6121126

Observations in Leucocytosis in
Normal Children, and also in whooping Cough and Lobar pneumonia in Children.

Thesis for the Degree of M.D. by
W. P. MURRAY, M.B., Ch.B.

$$
M_{1} \cdot D \cdot 1912
$$

NORMAL IEUCOCYTOSIS IN CHIEDFOOD.

The various writers on this subject have paid great attention to the Ioucocytosis of the new bom. Da Costa gives the following:-

He also gives the following differential count in infents.

Sahli dismisses the subject with the following, "The white count is two or three times the normal the first day of life. It them diminishes to normal and increases again after the first week, remaining a.t/
at about 50% above the normal. Rieder found in this Ieucocytosis a preponderance of mononuclears. He also found that the blood of the new born contained a high percentage of eosinophils and nomoblasts and exhibited a moderate leucocytosis The normal number of Iymphocytes is $22-25 \%$ of the total leucocytes i.e. 1500 to 1700 por c.m. up to 70\% in children."

Hutchison finds the total number of white cells in the blood at birth to be about 15,000 per c.m.; by the end of the first year it has sunk to about 14,000, by the second to 12,000 , by the third to 10,000. After that the decline goes on steadily till the usual adult figure of 7,500 is reached.

He also gives the following differential count:

	Poly.	Large L.	Small Lymp.	Eosinoph.
Ist day	72	9	17	2
3rd" "	67	11	18	4
6th "	42	17	35	6
9th "	36	18	42	4
12th "	37	16	44	3

Now, elthough it is extremely interesting to find such changes in the blood of new borm children, it is very little uso from a practical standpoint. What one wants to know is the usual total count and differential/
differential at different ages till the ordinary adult figure is reached. The variation in children's blood is so great that one might think one were dealing with something abnormal if one had not a good standard for the different years of childhood.

The following work was undertaken before the publication of "Blood" by Gulland and Goodall. This is the first book one has been able to find in which the necessary standard is given.

It is as follows:-

From the tenth day till about the fourth year the lymphocytes are in excess of the polymorphs. About the tenth day they constitute 60% of the white cells, and they remain about this proportion till tho third or fourth year, when they fall to 50%. A gradual fall continues, so that the adult proportions are reached. about twelve years of age.

The following work was done on surgical patients
4.
at the Paddington Green Children's Hospital. Onl V healthy children were examined with such congenital affoctions as phimosis, hermia, naevous, etc. The examinations were made in the case of out Patients When they had been starved for an hour or two before operation for circumcision etc., and in the case of In Patients about three hours after the evening meal. Thus it was hoped to avoid any error from digestion leucocytosis.

In each case recorded in this paper in addition to the ordinary white count by means of Thoma-Zeiss Haemocytometer a differential of 400 cells was made. This is the reason why most of the counts although expressed as percentages add up to 99.9 or 99.8 .

In order that a differmetial count may be of any use it must be taken in conjunction with the total white count. In any individual case one can get a very good idea from simply looking at the figures but when one comes to compare one case with another a percentage differential count is useless. The only satisfactory method for statistical work is to express the differential count in terms of totals per cubic millimetre. Until one becomes accustomed to it, this looks clumsy, but it is the only scientific basis on which to make comparisons.

The following are the results of the investigation of 81 cases:-
5.

ge.	Whites.	Polymorphs.	Iymphocytes	Small Iym.	Eosinp.	Basop.
6 mts	12,520	3088	807	8074	380	41
- Iyr	11,170	3480	680	6887	171	13
years	12,910	3753	878	7929	245	26
years	10,920	4890	784	5658	253	35
years	11,260	5626	716	4417	412	31
years	9,580	4521	592	4029	397	23
years	9,340	5249	672	3055	317	30

Figures represent totals per c. m.
For greater simplicity those eigures have been put in graphic form on a chart.

It will be seen that the totals under two years coincide fairly accurately with those given by Fiutchison, and are a little in excess of Gulland and Goodall's. From two years onwards the totals are somewhat in excess of Gulland Goodall's partly because they are averages between ages charted under the higher figure. For example at "6 years" the counts inclucte 8 children under five years of age. This is unfortunate but it is the only way to divide the limited nuraber of examinations which were made.

The chief points of interest are the gradual decline of the number of small lymphocytes from 8074 p.c.m. at 6 months to 3055 p.c.m. at 12 years, and the rise of the polymorphs from 3088 at six months to 5626 p.c.m. at 6 years. The large lymphocytes are fairly regular throughout/
6.
throughout, while the eosinophils show no great nor regular deviation.

Out of 81 counts i.e. 32,400 cells only two nucleated red cells were seen. These were both in babies one eleven weelss old and the other three months.

Nome	Age	Whites	Poly.	L..	S.I.	E.	B.	
H.S.	$\frac{9}{365}$	17,400	27.7 4,819	$\begin{array}{r} 13 \\ 2,262 \end{array}$	55 9,570	3.2 556	1 174	\% $\mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
R.A.	$\frac{3}{52}$	9,800	28.7 2,812	4.2 411	65.2 6,389	1.7 116		\%
$\mathrm{R} \cdot \mathrm{B}$.	$\frac{11}{52}$	9,200	13.7 -1802	8.5 782	76.5 7,038	1.2 110		```% One nucleated red per 400 p.c.m.```
	$\frac{3}{12}$	10,200	14.6 1489	6 612	76.3 7.782	3 306		```% One nucleated red per 400 p.c.m.```
$G \cdot P$.	$1 \frac{3}{1}$	9,600	24.3 2332	4.3 412	70 6720	1.3 124		$\%$ p.c.m.
	$\frac{3}{12}$	9,800	$37 \cdot 2$	4.2	58	. 4	. 2	$\%$
			3645	41.	5684	39	10	p.c.m.
$K \cdot T$.	$1 \frac{3}{2}$	14,400	30	8.7	59	1.7	. 5	
$G \cdot D$.	$1 \frac{5}{2}$		4380	1252	8496	244	72	p.e.m.
		16,000	10.6	5	81.3	2.6	. 3	\%
			1696	800	15,008	416	48	p.c.m.
C.P.	$1 \frac{5}{2}$	14,000	33.2	4.2	54	8	. 5	\%
F.G.			4648	588	7560	1120	70	p.c.m.
	$1 \frac{5}{2}$	14,800	26.5	3.7	64.2	5.8	- 2	$\%$
			3922	547	9501	770	29	p.c.in.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Name \& Age \& Whites \& Poly. \& L.L. \& S.L. \& E. \& B. \&

\hline \multirow[t]{4}{*}{E.IIf.

3.0.} \& \multirow[t]{2}{*}{$\frac{8}{12}$} \& \multirow[t]{2}{*}{11,000} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 39.7 \\
& 4360
\end{aligned}
$$} \& 8 \& 49.5 \& 2.5 \& . 2 \& \%

\hline \& \& \& \& 880 \& 5450 \& 272 \& 22 \& $\mathrm{p} \cdot \mathrm{c} . \mathrm{m}$.

\hline \& \multirow[t]{2}{*}{$\frac{8}{12}$} \& \multirow[t]{2}{*}{15,000} \& \multirow[t]{2}{*}{| 10.7 |
| :--- |
| 2955 |} \& 9.7 \& 69.7 \& . 5 \& . 2 \& \%

\hline \& \& \& \& 1455 \& 10,455 \& 75 \& 30 \& $\mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m} \cdot$

\hline \multirow[t]{2}{*}{1. A.} \& \multirow[t]{2}{*}{$\frac{8}{12}$} \& \multirow[t]{2}{*}{8,800} \& 33.3 \& 1.3 \& 65.3 \& \& \& \%

\hline \& \& \& 2930 \& 114 \& 5746 \& \& \& p.c.m.

\hline \multirow[t]{2}{*}{T.F.} \& \multirow[t]{2}{*}{$\frac{9}{12}$} \& \multirow[t]{2}{*}{10,200} \& 25.7 \& 5.2 \& 67.5 \& 1.2 \& . 2 \& 7

\hline \& \& \& 2621 \& 530 \& 6885 \& 120 \& 20 \& $\mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.

\hline \multirow[t]{2}{*}{F.B.} \& \multirow[t]{2}{*}{$\frac{11}{12}$} \& \multirow[t]{2}{*}{9,800} \& 47 \& 10.2 \& 39.5 \& 3 \& . 2 \& \%

\hline \& \& \& 4606 \& 999 \& 3871 \& 204 \& 10 \& $\mathrm{p} \cdot \mathrm{c} . \mathrm{m}$.

\hline \multirow[t]{2}{*}{-11.} \& \multirow[t]{2}{*}{$\frac{11}{12}$} \& \multirow[t]{2}{*}{8,200} \& 20.5 \& 10 \& . 88.7 \& .5 \& . 2 \& \%

\hline \& \& \& 1681 \& 820 \& 5633 \& 41 \& 16 \& $\mathrm{p} \cdot \mathrm{c} . \mathrm{m}$.

\hline - A . \& \multirow[t]{2}{*}{$\frac{11}{12}$} \& \multirow[t]{2}{*}{12,000} \& 49.5 \& 3.7 \& 46.5 \& \& \& \%

\hline \multirow{3}{*}{. H 。} \& \& \& 5940 \& 444 \& 5580 \& \& \& p.c.m.

\hline \& \multirow[t]{2}{*}{$\frac{11}{12}$} \& \multirow[t]{2}{*}{14,400} \& 15.2 \& 1.5 \& 79.7 \& 3.5 \& \& \%

\hline \& \& \& 2408 \& 218 \& 11,476 \& 504 \& \& p.c.m.

\hline \multirow[t]{2}{*}{. 11.} \& \multirow[t]{2}{*}{$1 \frac{1}{2}$} \& \multirow[t]{2}{*}{10,200} \& 39.5 \& 5 \& 55 \& . 5 \& \& \%

\hline \& \& \& 4029 \& 510 \& 5610 \& 51 \& \& $\mathrm{p} \cdot \mathrm{c}$. m .

