addition of 1 tablet of protease inhibitors cocktail 

Nuclear lysis buffer 
15 mM HEPES pH 7.9, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM DTT, 25% 

glycerol (v/v), 400mM NaCl and adjust pH 7.9. Stored at -20 OC after 
addition of 1 tablet of protease inhibitors cocktail. 

Stripping buffer 
100mM β-mercaptoethanol, 2% SDS and 62.5 mM tris-HCl pH 6.7 

 
10x DNA sample loading 

buffer 
20g Sucrose, 100mg of Orange G and up to 50ml dH2O 

propidium iodide staining 
solution 

3.8mM sodium citrate, 50ug/ml propidium iodide in PBS 
10ug/ml RNaseA 

SOC media 
20g Bacto-tryptone, 5g Bacto-yeast extract, 0.5g NaCl, 2.5mL 1M KCl 
and up to 1l in dH2O and adjust pH to 7.0. Autoclave to sterilise and 

add 20ml 1M glucose. 
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CCMB80 buffer 
10 mM KOAc pH 7.0, 80 mM CaCl2.2H2O, 20 mM MnCl2.4H2O, 10 mM 
MgCl2.6H2O, 10% glycerol and adjust pH to 6.4. Filter the solution and 

store at 4 OC. 
Saturated ammonium 

sulphate 
4.1M of ammonium sulphate 

 
ELISA coating buffer 15mM Na2CO3, 35mM NaHCO3, 3.0mM NaN3 and adjust pH to 9.6. 

ELISA wash buffer 
0.14M NaCl, 1.5mM KH2PO4, 8.0mM Na2HPO3, 2.68M KCl, 0.05% (v/v) 

Tween 20 and adjust pH to 7.4. 
o-phenylenediamine 
dihydrochoride (OPD) 

substrate 
1 tablet of OPD  to 25ml OPD buffer and 10l 30% H2O2. 

OPD buffer 25mM citric acid, 0.1M Na2HPO4 and adjust 5.0. 

 

2.2.2 Cell lines 

Several cell lines were used in this study. Table 2.4 shows the list of all cell 

lines used. 

 
Table 2.4 List of cell lines, species, cell type, source and media in which each cell line was grown. 
Species refers to the species in which the cell line originated from. 

Cell line Species Cell type Source Medium 

HEK293 Human 
Transformed embryonic 

kidney cells 
Sheila Christie1 EMEM + 10% FBS 

NIH3T3 Mouse Embryonic fibroblast ATCC2 DMEM + 10% FBS 

SHSY5Y Human Neuroblastoma Barbara Stevenson1 
1:1 DMEM and Ham's F12 

medium + 10% FBS 
HeLa Human Cervical cancer epithelial ATCC2 DMEM + 10% FBS 
DLD1 Human Colon carcinoma epithelial Scott Bader2 DMEM + 10% FBS 

HCT116 Human Colon carcinoma epithelial ATCC2 
McCoy's 5A Medium + 

10% FBS 
HepG2 Human Liver carcinoma epithelial Barbara Stevenson1 DMEM + 10% FBS 

NSC-34 Mouse 
Motor neuron neuroblastoma 

hybrid 
 DMEM + 10% FBS 

Rat2 Rat Fibroblast ATCC2 DMEM + 10% FBS 
Cos7 Monkey Kidney fibroblast Sheila Christie1 DMEM + 10% FBS 
A549 Human Lung carcinoma epithelial Abby Wilson1 n.a. – given as pellet 
Lan5 Human Neuroblastoma Barbara Stevenson1 n.a. – given as pellet 

1 - Medical Genetics, Molecular Medicine Centre, University of Edinburgh 
2 - LGC Standards, Teddington, TW11 0LY 
3 - Sir Alastair Currie Cancer Research UK Laboratories, Molecular Medicine Centre, University of 
Edinburgh 
 

2.2.3 Animals 

All mice were maintained in the small animal Biomedical Research Facility 

at the Western General Hospital. 
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2.2.4 Antibodies 

Details of the various antibodies used in this project including the conditions 

under which they were used can be found in table 2.5. 

 

Table 2.5 List of antibodies used and conditions under which they were used for Western blotting 
(WB), immunocytochemistry (ICC) and immunohistochemistry (IHC). Species refers to the species in 
which the antibody was raised. All antibody dilutions are for typical experiments and may vary 
depending on the nature of the experiment.  

Name Specificity Species Source Dilution (WB) 
Dilution 

(ICC) 
Dilution 

(IHC) 
eEF1B eEF1B Rabbit Custom 1:2000 1:50 1:20 

eEF1D1 eEF1B 
isoform a 

Rabbit Custom Didn’t work - - 

eEF1D2 eEF1B all 
isoforms 

Rabbit Custom Didn’t work - - 

eEF1G eEF1B Rabbit Custom 1:1500 1:50 1:20 
eEF1B2 eEF1B Rabbit Abcam 1:3000 1:100 1:200 

EEF1B2 eEF1B – 
polyclonal 

Rabbit 
Proteintech 

group 
1:2000 1:100 1:100 

eEF1D eEF1B Rabbit Bethyl 1:4000 1:500 1:400 

EEF1D eEF1B – 
polyclonal 

Rabbit 
Proteintech 

group 
1:3000 1:500 1:400 

EEF1G eEF1B Mouse Abnova 1:2000 1:100 1:100 
 eEF1B Mouse Bethyl 1:3000 1:100 1:200 

eEF1A1-3 eEF1A1 Sheep 
Helen 

Newbery1 
1:200 - - 

eEF1A2-3 eEF1A2 Sheep 
Helen 

Newbery1 
1:200 - - 

Tubulin Tubulin Mouse Sigma 1:5000 1:3000 - 
Tubulin Tubulin Rabbit Sigma2 - 1:1000 - 

Actin -actin Rabbit Sigma 1:5000 1:500 - 
V5 V5 tag Mouse Invitrogen 1:5000 1:300 - 

PCNA PCNA Mouse Santa Cruz2 - 1:100 - 
Nuclear marker Lamin A + C Rabbit Abcam Didn’t work - - 

Active caspase-3 Active-caspase-3 Rabbit Abcam2 
4 OC 

(overnight) 
- - 

Caspase-3 Caspase-3 Rabbit Sigma Didn’t work - - 
NeuN Neuronal nuclei Mouse Chemicon - - 1:500 

GAPDH GAPDH Mouse Chemicon 1:30000 - - 
HRP Rabbit-anti-

mouse 
Mouse Ig Rabbit 

Dako 
cytomation 1:1000 - - 

HRP Goat-anti-
rabbit 

Rabbit Ig Goat 
Dako 

cytomation 1:1000 - - 

HRP Rabbit-anti- Goat/sheep Ig Rabbit Dako 1:500 - - 
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goat cytomation 

HRP Donkey-anti 
rabbit 594 (red) 

Rabbit Ig Donkey 
Alexa Flour 
(Invitrogen) - 1:1000 - 

HRP Donkey-anti 
mouse 488 (green) 

Mouse Ig Donkey 
Alexa Flour 
(Invitrogen) 

- 1:700 - 

HRP Goat-anti-
mouse 594 (red) 

Mouse Ig Goat 
Alexa Flour 
(Invitrogen) - 1:900 - 

HRP Goat-anti-
rabbit 488 (green) 

Rabbit Ig Goat 
Alexa Flour 
(Invitrogen) - 1:700 - 

 
1 – Medical Genetics, Molecular Medicine Centre, University of Edinburgh 
2 – Given by Liang Song, Sir Alastair Currie CRUK labs, Molecular Medicine Centre, University of 
Edinburgh 
 

 
 

2.2.5 Slides 

For the human tissue slides paraffin embedded adult human normal multi-

tissue panel – major organs (Biochain) were used. The details of all the human 

samples used are shown in table 2.6.  

Table 2.6 List of tissues, patient sex, age and pathological diagnosis of the human samples used 
Tissue Sex Age (years) Pathological diagnosis 
Heart Male 28 Normal  
Brain Male 73 Normal  

Kidney Male 26 Normal  
Liver Male 30 Normal  
Lung Male 26 Normal  

Pancreas Male 66 Normal  
Spleen Male 30 Normal  

Skeletal muscle Female 46 Normal 

 

All of the mouse tissues slides were cut using a microtoe (Leitz 1512) or by 

Dawn Lyster or Bob Morris from the University of Edinburgh histology facilities at 

the Western General Hospital. 
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2.2.6 DNA primers 

A list of oligonucletide primers used in this project can be seen in table 2.6. 

Primers were supplied by Sigma or Invitrogen. Primer design was assisted by use of 

Primer3 webtool (Rozen and Skaletsky, 2000) and the predicted specificity of 

primers was investigated using BLASTn (Altschul et al., 1990). Primers were stored 

in primer storage solution (section 2.2.1) at a concentration of 100M at -20 OC. The 

primers were further diluted 1:40 (2.5M) and used as a working dilution unless 

otherwise specified. 

Table 2.7 List of primers names, targets and primer sequences used for RT-qPCR, cloning, and 
isoform amplification.  

Name Species Target Sequence 5’ to 3’ 
EEF1B2_ HsF Human eEF1B CATGGGTTTCGGAGACCTGAAA 
B_RTqPCRF Mouse and human eEF1B GATTACCTGGCGGACAAGAG 
BfullLenF Human eEF1B AGCTCCCCGTTCCAGCCTTC 

BattbFwd Human eEF1B 
GTACAAAAAAGCAGGCTTCGAAGGAGAT 
AGAACCATGGGGTTTCGGAGACCTGAAA 

EEF1B2_HsR Human eEF1B CTGCTTTCAACAAGATCTAA 
B_RTqPCRR Mouse and human eEF1B TACCAACGTAGGGCATGACA 
BfullLenR Human eEF1B TTAAATCTTGTTAAAAGCAG 

BattbRev Human eEF1B 
GTACAAGAAAGCTGGGTCCTA 
TTAGATCTTGTTGAAAGCAGC 

GfullLenF Mouse and human eEF1B CACCATGGCGGCTGGGACCCTG 
G_Hs_Fb Human eEF1B GCTCTCATCGCTGCTCAGTA 

G_RTqPCRF Mouse and human eEF1B AGGGTGATGATGGATTCTGTG 
EEF1G_MmF Mouse eEF1B GGCATTATGCACCACAACAA 

GattbFwd Human eEF1B 
GTACAAAAAAGCAGGCTTCGAAGGAGAT 
AGAACCATGGGCGGCTGGGACCCTGTAC 

GfullLenR Mouse and human eEF1B ATGTTCACTTGAAGATCTTGCC 
G_Hs_Ra Human eEF1B ACTGGGCCATCTTCTCACAC 

G_RTqPCRR Mouse and human eEF1B AGTGGCCTGTTTGTTGTGGT 
EEF1G_MmR Mouse eEF1B AGGTGCAGGCAGCTAGGCGA 

GattbRev Human eEF1B 
GTACAAGAAAGCTGGGTCCTA 
TCACTTGAAGATCTTGCCCTG 

Dex3MmF Mouse eEF1B CCTCTTGTGCACTGGAGACC 
Dex3HsF Human eEF1B ACTTTTCGACCAGGCAGAGA 

Dex4MmF Mouse eEF1B GCGCATGAGAAGATCTGGTT 
Dex4HsF Human eEF1B GACGACGCAGAAAGGAGATT 

Dex5MmF Mouse eEF1B TGCAAGAGCCAGAGAGAACA 
Dex5HsF Human eEF1B ATTGCGAGAGCCAGAGAGAA 

Dex6MmF Mouse eEF1B GACCTGGTGGAGACCACAGT 
Dex6HsF Human eEF1B GCCAGTCTGGAAGTGGAGAA 

Dex7MmF Mouse eEF1B AGCAGGCCATTTCCAAGTT 
Dex7HsF Human eEF1B CTGAACGTGCTGGAGAAGAG 

DattbFwd Human eEF1B 
GTACAAAAAAGCAGGCTTCGAAGGAGAT 
AGAACCATGGGCTACAAACTTCCTAGCA 

Dex3MmR Mouse eEF1B CTCTGCCTCCTCAGTGTCCT 
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Dex3HsR Human eEF1B GGAGGACTTGTTGACCCAGA 
Dex4MmR Mouse eEF1B GCCCGTTCATCTGCTCATAG 
Dex4HsR Human eEF1B GAATCTCCTTTCTGCGTCGT 

Dex5MmR Mouse eEF1B CTTGCAATGTCTCGGAGGAT 
Dex5HsR Human eEF1B TTCTCTCTGGCTCTCGCAAT 

Dex6MmR Mouse eEF1B CGAAGGTTCTGGTTCTCCA 
Dex6HsR Human eEF1B CACTTCCAGACTGGCAATCC 

Dex7MmR Mouse eEF1B GCTCGGGGAGTAGGTGAACT 
Dex7HsR Human eEF1B GAGCTCTTCTCCAGCACGTT 

Dex8MmR Mouse eEF1B GGGCAGCCTCCTTATCTTCT 
Dex8HsR Human eEF1B CATTGTCACTGCCAAACAGG 

Dex9MmR Mouse eEF1B CCCACTTTGTCATCCTCCAC 
Dex9HsR Human eEF1B CAAGTCTGTCCCCACCTTGT 

Dex10MmR Mouse eEF1B TTGTTGAAAGCTGCGATGTC 
Dex10HsR Human eEF1B GCTGCGATATCGACACTCTG 

DattbRev Human eEF1B 
GTACAAGAAAGCTGGGTCCTA 
TCAGATCTTGTTGAAAGCTGC 

GAPDHFwd Mouse and human GAPDH CATCACCATCTTCCAGGAGC 
GAPDHRev Mouse and human GAPDH ATGACCTTGCCCACAGCCTT 
18srRNAF Mouse and human 18S rRNA CATGGCCGTTCTTAGTTGGT 
18srRNAR Mouse and human 18S rRNA GAACGCCACTTGTCCCTCTA 
B2MFwd Mouse -2-m AATGCTGAAGAACGGGAAAA 
B2MRev Mouse -2-m CAGTCTCAGTGGGGGTGAAT 
bActinF Mouse and human -actin GTCCACCTTCCAGCAGATGT 
bActinR Mouse and human -actin TCTGCGCAAGTTAGGTTTTG 
M13Fwd Plasmids M13 GTAAAACGACGGCCAG 
M13Rev Plasmids M13 CAGGAAACAGCTATGAC 

 

2.2.7 DNA 

Plasmids used for cloning are described in table 2.8. 

Table 2.8 All the plasmids used for cloning of C-terminal V5 tagged eEF1B subunits, vectors, source 
and antibiotic resistance 

Name Insert Vector Notes/source Antibiotic 
pDONR221 n.a. pDONR221 Invitrogen Kanamycin 

pcDNA-DEST40 C-terminal V5 tag pcDNA-DEST40 Invitrogen Ampicillin 
3611581 Human eEF1B pOTB7 GeneService (IMAGE clone) Chloramphenicol 
5299844 Human eEF1B pBluescriptR GeneService (IMAGE clone) Chloramphenicol 
5470872 Human eEF1B pOTB7 GeneService (IMAGE clone) Ampicillin 
3349601 Human eEF1B iso a pOTB7 GeneService (IMAGE clone) Chloramphenicol 
4129368 Human eEF1B iso a pOTB7 GeneService (IMAGE clone) Chloramphenicol 
2961609 Human eEF1B iso b pOTB7 GeneService (IMAGE clone) Chloramphenicol 
5442454 Human eEF1B iso b pOTB7 GeneService (IMAGE clone) Chloramphenicol 
2961341 Human eEF1B iso c pOTB7 GeneService (IMAGE clone) Chloramphenicol 
2821006 Human eEF1B pOTB7 GeneService (IMAGE clone) Chloramphenicol 
3611581 Human eEF1B pOTB7 GeneService (IMAGE clone) Chloramphenicol 
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2.2.8 siRNAs 

List of siRNAs used for RNAi experiments in this study are shown in table 2.9. 

Table 2.9 List of siRNA names that were used in this project as well as reference name, targets, 
sequences and source 

Name Reference name Target Sequence 5’ to 3’ Source 
eEF1B  siRNA a 10885 eEF1B exon 3 GGAAGUGGAGCUACAGAUAtt Ambion 

eEF1B  siRNA b 10977 eEF1B span exon 
3 and 4 

GGAAAGUGAAGAAGCAAAGtt Ambion 

eEF1B  siRNA c s194388 eEF1B exon 4 GGAAGAACGUCUUGCACAAtt Ambion 
eEF1B siRNA a 42605 eEF1B exon 4 GUUCAAAUAUGACGACGCAtt Ambion 
eEF1B siRNA b s4485 eEF1B exon 8 GGCAGUACGCGGAGAAGAAtt Ambion 
eEF1B siRNA c 146798 eEF1B exon 10 GCCUGAGUGUGUGUACGUGtt Ambion 
eEF1B siRNA a 9851 eEF1B exon 3 GGGUGAUGAUGGAUUCUGUtt Ambion 

eEF1B siRNA b 9939 eEF1B span exon 5 
and 6 

GGUUCUAGAGCCUUCUUUCtt Ambion 

eEF1B siRNA c s4489 eEF1B span exon 6 
and 7 

GUUUGAUGCUCCCUAGUUUtt Ambion 

-actin siRNA 
Actin positive 

control -actin Not provided Invitrogen 

Non–targeting 
siRNA 

Negative control 1 Non-targeting Not provided Ambion 

Non–targeting 
siRNA 2 

Negative control 2 Non-targeting Not provided Ambion 

Non–targeting 
siRNA 3 

Negative control 3 Non-targeting Not provided Ambion 
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2.3 Cell culture 

2.3.1 Cell culture maintenance 

Cell lines were grown in Cell Start T25 or T75 flasks (Greiner Bio-One) with 

25ml or 50ml of media respectively, using the media shown in table 2.4, at 37 OC, 5% 

CO2 in a Galaxy S incubator (Scientific Laboratory Supplies). To passage the cells, 

the media was aspirated, the cells were washed in PBS and incubated in a 1:1 mix of 

trypsin:versene (Invitrogen) for 2-5 minutes, before media was added. The cells 

suspension was centrifuged at 1000 rpm for 5 minutes, the supernatant was 

aspirated and the pelleted cells were resuspended in 5ml of new media and split 

usually 1 in 10 into a new flask of the same size or 1 in 5 into a bigger flask. The cells 

were split approximately every 3 to 7 days and once they reached passage number 

15 the cells were discarded. 

2.3.2 Cell count 

Cells were counted by first being washed in PBS and trypsinised as 

described above. Then, after the addition of the media, 100l was mixed into 9.9ml 

of isoton and the cells were counted using a Coulter Counter Z (Beckman coulter). 

 

2.3.3 Cryostat preservation of cell lines 

In order to store cells in liquid nitrogen, cells in a T75 flask were trypsinised 

and centrifuged as described in section 2.3.1. The cells were then resuspended in 

10mls of 90%FBS and 10%DMSO and transferred into about 10 cryopreservation 

vials of 1ml each. The samples are then frozen at -70 OC overnight and finally 

transferred to liquid nitrogen. 

 

2.3.4 RNAi 

The SDS tool, available on http://i.cs.hku.hk/~sirna/software/sirna.php, 

shows several siRNA design tools output and the consensus sequences. The SDS 

tool consistently showed a siRNA consensus sequence for all the eEF1B subunits 
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that were pre-designed siRNA from Ambion. Hence, two Silencer siRNAs and one 

Silencer Select were obtained for each eEF1B subunits (table 2.8). Each of the 

siRNAs was resuspended to a concentration of 100M and stored at -70 OC. 

Furthermore, a positive siRNA targeting -actin and a non-targeting negative 

siRNA control were used. The sequences of these were not supplied by the 

manufacturer. 

 

2.3.5 Transfection by lipofectamine 

In order to exogenously express protein in culture cells and transfect 

siRNAs, cells that were about 70-80% confluent were washed in PBS, trypsinised  

and counted as described before (2.3.1), and the appropriate number was 

resuspendend in OptiMEM (Invitrogen) and then transfected with plasmids or 

siRNAs using Lipofectamine 2000 (Invitrogen), according to manufacturer’s 

instructions. After 5 to 6 hours, the cells media was replaced by their normal growth 

media. Cells with no siRNA or plasmid or cells not subjected to transfection were 

used as controls. 

 

2.3.6 Transfection by nucleofection 

The nucleofector system (Amaxa Biosystems) was used to transfect siRNAs 

into HeLa cells. In order to transfect, cells were grown until about 70-80% 

confluency, trypsinised and counted as described before (2.3.1). For each well on a 

6-well plate, 0.5x106 HeLa cells were pelleted, resuspended in the appropriate 

volume of siRNAs and 100l of nucleofector solution R (Amaxa Biosystems). Cells 

were then subjected to nucleofection using the I-13 program and according to the 

manufacturer’s instructions. In brief, 500l of medium was added immediately after 

the cell suspension and this was transferred to a well which already contained 1ml 

of medium. Cells with no siRNA or cells with no solution and not subjected to 

nucleofection were used as controls. 
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2.4 Protein-related methods 

2.4.1 Antibody production 

Peptides were designed against eEF1B, eEF1B isoform a, eEF1B all 

isoforms and eEF1B. The peptides were designed taking into consideration SNPs, 

hydrophobicity, protein secondary structure, antigenicity, conservation in 

mammals and similarity between subunits. Peptides were conjugated with KLH 

cysteine by Cancer Research UK antibody resources and the KLH conjugated 

peptide was injected into a rabbit at Easter Bush, Edinburgh. The serum was 

purified as described below before being used in assays. 

 

2.4.1.1 Antibody purification 

The serum was subjected to ammonium sulphate precipitation and affinity 

purification. In order to purify by ammonium sulphate, the serum was centrifuged 

3000g for 30 minutes and 0.5 (v/v) of saturated ammonium sulphate (table 2.3) was 

added to the supernatant and stirred overnight at 4 OC. The serum was then 

subjected to the same procedure again however the supernatant was discarded and 

the pellet was resuspended in 0.3-0.5 (v/v) of starting volume PBS. The serum was 

then subjected to dialysis overnight with several changes of PBS. To further purify, 

the serum was subjected to affinity purification by using SulfoLink kit (Pierce) and 

according to the manufacturer’s instructions.  

 

2.4.1.2 Antibody titration by ELISA 

Peptide titration curves were performed to ensure the antibodies were 

specific to the peptide against which they were raised. Different concentrations of 

peptides ranging from 0.01g/ml to 10g/ml in 200l of coating buffer (table 2.3) 

were incubated in Maxisorp plates (Nunc) overnight at 4 OC. Some wells were not 

coated with the peptides (only with the coating buffer) to act as negative controls. 
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The plates were then washed three times with ELISA wash buffer (table 2.3), 

blocked in wash buffer with 1% BSA for 1 hour and washed again three times. They 

were then incubated for 1 hour with different dilutions of serum from 1 in 100 to 1 

in 50 000 in wash buffer and washed for three times. The plates were then incubated 

in 200l of o-phenylenediamine dihydrochoride (OPD) substrate (table 2.3) for 15 

minutes and absorbance readings were taken at 450nm. The procedure was 

performed at room temperature unless stated otherwise. 

 

2.4.2 Cell lysates 

2.4.2.1 Production of cell lysates 

In order to produce cell lysates, cells were grown until they were 70 to 90% 

confluent. The media was aspirated off and the cells were washed once with PBS. A 

small amount of cold RIPA was added to the cells just enough to cover the well 

bottom (30l in 24 well plate), and the cells were incubated at 4 OC for about 10 

minutes. The cells that were still adjerent to the wells were displaced by using a cell 

scraper. The crude lysates were transferred to a micro-centrifuge tube and 

centrifuged at 13,000 rpm for 30 minutes at 4 OC and the pellet was discarded. The 

supernatant (lysates) were stored at -20 OC. In order to produce tissue lysates, 

tissues were washed in PBS and homogenised in a sucrose solution (0.32M or 109.5g 

per liter of distilled water) with complete protease inhibitors cocktail (Roche) and 

stored at -20 OC. 

 

2.4.2.2 Sub-cellular fractionation 

Mouse whole brain and liver were firstly washed in PBS and then were 

homogenised in 500l of lysis buffer (table 2.3). They were then centrifuged at 

16,000g for 10 minutes at 4 OC. The supernatant (cytoplasm) was transferred to 

another tube and stored at -70 OC. The pellet was resuspended in 300l nuclear lysis 
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buffer (table 2.3), further homogenised, incubated on ice for 30 minutes and 

centrifuged at 20,000g for 10 minutes at 4 OC. The supernatant (nuclear protein 

fraction) was transferred to another microcentrifuge tube and stored at -70 OC. 

 

2.4.2.3 Measuring protein concentration in cell lysates 

The concentration of total protein in lysates was measured by BioRad DC 

protein assay according to the manufactures’ description. A serial dilution of BSA 

from 0 to 2.0mg/ml in lysis buffer was used to establish the standard curve. Usually, 

1l of lysates was added to a 96-well plate in triplicate and diluted 1:5 with lysis 

buffer. Then, 20l of reagent S was added to 1ml of reagent A’ and mixed.  Of this 

solution, 25l were added to 5l of protein sample on the 96 well plate and the plate 

was swirled. Finally, 200l of reagent B were added to each well. The plate was 

incubated at room temperature for 15 minutes and absorbance readings were taken 

at 750nm.  The absorbance value for each BSA protein standard was plotted against 

the protein concentration and a standard curve was generated. This curve was then 

used to determine the concentrations of the protein lysates. 

 

2.4.3 Western blot 

2.4.3.1 Sample preparation 

Lysates (section 2.4.2) were prepared for Western blotting by mixing 1:1 

with protein sample buffer (table 2.3) and 1:10 with 1M DTT. In order to denature 

the proteins and disrupt protein-protein interactions, samples were then heated at 

100 OC for 5 minutes. To some samples, -mercaptoethanol was added for further 

disruption of protein-protein interactions.  

 

2.4.3.2 SDS-Polyacrylamide gel electrophoresis 

Separating gels (11%) were produced as follows (enough for 2 gels): 
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30% acrylamide       5.0 ml 

1.5M Tris pH 8.8      4 ml 

dH2O        6.08 ml 

20% SDS       80 l 

TEMED        10 l 

25% 2-Acrylamido-2-Methylpropane Sulphonic Acid (AMPS) 40 l 

 

 The gel solution was mixed and then poured between two BioRad glass 

plates, leaving 1-2 cm at the top which was initially filled with dH2O. After 30 

minutes, when the separating gel was set, the water was removed and replaced 

with 4% stacking gel solution prepared as follows. 

30% acrylamide     1.45 ml  

0.5M Tris-HCl pH 6.8    2.5 ml  

dH2O      5.95 ml 

20% SDS     50 l  

TEMED        5 l 

25% AMPS      50 l 

 

 A comb of either 10 or 15 wells (BioRad) was added to the top and the gel 

allowed to set for another 30 minutes. When the gels were set, they were placed into 

a Mini TransBlot Cell (BioRad) which was filled up with 1x Laemmeli running 

buffer (table 2.3). The combs were removed and the samples prepared as described 

above were then loaded into the gel along with a protein size marker (Fullrange 

rainbow – BioRad). Gels were then run at 110V for about 90 minutes to separate the 

proteins in the samples by molecular weight. Gels were removed and soaked in 

transfer buffer as well as two 6cm by 8cm pieces of 1.7mm card (Whatman) and two 

sponges per  gel. For each gel, a 6cm by 8cm piece of Hybond-P PVDF membrane 

(Amersham) was cut, soaked in methanol and then soaked in transfer buffer. A 

sponge, one piece of card, followed by the gel, the membrane, another piece of card 
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and a sponge were assembled on the transfer cell and put into a tank filled with 

transfer buffer (table 2.3). It was then run at 60A overnight at 4 OC in order to 

transfer the protein, including the marker, from the gel to the membrane. The 

membrane was then removed, washed and blocked with a membrane blocking 

buffer (usually 5% powdered milk in PBS-T – table 2.3) for about one hour at room 

temperature. 

 

2.4.3.3 Western blotting 

After blocking, membranes were transferred to an appropriate dish and 

incubated with a primary antibody in blocking buffer at a particular dilution and 

conditions shown in table 2.5. The membrane was then washed for 1, 2, 5 and 10 

minutes with wash buffer (usually PSB-T – table 2.3). The membrane was then 

incubated with HRP conjugated secondary antibody diluted as shown in table 2.5 in 

blocking buffer for one hour at room temperature. The membrane was washed as 

before with an extra wash with PBS only (no Tween). The proteins were visualised 

by using enhanced chemiluminescence (ECL) detection kit (Amersham). 

 

2.4.3.4 Densitometry 

In order to quantitatively analyse Western blot results, the shortest exposure 

in which bands were visible in the films were scanned into a computer and the 

signal intensity of the bands was measured using the program ImageJ (Abramoff et 

al., 2004). 

 

2.4.3.5 Re-probing of membranes 

In order to re-probe a membrane with an additional antibody, the 

membranes were incubated for 30 minutes at 4 OC with stripping buffer (table 2.3) 



                                                                            2. MATERIALS AND METHODS 

57 
 

with gentle shaking. The membrane was then washed three times with wash buffer, 

blocked and stained with the new antibody as described before (table 2.5). 

 

2.4.3.6 Pre-absorption of antibodies 

To test if an antibody binds to the peptide against which it was raised, 

blocking buffer with the antibody at a concentration at which it was normally used 

together with 100ng/ml of the peptide it was originally raised against were 

incubated overnight at 4 OC while mixing at 30 rpm on a rotary wheel.  

2.4.4 Immunocytochemistry 

In order to visualise the expression pattern of proteins within individual 

cells, immunocytochemistry was used. The cells must be fixed before the procedure 

to cease cellular processes and to expose epitopes for antibody binding. Media was 

removed from cells, the cover slips were washed with PBS and cold 1:1 

methanol:acetone was added to the well just enough to cover the bottom of the well. 

The plate was incubated at -20 OC for about 30 minutes to fix the cells. Cover slips 

were then washed three times with room temperature PBS with 0.1% Triton X100 

and 3% BSA and incubated at room temperature for one hour to block and 

permeabilise. Coverslips were then incubated with appropriately diluted antibody 

in PBS with 1% Triton X100 and 3% BSA for 1 hour using just enough liquid to 

cover the cells. Cells were incubated with two antibodies in case of double-

immunostaining. Coverslips were then washed three times with PBS and 0.1% 

Triton X100  and incubated for a further 30 minutes with appropriately diluted 

fluorescent secondary antibody in PBS 1% Triton X100 and 3% BSA. The plates were 

wrapped in foil to keep out of the light. Coverslips were then washed in PBS with 

0.1% Triton X100 three times and mounted onto glass slides using Vectashield 

mounting solution containing 4',6-diamidino-2-phenylindole (DAPI). Acetone was 

added to the side of the coverslips in order to seal the coverslips to the glass slides. 

Coverslips were then stored at 4 OC in the dark and visualised on a Zeiss Axioskop 2 
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fluorescent microscope using Smart Capture 2 software. Cells not incubated with 

the primary antibody were used as negative controls.  

 

2.4.5 Immunohistochemistry 

In order to visualise the expression pattern of proteins within tissues, 

immunohistochemistry was used. Paraffin embedded sections of human and mouse 

tissues were deparaffinised with xylene and rehydrated in 75% and absolute 

ethanol. Slides were then washed in dH2O and PBS and loaded into a Sequenzer. 

The tissues were blocked in peroxidise blocking solution (table 2.3) for 5 minutes. 

Slides were then washed and blocked in goat serum diluted 1:5 with PBS for 10 

minutes. Primary antibody was added at the dilutions and conditions described in 

table 2.5. The slides were then incubated and visualised using ChemMate DAKO 

EnVision Detection Kit (DAKO) according to the manufacturer’s instructions. In 

brief, the slides were then washed in PBS and three drops of ChemMate DAKO 

Envision/HRP Rabbit/Mouse secondary antibody (DAKO Cytomation) were added 

to each slide and incubated for a further 30 minutes. The slides were washed with 

PBS, removed from the sequenzer and 0.5ml of DAB working solution was added to 

each slide and incubated for 2 minutes. Finally, the slides were washed in dH2O, 

counterstained in haemotoxylin, stained with lithium carbonate and dehydrated in 

absolute ethanol and 75% ethanol, cleared in xylene and mounted in pertex. The 

entire procedure was performed at room temperature. Sections were viewed by 

light microscopy on Olympus BX51 using DP software (Olympus). 
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2.5 Molecular biology methods 

2.5.1 PCR sample preparation 

2.5.1.1 RNA extraction 

In order to extract RNA from cells, the cells were washed, trypsinised and 

pelleted as described on section 2.3.1. Supernatant was removed and the pellets 

were stored at -70 OC until use. RNA was extracted from cells using the RNeasy 

Mini Kit (Qiagen) according to the manufacturer’s instructions, whereas to extract 

RNA from tissues, tissues were washed with PBS, homogenised and RNA was 

extracted using the RNeasy Midi Kit (Qiagen) according to the manufacturer’s 

instructions.  

 

2.5.1.2 Measuring RNA concentration 

In order to determine the concentration of RNA samples, a nanodrop was 

used. The device was set to measure absorbance reading of 260nm and calibrate 

with the buffer on which the RNA was dissolved. The RNA concentration (g/ml) 

was calculated by multiplying the OD260 reading by a factor of 40 considering that 

an OD260 of 1 correspondes to 40g/ml of single stranded RNA. 

 

2.5.1.3 cDNA synthesis 

The First Strand cDNA Synthesis kit (Roche) was used to produce cDNA 

from RNA as follows. The following reaction was performed: 

2l 10x reaction buffer 

4l 25mM Magnesium chloride 

2l dNTPs mix 

1l Oligo-dT  primers 

1l Random primers  
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1l RNase inhibitor 

0.8l AMV reverse transcriptase 

1-5l RNA 

Up to 20l dH2O 

 

Reactions were subjected to the following incubations: 

10 minutes at room temperature 

42 OC for 60 minutes 

95 OC for 5 minutes 

4 OC for 5 minutes 

Negative controls were processed in the same way, except lacking AMV 

reverse transcriptase. The reactions were then stored at -20 OC. 

 

2.5.2 PCR reactions 

Different PCR methods were used to amplify a specific segment of DNA. 

 

2.5.2.1 RT-PCR with taq polymerase 

The following PCR reaction was used for the majority of applications. Each 

PCR reaction was set up using the following: 

10x PCR reaction buffer (Sigma) 2.5l 

25mM magnesium chloride (range from 10 up to 100mM) 

10mM dNTPs    2.0l 

1M of each primer   2.5l 

Template cDNA or plasmid  1l 

Taq polymerase (Sigma)  0.5l 

dH2O     up to 25l 
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The reactions were then processed on a thermal cycler using the following 

program: 

Step 1 Initial denaturation  1x 92 OC  3 minutes 

Step 2 Denaturation   28x 92 OC   30 seconds 

Annealing    50-60 OC 30 seconds 

Extension    72 OC   30-90 seconds 

Step 3 Final extension  1x 72 OC   10 minutes 

4 OC        until needed 

 

The length of the extension step varied depending on the predicted length of 

the PCR product (1 minute per kilobase). And the annealing temperature varied 

depending on the stringency and melting temperature of the primers. 

A sample with no reverse transcriptase, hence with just RNA, was used as 

minus control to determine DNA contamination in the RNA. 

 

2.5.2.2 PCR with Phusion polymerase 

In order to amplify a PCR product with a high-fidelity DNA polymerase, the 

Phusion PCR master mix was used (NEB) according to the manufacturer’s 

instructions. PCR programme was as follows: 

 Step number cycles temperature time 

Step 1  1x 98 OC  30 seconds 

Step 2  24x 98 OC  10 seconds 

    57 OC  30 seconds 

    72 OC  1 minute 

Step 3  1x 72 OC  10 minutes 

    4 OC  until needed 
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2.5.2.3 RT-qPCR 

A standard curve method of analysis was used. For each tissue sample, a 

standard curve was created by a serial dilution (1:10, 1:100, 1:1000, 1:10000, 

1:100000). Primers for the eEF1B subunits, -2-microglobulin, 18S rRNA and -actin 

(table 2.6) were designed to amplify a product of between 100 and 120bp with no 

secondary structure and expected to have low primer dimer formation to minimise 

the effects on product amplification. Only the results that showed a coefficiency 

higher than 0.99 or PCR efficiency between 95 and 105% were used. eEF1B subunits 

results were normalised against the reference genes. No cDNA, no PCR solution 

and just dH2O were used as controls to determine PCR reagent and RNA 

contamination. Samples were always in triplicate. The mean was taken from the 

normalised expression ratios for each sample of identical tissues. A melting curve 

was carried out to confirm specificity of the primers where a sharp peak indicates a 

single product.  

PCR reaction was set up using the following: 

2x Supermix   10l 

0.8M primers   2l 

cDNA diluted in dH2O 6l 
 

The PCR cycling programmed used is shown bellow.  

