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Abstract 

The coarsening of emulsions and foams due to a diffusive flux of dissolved disperse 

phase between droplets and bubbles is considered, and the effects of trapping an 

extra species within droplets /bubbles are studied. It is demonstrated that the 

extra species may provide an osmotic pressure to counteract the effects of sur-

face tension and "osmotically stabilise" an emulsion/foam. For dilute emulsions 

a rigorous condition to prevent coarsening by a diffusive flux of disperse phase 

is derived, which remains valid with polydispersity in droplet size and number 

of trapped species. The coarsening of dilute, insufficiently stabilised emulsions 

was found to proceed as when no trapped species were present, but with a reduc-

tion in the volume fraction of the growing droplets due to the volume fraction 

now residing in stable, shrunken droplets. Foams are studied by considering the 

osmotic compression of previously dilute foam bubbles by an osmotic pressure 

H. Careful arguments are given for the dependence of bubble pressure on II, 

which are confirmed for a monodisperse 2D model. The arguments are believed 

to be valid for sufficiently dry and monodisperse foams, for which the stability 

requirement is shown to be of the same order of magnitude as for dilute foam 

bubbles, regardless of the magnitude of H. In the absence of bubble rearrange-

ments, the elastic energy from the necessary deformation of surrounding bubbles 

is also found to stabilise a foam. Sources of dissipation in coarsening nondi-

lute foams are considered, and for given parameters enable prediction of the rate 

limiting mechanism and the associated coarsening rate. Since an osmotically sta-

bilised emulsion may be destabilised by a rapid transport of the trapped species 

between droplets, the extent to which micelles may affect the rate of coarsen-

ing by transporting oil between droplets is considered. Different mechanisms of 

micelle-mediated exchange are considered, and the applicability of the different 

mechanisms indicated. Various applications are suggested. 
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Chapter 1 

Introduction 

1.1 General Overview 

The subjects encountered in this thesis are emulsions, foams, and micelles; the 

behaviour of which knowingly or unknowingly, is of great interest and impor-

tance to society as a whole. Emulsions are important to: [1-3] the food industry 

(eg. mayonnaise, milk), the oil industry (eg. oil extraction), biology (eg. blood 

substitutes, food digestion/ emulsification), the cosmetics industry (eg. creams 

and shampoos), and are also similar to many structures encountered in metal-

lurgy. The most general description of a foam includes all sponge and gel-like 

structures [4], and all cellular structures such as: [4,51 plant and animal tissue, 

insulating foam, shaving cream, whipped cream, extinguisher foam, and even the 

head on a beer. The ability of micelles to solubilise matter and then subsequently 

transport it through a second (typically aqueous) medium, is of great importance 

to: [2,6] the formulation of detergents, drug carriers, petroleum recovery, froth 

flotation, and the adsorption of pesticides and chemicals into plant and animal 

tissues. Hence a greater understanding of the behaviour of foams and emulsions, 

and a greater knowledge of the effects of micelles on emulsions, is both desirable 

1 
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and beneficial. 

The main obstacle to understanding the behaviour of emulsions and foams is that 

they age, that is their properties change with time. In particular both emulsions 

and foams have a tendency for their bubbles/ droplets to coarsen, by competitively• 

growing/shrinking until the continuous phase coexists with only a single bulk 

(previously dispersed) phase. The mechanism by which the coarsening mainly 

occurs will generally depend on the type and formulation of a particular foam or 

emulsion. However, typically coarsening occurs either by: [2,4, 5] coalescence or 

flocculation of droplets /bubbles, a diffusive flux of disperse phase from smaller 

to larger droplets/ bubbles, or gravitational segregation of the disperse and con-

tinuous phase (ie, creaming/ sedimentation of emulsion droplets, or drainage of 

foams). Note that gravitational segregation often occurs as a result of previous 

coarsening of droplets/ bubbles. 

If the disperse and continuous phase have similar densities, then gravitational 

segregation may be prevented simply by making droplets sufficiently small that 

Brownian motion will dominate, and so prevent creaming/ sedimentation. Sim-

ilarly, since the gravitational segregation of concentrated foams may only occur 

via narrow channels formed where 3 or more bubbles meet (Plateau borders), 

drainage may occur at an acceptable rate. Modern surfactants are able to pre-

vent both coalescence and flocculation of droplets/bubbles, and may also reduce 

the rate of foam drainage. Hence recent attention has focused on coarsening by a 

diffusive flux of disperse phase between droplets /bubbles, and ways of preventing 

or slowing the process. 

This thesis considers the coarsening of foams and emulsions by diffusive flux of 

disperse phase between droplets/bubbles, via the continuous phase. In particular 

it focuses on the effects of trapping an additional species within droplets/ bubbles, 

so that they may no longer shrink and entirely disappear. The trapped species 

provides an osmotic pressure which opposes the increase in pressure due to inter- 
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facial tension, and hence may slow or even prevent coarsening. Previous work has 

indicated the possibility of using a trapped species to stabilise emulsions [7-14], 

and theoretical work based on the analysis of monodisperse systems has described 

conditions to ensure the formation of stable emulsions [12, 14]. However emul-

sions are generally polydisperse, and it was unknown whether results based on the 

analysis of a monodisperse system would be applicable to a typical polydisperse 

emulsion. This lack of understanding of such common and important systems as 

polydisperse emulsions, was the initial stimulation for the work contained in this 

thesis. 

By clarifying and extending our knowledge on the coarsening of foams and emul-

sions, along with the role that micelles may have for solubilisation and transport 

of substances, this thesis hopes to further improve our knowledge and under-

standing of emulsions, foams and micelle-mediated processes. Hopefully such 

knowledge will enable better and easier formulation of products which will con-

tinue to enhance our everyday lives. 

1.2 Outline 

We begin in chapter 2 with a brief introduction to emulsions, and a review of 

previous work related to their coarsening by a diffusive flux of disperse phase 

and its prevention by trapped species within droplets. We then carefully consider 

the free energy of a dilute system of emulsion droplets, and the free energy of an 

individual droplet. The growth rate of individual drops (both with and without a 

trapped species) are derived, and used to emphasise how the presence of trapped 

species suggests the possibility of forming stabilised emulsions. The chapter is 

mainly concerned with setting up the necessary background, ideas, and formalism 

required for later chapters. 
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Next in chapter 3 we carefully consider stabilisation of dilute emulsions. By anal-

ogy with the conditions for phase equilibrium in a binary system, we proceed to 

derive a condition to ensure stability of a monodisperse emulsion; this condition 

corrects the work of previous authors. By a different method, the results are 

then generalised to systems in which there is arbitrary polydispersity in particle 

size and in the number of particles of trapped species within emulsion droplets. 

Finally we consider the "trapped" species being slightly soluble, deriving a con-

dition which ensures that the coarsening rate would be limited by the rate of 

transport of the slightly soluble species. These results are amongst the most 

important in the thesis. 

The unstable coarsening of an emulsion containing trapped species is considered 

in chapter 4. Carsening is shown to result in a bimodal distribution consisting 

of a population of small droplets with an approximately constant size, and a 

coexisting distribution of larger droplets which is evolving with time. It is found 

that the rate of coarsening and the distribution function of the larger drops are 

unchanged from those of droplets coarsening without trapped species, but with 

a reduction in the volume fraction of the larger drops to account for that present 

in the coexisting, smaller droplets. A corollary to the calculations is the stability 

condition Eq. 3.28, previously calculated by a different method in chapter 3. 

In chapter 5 we suggest some possible applications of the physical mechanisms 

discussed in the previous chapters. These include methods for reversing the coars-

ening process, and for shrinking emulsion drops to form "miniemulsions" 

The possibility of micelles disrupting the stabilising mechanism by transporting 

the previously trapped material between droplets is considered in chapter 6. A 

number of regimes are considered depending on the ease with which oil is solu-

bilised into and exchanged between micelles. The work on micelles attempts to 

provide a framework for describing the qualitatively different types of coarsening 

which may occur, and also attempts to map out when each scenario would be 
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applicable. Although primarily directed towards the effects of micelles on coars-

ening of emulsions, the work is of interest in its own right, since the solubilisation 

and transport of substances in micelles is highly import . -ant to: [2] detergency, oil 

extraction, removal of contaminants, and biological pródèsses (eg. penetration of 

pesticides or chemicals into plant or body tissues). 

Chapter 7 introduces and reviews related work on stabilisation of foams, before 

deriving the free energy and chemical potential of soluble gas within dilute (spher-

ical), compressible foam bubbles. Then chapter 8 considers the pressures within 

bubbles in non-dilute foams in which bubbles press on one another. By careful 

argument and examination of existing experimental results, an equation for the 

pressure within bubbles in a sufficiently compressed foam is proposed. The argu-

ments are confirmed for a model of a monodisperse 2D foam in which the bubble 

pressure is exactly calculable. Von Neumann's law for bubble growth is related to 

our expression for bubble pressure, and a mechanism for bubble rearrangements 

is suggested to explain observed experimental results. 

Using the results of chapters 7 and 8, chapter 9 considers the requirements for 

bubble stability. Exact stability conditions are calculated for dilute foams and 

the monodisperse model of 2D foams, and a requirement for instability is given. 

The stability requirements for sufficiently compressed foams are considered, and 

results suggest that stabilisation should not only be possible, but the stability 

requirements will be similar to those of dilute foams (with well separated spherical 

bubbles). 

The penultimate chapter considers the coarsening of insufficiently stabilised foams. 

Expected morphologies and behaviour are suggested, and possible rate limiting 

mechanisms discussed. A simple mean-field argument and a number of order of 

magnitude arguments are given to determine growth rates and foam behaviour. 

By considering the rates of dissipation due to coarsening by different mecha-

nisms, a dominant rate limiting mechanism is found, enabling foam behaviour to 



CHAPTER 1. INTRODUCTION 

be predicted. 

Finally in chapter 11 we conclude with a brief summary of the thesis, and an 

indication of important open questions. 

Appendix A contains tables of notation for chapters 2-11. Each chapter has 

its own table of notation in Appendix A, which contains a brief definition and 

explanation of the symbols (notation) used in the chapter. 

Much of the work on emulsions is published in "Stabilisation of Emulsions by 

Trapped Species" [15], and much of the work on foams has been submitted for 

publication in a paper entitled "Coarsening and Osmotic Stabilisation of (Poly-

disperse) Foams and Dense Emulsions" [16]. 



Chapter 2 

Emulsions 

2.1 Introduction to Emulsions 

An emulsion is a mixture of two or more liquids, with droplets of a disperse 

phase suspended in a second continuous phase. Common examples of emulsions 

include milk, ketchup, mayonnaise and paint (hence the term "emulsion paint"). 

Emulsions are often characterised as being either a "macroemulsion" or a 

croëmulsion". Macroemulsions tend to consist of droplets of 	10 6m in size, 

where as microemulsions contain drops which may be as small as [2] '-' 10 9m in 

size. The main reason for this difference in droplet size is the way in which the 

different emulsion types form. A microemulsion will spontaneously form as the 

ingredients are added, producing a thermodynamically stable, long lived emul-

sion. Macroemulsions do not form spontaneously, instead requiring some kind 

of mechanical agitation to break up the liquids and form droplets. An example 

of the formation of a macroemulsion is the shaking of an oil and vinegar salad 

dressing to mix the oil and water prior to use. The mechanical way in which 

macroemulsions are formed limits the smallest size of droplets which may be pro-

duced (which is typically far larger than that of a microemulsion). In all that 
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follows we will consider only macroemulsions. 

Macroemulsions are thermodynamically unstable, requiring energy for their for-

mation and evolving over time until entirely phase separated into their constituent 

liquids. Their instability is due to the interfacial energy between the different liq-

uid phases, with the emulsions evolution and phase separation being driven by 

a desire to reduce this interfacial energy. As mentioned previously, emulsions 

may coarsen by flocculation, aggregation, diffusive exchange of disperse phase 

from small to large droplets, or gravitational segregation. Typically, droplets will 

coarsen until they're sufficiently large that gravitational segregation will occur, 

resulting in separate bulk phases with the phase of lowest density rising to the 

top of the sample. 

The desire to produce stable macroemulsions has led to the use of surfactants 

which are able to prevent both flocculation and aggregation of droplets, limiting 

their coarsening rates so as to prevent their eventual phase separation by gravi-

tational segregation (for sufficiently small droplets Brownian motion will prevent 

gravitational segregation). Surfactant will also increase emulsion stability by re-

ducing interfacial surface tension. For a surfactant concentration in excess of 

its CMC (critical micelle concentration [2]), then if the rate of surfactant equili-

bration between the interface and continuous phase is much faster than droplet 

growth, the interfacial tension will be reduced by a constant amount. We will 

assume here that surfactant may equilibrate much more rapidly than droplets 

grow, so that surface tension is reduced by a constant amount. We will also 

restrict ourselves to macroemulsions which are stabilised against aggregation or 

flocculation of droplets. 

In the absence of aggregation or flocculation, emulsions can still coarsen by the 

disperse phase diffusing through the continuous phase between droplets. The 

coarsening of droplets by a diffusive flux of disperse phase through a continuous 

phase, is an example of a class of phenomena referred to as "Ostwald ripening", 
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and which includes the coarsening of precipitates in solution, water droplets in 

air, and alloyed components in metals. Ostwald ripening has been studied in the 

context of Emulsions, Meteorology, Metallurgy, and PEysical Chemistry. In the 

next section we will briefly review work on Ostwald riieñi-ng; and its applications 

in Meteorology, Metallurgy and Emulsions. We will also review work on the effect 

of "trapping" an additional species within droplets. 

2.2 A Brief History of Ostwald Ripening 

2.2.1 Ostwald Ripening 

Ostwald ripening is the name given to the coarsening of droplets or precipitates 

of disperse phase, due to diffusion of disperse phase through a continuous phase. 

It was first observed by Ostwald in 1900 [17]. The diffusion is a result of differ-

ent vapour pressures*  above different sized droplets. The differences in vapour 

pressure are due to the Kelvin effect (1871) [18], which refers to an increase in 

vapour pressure as a droplets radius is decreased. The reality of the Kelvin effect 

was verified by La Mer and Gruen (1951) [19]. 

By assuming a vanishingly small volume fraction of disperse phase 0 , Lifshitz-

Slyozov (1961) [20] and Wagner (1961) [21] determined the kinetics of Ostwald 

ripening. They derived growth laws for the average particle size along with the 

droplet size distribution. Experimental verification of the kinetics for the Ostwald 

ripening of a small volume fraction of emulsion droplets was given by Kabalnov 

et al (1987) [11,13]. 

A clear exposition of the main theoretical ideas may be found in a review by 

*If the continuous phase is a liquid (as for emulsions), it arises from a differing -concentration 

of dissolved disperse phase above a droplets surface. 
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Bray [22], and a fairly recent review of Ostwald ripening is given by Voorhees [23]. 

2.2.2 Theoretical Improvements 

The Lifshitz-Slyozov & Wagner solution (here after referred to as LSW), deter-

mines the evolution of the size distribution function with time, a physical situa-

tion in which the supersaturation will decrease as the system tends to equilibrium. 

Marqusee and Ross [24] pointed out that the method used by LSW assumed the 

supersaturation to be exactly zero, an assumption which is approximately true 

but physically incorrect. To overcome this difficulty they assumed the supersat-

uration to obey power law of time, and then considered a more general form of 

scaling function for the droplet size distribution than that obtained by LSW. The 

results they obtained were to the lowest order identical to those of LSW, and the 

next lowest order of results were found to depend upon the initial conditions. 

The assumption of vanishing volume fraction allows droplets to be treated in-

dependently from one another in an homogeneous and isotropic environment. A 

non-zero volume fraction, which would occur in a real situation, prevents droplets 

from being treated independently since the diffusion fields surrounding droplets 

would now start to overlap. Approaches to Ostwald ripening at low volume frac-

tions with 0 << 1 have proceeded by treating the drops as monopole sources/sinks 

and then employing various different averaging procedures so as to obtain aver-

aged growth rates. These approaches were extensively reviewed by Voorhees [25] 

who summarised that the effect of the non-zero volume fraction was to alter the 

amplitudes of coarsening rates by a factor of qY' 2 . A careful investigation by 

Fradkov et al [26] demonstrated that sometimes the coarsening rates could vary 

as 01/3.  Marsh [27] also considered volume fractions with 0 'S-'  1. He did this by 

constructing the medium such that certain properties remained invariant under 

scaling of the average particle radius. The results obtained were found to be in 
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close agreement with experiment. 

The variation in Ostwald ripening during fluid flow is treated by Ratke and Host 

(a review of this and related work is given by Ratke [3]). They derive results, 

which hold for arbitrary Peclet number, by considering the particles as being 

surrounded by a boundary layer. Flux within the boundary layer was treated as 

diffusive, with flux to the edge of the boundary layer being due to convection. 

2.2.3 Ostwald Ripening of Emulsions 

The possibility of coarsening in emulsions due to Ostwald ripening was theoret-

ically analysed by Higuchi and Misra in 1962 [7]. The effect was later observed 

by Hallworth and Carless (1976) [8] and Davis and Smith (1976) [9], who stud-

ied O/W emulsions made from either hexane or hexadecane. They found that 

where as the hexadecane emulsions were stable, the hexane emulsions were not. 

Furthermore they found that if a small quantity of hexadecane was added to the 

hexane prior to the emulsions formation, then the resulting emulsion would be 

stable. 

Renewed interest in the effects of Ostwald ripening in emulsions was initiated by 

the work of Kabalnov et al (1987) [11,13]. They studied coarsening of emulsions, 

finding it to be due to Ostwald ripening as opposed to flocculation as was tra-

ditionally assumed. They also confirmed the predictions of LSW [20,21] for the 

average droplet size, and the droplet size distribution of well separated droplets. 

Recent reviews include "Thermodynamic and theoretical aspects of emulsions 

and their stability", by Kabalnov [28], and "Ostwald ripening in emulsions", by 

Taylor [29]. 
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2.2.4 Effects of Ostwald Ripening in Meteorology 

Ostwald ripening is considered to be the mechanism by which cloud droplets 

grow from a supersaturated water vapour. Kohler (1931) [30-32] considered the 

effect of dissolved salt on a droplets stability, and discovered the possibility of 

forming stable water droplets with a fixed size. The ability of salt water to form 

stable dispersions was then used to account for the stability of sea fogs and mists. 

Kulmala et al (1997) [33,34] describe how pollution would have a similar effect 

to salt in stabilising droplets. This increased droplet stability was then used to 

account for the stability of large droplet smogs, which occur in heavily polluted 

areas such as near the exits of chimneys and in the plumes of volcanos. 

2.2.5 Effects of Ostwald Ripening in Metallurgy 

The phenomenon of Ostwald ripening is important in Metallurgy because it affects 

the strengths of alloys and steels [35]. It occurs primarily whenever the metals 

are at a high temperature, for example during their formation, or in turbine 

blades [36]. The Ostwald ripening alters both the size and number of precipi-

tates of alloyed components within the metal, which in turn affects the materials 

strength. The effects of Ostwald ripening within ternary alloys has been theo-

retically investigated by Kuehmann and Voorhees [37], and represents the most 

rigorous study of Ostwald ripening in a two—component disperse—phase system. 

2.2.6 The Stabilising Effect of Trapped Particles 

It has been found that if an extra species has a sufficiently low solubility that it 

is effectively trapped in droplets, then Ostwald ripening may be prevented. The 

stabilising effect of trapping particles of an additional species within droplets, was 

first emphasised in the context of Meteorology, by Kohler in (1936) [30-32]. The 
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effect was mentioned in the context of emulsions by Higuchi and Misra (1962) [7]. 

Observations of increased emulsion stability, resulting from the addition of a less 

soluble component, were reported by Hallworth and Carless (1976) [81 and Davis 

and Smith (1976) [9]. The possibility that the less soluble component was sta-

bilising the emulsion by forming a complex film was considered. Experiments by 

Buscall et al (1979) [38], concluded that a complex film was not always the cause 

of increased stability, providing evidence for the existence of another stabilising 

mechanism. Davis et al (1980) [10] gave a qualitative explanation for the increase 

in emulsion stability as a result of the Raoult effect. 

Kabalnov (1987) [12] provided quantitative criteria for the stabilisation of an 

emulsion against Ostwald ripening, by considering emulsion droplets as composed 

of an ideal mixture of trapped and soluble components. Reiss and Koper (1995) 

[14] provided a systematic study of the Gibbs free energy of a system consisting of 

a single droplet of a non-ideal binary fluid in a continuous phase. They considered 

one of the two components to be trapped within the droplet and re-affirmed that 

a range of compositions existed where the drop would be stable. By considering 

the disperse phases as regular liquids, they emphasised that although non-ideal 

liquids may have a range of stable compositions, droplets would become unstable 

at both low and very high concentrations of the trapped component. It was noted 

that a nucleation process involving the more soluble component could de-stabilise 

a drop, but their estimations of fluctuations suggest this would be unlikely. It 

was also pointed out that if the second component was partially soluble, then its 

slow flux would eventually result in the droplet becoming unstable. 

To understand the kinetics of the coarsening process (Ostwald ripening) and the 

stabilising effect of a trapped phase, it is necessary to consider the free energy 

of emulsions and the chemical potentials of emulsion droplets. The free energy 

of dilute emulsions (with low volume fractions), and the chemical potentials of 

their droplets are derived in section 2.3, before we consider droplet growth rates 
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Figure 2.1: A schematic diagram of an emulsion with surfactant and a disperse phase 
containing trapped species. 

in section 2.4. 

2.3 Free Energy of Dilute Emulsions 

Although a system of emulsion droplets containing trapped species and stabilised 

by surfactant only contains 3 components, the free energy includes contributions 

from the interfacial tension and from components dissolving and mixing in one 

another. Fortunately many of these contributions to the free energy may be 

neglected, as is outlined in the following sections. A schematic picture of an 

emulsion is given in figure 2.1. 
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2.3.1 Free Energy Without Trapped Species 

We will firstly consider the free energy of an incompressible two component emul-

sion without trapped species, with a single disperse phase component. We con-

sider emulsions with a small volume fraction of disperse phase, in which droplets 

are well separated from one another. We assume the emulsion to be homogeneous 

and isotropic, and neglect contributions to the free energy from: 

• Continuous phase which has dissolved in the disperse phase (since the con- 

tinuous phase is taken to have negligible solubility in the disperse phase). 

• Surfactant dissolved in either of the phases.t 

• Bending energy terms due to the surfactant at the disperse—continuous 

phase interface (since the droplet radii are considered as much greater than 

the surfactant molecules length). 

• Entropy of mixing of the emulsion droplets (since the droplets are taken as 

macroscopic, typically measuring a few micrometres in diameter). 

We neglect changes in the free energy of the continuous phase due to changes 

in the concentration of dissolved disperse phase, treating the free energy of the 

continuous phase as approximately constant. Since we assume that surfactant 

can redistribute itself sufficiently rapidly, we may treat the disperse—continuous 

phase interfacial energy a as constant and equal for all droplets. Then we may 

This could have a significant effect on emulsion stability. For example, if the surfactant 

was preferentially soluble in the disperse phase, then the surfactant could play the role of the 

trapped species, providing an osmotic pressure which opposes the effects of surface tension. 

However if the surfactant is not preferentially oil soluble then micelles and dissolved surfactant 

molecules exert a net osmotic pressure on droplets. Since this osmotic pressure is independent 

of droplet size it results in an increase in the chemical potential of all droplets by a fixed amount, 

and has no effect on our following results. 
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2.3.2 Free Energy With Trapped Species 

We now consider dilute emulsions which contain trapped species. We assume the 

trapped species is both dilute and ideal within the droplet, obtaining the free 

energy of a droplet containing 77 trapped species as 

(47r/3)R3 
	In 

(_ 	

' 

	

f(R, 77) = 	A + 4R2  + kTi7 	
(4/3)R3) - 
	(2.6) 

Vb 

where v is the volume per molecule of trapped species, V is the volume of a 

droplet (V R 3 ), k is Boltzmann's constant, and T is the temperature. The 

system's free energy now becomes 

F = F + 	
[(4/3)Rf 

 + 4Rcr + kTi1 	
77vb \ 

	

{ 	 Vb 

	In 	
) 	

1)] 	(2.7) 
((47r/3)ffl 

 

- 	To obtain LJI we follow the approach of the previous section 2.3.1, to firstly 

obtain 
2o, 	qkT  

P=Pb+_(4R3 	 (2.8) 

where we note that there is now an additional osmotic pressure from the trapped 

species, which opposes the Laplace pressure. We then use the assumption of the 

trapped species being ideal, noting that since the volume occupied by the soluble 

species is Nvb the Gibbs-Duhem equation for the soluble component at fixed T 

remains as d1t = vdP. So integrating the Gibbs-Duhem equation for the soluble 

component at fixed T we get, 

	

= (P - Pb)vb 	 (2.9) 

as before. So for Lp with trapped species we now obtain, 

(2o, 	77kT '\ 

= 	- (47r/3)R3) Vb 
	 (2.10) 

2.3.3 Concentration of Dissolved Disperse Phase 

We now consider the molecules of disperse phase that are dissolved in the contin- 

uous phase, and assume these are dilute and ideal. Then the chemical potential 
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of dissolved disperse phase at concentration C is given by 

tic = tic0 + kTlnC 	 (2.11) 

where /,t o  is a reference value. We now assume that each droplet is in equilibrium 

with the disperse phase dissolved above its surface. Then adjacent to a droplet's 

surface we will have i = 11c, and the concentration C(R) will satisfy, 

\ 

	

kTlnC(R) = /-b + 	
i,kT 

- (47r/3)R3) vb - J1,0 	 (2.12) 

At a flat interface we have R -+ 00, and kT in C(oo) = Yb - /L co . So we may write 

/ LfL \ 
C(R) C(oo) exp () 

	
(2.13) 

Since we consider systems with small values of AL , we may expand Eq.2.13 to 

obtain, 
/ 

C(R) C(oo) (1 + 
	

(2.14) 

So we obtain the concentration of dissolved disperse phase above the surface of 

a droplet of radius R as 

	

/ 	2o- vb 	?7Vf, 

C(R) C(oo) + kTR - (47r/3)R3) 	
(2.15) 

We will often refer to the dissolved concentration of disperse phase as the 'su-

persaturation', since in the absence of trapped species C(R) is greater than that 

above a bulk liquid C(oo). 

2.4 Kinetics of droplet growth 

When considering droplet growth and coarsening of emulsions, we will consider 

a vanishingly small volume fraction of disperse phase, and make the following 

assumptions: 
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• Droplets are in equilibrium with their local spatial environments (as in 

section 2.3.3). 

• Droplet interaction is by diffusion of disperse phase through the continuous 

medium, with the rate of diffusion being much less than the rate with 

which disperse phase may be adsorped/desorped from droplets, and hence 

that droplet growth is diffusion limited. 

• The rate of diffusive flux to a droplet is determined by the difference between 

the concentration of dissolved disperse phase adjacent to a droplets surface, 

and the average far-field concentration of dissolved disperse phase. 

These assumptions reduce the problem to two tasks 

A single body equilibrium problem to determine the growth rate of a droplet 

in terms of its radius and the ambient saturation (far-field concentration of 

dissolved disperse phase). We will consider this next in section 2.4.1. 

A many-body problem to determine the droplet size distribution as a func-

tion of time. 

Since in task 2 droplets interact with each other only via the ambient supersat-

uration, the problem is tractable. This is the subject of chapter 4; first we solve 

task 2.4.1 (sections 2.4.1 to 2.4.2), and in chapter 3 obtain stability criteria that 

allow task 2 to be bypassed in certain cases. 

The method and assumptions so far described, are basically the same as those 

of LSW [20,21]. Although subsequent methods have further improved those of 

LSW (see section 2.2.2), the resultant corrections are small and the asymptotic 

solutions essentially the same. 
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2.4.1 Droplet growth rate 

As described above, a droplet's growth rate is determined by the diffusive flux 

of solubilised disperse phase between its surface and the ambient far-field super-

saturation. We will denote the average concentration of disperse-phase species in 

the continuous phase as , which under the conditions studied here will be close 

to C(oo). Then the reduced supersaturation E, defined as 

-C(oo) 

= C(oo) 	
(2.16) 

will be small. Since the variations of the diffusion field are small, the diffusion 

field will relax quickly on the time scale of droplet growth. Hence we may make 

a steady state approximation to the diffusion profile around a droplet, replacing 

the diffusion equation ac/at = D'S7 2 c, by V2c = 0. We then take boundary 

conditions of c(R) = C(R), and c(oo) = a (the mean far-field supers aturation). 

So solving in spherical co-ordinates we obtain the steady state profile c(r) for the 

concentration c(r) of solubilised disperse phase at distance r from the centre of 

a drop as 

(2.17) 

Since we have assumed the process to be diffusion limited, the droplet growth 

rate is determined by the flux adjacent to a droplets surface. Hence we obtain 

the droplets growth rate as 

dR 	aI = 
	

______ 

dt 
VbD —1 	VbD 

R ) 
(2.18) 

Then using Eq. 2.15 for C(R), we obtain 

dR - VbDC(OO) / 	20'Vb 	I7Vb 

dt - 	R 	- kTR + (4/3)R3) 
(2.19) 
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2.4.2 Characteristic Length Scales and Droplet Growth 

Examination of Eq. 2.19 shows that when 77 = 0 we may define a characteristic 

length scale RE by 

C -  EkT 
	 (2.20) 

which gives a critical size above which droplets will grow in size and below which 

droplets will shrink. When ij 54 0 we may define another characteristic length 

scale RB as that at which the Laplace pressure due to surface tension , and the 

osmotic pressure due to the trapped species (4/3)R3'  are equal. RB is given by 

RB 	
(3jkT'112 	

(2.21) =I 
) \87rU 

at which size a droplets osmotic and Laplace pressures will balance one another. 

Hence the growth rate may be written in the more informative manner as, 

dR - DvC(oo)2cr / 1 	1 R\ 

dt 	RkT 	- B + j3) 	 (2.22) 

As shown in figure 2.2, when ij > 0 a second zero in the growth rate is introduced 

when R RB,  in addition to the zero at R RE. We note that the fixed point 

at R RB is stable, unlike the fixed point at R - RE. The stability of the fixed 

point at R RB suggests the possibility of forming stable emulsions; but since 

the growth rates also depend on c, which is time dependent and need not even 

tend to zero at late times, the ultimate behaviour of the system is unclear and is 

considered in later sections. 

It is possible to define a growth velocity U(R', ) in terms of dimensionless vari-

ables, as 
E 	1 	RB 

U(R',f)=--- 	-L 14 R' 
(2.23) 

where R' RkT/(20rvb), t' tDC(oo)k 2 T 2 /(4vba 2 ), and R'B2  3710T 3/ (327ra3v). 

This form of the growth rate is used in chapter 4 when considering the dynamics 

of unstable, coarsening emulsions. 



22 
	

CHAPTER 2. EMULSIONS 

U(R),without trapped phase. 	U(R),with trapped phase. 	U(R),with trapped phase. 

(E>O) 	 (c>O) 	 (c<O) 

ftl 

RB 	'S 	 R B  

Figure 2.2: A schematic diagram representing how the presence of a trapped phase 

introduces a stable droplet size. Droplets of a given size move in the direction shown 

by the arrows. Without trapped species a new, stable, fixed point appears at RB 
due to the competition between Laplace and osmotic pressure. If there are sufficient 

trapped species that c is negative, then there is again only one fixed point, but it is 

the stable one at RB.  Expressions for Rs and RB are given in section 2.4.2, U(R) is 

defined in Eq. 2.23. 
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In the absence of trapped species we recover 

€ 	1 

	

U(R', €) = 	- 	 (2.24) 

which was solved by Bray [22] in the study of the LSW model. 

Having placed the coarsening of emulsions in context, and having set up the 

necessary formalism, the next chapter will proceed to use the formalism to derive 

rigorous results concerning the formulation of stable emulsions by addition of a 

trapped species. 



Chapter 3 

Formation of Stable Emulsions 

The present chapter considers the possibility of using trapped species to osmot-

ically stabilise an emulsion against coarsening (Ostwald ripening). Other coars-

ening mechanisms such as coalescence, are presumed negligible. We start by 

considering a monodisperse emulsion with an equal number of trapped species 

per droplet, and a trapped species which may be treated as both dilute and ideal. 

These assumptions are relaxed in sections 3.6 and 3.8, and in section 3.9 we con-

sider the previously "trapped" species as slightly soluble. In all the above cases 

we derive conditions to prevent coarsening, or limit its rate (when the trapped 

species is considered to be slightly soluble in the continuous phase). These con-

ditions offer guidelines for the formulation of stable emulsions using the least 

possible amount of trapped species. 

3.1 Equilibrium at Fixed Droplet Number 

We consider an initially monodisperse emulsion in which the number of trapped 

particles 71 is identical in each droplet. We take the free energy of the system as 

given by Eq. 2.7, and write n(V) as the number density of droplets of volume V. 

25 
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Then the total free energy density of the system may be written 

F = F,+ f dV n(V)f(V, ) 	 (3.1) 

with f(V, i) as given by Eq. 2.6 but rewritten in terms of droplet volume V as 

/3V )2/3 
f(V, i) = ( V/v b )fb  + 4iri I \47r - 	+ kTi (In () - i) 	(3.2) 

In what will follow we will need only consider those terms in the free energies 

which are not constant or linear in V". Ignoring constant terms and terms linear 

in V, f(V, ) takes the form 

f'(Vi7) = 47ra(3V/47r)213 - 7kT1nV 	 (3.3) 

f' is shown in figure 3.1. Similarly for the systems free energy, we obtain 

Figure 3.1: Comparison of curves off without (left) and with (right) trapped species. 

F' = f dV n (V) f'(V, ,q) 	 (3.4) 

The free energy density F' is to be minimised subject to the constraints that the 

initial number density no  of droplets remains constant (since the trapped species 

Since the total number and volume of droplets are both conserved, such terms are constant 

when summed over the entire system. 



3.1. EQUILIBRIUM AT FIXED DROPLET NUMBER 	 27 

prevents any droplets from disappearing), 

f dV n(V) = no 	 (3.5) 

and that the total volume fraction q of disperse phase is constantt 

f dV Vn(V) = qf = n 0V 	 (3.6) 

The latter ignores a contribution from the dispersed-phase species that is so!-

ubilised in the continuous phase; for emulsions of low solubility, prepared by 

mechanical dispersion (rather than by quenching from a homogeneous mixture at 

high temperatures) the latter is always negligible. 

These rules are precisely analogous to those for constructing the equilibrium state 

of a system whose free energy f(A) depends on a composition variable A. Such 

a system can separate into volumes v(A) of phases with different compositions A; 

in that case, F =E.\ v(A)f(A) is minimised subject to the constraints 	v(A) = 

vo  (the total volume of the system is fixed) and 	v(A)A = v0 A0  (the total 

amount of species A is conserved). Here the subscripts 0 describe a hypothetical 

homogeneous state. 

In the analogy, if we replace droplet size V with composition A, and the number 

of droplets n(V) with the volume of phase v(A), then we find the determination 

of emulsion equilibria to be mathematically equivalent to determination of phase 

equilibria. Physically, since 77 is taken to be the same for each droplet, a droplets 

composition (phase) will be determined by its volume V, with V adopting the 

role of compositional variable A. Similarly the quantity of droplets n(V) with 

composition (phase) determined by V, corresponds to the quantity v(A) of phase 

with composition determined by A. For example, a quantity no  of monodisperse 

droplets with volume V0  corresponds to a quantity v0  of a single phase with 

composition A 0 . 

tThis assumes that the volume occupied by a given amount of trapped species is independent 

of its concentration. 
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The minimisation of F' is therefore exactly as one would perform to find phase 

equilibrium in a binary fluid but with the function f(.A) replaced by f'(V, ij). The 

usual minimisation procedure is to seek common tangencies whereby F can be 

lowered by phase separation. In this analogy, phase separation, would correspond 

to the formation of droplets of more than one size, and hence composi-tion. The 

volumes v(A) are determined by the lever rule [40], and for monodisperse 77 the 

same rule can be applied here to enable calculation of n(V). Notice that the 

correspondence works only for the curve f'(V, ii);  no similar construction applies 

to f'(R, i'), which is the form more usually considered in the literature [12, 14]. 

Also, note that any prediction of a "single phase" (i.e., a monodisperse emulsion) 

is, in principle, subject to a small spreading of the size distribution arising from 

the entropy of mixing of the emulsion droplets themselves (rather than of the 

contents within one droplet), which we have neglected. 

3.2 Stability Criterion for Monodisperse Emulsions 

According to the above argument, if 71 is the same for all droplets (as will usually 

be nearly true for emulsions formed at fixed concentration of trapped species, 

with a nearly monodisperse initial droplet size distribution) the equilibrium state 

of the system at fixed droplet number can be found by inspection of the f'(V) 

curve. A monodisperse emulsion can be stable only if the corresponding V lies 

in a part of the curve of positive curvature; if this is not the case then the free 

energy may be reduced (at fixed total number of droplets and fixed q in each 

drop) by the monodisperse distribution becoming polydisperse, and coarsening 

will occur. However, although positive curvature is necessary for stabilisation it 

is not sufficient, since even when the curvature is positive at a point V = V0 , it 

may be possible to find a lower free energy by constructing a common tangent 

on the F'(V) curve which lies below f'(V0 ). The shape of the f'(V) curve shown 
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in figure 3.1 dictates that any such tangency must connect the point at V -+ oo 

to the absolute minimum of f ;  the latter arises at V = Vfi(17) and is discussed 

further below. 