\hline \multirow[t]{2}{*}{- H .} \& \multirow[t]{2}{*}{$1 \frac{1}{12}$} \& 9,400 \& 35 \& 2.5 \& 56 \& 6.2 \& . 2 \&

\hline \& \& \& 3290 \& 245 \& 5264 \& 583 \& 19 \& $\mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.

\hline
\end{tabular}

Name	Age	Whites	Poly	İ.L.	S.L.	E.	B.	
G.S.	$1 \frac{1}{2}$	14,000	22.2	7.7	66	3.7	. 2	$\%$
			3108	1078	9290	578	28	p.e.m.
G.M.	$1 \frac{2}{2}$	15,600	20	2.5	74.	3.5		1
			3100	390	11,544	546		$\mathrm{p} \cdot \mathrm{c} . \mathrm{m}$.
F.P.	1婁	13,000	20.3	7.6	70.6	1	. 3	\%
			2639	088	9178	130	39	p.c.m.
J. 1.	$1 / \frac{4}{2}$	18,400	34	8	56.7	1.2		
			6256	1172	10,422	220		$\mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
A.G.	$1 \frac{5}{12}$	16,800	20.2	15	64.2	- 2	. 2	\%
			3360	2520	10,800	33	33	$p \cdot c \cdot m$.
C.B.	$1 \frac{5}{12}$	10,600	37.5	4	$55 \cdot 7$	2.5	. 2	\%
			3075	424	5904	265	21	p.c.m.
R.C.	$1 \frac{6}{12}$	13,400	35	7.7	55.2	1.5	. 5	\%
			4600	1031	7306	201	60	p.c.m.
J.I.	$1 \frac{4}{12}$	12,000	41.5	7	49.2	2.2	1	\%
			4080	840	5804	26		p.c.m.
C.B.	18	7,800	27.5	11.	57	3.5		\%
			2145	858	4146	278	78	P.c.m.
$L \cdot R$.	$1 \frac{9}{12}$	10,800	36.7	7	52.7	3.2	- 2	$\%$
			3963	756	5607	365	21	p.c.m.

Name	Age	Whites	Poly	\% I.J.	S.L.	E.	B.	
C.L.	$1 \frac{10}{12}$	14,000	17.2 2408	3.7 518	77.2 10,808	1.5 210	.2 28	p.c.m.
A.G.	$1 \frac{10}{12}$	14,800	34.5 5086	4.7 675	60.2 8909	.2 28	2 89	$\%$ $p \cdot c \cdot m$.
R.B.	2	10,000	45.2 4520	9.5 950	44.2 4420	.7 70	.2 20	\% $p . c \cdot m$.
F.S.	2	11,800	31.7 3740	6.8 731	60 7080	2 236		of $p \cdot c \cdot m$.
S.J.	2	10,000	58.7 5870	10.2 1020	27.5 2750	3 300	.5 50	$\%$ $p \cdot c \cdot m$.
C.G.	8	14,000	22 2800	7.6 1064	68.3 9568	1 140	1 140	p.c.m.
T.C.	2	10,000	24.2 2420	9.2 920	61.5 6150	4.2 420	.7 70	$\%$ $p \cdot c \cdot m$.
$G \cdot A$.	2	8,200	38.2 3132	6.2 508	54.2 4442	1.2 108		$\%$ $p \cdot c \cdot m$.
※. ${ }^{\text {W, }}$	2	11,400	$\begin{aligned} & 42.5 \\ & 4845 \end{aligned}$	3.2 364	$\begin{aligned} & 53.2 \\ & 6064 \end{aligned}$	1 114		$\%$ $p \cdot c \cdot m$.
W.G.	$2 \frac{2}{3}$	12,000	$\begin{array}{r} 50 \\ 6000 \end{array}$	6 720	40 4800	4 480		sol $p \cdot c \cdot m$.

Name	Age	Whites	Poly.	I. L.	S.L.	E.	B.	
F.F.	3	8,600	32.5	9.5	50.5	7.5		$\%$
			2705	817	4343	645		$\mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
J.W.	3	10,000	55.5	2.5	40.2	1.7		1
			5550	250	4020	170		$\mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m} \cdot$
E.S.	$3 \frac{7}{2}$	15,200	56.5	3.2	37.5	2.7		$\%$
			8588	486	5700	41.0		$p \cdot c \cdot m$.
R.G.	$3 \frac{1}{2}$	11,600	77.5	6	15.7	. 7		8
			8990	696	1821	116		$\mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
P.C.	4	10,000	40	6.2	4.2	11.2	. 5	$\%$
			4000	6206	4200	1120	50	$\mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
F.S.	$4 \frac{1}{2}$	14,800	51.2	4	$42 \cdot 2$	2	-. 5	\%
			7578	502	6846	206	72	$\mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
E.P.	$4 \frac{3}{2}$	12,000	59.7	9.5	43.5	6	1.2	\%
			4764	1140	5220	780	144	p.c.m.
A. 7.	$4 \frac{11}{12}$	12,200	52.2	4.7	41.7	1.8		\%
			6364	573	5087	146		p.c.m.
I.C.	5	7,800	52.7	14.5	30	2.2	. 5	$\%$
			4110	1131	2340	171	39	p.c.m.
J. B,	5	12,600	54.7	4	40.5	$\cdots 7$		\%
	5	12,200	6892	564	5103	88		p.c.m.
			40	- 4	49.7	- 6	- 2	$\%$
			4880	488	6063	732	24	p.c.m.

Name	Age	Whites	POLy.	L.I.	S.L.	E.	B.	
IH.D.	5	5,600	44.3	5.3	48.6	2.3	. 3	\%
			2480	296	2721	128	16	P.c.m.
A.D.	5	10,800	43	9.7	43.5	3.7		$\%$
			4644	1047	4698	390		$\mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
H. A.	5	14,600	60	9.2	25.3	5	. 5	\%
			8760	1343	3693	750	73	p.c.m.
E.M.	5	10,000	40	7.7	48.5	3.2	. 5	$\%$
			4000	770	4850	320	50	p.c.th.
$S \cdot G$.	6	10,600	54	6.2	36.7	2.7	- 2	
			5725	638	3890	286	21	p.c.m
H. 0 .	6	8,300	40	3.6	51.3	5		$\%$
			3280	295	4200	410		p.c.m.
S.W.	6	10,600	57.2	12.2	26.7	3	.7	$\%$
			6070	1295	2830	318	74	p.c.m.
W.F.	$6 \frac{2}{4}$	10,200	37.5	1.7	48	18.7		\%
			3820	176	4900	1285		p.c.m.
W.V.	$6 \frac{1}{2}$	10,000	52	8.3	38.6	1		\%
			5200	830	3860	100		p.c.m.
I.S.	$6 \frac{1}{2}$	8,800	56.5	6.7	34	2.2	. 5	\%
			4970	590	2990	193	44	p.c.m.

Name	Age	Whites	Poly.	L.I.	S.L.	E.	B.	
N.G.	$6 \frac{1}{2}$	6,800	43	6.7	47.7	2.5		\%
			4920	455	3240	170		$\mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
S.S.	7	11,400	35	4.7	54	6	- 2	\%
			3990	526	6160	684	22	$\mathrm{p} \cdot \mathrm{c} . \mathrm{m}$.
J.S.	7	11,400	53	4	39.7	2.7	. 5	\%
			6050	456	4520	308	57	p.c.m.
W.V.	7	7,800	41	8.5	47.2	3	- 2	\%
			3190	660	3680	234	15	p.c.m.
E.S.	8	9,200	43.5	7.5	43	5.5	. 5	\%
			4000	690	3950	505	46	p.c.m.
L.S.	8	8,400	38	6.5	48	6	1.5	\%
			3190	545	4030	504	126	$\mathrm{p} \cdot \mathrm{c} . \mathrm{m}$.
V.Y.	8	9,800	50.2	5.2	40.2	3.7	. 5	\%
			4910	509	3940	362	49	p.c.m.
D.W.	8	9,400	60	6.5	29.5	3.7	. 2	\%
			5640	610	2770	347	18	$\mathrm{p} \cdot \mathrm{c} . \mathrm{m}$.
J.P.	8	8,800	68.2	$7 \cdot 2$	22.7	1.5	- 2	\%
			6000	633	2000	132	17	p.c.m.
A. L.	8	8,200	53	10.5	33	$3 \cdot 2$. 2	\%
			4350	860	2710	262	16	P.c.m.

Name	Age	Whites	Poly	L.L.	S.L.	E.	B	
$\mathrm{E} \cdot \mathrm{B}$.	8	12,400	64	11.2	23.8	. 8	. 2	
			7950	1300	2060	$\bigcirc 9$	24	p.c.m.
C.B.	9	14,000	66.7	4.5	27.7	. 5	. 5	\%
			9300	630	3880	70	70	p.c.m.
H.L.	10	3,400	41.6	8.6	43.6	2.6	. 3	
			4200	808	4700	244	28	P.C.m.
A. A.	10	9,600	48	4.7	44	3	. 2	$\%$
			4600	450	4230	288	19	p.c.m.
L.W.	10	11,400	60.2	3.7	30.5	5.5		1
			6860	421	3480	626		$\mathrm{p} . \mathrm{c} . \mathrm{m}$.
W.IV.	10	9,400	49.5	7	38.5	5		\%
			4750	657	3620	470		p.c.m.
C.F.	10	5,200	46	6.6	41.6	5.3	. 3	$\%$
			2390	342	2160	276	15	P. C.m.
L.P.	10	8,000	63.5	5.2	27.2	$3 \cdot 7$	- 2	
			5075	416	2169	256	16	p.c.m.
W.G.	117	6,800	60	6.7	25.7	$7 \cdot 2$. 2	
			4080	455	1750	400	15	p.e.m.
B.L.	11	9,400	71.3	14.3	12.2	1.6	.3	
			6700	1340	1155	150	28	$\mathrm{p} . \mathrm{c} . \mathrm{m}$.

$$
\mathcal{R E F E R E \mathbb { N } \subset \mathbb { S } .}
$$

Sahli "Diagnostio liethods" p. 797. p. 789. Hutchison "Lectures on Diseases of Children" p. 319 Da Costa "Clinical Haematology"

Gulland and Goodall. "Blood." p. $73-74$.