 Step number cycles temperature time 

Step 1   1x 95 OC  8.5 minutes 

Step 2    40x 95 OC  30 seconds 

    62 OC  30 seconds 

    72 OC  30 seconds – data collection 

Step 3  1x 95 OC  1 minute 

Step 4   1x 60 OC  1 minute 

Step 5   80x 60 OC  10 seconds – data collection 

(increase 0.5 OC per cycle to produce the melting curve) 
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2.5.2.4 BigDye pre-sequencing PCR 

In order to sequence a PCR product or a plasmid construct, the BigDye 

Terminator Ready Reaction Mix v3.1 system (Applied Biosystems) was used. Each 

reaction was set up as follows where each PCR reaction makes use of only one 

primer: 

5x BigDye sequencing buffer     1.5l 

2.5x BigDye mix      1.0l 

template (purified PCR product or plasmid DNA) 3l 

primer (forward or reverse)    1.5l 

dH2O       3l 
 

The following PCR program was used: 

Step 1 1x 96 OC  1 minute 

Step 2 24x 96 OC  30 seconds 

50 OC  15 seconds 

60 OC  4 minutes 

Step 3  4 OC  until needed 

 

2.5.2.5 Colony PCR 

In order to screen several bacterial colonies for the presence of a particular 

insert. A single bacterial colony was picked, grown in LB and put in a PCR plate 

well with 30l dH2O. It was incubated at 99 OC for 2 minutes to disrupt the bacterial 

wall. The colony PCR was prepared as follows: 

10x PCR Buffer (Sigma) 2.5l 

10mM dNTPs   1.0l 

5M each primer   2.5l 

Bacterial DNA   1.0l 

5u/ul Taq polymerase  0.5l 

Up to 15l with dH2O 



                                                                            2. MATERIALS AND METHODS 

64 
 

The reactions were then subjected to the following PCR program: 

Step 1 1x: 95 OC 2minutes 

Step 2 30x: 95 OC 30 seconds 

   50 OC 30 seconds 

   72 OC 2 minutes 

Step 3 1x: 72 OC 10 minutes 

  4 OC until needed 

2.5.3 Sequencing PCR products and plasmids 

After each pre-sequencing PCR reaction was performed, to each product of 

this PCR reaction was added 2.5l of 125nM EDTA and 30l absolute ethanol. The 

plate was flicked and then incubated at room temperature for 10-15 minutes. Tubes 

were centrifuged at 3,000rpm in a plate centrifuge for 30 minutes at 4 OC. The plates 

were placed upside down on absorbent paper and spun briefly to a maximum of 

1,000 rpm to remove the ethanol. Then 35l of 70% ethanol was added to each well 

and the plate was centrifuged at 3,000rpm for a further 15 minutes. The ethanol was 

removed as described before and the wells were left to air dry for 10 minutes at 

room temperature before storing at -20 OC. The sequencing was carried out by either 

Agnes Gallacher or Alison Condie (Medical Research Council Human Genetics Unit 

or Wellcome Trust Clinical Research Facility). The sequences were visualised using 

the program BioEdit (Hall, 1999) and were compared to known DNA sequences by 

using BLASTn (Altschul et al., 1990), FASTA (Pearson, 1990), CLUSTALw 

(Thompson et al., 1994) and Muscle tools (Edgar, 2004). 

 

2.5.4 Purification of PCR products 

In some circumstances such as prior to a ligation, recombination reaction 

and pre-sequencing PCR reaction, PCR products need to be purified in order to 

remove other elements of the PCR reaction mix. This was done using a QIAquick 
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PCR purification kit (Qiagen) according to the manufacturer’s instructions. In the 

case of the pre-sequencing PCR reaction, PCR products were cleaned by ExoSapit 

(Applied Biosystem) by adding 1l of ExoSapit per 5l of PCR product and 

incubating at 37 OC for 15 minutes followed by incubation at 80 OC for 15 minutes. 

 

2.5.5 DNA electrophoresis 

2.5.5.1 Making and running of agarose gels 

Agarose gels were prepared by adding 1 to 2% agarose powder to 0.5x TBE 

buffer. This was heated until the powder was dissolved in a microwave. The 

solution was allowed to cool down and 1:100 SYBR Safe DNA gel stain (Invitrogen) 

was added and mixed. The agarose was then poured into a tray, combs were added 

and the gel was allowed to set. Meanwhile, the DNA samples were prepared by 

mixing 1:1 with DNA loading buffer (table 2.3). The gel was then placed in a 

electrophoresis tank which was filled with 0.5x TBE buffer, the combs were 

removed and the DNA samples were loaded into the wells along with a 1kb DNA 

ladder (Invitrogen) as a molecular weight marker. Depending on the size of the 

DNA product to be viewed, the gel was run for between 20 minutes up to 120 

minutes at 80-120V. Gels were then viewed under GelDoc and photographed.  

 

2.5.5.2 Isolation of DNA fragments from agarose gels 

Agarose gels can also be used in order to separate DNA of a certain size 

from a sample. In order to do this, the sample was run on a gel made using low-

melting point agarose, but otherwise as described above. After the gel was run, the 

DNA was visualised on a UV box and the band of interest excised using a sterile 

scalpel. This gel fragment was then processed using a QIAquick Gel Extraction Kit 

(Qiagen), according to the manufacturer’s instructions, in order to isolate the DNA 

contained within it.   
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2.5.6 Culture of bacteria transformed with plasmid constructs 

2.5.6.1 Competent bacteria cells production 

In order to produce chemically competent bacteria, TOP10 cells (Invitrogen) 

were grown streaked on a plate and incubated overnight at 23 OC. A single clone 

was isolated and grown in LB at 23 OC. 15% glycerol was added to a portion of the 

LB solution and stored at -70 OC in cryotubes. TOP10 cells in LB (1ml) were added to 

250ml of LB and incubated at 20 OC to an absorbance at 600nm of about 0.3 which 

takes approximately between 14 and 18 hours. The bacterial suspension was 

centrifuged at 3,000rpm at 4 OC for 10 minutes and the pellet resuspended in 80ml of 

ice cold CCMB80 buffer. After being incubated on ice for 20 minutes, the cell 

solution was centrifuged as before and resuspended in 10ml of CCMB80 buffer. 

More ice-cold buffer was added to the solution until the absorbance reading at 

600nm was between 1.0 and 1.5. The bacterial cells were subjected to another 

incubation on ice for 20 minutes, aliquoted in vials and stored at -70 OC for future 

use. 

 

2.5.6.2 Transformation of bacteria with plasmid constructs 

1l of plasmid construct was transformed into chemically competent TOP10 

cells as follows: cells were thawed on ice, the plasmid DNA was added to them and 

the mixture was incubated on ice for 15 minutes. Cells were then heat-shocked by 

incubation at 42 OC for 30-40 seconds, before cooling down on ice for a further 2 

minutes. 200l of LB or SOC media was then added to the cells and they were 

incubated at 37 OC with 200rpm for about 2 hours in an Innova 4300 incubator 

shaker (New Brunswick Scientific). After the incubation, 30-70l of the bacterial 

culture was spread across an LB agar with 50g/ml ampicillin (Sigma) or 100g/ml 

kanamysin (Sigma) or 20g/ml chloremphenicol (Sigma) using a sterile scraper. 

Plates were sealed and incubated until colonies were visible (typically 16 to 24 

hours after) at 37 OC with 5% CO2 in a Plus II incubator (Gallencamp). 
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2.5.6.3 Bacterial culture and selection 

Cultures of bacteria, transformed as described above, can be set up by 

selecting a single colony of the LB agar/antibody plate and then allowed to grow in 

LB/antibody media at 37 OC shaking at 200rpm.  

 

2.5.6.4 Measuring DNA concentration 

In order to determine the concentration of a plasmid construct or other DNA 

solution, a nanodrop was used. The device was set to measure absorbance reading 

of 260nm and calibrated with either dH2O or TE buffer depending on which buffer 

the DNA was dissolved in. The DNA concentration (g/l) was calculated by 

multiplying the OD260 reading by a factor of 0.05.  

 

2.5.6.5 Plasmid preparation 

Small cultures of 1-5 ml media were centrifuged at 13,000rpm for 1 minute 

in a desktop centrifuge in order to pellet the bacteria. The supernatant was then 

discarded and the plasmids harvested from the pellet using a Spin Miniprep kit 

(Qiagen) according to the manufacturer’s instructions. Alternatively, 200ml cultures 

were centrifuged using an Avanti J-20I centrifuge (Beckman Coulter) at 5000rpm 4 

OC for 10 minutes. The bacterial pellet was processed using a Plasmid Maxiprep kit 

(Qiagen), according to the manufacturer’s instructions. After purification, plasmid 

DNA was suspended in TE (pH 7.5) or dH2O and stored at either -20 OC. 

 

2.5.6.6 Precipitation of DNA 

In order to precipitate the plasmids to obtain a higher concentration prior to 

transfection, 0.1x (v/v) 3M sodium acetate and 2x (v/v) of 100% ethanol was added 

to the DNA samples and incubated for 30 minutes at -20 OC. The samples were spun 

at maximum speed for 10 minutes at 4 OC. The supernantant was then removed, the 
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pellet was resuspended in 70% ethanol, centrifuged as previously and the pellet 

allowed to air dry for 10 minutes. Finally the pellet was resuspended in a smaller 

volume of H2O or TE. 

 

2.5.7 Cloning techniques 

2.5.7.1 Generation of C-terminally V5 tagged human eEF1B subunit constructs 

In order to create C-terminal V5 tagged eEF1B, eEF1B and eEF1B 

constructs, the Gateway cloning system (Invitrogen) was used. Several human 

cDNA IMAGE clones (Geneservice) for each eEF1B subunit were obtained (table 

2.7), grown on LB with selective antibody, and then multiple bacterial clones were 

isolated, sequenced using the M13 forward and reverse primers as described above 

and the ones that matched the eEF1B subunits sequence were grown in LB with 

selective antibody and bacterial glycerol stocks were stored at -70 OC. In order to 

generate the V5 tagged constructs, the eEF1B cDNA sequence had to be inserted 

into an entry vector pDONR221 (Invitrogen) by bacteriophage (BP) recombination 

enzyme mix reaction containing bacteriophage lambda recombination proteins that 

catalyze the in vitro recombination of PCR  (see below), followed by the entry 

vector recombination to the destination vector which in this case was pcDNA-

DEST40 (Invitrogen) for expression as a C-terminal V5 tagged protein by 

bacteriophage lambda recombination (LR) proteins. 

 

2.5.7.1.1 BP recombination reaction 

The series of recombinations to take place are based on the ability of attB 

sites to drive site-specific recombination. Hence, primers were designed to contain 

part of the eEF1B subunits sequence, the attB site and several base pairs 

complementary to the entry plasmid to facilitate recombination. A few base pairs 

before the start codon, including the Kozak sequence, were included in the forward 
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primer since they facilitate the translation of the protein. The list of the primers used 

is shown in table 2.6. A PCR reaction with these specific primers and using the 

IMAGE clones as templates was performed by Phusion polymerase as described on 

section 2.5.1.2. The PCR product was run on an agarose gel to confirm the size and 

purified using the PCR purification kit as described on section 2.5.3. Once purified, 

the BP reaction was carried out between the purified PCR reaction and the 

pDORN221 vector following the manufacturer’s instructions and used to transform 

competent TOP10 cells (section 2.5.6.1). Clones were isolated, subjected to miniprep 

(section 2.5.6.5), digested using restriction enzymes (section 2.5.7.2.1) to confirm the 

presence and size of the insert and the positive clones were then sequenced.  

 

2.5.7.1.2 LP recombination reaction 

Once a positive clone was identified for each of the eEF1B subunits, the LR 

recombination reaction was carried out between the plasmid DNA obtained from 

the miniprep and pcDNA-DEST40 according to the manufacturer’s instructions and 

used to transform competent TOP10 cells. Once again, bacterial clones were 

isolated, subjected to digestion by restriction enzymes and sequenced.  

 

2.5.7.2 Cloning of transcript variants 

2.5.7.2.1 Restriction enzyme digests 

In order to digest DNA at selective sites, specific restriction enzymes 

obtained from NEB were used. The DNA to be digested was made up in a buffer 

appropriate for the enzyme and the enzyme was added. The reaction was then 

incubated at 37 OC for 1-18 hours. A list of enzymes used, along with their 

corresponding buffers is shown in table 2.9. These products could then be run on an 

agarose gel and the pattern of the digested bands visualised. 
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Table 2.9 List of restriction enzymes specific for each eEF1B subunit and respective buffers 
eEF1B subunit Restriction enzyme Buffer 

eEF1B 
BamHI Buffer 3 (NEB) 

XbaI Buffer 4 (NEB) 

eEF1B 
PstI Buffer 3 (NEB) 
BfaI Buffer 4 (NEB) 

EcoRV Buffer 3 (NEB) 
eEF1B HindIII Buffer 2 (NEB) 

 
 

2.5.7.2.2 Ligation reaction 

In order to ligate DNA inserts containing restriction sites into plasmids, both 

the insert and plasmid were first restriction digested. A 10l ligation reaction was 

then set up containing 1l T4 ligase (Invitrogen), vector and insert in T4 ligase 

buffer (Invitrogen). Approximately 2l of vector was used, along with insert in a 1:3 

molar ratio with it. Reactions were incubated at 24 OC for 1 hour and then 

transformed into TOP10 cells (section 2.5.6.1). 

 

2.5.8 Cell culture assays 

2.5.8.1 Cell cycle arrest 

HeLa cells were incubated with 1M aphidicolin (Sigma), which inhibits 

DNA replication blocking cell cycle at the S-phase, for 24 hours. The media was 

then replaced with new media and samples were taken every 2 hours to be analysed 

by Western blot and flow cytometry. 

 

2.5.8.2 Cell cycle analysis by flow cytometry 

In order to determine the ratio of cells in a particular cell cycle stage, cells 

were resuspended and incubated in 500l propidium iodide staining solution (table 

2.3) for 20 minutes before being analysed using a Coulter EPICS XL flow cytometer 

(Beckman Coulter). Upon addition of the propidium iodide staining solution, the 
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tube was wrapped in foil to protect from light. A dot-plot was drawn of forward 

light scatter (FLS) against side scatter (SSC), which are influenced by size and 

refractive index, and all cells were gated for further analysis except dead cells and 

cell debris by using the EXPO ADC analysis software. A FL3 histogram with a 

linear x axis was used to visualise the DNA content of the cells. No compensation 

was required since only one fluorochrome was used. The flow rate was set to low to 

be more accurate and FL3 histogram was obtained from 10,000 events data. 

Multicycle AV software (Phoenix Flow systems) was used to analyse the output. As 

controls, unsynchronised cells and cells treated with 1M staurosporine (Sigma), 

known to induce reduction of cell growth leading to apoptosis, for 24h were used as 

controls. 

 

2.5.8.3 Reduction of cellular metabolites by Alamar blue 

In order to measure changes metabolic breakdown which is in most cases 

comparable to the cell proliferation, Alamar blue (AbDserotec) was which is 

sensitive, quick and not toxic to the cells. Alamar blue, which acts as a redox 

indicator, was used in an assay according to manufacturer’s instructions and the 

signal was read by fluorometry (Biotech synergy HT Plate Reader - Fisher 

Scientific). The fluorescence readings were taken at excitation of 560nm and 

emission of 590nm. In brief, the cells were incubated with 1:10 Alamar blue solution 

and incubated as normal and the signal read up to 6 hours after when the colour 

changes from blue to pink. This colour change is due to the blue oxidised form of 

resazurin being reduced to the pink resorufin form by mitochondrial respiration 

which is indicating of cell metabolites being converted into adenosine triphosphate 

(ATP) (Abe et al., 2002). A blank control, non-treated cells and mock transfected 

cells were used as controls.  
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2.5.8.4 Apoptosis analysis 

2.5.8.4.1 By flow cytometry 

Annexin-V-Fluos kit (Roche) was used to determine the ratio of apoptotic 

cells detected by flow cytometry, according to the manufacturer’s instructions. 

Annexin V stains cells just before loss of membrane integrity which used together 

with live/dead dye propidium iodide can distinguish early from late apoptotic cells. 

Since the signal from the annexin V bleeds into the propidium iodide signal the 

fluorescence was adjusted and compensated. A dotplot of FL2 vs FL1 was drawn 

and data was obtained from 10,000 events. As a control, non stained cells, cells only 

stained with annexin V or only with propidium iodide and cells treated with 1-3M 

staurosporine for 24h were used as controls.  

 

2.5.8.4.2 By fluorometry 

Fluorometric analysis was also used to detect caspase 3 and 7 activation by 

the use of the Apo-One homogenous caspase3/7 assay (Promega). The fluorescence 

readings were taken at excitation of 560nm and emission of 590nm. This procedure 

was performed according to the manufacturer’s instructions. A blank control, non-

treated cells, mock transfected cells and cells treated with 1M staurosporine were 

used as controls. 
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Chapter 3 – in silico characterisation of eEF1B subunits 

3.1 Introduction 
The composition of the eEF1B complex and the involvement of the complex 

in protein synthesis as the factor responsible for eEF1A:GDP/eEF1A:GTP recycling 

during elongation was well established in various eukaryotic species almost two 

decades ago. Since those purification studies were performed, only a few more 

studies have addressed the possible characteristics or features of the eEF1B subunits 

and their regulation, with most of them being conducted in yeast and Xenopus 

oocytes. The large majority of studies that mentioned eEF1B subunits were 

investigations into overexpressed genes or proteins in tumour samples. In order to 

understand the biology, it is important to catalogue features and characteristics of 

the eEF1B subunits in mammals.  

The GenBank database was searched to identify the genomic location of the 

genes encoding the eEF1B subunits as well as to identify known transcripts and 

proteins and their respective sizes. In addition, the presence of isoforms and related 

sequences such as pseudogenes was checked since these might complicate future 

analysis. The degree of homology between subunits at the mRNA and protein level 

as well as across species was determined. Several expression databases were 

screened for changes in expression levels of eEF1B subunits in tumours. Protein 

characteristics such as antigenicity, hydrophobicity, surface accessibility and protein 

secondary structure were predicted using webtools. In addition, domains, motifs, 

patterns, transmembranes, peptide signals and post-translational modifications 

such as putative kinases phosphorylation sites were predicted.  
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3.2 Results 

3.2.1 Related eEF1B subunit sequences 

Before doing any in depth bioinformatic and molecular analysis, it is 

essential to determine if there are any related sequences, as pseudogenes and 

paralogues (such as the two variants of eEF1A) might complicate further analysis. 

In order to search for related sequences, the nucleotide sequences of mouse and 

human eEF1B subunits were obtained from GenBank, at both gene and mRNA 

levels, and a BLAST search was carried out against the genomic GenBank database. 

Since most amino acids can be derived from multiple codons, eEF1B subunit protein 

sequences were also searched against the same database using tBLASTn (Chapter 2 

for more details). This type of BLAST search first reverse translates the amino acid 

sequence into all its possible codon sequences and then searches the nucleotide 

databases for matching or similar sequences.  

All BLAST searches identified the actual gene-coding sequence as the most 

statistical significant match (100% identity), as expected.  No additional genomic 

locations were found to be similar to the eEF1B subunit gene-coding genes 

suggesting that each eEF1B subunit is encoded by only one gene and that no 

duplicated pseudogenes exist. However, several genomic locations were identified 

as being similar to the mRNA and, if translated in silico, showed a similar protein 

sequence suggesting potential pseudogenes. Figure 3.1 shows the chromosomal 

location of the gene-coding genes and the pseudogenes in both human and mouse 

karyotypes. To analyse these pseudogenes further, their sequence was examined for 

the presence of introns, insertions, deletions, base pairs variations, frame shifts and 

poly-A tail signal. Each pseudogene sequence was translated in silico and the 

predicted protein sequence was compared to the reference protein sequence by 

alignment using ClustalW. Furthermore, the pseudogene sequences were compared 

with ESTs and non-redundant mRNA databases from GenBank to look for mRNA 

expression using BLASTn as well as comparing the predicted protein sequences of  
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the pseudogenes with non-redundant GenBank protein sequence database to 

identify possible protein expression.   

In humans, eight different locations of eEF1B related sequences were 

identified on chromosomes 2, 3, 5, 6, 7, 12, 15 and X, whereas, in mice only one 

pseudogene in chromosome 3 was identified. All of these sequences have some 

amino acid differences compared with the eEF1B protein sequence, the majority 

were intronless and had in-frame stop codons, and one had an inversion. 

(Appendix 3.1).  

The search for eEF1B related sequences also retrieved eight different 

locations on human chromosomes 1, 6, 7, 9, 11, 13, 17 and 19 and three on mouse 

chromosomes 4, 11 and 15. All of these sequences have some amino acid differences 

compared with the eEF1B protein sequence, and the majority had frame-shifts and 

were intronless. In addition, several pseudogenes had truncated N- and C-termini 

(Appendix 3.2).  

In humans, the BLAST search for eEF1B retrieved four different locations 

on human chromosomes 3, 4, 7 and X and nine on mouse chromosomes 1, 4, 7, 13, 

14, 15, 16, 17 and 19. All of the pseudogenes have a few amino acid differences 

compared with the eEF1B reference protein sequence, just over half have poly-A 

tail signals, the majority have frame-shifts and in-frame stop codons, and all have a 

different or absent N-terminus (Appendix 3.3). 

None of the eEF1B subunit related sequences showed evidence of expression 

at either mRNA or protein level. Hence these results suggest that none of the 

pseudogenes are expressed and functional. 
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3.2.2 eEF1B has an extra exon and more transcript variants 

Although each of the eEF1B subunits is encoded by only one gene and no 

expressed pseudogene has been identified, the existence of transcript variants may 

also complicate future studies. It is known that eEF1B in humans has three 

different spliced variants that only vary on their 5’ UTR but that all three transcript 

variants encode for an identical protein and that eEF1B has two isoforms derived 

from alternative splicing, giving rise to two isoforms with one isoform lacking part 

of the N-terminus (Chapter 1). Hence, I attempted to address whether there are any 

other transcript variants that give rise to different previously unknown isoforms. 

To answer this question, the mRNA and protein sequences of each eEF1B 

subunit were submitted to BLASTn search against the expressed sequence tags 

(ESTs) GenBank database and to BLASTp search against the non-redundant protein 

GenBank database respectively (Chapter 2 for more details).  

Both types of BLAST searches for eEF1B and eEF1B only retrieved the 

sequences previously known to exist. In contrast, BLAST searches using the eEF1B 

sequence identified several ESTs and non-redundant proteins with different DNA 

and amino acid sequences. In humans, a BLASTn search with the eEF1B mRNA 

sequence identified several ESTs with a 72bp central deletion. By comparing the 

deleted sequence with the gene structure information on the genomic human 

GenBank database for eEF1B it was found to be exon 5. A search against the non-

redundant protein database also retrieved a protein lacking 24 amino acids 

(accession number: AAH00678) which was found to correspond to the missing exon 

5. In mouse, besides several ESTs with exon 5 missing and the correspondent non-

redundant protein BAB30841, there were a couple of ESTs with a further 57bp 

between exons 5 and 6 which translated into 19 extra amino acids. A non-redundant 

protein was found to be identical to the mouse eEF1B protein sequence with that 

same extra 19 amino acids (AAH13059).  

To investigate further the possible existence of an additional exon leading to 

transcript variants, several gene structure prediction tools were used (see Chapter 

2). All failed to identify the transcript variant without exon 5 and the extra exon 
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between exon 5 and 6. For that reason, all mouse eEF1B ESTs sequences were 

retrieved from GenBank (over 55,000) and filtered for 99% similarity to the genomic 

sequence to exclude poor quality ESTs. The NCBI Spidey tool was used to further 

align the remaining ESTs (over 3,400) to the eEF1B gene sequence. A Perl script 

was designed to retrieve the ESTs gene structure in a table format (Chapter 2 for 

more details). All the transcript variants retrieved from high quality ESTs were 

mapped and this suggested a proposed gene structure with an extra exon (exon 5b) 

(Figure 3.2).  

Is this extra exon only present in mouse tissues? How conserved is the gene 

structure between human and mouse? Are exons and introns sizes similar between 

the two species and between the GEF coding exons of eEF1B and eEF1B?  

The sequences of the genes coding for each eEF1B subunit were compared 

between human and mouse by the multiple sequence alignment tool MUSCLE. The 

gene structures and the conserved base pairs are represented in figure 3.3. The gene 

structure between both species is very similar. The human and mouse gene 

structures of each subunit are shown in Figure 3.3. The DNA sequence encoding the 

C-terminal GEF domain of eEF1B and eEF1B, from human or mouse, is not 

particularly conserved (20%) however the eEF1B mRNA sequence of the GEF 

coding exons compared with the eEF1B nevertheless showed 61% identity. The 

relatively low sequence identity between both GEF coding region of eEF1B and 

eEF1B is mainly because although the gene structure and exon sequence is similar, 

the length of the introns varies considerably.  

The region of mouse exon 5b is not conserved in humans and, 

correspondingly, this extra exon seems not to be present in humans. Another 

difference between the human and the mouse eEF1B gene structure is the presence 

of a much longer 3’ UTR in the mouse sequence, which might affect the mRNA 

stability. 
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3.2.3 Expression at mRNA level 

ESTs and SAGE profiles can be clustered by the tissue source from which 

they originate, giving an idea of where any gene is expressed. Data from the EST 

profiles from NCBI and SAGE data from CGAP were therefore analysed for the 

expression of eEF1B subunits (Chapter 2 for more details). In addition, the SAGE 

data from CGAP also gives information on expression in different forms of cancer. 

eEF1B was found to be widely expressed, with kidney and colon showing a 

lower levels of expression as judged by the number of total ESTs. eEF1B mRNA 

was found to be up-regulated in brain, eye, thyroid, stomach, kidney, colon, 

peritoneum and muscle cancerous tissues when compared to non-cancerous tissues. 

The data available for eEF1B in CGAP was obtained from only a few ESTs and is 

far from comprehensive, but the data from NCBI showed wide spread expression. 

eEF1B was also found to be widely expressed and to be more highly expressed in 

brain, eye, thyroid, lung, kidney, colon, peritoneum, prostate and bone marrow 

cancer compared to non cancerous tissues. 

Since there was evidence of multiple transcript variants for eEF1B and to 

further explore the ESTs expression data available in the GenBank database on 

eEF1B, all the GenBank data from each EST was collected and another Perl script 

was designed to, once again, simplify the output into a table format that lists 

sequence length, sex, developmental stage, mouse strain, tissue and the actual 

sequence (for more details see chapter 2). No difference in gene structure was found 

between males and females, or between different mice strains or developmental 

stages but particular exons seemed to be more highly expressed in particular tissues 

than others. ESTs containing exons 2 and 3, corresponding to transcript variant a 

(isoform a), were all from mouse normal brain, eye, testis tissues and mammary 

carcinoma while all the ESTs missing exons 2 and 3 were from a variety of tissues. 

No apparent correlation was found between eEF1B subunits or eEF1A1 and 

eEF1A2. Carefull interpretation of these results is required since ESTs and SAGE 

data in CGAP database were not experimentally validated and hence only reflect a 

crude measure of ESTs expression in normal versus cancer tissues. 
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3.2.4 Regulation at the transcription level 

The presence of multiple transcript variants of both eEF1B and eEF1B, and 

the tissue restricted expression of a putative transcript variant are indicative of gene 

expression regulation. To gain insight into how a gene is regulated it is important 

first to predict the location of the promoter region and then to search for potential 

regulatory elements preferably in regions conserved between mouse and human. 

Several databases and prediction tools were used to define the location of the 

promoter region (Chapter 2). This putative promoter sequence was than analysed 

against the transcription factors database TRANSFAC at a highly restrictive 

threshold to reduce false positives (chapter 2 for more details). 

All the promoter and CpG island predictions for eEF1B overlapped with 

the non-coding exons 1 and 2 and extended up to 508bp upstream of the gene. One 

promoter prediction tool, FirstEF, failed to predict a promoter region. Several 

transcription factors binding sites were predicted with maximum score and these 

are known to be involved in cell cycle and cell growth (ATF, STAT and CREB), 

immune response (NFkB, c-Rel, XBP-1 and IRF-1) and stress (ATF, NF-E2, XBP-1 

and NRF-2) (Figure 3.4).   

Two promoter prediction tools predicted an eEF1B promoter overlapping 

the first non-coding exon with over 200bp to either side to the exon. Ensembl and 

the CpG island prediction tool predicted a much longer promoter from -485bp 

downstream up to +1324bp upstream of the gene. Several transcription factors 

binding sites were predicted with maximum score and these are known to be 

involved in cell cycle and cell growth (ATF, CREB, STAT, E47, Pbx1b and YY1), 

immune response (NFkB, XBP-1, E47, Olf-1, Pbx1b and c-Rel), stress (AhR:Arnt, 

ATF, NF-E2, XBP-1 and NRF-2) and muscle specific (E47 and YY1) (Figure 3.5).   

All the promoter prediction tools for eEF1B predicted a long promoter 

overlapping with the first and second non-coding exons and extending up to 

2487bp upstream of the gene. One promoter prediction tool, FirstEF, failed to  
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predict a promoter region. The CpG island prediction only overlapped with exon 1 

and extended up to 916bp upstream of the gene. Note that the predicted promoter 

region is not conserved between human and mouse from 1000bp upstream of the 

gene. Several transcription factor binding sites were predicted with maximum score 

and these are known to be involved in cell cycle and cell growth (ATF, CREB, STAT, 

Elk-1, Hox-1.3, RREB and YY1), immune response (NFkB, c-Rel, XBP-1, E47, BSAP 

and IRF-1), stress (ATF, NF-E2, XBP-1, E47, Elk-1, RREB and NRF-2) and muscle 

expressed (E47 and YY1) (Figure 3.6). 

There are also regulatory motifs embedded in mRNA such as 5’ and 3’ 

UTRs, splice sites and miRNA target sites. To search for putative regulatory 

elements in the UTR region, the 5’ and 3’ UTR human and mouse sequences of each 

eEF1B subunit coding gene were analysed by UTRscan tool (Chapter 2). The human 

and mouse mRNA sequence of each eEF1B was also analysed by the RegRNA tool 

for further prediction of regulatory elements and prediction of miRNA target sites 

by microCOSM (Chapter 2).  

The UTRscan did not find any regulatory motif in any of the eEF1B subunits 

5’ and 3’ UTRs. RegRNA tool however predicted 5’ terminal oligopyrimidine 

(5’TOP) sequences in all three subunits. Several miRNAs target sites were predicted 

by microCOSM but none has a known function (Appendix 5). 
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3.2.5 Comparison between subunits 

Cataloguing characteristics at the gene and mRNA level are important but at 

the protein level it is essential to further understand the biology. It is essential to 

determine how similar / identical the subunits are to each other and how conserved 

the several eEF1B protein isoforms are. This was achieved by producing multiple 

sequence alignments using ClustalW with the eEF1B subunits protein sequences as 

the input (Chapter 2 for more details).  

eEF1B subunits have no similarity to eEF1A variants. However between the 

eEF1B subunits, eEF1B shows some homology at the C-terminal with eEF1B with 

around 50% identity (table 3.1). The eEF1A interaction with eEF1B has been 

mapped previously and on Figure 3.7 can be seen that two of those interacting 

residues are different in the eEF1B C-terminus. In contrast, eEF1B showed no 

similarity with any of the subunits.  

 
Table 3.1 Percentage of identity between the human eEF1B subunits 

 eEF1B eEF1Biso a eEF1B iso b eEF1B iso c eEF1B 
eEF1B  X 56 52 51 7 

eEF1B iso a  X 100 85 5 
eEF1B iso b   X 91 6 
eEF1B iso c    X 6 

eEF1B     X 

 
Figure 3.8 shows a multiple sequence alignment of all the mouse eEF1B 

putative isoforms, where isoform a and b are present in databases and all the others 

were derived from translating in silico the ESTs.  
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3.2.6 Protein homologues  

Since eEF1B and eEF1B show homology at the C-terminus whilst eEF1B 

has no resemblance to any of the eEF1B subunits, it is interesting to investigate in 

which eukaryotic species are the eEF1B subunits present and how evolutionary 

conserved they are throughout species?   

To answer these questions, BLASTp was to search GenBank protein and 

UniProt databases to determine the protein sequence of each eEF1B subunit from a 

variety of species. Then, the protein sequences were compared by using the 

ClustalW tool.   

eEF1B homologues are found in unicellular eukaryotes up to humans. 

Appendix 6.1 shows a table with all eEF1B eukaryotic homologues. Their protein 

sequence is conserved, mainly the C-termini. eEF1B protein sequences were found 

to have a percentage identity between 36% (Trypanosoma cruzi and humans) and 

98% (human and rabbit). Figure 3.9 shows a protein sequence alignment from 

representative species.  

However, eEF1B was found to be absent from protozoa, fungi and worms. 

It has homologues in sea urchins, insects, frogs, fish and mammals (Appendix 6.2). 

More than one eEF1B protein was found in sea urchin, Xenopus laevis and 

Brachydanio rerio. The two eEF1B copies are similar to the human and mice 

isoforms b and c. All the homologous sequences were found to be at least 29% 

identical (sea urchin compared to the human protein sequence) (Figure 3.10). The C-

terminus was found to be highly conserved amongst species. Interestingly, several 

species had the longer isoform (isoform a) of eEF1B, previously only described in 

human and mouse (Figure 3.11). A tBLASTn search against ESTs from eukaryotes 

(except human and mouse – previously described) showed all ESTs to be from testis 

and brain, except ESTs extracted from cows where some were found in liver. This 

might indicate possible tissue-specific expression but careful analysis is required 

since it might be restricted to the ESTs library availability. 
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In plants, particularly Arabidopsis thaliana and rice plant Oriza sativa there are 

4 proteins similar to both eEF1B and eEF1B which can be grouped into two 

groups. These have been named as eEF1B and eEF1Bb (Appendix 6.3). All the 4 

proteins are equally identical (41-44%) to both human eEF1B and eEF1B. 

eEF1B was found to have homologues ranging from protozoa up to human 

(Appendix 6.4). Yeast Saccharomyces cerevisiae has two eEF1Bγ homologues, as does 

the plant Arabidopsis thaliana. The rice plant Oryza sativa has three eEF1Bγ proteins.  

By performing multiple sequence alignment using ClustalW, all the homologous 

sequences were found to have a percentage of identity above 28% (protozoa 

compared to human) (Figure 3.12). 

 As the cross species conservation for the eEF1B subunits has been 

determined, it is of interest to search for similar protein motifs. 
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3.2.7 Similar proteins to eEF1B subunits and domains 

Similar proteins/protein regions and domains provide valuable information 

indicating possible large regions and architectures that have the same or similar 

function. The eEF1B subunits protein sequences were compared to other proteins by 

BLASTp and PSI-BLAST to search for distantly related proteins. The eEF1B subunits 

protein sequences were also compared against Pfam domain database and InterPro 

integrated domains and patterns database.  

No similar proteins were retrieved by BLASTp or PSI-BLAST search. 

However, comparison against domains showed several known domains and one 

unknown domain (Figure 3.13). 

eEF1B belongs to the InterPro family Eukaryotic translation elongation 

factor 1, beta/beta'/delta chain (IPR 001326) and Pfam family EF1_GNE (PF00736) 

between amino acids 138-224, as well as Pfam EF1_beta_acid (PF10587) between 

residues 103 and 130.  It was also identified as belonging to the GST C-terminal-like 

SUPERFAMILY SSF47616 (IPR010987) between 8 and 69. eEF1B isoforms were 

found to belong to the InterPro family Eukaryotic translation elongation factor 1 

beta/beta'/delta chain and to Pfam family EF1_GNE, as well as Pfam EF1_beta_acid 

(PF10587). A ZIP protein domain was found to be similar to eEF1B between 

residues 79 and 113 but did not reach a significant level. No domain was found to 

be similar to the N-terminus of eEF1B. Besides the eukaryotic translation 

elongation factor 1 gamma chain domain from both InterPro (IPR001662) and Pfam 

domain (PF00647) between 274 and 380, eEF1B also belongs to InterPro families 

Glutathione S-transferase N (IPR004045) and C terminal (IPR004046) from 3 to 80 

and from 92 to 197 respectively. These domains are conserved throughout species. 

The only exception is eEF1B and eEF1Bb in plants. eEF1B in plants lacks the 

EF1_beta_acid domain but has the  GST C-terminal domain whereas eEF1Bb in 

plants does not have the any other domains except the GEF domain and the 

EF1_beta_acid domain. Summary table as appendix 7. 
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3.2.8 Secondary structure and other structural features 

Not much information is known about the structural features of the eEF1B 

subunits. Only the translation catalytic domains structures have been solved. PHD 

from Predict Protein and Jpred tools were used to predict the secondary structure 

(Chapter 2 for more details). Other structural features such as di-sulphide bonds, 

low complexity regions, protein disorder, transmembrane domains, amino acid 

properties and residue accessibility were also predicted using a variety of tools 

explained in chapter 2 and compared taking into consideration the conservation of 

the residues. 

eEF1B secondary structure was predicted to be mainly loops (48 %), with 

12% -sheets and 40% -helices. About 70% of the amino acids were predicted to be 

exposed particularly a stretch of amino acids in the centre of the eEF1B protein 

which includes the small eEF1B beta_acid domain and a small region of the GST C-

terminus like domain. This same region was classified as a low complexity region 

with almost all disordered regions sitting on the exposed area. The conservation of 

this large exposed region is poor on the N-terminus but extremely high on the C-

terminus indicating a possible conserved GEF function (Figure 3.14).  

The N-terminus of eEF1B isoform a was predicted to be maily loops 

(63.4%). It was predicted to have an extremely high number of exposed residues 

(64%). Three repeats, similar to the residues on the N-terminus of other isoforms, 

were found scattered around the protein N-terminus which corresponded to highly 

conserved regions indicating a potential function. Several low complexity regions 

and disordered regions were predicted, in addition to two di-sulphide bonds 

spanning almost the entire N-terminus of the eEF1B isoform a (Figure 3.15). 