The weaker of the two stability conditions (positive curvature) is precisely that 

given by Kabalnov et a! [12]: 

I 3ijkT\ 312  
V <Vs() 	

2a ) 	
( 3.7) 

Hence Kabalnov et al [12] reasoned that a sufficiently monodisperse initial distri-

bution with droplet size Vo  < V 47i- R/3 would be stable. However, the above 

argument shows this is actually a criterion for metastability. In other words, the 

criterion of Ref. [12] actually separates initial distributions which coarsen imme-

diately, from those which may be stable for extended periods of time and may 

require some fluctuation to induce coarsening. Such fluctuations are invariably 

present, particularly at non—negligible volume fractions, though they are not in-

cluded within the theory of Lifshitz and Slyozov. The kinetic mechanisms for the 

coarsening of emulsions of this 'metastable' type, are discussed in the section 3.3. 

The extent of the metastable region, and the likelihood of a metastable emulsion 

coarsening are discussed in section 3.7. 

The above thermodynamic analogy shows that full stability in fact arises for 

initially monodisperse emulsions if and only if 

(17kB T \ 3/2 

V0  <V() = 	
2 ) 	

( 3.8) 

This corresponds to the requirement that the initial state lies to the left of the 

absolute minimum in the function f. Everywhere to the right of this minimum, 

a lower global free energy can be constructed by a common tangency between VB 

and (formally) V = oo. This corresponds to a final coarsened state consisting 

of a monodisperse emulsion of droplet size VB = 47rR/3 with droplet number 

density n0 , which coexists with an "infinite droplet", which can be interpreted as 

a bulk volume of the dispersed-phase species. 
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The subscripts B, S for VB,S  and RB,S  can be taken to denote "balance" (between 

osmotic and Laplace pressures in a drop) and "stability" (in the sense of Kabalnov 

et al [12]). However, in view of the thermodynamic discussion, it might be better 

to interpret them as "binodal" and "spinodal". Indeed, depending upon the 

value of V0 , any monodisperse distribution lies in one of three possible regimes: 

see figure 3.2. In regime I, the emulsion is fully stable under coarsening dynamics 

(provided droplet number is conserved). In regime II it is metastable. In regime 

III it is locally unstable and will coarsen immediately. The metastable region II 

is both mathematically and physically analogous to that between the binodal and 

the spinodal lines governing phase coexistence in a binary fluid. 

f' (V , r) 

V 
V13  V 

Figure 3.2: The three different stability regimes. 

3.3 Kinetic Interpretation of Metastability 

The above thermodynamic argument is quite formal, so it is useful to interpret 

it in kinetic terms. Consider a monodisperse distribution which is in equilibrium 
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with its "vapour" (i.e., the dissolved fraction of the dispersed-phase species), 

and with 71 the same for all droplets. Let the radius of all but one droplet be 

(say) R0  < R, but suppose a single larger droplet is present, of radius R. The 

growth of this droplet is determined by whether C(R, i) is larger or smaller than 

. Since the remaining droplets are in equilibrium, Z will be equal toC(Ro , ij). 

Now consider the concentration of dispersed-phase species C(R, i) at the surface 

of the anomalously large droplet (see figure 3.3). 

C(V) 

ITY 

V 

Figure 3.3: Variation in concentration of disperse phase at a droplets surface as a 

function of droplet volume. 

Distributions in regime II have RB < Ro  < R5 and an average concentration of 

disperse phase (R0 , i) > C(oo, 0). Hence if a droplet is sufficiently large (perhaps 

due to polydispersity in the initial size distribution, or correlations in the diffusion 

field for example), its surface concentration will be below the ambient level and 

the droplet will grow at the expense of smaller droplets, by a diffusive flux through 

the continuous phase. Distributions in regime I (R o  < RB) have < C(oo, 0) and 

there is no size of droplet larger than R0  for which sustained growth is possible. 

Such a droplet will instead redissolve to rejoin the equilibrium droplets at size 
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Returning now to metastable distributions in regime II (RB < Ro  ..< Rs), the 

critical size RC  above which a droplet will become unstable and start to grow is 

given by the larger root of dR/dt = 0, where dR/dt is given by EI: 2.22. This 

gives  

Rc=R€(1_() 	
(RB 
	 (3.9) 

Re 	R e  

where Re  is as in Eq. 2.20 and depends upon the supersaturation e. Since the 

initial distribution of droplets is considered to be monodisperse with size J?o and 

in equilibrium, then dR/dtR 0  = 0 and R e  may be determined as 

R R (_

R 
 R ) 

'\ 
= 	— 	

(3.10) 

This suggests that, for a monodisperse initial state, the nucleation time for the 

coarsening process to begin (requiring nucleation of a droplet of size Rc)  can 

become very large as R0  approaches RB.  On the other hand, nucleation can occur 

immediately if there is any slight tail to the initial size distribution, extending 

beyond R. 

The distinction between nucleation due to the existence of a tail in the initial size 

distribution which extends to abnormally large droplets, and nucleation resulting 

from fluctuations in growth rates, is similar to that between heterogeneous and 

homogeneous nucleation in conventional phase equilibrium. In this analogy the 

tail of the droplet size distribution (which may be negligible for thermodynamic 

purposes), provides "nucleation centres" which allow coarsening to begin. 

3.4 Metastability at Fixed Initial Concentration 

The above argument was for emulsions formed with a fixed number of trapped 

species i per droplet. We now consider emulsions formed from a fixed concentra- 
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tion of trapped species, with a polydispersity in 71 arising from polydispersity in 

droplet sizes. 

Consider the idealised scenario of a metastable emulsion formed from a fixed 

concentration of trapped species, and in which all but one droplet have radius 

R0 , and a single large droplet has radius R. Initially both the small and the large 

drops will have the same initial concentration of trapped phase c. We may then 

assume the following 

• The many monodisperse droplets determine the supersaturation € 

• Until the large droplet becomes macroscopic in size, there are no constraints 

of volume fraction imposed upon the growth of the larger droplet, which 

grows as a result of a flux from the average supersaturation € 

• Throughout the initial stages of its growth (while the droplet remains meso-

scopic in size), the larger drop has a negligible effect on the total volume 

fraction so the smaller drops will possess an effectively constant radius. 

Hence during the initial stages of growth (which will determine whether 

the large droplet will grow to a size in excess of its spinodal size Rs), the 

larger droplet will grow from an effectively constant supersaturation €. 

Equilibrium between the large drop and the small drops requires both to have 

the same chemical potential. At fixed initial concentration of trapped species 

The motivation for the following arguments is explained below. Following a series of private 

communications with Dr Alexey Kabalnov, it became clear that a quantitative description of 

how a single large drop may destabilise an emulsion formed from a fixed concentration of 

trapped species, was required. Dr Kabalnov agreed that the destabilisation mechanism would 

apply when there was an equal number of trapped species in each droplet, but initially believed 

that a metastable emulsion (VB  < V < V) formed from a fixed initial concentration would (in a 

practical situation) effectively be stable. The following uses an argument which arose following 

discussions with Dr Kabalnov, in which he subsequently agreed that polydispersity in the initial 

droplet size distribution would be able to nucleate coarsening in metastable emulsions. 
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the smaller radius of the small drops results in their having a higher chemical 

potential than the larger drop, which at equilibrium the larger drop must attain. 

However the maximum chemical potential of the larger drop is at its spinodal size 

R5. So whether a larger drop can come to equilibrium with the smaller drops 

(as opposed to growing without bound), is determined by whether its maximum 

chemical potential L/1R(RS) is in excess of that of the smaller drops. Noting that 

RS is related to RB by Rs  = ORB, then the maximum chemical potential of 

the larger drop is 

\ 	 \ 

	

AMR(Rs) = 2v ( 1 - 
R 	

2u 
/2  

v6 
33/2RB) 	

(3.11) 
RS R 3S 

with RB given by Eq. 2.21 in section 2.4.2. 

Defining Ap, as the small drops chemical potential, and setting .\Ur = Max(/.uR), 

we obtain the maximum value of the larger droplets RB at which the large and 

small droplets may coexist in a metastable equilibrium. This gives 

( 1  )---( 

R  0 ____ 33/2 	R 	- 33/2 R 2  - R2 	
(3.12) 

)TO 0 	OB 

where ROB  is the size at which small drops may coexist with a bulk phase. 

Since the initial size of the larger drop is R, then noting that the number of 

trapped species in the larger drop rij = cR3 , and using Eq. 2.21 we find 

RB - 
(3c(4/3)7rR3kT\ 

1/2 

(3.13) 
- 	87ra 	) 

If we express the concentration c in terms of R0  and ROB,  then we obtain 

1/2 
RB = ROB 

(

T3 ) 	
(3.14) 

Hence we may now solve Eqs. 3.12 and 3.14 to obtain a critical initial size R 

beyond which the large drop will destabilise the emulsion. Working in terms of 

Rc/Ro we have 

Rc  - 22/3  1 	R03  

D - Q 	2/3 p2 	P2 	 (3.15) 
u -OB \O - OB 
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So as R0  —+ ROB the size of drop RC , required to destabilise the emulsion —+ 00. 

Rewriting Eq.3.15 in terms of the spinodal size of the small drops (Ros = v"RoB), 

we obtain 
- (_2(Ro/Ros)3 \2/3 

	
(3.16) 

• 	 R0 - 	 — 1) 

Hence, given a value of Rc/R0 (which may be taken as a measure of polydispersity 

in the initial droplet size distribution), we may determine how close R0  must be 

to Ros if the emulsion is to be destabilised, by computing the value of R0  for 

which R = Rc (see figure 3.4). For example, taking Rc/Ro = 1.1, we see that if 

Figure 3.4: A graph of Rc/R0 vs. X = Ro/Ros 

the emulsion is to remain metastable then R0 /R05 must be less than 0.778 (where 

we note that Ron/Ros 0.577). 
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As can be seen from figure 3.4 as R0  —+ Ros then even very small values of Rc/R0 

will destabilise the emulsion. Writing R0  = Ros - A and expanding in terms of 

A we obtain 
A2  7 A3 	21 A4 	/A5 \ 

(3.17) 
L(AJ 	 1 GoS 	t1 os 	oS 

Hence taking Ro/Ros = 0.9 then A/R0 = 0.1 and the emulsion wilFbe unstable 

if Rc/Ro is in excess of only 1.01. Since such small variations in droplet 

size are inevitable, a supposedly metastable emulsion will actually be unstable if 

R0  is close to R0. It is thus clear that Kabalnov's criterion Eq. 3.7 does not 

quantitatively ensure stability for experimentally realizable emulsions 

In summary, although metastable, near monodisperse emulsions may exist in 

regime (II), the only reliable criterion for such an emulsion's stability is that 

it resides in the thermodynamically stable regime (I) (as described previously). 

This is true even when the emulsion is prepared with a fixed concentration of 

trapped species, rather than fixed number in each droplet as assumed in sections 

3.2 and 3.3. 

35 Laplace and Osmotic Pressure Balance 

We now return to systems in which 77 is identical for all droplets. In this case 

the absolute stability requirement, Ro  < RB (Eq. 3.8), is equivalent to requiring 

that C(R0 , i) < C(oo, 0). However, we have for an ideal trapped species 

/ 	[2a 	P 	
(3.18) C(R,i) = C(oo,0) (i + Vb 

kBT 	
?7JVBT 

R — (47r/3)R3 j)  

So we see that the absolute stability condition may be simply expressed in terms 

of the osmotic pressure of trapped species and the Laplace pressure, as 

2u 
< 	

TjkT 	
(3.19) 

or alternatively 2a/kB T < cR where Ct = çi/Vo  is the concentration of trapped 

species in the dispersed phase. This means that if an emulsion is made from a 
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dispersed phase of fixed CC,  a monodisperse emulsion will be fully stable only if 

the initial droplet size is sufficiently large. (The same applies to the metastability 

condition of Ref. [12].) This may be a rather unintuitive result; indeed, at fixed 

number of trapped particles i, as was used to discuss the f(V, i) curves, stable 

emulsions arise only for small droplet sizes (Ro  < RB). However, for a fixed 

composition cj , the value of 77 depends on R0 ; and the important requirement is 

that the osmotic pressure (which inhibits coarsening) of an initial droplet exceeds 

its Laplace pressure (which drives it). At given Ct this is true only for large enough 

droplets. 

3.6 Stability of Polydisperse Emulsions 

The criterion for full stability, Eq. 3.8 in section 3.2, can be extended to the 

polydisperse case. Let us first consider the case where the initial state contains 

droplets with variable sizes V0 , but exactly the same i. This system will again 

find its equilibrium state at fixed total number of droplets no  and fixed volume 

fraction 0, which now obeys 

q=noV 
	

(3.20) 

with V the mean initial droplet volume. By again ignoring the entropy of mixing 

of the droplets (treating them as macroscopic objects), we see that the ther-

modynamic arguments developed in section 3.1 for equilibrium at fixed droplet 

number apply without modification to this type of polydispersity. Therefore, 

the ultimate behaviour is found simply by substituting V for Vo  in our previous 

discussion. Thus the criterion for full stability in this case is V ~ VB(r1). It is 

also clear that in the stable regime the droplet distribution will evolve under the 

evaporation /condensation dynamics into a monodisperse one, whatever its initial 

polydispersity. This contrasts with the other regimes, where the final state will 

again have density n o  of monodisperse droplets, but of size RB and in coexis- 
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tence with an "infinite droplet" containing the excess amount of dispersed phase 

(no(V - VB)) not residing in finite droplets. 

The situation when 71 is not the same for all droplets is more complex. To find a 

stability condition for this case, we consider first a more formal argument which 

reproduces the above result for a single i. If the emulsion is unstable, we expect 

that at long times the size distribution will split into a "coarsening part" and a 

"stable part". As equilibrium is approached, the coarsening part has some average 

size V which tends to infinity at long times. This requires that € -* 0, which in 

turn means that the stable part of the distribution is necessarily monodisperse, 

and of droplet size V -+ VB.  (This corresponds to the coexistence condition 

between finite and an infinite droplet mentioned previously.) 

Let n0 , n and n  be respectively the number densities of all the droplets in the 

system, of those in the "stable part" and of those in the "coarsening part" of the 

distribution; clearly no  = n8  + n. Then as the system tends to equilibrium, the 

conservation of 0 (which we define to include the trapped species) requires 

noV=n3 V +riV 	 (3.21) 

and hence 

no (V - VB) = n(V — VB) 	 (3.22) 

So if VB > V, then 0 > n(V - VB); but since V > VB, then ri = 0 and a 

coarsening part of the distribution cannot exist in this case. 

Now we consider the more general situation where there is polydispersity, not 

only in the initial droplet size, but also in the quantity 77 of trapped species 

present in the initial droplets. Let ri(i), ns (77) and n(i) be the number densities 

of droplets which contain 77 trapped particles in the full distribution, and in its 

stable and coarsening parts respectively. As the system tends to equilibrium the 

conservation of 0 and no = f n(i) d77 now requires 

f n(i7)Vdii = f n3 (1l)VB(77)dI) + f nc(ui)Vc(7)d7i 	(3.23) 
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n(i) + nc(17) = n(i) 	n0p(i) 	 (3.24) 

where p(i) is the probability of a given droplet having 77 trapped particles (which 

is time-independent). Hence 

n0V = no fp(77)Vn(1])d17 
(3.25) 

+fn(i)(Vc(ii) - VB())d1 

which may be rewritten as 

no (V— (VB(1]))) = fnc(ii)(Vc(ii) - VB(i))d1l 	 (3.26) 

So if V < (VB(i)), then 

0 > f nc(77)(V(77) - VB(?l))dll 	 (3.27) 

but since V(i) > VB( 17), then nc(1) = 0 for all ij, and no coarsening part of the 

distribution can exist. 

In summary, a condition which is sufficient to ensure the full stability of emulsions 

with an arbitrary initial distribution of sizes V and trapped species 71 is: 

V < (3.28) 

where V = 0/no  and VB(i)  is as defined in Eq. 3.8: VB(17) =(3/4) 1 /2(kT/ 

2a) 3/2 

The assumptions behind this result are: 

The trapped species has zero solubility in the continuous phase and forms 

an ideal solution in each droplet. 

Coalescence is strictly absent. 

3. The solubility of the main dispersed-phase species is nonzero (so that dif- 

fusion can occur) but small enough that it contributes negligibly to 0. 
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Subject to these assumptions, it is a rigorous result. It is easily established that 

condition Eq. 3.28 is not only sufficient for full stability but also necessary, in the 

sense that any distribution which does not satisfy Eq.3.28 can lower its free energy 

at fixed droplet number by a nucleated (if not a spinodal) coarseniifg process. As 

noted in section 3.2 for the monodisperse case, for an emulsion wh -ich is only 

slightly unstable and whose size distribution does not have a tail extending to 

large droplets, the nucleation time before coarsening begins may be very long. If 

there is a tail, a long induction time is not expected. 

Notice that our rigorous condition Eq. 3.28 involves calculating (VB(77)), 7  by 

averaging over the probability distribution of the trapped species. This quantity 

is not the same as VB((rl));  indeed for c > 1 one has the general inequality 

or q'p(q)dq > 
U000 	 (3.29) 

Since V 	773/ 2  (ce = 3/2) we find that (VB(77)), ~! V((,)). Hence the approx- 

imate stability requirement V < VB((17)), based on the mean trapped particle 

number, underestimates the maximum initial droplet size. Accordingly this con-

dition is sufficient, but not necessary, to ensure full stability. 

3.7 The Metastable Regime (II) 

For a polydisperse system the condition for full stability is clear (see above), 

whereas that for metastability is less obvious. Even when all droplets have the 

same ii,  metastability may depend on the details of the initial droplet size dis-

tribution. Certainly, if this has no upper limit (i.e., there is a finite density of 

droplets above any given size), then the largest droplets will serve as nuclei for 

coarsening. As a qualitative rule, one can apply the argument of section 3.3 in 

a mean-field approximation, whereby an anomalously large droplet is considered 

to be exchanging material with a set of others, which for simplicity we treat as 
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having a single size V. This enables a critical radius RC to be estimated from 

Eq. 3.9 by replacing Eq. 2.20 for the length scale R with 

/  
R 	

3 )1/3 

  

( 	 V0 
2/3 	 (3.30) 

47r 
I 

	

V02/3 
 —VB '\  

As before, if the initial size distribution contains any droplets larger than Rc, 

coarsening can be expected. 

We may also make a similar approximation for emulsions formed at fixed concen-

tration of trapped species, replacing R0  with R0  and ROB  with ROB,  in section 

3.4. 

If 77 varies between droplets, things are still more complicated, since nucleation is 

likely to involve droplets of larger than average i, as well as larger than average 

size. Although we still expect three regimes (fully stable, metastable and unsta-

ble) corresponding to those discussed in section 3.3 for the monodisperse case, 

the boundary between the metastable and unstable regimes may have a compli-

cated dependence on the initial distribution of droplets and trapped species. This 

contrasts with the very simple criterion for full stability, Eq. 3.28 which applies 

for arbitrary initial conditions. 

Note that the dynamics we propose for nucleation in the metastable region is 

peculiar to emulsions. For example, Reiss and Koper [14] discussed the equilib-

rium state and volume fluctuations of a single drop in a uniform environment 

with fixed supersaturation. They concluded that for their problem nucleation 

dynamics were likely to be extremely slow, and deduced a criterion for stability 

corresponding to that given by Kabalnov et al. [12]. This does not contradict 

our own conclusions, because Reiss and Koper consider a single drop as opposed 

to a population of droplets. For an emulsion in regime II, only the largest drop 

present need exceed the nucleation threshold to initiate coarsening, and in many 

cases a large enough droplet would already be present in the initial droplet size 

distribution. What is more, in a real emulsion with finite volume fraction, varia- 
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tions in the local environments experienced by individual droplets will be a source 

of dynamical fluctuations which may far exceed the purely thermal fluctuations 

considered in Ref. [14]. 

In summary, the stability conditions for a single droplet and a population of 

droplets, are very different. We suspect that even in a nominally monodisperse 

emulsion, nucleation rates are generally not negligible and hence the only reliable 

criterion for stability is the one we have given in section 3.6. 

3.8 Other Equations of State 

The thermodynamic arguments of sections 3.1 and 3.2 generalise readily to an 

arbitrary equation of state for the trapped species. Indeed, for the case where i 

is the same in all droplets, one need only replace Eq. 2.6 with, 

f(V, i) = (V/vb)fb + 47ru(3V/47r) 213  + ft(V, i) 	 (3.31) 

where ft  (V, i) is the free energy of 77 trapped particles in volume V and could 

include arbitrary interactions between these. If all droplets have the same 77, 

the condition for stability remains that V < VE where VB(77) is the droplet size 

corresponding to the absolute minimum of f'. For such droplets, the osmotic 

pressure (—af/aV), is again in exact balance with the Laplace pressure. The 

metastability criterion is again that f'(V i) has positive curvature. For the case 

where 77 is not the same for all droplets, the full stability criterion is again Eq. 

3.28. 

A complication arises if the interactions between the trapped species are attrac-

tive. Reiss and Koper [14] pointed out that in this case Eq. 2.22 for the droplets 

growth rate can become negative again for volumes much less than VB, and 

hence develop a third, unstable fixed point (consider U(R) becoming negative for 

R < RB, for case c > 0 shown figure 2.2). They also correctly point out that 
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such an attraction is likely to cause phase separation within droplets. The latter 

occurs whenever ft(V, ij) has negative curvature (with respect to V at fixed ii); 

the form of ft(V, i) in Eq. 3.31 must then be modified to reflect the internal 

phase separation, and any negative curvature regions will then be replaced by 

zero-curvature ones (corresponding to tie lines). In this case, because of the sur-

face tension contribution in Eq. 3.31, there can arise an additional minimum in 

f' which could lead, for example, to stable bidisperse emulsions for some range 

of initial conditions. The same can arise without intra-droplet phase separation, 

if ft (V, i) has a small enough positive curvature for this to be outweighed by 

the negative contribution from the surface tension term in Eq. 3.31. A detailed 

discussion of these cases is a possibility for future work. 

The above results are sufficient, for example, to deal with the case of a distribution 

containing trapped salt (where ft(V, ) can be approximated by, say, the Debye 

Hueckel equation of state [41]) which is of interest in meteorological as well as 

emulsion stability contexts [30-34,42]. 

In the case of repulsive interactions, at least, our stability condition Eq. 3.28 

is also easily generalised to a situation in which there is more than one trapped 

species. Letting qj be the number of particles of the ith species trapped within a 

droplet, then the condition for stability generalises to 

V < (V(i, 772,.. 	 (3.32) 

where 	 is the droplet size corresponding to the absolute minimum 

of f'. A proof of this generalised stability condition is identical to that given 

in section 3.6, but with the single variable 77 replaced by the list of variables 

, 172,..., and Vfi( 71l, 172,•..) calculated from the new equation of state. 

So far, we have not considered explicitly the role of surfactant (which is usually 

present to prevent droplet coalescence in emulsions), tacitly assuming that this 

merely alters the constant value of a, the surface tension. For a surfactant that is 



44 	 CHAPTER 3. FORMATION OF STABLE EMULSIONS 

insoluble in the continuous phase, this surface tension will itself be a function of 

droplet size. We do not treat this case further, but note that it could be included 

in Eq. 3.31 by replacing the term in o• with a suitable "surface 
-
'equation of state" 

for the trapped surfactant. The same applies to bending eneryterms which 

could be significant for extremely small droplets. - 

3.9 Slightly Soluble "Trapped" Species 

Throughout the above we have treated the trapped species as entirely confined 

in the emulsion droplets. In this section we briefly consider what happens if this 

third species is very slightly soluble. (For simplicity we treat 77 as the same for all 

droplets.) Our previous classification into regimes 1,11 and III, though no longer 

strictly applicable, remains a guide to the resulting behaviour. The discussion 

that follows is related to that of Kabalnov et al [12]. 

Recall that for entirely trapped species, the unstable regime (III) is characterised 

by the evolution of a bimodal distribution of droplet sizes, in which the larger 

droplets coarsen by the Lifshitz-Slyozov mechanism, while the smaller droplets 

adopt a size in equilibrium with the larger drops, which approaches VB as coars-

ening proceeds. (This scenario is examined in more detail in chapter 4) If the 

trapped phase is now made slightly soluble, the larger drops will, as before, 

coarsen at a rate determined by the transport of the majority (more soluble) dis-

persed phase. However, the small droplets that remain cannot now approach a 

limiting size, but will themselves evaporate at a much slower rate governed by the 

transport of the "trapped" species. Therefore, in the unstable regime, a two-stage 

coarsening is expected. In the fully stable regime (I), on the other hand, the first 

of these processes (rapid coarsening of the larger droplets) is switched off. The 

droplet size distribution has a single peak, which in the fully insoluble case will 

approach a delta function at the initial mean size. However with slight solubility 
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coarsening will occur via the Lifshitz-Slyozov mechanism, but only at a slower 

rate controlled by the transport of the less soluble species. The behaviour in the 

metastable regime (II) is complex [12], possibly characterised by a "crossover" 

from coarsening controlled by the less soluble component to coarsening controlled 

by the more soluble component, and we do not pursue it here. 

For a slightly soluble trapped species, the best prospect for stability is always 

to avoid the rapid coarsening process associated with the transport of the more 

soluble dispersed phase component. Since there is always some part of the size 

distribution that coarsens at the slower rate set by the trapped species, the re-

quirement is satisfied so long as the size distribution remains single-peaked with 

the coarsening rate determined by the rate of diffusive flux of the least soluble 

(ie "trapped") species. We will now show that a sufficient condition for such 

behaviour is: 

V(o) < VB(j(0)) 	 (3.33) 

where (2) is the average number of trapped species in droplets at time t. 

We prove the above condition Eq. 3.33 by considering the contrary case of a 

distribution which consists of both a rapidly coarsening and a quasi-stable part, 

with the rapid coarsening of the larger drops occurring at a rate determined by 

the transport of the most soluble component. As t - oc, the size VL of the larger 

droplets becomes large, the supersaturation of the disperse phases will tend to 

zero, and the smaller drops will tend to sizes VB().  Here i may now vary among 

droplets and with time. 

The total number of droplets is no longer conserved but becomes time-dependent, 

and Eq. 3.26 is replaced by 

n(0)V(0) - n(t)VB(t) 	JTiL(7],t)(VL(t) - VB(1l))di 	(3.34) 

where nL(rl, t) is the number of droplets at the larger size VL(t),  and (VB(t)), has 
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been rewritten as VB(t)  for convenience. So if we can ensure that 

V(o) - n(t)VB(t) 
n(0) 	

< 0 	 (3.35) 
- 

then nL(77, t)' =  0 and the distribution must be single-peaked. 

Conservation of the less soluble component requires that 

n(0)(0) = n(t)fj(t) 	 (3.36) 

or 
rt(t)VB(t) - 7(0)VB(t) 

n(0) 	- 	 (t) 	
(3.37) 

We next note that VB(0) = 0 and assume that VB(17)  is convex, as is the case for 

ideal phases where VB '- 

3/2. (This ensures that if Y2 > Yi, then y1VB(y2) > 

Y2VB(y1).) If so 

VB(t) ~: VB(ij(t)) 	 (3.38) 

and 

j(0)VB(t) _> j(0)VB(j(t)) > 7(t)VB(?j(0)) 	 (3.39) 

To obtain the second inequality, we have again used the fact that VB(ij) increases 

faster than linearly with ij and also exploited the fact that 7(t) increases with 

time (the latter follows from the fact that the number of droplets present must 

decrease as time proceeds). Hence (0)V(t)/(t) > V.(j(0)) and 

- 	 n(t)V(t) 
= V(o) - ('B (t) <(o) - V2(j(0)) 	(3.40) 

- 	 n(0) 	 (t) 	
V V(0)  

So if V(0) < V(j(0)) then V(0) - n(t)VB(t)/n(0) < 0 and nL(?7,  t) = 0. Hence 

the distribution may only contain a single peak, and will coarsen at rate deter-

mined by the less soluble component. 

We note that since V(7(0)) <VB(i(0)), the condition given by Eq. 3.33 is less 

easily satisfied than our absolute stability condition, Eq. 3.28, which applies for 

the case of entirely trapped species. We also note, that although this condition is 
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sufficient, we have been unable to find a necessary condition. In other words, it is 

possible that some systems will not satisfy Eq. 3.33 but will nonetheless coarsen 

only slowly. Finally we emphasise that the derivations of Eq. 3.33 requires VB( 1 ) 

to increase faster than linearly with ij; this is valid for ideal mixtures and most 

other systems (perhaps excluding any in which interactions between the trapped 

species are attractive; see section 3.8). 

3.10 Conclusions 

In this chapter, several new results were presented in the quantitative analysis 

of emulsion stabilisation by trapped species. A rigorous stability condition to 

prevent coarsening by a diffusive flux of dispersed phase was given (Eq. 3.28), 

which is valid even for emulsions with polydispersity in droplet size and number of 

trapped species. It was shown that even if the trapped species is slightly soluble, a 

condition to prevent coarsening by a flux of the more soluble species will continue 

to exist (Eq. 3.33). A previously published [12] condition for emulsion stability 

Eq. 3.7, was shown to correspond to a condition for metastability. Even if 

satisfying Eq. 3.7, emulsions formed with a fixed concentration of trapped species 

could require only a minor polydispersity in droplet size to nucleate coarsening: 

the only reliable criterion for stability is Eq. 3.8. Finally it was noted that similar 

stability conditions may be calculated for non—ideal trapped species, and merely 

requires the determination of VB using the new trapped species equation of state. 

This assumes that the volume occupied by a given amount of trapped species is independent 

of its concentration. 



Chapter 4 

Coarsening of Unstable Emulsions 

4.1 Overview 

In the present chapter, long—time asymptotic solutions for the evolution of a 

continuous size distribution of droplets containing trapped species are determined. 

This work becomes relevant when the stability criteria presented in chapter 3 are 

not satisfied. 

The late stage behaviour for unstable emulsions involves two populations of 

droplets: a coarsening part and a stable part. Coarsening is found to be driven by 

polydispersity in the larger (unstable) droplets, with the smaller (stable) droplets 

maintaining a size in equilibrium with the supersaturation . The smaller droplets 

are found to have no effect on the rate of coarsening, which is determined self con-

sistently by the mechanism of Ostwald ripening in which the average size of drops 

is able to increase, while a constant volume fraction is maintained by a flux of 

material from smaller to larger droplets. The only effect of droplets being unable 

to fully dissolve, instead attaining a small but finite size VB,  is to reduce by VB 

per droplet the total volume of disperse phase available to form larger coarsening 

droplets. This agrees with the result in chapter 3, predicting that if Vo  < VB 

49 
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then a distribution of large coarsening droplets cannot exist. In Section 4.4 the 

treatment is extended to polydisperse i, and confirms the stability condition for 

polydisperse emulsions Eq. 3.8, derived by a different method in chapter 3. 

4.2 The Physics of Coarsening 

We consider conditions in which the requirement for stability (Eq. 3.28) is not 

satisfied, and for simplicity we take the same number of trapped particles ij in 

each droplet. We assume all nucleation events have taken place, and consider the 

resulting coarsening at late times. This entails small supersaturation C . Through-

out this chapter we work in the scaled variables R', R'B and t' defined in section 

2.4.2, with 

-. 	 R'E RkT  

2crvb 

ii  
4 	 (4.1) vb0 2   

R' 2 = 3k3 T 3  
B - 32irav 

although the primes will now be omitted for convenience. 

In the unstable case, as mentioned in section 2.4.2, the equation for static equilib-

rium (zero growth) of a given droplet, U(R, ) = 0, has both a stable fixed point 

close to the balanced droplet size (R RB)  and an unstable one at R 1/a. 

The latter will lead to coarsening. The following arguments will suggest that the 

presence of the additional, stable fixed point influences the coarsening dynamics 

only in a rather simple way. At long times, the main role of a population of 

stable droplets (R RB)  is found to effectively exclude a finite proportion of the 

disperse phase from the coarsening process. The remaining part, whose volume 

fraction 0 is effectively reduced, then coarsens almost normally. 

To see this, we first expand U(R, ) for small R - RB and small c to obtain (in 
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reduced units) 
/2 + ERB\ 

=E/RB—(R--RB) 	
R 	

U(R) 
	

(4.2) 

with a root U = 0 at 

RT(t) = RB + c(t) (LB ) + 0( E2 ) 	 (43) 

At late times c will be small and therefore, according to Eq. 4.2, the size of any 

droplet in the neighbourhood of RB relaxes exponentially toward RT(t) with a 

fixed decay rate 2/R 3 + 0(E). At long times, this process will be rapid compared 

with coarsening of droplets of size R>> RB; hence any non-coarsening part of the 

droplet distribution comprises an effectively monodisperse population of radius 

RT(t) obeying Eq. 4.3. Put differently, RT(t) is determined by C , because the 

non-coarsening droplets are in local equilibrium with the ambient supersaturation 

at all times. 

Now consider drops with size R 1/E, in the neighbourhood of the second zero 

of U(R, E) (this is the unstable fixed point of the growth equation at given E). 

Expanding U(R, f) in H about R = 1/f we find 

U(R) = (R - 1/E)E 3  + RE 4 	 (4.4) 

with a root 

RL(t) = 1/f - ER 3 	 (4.5) 

Accordingly, drops with R(t) > RL r'I 1/f will grow, lowering the supersaturation 

€ in the system. As this proceeds, the monodisperse small droplets (R = RT(t)) 

will shrink slightly to remain in equilibrium with the current supersaturation. If 

one neglects this last effect, these droplets can play no role, at late times, other 

than to remove from the coarsening process an amount of material flOVB corre-

sponding to that required to produce a stable monodisperse trapped emulsion 

in equilibrium with an infinite droplet. The excess material no(Vo - VB) then 

becomes concentrated in fewer, larger droplets as coarsening proceeds by (essen-

tially) the usual LSW mechanism. This scenario is confirmed in the following 

section, where we obtain an asymptotic solution for the coarsening behaviour. 

EbiF 
\_ Ac/ 
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4.3 Asymptotic Analysis 

Following LSW [20, 21] we assume a continuous distribution of droplet sizes 

n(R,t), with n(R,t)dR representing the number density of drop1d.tsof radius 

(R, R + dR), at time t. Since droplets of finite size cannot suddenly* -  appear or 

disappear, the conservation of flux through droplet size space requires [20-22] 

Dn(R,t) - 3(n(R,t)U(R,€)) 
at 	- 	DR 	

(4.6) 

Conservation of the volume of disperse-phase species requires that 

1 	roo4 

C(oo)v b  JO 	() 	 + c = 	 (4.7) 

where € = (-C(oo))/C(oo) is the degree of supersaturation and 	noVo/C(oo)v&+ 

E( 0 ). 

Taking RT(t)  and RL(t)  as the two roots of U(R, €) = 0, as defined above, we 

now seek asymptotic solutions of the form 

n(R,t) = AT(RT)fT (RI RT) + AL(RL)fL (RI RL) 	 (4.8) 

where fT  and fL  are two different scaling functions. That is, we assume (see figure 

4.1) that at late times the size distribution splits into two populations, each of 

fixed shape in terms of an appropriate reduced size variable, and each with some 

time-dependent amplitude A. 

These two distributions are now assumed to separately obey Eq.4.6 for conserva-

tion of flux through droplet size space. This separation is valid so long as there 

is no significant range of sizes for which both populations overlap - which is in-

creasingly true at late times. However, the two populations do interact via the 

supersaturation €. We first solve U(RL, €) = 0 for f(RL(t)) to obtain 

1 (I= 
	

R 

 RL(t) 	- RL(t)2) 	
(4.9) 
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n(R,t) 

Is 
R 	 RL 

Figure 4.1: Approximating n(R,t) by functions centred on RT and RL. 

and note that, because of this equation, terms in c and terms in 11RL are of 

the same order. In what follows we take the long time limit and therefore write 

c = 11RL + 0(11R 3).  We then impose conservation of volume fraction, and of 

the total number of droplets (no ), to obtain AT and AL. This is done next. 

4.3.1 Determination of AT and AL 

The amplitudes AT and AL are determined by the constraints of conservation 

of volume fraction and conservation of the total number of droplets. We write 

n(R, t) = nT + nL, with nT =ATfT(R/RT)  and nL = ALfL(R/RL). We then de-

fine fT  and fL  to be normalised so that f°°  fT(ZT)dZT 1 and f°° fL(ZL)dZL 

1, where ZT R/RT and ZL RIRL.  Conservation of total number of droplets 

then implies 

ATRT + ALRL = n o 	 (4.10) 

Defining jOO fTZdZT/C(oo)vb 	BOT and f00 fLZdZL/C(oo)vb 	BOL, then 
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conservation of volume fraction implies 

(AT R(€)BOT + ALR(t)BOL) + 6  = Co 	 (4.11) 

or 

ALRL(t) - (co - - BOTAT(47r/3)RT(f)4 
- 	(47r/3)BOLRL(t)3 	

(4.12) 

Substitution into Eq.4.10 for AT then gives 

( - - BOTAT(41r/3)RT(f) 4  
(4.13) AT 

= RT(e) - 	(4/3)BoLRL(t)3RT(c) 

which to the order required is, 

AT — 
0 

- RT(c) +0 
(C 3) 	 (4.14) 

So using Eq. 4.14 and Eq. 4.12 we obtain 

AL -(
c0 - - noBoT(41r/3)RT(c)3 

(4.15) 
- 	(41r/3)BOLRL(t) 4  

Substituting Eq. 4.3 for RT(f) and Eq. 4.9 for (RL) yields 

co  -noBoT(47r/3)R(1 + (3RB/2)BoT(4'ir/3)R) 
AL 	

(411/3)BOLRL(t)4 - 	(47r13)B0LRL(t)5 	
(4.16) 

where higher order terms are neglected. 