The accounts given in various text books on the examination of the blood vary to a very marked degree in this subject. All are agreed on one point, namely that there is usually an increase in the white cells. The average count of course varies, Sahli puts it at between 15,000 and 30,000 per cubic millimetre, Barach at the outset finds an averase of 17,000 to 13,000 per cubic millimetre. The oriminal investigators Frönlich and Meunier found an average of 27,800 in 30 cases. De Amicis and Pacehioni in comoborating this observation consider that the inerease is someWhat less, having found an average count of 17,943 for their cases. Wanstall in 15 cases, and stengel and White in four obtained even lower leucocyte values (no increase being noted in many instances). Crombie in the catarrhal stage had an average of 20,237 p.c.m.

With regard to the differential count there is a difference of opinion. Sahli writing on this point says "Pertussis leads to an increase of the lymphocytes, and to a less marked degree, also to an increase of polymorphonuclear Ievcocytes." Barach finds an increase in all forms at the outset, then a small

- Iymphocytosis (51%) and a less marked increase in the number of large Iymphocytes, bilobed small
Iymphocytes/
lymphocytes and degenerated large mononuclears are Irequently seon. Later there is a gradual decrease in loukocytosis and a rotum to the normal difforential count, excopt for a slight eosinophilia (5%) which may persist for months. On the other hand we find Da Costa Writing "Iymphocytosis, generally relative, but sometimes absolute, is a characteristic finding in whooping cough. As a consequence of this chenge there is a coincident diminution in polynuclear neutrophils, and cosinophils. In Allbutt it is stoted that during the paroxysmal stage there is a high percentage of large lymphocytes. Crombie who slumps large and small Iymphocytes together finds an increase of Iymphocytes, usually about double the number of polymorphs present.

The writer has examined thirty-two cases. These children were seen at the out Patient Department of the Paddington Green Children's Hospital on Saturday afternoons only. In viow of this fact two difficultios were met. Firstly, that one seldom saw a case of whooping cough before the whoop had developed, unless the child was a member of a family already attending with whooping cough; and soconaly, as there was no infectious block in the Hospital none of the complicatod cases with pneumonia could be admitted for observation/

3.

observation.
The cases in which the blood was examined were chosen with a view to keeping them under observation from the earliest possible date and then examining once a week or latterly once a fortnight.

The following are the clinical facts and blood examinations. In each case 400 cells wore counted for every differential count.

Date Charles Bearmont Aet. 4 y .

3:2:18
(week 2)
\square

10:2:12
$17: 2: 18$

24:2:12
(weok 5)

9:3:12
(week 7)

Blood.	$10,000 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.			
P.	$56.5 \%=5990 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.			
I.I.	5.2	558		
S.I.	36.7	3880		
E.	1.2	127		
B.	.2	26		Quite well.
:---				

Has had cough for fortnight. Thooped firct two days ago. Cough worse at night. No vomiting.
Blood W. $25,400 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
P. $\quad 50 \%=12700 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.

L.L.	4.2	1070
S.L.	45.5	11580
E.	0	0
B	.2	50

Cough less. Still whoops.
Much better. No vomiting.
No whoop. Very little cough.

Blood.	$13,400 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.	
P.	$62 \%=8330 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.	
L.L.	5.5	738
S.L.	28	3760
E.	3.2	430
B.	1.2	161

10:2:12 Cough and vomiting less. Looks well.
17:2:12 Much better. Occasional whoop.
11.

13.

Date	Alfred Webster Aet. 4 y .
9:12:11	Has had a cough for three weeles. Has just begun to whoop. No vomiting.
	Blood Whites 17,000 per c.m. P. $43.2 \%=7350 \mathrm{p}$
(week 3)	L.I. $\quad 7.21226$
	S.L. 48.28210
	E. $\quad 1.204$
16:12:11	Has had slight epistaxis.
23:12:11	Cough much better. Whoops occarionally
	and has had more epistaxis.

14.

16:3:12	Cough began three weeks ago. Whooped for first time yesterday. Does not vomit.
(week 3)	Blood Whites 16,200 p.c.m.
	P. $37 \%=5900 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
	L.L. 5.5894
	S.L. 56.50150
	E. I 162
$30: 3: 12$	Has developed a subconjunctival
	haemorrhage. Cough is less Prequent and
	paroxysms less severe. Worse at night.
	Vomits now after coughing.
(weolc 5)	Blood W. Il,200 p.c.m.
	P. $\quad 50 \cdot 5 \%=5650 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
	L.I. $5.7 \quad 639$
	S.I. 43.54875
	E. ..2 22
13:4:12	Does not cough during day; but still
	coughs at night. No vomiting now.

30:3:12 Still improving. Has occasional attacks.
Blood $7 . \quad 78,000 \mathrm{p} \cdot \mathrm{c} . \mathrm{m}$.
P. $\quad 33.7 \%=6060$ P.c.7.

(week 2)	L.I.	3.2	576
S.I.	61.7	11120	
	E.	1.2	816

17:2:12 Vomits more frequently now.
21:2:18 Cough and vomiting less.

	Blood	W.	$14,300 \mathrm{P} \cdot \mathrm{c} \cdot \mathrm{m}$.
(week 4)	P.	$38.2 \%=4775$	
	L..I.	2	296
	S.E.	64.2	9508
	E.	1.5	228

9:3:12 Cough much less. Vomits occasionally.
B1000
W.
11,000 p.c.m.
P.

$$
45 \%=4950 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{~m} \cdot ?
$$

(week 6)
I.I.
4.7

517
S.I.
47.5

5230
E.
2.7

297
25:3:12 Cough almost gone. No vomiting. Whoops occasionally.

Blood W. 9,800 p.c.m.
P. $\quad 41.2 \%=4060 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.

工.I. $5.7 \quad 557$
(week 8)
$\begin{array}{lrr}\text { S.I. } & 50 & 4890 \\ \text { E. } & 3 & 204\end{array}$
13:4:15 Is now quite well

27:1:12 There is no vomiting now. Cough is easier. Has had an attack of opistaxis.

17:2:12
Frank Dodd.

Blood.	$6,800 \mathrm{p} . \mathrm{c} . \mathrm{m}$.	
P.	$61.2 \%=4160 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.	
L.I.	8.2	558
S.I.	25.2	1730
E.	5	340
B.	.2	13

24:2:12 Quite well.

Date
Aet. 5 .

Fred Mills.

Date

23:12:11 Cough much less severe. Less vomiting.

B100d
W.
P.

工.I.
S.J. 49.36210

30:12:11 Improving. Only occasional whoop. llas only vonited three times this weok.

23:12:11 Is now vomiting more frequently. Blood IV. 12,800 pec. In. P. $\quad 15.6 \%=5550 \mathrm{P} \cdot \mathrm{C} \cdot \mathrm{m}$.
(week 5)

L.L.	7	855
S.L.	45.3	5525

E. 2. 244

6:1:12 Whoop has gone now. Coughs very little. Blood T. 12.000 P.C.m.
P. $\quad 50 \cdot 2 \%=6085 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
I.L. $3.5 \quad 420$

SUI.
43.25200
E. $3 \quad 360$

13:1:18 Cough much better.

27:1:12 Cough easier. Whoop in statu quo.

Blood	$12,200 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$	
P.	42.2%	$=5150 \mathrm{p} \cdot \mathrm{c.m}$.
I.I.	8.7	1061
S.I.	48.2	5880
E.	.2	24
B.	.5	61

3:2:12 Cough better. Still whoops. No vomiting. 10:2:12 Improving.
16:3:12 No cough now.
(week 15)

Wlood	$9,800 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m} \cdot$	
P.	$48.5 \%=4750 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m} \cdot$	
L.I.	6.7	655
S.L.	42.2	4140
E.	2.5	244

30:3:12 Quite well.

> Dodd．
> $\}$
3
5
5
> Total Levecocitosis
Pohymorphs．
LaRgE LYMPhocytes．
> 目目目

Charles Beanmont

Lily Ditble

Gearge Bealie
(

Eman hee

हु ${ }^{2}=$
σ
$\stackrel{y}{5}$

Neir Peddison

und

Whie Itoptions

Charlee Bryant

In his paper on the subject of the leucocytosis of whooping cough, Dr Crombie has divided his cases a.ccording to the onset of the characteristic cough. This does not seem the logical division, because many cases never develop the whoop at all, and others develop it within a week of the first symptom namely the cough. The writer has therefore examined the cases from the point of view of the beginning of the illness.

The following are the average counts:-

Week	Total	Polym.	Large Lymph.	Small L.	Eosin	Basop. Cases	
Ist	37,000	13,135	1,315	22,150	346	80	2
2nd	17,900	6,600	978	9,750	565	19	11
3rd	17,200	6,780	783	9,320	282	24	11
4th	15,260	5,992	946	7,926	372	7	10
5th	12,140	5,061	561	5,793	361	24	10
6th	10,630	5,750	630	3,960	280	14	9
7 th	$11,530 * 5,670$	662	4,720	438	8	6	
(8th	9,650	4,813	613	3,776	32	17	13
(and (onwaid							

* One case (Fred Mills) had an exascerbation this week.