The C-terminus of eEF1B isoform a, which is similar to the full length 

isoforms b and c and the putative isoforms d and e, has a secondary structure that 

was predicted to be mainly loops (around 46%) and -helices (around 45%) for all 

the isoforms. All the isoforms were predicted to have greater than 60% exposed 
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amino acids and the centre of the protein had once again a stretch of exposed 

residues which are conserved and may have a potential function. In this exposed 

region several disordered regions were predicted, as well as a low complexity 

region and a coiled-coiled region. The coiled-coiled region corresponded to the 

EF1_beta_acid domain in eEF1B but was not predicted to be coiled-coiled in the 

same domain present on eEF1B. In addition, other low complexity regions and 

disordered regions were predicted, as well as a leucine zipper region. None of the 

isoform specific regions were predicted to have any structural feature (Figure 3.16).  

The secondary structure for eEF1B was predicted to be mainly loops (48%), 

with 41 % -helices and 11% -sheets. Just over half of the amino acids (53%) were 

predicted to be exposed. The region between the EF1G domain and the GST domain 

was predicted to have two disordered regions and a low complexity region which 

lie on the less conserved and highly exposed area of the eEF1B protein. A small 

conserved disordered region on the exposed C-terminal tail was predicted as well 

as another small highly conserved disordered region on the GST C-terminal 

domain. This latter disordered region is lying adjacent to a predicted buried 

transmembrane region, and another transmembrane region was predicted in the 

EF1G domain by one of the two predicting tools (Figure 3.17).   eEF1B subunits 

structural features summary table is shown in appendix 8. 

 The prediction of secondary structure and structural features provides 

valuable information on possible structurally conserved regions which may have a 

particular function, with disordered regions often found to be the site for protein-

protein interactions and post-translational modifications (reviewed in Russel and 

Gibson, 2008).  
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3.2.9 3D structure prediction and folding 

Although secondary structure prediction gives valuable information, 

prediction of 3D structure folding gives a greater insight into protein structure in a 

non-denatured environment. Each eEF1B subunit protein sequence was compared 

to the crystalised proteins database PDB by BLAST search (Chapter 2 for more 

details). 

The PDB database BLAST search retrieved the eEF1B crystalised catalytic 

domains structures as the most similar protein fold. For eEF1B and all the eEF1B 

isoforms, the crystalised structure PDB:1b64 was predicted to be the most similar to 

the predicted structure between 135-224aa in human eEF1B and between 181-280 

in human eEF1B isoform b. BLAST searches of eEF1B protein sequence against 

PDB identified the PDB:1PBU to be the most similar to the eEF1B C-terminus. 

These results were expected since PDB:1b64 is the crystalised structure of the 

human eEF1B C-terminal domain and PDB:1PBU is the solution structure of the C-

terminal domain of the human eEF1B subunit. Taken together, this suggest that the 

human C-terminal domains of all the eEF1B subunits have been crystalised, the N-

termini have no known three-dimensional structure.  Hence, the protein sequences 

were submitted to a number of folding comparison/prediction tools (Chapter 2 for 

more details). Agape tools predicted a possible protein fold for the eEF1B N-

terminus between 8 and 77 to have a Glutathione S-transferase (GST) C-terminal 

domain folding (SCOP:d1aw9_1) with a E-value 7.00E-07. eEF1B N-terminus did 

not show any similarity to any known protein folding structures, whereas a 

putative GST folding (PDB:1BYE) with a E-value 1.6E-10 was predicted for eEF1B 

N-terminus between residues 5 and 207.  

Since the structure of the human eEF1B C-terminus had been crystalised, 

this structure model was used to predict a 3-D structure model for the identical GEF 

domain in the eEF1B C-terminus by using Modeller (Chapter 2 for more details on 

the method) (Figure 18a). The structure of the eEF1B C-terminus was very similar 
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Figure 3.18 Human eEF1B and eEF1B C-terminal 3-D protein structure model. (a) comparative modelling 
of eEF1B C-terminus (blue) to the eEF1B C-terminus 3-D protein structure (red) by MODELLER and 
visualised in cartons by PyMol. Surface structure of both sides of  (b) eEF1B and (c) eEF1B C-terminus 
with variant residues shown in green, eEF1A interacting residues in pink, and variant and eEF1A interacting 
residues in yellow, visualised by PyMol. (d) Prediction of clefts of putative protein binding by ProFunc  for 
eEF1B C-terminus 3-D structure and eEF1B C-terminus 3-D structure model.  
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to eEF1B C-terminus with a few conformational changes. These changes alter 

slightly the surface exposure of some eEF1A interacting residues (Figure 18b and 

18c). The ProFunc prediction tool was used to predict the location and volume of 

possible protein binding clefts (Chapter 2 for more details). Although the primary, 

secondary and 3-D structure of the eEF1B C-terminus was found to be similar or 

almost identical to the eEF1B C-terminus, the protein binding clefts’ locations and 

volumes changed considerably between the eEF1B and eEF1B C-termini. 

The protein folding prediction can be compared against other proteins and if 

high similarity is found between folding regions is likely that the regions have the 

same or similar functions. However, these results suggest that although eEF1B and 

eEF1B share the C-terminus domain, the protein binding sites might be completely 

different. 
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3.2.10 eEF1B post-translational modifications and motifs 

Gene expression can also be regulated by protein-protein interactions and 

post-translational modifications such as phosphorylation. Most post-translational 

modifications can be predicted by the presence of specific motifs. Motifs are 

conserved elements of a sequence alignment, which are likely to be a structural or 

functional region, and can be used to predict further the occurrence of similar 

motifs on other protein sequences. I have previously mentioned the identification of 

the leucine zipper motif on eEF1B. Other motifs related to protein-protein 

interactions including post-translational modifications and targeting signals remain 

to be predicted. Several tools were used to predict likelihood of phosphorylation 

and the occurrence of other post-translational modifications as well as prediction of 

regions of the eEF1B protein subunits that are similar or identical to motifs with 

known function, such as specific proteins or kinases binding sites and targeting 

signals (Chapter 2 for more details).  

Some form of glycosylation was predicted for all the eEF1B subunits. 

Sulfation was predicted in eEF1B and in the N-terminus of eEF1B isoform a. 

Protein methylation was predicted in eEF1B. Another post-translation 

modification, acetylation of internal lysines and glycation (non-enzymatic 

glycosylation) were also predicted in all eEF1B subunits. SUMOylation motif was 

predicted in eEF1B and eEF1B (Appendix 9). Furthermore, none of the eEF1B 

subunits was predicted to have a signal peptide on the N-terminus. 

Multiple phosphorylation sites and phoshorylation kinases motifs were 

predicted for each eEF1B subunit, where a score of 1 indicates the highest 

probability to be phosphorylated and 0 the lowest (Appendix 10). eEF1B subunits 

are predicted to be phosphorylated by the same kinases, except eEF1B which is 

predicted to be phosphorylated by JAK2 on Y56 (likelihood score of 0.066; where 1.0 

is maximum likelidhood of being phosphorylated) and on Y172 (score of 0.005) but 

not eEF1B or eEF1B. Four conserved phosphorylation sites were predicted in the 
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GEF domain of eEF1B that weren’t present in the equivalent eEF1B residue 

position. eEF1B phosphorylation site S112 (score of 1.0 – maximum likelihood) 

was predicted to be phosphorylated by CKII, where as phosphorylation site S128 

(score of 0.443) was predicted to be phosphorylated by PKC, phosphorylation site 

S174 (score of 0.057) was predicted to be phosphorylated by PKC and Y213 was not 

predicted to be phosphorylated. Phosphorylation sites were also predicted in the 

protein regions coded by eEF1B exons 5 and 6 where the highest score site (score of 

0.351) was predicted to be phosphorylated by ERK, GSK3 and CKD5. 

Targeting signals for several organelles were predicted, including a nuclear 

localization signal (NLS) at position 85 for eEF1B isoform a and a Leucine-rich 

nuclear export signal (NES) binding to the CRM1 exportin protein at eEF1B 

residues 161-174 (Appendix 11).  

Summary diagrams of the predicted post-translational modifications for 

each eEF1B subunit are on Figures 3.19-3.22. 

In addition to all the motifs derived from post-translational modifications 

already described above, by using the same tools, other protein-protein interaction 

motifs were also predicted such as STAT5 binding sites on eEF1B and eEF1B, and 

14-3-3, TRAF2 and TRAF6 binding sites on eEF1B and eEF1B (appendix 11). 

Although these motif search tools used already have an algorithm that 

indicates the likelyhood of a false positive result, it is particularly difficult to 

interpret since motifs are usually only a few residues long and are very common.     
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3.2.11 protein-protein interactions 

Valuable information about the biological importance of protein association 

can be gained from the study from protein-protein interactions with regulatory 

proteins or proteins with other functions. Data from genome-wide and 

comprehensive protein-protein interaction studies are available in several databases 

and can be used to build a network of interactions and possibly even predict 

putative functions. To build a network of interaction data for each eEF1B subunit 

and a network with all common interactors between eEF1 subunits the Cytoscape 

tool was used (Chapter 2 for more details). Cytoscape BINGO plugin (Chapter 2) 

was used to compare the Gene Ontology classifications from all the interactors and 

determine molecular functions and biological processes that are overrepresented in 

a particular network. 

eEF1B was found to interact in two studies with itself and initiation factor 

4A2,in three studies with histidyl-tRNA synthetase and in six studies with eEF1B 

(Figure 3.23). The molecular functions which were more represented in the eEF1B 

interactors network were translation initiation, translation elongation, GTP binding, 

IkappaB kinase, aminoacyl-tRNA ligase activity and helicase activity, while the 

biological processes were regulation of translation initiation and elongation, nuclear 

transport, and proteolysis.  

eEF1B was found to interact with cdc2, CTBP1 and aspartate-tRNA 

synthetase in two studies, with itself, eEF1B, CTBP2, kinectin, glycyl-tRNA 

synthetase and lysyl-tRNA synthetase in three studies, and with valyl-tRNA 

synthetase in four (Figure 3.24). The molecular functions that were found to be 

overrepresented in the eEF1B interactors network were transcription factor 

activity, translation elongation activity, NAD binding, NFkB kinase activity, tRNA 

ligase activity. In addition, the biological processes were mitotic G2 checkpoint, 

regulation of apoptosis, regulation of development, regulation of immune response, 

viral genome replication, translation elongation, ubiquitination. 
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Figure 3.23 eEF1B protein-protein interactions network. The interactions were retrieved from  DIP, 
BIND, BioGrid, HPRD, IntAct and MINT databases. The interactions were analysed and visualised 
using Cytoscape. Sequence identifiers are the proteins’ UNIPROT IDs.  
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Figure 3.24 eEF1B protein-protein interactions network. The interactions were retrieved from  DIP, 
BIND, BioGrid, HPRD, IntAct and MINT databases. The interactions were analysed and visualised 
using Cytoscape. Sequence identifiers are the proteins’ UNIPROT IDs.  
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eEF1B was found to interact with a variety of proteins in two studies 

includin a CoA isomerase, histone-4, heat shock protein (HSP90b), pre-mRNA 

splicing factor, tubulin and two different E3 ubiquitin ligases (Figure 3.25). eEF1B 

was found to interact in three studies with an coatomer subunit, dopamine receptor, 

eEF1B, a GTP-binding protein, an cAMP-dependent protein kinase, cysteinyl-

tRNA synthetase, glutamyl and prolyl-tRNA synthetase, histidyl-tRNA synthetase 

and leucyl-tRNA synthetase. Translationally-controlled tumour protein (TCTP) was 

found to interact with eEF1B as well as eEF1B self interaction was found in four 

studies and eEF1B in six studies. All the other eEF1B subunits interactions had 

only been observed in a single large scale study. Besides the expected eukaryotic 

translation elongation factor activity, RNA binding activity, telomerase activity and 

helicase activity were shown to be the most significant molecular functions of the 

eEF1B interactors. Translation, mRNA processing, nuclear import, transport and 

response to DNA damage were the most significant biological processes. 

Only one or two studies reported interactions between eEF1B subunits and 

eEF1A1 and eEF1A2 specificaly. This low number of reports may reflect the fact that 

only a couple of genome-wide interaction studies differentiate between eEF1A1 and 

eEF1A2, thus careful interpretation of the interaction with eEF1A variants is 

essential. Figure 3.26 shows the minimal protein-protein interaction network 

between eEF1B, eEF1B, eEF1B, eEF1A1 and eEF1A2. A summary of the 

biological processes and molecular functions is in appendix 12. 
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Figure 3.25 eEF1B protein-protein interactions network. The interactions were retrieved from  DIP, 
BIND, BioGrid, HPRD, IntAct and MINT databases. The interactions were analysed and visualised 
using Cytoscape. Sequence identifiers are the proteins’ UNIPROT IDs.  
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Figure 3.26 eEF1 subunits minimal  protein-protein interactions network. The interactions were 
retrieved from DIP, BIND, BioGrid, HPRD, IntAct and MINT databases. The interactions were analysed 
and visualised using Cytoscape. Sequence identifiers are the proteins’ UNIPROT IDs.  
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3.3 Discussion 
The majority of previous studies of eEF1B subunits focused on the 

biochemistry of the complex, mainly in lower eukaryotes. It was essential to 

catalogue the characteristics the eEF1B subunits in higher eukaryotes. In this 

chapter, in silico analysis of the eEF1B subunits described the related sequences or 

pseudogenes, that are thought not to be expressed. It revealed several eEF1B 

transcript variants in both humans and mice with a possible tissue-restricted 

expression. This study also focused on the similarities and differences between the 

subunits at the DNA, RNA and protein level as well as gene regulation and protein-

protein binding (interactome). 

 

3.3.1 eEF1B and related sequences  

Several eEF1B subunit gene-related sequences were identified both in 

human and mouse. However all of these sequences had different gene organisation 

when compared to the structural genes (intronless or just one intron) which 

suggests that just one gene encodes each of the eEF1B subunits and that these 

related sequences did not arise due to duplication (non-processed pseudogenes). In 

contrast, eEF1A has been found to have two protein variants encoded by two 

different genes in a tissue-specific manner (Knudsen et al., 1993).  

All of the eEF1B subunits’ putative pseudogenes had differences in the 

translated amino acid sequence and were not evolutionary conserved between 

mouse and human. Most had frame-shifts, truncated at the 5’ and had internal stop 

codons. Furthermore, the lack of identical mRNA sequences and ESTs suggests that 

expression is not likely, or is only at very low levels.  

Pizzuti et al. (1993) previously described two human eEF1B-related 

sequences, named eEF1B1 and eEF1B3. They suggest that eEF1B3 was a paralogue 

of eEF1B expressed at the mRNA level in brain and muscle (Pizzuti et al., 1993). 
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Later, it was suggested that eEF1B1 was a pseudogene derived from a 

retrotransposition event and suggested that eEF1B3 was a intronless paralogue 

(Chambers et al., 2001). However, with the sequencing data from both mouse and 

human now freely available, it is clear that eEF1B3 has in-frame stop codons. Also 

there is no evidence of eEF1B3 like protein sequences on non-redundant protein 

databases indicating that even if parts of the eEF1B3 pseudogene were transcribed 

in certain tissues, these are unlikely to be translated, or are translated at a low 

frequency, or at a restricted developmental stage. It is likely that eEF1B3, just like all 

of the putative pseudogenes identified for eEF1B subunits and eEF1B1, is a recent 

processed pseudogene derived from integration of mature eEF1B subunit mRNA 

into the genome. Although eEF1B subunit related sequences are thought to be non-

coding, it is important to take their sequence into consideration when for example, 

PCR primers are designed to amplify the coding-genes.  

 

3.3.2 eEF1B alternative splicing and expression 

Two independent studies by Sanders at al. (1991) and von der Kammer et al. 

(1991) identified and cloned the human nucleotide sequence of eEF1B at the same 

time. These, although they were predicted to code for identical amino acid 

sequences, had different 5’UTR sequences derived from alternative non-coding 

exons. The sequences of the different 5’UTRs as well as the 3’UTR did not show any 

UTR regulatory element, however the difference in size of the 3’UTRs might 

suggest different mRNA stability or localisation (Fred and Welsh, 2009). This study 

failed to identify any more transcript variants and all the ESTs and mRNA 

sequences on databases encoded for an identical protein, suggesting that the 

eEF1B gene only codes for one protein. 

GenBank indicates two transcript variants and respective protein isoforms 

for eEF1B, that are evolutionary conserved in human and mouse. Here I showed 

that isoform a is present in fish, birds and mammals whereas isoform b is present in 
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all of those as well as frogs, insects and crustaceans. Another isoform, named 

isoform c for simplicity, was also identified in both humans and mouse. It appeared 

to be derived from alternative splicing, lacking eEF1B exon 5. This isoform had 

previously been found to exist in sea urchins and in Xenopus oocytes (Minella et al., 

1996b, Le Sourd et al., 2006b). By analyzing gene structure using ESTs, an extra 

exon, named exon 5a, was identified between mouse eEF1B exon 5 and 6 and the 

respective amino acid sequence was identified in the non-reference protein 

sequence database. Although information on these transcript variants was derived 

from hundreds of high quality EST sequences, it is possible that more eEF1B 

transcript variants may exist. They just might be expressed at low-levels, might 

have spatially and temporally restricted expression.  

Both eEF1B and eEF1B seemed to have transcript variants derived from 

alternative splicing, but there is no evidence for eEF1B transcript variants. 

Furthermore, the ESTs tissue source indicates that all eEF1B subunits and their 

respective transcript variants are widely expressed except eEF1B transcript variant 

a, that includes exon 1, 2 and 3, which seems to be restricted to eye, testis and brain. 

As mentioned previously, tissue restricted expression in eukaryotic translation 

elongation factors has been previously described for eEF1A1 and eEF1A2 variants 

(Knudsen et al., 1993). Extensive eEF1B subunit expression pattern and distribution 

analysis will be described in the next chapter.  

 

3.3.3 Similarities and differences between subunits 

When eEF1B was cloned and sequenced in the crustacean Artemia it was 

described as having a similar C-terminal to eEF1B (van Damme et al., 1990) and 

found to have guanine nucleotide exchange function (Cormier et al., 1993). The C-

termini of eEF1B and eEF1B, which contain the GEF domains, have a few amino 

acid differences, including two eEF1B specific potential phosphorylations sites 

which are not present in eEF1B and two eEF1A interaction residues which are 
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different. Since the eEF1A interaction residue information was derived from the 

eEF1B C-terminal NMR structure (Perez et al., 1999) and no structure was ever 

solved for the eEF1B C-terminal, it is difficult to determine if those eEF1A 

interaction residues in the equivalent position in eEF1B are still interacting and if 

they have a similar interaction strength. The secondary structure prediction was 

identical between both C-termini. In an attempt to analyse the amino acid variants, 

the eEF1B C-terminal structure was modelled onto the known eEF1B 3-D 

structure. It was found that although the eEF1B and eEF1B C-termini are 

extremely evolutionarily conserved at the primary, secondary and 3-D structures, 

the few amino acid variations are enough to alter completely the prediction of size 

and number of protein-binding clefts. This indicates that the different protein-

binding clefts might have an effect on different functions or more likely on the 

affinity for eEF1A or affinity for one of the eEF1A variants. Interestingly, eEF1A2 

had been found not to interact with any eEF1B protein by yeast-two-hybrid, 

whereas eEF1A1 was found to interacted with both eEF1B and eEF1B (Mansilla et 

al., 2002). No other large-scale interactions studies reported interaction of eEF1A1 

and eEF1B subunits, however one study reported interaction of eEF1A2 with 

eEF1B and eEF1B (Ewing et al., 2007). This study only used eEF1A2 as bait for the 

immunoprecipitation of FLAG-tagged proteins and not eEF1A1. In addition, the 

Mansilla et al. study did not report any eEF1A2 interaction or any positive control. 

Hence, further studies are required to determine if both eEF1A variants bind to 

eEF1B and/or eEF1B.  

eEF1B has a leucine zipper pattern which may be involved in protein-

protein binding or even in self-association (Sanders et al., 1993). eEF1B was found 

in several large scale protein-protein interaction studies to self-associate. Also a 

further conserved coiled-coiled region was identified. Guerruci and colleagues  

suggested that eEF1B originated from an ancestral (Guerrucci et al., 1999) eEF1B 

gene duplication and fusion with a leucine zipper protein. The size and sequence of 
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introns are not conserved between the eEF1B and eEF1B at the 3’ end but the 

similarity in the gene structure supports this hypothesis. All eEF1B subunits have 

multiple low complexity regions and disordered regions that are known to facilitate 

protein binding (Russel and Gibson, 2008). The eEF1B isoform a has repeats in the 

N-terminus which are also likely to be involved in protein binding  (Russel and 

Gibson, 2008). The other eEF1B isoforms identified in this study do not have any 

striking characteristic or feature that may indicate a possible difference in function 

or activity.  

 

Both eEF1B and eEF1B have a GST N-terminus domain, in addition, 

eEF1B has a GST C-terminus domain. The GST domain was previously identified 

in eEF1B and several conflicting reports exist about the possible GST activity 

(Chapter 1). The N-terminus of eEF1B had been previously been suggested to be 

similar to eEF1B and multi-synthetase complex auxiliary protein p18 by Quevillon 

and Mirande (1996) although they didn’t identify the domain as being the GST 

domain (Quevillon and Mirande, 1996). Quevillon and Mirande suggested that p18, 

one of the three multi-synthetase complex auxiliary proteins, should be changed to 

eEF1Be because the of N-terminus similarity and hence the possibility of interaction 

between p18 and eEF1B and eEF1B. Another multi-synthetase complex auxiliary 

protein, p38, also has a GST-C terminal domain and a leucine zipper domain. It has 

been proposed to bind p18 and the coiled-coiled region on the third multi-

synthetase complex auxiliary protein (p43) and is hence thought to be involved in 

the scaffolding of the multi-synthetase complex (Ahn et al., 2003). The yeast eEF1B 

region suggested by Jeppesen et al. (2003) to be involved in the eEF1B dimer 

formation consists of a coiled-coiled region that is not conserved between yeast and 

mammals.  The location of the eEF1B and eEF1B interaction that was suggested 

by Jeppesen and colleagues is in the very poorly conserved GST C-terminal domain 

between yeast and mammals (Jeppesen et al., 2003). It seems likely that if proteins 



                             3. IN SILICO CHARACTERISATION OF EEF1B SUBUNITS 

124 
 

that share the GST-C-terminal domain have the potential to bind to each other, then 

the binding of the N-terminus of eEF1B with the N-terminus of eEF1B might be 

mediated by the conserved GST C-terminal domain present in both proteins. 

Moreover, Valyl-tRNA synthetase, thought to be part of the eEF1H complex 

in certain conditions (Chapter 1 for more details) has a GST C-terminus and N-

terminus domain. The GSTs are known to dimerise strongly, mainly with 

hydrophobic substrate domains (Rossjohn et al., 1998). Interestingly, valyl-tRNA 

synthetase is thought to bind only eEF1B in the eEF1B complex (Motorin Yu et al., 

1988, Jiang et al., 2005) in mammals. It is thought that this binding only occurs in 

higher eukaryotes that have a valyl-tRNA synthetase N-terminal extension (Bec et 

al., 1994). Another eEF1B strong interactor is eEF1B which also has both GST C- 

and N-terminus domains. Due to the similarity of the domains between valyl-tRNA 

synthetase and eEF1B, it is possible to postulate that both the GST N-terminus 

domain of valyl-tRNA synthetase and eEF1B bind to eEF1B. This hypothesis is 

backed up by the fact that binding of eEF1B and eEF1B to eEF1B is non-

competitive, indicating that the proteins have different binding sites on the eEF1B 

N-terminus (Chapter 1). Also, the binding of valyl-tRNA synthetase and eEF1B 

also appears to be non-competitive since purification of the complex and three 

dimensional reconstruction of the complex shows equal molar proportions (Bec et 

al., 1994, Jiang et al., 2005).  

Plants have four sets of GEF proteins that are grouped into two groups of 

two proteins each, and that during the last few years have changed nomenclature 

frequently. Two have no EF1_beta_acid domain but have a GST C-terminal domain, 

while the other two have an EF1_beta_acid domain but no leucine zipper domain. 

Guerrucci et al. (1999) suggested that eEF1Bb and eEF1Bb’ arose from a duplication 

of the ancestor gene in plants. Guerrucci and colleagues, however, didn’t suggest 

which ancestor gene the plants GEF are derived from (Guerrucci et al., 1999). I 

suggest that the groups should have their own nomenclature since they are equally 

different from eEF1B and eEF1B.  
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3.3.4 Putative non-canonical functions 

Data from large-scale protein-protein interactions are freely available and 

together with the prediction of DNA-, RNA-, protein- and phosphorylation-binding 

motifs, are very helpful in pinpointing possible regulatory events or even functions. 

All eEF1B subunits are known to be phosphorylated, with eEF1B showing several 

forms on SDS-PAGE in Xenopus oocytes and a mouse cell line. These were 

suggested to be due to hyper-phosphorylation forms (Chang and Traugh, 1998, 

Minella et al., 1996b). 

As discussed in chapter 1, there are multiple reports of non-canonical 

functions for translation factors. Both eEF1B and eEF1B have GST domains which 

if active, might be implicated in oxidative stress (Chapter 1). Interestingly, binding 

sites of transcription factor known to be involved in stress responses were predicted 

for the putative promoter regions of all eEF1B subunits. Stress-related proteins were 

also identified as eEF1B interactors and predicted to phosphorylate eEF1B subunits. 

In addition, transcription factors and proteins known to regulate the cell cycle were 

found to bind to or were predicted to phosphorylate eEF1B subunits.  

Careful analysis is needed when inferring information from protein 

interaction data and prediction tools. Computational prediction is based on 

statistical models built with selected biological data, followed by testing and 

validation usually on another set of biological data. Although most prediction tools 

are reasonably accurate, they might not be appropriate for particular searches due 

to the restricted set of data on which they were tested. The number of interactions of 

human proteins is estimated to be around 650,000, however less than 10% are 

thought to have been identified (Hart et al., 2006, Stumpf et al., 2008). Large scale 

protein-protein interaction studies give rise to a high number of false positives. 

Abundant proteins such as transcription and translational factors are often 

contaminants or are included as a result of non-specific binding (Bernhard et al., 

2004, Nguyen and Goodrich, 2006). False positive interactions can also arise from 
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differences between in vitro and in vivo interactions, and if two proteins are part of a 

larger complex but do not directly physically interact. For example, eEF1A2 was 

reported to bind to several proteins that are part of the TNF-/NF-B signal 

transduction pathways (Bouwmeester et al., 2004). However this result might be 

slightly biased since the only baits were proteins involved in the TNF-/NK-B 

signalling pathway. These false positive interactions can be reduced by repeated 

experiments (consistency) and by only considering high quality baits and preys, 

switching baits with preys and by treating samples with micrococcal nuclease to 

increase the interaction confidence intervals (Bernhard et al., 2004, Nguyen and 

Goodrich, 2006, Kriegsheim et al., 2008). The ultimate test would be to use several 

different independent protein-protein interaction techniques individually both in 

vivo and in vitro on potential each pair of interactors and test for baits or preys 

mutants.   

 

A catalogue of features and characteristics of eEF1B subunits was identified 

and in silico tools used enabled to suggest regulatory events that may affect the 

expression and function of eEF1B subunits. However, it is vital to confirm or 

dismiss these hypotheses by performing in vitro and in vivo experiments. 
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Chapter 4 – Expression of the eEF1B subunits 

4.1 Introduction 
In the previous chapter, ESTs and SAGE data, indicative of mRNA 

expression, showed widespread expression for all eEF1B subunits. None of the 

pseudogenes and homologues analysed in the previous chapter showed evidence of 

being expressed however data retrieved from databases showed evidence of 

multiple transcript variants for eEF1B in mouse and human. With the exception of 

studies that mention one of the eEF1B subunits as being expressed in a particular 

cell type or organism, no thorough study of expression of each eEF1B subunit has 

yet been published.  

Determining the expression pattern and distribution in mouse and human 

tissues as well as cell lines is important to obtain biological information that can be 

the basis of future studies. In order to characterise the eEF1B subunits in vivo and in 

vitro, mRNA expression in tissues was investigated paying particular attention to 

possible transcript variants. To determine the protein levels, peptides were 

designed and antibodies raised against the peptides. These antibodies were then 

used to explore possible isoforms including tissue-specific forms to determine 

specific cell type expression in adult mice and human tissues as well as during 

different mice developmental stages, to investigate the sub-cellular localisation of 

each subunit, and to assess expression during cell cycle and in wasted mice which 

lack eEF1A2. 

In this study eEF1B subunits were found to be present in all tissues and cell 

lines tested and to have several forms, including tissue-specific isoforms. The 

expression of eEF1B subunits is largely correlated although some clear uncoupled 

expression is seen during development and in terms of tissue distribution in both 

mouse and human. Sub-cellular distribution in tissues varied, including signs of 

nuclear distribution, whereas in cell lines eEF1B subunits were always cytoplasmic 

under the specific conditions tested.  
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4.2 Results 

4.2.1 eEF1B and eEF1B mRNA are ubiquitously expressed in mouse tissues  

EST information for eEF1B and eEF1B retrieved from databases does not 

suggest the presence of any transcript variants (chapter 3) however it is important 

to verify this is by determining expression in vivo. To examine the eEF1B and 

eEF1B mRNA expression pattern, RNA was extracted from mouse tissues, cDNA 

synthesis and RT-PCR was performed. GAPDH primers were used as controls. No 

cDNA was used as a negative PCR control and –RT as a DNA contamination 

control. 

eEF1B mRNA is expressed in all the tissues tested (Figure 4.1a). mRNA of 

eEF1B was also found to be present in all the tissues tested (Figure 4.1b). A single 

band was consistently obtained by RT-PCR with various primer pairs targeting 

different exons for both eEF1B and eEF1B (Figure 4.1c and d). The minus RT 

control showed no genomic DNA contamination and the no cDNA control showed 

no contamination from any of the PCR solutions. 

Both alpha and gamma eEF1B subunits are ubiquitously expressed in all the 

mouse tissues studied. In order to determine the relative mRNA level, quantitative 

RT-PCR was carried out in a variety of mouse tissues. No cDNA was used as a 

negative control and –RT as blank control. Efficiency curves were calculated for 

each tissue extracted, and experiments were carried out in triplicate. Actin, 18S 

rRNA and -2-microglobulin were used as reference genes, and data were 

normalised against the reference genes. Eight mice were analysed, four of each sex, 

and a mean was taken from these eight.  

Efficiency was consistently between 95% and 105% (Figure 4.2e-f) with a 

high correlation of 3.999. The single melting curve shown on Figure 4.2c-d is 

indicative of just one transcript variant. No significant difference in mRNA 

expression between tissues was observed for either eEF1B (Figure 4.2g) or eEF1B 

(Figure 4.2h). Thus, eEF1B and eEF1B are expressed at the mRNA level at a 

similar level in a variety of mouse tissues with no evidence of transcript variants. 

No statistical difference was found between males and females by performing 

students t-test analysis.  
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4.2.2 eEF1B has multiple mRNA transcripts some of which show tissue-

specificity 

In contrast with eEF1B and eEF1B, there is evidence of transcript variants 

for eEF1B. In the Genbank database, eEF1B has two reference mRNA sequence 

variants both in mouse and human, and the in silico data described in the previous 

chapter suggest even more transcript variants. Are the transcript variants 

ubiquitously expressed in mouse tissues? Is there any suggestion of further 

transcript variants in mouse tissues? To attempt to answer these questions, RNA 

was extracted from mouse tissues, cDNA synthesis and RT-PCR was performed as 

before. 

Primers designed specifically to amplify eEF1B transcript variant a (exon 3 

to any other exon), only showed a single band of the expected size in brain and not 

in any other mouse tissues studied (Figure 4.3a). RT-PCR with primers targeting 

any other exons except exon 3 consistently showed multiple bands in all the studied 

tissues. These results indicate the presence of tissue specific transcript variants and 

possibly the existence of previously unsuspected transcript variants. 

Taking in consideration the in silico data (Chapter 3) which suggested the 

presence of a further exon between exon 5 and 6, primers were designed to target 

exon 5a. RT-PCR with these primers and primers targeting further down econs 

amplified a band at the predicted in silico size (Figure 4.3b). Negative controls 

showed no contamination. 

Quantitative RT-PCR as previously described for eEF1B and eEF1B was 

also attempted for eEF1B using a variety of primer sets. All the primer sets showed 

multiple melting curves (Figure 4.3c-d), so it was not possible to accurately quantify 

eEF1B mRNA expression in mouse tissues.  

Both the amplification of multiple bands and multiple melting curves with 

different primer sets suggest the possible presence of more transcript variants. To 

confirm that the RT-PCR amplified bands were eEF1B transcript variants, the 

bands were gel extracted, cloned into pcDNA2.1 (TA cloning) and sequenced. 

Figure 4.3e shows a diagram of sequenced mRNA transcripts. 
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Figure 4.3 Eef1b mRNA expression in normal mouse tissues. RNA was extracted from mouse tissues 
followed by cDNA synthesis and analysed for Eef1b (a) exon 1 or exon 3/4 to exon 8/9; (b) exon 5b to 
exon 8/9 mRNA expression by using semi-quantitative RT-PCR (blue arrows). GAPDH was used as a 
loading control and minus RT  as a RT-PCR control. Eef1b mRNA expression analysed by using real-
time RT-PCR. b-actin, 18S rRNA and b-2-microglobulin were used as reference genes. Graphs 
representative of melting curves of exon 5 to exon 8 (red arrows) (c) and exon 6 to exon 9 (black 
arrows) (d) indicating the presence of multiple amplified products. Diagram of cloned and sequenced 
transcript variants where arrows representpromers location (e)  
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4.2.3 Peptide design and antibody production 

To attempt to study protein expression, antibodies against each of the 

subunits had to be produced as no commercially antibodies were available at the 

beginning of my PhD.  

The peptide sequences chosen to generate antibodies were selected by 

taking in consideration amino acid conservation between human and mouse, 

similarities to other proteins, particularly between subunits, and avoiding both 

mouse and human SNPs that alter coding sequence. Although the complete three-

dimensional structure of either mouse or human proteins has not yet been 

determined, the peptide sequence selection also took in consideration the predicted 

secondary structure, exposed and flexible amino acids and antigenicity properties. 

These properties are important to help the access of the antigen by the antibody. A 

peptide was designed against eEF1B, eEF1B isoform 1, both known eEF1B 

isoforms and eEF1B (Figure 4.4). 

 A terminal C-terminal cysteine was added to each peptide to allow for 

conjugation to keyhole limpet hemocyanin (KLH) improving antigenicity of the 

peptide and allowing the conjugation of the peptide to a SulfoLink column for 

subsequent immunoaffinity purification.  

The KLH-conjugated peptide was then injected into a rabbit as described in 

chapter 2, and the sera from the bleeds was obtained for each peptide. ELISA was 

used to determine if the sera would recognise each specific peptide. Different 

concentrations of sera were tested against different concentrations of peptide. Pre-

immune serum, obtained from the same animal prior to immunisation with the 

peptide, was used as a negative control. An immunoaffinity purified anti-eEF1A2 

antibody obtained through the same process (Helen Newbery, PhD thesis) was also 

used as a control.  

 



                                                                                                 5. EEF1B FUNCTION 

135 
 

 

Fi
gu

re
 4

.4
 P

ro
te

in
 c

ha
ra

ct
er

is
ti

cs
 a

nd
 fe

at
ur

es
 a

nd
 p

ep
tid

e 
se

qu
en

ce
 fo

r 
ea

ch
 e

EF
1B

 s
ub

un
it

. M
ou

se
 a

nd
 h

um
an

 a
lig

ne
d 

pr
ot

ei
n 

se
qu

en
ce

s,
 in

 w
hi

ch
 n

on
-

co
ns

er
ve

d 
re

si
du

es
 a

re
 in

di
ca

te
d 

in
 b

lu
e,

 S
N

Ps
 in

 g
re

en
, G

ST
 id

en
ti

ca
l r

es
id

ue
s 

in
 y

el
lo

w
 a

nd
 e

EF
1B
,

 e
EF

1B


 o
r 

va
ly

l-t
RN

A
 s

yn
th

et
as

e 
id

en
ti

ca
l r

es
id

ue
s 

to
 e

EF
1B


, e
EF

1B
 

an
d 

eE
F1

B
 r

es
pe

ct
iv

el
y 

in
 r

ed
. A

m
in

o 
ac

id
s 

su
rf

ac
e 

pl
ot

te
d 

in
 b

lu
e,

 fl
ex

ib
ili

ty
 p

lo
tt

ed
 in

 r
ed

, P
ar

ke
r 

hy
dr

op
at

hy
 p

lo
tt

ed
 in

 g
re

en
 a

nd
 



                                                                                                 5. EEF1B FUNCTION 

136 
 

The ELISA showed greater response (higher absorbance at 450nm) of the 

sera raised against the peptide compared to the pre-immune serum or the anti-

eEF1A2 antibody (Figure 4.5), suggesting specificity of the sera for the peptide 

against which it was raised.  

To obtain the immunoglobulin component of the sera, the antibodies were 

purified using the ammonium sulphate precipitation. They were further purified 

against the peptide using a SulfoLink column to remove all non-specific bands on a 

Western blot.  
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4.2.4 Protein expression in adult mouse tissues and cell lines 

Although mRNA expression is important and showed ubiquitously 

expression of eEF1B, eEF1B and eEF1B, with eEF1B showing multiple 

transcript variants, little is known about the expression of the cognate proteins. To 

determine the pattern of eEF1B subunit protein expression, proteins were extracted 

from a variety of mouse tissues and protein expression was analysed by Western 

blot with antibodies for eEF1B subunits and GAPDH as a control. Anti--tubulin, 

anti-eEF1A1 and anti-eEF1A2 antibodies were also used as tissue expression 

controls. In addition, commercial antibodies were later available from PTG 

(polyclonal anti-eEF1B2 and anti-eEF1D) and Abnova (nonoclonal anti-eEF1G) and 

most recently, the same samples were also analysed with Abcam monoclonal anti-

eEF1B2, and Bethyl monoclonal anti-eEF1D and anti-eEF1G antibodies.  

