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Abstract

This thesis addresses the absence of explicit pricing formulae and the complexity of proposed
models (incomplete markets framework) in the area of mortality risk management requiring
the application of advanced techniques from the realm of Financial Mathematics and Actuarial
Science. In fact, this is a multi-essay dissertation contributing in the direction of designing and
pricing mortality-linked derivatives and offering the state of art solutions to manage longevity
risk. The first essay investigates the valuation of Catastrophic Mortality Bonds and, in par-
ticular, the case of the Swiss Re Mortality Bond 2003 as a primary example of this class of
assets. This bond was the first Catastrophic Mortality Bond to be launched in the market
and encapsulates the behaviour of a well-defined mortality index to generate payoffs for bond-
holders. Pricing this type of bond is a challenging task and no closed form solution exists in
the literature. In my approach, we adapt the payoff of such a bond in terms of the payoff of
an Asian put option and present a new methodology to derive model-independent bounds for
catastrophic mortality bonds by exploiting the theory of comonotonicity.

While managing catastrophic mortality risk is an upheaval task for insurers and re-insurers,
the insurance industry is facing an even bigger challenge - the challenge of coping up with
increased life expectancy. The recent years have witnessed unprecedented changes in mortality
rate. As a result academicians and practitioners have started treating mortality in a stochastic
manner. Moreover, the assumption of independence between mortality and interest rate has
now been replaced by the observation that there is indeed a correlation between the two rates.
Therefore, my second essay studies valuation of Guaranteed Annuity Options (GAOs) under the
most generalized modeling framework where both interest rate and mortality risk are stochastic
and correlated. Pricing these types of options in the correlated environment is an arduous
task and a closed form solution is non-existent. In my approach, I employ the use of doubly
stochastic stopping times to incorporate the randomness about the time of death and employ
a suitable change of measure to facilitate the valuation of survival benefit, there by adapting
the payoff of the GAO in terms of the payoff of a basket call option. I then derive general
price bounds for GAOs by employing the theory of comonotonicity and the Rogers-Shi (Rogers
and Shi, 1995) approach. Moreover, I suggest some ‘model-robust’ tight bounds based on the
moment generating function (m.g.f.) and characteristic function (c.f.) under the affine set up.
The strength of these bounds is their computational speed which makes them indispensable
for annuity providers who rely heavily on Monte Carlo simulations to calculate the fair market
value of Guaranteed Annuity Options. In fact, sans Monte Carlo, the academic literature does
not offer any solution for the pricing of the GAOs. I illustrate the performance of the bounds
for a variety of affine processes governing the evolution of mortality and the interest rate by
comparing them with the benchmark Monte Carlo estimates.

Through my work, I have been able to express the payoffs of two well known modern
mortality products in terms of payoffs of financial derivatives, there by filling the gaps in the
literature and offering state of art techniques for pricing of these sophisticated instruments.

Keywords: Catastrophic Mortality Bonds, model-independent bounds, Asian options, comono-
tonicity, Guaranteed Annuity Option (GAO), model-robust bounds, Affine Processes, interest
rate risk, mortality risk, change of measure, Basket option.

AMS subject classifications (MSC2010): Primary 91G20; secondary 60G44, 60J25, 68U20.
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Lay Summary

Since the beginning of mankind, man has been striving hard to become immortal. Though,
immortality is still a dream, modern times have been a witness to significant improvements
in life expectancy. While this is appealing to hear, increasing life expectancy generates risk
for economic agents such as pension funds, insurance companies and governments, because
of increased liabilities. Not only this, mortality advancements, especially at older ages make
individuals with inadequate pension arrangements vulnerable to poverty threats. This is called
‘Longevity Risk’:- the risk that a population will live longer than expected, so that adequate
savings are unavailable to fulfill the needs of the population.

Knowing the right trend improvements in life expectancy, is the key to handle longevity risk.
But, it has been hard to realize this trend in the past; even official agencies have systematically
underestimated previous mortality improvements. Pension plan and annuity providers are
now raising the question whether longevity is a risk they should be assuming on an unhedged
basis. The capital markets are trying their best to offer remedies for handling and unloading
longevity risk. These issues came to the limelight after the debacle of the oldest U.K. life insurer
‘Equitable Life Assurance Society’ (ELAS) due to mis-pricing of longevity linked securities
called ‘Guaranteed Annuity Options’ (GAOs) which offer the flexibility to the buyer to choose
between a lump sum or a life-long guaranteed annuity scheme at the time of retirement. When
many of these guarantees were written in the UK in the 1970s and 1980s: long-term interest
rates were high and mortality tables did not include an explicit allowance for future mortality
improvements (longevity). Ever since, however, long-term interest rates declined and mortality
improved significantly for lives on which these policies were sold, leading to a lot of these
policies to be in money and therefore getting exercised, putting undue burden on the insurer.
As a result, pricing of these instruments is a key to solving the ‘Longevity Puzzle’. Keeping this
in mind, we offer state of art solutions for pricing GAOs under the most general framework,
allowing longevity to be stochastic and letting it interact with the financial markets. The
strength of our methodologies lies in their versatility, speed and accuracy. These solutions will
prove to be an indispensable tool for pension and annuity providers in the future.

While managing longevity improvements is proving to be an upheaval task for pension
planners and annuity providers, there is another shade to the uncertainty connected to human
lifespan that is threatening the life insurance industry:- the fear of a huge number of deaths due
to a catastrophic event such as a pandemic, a natural disaster, a terrorist attack or any other
man-made error. This is called ‘Mortality Risk’. The occurrence of such events has increased
exponentially over the last few decades. These catastrophes have the power to cripple the
life insurance industry and therefore large reinsurance giants such as Swiss Re have designed
sophisticated instruments called ‘Mortality Bonds’ to sell the mortality risk to markets. Though
these bonds have been successfully subscribed, their complex structure makes it hard to put
a fair price on these. We have addressed this challenge by offering ‘model-independent’ crisp
price bounds for the first such mortality bond called ‘VITA I’. Comparison of these bounds
with the benchmark Monte Carlo estimates illustrates their sharpness around the true value.
Once again, we solve a complex pricing problem and provide a powerful methodology in the
hands of re-insurers such as Swiss Re, which can be used to test under a variety of models to
protect against the ‘worst case scenario’ and shield against, otherwise difficult to avoid: ‘model
risk’.
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Thus, mortality and longevity: the two sides of the same coin; are causing a lot of distress
to financial institutions and addressing the problems related to their management is the need of
the hour. The results derived in this thesis offer efficient solutions for pricing complex mortality
and longevity linked securities and therefore should appeal alike to ‘Financial Mathematicians’,
‘Actuarial Experts’ and practitioners.

vi



Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisor, Dr. Sotirios Sabanis,
whose expertise, enthusiasm for research, understanding and encouragement added considerably
to the completion of my thesis. I appreciate not only his mathematical comprehension and vast
knowledge in many areas, but also his kindness and amicable way of mentoring. He aroused
my joy of mathematical research, inspired me with his invaluable ideas, motivated me with
fascinating discussions, encouraged me to attend international conferences and workshops and
enabled me to deepen my understanding of stochastic analysis and mathematical finance. His
guidance has helped me to achieve unbelievable results and would continue to be a source of
motivation in all my future endeavours.

My special thanks also go to my second supervisor Professor István, Gyöngy, who provided
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Chapter 1

Introduction

Since the beginning of evolution, mankind has always cherished a dream - the dream of being
immortal. Though immortality is still an illusion, modern times have been a witness to signifi-
cant improvements in life expectancy. As an example, data from the HMD (2014) depicts that
life expectancy at birth in England and Wales increased from a meager 41.59 years in 1841 to
a mammoth 81.04 years in 2011.

This increase in life expectancy, though appealing to hear and clearly a sign of social
progress, generates risk for governments, economic agents such as pension funds and insur-
ance companies and even individuals because of increased liabilities such as pension for the
former group and health costs for the latter. Since everything in this world comes for a cost,
longevity is associated with disabilities and therefore individuals need money to ensure a good
quality of living standard at old ages and companies need a greater pool of funds to pay the
regular stream of payments to individuals for a much longer time. However, this increased fi-
nancial risk is not just an outcome of the increase in life expectancy. If there was a possibility of
fully anticipating mortality improvements, then appropriate methods could be devised for their
management. Rather, the real challenge emerges as a result of the uncertainty surrounding
the increases in life expectancy. The magnitude of this uncertainty is being widely debated by
demographers who are keen to gauge the extent to which past increases in life expectancy will
continue into the future. While one school of thought (Oeppen and Vaupel, 2002) argues based
on recent mortality trends, that no natural limit can be fixed for life expectancy, the second
school of thought (Olshansky et al., 2005) suggests that life expectancy might level off or even
decline.

As a result, the uncertainty of future mortality trends, i.e. “longevity risk”, can result in
important economic implications for individuals, pension plans, annuity providers and social
insurance programs such as Social Security. On the one hand, mortality advancements especially
at older ages makes individuals with inadequate pension arrangements vulnerable to poverty
threats as they face the risk of outliving their savings. On the other hand, pension plans and
annuity providers may incur significant financial losses if they consistently underestimate the
survival probabilities of their pensioners and policyholders. Moreover, in addition to having
substantial pension obligations such as social security programs, governments act as residual
risk bearers of last resort and are becoming increasingly concerned about the grave financial
consequences of citizens outliving their resources. These potential consequences of longevity
risk are particularly acute in current times when the baby boom generation is starting to retire
and real interest rates are at low levels.

Besides the uncertainty in life expectancy, there is another major cause that causes grave
financial implications for life insurers and that is “mortality risk”. While longevity risk described
above denotes adverse financial consequences that arise when an individual or group lives longer
than expected (i.e. their mortality rate is lower than what was expected at the time that the
financial balancing of assets, set aside for future consumption or future payments, was made), its
counterpart mortality risk describes serious financial complications arising due to a shorter life
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time than anticipated of an individual or group (i.e. their mortality rate is higher than what was
in the premium/benefit balancing equation). More explicitly, life insurance companies provide
protection to their policyholders in the form of a payout made in the event of a policyholder’s
death, in exchange for a premium. Extreme mortality events, such as a severe pandemic or a
natural catastrophe or a large terrorist attack, could result in a life insurance company needing
to make sudden payouts to many policyholders. This large payout would be exacerbated in
that the investment portfolio would not yet have delivered sufficient returns so that the payouts
to policyholders are made sooner than expected. Therefore it is crucial for life insurers, and
life re-insurers, to manage their exposure to extreme mortality risks where insurance portfolio
diversification by itself is insufficient.

The International Actuarial Association defines four components of longevity/mortality risk
viz. level, trend, volatility and catastrophe. The four components are classified into two groups
which are systematic risk and specific risk or idiosyncratic risk (c.f. Crawford et al., 2008).
Systematic risk is defined as the underestimation or overestimation of the base assumption of
mortality rates, including the level component and the trend component. Specific risk is taken
to be the volatility around the base assumption, including the volatility component and the
catastrophe component. According to the famous law of large numbers in Statistics, specific
risks can be minimized by diversifying with a large pool of lives; however it is not possible to
reduce systematic risk by diversification.

Although mortality risk and longevity risk are two sides of the same coin and even if a
certain mutualization exists between these risks, it is hard to obtain a significant risk reduction
between the two because of the diversity in their nature. While mortality risk is a short-term
risk having a 1 to 5 year maturity and possessing a catastrophic component, longevity risk is a
long term risk with maturities ranging from 20 to 80 years and is primarily connected to changes
in trend. The successful addressing of the challenges derived from longevity and mortality risk
has lead to the development of the area of ‘Mortality Risk Management’ (Rejda, 2005) which
has manifested itself in terms of ‘Mortality-linked Derivatives’1. The pricing of these derivatives
hinges upon the success of portraying the dynamics of future stochastic mortality. The difficulty
in pricing these derivatives also stems due to the incompleteness of the market associated with
these securities which rules out the existence of a unique ‘Equivalent Martingale Measure’ or
EMM2. for pricing them. This PhD thesis is devoted to the investigation of the techniques
for managing mortality and longevity risk and in particular to the designing and pricing of
mortality-linked derivatives.

In the next few sections, we explore the historical background of morality linked securities,
look at the causes and remedies of the mortality and longevity risk, throw light on the motivation
for the present work and explain the organization of the thesis.

1.1 Historical Background

We break the historical background into two sections: talking about the history of mortality
linked securities and about the models used for describing mortality. For a good review of the
historical background, interested readers can refer to Bauer (2008) and Chuang (2013).

1.1.1 Mortality Contingent Securities

Mortality contingent securities have been into existence for a long time. In ancient Rome, con-
tracts called annua offered the option to receive annual, life-long payments against a one-time,
upfront premium. These “annual stipends” were the precursor of single premium life annuities.
Moreover, so-called collegia funeratica allowed the poor class of the Roman society to finance

1This is a general term to encompass both mortality and longevity linked instruments. We will mention the
specific demarcation where required.

2A martingale measure is desired here in order to serve as a risk-neutral measure for arbitrage free asset
pricing in an incomplete market such as that governing mortality-linked derivatives which in general do not
have an underlying trading security upon which they are based.
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costly funeral ceremonies by paying small periodic premiums; as such, these confraternities were
the first funeral expense funds and may be regarded as the first mutual life insurers. However,
the first recorded life insurance policy in modern times was issued in the year 1583; though, it
was not until 1759 and 1762 that the first pure life insurance companies started business in the
United States and the United Kingdom, respectively, namely the Presbyterian Ministers’ Fund
(U.S.) and the famous Equitable Society for the Assurance of Life and Survivorship (U.K.) (c.f.
Depew, 1895).

Since then, there has been an exponential growth in the number of life insurance organiza-
tions. The interesting fact is that apart from the number of companies, the last few decades
have witnessed a huge variety and complexity of the products offered by these organizations.
These days, life insurance and life annuity products not only offer protection against the risk of
an untimely death, but they also serve as sophisticated investment vehicles containing various
options and guarantees. However, this increasing complexity of products is accompanied by
unacquainted, non-obvious risks which tested the capacity of insurers and which they either
failed to pass or are struggling to come to terms with. As an example, the “Equitable Life”
closed to new business in 2000 because they underestimated the amount of risks arising due to
interest rate and mortality sensitive guarantees within their products. As indicated above, ‘The
Equitable Life Assurance Society’ (ELAS), a mutual insurer founded in 1762, primarily sold
with-profits policies (equivalent to participating policies in the U.S.), in which the Society’s
surplus was shared with its policyholders. The policies that led to the troubles were issued
from 1957-1988 and contained a guaranteed annuity rate. These policies typically guaranteed
that £100 cash at retirement could be converted into a £10 per annum annuity, regardless of
external financial conditions at the time. The Society’s Guaranteed Annuity Rates (GARs)
were more generous and flexible (c.f. Baranoff and O’Brien, 2016) and lead to its downfall as
life expectancy improved and these options were encashed. This led to the highlighting of the
problem of ‘Longevity Risk’. We consider this in detail in Section 1.3.3.

The main cause behind the problems of life insurers and annuity providers has been the
usage of outdated valuation and risk management methods. As a result in recent years life in-
surance industry has started to revise their valuation approaches, which is also due to regulatory
changes demanding apt valuation procedures, such as the upcoming Solvency II requirements
of the European Union and Phase II of the International Financial Reporting Standard 4.
In particular, methods from modern mathematical finance are being applied. The drift from
‘Deterministic’ to ‘Stochastic’ mortality was the first big step towards a modern approach to
actuarial valuations connected to mortality.

Soininen (1995) was among the first to consider the impact of stochastic mortality rates on
life insurance premiums and reserves in a functional analytic framework, but his work did not
attract much attention. In contrast, the articles by Milevsky and Promislow (2001) and Olivieri
(2001) were highlighted and initiated a flow of contributions on stochastic mortality modeling
with a focus on applications in actuarial science. Again, many of those employ mathematical
methods from time-series modeling or the theory of stochastic differential equations, particularly
modeling approaches from mathematical finance. This also brings us to the history of mortality
modeling discussed in the next sub-section.

1.1.2 Mortality Modeling

Graunt (1662) was the pioneer of modeling mortality who examined the London Bills of Mor-
tality. He showed that the life span of individuals was predictable in the aggregate and he
developed a life table to describe this structured process of death. Halley (1693) had better
data and was the first one to illustrate the construction of a rigorous (essentially modern)
mortality table from empirical data and its application to price life annuities. Later on in the
18th century, De Moivre (1725) first postulated a functional form mortality table based on
uniform distribution of deaths model and demonstrated annuity table calculations using this
mathematical model. Then, in the 19th century, Laplace (1820) applied theoretical basics from
probability theory, to actuarial modeling. He was followed by Gompertz (1825) who adopted
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a biological approach and the mathematical formulation came as a consequence to give way to
the famous Gompertz law.

The above mortality models are static in nature, i.e., they involve the age x of the person
at a fixed point (year) in time but ignore the evolution of mortality over time and do not pay
attention to random variation in mortality. Recent mortality modeling attempts to incorporate
both the age at death as well as temporal dimension and is mostly based on the two dimensional
(age and time) structure supplied by Lee and Carter (1992). In the Lee-Carter (LC) model,
while the temporal effect reflects changes in mortality rates across all ages as the time dimension
varies, the age component gauges the mortality changes with increasing age when the time
dimension is fixed. More specifically, the LC model portrays the evolution of mortality over time
by an auto-regressive integrated moving average process, with the special case random walk
with drift being the most commonly used. What this modeling method captures is “diffusion
risk”, which arises from the variations around a fixed drift that determines the expected trend,
but not the uncertainty connected with the trend itself.

Although the LC model furnishes the basic framework for mortality modeling, it fails to
completely account for rare events such as war, epidemics or natural disasters generally called
catastrophes. Such catastrophes create a sudden abnormal increase in the mortality rate re-
ferred to in the literature by the name of ‘mortality jump’. To accommodate these jumps, many
authors have suggested extensions to the LC model3. Brouhns et al. (2002) made some modifi-
cations to the LC model by using a Poisson random variation for the number of deaths instead
of the additive error term in the original model. This is considered to be more practical since
the mortality rate is much more variable at older ages than at younger ages. Another extension
added to the LC model was to incorporate another term which accounts for the cohort effect
found by Renshaw and Haberman (2006). This cohort effect extension attempts to capture
the observed phenomenon that during certain times and in some places people born during
a certain time period or a particular year (say 1972) will experience a similar mortality rate
pattern which differs from those of their immediate predecessors (born in 1971) or immediate
successors (born in 1973).

While the Lee-Carter model and each extension is successful in improving mortality forecast-
ing, an unintended consequence that it brings along inherent complexity which renders these
extended models unsuitable for pricing of sophisticated mortality linked derivatives. To ade-
quately price a mortality/longevity linked financial derivative, one needs a stochastic mortality
model along with an EMM.

Affine4 processes and in particular Lévy processes have been used by a number of authors
to model mortality rate and enable martingale pricing. For example, Biffis (2005) introduces
mortality intensity as a sum of deterministic function and an affine jump diffusion process.
Luciano and Vigna (2005) utilize affine processes to depict the evolution of mortality rate
and furnish detailed calibration using UK data. In their paper, they advocate that a non
mean-reverting process is more appropriate to model mortality rate than a mean-reverting one.
Moreover, the addition of negative jumps into the diffusion process appears better to fit the
real mortality data and forecast the mortality trend. Ballotta and Haberman (2006) propose
a model for the force of mortality having a perturbation part driven by a Brownian motion.
Mortality intensity, as proposed by Hainaut and Devolder (2008), is a sum of a deterministic
function as in Biffis (2005) and a mean reverting stochastic process, driven by tempered alpha-
stable subordinators (see Cont and Tankov, 2003, for an introduction). Ahmadi and Gaillardetz
(2015) use a Poisson Generalized Liner Model consisting of Gamma and Variance-Gamma
processes to model perturbations. Poisson Generalized Linear Models found their application
in actuarial science in mortality modeling context in work of Renshaw and Haberman (2003).
Wang et al. (2011) report that mortality indices in the LC model possess thicker tails than
a normal distribution and appear to be skewed. They propose to use Generalized Hyperbolic

3See for example Renshaw et al. (1996), Sithole et al. (2000), Milevsky and Promislow (2001), Ballotta and
Haberman (2006) and Deng et al. (2012).

4We discuss Affine processes in Chapter 4.
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and Classical Tempered Stable distributions to model the mortality indices in the Lee-Carter
model.

Another well-known stochastic model portraying mortality evolution was proposed by Cairns,
Blake and Dowd in 2006, (c.f. Cairns et al., 2006b) and is known as the CBD model in liter-
ature. This model exploits the relative simplicity of mortality curve at higher ages but does
not cater to younger ages. This model is extremely popular for pension plan valuations in
the UK due to its good performance in capturing mortality dynamics of older age groups. In
contrast with the LC model, it contains two factors in describing mortality evolution. The first
factor influences mortality rate dynamics at all ages in the same manner whilst the other one
affects mortality rate dynamics at higher ages more significantly in comparison to lower ages.
Empirical evidence favours the theory that both factors are necessary to achieve a satisfactory
fit over the entire mortality term structure. A considerable advantage of their methodology is
that it incorporates varied improvements at different ages and at different times - something
which was missing in the LC model. Analysis and comparison of some well known mortality
models appears in Cairns et al. (2009, 2011) and Dowd et al. (2010b,a).

Research advances in modern finance have inspired research developments in the field of
insurance. Milidonis et al. (2011) initialized the concept of ‘Regime-Switching’ (RS) approach
into mortality rate modeling. They introduce a stochastic drift by modeling the time-varying
factor in the LC model using a regime-switching log-normal process with two regimes. The
drift term in each regime is allowed to be different, so that the drift of the process may vary as
the system switches between the two regimes under an assumed Markov chain. Through the
examination of the US population mortality index, they illustrated that there were structural
changes in the underlying death probability for all age cohorts from all death causes. Moreover,
they utilized the concept of regime-switching to model the error term of mortality index in
the LC model. This captures the disturbances caused by extreme observations over time and
makes the error term non-normal. However, as indicated in their estimation results, it is the
volatility rather than the drift that separates the two regimes. Therefore, the regime-switching
process may be appropriate for portraying short term catastrophic mortality events which are
generally accompanied with high mortality volatility, but may not be sufficient for capturing
the risk arising from drift changes. Another attempt to introduce a stochastic drift was made
by Sweeting (2011), who considered a piece-wise linear regression. Although the slope of the
regression line is allowed to vary in the future, the probability and extent of future slope
variations are computed in an ad hoc manner. In fact, the probability is taken as the ratio
of the number of observed break points to the total number of data points, while the extent
is estimated using the root mean square of the annual changes in the underlying dynamic
factor. Alternative mortality models that deal with the risk associated with trend changes in
a comprehensive manner are yet to be formulated. In a recent paper, Yanxin and Li (2017)
propose a new model called the ‘Locally Linear CBD’ (LLCBD) model based on the CBD
model, in which the drifts that govern the expected mortality trend are allowed to follow a
stochastic process and gives the user a chance to quantify not only “diffusion risk” but also
“drift risk”. It is also a good paper to review the recent upto date developments in stochastic
modeling of mortality.

Other cause specific models have also been proposed and we would mention the important
ones under the suitable heads. In the next couple of sections we throw light on the causes and
effects of the two sides of the Mortality Risk Management.

1.2 Mortality Risk: Cause and Remedies

As pointed out earlier, managing mortality risk is a key objective of the life insurance and
reinsurance companies in the present day world. In this section, we investigate the causes
behind mortality risk and look at some well known remedies.
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1.2.1 The Cause: Catastrophes

Mortality risk is the risk that actual mortality will turn out to be greater than projected. The
factors that affect mortality risk of a life insurer or re-insurer (c.f. Garvey, 2011) are:

� Random Statistical Fluctuations

� Mis-estimation of General Mortality trends

� Data Issues and Miscalculation of Claim Levels

� Catastrophic Events.

Out of these, the last one is the most important. Catastrophic mortality events are characterized
by a sudden and concentrated increase in mortality and as such present a major threat to the
life insurance industry due to the potential for a substantial rise in claims over a short period of
time. As a result, severe adverse financial consequences can potentially arise, such as breaches
in regulatory solvency and capital requirements (see Cox and Hu, 2004, for details). Before
throwing light on the main sources of catastrophic risks, we first try to understand the exact
definition of a catastrophe.

A catastrophic event can be defined as “any natural or man-made incident, including ter-
rorism, which results in extraordinary levels of mass casualties, damage, or disruption severely
affecting the population, infrastructure, environment, economy, national morale, and/or gov-
ernment functions.”5 In the context of life insurance and particularly for the purposes of rein-
surance, a catastrophic event has a specific meaning or definition, similar to “one event or
occurrence claiming more than an agreed number (a common figure is 5) of lives insured within
a given period, usually 24-72 hours” (IAAust, 2009). However, for the purpose of this thesis,
we are referring to an event which has the potential of causing widespread loss of life, possibly
leading to substantial risks of insolvency for a life insurer.

The number of catastrophic events has risen sharply in the last four decades. In the 1970s
there were roughly 100 catastrophic events per year. This number has consistently more than
tripled in the last decade. Between 1994 and 2013, EM-DAT6 recorded 6,873 natural disasters
which claimed 1.35 million lives or almost 68,000 lives on average each year. In addition, 218
million people were affected by natural disasters on average per annum during this 20-year
period. We list below the possible mortality catastrophes

� Infectious diseases/ Pandemics

� Natural Disasters

� Terrorist Attacks

� Wars

� Meteorite Crashes

� Accidents: Industrial, Transport, Aviation or others.

Of these, pandemics arising from influenza are considered to be the most serious threat to the
life insurance industry due to their capacity to cause a major increase in claims. For a good
review of the features and mortality implications of an influenza pandemic for life insurers and
details about other catastrophes, the interested readers can refer to Huynh et al. (2013).

Catastrophes lead to spikes in the mortality curve. Figure 1.1 clearly shows the spikes
caused in the US insured Age Standardized Mortality Curve, particularly the sharpest spike,
arising due to 1918 influenza pandemic. In fact there have 13 or more influenza pandemics since
1500 out of four occurred in the 20th century viz.

5http://www.definitions.net/definition/catastrophic event, accessed April 18, 2017.
6The Emergency Events Database (EM-DAT) is a free and fully search-able database containing worldwide

data on the occurrence and impact of over 20,000 natural and technological disasters from 1900 to date.
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� Spanish Flu (1918)

� Asian Flu (1957)

� Hong Kong Flu (1968)

� Russian Flu (1977).