4.3.2 Determination of nT 

We have assumed that nT(R,  t) satisfies (by itself) the continuity equation in 

droplet size space, 
- ö(nT(R,t)U(R,)) 	

(4.17) at  OR 
Writing flT(R, t) = ATfT(ZT) we obtain 

= 	ZTAT 	 + 
OAT 

 fT(ZT) 	(4.18) at 	RT 	OZT 	at 
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RT(t) = RB + c(t)R/2 +0(62),  which gives RT = (t) + 0(c). Since c '-.' 11RL, 

then "-' 11Ri 	E2  and RT 	
C 2 . So AT = no/RT + 0(c3 ), gives AT 

—RTTh O /R + 0(c2 ) c2 , so that the time dependence of rz is 0(c2 ). 

Working at 0(c) we obtain 	(ATfTU(R, c)) = 0, which may be solved to obtain aR 

cUT - '-1T + BI 1 T 

However since fT diverges as ZT -+ oo, the solution is not a physically acceptable 

one. 

An alternate but normalisable solution to Eq. 4.17 which is also correct at 0(c) 

is given by 

nT = ATS (ZT - 1) 	 (4.20) 

Noting that U(R, c) is zero when R = RT(t) and ZT = 1, then since S(ZT - 1) is 

zero except when ZT = 1, then the right hand side of Eq. 4.17 is identically zero. 

However since 
aATS(ZT-1) RT 

= A .—T--- + 0 (c4 ) 	 (4.21) 
 aZT  at 

and RT " '-' c 2 , then 
ÔATS(ZT - 1) 	2 	 (4.22) c 

at 

Hence the solution is correct at order c, with fT = 6(ZT - 1) giving BOT 

1/C(oo)Vb. 

This simplifies AL to 

A 
- co - (no(4r/3)R) 1 (C( 00 )vb) - (1 + (3RB/2)(47r/3)R)/(C(oo)vb) 

L - 
	(47r/3)BOLRL(t) 4 	 (47r/3)BoLRL(t) 5  

(4.23) 

which since Eq. 4.7 has c0 = noVo/C(oo)v& + 0(c), Eq. 4.23 may be written in 

the alternate form of 

fr as 
LI
'74  T 

- '73 '72 D2 /D2 (4.19) 

nQ(— vB ) 

AL = C(oo)vb(4/3)BoLRL(t)4 + 0(c
5 ) 	 (4.24) 
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4.3.3 Determination of nL 

We have assumed that nL(R, t) satisfies (by itself) the continuity equation in 

droplet size space, 	 . 	- 

OT1L(R,t) - 8(flL(R,t)U(R,)) 

	

at 	- 

Writing ThL(R, t) = ALfL(ZL) we obtain 

a(ALfL(ZL)) ----ZLA D(fL(ZL)) DAL 
at 	RL 	

L 	+ 
ÔZL 	

fi(Zr) 	(4.26) 

Defining 

i - o - no(47r/3)R/C(oo)vb 

	

1 - 
	

(4.27) 
(47r/3)BOL  

and 

K2 1 
+ ( 3RB/2)(47r/3)R/C(oo)vb 

(47r/3)BOL 	
(4.28) 

then we find, 

ÔALRL 	RL 
-- 	

4—
AL- K 2 - 	 (4.29) 

So we obtain 

aflL(R,t) - AL— 1L (4fL+zL D(fL(ZL))\ - 	
I 
 - K2 fL - 	(4.30) at - 	RL 	 3ZL  

We next write ô(nL(R, t)U(R, ))/8R in terms of ZL to obtain Eq. 4.25 in terms 

of scaled variables as 

_____ 	2 	4 (Ra/R L) 2"\RLR(4fL + z a(JL(ZL)) 	K2FLfL aZL 	+R3AL 	[fL(___L+
z 	)

. 8(f(Z)) (1 	1 	(R0/R )2 '  1 
8ZL 	

z' )j 
(4.31) 

Expanding 1/(RAL) to lowest order in l/RL we obtain K2RL/RAL -+ K2RLRL; 

keeping only the leading terms on the right hand side we are left with 

_____ 	 1 	2 ') RLR(4fL + ZL azL 
8(fL(ZL))) + K2RLRLfL = [fL(_T+  	

(4.32) 
+P(LL)) ( 

	

 EI 	 - ZL 
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Since the R.H.S. is a constant, then as t —p oo the L.H.S. must also approach a 

constant value. Trying RL = Ft'3  with F a constant, then 

RLRL = 1GF3t3'3 ' 	 (4.33) 

and 

RLRL = pr 2t2,6-1 	 (4.34) 

Clearly both will tend to zero if 3 < 1/3, which would not correspond to a 

coarsening state. However if ,8 > 1/3 then the L.H.S of the equation would 

diverge at late times. Hence 3 = 1/3, and as t —+ oo, RLRL —* 0. Writing 

= F3 /3 then results in 

[4f  L+ L EIZL 
z 8(fL()] = 'y [fL (-* +

ZTL (4.35) 
8 (fL(ZL))(1 	1 	

() + 8ZL 	2::)j + O 
 

where ZL = R/RL(t). This equations is identical to that solved by Bray [22], 

resulting in the consistency requirement -y = 4/27, and the solution 

A4exp(_
-3 'I 

3-2 ZL)  
fL(ZL) = [ (3+ZL)I(3/2ZL)11/ 	

O<ZL<l.5 	(4.36) 
0 	 l.5<ZL 

where A is a constant which is determined by the condition IfL(ZL)dZL = 1. 

The above argument shows that the equation of motion for RL is exactly the 

same as in a standard coarsening problem (with no trapped species) [22], to 

the leading order in small c. Accordingly the solution for RL(t), which involves 

seeking a specific 'y  for which the scaling distribution remains self-consistent in 

the long-time limit, is also the same. The only difference is in the amplitude 

AL which, as shown in Eq. 4.23, has to the leading order in c been shifted by a 

constant amount corresponding to a reduction in c o . In other words, in the long 

time limit the large droplets behave precisely as they would for an emulsion with 

no trapped species but with a reduced initial volume fraction determined by Eq. 

4.24 as no (Vo  — VB). (Obviously, the latter is assumed positive; otherwise the 

emulsion is stable and will not coarsen.) 
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This is perhaps surprising, since according to Eq. 4.3, the decaying supersatura- 

tion E(t) causes the small droplets to give up material at a rate that could perturb 

significantly; this might be expected to lead to a slower decay of E(t) and hence 

(via Eq. 4.9) of RL(t).  However, this is not a correct argument: for, as men-

tioned above, the Lifshitz-Slyozov mechanism leads to an autonomous equation 

for RL(t) whose time development is then entirely fixed by the self-consistency 

requirement on y.  Given the behaviour of RL(t),  the ambient supersaturation 

€(t) follows directly from Eq. 4.9; the latter in turn dictates the evolution of the 

size RT(t)  of the small droplets, via Eq. 4.5. 

4.4 Polydispersity in Trapped Species 

We now consider the effect of polydispersity in i, on the asymptotic solutions for 

the droplet size distribution. 

The growth rate for an individual drop is given by 

U(R, c , TI) = 
E - 1 	R ,) 

+ R 
	

(4.37) 
R R2 

and now varies even for droplets of the same size. So RT(I,  t) now also varies be-

tween droplets. The number density of droplets of size R at time t, ri(R, t), is now 

generalised to the number density of droplets of size R at time t with 77 trapped 

particles n(R, t, i'). We will continue to consider the droplet size distribution as 

consisting of two peaks. 

Before considering the generalisations of conservation of total droplet volume 

and conservation of total number of droplets, we make the following important 

assumption: 

1. That there are no correlations between a droplet's volume and the number 

of trapped particles i it contains. 
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We also continue to assume that: 

2. A large droplet's growth is unaffected by the number of trapped species 

it contains (and hence the large droplets' size distribution is unaffected by 

variations in the number of trapped species), with the number of trapped 

species in large droplets assumed negligible in comparison with the quantity 

of soluble species they contain. 

The first assumption allows the droplet size distribution n(R, t, i,) to be written 

as n(R,t,i) = n(R,t)p(i), where p() is the probability distribution for the 

number of trapped species in a droplet. The second assumption means that RL 

is independent of i, so that the droplet size distribution for the growing droplets 

becomes 

	

nL  = AL(t)fL(R/RL(t))p(r/) 	 (4.38) 

We shall assume the small droplet size distribution to be of the form 

nT = AT(t)8(R - RT(ii, t))p(77) 	 (4.39) 

which we later show to be correct at O(€). 

Conservation of the number of droplets now becomes 

	

f d77  f dRAT(t)8(R - RT)p(77)+ 	 (4.40) 

f dij  I dZLRL(t)AL(t)fL(ZL)p(11) = n o  

which after integrating over R, i, and ZL as required, gives 

	

AT(t) + AL(t)RL(t) = n o 	 (4.41) 

where fL  is normalised as in section 4.3.1. Similarly, integration of conservation 

of droplet volume over R, i, and ZL, gives 

n0Vo  

	

(47r/3)AT(t) (R(?7, t)) + (47r/3)AL(t)Rt(t)BOL 	C(oo)vb + 0(E) 
	(4.42) 

C(o0)v& 
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where we used rio V o /v & C(oo) = co  + 0(c), and Vo  is the average initial droplet 

volume. So Eq. 4.42 gives ALIIL 11R 3
L  '- c, and Eq. 4.41 becomes 

AT = no  + 0(c) - (4.43) 

So substitution of Eq. 4.43 into Eq. 4.42, and noting that Rj):= RB() + 

0(c), we get 

no(Vo_V) 

AL (t) = C(oo)vb(47r/3)BOLRI + 
Q(5) 	 (4.44) 

where we have written VB = ((4ir/3)R)17 . 

We continue to assume that both nT and nL individually satisfy the continuity 

equation in droplet size space. Hence for the small droplets we have 

DT1TDnTU(R,€,77)  

DR 	 (4.45  

and hence 
D(ATS(R—RT)) -   -- 

_
AT 	 .a 	 (4.46) at 	 a 

where we have cancelled p(i) on either side. Since U(R, c, i) = 0 when R = RT, 
then the right hand side of Eq. 4.46 is identically zero (as in section 4.3.2). Also 

since AT = no +0(c), and D8(R — RT)/Dt = %(R — RT)/D(R — RT)(_iT/RT) 

c 2 , the solution is correct at 0(c). 

For the large droplet distribution we have 

DT1L - DnLU(R, c, 17) 
at 

- - 
	 (4.47) DR  

which integrating over i on both sides gives 

DALfL - 

Di - 	 DR 	 (4.48) 

which may be solved as in section 4.3.3. We note that in the asymptotic solution 

(Ris negligible as RL —p oo and hence does not appear in the final solution. 

Hence we have 

nT = no(R - RT(17))p( 17) + 0(c2) 	
(4.49) 

nL =  ALfL(R/RL)p(17) 
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with AL given by Eq. 4.44, and fL, RL as in section 4.3.3. We note that since 

RT is a function of i then if p(q) is a continuous function, then nT will also be a 

continuous function of i. 

Hence the only changes due to polydisperse ij are the requirement of 

noV0  > no(VB(17)), 	 (4.50) 

for the existence of riL (and hence coarsening to occur), and the presence of a 

continuous size distribution of stable, shrunken droplets (for a continuous p(i)). 

So as in Eq. 3.28 in chapter 3, we find the condition that if n0V0 <no (VB(ij)),,, 

then nL = 0 and the distribution must be stable. 

Finally- we make a few observations regarding the assumption that we may treat 

a droplet's ii, and initial volume as independent. Since in the long time limit 

the number of droplets in the shrunken distribution tends to n0 , the assumption 

will have negligible affect on the calculation of (VB()), made using p(i). Then 

since AL, RL and fL(R/RL)  will also be unaffected, the assumption may only 

affect the dependence of nT and nL on i. Hence the qualitative behaviour of 

the distribution is unaffected by the assumption of uncorrelated q i  and V, with 

the only possible affect being a different distribution of m's  in the stable and 

coarsening distribution. 

4.5 Conclusions 

The dynamics of insufficiently stabilised emulsions containing trapped species are 

virtually unchanged from those of an emulsion without trapped species. The only 

effect of the trapped species on the coarsening distribution is to reduce the volume 

fraction of the growing droplets to no(Vo - VB), due to the volume fraction of 

material noVfi contained in the coexisting shrunken droplets. So we recover 

the stability condition of Eq. 3.8 in chapter 3, that if Vo  < V11 then nL =.0 and 
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coarsening cannot occur. 

Similarly, when there is polydispersity in 77, the only affect on coarsening is to 

reduce the volume fraction of the growing droplets to no(Vo - (VB(77))). Hence 

if Vo  < (VB(71)) then nL = 0 and coarsening cannot occur. So the analysis 

confirms the result in chapter 3 for the general stability condition Eq. 3.28. 



Chapter 5 

Applications of Osmotic 

Stabilisation 

5.1 Optimal Sizing of Emulsions 

The use of "trapped", or less soluble species to stabilise emulsions is widespread 

in industry [43]. Such emulsions can be prepared mechanically with various aver-

age droplet sizes. Let us assume that any trapped species is dissolved at uniform 

concentration ct  through the dispersed phase material. As explained in Section 

3.5, to form a stable emulsion one must ensure that the initial droplet size is 

sufficiently large. Roughly speaking, this ensures that the typical Laplace pres-

sure 2o- /R is smaller than the osmotic pressure CtIVBT.  (The quantitative version 

of this, applicable to any initial size distribution, is Eq. 3.28.) Clearly, it is 

important to resist the temptation to make the initial emulsion too fine (which 

in ordinary emulsions might be expected to delay coarsening for the maximum 

possible time). In practice, the need to avoid sedimentation (and perhaps coa-

lescence, which we have neglected) may set an optimal initial size close to, but 

above, the absolute stability threshold, Eq. 3.28. For the reasons discussed in 

63 
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Section 3, the weaker "spinodal" condition [12] Eq. 3.7, even for a nominally 

monodisperse initial state, cannot guarantee stability. 

5.1.1 Orders of Magnitude 	 : 

Trapped species have been used to stabilise both hydrocarbon and fluorocarbon 

emulsions [29,43]. Such emulsions have surface tensions [29,43] a 'S-'  -10 1 Nm 1 . 

As a rough estimate emulsion stability occurs when the osmotic pressure of 

trapped species exceeds that of the Laplace pressure (see chapter 3 for details, 

and Eq. 3.28 for the exact condition for stability). Hence a rough estimate of 

the minimum required quantity of trapped species to stabilise an emulsion may 

be determined from 

CtkBT 
	

01 	

(5.1) 

So letting CM be the molar concentration of trapped species, and writing the gas 

constant as RG, then we may express the above Eq. 5.1 as 

CMRGT 	 (5.2) 

giving 

a 

CM RGTR 	
(5.3) 

At room temperature R0T 10 3J, so Fluorocarbon emulsions with droplets of 

radii R 10 7m require a minimum CM 103moles m 3  = imole per litre, to 

be stabilised. Similarly Hydrocarbon emulsions with radii R r'./  10 6m at room 

temperature require a minimum CM 102 molesm 3  = 10 1 moles per litre, to be 

stabilised. We note that both of the required concentrations are small, which is 

consistent with our assumption in chapter 2 of the trapped species being ideal. 
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5.2 Reversing the Coarsening Process 

Consider a situation where an emulsion is prepared in an unstable state (for ex-

ample by mechanical agitation) and then starts to coarsen. We now ask what will 

happen if, after some time interval, a large number of small droplets (contain-

ing a trapped species) are added to the emulsion, causing the stability condition 

V0  (V(ii)), to become satisfied for the system as a whole. According to the 

arguments of section 3.6, the emulsion is now unconditionally stable. Therefore 

it will not coarsen further. What is more, for a given total volume fraction 4 and 

a given population of trapped species, the final state of the system is the unique 

one in which droplets of all 71 have a common chemical potential for the (mobile) 

disperse—phase species. Thus the addition of the small droplets will not only pre-

vent further coarsening, but will in general cause previously coarsened droplets to 

redissolve. Indeed, if there are no trapped species in the initial unstable droplets, 

these will evaporate completely, and their material will be entirely absorbed by 

the added droplets [44]. 

In principle, the coarsening process can be reversed even when it is complete. For 

example, a system of small oil-in-water emulsion droplets with trapped species 

present can, by the evaporation-condensation mechanism, take up oil from an 

excess bulk phase of pure oil. If the stability condition V0  (VB(1])) is met 

by the system as a whole*,  the bulk phase of oil will disappear entirely (though 

obviously this process may be slow in practice). Like the rest of our conclusions, 

this one applies only if both coalescence, and diffusion of the trapped species 

through the continuous phase, are strictly negligible. With these assumptions, 

we may minimise the free energy with the constraint of fixed trapped species in 

each drop; the above result for the equilibrium state follows immediately. 

* Where Vo has now been defined to include the volume of the bulk phase. 
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53 Formation of Mini-emulsions by Shrinking 

"Mini-emulsions", comprised of droplets with radii of between 50 and 150 nm, 

have many potential uses in industrial and pharmaceutical applications [43]. 

However their formation by traditional mechanical methods, where droplets are 

formed by strongly shearing the ingredients, is limited by the high energy re-

quired by the process [45], and the difficulty of getting a uniform droplet size. 

An alternative route is to create an emulsion of relatively large drops (whose size 

is also more controllable) and then "shrink" them to the required, smaller size. 

The following describes a non-mechanical method which would allow this to be 

done. 

Consider a situation in which a bulk reservoir of the dispersed-phase species (say, 

oil), containing trapped species at concentration c e,, is placed in contact with a 

stable emulsion of oil droplets (in water, say) each containing 77 molecules of the 

trapped species (see figure 5.1). This system is then allowed to reach. equilibrium 

under the evaporation-condensation mechanism. (To speed the process, some 

gentle agitation of the emulsion might be desirable.) 

Trapped and disperse phase 
only. 

0 	00 0 	0  
0 0 
	 0 ' 	 Mixture of droplets and 

0 00 0 	00 	continuous phase. 
0 0 	0 	0 	0 0 

0 00 0 

0 0 	0 	0 	0 
o 	0 	 0 

0 	 0 0 

Figure 5.1: Droplets shrink to attain a stable size, which is in equilibrium with an 

excess bulk phase that also contains a trapped species. 

A final state of equilibrium will be reached when the chemical potential of the 
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dispersed phase species in the emulsion equates to that in the bulk. This requires 

	

11
rrbulk - 	- 11L 	 (5.4) 

osm - 

where [I'01  are the osmotic pressures of trapped species in the bulk and 

droplets and ilL  is the Laplace pressure in the droplets. For ideal solutions this 

condition reads 

	

77 	2o 

Cb = (4ir/3)R3 - RkBT 	
5.5 

which is an equation for the final droplet size R. By increasing cb the final droplet 

size can be made as small as one wishes: effectively the oil can be "squeezed out" 

of the emulsion by the osmotic action of the trapped species, now present in the 

bulk oil phase at higher concentration. (This contrasts with the last example in 

section 5.2, where a bulk phase, containing no trapped species, could be entirely 

absorbed by the emulsion droplets.) Once the desired size of mini-emulsion is 

reached, it can be removed and will remain stable. 

Note that, because the trapped species is insoluble in the continuous phase (wa-

ter in this example), there is no need for a semipermeable membrane to prevent 

its transfer between the bulk oil phase and the emulsion droplets. Therefore, in 

practice, a more rapid exchange equilibrium might be reached if the "bulk" oil 

phase instead took the form of large macroemulsion droplets which can later be 

separated out easily by sedimentation. Moreover, there is no need for the trapped 

species in the bulk oil phase and the trapped species in the mini-emulsion droplets, 

to be identical; so long as both are insoluble in water, the same condition for os-

motic equilibrium will apply. Therefore one can "shrink" an emulsion containing 

an expensive trapped species (such as a fragrance or drug) by contacting it with 

a cheap polymer solution. 

The shrinking process should not only achieve small droplet sizes, but may also 

allow one to reach concentrations of the trapped phase that would be unattainable 

by normal means. For example, by making an emulsion of dilute polymer solution 

and then shrinking the droplets, it may be possible to achieve within each droplet 
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a highly concentrated polymer solution, too viscous to be dispersed mechanically 

in its own right. 

These ideas may be relevant to various encapsulation technologies. Obviously, 

the designation of "oil" and "water" in the above is arbitrary aid- these could 

be any two phases. We have assumed throughout that coalescence i's negligible, 

which is commonly the case for oil-in-water emulsions so long as they contain 

a surfactant (typically ionic), to give a surface repulsion between droplets. The 

presence of the surfactant should not alter our arguments, so long as it is soluble 

enough in the continuous phase that the surface tension a does not vary between 

droplets. In principle, for small enough mini-emulsions, the surfactant could also 

give rise to significant bending energy terms in the free energy of a droplet, which 

could be included if required (see section 3.8). 



Chapter 6 

Effects of Micelles on Emulsion 

Stability 

6.1 Introduction 

It is well known that micelles can affect the rate of Ostwald ripening [29,47-521, 

and it is also well known that micelles can greatly enhance an oil's solubility [2,29], 

with oil being solubilised within micelles [2,46]. Hence a possibility is that micelles 

may be able to increase the rate of Ostwald ripening by solubilising oil within their 

cores and acting as shuttles to transfer oil between droplets. Since the solubility 

of disperse phase may have little effect on the rate at which it is transferred 

by micelles, a mechanism of micelle—mediated oil transfer could destabilise an 

osmotically stabilised emulsion by transporting the previously trapped species 

between droplets. 

The present chapter considers how micelles shuttling oil between droplets may 

affect the rate of Ostwald ripening*.  We consider both the scenarios where the 

* Throughout this chapter, we will denote the disperse phase as "oil" and the continuous 

phase as "water"; these roles could be reversed. 
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rate of transfer of oil by micelles is diffusion limited, and when it is reaction 

limited. In the diffusion limited case we firstly consider coarsening with oil and 

surfactant exchange only between micelles and droplets, then later we allow oil 

and surfactant to be exchanged between micelles, modelling the effect by assuming 

the rate of exchange to be much faster than the rate of diffusion of micelles 

between droplets. We calculate the effect of micelles on an emulsion droplet's 

growth rate (and the resulting droplet size distribution), and the rate at which 

micelles may solubilise an emulsion into oil swollen micelles. We also indicate 

transient phenomena which may occur early on in the coarsening process. 

An outline of the chapter is as follows. Firstly the possible mechanisms by which 

micelles may solubilise oil are briefly described, but for generality no particular 

model is adopted, either for the micelles themselves or the mechanism by which 

they solubilise oil (section 6.2). We next consider coarsening when the rate is 

limited by the diffusion of micelles between droplets (section 6.3), but without 

allowing oil and surfactant to be exchanged between micelles. Section 6.3 calcu-

lates a droplet's growth rate, and demonstrates that provided micelles may not 

solubilise all the oil, then the resulting late—time droplet size distribution will be 

that determined by LSW [20,21]. The rate of diffusion limited solubilisation of oil 

into previously empty micelles is considered in section 6.4, which considers both 

the time to solubilise all the oil and the time for micelles to become saturated 

(and unable to solubilise any more oil). Section 6.4 also discusses transient phe-

nomena which may occur when empty unswollen micelles are added to a dilute 

emulsion. Section 6.5 considers the effect of a rapid exchange of oil and surfactant 

molecules between micelles, finding the same qualitative results as when the ef-

fect was neglected. Reaction limited coarsening and solubilisation is considered in 

sections 6.6 and 6.7. Section 6.8 discusses when micelle—mediated coarsening will 

be important, finding the dominant type of coarsening to be determined by two 

parameters, enabling a kinetic diagram to be given which indicates which type of 

coarsening will be dominant for given parameters. A summary and conclusion is 
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given in section 6.9. 

The original motivation for the work in this chapter was to determine the extent to 

which micelles may destabilise an osmotically stabilised emulsion. However, the 

current lack of theoretical and experimental results mean that it is not possible 

to give a clear and definitive answer to this question. Instead the chapter intends 

to provide a clear and reliable, model—independent, theoretical framework for 

the effects of micelles on emulsions, so as to enable further experimental and 

theoretical work to be more clearly and carefully focused. Finally we note that 

the following work may also apply when coarsening is mediated not by micelles, 

but by molecules which may bind to disperse phase molecules and subsequently 

transport them between droplets. 

6.2 Mechanisms for Solubilisation 

Molecular dynamics simulations [53,54] have suggested three possible mechanisms 

by which oil may become solubilised within micelles t. 

A small amount of the oil drop becomes dissolved in the continuous (water) 

phase, and then (subsequently) is adsorbed into micelles. A theoretical 

discussion of the effects of micelles on coarsening of emulsions with oil to 

micelle transfer by this mechanism, is given by Kabalnov [62]. 

A group of surfactant molecules leave the surface of a droplet, carrying a 

number of solubilised oil molecules within them. This process is referred to 

as budding. Surfactant is replenished by extra surfactant being adsorbed 

tA discussion of the effect of an oil molecules geometry on solubilisation rate, along with a 

summary of solubilisation mechanisms, is given by Coupland et al [46]. A general discussion 

on solubilisation by micelles is given in "Surfactant Aggregation" by Clint [2]. 
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onto a droplet, either before or after budding has occurred. This is similar 

to a mechanism which is considered theoretically by Granek et al [55]. 

A micelle collides with a droplets surface, and subsequently solubilises extra 

oil molecules by incorporating them within the micelle (or .alteriiátely a very 

swollen micelle could lose oil molecules to the droplet), before returning to 

the continuous phase. Possible evidence for such a mechanism is provided 

by results of Carroll et al [56-60], and is discussed in Appendix B. 

The simulations [53, 54] showed that the solubilisation of oil into micelles by 

mechanism 1 occurred at a rate comparable with the combined rate of mechanisms 

2 and 3. They also found that for small oil molecules the rate of mechanism 1 

was higher than the combined rate of mechanisms 2 and 3, but that for larger 

(less soluble) oil molecules, the opposite was true. So solubilisation of oils with a 

low solubility will be dominated by mechanisms 2 and 3. 

In addition to the above we also note the mechanism in which 

Surfactant monomer is preferentially oil soluble, with micelles dissociating 

and surfactant becoming dissolved within oil droplets, lowering a droplets 

free energy and inducing spontaneous budding. This effect is studied ex-

perimentally by Miller et al [61] for surfactants close to their cloud point. 

The mechanism by which this occurs may also be similar to that described 

by Granek et al [55]. 

In the following work we do not consider any specific mechanism, taking the 

micelle-mediated rate of exchange of oil between droplets as being limited either 

by the diffusion of micelles to a droplet (diffusion limited), or by the rate at which 

micelles exchange oil with droplets (reaction limited). 
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6.3 Diffusion Limited Coarsening: 

A Simple Model 

In the next 3 sections (6.3 to 6.5) we assume that the rate of solubilisation of oil 

is limited by the rate at which micelles diffuse to a droplet's surface. The model 

we use also assumes that: 

Micelles in equilibrium at a droplet's surface will contain a unique number 

of surfactant molecules Sm, and a unique volume of solubilised oil Vm , both 

being determined by the given droplet's chemical potential (and hence, 

radius): Vm  = Vm (R),S m  = S, (R). 

There are no interactions between micelles, either via coalescence, diffusive 

interactions, or swelling/deswelling by oil diffusion between micelles. This 

is an approximation which makes the calculations much easier, although in 

practice corrections to it will arise. 

The diffusion field relaxes much more rapidly than the rate at which droplets 

grow. (This assumption is later shown to be self consistent). 

The excess chemical potential of oil in droplets is small enough that the 

volume fraction of oil solubilised in micelles adjacent to a droplet 4 m (R), 

may be linearised about that of bulk oil q. 

We take the number of micelles per unit volume which are not in equilibrium with 

a given droplet, at a distance r from that droplet, as Tm m (i'). Assumption 1 implies 

that there exists a unique species of micelle which will be in equilibrium with any 

given drop, and a population of micelles (the majority, close to the total number 

of micelles), which are not. If we assume 2 then the number flux of micelles to 

a droplet of radius R is found by solving a diffusion problem in which micelles 

diffuse from oo to a droplets surface, where they will react (via some mechanism) 
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to produce oil swollen micelles which are in equilibrium with the given drop. So 

Figure 6.1: Incoming micelles contain the systems average oil/surfactant ratio, where 

as outgoing micelles contain an oil/surfactant ratio determined by a droplets chemical 
potential (and hence its radius I?). 

taking Yi m (t) as the average number of micelles per unit volume at time t, then by 

assuming 3 we obtain the flux of incoming micelles (which are not in equilibrium 

with a given drop) to a droplets surface from 

V 2 fl m  = 0 	 (6.1) 

with the boundary conditions 

72 m (R) = 0 	 (6.2) 

flm( 0°) = Yi n (t) 	 (6.3) 

where nm (oo) = ff,(t) because in the system as a whole the fraction of micelles 

in equilibrium with a given drop is negligible, and m(R) = 0 because micelles 

adjacent to a droplet are assumed to immediately react with it. 
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These equations may be solved (by assuming the distribution to be spherically 

symmetric) to give 

R) 
 

n. ( r ) = im (t) (1 - 	 ( 6.4) 

where R is the radius of the drop. Hence the flux of incoming micelles to the 

surface of a drop is given by 

Ji. 	= D 	 m
m 	= 	Ti m  (t) 	 (6.5) IR 

where J(R) represents the incoming number flux of micelles per unit area of 

droplet surface. 

The average number of surfactant molecules per micelle is defined as 3 m (t), SO 

since the total amount of surfactant in the system is constant, we have 

(m (t) m (t) = i'im (0) m (0) (6.6) 

where we neglect any (small) variations in the total surfactant number by ad-

sorption on droplet surfaces. Hence we obtain the flux of micelles to a droplets 

surface as 
Dm_ 

Th 	
m(0) 	 (6.7) 

	

Jin = 	
m(0) Sm(t) 

Since (for surfactant to locally be conserved) the total flux of surfactant to a 

droplet must equals the total flux of surfactant away from a droplet, we have 

	

Jin31m(t) = Jout Sm(R) 	 (6.8) 

Changes in a droplets surface area will require changes in the number of adsorbed surfactant 

molecules, so surfactant flux is only approximately zero. However it is an approximation valid to 

terms of order v 3 /R, where VM is a molecular volume defined by vM Vm  /Srn, with Vm , Sm 

being the volume of oil and number of surfactant molecules in a given micelle respectively. For 

example if we consider a typical micelle incident on a drop, then changes in the surface area of the 

drop are of order Vm /R. Taking a as the molecular area of a single adsorbed surfactant molecule, 

then we obtain a change in the number of adsorbed surfactant molecules of order Vm /aR, and 

the fraction of surfactant molecules adsorbed per micelle—droplet interaction to be of order 
2/3 

Vin/SmaR. So since Vm/Sm 	vM, and VM '-j  a, then the fraction of surfactant molecules 

in a micelle which are adsorbed onto the droplets surface would be of order Vm /Sm aR 

1/3 	2/3 	1/3 
(VM /R)(V M  /a) VM /R << 1, and hence negligible. 
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where J0  is the outgoing number flux of micelles per unit area of surface from 

a droplet, and Sm(R) is the number of surfactant molecules per micelle, for a 

micelle in equilibrium with a droplet of radius R. Hence we may obtain J0t  as 

D, 	mo 
Jouiflm(0)S(R) 	 (6.9) 

Taking the average volume of oil solubilised in a micelle as Vm (t), then the rate 

of change of droplet volume is given by 

5(4R3/3) = 4R2(JinVm - JoutV m (R)) 	 (6.10) 

where Vm (R) is the volume of oil solubilised in a micelle in equilibrium with a 

droplet of radius R. So we obtain dR/dt as 

	

(

dR

vm(t) 	

(R) Vm \ 
 - 	

im(0)m(0) S,. (t) - S,. (R)
(6.11)  dtR 

Since Vm  is the volume of oil solubilised in a swollen micelle, then Vm/S m  is the 

volume of oil solubilised per surfactant molecule (in such a micelle). 

6.3.1 Droplet Growth Rate 

Eq. 6.11 may be written as 

dR_ Dm 
- */m(t) - qm(R)) 	 (6.12) 

where m (t) is the total volume fraction of oil solubilised in micelles (and identical 

to the spatially averaged volume fraction of oil solubilised in micelles), and 0" (R) 

is the volume fraction of oil that would be solubilised in micelles if all the micelles 

were in equilibrium with a droplet of radius R. 

Although Eq. 6.12 is derived rigorously (under assumptions 1 to 3), it is a rea-

sonable form to postulate on purely phenomenological grounds. Assuming the 

process of micelle absorption to be diffusion limited, then since the relevant length 

scale and diffusion constant are the droplet radius R, and the micelle diffusion 
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constant Dm , then one might expect dR/dt to be proportional to Dm/R. Sim-

ilarly, assuming that the volume fraction of oil solubilised in a micelle from a 

droplet depends on the chemical potential of oil in that droplet, and that the sur-

factant is homogeneously distributed, then one might expect the average volume 

of oil flux due to diffusion of micelles to be proportional to (m(t) - m(R)) So 

on the basis of very simple physical arguments we obtain Eq. 6.12 (up to an 

undetermined constant factor). This suggests that Eq. 6.12 may be valid under 

more relaxed assumptions than those given in section 6.3. 

In terms of the volume fraction of oil that would be present if all micelles were 

swollen to a size in equilibrium with bulk oil 0' , we may write 

dR - D,,, 0,' ((m(t) - q) 	 ( Om  (R) - 	 (6.13) 
dtR 

Since the volume fraction of oil that micelles will solubilise from a droplet m(R) 

is taken to be approximately equal to ob , we may linearise qm(R) about q 

(Assumption 4). In terms of the dimensionless parameter L\/2(R)/kT, where 

L\/i(R) is the chemical potential difference between a droplet of radius R and 

bulk oil, this gives 

Om (R) =(1+ kTR) 
	

(6.14) 
 

ob 

where we used Ay = 2avb/R, and where a is a dimensionless parameter typi-

cally of order 1. The parameter a determines the extent to which micelles will 

swell/shrink to solubilise more/less oil, as a result of small changes in the oil's 

chemical potential. The exact value of a will depend on the type of oil, surfactant, 

and co—surfactant in the system. So Eq. 6.13 now becomes 

dR - Dmçb ((m(t) - ) 	2av&\ 
dt - R 	 akTR) 	 (6.15) 

Defining f(t) 	(m(t) - 	R' 	RkT/a2avb, and t' =tqDm (kT) 2 / 

This is a reasonable assumption to make so as to satisfy the steady state requirement of 

zero net surfactant flux. 
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(a2irrvb) 2 , we obtain the dimensionless droplet growth rate 

dR' 	1 	
(6.16) 

6.3.2 Droplet Size Distribution 

Eq. 6.16 is identical in form (but with a different rescaling of variables), to Eq. 

2.24, as solved by Bray [22] to obtain the Lifshitz-Slyozov-Wagner (LSW) [20,21] 

distribution which describes the evolution of a continuous distribution of droplet 

sizes. Hence provided as t —+ oo the micelles adopt a volume fraction such that 

c(t) i/TW, where 7 is a typical droplet size, we obtain the same asymptotic 

solution for the droplet size distribution as did LSW. So whether oil transport is 

via diffusion through the continuous phase or via swollen micelles, we may expect 

the late stage coarsening of the droplet size distribution to be as described by 

LSW [20,21], but with the rescaling of variables given above. 

The asymptotic LSW solution can only apply at later times when micelles are 

sufficiently swollen that large drops (with lower than average chemical potential) 

can compete with the micelles for absorption of oil. This means that coarsening 

via micelles and coarsening via oil diffusion through the continuous phase are 

not entirely the same. When coarsening is via micelles we have at early times 

—1 < €(t) < 0, which contrasts with the scenario where droplets form after a 

quench and c > 0 at all times. In fact if there are a sufficiently large number 

of micelles, then all the oil will be adsorbed into micelles and the asymptotic 

LSW droplet size distribution will never be observed: instead, all the droplets 

will be solubilised into micelles. The total solubilisation of oil by micelles is 

possible since qmay be of the order of the droplets volume fraction q. In 

the scenario considered by LSW, the volume of oil solubilised is of the order of 

the oil solubility, and negligible in comparison with the oil volume fraction. The 

solubilisation of oil droplets by micelles, and the initial swelling and saturation 
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of micelles is considered in section 6.4. 

6.3.3 Effect on Ostwald Ripening 

To determine the importance of micelle-mediated coarsening, it is necessary to 

compare it with the rate of coarsening by a flux of dissolved disperse phase alone. 

When droplet growth is by micelle-mediated transport alone, the droplet growth 

rate Eq. 6.15 gives, 
dR Dm çba(

kTR
2avb\ 

dt 	R 	) 	
(6.17) 

When droplet growth is by flux of dissolved disperse phase then Eq. 2.19 with 

77 = 0, gives 
dR Dv&C(oo) (k

TR)
2avb 	

(6 18) 
dt 	R  

So defining the volume fraction of dissolved disperse phase as 

we see that whether the effects of micelle-mediated coarsening are important is 

determined by /3 	D 0i /Dm qo. If /3 << 1 then micelle mediated effects will 

dominate, if 0 >> 1 then the affects of micelles will be negligible, and if /3 	1 

then it is necessary to consider both contributions to the growth rate. 

6.4 Rate of Solubilisation 

We consider a dilute emulsion of oil droplets into which surfactant is added. 