 

eEF1B 

Western blotting using the anti-eEF1B antibody showed a band in brain 

and spinal cord tissues of around 50kDa and a smaller band of just above the 

predicted size (29 kDa; predicted 24.7kDa) in all tissues only when overexposed 

(Figure 4.6). A similar pattern was observed with the anti-eEF1B2 polyclonal 

antibody from PTG with the exception that the 50 kDa band was also consistently 

present in the heart and skeletal muscle tissues. The higher bands were consistently 

present even at extreme protein denaturing conditions such as DTT and -

mercaptoethanol and SDS. In addition, this higher band tissue expression correlates 

with eEF1A2 tissue-specific expression. However, the same tissue samples analysed 

with anti-eEF1B2 monoclonal antibody from Abcam only showed the smaller band 

of the predicted size in all the tissues tested. The eEF1B 29kDa band seems to be 

weaker in heart and skeletal muscle tissues with all the antibodies. 
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Figure 4.6 Immunoblot of eEF1B expression in a mouse tissue panel. Protein was extracted from 
mouse tissues and analysed for eEF1B protein expression by (a) eEF1B antibody and by the (b) 
commercial eEF1B antibodies from PTG (polyclonal) and Abcam (monoclonal), and eEF1A2 
expression. GAPDH was used as a loading control.  
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eEF1B  

Although the eEF1B antibodies recognised the peptide against which it was 

raised, it did not reveal any recognisable bands of the correct size using Western 

blotting hence those antibodies were not investigated further. Both anti-eEF1D 

antibodies from PTG and Bethyl detected several bands between 31kDa and 38kDa 

in all the tissues, the predicted size for transcript variant b being 31.3kDa (Figure 

4.7). A slightly higher band around 38kDa was observed consistently on mouse 

skeletal muscle tissue but not in any of the other tissues. A higher band of around 

75kDa was also observed in testis, brain and spinal cord tissues at longer exposure 

time with the predicted size for transcript variant a being 72.9kDa.  

 

eEF1B 

 All the antibodies for eEF1B showed bands of the predicted size (50.1kDa) 

in all tissues (Figure 4.8). The anti-eEF1G antibody raised in rabbit showed similar 

amounts of eEF1B in all mouse tissues with exception of muscle tissue which 

showed lower protein expression compared with GAPDH. The commercial 

antibodies from Abnova and Bethyl showed similar amounts of eEF1B in all mouse 

tissues compared with GAPDH. In addition, since both of these antibodies were 

raised in mouse, bands around 52kDa and 25kDa are also present and are assumed 

to correspond to the immunoglobulin heavy chain and light chain respectively and 

the variance observed between tissues a reflection of the amount of 

immunoglobulin found in those tissues. 

GADPH protein expression was detected in all the tissues tested, and 

eEF1A1 and eEF1A2 showed their expected tissue specific protein expression. 
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Figure 4.7 Immunoblot of eEF1B expression in a mouse tissue panel. Protein was extracted from 
mouse tissues and analysed for eEF1B protein expression by the commercial eEF1B antibodies 
from PTG (polyclonal) and Bethyl (monoclonal), and a-tubulin expression. GAPDH was used as a 
loading control.  
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Figure 4.8 Immunoblot of eEF1B expression in a mouse tissue panel. Protein was extracted from 
mouse tissues and analysed for eEF1B protein expression by (a) eEF1B antibody and by the (b) 
commercial eEF1B antibodies from PTG and Bethyl, and eEF1A1 expression. GAPDH was used as a 
loading control. Immunoglobulins (Ig) both heavy and light chains can be observed because the 
antibodies were raised in the same species as the samples (mouse). 
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eEF1B subunits are present in all mouse tissues tested. These results suggest 

that eEF1B has a possible heavier tissue specific isoform although there is no 

evidence from in vitro studies nor from mRNA transcripts. eEF1B has tissue 

specific isoforms and possibly the existence of more protein isoforms or post-

translational modifications to account for the several bands seem in Western blots. 

In contrast, eEF1B appears to have only one protein isoform. 

After purification of one bleed, the SulfoLink column kit was discontinued 

and replaced with another kit which involved a series of centrifugation steps and 

lower amounts. I was not able to obtain antibody concentration any higher than 

0.1mg/ml. Even using dilutions as low as 1:2 it was not enough to visualise the 

bands on a Western blot that I had previously obtain with the sera purified with the 

previous kit. Commercial antibodies against eEF1B and eEF1B from PTG and 

against eEF1B from Abnova were available by then and all of the experiments 

described in this thesis were done using those commercial antibodies unless 

otherwise stated. 

Since the eEF1B subunits were found to be present in all adult mouse tissues 

studied, a variety of cell lines from different tissue origins and different species 

were examined for the expression of eEF1B subunits proteins analysed by Western 

blot with antibodies for eEF1B subunits and GAPDH as a control. 

All three eEF1B subunits were detected at the protein level in all the cell 

lines tested (Figure 4.9). The species and cell types from which the cell lines arose 

are shown in table 2.4 (Chapter 2). eEF1B showed stronger protein expression in 

HepG2 and NSC-34 and weaker in Lan5, NIH3T3, SHSY5Y, Rat2 and Cos7 

compared with GAPDH. eEF1B showed only one single band at the predicted size 

(29kDa). Immunobloting with the antibody against eEF1B showed once again 

several bands between 31 and 38kDa in all cell lines. Rat2 cells showed very low 

eEF1B expression while all the other cell lines, except NSC-34 and HepG2, showed  
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Figure 4.9 Immunoblot of eEF1B subunits expression in a variety of cell lines. Protein was extracted 
from different cell lines and analysed for eEF1B, eEF1B and eEF1B protein expression. GAPDH 
was used as a loading control.  
 
 

 

highly levels of protein expression compared with GAPDH. At a longer exposure 

time, higher bands of around 75Kda in the cell lines Lan5, SHSY5Y and NSC-34 

were observed. eEF1B showed a similar expression to eEF1B, stronger protein 

expression in HepG2 cell and weaker in A549, Lan5, NIH3T3 and SHSY5Y 

compared with GAPDH.  

eEF1B subunits consistently showed protein expression in all the cell lines 

studied. The mouse brain, spinal cord and testis tissue-specific eEF1B isoform a 

was found to be present in the human neuroblastomas cell lines (Lan5 and SHS5Y5) 

and mouse neuroblastoma/motor neuron hybrid (NSC-34) but not in the other cell 

lines.  

 

 



                                                                                                 5. EEF1B FUNCTION 

145 
 

4.2.5 Mouse development  

The complexity of the eEF1B subunits protein expression in adult mouse 

tissues together with the fact that expression of eEF1A1 and eEF1A2 change 

through mouse development (Chapter 1), raises the question of whether eEF1B 

subunits expression also changes through development and if so when? To address 

this question, proteins were extracted from a variety of mouse tissues at various 

stages of development and protein expression was analysed by Western blot with 

antibodies for eEF1B subunits and GAPDH as a control.  

A Western blot with mouse brain and liver tissues ranging from embryonic 

to 4 months old mice showed protein expression pattern differences for eEF1B and 

eEF1B but not eEF1B (Figure 4.10a) compared with GAPDH protein expression. 

eEF1B were shown to be absent or at very low levels in both brain and liver from 

embryos 15.5 days. The protein levels of eEF1B in post-natal brain and liver tissues 

were detectable and similar amongst all the development stages tested. Expression 

of eEF1B proteins ranging from 31-38kDa showed high levels in the embryonic 

stage and post-natal day 1 while all the other developmental stages tested showed 

moderate protein levels compared with GAPDH. GAPDH protein was present in all 

the tissues studied.  

To study the protein expression of young mice before the eEF1A1/eEF1A2 

switch, protein was extracted from 10days post natal mouse tissues and analysed by 

Western blot as previously described. No obvious difference in the protein 

expression of eEF1B subunits was observed from 10 days post-natal mice (Figure 

4.10b) compared with adult mouse tissue protein expression (Figure 4.6-4.8).  

To further investigate the protein expression change of eEF1B and eEF1B 

in embryonic (E15.5 and E16.5) and new born mice (post-natal day 1), 

immunohistochemistry with eEF1B commercial antibodies was used to study the 

expression distribution in brain tissues. Immunohistochemistry using different 

antigen retrieval techniques was performed and always gave identical results 

indicating the likelihood of the signal being specific for each antibody. Incubation  
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Figure 4.10 Immunoblot of eEF1B subunits expression during various mouse developmental stages. 
Protein was extracted from mouse tissues at different developmental stages and analysed for 
eEF1B, eEF1B and eEF1B protein expression.  (a) Brain and liver tissue eEF1B protein expression 
during embryonic and adult stages. (b) eEF1B protein expression in various tissues from P10 mice. 
GAPDH was used as a loading control. 
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with secondary antibody and in the absence of any primary antibody was used as a 

negative control.  

Immunohistochemistry of transverse sections on embryonic brain mouse 

tissues, performed by Chris Beirne, showed consistently strong eEF1B staining 

throughout the brain at E16.5 (Figure 4.11g-h) but absent or highly reduced staining 

at E15.5 (Figure 4.11e-f). The eEF1B staining appeared to be cytoplasmic. eEF1B 

showed strong staining throughout the brain at E15.5 (Figure 4.11i-j) and E16.5 

(Figure 4.11k-l) embryonic stages studied. The eEF1B staining at both embryonic 

stages was cytoplasmic although at E16.5 there is some potential nuclear staining. 

eEF1B showed strong staining in embryonic brain, similar at both E15.5 (Figure 

4.11m-n) and E16.5 (Figure 4.11o-p) stages and it appeared to be both cytoplasmic 

and nuclear staining. The expression level of the eEF1B higher molecular weight 

band correlated with the lower expected molecular weight suggesting dimmer 

formation or a close relation. The negative control showed no staining (Figure 4.11a-

d).  

Immunohistochemistry of sagittal section of post-natal day 1 mouse brain 

showed strong expression of all eEF1B subunits. Anti-eEF1B antibody stained 

strongly neurons in the brain cortex and moderate staining of the hippocampus 

(Figure 4.11s). eEF1B also showed very strong cytoplasmic and nuclear staining in 

Purkinje cells and moderate to strong staining of the granular cells (Figure 4.11t). A 

similar staining profile was showed by eEF1B, with strong staining of neurons in 

the cortex, moderate staining in the hippocampus (Figure 4.11u), strong staining in 

Purkinje cells and some granular cells in addition to some areas of the molecular 

layer of the cerebellum (Figure 4.11v). As with eEF1B, eEF1B also showed 

cytoplasmic and nuclear staining. The eEF1B staining in the hippocampus was 

weak and in brain cortex neurons was weak to moderate (Figure 4.11w). eEF1B 

stained strongly the cytoplasm and nuclei of Purkinje cells and weakly to 

moderately stained of the granular cells in the cerebellum (Figure 4.11x). The 

secondary only control showed no obvious staining (Figure 4.11q-r). 
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Figure 4.11 Immunohistochemical analysis of eEF1B subunits protein distribution in embryonic and 
post-natal day 1 mice. Proteins detected through primary antibody incubation, HRP mouse+rabbit 
secondary antibody and subsequent incubation with DAB. Positive signal is indicated by the 
presence of brown DAB reaction product. eEF1B (e - h), eEF1B (c - g) and eEF1B (d - h) protein 
expression in E15.5 and E16.5 embryonic stage at two different magnifications. Performed by Chris 
Beirne. Incubation with secondary antibody only was used as negative control (a - e). Bar (top left 
micrograph) represents 200 and 50 mm respectively. eEF1B (s and t), eEF1B (u and v) and eEF1B 
(w and x) protein expression in post-natal day 1 mouse hippocampus and cerebellum. Incubation 
with secondary antibody only was used as negative control (q and r). Representative images shown. 
Bar (top left micrograph) represents 200 mm.  
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These results point out that expression of eEF1B subunits differs throughout 

development, particularly with eEF1B and eEF1B. The reduced eEF1B protein 

expression at E15.5 was confirmed by Western blot and by immunohistochemistry. 

These results also suggest that the generally accepted eEF1B complex tertiary 

structure may be different at different stages of development as only eEF1B and 

eEF1B are detectable at E15.5. It is possible that a heterodimer eEF1B exists at 

some stages. Furthermore, these results also suggest the presence of eEF1B subunits 

in the cytoplasm and nuclei of some cells in vivo. 
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4.2.6 Immunohistochemical analysis of eEF1B subunits in a variety of mouse 
and human tissues 

To better characterise the eEF1B subunits it was essential to study the 

expression distribution profile of eEF1B subunits in different cell types using 

normal adult mouse and human tissues. In order to investigate this, 

immunohistochemical analysis using eEF1B antibodies on a variety of mouse and 

human tissues was performed. The human tissues are from different ages and sex as 

shown in table 2.6 while the mouse tissues are all from the same mice. Secondary 

antibody only was used as a control. For the sake of simplicity, the analysis of 

tissues which were obtained from correspondent human and mouse orgains are 

presented first, followed by the tissues for which a corresponding human sample 

was not available.  

 

4.2.6.1 Liver 

The liver has a diversity of functions including absorption, storage, synthesis 

and breakdown of a variety of substances. This includes, synthesis and secretion of 

plasma proteins, production and secretion of bile, storage of glycogen, synthesis of 

urea and degradation of drugs and toxic substances. The bulk of the liver is 

organized into lobules with a central vein and hepatocytes surrounding it. 

Hepatocytes are polygonal in shape, with distinct round nuclei, one or two 

prominent nucleoli and large cytoplasm. Hepatocytes can be in contact with either 

sinusoids or neighboring hepatocytes. The bile canaliculi network passes through 

the intercellular spaces of some neighboring hepatocytes, collecting and carrying 

bile towards bile ducts.  

In the cross section of the human liver, eEF1B showed weak staining in the 

cytoplasm of hepatocytes (Figure 4.12b). eEF1B also stained the cytoplasm of 

hepatocytes (Figure 4.12c). eEF1B presented widespread staining with some 

hepatocyte nuclei staining strongly (Figure 4.12d). Incubation with secondary  
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antibody, in the absence of any primary antibody, showed very weak staining 

restricted to the central vein (Figure 4.12a). 

In mouse liver cross sections, the cytoplasm of hepatocytes were weakly 

stained by the anti-eEF1B antibody (Figure 4.12f). eEF1B (Figure 4.12g) and 

eEF1B (Figure 4.12h) show a similar pattern of staining to eEF1B. The no primary 

antibody control showed very weak staining restricted to the central vein (Figure 

4.12e). 

 

4.2.6.2 Lung 

In the lung, large bronchioles are lined by ciliated columnar epithelium and 

smaller bronchioles by non-ciliated columnar epithelium. Small bronchioles branch 

into a cluster of alveoli where the gas exchange occurs. Alveoli consist mainly of 

single epithelial layer, numerous capillaries and connective tissue. Besides 

macrophages, in alveoli there are two major cell types. Pneumocytes type I are 

flattened cells which are unable to replicate. They form the simple squamous 

epithelium, thin lining that facilitates the gas exchange. Pneumocyte type II cells are 

cuboidal in shape and contain cytosomes, the source of pulmonary surfactant that 

coats alveoli essential to prevent collapsing of the alveoli.  

In cross sections of the human lung, showing a number of alveoli, eEF1B 

was found to stain strongly the cytoplasm of what appear to be pneumocyte type II 

cells and most of the pneumocyte type I cells as well apparent nuclear staining 

(Figure 4.13b).  eEF1B stained heavily the cytoplasm of pneumocyte cells, 

including nuclear staining in a few cells (Figure 4.13c). eEF1B showed widespread 

staining both cytoplasmic and nuclear staining (Figure 4.13d). The negative control 

showed no staining (Figure 4.13a).  

In the mouse lung cross sections, in addition to the alveoli, a large 

bronchiole and smooth muscle could be identified. Smooth muscle, the cytoplasm 

of pneumocyte cells and the nucleus of some pneumocyte cells were stained 

strongly by the anti-eEF1B antibody (Figure 4.13f). Ciliated columnar epithelium  
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from the large bronchiole present in this section showed little to no eEF1B 

staining. eEF1B stained in smooth muscle, and showed widespread cytoplasmic 

expression of pneumocytes, nuclear expression in some pneumocytes and weak 

staining in the ciliated columnar epithelium of the bronchiole (Figure 4.13g). eEF1B 

showed smooth muscle staining, widespread cytoplasmic staining of pneumocytes 

and ciliated columnar epithelium of the bronchiole, with some pneumocytes 

showing stronger nuclear staining (Figure 4.13h). The secondary antibody only 

control showed some very dark staining nuclei (Figure 4.13e). This might indicate 

that the nuclear staining observed in some pneumocytes may be an artefact.  

 

4.2.6.3 Spleen 

The spleen has two major functional zones, the white pulp and red pulp. 

Around a central artery, the white pulp is arranged as a cylindrical sheath of 

lymphocytes, called periarteriolar lymphoid sheath (PALS) which is rich in T-

lymphocytes. Follicles with a germinal centre may also be present rich in B-

lymphocytes. The red pulp surrounds the white pulp. The red pulp consists of 

cords of Billroth (also known as splenic cords) surrounded by sinusoids and the red 

pulp is where the mechanical filtration of red blood cells occurs. 

In human spleen, eEF1B was found to stain heavily the white pulp, namely 

the cytoplasm of some lymphocytes, and in a few cases the cytoplasm and nucleus 

(Figure 4.14b). No eEF1B staining was present in the red pulp. eEF1B staining 

was similar to eEF1B (Figure 4.14c). eEF1B showed no or little staining in the 

white pulp (Figure 4.14d). However, eEF1B stained some splenic cells nuclei in the 

red pulp. The control secondary antibody showed some dark staining nuclei which 

may indicate that nuclear staining observed with the specific antibodies might be an 

artefact (Figure 4.14a). 
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In mouse spleen cross sections, eEF1B strong staining was found to be  

restricted to some lymphocytes, some of these showed exclusively cytoplasmic 

staining while others showed both cytoplasmic and nuclear staining (Figure 4.14f). 

The splenic red pulp was not stained by the anti-eEF1B antibody. eEF1B stained 

strongly the cytoplasm and nuclei of lymphocytes and stained weakly the red pulp 

splenic cells (Figure 4.14g). eEF1B showed little staining  of the white pulp. Heavy 

eEF1B staining was present in the red pulp speenic cells with some staining in the 

nuclei and cytoplasm (Figure 4.14h). The no primary antibody incubation control 

showed no staining (Figure 4.14e). 

 

4.2.5.1 Kidney 

The Nephron is the functional unit of the kidneys. It consists of a renal 

corpuscle and renal tubules. Renal corpuscles produce a plasma filtrate that is 

processed into urine by the tubules. The Bowman’s capsule is the outer epithelial 

wall. The glomerulus is the little nest of cells which makes most of the corpuscle. It 

contains numerous capillaries and epithelial cells covering the capillaries called 

podocytes. Proximal tubules are long tortuous tubes that carry the fluid away from 

the Bowman’s space. They reabsorb most minerals and other nutrients.  Proximal 

tubules are lined by a simple cuboidal epithelium with microvilli at the apical end 

to provide increased surface area. The distal tubules are also convoluted but shorter 

than proximal tubules, with a smoother apical surface and smaller cells. Therefore it 

is more likely that in a section one will see a nucleus in every profile of distal 

tubules. In contrast, proximal tubule cells profiles may not show as many nuclei. It’s 

lined by a simple cuboidal epithelium whose cells, unlike those of proximal tubules, 

have a smoother apical surface, conferring the appearance of a larger and clearer 

lumen. 

eEF1B in human kidney showed strong mostly cytoplasmic staining in 

distal tubules and podocytes and weak staining in the proximal tubules (Figure 
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4.15b). In some distal tubules cells and podocytes, eEF1B staining seemed to be 

nuclear as well as cytoplasmic. eEF1B expression pattern was found to be similar 

to eEF1B in human kidney (Figure 4.15c). eEF1B showed widespread staining 

(Figure 4.15d). The control showed no staining (Figure 4.15a). 

In mouse kidney, eEF1B was found to stain strongly the cytoplasm of distal 

tubules, podocytes and Bowman’s capsules epithelial cells and to stain weakly the 

proximal tubules (Figure 4.15f).  eEF1B showed very strong cytoplasmic staining of 

the distal tubules epithelia, strong staining of the podocytes, moderate staining of 

the Bowman’s capsules epithelia and weak staining of the proximal tubules 

epithelia (Figure 4.15g). Some cells of distal tubules and podocytes appeared to 

show cytoplasmic and nuclear staining. eEF1B showed wide spread staining, 

stronger in the cytoplasm of epithelial cells from distal tubules, podocytes and 

Bowmans’s capsule epithelia (Figure 4.15h). Some cells appeared to have nuclear 

staining. The secondary antibody only control showed no staining (Figure 4.15e).  

 

4.2.6.4 Pancreas 

Pancreas is both an endocrine and exocrine gland. The exocrine part of the 

pancreas consists of tubuloacinar glands made up of pyramidal shapes cells clusters 

designated acini. These cells synthesise and secrete proteolytic enzymes into the 

intestine. The endocrine secretion of several hormones into blood is by the cells of 

the islets of Langerhans. Islets of Langerhans are small nests of cells scattered 

throughout the pancreas. The islets of Langerhans contain several endocrine cell 

types secreting insulin (beta cells), glucagon (alpha cells), somatostatin (delta cells), 

and pancreatic polypeptide (PP cells). These endocrine cells are difficult to 

distinguish in routine preparations but may be identified with special stains. Insulin 

stimulates the synthesis of glycogen, protein and fatty acids.  
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eEF1B in cross section of the human pancreas showed widespread weak 

staining throughout the pancreas and very strong staining in all endocrine cells 

present in the pancreatic islets (Figure 4.16b). eEF1B expression is similar to 

eEF1B with the exception that in the islets of Langerhans it stains moderately some 

endocrine cells (Figure 4.16c). On the other hand, eEF1B showed weak widespread 

staining, once again stronger in the pancreatic islets, in particular some endocrine 

cells (Figure 4.16d). The negative control showed no staining (Figure 4.16a).  

In mouse pancreas, the islets of Langerhans stained very strongly for 

eEF1B showing both cytoplasmic and nuclear staining (Figure 4.16f). eEF1B 

showed weak to moderate staining in some nuclei of pancreatic cells, moderate 

staining of the nuclei pancreatic islets and some endocrine cells were stained 

strongly (Figure 4.16g). eEF1B showed a similar pattern of expression to eEF1B 

except that more pancreatic cells were stained strongly (Figure 4.16h).  The no 

primary antibody incubation control showed no staining (Figure 4.16e). 

 

4.2.6.5 Skeletal muscle 

Skeletal muscle consists of long, tubular cells also designated muscle fibers. 

In muscle fiber is a multinucleate cell where most nuclei are located in the periphery 

of the muscle fiber. 

In longitudinal sections of human skeletal muscle, where cross-striations 

may be seen, eEF1B showed cytoplasmic weak staining (Figure 4.17b), as did 

eEF1B (Figure 4.17c) and eEF1B (Figure 4.17d). The negative control showed no 

staining (Figure 4.17a). 

Both eEF1B (Figure 4.17f) and eEF1B (Figure 4.17g) showed staining of the 

cytoplasm in mouse skeletal muscle sections, whereas eEF1B stained weakly the 

cytoplasm and strongly the nuclei of muscle cells (Figure 4.17h). The no primary 

antibody incubation control showed no staining (Figure 4.17e). 
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4.2.6.6 Heart 

Cardiac muscle consists of muscle cells with one central nucleus. Cardiac 

muscle cells often form acute angles and are connected by intercalated discs. Unlike 

skeletal muscle, each cardiac muscle cell may attach to two or more other cells 

giving the appearance of branching. Cross-striations may also be seen. 

eEF1B showed widespread cytoplasmic staining with some nuclei staining 

strongly in a cross section of human heart muscle (Figure 4.18b). A similar 

expression pattern was observed for eEF1B (Figure 4.18c) and eEF1B (Figure 

4.18d). The secondary antibody only control showed no staining (Figure 4.18a). 

Longitudinal sections of mouse heart muscle incubated with eEF1B 

antibody showed cytoplasmic staining, particularly strong around the nucleus 

(Figure 4.18f). Furthermore, eEF1B showed widespread cytoplasmic staining of the 

heart muscle cells (Figure 4.18g). However, eEF1B showed in addition to 

widespread cytoplasmic staining, strong staining in some nuclei but absent in 

others (Figure 4.18h). The negative control showed no staining (Figure 4.18fe). 

  

4.2.6.7 Brain 

The cerebral cortex has a complex composition, with many different nerve 

cell types. These include many local interneurones, such as stellate and granule 

cells, as well as much larger and conspicuous pyramidal cells. The cerebral cortex is 

traditionally divided into layers with roughly similar features. The molecular layer 

(layer I) is the outermost layer, which contains relatively few nerve cell bodies. It is 

composed largely of dendrites, axon terminals and glial cells. The outer granular 

layer (layer II) typically contains many small cells (granule cells). The outer 

pyramidal layer (layer III) contains the cell bodies of small pyramidal cells. The 

inner granular layer (layer IV) contains axons such as sensory axons from the 

thalamus. The inner pyramidal layer (layer V) contains cell bodies of large 

pyramidal cells. Axons from pyramidal cells typically project to more distant 
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 cortical regions, to other parts of the brain or to lower centres such as spinal motor 

neurons. Layer VI is a layer of pleiomorphic cells, containing cells of varied size and 

shape. The cytoplasm of many neurones contains fairly large amounts of rough 

endoplasmic reticulum which may aggregate to form Nissil-bodies. Axon are 

processes specialised for conducting signals from one nerve cell to another. 

Dendrites are processes specialised for receiving and integrating signals from other 

nerve cells.  

CNS tissue also contains several types of non-neuronal, supporting cells, 

neuroglia. Astrocytes (or astroglia) are star-shaped cells that provide metabolic and 

physical support to the neurones. Oligodendrocytes (or oligoglia) have fewer and 

shorter processes and they form myelin sheaths around axons. Microglia are small 

cells with complex shapes and their function is similar to macrophages. Glial cell 

nuclei are smaller than those of neurons, oval in shape with heterochromatin 

bundles, and no obvious cytoplasm.  

In a human section of the brain eEF1B showed strong cytoplasmic and 

moderate nuclear staining in some neurons and no staining in others (Figure *.19b). 

eEF1B was found to stain very strongly the cytoplasm of some neurons, showed 

moderate nuclear and cytoplasmic staining of another sub-population of neurons 

and no staining in others (Figure 4.19c). eEF1B showed weak cytoplasmic staining 

of neurons as well as staining of the axons (Figure 4.19d). The no primary antibody 

incubation control showed no staining (Figure 4.19a). 

eEF1B in a mouse brain section showed cytoplasmic staining in a sub-

population of neurons and in other neuronal cells no signal was detected (Figure 

4.19f). Once again, eEF1B showed varied staining of neurons, some cytoplasmic 

staining, some strong nuclear staining and others no staining was observed (Figure 

4.19g). eEF1B also showed a varied staining of the neurons with some staining and 

others not (Figure 4.19h). The control secondary antibody showed no staining 

(Figure 4.19e). 
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4.2.6.8 Spinal cord 

Spinal cord consists of white matter surrounding the dorsal and ventral 

horns, and the grey matter where the neurons are present. Spinal motor neurons are 

present in the ventral horn and have very long axons in the peripheral nerves 

extending out to the muscles. 

 In a mouse spinal cord transverse section eEF1B showed very strong 

cytoplasmic and nuclear staining in some motor neurons, slightly weaker in others 

and just perinuclear staining or no staining in others (Figure 4.20b). eEF1B showed 

a similar expression pattern to eEF1B but with stronger nuclear than cytoplasmic 

staining (Figure 4.20c). eEF1B showed weak cytoplasmic and strong nuclear 

staining in some motor neurons and moderate cytoplamic and nuclear in other 

motor neurons, in addition, it showed apparently nuclear staining in other cells 

(Figure 4.20d). NeuN stained neurons and was used as a neuronal specific marker 

(Figure 4.20e). The negative control showed no staining (Figure 4.20a). 

 

4.2.6.9 Colon 

The main function of the colon is the reabsorption of water and inorganic 

salts. The mucosa has a simple columnar epithelium shaped into straight tubular 

crypts, crypts of Lieberkuhn. The Goblet cells are interspersed among absorptive 

cells and secrete mucus. The crypts are separated by the lamina propria, consisting 

of connective tissue, white blood cells, capillaries and smooth muscle. The 

muscularis mucosa forms a thin layer of muscle fibres beneath the ends of the 

crypts and the mucosa externa consists of smooth muscle. 

 A transverse or cross section of mouse colon tissue shows the packed 

arrangement of glands in the mucosa, in which eEF1B was detected in the columnar  
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epithelium of the mucosa. eEF1B (Figure 4.21b), eEF1B (Figure 4.21c) and eEF1B 

(Figure 4.21d) showed varied staining that is difficult to interpret. The secondary 

antibody only control showed no staining (Figure 4.21a).  

 

4.2.6.10 Testis 

 The testis is responsible for the production of the spermatozoa and the 

secretion of hormones. The testis is surrounded by a capsule, the tunica albuginea 

and the bulk consists of lobules with seminiferous tubules. Interstitial cells that lie 

in the space between adjoining tubules are consist mostly of Leydig cells (small 

round nucleus), the main source of testosterone in the male. Sertoli cells are non-

proliferating cells easily recognised by their elongated, pale-staining nucleus and 

conspicuous nucleolus. The spermatogenic cells consist of successive generations 

arranged in concentric layers. The spermatogonia are found at the periphery. 

Spermatocytes, which have large round nuclei with a distinctive chromatin pattern 

(reorganised chromatin), lie above the spermatogonia. The spermatid population 

consists of one or two generations and are located closest to the lumen. 

 Cross sections of mouse testis showed strong cytoplasmic staining for 

eEF1B (Figure 4.22b) and eEF1B (Figure 4.22c) in the lobular cells with some cells 

also showing weak staining that appears to be nuclear, whereas eEF1B showed a 

strong nuclear and weak cytoplasmic staining (Figure 4.22d). The no primary 

antibody incubation control showed no staining (Figure 4.22a). 
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4.2.6.11 Ovaries 

The ovaries have two major functions, production of oocytes and secretion 

of hormones. Ovaries consist of an outer cortex where the follicles are embedded 

and an inner medulla which contains blood vessels and nerves. The follicles can be 

at different stages of development. The cross section of mouse ovary shows a 

secondary follicle with an oocyte surround by granulosa cells, with a fluid-filled 

antrum. The theca folliculi differentiates into a theca interna, cuboidal oestrogen 

producing cells and a theca externa, connective tissues with smooth muscle.  

In cross sections of mouse ovaries, all eEF1B subunits showed similar strong 

cytoplasmic staining in the follicular cells of the primary follicles (Figure 3.22f-h), 

and both eEF1B and eEF1B appear to stain some nuclei. The control secondary 

antibody showed no staining (Figure 3.22e). 
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4.2.7 Wild-type and wasted mice brain expression  

To assess the possible effect of eEF1A2 knockout on expression of eEF1B 

subunits, the expression of eEF1B subunits was compared between wild-type and 

wasted mice brain. The protein was extracted from brain tissues of three wild-type 

and three wasted mice at P21-P24 and analysed by Western blot by Chris Beirne for 

the expression of eEF1B subunits and GAPDH was used as a control. Both eEF1B 

and eEF1B protein expression showed no or little difference between wild-type 

and wasted mice compared with GAPDH (Figure 4.23a). In contrast, eEF1B 

showed a decreased protein expression in wasted mice compared with wild-type 

mice. Densitometry analysis of the eEF1B immunoblot expression bands 

normalised against GAPDH showed a mean of 44% protein expression decrease in 

wasted mice.  

To investigate if the other tissues of wasted mice also showed lower eEF1B 

protein expression, a pilot study was carried out where protein was extracted from 

tissues of wild-type and wasted P21 mouse and analysed by Western blot for the 

expression of eEF1B subunits as above. eEF1B expression was decreased by around 

50% in wasted brain compared with wild-type as previously. It was also decreased 

by around 25% in wasted skeletal muscle but not in any of the other tissues studied 

(Figure 4.23b). All the other subunits did not show any significant protein 

expression difference between wild-type and wasted mice tissues. 

To determine the eEF1B expression pattern, immunohistochemical analysis 

was conducted by Chris Beirne using eEF1B antibodies on coronal whole brain 

sections of P24 wild-type and wasted mice. Immunohistochemistry of wild-type 

mice showed moderate staining of eEF1B and eEF1B throughout the brain, strong 

staining in the neurons of the hippocampus (Figure 4.24c-f) and in some Purkinje 

cells of the cerebellum (Figure 4.25e-l). eEF1B showed a slight reduction in staining 

throughout the brain when comparing wild-type with wasted mice. However, 

eEF1B showed absent or little staining of both wild-type and wasted mice sections  
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Figure 4.23 Immunoblot of eEF1B subunits protein expression in wasted and wild-type mice. Protein 
was extracted from mouse tissues and analysed for eEF1B, eEF1B and eEF1B protein expression.  
(a) eEF1B protein expression of three wasted and three wild type brain tissues and the relative 
expression of wasted expression compared to wild type normalised against GAPDH.  Performed by 
Chris Beirne. (b) eEF1B protein expression in various tissues from wasted and wild type mouse. 
GAPDH was used as a loading control.  
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 (Figure 4.24g-h). In the cerebellum, the anti-eEF1B antibody showed very weak 

nuclear staining of some Purkinje cells in both wild-type and wasted mouse sections 

and weak staining of granular cells in wasted mice (Figure 4.25m-p). The secondary 

antibody only control showed no staining (Figure 4.24a-b; Figure 4.25a-d). 

 Although the pattern of expression of eEF1B subunits in mouse brain does 

not change significantly between wild-type and wasted mice, eEF1B expression 

level was shown to be reduced by around 50% in all the wasted brain tissues tested 

and around 25% in muscle tissue although further testing is necessary.  These 

results indicate that the knockout of eEF1A2 may affect the eEF1B expression or 

that the wasted phenotype on these tissues by p21 when is undergoing shrinking 

and cellular loss affects the eEF1B expression. 
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4.2.8 Cytoplasmic and nuclear expression in tissues 

In the immunohistochemical analysis of the mouse and human tissues 

described in this chapter, eEF1B subunits are located mostly in the cytoplasm 

however in some cells the staining is unexpectedly nuclear. To investigate further 

the nuclear and cytoplasmic expression of the eEF1B subunits, 10ng of nuclear and 

cytoplasmic extracts of brain and liver tissues from human and mice (Chapter 2) 

were analysed by Western blot using the eEF1B antibodies, -tubulin as a marker 

for cytoplasmic proteins and Lamin A and C as a marker for nuclear proteins. 

In mouse brain tissues, eEF1B and eEF1B are detected in the cytoplasmic 

extract but not in the nuclear extract whereas eEF1B is detected in both extracts 

(Figure 4.26). In mouse liver tissues, eEF1B was only detected in the cytoplasm 

while both eEF1B and eEF1B were present strongly in the cytoplasm and weaker 

in the nuclear extract. In human brain tissue, all three subunits were detected in the 

nuclear extract. eEF1B and eEF1B showed stronger protein levels in the 

cytoplasmic extract, whereas eEF1B showed similar levels in both extracts. In 

human liver extracts, eEF1B and eEF1B showed stronger cytoplasmic expression 

than nuclear. However, eEF1B showed stronger nuclear expression compared with 

cytoplasmic.  

The mouse nuclear extracts had small amounts of cytoplasmic protein 

contamination as the presence of weak -tubulin protein expression demonstrates 

but the human nuclear extracts show little to no -tubulin expression. The 

contamination of nuclear proteins into the cytoplasmic extracts could not be 

assessed as the antibody used as nuclear marker did not show any signal. Although 

the extracts were quantified (as described in chapter 2) it is possible that uneven 

loading might be, at least in part, responsible for the expression pattern. 

The nuclear expression of eEF1B subunits previously observed by 

immunohistochemiscal analysis was confirmed by Western blot analyses on nuclear  
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Figure 4.26 Immunoblot of eEF1B subunits protein expression in nuclear and cytoplasmic fractions 
from mice and human of brain and liver tissues. Protein nuclear and cytoplasmic fractions were 
extracted from brain and liver mouse tissues and together with human fractions of brain and liver 
tissues were analysed for eEF1B, eEF1B and eEF1B protein expression. a-tubulin was used as a 
control.  
 
 

protein extracts from tissues. The fractionation correlated with the 

immunohistochemistry analysis was performed in human and mouse brain and 

liver tissues. However, since no markers for other organelles were examined, 

microsomes and endoplasmatic reticulum may be present in the fractions examined 

making it difficult to interpret the exact sub-cellular localisation of the complex.  
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4.2.9 Sub-cellular localisation  

 Although the sub-cellular localisation of each eEF1B subunit is known in 

human fibroblast cells (Minella et al., 1996a), is it the same in different cell lines?  To 

determine the sub-cellular localisation of each eEF1B subunit in cells, 

unsynchronised cells were subjected to co-immunofluorescence with eEF1B 

antibodies, cytoskeleton staining with -tubulin, and nuclear staining with 4',6-

diamidino-2-phenylindole (DAPI).  