It is possible to classify influenza pandemics according to their case-fatality ratio7 (CFR),
when the data are available. The pandemic severity index introduced by the United States
Department of Health and Human Services in 2007 categorizes pandemics into 5 different classes
according to their CFR, ranging from less that 0.1% in Category 1 to 2% or higher in Category
5. The Spanish flu of 1918 is by far the most severe influenza pandemic to date and is placed
in Category 5 while the Asian and Hong Kong flu are set into Category 2. It is difficult to
obtain the pandemic severity index for all the past influenza pandemics since the data are not
readily available. A good reference here is Taubenberger and Morens (2009) and they identify
the pandemics in 1557, 1580, 1729 and 1889 as severe pandemics with high fatality rates.
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Figure 1.1: Spikes in the US insured Age Standardized Mortality Curve (Source: Klein, 2005)

The important question that comes to mind is that can a flu happen again? According
to modern virologists and epidemiologists the answer is affirmative (c.f. Webster and Walker,
2009). In the 21st century, we saw the outbreak of Swine Flu in 2009. According to RMS

7The percentage of deaths out of the total reported cases of the disease in the U.S.
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pandemic model8 the risk of a pandemic outbreak in any given year is 1-in-30, while the chance
of a 1957-magnitude outbreak is 1-in-40 and that for a 1918-caliber pandemic is 1-in-475. As
a result it is reasonable to assume that similar influenza pandemics will occur in future. Also
for reasons such as inter-species transmission, intra-species variation and altered virulence, the
timings and severity of future pandemics and hence mortality jumps is unpredictable (c.f. Cox
et al., 2003).

Mortality jumps are not common but when they occur they trigger a large number of deaths
and hence a large number of unexpected death claims, thereby crippling the financial strength of
the life insurance industry. In fact, the positive jumps in the mortality curve can be transitory,
as caused by natural or man-made catastrophes or pandemics or can be persistent and more
lasting, as caused by diseases such as AIDS, SARS, antibiotic resistant strain of tuberculosis
etc. The following table from Dacorogna and Cadena (2015) highlights the importance of this
discussion.

Table 1.1: List of the main Pandemic, the year it started and Deaths attributed to them (in
million) in the last 100 years

Year 1918 1957 1968 1981 2002 2006 2014

Type Spanish Flu Asian Flu Hong Kong Flu AIDS SARS Avian Flu Ebola

Deaths 30 4 2 25 .008 .002 0.006

Stracke and Heinen (2006) estimated that the worst pandemic would result in approximately
e45 billion of additional claim expenses in Germany. This amount is indeed equivalent to five
times the total annual gross profit or 100% of the policyholder bonus reserves in the German life
insurance market. Toole (2007) highlighted that in a severe pandemic scenario, additional claim
expenses would consume 25% of the Risk Based Capital (RBC) of the entire US life insurance
industry so that companies with less than 100 % of RBC are at the risk of being insolvent.
To understand more clearly, the financial implications of pandemics, we furnish parts of an
interesting table from Huynh et al. (2013) in Table 1.2.

Here we have just discussed the potential impact of an influenza pandemic on the life insur-
ance industry. The other possible natural and man-made catastrophes (particularly terrorism9)
listed above are equally deadly and possess the strength to send tremors across the life insur-
ance business. As an example, in a very recent research report, Swiss Re (Lucia et al., 2017)
have published that “Total economic losses and global insured losses from natural catastrophes
and man-made disasters in 2016 were the highest since 2012, reversing the downtrend of the
previous four years. Globally there were 327 disaster events in 2016, of which 191 were natural
catastrophes and 136 were man-made. In total, the disasters resulted in economic losses of
USD 175 billion, almost double the level in 2015. In terms of devastation wreaked, there were
large-scale disaster events across all regions, including earthquakes in Japan, Ecuador, Tanza-
nia, Italy and New Zealand. In Canada, a wildfire across the wide expanses of Alberta and
Saskatchewan turned out to be the country’s biggest insurance loss event ever and the second
costliest wildfire on sigma records globally. Worldwide, around 11,000 people lost their lives or
went missing in disasters in 2016. There were a number of severe flood events in 2016, in the US,
Europe and Asia. Hurricane Matthew, the first Category 5 storm to form over the North At-
lantic since 2007, was also a major humanitarian disaster causing more than 700 deaths, mostly
in Haiti - compared to all single events this year.” In context of man-made disasters, 2017 has

8http://gcportal.guycarp.com/portal/extranet/getDoc
9Very close to writing this thesis the London Bridge, Manchester and Westminister attacks though small

in scale took place in London in 2017. The biggest terrorist attack was the World Trade Centre attack on
11th September 2011 claiming 3000 lives. Clearly, more deadly attacks as those involving the use of biological
weapons have the potential to inflict a large number of casualities.
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already showed the venom that an incident like Grenfell Tower fire in London could spit within
hours, killing seventy nine people and testing the strength of insurance industry. Looking at
the seriousness of the problem, it is extremely important for life insurers and re-insurers to
manage their exposure to catastrophic mortality risk. However it is not a straight road because
the probability of such an event occurring in any year is low while the potential for devastating
losses is high. Moreover, since catastrophes such as influenza pandemics are rare events, there
is scarce data for forming assumptions within the range of internal risk models adopted by
companies, and as such calibration of required parameters leaves many loopholes. This would
typically be investigated with a range of stress tests, scenario testing, and sensitivity testing
(c.f. Baumgart et al., 2007). In the next section we investigate several possibilities relating to
the mitigation of risk arising from exposure to catastrophes.

Table 1.2: Summary of Studies Examining the Potential Impact of an Influenza Pandemic on
the Life Insurance Industry

Author(s) Country Severity EMRR10%
Duration
(Years)

AGC11 or ANC12

APRA (2007) Australia Severe 100 1 AGC: AUD 1.2 bn

Mild Group life: 1 AGC: ZAR 0.8 bn
Dreyer et al. (2007) S.Africa

Moderate 70 1 AGC: ZAR 2.7 bn

Severe Ind. life:4013 1 AGC: ZAR 37.6 bn
S & H14 (2006) Germany

Severe 100 1 ANC: EUR 5.1 bn

Moderate 57.1 1 ANC: US $2.8 bn
Toole (2007) U.S

Severe 76.9 1 ANC: US $64.3 bn

Moderate 100 1 AGC: US $31 bn
Weisbart (2006) U.S

Severe 100 1 AGC: US $133 bn

1.2.2 Taming the CAT

When a fire breaks out in a city, there needs to be a prompt firefighting response to contain
the fire and prevent it from spreading. The outbreak of a major fire is the wrong time to hold
discussions on the pay of firefighters, to raise money for improving the fire service or to consider
fire insurance. It is too late in the day to do all that.

As discussed above, just like fire, infectious diseases also spread at an exponential rate. On
March 21, 2014, an outbreak of Ebola was confirmed in Guinea. In April, the World Health
Organization (WHO) declared that it would cost a modest sum of $5 million to control the
disease. In July this cost of control touched $100 million and by October it had ballooned to
$1 billion. Ebola acted both as a serial killer and loan shark. If money in not made available
readily enough to deal with the outbreak of an epidemic, its magnitude and intensity may go

10Excess Mortality Rate Ratio of Insured to General Population is the difference between observed mortality
rate and expected baseline mortality rate in the absence of an influenza pandemic (c.f. Simonsen et al., 1997).

11Additional Gross Claims
12Additional Net Claims
13EMRR for Dreyer et al. (2007) is the same across all three scenarios but is differentiated into group life and

individual life products.
14Stracke and Heinen (2006)
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out of hand. However in general this scenario has been repeating itself with many pandemics
and the largest casualty is the insurance business.

Several possibilities exist relating to the risk reduction arising from catastrophes. Again a
good reference in this direction is Huynh et al. (2013). We list below the possible remedies
employed by insurers and re-insurers to safeguard themselves from the calamity of increased
claims caused due to a catastrophe and then discuss a few of them in detail with the first one
being the most important in the context of this thesis.

� Catastrophic or Extreme Mortality Bonds

� Risk Transfer Mechanisms such as reinsurance or retrocession15

� Self insuring or retaining the risk through holding greater levels of capital16

� Natural Hedging by balancing mortality risk with longevity risk

� Diversification along other lines of businesses

� Appropriate pricing for the risk

While the first method is a recent innovation, the others are traditional methods of risk miti-
gation. We will discuss the first one in detail in the next sub-section. In particular, reinsurance
or retrocession has been the most popular method of offloading the risk. This consists in trans-
ferring the risk from a smaller and less diversified insurer to a larger re-insurer with a more
diversified portfolio. However, the ceding party ultimately lands up with the same risk it seeks
to transfer, via the credit risk of the counter party re-insurer. This is due to the inherent
possibility of reinsurer and retrocessionaire defaulting when faced with widespread catastrophic
losses such as in a pandemic. Reinsurance is essentially pure mortality risk business, and the
usual advantage conferred by reinsurers’ geographical diversification is significantly lost in the
event of a pandemic (APRA, 2007; Dreyer et al., 2007; Cummins and Trainar, 2009) since an
influenza pandemic is likely to affect multiple geographical regions around the world, compared,
for example, to a single earthquake. In other words, while trying to eliminate mortality risk,
credit risk comes into the picture. Thus the capacity of reinsurance is rather limited. An alter-
native to reinsurance are catastrophic mortality bonds, which essentially eradicate credit risk.
These catastrophic-mortality securitization instruments offer several advantages and disadvan-
tages compared to reinsurance and are described in the next section.

1.2.3 Catastrophic Mortality Bonds (CMBs)

As mentioned above catastrophic mortality bonds offer mortality securitization. Securitization
consists in the isolation of a pool of assets or rights to a set of cash flows and the repackaging
of the assets or cash flows into securities that are traded in the capital markets (c.f. Cowley
and Cummins, 2005). Insurance-linked securities (ILS) are instruments designed to transfer
insurance risk to the capital markets (c.f. Cummins and Trainar, 2009). Life securitizations have
been predominantly used as a financing tool although some have facilitated risk management.
On the other hand, non-life securitizations such as earthquake bonds and windstorm bonds
have typically been used to transfer extreme risk arising due to a catastrophic event into the
capital markets for a number of years (c.f. Ernst and Young, 2011).

The market for ILS has grown significantly in recent years, expanding at 40-50 % per year
since 1997 (Hartwig et al., 2008). Since extreme mortality can be modeled in the same way
as other catastrophic risks (see Johnson, 2013), it has become another of many offerings in a
menu of perils from which investors choose and mix. Tables 1.3, 1.4 and 1.5 summarize all the
catastrophic mortality bonds issued to date. To the end of 2016, there have been thirteen public
catastrophic mortality bonds transactions with a total bond issuance value of approximately
U.S. $3.5 billion, with the last issue being that of VITA VI in December 2015 by Swiss Re.

15Reinsurance refers to the insurance purchased by an insurer from a re-insurer to transfer risk. Retrocession
refers to the purchase of insurance by re-insurers from other reinsurance companies to transfer risk (Bellis et al.,
2010).

16c.f. Baumgart et al. (2007)
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Infact Swiss Re was the pioneer to launch the first catastrophic mortality bond VITA I
in December 2003 which was extremely successful. The reinsurance giant has undoubtedly
dominated the market in this sector and has experimented even with a ‘Longevity Trend Bond’
called ‘Kortis’ in 2010 and a ‘Multiple Peril Bond’ called ‘Mythen Re’ in 2012 which was a hybrid
of a hurricane and a mortality bond. Moreover, the medium-term outlook for catastrophic
mortality bonds remains positive and the market is estimated to reach U.S. $5-20 billion by
2019 (Frey et al., 2009; Weistroffer et al., 2010).

In all these tables the fourth column represents the maturity of the various tranches, where
tranches are parts of a security that can be broken apart and sold in pieces. Catastrophic
mortality bonds have primarily appealed to huge, globally diversified insurers and re-insurers,
and have predominantly been used in developed countries. Undoubtedly, these bonds enhance
the capacity of the life insurance industry to write mortality risk business by transferring
catastrophic losses from the insurance industry to the capital markets (Lin and Cox, 2008;
Bouriaux and MacMinn, 2009).

Key Features

The basic transaction structure of catastrophic mortality bonds has remained reasonably generic
over most of the thirteen public transactions that have occurred to the end of 2015. The
following figure shows the detailed structure.
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FIGURE A1

Basic Catastrophic Mortality Bond Transaction Structure
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Figure 1.2: Basic Catastrophic Mortality Bond Structure (Source: Linfoot (2007))

The transaction involves three parties

� The Ceding company or Sponsor

� Special Purpose Vehicle (SPV) or issuer

� Investors (generally large institutional buyers17)

The transaction begins with the formation of a SPV which issues bonds to investors and invests
the received capital in high quality securities such as government bonds or AAA corporate
bonds which are held in a trust account. The coupon paid to the buyer comprises of investment
returns from this account plus the risk premium paid by the ceding company.

Embedded in these bonds is a call option that is triggered by a defined catastrophic event.
Like the transaction structure, the contingent claim payoff mechanism has remained more or less
the same for all transactions. The key components of the contingent claim payoff mechanism
are

� principal amount

17Commonly pension funds with a view to hedge their position in terms of longevity and mortality
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� coupon

� mortality index

� attachment/trigger point

� exhaustion point.

The principal amount represents the maximum payoff that the sponsor can receive if the bond
is triggered and this has typically ranged from U.S. $50 to U.S. $100 million per tranche. There
are well defined attachment and exhaustion points and generally a very attractive periodic
coupon to attract investors. The mortality index, attachment point, and exhaustion point
determine whether the bond is triggered and if so, what percentage of the principal is paid.
The mortality index is generally defined over a 2-calendar-year period in order to mitigate
the chance that an influenza pandemic will be cut off by the end of the measurement period.
This index is computed using general population mortality rates published by official public
reporting sources weighted by age, gender and sometimes country (Rooney, 2008). The weights
are specified by the sponsor to broadly reflect their exposure (in terms of data availability
and chance of a catastrophic occurrence) to an insured population and are fixed throughout
the duration of the period over which the catastrophic bond provides coverage called the risk
period (Standard and Poors, 2011). As an example, the following figure 1.3 represents the
weight distribution of the very first CMB ‘Vita I’ issued by the Swiss Re in 2003.
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Figure 1.3: Weight Distribution of the VITA I Index

The attachment and exhaustion points are expressed as a percentage of the mortality index
at issuance. To date, the lowest attachment point has been 105 percent while the highest
exhaustion point has been 150 percent. The reduction mechanism for the principal amount is
triggered if the mortality index value exceeds the attachment point otherwise the full principal
amount is returned to the investor at maturity. Once the attachment point is exceeded, the
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reduction in the principal amount increases linearly between the attachment and exhaustion
points until the index exceeds the exhaustion point and the full principal is lost by the investor
(Bridet, 2009). For the VITA I bond discussed above the attachment and exhaustion points
were 130 percent and 150 percent and the capital repayment or erosion phenomenon is shown in
figure 1.4. Clearly these bonds are principal-at-risk instruments. The higher the trigger point
is, the lower the chance that the event would actually happen and this would mean the lower
the returns for the investor and vice-versa based on the principle of ‘high risk-high reward’.
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Figure 1.4: Capital Repayment/ Erosion for the Swiss Re 2003 CATM Bond (Source: Klein
(2005) and Blake et al. (2006))

The choice of an index-based payoff trigger is driven by investors’ appetite for transparent,
easy-to-understand, and hard-to-manipulate triggers (Weistroffer et al., 2010) such as the ones
based on indemnity18. Index-based payoff triggers can be standardized more easily than their
indemnity-based counterparts19 and they reduce moral hazard because the sponsor still has
an incentive to limit losses as the payoffs are based on an independent metric rather than
the sponsor’s actual losses. Moreover, there is a reduction in adverse selection as payoffs are
based on publicly available data and there are few informational asymmetries to be exploited
(Helfenstein and Holzheu, 2006; Bouriaux and MacMinn, 2009).

18Indemnity: triggered by the issuer’s actual losses, so the sponsor is indemnified, as if they had purchased
traditional catastrophe reinsurance. If the layer specified in the cat bond is $100 million excess of $500 million,
and the total claims add up to more than $500 million, then the bond is triggered (c.f. Wikipedia, 2011).

19Queensgate and ALPS II are examples of life indemnity bonds issued by Swiss Re.
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Valuation

Given how mortality-linked bonds are structured, their pricing requires expertise in actuarial
science (for assessing the impact of changes in mortality), econometrics (for modeling the ran-
dom evolution of mortality rates) and finance (for turning simulation results to prices). A lot
of valuation approaches to price CMBs have germinated and we discuss these in Chapter 3. To
model extreme mortality risk and value CMBs, researchers have devised a number of stochas-
tic models that incorporate jump effects. These models include some superb contributions by
Bauer and Kramer (2009), Biffis (2005), Chen (2013), Chen and Cummins (2010), Chen and
Cox (2009), Chen et al. (2010, 2014), Cox et al. (2006, 2010), Deng et al. (2012), Hainaut and
Devolder (2008), Lin and Cox (2008), Lin et al. (2013) and Zhou et al. (2013b). Various features
of mortality jumps in terms of its occurrence and severity have been investigated in great depth.
For example, Chen and Cox (2009) and Chen et al. (2010) use independent Bernoulli distribu-
tions, Cox et al. (2010) employed Poisson jump counts while Lin and Cox (2008) considered a
discrete-time Markov chain.

Moreover, the first generation of econometric models for valuing catastrophic mortality
bonds is univariate, modeling one population at a time. Models belonging to this category
encompass those that were proposed by Chen and Cox (2009), Cox et al. (2010), Deng et al.
(2012) and Liu and Li (2015b). Although these models capture characteristics such as skewness
and leptokurtosis, they are unable to accommodate the potential static cross-correlations among
the mortality dynamics of different populations. Therefore, these models may not be efficient
enough to price most of catastrophic mortality bonds, including Swiss Re’s Vita I, which are
linked to the mortality experiences of multiple populations. The second generation of models
is multivariate, modeling all populations in question simultaneously. Models that fall into this
category have been proposed by Zhou et al. (2013b) who applied a combination of univariate
time-series models with correlated innovations, Lin et al. (2013) who employed a model with
a common jump effect and correlated idiosyncratic risks, Chen et al. (2015) who considered a
combination of uni-variate GARCH models and a factor copula, Wang et al. (2015) who linked
uni-variate ARMA models with a dynamic copula and Wang and Li (2016) who propose a DCC-
GARCH model, in which the correlations are captured within the model structure (rather than
externally through a copula) and are permitted to vary over time.

Advantages and Disadvantages

Catastrophic mortality bonds offer several advantages over traditional reinsurance for circum-
venting the exposure to catastrophic mortality losses.

� Advantages to the Re-insurer

– Additional Tool in the Risk Management Kitty: These bonds help the issuer to
achieve ‘Mortality Risk Transfer’ so that they secure protection for insurance liabil-
ities when claims are horrendous in the advent of a catastrophe. This is successfully
achieved by getting counter parties to offload mortality risk and hence eliminate any
dependence on retrocessionaire. These are called Alternative Risk Transfer instru-
ments.

– Edge over Stop-Loss Reinsurance20: CMBs act as a form of collateralized stop-loss
reinsurance, which essentially eliminates the credit risk exposure for sponsors (c.f.
Bagus, 2007). In comparison to the 1-year coverage usually provided by stop-loss
reinsurance, they allow the sponsor to secure fixed cost multi-year coverage, typically
ranging from 3 to 5 years, which in turn allows sponsors to spread the fixed cost of
issuance over several years (c.f. Cummins, 2008).

20Stop-loss reinsurance is a form of excess of loss reinsurance under which the re-insurer’s liability commences
when the aggregate claims experience on the re-insured portfolio during a specified time period exceeds a pre-
defined level (IAAust, 2009).
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– Flexibility to Access Capital Markets: These bonds come with the equipment to tap
the capital markets when required by using shelf programs.21 This means that the
favourable conditions in the market can be exploited. This has the potential to avoid
market disruptions caused by reinsurance prices and availability cycles (c.f. Cummins
and Trainar, 2009).

� Advantages to the Buyer

– High Yields Offered: CMBs offer high risk and high reward. Since such bonds are
available in many variations, investors can purchase them according to their risk
appetites. Depending on the probability of extreme event, higher yields are available
from these bonds. In fact, these bonds offer a considerably higher return than
similarly rated floating rate securities (c.f. Blake et al., 2006).

– Diversification to the Portfolio: These bonds are extremely lucrative to the investors
because of their potential of providing diversification to the portfolio because mortal-
ity risk does not bear any correlation with the return on other investments, such as
fixed income or equities or with typical market risk factors such as foreign exchange,
commodities and credit.

– Hedging for Pension Funds: Pension funds could view this bond as a powerful hedg-
ing instrument. The underlying mortality risk associated with the bond is correlated
with the mortality risk of the active members of a pension plan. If a catastrophe
occurs, the reduction in the principal would be offset by reduction in pension liability
of these pension funds.

– Charity for the Rich: On the lighter side, many investors purchase these bonds for a
charitable cause. If the unfortunate calamity occurs, the invested money goes to the
benefit of the suffering individual/family making them better off in testing times. If
the event does not occur, investors get paid off with higher returns, which they take
as a reward for their risky venture with an underlying charitable cause.

� Few Disadvantages
As with every innovation, there are a few disadvantages of CMBs. We discuss these below.

– Significant up-front transaction costs: CMBs have significant up-front transaction
costs such as legal, risk modeling, broker, rating agency, and bank fees that require
minimal transaction sizes for the issuance to be economical (Helfenstein and Holzheu,
2006), whereas traditional reinsurance is generally free of up-front costs aside from
brokerage fees (PartnerRe, 2008).

– Basis Risk: Basis risk exists for catastrophic mortality bonds since the payoff trigger
is index based and the actual loss suffered is unlikely to be perfectly matched by
the bond payoff. This contrasts with traditional reinsurance, which has no basis
risk since it is indemnity based and offers complete coverage for re-insured losses
(Hartwig et al., 2008).

– Reduced Capital Credit: The capital credit given by regulators and rating agencies
may be reduced for catastrophic mortality bonds in comparison to traditional rein-
surance (Standard and Poors, 2008).

– Fixed Terms: For CMBs, terms are fixed throughout the duration of coverage but
can be adjusted every year for traditional reinsurance allowing for short term com-
mitment and flexibility.

1.2.4 Experiments in the CAT Bond Niche

We have provided an exhaustive discussion on catastrophic mortality bonds. Interestingly on
the two ends of the first CATM bond (VITA I) and the last one (VITA VI), lie instruments
which are innovative in a number of ways. We provide a sneak peek here.

21Shelf programs are formulated such that all the legal, modeling, rating, and other structuring costs are done
for a very large bond issue. However, the entire bond capacity is not issued initially and some is left to be issued
at later time when needed by the sponsor. This lowers the issuance cost for subsequent issues and reduces the
time to access capital markets (Helfenstein and Holzheu, 2006).
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The first one pertains to terrorism, which did not qualify to be called a catastrophe insurance
risk prior to September 11th, 2001. Since terrorism cover is comparatively scarce and expensive,
post the World Trade Centre attack, Kunreuther (2002), proposed the idea of a terrorism
catastrophe bond. Although, conceptually such a financial instrument would be successful in
providing a viable alternative to insurance, the associated risk ambiguity is too much for a
terrorism bond to be palatable for the rating agencies and investors. A further uncertainty
was the investment appetite for terrorism risk. It is questionable that would any investor be
interested or authorized to buy a terrorism bond. Even if such investors did exist, would they
expect a double-digit coupon spread, e.g. in excess of 10%, in exchange for accepting the
terrorism risk ambiguity?

A suitable terrorism securitization opportunity came up in regards to the cancellation risk
of the football World Cup, organized by FIFA, (the Fèdèration Internationale de Football Asso-
ciation). Following 9/11, AXA withdrew its insurance coverage for the 2002 FIFA World Cup
in Korea/Japan. As a result, obtaining appropriate replacement coverage was an upheaval task
for FIFA. This withdrawal was a clear reflection of widespread insurance market anxiety over
the terrorist threat after 9/11. The 2002 World Cup was eventually covered by the Berkshire
Hathaway Group subsidiary National Indemnity Company (c.f. Woo, 2004) but the huge cost
of this coverage, persuaded FIFA to seek the alternative solution of securitization for the next
football World Cup, to be hosted by Germany.

CSFB (Credit Suisse First Boston), the investment bank arm of the Credit Suisse Group
was instrumental in designing the solution through $262 million transaction with the set up
of SPV-Golden Goal Finance Ltd. This deal helped FIFA to securitize about $262 million of
future sponsorship revenue, which required that the event cancellation risk be diminished as far
as possible, either through insurance or a catastrophe bond. Both options were considered, but
the latter turned out to be cost-effective. If the tournament is cancelled because of terrorism
risk, the investors will lose 75% of their money invested in the bonds22.

This $262 million deal remains to this day the only stand-alone securitization of terrorism
risk. However, according to Julian Enoizi, the Chief Executive Officer (CEO) of Pool Re, the
UK’s government-backed mutual terrorism re-insurer: “The terrorism protection gap is now
larger than ever and expanding all the time, underlining the need for innovative and effective
solutions, with the insurance-linked securities (ILS) space a logical evolution”. Julian, address-
ing an audience in London in early December 2016 at an ILS industry event, remarked that the
terrorism marketplace should embrace the ILS sector’s features and capacity. ‘Terrorism Bonds’
could be the new buzz word to counter fight terrorist attacks. Some third-party reinsurance
and ILS capital is already being allocated to terrorism risks at a number of ILS funds which
deploy investment capital into private collateralized reinsurance contracts. These ILS managers
have become comfortable with a certain level of exposure to terrorism risks and that confidence
is likely to expand, particularly if rates improve23. One example is Swiss-based ILS manager
Twelve Capital which generated attractive returns from transactions exposed to global terror-
ism. Another example is Lancashire Holdings new third-party reinsurance capital management
unit Kinesis Capital Management which includes some terror risk within its third-party capital
backed underwriting. Kinesis is already offering its clients collateralized, third-party capital
backed, solutions for short to medium tail lines of business, including some terrorism risks.
As shown by the success of Golden Goal Finance Ltd., new capital markets investors may be
attracted towards the purchase of catastrophe bonds exposed to other perils. Terrorism risk,
as embedded within event cancellation risk, workers compensation risk, or mortality risk, is
securitizable (also see Bruggeman, 2007; Bouriaux and Scott, 2004).

The testing of investor appetite for novel forms of alternative risk transfer is allowing the
boundaries of catastrophe bond issuance to be extended gradually. A very recent experimenta-

22Accessed on 5th Sep.2017, http://www.artemis.bm/deal directory/golden-goal-finance-ltd/. ARTEMIS is
an online website since 1999. Artemis provides news, analysis and data on catastrophe bonds, insurance-linked
securities and alternative reinsurance capital.