The surfactant will rapidly aggregate to form a micellar solution with the con-

centration of dissolved surfactant molecules being the surfactants' CMC (critical 

micelle concentration [22]). As micelles encounter droplets they adsorb oil into 

their cores, a scenario corresponding to section 6.3.2 with -1 < c(t) < 0. If 

all of the oil is solubilised then E remains -ye, however if only part of the oil is 

solubilised before micelles become saturated then c will become +ve and micelles 
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may then mediate an oil transfer between droplets. This section calculates the 

time for total solubilisation of the oil droplets into micelles (given sufficient sur-

factant), and the time for a net solubilisation of oil into micelles to stop (due to 

their being saturated). - 

Since we are interested in the rate at which oil is solubilised IITIt6 micelles, we 

now neglect the exchange of oil between droplets and approximate the volume of 

oil solubilised into a micelle by V (the volume of oil solubilised by a micelle in 

equilibrium with bulk oil). So cbm (R) is now approximated by 06  , and Eq. 6.12 

becomes 
dRD m  

- -_(m(t) - 	 (6.19) 

Since the total oil volume fraction is conserved, we have 

00 

m(t)+f n(R,t)RdR=ç5 o 	 (6.20) 

where qo  is the total volume fraction of oil present in the system and n(R, t) is 

the number density of droplets of radius R at time I. Hence, 

do,n- 1 00  ôn(R, t) 4ir 
di 	io 	at 	

R3 dR 	 (6.21) 

which using Eq. 6.19, and the continuity equation 

ôn(R,t) - t9(n(R,t)dR/dt) 
at -- 	oR (6.22) 

gives 

Dm ( - (t)) f n(R, t)4RdR 	(6.23) 

If we take the droplet size distribution as approximately monodisperse and of 

radius R(t), then we find 

- D 
( 

- m (t)) n o4R(t) 	 (6.24) dt - m 

with no  the total number of droplets, and now constant. We also obtain, 

m (t) + noR(t) = co 	 (6.25) 
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which may be rearranged to give 

(  
R(t) = R(0) 

'O - 	
1/3

) 	
(6.26) 

00 

where we note that qo = no R3 (0). So in terms of q50  and ,,(t),  Eq. 6.24 

becomes 

	

- 3Dmo 
( 	m (t)) (1— 

m()"3 	(6.27) 

	

dt - R2 (0) 	 40 ) 

Finally we define K R 2 (0)/3Dmqfo, x 	/qo, and 
x0 = q/qo, to get 

dx 	1 \ 

	

- 	(x 0  - x) (1 - X)
1/3 	 (6.28) 

The final volume fraction of oil solubilised into micelles is determined by the 

smaller of Ob  and 00 . When total solubilisation of oil is possible, m (t) = '10 and 

x=1. 

We may integrate Eq. 6.28 to obtain the time to solubilise a given quantity of 

oil. In terms of x and x 0  we get, 

_I 
t(x)= 

2(xo - 1) 1 /3  

	

((xo_1) h /3 +(1_) h /3 ) 2 	) 
- In 

(((xo_1)2/3_(xo_1)h/3(1_)h/3+(1_x)2/'3) 

((_1) 2 / 3 +(X_1) h /3 +1) 2 ) 
- In ( 	

( i+(xol)11'3)2 
X  

/ 3 _(xo _1)h/ 3  )h 

	

—2V3-tan-1 
( 

2(1_x 
(xo_1) 1 / 3 	 ) 	 I 

(S_1)1/3) 	 ) 
+2V3- tan -1  

(6.29) 

6.4.1 Solubilisation Time (x o > 1) 

We first consider the case x 0  > 1 for which complete solubilisation is possible. 

This occurs when x = 1. Hence the time for complete solubilisation t 01 , is given 

11  Where Maple was used to calculate the integral. 
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by, 

 (

1 +(xo_ 1 ) 11 3 ) 2  

tsol (
( 

[ — in x1)2 +(xo—i)'/+i) J 

	

(6.30) 
2(xo  — 1) 1 13 	 ir  

73 

—2v/3-tan-1 (2_(xo_-1)h/3' 
(xo-1)'I 3 /J 

Note that all droplets evaporate in finite time; within the model there are no 

droplets remaining at t > t 301 . When the total amount of oil which surfactant 

may solubilise is much larger than the total amount of oil present (X 0  >> 1), then 

we find, 
1&C139 	27 

t", — 	+ 
lOxo 

 + 402  + 0 	 (6.31) 
xo x o 	X 0  

Figure 6.2 plots 11  solubilisation time against x 0 . As can be seen in the figure, 
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Figure 6.2: Solubilisation time T 	t 01  against X 	xo . The solubilisation time 

tends to zero as x 0  —+ 0, and diverges as x o  —+ 1 since total solubilisation of oil is not 

possible for x o  < 1. Note that all times are in units SAC, with K R(0) 1 1(30b D,,,), 
as previously given in the text. 

when x0  —+ 1 the solubilisation time diverges. This is because if x o  < 1, then 

liThe  graph was produced using Maple. 



6.4. RATE OF SQL UBILISATION 	 83 

not all the oil can be solubilised into micelles. As x 0  —4 oo and the total volume 

fraction of oil becomes much less than that which may be solubilised in micelles, 

the solubilisation time tends to zero. 

6.4.2 Saturation Time (x o  < 1) 

We now turn to the case where x 0  < 1 so that micelles saturate before solubilising 

all the oil. We consider late times when the micelles are nearly saturated with 

oil. Writing x =xo -  , then using Eq. 6.28 we find, 

dz 	 A  )1/3 	

(6.32) = — 1(1 - x0)h/3 (i + 

1-  X O  

As x -+ x0 and A -* 0, we get 

— (1—x0)'I A + O(2) 	 (6.33) 
dt 	IC 

giving 

(t) - exp (_(1 - 
	

(6.34) 

so that x approaches x 0  at an exponential rate. 

Hence although micelles may approach saturation very rapidly, the model suggests 

that total saturation of the micelles is never quite attained, unlike the total 

disappearance of droplets described above for x 0  > 1. This is for the following 

reason. When x o  > 1 not all micelles are required to solubilise the oil, but 

when x 0  < 1 total saturation requires every micelle to encounter a droplet. So 

when x 0 > 1, as total solubilisation is approached there will remain a significant 

fraction of micelles which are empty. However when x 0  < 1, as total saturation is 

approached the total number of empty micelles tends to zero, causing the rate of 

solubilisation to tend to zero, and preventing total saturation from being attained. 
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6.4.3 Consistency of Steady State Assumption 

Solubilisation will occur most rapidly for x 0  > 1. So if the steady state assump- 

tion is reliable for x o > 1 1  it will be reliable for smaller values 6f.-ô also. When 

xo  >> 1 7  Eq. 6.31 has 

	

K; 	R 2 (0)1 

	

t301 — 	 -— 	 (6.35) 

	

x0 	-'--'rn Prn 

Since the time for the micelle diffusion field to relax trelax ' R'(0)/D,, we may 

write 

relax 

q 'n 
(6.36) 

So if cb ' s-' 1 then t,1 "trelax and  our assumption of a steady state diffusion profile 

may no longer be valid, and the corresponding results no longer reliable. For the 

scenarios considered here however, with ob  typically 10-2,  then t 801  lO 2 t rClaX  

and the assumption reasonable. We do note however, that if cb '--i 10_ 2  and 

00 << ob  then we require co << 10 2 , ie a very small total volume fraction of oil. 

For anything more than small 4o,  the expression for t,,,l must be treated with 

caution. 

6.4.4 Transient Phenomena 

This section discusses the crossover from absorption of oil by empty micelles, 

to late-stage coarsening. We continue to consider a system of dilute emulsion 

droplets into which surfactant is mixed (and forms micelles), at time t = 0. We 

find that there exists a time at which sufficiently large droplets will grow in size, 

even though there is still a net solubilisation of oil into micelles. 

We make the mean field assumption that the average volume fraction of oil in a 

swollen micelle is determined by the average droplet size. Then defining 	(t) as 

the spatially averaged number of empty micelles (containing no oil), we obtain 
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EN 

the average volume fraction of oil in micelles as 

(6.37) 

Then expanding q() and çbm (R) about ob  and substituting into Eq. 6.13 leads 

to 
dR - Om' D, (a' a' WMWa 'V 

- R 	- 1? - m(t) 	+ 	
( 6.38) 

where a' a2crvb/kT. The critical radius of droplet above which droplets will 

grow in size due to a net flux of oil to the droplet, is given by 

R(t) = 	- 	 ( 6.39) 
a'/R - (iin(t)/ a' im (t))(1 + a'/) 

or infinity, for early times when the above expression would be negative. 

The onset of a finite R occurs when 

W1.  M 	a'/ 	a(aI2) 
+ a'/ - 	R 	

(6.40) 

So there will continue to exist a small but finite fraction of empty micelles, at 

the time when the largest droplets start to grow in size. The finite fraction of 

empty micelles will enable a net flux of oil from droplets to micelles to continue 

even while the largest droplets have started to grow. The continued decrease in 

YT' will initially cause R to decrease, before it reaches a minimum value and 

starts increasing, asymptoting to (t) as t - oo (see fig. 6.3). 

In the above we have considered scenarios where the volume fraction of oil con-

tamed in droplets is much larger than the volume fraction of oil micelles may 

solubilise. Initially, when micelles are empty, they will solubilise oil from droplets 

and m  (t) will be increasing. However at later stages when micelles are already 

swollen, the micelles will exchange oil from smaller to larger droplets, resulting in 

a growth of average droplet radius and a reduction in the average droplet chem-

ical potential. Since the chemical potential of oil in droplets is now a decreasing 

function of time, droplets will now (on average) adsorb oil back from micelles, 
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R(t) 

t 
t c  

Figure 6.3: Schematic figure, illustrating how the critical radius R above which 
droplets will grow, changes during the early stages of solubilisation. At a critical time 
t, R will become finite, before finally asymptoting to the late—time average droplet 

size (t) determined by LSW [20,21] (as discussed in section 6.3.2). 

resulting in a decreasing m (t) Hence at some time a critical radius R (above 

which droplets will grow in size), will start to exist, then gradually decrease in 

size until attaining a minimum value, before finally asymptoting to the typical 

droplet size (t). Again, this will mean that there will be a period of time where 

the largest droplets may grow, even while there remains a net solubilisation of 

oil into micelles. As before, it is unclear whether this will (significantly) affect 

the late—stage droplet size distribution, but it would certainly affect the initial 

droplet size distribution. 

These transient phenomena are independent of the specific model proposed above. 

All that is required is that the oil in micelles may be in equilibrium with the oil in 

droplets. So models allowing inter—micelle interactions, or which assume differing 

diffusion/reaction mechanisms, will all exhibit these effects (to a greater or a lesser 

extent). 
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6.5 Exchange of Molecules Between Micelles 

The present section considers how the exchange of oil and surfactant molecules 

between micelles in the continuous phase, may affect the rate of micelle-mediated 

oil transport between droplets. The previous work neglected oil and surfactant 

exchange among micelles, and so is only valid when the rate at which oil and 

surfactant molecules are transported via micelle diffusion is much faster than the 

rate of oil and surfactant exchange. Now we will study the other extreme, when 

the rate of oil and surfactant exchange between micelles is rapid compared with 

rate of oil and surfactant transport via diffusion of the micelles. 

Previously in sections 6.3 to 6.4 we assumed that equilibrated micelles would all 

contain the same number of surfactant and oil molecules. Now we must consider 

a continuous distribution of micelle compositions, with the number of micelles per 

unit volume with Sm surfactant and °m oil molecules, given by flm(Sm, 0"" F, t)**. 

The assumption that surfactant and oil exchange (between micelles) occurs much 

more rapidly than surfactant and oil is transported by diffusion of micelles, will 

allow us to assume that locally the micelle distribution n," (S', Om, i, t) adopts 

the equilibrium micelle distribution n(Sm, Gm, ns(r, t), no(, t)) of micelle com-

positions, determined by ns(,  t) and no(, t) the number densities of surfactant 

and oil molecules. The approach we follow has some similarities to that used to 

study the diffusion of rod-like micelles, by Cates et al [63]. 

6.5.1 Calculating Oil and Surfactant Flux 

The number of micelles with 5m surfactant and °m oil molecules per unit vol- 

ume, n,(Sm , °m i,t), may change both by a diffusive flux of micelles (as be- 

**The  added complication of considering a distribution of micelle compositions is necessary, 

since oil and/or surfactant will only be exchanged between micelles with differing chemical 

potentials. 
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fore) and by exchange of oil and surfactant molecules between micelles. We take 

E[Sm, °m {flm}] as the rate of change in number of micelles with Sm  surfactant 

and °m oil molecules, by exchange between micelles. Then 

an, (Sm,Om,t) 
= E[Sm,Om,{m}] - 	:': 	(6.41) at 

where fdfJ is the diffusive flux of micelles, considered below. 	- 

We note that SmE[Sm , Gm, {flm}] is the rate of change in the total number of 

surfactant molecules in micelles which have 8m surfactant and °m oil molecules. 

So if we consider a steady state, then since the number of surfactant molecules is 

conserved the change in the number of surfactant molecules in micelles per unit 

volume, by exchange between micelles f dOm  f dSmS m E[Sm , °m, {flm}], is zero. 

Similarly for oil, the change in the total number of oil molecules in micelles per 

unit volume, by exchange, f dOm Om  fdS m E[ Sm , O n  {i m
}], 

is zero. So in a 

steady state, exchange of molecules between micelles may only alter the micelle 

distribution. 

If we consider the total number densities of surfactant and oil molecules in mi- 

celles ns (r, t) = f dOm  f dS m Sm  Thm(Sm, Om,, t), no  (F, t) = f dSm  f dOm Om  

m(Sm, °m i, t), and take the usual expression for a diffusive flux of ideal mice!-

lar aggregates diff = Dm (Sm , Gm) flm(Sm, t), then in a steady state 

we require 

ans =.f dOm f dSmSmDm(S m , O n ) m  0 	(6.42) 

and 

= .f dOm Om f dSm Dm (8m , O n ) m  0 	(6.43) 

Since we consider a rapid exchange of oil and surfactant molecules between mi- 

celles, we may now assume a fast relaxation of the micelle distribution, and 

take n,(Sm, Om, t) = n eq (Sm , Gm, ns(r, t), no (, t)). Then expanding about 

the average number of oil and surfactant molecules per unit volume ñ0 and TTs 
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respectively, we get 

Th m (Sm , O n , T,t) = neq  
(6.44) 

- an0 

Substitution into Eqs. 6.42 and 6.43 then gives, 

S D 	iVns+ '.[fdOmfdSm m 	
(6.45) 

1 .[fdOmfdS in S D 	lVno O in 	m6 no j 

and 

ano' . [fdOmfdSmOmDm 1] Vns+ 	 (6.46) 
1 

'. [I dOm  I dSm  m in 8n O  0 D 
eq 

jVno=0 

We now define the total number density of micelles in a neighbourhood where 

there are n s surfactant and no oil molecules per unit volume; this is given by 

	

J dOm  f dSmfl(Sm , Gm; s, no) ñ(nS,nO) 	(6.47) 

We also define ratios fs,o  as 

ön(Sm ,Om ;s,Fio) / 8ni,io) 	
(6.48) fs,o 	

ans,o 	/ 	afls,o 
so that I dOm  I dSm  fs,o = 1. With these definitions we can write 

ans  - 	[f dOm j'  dSrn Sm Dm f] !!ULVnS+ 
at - ans 	 (6.49) 'v'. dOm  IdSm Sm Dm fO] 	 0 an0 

and 
= 

at 	' V. [fd0m IdS m OmDmf] angS+ 	
(6.50) 

V. [IdOm f dSm0mDmf0] ?/flQ = 0 

The form of these equations allows us to define four effective diffusion constants 

D05, D00  and Dss, Do, describing oil / surfactant flux due to surfactant and 

oil gradients, as 

Ds0 = {f dOm  f dSmSmDmf, 
1 ôñ 

so! 	 (6.51) 
i th-15,0 
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Dos, D00  = V dOm f dSmOmDmf, 1 ôñ so' 	 (6.52) 
J ans,o 

In matrix notation we have 

a 
at 
 ( ns = ( Ds D50 	

( s = 0 	(6.53) 
no 	D D00 ) 	no ) 

and identifying an/0/at = V.Js,io we obtain 

I f5  \ ID55  D50 -. / 
V 	 (6.54) 

Jo 	Dos Doo) 	no 

This is a two component diffusion equation, as one would expect from the fact 

that (with fast exchange kinetics), ns  and no are the only conserved densities. 

6.52 Steady State Droplet Growth Rate 

So we have 

- I Dss D50  \ -. I ns 

	

il 	I 	 (6.55) 
Dos Doo) kno) 

which may be solved in spherically symmetric coordinates with an origin at a 

droplets centre, to give 

ns(r) = 1s + (ns(R) - i) 	 (6.56) 

and 

no (r) = Tio + (no (R)- o) 	 (6.57) r 

So we obtain the flux of oil and surfactant molecules to a droplets surface as 

= DOSnS(R) - iS + D00 n
o 	fio 	

(6.58) R 

and 

is 
D_______ 	no(R)—i o  

R 	
+D50 	

R 	
(6.59) 
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respectively. If we also assume that there is no net flux of surfactant, so that 

Js = 0 (ie we again neglect the surfactant which is adsorbed/desorbed from 

droplets), then we find 

fo 	 D0sD50\ no (R) —i o  
= (Doo-. 
	) 	R 	

(6.60) 
Dss 

Which gives 
dR/ 	D0sD50\ rn(t) — ct)m(Tt) 

= (D - Ds ) 	R 	
(6.61) 

where we note that the volume fraction of oil in micelles is given by q m (R) = 

no(R)v& and m (t) = TO(t)Vb. Eq. 6.61 is entirely analogous to Eq. 6.12, but 

with Dm  replaced by (Doo - (DosDso)/Dss). Hence the results which apply to 

Eq. 6.12 will also apply to Eq. 6.61. 

To recap, we allowed oil and surfactant to be exchanged between micelles, but 

assumed that it occurs much more rapidly than the rate of diffusion of micelles 

between droplets. This allowed us to assume an equilibrium micelle distribution, 

determined by the spatially dependent number densities of oil and surfactant 

molecules which are present. Then we assumed that we may linearise the dis-

tribution about the spatially averaged number densities of surfactant and oil 

molecules. Finally, as in previous sections, we assumed both a steady state and 

zero net adsorption/ desorption of surfactant onto/from droplets. The result is 

a droplet growth rate with the same form as Eq. 6.12, but with a different 

diffusion coefficient. Hence with the above assumptions for oil and surfactant ex-

change, micelle mediated coarsening appears to be qualitatively unaffected by oil 

and surfactant exchange between micelles, simply requiring a different diffusion 

coefficient. 

Before considering reaction limited coarsening, it is worth examining the results. 

Firstly note that Js = 0 does not correspond to a zero gradient in surfactant den- 

sity. In fact for a non-zero oil density gradient, Js = 0 is only possible with a non- 

zero surfactant density gradient. Also since R < 11 implies that no  (R) - 	> 0, 
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then for Js = 0 (which corresponds to zero net adsorption/ desorption of surfac-

tant from droplets surfaces), we require that ns (R) < 1s so that smaller than 

average droplets are surrounded by a less than average concentration of surfac-

tant. Furthermore, we would also expect an increased number of -oil molecules 

per micelle in the neighbourhood of smaller drops, so that the smaller surfactant 

density would be further accentuated to reduce the number density of micelles ad-

jacent to the drop. Hence we expect smaller than average drops to be surrounded 

by a smaller concentration of micelles (which will also contain more oil than av-

erage, and typically be larger than usual), and larger than average drops to have 

a larger concentration micelles (which also contain less oil than average, and will 

typically be smaller than usual). It might be worth noting that if variations in 

micelle concentrations are large, the osmotic pressure from micelles may affect 

the chemical potential of droplets. Under such conditions larger drops will have 

their chemical potentials increased, and hence the oil concentration gradient will 

be reduced. Such effects have been ignored throughout this thesis (an assump-

tion which corresponds to assuming negligible variation in the number density of 

micelles). 

It is also interesting to examine the effective diffusion constant (Doo — (Do s  

Dso)/Dss). Noting that Om 8n/3no '' no/no, Om 5fl/ôfl5 (0 m /Sm)/ 5 , 

Sôn/5ns ns/ris, and Sm ôn/ôno (Sm /Om )no/no, then a very sim- 

ple estimate gives D00 	Dm , Ds ' Dm , D05  (Om /Sm )Dm , and D0 

(Sm /Om )Dm . So since both D00 Dm  and D05Ds0/Dss Dm , the effective 

diffusion constant may be significantly smaller than Dm . In fact depending on 

the distribution function for micelle composition, there is no apparent reason 

why the effective diffusion constant need even be positive. A negative diffusion 

constant would result in larger drops shrinking and small drops growing, lead-

ing to the formation of a monodisperse distribution. It is tempting to speculate 

that a negative effective diffusion constant (which would result in a monodisperse 

distribution), indicates that a microemulsion will form. 
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So although the droplet growth rate is the same form as Eq. 6.12, the rate of 

coarsening may be reduced. In fact since a negative effective diffusion constant 

appears possible, qualitatively different coarsening behaviour cannot be ruled out. 

To determine a systems behaviour, we require a sufficiently complex model of mi-

celles to enable calculation of the effective diffusion constant from first principles, 

this is not considered here. 

6.6 Reaction—Limited Coarsening 

Here we briefly consider the case when the absorption of oil into micelles is limited 

not by the rate of diffusion of micelles to droplets, but by the rate at which 

micelles (already in contact with a droplet), react to solubilise oil. This type of 

mechanism is proposed by McClements [64] and Carroll et al [56-60], to account 

for experimental results regarding the solubilisation of oil into non—ionic micelles. 

Our calculation assumes the following: 

• Micelles encounter a droplets surface with a rate proportional to their av-

erage concentration, the droplets surface area, and the rate at which they 

diffuse through a diffusion layer, taken to be of thickness Jb, the radius of a 

micelle in equilibrium with bulk oil. This gives an attempt rate, for micelles 

to react and adsorb/desorb oil. 

• A micelle reacts on a fraction x of its encounters with a droplet. This 

defines a reaction rate. 

• During a successful micelle—droplet encounter, we assume that micelles 

swell/shrink so as to adsorb/desorb oil, and that the oil contained in the 

micelle after the collision has the same chemical potential as the oil within 

the droplet. 
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Hence J2  now represents the flux of micelles which pass through the diffusion 

layer and also subsequently react with the droplet. So for a diffusion layer of 

thickness Se,, Ji, is given by 

"in = fl 
DmX_ 	DmX_ )Sm(0) 	

(6.62) 
Jb 	

m(t) = 
	

fl 
5b m(O S" (t) 

and (as in section 6.3) local conservation of surfactant requires that J0t,  the flux 

of equilibrated micelles away from the droplet is, 

Jout 
= DmX:()m(0) 	

(6.63) 
Jb 	Sm(R) 

Hence the droplet growth rate (Eq. 6.11) now becomes 

dR DmX_ - 	( Vm 
3

(t) Vm(R)\ 
dt = 	Tlm(0)Sm(0) 	

m  (t) 	Sm(R) ) 	
(6.64) 

5b  

and Eq. 6.12 becomes, 

dR DmX 
cit = Sb 
	 (6.65) 

where m  is the average volume fractions of oil solubilised in micelles, and 0, (R) 

is the volume fraction of oil solubilised if all micelles are in equilibrium with a 

drop of radius R, as before. For comparison with the diffusion limited expression 

Eq. 6.13, may be written as 

dR - xRD m cb (m(t) - çt 	m(R) cbb \ 

cit - Sb 	R 	Ob 	-b 	 (6.66) 

	

M 	 m 

Hence the reaction limited growth rate is a factor of xR/Sb times the diffusion 

limited growth rate, but otherwise of the same form. (For the growth rate to 

be reaction limited, it must be less than the diffusion limited growth rate. This 

requires that XR/Jb  be less than 1, and x  less than Sb/fl.) 

We may also proceed in a similar way to section 6.3.1, and define variables R' 

RkT/cr2uvb, c(t) = (m(t) - j/çb and t' t/4XDmkT/Sba2c7Vb to obtain the 

growth rate as, 

	

dR' 	1 

	

dtl 	
c(t) - - 	 (6.67) 

R' 	 ' 

which we use in section 6.6.1. 
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6.6.1 Reaction limited Droplet Size Distribution 

When all micelles are swollen, we take m(t)  to be determined by the average 

droplet size R. So m(t)  is replaced by 0m (), and €(t) becomes 1/'(t). So we 

have 
dR' 	1 	1 

(6.68) 

Eq.6.68 has the same form of growth rate equation as that studied by Wagner [21], 

who solved for the time evolution of a continuous distribution of droplet sizes. 

With a change of constants to account for the different coarsening mechanism (ie 

via micelles), Wagner's result [21] therefore generalises to give the average droplet 

size (R), as (R) = 8/9R*(t), with  R*(t) given by 

R*(t) = R*(0) (i + tDmXkT)"2 	 (6.69) 
5ba27vb  

The scaling distribution for the droplet sizes is given in terms of the scaled variable 

Z = R/R(t) as, 

f(Z) = 3(2 _Z)5 
exp 
 () 

0(2 - Z) 	 (6.70) 

As with the diffusion limited case, we find that micelle mediated coarsening in the 

reaction limited limit is closely related to the standard case of a soluble oil, but 

with a suitably rescaled diffusion constant which is governed by micelle diffusion 

rather than that of molecularly solubilised oil. 

6.7 Reaction Limited Solubilisation 

Following an identical approach to that in section 6.4 we obtain the analogue of 

Eq. 6.11 for the reaction limited case as 

dR - DmX ((t) - 
	 (6.71) 

dt 	Sb 
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Since this differs from Eq. 6.19, Eq. 6.23 now becomes 

	

DmX ( - m(t)) f n(R, t)47rR2 dR 	 ( 6.72) 
 Jb dt - 

and the resulting equation for dm/dt  now becomes 

- D 	
( 	(

t)) (1_ 

m(t))2I3 	
(6.73) 

dt - 86 R(0) 	- 	 _____ 

We simplify the above equation by writing it in terms of the variables x and x 0  

as defined in section 6 4 but with IC now denoting K = R2(o) 8b ie a factor of 30oDm xR(0)' 

—h-- times that in section 6.4 and obtain R(0) 

dx 1 
it= (x—x)(1—x) 2/3 

which upon integrationtt gives 

- in ( xo_1 
((xo_1)h/3+(1_x)h/3)2 

_1) 2 /3 +_1)h /3 +1)2  t(x) 	 - in 	 \ 
)2 /3 _(xo_ 1 ) 1 /3 (1_ h,3 +(1_x)2 /3  ( 	1 

2(xo - 1) 2/3 	 (1+(x0_1)1/3)2 	) 	I 

2,/an 	
(2(1_x)h/3_(xo_1)h/3) 

(ao_1)hI 3 / 

+2tan' (2—(xo-1)" 

	

\(xo_1)h/ 3 V') 	/ 

(6.74) 

(6.75) 

6.7.1 Solubilisation Time 

Complete solubilisation occurs when x = 1. Hence the time for complete solubil-

isation t 01, is given by, 

_I 
2(xo - 1) 2/3  

((0_ 1)2/3 +(X0_1)1/3+1)2) ) 
—in ( 	

( 1+(xo-1)'/3)2 

+ 7r I 

	

+2tan_1 (2_(o_1) h /3\ 	I 

	

(xo_1)1/3V) 	I 

(6.76) 

ttThe  integration was calculated with Maple. 
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When the total amount of oil which surfactant may solubilise is much larger than 

the total amount of oil present and s o  >> 1, then we find, 

	

( '))
t801 	

9 	27 
— 3 + 	+ 2  + 0 	 (6.77)X 03 

\ 	4x 	14x 

Figure 6.4 plots solubilisation time against x o . The graphs for solubilisation time 

Figure 6.4: Solubilisation time T 	t30 1 against X 	The solubilisation time tends 

to zero as X 	xo  becomes large, and diverges as x o  —+ 1 since total solubilisation 

of oil is not possible for x 0  < 1. Note that all times are in units of K, with K 
(R 2 (0)/3cbo Dm )(fb/XR(0)), as previously given in the text. 

are qualitatively the same as those in section 6.4 with t01 diverging as X —+ 1 as 

before, and t. 0 1 tending to zero as x 0  —+ 00. 

When x0  >> 1 then i soi 'S-' K1/x o , with 

8b R(0) 2  1 	trelax 8b — ". 	 (6.78) 
XO 	x'1(0) D m  Oo x o 	cf xR(0) 

So the reaction limited solubilisation time is simply a factor of Sb/XR(0) times 

the diffusion limited solubilisation time, but otherwise qualitatively of the same 

form. 

The graph was produced using Maple. 
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For solubilisation to be reaction limited then we require xR(0)/Sb to be less than 

1 (as was also required for the droplet growth rate to be reaction limited). Hence 

taking 8b '-' 10 9m and R(0) - 10 6 m, then a reaction limited solubilisation time 

(or droplet growth rate), requires x  less than '-s.' iO 

6.7.2 Saturation Time 

As in section 6.4 we write x = x o  — ,A, then we use Eq. 6.74 to obtain 

dL 	1 
= 	— x0)213 	

L1 

(i + 1 — ) 

1/3 	

(6.79) 

which to lowest order in A is virtually identical to the diffusion limited case, but 

with (1 - x o )
113 xeplaced by (1 - x 0 ) 21 . 

6.8 Micelle—Mediated Coarsening? 

Whether oil exchange between droplets is mainly due to a diffusive flux of dis-

solved oil, or mediated by oil—swollen micelles, is determined by the magnitudes 

of 3 = D oi/Dmq* (previously defined in section 6.3.3) and the reaction rate 

for micelle—droplet oil exchange X. 

Section 6.6 found that if x > &/ R, then any micelle—mediated coarsening is 

diffusion limited. Section 6.3.3 found that diffusion limited, micelle mediated 

effects become important for /3 - 1, dominating the growth rate for 0 << 1 7  

but being negligible for /3 >> 1 when coarsening would mainly be due to a flux 

of dissolved disperse phase. Since both micelle—mediated transport and direct 

diffusion of dissolved disperse phase can occur simultaneously, there will be a 

smooth crossover as 3 passes through 1. 

When Sb/R > x, then section 6.6 found that any micelle mediated coarsening 

would be reaction limited. Note however that since the reaction limited droplet 
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growth rate is a factor 	Sb/X]  times the diffusion limited expression, then for 

micelle mediated growth to be more important than that due to flux of dissolved 

disperse phase, we also require x > /3 (and hence /3 to be small). Since micelle-

mediated transport requires both droplet-micelle "reactions" to solubilise oil and 

micelle diffusion to transfer oil between droplets, then micelle-mediated coarsen-

ing will be either diffusion or reaction limited, with a sharp crossover between the 

regimes as x passes through SbIR.  The above results are summarised in figure 

6.5. 

Micelle mediated 
(Diffusion limited) 

Classical Ostwald 
Ripening 

(via a diffusive flux of 

dissolved oil) 

Micelle mediated/ 
(Reaction lim iz) 

1 	 13 

Figure 6.5: Schematic diagram on the (/3, x) plane (with /3 	 indi- 

cating which type of mechanism will transfer the most oil between droplets. Typical 

orders of magnitude for oil in an aqueous surfactant solution give a maximum value of 

0 hence the reaction rate x determines the importance of micelle-mediated 

effects in such systems. 

For high molecular weight hydrocarbons (C 9 H20  to C 16H34 ), the addition of suffi-

cient surfactant [62] increases the solubility of oil in an aqueous solution by a fac-

tor between iO and iO, giving a maximum estimate of q 0 /q5 iO. Typically 

[43,62] the diffusion constant D for dissolved disperse phase is D ' s-' 10 9 m2s 1 , 

and the diffusion constant of micelles Dm  is between 10 10 m2s' and 1011m2s'. 

R 

a 
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So taking values for Dm  and 	which give the largest value of 3, and also 

taking a 1, we obtain 

10 -2 <<1 
	

(6.80) 

So given a sufficiently large reaction rate x, we expect to observe diffusion limited, 

micelle mediated coarsening. Hence if diffusion limited, micelle mediated coars-

ening is not observed, it indicates a very low reaction rate x for micelle-droplet 

oil exchange, less than of order Sb/. 

Finally, note that when there is exchange of oil and surfactant molecules be-

tween micelles the micelle diffusion constant Dm  used in 0, must be replaced 

by the effective diffusion constant (D00 - (DosDo)1D 5s ) defined in section 

6.5. Unfortunately the lack of a suitable model for micelles prevents the effective 

diffusion constant from being calculated. However the simplest estimations (see 

section 6.5) suggest that the effective diffusion constant may be reduced, so that 

0 will be increased, and micelle mediated effects less likely to be important. 

6.9 Conclusions 

Simple models for micelle-mediated oil exchange between droplets have been pre-

sented and analysed. We have derived droplet growth rates for diffusion limited 

coarsening (both with and without molecular exchange between micelles), and 

also for reaction limited coarsening in sections 6.3, 6.5, and 6.6 respectively. The 

droplet growth rates have enabled us to discuss micelle-mediated coarsening, and 

indicate the late-time droplet size distributions in sections 6.3.2 and 6.6.1. The 

rate of solubilisation of an emulsion into oil swollen micelles was considered in 

sections 6.4 and 6.7, and possible transient phenomena which occur after the 

initial addition of unswollen micelles to an emulsion, have been described and 

discussed in section 6.4.4. For a given set of parameters, figure 6.5 indicates 

whether micelle-mediated coarsening will be important, and whether it will be 
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diffusion or reaction limited. Section 6.8 considered typical orders of magnitude 

for an 0/W emulsion, and demonstrated that unless there is a very low reac-

tion rate x, then diffusion-limited, micelle-mediated coarsening will be observed. 

Hence whether micelles have a significant effect on the coarsening of 0/W emul-

sions is determined by the fraction of encounters x, with which micelle-droplet 

interactions result in micelle-droplet oil exchange. 

6.9.1 Micelle—Mediated Coarsening 	- 

When the micelles present can solubilise only a small part of the oil droplets' 

total volume fraction, then late-time micelle-mediated oil exchange will be qual-

itatively the same as classical late-time coarsening. Diffusion-limited coarsening 

was found to be qualitatively the same as that described by LSW [20,21], and 

reaction-limited coarsening was found to be qualitatively the same as that de-

scribed by Wagner [21]. 

The late-time diffusion limited coarsening is also qualitatively unaffected by rapid 

oil and surfactant exchange between micelles (which occurs in addition to micelle-

droplet oil exchange). The main effect of allowing oil and surfactant exchange 

between micelles is to replace the micelle diffusion constant Dm , with an effec-

tive diffusion constant, calculable from a suitable model for oil swollen micelles. 

Whether micelle-mediated coarsening is significantly affected by oil and surfac-

tant exchange between micelles, is determined by the effective diffusion constant. 

Simple order of magnitude estimates suggest that the effective diffusion constant 

may be less than Dm , but the exact calculation of an effective diffusion constant 

is only possible given a suitable model for micelles. 

At early times when micelles are initially empty, transient behaviour may be 

observed. This behaviour is characterised by a growth of the very largest droplets, 

even while there remains a net flux of oil from droplets to the micellar solution. 
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The phenomenon is qualitatively the same for all methods of oil exchange between 

droplets, provided that the system starts with zero solubilised oil volume fraction. 

6.9.2 Solubilisation by Micelles 

When micelles are sufficient to solubilise all of the oil droplets' volume fraction, 

then we may obtain expressions for both the diffusion—limited and reaction—

limited solubilisation times, Eqs. 6.30 and 6.76 respectively. However, unless 

both / << 1 and the oil volume fraction qf 0  << (which ensures the steady 

state assumption remains valid), then Eqs. 6.30 and 6.76 must be treated with 

caution. Whether solubilisation of oil into micelles is diffusion or reaction limited 

is determined by whether x is bigger or smaller than SbIR  respectively. 

6.9.3 Can Micelles Destabilise an Emulsion? 

So far in this chapter we have disregarded the presence of trapped species. Will 

micelles destabilise an osmotically stabilised emulsion? Clearly this depends on 

whether coarsening induced by micelles transporting trapped species can occur 

much more rapidly than coarsening by a diffusive flux of the (very small) quantity 

of "trapped" species which would in practice be dissolved in the continuous phase. 

However, determination of coarsening/ solubi li sation rates requires (i) knowledge 

of the reaction mechanism and subsequent reaction rate for solubilisation into 

micelles, for given types of oil, surfactant and co—surfactant, and (ii) knowledge of 

how given types of oil, surfactant, and co—surfactant will determine 0 b  the volume 

fraction of oil that micelles may solubilise. Neither of the above are currently 

well understood, although they may be determined experimentally. Clearly a 

combination of careful experimental work, in conjunction with the formation of 

quantitative theoretical models is required to enable further progress. 



Chapter 7 

Foams 

Foams are all around us. Both you, I, and all multicellular organisms may be 

considered to be a foam. Open cell foams include all sponge and gel like struc-

tures [4], closed cell foams include all cellular structures with solid or liquid walls 

separating a solid, liquid, or gas phase [4]. Hence any connected space spanning 

network (with a higher elasticity/ shear modulus than the disperse phase), is a 

foam. Systems and materials in which the opposite is true, such as grains within 

a continuous gas phase or suspensions in fluid, tend to be described as granular 

matter. 