 Immunofluorescence with anti-eEF1B antibody in HeLa cells showed 

staining throughout the cytoplasm, stronger peri-nuclear localisation (Figure 4.27a). 

Co-immunofluorescence of merged eEF1B and alpha-tubulin showed co-

localisation (in yellow) of the microtubules where they are more condensed around 

the nucleus with eEF1B staining (Figure 4.27d). eEF1B staining was detected 

throughout the cytoplasm, with strong perinuclear staining (Figure 4.27f). -tubulin 

and eEF1B merged immunofluorescence staining showed co-localisation of eEF1B 

and the microtubules around the nuclei (Figure 4.27i). eEF1B showed a similar 

staining pattern to eEF1B and eEF1B (Figure 4.27k). Co-immunofluorescence 

staining of eEF1B and alpha-tubulin merged image also showed co-localisation 

around the nuclei (Figure 4.27n). A negative control in which primary antibody was 

omitted showed no fluorescence except nuclear blue DAPI staining (Figure 4.27e, j 

and o). eEF1B subunits showed a similar sub-cellular localisation restricted to the 

cytoplasm of all cell lines studied (data not shown; table 2.4).  

 To study the localisation of eEF1B and eEF1B compared with eEF1B, 

HeLa cells were subjected to co-immunofluorescence with eEF1B and eEF1B, or 

eEF1B and eEF1B antibodies, and nuclear staining with DAPI. 

eEF1B (Figure 4.28a), eEF1B (Figure 4.28f) and eEF1B (Figure 4.28b and 

g) all showed the expected cytoplasmic staining, stronger around the nuclei. 

eEF1B and eEF1B showed strong co-localisation around the nuclei of HeLa cells  
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and dispersed co-localisation throughout the cytoplasm (Figure 4.28d). Co-

localisation around the nuclei was also detected by immunofluorescence of eEF1B 

and eEF1B with some scattered co-localisation around the cytoplasm (Figure 4.28i). 

The negative control showed no fluorescence except nuclear blue DAPI staining 

(Figure 4.28e and j).  

 Immunofluorescence of eEF1B subunits showed the expected ER-like sub-

cellular localisation, co-localising around the nuclei with microtubules and not 

detectable in the nuclei. eEF1B was also found to partially co-localise with the other 

eEF1B subunits. 
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4.2.10 Cell cycle expression 

eEF1B and eEF1B have been suggested to be involved in cell cycle 

progression (Chapter 1). Does the protein expression of eEF1B subunits change 

during the cell cycle? To address this question, HeLa cells were synchronised in S-

phase by treatment with Aphidicolin, which inhibits DNA replication blocking cell 

cycle at the S-phase (Berger et al., 1979), and then the cells were allowed to enter the 

normal cell cycle by the removal of Aphidicolin from the media. Unsynchronised 

cells were used as control. To confirm the cell cycle stage, cells were incubated with 

propidium iodide and analysed by flow cytometry (Figure 4.29a). Protein was 

extracted from the cells and eEF1B subunit protein expression was analysed by 

immunoblotting. GAPDH was used as a control.   

eEF1B and eEF1B protein levels do not change over the cell cycle in HeLa 

cells whereas eEF1B showed strong protein expression in S-phase arrested cells, 

moderate levels at G2/M and lower protein levels in G0/G1 phase cells compared 

with GAPDH (Figure 4.29b). 

eEF1B and eEF1B subunits protein expression does not seem to be related 

to the cell cycle stage in vitro although eEF1B protein expression is increased in S-

phase cells. 

Due to the possible link of eEF1B subunits to the cell cycle and the nuclear 

expression in sub-population of cells from mouse and human tissues, we 

hypothesised that eEF1B subunits might change sub-cellular localisation during the 

cell cycle.  The cells described above were subjected to co-immunofluorescence with 

eEF1B antibodies and cytoplasmic staining with -tubulin, and nuclear staining 

with DAPI. Secondary antibody only was used as a control. Proliferating Cell 

Nuclear Antigen (PCNA) changes sub-cellular expression pattern, cytoplasmic to 

nuclear during S-phase. An anti-PCNA antibody was used as a cell cycle dependent 

sub-cellular distribution positive control.  
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Figure 4.29 eEF1B protein levels during cell cycle. Cells were treated with Aphidicolin for 24h 
resulting in S-phase arrest. Cells in S-phase arrest by Aphidicolin were released by adding new media 
and every two hours, cells were collected. (a) Unsynchronised and collected cells were labelled with 
propidium iodide and subjected to flow cytometry. Representative images of the flow cytometry 
analysis. (b) Collected cells were harvested and analysed for eEF1B subunits and GAPDH protein 
expression by immunoblotting.  
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During the cell cycle, eEF1B (Figure 4.30a,h,o and v), eEF1B (Figure 

4.30c,j,q and x) and eEF1B (Figure 4.30b, i, p and w) showed cytoplasmic staining 

and no obvious difference in the expression distribution pattern. Alpha-tubulin 

(Figure 4.30d, k, r and y) and DAPI  (Figure 4.30 e, l, s and z) also showed specific 

cytoplasmic and nuclear staining respectively. PCNA showed strong nuclear 

staining in S-phase arrested cells and cytoplasmic staining in non S-phase cells 

(Figure 4.30f, m, t and aa). The negative controls showed no fluorescence except 

nuclear DAPI staining (Figure 4.30g, n, u and ab). 

These results suggest that cell cycle differences are not responsible for the 

change in eEF1B subunits sub-cellular localisation that is observed in some in vivo 

cells. However, it may be that the behaviour of HeLa cells does not fully 

recapitulate that seen in cells within tissues. 
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4.3 Discussion 
No previous studies have focused on the expression pattern and precise 

expression distribution within tissues of each eEF1B subunit. In this chapter, eEF1B 

factor expression in mouse and human tissues was examined. Expression of eEF1B 

subunits through different mouse developmental stages and their expression in 

wasted mice which lack eEF1A2 were also studied as well as the expression of the 

subunits in different cell lines and during the cell cycle in HeLa cells. 

 

4.3.1 Expression levels and multiple variants in translation 

Translation factors are considered to be housekeeping genes, expected to be 

expressed in all tissues at similar levels - eEF1B showed evidence of exactly that. 

mRNA evidence supported the idea of one transcript variant, present in all studied 

tissues with no significant change between tissues both at mRNA and protein levels 

determined by three different antibodies. Unsurprisingly, eEF1B was also 

expressed in all cell lines tested. However, eEF1B and eEF1B expression was 

more complex.  

eEF1B showed a 29kDa band in all mouse tissues tested with all the 

antibodies, slightly heavier than the estimated molecular weight of 24kDa. Only a 

few studies reported raising antibodies against eEF1B. In a investigation by 

Furukawa (2001) about the link between eEF1B and the cytoskeleton in slime mold 

Dictyostelium discoideum, a polyclonal antibody was raised against a 17kDa 

eEF1B fragment and a 29kDa band was observed by Western blots. In Xenopus 

oocytes, an antibody raised against eEF1B also showed a band with a molecular 

weight of around 30,000 (Minella et al., 1996a). When eEF1B was cloned from 

Sacharomyces cerevisiae and further characterised (Hiraga et al., 1993), eEF1B was 

detected as a 33kDa protein although it was expected to be 22kDa protein, which 

they suggested to be due to the unusual structural features of eEF1B. Interestingly, 

one of the monoclonal antibodies and the polyclonal antibody tested for the 
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purpose of this thesis also show consistently a substantially heavier band (50kDa) in 

brain and the polyclonal also showed in both heart and skeletal muscles but not in 

any of the cell lines tested. There is no evidence from bioinformatic analyses or any 

mRNA evidence for the existence of another transcript variant or another gene that 

might encode a similar protein. eEF1B appears to have the ability to form 

homodimers in rabbit and rat liver cells and recombinant eEF1B eluted as a 50kDa 

(Bec et al., 1994, Sheu and Traugh, 1997). However even with protein lysates treated 

with high concentration of -mercaptoethanol, DTT and SDS to break di-sulphide 

bonds and keep the proteins in a denatured state, the eEF1B heavier band was 

always present. Antibody specificity and cross reactivity with another protein 

might also be the cause for the heavier band seen in Western blots using two of the 

three antibodies. However, siRNAs against eEF1B were able to reduce the protein 

level detected by these two antibodies confirming specificity (more details on 

chapter 5). The location of the peptides to which the third commercial eEF1B 

antibody was raised that does not detect the higher form is not known making it 

difficult to postulate about it. The nature of the heavier band observed in certain 

mouse tissues remains unclear where homodimer formation which is difficult to 

dissociate in tissues, cross reactivity or even large post-translational modifications 

cannot be excluded as possible causes.  

eEF1B however gave evidence of multiple transcript variants, including a 

brain tissue-specific variant which corresponds to the known isoform a. Several 

other transcripts expressed in all the studied tissues were identified and agree with 

the ESTs/mRNA data from databases (chapter 3). Isoform a shows restricted 

expression to brain, spinal cord and testis, while up to four eEF1B forms were 

present in all the tissues with sizes ranging from 31 to 38 kDa, including a muscle-

specific form at 38kDa. These multiple bands and identical expression pattern were 

detected by both antibodies used for the Western Blot analyses. Two or three forms 

ranging from 31 to 38kDa were also present in all cell lines studied. eEF1B isoform 
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a was restricted to neuroblastoma cell lines which agrees with the brain and testis 

specific expression, and previously known expression in neuroblastoma tumours 

(De Bortoli et al., 2006). Multiple bands for eEF1B have been previously detected 

by Western blot in several species. In sea urchins, 2 forms were identified at 35 and 

37kDa derived from eEF1B isoform b and isoform c (Le Sourd et al., 2006b) 

described in chapter 3 in more detail. (Minella et al., 1996b) and colleagues reported 

three forms of eEF1B present in Xenopus oocytes derived from eEF1B isoform b, 

isoform c and the third form due to phosphorylation. Two of the three 

eEF1Bforms denominated p34, p36 and p38 observed in mouse cell line NIH3T3 

were found to be due to phosphorylation (Chang and Traugh, 1998). Two forms 

were also detected in human fibroblast cells using a polyclonal antibody against 

eEF1B (Sanders et al., 1996). However, (Kruse et al., 2000) reported in human Hep2 

cells a single band using an eEF1B antibody and a double band using an eEF1B 

antibody. The two bands described in this investigation by Kruse as having been 

obtained using an eEF1B antibody are all identical to the pattern reported in this 

thesis and observed by others for eEF1B. In addition, the sizes of the proteins were 

not indicated making it impossible to verify if the immunoblots were correctly 

labelled. eEF1B seems to exist as several isoforms that differ in their migration in 

SDS gels in vivo and in vitro, most likely as a result of alternative splicing and 

possibly phosphorylation, however their true nature needs to be ascertained.  

Besides eEF1A1 and eEF1A2 variants, although not very common, other 

translation factors also show multiple forms such as eIF5A-1 and the rare variant 

eIF5A-2 (Jenkins and Fuerst, 2001), and eIF4GI which is known to have at least five 

isoforms in HeLa cells derived from alternative start codons, alternative promoter 

and alternative splicing (Byrd et al., 2002). It is unclear why eEF1B exists in so 

many forms. The presence of multiple forms could mean redundancy or reflect a 

more complex role for eEF1B than previously thought.  
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4.3.2 Correlation of expression between eEF1 factors and assess implications 
for eEF1B function 

eEF1B subunits were found to be present in all tissues analysed at the 

mRNA level as analysed by RT-PCR and at the protein level by Western blot and 

immunohistochemical analysis. They were found to be widely expressed with 

strong expression mainly in major endocrine cells in the pancreas, colon, testis and 

ovaries, and cells with stable shape such as motor neurons and Purkinje cells. 

Immunohistochemistry was performed using different antigen retrieval techniques 

and always gave identical results indicating the likelihood of the signal being 

specific for each antibody. However careful interpretation of brain, heart and 

muscle immunostaining is needed since that the origin of the higher molecular 

weight band observed on Western blots is unclear. The immunohistochemistry 

performed in a variety of human tissues cannot be compared between tissues since 

the tissues are from different sources that vary in age and sex (refer to chapter 2 for 

more details). Although a recent investigation to eEF1B mRNA expression in 

crayfish found eEF1B to be expressed in all tissues, showing the lowest expression 

levels in hepatopancreatic cells and the highest in cardiac muscle cells (Gillen et al., 

2008) and ESTs data from databases indicate the presence of eEF1B subunits mRNA 

transcripts in all tissues (chapter 3 for more details), no previous studies analysed 

the precise cell types in which eEF1B subunits are present, although most of the 

eEF1B subunits were purified from rat and rabbit hepatocytes (chapter 1).  

Throughout mouse development, eEF1B shows stronger expression pre-

natally or early post-natally, eEF1B is not detectable at early developmental stages 

and eEF1B is present at all stages tested at similar protein levels. This different 

pattern of expression amongst the different eEF1B subunits was not expected. This 

un-coupled expression was further observed in the expression distribution analysed 

by IHC on mouse and human tissues. The eEF1B subunits appear to be expressed 

sometimes in different cell types, cell sub-populations and even have different sub-
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cellular localisation (discussed below). Staining with cell specific markers would be 

important to determine exactly which cell types there are staining such as neurons, 

pneumocytes, pancreatic endocrine cells. 

The protein expression pattern and distribution of eEF1A1 and eEF1A2 is 

different from the one observed for eEF1B subunits that make up the GEF activity 

complex. The eEF1A2 variant appears to have a restricted expression to central 

nervous system cells - neurons, motor neurons and Purkinje cells, muscle cells and 

in specific endocrine cells present in the pancreatic islets, colon and stomach 

(Newbery et al., 2007). Whereas eEF1A1 has a mutually exclusive expression 

pattern with eEFA2 except in tumour cells and some cell lines. eEF1B expression 

seems to correlate strongly with eEF1A2 in the pancreatic islets, muscle and brain 

tissues but it is also correlated with eEF1A1 in other tissues suggesting that eEF1B 

might be part of the GEF for both eEF1A1 and eEF1A2. The eIF2B which is the GEF 

in the initiation phase of protein translation is ubiquitously expressed in all human 

tissues but mutations of its subunits can cause tissue-specific diseases (Pavitt, 2005). 

During development, in contrast with the eEF1A1 and eEF1A2 shift, no 

apparent change in eEF1B subunits protein expression is detectable. The lack of 

correlation eEF1B with eEF1A at the mRNA level was observed by Delalande and 

colleagues in sea urchin early developmental stages. They showed eEF1B high 

expression during the first hours of development, an abrupt decrease up to 10 hours 

after eEF1A increased before eEF1B mRNA levels increased to a similar ratio as 

eEF1A. Interestingly, the high eEF1B mRNA levels observed by Delalande during 

sea urchin development correlate with the increased protein synthesis and 

increased elongation rate seen (Delalande et al., 1998). However, in adult slime 

mold, eEF1B was found to have an identical expression distribution to eEF1A 

(Furukawa et al., 2001).   
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In wasted mice which lack eEF1A2, the expression of eEF1B and eEF1B 

subunits at the protein level was found not to change considerably compared with 

wild type mice, whereas eEF1B protein expression was found to be down-

regulated in brain tissues and moderately down-regulated in skeletal muscle 

protein lysates from wasted mice. eEF1A2 transgenes are able to rescue the wasted 

mice phenotype and hence eEF1A2 is fully responsible for the wasted phenotype 

(Newbery et al., 2007), however lack of eEF1A2 in those tissues might lead to 

changes in expression of other proteins or the wasted phenotype on those tissues 

when they undergoing shrinking and cellular loss affects the eEF1B expression 

directly. Further comprehensive testing is required to assess the change in eEF1B 

expression in tissues affected by the wasted deletion or by cellular shrinkage or loss. 

In cell lines, expression of eEF1B subunits is restricted to the cytoplasm, 

strongly expressed in the peripheral nuclear area of cells similar to the expression 

pattern observed by (Sanders et al., 1996) in which eEF1B subunits were found to 

co-localises with ER in human fibroblasts. This expression pattern is also similar to 

the one described by Cans 2003 in HeLa cells. (Cans et al., 2003) also suggested that 

it was a similar expression pattern to TCTP and eEF1A although the antibody used 

for eEF1A did not differentiate between the eEF1A variants. Immunofluorescence of 

eEF1A1 or eEF1A2 was not possible as antibodies available are not specific when 

used for immunofluorescence (Tomlinson, 2006). Furthermore, eEF1B subunits also 

showed an apparent co-localisation with alpha-tubulin in the peripheral nuclear 

area of HeLa cells. eEF1B has been reported to interact physically and co-localise 

with cytoskeleton proteins (chapter 1). Further testing to determine if eEF1B 

physically bind to alpha-tubulin and other cytoskeleton proteins is needed to 

further study the potential non-canonical function of eEF1B subunits in cytoskeleton 

remodelling/assembly. 
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4.3.3 Nuclear and cell cycle dependent translation 

The nuclear location of eEF1B subunits in some sub-populations of cells in 

mouse and human tissues was evident by both immunohistochemical analysis and 

Western blot analysis of nuclear and cytoplasmic extracts. eEF1B subunits never 

have been reported to be present in the nucleus in vivo, but eEF1A1 has been 

reported to have nuclear expression in some motor neurons (Newbery et al., 2007).  

In silico, the eEF1B mouse and human protein was predicted to show 

nuclear localisation since it has a lysine rich motif that may act as a nuclear 

localisation sequence. This has also been suggested by (Kim et al., 2007).  

Nevertheless the eEF1B nuclear expression was not observed in cell lines. 

Since the nuclear staining appeared to be restricted to sub-populations of cells and 

since eEF1B and eEF1B had been found to be regulated during the cell cycle 

(Chapter 1 for review) we hypothesised that sub-cellular localisation might change 

during the cell cycle as reported in sea urchins (Boulben et al., 2003). However, 

nuclear expression of eEF1B was not observed in any of the cell line studies with 

either unsynchronised growth and cell cycle synchronised growth. Although it is 

thought that at mitosis cells cap-dependent translation rate is reduced and 

increased IRES-dependent translation, protein levels during the G2/M phase, the 

phase at which eEF1B and eEF1B are thought to be regulated (Chapter 1), showed 

no change. eEF1B was the only eEF1B subunit that showed a slight increase in 

protein expression during a particular cell cycle stage, the S-phase.  

Only under specific conditions are translation factors known to redistribute 

to the nucleus. An eEF1B homologue in yeast shows nuclear expression during 

oxidative stress which is suggested to be due to the possible GST like activity (refer 

to chapter 1)(Hanbauer et al., 2003, Grosshans et al., 2000).   Although eEF1B 

subunits have been linked to oxidative stress and DNA damage (Chapter 1) and 

eEF1B and eEF1B possess a GST-like domain, it is unclear if they have non-

canonical functions that might explain the nuclear expression. eEF1A was also 

found to have nuclear expression in human A431 cells in which it binds to ZPR1 
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and is redistributed to the nucleus by EGF treatment (Gangwani et al., 1998). In 

addition, both in yeast and in human Hep2 cells, eEF1A is part of the nuclear and 

cytoplasmic tRNA binding protein complex (tRNP) possibly involved in nuclear 

export of tRNA (Kruse et al., 2000), while eEF1B, eEF1B and eEF1B are only part 

of the cytoplasmic tRNP complex. Furthermore, (Bohnsack et al., 2002) and 

colleagues investigated nuclear expression of several translation factors by adding 

nuclear localisation signals and specific inhibition of nuclear export by treatment 

with drugs. A couple of initiation factors showed nuclear expression, while eEF1A 

was found to show a Exportin5-dependent nuclear exclusion and most of the other 

translation factors also show Exportin1(CRM1)-dependent nuclear exclusion. Only 

eEF1B and eEF2 showed CRM1-independent nuclear exclusion. Although several 

initiation, elongation and termination factors have been shown to have nuclear 

expression under certain conditions (Bohnsack et al., 2002, Dahlberg et al., 2003), 

with some reports claiming the protein synthesis also occurs in the nucleus - nuclear 

translation is controversial (Dahlberg and Lund, 2004, Iborra et al., 2004). In 

addition to that, many of these factors with nuclear expression also have non-

canonical functions in the nucleus which might explain their presence there 

(Dahlberg and Lund, 2004).   

 

All these data suggest that eEF1B subunits may exist under a different 

quaternary structural model and may have potentially non-canonical functions. 

More in depth studies are necessary to determine the possible links of eEF1B 

subunits with cell cycle, cytoskeleton and stress conditions. In the absence of the 

GEF eEF1B and eEF1B, eEF1A guanine nucleotide exchange activity still exists, 

but to a much lesser extent (Bec et al., 1994, Motorin Yu et al., 1988, Venema et al., 

1991b). Together with the lack of consistent staining, this may indicate the presence 

of another GEF with a reciprocal expression pattern. It is therefore necessary to 

further analyse the eEF1B activity during translation elongation.  
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Chapter 5 – eEF1B function 

5.1 Introduction 
Understanding the molecular mechanisms involved in the overexpression of 

eEF1B subunits and the involvement of eukaryotic translation elongation factors in 

tumourigenesis (refer to chapter 1) may help to identify biomarkers and potentially 

develop more effective treatments for cancer.  

To evaluate the biological changes that result from down and up-regulation 

of eEF1B subunits, siRNA-mediated RNAi and overexpression of each eEF1B 

subunit were carried out in cell lines and cell proliferation, cell cycle distribution 

and apoptotic ratio were assayed. 

In this study, knockdown of each eEF1B subunit inhibited cell proliferation 

and induced apoptosis in several cell lines and overexpression of each subunit 

increases cell proliferation and viability. These findings better establish the view 

that eEF1B plays a role in tumourigenesis. 
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5.2 Results 

5.2.1 RNAi used to successfully knockdown eEF1B subunits at mRNA level 

siRNAs trigger mRNA degradation to varying extents and with variable 

efficiency. For that reason the effectiveness of siRNAs require validation at both 

mRNA and protein level. The mRNA and protein level of the relevant gene should 

not be affected by transfection of non-targeting siRNAs or by the siRNA delivery 

method (mock transfection) so all siRNA experiments should include controls 

designed to test this.  

To validate the siRNAs designed to target each eEF1B subunit at the mRNA 

level, the mRNA levels of each eEF1B subunit from cells transfected with three 

different siRNAs targeting each eEF1B subunit mRNA and a non-targeting siRNA 

(chapter 2 for more details) were compared  by RT-PCR, with GAPDH mRNA 

expression  as a expression control. This was achieved by transiently transfecting 

HeLa cells with three different siRNAs targeting each eEF1B subunit mRNA, 

transfecting the same cells with a non-targeting siRNA and also transfecting the 

cells with no siRNAs. siRNAs transfected were at a concentration of 30nM using the 

Amaxa nucleofection as a delivery method. Cells were harvested 48 hours after 

transfection following the manufacturer’s recommended conditions (chapter 2). 

The mRNA level of eEF1B was completely knocked down by all three 

siRNAs targeting eEF1B compared to cells transfected with non-targeting siRNA 

(Figure 5.1a). Cells transfected with eEF1B and eEF1B targeting siRNAs showed a 

great reduction of eEF1B and eEF1B mRNA expression respectively compared to 

controls (Figure 5.1b-c). GAPDH showed equivalent expression levels in each 

sample, showing no mRNA level change. 

To ascertain that the delivery of siRNAs and the transfection method does 

not affect the expression of the relevant genes, mRNA levels of cells transfected 

with non-targeting siRNA, cells transfected with no siRNAs and untransfected cells   
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were compared. mRNA expression of eEF1B subunits and GAPDH did not change 

in cells with scrambled siRNA, mock transfected cells and untreated cells. In 

addition, the minus RT control for RT-PCR showed no evidence of DNA 

contamination   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                 5. EEF1B FUNCTION 

199 
 

5.2.2 siRNA mediated knockdown of eEF1B subunits at protein level 

All the siRNAs were able to knockdown efficiently each eEF1B subunit at 

mRNA level in HeLa cells. Furthermore, the nucleofection siRNA delivery method 

does not affect mRNA expression of GAPDH nor any of the eEF1B subunits. 

However the protein level is more important as it is more functionally relevant, 

since depending on the stability of the protein, even total depletion of the mRNA 

level may not result in loss of protein. 

To determine if the mRNA reduction effect observed was reflected in the 

protein level, the protein expression of each eEF1B subunit and GAPDH from cells 

transiently transfected with three different siRNAs for each of the eEF1B subunits 

and a scrambled siRNA were compared by Western blot. To determine the protein 

expression of eEF1B and eEF1B, initially anti-eEF1B and anti-eEF1B antibodies 

described previously were used, as well as the commercial antibodies anti-eEF1B2 

(PTG cat. no. 10483-1-AP), anti-eEF1G (Abnova cat. no. H00001937-M01) and anti-

eEF1D (PTG cat. no. 10630-1-AP). 

All three siRNAs targeting eEF1B reduce substantially eEF1B protein 

detected with the anti-eEF1B2 antibody. The level is not affected in cells treated 

with scrambled siRNA, mock transfected or cells only when compared with 

GAPDH (Figure 5.2a). eEF1B protein levels detected with anti-eEF1G were 

considerably reduced in cells transfected with each siRNA targeting eEF1B in 

contrast with cells transfected with non-targeting siRNA, cells transfected with no 

siRNAs and non-transfected cells (Figure 5.2b). GAPDH expression was equivalent 

in each case. 

Identical cell extracts were analysed with the commercial antibodies and 

gave similar results, with reduced eEF1B in cells treated with all three siRNAs 

targeting eEF1B (Figure 5.2c) and eEF1B (Figure 5.2e). The protein level of the 

eEF1B subunit was drastically reduced in cells with eEF1B siRNAs compared 

with the negative controls (Figure 5.2d). GAPDH protein expression did not change. 
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Expression of GAPDH and eEF1B subunits was not altered in cells 

transfected with non-targeting siRNA, mock transfected cells and cells only, 

indicating that the nucleofection siRNA delivery method does not affect protein 

expression of GAPDH nor any of the eEF1B subunits. The Amaxa nucleofection 

system was used for subsequent experiments unless otherwise mentioned.  

These results indicate that all siRNAs are able to efficiently silence each 

eEF1B subunit at the mRNA and protein level in HeLa cells, validating the siRNAs 

as well as demonstrating the specificity of anti-eEF1B2 and anti-eEF1G and the 

commercial antibodies. Due to the previously successful antibody purification kit 

being discontinued (chapter 4), I was not able to purify successfully more anti-

eEF1B2 and anti-eEF1G antibodies. For this reason, the commercial antibodies were 

used for all the remaining experiments described in this chapter. 
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5.2.3 Optimisation of eEF1B subunits siRNA mediated knockdown  

Although siRNAs were successful in knocking down eEF1B subunits using 

the nucleofection method using the manufacture’s recommended protocol, further 

optimisation was required.  

To determine the lowest siRNA concentration that gives a reasonable level 

of knockdown to reduce possible off-target effects, HeLa cells were transfected with 

2nM, 5nM and 10nM of pooled siRNAs targeting each eEF1B subunit, 10nM of non-

targeting siRNA or no siRNA. Cells were lysed 48 hours after transfection and 

protein expression was analysed by Western blot with antibodies for eEF1B 

subunits and GAPDH.  

For eEF1B, the lowest concentration of siRNAs that gave a substantial 

silencing of eEF1B was 10nM (Figure 5.3a). The siRNAs targeting eEF1B gave a 

high reduction of eEF1B protein level at a concentration of 5nM, however at a 

concentration of 10nM the eEF1B protein expression was further reduced (Figure 

5.3b). This was also the lowest concentration of siRNAs targeting eEF1B that gave 

substantial knockdown (Figure 5.3c). Cells transfected with non-targeting siRNAs 

and transfected with no siRNAs showed no reduction in eEF1B subunit protein 

expression. 

Having established the optimal concentration of siRNA for silencing, it was 

important to define the time interval over which silencing takes place, so that a 

particular time point at which knockdown is maximal could be targeted for 

biological assays. In addition, knockdown results should be confirmed by multiple 

individual and pooled siRNAs for the same target gene.  

In order to measure the effect of individual and a mixed population of 

siRNAs on protein levels over a time course, HeLa cells were transfected transiently 

by nucleofection with individual and a pool of all siRNAs targeting each eEF1B 

subunit, with a non-targeting siRNA, and with a siRNA targeting -actin as a  
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positive control, in addition to mock transfected and non-treated cells. Western blot 

analysis was carried out on cell lysates for eEF1B subunits, beta-actin and GAPDH 

protein expression 24, 72 and 120 hours after transfection. 

The time course of eEF1B depletion showed evidence of a small decrease in 

eEF1B protein levels compared to GAPDH 24 hours after transfection (Figure 

5.4a). Substantial silencing was observed 72 and 120 hours after transfection.  No 

noticeable difference was observed in reduction of eEF1B protein level between 

single siRNA and mixed population of siRNAs. Cells transfected with non-targeting 

siRNA showed increased eEF1B protein expression at 120 hours but not at 24 or 72 

hours after transfection, but was not reproducible so it might have been due to 

experimental variation. eEF1B showed  a small protein reduction at 24 hours, a 

considerable reduction at 72 hours and a smaller reduction at 120 hours post-

transfection in cells transfected with siRNAs targeting eEF1B when compared to 

beta-actin (Figure 54b). The reduction of eEF1B protein level was slightly delayed 

using pooled siRNAs when compared with individual siRNAs. In addition, eEF1B 

protein expression was restored slightly more quickly with individual siRNAs than 

with pooled siRNAs. This was probably due to experimental variation since this 

effect was not observed on other occasions. eEF1B protein reduction was visible 24 

hours after transfection but a drastic knockdown was observed 72 and 120 hours 

after transfection (Figure 5.4c). The mixed population of the three siRNA targeting 

eEF1B gave a similar protein expression reduction compared with individual 

siRNAs. All the controls showed no change in eEF1B subunit protein expression 

except actin in some experiments showed a reduction in the protein level when 

eEF1B was knocked down as highlighted on figure 5.4b.  

These results indicate no major difference between single and pooled 

siRNAs, with the maximal reduction of eEF1B subunit protein expression being 

achieved 72 hours after transfection and with substantial reduction lasting up to 

120h after transfection.  Unless otherwise stated, in the RNAi experiments described 

in this chapter, the time-point 72 hours after transfection was used to assay 

biological changes with pooled siRNAs at a concentration of 10nM. 
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5.2.4 Knockdown of either eEF1B or eEF1B reduce expression of eEF1B 

After optimisation of siRNA-induced down regulation of eEF1B, eEF1B 

and eEF1B, I hypothesised that the silencing of each individual subunit might 

affect the expression of other eEF1B complex subunits. To test this hypothesis, HeLa 

cells were transfected with siRNAs targeting each eEF1B subunit, siRNA targeting 

beta actin and non-targeting siRNAs. These together with mock transfected cells 

and were harvested and analysed by RT-PCR for the mRNA expression of each 

eEF1B subunit, actin and GAPDH as an expression control. 

siRNAs targeting each individual eEF1B subunit reduced the mRNA level of 

that particular subunit but not that of any other eEF1B subunit (Figure 5.5a). Actin 

siRNA only reduced actin mRNA expression. No DNA contamination was detected 

by RT-PCR in the minus RT control.  

This result suggests that the siRNAs are specific to each eEF1B subunit that 

they target at mRNA level in HeLa cells. However, it does not reveal information on 

the impact at the protein level. In addition, since eEF1B is a multiprotein complex, is 

it possible to knockdown in parallel the protein subunits in the various 

combinations? To address these questions, HeLa cells were transfected with siRNAs 

targeting eEF1B subunits individually and collectively and analysed by Western 

blot. 

Cells transfected with siRNAs targeting eEF1B or eEF1B, besides showing 

silencing of the target protein, also showed reduced eEF1B protein levels (Figure 

5.5b). Cells transfected with siRNAs targeting eEF1B showed not only a reduction 

in eEFB1 protein but also decreased expression of the other two eEF1B subunits. 

Transfection of cells with siRNAs targeting both eEF1B and eEF1Bb resulted in a 

reduction of all eEF1B proteins. The same result was obtained with siRNAs 

targeting both eEF1B and eEF1B subunits. However siRNAs targeting both 

eEF1B and eEF1B did not reduced eEF1B protein expression. These results were 

reproducible in more than three experiments. Actin protein expression was only 

reduced in cells transfected with siRNAs targeting actin.   
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Since the siRNAs targeting eEF1B subunits are specific at the mRNA level, 

and changes in the expression of other eEF1B subunits are only seen at the protein 

level, post-transcriptional mechanism must be involved. In the light of these 

observations, and since the presence or absence of eEF1A2 might potentially change 

the expression of eEF1B subunits, tests were carried out in three different cell 

culture systems:  in HCT116 cells, which like HeLa cells express both eEF1A1 and 

eEF1A2, and in DLD1 and HepG2 cells which lack eEF1A2 expression.  

Transfection efficiency differs in different cell culture systems. For this 

reason it is important to optimise further transfection of each cell lines used. An 

eGFP plasmid was used obtain a crude measure of cell line transfection efficiency as 

measured by flow cytometry. While HeLa, HCT116 and DLD1 cells consistently 

gave efficiencies of 70%, efficiency of transfection in HepG2 cells was always lower, 

varying from 40 to 60%. To test the effect of knocking down each subunit on the 

other subunits, cells were transfected using various amounts of lipofectamine 2000 

(Chapter 2) with 10nM siRNAs targeting each eEF1B subunit and with 10nM non-

targeting siRNA. Cells transfected with no siRNAs and untransfected cells were 

used as controls.  

As in HeLa cells, knockdown of eEF1B in HCT116, DLD1 and HepG2 cells 

considerably reduced protein expression of eEF1B (Figure 5.6). In HCT116 and 

DLD1 cells, as in HeLa cells, knockdown of eEF1B strongly reduced eEF1B 

protein levels. However knockdown of eEF1B in HepG2 cells reduced the 

expression of eEF1B and eEF1B only to a moderate degree. eEF1B knockdown in 

HepG2, as in HeLa cells, reduced to some extent the protein expression of the other 

two subunits. The low transfection efficiency for HepG2 may be part of the cause of 

poorer knockdown in HepG2 cells. In contrast, in HCT116 cells, eEF1B knockdown 

only partially reduced eEF1B protein levels. And in DLD1 cells, eEF1B 

knockdown did not change any of the other eEF1B subunits protein expression.  
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These results show some variability in the degree of depletion of eEF1B 

subunits in different cell lines, which does not seem to be related to the presence or 

absence of eEF1A2. The variation might be due at least in part to the diversity of 

tumour cells from which the cell lines derived. The expression of eEF1A1 and 

eEF1A2 was not verified in these samples due to problems with antibody 

specificity. 
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5.2.5 No apparent phenotypic abnormalities demonstrated by 
immunofluorescence microscopy 

To determine any phenotypic changes results from the downregulation of 

eEF1B subunits using previously optimised siRNA mediated knockdown of eEF1B 

subunits, HeLa cells were transfected with siRNAs targeting each eEF1B subunit 

and non-targeting siRNA. These and mock transfected cells were analysed then by 

immunofluorescence for the presence of the respective eEF1B subunit, cytoplasmic 

staning with alpha-tubulin and nuclear staining with DAPI. 

 

eEF1B 

Most cells transfected with eEF1B targeted siRNAs were negative for 

eEF1B protein except a few cells, however -tubulin and DAPI stained all cells 

examined (Figure 5.7a-c). eEF1B knockdown gives no evident phenotypic change 

compared with cells transfected with non-targeting siRNA (Figure 5.7e-g). A 

negative control in which primary antibody was omitted showed no fluorescence 

except nuclear blue DAPI staining (Figure 5.7d; 5.7h).  

 

eEF1B 

Only a very small number of cells transfected with siRNAs targeting eEF1B 

had noticeable eEF1B fluorescence while all the cells stained for -tubulin and 

DAPI (Figure 5.9a-c). A few cells with a drastic eEF1B knockdown appeared to 

show -tubulin arranged in small clumps. Tubulin protein-levels were never 

examined by immunoblot. Cells transfected with non-targeting siRNA showed 

strong fluorescence of eEF1B, -tubulin and DAPI (Figure 5.9e-g). 

Immunofluorescence negative control showed no fluorescence apart from nuclear 

DAPI staining (Figure 5.9d; 5.9h).  
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eEF1B 

DAPI and -tubulin fluorescence are present in all the cells transfected with 

siRNAs targeting eEF1B, in contrast with eEF1B itself, which was only detectable 

in a few cells (Figure 5.8a-c). No apparent phenotypic abnormality was observed in 

cells with reduced eEF1B protein levels compared with cells transfected with 

scrambled siRNA (Figure 5.8e-g).  Only DAPI fluorescent cell nuclei was observed 

in the immunofluorescence control with secondary antibodies only (Figure 5.8d; 

5.8h).  

 

Immunofluorescence on cells transfected with siRNAs targeting eEF1B 

subunits showed a reduction of staining with anti-eEF1B subunit antibodies in most 

cells, indicating an effective protein knockdown. No apparent phenotypic gross 

abnormalities were observed for depletion of the eEF1B subunits in HeLa cells by 

immunofluorescence with the exception of a few cells showing an apparent change 

in the distribution of -tubulin. Additional assays were then used to assess the 

biological impact of knocking down eEF1B subunits. 
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5.2.6 Significant reduction of cell metabolism in cells with eEF1B down-
regulation 

To study the impact of the depletion of eEF1B subunits on cell proliferation, 

cellular metabolism was assessed by Alamar blue assay when a substantial down-

regulation of eEF1B subunits was observed by Western blot. The mean of at least 

three independent experiments was plotted as a relative percentage of cell 

metabolism of mock transfected cells and statistical student t-tests were used to 

analyse statistical significance of cells transfected with eEF1B subunits targeting 

siRNAs compared to non-targeting siRNA (chapter 2 for more details on the 

statistical analysis). Staurosporine was used as a cell growth control since that it is 

known to induce reduction of cell growth leading to apoptosis by activation of 

caspase-3 (***). 