23http://www.artemis.bm/blog/2017/01/18/ils-terrorism-bonds-a-logical-next-step-for-pool-re-enoizi/. Ac-
cessed 5th Sep. 2017
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tion in July 2017 has been done by The World Bank which launched specialized bonds aimed at
providing financial support to the ‘Pandemic Emergency Financing Facility’ (PEF), a facility
created by the World Bank to channel surge funding to developing countries facing the risk of
a pandemic. The pandemic bonds work like this: Investors buy the bonds and receive regular
coupons payments in return. If there is an outbreak of disease, the investors don’t get their
initial money back. There are two varieties of debt, both scheduled to mature in July 2020.
The first bond raised $225 million and features an interest rate of around 7%. Payout on the
bond is suspended if there is an outbreak of new influenza viruses or coronaviridae (SARS,
MERS). The second, riskier bond raised $95 million at an interest rate of more than 11%. This
bond keeps investors’ money if there is an outbreak of Filovirus, Coronavirus, Lassa Fever,
Rift Valley Fever, and/or Crimean Congo Hemorrhagic Fever. The World Bank also issued
$105 million in swap derivatives that work in a similar way. These bonds are similar to catas-
trophe bonds, a $90 billion market used by insurance companies to shift risks of hurricanes,
earthquakes, and other natural disasters onto the financial markets. The World Bank’s bond
sale was 200% oversubscribed, with investors eager to get their hands on the high-yield returns
on offer. The majority of buyers was from Europe and included dedicated catastrophe-bond
investors, pension funds, and asset managers24.

With this discussion, we conclude this section on mortality risk and look at the root causes
of longevity risk and search for pertinent solutions.

1.3 Longevity Risk: Cause and Remedies

In the twentieth century, being a centenarian was considered to be a matter of great pride
and almost an impossible feat to achieve. So much so, that about a century ago, the British
monarch started sending anniversary messages to “current citizens of [the monarch’s] realms or
UK Overseas Territories” who reached the age of 100. In 1917, King George V sent a total of
24 celebratory messages to centenarians. By 1952 this had increased more than 10-fold to 255,
and in 2016, it has exploded to nearly 60-fold to 14500 (c.f. National Statistics, 2016). The
million dollar question is: Where will it end?

In a recent study based on data from Office of National Statistics, UK (c.f. National Statis-
tics, 2012), Appleby (2013) concluded that, the straight line increase in the numbers of UK
citizens reaching an age of 100 years seems set to continue. According to the latest posting on
the Official Statistics website25, one in three babies born in the year 2016 will live to see their
100th birthday. Interestingly, female life expectancy is higher than their male counterpart(s).
Around 13% of girls born in 1951 are expected to be alive in 2051. For girls born in 2016 the
figure is estimated to be 35% and around 60% of girls born in 2060, might expect to live long
enough to receive a message from the reigning monarch. At this rate, the number of centenari-
ans is also projected to continue rising reaching a mammoth 83,300 in 2039 which is more than
enough to keep any future monarch busy!

This interesting excerpt highlights the gravity of the problem that is looming large over
financial institutions today viz. longevity risk - the risk that people outlive their expected
lifetimes. Longevity risk is a considerable risk that affects adversely both the willingness and
ability of financial institutions to supply retired households with financial products to deal with
wealth decumulation in retirement. Depending on the scenario and need, longevity risk can be
defined in a variety of ways. A statistical perspective of the definition is furnished by Coughlan
et al. (2013) who provide the following concise yet complete definition: “It is a combination of

� uncertainty surrounding the trend increases in life expectancy

and

24http://treasury.worldbank.org/cmd/htm/World-Bank-Launches-First-Ever-Pandemic-Bonds-to-Support-
500-Million-Pandemic-Emergenc.html. Accessed 5th Sep. 2017

25Accessed on 24th June 2017

20



� variations around this uncertain trend that is the real problem.

This is what is meant by longevity risk and it arises as a result of unanticipated changes in
mortality rates”. Longevity risk is borne by every institution making payments that depend
on the life span of individuals. These include Defined Benefit (DB) pension plan sponsors,
insurance companies selling life annuities, and governments through the social security pension
system and the salary-related pension plans of public-sector employees. The present scenario
is particularly acute for insurance companies operating in the European Union (EU) where a
new regulatory regime, Solvency II, was introduced in 2016. This requires insurers to possess a
pool of significant additional capital to back their annuity liabilities if longevity risk cannot be
hedged effectively or marked to market. In the next couple of sections we throw light on the
causes of longevity risk and see what possible solutions can be proposed.

1.3.1 The Cause: Increased Life Expectancy

The main reason that is responsible for longevity risk is increased life expectancy. The main
propeller for this advancing expectancy of survival is the postponement of senescence (the
increase of mortality with age). In fact, there have been three well known theories on the
frontier of survival.

� The Fixed Frontier of Survival: Limited Lifespans - Aristotle 350 BC (cited in Fries
(1980))

� Breaking through the Frontier of Survival: Secrets of Longevity (Cornaro (1558))

� The Advancing Frontier of Survival: Unrecognized Progress (Vaupel et al. (1979))

We are presently following the last theory and a remarkable finding suggested by the same is
the explosion in the number of centenarians (c.f. Vaupel, 2010). We present below certain very
alarming self-explanatory figures that support the last theory. The relevant sources have been
indicated and a good reference to read further about theories of longevity is Brown (2016).

Just like mortality, longevity can also experience jumps mostly caused by pharmaceutical or
medical innovations and generally having long-term gentle effect in contrast to mortality jumps
which are short term and intensified. However the survival jump effect could also be transitory,
if a new drug or treatment loses its effectiveness. A huge longevity jump may occur in future
if an effective treatment of coronary heart disease emerges or a successful cure of cancer can
be found. In fact these two amount to 50% of deaths for humans over the age of 40 (c.f.
Johnson et al., 2005). Cox et al. (2010) and Deng et al. (2012) have discussed the modeling of
longevity jumps. Interestingly, the introduction of life-saving anti-HIV (HAART: highly active
antiretroviral therapy) medications led to a large positive longevity shock for those living with
HIV. As life expectancies rose, ‘Viatical Settlements’26 disappeared quickly (c.f. Vinals, 2012).
Investors in viatical settlements experienced a significant realization of longevity risk, with
associated losses, as they were required to continue to pay premiums for much longer than
expected and were faced with delayed payouts.

The implications of these developments are indeed grave. In fact, Blake et al. (2014) have
pointed out that Global private-sector pension liabilities are of the order of $ 25 trillion. Ac-
cording to the authors in the United Kingdom alone, private-sector ‘Defined Benefit’ (DB)
pension liabilities equal £1,340 billion, while ‘Defined Contribution’ (DC) (c.f. Section 1.3.2
for DB and DC) pension assets are equal to £737 billion (including £150 billion in annuities
with insurance companies). It has been estimated that every additional year of life expectancy
at age 65 adds around 3% or £33 billion to the present value of DB pension liabilities in the
United Kingdom, with a similar impact on lifetime annuities.

26An arrangement whereby a person with a terminal illness sells their life insurance policy to a third party
for less than its mature value, in order to benefit from the proceeds while alive.
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Discovery of the Advancing Frontier of Survival 
Vaupel and Lundström 1992/4, extended 
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Figure 1.5: Discovery of the Advancing Frontier of Survival (Source: Vaupel and Lundström
(1994))
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Discovery of the Advancing Frontier of Survival: 
The Decline in Octogenarian Mortality 

Source: Calculations by Roland Rau (unpublished) based on Human Mortality Data Base 

Figure 1.6: The Decline in Octogenarian Mortality (Source: Roland Rau (unpublished) based
on HMD: can be found in Brown (2016))
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Discovery of the Advancing Frontier of Survival: 
The Decline in Nonagenarian Mortality 

Source: Calculations by Roland Rau (unpublished) based on Human Mortality Data Base 

Figure 1.7: The Decline in Nonagenarian Mortality (Source: Roland Rau (unpublished) based
on HMD: can be found in Brown (2016))
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Discovery of the Advancing Frontier of Survival: 
Further Evidence: The Explosion of Centenarians, Vaupel Nature 2010  
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Figure 1.8: The Explosion of Centenarians (Source: Vaupel (2010))
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Discovery of the Postponement of Senescence 
Vaupel and Lundström 1992/4, extended in Vaupel Nature 2010 
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Figure 1.9: Discovery of the Postponement of Senescence (Source: Vaupel (2010))
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The Postponement of Senescence:  
Evidence from Sweden 

Data Source: Calculations based on Human Mortality Database by Elisabetta Barbi and Giancarlo Camarda (unpublished) 
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Figure 1.10: The Postponement of Senescence: Evidence from Sweden (Source: Calculations
based on HMD by Elisabetta Barbi and Giancarlo Camarda (unpublished): can be found in
Brown (2016))
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The Linear Rise of Record Life Expectancy 
Oeppen & Vaupel Science 2002: extended 2010 

Figure 1.11: The Linear Rise of Record Life Expectancy (Source: Vaupel (2010))

Blake et al. (2014) higlight that the most recent estimates for U.K. state pension liabil-
ities were £3,843 billion in respect of social security pensions, £852 billion in respect of the
unfunded pension plans of public-sector employees, and £313 billion in respect of the funded
plans of public-sector employees (mainly local government employees). This means that U.K.
government-backed longevity-linked liabilities exceed £5 trillion.

Also Blake et al. (2014) comment that longevity risk in the private sector is beginning
to become concentrated, especially in the United Kingdom. Private-sector companies in the
United Kingdom are distancing themselves from DB pension provision and replacing them with
occupational DC plans the equivalent of 401(k) plans in the United States and, as a result,
companies are passing the longevity risk back to their employees. Moreover, these companies
are trying to offload the legacy longevity risk that they still hold either by buying in annuities
from life companies to protect their pensions-in-payment or by undertaking bulk buyouts of
their liabilities, again with life companies. In providing these indemnification solutions for DB
pension plans, insurance companies are playing an important role in aggregating longevity risk
in the economy. So individuals should be anxious because there is a real risk that they will
outlive their wealth. In countries such as the United Kingdom and Chile, where annuitization
of DC pension pots is either compulsory or greatly incentivized, it will again be life companies
that provide the annuities. So, all the trends in pension provision viz.

� exploding demand from DB plans to use annuities to back their pensions in payment

� the increasing demand from DB plans for bulk buyouts

� the overall growth in both the number and size of DC pension funds

� the related growth in the number of pensioners with DC funds reaching retirement

highlight a big increase in demand for annuities provided by insurance companies. There are
two serious issues connected with this increased demand.

� Possibility of unhealthy concentration of risk among a small number of insurance compa-
nies
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� Unavailability of capital in the insurance/reinsurance industry to deal with total global
private-sector longevity risk.

Under Solvency II directives, it is advised that insurance liabilities are increased by the
addition of a market value margin (MVM) reflecting the cost of capital to cover “non-hedgeable”
risks. For annuity companies this is nothing else but the longevity risk. It is currently proposed
that in the absence of a hedging instrument for longevity risk, EU insurers will have to charge
a 6% cost of capital above the risk-free rate when computing the MVM. Since annuities are
long-dated, this calculation could lead to reserving approximately double the amount of capital
for longevity risk in comparison to current levels. The resultant extra capital for longevity risk
and other Solvency II impacts would have to be passed on to customers, and the money’s worth
of annuities could roll down by up to 10%.

To cut a long story short, more and more individuals have to manage their own personal
longevity risk. In the U.S., the baby boomers are entering their retirement age and need to
take care of living a long life taking into account the scarcity of retirement plan payments. The
retirees need to strike a balance between investment and consumption of their accumulated
wealth. An important point that needs to be taken care of is that extended lifespan may
erode their accumulated wealth. Underestimation as well as overestimation of the personal life
expectancy can negatively impact a retiree’s life style. This is because

� If the retiree overestimates his longevity, he will spend less than he could if he has pur-
chased an annuity.

� If the retiree underestimates his longevity, he will spend aggressively and might outlive the
accumulated wealth.

In a survey conducted by Society of Actuaries, US (c.f. Deng, 2011), it was discovered that
more than 40% of both pre-retirees and retirees underestimate average life expectancy by five
or more years. Only 33% of retirees and 39% of pre-retirees have purchased or plan to buy a
product or choose a plan option that will generate guaranteed income for life. Further evidence
in support of these observations is provided by by Scotti and Effenberger (2007) who find out
that the UK retirement market suggests that individuals underestimate their own mortality by
as much as five years on average. A defined benefit plan provides individuals with a guaranteed
stream of payments, which reduces the chance of outliving the individuals’ assets. The Scotti
and Effenberger’s study shows that individuals that retire without a pension plan have over
an 80% likelihood of outliving their assets, and on the contrary those with a defined benefit
pension plan have only an 18% chance of outliving their assets.

Individuals without DB pension plans either

� choose to self-insure against longevity risk by making their own investment and consump-
tion decisions

or

� choose to do nothing because their income does not allow it.

In fact the old age planning comprises of two important decisions

� Investment decision: to select an appropriate asset allocation strategy among different
investment instruments so as to diversify financial risk and minimize the chance of a
portfolio shortfall

� Consumption decision: to choose the level of withdrawal from the asset pool to reach a
satisfactory life style.

If individuals who opt for self-insurance fail to do so efficiently and run out of money, they
will be forced to lead an impoverished life without income. This would force them to rely on
children, relatives, or even federal programs to live out their remaining life, which is certainly
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an undesirable and painful situation for these self-insured individuals. So, a more reliable and
scientific approach to manage the longevity risk for individuals is to transfer and diversify
longevity risk with annuities and other financial instruments.

Since a major trend in the retirement market is the declining number of defined benefit
plans, as discussed above, the only realistic way of handling the problem of leading longer lives
is to pass some of the longevity risk onto governments and the capital markets. Truly, there
is an emerging opportunity for the expansion of the private market solution using financial
instruments for individual longevity risk management. In the next section, we investigate
several possibilities relating to the mitigation of the longevity risk for both individuals and
institutions.

1.3.2 Living with Longevity

Longevity is not a curse. Significant medical progress, improved living standards, healthier
lifestyles that include organic food, the absence of global wars and control on pandemics are
some of the prime reasons for the increase in life expectancy. This is indeed a great achievement
for the human race. However, the need of the hour is not to let the elixir spill. The key for
preserving and progressing further is to realize that life expectancy is a function of education
and income but however as Brown (2016) feels that a causal factor is indeed the robustness
of that income and studies are going on to prove that the hypothesis a person with a Defined
Benefit pension will live longer than a person with a bank account. In other words financial
income security drives longevity27. According to Brown (2016) testing is going on to prove this
hypothesis. This is enticing as it means the actuarial profession has a causal role to play in
enhancement of life expectancy. Interestingly, Dr. Solomon Stephen Huebner (1882-1964), the
“Father of Insurance Education” who initiated the concept of ‘human life value’ had similar
views. He believed that annuitants are long livers and freedom from financial worry and fear
go a long way in enhancing longevity. According to him, annuities serve in old age, much the
same economic purpose that periodic medical examinations do during the working years of life
(also see Huebner, 1921). With these thoughts, we now present ‘Longevity Risk Solutions’ for
individuals and companies in the two sub-sections that follow.

Solutions for Individuals

For individuals interested in insuring at least a portion of their longevity risk, there are several
products that offer lifetime guarantees. These products include:

� Immediate Annuities

– Single Premium Immediate Annuity (SPIA)

– Impaired Life Annuity

� Variable or Deferred Annuities

– Guaranteed Minimum Withdrawal Benefits (GMWB)

– Guaranteed Minimum Income Benefits (GMIB)

* Guaranteed Annuity Option (GAO)

� Advanced Life Delayed Annuities

� Corporate Pensions

� Reverse Mortgages

27A good example in this context is of the world longest lived person, Jeanne Calment, who died in 1997
aged 122. At an age of 90, she sold her apartment to a lawyer named Andreè-Francois Raffray aged 47 agreeing
to a contract where Raffray will pay Calment 2500 francs/month until she died. As a result of this agreement
Calment received more than twice the value of the apartment (Richards and Jones, 2004) with payments in the
last couple of years being made by Raffray’s widow. Clearly the regular stream of payments was an important
factor in Calament’s longevity.
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� Structured Settlements

� Life Settlements

A good review of the characteristics of these products appears in Deng (2011). Out of these,
variable annuities are the most innovative and popular products. A comprehensive summary of
the pricing approaches on variable annuities appears in Fenga et al. (2017). Bauer et al. (2008)
and Bacinello et al. (2011) present an extensive treatment of pricing of major product designs
of guaranteed benefits by simulations. Moreover, the guaranteed benefit that has attracted a
lot of attention in Europe is the Guaranteed Annuity Option (GAO). We discuss these in detail
later in this chapter.

In regards to corporate pensions there are two categories: defined benefit (DB) and defined
contribution (DC) plans and a good discussion appears in Deng (2011). The retirement plans
have certain tax advantages, and employers furnish a portion of the employee’s contribution.
Funds usually cannot be withdrawn without penalty prior to retirement. With a DB plan, the
employer sets up a trust and pays in money annually in amounts enough to pay a defined retire-
ment benefit to each employee. The employee receives a fixed income stream after retirement
contingent on his/her salary, years of employment, retirement age and other factors. The fund
is set up and managed by the employer and the individual employee accounts are not demar-
cated. With a DC plan, contributions are paid into individual accounts by each employee and
the employer may contribute an extra amount. At retirement, a lump sum amount equal to the
current account value is available. Defined contribution plans are versatile. The retiree has the
options of creating a wide variety of ways to draw down the fund value including simple ad hoc
withdrawals or more well-defined withdrawals of a certain percentage of the value per annum.
Since DB plans guarantee a fixed stream of cash flows until the death of the policy holder, DB
plans have a significant exposure to longevity risk and this risk is born by the employer who
has set up the DB plan and administers it. Additionally, the pool of people in the same DB
plans generally has similar features, including age, industry, occupation and location. These
same risk characteristics can enhance the longevity risk presented by DB plans. Additionally,
life expectancy is different for different socioeconomic groups (Villegas, 2015).

Products for Companies

Institutions have experimented with a number of products to transfer longevity risk to markets
or governments or back to individuals and this has lead to a large number of innovations
mentioned below

� Longevity Bonds

� Longevity Swaps

� Longevity or survivor: s-forwards or mortality: q-forwards

� Longevity Options

� Buy-Ins, Buy-Outs

For a more comprehensive list of existing and hypothetical longevity products, interested readers
can refer to Blake et al. (2006) and Boyer and Stentoft (2012). For pricing ‘Buy-Ins’ and ‘Buy-
Outs’ interested readers can refer to Lin et al. (2017) and Arik et al. (2017). The maiden
attempt of launching a longevity bond was in November 2004 when BNP Paribas announced
the issue of a 25-year bond linked to a cohort survivor index based on the realized mortality
rates of English and Welsh males aged 65 in 2003. The bond was issued by European Investment
Bank (EIB) and is commonly known as the EIB bond. However, it was only partially subscribed
and later withdrawn for redesign. This performance of EIB bond was in sharp contrast to the
first catastrophic mortality bond - the Swiss Re Mortality Bond 2003 discussed earlier in this
chapter. A good review of the bond and the potential reasons for its failure can be found in
Blake et al. (2006).
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Learning lessons from the failure of the EIB bond and the success of mortality catastrophe
bonds, Swiss Re launched a longevity trend bond termed “Kortis” in 2010 with a structure
having close affinity to catastrophic mortality bonds. For detailed analysis of the Kortis bond,
interested readers can refer to Hunt and Blake (2015) and Chen et al. (2017). Apart from
longevity bonds, longevity swaps are also becoming popular instruments for managing longevity
risks. In fact, a lot of innovations are being tried in the market. For a comprehensive review
of the longevity solutions, an excellent reference is Tan et al. (2015). A lot of activity is
also going on in the academic sphere with academicians proposing newer products to tackle
the bulky longevity risk. In a recent article, Bensusan et al. (2016) propose partial splitting
of longevity and financial risk and introduce a longevity novelty called ‘Longevity Nominal
Choosing Swaption’ (LNCS) while Biffis and Blake (2014) argue that a natural way for offloading
longevity risk is through suitably designed principal-at-risk bonds. In the passing, we mention
that in a series of new instruments being tried in the longevity space, an interesting experiment
was the Longevity Experience Option (LEO) launched by Deutsche Bank in November 2013.
It is formulated as an out-of-the-money call option spread on 10-year forward survival rates
and has a 10-year maturity. The survival rates are based on males and females in five-year
age cohorts (between 50 and 79) captured from the England and Wales and Netherlands Life
and Longevity Markets Association (LLMA) longevity indices. LEOs are being traded over-
the-counter (OTC) under a standard ISDA (International Swaps and Derivatives Association)
contract. They allow a transfer of longevity risk between pension funds, insurance companies
and investors. The intention was to offer a cheaper and more liquid alternative to bespoke
longevity swaps which are generally costly and time consuming to implement. Purchasers
of the option spread, such as a pension fund, will gain if realized survival rates are greater
than the forward rates, but the gains will be limited, thereby providing some solace to the
investors providing the longevity hedge. Deutsche Bank believes that the 10-year maturity is
the maximum that investors will intake in the current stage in the development of a market in
longevity risk transfers (c.f. Tan et al., 2015, for details).

As can be seen in this last paragraph, LEO hinges upon survival index, published by the
LLMA. Looking at the need to develop a market to trade longevity and mortality, the Longevity
and Life Market Association was set up in 2010. The LLMA promotes the development of a
liquid trading market in longevity and mortality-related risk, in a manner similar to those
that exist for Insurance Linked Securities (ILS) and other large trend risks like interest rates.
There have been a few longevity indices created by various parties associated with LLMA but
we still lack a benchmark. Mènioux (2008) and Chan et al. (2014) throw light on some of
them. The latter also advocate new mortality indices based on the parameters of Cairns-Blake-
Dowd (CBD) (c.f. Cairns et al., 2006b) model laying down some important characteristics that
mortality indices should satisfy.

The Emergence of a New Life Market

As discussed above, the evolution of the products being structured to hedge longevity risk in-
dicate a strong potential for index-based instruments to be used more widely to achieve an
effective reduction in longevity risk for pension funds and annuity providers while attracting a
wide investor base in the capital markets (OECD, 2014). On the other hand, researchers such
as Ragnar Norberg (Emeritus Professor of Statistics at the University of Lyon) feel that the
aggregate longevity risk in the pension market is so huge that the financial market can only
absorb (hedge) a minor part of this risk. This statement is well supported by a “consultative
document” on ‘Longevity Risk Transfer (LRT) Markets’ published by the Basel Committee on
Banking Supervision in December 2013 (Basel, 2013) which extensively discusses the impedi-
ments to the growth of these markets. According to this report, asymmetric “lemon”28 risk;
regulatory risk and the dearth of critical information, are the key factors hindering the growth
of LRT volumes. Perhaps, the need of the hour is to give the additional push towards the more
rapid development of the Life Market by taking smaller steps to facilitate the standardization
and transparency of these instruments (OECD, 2014; Biffis and Blake, 2014).

28A “lemon” is something, such as a second hand car, that is revealed to be faulty only after it has been
purchased (Akerlof, 1970).
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Blake et al. (2008) throw light on the birth of the life market while Loeys et al. (2007) ex-
plain that for a new capital market to be established and to succeed, “it must provide effective
exposure, or hedging, to a state of the world that is economically important and that cannot be
hedged through existing market instruments, and it must use a homogeneous and transparent
contract to permit exchange between agents.” They feel that “longevity meets the basic con-
ditions for a successful market innovation.” Blake et al. (2013) provide further useful insights
that could lead to a flourishing life market and in the appendix they furnish a comprehensive
list of key organizations that have called on governments to support the development of the life
market. To address the problem of population basis risk that is inherent in hedges constructed
to offload longevity risk exposures by trading securities that are linked to broad-based mortality
indexes, Chan et al. (2016) furnish a graphical population basis risk metric. According to them
population basis risk is a major obstacle the development of a liquid longevity market.

In a recent speech at the 11th annual Longevity Risk and Capital Market Solutions Confer-
ence senior vice president and head of Longevity Reinsurance at US insurer Prudential Financial
Amy Kessler (c.f. Kessler, 2015) talked about the rapid growth in the global pension de-risking
market, and her prediction is that the market could double in the coming years. She com-
mented that $260bn (£170bn) of longevity risk has been offloaded to insurers and re-insurers
globally and around two thirds of that from UK schemes. According to her eye-catching deals
like BT’s £16bn longevity swap (which passed the risk onto Kessler’s firm through a captive
insurer owned by the scheme) and growing interest in other countries suggest that the forecast
of the doubling in size is not far-fetched.

For up-to-date developments on emerging capital market solutions to offset longevity risk,
see the annual updates published by the ‘Pensions Institute’ and the references therein; for
example, the latest annual update by Blake and Morales (2017).

From the point of view of the present work, our interest lies in the pricing of Guaranteed
Annuity Options (GAOs). We look at these interesting options in the next sub-section.

1.3.3 The Intelligent Options

Interestingly, the product that was responsible for bringing longevity risk into limelight was
Guaranteed Annuity Option (GAO) through the closure of the world’s oldest life office, the
Equitable Life Assurance Society (ELAS) in December 2000. Between 1957 and 1988, ELAS
had sold a type of pension annuities with the so-called “Guaranteed Annuity Options (GAOs)”
as an embedded feature of the contracts. A guaranteed annuity option (GAO) gives the policy
holder a right to convert his accumulated fund at retirement at a guaranteed rate rather than at
market annuity rate. At the time of issuance, the value of these GAOs was considered worthless,
but they became very valuable at the time of maturity, due to two factors:

� Reductions in market interest rates

and

� Unanticipated falls in mortality rates at the oldest ages.

The resultant liability obligations from the guarantees, resulted in serious solvency concerns for
ELAS, requiring the setting up of extra reserves, and finally lead to unforeseen financial crisis
for the firm (c.f. Baranoff and O’Brien, 2016). Although it appears that the reason behind the
problem was poor risk management of the company, and that the problems could be avoided
if ELAS had hedged its exposure to both interest rate risk and longevity risk. However, Blake
et al. (2006) have clearly pointed out that, even if ELAS had anticipated the problem, it still
lacked good instruments to hedge its exposure to both risks, particularly longevity risk, back to
that time. Therefore, this is in fact not only the problem of ELAS. During the late 1970s and
1980s, guaranteed annuity rate between cash and pension was a common feature of individual
pension policies in the UK and was sold by more than 40 companies in the market. Although
these pension policies are no longer being sold in the UK now, there are similar guarantees
existing in the corresponding policies in other countries. For example, in the United States’
variable annuity market, there are
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� ‘Guaranteed Annuity Rate’ (GAR)

� ‘Guaranteed Minimum Income Benefits’ (GMIB)

and

� ‘Guaranteed Minimum Accumulation Benefit’ (GMAB)

contracts. A GAR contract is identical to a GAO. In fact, a GAR contract can also be seen as a
particular case of ‘Guaranteed Minimum Income Benefits (GMIB) where the policyholder can
choose to obtain the account value (without guarantee) or annuitize the account value at current
market conditions (again without a guarantee). However, the policyholder may annuitize some
guaranteed amount at annuitization rates, that have been decided upfront. This leads to a
GAR. A GMAB contract includes the additional feature that the cash benefit available at
retirement is guaranteed to be at least a pre-specified amount. For a detailed overview of these
contracts and their pricing by simulation, interested readers can refer to Bauer et al. (2008)
and Bacinello et al. (2011). In fact, GAOs with limit have also been introduced by putting a
ceiling on the guaranteed rate (c.f. Kling et al., 2014).