The mechanisms which govern the evolution of the differing foam types may differ 

dramatically. The evolution of a closed cell foam is typically governed by the rate 

at which the phase within cells may diffuse through cell walls to cells with lower 

chemical potential. However in an open cell foam, there are now two connected 

phases with a network of thickened struts forming via a phase separation firstly 

into regions of differing densities (which may be considered as closed cells with 

thick cell walls), then by a coarsening of the cell walls to form open cells, and a 

sponge/gel like structure. 

In the following chapters we will restrict our attention to closed cell foams with a 
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liquid continuous phase separating a gaseous disperse phase (the case of a dense 

emulsion or liquid-in-liquid foam, is addressed at the end of chapter 9, in section 

9.7). Such foams are generally referred to as closed cell liquid foams [4], and have 

been found to have both many useful applications [5], and to occur in many un-

desirable circumstances [5]. Hence there has been much theoretical, experimental 

and computer simulation work on these foams behaviour and stability. For a 

good general review of closed cell liquid foams see "Foams" in the Kirk-Othmer 

Encyclopedia of Chemical Technology [5]. 

In closed cell gas-in-liquid foams (hereafter simply referred to as "foams"), coars-

ening of foam bubbles and a foam's subsequent destabilisation typically occurs 

by either [5] 

Drainage: The gravitational segregation of liquid and bubbles. 

Film Rupture: The rupture of cell walls separating adjacent bubbles, lead-

ing to the bubbles subsequent coalescence. 

Gas Diffusion: The diffusion of gas (soluble in the continuous phase), from 

bubbles with a high gas pressure (typically smaller bubbles with higher 

Laplace pressures), to bubbles with lower gas pressures (typically larger 

bubbles with lower gas pressures). 

Both this and the following chapters restrict their attention to the coarsening 

and stabilisation of foams which have been stabilised such that coarsening due to 

either drainage or film rupture, may be neglected. For recent reviews of coarsening 

in such foams see the review articles by Glazier and Weaire [65], and Stavans [66]. 

We shall consider the effect of adding an extra species to bubbles, which is highly 

insoluble in the continuous phase and effectively trapped within bubbles. Such 

effects were extensively studied in the context of dilute emulsions, in chapters 

2-5 (and references within), but only recently been reported in the literature on 
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foams [67-71] which we will discuss in the following section. Our previous work 

on emulsions (chapters 2-4) considered emulsions consisting of incompressible 

liquids, with emulsion droplets taken as being spherical and well-separated. 

This chapter firstly reviews previous work on the effects of adding a trapped 

species within foam bubbles. Then it considers the free energy and chemical 

potential of foams consisting of compressible gases, but in which bubbles are 

dilute and hence spherical in shape. This is a generalisation of the work on dilute 

incompressible emulsions to dilute compressible foam bubbles. The more general 

case of non-dilute foams in which bubbles press on one another is considered in 

the following chapter 8, and the exact requirements for stabilisation of foam by 

trapped species are considered in chapter 9. 

Since the insolubility of the trapped species causes the continuous phase to act as 

a semi-permeable membrane, the pressure of the trapped species may be regarded 

as an osmotic pressure. Hence we refer to the stabilising effects due to the addition 

of trapped species as osmotic stabilisation. 

7.1 A Brief History of Osmotic Stabilisation of Foams 

An early case of the stabilising effect of adding a trapped species to foams, was 

discovered in the oil industry. Falls et al [67], reported experimental evidence of 

the stabilising effects of adding nitrogen to steam foams used for oil extraction. 

They analysed the stability of an individual foam bubble and proceeded to derive 

an expression for the quantity of nitrogen required to stabilise a bubble. 

The stabilising effect of nitrogen on foam was also observed in the brewing in-

dustry [68, 69]. Parr [68], described how the low solubility of nitrogen allowed 

the pressurisation of beers which would otherwise have a tendency to form an ex-

cessively large and foamy head. Nitrogen's low solubility means that even under 
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pressure, only a negligibly small quantity of additional nitrogen would dissolve 

into beer. Hence by adjusting the relative quantities of nitrogen and carbon diox-

ide, and ensuring the beer is sufficiently agitated on pouring, it is possible to 

design beers to form the desired size of 'head' after pouring. In addition he noted 

how the small quantity of dissolved nitrogen resulted in the formation of smaller 

foam bubbles and a more attractive, creamier, and more stable head. Barn-

forth [69] observed how even a small mole fraction of Nitrogen could increase the 

stability of a head, attributing this increased stability to the fact that bubbles 

which contain nitrogen tend to be smaller in size. He suggested that smaller bub-

bles have two stabilising effects: (i) the smaller bubbles will take longer to rise and 

so will accumulate more surface active ingredients; and (ii) a foam formed from 

smaller bubbles has a larger surface area and the continuous phase liquid will take 

longer to drain. Neither article mentions the effect of nitrogen on interbubble gas 

diffusion. 

Evidence for the stabilising effect of a trapped species (trapped within foam 

bubbles), was demonstrated in computer simulations of Weaire and Pageron [70]. 

They considered 2D disordered foams (or froths), in equilibrium with respect to 

surface tension and pressure. Computer simulations were performed of the foams' 

evolution, with gas taken to be diffusing between bubbles with a rate proportional 

to the pressure differences between bubbles. Throughout the simulations they 

imposed the condition that (P,) = F, ie that the average pressure of bubbles was 

constant. 

It was found that very small concentrations of trapped species not only stabilised 

the foam, but only minor increases in polydispersity of the foam bubbles were 

required to attain equilibrium. They observed that the effectiveness of the stabil-

ising mechanism arose from the fact that typically, pressure differences between 

bubbles are small compared with the average pressures in bubbles. Hence they 

concluded that only small changes in a bubble's gas composition are required 
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for bubbles to attain equilibrium with one another, and very small quantities of 

trapped species may stabilise a foam. 

Experimental and theoretical evidence for the stabilising effect of a trapped 

species was presented by Gandolfo and Rosario [71]. They considered the the-

oretical situation of two bubbles in equilibrium with one another, and how the 

disproportionation of soluble gas between the bubbles would depend upon the 

concentration of trapped species they contain. They found that for a sufficient 

quantity of trapped species, any disproportionation of soluble species between 

bubbles was small. They concluded that the addition of a sufficient quantity of 

trapped species would counterbalance Ostwald ripening, and have a stabilising 

effect on the foam. 

Experimentally they also studied how the rate of drainage of a foam is affected 

by the addition of trapped species. They showed that the addition of trapped 

species reduced the rate of drainage (a rate which is affected both by gravitational 

effects and the rate of coarsening of foam bubbles), and found that above a 

sufficiently high concentration the drainage rates were the same, independent 

of the additional quantity of trapped species added. This concentration was 

taken to be a critical concentration above which coarsening via interbubble gas 

diffusion was prevented, and compared the critical concentration with that found 

by Kabalnov et al [72] for dilute emulsions. They also considered different ways 

of fitting the results, and hence the rate limiting mechanisms for the drainage 

rate. 

The desire of a soluble species to mix with and dilute a less soluble species (which 

remains trapped within bubbles) was investigated by Fortes and Deus [73]. They 

performed both theoretical and experimental work on the kinetics of adsorption 

of air by a foam consisting of hydrocarbon gas bubbles, in a commercial (Pal-

molive) shaving cream foam. The work however, was primarily concerned with 

the adsorption rate of air, and they did not consider the potential of stabilising 
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foams by the addition of a less soluble species. 

This chapter is primarily concerned with obtaining the free energy and chemical 

potentials of foams consisting of dilute spherical bubbles. We do not consider 

either the coarsening of unstable foam containing trapped species, or the increases 

in polydispersity as a stabilised foam attains equilibrium; a start is made on the 

first of these topics in chapter 10. The rest of this chapter is organised as follows. 

Section 7.2 describes the types of foams we consider and the conditions under 

which they are taken to arise. This enables us to determine the thermodynamic 

potential required to study foam equilibria, and simplifications which may be 

made to it for the systems considered here. We then start to generalise the work 

of chapters 2-3 on dilute incompressible emulsions to dilute compressible foam 

bubbles, deriving their free energies and chemical potentials in sections 7.3, 7.4 1  

and 7.5. 

7.2 Foam Equilibria 

This section describes the types of foam we consider, and the conditions under 

which we assume them to be formed. We consider the thermodynamic potential 

relevant to the foams' equilibria, and approximations which may be made to 

simplify the analysis. 

In the following we consider gas-in-liquid foams with bubbles containing a soluble 

and a trapped gas component, and with a fluid phase maintained at a fixed 

external pressure which is taken as the atmospheric pressure P. In addition to 

the trapped and soluble gases within bubbles, there will also be a small quantity 

of liquid vapour evaporated from the continuous phase. Similarly the continuous 

liquid phase will contain dissolved (soluble) gas. 
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The foam constitutes a closed system at pressure P and temperature T, con-

taining a fixed number of liquid and gas molecules. Hence the equilibrium state 

is obtained by minimising the system's Gibbs free energy at a fixed number of 

bubbles and soluble gas molecules. 

The Gibbs free energy of the foam may be written as 

G=Fc+Fi+cT>JAi+P(Vc+>Vi) 	 (7.1) 

where F, F are the Helmholtz free energies of the continuous phase and the gases 

in the ith disperse phase bubble respectively, V, is the volume of the continuous 

phase, and V, A j  are the volume and area of the ith disperse phase gas bubble. 

We now make the following reasonable approximations. Since we expect vari-

ations in bubbles pressures to be small compared with the actual gas pressure 

within foam bubbles, we take variations in the quantity of gas dissolved in the 

continuous phase as negligible, and hence variations in the free energy of the 

continuous phase due to dissolved gas as negligible*.  We also restrict ourselves to 

systems in which only a very small fraction of the liquid molecules evaporate into 

the gas phase (eg at 25 degrees Celsius, and 1 atmosphere, the vapour pressure 

of water is '-S-'  3 x 102  atmospheres [75] and negligible compared with those of 

the added gases), and we assume that we may neglect changes in the free en-

ergy due to liquid vapour. Finally, we take the continuous liquid phase to be 

incompressible. 

Armed with these arguments, we assume that 

1. Changes in the free energy of the continuous phase are negligible, so that the 

continuous phases free energy may be regarded as constant and unchanging. 

* Since we consider systems in which a very small fraction of gas dissolves into the continuous 

phase (eg at 1 atmosphere and room temperature 3.3 grams of CO2  dissolves in 1000 grams 

of water [74]), changes in the free energy of the continuous phase due to the dissolved gas may 

be entirely negligible. 
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To calculate the free energy of the disperse phase gas bubbles, we need only 

consider the trapped and soluble gases, and the bubbles' interfacial energy. 

Changes in the system's volume are due to changes in the volume of bubbles. 

To obtain the equilibrium state of the foam, we need only consider the minimi-

sation of those contributions to the Gibbs free energy which are neither constant 

or negligible. So we need only consider the minimisation of the Gibbs free energy 

of bubbles containing soluble and trapped gas, ie to minimise 

Gd=F+FT +crA+PV, 	 (7.2) 

where Gd is the approximate Gibbs free energy of the disperse phase, F23  and 

FT are the Helmholtz free energies of soluble and trapped gases respectively 

(assumed to be noninteracting). Gd may also be written as Gd = Ej C2 , where 

C2  = F + F7  + uA2  + P1/1  and is the Gibbs free energy of the ith bubble. 

7.3 The Helmholtz Free Energy of Dilute Ideal Gases 

We treat the Helmholtz free energy per molecule as composed of a local part f, 

due to local molecular properties and interactions, and an entropy of mixing. The 

Helmholtz free energy of a bulk quantity of ideal gas consisting of Nb disperse 

phase molecules in a volume Vb is then given by [76] 

Fb = Nbfb + NbkT [in (Nbv')b  - 1] 	 (7.3) 

where vb (h 2 /27rmIcT) and has the dimensions of volume, with h being Planck's 

constant, m the molecular mass, T the temperature, and the subscript b is to 

remind us that we consider a bulk quantity of gas. 

tWe take the surface tension as constant and independent of bubble area. 
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7.4 Gibbs Free Energy of a Bulk Gas Phase 

The Gibbs free energy of a bulk gas phase without trapped species is given by 

Gb = F + aAb  + PVb 	 (7.4) 

where Fbs is the Helmholtz free energy of the soluble gas, Ab is the interfacial area 

of the bulk gas phase, and 14 is the volume of the bulk gas phase. Using Eq. 7.3 

we obtain 

Gb= fN+kTN[ln( 1fi'- 8 )-1]+ 	
(7.5) 

crAb+PVb 

where Nbs is the number of molecules of soluble gas, and f, vs are as defined in 

section 7.3 but for the soluble gas. 

Writing the partial pressure of the soluble species as P, then since the gas phase 

only contains soluble molecules, equilibrium between the continuous and gas 

phases requires P = Pb . This requirement that P = Pbs is later referred to 

as a requirement for mechanical equilibrium, since were P Pb' then mechanical 

work could be done as the interface moves until P = P. 

The chemical potential of the soluble gas may be obtained from 1 4 = 

with the chemical potential of the soluble gas in the bulk phase denoted by .ttb, 

we find 

Pb = f + kTln 
(Nv 	

(7.6) 

where we used the ideal gas equation P6s = NkT/ Vb8,  P = P, and noted that a 

bulk phase will have a flat interface with (8A618Nb)T,p = 0. 
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7.5 Gibbs Free Energy of Dilute (Spherical) Bub-

bles 

We now consider the free energy of bubbles which contain both soluble and 

trapped gas molecules. The foam bubbles are considered to be sufficiently di-

lute that bubbles are spherical in shape. Then a bubble of disperse phase of 

volume V, and area A, has a contribution to the systems Gibbs free energy given 

by 

Gj8+FT+crAj+pV 	 (7.7) 

Noting that the increased pressure within a bubble will only affect the densities 

of the gases, we may use the Helmholtz free energy for bulk phases (Eq. 7.3) to 

obtain the Helmholtz free energies of the soluble and the trapped gases, so 

G = 

fTN2 T +kTNT [In  ("') —1] 	 (7.8) 

+aAH-PV 

where Nj5 and NT are the number of soluble and trapped molecules in the disperse 

phase bubble. 

The addition of extra soluble gas molecules to a bubble will result in an increased 

internal pressure, and subsequent changes in its volume and interfacial area. Since 

the volume and area of a spherical bubble are not independent, when calculating 

a bubble's chemical potential we need only consider changes in volume and the 

number of soluble species it contains. So denoting the soluble disperse phase's 

chemical potential by 1a, and using the ideal gas law for the soluble and trapped 

species respectively, we find 

aGi i  (a1\ (ac\ 
= 	i) T,P,V + 

	

T,P 	T,P,N! 	

(7.9) 

with 
aGi 	

=f+kTln(NSVS ) 
	

( 7.10) 
\ 	ZJT,P,V 
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and 

(

OGi  
-' 	=P+PG_P3 _PT 	 (7.11) 

\ 	Z J T,P,N 

where P, pT  are the partial pressures of the soluble and trapped gases respec- 

tively, and 	= a(ôA/ôV) is a pressure determined by a bubble's spherical 

geometry. We note that PG  for a spherical 3D bubble is identical to its Laplace 

pressure, but for the benefit of later chapters we keep PG  and the Laplace pressure 

as distinct from one another. 

We now assume that a bubbles volume adjusts rapidly compared with flux of 

soluble disperse phase, and take (8G119V)T,P,N8 = 0. This corresponds to the 

requirement of mechanical equilibrium, with the pressure inside a bubble being 

balanced by the combination of external pressure and the additional geometric 

(or Laplace, for a spherical bubble) pressure due to surface tensions. So taking 

(aG/aV)T,P,NS = 0, and noting that for a spherical bubble of radius R, P? = 

2u/R 1 , we find 

	

P3 +PT=P+i 	 (7.12) 
Ri 

which is the well known Laplace equation [39]. So we obtain the chemical poten-

tial as 
SS 

1i1=f+kTln( 
Nivb) 	 (7.13) 

This differs from Eq. 7.6, since Ni'lVi  depends on both the soluble and the 

trapped species; it is not equal to the same ratio evaluated in a bulk gas phase. 

The ideal gas equation for the bubble's soluble gas has 

PS 	Nis  

p714 
kTV, 

So we may use Eqs. 7.12, 7.13, and 7.14, to get 

= f + kTln ((P + 	- P?')
) 	

( 7.15) 
kT 	R,  

TThis also corresponds to minimising the free energy at a fixed number of soluble gas 

molecules in a bubble (approximately true over short times), which is accomplished by min-

imising G by changing the only free variable, the bubble's volume. 
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Since we are interested in how the trapped species and the bubble geometry alter 

the chemical potential from that of the bulk gas phase, we consider - 14 

and rearrange to get 
- DT\ 

R 	•L2 

[Lj = kTln (i + 	
) 	

(7.16) 

(where we also used --- 	- 	in Eq. 7.6). kT - kT - V 

Provided ( - PT)/P << 1 then we may expand Eq. 7.16, which to O(( -Ri 

pT)/p) gives 
kT Go-  

	

- PT) 	 (7.17) 

We now define a volume per molecule the ith gas bubble by v 	T'/(N + 

NT), and also write the partial pressure of the trapped species as pT 
= NTkT/ 

(47rR/3). Then using the bubble's ideal gas equation (P + Ri )/kT (N + 

NT)/V, and continuing to work to O(/P) we obtain Ri 

(

2o, 	NTkT \ 

Ri -(47r/3)R) v (7.18) 

The assumption of /P << 1, corresponds to taking bubbles as effectively incom-

pressible (in that although coarsening may exchange volume between bubbles, the 

total bubble volume will remain constant). Hence the resemblance of Eq. 7.18 to 

Eq. 2.10 in chapter 3 for a spherical incompressible emulsion droplet, ie 

/2o 	iç,kT \ = 	
- (47r/3)R) vb 	 (7.19) 

with 77 being the number of trapped species in the emulsion droplet, and Vb being 

the volume per molecule of the bulk liquid disperse phase. 



Chapter 8 

Non-Dilute Foams 

This chapter considers non-dilute foams in which bubbles press against one an-

other and are no longer spherical in shape. To help clarify the degree to which 

bubbles press on one another, we will follow the approach of Princen et al 

[77-79] and consider the compression of a dilute foam by a piston with a semi-

permeable membrane. Although the liquid phase may flow freely through the 

semi-permeable membrane, bubbles may not and hence exert an osmotic pres-

sure H on the piston. Hence we may form a non-dilute foam by an osmotic 

compression of a previously dilute foam. 

The main subject of this chapter is how pressures within bubbles are affected by 

the osmotic pressure II. In the dilute case bubbles were able to locally minimise 

their surface area by adopting a spherical shape, while under atmospheric pressure 

P. Hence 3D bubble pressures were given simply by P2  = P + 2a/R2 , where 

2o- /R 2  = cr(3A 2 /aV), and is the Laplace pressure of a spherical bubble. Now 

however the osmotic pressure H exerts a pressure on bubbles, causing them to 

distort and increase their surface area. 

The chapter starts by discussing the interaction between bubble membranes in 

section 8. 1, and section 8.2 motivates the suggestion that a bubble's pressure may 
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Figure 8.1: Formation of a non—dilute foam by the osmotic compression of a dilute 

foam, with an applied osmotic pressure II. 

be expressed as = P + II + P, with P <<H and analogous to the Laplace 

pressure of a spherical bubble. We support and clarify the discussion in section 8.3 

by carefully considering observations of dry 21) foams, before presenting a simple 

monodisperse 21) model in section 8.4 for which we exactly calculate bubble 

pressures and confirm that P = P + H + pG as previously proposed. Section 

8.5 considers when the arguments will generalise to polydisperse systems, and 

presents two simple examples of highly polydisperse systems which demonstrate 

that our proposed equation for bubble pressures cannot always be correct. After 

outlining the conditions under which we expect P = P + 11+ P~G  to be valid, we 

then consider an argument in section 8.6 which enables us to determine the order 

of magnitude of (Pr). 

Motivated by the previous sections we then define in section 8.7 the "geometric 

pressure" as F? P - P - H, and suggest a form for Pi'. Since bubbles' pressure 

differences determine the rate of coarsening, then since P - P3 = p2G pG 

differences in bubbles' geometric pressures will determine the rate of coarsening 

of a foam. Finally we consider some further consequences of our discussion, 

deriving the analogy of Von Neumann's law when bubbles contain trapped species 

in section 8.8, and propose a model for bubble arrangements in section 8.9 to 
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explain the experimental observations of Durian et al [86,87]. 

8.1 Role of the Disjoining Pressure 

In a very wet foam with a large volume fraction of liquid, bubbles will locally 

minimise their free energies by adopting a spherical shape. However, foams with 

small volume fractions of liquid consist of bubbles in contact with one another, 

and the bubbles are distorted from their ideal spherical shape. In the limit of 

a totally dry foam, 3D bubbles will form polyhedral bubbles (but with curved 

interfacial faces), and monodisperse 2D foams will form hexagonal bubbles. Dry 

foams can be obtained from wet foams by lowering the volume fraction of the 

continuous phase either by compressing the foam with a semipermeable membrane 

through which only continuous phase may pass, or by increasing the bubbles' 

volume fraction by lowering the system's pressure P so that bubbles may expand 

and press against one another. 

Similarly, compressed emulsions are emulsions consisting of incompressible liquid 

droplets, pressed together by the action of a semipermeable membrane through 

which only continuous phase may pass, to result in touching, non-spherical emul-

sion drops. 

Both dry foams and compressed emulsions consist of bubbles/ droplets of disperse 

phase, pressed together so that the majority of the continuous phase resides in the 

Plateau borders which border the bubble-bubble faces. Hence a typical bubble's 

interface consists of gently curved faces which border adjacent bubbles, and highly 

curved regions at Plateau borders (see figure 8.2). If we consider the concentration 

of the disperse phase dissolved within plateau borders, we find it should be higher 

than that above the flattened bubble interfaces. This would result in a continual 

flux of disperse phase, evaporating at the plateau borders and then subsequently 
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Figure 8.2: Non—dilute dry foams consist of bubbles pressing on one another with 

gently curved adjacent bubble faces, and regions of high curvature ("Plateau borders") 

in which the majority of continuous phase resides. 

being readsorbed at the flattened faces. Since thermal equilibrium forbids the 

presence of cyclical steady states, we can deduce the existence of an extra force 

which increases the chemical potential of solubilised disperse phase in the liquid 

films separating the flattened interfaces. The extra "disjoining" force is directly 

or indirectly due to the intermolecular interactions between adjacent bubble faces 

(and their ion clouds, in the case of double layer forces), and must increase the 

chemical potential of solubilised disperse phase in the flattened films so that at 

equilibrium, there is zero flux. 

Buzza and Cates [80], considered the contribution of the double layer forces to 

an emulsion droplets free energy. They found that for typical emulsions with 

radii = 50tm, ionic concentration (in the continuous phase) = 0.1M, surface 



8.1. ROLE OF THE DISJOINING PRESSURE 	 119 

tension 10 x 10 3 Jm 2 , and surface charge density 0.2Cm 2 , that the potential 

effectively acted as a 'hard wall', with the contribution to a droplets free energy 

being negligible compared with that due to surface tension between the disperse 

and continuous phases. Hence although in an emulsion the double layer forces 

provide the mechanism by which equilibrium is maintained, we may neglect their 

contribution to an emulsion droplets free energy. 

The air water surface tension is 10 x 10 3 Jm 2 , and foams typically use sim-

ilar surfactants to emulsions (eg SDS [51) while typically also containing elec-

trolytes [5]. Hence we shall take the double layers contribution to the free energy 

of a foam stabilised by ionic surfactants as being negligible. The interaction 

between nonionic surfactants is even shorter ranged than that between ionic sur-

factants. So the potential between nonionic surfactant membranes is even more 

like a hard wall than the potential for ionic surfactants. Hence we also take 

the contribution to a bubble's free energy due to the interaction between non-

ionic surfactants, as negligible compared with the surface tension between the 

disperse and continuous phases. So in all that follows we assume that the dis-

joining pressure only indirectly affects a bubble's free energy, by increasing its 

internal pressure and distorting its shape with an associated increase its surface 

area. The above assumptions will be used in all that follows. Next we provide a 

simple calculation for the chemical potential within foam bubbles. 

Consider an element of volume within a gas bubble. Within such a volume, the 

gases chemical potential is determined solely by its pressure. So if we treat the 

gas as ideal, and apply the Gibbs—Duhem relation at fixed T to the ith bubble, 

then we have [39], 

Ndj = VZ dP8 	 (8.1) 

which may be integrated using the ideal gas equation PV2  = NkT, to obtain 

the soluble species chemical potential as 

/ p \ 

(8.2) 
\.Pbs8) 
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Since a bulk gas bubble must experience a pressure P for dilute foams or P 
P + II for non—dilute foams (see figure 8.3), then Pb' = P and we have 

\ 
i=i+kTln( / 

P
-4-

S 	
(8.3) 

'p1 

IN 

Figure 8.3: The increase in pressure of a bulk gas due to interfacial tension is negli-

gible, so the pressure of a bulk gas will balance (and hence equal) P + H. 

8.2 'Softness Simplifies' 

When considering the effect of compressing a foam or emulsion, the softness of 

the system may result in drastic simplifications. 

For example, if we consider compressing the system with a semipermeable mem-

brane, the soft previously spherical bubbles will distort in shape and the continu-

ous phase will flow so that the additional pressure is evenly distributed amongst 

bubbles/ droplets. This contrasts with granular materials for example, in which 

compressive forces vary with position, with a compressive stress typically being 
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distributed along lines which percolate from the top (where the pressure is ap-

plied), to the bottom of the structure [81,82]. Were the grains to become 'soft', 

then the grains would distort and distribute the stress tangentially to the previ-

ous 'stress lines', resulting in the stress becoming increasingly uniform as grains 

become increasingly soft. 

In the simplest scenario of 2D, monodisperse foams /emulsions, the bubbles would 

be compressed into monodisperse hexagons (with 'rounded' corners), and equal in-

ternal pressures. However, compression of a general polydisperse foam will result 

in bubbles deforming into various different geometries, depending on properties 

of both the bubble itself and those of its neighbours. Hence a given bubble will 

have a pressure which depends not only on its volume (as for spherical bubbles), 

but on the arrangement and pressures of all of its adjacent neighbours. 

The above discussion may be clarified by noting that bubble interfaces which press 

on one another must do so with a radius of curvature of the order of hR (where 

R is the radius of a bubble with the same volume in an uncompressed state). 

Hence pressure differences between bubbles will be of the order of a/R, so that 

as H and bubbles' pressures are increased, the increase must occur homogeneously 

throughout the foam. 

So in a sufficiently soft and monodisperse system in which all bubbles are com-

pressed and pressing on one another, we expect the osmotic pressure H to be 

fairly evenly distributed between bubbles. In addition we expect a further in-

crease in bubbles' pressures due to interfacial tension, and expect a contribution 

to a bubble's pressure of P, which is analogous to the Laplace pressure of a 

spherical bubble. Hence we expect that a bubble's pressure P2  may be written as 

P=P+ll+P G (8.4) 

which for a dilute uncompressed 3D bubble of radius R2  is 

P=P+P2G 	 (8.5) 
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with PG  = 2a/R, and for a bulk gas bubble in a compressed foam would require 

Pb=P+ll 

as emphasised in figure 8.3. 

Eq. 8.4 also enable us to clarify what we mean by a 'soft' system. If bubbles are 

to become highly distorted we require II >> P, so in a soft foam all bubbles will 

have 

ll>>l 
	

(8.7) 

We note that generally we will not know what P is, nor will it always be well 

defined. The definition of P2G  is clarified later, and a specific example where Pf 

is exactly determined is given in section 8.4. 

8.3 Case Study: Dry 2D Foam 

To clarify and support the above arguments we shall carefully consider some 

observations of dry 2D foams. 

There is a popular misconception that in a dry 2D foam (with negligible liquid 

volume fraction), 3 edges meet at a vertice with angle 271/3. This is an increasingly 

good approximation as foams become increasingly dry, but never strictly correct 

(for the physically correct scenario of small though non—zero water content). 

We may prove the assertion is false by noting the following: 

If 3 edges meet at 271/3, then the 3 meeting bubbles must have the same 

radius of curvature r at the plateau border (by geometry, see figure 8.4). 

Since a bubble's total pressure P is given by P2 = cr/i', + F, then any given 

bubble must have the same radius of curvature r2  at all of its vertices. 
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Figure 8.4: Diagram on left of figure shows how if edges meet at 27r/3, then bubbles 

have equal radii of curvature at their plateau borders. Diagram on right of figure 

shows how differing radii at bubble plateau borders lead to edges no longer meeting 

with angle 27r/3. 

Then 1 and 2 together imply that all bubbles have the same r 2  = r, and hence that 

all bubbles must have the same pressure! However since coarsening occurs and is 

due to pressure differences (chemical potential differences) between bubbles, then 

the assertion that bubble edges meet with an angle of exactly 2n/3 must be false. 

Nonetheless, the observation that to a very good approximation edges meet with 

angle 27r/3 in turn implies that differences in pressure between bubbles must be 

small and much less than Pi  = P + u/re , where r2  is the radius of curvature 

of a bubbles plateau border. We make the following observations which are 

increasingly true as a foam becomes increasingly dry: 

a/ri  >> cr/Re , so there is a large increase in bubbles' internal pressures (due 

to H) above those of equivalent bubbles in a dilute (uncompressed) foam. 

F, F3 , so that the increase in bubble pressure is evenly distributed. 
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The relatively small curvature of adjacent bubble faces means that pressure 

differences between bubbles LPZj are of order a/R2 , where R. is of order 

the square root of the average bubble area. 

The angles between bubble edges (defined by extrapolating bubble edges 

until they meet within a Plateau border), tend to 27r/3. 

In addition we note that P > APij means that variations in the area per gas 

molecule are of order APi j lPi  << 1 (where we assume the gas is ideal). So if we 

consider coarsening of a dry 2D foam by interbubble gas diffusion, we may treat 

the gas as if it were incompressible. 

We may compare the above observations with our qualitative discussion in section 

8.2, which for a dry (soft) foam would suggest we write P = P + H + pG,  

with H >> Pf. Hence by our definition of a "soft" foam H >> F, so that 

P 13 P + II (as in item 2). Since P = P + H + pG leads to AP,3 = PG - p9 

then if we assume Pf cr/Rj , we immediately have H>> PG  o/R (as in item 

2), and LPZ3  a/R1  (as in item 3). So comparisons with a dry 2D foam are 

consistent with our qualitative discussion in section 8.2, and are also consistent 

with the hypothesis of Pf3  '-. u/R, (which we might expect if P is truly analogous 

to the Laplace pressure of a dilute, spherical bubble). We note that since dry 3D 

foams have fourfold vertices with faces meeting with an internal angle of 109.47 

degrees [65], we expect similar arguments to the above to also apply to dry 3D 

foams. 

In the next section we consider a simple model of a monodisperse 2D foam, for 

which we may exactly calculate 11 and PG .  
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8.4 A Simple 2D Model 

We consider a monodisperse, incompressible, 2D foam, in which bubbles are com-

pressed by an osmotic pressure H. Since the bubbles are monodisperse, they will 

form an hexagonal array of bubbles which are distorted into approximately hexag-

onal shapes but with rounded corners (see figure 8.5). We take the surface tension 

to be constant, and neglect any (presumed small) interaction energies arising from 

the disjoining pressure between bubble interfaces*.  For simplicity the separation 

between adjacent bubbles is taken to be negligible (ie zero). A schematic picture 

of the foam is given in figure 8.5. 

Figure 8.5: We consider a model of a 2D foam which consists of bubbles of the same 

size which form a hexagonal array. Since bubbles are equivalent they have the same 

pressures and hence radii of curvature at their Plateau borders. 

Since the bubbles are taken to be incompressible (for small changes in their 

interfacial area), then in an infinitesimal compression the osmotic pressure H 

*See  section 8.1 for details. 
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does work by removal of liquid continuous phase from bubbles' Plateau borders. 

So writing the area of liquid in the system as A7 3 , the interfacial length within 

the system as LSYS,  and the total area of bubbles in the system as A 3 , then we 

have 
\ 

lldAr 	
(OLSYS 

8  = — a 
(\ oA Y  ) 	

dAYS 	 (8.8) 

For the monodisperse, hexagonal system of bubbles studied we may associate an 

area of liquid Al 2  with each bubble, with Al 2  given as the sum of one third of 

the volume of liquid at each of its Plateau borders. Then since the system is 

monodisperse we have A 1 1 = Ajj  and A- = A, so that 

HdA l2  = -a2 
(i)A, 

dA1. 	 (8.9) 

gives 
\ 

ll 	
Hi1 

=—cr(----J 	 (8.10) 
/ 

aA111 Ai 

where A 1 , L 2  are the area and interfacial length of the ith bubble respectively. 

As discussed in section 8.2 we expect a bubbles pressure to be given by P2  = 

P + H + F, with P2G  being an additional increase in bubble pressure, typically 

due to interfacial tension and analogous to a dilute bubble's Laplace pressure. So 

by analogy with the Laplace pressure we postulate an additional pressure due to 

surface tension, calculated for an isotropic growtht at fixed liquid area. So for 

the monodisperse system considered here we postulate 

(aAi ) A I  

PGPG J 
 

with (ÔLI119A1)A 1  calculated for an isotropic expansion, and with p2G = pG the 

same for all bubbles (since the system is monodisperse). Since for an isotropic 

expansion pG  will depend on a bubbles geometry, generally we refer to pG  as a 

bubble's "geometric" pressure. 

The symmetry of the hexagonal system suggests we consider an isotropic expansion. 
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The postulated geometric pressure for a nearly hexagonal bubble is calculated 

next, in section 8.4.1. Then in section 8.4.2 we provide an exact calculation 

for the systems osmotic pressure, and find that the pressure increase within a 

bubble (above atmospheric pressure) is given exactly by the sum of the osmotic 

pressure II and the proposed geometric pressure pG•  This is an entirely rigorous 

result, exact for the system studied (shown in figure 8.5). The result confirms our 

physical arguments, while also (as a corollary) providing an exact expression for 

the osmotic pressure in terms of the radius of curvature of the rounded corners 

of the hexagonal bubbles (or equivalently the volume of liquid in the osmotically 

compressed foam). It also clarifies and confirms the existence of an additional 

pressure due to interfacial tension, which for the system studied is proportional to 

the rate of change in interfacial area with increase in bubble area, for an isotropic 

expansion at fixed liquid content (ie, fixed radius of curvature of plateau borders). 

8.4.1 The Geometric Pressure of a Nearly Hexagonal Bubble 

We consider nearly hexagonal bubbles, and use the definition of pG  postulated in 

Eq. 8.11. Since pG  is calculated at a fixed volume of liquid per bubble, it must 

be calculated at a fixed radius of curvature at the Plateau borders (since each of 

a bubble's Plateau borders are equivalent, and of a fixed total number). Hence 

we may write Eq. 8.11 as 

\ 
pG = . ()r 

(01  

)r 	
(8.12) 

01 	i9A 

where I is the length of the fiat bubble-bubble faces, and where since bubbles are 

equivalent we've ignored the subscripts on L 2  and A 1 . 

In appendix C we obtain the exact expressions for the interfacial length, and area 

of a nearly hexagonal bubble as 

L=61+2inr 	 (8.13) 
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and 

A = irr2  + 61r + 
2 	

(8.14) 

respectively. So we obtain 

	

(

OL) 
= 6 	 (8.15) 

r 

and 

('A
Oi\ 	1 

= 6r + 3/a1 	
(8.16) 

which gives 

pG= 	6a 	
(8.17) 

6r + 3./l 

Using Eq. 8.14 we obtain 

- —6r + /36r2  + 6/(A - 7rr2) 	
8 18 

- 3 (.) 

where we note that we've taken 1 as the physically correct, positive solution for I 

from Eq. 8.14. So substituting Eq. 8.18 into 8.17, gives after some algebra 

PG = 	6a 	
(8.19) 

\/36r2 + 6-4./a(A - irr 2 ) 

which we shall use in the following section. 

We note that pG  may also be written as 

pG_ V1273
820 

A+A1 

with 

A,= (2/_7r)r2 	 (8.21) 

which equals the area of liquid continuous phase associated with a bubble (this 

is shown to be the case in the following section 8.4.2). 
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8.4.2 Exact Calculation of the Osmotic Pressure 

The osmotic pressure is given by Eq. 8.10 as 

	

11 = —a ()
A 	

(8.22) 

where since bubbles are equivalent we continue to ignore the subscripts on L, V, 

and A. The total area of a bubble is conserved during an osmotic compression, 

so that a bubble's radius of curvature at its plateau borders r and the length of a 

flat interface between itself and an adjacent bubble I are not independent of one 

another. Hence since the volume of liquid in the plateau border is given in terms 

of bubbles' radii of curvature r at the Plateau border, we may write Eq. 8.22 as 

/aL I 
11=—al—) 

\ôrJA 	
(8.23) 

We may calculate the volume of liquid at a plateau border in terms of r. From 

figure 8.6 we see that the area of liquid within the plateau border is given by 

Apb = \/r2 - 1  2 
irr (8.24) 

So since each bubble has 6 vertices (for an hexagonal packing), and each vertex 

is shared between 3 neighbours, we have a total volume of liquid per bubble of 

	

A 1  = 6 	- '2) = r 2 	(2/ - 7r) 	 (8.25) 

and hence obtain 

(8.26) 
,Mi =  r(12 - 27r\/) 

We note that an equivalent calculation was done by Princen [77-79], for the osmotic pressure 

of monodisperse, cylindrical, emulsion droplets. Princen's calculation gives the osmotic pressure 

in terms of the volume fraction of droplets, and the volume fraction of close packed cylindrical 

droplets. However Princen [77-79] does not interpret the osmotic pressure in terms of a bubbles 

pressure P1  and its geometric pressure as we will do here. Appendix D confirms that the 

two calculations for the osmotic pressure give the same result. 
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r 	r 

Figure 8.6: Each Plateau border has 3 adjacent bubbles, each with radius of curvature 
r at the Plateau border. Hence the radii of the 3 bubbles form an equilateral triangle 
which encloses the Plateau border. 

where we have multiplied numerator and denominator by 	for clarity of pre- 

sentation in the following. 