Knockdown of all eEF1B subunits in HeLa cells reduced cell metabolism (p < 

0.05) compared with cells transfected with scrambled siRNA (Figure 5.10a). 

Knockdown with oligos targeted to eEF1B reduced cell metabolism by more than 

14%, with those targeted to eEF1B by more than 17% and with those targeted to 

eEF1B by more than 10% compared to cells transfected with non-targeting siRNA. 

No statistically significant difference in cell metabolism was observed between 

individual and pooled siRNAs in HeLa cells (Data not shown).  

In HCT116 cells, eEF1B, eEF1B and eEF1B siRNA induced knockdown 

resulted in a reduction of cell metabolism of over 19% (p<0.001), 12% (p<0.05) and 

10% (p<0.05) respectively compared with cells transfected with non-targeting 

siRNAs (Figure 5.10b).  

Knockdown of eEF1B subunits decreased to a highly significant degree cell 

metabolism in DLD1 cells (p<0.001) (Figure 5.10c). A reduction of cell metabolism of 

greater than 21% was seen after down regulation of eEF1B, more than 20% for 

eEF1B and more than 14% for eEF1B compared to cells transfected with non-

targeting siRNA. 
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Figure 5.10 Lower cellular metabolism is observed when any of the eEF1B subunit protein level is 
decreased by siRNAs in HeLa, HTC116, DLD1 and HepG2 cells. Cell metabolism was assessed by the 
Alamar blue assay. Alamar blue was added to the media 72 hours after transfection.  Data are 
presented as a percentage of mock transfected cells. Staurosporine (1mM) was used as a 
proliferation control. Data were obtained from the mean of three or more independent experiments 
in (a) HeLa, (b) HCT116,  (c) DLD1 and (d) HepG2 cells, with more than 10 wells each.  Error bars 
indicate +- SEM; n of wells  > 10; n = 3-4; *, P<0.05; ***, P<0.001 from non-targeting siRNA  
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Silencing of eEF1B subunits by RNAi in HepG2 cells reduced cell 

metabolism compared with scrambled siRNAs (Figure 5.10d). Knockdown of 

eEF1B and eEF1B lead to a decrease of cell metabolism of over 10% (p<0.05) while 

silencing eEF1B decreased cell metabolism by almost 9% (p<0.05). 

Transfection of a non-targeting siRNA does not alter the cell growth in 

comparison with mock transfected cells in any of the cell lines studied. However the 

siRNA delivery (transfection) method reduces the cell metabolism compared with 

untreated cells by between 14% and 17%. Staurosporine (1M), which was used as a 

cell proliferation control, decreased cell metabolism by over 60% compared with 

cells only.    

These results show that knockdown of each eEF1B subunit leads to a 

statistically significant reduction of cell metabolism in the four different cell lines 

studied. 
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5.2.7 Increased G0/G1 phase and reduced S- and G2/M phase cells with eEF1B 
knock down  

With the possible link between the cell cycle and eEF1B subunits (Chapter 1) 

and the decreased cellular metabolism observed when eEF1B subunits are depleted, 

I hypothesised that eEF1B knockdown might affect the normal cell cycle 

distribution leading to decreased proliferation. In addition, the percentage of cells in 

S-phase also provides information on cellular proliferation.  

To address this question, cells were collected 72 hours after transfection, 

stained with propidium iodine and their cell cycle status was determined by flow 

cytometry analysis. Representative images of the flow cytometry output can be seen 

in Figure 5.11a and in Figure 5.12a. Plotted graphs are the mean of at least three 

independent experiments in which depletion of eEF1B subunits was confirmed by 

Western blot. 

Depletion of eEF1B subunits by RNAi in HeLa cells increased the proportion 

of cells in G0/G1 phase by more than 7%, decreased cells in S-phase by over 13% 

and decreased cells in G2/M phase by more than 10% compared with cells 

transfected with scrambled siRNA (p<0.05; Figure 5.11b).  No difference in the cell 

cycle distribution was detected between HeLa cells transfected with single and 

pooled siRNAs targeting eEF1B subunits (data not shown). 

In HCT116 cells, down-regulation of eEF1B subunits increased the 

proportion of cell in G0/G1 by over 6%, and reduced cells in S-phase by more than 

10% and in G2/M phase by 5% in comparison to cells with scrambled siRNA 

(p<0.05; Figure 5.12b).  

In DLD1 cells, knocking down eEF1B subunits increased by 8% or more the 

proportion of cells in G0/G1 compared with cells transfected with non-targeting 

siRNA (p<0.05). Cells in S-phase decreased by over 15% (p<0.01) and cells in G2/M 

phase decreased by more than 9% (p<0.05; Figure 5.12c).  
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Figure 5.11 Knockdown of eEF1B subunits leads to G0/G1 cell cycle arrest with decreased S-phase 
and G2/M phase in HeLa cells. Cells were transfected by nucleofection with 10nM siRNAs targeting 
eEF1B subunits and a scrambled control, labelled with propidium iodide 72h after transfection and 
subjected to flow cytometry. Staurosporine (1mM) was used as a cell cycle distribution control. (a) 
Representative images of the flow cytometry analysis. (B) Graphs of the mean percentage obtained 
from three independent experiments with 10,000 cell counts each.  Error bars indicate +- SEM; n = 3 
; *, P < 0.05 from non-targeting siRNA  
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Figure 5.12 Cell cycle distribution of HCT116, DLD1 and HepG2 cells transfected with 10nM siRNAs 
targeting eEF1B subunits and non-targeting siRNA, measured 72 hours after transfection. The cells 
were labelled with propidium iodide and subjected to flow cytometry. Staurosporine (1mM) was 
used as a cell cycle distribution control. Graphs of the mean percentage obtained from three 
independent experiments in (a) HTC116, (b) DLD1 and  (c) HepG2 cells  with 10,000 cell counts each.  
Error bars indicate +- SEM; n = 3 ; *, P < 0.05; **, P < 0.01 of non-targeting siRNA 
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HepG2 cells with eEF1B siRNA mediated knockdown showed an increase of 

more than 9% cells in the G0/G1 stage compared with HepG2 cells transfected with 

scrambled siRNA, and a decrease of over 4% cells in the S-phase and more than 6% 

cells in the G2/M phase (p<0.05; Figure 5.12d).  

No statistically significant differences were seen in the cell cycle distribution 

of cells transfected with scrambled siRNA and mock transfected cells. Cells 

untreated showed a reduced number of cells in G0/G1 and increased in the S- and 

G2/M-phases compared with mock transfected cells. Staurosporine (1M) was used 

as a cell cycle distribution control; this gave reduced G0/G1- and S-phase cell 

number and increased number of cells in the G2/M phase.  

In all cell lines studied, eEF1B subunits knockdown lead to a significant 

decrease in the proportion of cells in S and G2/M phase and increase of cells in 

G0/G1 phase.  
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5.2.8 siRNA mediated knockdown of eEF1B enhances apoptosis 

Is the low cellular metabolism of cells with low eEF1B expression as 

measured by Alamar Blue and the increased proportion of cell in the S-phase due to 

apoptosis? To investigate this, cells were collected after transfection and 

immediately stained with propidium iodine and annexin V as an early apoptosis 

detection marker by flow cytometry analysis.  Representative images of the flow 

cytometry output can be seen in Figure 5.13a and in Figure 5.14a. Plotted graphs are 

the mean of at least three independent experiments in which depletion of eEF1B 

subunits was confirmed by Western blot.  

Flow cytometry analysis detected an increase of the number of apoptotic 

cells of more than 25% in cells with knocked down eEF1B (p=0.003), over 30% with 

eEF1B down-regulation (p=0.009) and almost 25% with eEF1B knockdown 

(p=0.009) in HeLa cells compared with cells transfected with scrambled siRNAs 

(Figure 5.13b).  

In HCT116 cells the percentage of apoptotic cells increased by 16% with 

eEF1B knockdown (p=0.04), by over 14% with eEF1B silencing (p=0.03) and by 

more than 13% with eEF1B down regulation (p=0.04) compared to cells transfected 

with non-targeting siRNA (Figure 5.14b). 

In DLD1 cells, silencing of eEF1B subunits increased the percentage of 

apoptotic cells by 25% in eEF1B knockdown (p=0.004), 24% in eEF1B knockdown 

(p=0.005) and 27% in eEF1B knockdown (p=0.007) compared with cells transfected 

with scrambled siRNA (Figure 5.14c).  

HepG2 cells with knocked down eEF1B subunits also showed an increase in 

the percentage of apoptotic cells compared with non-targeting siRNA transfected 

cells (Figure 5.14d). eEF1B silencing increased the percentage of apoptotic cells by 

over 16% (p=0.04), eEF1B knockdown by more than 15% (p=0.04) and eEF1B by 

more than 14% (p=0.04). 
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Figure 5.13 Transfection of siRNA targeting eEF1B subunits leads to increased apoptosis compared 
to non-targeting siRNAs in HeLa cells. Cells were transfected by nucleofection with 10nM siRNAs 
targeting eEF1B subunits and non-targeting siRNA as a control. Cells were labelled with propidium 
iodide and annexin V, 72h after transfection and subjected to flow cytometry. Staurosporine (1mM) 
was used as a apoptosis positive control. (a) Representative images of the flow cytometry analysis. 
(b) Graphs of the mean percentage obtained from three independent experiments with 10,000 cell 
counts each.  Error bars indicate +- SEM; n = 3 ; **, P < 0.01 from non-targeting siRNA 
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Figure 5.14 Transfection of siRNA targeting eEF1B subunits leads to increased apoptosis compared 
to non-targeting siRNAs in HeLa, HCT116, DLD1 and HepG2 cells. Cells were transfected with 10nM 
siRNAs targeting eEF1B subunits and non-targeting siRNA as a control. Cells were labelled with 
propidium iodide and annexin V, 72h after transfection and subjected to flow cytometry. 
Staurosporine (1mM) was used as apoptosis positive control. Graphs of the mean percentage 
obtained from three independent experiments in (a) HCT116, (b) DLD1 and (c) HepG2 cells, with  
10,000 cell counts each.  Error bars indicate +- SEM; n = 3 ; *, P < 0.05;  **, P < 0.01; ***, P < 0.001 of 
the non-targeting siRNA  
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No statistically significant change in the percentage of apoptotic cells was 

detected by flow cytometry between cells transfected with non-targeting siRNAs 

and mock transfected cells. Staurosporine (1M) was used a positive apoptotic 

control, inducing the percentage of apoptotic cells up to 82% or more compared to a 

threshold that was set for normal cells of around 1% of apoptotic cells. The elevated 

number of apoptotic cells can be explained by the method of transfection of cells 

producing high numbers of apoptotic cells, determined by mock cells and cells 

transfected with non-targeting siRNA.  

Cells transfected with siRNA targeting eEF1B subunits in which the mRNA 

and protein level of the target was reduced also showed an increased apoptosis as 

detected with a marker for early apoptotic events. Was this apoptotic effect due to 

activation of caspases? To explore this question, HCT116 and DLD1 cells were lysed 

after treatment with siRNAs and analysed by Western blot for the presence of 

activated caspase-3. DLD1 cells were also submitted to an assay that detects active 

caspase 3 and caspase 7 by fluorometric analysis. 

Immunoblotting of cells with eEF1B subunit knockdown and controls 

stained with anti-cleaved caspase-3 antibody showed a detectable signal only on the 

apoptosis positive control (Staurosporine at a concentration of 3M) in DLD1 cells 

(Figure 5.15a). In all the attempts to repeat this in HCT116 cell line or at a lower 

staurosporine concentration, a signal could not be detected for active caspase-3.  

Fluorometric analysis designed to detect cleaved caspase 3 and caspase 7 

showed an increased fluorescence signal in cells with depletion of eEF1B (33%), 

eEF1B (34%) and eEF1B (21%) compared to scrambled siRNA transfected cells 

(Figure 5.15b). Staurosporine at a concentration of 1M showed a high increase in 

apoptosis compared with cells only. 

siRNA induced knockdown of eEF1B subunits induced apoptosis in all cell 

lines studied by more than 14% with a statistical significance of p<0.05 using flow  
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cytometry with an early apoptosis marker. DLD1 cells also showed increased 

apopotosis with a fluorometric analysis based on a later apoptosis marker. However 

the same apoptotic marker was not detected by Western blot.   

These observations are summarised in the Table 5.1 and strongly suggest 

that specific silencing of eEF1B in HeLa, HCT166, DLD1 and HepG2 is sufficient to 

cause an increase of apoptosis. However, these effects may be due entirely to the 

loss of eEF1B alone since the increased apoptosis is no worse than when both 

eEF1B and eEF1B, or eEF1B and eEF1B proteins are reduced by siRNAs.  

 

Table 5.1 – Relationship between protein expression, proliferation, cell cycle 
distribution and apoptosis for each eEF1B subunit knocked down in each cell line. 
Protein expression was determined by densitometry of Western blots. Proliferation 
was assayed by Alamar blue. Cells were stained with propidium iodine and 
assayed by flow cytometry to determine the cell cycle distribution. Apoptosis ratio 
was determined by staining with Annexin V and propidium iodine and analysed by 
flow cytometry. Table showing the mean values of at least 3 independent 
experiments  normalised against non-targeting siRNA +/- SD. 
 

  
Protein 

reduction (%) 
proliferation 
reduction (%) 

S-phase 
reduction (%) 

G0/G1 
increase 

(%) 

apoptosis 
increase 

(%) 

eE
F1

B
 

HeLa 92.3+/-7.8 13.7+/-2.9 16.3+/-3.5 9.1+/-1.7 27.0+/-3.2 

HCT116 89.0+/-9.3 18.6+/2.7 10.6+/-3.1 6.7+/-1.3 16.1+/-3.7 

DLD1 94.5+/-4.9 20.6+/-1.5 18.3+/-1.0 9.1+/-1.3 24.9+/-1.1 

HepG2 44.4+/-8.6 9.3+/-2.1 9.2+/-1.0 4.6+/-1.0 16.5+/-3.1 

eE
F1

B
 

HeLa 92.0+/-6.9 16.8+/-4.1 15.8+/-3.0 9.5+/-1.4 28.8+/-4.6 

HCT116 94.4+/-6.4 11.6+/-4.1 11.1+/-2.1 6.7+/-0.5 14.5+/-3.9 

DLD1 92.3+/-4.9 19.6+/-1.4 20.4+/-1.3 9.8+/-1.4 24.7+/-2.7 

HepG2 80.7+/-9.8 9.7+/-2.1 10.3+/-0.6 5.2+/-0.7 15.1+/-2.8 

eE
F1

B
 

HeLa 84.0+/-5.6 9.8+/-2.8 13.2+/-3.4 7.5+/-1.3 24.8+/-3.1 

HCT116 77.9+/-5.6 9.6+/-3.5 9.9+/-3.2 6.1+/-1.3 13.7+/-3.4 

DLD1 97.3+/-8.2 14.3+/-1.7 15.0+/-0.7 9.2+/-1.1 26.8+/-4.0 

HepG2 75.0+/-9.5 9.1+/-0.8 9.4+/-1.3 4.1+/-1.1 14.4+/-2.8 
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5.2.9 Correlation between eEF1B protein level with cell proliferation, cell cycle 
and apoptosis 

 In order to correlate the phenotype with the siRNA-induced knockdown of 

eEF1B subunit protein levels, HeLa cells transfected with siRNAs targeting eEF1B 

subunits and non-targeting siRNAs were assayed for cellular proliferation, cell cycle 

distribution and apoptosis over a time course. 

Cells transfected with siRNAs targeting each eEF1B subunit showed a 

decreased cellular proliferation over time compared with cells transfected with non-

targeting siRNAs (Figure 5.16a). Decreased cellular proliferation was evident 48 

hours after transfection, particularly in cells transfected with eEF1B targeting 

siRNAs. The reduction of cell proliferation is more apparent 72 hours after 

transfection as the protein is effectively reduced, and increased slightly 120 hours 

after transfection as eEF1B subunit protein levels start to recover. 

The cell cycle distribution of cells transfected with siRNAs targeting each 

eEF1B subunit changed over time compared to cells transfected with scrambled 

siRNA. Cells transfected with eEF1B targeting siRNAs shifted their cell cycle 

distribution 24h hours after transfection by a slight increase in the proportion of 

cells in G0/G1 (Figure 5.16b) and a decrease in the number of cells in G2/M (data not 

shown) and S phases (Figure 5.16c). The cell cycle distribution difference is more 

evident 72 hours and 120 hours after transfection as eEF1B protein silencing 

becomes substantial.  

The proportion of apoptotic cells increased over time in cells transfected 

with siRNAs targeting eEF1B compared with cells transfected with non-targeting 

siRNAs (Figure 5.16d). A slight increase was detected 24 hours after transfection,  
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Figure 5.16 Time course of eEF1B knockdown impact on metabolism, cell cycle distribution and 
apoptosis ratio. Cells were transfected by nucleofection with 10nM siRNAs targeting each eEF1B 
subunit and non-targeting siRNA. Cells were assayed over a time course of 120 hours. (a) cellular 
metabolism assayed by Alamar blue. (b) Percentage of cells in G0/G1 phase and (c) percentage of 
cells in the S- phase measured by flow cytometry analysis of cells stained with PI. (d) percentage of 

apoptotic cells measured by flow cytometry analysis of cells stained with Annexin V.     eEF1B 

pooled siRNAs, eEF1B pooled siRNAs,   eEF1B pooled siRNA and   non-targeting 
siRNA Error bars indicate +- SEM; n = 2 ; *, P < 0.05;  **, P < 0.01; ***, P < 0.001 of the non-targeting 
siRNA assessed by student’s t test 
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became more apparent 72 hours after transfection as the eEF1B protein levels are 

drastically reduced. The percentage of apoptotic cells decreased slightly 120 hours 

after transfection in cells transfected with eEF1B siRNAs but was still much higher 

than in cells transfected with scrambled siRNA.      

Reduced cell proliferation, an increase proportion of cells in G0/G1 phase 

and decreased S- and G2/M phase cells and an increase in apoptosis is highest at the 

time point at which eEF1B protein levels are most reduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                 5. EEF1B FUNCTION 

233 
 

5.2.10 Overexpression of eEF1B subunits induces proliferation and cell 
viability 

The previous results indicate that siRNA induced knockdown of eEF1B 

subunits increases apoptosis, and the proportion of cells in the G0/G1 phase, and 

decreases cell proliferation which leads to the question, does overexpression of 

eEF1B subunits gives rise to opposite biological changes?  

To address this question, full length eEF1B, eEF1B, and eEF1B transcript 

variant b cDNA sequences were cloned into pcDNA-DEST40 with a C-terminal V5 

tagged protein (more details Chapter 2). HeLa cells were transiently transfected 

using the Amaxa nucleofection system with V5 tagged eEF1B, V5 tagged eEF1B 

transcript variant b, V5 tagged eEF1B, V5 plasmid only and transfected with no 

DNA. Cells were harvested 48h after transfection following the manufacture’s 

recommended conditions. 

In order to determine if the constructs were able to direct overexpression of 

eEF1B subunits, Western blot analysis was used. V5-tagged eEF1B subunits were 

detected by anti-V5 antibody and increased expression was detected by eEF1B 

antibodies (Figure 5.17). V5-tagged eEF1B detected by anti-V5 antibody showed a 

band at around 30kDa and strong overexpression was detected with the anti-

eEF1B antibody. V5-tagged eEF1B signal was detected at around 33kDa and up 

regulation of eEF1B protein detected by anto-eEF1B antibody. V5-tagged eEF1B 

was detected at around 50kDa and overexpression of eEF1B also detected by the 

anti-eEF1B antibody. GAPDH was detected with anti-GAPDH antibody in all the 

samples. 

 These results of overexpression of V5 tagged eEF1B subunits in HeLa cells 

shown by anti-V5 antibody and anti-eEF1B antibodies moreover again demonstrate 

the specificity of the eEF1B antibodies.  
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Figure 5.17 Overexpression of eEF1B subunits tagged with V5 in HeLa cells. HeLa cells were transfected 
with constructs of eEF1B with a V5 tag. eEF1B subunits inserted into a V5 construct  and transfected in 
HeLa cells shows overexpression of eEF1B subunits. Cells were harvested 48h after transfection and 
analysed by Western blot with anti-eEF1B, anti-eEF1B, anti-eEF1B, anti-V5 and anti-GAPDH.  V5-
eEF1B was loaded twice.  

 

Assays were performed to test for cellular proliferation, cell cycle 

distribution and apoptosis. The cellular proliferation of cells transfected with V5-

tagged eEF1B subunits was found to be greater relative to cells transfected with 

plasmid only (Figure 5.18a).  V5-eEF1B showed an increase in the cell growth 

around 12% (p<0.05), while V5-eEF1B was over 10% (p<0.05) and V5-eEF1B 

almost 8% (p<0.05). Cells transfected with V5 plasmid showed a similar cellular 

proliferation to mock transfected cells. Cells treated with staurosporine at 1M 

concentration had a highly reduced cellular proliferation whereas non-treated cells 

showed 17% more cell growth than with mock transfected cells.     
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Figure 5.18 Overexpression of eEF1B subunits increases proliferation, in cells in G0/G1 phase and 
reduces apoptosis compared with V5 plasmid only. HeLa cells were transfected with constructs of 
eEF1B with a V5 tag. Cells were assayed 48 hours after transfection. (a) Graphs of the mean cell growth 
presented as a percentage of mock-transfected cells. Cell growth was determined by Alamar blue 
fluorescence. (b) Graphs of the mean proportion of cell cycle distribution. The cells were labelled with 
propidium iodine and subject to flow cytometry. (c) Graphs of the mean percentage of apoptotic cells. 
The cells were labelled with propidium iodide and annexin V and subjected to flow cytometry. 
Staurosporine (1mM) used as a control. Data obtained from two independent experiments. Error bars 
indicate +- SEM; n = 2 ; *, P < 0.05; ** ,P < 0.01 of V5 plasmid 
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The proportion of cells in G0/G1 phase increased while the proportion in S- 

and G2/M phase decreased in HeLa cells transfected with V5 tagged eEF1B subunits 

in comparison to cells with V5 plasmid only (Figure 5.18b). Up-regulation of eEF1B 

decreased the number of cells in the G0/G1 phase by around 5% (p<0.05), increased 

the proportion in S-phase by 9% or more, and increased cells in G2/M phase by over 

8%. Cells transfected with V5 plasmid showed a decrease in the proportion of cells 

in S-phase of around 5% and G2/M phases over by 14% and an increase in the 

G0/G1 of more than 3%. However, the proportion of S-phase cells in eEF1B 

overexpressed cells still showed an increase of 4% or more compared with mock 

transfected cells (p<0.05).  

 

The percentage of apoptotic cells in cells overexpressing eEF1B subunits was 

decreased compared with cells transfected with V5 plasmid (Figure 5.18c). 

Compared with V5 plasmid transfected cells, the percentage of apoptotic cells 

decreased by more than 21% in cells overexpressing eEF1B (p=0.007), by over 16% 

in cells with upregulated eEF1B (p=0.009) and more than 6% in eEF1B 

overexpressing cells (p=0.2). Once again, cells transfected with V5 plasmid showed 

increased apoptosis (around 10%) compared with mock transfected cells. However, 

the eEF1B and eEF1B over-expressing cells still showed a significant decrease of 

apoptosis compared with mock transfected cells (p=0.02).  

The assays performed on cells over-expressing eEF1B subunits, in general, 

showed the opposite phenotype to the cells with depleted eEF1B subunits. The 

RNAi gives compound effects in which knockdown of each subunit also affect the 

expression of the other subunits. Whereas, the protein levels of the eEF1B subunits 

is not altered in cells over expressing each eEF1B subunit. Overexpression seems to 

be able to isolate the effects of individual subunits. 
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Table 5.2 summarises the different assays performed in HeLa cells with 

knockdown and overexpressed eEF1B subunits.  

 

Table 5.2 – Relationship between protein expression, proliferation, cell cycle distribution 
and apoptosis for each eEF1B subunit knocked down and up-regulated in HeLa cells. Protein 
expression was determined by densitometry of Western blots. Proliferation was assayed by Alamar 
blue. Cells were stained with propidium iodine and assayed by flow cytometry to determine the cell 
cycle distribution. Apoptosis ratio was determined by staining with Annexin V and propidium iodine 
and analysed by flow cytometry. Table showing the mean values of at least 2 independent 
experiments normalised against non-targeting siRNA or plasmid only +/- SD. 

 

  
 

 

 

 

 

 

 

 

 

  

protein 
expression 

(%) 

proliferation 
(%) 

S-phase 
(%) 

G0/G1-
phase (%) 

apoptosis 
(%) 

eEF1B 
RNAi 7.7+/-7.8 -13.7+/-2.9 -16.3+/-3.5 9.1+/-1.7 27.0+/-3.2 

Overexpression 187.7+/-17.8 14.0+/-4.0 10.7+/-1.5 -5.2+/-1.2 -22.9+/-5.4 

eEF1B 
RNAi 8.0+/-6.9 -16.8+/-4.1 -15.8+/-3.0 9.5+/-1.4 28.8+/-4.6 

overexpression 153.0+/-15.2 12.5+/-1.3 5.2+/-2.1 -3.9+/-1.3 -18.5+/-4.9 

eEF1B 
RNAi 16.0+/-5.6 -9.8+/-2.8 -13.2+/-3.4 7.5+/-1.3 24.8+/-3.1 

overexpression 150.5+/-22.1 9.8+/-2.6 10.7+/-2.1 -3.7+/-1.3 -8.0+/-4.8 
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5.3 Discussion 
The literature on eEF1B is mainly based on biochemical analysis of its role in 

protein synthesis and analysis of the overexpression of eEF1B subunits in tumours. 

In previous chapters of this thesis, some eEF1B subunits were found to have 

multiple transcript variants, tissue specific expression, varying expression during 

development, lower expression in wasted mice and nuclear, as well as cytoplasmic, 

expression in some cells from both human and mouse tissues. This chapter 

concentrates on functional analysis by siRNA induced knockdown and V5-tagged 

overexpression of each eEF1B subunit in several human cancer cell lines.  

All of the siRNA oligos targeting eEF1B subunits were successful in 

obtaining extensive mRNA and protein knockdown, validating both the siRNAs 

themselves and the antibodies raised against eEF1B and eEF1B, as well as the 

commercial antibodies for all subunits. Cells transfected with siRNAs at a 

concentration of 10nM 72 hours after transfection were found to give a substantial 

knockdown of each eEF1B subunit using either single or pooled siRNAs.  

In translation elongation, eEF1B subunits act as guanine nucleotide 

exchange factors on eEF1A, however there is little evidence suggesting which of the 

two eEF1A variants interact with eEF1B. The one exception is a yeast-two-hybrid 

experiment where eEF1A1 was found to interact with eEF1B subunits but eEF1A2 

did not (Mansilla et al., 2002). If only eEF1A1, but not eEF1A2, needs eEF1B as a 

GEF, then the effect of biological changes in eEF1B in cells may vary depending on 

whether they express eEF1A1 or eEF1A2. HCT116 and HeLa cells both express high 

amounts of all eEF1 subunits, while HepG2 and DLD1 cells lack the eEF1A2 variant 

(Victoria Tomlinson, PhD thesis, 2007; Jan Bergman, C. Abbot, unpublished data). 

These four cells lines were used to study the potential biological changes due to 

reduced protein levels of eEF1B subunits. 
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To assess the possible effects that each subunit might have on the other 

eEF1B subunits, each was knockdown and the protein levels of the other subunits 

were measured. Knockdown of eEF1B and eEF1B independently reduced eEF1B 

protein expression in all cell lines studied. However, in HeLa cells, the mRNA levels 

were not changed indicating that post-transcriptional mechanisms may be involved. 

siRNA induced reduction of protein expression of eEF1B also reduced eEF1B 

protein expression but in HepG2 cells only. eEF1B knockdown leads to a reduced 

protein level of eEF1B and eEF1B in HeLa and HepG2 cells but only eEF1B in 

HCT116 cells. In contrast, eEF1B knockdown showed no effect on the other 

subunits in DLD1 cells. The variability observed was most likely due to the variety 

of tumours from which the cell lines were originally obtained.  

Parallel knockdown has recently been suggested to be helpful in analysing 

pathways (Sahin et al., 2007). In a pilot study, parallel knockdown of eEF1B 

subunits using different combinations was attempted in HeLa cells. Most 

combinations showed the expected protein level reduction, knocking down all 

subunits demonstrating the requirement of each subunit in the formation of the 

complex. However, one of the siRNA combinations (eEF1B and eEF1B) showed 

reduced expression for eEF1B and eEF1B but normal protein levels for eEF1B. 

This may have been due to a Western blot artefact or due to variability of 

knockdown, but since this experiment was only attempted once, repetition is 

essential to verify its reliability and validity.  

Except cells with a strong eEF1B reduction which showed an abnormal 

distribution of -tubulin, cells with knockdown of eEF1B subunits showed no 

obvious phenotypic abnormalities by immunofluorescence, although reduced cell 

proliferation was found as measured by Alamar blue reduction. The Alamar blue 

assay was chosen to assay the cell viability/proliferation as it is a simple, quick, 

reliable and sensitive assay that does not affect the cells and does not require cell 

lysis and therefore can be used to take successive measurements (O'Brien et al., 
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2000). It also been reported to have a greater reproducibility and accuracy than MTT 

assays (Hamid et al., 2004). Low cellular proliferation was further confirmed by 

determining the proportion of cells in the S-phase in all the cell lines tested. In 

addition to a decrease in number of cells in the S-phase, down regulation of eEF1B 

subunits also decreased the number of cells in G2/M phase and increased those in 

G0/G1 phase.  

One of the early features of apoptosis is loss of plasma membrane 

asymmetry which exposes phosphatidylserine (PS) to the extracellular 

environment. Annexin V binds exposed PS hence acting as an early marker of 

apoptosis (Vermes et al., 1995). Annexin V used in conjunction with the vital dye 

propidium iodine, which detects cell membrane integrity loss, can be detected by 

flow cytometry and distinguishes between early apoptotic, late apoptotic and dead 

cells. Since Annexin V staining has to be performed on live cells and changes over 

time, cells where analysed by flow cytometry immediately after collection and cells 

with eEF1B knockdown showed an increased apoptosis in all cell lines studied. 

Induction of apoptosis also activates a cascade of caspases with amongst others 

Caspase 3 and Caspase 7 as the main effector caspases. Anti-cleaved caspase-3 

antibody was used to confirm the eEF1B knockdown induced apoptosis in DLD1 

and HCT116 cells. However immunoblotting with this antibody failed to show a 

signal even in the apoptosis positive control (1M Staurosporine). A signal was only 

detected when the concentration of Staurosporine was increased to 3M in DLD1 

cells but still not in HCT116 cells, while cell lysates with eEF1B subunits knocked 

down showed no signal. This suggests that the antibody used might not be sensitive 

enough to detect low levels of caspase-3 activity. To investigate this further, Apo-

ONE Homogeneous Caspase3/7 fluorometric assay (Promega) was carried out in 

DLD1 cells. This assay is a fast, robust and sensitive measurement of the ability of 

these caspases to cleave a profluorescent substrate. This assay has been used in 

multiple studies with Staurosporine as an apoptosis positive control, with a few 
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studies detecting a signal even with doses as low as 0.5M (Piddubnyak et al., 2007) 

or even 0.1M of Staurosporine (Lakhani et al., 2006). Using this assay, eEF1B 

siRNA induced knockdown cells and cells treated with 1M Staurosporine were 

found to have increased caspase-3 and caspase-7 activity with the percentage of 

apoptotic cells similar to the ones detected by flow cytometry analysis of Annexin 

V/propidium iodine. These results suggest that silencing of eEF1B subunits leads to 

increased apoptosis with increased exposed PS and activation of caspase-3 or/and 

caspase-7.  

In addition, the trends in the most obvious phenotypic changes were 

correlated with the loss of eEF1B protein over time, which is important since the 

siRNAs were transiently transfected.  

 

In a much smaller scale study, performed in HeLa cells, overexpression of 

eEF1B subunits tagged to a V5 protein was achieved and once again validated the 

eEF1B commercial antibodies. Cells overexpressing eEF1B subunits showed almost 

opposite phenotypic effects when compared to cells with depleted eEF1B subunits 

in the HeLa cell line. Overexpression of eEF1B subunits leads to increased 

proliferation, measured by Alamar blue, and a greater proportion of cells in S-

phase, and decreased apoptosis detected by Annexin V/propidium iodine flow 

cytometry analysis, compared with mock transfected cells and cells transfected with 

V5 plasmid only. pDEST40 V5 plasmid only showed a considerable difference in 

cell proliferation and apoptosis compared with mock transfected cells suggesting 

high toxicity of the plasmid. This might have been an artefact or due to 

contamination such as endotoxin. A pDEST40 V5 plasmid tagged to a protein which 

is known not to affect proliferation or apoptosis might have been a better control for 

this study. 
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The pattern of reduced eEF1B subunit protein levels when an individual 

subunit is knocked down using RNAi indicates that it is likely that the knockdown 

of individual subunits alters the folding, stability and consequently function of the 

eEF1B complex, with eEF1B playing a central role in the stability of the complex. 

eEF1B has been previously suggested to somehow be involved in the scaffolding of 

the complex (Mansilla et al., 2002). A similar result was obtained when knockdown 

of individual translation initiation factor 3 subunits consistently reduced the 

expression of the eIF3a subunit (Martineau et al., 2008) which had been previously 

known to be essential for the eIF3 complex stability and function (Masutani et al., 

2007).  Furthermore, these results obtained in cell culture system are not wholly 

consistent with the results described in the previous chapter, in that eEF1B subunits 

are not all present in the same cells and even in the same sub-cellular localisation 

both in mouse and human tissue samples.  

The effect of the RNAi for each eEF1B subunit on the protein levels of the 

other subunits does not allow to distinguish completely the effects of individual 

subunit depletion on cells, because eEF1B was reduced by the eEF1B and eEF1B 

knockdown. In contrast to the knocked down effects, overexpression of individual 

eEF1B subunits does not alter the protein levels of the other eEF1B subunits. The 

overexpression results are more reflective of the individual effects of each subunit 

on HeLa cells. 

 

Knockdown of eEF1B subunits reduced cell metabolism, induced 

accumulation of cells in G0/G1 phase, and increased proliferation and apoptosis, 

while overexpression resulted in induced cell metabolism, proliferation and 

reduced apoptosis. These results are consistent with the multiple reports of 

overexpression of eEF1B subunits in cancer and their potential as oncogenes. A 

similar phenotype observed with eEF1B subunit knockdown and overexpression 

has also been reported with many other oncogenes and translation factors with 
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oncogenic features. In HCT116, HepG2 and MCF7 cells, c-Myc down regulation 

reduced cell proliferation and increased apoptosis and also inhibited anchorage-

independent colony formation in soft agar and reduced tumour growth in nude 

mice (Wang et al., 2005). eIF3H knockdown reduced proliferation, increased 

apoptosis and anchorage-independent growth in soft agar of the breast cancer cell 

line MDA436 and prostate cancer cell line PC-3 (Zhang et al., 2008) while 

overexpression of eIF3H in NIH-3T3 cells lead to increased proliferation, reduced 

apoptosis and resulted in malignant transformation (Zhang et al., 2007). In MCF7 

cells, 72 hours after transfection, eIF4E knockdown induced accumulation of cells in 

G0/G1 phase by around 7%, reduced proliferation by around 24%  and increased 

apopotosis by around 9% (Dong et al., 2009). This phenotype is in all respects 

similar to the phenotype observed with knockdown of eEF1B subunits. Dong and 

colleagues went on to find that knockdown of eIF4E also inhibited tumour growth 

in nude mice. Overexpression of eIF4E is also known to lead to increased cell 

proliferation, survival and cause malignant transformation in immortal NIH-3T3 

cells (Lazaris-Karatzas et al., 1990). 

Both actin and tubulin protein expression seemed to be altered/reduced in 

some RNAi experiments particularly using siRNAs targeting eEF1B but although 

the altered tubulin expression and the speckled DAPI staining may be associated 

with the phenotype, it was found not to be reproducible. In some RNAi 

experiments in which neither actin or tubulin seemed to be affected, the knock 

down effect was always similar to the one observed when actin or tubulin protein 

expression was altered. However it is not to excluse completely that the effects 

attributed to the knock-down of eEF1B subunit might be due to alterations in actin 

and tubulin. Therefore, it would be interesting to study to determine if the 

phenotype of the eEF1B subunits knock down is not related to the altered 

expression of actin and tubulin by studying its effect on cytoskeletal proteins. 
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It is not essential to carry out rescue experiments in siRNA-mediated 

knockdowns, as long as other controls such as, scrambled siRNAs, use of the lowest 

concentration of siRNAs possible and showing that similar effects are observed 

with several siRNAs targeting different sites in the same mRNA are present. The 

ultimate way to fully confirm the phenotype derived from siRNA-mediated 

knockdown, however, would be to rescue the effect by the addition of a rescue of 

the target gene that is not affected by the siRNA used. This can be achieved by 

plasmid caring either a mutation in the siRNA target region or by the use of siRNAs 

targeting 3’ or 5’ UTRs (Sarov and Stewart, 2005). Taking into consideration the fact 

that the transfections were transient and that an in vitro system was used, it is 

interesting that knockdown of eEF1B lead to increased apoptosis in agreement 

with eEF1B knockout which is lethal in yeast Sacharomyces cerevisiae (Hiraga et al., 

1993). Knockdown by RNAi of eEF1B in Caenorhabditis elegans at the embryonic 

stage is also lethal with 80% penetrance, knockdown at the larvae stage gives a 

larva slow growth or larval arrest phenotype (Kamath et al., 2003, Simmer et al., 

2003) while in the nematode Panagrolaimus superbus knockdown is also embryonic 

lethal (Shannon et al., 2008). 