However, the problem that led to the downfall of ELAS is still haunting the market. In
Jan 1997 a working party sponsor: Life Board of IFoA was set up to take care of these issues
(c.f. Bolton et al., 1997). Fortunately, this incident has stimulated a lot of research into the
investigation of the issues related to mortality risk, and opened the doors to the development
of a longevity derivative market.

Valuation of Guaranteed Annuity Options

The flourishing market of sophisticated insurance products with benefits linked to financial vari-
ables along with various guarantees has given impetus to the active use of stochastic modeling
of both interest and mortality rates in the valuation of annuity-related products. In this sub-
section, we present a brief recap of the research carried out in the last two decades in context
of GAOs. A good reference in this regard is Gao (2014).

The pioneering contribution on GAOs, by Bolton et al. (1997), throws light on reserving
for annuity guarantees. Next, O’Brien (2002) discuss five issues of resolution with particular
focus on the possible investment strategies, the solvency of the insurance companies and the
GAO liabilities. They conclude that GAOs are important both for policyholder - for whom they
provide guarantees and for life offices and therefore appropriate pricing is a must. Boyle and
Hardy (2003) examine three major risks involved in GAOs. In their paper, interest rate risk
and equity risk are portrayed using correlated affine processes whilst mortality rate remained
deterministic and independent with the other two risks. They compute GAO price via the
change of measure technique assuming a swaption hedge29. Ballotta and Haberman (2006)
investigate the valuation of annuity-contingent options and extend the line of research adopted
in Ballotta and Haberman (2003), which assumed unsystematic mortality risk. In the later
publication, they consider an integrated framework to value GAO exploiting option pricing
methodology of modern finance. They assume a stochastic model for the evolution of mortality
rate while the term structure of interest rate evolves according to a single-factor Heath-Jarrow-
Morton (HJM) model (c.f. Heath et al., 1990). A fair value for GAO was derived through
the change of measure technique and Monte-Carlo simulation. Moreover, they examine the
sensitivity of GAO prices with respect to key parameters. However, while the two types of
risks viz. mortality and financial are stochastic in their valuation, they are still assumed to be
independent. A similar assumption is considered in Biffis and Millossovich (2006), who consider
doubly stochastic stopping times and affine processes to value the GAO. They emphasize that
the exercise decision made by the policyholder in regards to the GAO may not be rational from
the insurer’s point of view.

29A swaption is an option giving the right but not the obligation to engage in a swap. Boyle and Hardy
(2003) feel that the interest rate exposure in a GAO is similar to that under a long dated swaption and so, it is
instructive to examine some results on hedging swaptions.
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A different approach, in regards to the pricing and the hedging for policies with guaranteed
annuity options, is offered by Wilkie et al. (2003) and Pelsser (2003). These approaches lay em-
phasis on modeling the annuity price. In particular, Wilkie et al. (2003) examine the feasibility
of employing option pricing methodology to dynamically hedge a GAO. Pelsser (2003) derives
a market value for with-profit GAO, using martingale modeling techniques and explains the
construction of a static replicating portfolio of vanilla swaptions that replicate the with-profit
GAO. In fact, the issue of hedging mortality derivatives is an important but challenging prob-
lem (c.f. Liu et al., 2014). A major hindrance in constructing an effective hedging strategy for
GAOs is the unavailability of a trading market for mortality risk. In addition, the options writ-
ten by insurance companies often have very long maturities usually from 10 to 30 years, which
complicates the modeling of underlying risks. As a result, static option replication considered
by Pelsser (2003) offers a partial solution for insurance companies to hedge their exposure to
embedded options in their portfolios. More recently, Luciano et al. (2012) discuss the delta-
gamma hedging of mortality and interest rate risks under the independence assumption of these
risks.

Chu and Kwok (2007), propose three analytic approximation methods for pricing a GAO,
viz. the stochastic duration approach, Edgeworth expansion and multi-factor affine interest
rate model setting. The stochastic duration approach relies on the minimization of the price
error whilst the Edgeworth expansion method approximates the probability distribution of
the annuity value at maturity of the contract. For the affine approximation, a hyperplane
is used to approximate the concave exercise boundary to achieve the exercise probability of
the annuity option. The authors furnish results on comparison of the methods in terms of
numerical accuracy and computational efficiency. A sensitivity analysis of GAO prices is also
performed. The paper of Liu et al. (2011) experiments with the evaluation of the annuity rate
which is defined as the conditional expected present value random variable of the annuity’s
future payments. The two risk factors namely mortality and interest rate are modeled as
stochastic processes with the former following the LC model and the latter evolving according
to a Vasicek model. Comonotonicity is employed to furnish convex-order lower and upper
bounds of the annuity rate. The accuracy of the bounds is tested via numerical analysis. The
approach has the power of mathematical tractability in computing the distribution function for
the sum of comonotonic random variables, and has been adopted in the calculation of other
annuity-linked products (c.f. Liu et al., 2013, 2014). Piscopo and Haberman (2012) throw light
on valuation of a related product, called ‘Guaranteed Lifelong Withdrawal Benefit’ (GLWB)
option with variable annuity. The authors let the equity risk follow a geometric Brownian
motion and let the mortality rate be based on the standard mortality tables with allowance
for the possible perturbations having a regime-switching feature. They compute the fair value
through Monte Carlo simulations under different scenarios and carry out extensive sensitivity
analysis to show the relation between the variation of parameters and the value of the product.
Gao et al. (2015b) discuss three ways of postulating a regime-switching approach in modeling
the evolution of mortality rates for pricing a GAO sticking to the independence assumption of
mortality and interest rate.

In the present era, considering mortality to be independent of financial markets appears to
be a far- fetched assumption and a more realistic belief is that the two underlying risks are
correlated. This belief is supported by researchers and practitioners. For example, Ang and
Maddaloni (2003) investigate the effect of demographic changes on risk premiums. Favero et al.
(2011) examine the likelihood that the slowly evolving mean in the log dividend-price ratio is
related to demographic trends. Maurer (2014) investigates how demographic changes affect the
value of financial assets. He experiments with a continuous time overlapping generations model
having stochastic birth and mortality rates. His model suggests that demographic transitions
have an important role to play in explaining parts of the time variation in the real interest rate,
equity premium and conditional stock price volatility. Moreover, he provides adequate condi-
tions for the interest rate to be decreasing in the birth rate and increasing in the death rate.
In Dacorogna and Cadena (2015), the authors furnish some empirical evidence of a changing
behavior of the economy and the financial markets during periods of extreme mortality. The
authors advocate the use of lead-lag correlation analysis where they lead and lag the economic
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variables in connection with the mortality indices during those extreme years to see if there
are retarded effects. Correlation is computed over 5 years lag and 5 years lead. This analysis
has twin benefits: one it shows, if any of the economic or financial indicators have an effect on
the mortality indices (lag-analysis) and secondly it clarifies if the mortality indices have lagged
effects on the economic or financial indices (lead-analysis). Further, Dacorogna and Apicella
(2016) explore existence of this dependence within the Feller process framework30. Jevtie et al.
(2017) consider a partial equilibrium model for pricing a longevity linked bond in a model with
stochastic mortality intensity that affects the income of economic agents. Arik et al. (2017)
concentrate on the pricing of pension buy-outs under dependence between interest and mortal-
ity rates risks with an explicit correlation structure in a continuous time framework. To take
care of this scenario, EU’s Solvency II Directive has laid out new insurance risk management
practices for capital adequacy requirements based on the assumption of dependence between
financial markets and life/health insurance markets including the correlation between the two
underpinning risks viz. interest rate and mortality (c.f. Quantitative Impact Study 5:Technical
Specifications QIS5, 2010). Jalen and Mamon (2009) introduced a pricing framework in which
the dependence between the mortality and the interest rates is explicitly modeled. In their
methodology, the mortality rate was modeled as an affine-type diffusion process just like the
short rate process. They derived analytic expressions for mortality-linked insurance products
employing the change of measure technique. Their approach paved the path for new perspec-
tives and methodology in the valuation of other insurance products under a more reasonable
assumption that risk factors are dependent.

This line of research has triggered research on evaluation of GAOs under the assumption
of correlation between mortality and financial risks. Liu et al. (2013, 2014), were the pioneers
to consider the correlated framework for valuing a GAO and they developed a pricing formula
where the interest rate and mortality processes follow bivariate Gaussian dynamics. In their
setting, the dependence between mortality and interest rates is described by one constant,
namely the pairwise linear correlation coefficient. In fact in Liu et al. (2013) they use the
theory of comonotonic bounds in approximating the sums of lognormal random variables to
obtain convex price bounds for GAOs in the Gaussian setting. Gao et al. (2015a) propose a
modeling framework, where the interest and mortality rates are correlated and the dynamics of
each risk factor possess regime-switching affine structures, to facilitate the GAO valuation. The
correlation introduced through the diffusion components of the risk factors and the underlying
Markov chain driving the switching of regimes provides an explanation of the rates’ relation and
dynamics. A different measure called endowment-risk-adjusted measure, which first appeared
in Liu et al. (2013) and was subsequently used in Gao et al. (2015b) under several competing
models, is employed to price the GAO.

More recently, Deelstra et al. (2016) scrutinize the consequences of the dependence assump-
tion on the pricing of a GAO. They assume that mortality and interest rates are driven by
systematic and idiosyncratic factors, modeled by affine models which remain positive such as
the multi-CIR and the Wishart models. They employ the above mentioned change of measure
to value the GAO using Monte Carlo methodology. Their investigation reveals that for an ad-
vanced affine model (such as the Wishart one) that permits a non-trivial dependence between
the mortality and the interest rates, the value of a GAO cannot be explained only in terms of
the initial pairwise linear correlation and this fact plays an important role in risk management
in the presence of an unknown dependence. Finally, Gao et al. (2017) address the problem of
setting capital reserves for a guaranteed annuity option (GAO). They formulate the modeling
framework for the loss function of a GAO. A one-decrement actuarial model having death as
the only decrement is employed. Once again, the interest and mortality risk factors follow cor-
related affine structures. Risk measures are calculated using a moment-based density method
and compared with the Monte-Carlo simulation. Bootstrap technique is used to assess the vari-
ability of risk measure estimates. The authors also establish the relation between a desired level
of risk measure accuracy and required sample size under the constraints of computing time and
memory. A sensitivity analysis of parameters is also conducted. Their numerical investigations

30Also see Chapter 5
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furnish practical considerations for insurers to abide by certain regulatory requirements. Thus,
dealing with Guaranteed Annuity Options under the correlation assumption of mortality and
financial risks offers a fertile ground for future research.

1.3.4 The Future of Longevity?

In the beginning of this chapter, we had remarked that the actual problem in longevity risk
management stems from the uncertainty surrounding the improvements in mortality. Oeppen
and Vaupel (2002) had depicted record female life expectancy from 1840 to the present but
with horizontal black lines showing asserted ceilings on life expectancy, with a short vertical
line indicating the year of publication. This is shown in Figure 1.12.
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Figure 1.12: The Sorry Saga of Looming Limits to Life Expectancy (Source: Oeppen and
Vaupel (2002))

Recently on 4th May 2017, Financial Times (see Cumbo (2017) for details) has reported on
basis of estimates of Price Water Coopers (PwC) that a sharp slowdown in the improvement
to life expectancy could wipe £310bn from the pension deficits of thousands of UK companies
with final salary schemes. These forecasts are based on recent updated calculations published
by ‘Continuous Mortality Investigation’ (CMI, 2016) of the Institute and Faculty of Actuaries’
(IFoA) which reduced the projected life expectancy for a 65-year-old man by almost four months
from the estimates made in 2015, and that of a 65-year-old woman by almost six months.
Professor Andrew Cairns, Director of the Actuarial Research Centre (ARC), the IFoA along
with few other leading researchers wrote an interesting letter entitled ‘Estimated reductions in
schemes’ liabilities must be placed in context’ in response to this Financial Times article. The
British Medical Journal (Fransham and Dorling, 2017) has also published an interesting article
detailing the reasons for this downfall in life expectancy and the differences between the results
published by National Statistics (2017) and CMI (2016). We present below the interesting
Figure 1.13 depicting the stalled improvement in mortality rate.
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Figure 1.13: Standardised mortality ratios for people aged 20 to 100 years (solid lines) and
trends (dashed) 2000-11. (Source: CMI (2016))

Thus, the future of longevity is uncertain and this uncertainty in mortality trends is the
driving force for the current work.

1.4 Motivation for the Present Work

As can be seen from the discussion undertaken in this chapter, in the present times, mankind
is facing unforeseen challenges in regards to mortality and longevity. On one hand, lives have
become so cheap that people are burning like pieces of paper (Grenfell Tower fire in London,
14th June 2017), mankind is killing mankind (London Bridge, 3rd May 2017; Manchester,
22nd May 2017 and Westminister, 22nd March 2017 terrorist attacks) and on the other hand
the British Monarchy is having a tough time sending celebration messages to centenarians
(Monarchy, 2013). Thus, while on one side, catastrophic events are testing the endurance of
the insurance industry, on the other, the improvement in mortality rates is burning a hole in
the pockets of annuity and pension providers. Mortality and longevity risk management is the
new buzz word in insurance industry. Clearly as pointed out earlier, actuaries and financial
mathematicians have the potential to play a key role in enhancing longevity by offering state
of art solutions to manage longevity risk and enable retired individuals to maintain a good
standard of living by helping them to procure a regular stream of payments.

The present work draws encouragement from the prevailing scenario. It looks at both the
sides of the coin. In regards to catastrophic mortality, it looks at the pricing of the first ever
catastrophic mortality bond - the Swiss Re VITA I mortality bond launched in 2003. The
complexity of the payoff of the bond has been a hindrance in its pricing and to the best of our
knowledge only model-dependent solutions in regards to its pricing have been proposed earlier.
This became the starting point of our research and in Bahl and Sabanis (2016), we express the
payoff of this bond in terms of an Asian put option and present model-independent bounds for
pricing of the Swiss Re bond. We exploit the theory of comonotonicity for devising tight lower
and upper bounds and test these bounds in the backdrop of a number of models against the
benchmark Monte Carlo value. Interestingly, it is the same bond that triggered the popular
conference series ‘International Longevity Risk and Capital Markets Solutions’ with the first
edition abbreviated Longevity 1 (L1) being held at Cass Business School in London in February
2005 (c.f. Tan et al., 2015).
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Further motivation for research came from the emerging longevity risk. While catastrophic
bonds were used by re-insurers to hedge themselves from extreme mortality, we wanted to look
at the other side and see which products appealed to the consumer for protecting themselves
from extreme longevity. Just like Swiss Re Mortality bond sowed the seeds for the growth in
mortality related research, the products that highlighted the seriousness of longevity risk to
academicians and practitioners were Guaranteed Annuity Options. To the best of our knowl-
edge, only Monte Carlo estimation of GAO price is available in literature for complex models.
However, Monte Carlo simulation-based techniques are sampling methodologies that furnish
statistical estimations bearing a sampling error that reduces by the reciprocal of the square
root of the sample size. To improve the efficiency by even one significant digit, the sample size
is to be magnified a hundredfold (c.f. Fenga et al., 2017). There is a strong bargain between
time and accuracy. Many industrial surveys, such as Farr et al. (2008), have discussed the
emerging difficulties arising due to inefficient simulation procedures which make it extremely
challenging to obtain meaningful information and reach worthy decisions on pricing and risk
management in a timely manner. Many a times, accuracy takes a heavy toll due to the lack of
time. Recognizing the need of the hour, in Bahl and Sabanis (2017), we offer extremely efficient
tight bounds for GAOs. These bounds are model free and model robust and extremely simple
to apply particularly in case of affine models. Moreover they have been created in the most
generalized pricing framework that allows for correlation between mortality and interest rate
risk. Also this latter scenario has escaped the eyes of academicians and practitioners probably
both due to its complexity and lack of available information. The available literature in the
correlated framework is thin and this gave the impetus to strengthen this area.

1.5 Organization of the Thesis

This thesis is composed of 7 chapters including this introductory chapter. The succeeding
chapters are the compilation of related research papers (published on ArXiv) and the necessary
foundations required for building the theory.

In chapter 2, we present details of the mathematical framework required in this thesis with
particular attention to the concepts of comonotonicity and stochastic ordering.

In chapter 3, we present our findings for the valuation of catastrophic mortality bonds with
particular attention to Swiss Re Mortality bond 2003 obtained in Bahl and Sabanis (2016). This
bond was the first Catastrophic Mortality Bond to be launched in the market and encapsulates
the behaviour of a well-defined mortality index to generate payoffs for bondholders. We propose
model-independent price bounds for the Swiss Re Mortality bond 2003 by adapting its payoff
in terms of the payoff of an Asian put option. Comonotonicity theory is then applied to derive
lower and upper bounds for this bond.

In chapter 4, we consider at the basics of Affine processes with particular attention to
Wishart processes.

Chapter 5 deals with pricing of Guaranteed Annuity Options in a generalised framework
assuming mortality and interest rates are correlated. It is a reflection of the results obtained in
Bahl and Sabanis (2017). Pricing GAOs in the correlated environment is a challenging task and
no closed form solution exists in the literature. We employ the use of doubly stochastic stopping
times to incorporate the randomness about the time of death and employ a suitable change
of measure to facilitate the valuation of survival benefit, there by adapting the payoff of the
GAO in terms of the payoff of a basket call option. We derive general price bounds for GAOs
by employing the theory of comonotonicity, the Rogers-Shi (Rogers and Shi, 1995) approach
and a conditioning approach for the lower bound and arithmetic-geometric mean inequality and
comonotonicity for the upper bound. The theory is then applied to affine models to present
some very interesting formulae for the bounds under the affine set up.

Chapter 6 presents numerical results to illustrate and verify the theoretical findings of chap-
ters 3 and 5. Experiments are conducted to obtain price bounds for the Swiss Re catastrophic
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mortality bond for a variety of models and these are benchmarked against Monte Carlo esti-
mates of the bond price. Similarly, numerical examples are furnished and tested against Monte
Carlo simulations to estimate the price of a GAO for a variety of affine processes governing the
evolution of mortality and the interest rate.

In chapter 7, we summarize the main findings and contributions of the thesis and cast light
on future research perspectives.
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Chapter 2

Building Blocks

This thesis thrives upon many mathematical concepts, statistical distributions and stochastic
processes. We present the most important ones here and the other related results are furnished
in appendix A. The concepts discussed here serve as essential tools for efficient working in the
chapters that follow.

We begin by furnishing a self-contained set of results which will provide a framework for
valuing stop-loss transforms based upon arithmetic sums. Dhaene et al. (2002a) and Shaked
and Shanthikumar (2007) serve as vital resources for these results.

2.1 Ordering Random Variables

The distribution function of the sum of risks which are not independent, is hard to determine.
This leads us to the quest for a random variable which has a simpler structure and whose
distribution function is easier to determine. Such a random variable is generally referred to as
‘less attractive’ in financial and actuarial literature. Useful citations in this area are Goovaerts
et al. (1990), Kaas et al. (1994) and Denuit et al. (1999). The term ‘less attractive’ requires an
explanation. In an attempt to do so, we first define the concept of “stop-loss premium”.

Definition 1. Stop Loss Premium: The stop-loss premium with retention d of a random

variable X is defined as E
[
(X − d)

+
]
.

In the following proposition we present an interesting result regarding the stop-loss premium
defined above.

Proposition 2. (Stop-Loss Premium with Retention d) The stop loss premium with
retention d is given as

E
[
(X − d)

+
]

=

∫ ∞
d

(1− FX (x)) dx (2.1.1)

where FX (.) denotes the distribution function of X.

Equation (2.1.1) clearly shows that stop-loss premium with retention d can be considered
as the weight of an upper tail of (the distribution function of) X. Also, it is evident that

E
[
(X − d)

+
]

is a decreasing continuous function of d, with derivative (FX (d)− 1) at d which

vanishes at +∞.

This naturally leads to the definition of stop loss order between random variables.

Definition 3. Stop-Loss Order: Consider two random variables X and Y. Then X is said to
precede Y in the stop-loss order sense, written as X ≤sl Y , if and only if X has lower stop-loss
premiums than Y:

E
[
(X − d)

+
]
≤ E

[
(Y − d)

+
]

, ∀ −∞ < d <∞ (2.1.2)
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Thus, X ≤sl Y means that X has uniformly smaller upper tails than Y, which in turn
implies that payment Y is less attractive than a payment X.

Let us now connect stop loss premium to our situation. In most of the work undertaken in
this thesis, we are interested in evaluating expectation of the type

E

( n∑
i=1

Xi − d

)+
 , d ∈ R (2.1.3)

This is essentially the stop-loss premium of
∑n
i=1Xi with retention d. In this equation X =

(X1, X2, . . . , Xn) is a random variable in Rn whose individual components are not mutually
independent and d is typically positive. We assume that the marginal distribution functions
are known, but the problem we encounter is that the joint distribution of X is either unknown
or too cumbersome to work with. Another significant assumption that we make is that that
the marginal distribution functions denoted by FXi , i = 1, 2, . . . , n are injective and strictly
increasing. In case if we wish to drop this assumption, then we would mention it explicitly.

A popular methodology that is adopted to estimate equation (2.1.3) is to replace X by
another random vector Y = (Y1, Y2, . . . , Yn), for which the distribution function F∑n

i=1 Yi
can

be worked out with less trouble. The selection of Y is done keeping in mind that the sum of
its components can form a stochastic bound on the sum of the components of X denoted by S,
i.e., S =

∑n
i=1Xi. We have already discussed one such stochastic bound in the stop-loss order

sense and now we introduce a stronger relation than stop-loss order.

Definition 4. Convex Order: X is said to precede Y in terms of convex order, written as
X ≤cx Y , if and only if X ≤sl Y and E [X] = E [Y ].

In fact “stop-loss order” is also referred to as “increasing convex order” by Dhaene et al.
(2002a) and Chen et al. (2008) and is denoted by ≤icx.

In the next section, we introduce the concept of inverse distribution function.

2.2 Inverse Distribution Function

We know that for a given random variable X: Ω→ R, the cumulative distribution function ab-
breviated as c.d.f., defined as FX (x) = P [X ≤ x] is a right-continuous, non-decreasing function,
which is bounded by 0 and 1 such that

FX (−∞) = lim
x→−∞

FX (x) = 0, FX (+∞) = lim
x→+∞

FX (x) = 1

We now define the inverse of a distribution function.

Definition 5. Inverse Distribution Function: The inverse of a distribution function is the
non-decreasing and left-continuous function F−1

X (p) defined as

F−1
X (p) = inf {x ∈ R|FX (x) ≥ p} , p ∈ [0, 1] (2.2.1)

with inf φ = +∞ by convention.

Dhaene et al. (2002a) use a more generalized definition of inverse distribution function which
we define below.

Definition 6. Generalized Inverse Distribution Function: For any real p ∈ [0, 1], a
possible choice for the inverse of FX in p is any point in the closed interval

[inf {x ∈ R|FX (x) ≥ p} , sup {x ∈ R|FX (x) ≤ p}] .
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Like the previous definition inf φ = +∞ and further, supφ = −∞. Considering the left-
hand border of this interval to be the value of the inverse cdf at p, we get F−1

X (p). On the same
lines Dhaene et al. (2002a) define the right-hand border of this interval as F+1

X (p), i.e.,

F−1+
X (p) = sup{x ∈ R|FX (x) ≤ p}, p ∈ [0, 1] (2.2.2)

which is a non-decreasing and right continuous function. Clearly, F−1+
X (0) = −∞ and F−1

X (1) =
∞ and therefore the entire mass ofX is contained in the interval

[
F−1+
X (0) , F−1

X (1)
]
. Moreover,

F−1
X (p) and F−1+

X (p) are finite for all p ∈ (0, 1) and thus Dhaene et al. (2002a) use p ∈ (0, 1).
We finally define the α-mixed inverse of the cumulative distribution function considered by the
aforesaid authors.

Definition 7. α-mixed Inverse of C.D.F.: For any α ∈ [0, 1], the α-mixed inverse of the
c.d.f. is defines as

F
−1(α)
X (p) = αF−1

X (p) + (1− α)F−1+
X (p) . (2.2.3)

This is a non-decreasing function. It is evident that, F
−1(0)
X (p) = F−1+

X (p) and F
−1(1)
X (p) =

F−1
X (p) and ∀α ∈ [0, 1]

F−1
X (p) ≤ F−1(α)

X (p) ≤ F−1+
X (p)

In the passing, we note that if the distribution function of a random variable is injective, then
its inverse can be obtained directly. An important theorem on inverse distribution functions
is documented as theorem 1 in Dhaene et al. (2002a). We outline a simplified version of this
theorem.

Theorem 8. (Inverse Distribution Function of g (X)) Let X and g (X) be real valued
random variables and let 0 < p < 1. Assume that g and FX are strictly increasing, then

F−1
g(X) (p) = g

(
F−1
X (p)

)
. (2.2.4)

Proof. Let

p = Fg(X) (y) = P [g (X) ≤ y] = P
[
X ≤ g−1 (y)

]
= FX

(
g−1 (y)

)
⇒ g−1 (y) = F−1

X (p)

⇒ y = g
(
F−1
X (p)

)
= F−1

g(X) (p)

where the last equality follows from the definition of p.

We now move to the definition of Comonotonicity.

2.3 Comonotonicity

Over the last decade, it has been shown that the concept of comonotonicity is a handy tool
for solving several research and practical problems in the domain of finance and insurance.
Deelstra et al. (2011) present an excellent review of applications of comonotonicity in financial
literature. The theory of comonotonicity has been exploited extensively to carry out research
in this thesis. We begin by defining comonotonicity of a set of n-vectors in Rn.

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be any two vectors in Rn. Then by x ≤ y, we
mean component wise order which is defined by xi ≤ yi, for all i = 1, 2, . . . , n.

Definition 9. Comonotonic Set: A set A ⊆ Rn is said to be comonotonic if for every x and
y in A, either x ≤ y or y ≤ x.

Another way to interpret this definition is that a set A ⊆ Rn is said to be comonotonic if
for any x and y in A, if xi < yi for some i, then x ≤ y must hold. Hence, a comonotonic
set is in a way simultaneously monotone in each component. As a result, a comonotonic set
is a “thin” set in the sense that it cannot contain any subset of dimension greater than 1. In
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fact, any subset of a comonotonic set is also comonotonic. Dhaene et al. (2002a) offer a good
characterization of comonotonic sets.