When one comes to consider each week separately, which is most conveniently done by referring to the chart/
chart, one is unfortunately bound almost to ignore the first week as it represents the average of only two cases. On the other hand it is important in as much as it indicates, that these cases were so unusually severe, that the mothers recognised early what the children were suffering from. The total average of 37,000 is certainly striking and what is more interesting is the differential count. In reviowing the literature of this subject the writer has drawn attention to the difference of opinion with regard to the differential counts. This first Week supports in a most convincing mamer the opinion expressed by Barach that there is an increase in all the forms at the onset.

The polymorpholeucocytes will be seen to be increased to over 13,000 per c.m. compared with the usual 5000 about this age. Dr. Crombie's finding however out only about 6,800 per c.m.

The most marked increase however is admittedly in the small lymphocytes. In the writer's cases at this stage the average is 22,150 compared with the normal 4,500 to 5,000 per c.m. Dr. Crombie's average is 13,500 per c.m.

Even the large lymphocytes shew an increase to nearly double their usual figure.

The eosinophils in addition are inoreased by about/
about 100 per c.m.
In eleven cases examined during the second week of the disease the total leucocy tosis was found to average 17,000 per c.m. The difforentin count is still above the normal for every form of leucocyte oxcept the basophils, about whose physiology, homever, too little is known to give any weight to an excoption such as this in pathology. There is homewer already a slight relative diminution in snall Iymphocytes.

Let us now consider the behaviour of the different cells by following their average count in totals per cubic millimetre throughout the weeks of the disease.

POLYHORPHONUCLEAR LEUCOCYTES.

As has already been noted there is a marked increase in this form of leucocyte in the first week. In the second and third weeks it is still 2,000 per c.m. above normal. Thereafter the count falls, till by the fifth week the normal line is reached and is followed fairly faithfully subsequemtly SHALL LYMPHOCYTES.

This is the cell around which most interest centres in whooping cough.

When Dr. Crombio's rocults are reduced to tothate per/
per cubic millimetre instead of percentages, one fincts that from the bogimning of the catarrial stage till the end of the 3rd week of the paroxysmal stage the small lymphocyte count remains constant between 13,000 and 15,000.

The writer's results have no claim to such similarity from week to week, but they do show an almost perfectly stoady dimimution from the second to the sixth week from 9,750 p.c.m. to 3,960 p.c.m. and thereafter remains about the normal line.

Strangely enough in his case which he publishes as typical Dr. Crombie gives figures which when worked out shew a similar decline from 22,400 to 7,800 p.c.m.

IARGE LYMPHOCYMES.

Apart from the initial increase during the first two weeks the large lymphocytes remain almost constantly about the normal figure of $700 \mathrm{p} . \mathrm{c} \cdot \mathrm{m}$. throughout. TYPICAL CASE.

On looking over individual charts one would choose that of Charles Beaumont as being the most typical.

Although counts were made at the second, fourth and eighth weeks, when they are plotted graphically the total leucocytoses, small Iymphocytes and polymorphonuclear/

$$
\begin{aligned}
& \text { AVERAGE COUNTS EACH WEEK. } \\
& \text { DOTTEOLINES SHEW AVERAGE NORMAL COUNTS } \\
& \text { BETWEEN AGES OF } 3 \text { AND G YEARS. } \\
& \text { EOSINOPHILS ANO BASOPHILS NOT SHEWN. BOTH } \\
& \text { ARE WITHIN PHYSLOLOGICAL LIMITS. }
\end{aligned}
$$

Total Leucocitls Per Cubic Millemetre
Polymorphonuclear Leucocytes P.C.M.
Large Lymphocites P. G.M.
Small Lymphocytes P. C.M.

目

polymorphonuclear leucocytes are each represented by a stroight line.

Even down to the detail of showing the initial increase of large lymphocytes, eosinophils and perhaps basophils this case is typical.

Da Costa in writing about the effect of complications on the blood counts in whooping cough states that such complications as Bronchitis, Catarrhal Pneumonia and Otitis do not appear to exageerate it. This statement is not borne out as regards pneumonia by Dr. Orombie's paper where he had leucocytosis of 120,000 and 141,000 p.c.m. in two cases of Broncho pneumonia. Carr has had similar experience.

The writer has unfortunately had no opportunity of studying whooping cough cases complicated by pneumonia. With regard to bronchitis however there are one or two points of interest. Out of three cases two were examined repeatedly. Both of these cases came under observation before any signs of Bronchitis had developed. In each case the leucocytosis was exceptionally high, one was 39,800 p.c.m. and the other $57,200 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$. Now, when these patients developed bronchitis there was no increase in the total leucocytosis, in fact it diminished; but when one examines the chart, it is at once obvious that the blood count has been affected by the Bronchitis, in as ruch as the polymorphonuclear leucocytes increase in number, in one case to 30,000 per c.m. instead of diminishing as in uncomplicated cases. Dr. Crombio finds with regard to bronchitis that/
that these cases have a leucocytosis higher than the averace, due more probably to the severity of the whooning cough than to the bronchitis.

This is certainly borne out in these cases where the very high count was followed within a week by signs of bronchitis.

$$
\begin{aligned}
& \text { weekits comme } \\
& \text { cough }
\end{aligned}
$$

date Fred Tane Aet. 5 y .
$27: 1: 12$

Cough begnin two weelcs ago. Whoop for five Qays. Tomits after every attack.

Haemaptosis yesterday.
Blood Thites 57,200 p.c.m.
P. $\quad 38 \cdot 5 \%=22,050 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.

L.I.	7.5	4500
S.I.	52.5	30100
E.	.5	286
B.	.7	400

$3: 2: 12$

(week 3)

9:3:12
(week 6)

27:1:12
(week 2)

Blood
P. $\quad 66.7 \%=30700 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
I.I. $4.7 \quad 2160$
S.L.

28
12900
E.
B.

Child has been too ill to come up for three weetzs. There has been a patch of pneumonia in right lung at base. He Iooks better now. Still whoops with cough and vomits occasionally.

B1ood W. 11,300 p.c.m.
P. $\quad 61 \%=6810 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L.I. $\quad 4.5 \quad 50<$
S.I. $\quad 33.7 \quad 3770$

42.

Noral Nolom

Frentame

In studying chronic cases two points of interest have occurrod.

On talcing the average of 11 counts done on cases which have been affected with whooping cough for months, and which had for a time lost the characteristic cough or had contimued to whoop, the results are as follows.

$$
\begin{align*}
& \text { Total Leucocytosis: } \\
& \text { 15,800 p.c.m. } \\
& \text { Poly. } 8905 \text { p.c.m. } \\
& \text { I. I. } 1080 \text { " } \\
& \text { S.I. } 5140 \text { " } \\
& \text { E. } 738 \text { " } \\
& \text { B. } \\
& 6 \quad 1
\end{align*}
$$

It will be seen that the polymorphonuclear leucooytes are somewhat increased, and to a less extent the small lymphocytes. But what is striking is that the large lymphocytes shew an increase amounting to almost half as many again as normal. The explanation of this is not apparent.

Barach writing on the appearance of the blood late in the disease soys there is a gradual decrease in leukocytosis and a return to the normal aifferential/

44.

differential count, except for a slight eosinophilia (5\%) which may persist for months.

Now 738 per c.m. of eosinophils is just about 5% of 15,800. The average eosinophilia during the first eight weeks of writer's cases is 384 per c.

There seems to be something suggestive in the analogy of the eosinophilia of a prolonged spasmodic disease such as whooping cough which has lasted for months, and spasmodic asthma.

It is not clear if Barach refers to cases in which all symptoms had disappeared for months in which he finds the eosinophilia, or if they were chronic cases.
Date May Antony Aet $\& y$.

16:12:11
Patient had an attack of whooping cough in May i.e. seven months ago. The illness lasted two months.

For last forinight has been coughing again and has vomited after each meal. Blood Thites 16,400 per c.m.
P. $\quad 47.5 \%=7,800 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L.L. $\quad 1470$
S.I. $\quad 36.5 \quad 5980$
E. $7 \quad 1150$

30:12:11 Cough much less troublesome. Has not Whooped and romiting has ceased.

BIood T . 15,600 P.c.m.
P. $\quad 57.5 \%=8980 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L.I. $\quad 3.2 \quad 499$
S.I.
$35 \quad 5450$
E. $\quad 4.2 \quad 655$

Still has a slight cough.
Blood $\mathrm{W} . \quad 13,400 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
P. $\quad 56.7 \%=7600 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{Il}$.
L.L. 5.2696
S.I. $35 \quad 4690$
E. $3 \quad 402$

Somewhat better.
Blood \quad I. 14,600 p.c.m.

Date	Bob Antony Aet. 3 y .
16:12:11	Cough began in July (i.e. five months
	ago), and has continued to whoop since.
	On examination. Bronchitis present. Blood W. $11,000 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
	P. $\quad 38 \cdot 3 \%=4220 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
	L.L. 9992
	S.L. 424620
	E. $\quad 10.6 \quad 1170$
23:12:11	Cough in statu quo. Bronchitis slight.
	Blood W. 15,600 p.c.m.
	P. $67 \%=10460 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{Lz}$.
	L.L. $\quad 7.31140$
	S.L. $23.6 \quad 3680$
	E. 2312
30:12:11	Still slight bronchitis. Whoop lese.
	Blood W. II, $600 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
	P. $\quad 47.6 \%=5525 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
	L.L. 7812
	S.L. $40.3 \quad 4675$
	E. 5 5 580
6:1:12	No bronchitis. Still whoops a little.
	Blood W. 12,400 p.c.m.
	P. $\quad 46.5 \%=5770 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
	L.L. 5620
	S.L. 465700
	E. $2.5 \quad 310$

13:1:12 Still a. fow accompaniments in cheet.
48.