Knockdown of eEF1B leads to apoptosis, however in S. cerevisiae, knockout 

of eEF1B or eEF1B homologue is viable (Kinzy et al., 1994, Kambouris et al., 1993) 

but a double knockout has not been reported. In contrast, in C. elegans, eEF1B 

knockdown by RNAi at embryonic stage is lethal with 80% penetrance, at the larval 

stage slow growth is reported and at the adult stage an adult sterile phenotype is 

found (Simmer et al., 2003, Kamath et al., 2003, Sonnichsen et al., 2005).  

In yeast, two genes encode for eEF1A (Schirmaier and Philippsen, 1984) and 

eEF1B is not present in lower eukaryotes. However human eEF1B with a mutant 

CDK1 phosphorylation site is able to suppress the yeast lethal phenotype caused by 

eEF1B knockout (Pomerening et al., 2003). Would eEF1B rescue eEF1B depletion 

phenotype and eEF1B rescue eEF1B knockdown phenotype in human cell lines? 
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eEF1B lethal phenotype, in yeast, is overcome by overexpression of eEF1A, but not 

by overexpression of eEF1B itself (Kinzy and Woolford, 1995) which raises the 

question would eEF1A1 or eEF1A2 rescue eEF1B depletion phenotype in human 

cell lines? Would they rescue eEF1B knockdown phenotype? Since the eEF1B 

subunit knockdown phenotype might be due at least in part to the reduced protein 

levels of eEF1B observed when eEF1B or eEF1B are depleted, the crucial rescue 

experiment might be trying to rescue the phenotype of eEF1B or eEF1B 

knockdown by adding eEF1B.  

 

In addition to the need to repeat the study of overexpression of eEF1B 

subunits possibly with different controls, the mechanism by which knocking down 

eEF1B subunits knockdown induces apoptosis and by which overexpression 

induces proliferation is still unknown. The mechanism by which eEF1B is depleted 

by siRNA-induced knockdown of eEF1B and eEF1B it also remains unknown. 

This might be due, at least in part, to increased protein degradation or reduced 

mRNA levels of GEF eEF1B and eEF1B suppressing translation. 

 

Further characterisation and studies are needed in order to confirm eEF1B 

subunits as truly having oncogenic properties. This would include investigating 

anchorage-independent growth in soft agar and in vitro invasion assays. Although 

extremely important to study cell culture systems, it might be more biologically 

significant to investigate tumour growth in nude mice, particularly due to the 

eEF1B complex expression of the subunits in animals. In addition, it would be of 

importance to identify the over expression mechanism of eEF1B subunits in 

tumours by determining whether there are any gene amplifications, rearrangements 

or point-mutations. 
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 Protein synthesis is essential for the cell and misregulation of proteins 

involved in translation have been implicated in many different diseases including 

cancer. This study provides further insight into the possible involvement of eEF1B 

subunits in tumourigenesis. 
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6. General Discussion 
The eEF1B complex is known to recycle GDP-bound eEF1A into its active 

GTP form during the elongation phase of protein synthesis. In mammals, the eEF1B 

complex is composed of the alpha and delta subunits which possess guanine 

exchange activity and a third subunit, gamma, with no known function.  The 

complex has been extensively characterised biochemically, but little is known about 

the molecular biology. The purpose of this project was to characterise the eEF1B 

subunits and to begin to investigate their potential involvement in tumourigenesis.  

eEF1B subunits were found to be regulated at multiple levels. They are all 

predicted to have 5’ TOP sequences (Iadevaia et al., 2008) and CpG islands. 

DNA/RNA and protein-protein binding motifs have also been identified and 

several post-translational modifications have been predicted including 

phosphorylation sites for kinases involved in a variety of functions. Data from 

large-scale studies was also analysed and sites were mapped.  

eEF1B was found to have a variety of previously unknown transcript 

variants and isoforms, including a tissue-restricted heavier isoform and a muscle 

specific isoform which were identified by in silico models and their presence 

confirmed in vivo (Chapters 3 and 4). An isoform that has previously been found in 

sea urchins (Le Sourd et al., 2006b), which is the product of exon skipping, was also 

present in human and mouse ESTs and seems to be expressed in all tested tissues 

and cell lines. Another transcript variant was also identified from mouse ESTs data 

which has a previously unknown exon. eEF1B and eEF1B were also found to be 

expressed in all tissues, however eEF1B appears to exist as a band double the 

expected size in a tissue-specific way. This band is likely to represent a dimer since 

there is no evidence for another transcript variant. Several pseudogenes were 

identified in both human and mouse sequence databases but none showed evidence 

of being expressed. eEF1B was not expressed at an early-embryonic stage and 
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eEF1B was found to be highly expressed at embryonic and early post-natal stages 

compared with adult mice. Furthermore, tissue distribution of eEF1B subunits was 

not always consistent between the subunits in the same cell types and showed 

cytoplasmic and, surprisingly, nuclear expression. eEF1B subunits expression 

pattern seems to overlap, at least in part, with both eEF1A1 and eEF1A2 known 

expression patterns (Newbery et al., 2007). Moreover, the distribution of eEF1B 

subunits in cell lines was restricted to the cytoplasm and did not change in cell cycle 

arrested cells, although eEF1B was overexpressed in G2/M-arrested cells. 

siRNA-induced knockdown of eEF1B subunits individually decreased 

proliferation, the proportion of cells in the G2/M- and S-phase and increased 

apoptosis via caspase 3/7 in cells with and without eEF1A2. Furthermore, cells with 

a strong eEF1B reduction showed an abnormal distribution if -tubulin. Also, 

siRNA-induced reduction of either eEF1B or eEF1B led to a decrease in protein 

levels of eEF1B which might account for the similar knockdown phenotype seen 

with each subunit. In contrast, overexpression of V5 tagged eEF1B subunits 

constructs in HeLa cells induced proliferation and the proportion of cells in the 

G0/G1 phase and reduced apoptosis. Overexpression of individual subunits 

appeared not to affect the protein levels of the other eEF1B subunits. This result is in 

agreement with the potential role of eEF1B in tumourigenesis and may indicate that 

the protein level of eEF1B subunits might be rate-limiting for translation. 

As described above, reduced availability of eEF1B subunits with guanine 

exchange activity can lead to reduced eEF1B protein levels which indicates that 

eEF1B might be essential for the stability of the complex. Each eEF1B subunit also 

has a spatially and temporally restricted expression pattern and the subunits are not 

co-expressed in a large number of cell types, which questions the functionality of 

the complex and brings to light the differences between cell culture systems and in 

vivo study. Furthermore, although eEF1B and eEF1B share a highly conserved C-

terminal domain sequence, structure modelling of eEF1B predicted different 
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protein-binding clefts for the previously identified eEF1A binding clefts. This 

difference might give a slight advantage to one of the eEF1A variants or even a 

different efficiency rate for eEF1B and eEF1B. Furthermore, there is the existence 

of several eEF1B isoforms in mammals that give an extra potential complexity to 

the quaternary structure of eEF1B. In addition, more proteins have been suggested 

to be part of a larger complex such as valyl-tRNA synthetase and eEF1E, both of 

which, possess a domain identical to eEF1B, eEF1B and other multisynthetase 

complex subunits which are likely to form a multimer via a GST-like dimer fold 

domain (Quevillon and Mirande, 1996, Sang Lee et al., 2002, Bec et al., 1989). 
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6.1 Future studies 

6.1.1 eEF1B subunits in cancer 

 None of the studies of eEF1B overexpression distinguish between isoforms. 

It is important to determine if a particular isoform is associated with overexpression 

in tumours. Before starting to investigate the mechanism of overexpression, it 

would be vital to determine in which tumour types eEF1B subunits are 

overexpressed at the mRNA level and protein level, where they are expressed and if 

the expression  pattern of the subunits correlates, using immunohistochemistry. 

Analysis of tissue microarrays (TMAs), hundreds of samples on a single slide, can 

facilitate this task. Moreover, it would be important to determine if the 

overexpression correlates with different factors such as sex, age, tumour grade, 

tumour type, invasiveness, and survival. Correlation with eEF1A1, eEF1A2, TCTP 

and even eEF2 may be of interest to study since might give an insight into the 

possible link between tumourigenesis and increased translation. 

 Central to a better understanding of the involvement of eEF1B subunits in 

tumourigenesis would be to repeat the overexpression studies and investigate 

anchorage-independent growth in soft agar, in vitro invasion assays and tumour 

growth in nude mice. In addition, it would be important to attempt to rescue the 

knockdown lethal phenotype by overexpressing the eEF1B subunits and repeating 

the knockdown experiment in non-cancerous cell lines. 

 Once the types of tumour in which eEF1B subunits are overexpressed have 

been identified, and eEF1B subunits found to be truly oncogenic, it would be 

essential to determine the mechanism of overexpression. If the mRNA is 

overexpressed then factors like copy number changes, rearrangements, methylation 

status, mutations in the promoter region, exons and intron/exons boundaries (if a 

particular eEF1B isoform is overexpressed) should be investigated.  
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6.1.2 eEF1B subunits expression and regulation 

 Promoter regions for each eEF1B subunits and transcription factor binding 

sites were predicted by in silico analysis. However, in order to appreciate the 

regulation of the eEF1B subunits at the transcription level, the transcription start site 

should be determined and the 5’UTR studied by for instance RACE-PCR, thus 

functionally characterising the promoter and 5’UTR region by for example fusing it 

with a reporter gene such as luciferase or GFP and determining gene expression. 

Furthermore mutations could be created and their affect on gene expression 

determined.  

 The presence of more transcript variants should be investigated by RACE-

PCR and Northern blotting. Furthermore, it should be investigated as to whether 

the various transcript variants are due to mutations in the intro/exon boundaries or 

whether they are due to alternative promoters. In order to determine if all the 

transcripts are translated into protein, and to investigate possible tissue specificity, 

sub-cellular localisation, and expression pattern during development and cell cycle, 

antibodies against each of the isoforms should be produced. To build up the 

knowledge of potential isoform specific functions, siRNA mediated knockdown and 

overexpression by transfection with tagged constructs of each isoform should be 

carried out and the effects determined for of each isoform by a variety of assays in 

the same way as it was performed for this study. It would also be important to 

determine if eEF1B subunits exist in the cells at a limiting concentration or if there is 

some sort of threshold below which the cell dies. This can be achieved by 

performing RNAi at different knockdown efficiencies. Moreover, rescue 

experiments should be carried out to determine if the increased apoptosis 

phenotype of siRNA induced knockdown can be reversed by overexpression of 

eEF1B subunits. It is possible to establish stable cell lines to study differently 

expressed sub-populations of cells in which to measure the long term impact of 

different efficiencies of knockdown and overexpression on cells. Ultimately, the 

effect observed in vitro might not be the same as in vivo and it is essential to produce 
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a knockdown, by shRNA, or knockout, by mutagenesis or gene trap, to evaluate the 

phenotypic alterations upon down-regulation or complete absence of each subunit 

and each eEF1B isoform. Since knockdown in human cell lines led to increased 

apoptosis, and knockouts in other species leads to a lethal phenotype it is expected 

that knockout mice might have a lethal phenotype as well. For that reason it might 

be more useful to do an inducible system, such as cre-lox, so that expression can be 

controlled temporally and spatially.  Exogenous expression of eEF1B subunits in 

mice could also provide some insight into possible functions.  

Further investigations of the expression of eEF1B subunits during the cell 

cycle and in particular mitosis, under cellular stress conditions and their possible 

link to cytoskeleton should be carried out. Time-lapse microscopy would be able to 

determine the dynamic redistribution of cytoskeletal and regulatory proteins as 

well as the eEF1B subunits. The use of drugs that disrupt either cell cycle or the 

cytoskeletal proteins dynamics or even induce cellular stress could be used to 

consider the dependence of eEF1B subunit expression and function on cell cycle 

stage or cytoskeletal interaction and their involvement in stress response. Since 

eEF1B subunits protein levels do not change substantially during the cell cycle, and 

they are known to be phosphorylated by cell cycle specific kinases in other species, 

it would be interesting to determine the phosphorylation status during cell cycle 

and mitosis in human cells. Since it is known that there are several sites that are 

often phosphorylated in eEF1B subunits, phospho-antibodies could be produced. 

Alternatively, less specific but still useful serine, tyrosine and threonine phospho 

antibodies can be used to study the phosphorylation status of purified proteins. 

Potentially, the phosphorylation sites could be mutated to examine the effects in the 

expression or function of the proteins. However, eEF1B subunit expression levels, 

expression pattern or phosphorylation state have not been studied upon cellular 

stress. Investigating their response in relation to various cellular stresses, including 

formation of stress granules where other translation factors are known to be 

involved would be essential in better understanding this putative function.  
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6.1.3 eEF1B complex structure 

 It is clear from the expression studies in vivo and the knockdown effect in a 

cell culture system that the eEF1B complex most likely changes configuration and 

conformation in vivo and that this differs from in vitro. It is crucial to determine the 

interactions of the subunits between themselves and interactions with proteins such 

as eEF1A variants, tRNAs, other translation factors, cytoskeletal proteins, and 

proteolysis machinery proteins. With previous eEF1B complex models disagreeing 

about the molecular weight of the complex, molar ratios and even which terminus 

of the subunits interacts with other subunits, it is essential to determine the intrinsic 

interaction sites between the subunits within the complex as well as the factors or 

conditions that determine the complex composition to change. 

 Protein-protein interaction studies preferably in vivo such as bimolecular 

fluorescence complementation (BiFC) or fluorescence resonance energy transfer 

(FRET) would be of particular interest (in vivo protein-protein interaction systems 

reviewed in Ciruela, 2008). Also by mutating the GST, leucine-zipper, 

transmembrane, disordered as well as other conserved domains would be possible 

to identify the site of interactions and to validate the protein-protein interaction 

studies at the same time. In addition, in vivo protein-protein interaction would 

provide information about the sub-cellular localisation of the complex in a stable 

non-reversible way (eg. BiFC) or in a dynamic reversible system such as FRET. In 

addition, these methods can be used to study protein-protein interactions upon 

knockdown and overexpression, cell cycle and cytoskeleton disruption, under 

cellular stress conditions or even to study tRNA acetylation. These protein-protein 

interaction methods can be easily analysed by microscopy, flow cytometry and 

fluorometry. 
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6.1.4 Implications for protein synthesis 

Compartmentalisation of translation can take place in membranes, 

cytoskeleton, cytosol or controversially in the nucleus (Dahlberg and Lund, 2004). Is 

the interaction with the cytoskeleton, the presence of transmembranes and the 

nuclear expression, besides the expected cytoplasmic expression, a reflection of 

translation compartmentalisation or non-canonical functions? There is no easy way 

of addressing this question. However, polysomal microarrays of sub-cellular 

fractions corresponding to membrane, cytoskeleton, nuclear and cytosolic, might 

give a good insight into differently synthesised proteins. Furthermore, since 

phosphorylation of eEF1B subunits alters protein synthesis in a membrane and 

cytosolic way, it might be interesting to study overexpressed and slight knockdown 

(non-lethal) of eEF1B subunits and perform polysomal microarray analysis as 

described above.  

With a variety of complex structures, is the eEF1B complex always 

functional? Is there any particular protein region that alters translation? Is eEF1B 

rate-limiting rather than initiation which many believe to be the rate-limiting 

reaction in translation (Sonenberg et al., 2000)? Does overexpression or slight down-

regulation of eEF1B subunits alter translation? Does the restricted expression of 

eEF1B subunits give an insight into temporal and local translation? Probably the 

best way to examine this problem is to establish stable cell lines with either 

overexpressed, knockdown constructs (at a non-lethal concentration) or even 

mutated eEF1B subunit proteins and measure a series of parameters, such as 

translation initiation rate (methionine synthesis), translation elongation rate 

(monitoring incorporation of several different labelled amino acids such as valine, 

at least one tRNA from the MSC, and at least one free tRNA), eEF1A bound to GDP, 

tRNA binding to the ribosome and polysome analysis to determine the translation 

phenotype, in addition to determining apoptosis, proliferation and cell cycle 

changes. It might also be of interest to investigate IRES gene expression, ability to 
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translate proteins from different sub-cellular fractions such as membrane, 

cytoplasm and cytosol, as well as the ability of tRNAs to become acetylated. 

Phosphorylation of eEF1B subunits clearly also has an impact on translation in other 

species, therefore it would be appealing to measure the same sort of translation 

parameters upon phosphorylation by different kinases.  

 

6.2 Conclusion 
This project sheds light into the considerably more intricate role of eEF1B in 

translation than previously understood, the potential vital importance of functional 

eEF1B subunits in tissue culture cells and the likely variation in composition of the 

eEF1B complex throughout development in different cell sub-populations in vivo. 

More work is needed to clarify the involvement of eEF1B subunits in translation 

and possible non-canonical functions such as tumourigenesis, cytoskeleton 

remodelling, cell cycle regulation, stress response, translation fidelity and tRNA 

acetylation. 
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Appendix 2 

Supplier’s name Supplier’s address 
Abcam Cambridge Science Park, Cambridge, CB4 0FL 
Abnova 132 Siyuan Rd, Jhongli City, Taoyuan County, 320 Taiwan 
Amaxa Biosystems Lonza Cologne, Nattermannallee 1, 50829 Cologne, Germany 

Ambion 
Applied Biosystems, Lingley House, 120 Birchwood Boulevard, Warrington, 
WA3 7QH 

Amersham 
GE Healthcare Life Sciences, Amersham Place, Little Chalfont, 
Buckinghamshire, HP7 9NA 

Appied Biosystems Lingley House, 120 Birchwood Boulevard, Warrington, WA3 7QH 
Beckman coulter Kingsmead Business Park, High Wycombe, Buckinghamshire, HP11 1JU 

Bethyl Laboratories 
Universal Biologicals, Passhouse Farmhouse, Papworth St. Agnes, 
Cambridge, CB23 8QU 

BioRad Maxted Road, Hemel Hempstead, Hertfordshire, HP2 7DX 

Chemicon Millipore, Building 6, Croxley Green Business Park, Watford, WD18 8YH 

Dako Cambridge House, St Thomas Place, Ely, Cambridgeshire, CB7 4EX 

Fisher Scientific Bishop Meadow Road, Loughborough, Leicestershire, LE11 5RG 
Weiss-Gallenkamp Units 37 - 38, The Technology Centre, Epinal Way, Loughborough, LE11 3GE 
Geneservice Units 24 - 25, William James House, Cowley Road, Cambridge, CB4 0WU 
Greiner Bio-One Brunel Way, Stroudwater Business Park, Stonehouse, GL10 3 SX 
Invitrogen Fountain Drive, Inchinnan Business Park, Paisley, PA4 9RF 
NEB 75 - 77 Knowl Piece, Wilbury Way, Hitchin, Hertfordshire, SG4 0TY 
New Brunswick 
Scientific 

17 Alban Park, Hatfield Road, St. Albans, Hertfordshire, AL4 0JJ 

Olympus KeyMed House, Stock Road, Southend-on-Sea, Essex, SS2 5QH 

Pierce 
Unit 9, Atley Way, North Nelson Industrial Estate, Cramlington, 
Northumberland, NE231WA 

Promega Southampton Science Park, Southampton, Hampshire, SO16 7NS 
Qiagen Fleming Way, Crawley, West Sussex, RH10 9NQ 
Roche Charles Avenue, Burgess Hill, RH15 9RY 
Scientific 
Laboratory Supplies 

Bishop Meadow Road, Loughborough, Leicestershire, LE11 5RG 

Sigma New road, Gilliangham, Dorset, SP8 4XT 
Proteintech group Manchester Science Park, Manchester, M15 6SE 
Santa cruz 2145 Delaware Avenue, Santa Cruz, CA. 95060, U.S.A. 

 



Appendix 3 – Pseudogenes summary 

Appendix 3.1 - Summary table of eEF1B mouse and human pseudogenes chromosomal location, number of introns, presence or absence of poly-
A tail signal and  frame-shifts, different start codon, in-frame stop codons and in silico protein percentage of identity compared with the reference 
protein sequence.  

 

eEF1B 
Chromosomal 

location 

Number of 

introns 

poly-A tail 

signal 
Frame-shifts 

Different N-

terminus 

In-frame stop 

codon 

Percentage 

identity 

Mouse 3F1 0 + - + - 97 

Human 

2q37.1 1 + + + + 92 

3q26.31 1 - - - + 87 

5q13.1 (B3) 1 - - - - 95 

6q12 1 - - + + 84 

7q32.3 1 + - + - 97 

12q23.3 1 (inversion) + + + + 90 

15q21.2 0 + - + - 95 

Xp22.11 0 + - + - 98 



eEF1B 
Chromosomal 

location 

Number of 

introns 

poly-A tail 

signal 
Frame-shifts 

Different N-

terminus 

In-frame stop 

codon 

Percentage 

identity 

Mouse 
4D1 1 + - + + 82 

11E2 0 + + - + 74 

Human 

19p13.12 0 + - - - 94 

9q22.31 0 + - - - 94 

11q12.3 0 - + - + 89 

17q23.3 0 + + Missing - 84 

7q11.21 5 + - + - 88 

13q13.1 0 + + - + 90 

6q22.33 2 + - Missing - 85 

1p36.32 0 + - Missing - 89 

 

Appendix 3.2 - Summary table of eEF1B mouse and human pseudogenes chromosomal location, number of introns, presence or absence of poly-
A tail signal and  frame-shifts, different start codon, in-frame stop codons and in silico protein percentage of identity compared with the reference 
protein sequence.  



eEF1B 
Chromosomal 

location 

Number of 

introns 

poly-A tail 

signal 
Frame-shifts 

Different N-

terminus 

In-frame stop 

codon 

Percentage 

identity 

Mouse 

19D3 0 + + + -? 84 

4B2 0 - + + + 75 

15A1 1 + + Missing + 88 

6D2 0 - + + + 81 

16B1 0 + + + + 87 

1A5 0 + - + + 96 

7F1 0 - - + -? 99 

14A3 0 - + Missing + 77 

13A1 0 - + + + 72 

Human 

3q26.1 0 + + + + 81 

4q28.2 0 + + + + 82 

Xq23 0 + + + + 95 

7q32.3 0 - - + - 97 

Appendix 3.3 - Summary table of eEF1B mouse and human pseudogenes chromosomal location, number of introns, presence or absence of poly-
A tail signal and  frame-shifts, different start codon, in-frame stop codons and in silico protein percentage of identity compared with the reference 
protein sequence.  



Appendix 4 – CGAP SAGE summary  
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Appendix 5 – miRNA prediction 

 Rfam ID   Score   Start   End 
eEF1B hsa-miR-130b  17.2246 531 552 

hsa-miR-7-1*  17.1245 508 531 
hsa-miR-23b  17.104 694 714 
hsa-miR-16-1*  16.7239 863 884 
hsa-miR-379*  16.6238 50 71 
hsa-miR-23a  16.6009 694 714 
hsa-miR-301b  16.4504 528 552 
hsa-miR-23b  16.3997 505 525 
hsa-miR-23a  16.3997 505 525 
hsa-miR-337-3p  16.2232 734 755 
hsa-miR-556-3p  16.123 876 898 
hsa-miR-202*  16.123 53 75 
hsa-miR-640  16.0979 1 17 
hsa-miR-639  15.9519 384 406 
hsa-miR-411*  15.8226 50 71 

eEF1B hsa-miR-663  17.2829 22 43 
hsa-miR-297  16.8033 11 31 
hsa-miR-933  16.6007 4 26 
hsa-miR-603  16.487 1 14 
hsa-miR-574-3p  15.9185 1 12 
hsa-miR-550*  15.691 16 37 
hsa-miR-523  15.6121 7 29 
hsa-miR-560  15.5181 7 27 
hsa-miR-517b  15.2362 1 19 

eEF1B hsa-miR-339-5p  16.6303 31 53 
hsa-miR-337-3p  16.0322 43 65 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



Appendix 6 – eEF1B subunits homologues 
 
Appendix 6.1 – eEF1B homologues proteins  

 Species Genomic 
location UniProt 

Protozoa 

Plasmodium yoelii 1.8Kb XP_726756 
Plasmodium falciparum 9(515Kb) NP_704672 

Trypanosoma brucei 4(1Mb) XP_825370 
Trypanosoma cruzi 34Kb EF1B_TRYCR 

Fungi 

Candida albicans IV:126Kb EF1B_CANAL 
Schizosaccharomyces pombe III:1.7Mb EF1B_SCHPO 

Candida glabrata F:853Kb XP_446340 
Gibberella zeae 3Mb Q4IP50_GIBZE 

Magnaporthe grisea IV:342Kb Q5EN21_MAGGR 
Chaetomium globosum n.a. Q2GMD1_CHAGB 

Podospora anserine n.a. Q875E8_PODAN 
Aspergillus fumigatus I:3Mb XP_752484 

Cryptococcus neoformans III:1Mb XP_569674 
Neurospora crassa VII:49Kb Q7S4F0_NEUCR 

Saccharomyces cerevisiae I:140Mb EF1B_YEAST 

Worms Caenorhabditis elegans n.a. EF1B2_CAEEL 
8Mb EF1B1_CAEEL 

Sea urchin 
Strongylocentrotus 

purpuratus 5Kb XP_780033 

Arachnidan Ixodes scapularis n.a. Q4PMB1_IXOSC 

Insects 

Apis mellifera n.a. XP_625027 
Plutella xylostella n.a. Q6F447_PLUXY 

Bombyx mori n.a. EF1B2_BOMMO 
Anopheles gambiae n.a. Q7Q8Q6_ANOGA 

Aedes aegypti n.a. Q6Q9G8_AEDAE 
Tribolium castaneum n.a. XP_973769 

Drosophila melanogaster 2R53D EF1B_DROME 

Frogs 
Xenopus laevis n.a. EF1B_XENLA 

Xenopus tropicallis n.a. EF1B_XENTR 
Crustacean Artemia salina n.a. EF1B_ARTSA 

Fish 
Brachydanio rerio 6(8.6Mb) Q6IQE2_BRARE 

Ictalurus punctatus n.a. Q2I161_ICTPU 
Birds Gallus gallus 7 (13Mb) EF1B_CHICK 

Mammals 

Bos taurus 2(55Mb) EF1B_BOVIN 
Oryctolagus cuniculus n.a. EF1B_RABIT 

Mus musculus 1 C2 EF1B_MOUSE 
Rattus norvegicus 9q31 XP_343581 
Canis familiaris 37(17.7Mb) XP_536040 

Sus scrofa n.a. EF1B_PIG 
Pan troglodytes n.a. XP_516048 
Homo sapiens 2q33.3 EF1B_HUMAN 

 
 
 



Appendix 6.2 – eEF1B homologues proteins  

 Species 
Genomic 
location UniProt/GenBank 

Sea urchin Sphaerechinus granularis 
n.a. O18681 
n.a. Q4VY59 

Insects 
Bombyx mori n.a. Q9BPS1 

Drosophila melanogaster 2L-31B1 EF1D_DROME 
Crustacean Artemia salina n.a. EF1D_ARTSA 

Frogs 
Xenopus laevis n.a. EF1D_XENLA; 

Q91733 
Xenopus tropicallis n.a. Q28G98 

Fish Brachydanio rerio n.a. Q5SPC9; Q5SPD0 

Birds 
taeniopygia guttata n.a. gi:224046810 

Gallus Gallus n.a. gi:118087445 

Mammals 

Bos taurus n.a. gi:119906216 
Oryctolagus cuniculus n.a. EF1D_RABIT 

Mus musculus 15 E1 
EF1D_MOUSE; 

Q91VK2; Q80T06; 
Q68FG5 

Rattus norvegicus 7q34 Q68FR9 
Canis familiaris n.a. gi:73974698 
Pan troglodytes n.a.  

Macaca fascicularis n.a.  
Ovis aries n.a. Q717R8 

Homo sapiens 8q24.3 EF1D_HUMAN; 
Q4VBZ6; Q96I38 

 
 
 
 
 
Appendix 6.3 – eEF1B or eEF1B homogues proteins in plants 

Plants 

Triticum aestivum n.a. EF1B2_WHEAT 
Pimpinella brachycarpa n.a. EF1B_PIMBR 

Beta vulgaris n.a. EF1B_BETVU 

Arabidopsis thaliana 

n.a. EF1B1_ARATH 
n.a. EF1B2_ARATH 
n.a. EF1D1_ARATH 
n.a. EF1D2_ARATH 

Oryza sativa 

n.a. EF1B1_ORYSA 
n.a. EF1B2_ORYSA 
n.a. EF1D1_ORYSA 
n.a. EF1D2_ORYSA 

 
 
 
 
 
 
 



Appendix 6.4 – eEF1B homologues proteins 

 Species 
Genomic 
location UniProt 

protozoa 

Cryptosporidium parvum n.a. Q5CXY4 
Cryptosporidium hominis n.a. Q5CM55 
Plasmodium yoelii yoelii n.a. Q7R8U9 

Leishmania infantum n.a. 9BHZ6 
Crithidia fasciculata n.a. Q6QE10 
Trypanosoma cruzi n.a. EF1G_TRYCR 

Fungi 

Schizosaccharomyces pombe  n.a. EF1G_SCHPO 
Cryptococcus neoformans I:1Mb XP_566751 

Aspergillus fumigatus I:4Mb Q4WDF5 

Saccharomyces cerevisiae n.a. EF1G1_YEAST 
n.a. EF1G2_YEAST 

Plants 

Prunus avium n.a. EF1G_PRUAV 
Glycine max n.a. Q6QE10 

Arabidopsis thaliana n.a. EF1G1_ARATH 
n.a. EF1G2_ARATH 

Oryza sativa 
n.a. EF1G1_ORYSA 
n.a. EF1G3_ORYSA 
n.a. EF1G2_ORYSA 

worms Caenorhabditis elegans n.a. EF1G_CAEEL 

Sea urchin 
Strongylocentrotus 

purpuratus n.a. Q4VY61 

Insects 
Locusta migratoria n.a. Q8T8P6 

Bombyx mori n.a. Q9BPS3 
Drosophila melanogaster 3R: 99A1 EF1G_DROME 

Frogs Xenopus laevis n.a. Q91733 
crustacean Artemia salina n.a. EF1G_ARTSA 

Fish 

Brachydanio rerio 14: 3Mb EF1G_BRARE 
Carassius auratus n.a. EF1G_CARAU 

Oryctolagus cuniculus n.a. EF1G_RABIT 
Mus musculus 19 A EF1G_MOUSE 

Rattus norvegicus 1q43 EF1G_RAT 
Homo sapiens 11q12.3 EF1G_HUMAN 

 
 

 

 

 

 

 

 



Appendix 7 – eEF1B Motifs 
 
eEF1B subunit domain location e-value database 
Human eEF1B EF1_beta_acid 

(PF10587) 
103-130 1.3e-10 Pfam 

EF1_GNE (PF00736) 139-225 9.4e-53 Pfam 
GST_CTLD 
(IPR014038) 

10-81 1.9-09 Interpro 

Plant B1 GST_C 14-65 4.2e-05 Pfam 
EF1_GNE 139-228 6.7e-41 Pfam 

Plant B2 GST_C 18-65 0. 0015 Pfam 
EF1_GNE 135-224 5.9e-38 Pfam 

Plant B1 EF1_GNE 142-231 4.6e-42 Pfam 
EF1_beta_acid*** 112-138 0.05 Pfam 

Plant B2 EF1_GNE 142-231 1.2e-42 Pfam 
EF1_beta_acid*** 112-138 0.05 Pfam 

Human eEF1B iso 
b 

EF-1_beta_acid 159-186 5.8e-10 Pfam 
EF1_GNE 195-281 3.5e-51 Pfam 
DUF526 55-117 0.5*** Pfam 
bZIP_1 79-113 0.023*** Pfam 
Vsp51 84-111 0.38*** Pfam 
Vac_Fusion 103-118 0.31*** Pfam 
SPT2 127-171 0.83*** Pfam 

Human eEF1B EF1G (PF00647) 275-381 3.9e-80 Pfam 
GST_N (PF02798) 2-81 1.6e-23 Pfam 
GST_C (PF00043) 106-198 3.4e-27 Pfam 
DDRGK (PF09756) 211-372 0.42 *** Pfam 
Calreticulin 
(PF00262) 

308 - 322 0.23 *** Pfam 

EF1_GNE    EF-1 guanine nucleotide exchange domain 
EF-1_beta_acid    Eukaryotic elongation factor 1 beta central acidic region 
GST-CTLD Glutathione S-transferase (GST), C-terminal likedomain 
EF1G  Elongation factor 1 gamma, conserved domain 
GST_C    Glutathione S-transferase, C-terminal domain 
GST_N    Glutathione S-transferase, N-terminal domain 
***   insignificant 
  



Appendix 8 – eEF1B subunits structural features 
 Characteristics loc Predicted tool 
eEF1B Disorder 1-11 

63-71 
77-100 
107-118 
125-149 

DisEMBL 

Low complexity 86-124 SEG 
eEF1B iso a Disulphide 8-156 

148-305 
disulfind 

Repeats 11-41;375-405 
4-29; 223-248 
225-243;308-326 

RPT 

Disorder 65-99 
191-200 
251-300 
346-363 
1-18 

DisEMBL 

Low complexity 51-69 
95-108 
130-144 
264-281 

SEG 

eEF1B iso b Leucine zipper 80-101 prosite 
Disorder 1-16 

30-41 
60-75 
121-155 
165-172 
183-204 
264-273 

DisEMBL 

Low complexity 63-75 
140-155 

SEG 

coils 82-120 
162-189 

Coils 

eEF1B Transmembranes 157-174 PhDhtm 
Disorder 217-262 

427-437 
150-159 
274-282 

DisEMBL 

Low complexity 238-262 SEG 
 
 

 

 

 

 



Appendix 9 –predicted post-translational modifications 
 PTM Location Prediction tool 

eEF1B 

methylation 130-133 MnM 
acetylation 71, 89, 169 Prosite 

SUMOylation 156-159 ELM 
N-glycosylation 89-92 ELM; 

Glycation 22, 96, 116, 132, 139, 197 NetGlycate 

eEF1B 
iso a 

Sulfation 20, 28 Sulfinator 
Amidation 273 Prosite 
acetylation 95, 151, 162, 195, 223, 266, 285, 355 Prosite 

N-glycosylation 166 NetNGlyc, Prosite 
GalNAc 199 NetOGlyc 
ManNAc 161 NetCGlyc 
Glycation 5, 86, 89, 93, 128, 366 NetGlycate 

methylation 275-279 MnM 

eEF1B 
iso b 

acetylation 68, 225 prosite 
N-glycosylation 91 Prosite 

GalNAc 125, 129, 133, 147 NetOGlyc 
Glycation 10, 56, 144, 189, 195, 203 NetGlycate 

methylation  MnM 

eEF1B 

Sulfation 194-197 Sulfinator 
acetylation 4, 140, 364, 379, 405 prosite 

N-glycosylation 45, 367 ELM; NetNGlyc, 
prosite 

Glycation 125, 173, 208, 212, 220, 228, 235, 241, 
253, 296, 351, 434, 437 NetGlycate 

SUMOylation 131-135 ELM, MnM 
methylation  MnM 

 
 

 

 

 

 

 

 



Appendix 10 – eEF1B subunits phosphorylation prediction sites and in vitro and in vivo phosphorylation sites 

eEF1B 

Likelyhood 
of 

phosphoryl
ation 

Disphos 

Predicted 
phosphor

ylation 
sites by 

NetPhosK 

NetPhos 

Predicted phosphorylation sites 

Known phosphorylation 
sites and reference Species 

ELM MnM HPRD 

S8 0.126 p38MAP
K 0.56 WW, MAPK Erk 

WW, CKI, GSK-3, ERK1, 
ERK2, CDK5, Growth 
associated histone HI 

(Dephoure et al., 2008) Human 

Y18 0.038   STAT5 
Cholesterol, APS, EGFR, 

TC-PTP, PLCgamma, 
STAT5 

EGFR, TC-PTP   

S23 0.094 CKII, 
PKG 

0.53, 0.59 CKII Myt1 is phosphorylated 
by PLK1, CKII 

CKII   

Y24 0.1 EGFR 0.54 
Src, STAT5, USP7 

NTD PLCgamma, STAT5 ALK   

Y28 0.065   Src, STAT5 STAT5 SHP1   

S31 0.099 
DNAPK, 

ATM 0.63, 0.52 PIKK CKII, ATM 
DNAPK, Pyruvate 

dehydrogenase, ATM, CKII   

S42 0.145     Plk1, CKI   

S43 0.203 p38MAP
K, GSK3 0.56, 0.5 WW, MAPK Erk Plk1, WW, GSK-3, ERK1, 

ERK2, CDK5, MAPK   

Y56 0.066    Cholesterol, Syk, JAK2, 
Blnk, JAK2   

S61 0.067 PKC, cdc2 0.51, 0.55   CKII   

Y62 0.131    Src Src   

S68 0.227 PKA 0.51   PKA, PKC, CKI   

Y79 0.101    Src Src 
(Rikova et al., 2007, Dai et 

al., 2007) 
Human 

and mouse 

T87 0.11     b-Adrenergic Receptor (Chen et al., 2009, 
Dephoure et al., 2008) Human 