Eq. 8.18 gives I in terms of r and A, with 

= —6r + J36r2  + 6/(A - 7rr2 ) 
(8.27) 

3 V3_ 

Substituting Eq. 8.18 into 8.13, and differentiating, leads after some algebra to 

 

(aL)
(27r"-12)   

A = 	 ( - 	

6r 

36r + 6(A - r2 	
(8.28) 

Hence using Eqs. 8.23, 8.26, and 8.28 we obtain 

6a 	
(8.29) 

r 	36r2 + 6"(A - 7rr2 ) 

which comparing the last part of Eq. 8.29 with Eq. 8.19, enables us to write 

(8.30) 
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If we consider a bubbles plateau border, then we find that the total pressure P 

within a bubble must satisfy 

(8.31) 

where P is the atmospheric pressure. So using Eq. 8.29, gives 

P=P+ll+PG 	 (8.32) 

Hence after the osmotic compression of a monodisperse array of 2D bubbles, their 

internal pressure is increased above that of atmospheric pressure by an amount 

given by a sum of the applied osmotic pressure II and their geometric pressure 

P  

The exact result Eq. 8.32 confirms our physical argument for the pressure in a 

bubble following osmotic compression. The result also confirms our hypothesis 

for the system studied, that the geometric pressure must be calculated for an 

isotropic expansion at a fixed radius of the plateau borders r. 

It is interesting to note the behaviour of Eq. 8.19 for pG  which has. 

PG 	 6a
= 	 (8.33) 

J36r2 + 6/3-(A - 7rr 2 ) 

In the dilute limit A -+ 7rr 2  and hence pG 	= / o//A, and in the dry limit 

0 and hence P G  So since 1.05, we find 

the surprising result that pG  is approximately the same for dilute bubbles as it 

is for compressed bubbles, regardless of the magnitude of H. 

8.5 Polydisperse systems 

We now consider more carefully the requirements for us to be able to write even 

for polydisperse foams that, 

P=P+H+fi 	 (8.34) 
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and to also have 

pG << p . 	
(8.35) 

Clearly for the above equation and conditions to apply, it requires that all bubbles 

will experience an osmotic pressure that results in all bubbles having a pressure of 

the same order of magnitude. For the packing of monodisperse 2D foam bubbles, 

the homogeneity of the system resulted in all bubbles experiencing the same 

osmotic pressure, and the hexagonal structure of monodisperse bubbles ensured 

all bubbles had the same pressure. 

There are two main factors which determine whether the above will generalise, 

these are: 

I. The degree of compression. This is determined by the competition between 

the osmotic pressure trying to distort bubbles, and their geometric pressure. 

If the system is soft with H >> a/Re , with R of the order of typical bubble 

area, then the system will be highly compressed and plateau borders will 

be small (and the foam fairly dry). 

2. The degree of polydispersity. At very high polydispersity this may en-

able sufficiently small bubbles to be uncompressed, by residing within the 

plateau borders between larger bubbles (see figure 8.7). 

If the system is sufficiently monodisperse, and sufficiently compressed that no 

bubbles may reside in an uncompressed state, then all bubbles will experience 

an osmotic compression. If plateau borders are sufficiently small in comparison 

with bubble sizes (le, if the foam is fairly dry), then requirements for mechanical 

equilibrium impose increasingly accurate restrictions on the angles with which 

bubble edges and faces must meet. For example a 2D foam will have edges meeting 

with angle 27r/3, an approximation which becomes increasingly good as the 

foam becomes drier. A foam in which edges meet with an exactly fixed angle (eg 

27r/3 for a dry foam), would have bubbles with exactly equal radii of curvature 
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Figure 8.7: A foam in which polydispersity is too large and osmotic pressure too 

small may have bubbles which do not experience the osmotic pressure II. Such 

bubbles would have a pressure Pi  = P + P, as opposed to P2  = P + H + PG as 

proposed above. 

at their Plateau borders, and hence equal bubble pressures. Finally, noting that 

the curvatures between adjacent bubbles must remain - 1/R 2  << 1/r e , then as a 

foam becomes increasingly dry the pressures within bubbles become increasingly 

equal, and pressure differences increasingly small. Hence our expression of P, = 

P + II + pG with PG << P2 , will become increasingly accurate as foams become 

increasingly dry. 

We emphasise that bubbles' pressure differences are of the order of Pf- ', and that 

Or/R1 suggests that P a/R2  as opposed to the much greater Laplace 

pressure at Plateau borders of the order of a/ri . Next in section 8.6 we will 

provide an argument for (PG) ..' a/, a result which suggests that we may define 

P9 Fjcr/V_D with D the bubble's dimension, and have F '-- 1. 

Finally we note that in a weakly compressed foam of arbitrary polydispersity, 

Pi  = P + H + P? will not generally hold, and that for a given H even the volume 

of the foam will depend on the arrangement of bubbles within the foam. This is 
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proven in figure 8.8 by a similar argument to that in figure 8.7. In the foam on 

n 

 

 

Foam 
volume 
depends 
on the 
packing 
of 
bubbles. 

Figure 8.8: At a given osmotic compression H, the volume occupied by a weakly 

compressed polydisperse foam will depend on the way in which bubbles are arranged. 

This is emphasised by the foams on the left and right of the figure, which both contain 

the same bubbles but whose different bubble arrangements result in their occupying 
different volumes. 

the left of figure 8.8 smaller bubbles are uncompressed and reside within Plateau 

borders, so that the volume of the foam is determined by the volume fraction 

of the larger bubbles alone. However in the foam on the right of figure 8.8, 

the smaller bubbles are all at the top of the foam and under compression, and 

contribute to a larger foam volume. Hence at a given osmotic pressure H both a 

foams volume and its bubbles' pressures, may in general depend on the particular 

way in which bubbles are arranged. 

8.6 Alternate Approach: Force Balance 

Here we consider a different approach for the calculation of H and pG which 

will enable us to obtain the order of magnitude for pG  when bubble sizes are 
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polydisperse. We shall firstly apply the method to the model for a monodisperse 

2D foam described in section 8.4, and confirm the previous results. We note that 

the method has much in common with one used previously by Princen [77,78], 

and is valid for both compressible and incompressible systems. 

Imagine a semipermeable membrane with a shape which follows the top surface of 

a line of hexagonal bubbles (see figure 8.9), SO that bubbles remain hexagonal in 

Figure 8.9: We imagine a semipermeable membrane with a shape that maintains the 

hexagonal bubble structure. For example you could imagine a soft membrane initially 

between bubble layers, which subsequently hardens and enables you to remove the 
bubble layers above the membrane while maintaining a pressure H on the bubbles 

below the hardened membrane. We may also apply the same thought experiment 

when bubbles are polydisperse in size and shape. 

shape. Then since the membrane doesn't move, the total force on the membrane 

due to (H + P) must balance the total force on the membrane acting from below. 

If we consider a typical bubble adjacent to the membrane (see figure 8.10), then 

for the forces above and below to balance we requires 
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IF3/2 	IF3/2 

% 	
- / - 

Figure 8.10: The pressure acting from below the membrane is P at the Plateau 

borders, and P where the bubble presses on the membrane. The force exerted 

upwards on the membrane is the pressure multiplied by distance over which it acts, 

projected onto the horizontal axis. 

2P1 - + P2r = (H + P) (2 	+ 2r) 	 (8.36) 

Writing P1  = P + a/r and rearranging, we obtain 

ll=— 	
l + 6r 

6a

3/ 	
(8.37) 

which comparison with Eq. 8.17 gives 

li 	PG 	
(8.38) r 

as before. Note that since the method may be applied to compressible systems, 

both P2  and pG  for the monodisperse 21) model will remain the same for both 

compressible and incompressible bubbles. 

Where the force acting is pressure multiplied by distance over which it acts, projected onto 

the horizontal axis. 
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We now generalise the argument to a polydisperse system. The projections of 

the bubble faces and plateau borders onto the horizontal axis are written as if's 

and if' respectively. Then considering a suitably shaped membrane, force balance 

requires 

+ p(Ii 
It -

P\. - ( II + P) ((if'), + (if') t ) 	 (8.39) 

So writing Pi P + a/ri  and restricting ourselves to fairly dry foams with r 

then (ir/r2 ) 	(if'/r where r (r), and we can obtain 

a 	a 	(if'), 
r(1r)+"'. 	

(8.40) 
\i JZ 

Now we note that since If r and if's R, where R (/A/r), then 

(8.41) 

so that if p9 	- P - II then (PG ) a/k 

In 3D the same argument but with projected areas (Af') I? x r, and (Af') W 

leads to 
a 	or 

H — — -=- 	 (8.42) 
r R 

which for PG = p, - P - H gives 

(PG) 
	a/. 	 (8.43) 

Finally we note that in higher dimensions the equivalent argument will continue 

to give (PG ) a/If. 

8.7 Definition and Estimation of pG 

Motivated by the previous sections we now define 

pGp_p_ ri 	 (8.44) 
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a definition involving no approximations, but which does allow arbitrary varia-

tions in bubbles' F's. Writing P2T  and Pj5  as the partial pressures of the soluble 

and trapped phase respectively, then the above definition of pG  gives 

PS_P+II+PGPT 
	

(8.45) 

So using Eq. 8.45 and Eq. 8.3 for the chemical potential of soluble disperse phase 

in a bubble, we obtain the chemical potential of soluble species as 

pG_pT\ 
Api = kTIn 1+ 	

) 	

(8.46) 

with P P + II, as usual. 

Since LtPU 	a/Re  and (pG) i-' a/fl, we also expect that p2G 	o- /R 1 . So for a 

bubble in V dimensions of volume V, we define F 2  such that 

pG1i . 

 

or 	
(8.47) 2 

- ZV1/v 

and expect F, '-.- 1, and hence expect (F,) '-' 1 also. 

For example our model 2D foam had pG  given by Eq. 8.20 as 

pG= 	 (8.48) 
\/A+Al 

which after some algebra may be written, 

PG = 	/ - A1 	
(8.49) JA V A+A1 

So writing 

F  - \/
rl ~+A 	

(8.50) 
- A 1   

then PG  = Fa//A. For a fairly dry foam with A 1  <<A, F and hence 

of order 1, and if the foam is entirely dry then F = V1273 exactly. If we write A 

and Al in terms of r and 1, we obtain 

1 r" 2  4-27r/\/ = 31/4 	(1_ 	7) (1+ (4/)(r/1) + (4/3)(r2/12))) 

1/2 	

(8.51) 
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Figure 8.11: Variation of F (vertical axis), from /F to 	with X 	l/r. 

Increasing X corresponds to the bubble becoming increasingly dry, and X -+ 0 

corresponds to the bubble becoming circular in shape. 

which is graphed in figure 8.11. Hence although F varies with the geometry of 

the bubbles (ie osmotic pressure H), it always remains of order 1. 

Chapter 9 considers the possibilities and requirements for the osmotic stabilisa-

tion of foams. It contains exact results for dilute foams and monodisperse 2D 

foams (or equivalently 2D emulsions), and contains a careful investigation of the 

requirements for stability of a reasonably monodisperse and dry foam. 

Before considering stability requirements, we will end this chapter by exploring 

some of the consequences of PG  P2  - P - H, and (P") 
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8.8 Relationship to Von Neumann's Law 

Von Neumann's law applies to dry, incompressible 2D foams in which bubble—

bubble interfaces meet with angles of 27r/3. It assumes that the flux between two 

bubbles is proportional to the pressure differences between them, and measures 

exactly how deformations due to a bubble's environment result in pressure dif-

ferences and fluxes. For a more thorough derivation of Von Neumann's law see 

the review article by Glazier [65], for example. 

As noted in section 8.3 when a foam of gas bubbles is referred to as incompressible, 

it effectively means that P2G <<P so that although gas volume may be exchanged 

between bubbles the total gas volume remains constant. Hence to treat a foam 

as effectively incompressible we take PG << P, and expand Eq. 8.46 to get 

Api  pG_pT 

kT - 	
(8.52) 

for the ith bubble. If we consider the differences in chemical potential between 

two bubbles /jLj j  and rearrange, we obtain 

(pG - PT ) -  (] - 	
= pLi 	

(8.53)3 	3 

which using Ps + P1  = P + P becomes 

psF]3tij 	 (8.54) 

Since the fluxes of the disperse phase are proportional to the differences in chem-

ical potential between bubbles, the assumption for incompressibility results in 

fluxes being proportional to the partial pressure differences of the soluble dis-

perse phase component. So for incompressible gases we find that the assumption 

of gas fluxes being proportional to the pressure differences between bubbles (Von—

Neumann), is equivalent to the assumption that fluxes are proportional to the 

chemical potential differences between bubbles. 



8.8. RELATIONSHIP TO VON NEUMANN'S LAW 	 141 

Von Neumann only considered a single soluble gas, and mechanical equilibrium 

between bubbles then requires ac 3  = P28  - P,, where Cj3  is the curvature of the 

bubbles face. Since he also took the total flux of disperse phase between bubbles 

as proportional to the length lij  of the bubble—bubble interface he found the rate 

of bubble growth as 

dAj 
= —K >12 ac,1 = —K 	- P)l 	 (8.55) 

dt 

where A 2  is a 2D bubbles area, and K is a diffusion constant. Noting that 

PS = P + F?, and performing an integral around the bubble i, leads to 

dA1Koir - 

- 	
(ri —6) = K>1(P- p3)1.. 	 (8.56) 

a 

where n is the number of neighbours of a bubble. Hence the rate of growth of a 

bubble as determined by Von Neumann's law is directly related to the differences 

in geometric pressures between bubbles. 

If we now consider when trapped species are present, then the condition for 

mechanical equilibrium becomes that crc23  = (F + pT) 
- ( P + T)  so since the 

flux between bubbles remains proportional to the partial pressure of the soluble 

species we now find the total flux into a bubble as 

dAj = 
	)ljj =Ka7r —6) + K(P? - pT)1t3  (8.57) 

di 	
(n 	 j 

a 
 

a 

Hence when we consider the inclusion of trapped species we find that it is possible 

to have zero flux of disperse phase with n 6. This contrasts with Von Neu-

mann's original conclusion (without trapped species), that growth or shrinkage 

of a bubble is entirely determined by its number of sides. 

We note that the derivation of the above expression Eq. 8.57, did not require any 

approximations or assumptions about P?.  Hence Eq. 8.57 is an exact result. 
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8.9 Bubble Rearrangements 

Neighbour switching (so called Ti) bubble rearrangements have been observed 

in coarsening foams, both by experiment [83,84] and computer simulations [85]. 

Experiments by Glazier et al [83,84], revealed that 50% of all changes in bubble 

topology were due to Ti processes. Hertdle and Aref [85] reported the results 

of simulations in which they found the ratio of Ti to T2 processes (where T2 

processes refer to bubble's sides being lost as a result of a bubble disappearing), 

being 3:2, ie for every 2 sides a bubble lost by another bubble disappearing, 3 

were lost by Ti side switching processes. 

Although Ti bubble rearrangements have been suggested to be solely due to 

bubbles disappearing, experiments by Durian et a! [86,87] show that this is not 

the case. Durian et al [86, 87] used diffusing wave spectroscopy to study the 

coarsening of a non—dilute foam with 92 ± 1% volume of bubbles. They observed 

coarsening with average bubble diameter d r', t112 , as well as localised bubble 

rearrangements. They found the rate of rearrangements per unit volume R, to 

vary as 7?. '-..' t 20 2 .  The rearrangements were attributed to changes in packing 

conditions of the bubbles due to coarsening, with bubbles rearranging to reduce 

local stresses. 

The result shows that the rearrangements were not directly due to bubbles disap-

pearing, which for self similar coarsening in which the number of bubbles varies 

as "-i  t/ 2  would predict bubble rearrangement to occur with frequency t 5/ 2 , 

and a rearrangement rate per unit volume of 7?. r' 

Hence bubble rearrangements have been observed to occur in foams, and to do so 

without the need for bubbles to disappear. Next we will suggest a physical mech- 

anism to cause bubble rearrangements, and find that the rate of rearrangements 

predicted by (PG) o/ agrees with that observed experimentally. 
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89.1 A Mechanism for Bubble Rearrangements 

We suggest here that rearrangements are necessary for coarsening, and occur 

continually. 

We note that coarsening will result in stress inhomogeneities throughout the foam, 

and propose that these stresses (of the order of bubbles geometric pressures) 

require bubble rearrangements to maintain equilibrium. We propose that when 

stress inhomogeneities exceed a typical yield stress of the order of alb, with b a 

constant length scale relevant to rearrangements, then rearrangements are likely 

to occur. So since the number of bubbles per unit volume 1/17, then taking 

the rate of rearrangement per unit volume 1?. as proportional to the ratio of the 

systems average geometric pressure" and alb gives 

(pG) 	
(8.58) 

'a/b 

which using Eq. 8.43 for (pG) a/R, becomes 

- b 	
(8.59) 

So for a 3D foam of average radius J we have 

(8.60) 

Durian et al [86,87] found R 	t 1 l2  for a 3D foam, hence we get the rate of 

rearrangements per unit volume to be 

(8.61) 

as was observed by Durian et al [86,87]. 

It is noted that there are two important length scales in the problem, the radius of curvature 

of Plateau borders and the typical curvature of bubble—bubble faces R. Since the following 

argument is invalid for b R, it is tempting to suggest that b r, and that the order of 

magnitude of the yield stress is determined by the volume fraction of liquid in the system. 

'Equivalent to assuming fluctuations in Pf-  about the mean, are of order (Pf). 
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Hence the simple mechanism of bubble rearrangements to relieve coarsening in-

duced stresses, plus the result of (PG) a/R, is sufficient to explain the rate of 

bubble rearrangements observed by Durian et al [86,87] (given their coarsening 

rate i 

For the above mechanism, rearrangements are likely to occur for excessive varia-

tions in Pf. So if the mechanism proposed above is correct, then it will prevent 

excessive variations in PG about the mean value. Hence the apparent correctness 

of the mechanism suggests pG (pG) as a reasonable approximation. This will 

be used in subsequent chapters. 

8.10 Conclusions 

We have considered how the pressure within foam bubbles is affected by an os-

motic compression H. We contrasted foams with granular material, and suggested 

that foams become increasingly similar to homogeneous matter when strongly 

compressed, but more similar to granular matter when only slightly compressed. 

Hence although determining the pressures within foam bubbles is a complex pack-

ing and stress distribution problem, we suggest that sufficiently compressed foam 

should be sufficiently homogeneous to be described by Eqs. 8.4 and 8.7 with 

P, =P+H+P2G, and PG  <ll. 

Eqs. 8.4 and 8.7 were confirmed for dry 21) foams in section 8.3, by a careful 

study which also suggested that P o/R. Eqs. 8.4 and 8.7 were also confirmed 

in section 8.4 for the model of a monodisperse 21) foam, by an exact calculation 

which gave PP = _+ A a/R. For the model in section 8.4 the 

ratio of pG  for entirely dry bubbles and pG for entirely dilute bubbles was 1.05, 

so that pG  is approximately the same regardless of H. This is important since 

differences between bubbles' pressures determine the rate of coarsening; so an 
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assumption that coarsening is driven by bubbles' Laplace pressures would, even in 

the concentrated case, give the wrong order of magnitude for pressure differences 

(o/r instead of a/R). 

Section 8.5 demonstrated that Eqs. 8.4 and 8.7 would fail if the foam was too poly -

disperse and insufficiently compressed, and emphasised their validity is restricted 

to sufficiently compressed and monodisperse foams. A calculation which consid-

ered the balance of forces between H, bubbles' pressures, and the pressure in bub-

bles' Plateau borders P, reconfirmed the correctness of P = 	 + A1 

for the model in section 8.4, and also gave the general result that (Pf) 

We noted that the calculation applies to both compressible and incompressible 

systems, so that the results for the incompressible monodisperse 2D model also 

apply when bubbles are compressible. 

We defined Pf- 	P - P + H in section 8.7, where we also propose in Eq. 8.47 

that we may define F 2  by PG  F,o- /Vç 1/V 
 , and expect [' 1. In section 8.8 

we related our definition of P°  to Von Neumann's law for the coarsening of dry 

2D foams, and also indicated how the law is altered by the presence of trapped 

molecules within bubbles. 

The final section 8.9 suggested a mechanism for bubble rearrangements which 

explains the experimental observations of Durian et al [86, 871. Provided the 

mechanism is correct, then it also implies that Pf (PG) is a reasonable ap-

proximation. 

Given the evidence presented in this chapter, we finally propose the ansatz that 

a sufficiently compressed and monodisperse foam will satisfy Eqs. 8.4 (P = 

P + H + iG) 8.7 (H>> F?),  and 8.47 (P1G Fj The ansatz will be used 

in section 9.5 of chapter 9, to investigate the requirements for the stabilisation of 

sufficiently compressed and monodisperse foams. 



Chapter 9 

Stabilisation of Foams 

This chapter uses the results of chapters 7 and 8 to discuss the requirements 

for osmotic stabilisation of foams. Section 9.1 considers the requirements for 

foam bubbles to coexist with a bulk gas phase, and emphasises that bubbles will 

coexist with a bulk gas at some (hopefully calculable) coexistence size. Section 

9.2 uses bubbles' coexistence sizes (compositions) to derive a general stability 

condition. Unfortunately the stability condition is not always calculable, however 

it is calculated for dilute foams in Section 9.3, and Section 9.4 calculates the 

condition for the model of monodisperse 2D foams previously described in chapter 

8. In chapter 8 we suggested that we may write P G  = Fcr/Vç'; this is used 

in section 9.5 to carefully investigate the requirements for us to always be able 

to osmotically stabilise a sufficiently dry, polydisperse foam. Finally section 9.6 

provides a bound on the quantity of soluble gas beyond which an osmotically 

compressed foam must be unstable. 

147 
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9.1 Coexistence Size/Composition 

Let us assume that coarsening does take place. Thus we consider a distribution of 

coarsening foam bubbles, in which the largest growing bubbles dilute the trapped 

species within, to the extent that t, -+ 1u, and /X,u -+ 0. The smaller bubbles will 

shrink until they are sufficiently enriched in trapped species that their chemical 

potential equals that of the larger bubbles. Hence as t -+ oo and /, -+ 0, the 

smaller bubbles will tend to a size/ composition such that Api = 0, and 
pG_pT\ 

0=kTln(1+ 	
) 	

(9.1) 

which is satisfied when 

pGpT 	 (9.2) 

Hence, since the surface tension is the cause of coarsening, once the effects of 

surface tension (represented by Pj -'- cr/Ri , and not Laplace pressure u/r2 ), are 

counteracted by a sufficient pressure of trapped species, bubbles can then coexist 

with a bulk quantity of soluble gas. 

For the dilute foams considered in chapter 7 and the model 2D foam considered in 

chapter 8, the condition P,G pT will determine a bubble's coexistence size VB 

(or AP in 21)). The calculation and estimation of coexistence sizes is considered 

in sections 9.3, 9.4, and 9.5. 

We note that at coexistence, compressed foam bubbles have a pressure of soluble 

species P8  = P = P, and hence the ideal gas law has P = NBkT/VB (or 

equivalently P = N Bi  kTIAP in 21)). So since P8  = P, we may easily obtain the 

number of soluble gas molecules in coexisting bubbles from 

NB = '3VB 	 (9.3) 

or the equivalent expression for a 2D or V dimensional foam. Similarly if foams 

are not subject to an osmotic compression then 

NSB = 'VB 	 (9.4) 
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These results may be compared with those for incompressible emulsions; taking 

the volume per liquid disperse phase molecule as vb, these have Ni'= (1/vb)VZ B , 

compared with Nis = (P/kT)V B  for the compressible foam bubble. 

9.2 A Condition for Stability 

We next use conservation of the total number of gas molecules and total number 

of bubbles, to derive a criterion to ensure the formation of a stable distribution 

of foam bubbles. We consider the bubble size distribution to be composed of 

two parts, one part in which coarsening occurs with some bubbles growing at the 

expense of other bubbles shrinking (referred to as the 'coarsening' part of the 

distribution), and another part consisting of bubbles shrunken to a stable size at 

which they may coexist with the coarsening bubbles (referred to as the 'stable' 

part of the distribution). We find that for sufficiently concentrated initial bub-

ble compositions the assumption of the bubble distribution having a coarsening 

part is inconsistent, enabling us to derive a stability criterion for foams. These 

arguments parallel those of section 3.6 in chapter 3 for dilute emulsions. 

We take n, n, and 	as the number densities of bubbles in the system, in 

the stable part of the distribution (containing shrunken bubbles), and in the 

coarsening part of the distribution respectively. Conservation of bubbles gives 

n=fl'+rl 	 (9.5) 

where we note that i4 and n may be time—dependent. 

NB, the number of soluble species with which a bubble will coexist with a bulk 

gas phase, is determined by PG = P. However since relations between PG and 

V may vary during coarsening (due to changes in bubbles' environments, and 

coarsening of bubbles), we take NB  as time—dependent. We define the following 
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• NsO (N$(t)) j : The average number of soluble molecules per bubble. This 

is time independent. 

. 	(t) : The average number of soluble molecules per bubble when coex- 

isting with a bulk gas phase. Since n/n —+ 0 as coarsening proceeds, 

then n -+ no, and hence the average number of soluble molecules in the 

shrunken bubble distribution tends to AT 3 (t). 

• N(t) The average number of soluble molecules per bubble, in the larger 

bubbles of the coarsening distribution, at time t. 

So as a coarsening foam tends towards an equilibrium state, conservation of the 

number of soluble molecules requires, 

nAtB(t) + nN8c(t) 	 (9.6) 

Combining Eqs. 9.5 and 9.6, we obtain, 

n 0WO - NSB(t)) = n bC  (NsC(t) — NSB(t)) 	 (9.7) 

so provided that we can guarantee that, 

NSB(t) > N° 
	

(9.8) 

then Eq. 9.7 requires 0 > n(N8c(t) — NB(t)), and since the larger, coarsening 

bubbles have N C (t) > N(t), then n' = 0 and the foam must be stable against 

coarsening. We note that since NsB(t) depends on pG(j), whose relation to V 

may not always be known, the derivation of an exact stability condition is not 

always possible. However, the above condition enables us to clearly investigate 

the requirements for stability. This is done in sections 9.3, 9.4, and 9.5 below. 
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9.3 Dilute Bubbles 

Dilute foams have P = 	for 3D foam bubbles (and P2G = cT/Ri for 2D foam 
Ri 

bubbles). So a 3D bubble's coexistence size is determined from 

2cr - NTkT 
RP -  LRB 3  

(9.9) 

giving 	 ____ 

	

RB= /TINTkT 	
(9.10) 

	

2 	V4V 2cr 

and hence 

vB (kT) 	 (9.11) 
 

= F3 

This volume is identical to the coexistence size of a dilute incompressible emulsion 

droplet, 

	

VB = (kT)3/2\[ 	
(9.12) 

in which a remains the surface tension and 77i  is the number of trapped species (see 

chapter 3 for details). The exact correspondence is because the trapped species 

are treated as ideal, both when the majority disperse phase is an incompressible 

fluid (chapter 3) or an ideal gas (as here). 

So substituting Eq. 9.11 into Eq. 9.4 we obtain the number of soluble gas 

molecules in shrunken bubbles as 

N$B - kT :! '--: 

(NTkT)3"2 

	

- 	\/4ir 2cr  
and hence 

NsB = p/ 	
3/2 

(kT) 	
(NT 312 ) 	 ( 9.14)

7r 2a  

So if the dilute foams are formed with NSO < NsB then the foam will be stable. 

Similarly a dilute 2D foam has 

AB 1 (NTkT)2 	
(9.15) 

7r 	01 
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and is stable if N° < F/SB, with 

F/sB = -- ( 1 )  () (NT 2 ) 	 (9.16) 
kT 	a 

9.4 Monodisperse, 2D Model 

For our 2D model Eq. 8.20 gives 

pG_ 	a 	
(9.17) 

\/A+Al 

So a coexistence size is determined from PG(AB) = NTkT/AB, requiring that 

AB2 	
NTkT 2  AB 	NTkT 2 A1 

( a  ) ( a  )= 	
(9.18) 

which has a physical (positive) solution of 

AB= (N T kT 2 	(1+ 	

2

1+4A 22  

) 	
) 	

(9.19) a 	2  

So an entirely dry foam with hexagonal bubbles has 

(

N1VT 
2 
 1 

a ) 	
(9.20) 

and we may alternately write 

AB = A 
I 
1 + 	

2 
H 	

(9.21) 

from which we may obtain the number of trapped species at coexistence from 

1TSB - 	AB 
IV - kT" 

So if we have N °  < NSB ,  with 

4  ( 	

/i+\ 
IvsB -  

- kT 	1+ 	
2 

H) 	
(9.22) 

then the foam will be stable. 



9.5. SUFFICIENTLY DRY FOAMS 
	

153 

9.5 Sufficiently Dry Foams 

In chapter 8 we defined P2G 	P2  - P - H, and noted that for sufficiently dry 

foams that p2G << II. We also suggested that for sufficiently dry foams we may 

write 

P~ = ri 
Vi 

 0' 'D 	 (9.23) 

with F2  '-' 1 and V the bubbles dimension. We note that although our model of 

a monodisperse 2D foam had F dependent on bubble area A, for reasonably dry 

foams it remained of order 1 and tended to as the foam became increas-

ingly dry. Hence we calculate an approximate coexistence size by assuming F 2  is 

independent of bubble size. This gives 

VB - 
(N7kT - 	 oF 

) 	

(9.24) 

and 

NB 	(NT 
- 	

kT)' 
- kT 	aF, 	

(9.25) 

Given the above equation for a bubbles coexistence size, we are now able to more 

carefully consider the requirements for foam stability. 

9.5.1 Requirements for Stability 

We proceed by examining the form of N8B(t),  the number of soluble species per 

bubble below which a stable foam is ensured. Noting that N(t) = 

we write it out in full to obtain, 

= 
; 	

(9.26) 
; 

(kT/(V_1) / (NT V/(V-1) 

We note that V > 2 so that 

1 

f (9.27) 
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So provided that F 2  and NT  are uncorrelated, then 

V/(D-1)
( kT)

— kT 	 (9.28) 

In chapter 8 we found that (PG) cr/a, which suggests tr is of order a constant 

Pc. Then since 

(Ni (t)), > ±  (9.29) 
kTuj 	Fc 

a foam formed with an initial number of soluble species N °  such that 

V/(V-1) 

	

; 
()

V/(V-i) 	> N° 	 (9.30) 

will be stable. Similarly if t" is bounded by Fmax,  then a foam formed with 

P (kT)V/(V_1) 
(Nr11)1 

~ N 	 (9.31) 
- 	 D/(V-1) kT 	 Fmaa 

will be stable. Alternately, if F is a decreasing function of time, then we would 

have t(0) > i(t) and hence 11t(t)'D1(v_ 1 ) > i/(o)D/(V_i), so provided 

P (kT\ 
 

kT or 	 (0)DV /(-1) > N° 	 (9.32) 

then we could again guarantee a stable foam. In contrast to the above cases, if 

t' increases without bound, then so also would N3B(t)  decrease without bound, 

and a stability condition would never strictly exist. So in summary, the only way 

a stability condition could fail to exist is if F can increase in time without bound. 

We note that coarsening occurs with a constant average volume of liquid in 

Plateau borders, so as coarsening proceeds bubbles will become increasingly dry. 

Hence we might expect F to increase with time. However in our model of a 

monodisperse 2D foam F tends to a constant value of /7 as the foam became 

increasingly dry, suggesting that F may be bounded in a similar way. Also if 

were to increase in time without bound then either our discussion of bubble 

rearrangements in chapter 8 is incorrect, or F 2  and R2  are correlated in a very 
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specific way (with (F j /Rj) ' 1/(R) required to ensure (PC) 	cr/(R)). Hence 

although there is evidence to suggest [' is either constant or bounded, there is 

no reason to believe that F may increase without bound. Hence current results 

suggest it should be possible to osmotically stabilise any reasonably dry foam. 

In Appendix E we consider whether there exist stability conditions to prevent 

coarsening by a flux of the more soluble species alone, when the "trapped" species 

is slightly soluble. We find that provided there exists a stability condition when 

the trapped species is entirely insoluble, then there will also exist a corresponding 

condition which is sufficient to prevent coarsening by a flux of the more soluble 

species alone. The resulting condition is given in Appendix E. 

96 A Lower Bound on Stability Requirements 

Generally the geometric pressures of bubbles are not known, however we consider 

here a particular mode of growth by, which a foam may lower its free energy (by 

separating into a foam of smaller bubbles coexisting with a bulk gas phase), in 

which the geometric pressure is well defined. We do not consider exactly how 

such growth may be accomplished within a real foam, but are merely interested 

(at this point) in obtaining a requirement for the thermodynamic instability of a 

foam. 

We imagine a simultaneous change in volume of all the bubbles by an amount 

dV = aV. Hence the foam changes in volume in a similar way to "blowing up" 

or "reducing" a picture on a photocopier, but at fixed liquid content. For such 

growth pG  is well defined as pG =  a(aA/av)A, for an isotropic growth (or 

shrinkage) at fixed liquid volume. 

Since a spherical bubble has the minimum surface area to volume ratio, then 

for the growth described above P2'' ~ 2a/R, with R 	(V) 1 /3 . Hence an 
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osmotically compressed foam will need smaller bubble volumes to coexist with a 

bulk gas phase (so as to have the higher pressure of trapped species required by 

PG = PT), than will a foam with the same bubbles diluted and spherical in shape, 

but under an atmospheric pressure (P + II) (see figure 9.1). So the quantity of 

0 
 000 
o 0 oF 

Figure 9.1: The mode of growth described in the text emphasises that the compressed 
bubbles coexisting with a bulk gas phase in (I), require a higher pressures of trapped 
species (and hence smaller volumes), than the coexisting bubbles in (ii). Hence the 
quantity of soluble gas in the coexisting bubbles in (ii), gives an upper bound for the 
maximum quantity of soluble gas in the compressed bubbles in (i). 

soluble gas in dilute spherical bubbles which coexist with a bulk gas phase under 

atmospheric pressure P + H, provides an upper bound on the maximum quantity 

of soluble gas in bubbles under osmotic pressure H and atmospheric pressure 

F, which coexist with a bulk gas phase. Hence the stability condition for the 

maximum quantity of soluble gas in an osmotically stabilised foam of spherical 

bubbles at atmospheric pressure P = P + H, imposes an upper bound on the 

maximum quantity of soluble gas in an osmotically stabilised, compressed foam, 
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under atmospheric pressure P and osmotic pressure H. So replacing P with 

P = P + H in Eq. 9.14 gives, 

ATSB_'3  [~3_ fkT\312 

	

- kT\/7r (_) 	
(NT 312 ), 	 (9.33) 

so a compressed foam with N° > F/SB is unstable to the mode of growth consid-

ered above, and hence unstable. 

Noting that F/SB  calculated at P is less that F/SB  calculated at P, then the above 

result implies that a compressed foam will become unstable at a lower N °  than 

when it is uncompressed (H = 0). Hence we find that a compressed foam is less 

stable (in the sense described above), than it is when uncompressed and dilute. 

It is wOrth emphasising again that the above result is a purely thermodynamic 

one, and does not rule out the possibility of local stabilising effects (such as a 

lack of bubble rearrangements), resulting in stable foams which would be unstable 

according to the above criterion. 

9.7 Compressed Emulsions 

We note that from chapter 3 the coexistence size for a dilute incompressible 

emu lsion* is attained when 

	

pG = PT 	 (9.34) 

with PG  being the Laplace pressure of a spherical drop, and p7 the osmotic 

pressure of the trapped species. 

We now consider compressed emulsions, in which droplets are in contact with 

one another and become distorted in shape. Since the typical increase in the 

* Where incompressible refers to the incompressibility of the liquids in the emulsions, and an 

emulsion is compressed by a semipermeable membrane through which continuous phase may 

pass but not emulsion droplets (which become distorted in shape). 
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bubbles free energies due to the disjoining pressures between adjacent droplets is 

negligible [80], the stability condition remains the same, but with the distorted 

bubble geometry causing P2G  to differ from that of an equivalent, but spherical 

drop. The arguments in chapter 8 for P = P + II + pG and P, are unchanged 

for incompressible foams, and hence also apply equally well to incompressible 

emulsions. Since the trapped species are considered to be dilute and ideal, the 

osmotic pressure of the trapped species is p2T = NTkT/V2, where we have now 

written NT in place of i. 

Finally we conclude that all the results in this chapter will apply to compressed 

emulsions, but with f'/kT replaced by 1/Vb (with v 5  the volume per molecule 

of liquid disperse phase), and a dry foam corresponding to a highly compressed 

emulsion. 

9.8 Conclusions 

Using the results of chapters 7 and 8, we have derived exact stability conditions 

for dilute foams and our model of monodisperse 2D foams. We have also used the 

results of chapter 8 to investigate the requirements for a sufficiently compressed 

and monodisperse foam to be able to be stabilised. 