Date
Percy Mundy.
Aet. 4 y .

2:12:11
Patient had whooping cough two years ago. Cough began again in Summer. Whoop returned three weeks ago. Vomits after coughing. Cough more troublesome at night. Blood Whites 21,200 per c.m.
P. $\quad 47.6 \%=10100 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.

L.L.	10.6	2250
S.L.	39.3	8550

E. $2.3 \quad 487$

9:12:11

16:12:11

Cough and whoop much better. Is still sick occasionally.

Blood W. 22,200 p.c.m.
P. $\quad 68 \cdot 2 \%=15100$ p.c.m.
L.L. $3.2 \quad 710$
S.L. $20.2 \quad 4480$
E. $8 \quad 1725$
B. .2 44

Bob Antony

0	0
0	0
0	0

May Antony
(20,000

\section*{| $3+3$ |
| :--- |
| $\frac{3}{2}$ |}

है

In nearly all cases of whooping cough there is an increase in the white blood cells at the onset of the disease . The higher the leucocytosis the more severe the infection. This may be as great as 57,500 per cubic millimetre, and gradually diminishes as the disease progresses and the total leucocyte count returns to normal by the end of the sixth week in uncomplicated cases which do not become chronic.

The differential count at first shews an increase of all the different white cells in the blood, the most marked being the increase of the small lymphocytes and second of the Polymorphonuclear leucocytes. There is then a return by degrees to the normai limit about the end of the sixth week.

In cases complicated by broncho-pneumonia the count may rise to very high. In bronchitis the high counts occur before the bronchitis and are not increased by it, except that the polymorphonuclear leucocytes are relatively increased.

In chronic cases there may be an increase of large lymphocytes and eosinophils.

Sahli's "Diagnostic Methods" p. 798 \& 802.

Barach Arch. Med. July 1908.
Da Costa "Clinical Haematology" p. 502.
Allbutt Vol. II. Part I.
Gulland \& Goodall "The Blood". p. 251.
Crombie Ed. Med. Journal Sept. 1908.
Carr "Manual of Fevers."

B.

C.

Micro-photographs of Blood in Whooping Cough reproduced by Mr. R. Muir. Magnification 400 .
A. Florence Taylor Aet 4.

Typical field in an average case shewing increase of small lymphocytes in addition to total increase in white cells.
B. Fred Tame Aet 5.

Count 57,000 p.c.m. Field shews an increase in all the forms of leucocytes.
C. Bob Antony. Aet 3 .

Chronic case with 10% of eosinophils. Two eosinophils shown in field.

LOBAR PNEUMONIA IN CHILDREN.

This subject does not seem to have been specially investigated by anyone.

Some authorities on children's diseases consider thet lobar pneumonia in young children is an extremely rare disease. They are of opinion that cases, which shew very much the characteristic signs and end by crisis, are really patches of bronchopneumonia, and not true lobar. In addition they maintain that post mortem a pneumonic lobe in a young child is quite unlike an adult lobar pneumonic lung, as it is not nearly so solid. As this paper, however, is not concerned with this controversial point, but with leucocytosis, let it suffice therefore that all the cases recorded here were seen by one or other of the physicians to the Paddington Green Children's Hospital, and were considered by them to be cases of lobar pneumonia.

Writing on Blood in Pneumonia in general, Gulland and Goodall say, "The rule is an increased number of leucocytes. This increase does not correspond either to the temperature or the amount of lung involved, but is rather the expression of the resistance of the patient to the toxin. While the phenomenon is of diagnostic importance, it is probable that it has even/
even more value as a prognostic guide. Cases with slight symptoms may have no increase of white cells, but this very rarely occurs. In such cases there is usually a slight leucocytosis. On the other hand cases with very severe symptoms may show no increase or more often a diminution of leucocytes. There are cases in which the tissues including the bone-marrow, are overwhelmed by the toxin before they can react, and they are invariably fatal. In a great majorjty of cases there is an increase of white cells, ranging from 11,000 to $50,000 \mathrm{p} . \mathrm{c} \cdot \mathrm{m}$. Our highest count has been 65,000 , but a count of 100,000 has been recorded. Leucocytosis is generally found when cases first come under observation. We have found it present within three hours of the initial rigour. There is little variation throughout the disease till a day or so before the crisis, the count then shows a tendency to fall in favourable cases, but in some fatal cases the same thing is found. Although the leucocytes may have begun to diminish before the fall of temperature, they do not reach their normal number for several days after the crisis, and in cases ending by lysis their fall may be very gradual. When the leucocytes fall in number about the time of the crisis but fail to return to their normal within three or four days we have/
have an almost vertain indication of some complication such as empyema, toxic nephritis or pericarditis.
"Differentia, counts - up to the crisis there is an increase of polymorphs, which may constitute 95\% of the white cells. A fow myelocytes are almost invariably present in severe cases. Transitional cells and large lymphocytes are also increased absolutely though the percentage may be low. Small lymphocytes and eosinophils on the other hand are absolutely and relatively diminished. The latter may disappear altogether after the crisis the small lymphocytes and eosinophils are gradually restored to their normal numbers.
"Glyeogen reaction." This is always present.
It can be made out when cases come under observation; but becomes rather more intense and affects a large number of cells a day or two before the crisis. After the crisis the reaction remains for a few days and may be distinctly present after the leucocyte count has returned to normal. In severe leucopenic cases the glycogenic reaction is always intense, but if polymorphs are diminished of course relatively few cells will show the change."

This has been quoted at some length as it is the best description of the cytology of the blood in pneumonia ever written.

The/

$$
4 .
$$

The writer's object is not to try to disprove a. word of the above, but rather to show how closely children come under the principles laid down; and, how in a few details they differ from adults.

The following are the clinical facts and results of blood examination in forty five cases of lobar pneumonia in childhood.

For statistics, cases without physical signs have been classed as basal; as apical pneumonias are most unlikely to give no physical signs.

Beatrice Capon Aөt. $\frac{9}{12}$

Patient came under observation on the fifth day of disease. At that time temperature was 103.8° Pulse 160 and respirations were forty per minute. On examination there were all the typical signs of lobar pneumonia at the left base, involving the whole of the lower lobe.

Blood examination same evening showed:-

Whites	17,200 per c.m.	
P.	$61 \%=10,492$ per c.m.	
L.L.	6.6	1,135
S.L.	31.6	5,435
E.	.6	103

Glycogen reaction. Positive.
On the seventh day temperature dropped to 97°
with pulse 120 and respirations 44.
An uninterrupted recovery followed.

	\vdots	0	0
0	0	0	0
0	0	0	0

Doris Clutterbuck Aet. $\frac{10}{12}$

Patient was admitted on third day of illness with T. 102.60 P. 168 R. 80.

Signs of lobar pneumonia at left base. Blood shewed.
W.

$$
9,800 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{~m} \cdot
$$

P.

$$
62.5 \%=6125 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{~m} .
$$

L.L.

9
882
S.L.
28.5

2793
Glycogen reaction present.

Three days later Temperature fell to 100° with P. 176 and R. 80 but the crisis did not come till ninth day of ilness when T. 97° : P. 132 : R. 48. Uninterrupted convalescence.

Patient was admitted on second day of illness. T. 103 : $\mathrm{P} \cdot 176$: and R .48 . On examination a small patch of consolidation was found at the right base. Blood on day of admission.

W.	$14,000 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m} \cdot$	
P.	$64.5 \%=9030 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m} \cdot$	
L.L.	12.2	1708
S.L.	22.5	3150
E.	.7	98

Glycogen reaction moderately marked.

A typical crisis followed on fourth day of illness.
T. 97.8 : P. 112 : R. 28.

Perfectly normal convalescence.

Henry Izzard
Aet. $\quad 1 \frac{2}{12}$

Admitted with vomiting and diarrhoea. Small patch of pneumonia in midaxillary line right side. T. 103.8 P. 156 R. 52. Blood W. $13,000 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$. P. $63 \%=8190 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$. L.L. 5650 S.L. $32 \quad 4160$

Glycogen reaction present. By degrees the whole of the right lung became involved in pneumonic process.

3:12:11

6:12:11.

7:12:11
8:12:11

9:12:11 On 7 th day of illness child began to vomit, this continued till llth day. Temperature came down on 9 th day but no resolution followed.

On 10th day severe uncontrollable diarrhoea began.

On llth day small patch in left lung.
On lith day left submaxillary gland inflamed.

On l3th day child died.
P.M. Unresolved lobar pneumonia right lung. Small patch bronchopneumonia left lung. Submaxillary adenitis.

Admitted third day of julness with T. 102.6°
P. 160 R. 52. Left apex consolidated.

Blood W. $18,200 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.

P.	$55 \%=10,010 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m} \cdot$	
L.L.	15	2,730
S.L.	29.7	5,405
E.	.2	36

Glycogen reaction slight.
Pneumonic process gradually spread to the whole of the loft lung.

Child had a crisis of 9 th day, $T 97.4^{\circ}$ P. 102
R. 36 .

Perfect recovery.

Child had had some diarrhoea and vomiting for about a month before coming under observation.

A week before admission began to have a cough.
State on admission ? 6th day.
Temperature 101° Pulse 148 Respirations 56. Physical examination showed signs of lobar pnermonia affecting the right upper lobe both anteriorly and posteriorly with some bronchitis over both bases.

Blood examination.
Whites 28,000 p.c.m. Of which P. $\quad 70 \%=19630 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L.L. 7.2 2010
S.L. $22.7 \quad 6340$

Glycogen reaction markedly present.

Following day Temperature fell to 97° Pulse to 116 and respirations to 40 .

Consolidation beginning to clear up.
Result. Complete recovery.

Child was admitted on fourth day of illness with temperature 103.6°, Pulse 168 Respirations 60.

A patch of pneumonia was made out on the right side anteriorly extending from about second to fourth ribs.