Next we introduce the concept of a comonotonic random vector. For this we first define

Definition 10. Support of an n-dimensional Random Vector: Let X be an n-dimensional
random vector. Any set A ⊆ Rn is called the support of X if X ∈ A with probability 1. In fact
the smallest support can be regarded as the image of X : Ω → Rn. In other words, the support
of a random vector is the set of all possible outcomes of X.

Definition 11. Comonotonic Random Vector: A random vector X = (X1, . . . , Xn) is said
to be comonotonic if it has a comonotonic support.

For examples and applications of comonotonicity the reader can refer to Dhaene et al.
(2002a) and Dhaene et al. (2002b) respectively. We present below theorem 2 of Dhaene et al.
(2002a) which provides equivalent characterizations for comonotonicity of a random vector X.

Theorem 12. (Characterizations for Comonotonicity) A random vector X = (X1, . . . , Xn)
is comonotonic if and only if one of the following equivalent conditions holds:

1. X has a comonotonic support.

2. For all x = (x1, . . . , xn), we have

FX (x) = min
j=1,2,..,n

FXj (xj) (2.3.1)

3. For U ∼ Uniform (0, 1), we have

X
d
=
(
F−1
X1

(U) , F−1
X2

(U) , . . . , F−1
Xn

(U)
)

(2.3.2)

4. There exist a random variable Z and non-decreasing functions fi (i = 1, 2, ..., n) such that

X
d
= (f1 (Z) , f2 (Z) , . . . , fn (Z)) (2.3.3)

where
d
= means equality in distribution.

Proof. We provide a proof of (1) ⇒ (2). For the proofs of other stated relationships, one can
refer to Dhaene et al. (2002a) and Vynke (2003). Let us suppose that X has a comonotonic
support B. Let x ∈ Rn and define a new set Aj ⊂ B as follows:

Aj = {y ∈ B| yj ≤ xj}

Since B is comonotonic and Aj ⊂ B, it automatically implies that Aj are comonotonic and
since a comonotonic set can’t have dimension greater than 1, they form 1-dimensional sets. For
each j, let yj = max {y ∈ Aj}. Let

yi = min
j=1,...,n

yj = min
j=1,...,n

max {y ∈ Aj} .

Then for every y ∈ Ai, we have: y ≤ yi and so y ≤ yj . Hence, y ∈ Aj for every j and so
Ai = ∩nj=1Aj . As a result, we have

FX (x) = P
[
∩nj=1 {Xj ≤ xj}

]
= P

[
X ∈ ∩nj=1Aj

]
= P [X ∈Ai) = FXi (xi]

The final step follows from the fact that the probability function P is a monotone function and
Ai ⊆ Aj , so that

FXi (xi) = P [Xi ≤ xi] = P [X ∈Ai) ≤ P [X ∈Aj ] = FXj (xj) ∀j.
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An alternative proof for this result appears in Karniychuk (2006) which is as follows: Let
us suppose that X has a comonotonic support B. Let x ∈ Rn and define a new set Aj ⊂ B as
follows:

Aj = {y ∈ B| yj ≤ xj}

Since B is comonotonic, there exists an i such that Ai = ∩nj=1Aj . This claim can be proved as
follows. Clearly,

∩nj=1Aj = {y ∈ B| y1 ≤ x1, y2 ≤ x2, ..., yn ≤ xn, } .

Now, quite obviously ∩nj=1Aj ⊆ Ai for all i. The only thing which must be shown is that
there exist an i in [1, 2, ..., n] such that Ai ⊆ ∩nj=1Aj . This can be proved using contradiction.
Assume that A1 does not belong to the intersection or A2 does not belong to the intersection
and so on. For the first case, there exists z1 ∈ A1 with z1 ≤ x1, z2 > x2or... zn > xn. As
a result z1

k > x1 ≥ zkk . Due to comonotonicity, it follows that z1
m ≥ zkm, m = 1, 2, ..., n and

putting m = 1, our assumption falls apart. The same thing can be shown for other cases.

For a characterization property on comonotonic random vectors, the reader is referred to
Dhaene et al. (2002a). We conclude this section with the definition of a comonotonic counter-
part.

Definition 13. Comonotonic Counterpart: Let X = (X1, . . . , Xn) be a random vector in
Rn. A random vector with the same marginal distributions as X and possessing the comonotonic
dependency structure is called a comonotonic counterpart. The notation used for this random
vector is Xc = (Xc

1 , . . . , X
c
n). Moreover, we have

Xc d
=
(
F−1
X1

(U) , F−1
X2

(U) , . . . , F−1
Xn

(U)
)

where U ∼ Uniform (0, 1).

In the next section we summarize certain useful results on sums of comonotonic random
variables taken from Dhaene et al. (2002a).

2.4 Useful Results on Comonotonicity

Let Sc denote the sum of the components of the comonotonic counterpart Xc of X, i.e.,

Sc = Xc
1 +Xc

2 + . . .+Xc
n

We give below the simplified version of Theorem 5 of Dhaene et al. (2002a) which proves that
the inverse distribution function of a sum of comonotonic random variables is simply the sum
of the inverse distribution functions of the marginal distributions.

Theorem 14. (Inverse c.d.f. of Comonotonic Sum) The inverse distribution function
F−1
Sc (p) of the sum Sc of the components of the comonotonic random vector Xc is given by

F−1
Sc (p) =

n∑
i=1

F−1
Xi

(p) , 0 < p < 1 (2.4.1)

Proof. Clearly as Xc is a comonotonic counterpart of X, we have by definition 13 that FXci (x) =

FXi (x) = p (say) and as a result, we also have F−1
Xci

(p) = F−1
Xi

(p) for every i. Invoking theorem

12(3), we get the following

Sc
d
=

n∑
i=1

F−1
Xi

(p) =: g (U) , (2.4.2)

with U being uniformly distributed on (0, 1) . It is evident from the definition of g that g (U)
is an increasing function and so using theorem 8 we arrive at:

F−1
Xc (p) = F−1

g(U) (p) = g
(
F−1
U (p)

)
= g (p) , ∀p ∈ (0, 1)
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where in the last equality, we exploit the fact that if U ∼ Uniform (0, 1), then FU (p) = p, ∀p ∈
(0, 1) . Thus we have achieved the required result.

This result then gives way to another powerful result provided by Dhaene et al. (2002a)
which partitions the stop-loss premiums of a sum of comonotonic random variables into stop-
loss premiums of the terms. We present the theorem in a manner similar to the authors. This
theorem and its corollary are extremely useful to derive the results in this thesis. We prove this
theorem without considering any restrictive assumptions for the c.d.f.

Theorem 15. (Stop-loss Premium of Comonotonic Sum) The stop-loss premiums of the
sum Sc of the components of the comonotonic random vector Xc = (Xc

1 , . . . , X
c
n) are given by

E
[
(Sc − d)

+
]

=

n∑
i=1

E
[
(Xi − di)+

]
,
(
F−1+
Sc (0) < d < F−1

Sc (1)
)

(2.4.3)

where the di, i = 1, 2, . . . , n are defined by the following equation:

di = F
−1(αd)
Xi

(FSc (d)) (2.4.4)

and αd ∈ [0, 1] determined by

F
−1(αd)
Sc (FSc (d)) = d. (2.4.5)

Proof. First of all, by the definition of a comonotonic random vector, it is evident that the
support of Xc say B is comonotonic. Further, a comonotonic set can have at most one point of
intersection with the hyperplane H = {x : x1 + . . .+ xd}. The reason for this is that diminish-
ing any one of the xi of x ∈ H would need a simultaneous increment in xj , where i 6= j, since the
sum of the x′is is fixed. However, this violates the comonotonicity assumption. Let us denote
this point of intersection as d = (d1, . . . , dn), so that d = B ∩ H. Also, as 0 < FSc (d) < 1,
has to be true, we know from the definition 7, that there exists an αd that fulfills the condition
(2.4.5). Further, since d ∈ H, by definition of H, d = d1 + . . . + dn. Let us further choose an
arbitrary x ∈ H. Then the following equality is true

(x1 + x2 + . . .+ xn − d)
+

= (x1 − d1)
+

+ (x2 − d2)
+

+ . . .+ (xn − dn)
+
. (2.4.6)

This can be reasoned out as follows; x and d are both elements of B which is a comonotonic
set. If there exists any j such that xj > dj holds, then xk ≥ dk, ∀k, and the L.H.S. equals the
R.H.S. because d = d1 + . . .+ dn. The other possibility is that xj ≤ dj , ∀j which renders both
sides to 0. As a final step, let p = FSc (d). Invoking theorem 5 of Dhaene et al. (2002a), we
obtain

d = F
−1(αd)
Sc (p) =

n∑
i=1

F
−1(αd)
Xi

(p) =

n∑
i=1

F
−1(αd)
Xi

(FSc (d)) =

n∑
i=1

di

We substitute Xc
i in place of xi and take expectations and finally replace Xc

i by Xi exploiting
the fact that marginal distributions of the two are identical for each i. This yields the desired
result.

We now prove a very important corollary of this theorem, which we bank upon to undertake
the research in this thesis.

Corollary 16. (Simplified Expression for Stop-Loss Premium of Comonotonic Sum)
The stop-loss premium of a comonotonic sum Sc of the components of the comonotonic random
vector Xc = (Xc

1 , . . . , X
c
n) can be written in a simplified manner in terms of the usual inverse

distribution functions. For any retention d ∈
(
F−1+
Sc (0) , F−1

Sc (1)
)
,

E
[
(Sc − d)

+
]

=

n∑
i=1

E
[(
Xi − F−1

Xi
(FSc (d))

)+]− (d− F−1
Sc (FSc (d))

)
(1− FSc (d)) . (2.4.7)
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If the marginal c.d.f.s FXi are strictly increasing, the expression (2.4.7) reduces to

E
[
(Sc − d)

+
]

=

n∑
i=1

E
[(
Xi − F−1

Xi
(FSc (d))

)+]
(2.4.8)

Proof. Clearly,

E
[
(Xi − di)+

]
=

∫ ∞
di

(xi − di) dFXi (xi)

=

∫ ∞
di

(
xi − F−1

Xi
(FSc (d)) + F−1

Xi
(FSc (d))− di

)
dFXi (xi)

=

∫ ∞
di

(
xi − F−1

Xi
(FSc (d))

)
dFXi (xi)

+
(
di − F−1

Xi
(FSc (d))

) ∫ ∞
di

dFXi (xi) (2.4.9)

Consider the second integral in equation (2.4.9). We have∫ ∞
di

dFXi (xi) = P [Xi > di] (2.4.10)

Using the proof of the theorem which follows from the definition of comonotonicity, it is evident
that if Xi > di holds, then we also have Xk ≥ dk ∀k, and so we have from equation (2.4.10)∫ ∞

di

dFXi (xi) = P

[
n∑
i=1

Xi >

n∑
i=1

di

]
= P [Sc > d]

= 1− FSc (d) (2.4.11)

In regards to the first integral in equation (2.4.9), we note that the event

[Xi > di]⇐⇒
[
Xi > F−1

Xi
(FSc (d))

]
. (2.4.12)

This can be reasoned as follows. Let FSc (d) = p and
∑n
i=1Xi = X. Now we employ definition

of comonotonicity. Assume that Xi > di ⇒ X > d ⇒ FSc (X) > p. Let us now assume
that Xi < F−1

Xi
(FSc (d)), which in turn on summing both sides and using theorem 14 implies

that X < F−1
Sc (FSc (d)) ⇒ FSc (X) < p which is a contradiction. On the same lines, one can

begin with Xi > F−1
Xi

(FSc (d)) to conclude that Xi > di, which leads to the statement (2.4.12).
Substituting the equation (2.4.11) in equation (2.4.9) and considering the statement (2.4.12),
we get

E
[
(Xi − di)+

]
=

∫ ∞
F−1
Xi

(FSc (d))

(
xi − F−1

Xi
(FSc (d))

)
dFXi (xi)

+
(
di − F−1

Xi
(FSc (d))

)
(1− FSc (d))

= E
[(
Xi − F−1

Xi
(FSc (d))

)+]
+
(
di − F−1

Xi
(FSc (d))

)
(1− FSc (d)) .

(2.4.13)

Summing over both sides and using Theorems 15 and 14 on L.H.S. and R.H.S. respectively and
using the definition of d as in Theorem 15, we see that for any retention d ∈

(
F−1+
Sc (0) , F−1

Sc (1)
)
,

equation (2.4.7) holds. In case, if the marginal c.d.f.s FXi are strictly increasing, so that FSc

is strictly increasing and hence F−1
Sc (FSc (d)) = d (c.f. Dhaene et al., 2002a), we get equation

(2.4.8). This completes the proof of the corollary.

In the next section of this chapter, we discuss about convex bounds for sums of random
variables without imposing any restrictions on the distribution functions.
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2.5 Convex Bounds for Sums of Random Variables

The previous section serves as a foundation for deriving bounds for the sums S = X1 + X2 +
... + Xn of random variables X1, X2, . . . , Xn for which the marginal distributions are readily
available. The bounds are actually random variables that are greater or smaller than S in the
sense of convex order. The main motivation behind this exercise, as explicitly stated in the first
section of this chapter is is that the joint distribution of the random vector (X1, X2, . . . , Xn) is
either unknown or too hard to be worked out.

Dhaene et al. (2002a) have worked out an upper bound that is attainable in the class of
all random vectors with given marginals and have proved that the comonotonic upper bound
acts as a supremum in the sense of convex order. We begin this section with theorem 7 of the
aforesaid paper.

Theorem 17. (Upper Bound for a Sum of Random Variables) For any random vector
(X1, X2, . . . , Xn), with its comonotonic counterpart being defined by

Xc =
(
F−1
X1

(U) , F−1
X2

(U) , . . . , F−1
Xn

(U)
)

we have
X1 +X2 + ...+Xn ≤cx Xc

1 +Xc
2 + ...+Xc

n (2.5.1)

or in other words S ≤cx Sc

Proof. We begin the proof by observing that a random vector and its comonotonic counterpart
have the same marginals and thus the expected value of their sums are equal. Thus, we
have to just prove the result in the sense of stop loss order as the convex order would follow
automatically. For this we have to prove that

E

( n∑
i=1

Xi − d

)+
 ≤ E

( n∑
i=1

Xc
i − d

)+


or
E
[
(S − d)

+
]
≤ E

[
(Sc − d)

+
]

holds for any retention d. The following result is true for all (x1, x2, . . . , xn) when d = d1 +
. . .+ dn:(

n∑
i=1

xi − d

)+

=

(
n∑
i=1

(xi − di)

)+

≤

(
n∑
i=1

(xi − di)+

)+

=

(
n∑
i=1

(xi − di)+

)
,

where the last step follows from the fact that a+ = a if a ≥ 0. Now, replacing constants by
the corresponding random variables in the above inequality and taking expectations we have

E

( n∑
i=1

Xi − d

)+
 ≤ n∑

i=1

E
[
(Xi − di)+

]
for all d and di such that d =

∑n
i=1 di. In the concluding step, we choose di as in theorem 15,

i.e., di = F
−1(αd)
Xi

(FSc (d)) and as a result of this theorem we obtain

E

( n∑
i=1

Xi − d

)+
 ≤ n∑

i=1

E

[(
Xi − F−1(αd)

Xi
(FSc (d))

)+
]

= E
[
(Sc − d)

+
]

(2.5.2)

which is the desired result.

In light of the corollary 16, we can write the upper bound in terms of usual inverse distri-
bution functions.
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An interesting outcome of theorems 15 and 17 is the observation that the comonotonic
upper bound appearing in equation (2.5.2) serves as the least upper bound having the form∑n
i=1E

[
(Xi − di)+

]
with

∑n
i=1 di = d.

Dhaene et al. (2002a) suggest that the upper bound obtained in theorem 17 can be improved
if some extra information regarding the stochastic nature of (X1, X2, . . . , Xn) is available. More
specifically if we can lay hands on some random variable Λ, with a given distribution function
such that the individual conditional cdfs of Xi| (Λ = λ) are known for all i and all possible
values of λ, we can derive sharper upper bounds in terms of convex order for S which are
smaller in convex order in comparison to the upper bound Sc.

Finally, Dhaene et al. (2002a) use the same infrastructure as for the improved upper bound
to furnish a lower bound for S. Banking on theorem 10 of this paper we reproduce this lower
bound. Let S =

∑n
i=1Xi as before and define Sl =

∑n
i=1 E (Xi|Λ). Now, employing Jensen’s

inequality, we have for any convex function g,

E [g (X)] = E [E (g (X) |Λ)] ≥ E [g (E (X|Λ))]

Now, choosing the convex function as g (x) =

(
n∑
i=1

xi − d

)+

, we have

E

( n∑
i=1

Xi − d

)+
 ≥ E

( n∑
i=1

E (Xi|Λ)− d

)+
 (2.5.3)

or
E
[
(S − d)

+
]
≥ E

[(
Sl − d

)+]
(2.5.4)

Employing the tower property we see that E
[
Sl
]

= E [S] and this together with equation (2.5.4)
is sufficient to show Sl ≤cx S. As a final step, we can show that the lower bound for S can be
formulated as the sum of stop-loss premiums. This task becomes trivial if we can choose the
conditioning variable Λ in such a way that E [Xi|Λ] is either increasing or decreasing for every
i, so that the vector: Xl = (E [X1|Λ] , . . . ,E [Xn|Λ]) is comonotonic. For this suitable choice of
Λ, using Theorem 5 of Dhaene et al. (2002a), we see that d abides by

d = F
−1(αd)

Sl
(FSl (d)) =

n∑
i=1

F
−1(αd)
E(Xi|Λ) (FSl (d)) .

Now, utilizing theorem 15, we achieve the desired decomposition

E
[
(S − d)

+
]
≥ E

[(
Sl − d

)+]
= E

( n∑
i=1

E (Xi|Λ)− d

)+


=

n∑
i=1

E

[(
E (Xi|Λ)− F−1(αd)

E(Xi|Λ) (FSl (d))
)+
]
. (2.5.5)

In light of the corollary 16, we can write this lower bound in terms of usual inverse distribution
functions. Thus, we have been able to obtain both lower and upper convex order stochastic
bounds for the sum of dependent risks S =

∑n
i=1Xi. With the background theory presented

in this chapter, we now dwell into its application to find appropriate lower and upper bounds
for longevity and mortality instruments in the next couple of chapters.

As a next step, we present some important results particularly Bayes’ formula along with
the proof, which plays a vital role for the construction of doubly stochastic stopping times in
Chapter 5.
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2.6 Some Important Results

This thesis thrives upon many important mathematical formulae. We present a list below:

2.6.1 Jensen’s Inequality

Let (Ω,F,P) be a probability space, X be an integrable real-valued random variable, G be a
sub-sigma algebra of F and φ : R→ R be a convex function. Then:

E [φ (X) |G] ≥ φ (E [X|G]) (2.6.1)

2.6.2 Bayes’ Formula

The following result from Billingsley (1995) plays a very important role in constructing the
unified market framework combining financial variables and mortality risk in Chapter 5.

Proposition 18. (Bayes’ Theorem) Let (Ω,F,P) be a probability space. Let G ⊂ F, H be a
σ-algebra generated by a partition B1, B2, ..., and let G ∨H = σ (G ∪H), then with probability
1 we have

P [A|G ∨H] =
∑
i

1Bi

P [A ∩Bi|G]

P [Bi|G]
∀A ∈ F (2.6.2)

Proof. First of all define
Pi (A) = P (A|Bi) . (2.6.3)

and Ei the corresponding expectation. Then, we have the following claim

Pi (A|G) =
P (A ∩Bi|G)

P (Bi|G)
. (2.6.4)

Proof of the claim:
We first have for any function f ∫

Ω

fdPi =

∫
Bi
fdP

P (Bi)
(2.6.5)

Then for any G ∈ G, we have that∫
G

Pi (A|G)P (Bi|G) dP =

∫
G

Pi (A|G)E[1Bi |G]dP

=

∫
G

Pi (A|G)1Bi dP

=

∫
Ω

1G1BiPi (A|G) dP

=

∫
Bi

1GPi (A|G) dP

= P (Bi)

∫
Ω

1GPi (A|G) dPi

= P (Bi)

∫
G

Ei[1A|G]dPi

= P (Bi)

∫
G

1A dPi

= P (Bi)Pi (A ∩G)

= P (A ∩G ∩Bi)
= E[1A∩G∩Bi ]

=

∫
G

1A∩Bi dP

=

∫
G

E[1A∩Bi |G] dP
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=

∫
G

P (A ∩Bi|G) dP (2.6.6)

So, it follows that
Pi (A|G)P (Bi|G) = P (A ∩Bi|G) (2.6.7)

and that proves the claim.
Further, for a general set G in G∫

G∩Bi
Pi (A|G) dP =

∫
Bi

1GPi (A|G) dP

= P (Bi)

∫
Ω

1G Pi (A|G) dPi

= P (Bi)

∫
G

Pi (A|G) dPi

= P (Bi)

∫
G

Ei[1A|G]dPi

= P (Bi)

∫
G

1A dPi

= P (Bi)Pi (A ∩G)

= P (A ∩G ∩Bi)

=

∫
G∩Bi

1A dP

=

∫
G∩Bi

E[1A|G ∨H] dP

=

∫
G∩Bi

P (A|G ∨H) dP (2.6.8)

As a result we have shown that∫
C

1Bi Pi (A|G) dP =

∫
C

1Bi P [A|G ∨H] dP if C = G ∩Bi (2.6.9)

and this also holds if C = G ∩Bj ; j 6= i.

But C ′s of this form constitute a π-system generating G ∨H and hence

1BiPi (A|G) = 1BiP [A|G ∨H] (2.6.10)

on a set of P -measure 1.

Now, summing both sides of (2.6.10) over i, using the definition of Pi (A|G) from (2.6.4) and
remembering that B′is form a partition of H, swapping sides, we get the desired result, i.e.,

P [A|G ∨H] =
∑
i

1Bi

P [A ∩Bi|G]

P [Bi|G]
. (2.6.11)

2.7 Some Important Distributions

We present below the details about some well-known distributions which are indispensable for
our research in the order in which they have been utilized for the purpose of derivation.

1. Normal Distribution
A continuous random variable X is said to follow Normal distribution with parameters µ
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(mean) and σ2 (variance) written as X ∼ N
(
µ, σ2

)
if its probability density function (p.d.f.)

takes the form:

f (x) =
1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R, µ ∈ R, σ > 0 (2.7.1)

2. Multivariate Normal Distribution
A random vector X ∈ Rk is said to follow a multivariate Normal distribution with mean
vector µ and variance-covariance matrix Σ denoted by X ∼ Nk (µ,Σ) if its p.d.f. is given
as:

f (x) =
1

(2π)
k
2
∑ 1

2

e−
1
2 (x−µ)

′∑−1(x−µ), x ∈ Rk, µ ∈ Rk, Σ ∈ S++
k , (2.7.2)

where S++
k is the set of positive definite symmetric matrices of order k.

If we take k = 2, we get the Bivariate Normal Distribution (BVN), which can be defined
as follows:
A two-dimensional random vector (X,Y ) ∼ BV N

(
µ1, µ2, σ

2
1 , σ

2
2 , ρ
)

where BV N stands for
bivariate Normal distribution if its p.d.f. is given as:

f (x) =
1

(2π)σ1σ2

√
(1− ρ2)

e
− 1

2(1−ρ2)

{(
x−µ1
σ1

)2
−2ρ

(
x−µ1
σ1

)(
y−µ2
σ2

)
+
(
y−µ2
σ2

)2
}
, (x, y) ∈ R2

(2.7.3)
where ρ (6= 0) is the correlation coefficient between X and Y .

3. Matrix Variate Normal Distribution
A p × n-random matrix X is said to have a matrix variate Normal distribution with mean
M ∈Mp,n and covariance Σ⊗Ψ, Σ ∈ S++

p , Ψ ∈ S++
n , with Mp,n being the set of all m× n

real matrices and ⊗ denoting the Kronecker product if vec (X ′) ∼ Npn (vec (M ′) ,Σ⊗Ψ),
where ′ denotes the transpose of a matrix, Npn denotes the multivariate Normal distribution
on Rpn with mean vector vec (M ′) and covariance Σ⊗Ψ and vec (.) for a matrix A ∈Mp,n

with columns ai ∈ Rm; i = 1, 2, ..., n defined as

vec (A) =


a1

.

.

.
an

 (2.7.4)

We use the notation X ∼ Np,n (M,Σ⊗Ψ).

4. Lognormal Distribution
A continuous random variable X is said to follow lognormal distribution with parameters µ
and σ2 written as X ∼ logN

(
µ, σ2

)
if its p.d.f. is given as:

f (x) =
1√

2πxσ
e−

(loge x−µ)2

2σ2 , x ∈ R+, µ ∈ R+, σ > 0 (2.7.5)

5. Su Distribution
A continuous random variable X is said to obey the four-parameter transformed Normal
(Su) Distribution (for details see Johnson, 1949; Johnson et al., 1994) if

sinh−1

(
X − α
β

)
= Y ∼ N

(
µ, σ2

)
, (2.7.6)
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where α, β, µ and σ are parameters (β, σ > 0, µ ∈ R) and sinh−1 is the inverse hyperbolic
sine function defined as

sinh−1 (z) = loge

(
z +

√
1 + z2

)
(2.7.7)

The probability density function of X is given as

f (x) =
1

√
2πβσ

√
1 +

(
x−α
β

)2
e−

(sinh−1( x−αβ )−µ)
2

2σ2 , x ∈ R (2.7.8)

6. Gamma Distribution
A continuous random variable X is said to follow a Gamma Distribution with parameters p
and a written as x ∼ Gamma (p, a) if its p.d.f. is given as

f (x) =
ap

Γ (p)
xp−1e−ax, x ∈ R+, p ∈ R+, a ∈ R+ (2.7.9)

and Γ (.) is the Gamma function defined as

Γ (p) =

∫ ∞
0

zp−1e−zdz (2.7.10)

7. Log Gamma Distribution
The log Gamma distribution is a particular type of transformed Gamma distribution. A
random variable X is said to follow log Gamma distribution if

logeX − µ
σ

= Y ∼ Gamma (p, a) , (2.7.11)

where µ, σ, p and a are parameters (> 0) and loge is the natural logarithm. Useful references
for reading about transformed gamma distribution are Johnson et al. (1994), Vitiello and
Poon (2010) and Cheng et al. (2014). The p.d.f. of X is given as

f (x) =
( a
σ

)p 1

xΓ (p)
(loge x− µ)

p−1
e−

a
σ (loge x−µ), x ∈ R+ (2.7.12)

8. Chi Square Distribution
A continuous random variable X is said to follow a Chi Square Distribution with n degrees
of freedom (d.f.) written as x ∼ χ2

(n) if its p.d.f. is given as

f (x) =
1

2n/2Γ
(
n
2

)xn2−1e−
x
2 ; x ∈ R+, n ∈ Z+, (2.7.13)

where Z+ denotes the set of positive integers. In fact, comparing with the p.d.f. of gamma
distribution given in equation (2.7.9), we see that we have a Gamma

(
n
2 ,

1
2

)
distribution.