Section 9.6 emphasised that the compression of a previously dilute foam will make 

it less thermodynamically stable, and gave a requirement for instability (valid in 

the absence of local stabilising effects such as a lack of bubble rearrangements). 

However, our investigations in section 9.5 combined with results in chapter 8 and 

the results for 2D monodisperse foams, all suggest that stabilisation of sufficiently 

compressed and monodisperse foam should be possible. More importantly the 

requirements for stability are determined by pT = pG with results in chapter 8 

having PG  u/Rj. So although one might have expected osmotic stabilisation 
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to require the pressure of trapped molecules to balance the Laplace pressure 

at bubbles' Plateau borders (which is determined by II and may be arbitrarily 

large), in actuality our results find the requirement for stability to be relatively 

unaffected by compression. As a rough estimate, the minimum required P7  for 

stability will have P1T which for o-  '-' 10 1 Nm' and R 10 6 m requires 

pT  1O5 Nm 2  P, the same order of magnitude as atmospheric pressure. 



Chapter 10 

Coarsening of Unstable Foams 

10.1 Coarsening of Foams: Qualitative Behaviour 

We now consider the coarsening of unstable, non—dilute foams. We note that 

previous work on coarsening of dilute emulsions in chapter 4 also applies to dilute 

foams, but with a different constant prefactor in the droplet/bubble growth rate 

Eq. 2.22. Here we will concentrate on non—dilute foams in which bubbles impinge 

on one another and are distorted from their otherwise spherical shape. 

As was the case for dilute emulsions, the trapped species will again prevent bub-

bles from entirely disappearing. The resulting foam morphology and the coars-

ening kinetics will be strongly affected by two main factors, 

The excess volume fraction of disperse phase: Defined as the total 

volume fraction that at equilibrium would form a bulk gas phase, which 

would coexist with the smaller shrunken bubbles. 

Rate of bubble rearrangements: The ease and rate with which bubbles 

may rearrange to allow larger bubbles to grow or shrink. 

161 
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We will consider each of these next. 

10.1.1 The Excess Volume Fraction of Disperse Phase 

It is useful to classify systems by their total excess volume fraction of disperse 

phase, which controls the expected late—stage morphology in a coarsening system: 

No excess volume fraction: The foam is stable. 

Very low excess volume fractions (figure 10.1): The larger bubbles 

become surrounded by a sea of shrunken bubbles, with the competitive 

coarsening --between larger bubbles occurring by a gas flux through the sea 

of smaller bubbles. 

Figure 10.1: Low excess volume fractions, in which grown bubbles become surrounded 

by a 'sea' of smaller shrunken bubbles. 
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3. Very high excess volume fraction (figure 10.2): Resulting in a struc-

ture with larger bubbles being decorated by collections of smaller bubbles 

at their corners/ vertices, with their faces impinging on other large bubbles. 

The structure may be similar to that of a slightly wet foam in which Von-

Neumann's law is violated by the presence of plateau borders at bubble 

vertices. 

Figure 10.2: High excess volume fractions, in which grown bubbles impinge on one 

another with smaller shrunken bubbles decorating their vertices. 

4. Intermediate volume fractions (figure 10.3): Includes structures be-

tween both of the above extremes. A sufficiently large volume fraction to 

prevent any kind of mean-field treatment of the coarsening, but sufficiently 

low volume fraction that bubbles may become separated by strings or col-

lections of smaller bubbles. 



164 	 CHAPTER 10. COARSENING OF UNSTABLE FOAMS 

Figure 10.3: Intermediate volume fractions, in which grown bubbles are typically 

surrounded by small numbers of shrunken bubbles. 

The first scenario of a low excess volume fraction appears most accessible to 

analytical techniques, since the sea of smaller bubbles may allow a mean—field 

like treatment analogous to that of LSW [20,21]. This scenario will be considered 

in later sections. 

10.1.2 Rate of Bubble Rearrangements 

When the excess volume fraction is small, then the coarsening of the larger bub-

bles will require rearrangements of the smaller bubbles so as to prevent the build 

up of excess strains which we expect would halt coarsening. 

We suggest 4 scenarios, whose applicability will depend on the ease with which 

bubbles can rearrange. 
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Inviscid rearrangements: Bubble rearrangements can occur easily, and 

have no direct effect on coarsening. 

Viscous rearrangements: Bubbles can rearrange, but resist doing so and 

hence slow the rate of coarsening. The resistance to rearrangement is taken 

to be from the shear in the liquid layer separating bubbles' faces, as bubbles 

slide past one another. 

No rearrangements (elastic medium): Bubbles grow into an effec-

tively elastic medium, which eventually may prevent them from coarsening 

further. This would presumably be the case if Ti neighbour switching pro-

cesses were entirely suppressed. 

Elasto—plastic rearrangements: There is a maximum yield strain be-

yond which rearrangements occur, but below which the surrounding shrunken 

bubbles behave as an elastic medium. 

We might expect the scenarios from 1 -+ 3, to become more applicable as foams 

become increasingly dry. For example, we might expect rearrangements in a 

sufficiently wet foam to occur easily, but rearrangements in a very dry foam to 

occur rarely or not at all. 

We might also expect a crossover between the types of coarsening we observe. 

Since both rearrangements and diffusion of disperse phase are required for coars-

ening to occur, we would expect coarsening to proceed with a rate determined 

by the slowest process. This contrasts with phase separation in a binary fluid 

for example, where the observed coarsening is that occurring by the fastest pro-

cess (with diffusive coarsening dominating at early times, viscous hydrodynamic 

coarsening dominating at intermediate times, and inertial hydrodynamic coars-

ening dominating at late times [22]). A foam in which coarsening could rapidly 

occur may initially be limited by viscous forces which would determine the rate 
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of coarsening, then later as coarsening slowed viscous forces would become negli-

gible, and coarsening diffusion—limited. 

In following sections we will consider coarsening of a small excess volume fraction. 

Firstly we consider the scenario of 'inviscid' rearrangements with zero dissipation 

as bubbles rearrange (section 10.2.2). Next in section 10.3 we calculate the order 

of magnitude of growth rates by considering the rates of dissipation when rear-

rangements are inviscid (section 10.3.2), and 'viscous', where the sea of bubbles 

acts as a viscous fluid in section 10.3.3. The effects of having no rearrangements 

are considered in section 10.4, and elastoplastic rearrangements which occur at 

strains in excess of a system's yield strain are considered in section 10.5. We will 

briefly consider higher excess volume fractions in section 10.6. 

10.2 A Simple Mean-Field Model 

We will firstly present a simple mean—field model for coarsening of a small excess 

volume fraction of disperse phase. 

10.2.1 System Studied 

We take the larger coarsening bubbles to be surrounded by a 'sea' of smaller 

shrunken bubbles (see figure 10.1). Coarsening then occurs by a competitive 

exchange of disperse phase between the grown bubbles, with the gas flux being 

mediated by the sea of smaller bubbles. 

For simplicity we will restrict ourselves to 3D incompressible foams, with a small 

excess volume fraction of disperse phase. In addition we make the following 

assumptions, which should be true at late times: 
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The larger bubbles are approximately spherical with radius R and a ge-

ometric pressure PG 	and shrunken bubbles have an approximately 

constant size VB = jRB 3 , with RB << R. 

The larger bubbles have a negligible partial pressure of trapped species, so 

that 	 2'  Ri 

We may describe the average pressure of soluble gas in a shrunken bubble 

at a distance r from the centre of a grown bubble by Ps(r,  t) (ie we are 

effectively coarse—graining over bubbles at distance r). 

As r -+ oo, there is a well established mean pressure of soluble gas in 

shrunken bubbles Ps(oo,  t). 

Finally we also assume: 

Bubble rearrangements are inviscid, so that bubble growth is solely deter-

mined by the rate at which soluble gas fluxes through the bubble interfaces 

in the 'sea' of smaller bubbles. 

These assumptions allow us to develop a number of mean—field arguments to 

determine the coarsening of foams. 

10.2.2 Mean—Field Model 

We consider shrunken bubbles at a distance r from the centre of the larger bubble, 

and which have an average pressure of soluble gas P(r, t). We consider the flux 

of gas from bubbles at radius r to adjacent bubbles at radius (r + RB) ,  see figure 

10.4. We follow the approach of Von Neumann (for comparison see Glazier [65]), 

and take the flux of gas between bubbles as proportional to both the pressure 

differences of soluble gas between bubbles, and the surface area through which 
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Figure 10.4: We consider grown bubbles with R >> RB, and shrunken bubbles at a 

distance r from the centre of large bubbles to have an average pressure of soluble gas 

Ps (r, t). 

the gas may pass. So defining a diffusion constant K in an analogous way to 

that of Von Neumann (so that K would be the same in 2D, as in Von Neumann's 

definition), we have an average volume flux of gas from bubbles at r to bubbles 

at (r + RB) given by 

Jv(r,t) = K4rr2  (Ps(r, t) - Ps(r + R,t)) 	 (10.1) 

Since R>> R   we may write this as 

Jv(r, t) = _K47rr2RB aP(r, t) 	 (10.2) 

So solving for a steady state gas flux with V.J = 0 we have 

Ps(r t) R(P8(R) - P3(oo)) 
+ P,  ( 00) 	 (10.3) = 

r 

Jv(R,t) = K4rR2R 	
(R) - ps(,t) 

R 	
(10.4) 

and 
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Hence we obtain a droplet growth rate as 

dR KRB \ 
= R (.Ps(,t) - 2' 

	
(10.5) 

where we have written LP(oo,t) = P8(oo,t) - F, and used Ps(R) = F + . 

Since we consider an incompressible system we may define a volume per molecule 

by v9  , the volume per molecule when in equilibrium with a bulk gas. So 

with a little algebra we may write 

dR - KPRB ( 2ov9 	
(10-6)  

dt 	R 	kTR 

where we have 	(Ps(oo, t) - P)/. Here we can see that K defines a growth 

rate per unit pressure. 

The above Eq. 10.6 may be compared with the droplet growth rate of a dilute 

foam (which for incompressible foams is obtained by replacing vb with V g  in Eq. 

2.22), and is 
dR - DvgC(oo) ( - 2UVg 	

(10.7)  
dt 	R 	ICTR 

with D being the standard diffusion constant for the flux of dissolved gas through 

the continuous phase, and C(oo) is the concentration of dissolved gas in the con-

tinuous phase when in contact with a bulk phase of gas (a bubble with infinite 

radius). Hence we find that if bubble rearrangements are inviscid, then the coars-

ening of a small excess of disperse phase is equivalent to the coarsening of dilute 

gas bubbles, but with D replaced by an effective diffusion constant Dejj defined 

as, - 
- KPRB 

Deff 	 (10.8) 
= v9 C(oo) 

We may calculate K in terms of P, C(oo), v9 , D and the separation between 

bubbles d. This is done in Appendix F and gives 

K = Dv9C(00) 	
(10.9) 

Pd 

So the growth rate may also be written as 

dR7RB\ (Dv,C(oo)) / 	2crv\ 

= R 	- kTR) 	
(10.10) 
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which is a factor RB/d  greater than the growth rate for dilute foam bubbles in 

liquid only. Since d << RB the volume fraction of liquid separating bubbles is 

Rd/(RB + d) 3  ' -. So writing qint - for the volume fraction of liquid 

in interfaces separating bubbles (which does not include the liquid in the Plateau 

borders), then we find the growth rate is increased by a factor of 11cb mt . As 

cb t  -+ 1 we regain the expression for coarsening of dilute foam bubbles in liquid 

only. 

For comparison with an expression derived later in section 10.3.2, note that Eq. 

10.10 has 

RBDv9 C(OO) av9 
 

d 	R RkT 

which may be written as 

BR2 RDvC(oo)u 
d 	kT 	

(10.12) 

10.3 Rate—Limiting Mechanisms 

The present section considers the orders of magnitude for the rate of dissipation 

and bubble growth, when bubble growth is limited by the diffusion of disperse 

phase between bubbles (inviscid rearrangements, section 10.3.2), or by the rate 

at which shrunken bubbles rearrange (viscous rearrangements, section 10.3.3) 

respectively. Firstly sections 10.3.1-10.3.3 will calculate the rate of dissipation 

due to rearrangements or diffusive flux, and equate it with the rate of decrease 

in the free energy to determine the order of magnitude of droplet growth rate 

for each presumed rate-limiting mechanism. Then section 10.3.4 compares the 

dissipation rates, so as to determine when each of the rate limiting mechanisms 

would apply. 

As an example of the method we firstly use it to derive the coarsening rate in 

the traditional LSW [20,21] scenario of a vanishingly small volume fraction of 
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bubbles in a liquid (without trapped species). In this scenario dissipation is from 

the diffusion resistance of the dissolved disperse phase which diffuses between 

bubbles. 

10.3.1 LSW Coarsening of Bubbles 

Firstly we determine the average velocity of the dissolved disperse phase as it 

moves through the continuous phase near a drop. Since we consider the system 

to be in a steady state with an approximately constant concentration of dis-

solved disperse-phase molecules, we may treat the number of dissolved disperse-

phase molecules as effectively conserved. Conservation of dissolved disperse-

phase within the continuous phase requires that V.[iZ(r)c()] 0, with lithe 

average velocity of dissolved disperse phase, and c( the concentration of dis-

solved disperse phase at a position relative to the centre of a bubble*.  Taking the 

average velocity of dissolved disperse phase to be in a radial direction, then in 

spherical coordinates .{il(r)c(1)] = 0 becomes 8(ur(r)c(r)r2 )/8r = 0, which 

may be solved to give 

Ur(r)c(r)r2  = C 	 (10.13) 

with Ur(r) the radial velocity component, and C being the total rate of flux 

of dissolved disperse phase molecules away from (Ur  positive), or towards (Ur  

negative), a drop. Since at a droplets surface we have a total rate of flux of 

dissolved disperse phase molecules of 47rR2 R/v 9 , then C = 47r-. So we find 
V g  

2  
Ur(r) = 

47r R R1 
— 	 (10.14) 

V 9  c(r)r 

In the following we will drop the subscript on u,., instead taking all velocities to 

be in a radial direction. Incompressible foams have a/R << P, so c(r) C(oo), 

* This is equivalent to writing the flux of disperse phase _T(rj as 	= 	so that in a 

steady state the diffusion equation 8c(/5t = —DJ(r) becomes 	= 0, which requires 

= 0. 
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ie that above a 'bulk' gas phase. So we have 

R2 R1 
u(r) 	

v9C(oo)r2 	 (10.15) 

Knowing the order of magnitude for the average velocity of dissolved molecules, 

we may now estimate the total rate of dissipation arising from the net flux of 

material between drops. 

The total number of dissolved molecules within spheres of radii r and r + dr is 

of order r2drc(r) "-' r2 drC(oo). The average dissipation rate per molecule at r 

is Cu(r) 2 , where is the viscous drag coefficient on a molecule of disperse phase 

moving through the liquid. Hence the total dissipation arising from diffusion to 

a drop is of order fW r2 drC(oo)Cu(r)2 . Using the relation [88] C = kT/D, Eq. 

10.15, and integrating, gives the rate of dissipation TS as 

	

TS 	
kT R

2 R3 	 (10.16) DC(oo)v 

The transfer of material between droplets occurs so as to reduce their free energy, 

the rate of reduction of which equals the rate of dissipation. The reduction in 

free energy per particle transferred is of the order of the difference in the droplets 

chemical potentials and is of order " . Hence since the total flux of material 

to a drop is 	the rate of reduction in the free energy must be of order 

R2 Rrv 

v9  R 	
crRR 	 (10.17) 

that is, of the order of the rate of change of a droplets surface energy. 

Equating expressions 10.17 and 10.16 gives 

	

aRR 	
kT R

2 R3 	 (10.18) DC(oo)v 92  

which may be rearranged to give 

R2R DvC(oo)o-  

IcT 	 (10.19) 

as is found by the traditional analysis of LSW [20, 21] for dilute droplets (as 

opposed to bubbles), in a continuous phase. 
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10.3.2 Inviscid Rearrangements 

When bubble rearrangements are inviscid the above argument may be modified 

to give the rate of dissipation and growth rate for bubbles growing within a sea 

of smaller shrunken bubbles, as considered in section 10.2.2's mean—field model. 

Given the rate of bubble growth R, and continuing to treat the foam as in-

compressible, then in a steady state we continue to obtain the flux of dissolved 

disperse phase through the liquid within bubble—bubble interfaces as 

R2R1 

	

u(r)  ". 	 (10.20) 
V9 

C(00) r2 

as in Eq. 10.15 in the previous section 10.3.1. The rate of dissipation per molecule 

dissolved in the liquid films will remain as u(r)2 , so the only other required 

change is to only integrate over disperse phase in the liquid interfaces. Hence the 

integral is reduced by a factor d/RB, and integrating we obtain 

TS 
-- kT 	

R2 R3 	 (10.21) 

	

RB 	 V92  

and hence a growth rate which satisfies 

RR2 RDvC(oo)a 
(10.22) 

	

d 	kT 

a result in agreement with Eq. 10.12, obtained by the more accurate calculation 

in section 10.2.2. 

Next we consider viscous bubble rearrangements, in which bubbles slide past 

one another dissipating energy via the viscous stresses which occur in the liquid 

separating the bubbles. 

10.3.3 Viscous Rearrangements 

We take the shrunken bubbles to be sufficiently concentrated that they press 

against one another, with the repulsive disjoining pressure between bubble mem-

branes maintaining touching faces at a distance d from one another. 
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We consider growing bubbles to be sufficiently dilute that flow due to bubble 

growth is approximately radially outward from the bubble. Restricting ourselves 

to 3D foams, and taking 9(r) as the velocity of the liquid and shrunken—bubble 

fluid, then incompressibility of the fluid requires that V.iZ( = 0, so that in 

spherical coordinates 
- 	

(10.23) 

Hence for a growing bubble of radius R, growing with velocity I?, we find 

= 2 (10.24) 

In all that follows we again drop the subscript on u,., and take all fluid velocities 

to be in a radial direction. 

Consider two tcsuching bubbles at radial distances r and r + RB respectively. 

The differing velocities at r and r -- RB will mean that bubbles must rearrange, 

and slide past one another. For r >> RB the relative velocity of the bubbles is 

-- RB. The shear rate of the fluid between bubbles (separated by a distance 

d), is of the order of the relative bubble velocities divided by their separation 

distance d. Hence we obtain a viscous stress due to the relative bubble motion as 

77 1 (au(r) R, ) 	RBÔU(r) 
i 	or 	

ii-- 	 (10.25) 

where 77 is the viscosity of the liquid continuous phase. 

Since the viscous stress is only present in the continuous phase between bubbles, 

the viscous dissipation per unit volume is proportional to the volume fraction of 

continuous phase in the 'sea' of shrunken bubbles which for small liquid volume 

fractions is of order d/RB. 

So we may obtain the total dissipation rate due to a bubble growing as 

d /RBOU(r)\ 

)

2
77 

TS rr Or 	
(10.26) f 

which using Eq. 10.24 and integrating, gives 

TS 77RBRk2 	 (10.27) 
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As in the previous calculations (sections 10.3.1 and 10.3.2), the rate of decrease 

in the free energy due to changes in the surface area of a growing droplet, is of 

order crRR. Hence we find that 

aRR 	 (10.28) 

which may be rearranged to give 

ad 

	

-- 	 (10.29) 
77 R 

and hence a linear rate of droplet growth. The expression may also be written as 

a 

	

- - 	 (10.30) 
d RB 

which states that the viscous stress is of the same order of magnitude as the 

smaller bubble's geometric pressure. 

We note that the argument above does not apply to the coarsening of emulsion 

droplets in an ordinary (structureless) fluid, for the following reason. Coarsening 

requires both fluid to be displaced and disperse phase to diffuse to the drop. The 

finite molecular volume of the dissolved disperse phase requires that there be a 

backflow of fluid past a dissolved disperse phase molecule as it diffuses towards 

a drop. Once the disperse phase molecule reaches the drop it is incorporated 

into the droplet with an increase in the droplets volume. Hence there is no 

additional displacement of fluid required by droplet growth, with the displacement 

of fluid occurring continually as backflow past the diffusing dissolved phase. Since 

the backflow required by the diffusing solvent is accounted for by the Stokes-

Einstein relation, coarsening would occur as described by the traditional LSW 

analysis [20, 21]. A generalisation of the argument to an emulsion droplet, would 

only apply to a scenario of a droplet being inflated by a needle and syringe, for 

example. 

tBecause  the volume of a gas molecule in a bubble is much larger than its volume when 

dissolved in solution, the argument given does apply to coarsening of dilute foam bubbles in 
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So when coarsening is occurring into a 'sea' of bubbles /droplets, the structure of 

the liquid—bubble fluid requires rearrangements for coarsening to occur, with an 

associated extra dissipation of energy. In contrast when coarsening occurs into a 

structureless fluid, fluid is displaced by the diffusion of solvent with a dissipation 

in energy already accounted for by the Stokes—Einstein relation for the diffusant. 

10.3.4 Viscous or Diffusion Limited Growth? 

The growth rates (Eqs. 10.22 and 10.29) derived for viscous and inviscid rear-

rangements correspond to growth rates which are limited by the rate of viscous 

dissipation and the rate of diffusive flux respectively. Here we attempt to find 

out when each of the scenarios will apply. 

Since both rearrangements and diffusion are necessary for bubble growth, bub-

ble growth will be limited by the greatest source of dissipation and will occur 

with the slowest of the possible growth rates. Hence if we consider the ratio 

TSDL/TSVL of the dissipation rates by diffusion and viscous rearrangements re-

spectively, then when TSDL/TSVL > 1 coarsening will be diffusion limited and 

when TSDL/TSVL < 1 coarsening will be limited by viscous dissipation. 

The dissipation rates are given by Eqs. 10.21 and 10.27 respectively: TSDL 
d kT ] 2 R3  and TSVL !Z] 2R So we obtain RB DC(oo)v29  

TSDL (d 2 	kT 
R2 

TSVL \.RB) DC(00)V277  
(10.31) 

This may be written in terms of a molar concentration CM,  the molar volume 

a structureless fluid. A simple order of magnitude estimate gives TS 	77RR 2  and R 

so that the rate of dissipation is no longer increased by a factor of RB/d.  The following 

section 10.3.4 will demonstrate that at room temperature and atmospheric pressure, viscous 

limited coarsening is unlikely to be observed even in a non—dilute foam/emulsion, so at room 

temperature and atmospheric pressure the reduced dissipation of a structureless fluid makes 

viscous limited coarsening even less likely to be observed. 
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VM g  of gas in bubbles at pressure P, and the gas constant RG as 

TSDL / d 
\2 	

RGT 
2 	R2 	 (10.32) 

TSVL 	) DCM(OO)VMY7] 

We take RGT '-' 10 3 J, D 109m21, CM(00) '-' 102 m 3 , VM g  10 2 m3 , and 

17 '.-' 10 3 Nm 2s, (as we might expect for a soluble gas of CO 2  and a liquid phase 

of water for examp1e). Then considering R 10 6m, gives 

TSDL 	/ d 2  

TSVL 	() 	
(10.33)

RB 

So if R is R 10 6m, then viscous—dissipation will be observed for d/RB smaller 

than 10_ 2 . 5 .  

So at room temperature and atmospheric pressure, given sufficiently small bub-

bles, low liquid volume fraction, and high liquid viscosity for Eq. 10.32 to be 

less than 1, then viscous limited growth may be observed with R t. However, 

such systems appear difficult to form and hence are likely to be uncommon, so 

coarsening will typically be diffusion limited. 

Viscous limited coarsening is more likely to be observed in low pressure/high tem-

perature systems in which the volume per gas molecule in bubbles V g  = kT/P, i s  

large. In such systems a given diffusive flux of disperse phase between bubbles will 

require a larger displacement of fluid than an equivalent system at atmospheric 

pressure, and hence the rate of viscous dissipation will be increased relative to 

that of diffusion—limited dissipation. For example, if the pressure is reduced by 

a factor of 100, then v is increased by a factor of iO, so that viscous limited 

growth merely requires that d/RB < /ii. 

For a list of order of magnitude of constants, and further explanation see Appendix G. 
It is interesting to note that the viscous limited and diffusion limited growth laws may be 

predicted (up to a constant prefactor), by the most naive order of magnitude arguments applied 

to the phase ordering kinetics of binary fluids (see "Theory of Phase Ordering Kinetics" by A.J. 

Bray [22], page 375). Such arguments do not however enable the correct prediction of when 

each regime will apply, which is determined by the structure of the shrunken—bubble fluid. 
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10.4 No Rearrangements: Elastic Energy 

Next we consider the behaviour of a bubble within a 'sea' of smaller shrunken 

bubbles, in which bubble rearrangements are not allowed to occur. The growth 

or shrinkage of such a bubble will deform the surrounding bubbles, and hence 

increase their interfacial energies. By estimating the increase in elastic energy 

associated with a bubbles growth or shrinkage, we are able to show that stability 

against coarsening may be recovered, even when the quantity of trapped species 

is insufficient to osmotically stabilise the foam. 

For definiteness we imagine a system which has undergone sufficient coarsening 

that we have an idealised scenario of grown bubbles in a sea of smaller shrunken 

bubbles. We take this initial state to be unstrained elastically, and consider 

whether further coarsening can occur. Such a scenario could have arisen by 

coarsening from an initial configuration in which the larger chemical potential 

differences would provide a stronger driving force for coarsening, forcing plastic 

rearrangement (this is considered explicitly in section 10.5 below). Alternately 

such a system could occur by an osmotic compression of a previously dilute, 

partially coarsened foam. 

104.1 Small Deformations 

Firstly we consider small deformations. Treating bubbles as incompressible, a 

large bubble's growth by an amount AR will displace an element of the fluid at 

an initial distance r0  from the centre of the bubble (see figure 10.5), by 

/u(ro) 
- 
- RL\R 
 (10.34) 

ro  

where R0  is the bubble's original size, and R0  >> AR. So taking the shrunken 

bubbles to have size of order R, then a shrunken bubble at a distance r 0  will 
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Au(r0 ) 

Figure 10.5: In the absence of rearrangements, bubble growth results in an increase 

in the shrunken bubbles' interfacial area. 

experience an extension/ contraction by a distance H, with 

( __  H = u(ro  + RB) - u(ro) - R R 
	1 
	

- i 
r 	(l + RB/ro)2 	

) 	( 10.35) 

so since r0 > R0  >> RB, then expanding in RB/RO  gives 

RL\R 
(10.36) 

9 0  
H-2RB 

Next we consider the energy of extending or contracting along one axis of a 

single shrunken bubble such that its length would be increased from RB to RB + 

H. If we restrict ourselves to relatively small strains (or distances far from a 

growing/shrinking bubble), then we may expand the associated increase in energy 

AE, in terms of a power series in H, 

AE, = a (aiH + cr2 H2  + O(H3 )) 	 (10.37) 

Since we consider an initially unstrained state with spherical shrunken—bubbles, 

then symmetry requires that both +ve and —ye values of H will increase L\E1 by 

the same amount. So to lowest order 

= a (a2 ff2) 	crH2 	 (10.38) 
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So using Eq. 10.36 for H, we find the bubbles interfacial energy changes by 

RRR 2  
6 	 (10.39) ro  

where we have ignored a factor of 4. 

Initially we have of order rdro /R shrunken bubbles between spheres at r0  and 

ro+dro . So the total change in elastic energy due to a bubbles growth or shrinking 

is 
(rdro ) /RRLR 2 \ LE 

	f'o 
	R3 	( 	6 	 (10.40) 

	

B 	r \ 	0 	j 
which upon integration gives 

AE 	Ro (R - Ro) 2 	 (10.41) 
RB 

where we have written AR = R - H0. 

Following a similar approach to that described by Pippard [90], we now imagine 

a piston connected to a reservoir of gas, which holds a grown bubble at constant 

pressure P. Then considering a reversible fluctuation in bubble volume by dv, 

the work done by the bubble PdV, equals the sum of the work done against 

P + II, the increase in the bubble's interfacial energy oA, and the increase in 

LE. So we have 

PdV ( + II + 	+ DE) ) dV 	 (10.42) 

hence 

	

P, P+H+-+ ov 	 (10.43) 

Differentiating Eq. 10.41 for AE then gives 

o R0 a/ 	R0 \ 
(10.44) 

If we look at the above Eq. 10.44 we see that P will initially increase until 

R exceeds R0 , then later decrease with P —* P + H as R -+ oo. Hence if a 

drop was to grow to an infinite (bulk) size, then it would have Pb = P + II as 
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when rearrangements are allowed. The initial increase in P2  before R exceeds 

R0  (or decrease in P2 , for B dropping below R0 ), could prevent coarsening from 

occurring. However if a sufficiently large droplet is nucleated, then it will coarsen 

to form a bulk gas phase. 

In summary, the above calculation suggests that an absence of bubble rearrange 

ments could result in a long lived metastable state, but that any subsequent 

nucleation of a sufficiently large drop would allow coarsening to continue. 

10.4.2 Larger Deformations 

The previous calculation was only valid for small strains in which AR << B0 . We 

now improve the previous calculation by exactly calculating the displacement of 

a bubble layer, and then expanding in (R3  - R)/r, which for large r0  is a valid 

expansion even for large deformations. Although the resulting expression applies 

both to expansions and contractions of a bubble, for ease of presentation we will 

refer to a bubble's growth. 

We continue to consider a layer of bubbles, and make the observation that bubble 

growth will require any given layer to move so as leave a volume equal to the 

change in the larger bubble's volume, which is (R3  - R). So for a layer with 

an initial inner radius of r0  it must expand to a radius r such that 

r3  - = B3 - It 	 (10.45) o 

so as to make way for the larger bubble's growths. Hence we obtain a bubble 

layer's new position r(ro) as 

r(ro) = (rg 	- + B3 	
0)1/3 	

(10.46) 

We continue to implicitly assume the bubbles are incompressible. 
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The extension H of bubbles in a layer with initial inner radius ro  is 

H = Lu(ro  + RB) - Lu(ro) (10.47) 

So using Zu(ro) = r(r0 ) - r0  and Lu(ro  + RB) = r(ro  + RB) - (ro  + RB), we 

obtain 

H= (r(ro+RB) —r(ro )) —RB 	 (10.48) 

Using Eq. 10.46 we may expand in terms of RB/TO,  which to lowest order gives 

H RB (r2 - i) (10.49) 

If we again use Eq. 10.46, then for small strains or large distances r 0  from a 

bubble we may expand in terms of (R 3  - R')/r0  to obtain 

H R   
B 	

rg )+O
( 	

r 
R03  ) 	 (10.50) 

We note that if AR (R - R 0 ) << R0 , then we could further expand the above 

equation to obtain 

H 	
(2RBRR 

	

- 	rg 	) 	
(10.51) 

	

as before. However if we continue to take AE, 	oH2 , and integrate our new 

expression for H(ro ) then we get 

AE 	
1

,_ rdroH2 	o(R - R03)2

0 R 	RB 	R 	
(10.52) 

So that LE R 6 , as opposed to /E R 2  as in our previous calculation. 

The result AE R 6  clearly indicates that in the absence of bubble rearrange-

ments the elastic energy due to bubble deformations will prevent coarsening and 

stabilise the system. This is emphasised by using Eqs. 10.52 and 10.43 to obtain 

a bubble's pressure as 

Pi  P+H+ + 
	

(10.53) 

which becomes increasingly large for increasingly large or small deviations in R 

from R0. Since an increase in a bubble's pressure corresponds to an increase in 

the chemical potential of the gas molecules it contains, coarsening will not occur. 
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In the calculation of AE we used LiE1 r-'  crH2 , an approximation strictly only 

valid for large r0  or sufficiently small strains. So the above result is correct for 

small strains and approximate for larger strains. If strains are very large we might 

expect rearrangements to occur in a plastic manner. Hence we next consider the 

effect of a finite yield strain above which rearrangements occur, and below which 

the medium behaves elastically. 

10.5 Finite Yield Strain 

We now consider the following simple model: the system may only support a 

maximum finite yield strain y, above which rearrangements will occur. We take 

Ht /RB 	 (10.54) 

with Ht  the maximum extension/ contraction of bubbles before rearrangements 

occur. 

In the absence of rearrangements Eq. 10.50 gives 

	

H RBIR3 - RI/r 	 (10.55) 

so that Ht  implicitly defines a radius r within which rearrangements occur, but 

beyond which the medium behaves elastically. So rearranging Eq. 10.55, we may 

define r /- (R3  - R), which since Ht YtRB gives 

	

0 	H- 

R3—RI 	 (10.56) 

For a plastic region to exist around a bubble, we require r > R, so that Eq. 

10.56 requires 

R3  - 	> Y *R3 	 (10.57) 

So if R> R0  then we require 

R> R*+= 	 (10.58) 
- (1 - 
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for a plastic region to exist, and if R < R0  then we require 

R0  
= (1 + y*)1/3 	 (10.59) 

So we find that the existence of a plastic region will require a sufficient nucle-

ation in droplet size R above R*+ or below R*_,  with the magnitude of R*+  and 

R*_ determined by the yield strain y. Large yield strains will require a large 

nucleation event, where as small yield strains will require only a small nucleation 

event. 

If we take deformations within the plastic region to be of order H*,  then we may 

calculate the elastic energy as 

giving 

fr  rdroH2 + f
r 

rodroH2 	(10.60) 
 R 

Y* 	(JR3  - R4 - y*R3) + y*.j_ 1R 3  - RI 	(10.61) 
RB 

where we note that since yK < 1R3 - RI /R, the left hand term is positive. So 

using Eq. 10.43 we get 

R*_ <R < R+ 0• 

P P + 11+ - + RB Rl 	 (10.62) 
Ri 	* a R3-R3 R < R*_ or  R*+ <R L Y RBIR3—RlJ 

So that a bulk gas would now have 

Pb P + H + a 
	

(10.63) 
1 B 

So will the foam be stable? This may be answered by considering whether a 

sufficiently large nucleated bubble will shrink in size again, or start to coarsen. If 

all sizes of a nucleated bubble will shrink in size again then the system must be 

stable, otherwise the system will be metastable. The largest possible nucleated 

bubble with the lowest possible chemical potential obtainable by an increase in 

bubble size will have pressure Pb.  So if the average bubble pressure has P < Pb 
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then the bubble will shrink again, but if P > Pb then the drop will continue to 

grow in size". Since we consider the system as initially unstrained with R = R0 , 

then 

Ro 
	 (10.64) 

Comparing Eq. 10.64 with Eq. 10.63, then for instability we require P> Pb, and 

hence 

a yo  

RO > RB 
(10.65) 

which requires y* < RB/RU. Hence since RB << R0 , then unless y << 1, the 

system will be stable. 

So given a sufficiently small y, the stability of the system will depend on how it is 

prepared. For example, if we consider a foam formed by the osmotic compression 

of a dilute partially coarsened foam, then a sufficiently coarsened foam may have 

R0  large enough that y' > RB/RU and be stable, but if R0  is too small then we 

can have y* < RB/RU and coarsening can occur**. 

10.6 Higher Volume Fractions 

The above concludes the discussion of coarsening mechanisms with small excess 

volume fraction (figure 10.1). We briefly give some simple order of magnitude 

estimates for coarsening rates at higher excess volume fractions. 

"Note that the grown bubbles are taken to be sufficiently large that we may neglect the 

pressure of trapped species within them. 
**Although the radius at which shrunken bubbles coexist with grown bubbles depends on 

the radius of the larger bubbles R0, it remains of order RB and the above estimations remain 

valid. 
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10.6.1 High Excess Volume Fractions 

At high excess volume fractions the grown bubbles will be in contact with one 

another, with shrunken bubbles decorating grown bubbles' vertices (see figure 

10.2). If we describe a grown bubble's size by an effective radius R, then we 

expect its geometric pressure to be of order o, /R. Since the grown bubbles are in 

contact with one another, growth occurs by gas diffusing through a single bubble 

wall. So defining a diffusion constant K as in section 10.2.2, then we have 

d(3) KWzP 
	 (10.66) 

dt 

where AP is the pressure difference between bubbles and LP o,/R. Hence we 

have 

RR''.'Kci 	 (10.67) 

and 

	

(Ko-t)' 12 	 (10.68) 

We note that using K = Dv9 C(oo)/fd (see Appendix F), and P = kT/v9 , we 

alternately have 

- 	( Dv, C(oo)o 1/2

RdkT 	) 	
1'2 	 (10.69) 

10.6.2 Intermediate Volume Fractions 

We consider volume fractions which are sufficiently low that grown bubbles do not 

directly press on one another, but sufficiently high that they would not generally 

be considered as dilute. Then if we take the excess volume fraction as Iex  then 

the volume fraction of shrunken bubbles is of order 1 - qex• The number of 

grown bubbles per unit volume is of order ex/R 3 , so the thickness of the layer 

of shrunken bubbles separating grown bubbles d', satisfies d'R2 q ex /R3  '' 1 
- ex 

Hence 

d' 	j: (1 
e) 	

(10.70) 
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So gas flux will pass through of order d'/RB (i/RB)(1 - 0ex )/0ex  layers. There 

will be a pressure gradient in the shrunken bubbles of order (RB/d')LP, so if we 

assume coarsening is diffusion limited (ie treat rearrangements as inviscid), the 

rate of bubble growth will be 

d(J3) KW () AP 	 (10.71) 
dt 

which using equation 10.70 gives 

jj2 KYRB 	 (10.72) 1_0  

So also using K = Dv9 C(oo)/Pd (see Appendix F), and P = kT/vg , we have 

1/3 
- 	Rfi DvC(oo) 	

t 113 	 (10.73) RR 2r--- 	
kT 	qex ) 

ie a growth rate which is a factor of ex/(1 - 4) times that when / ex  was 

negligible. So we find that the increase in bubble separation d' during bubble 

growth is sufficient to restore the coarsening from a t 1 ' 2  to a t 1 '3  time dependence. 