Some general bronchitis also present.
Blood shewed.

Whites	16,000	p.c.m.
P.	77%	$=12320$
L.L.	8	1280
S.L.	15	2400

Glycogen reaction marked.

On the 7th day of illness child had a satisfactory crisis.

Temperature 970 Pulse 128 and Respirations 40 Result. Unintermupted recovery.
14.

Lilian Hatton

Aet. $\quad 1 \frac{6}{12}$,
Admitted on third day of illness with temperature 106° Pulse 168 Respiration 76. Pneumonia at left apex.

Blood W. 12,200
P. $\quad 57.5 \%=7015 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L.L.
5.7 695
S.L.
36.7 4477

Glycogen reaction extremely marked.
Pneumonia spread to left lower lobe.
On loth day after admission signs appeared at right apex in addition.

On leth day child died.
P.M. On opening thorax an empyema was found. The pus was located between the diaphragm and the right lower lobe.

In addition to this, the right apex was in state of grey hepatisation. The left lung was resolving.

Patient was admitted on third day of illness with Temperature 104.8° Pulse 176 and Respirations 72.

Physical examination shewed pneumonia of the right upper lobe.

Blood examination.
Whites 14,800 p.c.m.
P. $69 \cdot 2 \%=10,241$ p.c.m.
L.L. $5.2 \quad 769$
S.L. $\quad 25.2 \quad 3729$
B. 2 29

Glycogen reaction present.
On 5th day of illness child had his crisis and
made a good recovery.
Temp. 98.4° P. 136 Respirations 48.

Admitted 2nd day of disease.
Temperature 102.8 Pulse 156 Respiration 36 .

Blood Whites	22,000	p.c.m.
P.	79.8%	$=17,360$
L.L.	8	1760
S.L.	12.2	2680

Glycogen reaction marked.
Crisis 6th day.

Child never had any localising signs.
Result recovery.

Wilfred Smith Aet 2

No definite history of onset of illness available from child's mother.

State on admission. T. 102 P .144 R .44. Bronchitis with impairment of resonence on right side and distant bronchial breathing.

Blood examination.
Whites 17,400 p.c.m.
P. $85.3=14,842$ p.c.m.
L.L. $5.6 \quad 974$
S.L. 8.31444
E. $6 \quad 104$

Glycogen reaction slight.

Next day child was much better. T. 96.6
P. $108 \mathrm{R} \cdot 32$, and made good recovery.
Elizabeth Rudge Aet 2.

No definite history available.
On admission T. 103.4 P. 168 R. 60.
Marked right apical pneumonia present.
Blood. Whites 8,600 p.c.m.
P. $\quad 71.3 \%=6131 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.

L.L.	6.3	54.1
S.L.	22.3	1917

Glycogen reaction marked.
Pneumonic process spread to whole of right lung and remained unresolved, with swinging temperature.

Was explored on l2th, 17 th and 2lst days after admission on right side but no pus found.

Second count shewed Whites only 7,600 p.c.m.
Child died on $23 r$ day after admission.
P.M. Right lung collapsed and in course of resolution.

Small patch in left upper lobe.
Some pus over left lower lobe, and also pyopericardium.

Arthur Hutton Aet. $2^{\frac{1}{2}} \mathrm{y}$.

Admitted 2nd day of disease with T. 104.6
P. 176 and R. 60.

Physical signs of pneumonia at left Base.

Blood. Whites 18,200 p.c.m.
P. $\quad 69 \cdot 5 \%=12,625 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L.L. 7274
S.L. 23.24222
E. 23

Glycogen reaction positive.
Next day had a pseudo crisis. Temperature falling to $98 \cdot 6^{\circ}$.

On the 4th, 5th and 6th days of disease had slight pyrexia, running about T. 100° P.l12 R.36.

On 7th day everything settled down and child completely recovered.

Leslie Gibbs. Aet. 3 y.
Admitted on 8th day with T.103.8 P. 168 and
R.60. No physical signs.

Blood examination.

$$
\text { Whites. } \quad 22,000 \text { p.c.m. }
$$

P.

$$
66 \cdot 6 \%=14680 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{~m} \cdot
$$

L.L. $9.6 \quad 2115$
S.L.

23
5060
E.
. 3
67
B. $3 \quad 67$

Glycogen reaction present.
On following day had a crisis but on llth day temperature rose again and on l2th day for the first time physical signs of pneumonia developed at left base.

Signs became more marked and dullness became stony.

On 18 th day seropus was withdrawn from left side about the angle of the scapula.

Next day child was removed by parents.

Walter Carter Aet $3 \frac{5}{12}$
Was admitted on 5 th day of illness without physical signs but with a history of abdominal pain strongly suggestive of acute appendicitis.

On admission T. 104 P. 148 R. 52.
Blood W. 25,600 p.c.m.
P. $\quad 72 \%=18450 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L.L. 14.23610
S.L. $\quad 13.7 \quad 3510$

Glycogen reaction marked.
6 th day there was slight impaiment of resonence over right lower lobe with diminished vocal resonence and breath sounds.

7 th day. Temperature dropped from 104° to 97° in 12 hours while pulse and respiration fell to 112 and 23 respectively.

For next four days temperature never rose above 98° and child had an unintermpted convalescence.
22.

Alfred Elliot Aet. $3 \frac{1}{2}$

Child was admitted on 2nd day of illness with Temperature 103.2 2° Pulse 160 Respirations 52.

No physical. signs in chest.
Blood shewed.

Whites.	18,200	p.c.m.
P.	$82 \cdot 2 \%$	$=14940 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m} \cdot$
L.L.	8	1456
S.L.	9.7	1762

Slight glycogen reaction.

Ran an ordinary course of an acute pneumonia without physical signs and had a crisis on 6th day. Temperature 98° Pulse 108 Respirations 36 .

James Willis.
Was admitted on third day of disease, temperature 103° Pulse 134 and Respirations 32.

Physical signs were typical at the left base.
Blood Whites 18,800 p.c.m.
P. $\quad 88 \cdot 2=16600 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.

L.L.	4.7	885
S.I.	7	1316

Glycogen reaction present.
On 6 th day temperature came down to 98.4° with Pulse 104 and respirations 48 per minute.

For the next three days there was a slight rise of temperature but after that everything settled down.

On 8th day blood showed. W. 14,200 p.c.m.

P.	$65 \%=9250$	
L.L.	14	1990
S.L.	18	2560
E.	3	426

At that time temperature was 99° Pulse 128 and respirations 36 .

No subsequent complications.

Roger Clark Aet 4 y .

Admitted on 4 th day with temperature 103° Pulse 128 and respirations 64 .

Physical examination gave evidence of general bronchitis with deep patch of pneumonia at the right side.

Blood Whites 12,000 p.c.m.

P.	$45 \cdot 6 \%=5480$ p.c.m.	
I.L.	$18 \cdot 3$	2180
S.L.	$35 \cdot 3$	4240

E. 6 72

Very slight glycogen reaction.
Child had a crisis on 7 th day.
Subsequently temperature began to swing. On the llth day blood was as follows.

W.	21,000 p.c.m.	
P.	$68.7=$	14420 p.c.m.
L.L.	7	1470
S.L.	23.5	4940
E.	.7	147

Glycogen reaction present.
This was due to an otitis media.
Child made good recovery.

Admitted on 5 th day of illness.
Temperature 102.6° pulse 136 respirations 44.
Physical signs of lobar pneumonia at right base.
Blood

> Whites

24,000 p.c.m.
Poly $89 \%=21,360 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L.L. 51200
S.L. 6

Glycogen reaction present. Crisis on 8 th day.
Subsequently developed a right sided empyema which was opened by resection of rib.

Ultimately recovered.

Ellen Glidle
Came to hospital on 6 th day with Temperature 103.2 pulse 160 and respirations 42.

Signs were mainly those of bronchitis but in addition there was a considerable area of pneumonic consolidation at the left base.

Blood W. 23,800 p.c.m. P. $\quad 77.5=18460 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$. L.L. $9.7 \quad 2310$
S.L.
$12.7 \quad 3020$
Glycogen reaction present.
Temperature settled in a day or two and child made an interrupted recovery.
27.

Thomas McGarth
Aet. 5 y.
Was admitted on third day with Temperature 104° pulse 140 and respirations 52.

At that time only a small patch of pneumonia could be made out at the left base.

Blood W. 19,000 p.c.m.
P. $\quad 79.2 \%=15100 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L.L. 61140
S.L. $14.7 \quad 2790$

Glycogen reaction very marked.

In course of a day or two the whole of the left lower lobe became involved.

On 7th day there was a typical crisis.
Temperature 98 pulse 90 respirations 28.
Next day the blood was as follows.
W. \quad I2,200 p.c.m.
P. $53.3 \%=6510$
L.L. $6.3 \quad 769$
S.L. $36 \quad 4390$
E. $4 \quad 489$
B. $3 \quad 36$

Glycogen reaction slight.

Lily White Aet 5 y .

Child came to hospital on the 4 th day with a perfectly typical right apical pneumonia.

Blood examination.

W.	30,000	p.c.m.
P.	88%	$=$
L.L.	$66400 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.	
S.L.	$5 \cdot 7$	1800
E.	.2	1710
GIycogen reaction present.		

On 6 th day temperature had fallen to 98° and pulse to 96 and respirations to 24.

On 7 th day blood was as follows.

W.	25,600	p.c.m.
P.	$76 \cdot 6 \%$	$=19,640 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m} \cdot$
L.L.	8	2025
S.L.	6.6	1690
E.	8.3	2120
B.	.3	77

Three days later took German measles.
Went home well.
Date Marie Chapman Aet 5 $\frac{1}{2}$.
15:4:12 R.52. Only physical sign was diminished breathing at right base.