The chi square distribution is also directly linked to the normal distribution in the sense
that

“If Yi, i = 1, 2, ..., n are n independent normal random variables with respective means and
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variance as µi and σ2
i then

X =

n∑
i=1

(
Yi − µi
σi

)2

∼ χ2
(n).” (2.7.14)

In fact, chi square distribution is also referred to as central chi square distribution in litera-
ture.

9. Non-Central Chi Square Distribution
A continuous random variable X is said to follow a Non-Central Chi Square Distribution
with n degrees of freedom and non-centrality parameter λ written as x ∼ χ′2 (n, λ) (c.f.
Johnson et al., 1995) if its p.d.f. is given as

f (x) =

∞∑
j=0

e−
λ
2

(
λ
2

)j
j!

hYn+2j
(x) , x ∈ R+, n ∈ Z+, (2.7.15)

where hYn+2j (.) is the p.d.f. of a random variable Yn+2j distributed according to central
χ2 distribution with (n+ 2j) d.f.; j = 0, 1, 2, .... From this representation, the non-central
chi-squared distribution is seen to be a Poisson-weighted mixture of central chi-squared
distributions since the coefficient of the density hYn+2j

(.) is in fact, the probability of a

Poisson(λ2 ) random variable taking the value j. Like its central counterpart, the non-central
chi square distribution is also directly linked to the normal distribution in the sense that

“If Zi, i = 1, 2, ..., n are n independent normal random variables with respective means µi
and and unit variances then

X =

n∑
i=1

Z2
i ∼ χ′2 (n, λ) , (2.7.16)

where the non-centrality parameter λ is given as

λ =

n∑
i=1

µ2
i .” (2.7.17)

10. Non-Central Wishart Distribution
A p×p random matrix X is said to have a non-central Wishart distribution with parameters
p, n, Σ and Θ and written as X ∼Wp (n,Σ,Θ), (c.f. Pfaffel, 2012; Gupta and Nagar, 2000;
Johnson and Kotz, 1972) if its p.d.f. is given by

fX (S) =
(

2
1
2npΓp

(n
2

)
det (Σ)

n
2

)−1

eTr[−
1
2 (Θ+Σ−1S)] det (S)

1
2 (n−p−1)

0F1

(
n

2
;

1

4
ΘΣ−1S

)
(2.7.18)

where S ∈ S++
p , the set of positive definite symmetric matrices and p ∈ Z+, n ≥ p, Σ ∈ S++

p

and Θ ∈ Mp, where Mp denote the set of real p × p matrices. Further, Γp (.) is the matrix
variate Gamma function defined as

Γp (a) =

∫ ∞
0

eTr[−A] det (A)
a− 1

2 (p+1)
dA, ∀ a > p− 1

2
(2.7.19)

and 0F1 is the hypergeometric function, where in general, we define, hypergeometric function
of matrix argument as

mFn (a1, ..., am; b1, ..., bn;S) =

∞∑
k=0

∑
κ

(a1)κ ... (am)κ Cκ (B)

(b1)κ ... (bn)κ k!
(2.7.20)

52



where ai, bj ∈ R, B is a symmetric p × p matrix and
∑
κ denotes the summation over

all partitions κ of k, where by a partition of k, we mean a p-tuple κ = (k1, k2, ..., kp)
such that k1 ≥ ... ≥ kp ≥ 0 and k1 + ... + kp = k. Further, (a)κ =

∏p
j=1

(
a− 1

2 (j − 1)
)
kj

denotes the generalized hypergeometric coefficient, with (x)kj = x (x+ 1) ... (x+ kj − 1) (c.f.

Gupta and Nagar, 2000). Finally, Cκ (B) denotes zonal polynomial which is the component

of Tr
[
(B)

k
]

in the subspace Vκ of the space Vk, where Vk is the space of all symmetric

homogeneous polynomials of degree k in the p(p+1)
2 distinct elements of B ∈ S++

p , where
by a symmetric homogeneous polynomial of degree k in y1, y2, ..., ym, we mean a polynomial
which is unaltered by a permutation of the subscripts and such that every term in the
polynomial has degree k (c.f. Muirhead, 2005). Then

Tr
[
(B)

k
]

= (B11 + ...+Bpp)
k

is an element of Vk. According to Gupta and Nagar (2000), the space Vk can be decomposed
into a direct sum of irreducible invariant sub-spaces Vκ. This along with the definition of
zonal polynomials implies that

Tr
[
(B)

k
]

=
∑
κ

Cκ (B) . (2.7.21)

As per Gupta and Nagar (2000), a sufficient condition for the hypergeometric function of
matrix argument given in equation (2.7.20) to be well defined is m < n+ 1.

In regards to the p.d.f. of Non-Central Wishart distribution given in equation (2.7.18),
it does not exist if Σ ∈ S+

p \S++
p , which denotes the boundary of the cone of symmetric

positive semi-definite matrices with S+
p denoting the set of symmetric positive semi-definite

matrices. However, in this case, one can still define the non-central Wishart distribution
using its characteristic function defined in equation (5.7.110) in Chapter 5. A good reference
to read about the existence of non-central Wishart distribution is Mayerhofer (2013).

Further, in equation (2.7.18), if Θ = 0, X is said to have a Central Wishart distribution with
parameters p, n and Σ written as X ∼Wp (n,Σ).

Finally, the next Lemma from Gupta and Nagar (2000) shows that Wishart distribution is
the square of a matrix variate normally distributed random matrix. Hence, it is the matrix
variate extension of non-central chi-square distribution.

Lemma 19. Let X ∼ Np,n (M,Σ⊗Ψ), n ∈ {p, p+1, ...}. Then XX ′ ∼Wp

(
n,Σ,Σ−1MM ′

)
.

2.8 Some Basic Stochastic Processes

We present below the details about some well-known stochastic processes which are the building
blocks for pricing of financial products.

To begin, let (Ω,F,P), with P as the real world probability measure, be a complete proba-
bility space coupled with the filtration F = {Ft}t≥0. Then, we consider the following stochastic
processes.

1. Lévy Process: A stochastic process X = {Xt}t≥0 is said to be a Lévy Process if:

� X0 = 0

� For any sequence of ‘time points’ 0 ≤ t0 < t1 < . . . ≤ tn, the ‘increments’ Xt1−Xt0 , Xt2−
Xt1 , . . . , Xtn −Xtn−1 are independent for integer n ≥ 2.

� For 0 ≤ s < t, the random variable Xt−Xs has the same distribution as Xt−s (stationary
increments).
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� For 0 ≤ s < t, Xt is almost surely right continuous with left limits (admits càdlàg).

Excellent references on Lévy processes are Applebaum (2004) and Sato (1999). Wiener process
or Brownian Motion is a well known example of Lévy processes and is defined below.

2. Exponential Lévy Model: To ensure positivity as well as the independence and station-
arity of log-returns, prices of financial products are usually modeled as exponential of Lévy
processes, i.e.,

St = S0e
Xt , (2.8.1)

where Xt is a Lévy process, St is the product price at time t and S0 is the initial product price.

3. Wiener Process / Standard Brownian Motion: A family of random variables W =
(Wt)t≥0 is called a Wiener process if the following conditions are satisfied:

� The ‘increments’ Wt1−Wt0 ,Wt2−Wt1 , . . . ,Wtn−Wtn−1 are independent random variables
for any sequence of ‘time points’ 0 ≤ t0 < t1 < . . . ≤ tn for integer n ≥ 2.

� For 0 ≤ s < t, the random variable Wt −Ws ∼ N (0, t− s).

� Wt (ω) is continuous in t for every ω ∈ Ω.

� W0 = 0

We also consider Wishart Processes which we discuss in detail in Chapters 4 and 5.
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Chapter 3

Model-Independent Price Bounds
for Catastrophic Mortality Bonds

This chapter has been published on Arxiv. The full reference follows:

R. K. Bahl and S. Sabanis. Model-Independent Price Bounds for Catastrophic Mortality
Bonds. Working Paper, Arxiv, 2016. URL arXiv:1607.07108[q-fin.PR].

Previous versions of this chapter were presented at the following conferences, workshops
and seminars:

- December 2014. Actuarial Teachers and Researcher Conference (ATRC), School of
Mathematics, University of Edinburgh. Poster Presentation “Price Bounds for the Swiss
Re Bond 2003: A Model-Independent Approach”.

- January 2015. Perspectives on Actuarial Risks in Talks of Young Researchers
(PARTY), Liverpool, UK. “Price Bounds for the Swiss Re Bond 2003”.

- October 2015. Knowledge Sharing Scotland (KSS) Event, Institute and Faculty of
Actuaries (IFoA), Edinburgh, UK. “Model-independent Price Bounds for the Swiss Re
Mortality Bond - 2003”.

- March 2016. Mathematical and Statistical Methods for Actuarial Sciences and Finance
(MAF), University Dauphine of Paris, France. “Model-independent Price Bounds for
the Swiss Re Mortality Bond 2003”.

- June 2016. Pensions, Risk and Investment Conference 2016 with AFIR /ERM (orga-
nized by IFoA), Edinburgh, UK. “Mortality from Modeling to Pricing: Challenges and
Solutions”.

- July 2016. International Congress on Insurance: Mathematics and Economics (IME),
Georgia State University, Atlanta, USA. “Model-Independent Price Bounds for the Swiss
Re Mortality Bond 2003”.

- September 2016. International Mortality and Longevity Symposium (organized by
IFoA), Royal Holloway, University of London, UK. Paper and poster presentation enti-
tled “Model-independent Price Bounds for Catastrophic Mortality Bonds”.
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- September 2016. General Insurance Research Organization (GIRO) Conference (or-
ganized by IFoA), Convention Centre, Dublin, Ireland. “’Mortality from Modeling to
Pricing: Challenges and Solutions”.

- December 2016. International Conference on Actuarial and Financial Mathematics
(ICAFM), Sydney, Australia. “Model-Independent Price Bounds for the Swiss Re Mor-
tality Bond 2003”. Conferred with the Best Presentation Award.

- February 2017. Statistics Seminar Series, University College Dublin, Ireland. Seminar
Session entitled “Valuation of Catastrophic Mortality Bonds”.

- May 2017. Maxwell Institute Probability Day at ICMS, University of Edinburgh, UK.
“Valuation of Catastrophic Mortality Bonds”.
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In this chapter, we are concerned with the valuation of Catastrophic Mortality Bonds and,
in particular, we examine the case of the Swiss Re Mortality Bond 2003 as a primary example
of this class of assets. This bond was the first Catastrophic Mortality Bond to be launched in
the market and encapsulates the behaviour of a well-defined mortality index to generate payoffs
for bondholders. Pricing these type of bonds is a challenging task and no closed form solution
exists in the literature. In our approach, we adapt the payoff of such a bond in terms of the
payoff of an Asian put option and present a new approach to derive model-independent bounds
exploiting comonotonic theory as illustrated in Albrecher et al. (2008), Dhaene et al. (2002b)
and Simon et al. (2000) for the pricing of Asian options. We carry out Monte Carlo simulations
to estimate the bond price and illustrate the strength of the bounds.

3.1 Introduction

In the present day world, many financial institutions face the risk of unexpected fluctuations in
human mortality and clearly, this risk has two aspects. On one side, life insurers paying death
benefits will suffer an economic loss if actual rates of mortality are in excess of those expected,
due to catastrophic events such as a severe outbreak of an epidemic or a major man-made or
natural disaster. This side of the risk is known in the literature by the name of mortality risk.
On the other hand, pension plan sponsors, as well as insurance companies providing retirement
annuities, are subject to longevity risk, that is, the risk that people outlive their expected
lifetimes. For these institutions, the longer the life-span of people, the greater the period of
time over which retirement income must be paid and, hence, the larger the financial liability.

An unanticipated change in mortality rates will affect all policies in force. Therefore, as
opposed to the random variations between lifetimes of individuals, it cannot be diversified away
by increasing the size of the portfolio. Reinsurance is one possible solution to the problem,
but its capacity is usually limited. Alternatively, the risk may be naturally hedged or reduced
through balancing products. For example, an insurance company may sell life insurance to the
same customers who are buying life annuities. The resulting combination would then reduce
the company’s exposure to future changes in mortality, consequently permitting a reduction
of capital reserves held in respect of mortality or longevity risk. This idea of compensating
longevity risk by mortality risk is often referred to as natural hedging. However, this strategy,
as Cox and Lin (2007) pointed out, may be cost prohibitive and may not be practical in
some circumstances particularly due to the underlying difference in the nature of the two risks:
mortality risk being a short term risk having a 1 to 5 year maturity and possessing a catastrophic
component while longevity risk being a long term risk with maturities ranging from 20 to 80
years and is primarily connected to changes in trend. .

As a result, a natural remedy to tackle these risks has emerged in the form of what is
known as mortality securitization which manifests itself in the form of mortality-linked securities
abbreviated in the literature as MLSs. These securities provide a tool in the hands of insurers
to transfer their mortality-sensitive exposures to a vested number of investors in the capital
market, offering them a reasonable risk premium in return. Mortality-linked securities differ
from their longevity counterparts in the sense that while the former have their cash flows linked
to a mortality index, the latter are based upon survivor index. For a more detailed review
of the two type of bonds, one can refer to Melnick and Everitt (2008). In fact mortality-
linked securities are also known as Extreme Mortality Bonds or EMBs or Catastrophe (CAT)
Mortality Bonds or CATM bonds since they are triggered by a catastrophic evolution of death
rates of one or more populations. These bonds are extremely lucrative to the investors because
of their potential of providing diversification to the portfolio. The generous return on these
bonds generally does not bear any correlation with the return on other investments, such as
fixed income or equities. From the point of view of the reinsurer these instruments act as
‘Alternative Risk Transfer’ (ART) mechanisms.

The pioneering MLS was the Swiss Re mortality bond (Vita I) issued in 2003 which is the
prime focus of this chapter. This was followed up by the EIB/BNP longevity bond issued in
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2004 (Blake et al., 2006; Lane, 2011). For the former, the principal of the bond would have been
reduced if there had been a catastrophic mortality event during the life of the bond, therefore
allowing Swiss Re to reduce some of its exposure to extreme mortality risk. On the contrary, the
latter was a 25-year longevity bond, which was intended for UK pension funds with exposures
to longevity risk. This bond took the form of an annuity bond with annual coupon payments
tied to the realized survival rates for some English and Welsh males. However, it did not get the
same reception as the Swiss Re bond. Swiss Re followed up the success of VITA I by launching
five more series of VITA bonds with the latest one being VITA VI which will cover extreme
mortality events in Australia, Canada and the UK over a 5 year term from January 2016.
Apart from this Swiss Re also experimented with a multi-peril bond called “Mythen Re” which
synthesized catastrophe and mortality risks, obtaining 200 million US dollars in protection for
North Atlantic hurricane and UK extreme mortality risk. Many other reinsurance giants such as
Scottish Re and Munich Re have also issued a score of other mortality bonds. We refer readers
to Blake et al. (2008), Coughlan (2009), Zhou and Li (2013) and Chen et al. (2014) for further
details. In fact it is interesting to note that Swiss Re has also launched an innovative ‘Longevity
Trend Bond’ called the Swiss Re Kortis bond in December 2010. Interested readers can refer
to Chen et al. (2014) and Hunt and Blake (2015). A more up to date list of developments
connected to mortality and longevity securities and markets can be found in Tan et al. (2015)
and Liu and Li (2015a). As an aftereffect of these innovative securities, a number of valuation
approaches on MLSs have germinated. Huang et al. (2014) classify the approaches into the
following four heads:

� Risk-adjusted process or no-arbitrage pricing: Under this approach, the first step is to
estimate the distribution of future mortality rates in the real-world probability measure.
Then the real-world distribution is transformed to its risk-neutral counterpart, on the
basis of the actual prices of mortality-linked securities observed in the market. Finally,
the price of a mortality-linked security can be calculated by discounting, at the risk-free
interest rate, its expected payoff under the identified risk-neutral probability measure. An
important point underlying this approach is that it takes into account the actual prices
as given. The need of market prices makes the implementation of this approach difficult.
One way to effectively use the no arbitrage approach is to use a stochastic mortality model,
which is, at the very beginning, defined in the real-world measure and fitted to past data.
The model is then calibrated to market prices, yielding a risk-neutral mortality process
from which security prices are calculated. For instance, Cairns et al. (2006b) calibrate a
two-factor mortality model to the price of the BNP/EIB longevity bond.

� The Wang transform: It is the approach given by Wang (2000), Wang (2002) which con-
sists of employing a distortion operator that transforms the underlying distribution into a
risk-adjusted distribution and the MLS price is the expected value under the risk-adjusted
probability discounted by risk-free rate. The Wang transform was first employed for
mortality-linked securities by Lin and Cox (2005), and subsequently by other researchers
including Dowd et al. (2006) and Denuit et al. (2007). Based on the positive dependence
characteristic of the mortality in catastrophe areas, Shang et al. (2009) develop a pricing
model for catastrophe mortality bonds with comonotonicity and a jump-difusion process.
Pointing out there is no unique risk-neutral probability in this incomplete market settings,
they use the Wang transform method to price the bond. Unless a very simple mortality
model is assumed, parameters in the distortion operator are not unique if we are not
given sufficient market price data. For example, when Chen and Cox (2009) used their
extended Lee-Carter model with transitory jump effects to price a mortality bond, they
were required to estimate three parameters in the Wang transform. To solve for these
three parameters, Chen and Cox assumed that they were equal, but such an assumption
is not easy to justify. In fact Pelsser (2008) has questioned the Wang transform by stat-
ing that it is not a universal financial measure for financial and insurance pricing. For
more details one can refer to Goovaerts and Laeven (2008) and Lauschagne and Offwood
(2010).

� Instantaneous Sharpe Ratio: Milevsky et al. (2005) propose that the expected return on
the MLS equals the risk free rate plus the Sharp ratio times its standard deviation.
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� The utility-based valuation: The utility based method defines an investor’s utility function
and maximizes an agent’s expected utility subject to wealth constraints to obtain the MLS
equilibrium. For an elaborate discussion one can review Tsai and Tzeng (2013), Cox et al.
(2010), Hainaut and Devolder (2008) and Dahl and Moller (2006).

Apart from the aforesaid methods Beelders and Colorassi (2004) and Chen and Cummins (2010)
use the extreme value theory to measure mortality risk of the 2003 Swiss Re Bond. For an
interesting summary of other methods to price MLSs one can refer to Shang et al. (2011), Zhou
et al. (2013a), Tan et al. (2015) and Liu and Li (2015a).

The methods available in literature for the pricing of MLSs offer only a limited application
due to restrictions such as availability of price information or specific utility functions. The
difficulty in pricing MLSs stems from the fact that the MLS market is incomplete as the un-
derlying mortality rates are usually untradeable in financial markets. As a result, the usual
no-arbitrage pricing method can only provide a price range or a price bound, instead of a single
value.

Surprisingly, mortality linked securities, apart from their present day form seem to have
a long history. In the 17th and 18th centuries, so-called ‘tontines’, which were named after
the Neapolitan banker Lorenzo Tonti, had been offered by several governments (Weir, 1989;
McKeever, 2009). Within these schemes, investors made a one-time payment, and annual
dividends were distributed among the survivors. Hence, while still relying on the investor’s
survival, his payoffs were connected to the mortality experience among the pool of subscribers.
These issues were particularly successful in France, but due to high interest payments, they
soon became precarious for the crown’s financial situation (see Jennings and Trout, 1982).
However, this was not only the case with tontines; life annuities, which presented another large
share of the royal debt, were also offered at highly favourable conditions from the investors’
perspective. This carelessness was exploited by the Genevan entrepreneur Jacob Bouthillier
Beaumont in the scheme attributed to him (c.f. Jennings and Trout, 1982). Here, annuities
were subscribed on the lives of a group of Genevan girls for the account of Genevan investors.
Thus, their payoffs were directly linked to the survival of the Genevan “madmoiselles”, and
due to the “generous” assumptions of the French authorities, the schemes were initially highly
profitable for the Genevans, the real victim being the French taxpayer. These speculations
came to an abrupt end with the French Revolution in 1789, for which the budgetary crises
caused by the careless borrowing was, undoubtedly, one major reason. Until the beginning of
this century, there has not been another public issue of a mortality linked security, however,
there are indications of recent private transactions resembling the tontine scheme (see Dowd
et al., 2006). For a more detailed overview of the history of mortality contingent securities the
reader is referred to Bauer (2008) and Luis (2016).

Today, all around the world, investment banks and other financial service providers are
working on the idea of trading longevity risk, and the first mortality trading desks have been
installed solidifying that “betting on the time of death is set”.1

This chapter is concerned with finding price bounds for the Swiss Re mortality catastrophe
bond by expressing its payoff in the form of an Asian put option and using the theory of
comonotonicity. Such a methodology has been adovocated by Simon et al. (2000), Dhaene
et al. (2002b) and Albrecher et al. (2008) to find a price range for Asian options. For more
details on comonotonicity and its applications, one can refer to Kaas et al. (2000) and Dhaene
et al. (2002a).

The rest of this chapter is organized as follows: the next section describes the structure
of the Swiss Re Bond and expresses its payoff in the form of an Asian put option. Section 3
shows derivations of the lower bound for the aforesaid bond using comonotonicity. In Section
4, we use the same to derive upper bounds for the Swiss Re Bond. In section 5, we illustrate
the computation of bounds by choosing specific models for mortality index. The numerical

1The Business, 08/15/2007, “Betting on the time of death is set”, by P. Thornton.
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results for the derived theory and comparisons with Monte Carlo estimate of the bond price
are furnished in Chapter 6. Appropriate figures that highlight comparisons among the bounds
have also been furnished in Chapter 6.

3.2 Design of the Swiss Re Bond

As pointed out in the introduction, the financial capacity of the life insurance industry to
pay catastrophic death losses from natural or man-made disasters is limited. To expand its
capacity to pay catastrophic mortality losses, Swiss Re procured about 400 million in coverage
from institutional investors in lieu of its first pure mortality security. The reinsurance giant
issued a three year bond in December 2003 with maturity on January 1, 2007. To carry out
the transaction, Swiss Re set up a special purpose vehicle (SPV) called Vita Capital Ltd. This
enabled the corresponding cash flows to be kept off Swiss Re’s balance sheet. The principal is
subject to mortality risk which is defined in terms of an index qti in year ti. This mortality
index was constructed as a weighted average of mortality rates (deaths per 100,000) over age,
sex (male 65% and female 35%) and nationality (US 70%, UK 15%, France 7.5%, Italy 5% and
Switzerland 2.5%) and is given below.

qti =
∑
j

Cj
∑
k

Ak

(
Gmqmk,j,ti +Gfqfk,j,ti

)
(3.2.1)

where qmk,j,ti and qfk,j,ti are the respective mortality rates (deaths per 100,000) for males and
females in the age group k for country j, Cj is the weight attached to country j, Ak is the
weight attributed to age group k (same for males and females) and Gm and Gf are the gender
weights applied to males and females respectively.

The Swiss Re bond was a principal-at-risk bond. If the index qti (ti = 2004, 2005 or 2006
for i = 1, 2, 3 respectively) exceeds K1 of the actual 2002 level, q0, then the investors will have
a reduced principal payment. The following equation describes the principal loss percentage,
in year ti:

Li =


0 if qti ≤ K1q0

(qti−K1q0)
(K2−K1)q0

if K1q0 < qti ≤ K2q0

1 if qti > K2q0

(3.2.2)

In particular, for the case of Swiss Re Bond, K1 = 1.3 and K2 = 1.5. In lieu of having their
principal at risk, investors received quarterly coupons equal to the three-month U.S. LIBOR
plus 135 basis points. There were 12 coupons in all with a coupon value of

COj =


(
SP+LIj

4

)
.C if j = 1

4 ,
2
4 , ...,

11
4 ,(

SP+LIj
4 .C +XT

)
if j = 3,

(3.2.3)

where SP is the spread value which is 1.35%, LIj are the LIBOR rates, C = $400 million,
T = t3 and XT is a random variable representing the proportion of the principal returned to
the bondholders on the maturity date such that

XT = C

(
1−

3∑
i=1

Li

)+

, (3.2.4)

where
∑3
i=1 Li is the aggregate loss ratio at t3. However, there was no catastrophe during the

term of the bond. The discounted cash flow (DC) of payments is given by

DC (r) =

12∑
i=1

CO i
4(

1 + r
4

)i (3.2.5)

where r is the nominal annual interest rate.
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Further define

YT = −
∫ T

0

ρ (t) dt

where ρ(t) is the US LIBOR at time t. As a result, the risk-neutral value at time 0 of the
random principal returned at the termination of the bond is

P = EQ
[
e−YTXT

]
where Q is the risk-neutral measure. However, under the assumption of independence of YT
and XT , this reduces to

P = EQ
[
e−YT

]
EQ[XT ]

The fact that the independence assumption under the physical world measure P and the risk-
neutral measure Q are in general unrelated discussed extensively in Dhaene et al. (2013). Since
the market is incomplete, one chooses to price under a risk neutral measure that preserves
independence between market and mortality risks. In order to proceed, we represent EQ

[
e−YT

]
as e−rT , which implies

P = e−rTEQ[XT ] (3.2.6)

where r is the risk-free rate of interest. In subsequent writing, we drop Q from the above
expression.

3.2.1 The Principal Payoff of Swiss Re Bond as that of an Asian-type
Put Option

In fact, we can write XT given in (3.2.4) in a more compact form similar to the payoff of the
Asian put option (see Appendix A.7.1) as shown below:

XT = D

(
q0 −

3∑
i=1

5 (qti − 1.3q0)
+

)+

(3.2.7)

with

D =
C

q0
(3.2.8)

and the strike price equal to q0. For the sake of simplicity, we use qi in place of qti and define

Si = 5 (qi − 1.3q0)
+

(3.2.9)

and

S =

3∑
i=1

Si (3.2.10)

Using (3.2.9)-(3.2.10) in (3.2.7) and plugging the result into (3.2.6), we have:

P = De−rTE
[
(q0 − S)

+
]

(3.2.11)

It is naturally assumed that the inequalities S ≥ q0 almost surely (a.s.) and S ≤ q0 a.s. do not
hold, otherwise the problem has a trivial solution. This means that q0 ∈

(
F−1+
S (0) , F−1

S (1)
)
,

where as in Dhaene et al. (2002a), F−1
X is the generalized inverse of the cumulative distribution

function (cdf), i.e.,
F−1
X (p) = inf{x ∈ R|FX (x) ≥ p}, p ∈ [0, 1] (3.2.12)

and F−1+
X is a more sophisticated inverse defined as

F−1+
X (p) = sup{x ∈ R|FX (x) ≤ p}, p ∈ [0, 1] . (3.2.13)

Our interest lies in the calculation of reasonable bounds for P . We invoke Jensen’s inequality
for computing the lower bounds and present our findings in the subsequent sections. We exploit
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this inequality twice and note that in order to maintain uniformity of having a convex function
at each step, it is beneficial to consider the call counterpart of the payoff of Swiss Re Bond
rather than (3.2.11). We nomenclate this payoff as P1, i.e., we have

P1 = De−rTE
[
(S − q0)

+
]

(3.2.14)

We then exploit the put-call parity for Asian options to achieve the bounds for the payoff in
question.