10.7 Conclusions 

The qualitative features of an unstable, coarsening foam, will be determined by 

the excess volume fraction of gas ex  which at equilibrium forms a bulk gas phase. 

Typical foam morphologies for low, high, and medium 'ex  are suggested in figures 

10.1 1  10.2, and 10.3 respectively. 

At low excess volume fractions, viscous limited coarsening will be found in sys-

tems with sufficiently small bubbles, low liquid volume fractions, and high enough 

liquid viscosities that the ratio in Eq. 10.32 is less than 1. Viscous limited growth 

is easily distinguished from diffusion limited growth by its linear growth rate in 

time. At room temperature and atmospheric pressure however, such systems ap-

pear difficult to form and hence will be uncommon, so that under such conditions 
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coarsening will typically be diffusion limited. Viscous limited coarsening is more 

likely to be observed in low pressure/high temperature systems, in which the in-

creased volume per gas molecule in bubbles v9  = kT/P, requires a much greater 

displacement of fluid (and hence dissipation), for a given flux of gas. 

Hence for low excess volume fractions at room temperature and atmospheric 

pressure, we generally expect to observe diffusion limited coarsening, with a t 13  

growth law as in the traditional LSW scenario [20,21]. In such cases the only effect 

of the shrunken bubbles on the growth rate is to require the diffusion constant 

for dissolved disperse phase in liquid D, to be multiplied by a factor RB/d  to 

account for the reduced volume fraction of liquid that the disperse phase need 

diffuse through between coarsening bubbles. 

We found in section 10.4.2 that in the absence of bubble rearrangements, elas-

tic strains which oppose bubble growth will stabilise the foam. When there is 

a finite yield strain above which rearrangements occur, then a bulk gas phase 

formed by coarsening will have a higher pressure and chemical potential than 

when rearrangements occur easily. As a rough estimate, if the yield strain y is 

sufficiently large that y > RB/RO then the foam will be stable, but if y* < RB/Ro 

then coarsening may occur. For example considering foams formed by the osmotic 

compression of dilute partially coarsened foam, then a sufficiently coarsened foam 

with sufficiently large bubbles may have y > R/Ro  and be stable, but if R 0  is 

too small then we may have y < RB/Ro and coarsening may occur. 

We briefly discussed higher excess volume fractions, finding at very high es (see 

figure 10.2) droplet growth to have R t 1 ' 2 , as would also typically be found 

in dry foams without trapped species. However provided grown bubbles do not 

directly press on one another then the shrunken bubbles cause the number of 

liquid bubble-bubble interfaces between bubbles to increase as coarsening pro-

ceeds, resulting in B i"3 . The growth rate was also found to be a factor of 

qex/(1 - q) times the equivalent expression for 0,, << 1. 
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Hence we find that when trapped species are present and result in coexisting 

shrunken bubbles, then unless q is sufficiently high that bubbles press on one 

another, then coarsening is typically more similar to coarsening of dilute emul-

sions, with i t113  as opposed to dry foams with R 1112. 



Chapter 11 

Conclusions 

11.1 Stabilisation Against Ostwald Ripening 

Several new results were presented in the quantitative analysis of emulsion stabil-

isation by trapped species. A rigorous stability condition to prevent coarsening 

by a diffusive flux of dispersed phase was given (Eq.3.28), which is valid even 

for emulsions with polydispersity in droplet size and number of trapped species. 

It was shown that even if the trapped species is slightly soluble, a condition to 

prevent coarsening by a flux of the more soluble species will continue to exist 

(Eq.3.33). A previously published [12] condition for emulsion stability Eq. 3.7, 

was shown to correspond to a condition for metastability. Even if satisfying Eq. 

3.7, emulsions formed with a fixed concentration of trapped species could require 

only a minor polydispersity in droplet size to nucleate coarsening: the only reli-

able criterion for stability is Eq. 3.8. Finally it was noted that similar stability 

conditions may be calculated for non-ideal trapped species, and merely requires 

the determination of VB using the new trapped species equation of state. 

Hence further work on stabilisation of dilute foams and emulsions may now focus 

on determining the coexistence size VB for various non-ideal trapped species, be 

191 
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they within the drop, on the droplets surface, or even forming a gel network. Per-

haps more interesting would be to study the phase diagram of droplets/ bubbles 

containing more exotic trapped species; such a diagram may for example indicate 

possibilities of stable bimodal distributions (eg an elastic membrane which limits 

growth, and a trapped species preventing shrinkage). 

Turning to the case of foams, we gave careful arguments and emphasised ex-

isting experimental results which suggest that bubble pressures in sufficiently 

compressed and monodisperse foam may be written as P2  = P + II + .F?, with 

PP ci/R. Since a bulk gas has Pb = P ± H, then the stabilisation of such 

a foam requires bubbles to have p1T pG cr/R2 . So the pressure of trapped 

species required to stabilise a foam is of order cr/R1 as opposed to the much 

higher Laplace pressure across films at the Plateau borders a/ri. This indicates 

that the requirements for stabilisation are approximately independent of the os-

motic pressure H, instead primarily determined by bubble size as for dilute foams 

and emulsions. These results are confirmed for a model of monodisperse 2D foam, 

for which the ratio of pG  for an entirely dry foam and an entirely dilute foam is 

merely 1.05. Hence the required stability conditions Eqs. 9.16 and 9.22 are ex-

tremely similar, with NSB for dilute bubbles having a prefactor of 1/7r compared 

with a prefactor of 1/2v/'3_for entirely dry bubbles. So for the monodisperse 2D 

model, the maximum number of soluble molecules in stable bubbles NSB  is never 

less than 90% of that for the entirely dilute foam, regardless of the magnitude of 

H. 

We note also the extra stabilisation mechanism due to the elastic energy of bubble 

deformations which is required if bubbles are unable to easily rearrange. Such 

elastic energies need not exist in foams without trapped species since such foams 

may coarsen by exchange of volume and bubble disappearance alone. In the 

absence of bubble rearrangements it was demonstrated in chapter 10 that a foam 

will be stable. When there is a finite yield strain above which rearrangements 
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occur, then the system's stability was shown to be determined by the systems 

yield strain y, and the grown bubbles' sizes (taken to be of order R0). As a 

rough estimate, if y' > RB/Ro then the foam will be stable, but if y' < RB/Ro 

then coarsening may occur. 

Finally we note that the results in chapter 3 for the dependence of bubbles' 

pressures on osmotic pressure H apply equally to non-dilute emulsions, as does 

the requirement for coexistence with a bulk gas, that P? = pT Hence the 

requirements for stability calculated and discussed in chapter 9 also apply to 

osmotically compressed emulsions. 

11.2 Coarsening of Foams and Emulsions 

It was found that the coarsening of dilute, insufficiently stabilised emulsions and 

foams would proceed as when no trapped species were present, but with a re-

duction in the volume fraction of the growing bubbles due to the volume fraction 

now residing in coexisting shrunken droplets. This was surprising since coexisting 

bubbles continue to shrink as coarsening proceeds, and hence continue to sup-

ply material to growing bubbles; however the quantity of material they supplied 

was found to be negligible. As a corollary the calculations also reconfirmed the 

stability requirement Eq. 3.28, found by an alternate method in chapter 9. 

Order of magnitude calculations were given for the coarsening of non-dilute in-

compressible foams. It was found that at low excess volume fractions coarsening 

could be "viscous limited" with B "-' t, and "diffusion limited" with B ' s-' 

1/3 

However at room temperature and atmospheric pressure, viscous limited coars-

ening requires a combination of sufficiently small bubble sizes, low liquid volume 

fraction, and high liquid viscosity, which will be difficult to realise and hence un-

common. In general at room temperature and atmospheric pressure it was found 
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that unless bubbles directly impinge on one another, then coarsening will typi-

cally occur with R 013 . This was surprising since non—dilute foams without 

trapped species generally coarsen with ] 0 12 , where as 'U'-' 013  is typically 

observed in dilute emulsions. Viscous limited coarsening is mostjikely to be ob-

served in low pressure/high temperature systems, in which the increased volume 

per gas molecule in bubbles v9  = kT/, requires a much greater displacement of 

fluid (and hence dissipation), for a given flux of gas. 

The coarsening of insufficiently stabilised non—dilute foams is likely to result in 

many interesting foam morphologies. This would be interesting to investigate 

both experimentally and by computer simulations, and may help to clarify pre-

vious questions regarding whether or not a foam can always be stabilised. 

11.3 Effect of Micelles 

It was shown that whether micelles may significantly affect emulsion behaviour is 

determined by the type of micelle (surfactant and co—surfactant), the type of oil, 

and the mechanism by which solubilisation occurs. Micelles can destabilise an 

osmotically stabilised emulsion, but not necessarily any more rapidly than would 

normally occur by a slow flux of the small quantity of trapped species which in 

practice dissolves in the continuous phase. 

Further work is required to indicate the mechanisms by which solubilisation oc-

curs, how oil becomes solubilised within micelles and the resulting distribution 

of micelle compositions, and how the above are affected by different types of oil, 

surfactant and co—surfactant. These questions are relevant not only to emul-

sions, but to detergency, biological mechanisms, and selective adsorption of oils 

for example. Work is also required to investigate whether similar effects may be 

observed for molecules which may bind to disperse phase molecules and subse- 
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quently transport them between droplets. 

11.4 Possible Applications 

A common characteristic of the results in this thesis is their potential applicability. 

The work on stabilisation of emulsions and foams provides exact and approximate 

criterion respectively, for the formulation of stable emulsions and foams. Such 

work is relevant to the formulation of stable fluorocarbon blood substitutes [43] 

and stable beer foam [68,69], for example. Although such specific results are of 

direct interest in themselves, it it the understanding of the physical mechanisms 

behind-the results which are of more importance. 

For example, the understanding that an osmotic pressure of trapped species could 

counteract the effects of surface tension led to the suggestions in chapter 5 of novel 

methods for reversing the coarsening process, and for shrinking emulsion droplets 

to form "miniemulsions". Similarly the work of chapter 10 suggests that a rapid 

compression of a dilute partially coarsened foam (or equivalently emulsion), could 

in the absence of bubble rearrangements lead to the formation of a stable foam. 

Since the microscopic mechanisms by which micelles may solubilise and transport 

molecules between droplets is currently not well understood, chapter 6 provides 

few specific results. However the work is able to indicate the relationship between 

rate limiting processes and coarsening behaviour, and should enable further work 

to be carefully focused. 

Given a better understanding of the above topics it is possible to speculate on 

some further applications. For example, a better understanding of micelles could 

lead to novel applications such as using micelles to tune the rate of drug delivery 

from multiple emulsions, for selective solubilisation of oils and molecules, or for 

selective exchange of molecules between droplets, cells, or vesicles stabilised by 
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certain surfactants or containing certain molecules. Similarly it is also possible to 

suggest how osmotic effects may be used for the controlled formation of multiple 

emulsions by swelling preformed vesicles, or conversely for the controlled forma-

tion of vesicles by shrinking multiple emulsion droplets (which could also result 

in complex multi—compartment vesicles, or "microfoams"). 



Appendix A 

Table of Notation 

Ch. 2: Emulsions 

R,V 	Radius R and volume V of a droplet. 

fb 	Local part of the Helmholtz free energy per molecule in bulk 

disperse phase, due to local molecular interactions and properties. 

0 	Surface tension 

f(R, i) Free energy of a droplet of radius R containing i trapped 

species. 

F 	Helmholtz free energy of an emulsion. 

Fc 	Helmholtz free energy of the continuous phase of an emulsion. 

P 	Pressure within a droplet. In later chapters on Foams, P becomes 

the atmospheric pressure, and P2  the pressure within a bubble. 

P 	Pressure in a bulk quantity of disperse phase. 

Chemical potential of a droplet. 

11 b 	Chemical potential of a bulk quantity of disperse phase. 

vb 	Volume per molecule of bulk disperse phase. 
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77 	Number of trapped species in a droplet. 

v 	Volume per molecule of trapped species. 

k 	Boltzmanns constant. 

T 	Temperature. 

R1 ,V,i 1 	Radius, volume, and number of trapped species in the ith droplet. 

C 	Concentration of dissolved disperse phase. 

PC 	 Chemical potential of dissolved disperse phase. 

ILCO 	 A reference value for the chemical potential of dissolved disperse 

phase. 

C(oo) 	Concentration of dissolved disperse phase adjacent to a bulk phase. 

C(R) 	Concentration of dissolved disperse phase adjacent to a droplet of 

radius R. 

c(r) 	Concentration of dissolved disperse phase at a distance r from a 

droplets centre. So c(r) is spatially dependent, unlike C, C(oo), 

and C(R). 

Average concentration of dissolved disperse phase. 

= —C(co) 
- C(c,o) 

D 	Diffusion constant of dissolved disperse phase. 

R, 	€kT 

R 	
= ( 1/2 

B 	 8iruJ 

R',t',R' 	Dimensionless variables for dimensionless droplet growth rate. They 

are defined as 	RkT1(2crvb), t' 	IDC(oo)Iv 2T2 /(4v6 o- 2 ), 

and R'B 	3Ic3T3 /(327rcT 3v). 

U(R', c) Dimensionless droplet growth rate. 
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Ch. 3: Formation of Stable Emulsions 

n(V) 	Number density of droplets of volume V. 	- 

f' 	Free energy of a droplet, in which the constant.and. linear terms in 

V have been removed. 

F' 	Free energy density of an emulsion, in which the linear and constant 

terms in V have been removed. 

no 	Initial number density of droplets. 

Volume fraction of disperse phase. 

V 	Average droplet volume. 

A 	Compositional variable used in an analogy with binary phase 

equilibrium. 

v(A) 	Volume of phase with composition A. 

VB,RB Volume and radius of a droplet (containing trapped species), at which 

it will coexist with a bulk phase. 

V,Rs Volume and radius at the spinodal point of f'. Is also the size at 

which the chemical potential of a droplet containing ideal trapped 

species is a maximum. 

Ro 	Initial droplet radius. 

R0 	Critical size above which a droplet will become unstable and start 

to grow. 

L/tR 	Chemical potential difference between a single large drop and a 

bulk phase. 

L/1r 	Chemical potential difference between monodisperse, metastable 

small drops, and a bulk phase. 

ROB 	Size at which smaller metastable—drops may coexist with a bulk phase. 

Ros 	Spinodal size of the metastable smaller drops. 

riR 	Number of trapped species in the single larger drop of radius R. 

A 	Ro — Ros. 
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Ct 	 Initial concentration of trapped species in disperse phase. 

n3 	Number density of shrunken drops in the "stable" part of the 

droplet size distribution. 

Number density of drops in the "coarsening" part of the droplet 

size distribution. 

The average volume of droplets in the coarsening part of the 

droplet size distibution. 

Probability of having 17 trapped molecules in a bubble. 

ft(V,'q) Free energy of 77 trapped molecules in a droplet of volume V. 

171, 172,.. 	Number of trapped molecules of species 1,2,.. 

(t) 	Average number of trapped species in droplets at time t. 
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Ch. 4: Coarsening of Unstable Emulsions 

RT(t) 	Radius with which shrunken droplets coexist with coarsening 

droplets, defined by the smaller root of U(R, 
) 

= 0. 

RL(t) The typical radius of droplets in the coarsening part of the 

droplet size distribution which is of order 1/c, and 

defined by the larger root of U(R, c) = 0. 

Number densities of droplets with radii of order RT and RL 

respectively. 

fT,AT fT is a scaling function with order of magnitude 1, and AT 

is the amplitude required for ATfT = 
fL T AL fL is a scaling function with order of magnitude 1, and AL 

is the amplitude required for ALIL = 

ZT,ZL ZT 	R/RT, and ZL 	R/RL. 

BOT f°° fTZdZT/C(oo)vb. 

BOL f 	fLZdZL/C(oo)vb. 

S(ZT - 1) Dirac delta function, non—zero at ZT = 1. 

K1  (co -  no(47r/3)R/C(oo)vb)/(47r/3)BoL 

K2  (1 + (3RB/2)(47r/3)R/C(oo)vb)/(47r/3)BoL 

S(R— RT)  Dirac delta function, non—zero at R = RT. 

Ch. 5: Applications of Osmotic Stabilisation 

CM Molar concentration of trapped species. 

RG Ideal gas constant. 
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Ch. 6: Effects of Micelles on Emulsion Stability 

V,,, (R) Volume of oil solubilised within a micelle in equilibrium with a 

droplet of radius R. 

Sm(R) Number of surfactant molecules in a micelle in equilibrium with a 

droplet of radius R. 

nm (r) 	Number density of micelles at a distance r from a given droplets 

center. 

im(t) 	Average number density of micelles at time t. 

J 	Flux of micelles towards a given droplet per unit time. 

Flux of micelles away from a given droplet per unit time. 

S, (t) Average number of surfactant molecules per micelle at time t. 

V, (t) Average volume of solubilised oil per micelle at time t. 

Dm 	Diffusion constant of micelles. 

n(R, t) Number density of droplets of radius R at time t. 

no 	Total droplet number density. 

Om(R) Volume fraction of oil solubilised in micelles adjacent to (and in 

equilibrium with), a droplet of radius R. 

m (t) 	Average volume fraction of oil solubilised within micelles at 

time t. 
ob 	

Volume fraction of oil solubilised in micelles in equilibrium with 

bulk oil. 

vC(oo), (Volume fraction of dissolved oil in equilibrium with 

bulk oil). 

00 	Total volume fraction of oil in the system (including that in 

emulsion droplets and that in micelles). 
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a Typically of order 1, a determines the extent to which 

micelles swell/shrink to solubilise more/less oil as a result 

of small changes in the oil's chemical potential. The exact 

value of a is determined by the type of oil, surfactant, 

and co—surfactant in the system: T 

/3 Dcbtoi/Dmq5 . 

Average number of "empty" micelles (containing no oil). 

X m/co 

IC 	R2 (0)/3qDm  for diffusion—limited solubilisation, and 

IV 	(&1XR(0))( 12 ( 0)/30m 13m) for reaction limited solubilisation. 

tsol Time for micelles to solubilise all the oil (where possible). 

trelax Time for the micelle diffusion field to relax. 

E[Sm, °m Rate of change in the number of micelles with S. surfactant 

molecules and °m oil molecules, by exchange of molecules between 

micelles. 

Tl m (Sm ,Orn,T,t) Number density distribution for micelles with Sm surfactant 

molecules and On  oil molecules, at position frelative 

to a droplet's center, at time t. 

ns(r, t) Number density of surfactant molecules at position j?  relative 

to a droplet's center, at time t. 

no  (r-7  t) Number density of oil molecules at position 	relative to 

a droplet's center, at time t. 

Equilibrium number density distribution for micelles with Sm 

surfactant molecules and O n  oil molecules, for given number 

densities of oil and surfactant molecules. 

ñ(ris,no) 	 Total number of micelles in an equilibrium micelle distribution, 

given number densities of ns  surfactant and no oil molecules. 
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Dss,Dso, Effective diffusion constants for oil and surfactant flux. 

D0,D00 (Required to describe oil and surfactant flux when there's 

molecular exchange between micelles.) 

fs,o 	Distribution functions for the number of oil and surfactant 

molecules in micelles, of order of magnitude of 1. (Dependent on 

the number densities of oil and surfactant molecules.) 

is 	Surfactant flux rate. 

Oil flux rate. 

Thickness of diffusion layer. (Through which micelles must diffuse 

to interact with a droplet). 

	

X 	 Fraction of encounters with which a micelle reacts with a 

droplet to exchange oil and/or surfactant. 



Ch. 7: Foams 

P2 	Pressure of gas in bubble i. 

Pis 	Pressure of soluble gas in bubble i. 

pT 	Pressure of trapped gas in bubble i. 

P 	Atmospheric pressure. (Previously P was the pressure within an 

emulsion droplet). 

T 	Temperature. 

k 	Boltzmanns constant. 

G 	Gibbs free energy of a dilute foam. 

F 	Helmholtz free energy of continuous phase in a dilute foam. 

F, 	Helmholtz free energy of gas in the ith bubble. 

J.s 	Helmholtz free energy of soluble gas in the ith bubble. 

F7 	Helmholtz free energy of trapped gas in the ith bubble. 

A, V Surface area and volume of the ith bubble. 

V 	Volume of continuous phase in a dilute foam. 

or 	Surface tension. 

C2 	The ith bubble's contribution to the Gibbs free energy. 

Gd 

	

	F_j  G. The total contribution of bubbles' free energies to 

the systems free energy. 

Nbs 	Number of soluble molecules in bulk disperse phase. 

Vb 	Volume of bulk disperse phase. 

fb 	Local contribution to the Helmholtz free energy per molecule 

in a bulk gas, due to molecular properties of the gas. 

vb 	h 2 /27rrnkT and is of order of a molecular volume, with 

h Plancks constant, m the molecular mass (of a gas molecule), 

and T the temperature. 

F 	Helmholtz free energy of a bulk quantity of soluble gas. 

f,ff fb, but for soluble and trapped gas respectively. 

vb, but for soluble and trapped gas respectively. 
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APPENDIX A. TABLE OF NOTATION 

Pressure of soluble gas in a bulk gas phase (which since a bulk 

gas formed by coarsening will have a negligible concentration of 

trapped species, equals the pressure of the bulk gas phase). 

lAb 	Chemical potential of bulk gas. 

Helmholtz free energy of soluble gas molecules in the ith bubble. 

FT 	Helmholtz free energy of trapped gas molecules in the ith bubble. 

Nis 	Number of soluble gas molecules in the ith bubble. 

NT 	Number of trapped gas molecules in the ith bubble. 

14 	Chemical potential of the ith bubble. 

PG 	"Geometric" pressure of the ith bubble, analogous to the Laplace 

pressure of a spherical bubble (see main text for details). 

ffT Local contribution to the Helmholtz free energy per molecule 

of soluble and trapped gas respectively, due to molecular 

properties of the gases. 

L[L1 	/A-/. 

Vi 	 V2/(N: + N2 ), average volume per gas molecule in 

bubble i. (Gases are considered to be ideal gases). 
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Ch. 8: Non—Dilute Foams 

H 	Osmotic pressure, applied so that foam bubbles press against one 

another and become distorted from their previously spherical shape. 

P 	P+fl. 

NM 	Total number of moles of gas in the foam. 

RG 	The ideal gas constant. 

LPij = Pi  — Pj . 

A$ 8 	Total area of liquid in a 2D foam. 

LSYS 	Total interfacial length in a 2D foam. 

A'Y' 	Total area of bubbles in a 2D foam. 

A1, 	Area of liquid associated with the ith bubble. 

Al 	Al 2  in a monodisperse foam. 

A i , L i  Area and interfacial length of the ith bubble. 

A,L 	Area and interfacial length of bubbles in a monodisperse foam. 

I 	Length of the flat bubble—bubble interface in a monodisperse 2D 

foam. 

ri 	Radius of curvature at the ith bubbles Plateau border. 

r 	Radius of curvature at a Plateau border in a monodisperse system. 

Apb 	Area of liquid at a Plateau border in the model of a monodisperse 

2D foam. 

I 	The projection of a 2D bubble face onto the horizontal axis (not 

including the portion of bubble face residing at the bubble's 

Plateau borders. 

If 	The projection of a 2D bubble's Plateau borders onto the horizontal 

axis. 

V 	The dimension of the foam. 

F 2 	Defined by F" 	PG, and expected to be of order 1 for 

sufficiently compressed and monodisperse foams. 
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Ch. 9: Stabilisation of Foams 

yB 	Volume with which bubble i will coexist with a bulk gas phase. 

AP 	Area with which bubble i (for 2D foams) will coexist with a bulk 

gas phase. 

RP 	Radius with which bubble i will coexist with a bulk gas phase. 

NB 	Number of soluble gas molecules in bubble i, when it is 

coexisting with a bulk gas phase. 

nb 	Number density of bubbles in the system. 

n 	Number density of bubbles in the stable shrunken—bubbles. 

n 	Number density of bubbles in the coarsening bubbles. 

Ss' 	Average number of soluble molecules in bubbles (which is 

constant). 

Postulated value to which F may tend towards. 

rmax Postulated maximum value of F. 



Ch. 10: Coarsening of Unstable Foams 

r 	Distance from the center of a grown bubble. 

ps(r,t) Average pressure of soluble gas in shrunken bubbles at distance 

r from the center of a grown bubble, at time t. 

RB 	Radius of shrunken bubbles. 

fv 	Volume flux of soluble gas from bubbles at r to bubbles at 

(r + RB). 

K 	A diffusion constant defined in a way analogous to the diffusion 

constant defined by Von Neumann in deriving his droplet growth 

rate for dry 2D foams. Has units of length per unit pressure. (See 

text for details and references). 

(P(oo,t) - 

The average velocity of dissolved disperse phase at position 

relative to the center of a droplet. 

Ur (r) 	The solution in spherical coordinates for the radial component of 

iZ() relative to the center of a droplet. 

c(r) 	The concentration of dissolved disperse phase at distance r from 

the center of a bubble. 

Coeffecient of viscous drag. 

S 	Rate of change of entropy. 

d 	Distance between adjacent bubble faces. 

77 	Continuous—phase liquid's viscosity. 

SDL 	Rate of change of entropy when coarsening is "diffusion limited". 

S1/L. 	Rate of change of entropy when coarsening is "viscous limited". 

CM 	Molar concentration of gas in bubbles. 

vM 9 	Molar volume of gas in bubbles. 

ro 	Initial distance from the centre of a grown bubble. 

Lu(ro) 	Distance moved by a layer of bubbles initially at r0 , due to a 

larger bubble growing or shrinking. 
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Ro 	Initial radius of a grown bubble. 

AR 	R—R0 . 

H(ro ) 	Extension or contraction of a layer of bubbles initially at r0 . 

/E1 (H) Change in energy of a shrunken bubble due to an extension or 

contraction by H. 

LE 	Change in energy of the sea of shrunken bubbles, due to a larger 

bubble growing or shrinking. 

Maximum yield strain. 

H* 	Maximum extension /contraction before rearrangments occur. 

ro 	Radius within which rearrangements occur. 

Radius above which a droplet must grow, before a plastic region 

is.-nucleated. 

R*_ 	Radius below which a droplet must grow, before a plastic region 

is nucleated. 

d' 	The typical distance between grown bubbles is given by d', and 

d'/RB gives the typical number of shrunken bubbles between two, 

grown bubbles. 



Appendix B 

Solubilisation of Oil by Non—Ionic 

Micelles 

A number of papers authored and co-authored by B.J. Carroll [56-60], studied the 

solubilisation of oil by nonionic surfactants. They used a drop-on-fibre technique 

[56], to study the rate of solubilisation of the drop and how it was affected by the 

temperature, oil composition and surfactant concentration. 

The drop-on-fibre technique [56], studies the time evolution of a droplet on a fi-

bre, by measuring how the distance between the droplets surface which is furthest 

from the fibre, varies in time. 

Above the CMC it was found that the rate of solubilisation was proportional 

to the concentration of surfactant, and hence (since the concentration is above 

the CMC), the concentration of micelles. Measurements of how the rate varied 

with temperature were found to be linear on an Arrhenius plot (log(rate) vs. 

lIT), suggesting a reaction limited mechanism. Since the rate was proportional 

to the concentration of micelles, the rate limiting step would appear to be the 

solubilisation of oil into micelles. The Arrhenius plots gave the same activation 

energies for different types of oil (typically CH2 ; ii = 8 - 16), suggesting that 
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the oil is incorporated directly into micelles without passing through the contin-

uous phase (since differing oil solubility would result in differing rates). Hence 

Carroll et al [56-60] proposed an adsorption/ budding mechanism where oil is sol-

ubilised by the budding of oil swollen micelles from the O/W droplet interface. 

Since the rate of solubilisation was proportional to the concentration of micelles, 

the rate limiting step was taken to be the supply of surfactant to the O/W in-

terface (as opposed to the rate of budding of oil swollen micelles). Assuming 

that only surfactant monomers are able to adsorb at an O/W interface, Carroll 

et al [56-60] concluded that the rate limiting step must be the dissociation of 

micelles to provide extra surfactant monomers and replenish the O/W interface 

with surfactant. The rate limiting step being micelle dissociation, is consistent 

both with the rate being proportional to surfactant concentration, and their ob-

servation of a divergent increase in the solubilisation rate close to the surfactants 

cloud point temperature. 

To summarise, Carroll et al [56-60] concluded that in the systems they studied, 

the solubilisation of oil by non-ionic surfactants (typically C12 E5 16 ), was a reac-

tion limited process, with the rate limiting step being the dissociation of micelles 

to replenish the O/W interface with surfactant monomers. 

Although the mechanism suggested by Carroll et al appears consistent, a simpler 

one would be that solubilisation is a reaction limited process in which oil ad-

sorption resulted from sufficiently energetic collisions of micelles with a droplets 

surface (mechanism 3 in Section 6.2). This would result in a reaction limited 

process with a linear behaviour on an Arrhenius plot, and also would predict an 

increased solubilisation rate proportional to the micelle concentration due to the 

increased frequency of micelle collisions with a droplets surface. Hence the work 

of Carroll et al provides evidence for mechanism 3 described in Section 6.2. 



Appendix C 

Geometry of Monodisperse, 2D 

Bubbles 

The area of the hexagon is six times the area of the equilateral triangles of 

which it is composed (see figure C.1). The area of each triangle is (1/2)h, with 

Figure C.1: Hexagonal foam bubble of side length I 

h = I sin(7r/3), since each triangle has interior angles of 7r/3. Hence noting that 

sin(7r/3) = 	we obtain the area of a hexagon as 

A = --I2 	 (C.1) 
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Its interfacial length is simply given by 

L=61 
	

(C.2) 

We describe a nearly hexagonal bubble in terms of the length of the flattened 

faces 1, and the radius of curvature of the plateau border r (see figure C.2). Then 

Figure C.2: Nearly hexagonal foam bubble with flat sides of length I, and radii of 
curvature r. 

the area of a nearly hexagonal bubble is given by the sum of six sections of a 

circle, each of angle 7r/3 and radius r, plus six rectangles of length I and height 

r, plus the area of a hexagon of side length I. So a nearly hexagonal bubbles area 

is given by 

A = rr2  + 61r + 
2 	 (C.3) 

and its surface length by 

L=61+27rr 	 (C.4) 



Appendix D 

Osmotic Pressure: Princen's 

Calculation 

The osmotic pressure of monodisperse, cylindrical emulsion droplets was calcu-

lated by Princen. Princen calculated the osmotic pressure firstly by considering 

the requirements for the semipermeable membrane to be in equilibrium, with the 

forces acting from above and below the membrane balanced; then later by con-

sidering the increase in interfacial energy as continuous phase is removed [78,79]. 

For the monodisperse, cylindrical emulsion droplets Princen found 

()1/2 I(1_c5o)1"2 

00 

with 0 the volume fraction of emulsion droplets, 10  the volume fraction of close 

packed emulsion droplets, and R the radius of a close packed cylindrical emulsion 

droplet. The removal of liquid at fixed droplet length results in the droplets cross 

section (perpendicular to its length), becoming increasingly hexagonal in shape. 

Hence the osmotic pressure calculated by Princen should equal that calculated in 

Section 8.4.2. 
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216 	APPENDIX D. OSMOTIC PRESSURE: PRINCEN'S CALCULATION 

Buzza and Cates [80] noted that 

a 	2 = ç: 
()1/2 

(D.2) 

and 
1/2 r 	(o) 

1/2 (1 
R 	1 - 00 

_ 
; ) 	

(D.3) 

with a and r as in figure D.1. Using Eqs. D.2, D.3, and D.1 we obtain 

Figure D.1: The lengths a, r, and 1, are as shown in the above diagram. 

or 	2or 
r 	a 	 (D.4) 

So noting that a = I + 2r/v/-3- we obtain 

6a 

r 6r+3\/1 	
(D.5) 

So Eq. 8.17 gives 
or 

(D.6) 

as in Section 8.4.2. 



Appendix E 

Slightly Soluble 'Trapped' Species 

If we consider the previously trapped species as being slightly soluble, then con-

servation of bubble number is slowly violated*.  Eq. 9.5 must then be generalised 

to 

n(t) + n(t) 	 (E.1) 

with Eq. 9.7 becoming 

nb(0)N° - 	 = n(t) (AT3C(t) - !V sB 	(E.2) 

So stability is ensured if 

flb(0)NsO - flb(t)N8B(t) < 0 	 (E.3) 

an expression equivalent to the requirement that 

IVSO - 	 <0 	 (E.4) 

Since the total number of previously 'trapped' species is also conserved, we have 

	

rlb(0)N(0)= flb(t)N T (t) 	 (E.5) 

*The  derivation in this section is closely related to that given in chapter 3.9. 
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where NT(t) = (NT(t)), and is the average number of the (previously) 'trapped' 

species in bubbles at time t (where we again neglect any of the previously 'trapped' 

species which may dissolve in the continuous phase). So Eq. E.4 maybe rewritten 

as - 

NNT(o)T(t) <0 	 (E.6) 

P 	 NT(t)D/(D -1 ) 
E.7) ( 

N(NT(t)) 	 D/(D-1) 	- 

with i'c corresponding to the constant, maximum or initial value (1(0)) of F, 

depending on the behaviour of t" in the system studied and the corresponding 

stability condition for entirely trapped species. Noting that for D > 2 then 
(NT)D/( 1 ) < NTD/1)), so that Eq. 9.29 will ensure that 

N's (NT(t)) 5  N(t) 	 (E.8) 

Since NT(t) increases in time, and since N(N T ) increases faster than linearly 

with NT ,  then 
N(N T (0)) 	NnSB (NT(t)) iax 

NT(0) 	< 	NT(t) 	 (E.9) 

so that 

	

TA  _t) 	 N  N80_N(o)__N° NT(o) ax (NT (t)) < NSO_NS 

	

NT(t) 	 NT(t) 	
B (NT (o)) (E.10) 

Hence provided that 

N° < N's (N T (0)) 	 (E. 11) 

then NSO < NT(0)(NSB(t)/NT(t)), so that n(t) = 0, and the distribution will 

coarsen at the slower rate determined by the less soluble, previously considered 

'trapped' species. 



Appendix F 

Calculating the Diffusion Constant 

K 

We obtain K by first calculating the rate of diffusive flux of gas through a liquid 

membrane and then comparing it with the corresponding equation using K. 

We consider a liquid membrane of thickness d with gas pressures Pi  and P2  on 

either side (see figure F.1). The differing pressures result in differing dissolved 

concentrations of gas in the surface of liquid adjacent to the relevant gas bubble. 

The dissolved concentration of gas is given by 

Ci  = C(oo)e kT 	 (F. 1) 

where '-i  is the difference in chemical potential between gas in bubble 1 and 

gas in a bulk gas phase, and C(oo) is the concentration of dissolved gas adjacent 

to a bulk gas phase. So using L 	= kT in (i + 	we obtain a concentration 

difference of 
_ 

C1  - C2  = C(oo) 
fpG 

1 	P2'), 
 
 = C(oo) A P

12 
 ,. 	 (F.2) 

Since we will have a concentration gradient (Cl - C2 )/d, the flux rate per unit 
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.. 

................... 
........... 

Figure F.1: A liquid interface of thickness d separating bubbles 1 and 2 from one 
another. Differing pressures in the bubbles will result in differing concentrations of 

dissolved gas adjacent to the bubble interfaces, resulting in dissolved gas diffusing 

down any concentration gradients and hence being transferred between bubbles. 

area per unit time will be 

	

C1 - C2  = C(oo)D 	
(F.3) d 	Pd 

from which we obtain a volume flux per unit area per unit time as 

	

KzP12 
= v9C(oo)D 	

(F.4) 

where v9  is the volume per molecule of gas in the gas phase. Hence we obtain 

	

K = v9C(oo)D 	
(F.5) 

Pd 



Appendix G 

Foam Constants 

We list here the orders of magnitude for important constants relevant to foam 

behaviour. 

D 	iO 	m2s' Diffusion constant for small molecules 

in solution [89]. 

a '-i  10'Nm' Surface tension of Water—Air or 

Water—Oil interface (with surfactant). 

105 Nm 2  Atmospheric pressure [89]. 

R 's-' 106 - 10 8 m Radius of emulsion drops. 

R 	102 - 10 7 m Radius of foam bubbles. 

kT 	10 21 J & RT 	103 J Thermal energy [89]. 

77 '-' 10Nsm 2  Viscosity of water [89]. 

P 	103kgm 3  Density of water [89]. 
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APPENDIX G. FOAM CONSTANTS 

G.1 Solubility of CO2 

3.3gms of Carbon Dioxide will dissolve in 1000gms of water {89}, so since the 

relative molecular mass of CO 2  is 44, and 1000gms of water is one litre, we have 

3.3/44 moles of dissolved CO 2  per litre. Since there are iO litres of:water in a 

m3  of water we must have 3.3/44 x 103  moles of dissolved CO 2  in a m 3  of water. 

Hence we have a molar concentration for CO 2  in water of 

CM '- 0.1 x 103 	102 molesm 3 	 (G.1) 

G2 Molar Volume of CO 2  at Atmospheric Pressure 

Since v9  = then using the ideal gas law we have v9  = = . So we also have 

a molar volume VM9 = , which using the values given above gives 

1 03  
VM9 r' 	10 2 m3 	 (G.2) 
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