Blood
W. 22,600 p.c.m.
P. $\quad 78.7 \%=17800 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L.L. 5.21175
S.T. $\quad 15.2 \quad 3460$
E. .7 158

Glycogen reaction very marked.
Temperature continued to swing between 104° and 99°.
T. 104° P. 128 R. 60.

Blood
W.

22,000 p.c.m.
P. $\quad 77.5 \%=17100 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.

L.L.	5.7	1252
S.L.	16.7	3675

Glycogen reaction very marked.
Physical signs now very marked. Extreme dullness over right lower lobe in axillary line.

Explored to exclude empyema.
23:4:12
Temperature still swinging. Physical signs unchanged.

Looks quite well when temperature is down.

This case was particularly interesting clinically on account of, first the late appearance of physical signs, second the swinging temperature which swung higher/
higher and higher for ten days suggesting empyema. No empyema present on exploration. Then the temperature swung down again as it had risen and eventually becoming subnormal on the l7th day of illness. The lung cleared up subsequently.

Indefinite history Day of admission Temperature rose to 103.8° pulse 142 Resp. 48.

Signs of pneumonia at left base.
Blood Whites. 19,800 p.c.m.
P.
$82 \%=16,240$ p.c.m.
L.L. 5

990
S.I.

14
2770
Glycogen reaction slight.
Had his crisis 3rd day in hospital and made an excellent recovery.

James Crowie
Aet 6.
Admitted 4 th day. Complaining of headache, vomiting, cough and general malaise.

On admission Temperature 103.40 pulse 136
respirations 36 .
Physical signs at right base.
Leucocytosis 20, 200 p.c.m.
P. $\quad 87 \%=17,574 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L.L.

2
404
S.L.

11
2222
Glycogen reaction marked.

Crisis 6th day.

Normal convalescence.
34.

Ada Sparks Aet 6 y.
Was admitted on 3rd day of illness with temperature 101.4 ${ }^{\circ}$ Pulse 136 and respirations 36 .

There were no physical signs in the chest.
Blood examination was as follows:-
Whites 22,200 p.c.m.
P. $\quad 90.7 \%=20,132 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L.I. $4.2=932$
S.L. $5=1110$

Glycogen reaction was marked.

Patient never developed any physical signs of pneumonia but on 7th day of illness she had a crisis and had a normal convalescence.
35.

Alfred Gleeson Aet 6 y .

Child was admitted on the 5 th day of illness and had a temperature of 102.2° Pulse 116 and respirations 48 per minute.

Blood shewed.

Whites	24,000	$\mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m} \cdot$
P.	80%	$=19200 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m} \cdot$
L.L.	2	480
S.L.	16	3840
E.	2	480
reaction was present.		

Patient had his crisis on day of admission, the evening chart reading being Temperature 98.8° pulse 108 respirations 28.

George Munden.
Aөt 6 $\frac{1}{2}$.
Patient came to hospital on the 5th day with temperature 103.8° pulse 132 and respirations 44.

Physical signs were well marked over the whole of the right lower lobe.

Blood Whites 13,000 p.c.m.
P. $\quad 84 \%=10925 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L.L. 4.7610
S.L. 10.21325
E. 7 .7
B. .2 26

Glycogen reaction present.

Crisis occurred on 8 th day. Temperature 97.2° pulse 112 respirations 36 .

Lung cleared up subsequently in normal manner.
Harry Warrener Aet 6 $\frac{1}{3} \mathrm{y}$.

Was admitted on 5th day with temperature 104° pulse 160 and respirations 44.

Physical examination only revealed a small patch of pneumonia in the left lung about the middle of lower lobe.

There was a very extensive herpetic eruption on the nose.

Blood W.	26,600	p.c.m.	
	P.	83.2%	$=22,121 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m} \cdot$
	L.L.	7.5	1995
	S.L.	9.2	2249

Glycogen reaction very marked indeed.

Crisis followed on the 8 th day, temperature 98.4° Pulse 104 respirations 28.

Blood examined same day shewed following changes.
W. 17,200 p.c.m.
P. $61.5 \%=10,578$ p.c.m.
L.L. 132236
S.L. $22.2 \quad 3818$
E. $3.2 \quad 550$

Some cells shewed positive Glycogen reaction. Perfect recovery followed.

Glycogen reaction present.
Patient had her crisis on the following day.
39.

Thomas Duncan Aet 7 y.

Admitted 5 th day with temperature 101. 2°
pulse 106 and respirations 44.
Herpes marked on left side of chin. Typical signs of lobar pneumonia at right base.

Blood Whites 19,200 p.c.m
P.
$84 \%=16220 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L. L.

3
577
S.L. 132500

Glycogen reaction present.

Crisis on 9 th day. T. 97° P. 84° R. 32.

Had a normal convalescence and gained 3 lbs in weight in a fortnight.

Violet Parrott

Aet 7 y.
Admitted on 3rd day T. 105.6 P. 200
respirations 80. Pneumonia affected right, middle and lower lobes. In addition to herpes labialis patient had pain and redness of right upper arm.

Blood examination W. 13,600
P. $81 \%=11110 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L.L. 6819
S.L. 121635
E. $\quad 1 \quad 136$

Glycogen reaction present.
Case was subsequently complicated by three large abscesses due to staphylococcus aureus, one of upper arm, a large one over the back which contained almost a pint of pus; both were operated on and a third which evacuated itself per vaginam from which the same organism was grown in pure culture.

Patient eventually made a good recovery.

Admitted 2nd day complaining of fever, vomiting and pain in left side.

Temp. 103° pulse 120 respiration 40
At first signs were indefinite.
Blood 30,000 whites p.c.m. Poly $91 \%=27,300 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$. L.L. $5 \% \quad 1500$ S.L. $4 \% \quad 1200$

Glycogen reaction present.

Subsequently developed typical signs at left base. Crisis 7th day.

Temp. 96.2^{0} pulse 82 respiration 32.

Normal convalescence.
42.

Annie Lavejoy Aet 8 y .
Admitted 6 th day with temperature 104° pulse 152 and respirations 36 .

Well marked physical signs at left base.
Blood Whites 22,600 p.c.m.

P.	94%	$=21220 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L.I.	1	226
S.L.	5	1134

Glycogen reaction present.

Temperature fell on 8 th day and gradually reached subnormal on morning of 9 th day.

Glycogen reaction present. Normal convalescence.

Date	Christopher Phillips
23:4:12	Patient was admitted on 4th day of ill-
	ness with temperature 106° pulse 140 re-
	spirations 36.
	Physical signs not well marked but were
	definitely present in middle lobe.
	Blood Whites 19,200 p.c.m.
	P. $\quad 81.5 \%=15660 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
	L.L. 81538
	S.L. $\quad 10.512008$
	Glycogen reaction slight.
25:4:12	Crisis occurred on 6th day when the
	temperature dropped from 105.6° to 97° in
	24 hours.
	Blood was again examined on day of crisis.
	Whites 13,400 p.c.m.
	P. $\quad 70 \cdot 2 \%=9425$
	L.L. 81072
	S.L. $21 \quad 2825$
	E. 7 . 93
	Glycogen reaction present.
28:4:12	Blood 10,800 p.c.m.
	P. $39 \%=4210$
	L.L. 6.6714
	S.I. 51.35540
	E. 2.6282
	B. . 3 32
	Glycogen reaction marked.

Chastophor Phill po

John Taylor Aet 10.

Came in on 7th day with temperature 101.8
pulse 120 respirations 56.
Left base completely consolidated. Blood W. 17,400 p.c.m. P. $81.3 \%=14150$ p.c.m.
L.L. 6.31096
S.L. 11.31960
E. $\quad 1 \quad 174$

Glycogen reaction marked.
Temperature settled four days later.

Admitted 2nd day of illness with temperature 104.2° pulse 120 respiration 48.

Began with pain in right side and is said to have shivered. Vomited once.

Previous health. Has had pnoumonia aөt 5 and 8.
On admission indefinite signs at right apex.
Blood Whites 34,000 p.c.m.
P. $80 \%=29,240$ p.c.m.
L.L. 72380
S.L. 72380

Glycogen reaction present.

Signs became marked over right upper lobe and extended downwards involving part of the middle and lower lobes.

Pseudocrisis 9th day.
Unsatisfactory crisis loth day.
Pulse and respirations settled down finally on
15th day.
Child made good recovery.

William Lambell
Aet 11 y .

Admitted on 4 th day temperature being 104° pulse 120 respirations 48.

Blood W. 18,200 p.c.m.
P. $84.5 \%=15375$ p.c.m.

L.L.	5.5	1005
S.L.	10	1820

Slight glycogen reaction.

The right base was solid and breathing bronchial in character with increased vocal resonence.

Crisis on 7 th day. Made a good recovery.

Admitted on 2nd day of illness. Temperature 103.4° pulse 120 respirations 32.

Physical signs in right lung which according to previous notes on case was already fibrosed. There was however marked friction in right axillary line at level of 4 th and 5 th ribs.

Blood W. 12,000 p.c.m.
P. $\quad 60 \cdot 6 \%=7280 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L.L. 8.61032
$\begin{array}{lll}\text { S.L. } & 27.6 \quad 3310\end{array}$
E. $3 \quad 360$

Glycogen reaction slight.

Had a typical crisis on 6th day.

Date
$16: 4: 12$

19:4:12
T. 101 P. 108. R. 32.

Blood

$$
10,400 \quad \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{~m}
$$ $82.2=13500 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.

L.L.
4.7 772
S.L.
12.7

2042
E.
. 2
32
Glycogen reaction marked.
20:4:12 Temp. 97.6 pulse 76 respirations 24. 23:4:12 Temp. 98.4 pulse 88 respirations 24.

No constitutional symptons.
Blood W. 14,000 p.c.m.
P. $\quad 79.5 \%=11130 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
L.L. 4. 560
S.L. $15 \quad 2100$
E. $1.5 \quad 210$

No glycogen reaction.