3.2.2 Put-Call Parity for the Swiss Re Bond

We now derive the put-call parity relationship for the Swiss Re Bond. For any real number a,
we have:

(a)
+ − (−a)

+
= a (3.2.15)

So we obtain

e−rT

(
3∑
i=1

Si − q0

)+

− e−rT
(
q0 −

3∑
i=1

Si

)+

= e−rT

(
3∑
i=1

Si − q0

)
.

On taking expectations on both sides, we obtain

e−rTE

( 3∑
i=1

Si − q0

)+
− e−rTE

(q0 −
3∑
i=1

Si

)+
 = e−rTE

[
3∑
i=1

Si − q0

]
.

Finally, on multiplying by D and expanding the definition of Si, we have

P1 − P = De−rTE

[
3∑
i=1

5 (qi − 1.3q0)
+ − q0

]

⇒ P1 − P = De−rT

[
5

3∑
i=1

ertiC (1.3q0, ti)− q0

]
, (3.2.16)

where C (K, ti) denotes the price of a European call on the mortality index with strike K,
maturity ti and current mortality value q0. This option would be in-the-money if the mortality
index is more than 1.3q0 which is the trigger level of Swiss Re bond. Clearly, such instruments
are not available for trading in the market at present. However, concrete steps towards a more
liquid and transparent life market are being undertaken and perhaps such securities will soon
be introduced (c.f. Blake et al., 2013, 2008). The pay-off structures, i.e. the design of the issued
securities and the mortality contingent payments should be developed to appear attractive to
investors and the re-insurer. Although, the Swiss Re bond was fully subscribed and press
reports highlight that investors were quite satisfied with it (e.g. Euroweek, 19 December 2003),
the market for mortality linked securities still needs innovations such as vanilla options on
mortality index to provide flexible hedging solutions. Investors of the Swiss Re bond included a
large number of pension funds as they could view this bond as a powerful hedging instrument.
The underlying mortality risk associated with the bond is correlated with the mortality risk of
the active members of a pension plan. If a catastrophe occurs, the reduction in the principal
would be offset by reduction in pension liability of these pension funds. Moreover, the bond
offers a considerably higher return than similarly rated floating rate securities (c.f. Blake et al.,
2006). In a manner similar to Bauer (2008), we feel the success of the life market hinges upon
flexibility. As a result, such option-type structures enable re-insurer to keep most of the capital
while at the same time being hedged against catastrophic mortality situation. Cox et al. (2006)
present an interesting note on the trigger level of 1.3q0 in context of 2004 tsunami in Asia and
Africa. A mortality option of the above type would become extremely useful in such a case.
Tsai and Tzeng (2013) and Cheng et al. (2014) decompose the terminal payoff of the Swiss Re
bond into two call options.
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Equation (3.2.16) gives the required put-call parity relation between the Swiss Re mortality
bound and its call counterpart. Define

G = De−rT

[
5

3∑
i=1

ertiC (1.3q0, ti)− q0

]
. (3.2.17)

Clearly, if we bound P1 by bounds l1 and u1, then the corresponding bounds for the Swiss Re
mortality bond are as follows

(l1 −G)
+ ≤ P ≤ (u1 −G)

+
. (3.2.18)

3.3 Lower Bounds for the Swiss Re Bond

We now proceed to work out appropriate lower bounds for the terminal value of the principal
paid in the Swiss Re Bond. For this, we first calculate bounds for the following Asian-type call
option

P1 = De−rTE

( n∑
i=1

Si − q0

)+
 (3.3.1)

with T = tn and n = 3. The interval [0, T ] consists of the monitoring times t1, t2, ..., tn−1. The
undercurrent of the theory presented in this section is the paper by Albrecher et al. (2008).
In an attempt to estimate the value of the Asian call option, the authors derive four lower

bounds namely trivial, LB1, LB
(1)
t and LB

(2)
t , which are sharper in increasing order in sense

of their proximity to the actual value of the Asian call. The underlying assumption they make
in deriving these bounds is that European call prices with arbitrary strikes and maturities are
available in the market. Although, as our previous discussion indicates, such securities with
the underlying as the mortality index have not appeared on the horizon as yet, but would be
indispensable for the development of a complete life market. The first step towards designing
of such securities is the need for a benchmark longevity index. The formation of Life and
Longevity Markets Association (LLMA) in 2010 was an important milestone in this direction.
The LLMA promotes the development of a liquid trading market in longevity and mortality-
related risk, of the type that exists for Insurance Linked Securities (ILS) and other large trend
risks like interest rates and inflation. There have been a few mortality indices created by various
parties but we still lack a benchmark. Mènioux (2008) throws light on various longevity indices.
Invoking Jensen’s inequality, in (3.3.1), we have

E

( n∑
i=1

Si − q0

)+
 ≥ E

(5

n∑
i=1

(E (qi|Λ)− 1.3q0)
+ − q0

)+
 . (3.3.2)

The general derivation concerning lower bounds for stop loss premium of a sum of random
variables based on Jensen’s inequality can be found in Simon et al. (2000) and for its application
to arithmetic Asian options, one can refer to Dhaene et al. (2002b). We now define

Zi = 5 (E (qi|Λ)− 1.3q0)
+

; i = 1, 2, ..., n. (3.3.3)

As a result in (3.3.2), we have obtained

E

( n∑
i=1

Si − q0

)+
 ≥ E

( n∑
i=1

Zi − q0

)+
 . (3.3.4)

On investigating the relationship between E

[
n∑
i=1

Si

]
and E

[
n∑
i=1

Zi

]
, we find that
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E

[
n∑
i=1

Si

]
≥ E

[
n∑
i=1

Zi

]
. (3.3.5)

On lines of (3.2.10), define

Z =

n∑
i=1

Zi (3.3.6)

so that we can rewrite (3.3.4) as

E
[
(S − q0)

+
]
≥ E

[
(Z − q0)

+
]
. (3.3.7)

In fact, the two sides of the inequality in (3.3.7) are essentially the stop-loss premiums of S and
Z. Thus, we have obtained

S ≥sl Z (3.3.8)

or

S ≥sl

n∑
i=1

(E (qi|Λ)− 1.3q0)
+
.

Now, suitably tailoring the inequality (3.3.7) to suit our need of the Asian-type call option by
multiplying by the discount factor at time T , we obtain

P1 ≥ De−rTE

( n∑
i=1

5 (E (qi|Λ)− 1.3q0)
+ − q0

)+
 . (3.3.9)

To exploit the theory of comonotonicity see for example in Dhaene et al. (2002a), we now have
to show that the lower bound for S, can be formulated as a sum of stop-loss premiums. This
task becomes trivial if we can choose the conditioning variable Λ in such a way that E (qi|Λ)
is either increasing or decreasing for every i, so that the vector: ql = (E (q1|Λ) , . . . ,E (qn|Λ))
is comonotonic. This automatically implies that the vector: Zl = (Z1, . . . , Zn) is comono-
tonic. From this point onwards, we assume that q0 ∈

(
F−1+
Z (0) , F−1

Z (1)
)

which is not at all
a restriction for all practical purposes as pointed out in section 3.2.1. As a result on using
comonotonicity (c.f. Corollary 16, Chapter 2), we have

E
[
(S − q0)

+
]
≥

n∑
i=1

E
[(
Zi − F−1

Zi
(FZ (q0))

)+]− (q0 − F−1
Z (FZ (q0))

)
(1− FZ (q0)) .

(3.3.10)

In case if the marginal cdfs FZi are strictly increasing, we have the following compact expression

E
[
(S − q0)

+
]
≥

n∑
i=1

E
[(
Zi − F−1

Zi
(FZ (q0))

)+]
, q0 ∈

(
F−1+
Z (0) , F−1

Z (1)
)
.(3.3.11)

Note from (3.3.3) and (3.3.6) that the Z ′is and subsequently Z are non-negative and this auto-
matically implies q0 ≥ 0. Further, by the definition of cdf, we have

FZ (q0) = P [Z ≤ q0] = P

 n∑
j=1

Zj ≤ q0

 = P

 n∑
j=1

5 (E (qj |Λ)− 1.3q0)
+ ≤ q0

 . (3.3.12)

Thus we have been able to obtain a stop-loss lower bound for S =
∑n
i=1 Si by conditioning on

an arbitrary random variable Λ, i.e.,
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P1 ≥ De−rT
n∑
i=1

E

[(
5 (E (qi|Λ)− 1.3q0)

+ − F−1
Zi

(FZ (q0))
)+
]
−K1, (3.3.13)

where
K1 = De−rT

(
q0 − F−1

Z (FZ (q0))
)

(1− FZ (q0)) . (3.3.14)

3.3.1 The Trivial Lower Bound

In case, if the random variable Λ is independent of the mortality evolution {qt}t≥0, the bound
in (3.3.9) simply reduces to:

P1 ≥ De−rTE

( n∑
i=1

5 (E (qi)− 1.3q0)
+ − q0

)+
 (3.3.15)

or even more precisely as the outer expectation is redundant

P1 ≥ De−rT
(

n∑
i=1

5 (E (qi)− 1.3q0)
+ − q0

)+

. (3.3.16)

Under the assumption of the existence of an Equivalent Martingale Measure (EMM), Q, the
discounted mortality process is a martingale, so that

E [qt] = q0e
rt. (3.3.17)

If we substitute this in equation (3.3.16), we obtain a very rough lower bound for the Asian-type
call option

P1 ≥ Ce−rT
(

n∑
i=1

5
(
erti − 1.3

)+ − 1

)+

=: lb0. (3.3.18)

In the light of put-call parity derived in section 3.2.2, the trivial lower bound for the Swiss Re
mortality bond is given as

P ≥ ( lb0 −G)
+

=: SWLB0. (3.3.19)

where G is defined in (3.2.17).

3.3.2 The Lower Bound SWLB1

To improve upon the trivial lower bound, we choose Λ = q1 in (3.3.13). Using the martingale
argument for the discounted mortality process

E [qi|q1] = E
[
ertie−rtiqi|q1

]
= er(ti−t1)q1

and so from (3.3.3)

Zi = 5
(
er(ti−t1)q1 − 1.3q0

)+

; i = 1, 2, ..., n. (3.3.20)

Then the random vector ql =
(
q1, e

r(t2−t1)q1, . . . , e
r(tn−t1)q1

)
is comonotone. Equation (3.3.13)

then reduces to

P1 ≥ De−rT
n∑
i=1

E

[(
5
(
er(ti−t1)q1 − 1.3q0

)+

− F−1
Zi

(FZ (q0))

)+
]
−K1, (3.3.21)

where K1 is given in (3.3.14) and by the definition of cdf, we have

FZ (q0) = P [Z ≤ q0] = P

 n∑
j=1

5
(
er(tj−t1)q1 − 1.3q0

)+

≤ q0


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⇒ FZ (q0) = P

 n∑
j=1

5

(
er(tj−t1) q1

q0
− 1.3

)+

≤ 1

 .
Now, as the left hand side of the inequality within the probability is an increasing function in
q1/q0, we have that Z ≤ q0 if and only if q1 ≤ xq0, where we substitute x for q1/q0 in the above
probability and obtain its value by solving

n∑
i=1

(
er(ti−t1)x− 1.3

)+

= 0.2. (3.3.22)

As a result, we have

FZ (q0) = Fq1 (xq0) = FZi

(
5q0

(
er(ti−t1)x− 1.3

)+
)

= FZi (ki) ∀i (3.3.23)

where

ki = 5q0

(
er(ti−t1)x− 1.3

)+

. (3.3.24)

Plugging (3.3.23) into (3.3.21), and noting that Z ′is are non-negative, we have

P1 ≥ 5De−rT
n∑
i=1

E

[((
er(ti−t1)q1 − 1.3q0

)+

− 1

5
F−1
Zi

(FZi (ki))

)+
]
−K1

= 5De−rT
n∑
i=1

er(ti−t1)E

((q1 −
1.3q0

er(ti−t1)

)+

− 1

5er(ti−t1)
F−1
Zi

(FZi (ki))

)+
−K1

= 5De−rT
n∑
i=1

er(ti−t1)E

[(
q1 −

q0

er(ti−t1)

(
1.3 +

1

5q0
F−1
Zi

(FZi (ki))

))+
]
−K1

= 5D

n∑
i=1

e−r(T−ti)C

(
q0

er(ti−t1)

(
1.3 +

1

5q0
F−1
Zi

(
FZi

(
5q0

(
er(ti−t1)x− 1.3

)+
)))

, t1

)
−K1

=: lb1. (3.3.25)

where q0 ≥ 0 and C (K, t1) denotes the price of a European call on the mortality index with
strike K, maturity t1 and current mortality index q0. The function lb1 provides a lower bound
for the Asian-type call option in terms of European calls at each of the times such that these

contracts have maturity t1 and strike q0

er(ti−t1)

(
1.3 + 1

5q0
F−1
Zi

(
FZi

(
5q0

(
er(ti−t1)x− 1.3

)+)))
at the ith time point. This bound holds for any arbitrage-free market model and is a significant
improvement over the trivial bound given in (3.3.18). Invoking the put-call parity derived in
section 3.2.2, the corresponding lower bound for the Swiss Re mortality bond is given as

P ≥ ( lb1 −G)
+

=: SWLB1, (3.3.26)

where G is defined in (3.2.17). In case if the marginal cdfs FZi are strictly increasing, we have

lb1 = 5D

n∑
i=1

e−r(T−ti)C

(
q0 max

(
x,

1.3

er(ti−t1)

)
, t1

)
. (3.3.27)

3.3.3 A Model-independent Lower Bound

As the next step, we suggest that the bound SWLB1
2 can be improved by imposing the

following additional assumption3

2An additional lower bound under certain assumptions was also computed and is furnished in Appendix B.1
3Albrecher et al. (2008) have proved in proposition 1 of their publication that this assumption holds for

exponential Lévy models. We present a detailed proof in Appendix A.1 in regards to our set up.
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n∑
i=1

qi ≥sl

j−1∑
i=1

q
(1−ti/t)
0 q

ti/t
t +

n∑
i=j

er(ti−t)qt

 (3.3.28)

for 0 ≤ t ≤ T and j = min {i : ti ≥ t}. Clearly,

n∑
i=1

5 (E (qi|qt)− 1.3q0)
+

=

j−1∑
i=1

5 (E (qi|qt)− 1.3q0)
+

+

n∑
i=j

5 (E (qi|qt)− 1.3q0)
+

≥
j−1∑
i=1

5q0

((
qt
q0

)ti/t
− 1.3

)+

+

n∑
i=j

5q0

(
qt
q0
er(ti−t) − 1.3

)+

=: Sl2 . (3.3.29)

Evidently, Sl2 is the same as Z in (3.3.6) with Λ being replaced by qt and thus from (3.3.8),
we have

S ≥sl Sl2 (3.3.30)

As before, let j = min {i : ti ≥ t}. Consider the components of Sl2 in equation (3.3.29) and
define Y = (Y1, . . . , Yn), where

Yi =

5q0

((
qt
q0

)ti/t
− 1.3

)+

i < j

5q0

((
qt
q0

)
er(ti−t) − 1.3

)+

i ≥ j

i = 1, 2, ..., n. Clearly, Y is comonotonic since its components are strictly increasing functions
of a single variable qt. So, the stop-loss transform of Sl2 can be written as the sum of stop-loss
transform of its components (see for example in Dhaene et al., 2002a), i.e.,

E
[(
Sl2 − q0

)+]
=

n∑
i=1

E
[(
Yi − F−1

Yi
(FSl2 (q0))

)+]− (q0 − F−1
Sl2

(FSl2 (q0))
)

(1− FSl2 (q0))

(3.3.31)
where as before it is natural that q0 ∈

(
F−1+
Sl2

(0) , F−1
Sl2

(1)
)

and FSl2 (q0) is the distribution

function of Sl2 evaluated at q0 such that for an arbitrary t, we have:

FSl2 (q0) = P
[
Sl2 ≤ q0

]
= P

j−1∑
i=1

5q0

((
qt
q0

)ti/t
− 1.3

)+

+

n∑
i=j

5q0

((
qt
q0

)
er(ti−t) − 1.3

)+

≤ q0


= P

j−1∑
i=1

((
qt
q0

)ti/t
− 1.3

)+

+

n∑
i=j

((
qt
q0

)
er(ti−t) − 1.3

)+

≤ 0.2

 .
Clearly, Sl2 ≤ q0 if and only if qt ≤ xq0, where we substitute x for qt/q0 in the above expression
and obtain its value by solving:

j−1∑
i=1

(
xti/t − 1.3

)+

+

n∑
i=j

(
xer(ti−t) − 1.3

)+

= 0.2. (3.3.32)

As a result, we have:

FSl2 (q0) = Fqt (xq0) =

FYi
(

5q0

(
xti/t − 1.3

)+)
= FYi (li) i < j

FYi

(
5q0

(
xer(ti−t) − 1.3

)+)
= FYi (mi) i ≥ j

(3.3.33)
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where

li = 5q0

(
xti/t − 1.3

)+

; i < j (3.3.34)

and

mi = 5q0

(
xer(ti−t) − 1.3

)+

; i > j. (3.3.35)

Using this result in equation (3.3.31) and recalling the definition of the Asian-type call option
given in (3.3.1) along with the stop-loss order relationship between S and Sl2 as given by
equation (3.3.30) and noting that Y ′i s are non-negative, we obtain,

P1 ≥ De−rT

(
n∑
i=1

E
[(
Yi − F−1

Yi
(FSl2 (q0))

)+])−K2

= Ce−rT

(
j−1∑
i=1

E

5

((
qt
q0

)ti/t
− 1.3

)+

− 1

q0
F−1
Yi

(FYi (li))

+
+

n∑
i=j

E

(5

((
qt
q0

)
er(ti−t) − 1.3

)+

− 1

q0
F−1
Yi

(FYi (mi))

)+
)−K2

= 5Ce−rT

(
j−1∑
i=1

1

q
ti/t
0

E

[(
q
ti/t
t − qti/t0

(
1.3 +

1

5q0
F−1
Yi

(FYi (li))

))+
]

+

n∑
i=j

er(ti−t)

q0
E

[(
qt −

q0

er(ti−t)

(
1.3 +

1

5q0
F−1
Yi

(FYi (mi))

))+
])
−K2

= 5De−rT

(
j−1∑
i=1

q
1−ti/t
0 E

[(
q
ti/t
t − qti/t0 .

(
1.3 +

1

5q0
F−1
Yi

(FYi (li))

))+
]

+

n∑
i=j

ertiC

(
q0

er(ti−t)

(
1.3 +

1

5q0
F−1
Yi

(
FYi

(
5q0

(
xer(ti−t) − 1.3

)+
)))

, t

))
−K2

=: lb
(2)
t (3.3.36)

where li is defined in (3.3.34) and

K2 = De−rT
(
q0 − F−1

Sl2
(FSl2 (q0))

)
(1− FSl2 (q0)) (3.3.37)

In fact, lb
(2)
t is a lower bound for all t and so it can be maximized with respect to t to yield the

optimal lower bound as given below:

P1 ≥ max
0≤t≤T

lb
(2)
t . (3.3.38)

On choosing t = t1 implies j = 1 and so equation (3.3.32) reduces to (3.3.22) and we obtain

lb
(2)
1 = lb1. (3.3.39)

As a result we have
max

0≤t≤T
lb

(2)
t ≥ lb1.

Clearly, once again, as in the previous sections, we have

P ≥
(

lb
(2)
t −G

)+

=: SWLB
(2)
t , (3.3.40)

where G is defined in (3.2.17). In case if the marginal cdfs FYi are strictly increasing, we have
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lb
(2)
t = 5De−rT

(
j−1∑
i=1

q
1−ti/t
0 E

[(
q
ti/t
t − qti/t0 .max

(
xti/t, 1.3

))+
]

+

n∑
i=j

ertiC

(
q0.max

(
x,

1.3

er(ti−t)

)
, t

))
. (3.3.41)

We now move on to the derivation of an upper bound for the price of Swiss Re bond in the
next section.

3.4 Upper Bounds for the Swiss Re Bond

We derive a couple of upper bounds for the Swiss Re bond.

3.4.1 A First Upper Bound

This section will focus on finding an upper bound for the bond in question by using comono-
tonicity theory in a manner similar to Kaas et al. (2000), Dhaene et al. (2000) and Chen et al.
(2008)4. Define the comonotonic counterpart of q = (q1, ..., qn) as qu =

(
F−1
S1

(U) , ..., F−1
Sn

(U)
)

where U ∼ U (0, 1). Further define

Sc =

n∑
i=1

F−1
Si

(U) =

n∑
i=1

Sci . (3.4.1)

Clearly,
S ≤cx Sc (3.4.2)

where cx denotes convex ordering (see for example in Dhaene et al. (2002a)). In other words,

E

( n∑
i=1

Si − q0

)+
 ≤ E

( n∑
i=1

Sci − q0

)+
 (3.4.3)

and we have

E

( n∑
i=1

Sci − q0

)+
 =

n∑
i=1

E
[(
Si − F−1

Si
(FSc (q0))

)+]− (q0 − F−1
Sc (FSc (q0))

)
(1− FSc (q0)) ,

(3.4.4)
where it is understood that q0 ∈

(
F−1+
Sc (0) , F−1

Sc (1)
)
. As a result, an upper bound for the call

counterpart of the Swiss Re bond is given as

P1 ≤ De−rT
n∑
i=1

E
[(
Si − F−1

Si
(FSc (q0))

)+]−K3

= 5De−rT
n∑
i=1

E

(qi −(1.3q0 +
F−1
Si

(FSc (q0))

5

))+
−K3

= 5De−rT
n∑
i=1

ertiC

(
1.3q0 +

F−1
Si

(FSc (q0))

5
, ti

)
−K3, (3.4.5)

where
K3 = De−rT

(
q0 − F−1

Sc (FSc (q0))
)

(1− FSc (q0)) . (3.4.6)

4Hobson et al. (2005) use the method of Lagrange multipliers to find an upper bound for basket options. We
furnish an upper bound based on this approach in the Appendix B.3 and we essentially obtain the same result.
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As a result we can write the upper bound given above as

P1 ≤ 5De−rT
n∑
i=1

ertiC

(
1.3q0 +

F−1
Si

(x)

5
, ti

)
−K3, (3.4.7)

where x ∈ (0, 1) is the solution of the equation

n∑
i=1

F−1
Si

(x) = q0. (3.4.8)

We now seek to express the inverse distribution function of Si in terms of that of qi. Let

yi = F−1
Si

(x) ; yi ≥ 0 (3.4.9)

⇒ x = FSi (yi)

= P
[
5 (qi − 1.3q0)

+ ≤ yi
]

= 1− P
[
5 (qi − 1.3q0)

+
> yi

]
= 1− P

[
qi > 1.3q0 +

yi
5

]
= Fqi

(
1.3q0 +

yi
5

)
. (3.4.10)

⇒ yi = 5
(
F−1
qi (x)− 1.3q0

)
. (3.4.11)

From equations (3.4.7), (3.4.9) and (3.4.11), we conclude that the upper bound is given as

P1 ≤ 5De−rT
n∑
i=1

ertiC
(
F−1
qi (x) , ti

)
−K3 =: ub1. (3.4.12)

where using equations (3.4.8) and (3.4.11), we see that x solves the following equation

n∑
i=1

F−1
qi (x) =

q0

5
(1 + 6.5n). (3.4.13)

As in the case of lower bounds, invoking the put-call parity of section 3.2.2, we have for the
Swiss Re bond

P ≤ (ub1 −G)
+

=: SWUB1. (3.4.14)

where G is defined in (3.2.17). In case if the marginal cdfs FSi are strictly increasing, we have

ub1 = 5De−rT
n∑
i=1

ertiC
(
F−1
qi (x) , ti

)
(3.4.15)

where x solves the equation (3.4.13).

3.4.2 An Improved Upper Bound by conditioning

We now seek to obtain a sharper upper bound for the Swiss Re bond. This is possible if
we assume that some additional information is available concerning the stochastic nature of
(q1, q2, ..., qn). That is, if we can find a random variable Λ, with a known distribution, such
that the individual conditional distributions of qi given the event Λ = λ are known for all i and
all possible values of λ. Such an approach can be found in Kaas et al. (2000), Dhaene et al.
(2002a) and Dhaene et al. (2002b).
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Define

Su =

n∑
i=1

F−1
Si|Λ (U) =

n∑
i=1

Sui , (3.4.16)

where U ∼ U (0, 1). Then we have

S ≤cx Su ≤cx Sc, (3.4.17)

Now let qu = (Su1 , ..., S
u
n). Since

(
F−1
S1|Λ=λ, ..., F

−1
Sn|Λ=λ

)
is comonotonic, we have,

F−1
Su|Λ=λ (p) =

n∑
i=1

F−1
Si|Λ=λ (p) , p ∈ (0, 1) . (3.4.18)

It follows that, in this case
n∑
i=1

F−1
Si|Λ=λ

(
FSu|Λ=λ (q0)

)
= q0. (3.4.19)

and so we have

f (λ) = E

( n∑
i=1

Sui − q0

)+
∣∣∣∣∣∣Λ = λ


=

n∑
i=1

E

[(
Si − F−1

Si|Λ=λ

(
FSu|Λ=λ (q0)

))+
∣∣∣∣Λ = λ

]
−
(
q0 − F−1

Su|Λ=λ

(
FSu|Λ=λ (q0)

)) (
1− FSu|Λ=λ (q0)

)
, (3.4.20)

where it is clear that q0 ∈
(
F−1+
Su|Λ=λ (0) , F−1

Su|Λ=λ (1)
)

. By applying the tower property and

using the convex order relationship given by (3.4.17), we obtain an upper bound for the call
counterpart of the Swiss Re bond, i.e.,

P1 ≤ De−rTE
[
(Su − q0)

+
]

= De−rTE [f (λ)]

= De−rT
n∑
i=1

∫ ∞
−∞

E

[(
Si − F−1

Si|Λ=λ

(
FSu|Λ=λ (q0)

))+
∣∣∣∣Λ = λ

]
dFΛ (λ)−K4

= 5De−rT
n∑
i=1

∫ ∞
−∞

E

(qi −(1.3q0 +
F−1
Si|Λ=λ

(
FSu|Λ=λ (q0)

)
5

))+
∣∣∣∣∣∣Λ = λ

 dFΛ (λ)−K4,

where
K4 =

(
q0 − F−1

Su|Λ=λ

(
FSu|Λ=λ (q0)

)) (
1− FSu|Λ=λ (q0)

)
. (3.4.21)

Given the event Λ = λ, let x be the solution to the following equation

n∑
i=1

F−1
Si|Λ=λ (x) = q0. (3.4.22)

Further, we see from equation (3.4.19), that x = FSu|Λ=λ (q0). It therefore follows, as a result
of equation 93 of Dhaene et al. (2002a) that an upper bound for the call counterpart of the
Swiss Re bond is given as

P1 ≤ 5De−rT
n∑
i=1

∫ ∞
−∞

E

(qi −(1.3q0 +
F−1
Si|Λ=λ (x)

5

))+
∣∣∣∣∣∣Λ = λ

 dFΛ (λ)−K4, (3.4.23)
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where x is obtained by solving (3.4.22). Moreover, it is straightforward to write

F−1
Si|Λ=λ (x) = 5

(
F−1
qi|Λ=λ (x)− 1.3q0

)
. (3.4.24)

As a result, the upper bound can be rewritten as

P1 ≤ 5De−rT
n∑
i=1

∫ ∞
−∞

E

[(
qi − F−1

qi|Λ=λ (x)
)+
∣∣∣∣Λ = λ

]
dFΛ (λ)−K4 =: ub

(1)
t , (3.4.25)

where x ∈ (0, 1) can be obtained by solving the equation

n∑
i=1

F−1
qi|Λ=λ (x) =

q0

5
(1 + 6.5n) . (3.4.26)

Since this is is an upper bound for all t, it follows that we can find the optimal upper bound
by minimising equation (3.4.25) over t ∈ [0, T ]. As before, invoking the put-call parity of section
3.2.2, we have for the Swiss Re bond

P ≤
(

ub
(1)
t −G

)+

=: SWUB
(1)
t , (3.4.27)

where G is defined in (3.2.17). As remarked earlier, this bound improves upon the unconditional
bound given by (3.4.14). In case if the marginal cdfs FSi|Λ are strictly increasing, one can put
K4 = 0 in (3.4.25) to obtain the upper bound.