T88 0.14 CKII 0.52  KAPP CKI, MAPK (Dephoure et al., 2008) Human 

S90 0.649   CKI CK I CKI, CKII, MAPK (Oppermann et al., 2009, Li 
et al., 2009, Chen et al., 

Human 
and mouse 



2009, Dephoure et al., 2008) 

T93 0.196 CKII 0.51   
 

 
CKI (Molina et al., 2007, 

Chen et al., 2009, Dephoure 
et al., 2008) 

 

S95 0.737 CKII 0.53 USP7 NTD, CKI CamKII, CKII 
b-Adrenergic Receptor, 

Pyruvate dehydrogenase, 
CKII 

(Dephoure et al., 2008, 
Molina et al., 2007, 

Oppermann et al., 2009) 
 

S106 0.994 CKII 0.77 CKII CamKII, CKII BARD1, CKII 

CKII and Ppz1 (Chen and 
Traugh, 1995, Palen et al., 
1994, Janssen et al., 1988, 

Belle et al., 1989, Aksenova 
et al., 2007, Oppermann et 

al., 2009, Li et al., 2009, 
Chen et al., 2009, Zanivan 

et al., 2008a, Tsai et al., 
2008, Daub et al., 2008, 

Dephoure et al., 2008, Sui et 
al., 2008, Trinidad et al., 
2008, Han et al., 2008, 

Huang et al., 2007, Molina 
et al., 2007, Villen et al., 

2007, Dai et al., 2007, Ballif 
et al., 2006, Beausoleil et al., 

2004, Shu et al., 2004) 

Frog, 
rabbit, 

mouse, rat, 
yeast and 

human 

S112 1 CKII 0.67 CKII  CKI, CKII, MAPK, b-
Adrenergic Receptor 

CKII (Chen and Traugh, 
1995, Palen et al., 1994, 

Janssen et al., 1988, Belle et 
al., 1989, Dephoure et al., 

2008, Dai et al., 2007) 

Xenopus, 
rabbit, 

mouse and 
human 

Y126 0.052 INSR 0.52  Src Src (Molina et al., 2007) Human 

S128 0.443 PKC, cdc2 0.92, 0.51  PKCalpha 
WW, CKI, SK-3, ERK1, 
ERK2, CDK5, Growth 
associated histone HI 

(Molina et al., 2007) Human 

S140 0.376 PKA 0.54   
b-Adrenergic Receptor, PKA, 

PKC (Huang et al., 2007) Rat 

S141 0.303   USP7 NTD  Plk1 (Huang et al., 2007, Molina Human 



et al., 2007) 

T153 0.048 CKII 0.56  KAPP Plk1   

S164 0.098        

S174 0.057 PKC 0.62  PKCalpha    

S175 0.043     Plk1   

Y182 0.018    Src Plk1, PKA, PKC and MAPK   

T200 0.051 CKII 0.67  Rad53, RSK Src   

T208 0.009 CKII 0.56   PKA and PKC   

Y213 0   STAT5 STAT5, TC-PTP CKI and CKII   

S216 0 CKII 0.57  EGFR, CamKII, CKII 
SHP1, PTP1B, TC-PTP and 

EGFR   

 
 

 

eEF1B 

Likelyhood 
of 

phosphory
lation 

Disphos 

Predicted 
phosphory
lation sites 

by 
NetPhosK 

NetPhos 

Predicted phosphorylation sites 

Known phosphorylation 
sites and reference Species 

ELM MnM HPRD 

T3 0.008    Rad53 PKA, PKC and G protein-
coupled receptor  1   

Y18 0.061   Src Src Src   
Y26 0.083    Fyn, PI3K, Shc1, SHB, 

Src, Shc, Blnk PI3K, Src and ALK   

T34 0.154 PKC 0.66 USP7 NTD Ime1, KAPP    
S35 0.199        
S37 0.23 cdc2 0.53 CKII CKII CKII   

Is
of

or
m

 b
 S44 0.096 PKA,cdc2 0.52, 0.56      

S60 0.106 PKA 0.56   
G protein-coupled receptor  
1, MAPKAPK2 and GSK3 (Molina et al., 2007) Human 



Is
of

or
m

 c
 

S71 0.351 
p38MAPK, 

GSK3, 
cdk5 

0.5, 0.52, 
0.56 WW, MAPK ERK, Ime1 

GSK-3, ERK1, ERK2, CDK5, 
CK  II  ,WW   

T79 0.077 cdk5 0.51 WW, GSK3, MAPK ERK, GSK3 GSK-3, ERK1, ERK2, CDK5 
,CK I  ,WW 

  

T82 0.141 cdc2 0.54 USP7 NTD Ime1    

S64 0.556    Skp1 
Plk1, G protein-coupled 

receptor  1, MAPKAPK2, 
GSK3 

(Dephoure et al., 2008) Human 

S65 0.569 PKC 0.52   and Plk1   
S70 0.727   USP7 NTD  Plk1, CKI, CKII and GSK3   
S71 0.667 cdc2 0.61   Plk1 and CKII   
T73 0     CKII   
S74 0     CKII   
S78 0.266        
T85 0.004 CKII 0.54 CKII CKII    
S86 

0.279 
DNAPK, 

PKA 0.52, 0.58 PKA PKA, RSK, CamKII 
14-3-3    and Chk1, CamIV 
and CamII, CKII, PKA and 

PKC 
  

S93 0     CK I ,PKA   
S106 0.172 CKII, cdc2 0.53, 0.6 CKII CKII CKI and CKII   
S118 0.586 cdc2 0.51 GSK3  Plk1 (Molina et al., 2007) Human 
S119 0.529   WW, MAPK ERK Plk1, WW, GSK-3, ERK1, 

ERK2, CDK5, PKA and PKC (Molina et al., 2007) Human 

T125 0.491 PKG 0.5 GSK3, PKA PKA PKA, PKC and G protein-
coupled receptor  1 

  

T129 

0.339 PKC 0.74 GSK3, PIKK Ime1, GSK3, ATM  

(Oppermann et al., 2009, 
Zanivan et al., 2008a, Daub 

et al., 2008, Molina et al., 
2007) 

Human 
and mouse 

S133 
0.403 p38MAPK 0.53 WW , CDK, GSK3, 

MAPK 
CDK2, Skp1, ERK 

WW and GSK-3, ERK1, 
ERK2, CDK5, CDK1, 2, 4, 6, 
Growth associated histone 

Viral kinases and p38 cdc2 
(Dephoure et al., 2008, 
Mulner-Lorillon et al., 

Human, 
mouse, rat 
and rabbit 



HI, and Cdc2 1994, Monnier et al., 2001b, 
Kawaguchi et al., 1997, 
Kawaguchi et al., 1998, 
Kawaguchi et al., 1999, 

Kato et al., 2001, 
Kawaguchi et al., 2003, 

Daub et al., 2008, 
Oppermann et al., 2009, 

Zanivan et al., 2008b, 
Zanivan et al., 2008a, Tsai 
et al., 2008, Trinidad et al., 

2008, Villen et al., 2007, 
Molina et al., 2007, Chen et 

al., 2009) 
T147 

0.61 CKII 0.55 WW , CKII, MAPK CKII, ERK, RSK WW, PKA, PKC, GSK3, Erk1, 
Erk2, CDK5 and CKII 

CKII and X (Minella et al., 
1998, Chen et al., 2009, 

Zanivan et al., 2008b, Daub 
et al., 2008, Dephoure et 
al., 2008, Molina et al., 
2007, Villen et al., 2007, 

Olsen et al., 2006) 

Human 
and mouse 

S162 

0.969 CKII 0.77 CKII BARD1, CKII CKII 

CKII (Chen and Traugh, 
1995, Palen et al., 1994, 

Janssen et al., 1988, Belle et 
al., 1989, Daub et al., 2008, 
Oppermann et al., 2009, Li 
et al., 2009, Zanivan et al., 
2008a, Chen et al., 2009, 

Dephoure et al., 2008, Han 
et al., 2008, Molina et al., 

2007, Sui et al., 2008, Villen 
et al., 2007, Olsen et al., 

2006, Dai et al., 2007, 
Huang et al., 2007) 

Human, 
mouse, rat 
and rabbit 

Y182 0.052    Src Src (Rikova et al., 2007) Human 
T190 0.211 PKC 0.64 PKA PKG, KAPP, RSK b-Adrenergic Receptor, PKA,   



PKC 

S196 0.256 PKA 0.63 USP7 NTD  Plk1   
S197 0.247    Rad9 Plk1, PKA and PKC   
T209 0.03 CKII 0.56  KAPP CKI and b-Adrenergic 

Receptor 
  

T216 0.043    GSK3    
S220 0.035   GSK3 Skp1    
S231 

0.025 cdc2 0.5   
G protein-coupled receptor  

1   

Y238 0.023    Src Src   
T256 0.069 CKII 0.72  RSK, Rad53 PKA and PKC   
T264 0.014 CKII 0.65 CKII CKII, Skp2 CKI and CKII   
S272 0.141 CKII 0.54  CamKII G protein-coupled receptor  

1   

 

 

 

 

 

eEF1B 
isoform 

a N-
termina

l 

Likelyhood 
of 

phosphoryl
ation 

Disphos 

Predicted 
phosphor

ylation 
sites by 

NetPhosK 

NetPhos 

Predicted phosphorylation sites 

Known phosphorylation 
sites and reference 

Species 
ELM MnM HPRD 

S3 0.522 PKC 0.79  PKCalpha, GSK3 
G protein-coupled receptor  
1, PKA, PKC, MAPK, GSK3   

S7 0.255 PKA 0.77   PKA, PKC   
T9  CKI 0.58      
T12 0.133 CKII, 0.54, 0.7 CKII CKII b-Adrenergic Receptor , CKII   



PKC 

Y20 0.07 EGFR 0.63  Src Src   

T33 0.054 DNAPK 0.61 PIKK Skp2, ATM G protein-coupled receptor  
1 

  

S38 0.152   USP7 NTD     

S53 0.394   GSK3, PIKK ATM, CKII, GSK3 

G protein-coupled receptor  
1, b-Adrenergic Receptor , 

DNAPK , Pyruvate 
dehydrogenase , ATM, CKII, 

MAPK 

  

T57 0.289    Skp2 
G protein-coupled receptor  
1, b-Adrenergic Receptor , 

CKI 
  

T60 0.412    Skp2, KAPP    

T68 0.5   USP7 NTD, GSK3 Ime1, Skp1, GSK3 
G protein-coupled receptor  

1   

S69 0.707   CKI PKCalpha, CKI PKA, PKC, CKI, CKII   

S70 0.649 PKC 0.63  CKII Pyruvate dehydrogenase , 
CKII, , Plk1 

  

S72 0.81 
RSK, 

DNAPK 0.54, 0.61      

S77 0.568 
RSK, 
PKG, 
PKA 

0.51, 0.68, 
0.83 USP7 NTD  CKII   

S91 0.87 cdc2 0.5 WW, CKI, PKA, 
MAPK 

MLCK, p70s6k, PKA, 
PKCalpha, PKG, Erk, 

CamKII, CKI, RSK 

GSK-3, ERK1, ERK2, CDK5, 
MAPK, ZIP, PKA, PKC, 

Pim1, CamKII, CKI, CKII, 
14-3-3, WW 

(Dephoure et al., 2008) Human 

S94 0.219    Ime1  (Dephoure et al., 2008) Human 
S107 0.082    CamKII    
S123 0.174 PKC 0.65   b-Adrenergic Receptor   
S124 0.117 PKC 0.88 USP7 NTD PKCalpha ALK, PKA, PKC, , Plk1   
Y125 0.045        
T149 0.019    KAPP, Ime1 CKI, CKII   



S152 0.026        
T160 0.002    Chk2, Rad53    

S168 0.005    CKII Pyruvate dehydrogenase , 
CKII 

  

S181 0.065 
DNAPK, 

PKA, 
ATM 

0.63, 0.61, 
0.55 PIKK ATM DNAPK , ATM, CKII   

S183 0.073    Rad9 
G protein-coupled receptor  

1   

S191 0.223   USP7 NTD PKCalpha PKA, PKC   

T196 0.176 p38MAP
K 

0.5 WW, MAPK Erk, CamKII , GSK-3, ERK1, ERK2, CDK5, 
CamKII, PKC, CKI, WW 

  

T199 0.134 cdc2 0.51  Ime1 
G protein-coupled receptor  
1, b-Adrenergic Receptor   

S224 0.071 PKA 0.61 USP7 NTD     

Y239 0.091 SRC, 
EGFR 

0.53, 0.64  Src Src   

Y247 0.257    
Shc1, SHB, Src, Syk, Shc, 

JAK2, Blnk Src, JAK2, ALK   

S266 0.629   CKII, PIKK, PKA Skp2, ATM, CKII, PKA CKI, PKA, PKC, DNAPK , 
ATM, CKII   

T271 0.285     PKA, PKC   
S280 0.265     CKI   
S291 0.574 cdc2 0.54 14-3-3 CamKII, RSK CamKII , PKA, PKC, 14-3-3   
Y304 0.049    SHP-1    
Y306 0.056   STAT5 STAT5    
S318 0.101   CKI CKI CKI, CKII   

T321 0.041    KAPP G protein-coupled receptor  
1, PKA, PKC, DNAPK , CKII   

Y322 0.155 EGFR 0.51  Src Src   
S324 0.032     b-Adrenergic Receptor , CKII   
S345 0.166     CKI   
T351 0.693 cdc2 0.52 WW, PKA, MAPK KAPP, Erk, PKA GSK-3, ERK1, ERK2, CDK5,   



PKA, PKC, DNAPK , 
Growth associated histone 

HI , CKI, CKII, WW 
S354 0.798 cdc2 0.51 CKI Ime1, CKI    

S357 0.624 
CaM-II, 

PKA, 
cdc2 

0.5, 0.55, 
0.51 CKI  DNA dependent  Protein, 

CKII, CKI   

S359 0.818 cdc2 0.59 USP7 NTD  
G protein-coupled receptor  

1   

S360 0.796     PKA, PKC, Plk1   
 

 

 

eEF1B 

Likelyhood 
of 

phosphoryl
ation 

Disphos 

Predicted 
phosphor

ylation 
sites by 

NetPhosK 

NetPhos 

Predicted phosphorylation sites 

Known phosphorylation 
sites and reference Species 

ELM MnM HPRD 

T5 0.021 CKI, PKC 0.58, 0.55   PP2C delta, CKI and Dual 
specificity protein  6   

Y7 0.089   STAT5 Mek, Blnk 

Crk SH2 and RasGAP C-
terminal SH2    and Src, 

PP2C delta and Dual 
specificity protein  6 

  

T8 0.018 PKC 0.68 CKII CKII CK II   

Y9 0.005    Abl, Src    

Y24 0.029    Src Src   

S25 0.042        

S33 0.123 PKG 0.69  RSK, CKII, CamKII CamKII, PKA and PKC   

T43 0.025 PKC 0.78  PKCalpha G protein-coupled receptor  
1, PKA, PKC and CKI   



T46 0.262 
p38MAP
K, cdk5 0.57, 0.54 WW, MAPK Erk 

WW    and GSK-3, ERK1, 
ERK2, CDK5 and Growth 

associated histone HI 
(Dephoure et al., 2008) Human 

S72 0.048     
b-Adrenergic Receptor and 
G protein-coupled receptor  

1 
  

Y77 0.011    SHP-1    

Y78 0.064   STAT5 TC-PTP TC-PTP   

S80 0.151 CKII 0.59 CKII CKII CK II   

s87 0.272 
CKII, 
PKA, 
cdc2 

0.51, 0.67, 
0.53 CKII, PKA PKA Plk1   

T88 0.185   MAPK Erk, CKII, RSK, CamKII 

Plk1, WW, CamKII, PKA, 
PKC, G protein-coupled 

receptor  1, GSK-3, ERK1, 
ERK2, CDK5 and CKII 

  

S100 0.056   GSK3 CKII, GSK3 

G protein-coupled receptor  
1, Pyruvate dehydrogenase, 

CKII, MAPKAPK2 and 
GSK3 

  

S104 0.037 cdc2 0.5  GSK3 MAPKAPK2, GSK3 and b-
Adrenergic Receptor 

  

S111 0.057    Ime1 Plk1   

T112 0.028     Plk1 and G protein-coupled 
receptor  1   

T117 0.008     DNAPK   

T128 0.021    RSK 
G protein-coupled receptor  

1, PKA and PKC   

Y148 0.022   STAT5 PLCgamma1 SHP1   

T150 0.01 cdc2 0.5  RSK    

T158 0.037   PKA CKII, PKA AMP-activated protein, CKI, 
CKII, PKA and PKC   

T163 0.011   GSK3 GSK3 G protein-coupled receptor  
1 and CKI   



T167 0.001        

Y172 0.005    Abl, JAK2 JAK2   

S179 0.05     DNAPK, G protein-coupled 
receptor  1, PKA and PKC 

  

T187 0.037    Ime1, PKCalpha    

T193 0.004 PKC 0.58      

T224 0.412 DNAPK, 
PKC 

0.57, 0.79 PIKK ATM b-Adrenergic Receptor and 
PKA 

  

T230 0.872 
p38MAP

K 0.54 
WW, CDK, PKA, 

MAPK 
PKG, CDK2, Erk, RSK, 

PKCalpha 

WW, GSK-3, ERK1, ERK2, 
CDK1, 2, 4, 5, 6, Cdc2, b-

Adrenergic Receptor, 
Growth associated histone 

HI, PKA and PKC 

P38 cdc2 (Monnier et al., 
2001a, Asselin et al., 1984, 

Olsen et al., 2006) 

Frogs, sea 
urchin and 

human 

S237 0.975 CKII 0.56 CKII CKII CKI, CKII, PKA and PKC   

S286 0.167    Ime1 Plk1   

T287 0.075     Plk1, PKA and PKC   

Y297 0.078 INSR 0.52 GRB2 Grb2, Src Grb2 and Src   

S298 0.329 
RSK, 
PKA, 
PKG 

0.52, 0.79, 
0.52 GSK3, PKA PKG, PKA, RSK, CamKII 

CamKIV, CamKII, PKA, 
Pim1, PKC, PKCepsilon, 

CKII, CKI, G protein-
coupled receptor  1, 

MAPKAPK2 and Pyruvate 
dehydrogenase 

(Huang et al., 2007) Human 

T302 0.062     MAPKAPK2 and CKI   

S304 0.061     
b-Adrenergic Receptor  and 

CKI   

Y309 0.026   STAT5  ALK   

S320 0.144   GSK3 CKII, GSK3 
PKA, CKI, CKII, 

MAPKAPK2, GSK3, and G 
protein-coupled receptor  1 

  

Y323 0.013    Src Src and ALK   and CKII   

S324 0.11    GSK3 
MAPKAPK2, GSK3 and G 
protein-coupled receptor  1   



Y326 0.037 EGFR 0.57  TC-PTP, EGFR, Blnk Crk, RasGAP, EGFR and TC-
PTP 

  

T333 0.011 DNAPK 0.56 PIKK ATM CKI   

T335 0.003     CKI and CKII   

S338 0.016    CKII CKII   

T343 0.007        

S359 0.044 PKC, 
PKA 

0.76, 0.68 USP7 NTD     

T365 0.011    CKII 
G protein-coupled receptor  

1, CKI and CKII   

S368 0.046   GSK3 GSK3 Plk1, CKII, MAPKAPK2 and 
GSK3   

S369 0.053 cdc2 0.53   Plk1 and CKI,   

S370 0.06 CKI 0.5 CKI CKI    

S372 0.058   GSK3 CKII, GSK3 CKI, CKII, MAPKAPK2 and 
GSK3   

S387 0.067 p38MAP
K, GSK3 

0.53, 0.52 WW, MAPK Erk, Ime1, CamKII WW, GSK-3, ERK1, ERK2, 
CDK5 

  

Y394 0.2 INSR 0.51  TC-PTP, EGFR EGFR, TC-PTP and Src   

S396 0.053 PKC 0.64  CKII b-Adrenergic Receptor, CKI 
and CKII   

Y397 0.053   STAT5 Src SHP1 and Src   

T398 0.097 PKC 0.52  PKCalpha CKII, PKA and PKC   

S406 0.159 CKII, CKI 0.51, 0.51 CKI Ime1, CKI G protein-coupled receptor  
1, CKI and CKII 

  

T409 0.027 
CKI, 

DNAPK 0.59 PIKK ATM, CKII CKI and CKII   

T411 0.189     CKI and b-Adrenergic 
Receptor   

Y416 0.022   STAT5 TC-PTP, EGFR EGFR  and TC-PTP   

S418 0.038    CKII 
G protein-coupled receptor  

1, CKI and CKII   

 



Appendix 11 – eEF1B other motifs  
eEF1B Motifs Details Location Prediction tool 

eEF1B 

Targeting 
signals 

Nuclear trafficking 116-119 MnM 

Endocytosis trafficking 
24-28 
56-59 

MnM 

Lysosomes trafficking 1-11 MnM 
Golgi trafficking 202-205 MnM 

Protein 
binding 
motifs 

GADS 129-133 MnM 

Calmodulin 

53-72 
Calmodulin 

target database 
12-24 MnM 

136-148 MnM 
158-170 MnM 
184-196 MnM 
207-219 MnM 

eEF1B 
iso b 

Targeting 
signals 

Nuclear trafficking  (via CRM1 exportin 
protein) 

98-109 ELM 

Golgi-lysosome trafficking 95-100 ELM 
Peroxisome trafficking 12-16 ELM 

Nuclear trafficking 204-207 MnM 
Lysosome trafficking 154-168 MnM 

Peroxisome trafficking 298-300 MnM 
Endocytosis trafficking 26-29 MnM 

Protein 
binding 
motifs 

TRAF6 167-172 ELM, MnM 

TRAF2 
37-40 MnM 

181-184 MnM 

Calmodulin 

46-55 
Calmodulin 

target database 
57-67 MnM 

99-109 MnM 
211-221 MnM 
233-243 MnM 
255-265 MnM 
273-283 MnM 
285-295 MnM 

14-3-3e 269-273 MnM 
GADS 204-207 MnM 

eEF1B 
iso a 

Targeting 
signals 

Peroxisome trafficking 
139-144 MnM 
273-278 MnM 

Mitochondrial trafficking 223-226 MnM 
ER export trafficking 188-196 MnM 
Nuclear trafficking 97-100 MnM 

Protein 
binding 
motifs 

Zinc 164-167 MnM 
TRAF2 63-66 MnM 

Cortactin 362-369 MnM 
CIN85 151-156 MnM 
Shp-1 150-156 MnM 

GADS 
89-92 MnM 

97-100 MnM 



2-5 MnM 
101-104 MnM 

Calmodulin 
232-251 ELM 
115-125 MnM 
140-150 MnM 

Grb2 269-273 MnM 

eEF1B 

Targeting 
signals 

Peroxisome trafficking 

390-394 ELM 
419-423 ELM 
319-323 ELM 
322-326 ELM 

Nuclear trafficking  (via CRM1 exportin 
protein) 161-174 ELM 

Golgi-lysosome trafficking 
137-142 ELM 
408-413 ELM 

Endocytosis trafficking 

172-175 MnM 
323-326 MnM 
394-397 MnM 
416-419 MnM 

 

TRAF2 

237-240 ELM, MnM 
258-261 ELM, MnM 
259-262 ELM 

80-83 ELM, MnM 
131-134 ELM, MnM 

TRAF6 257-265 ELM, MnM 
TRF1 and TRF2 384-388 ELM 

GADS 

122-125 MnM 
282-285 MnM 
313-316 MnM 
425-428 MnM 

CtBP 329-333  ELM 

Grb2 

10-14 MnM 
47-51 MnM 

185-189 MnM 
244-248 MnM 

Calmodulin 

351-361 
Calmodulin 

target database 
49-59 MnM 
75-85 MnM 

142-152 MnM 
153-163 MnM 
171-181 MnM 
191-201 MnM 
310-320 MnM 
332-342 MnM 
426-436 MnM 

 
 
 



 
Appendix 12 – Protein interaction network  

eEF1B 

Biological Processes 

GO-ID p-value Description 
6446 3.50E-09 regulation of translational initiation 

44419 2.78E-08 interspecies interaction between organisms 
6445 3.71E-08 regulation of translation 

32268 1.76E-07 regulation of cellular protein metabolic process 
10608 2.45E-07 posttranscriptional regulation of gene expression 
31326 2.96E-07 regulation of cellular biosynthetic process 
51246 1.07E-06 regulation of protein metabolic process 
51706 1.58E-05 multi-organism process 

6913 2.38E-05 nucleocytoplasmic transport 
51169 2.59E-05 nuclear transport 

6416 7.89E-05 translation 
51128 1.84E-04 regulation of cellular component organization and biogenesis 
30097 4.92E-04 hemopoiesis 
48534 7.48E-04 hemopoietic or lymphoid organ development 
44267 7.98E-04 cellular protein metabolic process 

6886 8.23E-04 intracellular protein transport 
2520 8.59E-04 immune system development 

19538 9.12E-04 protein metabolic process 
2521 9.25E-04 leukocyte differentiation 
6606 9.69E-04 protein import into nucleus 

51170 1.06E-03 nuclear import 
22618 1.11E-03 ribonucleoprotein complex assembly 
44260 1.13E-03 cellular macromolecule metabolic process 

59 1.24E-03 protein import into nucleus, docking 
6605 1.63E-03 protein targeting 

60 1.90E-03 protein import into nucleus, translocation 
6454 2.28E-03 translational initiation 

17038 2.46E-03 protein import 
42112 2.48E-03 T cell differentiation 
30461 3.10E-03 conjugation with cellular fusion 
15853 3.10E-03 adenine transport 
51045 3.10E-03 negative regulation of membrane protein ectodomain proteolysis 

746 3.10E-03 conjugation 
65003 3.48E-03 macromolecular complex assembly 
46907 3.55E-03 intracellular transport 

6455 3.85E-03 translational elongation 
43933 4.04E-03 macromolecular complex subunit organization 



 

Molecular Functions 

GO-ID p-value Description 
8135 1.06E-16 translation factor activity, nucleic acid binding 

45182 2.43E-16 translation regulator activity 
3745 9.96E-14 translation initiation factor activity 
5515 4.81E-08 protein binding 
5488 5.51E-06 binding 
8182 2.65E-05 translation elongation factor activity 

22844 4.09E-05 voltage-gated anion channel activity 
5544 4.67E-05 calcium-dependent phospholipid binding 
8139 1.77E-04 nuclear localization sequence binding 
1948 2.36E-04 glycoprotein binding 
4859 3.03E-04 phospholipase inhibitor activity 

55102 3.78E-04 lipase inhibitor activity 
3676 6.91E-04 nucleic acid binding 
5253 8.45E-04 anion channel activity 
3723 8.54E-04 RNA binding 

17111 1.25E-03 nucleoside-triphosphatase activity 
8249 1.27E-03 signal sequence binding 

16462 1.60E-03 pyrophosphatase activity 

16818 1.65E-03 
hydrolase activity, acting on acid anhydrides, in phosphorus-
containing anhydrides 

16817 1.68E-03 hydrolase activity, acting on acid anhydrides 
42610 2.95E-03 CD8 receptor binding 

3724 3.07E-03 RNA helicase activity 
8026 3.10E-03 ATP-dependent helicase activity 

42609 5.89E-03 CD4 receptor binding 
30957 5.89E-03 Tat protein binding 

8509 6.08E-03 anion transmembrane transporter activity 
42623 6.58E-03 ATPase activity, coupled 

166 7.69E-03 nucleotide binding 
5543 7.82E-03 phospholipid binding 
4386 8.78E-03 helicase activity 

42289 8.83E-03 MHC class II protein binding 
19834 8.83E-03 phospholipase A2 inhibitor activity 

8384 8.83E-03 IkappaB kinase activity 
 

 

 

 



eEF1B 

Biological Processes 

GO-ID p-value Description 
42981 1.25E-05 regulation of apoptosis 
43067 1.36E-05 regulation of programmed cell death 
43687 1.62E-05 post-translational protein modification 
50793 2.25E-05 regulation of developmental process 
43412 3.08E-05 biopolymer modification 

6468 4.03E-05 protein amino acid phosphorylation 
44267 1.15E-04 cellular protein metabolic process 
16310 1.17E-04 phosphorylation 
19538 1.29E-04 protein metabolic process 

6464 1.47E-04 protein modification process 
44260 1.56E-04 cellular macromolecule metabolic process 
51094 2.55E-04 positive regulation of developmental process 

2699 2.71E-04 positive regulation of immune effector process 
19079 3.09E-04 viral genome replication 
50851 3.09E-04 antigen receptor-mediated signaling pathway 

6796 4.07E-04 phosphate metabolic process 
6793 4.07E-04 phosphorus metabolic process 

43283 4.90E-04 biopolymer metabolic process 
2429 5.39E-04 immune response-activating cell surface receptor signaling pathway 
2768 5.92E-04 immune response-regulating cell surface receptor signaling pathway 
6455 6.11E-04 translational elongation 
2757 7.06E-04 immune response-activating signal transduction 
2764 7.67E-04 immune response-regulating signal transduction 

51242 9.76E-04 positive regulation of cellular process 
46645 1.65E-03 positive regulation of gamma-delta T cell activation 
46643 1.65E-03 regulation of gamma-delta T cell activation 
45588 1.65E-03 positive regulation of gamma-delta T cell differentiation 
45586 1.65E-03 regulation of gamma-delta T cell differentiation 
43366 1.65E-03 beta selection 

2697 1.68E-03 regulation of immune effector process 
48518 1.75E-03 positive regulation of biological process 

6916 1.79E-03 anti-apoptosis 
44238 1.86E-03 primary metabolic process 
19058 1.87E-03 viral infectious cycle 

8624 1.87E-03 induction of apoptosis by extracellular signals 
8152 2.43E-03 metabolic process 

43170 2.44E-03 macromolecule metabolic process 
50870 2.59E-03 positive regulation of T cell activation 
22415 2.82E-03 viral reproductive process 

9967 2.93E-03 positive regulation of signal transduction 
60056 3.30E-03 mammary gland involution 



45401 3.30E-03 positive regulation of interleukin-3 biosynthetic process 
45399 3.30E-03 regulation of interleukin-3 biosynthetic process 

1820 3.30E-03 serotonin secretion 
51251 3.81E-03 positive regulation of lymphocyte activation 
16032 3.95E-03 viral reproduction 

2696 4.37E-03 positive regulation of leukocyte activation 
50867 4.37E-03 positive regulation of cell activation 

2253 4.51E-03 activation of immune response 
46640 4.95E-03 regulation of alpha-beta T cell proliferation 
46641 4.95E-03 positive regulation of alpha-beta T cell proliferation 
45921 4.95E-03 positive regulation of exocytosis 
33005 4.95E-03 positive regulation of mast cell activation 
43306 4.95E-03 positive regulation of mast cell degranulation 
43302 4.95E-03 positive regulation of leukocyte degranulation 

45425 4.95E-03 
positive regulation of granulocyte macrophage colony-stimulating 
factor biosynthetic process 

43066 5.01E-03 negative regulation of apoptosis 
43069 5.21E-03 negative regulation of programmed cell death 
16567 5.26E-03 protein ubiquitination 
50863 5.57E-03 regulation of T cell activation 
32446 6.06E-03 protein modification by small protein conjugation 
45597 6.23E-03 positive regulation of cell differentiation 
45579 6.59E-03 positive regulation of B cell differentiation 
32743 6.59E-03 positive regulation of interleukin-2 production 
33003 6.59E-03 regulation of mast cell activation 

2726 6.59E-03 positive regulation of T cell cytokine production 
43304 6.59E-03 regulation of mast cell degranulation 

45423 6.59E-03 
regulation of granulocyte macrophage colony-stimulating factor 
biosynthetic process 

50884 6.59E-03 neuromuscular process controlling posture 
6689 6.59E-03 ganglioside catabolic process 
6416 6.62E-03 translation 
8285 6.81E-03 negative regulation of cell proliferation 

50778 7.28E-03 positive regulation of immune response 
42127 7.50E-03 regulation of cell proliferation 
43065 7.80E-03 positive regulation of apoptosis 
43068 8.06E-03 positive regulation of programmed cell death 

2724 8.23E-03 regulation of T cell cytokine production 
2711 8.23E-03 positive regulation of T cell mediated immunity 

43300 8.23E-03 regulation of leukocyte degranulation 
46479 8.23E-03 glycosphingolipid catabolic process 
51249 8.59E-03 regulation of lymphocyte activation 
44249 8.66E-03 cellular biosynthetic process 
65007 8.67E-03 biological regulation 
44237 8.74E-03 cellular metabolic process 



Molecular Functions 

GO-ID p-value Description 
8182 3.37E-06 translation elongation factor activity 
8135 1.53E-05 translation factor activity, nucleic acid binding 

45182 1.98E-05 translation regulator activity 
4713 1.47E-04 protein tyrosine kinase activity 

50222 1.76E-04 protein kinase activity 
8134 2.79E-04 transcription factor binding 
4674 3.31E-04 protein serine/threonine kinase activity 

16773 4.66E-04 phosphotransferase activity, alcohol group as acceptor 
5515 5.06E-04 protein binding 

16301 9.05E-04 kinase activity 
51287 1.40E-03 NAD binding 
16772 2.09E-03 transferase activity, transferring phosphorus-containing groups 

3713 2.15E-03 transcription coactivator activity 
8384 4.51E-03 IkappaB kinase activity 
4704 6.01E-03 NF-kappaB-inducing kinase activity 
4563 6.01E-03 beta-N-acetylhexosaminidase activity 
8353 7.51E-03 RNA polymerase subunit kinase activity 
3712 8.77E-03 transcription cofactor activity 

16563 8.94E-03 transcription activator activity 

16616 1.02E-02 
oxidoreductase activity, acting on the CH-OH group of donors, NAD 
or NADP as acceptor 

 

 

 

 

 

 

 

 

 

 

 

 

 



eEF1B 

Biological Processes 

GO-ID p-value Description 
16071 6.25E-10 mRNA metabolic process 

6397 4.98E-08 mRNA processing 
16070 5.61E-08 RNA metabolic process 

6395 1.26E-07 RNA splicing 
43283 4.38E-07 biopolymer metabolic process 

6139 9.39E-07 nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 
6394 3.67E-06 RNA processing 

43170 6.01E-06 macromolecule metabolic process 
33036 7.02E-06 macromolecule localization 

6606 7.87E-06 protein import into nucleus 
51170 9.45E-06 nuclear import 
15031 1.26E-05 protein transport 
45184 1.29E-05 establishment of protein localization 
51649 1.48E-05 establishment of localization in cell 

6913 2.22E-05 nucleocytoplasmic transport 
51169 2.49E-05 nuclear transport 
51641 3.29E-05 cellular localization 

8104 4.65E-05 protein localization 
17038 5.05E-05 protein import 

8152 7.81E-05 metabolic process 
6886 9.54E-05 intracellular protein transport 

46907 1.11E-04 intracellular transport 
6374 1.31E-04 nuclear mRNA splicing, via spliceosome 

375 1.31E-04 RNA splicing, via transesterification reactions 

377 1.31E-04 
RNA splicing, via transesterification reactions with bulged adenosine 
as nucleophile 

6901 1.45E-04 vesicle coating 
51656 1.70E-04 establishment of organelle localization 

6900 1.80E-04 membrane budding 
44238 2.00E-04 primary metabolic process 
44237 2.18E-04 cellular metabolic process 
65003 2.76E-04 macromolecular complex assembly 
10467 3.59E-04 gene expression 
43933 3.65E-04 macromolecular complex subunit organization 
51640 4.69E-04 organelle localization 

6461 4.76E-04 protein complex assembly 
60 5.09E-04 protein import into nucleus, translocation 

184 5.09E-04 
nuclear-transcribed mRNA catabolic process, nonsense-mediated 
decay 

6259 6.62E-04 DNA metabolic process 
956 7.62E-04 nuclear-transcribed mRNA catabolic process 



6402 1.34E-03 mRNA catabolic process 
43623 1.48E-03 cellular protein complex assembly 

6605 1.54E-03 protein targeting 
43285 1.98E-03 biopolymer catabolic process 
48220 2.46E-03 cis-Golgi to rough ER vesicle-mediated transport 
48219 2.46E-03 inter-Golgi cisterna vesicle-mediated transport 
48206 2.46E-03 vesicle targeting, cis-Golgi to rough ER 
48205 2.46E-03 COPI coating of Golgi vesicle 
48204 2.46E-03 vesicle targeting, inter-Golgi cisterna 
48200 2.46E-03 Golgi transport vesicle coating 
16050 2.72E-03 vesicle organization and biogenesis 
51028 2.76E-03 mRNA transport 
48194 2.99E-03 Golgi vesicle budding 
44248 3.21E-03 cellular catabolic process 

6974 3.21E-03 response to DNA damage stimulus 
 

 

 

Molecular Functions 

GO-ID p-value Description 
5515 4.87E-13 protein binding 
5488 4.52E-06 binding 
3720 1.39E-04 telomerase activity 

166 1.97E-04 nucleotide binding 
3723 2.64E-04 RNA binding 
4386 4.65E-04 helicase activity 
3676 5.64E-04 nucleic acid binding 
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