Admitted 4th day. Temp. 103.6° pulse 116. Resp. 48.

Physical signs at right apex.
Leucocytosis 21,000 p.c.m.
Poly $\quad 87 \%=18,270$ p.c.m.
L.L.
3 630
. S.L. 91890
E. $1 \quad 210$

Glycogen reaction present.
Crisis 7 th day. Temp. 96.8 pulse 74 Remp.32. Normal convalescence.

The writer's attention was first drawn to the subject by a run of about half a dozen cases in young children none of whom had a leucocytosis over 15,000 p.c.m.. This seomed remarkable in view of the fact that the normal leucocytosis in young children is higher than in adults; and also, that it is an accepted fact, that "the white cells in infancy and childhood are much more responsive to stimuli than in adult lif $\theta^{\prime \prime}$ (Gulland and Goodall).

When one comes to examine the above cases it is seen that this mule has its exceptions.

Let us first consider cases of apical pneumonia.

The average leucocytosis of five cases under 5 years of age is $24,680 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$. with the following differential count.

$$
\begin{aligned}
& \text { Polymorphs 17,229 p.c.m. } \\
& \text { Large lymph. 1,812 } \\
& \text { Small lymph. 5,648 } \\
& \text { Eosinophils } 7
\end{aligned}
$$

In four cases over 5 years of age the average count is:-

Total 27, 200 p.c.m.
Polymorphs 23,280 p.c.m.
La. Lymphocytes. 1,322
Sm. Lymphocytes. 2,455
Fosinonhils 187

```
After the crisis the counts had fallen to:-
    Total ............... 19,200 p.c.m.
    Polymorphs .......... 12,557 p.c.m.
    Large lymphocytes ... 1,587
    Small lymphocytes ... 3,607
    Eosinophils ......... 1,380
    Basophils ........... }3
```

In basal pneumonias on the other hand the average of 15 cases under 5 years of age is:Total 17, 180 p.c.m. Polymorphs 12,518 p.c.m. Large Iymphocytes .. 1,457 Small Lymphocytes .. 3,058 Eosinophils......... 35 Basophils 5

In 22 cases in children suffering from basal pneumonia over 5 years of age and under 13, the average is as follows:-

$$
\begin{aligned}
& \text { Total 20, } 480 \text { p.c.m. } \\
& \text { Polymorphs 17,260 p.c.m. } \\
& \text { Large lymphocytes .. } 982 \\
& \text { Sma.11 Iymphocytes .. 2,150 } \\
& \text { Eosinophils } 28
\end{aligned}
$$

After the crisis the average of eight counts is found to be:-

CHART OF AVERAGE COUNTS IN
BASAL PNEUMONIA
CONTRASTING CHILDREN UNDER
AND OVER 5 YEARS OF AGE
AIND FAIL AFTER CRISIS.
X DENOTES NORMAL COUNT
AT SAME AGES.

$$
\bullet
$$

$$
7 \forall ว 1 \perp 14 \partial \perp s o d
$$

$$
\begin{gathered}
\text { OST CRITIC } \\
\text { CITSES }
\end{gathered}
$$

```
Total .............. 13,900 p.c.m.
Polymorphs ......... 9,040 p.c.m.
Large lymphocytes .. I,Il0
Small lymphocytes .. 3,483
Eosinophils ........ 280
Basophils .......... }1
```

For the sake of more convenient comparison the foregoing figures have been plotted on charts, with the normal average figures for the same age also represented.

Cases of Apical Pneumonia, in addition to their peculiar clinical interest, such as the frequency with which they simulate other diseases, have been recognised for some time as usually having a higher leucocytosis. In children this fact is very well marked. Compare, for example, 24,680 in apical and 17,180 in basal pneumonia in children under five years, 27,200 and 20,480 in children over five years. Now this increase represents, in the case of apical pneumonias under five years, a doubling of the usual average normal count. But in children over five years of age it is increased by 2.7 times. Compare this with/
with basal pneumonia where the younger children have an increase of only 1.5 and the older of two. The counts taken after the crisis will also be seen at a higher figure in apical pneumonia.

That is to say, the average leucocytosis in apical pneumonia is consistently higher than in basal, and the total is as a rule higher after the age of five years.

With regard to differential counts, the greatest increase is in polymorphs in apical pneumonias under five years of age. The actual figure represents an increase of 4.8 times the normal. Whereas, although the children over five years have an average polymorph count 6,000 greater, yet the total is only 4.5 times their normal.

In basal pneumonia the polymorphs are increased under five years by 3.5 and over 5 by 3.4. This shows the same tendency as in Apical cases, namely, that the polymorphs are actually more numerous per c.m. in the older children but the relative increase is slightly greater in the younger. After the crisis there is a marked fall in the number of polymorphs.

Like the polymorphs, as pointed out by Gulland and Goodall, the large lymphocytes shew an increase in numbers. This is more marked in apical cases, where/
where under five years of age the increase is 2.3 times the usual number, and in children over five twice the normal. In basal pneumonia the younger children again have the greater increase, the figures showing an excess of 1.8 compared with 1.5 in those over five. After the crisis this increase rapidly disappears.

On the other hand small lymphocytes and eosinophils are invariably diminished; the eosinophils so much so, that in many cases they entirely disappear during the disease; but reappear rapidly after the crisis. The small lymphocytes are more diminished in basal cases, where they are only about half the normal, (.43 and .56) at the two age periods under consideration. In apical cases the diminution is less being . 79 and .65. Here it will be seen, that the greater diminution, as in the case of the polymorph increase, occurs after the age of five years.

AVERAGE DAILY COUNTS IN

Pineumonia HILDREN
N CHILDREN
UNDER 5
Totalleucacrtusis
LARGE LYMPHO CYTES.
$\stackrel{\pi}{4}$

$\nabla+$
π
目
Day ge lantss
AVERAGE DAILY COUNTS IN
BASAL PNEUMONIA
IN CHILDREN
OVER 5 YEARS
NORMAL INDICATED 3 Y DOTTED LINES

+
F
IV

III

II
Dar of Disease

59.

An attempt has been made to construct daily charts for the basal cases from the material available; but, from the point of view of shewing the expected continuous decline, this is very disappointing.

There is an inexplicable rise in all counts for the 5th day onwards before the crisis in both age periods. In the younger children, this exceeds all other daily counts to such an extent, that it must be fallacious. It may be that children coming in late in the disease had their leucocytosis artiplcially increased by the moving.

One therefore feels bound to discard the whole of the first chart as unreliable.

In children over five however there is a fairly constant dimimution in total count from 24,600 on the and day to 13,900 after the crisis. It will be seen that the polymorphs on the second day have an extraordinarily high figure which gradually falls, but more quickly than the total levcocytosis. The lamge lymphocytes are fairly constantly increased throughout. At the beginning the small $1 y m p h o c y t e s ~ a r e ~ r e d u c e d ~ t o ~$ about $\frac{1}{3}$ of their normal number, and gradually r pese till at the crisis they have almost reachod nommel.

With regard to the eosinophils, they follow the same rule as the small lymphocytes. On the second day they are entimely absent but gradually begin to petum and in the end mise abmptly apter the crisis.

The writer's experience of fatal cases is fortunately limited to 3 or 6.5%.

In these the counts were:-
(1) W. 13,000
(2) 12,200
(3) 8,600 p.c.m.
P. 8,190
7,015
6,131
L.L. 650
695
541
S.L. 4, 160
4,477
1,917
+t+
$+t$

Glycogen reaction +

This gives an average of:-

Whites.	$11,266 \mathrm{p} \cdot \mathrm{c} \cdot \mathrm{m}$.
P.	7,112

LeI.
628
S.L.
3518

Compared with the average of two apical and one basal pneumonia at the same age.

W.	22,180 p.c.m.
P.	15,655
L.L.	1693
S.L.	4584

It will be seen that the total count is only about half, and is in fact smaller than for normal healthy children at that age. The polymorphs are only/
only about half as many as they should be, while the large lymphocytes shew no increase and the small lymphocytes are reduced.

These were cases where there was no resistance, and the children were overwhelmed with toxin. One had three lobes involved and pus at the base of the only healthy lobe. Another had an unresolved lung with pus at the other base, and a pyopericardium . In the third the lung was again unresolved, and the child developed a toxic enteritis and submaxillary adenitis in addition.
FATAL CASES
FAVOURABLE
AGE．

IH SISHO
T甘NVON HPIM
Iy甘dinot मy甘

62.

GLYCOGEN REACTION.

With regard to this reaction the writer finds very little difference between apical and basal pneumonias. It has a tendency to be more marked in older children.

It is however a very good guide to the severity of the disease and was found to be marked in the fatal cases.

As far as prognosis is concerned there is nothing to add to what Dr. Gulland used to teach; viz. a low leucocytosis with marked glycogen reaction means a bad prognosis. A high leucocytosis with a marked glycogen reaction, calls for a guarded prognosis. At the same time a high or low count with slight glycogen reaction indicates a good prognosis.

In lobar pneumonia children under five years of age have a lower leucocytosis than those who are older. In cases of apical pneumonia the total leucocytosis is greater than in basal pneumonia, the increase being due to polymorphs. Also the increase in children over five years of age is due to an increase in the same form of cell. Large lymphocytes are always increased, but most markedly in children under five years of age. Small lymphocytes are very much diminished at the onset of the disease, but gradually return to normal about the crisis. Eosinophils disappear at the beginning of the disease and reappear about the crisis.

During the disease the total count in uncomplicated cases tends to fall; the diminution being chiefly seen in polymorphs.

In fatal cases the leucocytosis is small owing to a failure of the polymorphs and large Iymphocytes to react.

Glycogen reaction is most marked in severe cases.