3.5 Examples

We now derive lower and upper bounds by choosing specific models for the mortality index.

3.5.1 Black-Scholes Model

Let us consider the case where the mortality evolution process {qt}t≥0 follows the Black-Scholes

model (c.f. Black and Scholes, 1973, and Appendix A.4) which we write as qt = eUt , where
{Ut}t≥0 is defined as:

Ut = loge (q0) +

(
r − σ2

2

)
t+ σW ∗t , (3.5.1)

where {W ∗t }t≥0 denotes a standard Brownian motion so that W ∗t ∼ N (0, t). As a result

Ut ∼ N
(

loge q0 +

(
r − σ2

2

)
t, σ2t

)
. (3.5.2)

We now derive lower and upper bounds for this model on the lines of SWLB
(2)
t and SWUB

(1)
t

respectively.

The Lower Bound SWLB
(BS)
t

We know that if (X, Y ) ∼ BVN
(
µX , µY , σ

2
X , σ

2
Y , ρ

)
where BV N stands for bivariate normal

distribution, the conditional distribution of the lognormal random variable eX , given the event
eY = y is given as

FeX |eY =y (x) = Φ

 loge x−
(
µX + ρσXσY (loge y − µY )

)
σX
√

1− ρ2

 . (3.5.3)

where Φ denotes the c.d.f. of standard normal distribution. Given the time points ti, t for
each i, let ρ be the correlation between Uti and Ut. Then, from (3.5.2), it is evident that:
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(Uti , Ut) ∼ BVN
(
µUti , µUt , σ

2
Uti
, σ2
Ut
, ρ
)

, where the same equation specifies µUti , µUt , σ
2
Uti

and

σ2
Ut

. Also as qt = eUt , we have from equation (3.5.3) that the distribution function of qi
conditional on the event qt = st is given as

Fqi|qt=st (x) = Φ (a (x))

where a (x) is given by

a (x) =

loge x−

(
log

(
q0

(
st
q0

)ρ√ ti
t

)
+
(
r − σ2

2

) (
ti − ρ

√
tit
))

σ
√
ti (1− ρ2)

. (3.5.4)

As the differentiation of c.d.f. yields the p.d.f., therefore the conditional density function of qi
given qt = st satisfies the following equation:

fqi|qt=st (x) =
1

xσ
√
ti (1− ρ2)

φ (a (x)) , (3.5.5)

where φ denotes the p.d.f. of standard normal distribution.

Under the assumption that the mortality evolution process {qt}t≥0 is defined as qt = eUt

where Ut is given in equation (3.5.1), the conditional expectation of qi given qt is given by the
expression

E (qi|qt) =

q0

(
qt
q0

) ti
t

e
σ2ti
2t (t−ti) ti < t,

qte
r(ti−t) ti ≥ t.

(3.5.6)

We utilize this expression to obtain a lower bound for Asian call option under the Black-
Scholes setting. Define: Sl3 =

∑n
i=1 Yi, where exploiting (3.5.6), under the Black-Scholes case,

Yi, i = 1, 2, ..., n are given by

Yi =

5q0

((
qt
q0

)ti/t
e
σ2ti
2t (t−ti) − 1.3

)+

i < j

5q0

((
qt
q0

)
er(ti−t) − 1.3

)+

i ≥ j

Evidently, Y = (Y1, . . . , Yn) is comonotonic and so we have

E
[(
Sl3 − q0

)+]
=

n∑
i=1

E
[(
Yi − F−1

Yi
(FSl3 (q0))

)+]
, (3.5.7)

where FSl3 (q0) is the distribution function of Sl3 evaluated at q0. For an arbitrary t, we have

FSl3 (q0) = P
[
Sl3 ≤ q0

]
= P

j−1∑
i=1

5q0

((
qt
q0

)ti/t
e
σ2ti
2t (t−ti) − 1.3

)+

+

n∑
i=j

5q0

((
qt
q0

)
er(ti−t) − 1.3

)+

≤ q0


= P

j−1∑
i=1

((
qt
q0

)ti/t
e
σ2ti
2t (t−ti) − 1.3

)+

+

n∑
i=j

((
qt
q0

)
er(ti−t) − 1.3

)+

≤ 0.2

 .
(3.5.8)

As in the previous section, we substitute x for qt/q0 and solve for x, using the equation:

j−1∑
i=1

(
xti/te

σ2ti
2t (t−ti) − 1.3

)+

+

n∑
i=j

(
xer(ti−t) − 1.3

)+

= 0.2. (3.5.9)
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This is indeed straight forward, noting that the left hand side of this equation is strictly in-
creasing in x. This yields:

FSl3 (q0) = Fqt (xq0) =


FYi

(
5q0

(
xti/te

σ2ti
2t (t−ti) − 1.3

)+
)

i < j,

FYi

(
5q0

(
xer(ti−t) − 1.3

)+)
i ≥ j.

Substituting this in equation (3.5.7), recalling the stop-loss order relationship between S and
Sl2 as given by equation (3.3.30), applying it for Sl3 , splitting the terms and multiplying by
the averaged discount factor as done in the last section and noting that the marginal cdfs FYi
are strictly increasing, we obtain

P1 ≥ De−rT

(
n∑
i=1

E
[(
Yi − F−1

Yi
(FSl3 (q0))

)+])

= Ce−rT

(
j−1∑
i=1

E

5

((
qt
q0

)ti/t
e
σ2ti
2t (t−ti) − 1.3

)+

− 5

(
xti/te

σ2ti
2t (t−ti) − 1.3

)+
+

+

n∑
i=j

E

(5

((
qt
q0

)
er(ti−t) − 1.3

)+

− 5
(
xer(ti−t) − 1.3

)+
)+
)

= 5Ce−rT

(
j−1∑
i=1

1

q
ti/t
0

E

(qti/tt e
σ2ti
2t (t−ti) − qti/t0

(
1.3 +

(
xti/te

σ2ti
2t (t−ti) − 1.3

)+
))+


+

n∑
i=j

er(ti−t)

q0
E

(qt − q0

(
1.3

er(ti−t)
+

(
x− 1.3

er(ti−t)

)+
))+

)

= 5De−rT

(
j−1∑
i=1

q
1−ti/t
0 E

[(
q
ti/t
t e

σ2ti
2t (t−ti) − qti/t0 max

(
xti/te

σ2ti
2t (t−ti), 1.3

))+
]

+

n∑
i=j

ertiC

(
q0 max

(
x,

1.3

er(ti−t)

)
, t

))
. (3.5.10)

We denote the term within the first summation as E1 and its value is given below.

E1 = 5q0

(
ertiΦ (d1ai)−max

(
xti/te

σ2ti
2t (t−ti), 1.3

)
Φ (d2ai)

)
, (3.5.11)

where d2ai and d1ai are given respectively as

d2ai =
− loge

(
dai
q0

)
+
(
r − σ2

2

)
t

σ
√
t

(3.5.12)

d1ai = d2ai + σ
ti√
t

(3.5.13)

and dai is given as

dai = q0

(
max

(
xti/t,

1.3

e
σ2ti
2t (t−ti)

))t/ti
. (3.5.14)

Inserting (3.5.11) in (3.5.10), we achieve the lower bound lb
(BS)
t as follows

P1 ≥ 5De−rT

(
j−1∑
i=1

q0

(
ertiΦ (d1ai)−max

(
xti/te

σ2ti
2t (t−ti), 1.3

)
Φ (d2ai)

)
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+

n∑
i=j

ertiC

(
q0 max

(
x,

1.3

er(ti−t)

)
, t

))
=: lb

(BS)
t . (3.5.15)

The bound lb
(BS)
t can undergo treatment similar to lb

(2)
t in sense of maximization with respect

to t yielding

P1 ≥ max
0≤t≤T

lb
(BS)
t . (3.5.16)

An interesting comment in the passing is that as we calculate E [qi|qt] explicitly, rather than

finding a lower bound for it, clearly lb
(BS)
t improves on lb

(2)
t in the case where {qt} follows the

Black-Scholes model. Again, as before, exploiting the put-call parity,

P ≥
(

lb
(BS)
t −G

)+

=: SWLB
(BS)
t , (3.5.17)

where G is defined in (3.2.17).

The Upper Bound SWUB
(BS)
t

In section 3.4.2, we have shown that the upper bound SWUB1 can be improved by assuming
that there exists a random variable Λ such that Cov (Xi,Λ) 6= 0 ∀i. Suppose this assumption is
true here and the mortality index {qt}t≥0 depends on an underlying standard Brownian motion
{Wt}t∈[0,T ]. Then, from equation (3.4.25) noting that the marginal cdfs Fqi|Wt=w are strictly
increasing so that K4 = 0, we see that an upper bound for the call counterpart of the Swiss Re
bond is given as

P1 ≤ 5De−rT
n∑
i=1

∫ ∞
−∞

E

[(
qi − F−1

qi|Wt=w
(x)
)+
∣∣∣∣Wt = w

]
dΦ

(
w√
t

)
, (3.5.18)

where using (3.4.26), we see that x is obtained by solving the following equation

n∑
i=1

F−1
qi|Wt=w

(x) =
q0

5
(1 + 6.5n) . (3.5.19)

An explicit formula for the conditional inverse distribution function of qi given the event Wt =
w, is provided by the following result.

Proposition 20. Under the assumptions of the Black-Scholes model, conditional on the event
Wt = w, the conditional distribution function of qi is given by

F−1
qi|Wt=w

=

q0e

(
r−σ2

2

)
ti+σ

ti
t w+σ

√
ti
t (t−ti)Φ−1(x)

i < j,

q0e

(
r−σ2

2

)
ti+σw+σ

√
(ti−t)Φ−1(x)

i ≥ j.
(3.5.20)

where j = min{i : ti ≥ t}.

Proof. Let us set X = σWti , Y = Wt and y = ew in (3.5.3). Then we obtain the following
expression for the conditional distribution function of eσWti given the event Wt = w.

F
e
σWti |Wt=w

(s) = Φ

 loge s− ρσ
√

ti
t w

σ
√
ti (1− ρ2)

 . (3.5.21)

It then follows that F
e
σWti |Wt=w

(s) = x if and only if

s = F−1

e
σWti |Wt=w

(x) = eρσ
√
ti
t w+σ

√
ti(1−ρ2)Φ−1(x)
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We can then obtain equation (3.5.20) by noting that ρ =
√

(ti ∧ t) (ti ∨ t) and the following
expression for the inverse conditional distribution function of qi given Wt = w.

F−1
qi|Wt=w

= q0e

(
r−σ2

2

)
tiF−1

e
σWti |Wt=w

This completes the proof.

It is of note that F−1
qi|Wt=w

is continuous when t = ti (that is if, for some i, we have i = j).

From equation (3.5.19), we then wish to solve the following for x.

j−1∑
i=1

e

(
r−σ2

2

)
ti+σ

ti
t w+σ

√
ti
t (t−ti)Φ−1(x)

+

n∑
i=j

e

(
r−σ2

2

)
ti+σw+σ

√
(ti−t)Φ−1(x)

= 0.2 + 1.3n. (3.5.22)

As a result, using equation(3.5.18), the improved upper bound for the call counterpart of the
Swiss Re bond in the Black-Scholes case is given by the following set of equations

P1 ≤ 5Ce−rT
∫ ∞
−∞

(
n∑
i=1

e

(
r−σ

2(ti∧t)
2

2tit

)
ti+σ

ti∧t
t w

Φ
(
c
(i)
1

)
− (0.2 + 1.3n) (1− x)

)
dΦ

(
w√
t

)
=: ub

(BS)
t , (3.5.23)

c
(i)
1 =

{
σ
√

ti
t (t− ti)− Φ−1 (x) i < j,

σ
√

(ti − t)− Φ−1 (x) i ≥ j.
(3.5.24)

where x ∈ (0, 1) solves equation (3.5.22). The optimal upper bound in this case is then given by
minimising equation (3.5.23) over t ∈ [0, T ]. As before, invoking the put-call parity of section
3.2.2, we have for the Swiss Re bond

P ≤
(
ub1

t −G
)+

=: SWUB
(BS)
t , (3.5.25)

where G is defined in (3.2.17).

3.5.2 Log Gamma Distribution

The log Gamma distribution is a particular type of transformed Gamma distribution. The
mortality index ‘qt’, t = 1, 2, 3 follows log Gamma distribution if

loge qt − µt
σt

= xt ∼ Gamma (pt, at) , (3.5.26)

where µt, σt, pt and at are parameters (> 0) and log is the natural logarithm. Useful references
for reading about transformed gamma distribution are Johnson et al. (1994), Vitiello and Poon
(2010) and Cheng et al. (2014).

The Lower Bound SWLB
(LG)
t

In this case the marginal cdfs FYi are strictly increasing. So, for the log-gamma distribution

we obtain the following compact expression for lb
(2)
t and then subtract G from it to obtain

SWLB
(LG)
t (c.f. Appendix A.6 for option pricing under log Gamma distribution).

lb
(2)
t = 5Ce−rT

(
j−1∑
i=1

q
−ti/t
0

(
e
ti
t µi(
σ”
i

)pi [1−G(d′2i, pi, σ”
i

)]
−K1i

[
1−G

(
d
′

2i, pi

)])

+

n∑
i=j

er(ti−t)

q0

(
q0e

rt [1−G (d1i, pi)]−K2i [1−G (d2i, pi)]

))
(3.5.27)
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where we have for i = 1, 2, ..., n

σ”
i = 1− σ

′

i

ti
t
, σ
′

i = 1−
(
q0e

rti−µi
)1/pi

, d
′

2i =
loge d

′

1i − µi
σi

,

d
′

1i = q0 max
(
xti/t, 1.3

)t/ti
, K1i =

(
d
′

1i

)ti/t
,

K2i = q0 max
(
x, 1.3

er(ti−t)

)
, d1i = logeK2i−µi

q0ert−µi−1
, d2i = d1i + logeK2i − µi,

G (x, pi) =

∫ x

0

1

Γ (pi)
xpi−1e−xdx,

G
(
x, pi, σ

”
i

)
=

∫ x

0

(
σ”
i

)pi
Γ (pi)

xpi−1e−(σ”
i x)dx

The numerical calculations based on the theory are presented in Chapter 6 while a summary
of the key findings and further research avenues is furnished in Chapter 7. We end this chapter
with some interesting reflections.

3.6 Final Remarks

The theory developed in this chapter presents a key breakthrough in the pricing of catastrophic
mortality bonds. For the first time in the history of pricing of these interesting financial
instruments, we have been successful in devising model-free or model-independent price bounds.
The term model-free itself deserves an explanation. In a model-based approach, exotic option
prices are determined via simulation techniques or via an appropriate approximation technique
(also see Linders et al., 2012). A second approach consists of computing lower and upper bounds
for European-type exotic options, which are only based on available market information, without
postulating any specific model for the underlying mortality index (or assets in general). Such
an approach is called model-free. All the lower bounds and the first upper bound are model-free
subject to availability of appropriate European call option prices written on the mortality index
of the catastrophic mortality bond. Although these securities are hypothetical today, they are
likely to be introduced soon in the future with the development of a more voluminous and
liquid life market. The only word of caution here is that we are assuming an infinite market
case, where the prices of the options on the mortality index of the catastrophic mortality bond
are available for all strikes. An interesting exercise for the future could be to look at the finite
market case.

Another important observation here is that the improved upper bound for Swiss Re mortality
bond developed in this chapter, though not model-free in the sense mentioned above, since it
depends on the additional information of the conditional distribution of the mortality index
given an additional random variable, has been derived in the most general set up without keeping
in mind any particular model and therefore qualifies to be ‘model-independent’ or ‘model-robust’
in this sense. Even in a model-based approach, determining the price of catastrophic mortality
bonds analytically is a cumbersome exercise, mainly because of the dependence that exists
between the mortality indices of various years comprising the term of the bond. Therefore,
the use of easily computable lower and upper bounds in terms of the option prices involved
may also in a model-based approach be very helpful as an approximation for the real price
of the CATM bond. The power of all the derived bounds also stems from the ease of their
calculation since they are much faster to compute in comparison to the competing Monte Carlo
estimates particularly in the case of complex models. In a nutshell, through this research,
we have been successful in adding powerful tools to the armoury of re-insurers like Swiss Re
who could implement this methodology for many different scenarios/models (due to its fast
implementation) so as to calculate the ‘worst case bounds’ for a large class of models and in
this way reduce model risk.
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Chapter 4

Affine Processes

The aim of this chapter is to draw a comprehensive picture of the theory of affine processes
with a view to utilize them in the pricing of actuarial products such as the guaranteed annuity
options (GAOs). The affine class is a particular class of continuous time Markov processes such
that the Fourier-Laplace transform of the marginal distributions depends on the initial state
in an exponential affine way. These processes have a high degree of analytical tractability in
the sense that the expected value of a large class of payoff functions is explicitly known. This
is the basic reason why many of the well-known models used in mathematical finance fall in
this class. Also as a particular class of jump diffusions, they allow for simultaneous modeling
of diffusive, jump and stochastic volatility phenomena in a multivariate set up.

From the mathematical perspective, the affine class contains Lévy processes, Ornstein-
Uhlenbeck processes, continuous branching processes and their multidimensional generaliza-
tions such as the matrix-valued Wishart processes. More specifically, the classical bond pricing
models of Vasicek (1977) and Cox-Ingersoll-Ross (CIR) (c.f. Cox et al., 1985), as well as the
stochastic volatility model of Heston (1993), all exhibit the affine property. The origin of discus-
sion of affine processes dates back to a paper by Kawazu and Watanabe (1971), which studies
processes arising as continuous-time limit of Galton-Watson branching processes with immigra-
tion. The resulting class of processes is called CBI (continuously branching with immigration),
and exhibits the mentioned ‘affine property’ in one dimension. The requirement of more com-
plex models encouraged the introduction of higher dimensional affine jump diffusions on the so
called canonical state space Rm+ × Rn−m and one can refer to Duffie and Kan (1996), Dai and
Singleton (2000), Duffie et al. (2000) and Duffie et al. (2003) for details.

The development of multivariate stochastic volatility models has lead to the germination
of applications of affine processes on non-canonical state spaces, in particular on the cone of
positive semi-definite matrices. The study of such matrix-valued affine processes was pioneered
by Bru (1989) and Bru (1991) who introduced the so-called Wishart processes, which are
multidimensional analogs of squared Bessel processes. A natural generalization of positive
semi-definite matrices are so-called symmetric cones, which are cones of squares in Jordan
algebras (see the work of Faraut and Koranyi, 1994). Grasselli and Tebaldi (2008) were the
first ones to introduce affine diffusion processes on these symmetric cones with the objective
to highlight the methodology of solving the corresponding Riccati differential equations. A
brilliant discussion of affine processes on the cone of positive semi-definite matrices appears in
Cuchiero et al. (2011). Interested readers can also refer to Keller-Ressel and Mayerhofer (2015)
for details regarding a unified approach on affine processes.

Affine processes have been used for modeling mortality and pricing actuarial products by
a number of authors like Dahl (2004), Biffis (2005), Denuit and Devolder (2006), Luciano and
Vigna (2005), Schrager (2006), Cairns et al. (2006a) and Luciano and Vigna (2008). To the
best of our knowledge Deelstra et al. (2016) are the only ones to utiliize Wishart processes for
modeling the force of mortality and interest rate to examine the role of the dependence between
mortality and interest rates when pricing GAOs.
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In the next chapter we present an innovative application of the theory of affine processes to
devise tight bounds for Guaranteed Annuity Options. In the next few sections we present the
background notation and set up to build up the required mathematical formulation.

4.1 Notations

For the stochastic foundations and notations we refer to standard text books such as Jacod
and Shiryaev (2003) and Revuz and Yor (1999) and the for the notations in context of affine
processes, we refer to Cuchiero (2011) and Cuchiero et al. (2011).

We write R+ for [0,∞), R++ for (0,∞) and Q+ for non-negative rational numbers. More-
over, let V denote an n-dimensional real vector space with scalar product 〈·, ·〉. Further let
S (V ) and S+ (V ) denote respectively symmetric matrices and the positive semi-definite matri-
ces over V and L (V ) correspond to the space of linear maps on V . For the case V = Rd, we
write respectively Sd and S+

d for S (V ) and S+ (V ) , and Id denotes the d× d identity matrix.
Let S++

d denote the interior of the cone of positive semi-definite symmetric d × d matrices.
Further let Md denote the set of real d× d matrices while GLd denote the set of invertible real
d×d matrices. The symbol ‖ · ‖ denotes the norm induced by the scalar product 〈·, ·〉. Also, in
line with the literature, let C2 denote the class of twice continuously differentiable functions.

On the lines of Cuchiero (2011), we define affine processes as a particular class of time-
homogeneous Markov processes with state space D ⊆ V , which is some closed, non-empty
subset of the real vector space V . D denotes the Borel σ-algebra of D. The next section
reviews the basic ingredients of the theory of time-homogeneous Markov processes and contains
all the necessary definitions.

4.2 The Basic Set Up

We shall not assume the underlying process to be conservative and so we adjoin to the state
space D a point ∆, called cemetery state, and set D∆ = D ∪ {∆} as well as D∆ = σ (D, {∆}).
We make the convention ‖ ∆ ‖:=∞ and set f (∆) = 0 for any other function f on D.

Consider the following objects on a space Ω:

(i) a stochastic process X = (Xt)t≥0 taking values in D∆ such that

if Xs (ω) = ∆, then Xt (ω) = ∆ for all t ≥ s and all ω ∈ Ω;

(ii) the filtration generated by X, that is, F0
t = σ (Xs, s ≤ t), where we set F0 =

∨
t∈R+

F0
t

(iii) a family of probability measures (Px)x∈D∆
on
(
Ω,F0

)
.

Definition 21. Markov Process A time-homogeneous Markov process

X =
(

Ω,
(
F0
t

)
t≥0

, (Xt)t≥0 , (pt)t≥0 , (Px)x∈D∆

)
with state space (D,D) (augmented by ∆) is a D∆ - valued stochastic process such that, for all
s, t ≥ 0, x ∈ D∆ and all bounded D∆-measurable functions f : D∆ → R,

Ex
[
f (Xt+s) |F0

s

]
= EXs [f (Xt)] , Px-a.s. (4.2.1)

where Ex denotes the expectation with respect to Px and (pt)t≥0 is a transition function on
(D∆,D∆). A transition function is a family of kernels pt : D∆ ×D∆ → [0, 1] such that
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(i) for all t ≥ 0 and x ∈ D∆, pt (x, ·) is a measure on D∆ with pt (x,D) ≤ 1, pt (x, {∆}) =
1− pt (x,D) and pt (∆, {∆}) = 1;

(ii) for all x ∈ D∆, p0 (x, {∆}) = δx (·), where δx (·) denotes the Dirac measure;

(iii) for all t ≥ 0 and Γ ∈ D∆, x 7→ pt (x,Γ) is D∆-measurable;

(iv) for all s, t ≥ 0, x ∈ D∆, and Γ ∈ D∆, the Chapman-Kolmogrov equation holds, that is,

pt+s (x,Γ) =

∫
D∆

ps (x, dξ) pt (ξ,Γ) .

If (Ft)t≥0 is a filtration with F0
t ⊂ Ft, t ≥ 0 then X is a time-homogeneous Markov process

relative to (Ft) if (4.2.1) holds with F0
s replaced by Fs.

Another way to look at the transition function is to induce a measurable contraction semi-
group (Pt)t≥0 defined by

Ptf (x) := Ex [f (Xt)] =

∫
D

f (ξ) pt (x, dξ) , x ∈ D∆,

for all bounded D∆-measurable functions f : D∆ → R.

We now define an affine process assuming that V = Rd.

Definition 22. Affine Process A time-homogeneous Markov process X relative to some fil-
tration (Fs) and with state space (D,D) (augmented by ∆) is called affine if

(i) it is stochastically continuous, that is, lims→t ps (x, ·) = pt (x, ·) for all t ≥ 0 and x ∈ D,
and

(ii) its Fourier-Laplace transform has exponential affine dependence on the initial state. This
means that there exist functions φ : R+ × S+

d → R+ and ψ : R+ × S+
d → S+

d such that

Ex
[
e〈u,Xt〉

]
= Pte

〈u,x〉 =

∫
D

e〈u,ξ〉pt (x, dξ) = e−φ(t,u)−〈ψ(t,u),x〉, (4.2.2)

for all x ∈ D and (t, u) ∈ R+ × Rd

Remark 1. The stochastic continuity of X implies that
(i) φ (t, u) and ψ (t, u) are jointly continuous in (t, u) (c.f. Lemma 3.2(iii) in Cuchiero et al.,
2011).

(ii) the process X is regular in the following sense (c.f. Proposition 3.4 in Cuchiero et al.,
2011).

Definition 23. Regularity An affine process X is called regular if the derivatives

= (u) =
∂φ (t, u)

∂t

∣∣∣∣∣
t=0+

, < (u) =
∂ψ (t, u)

∂t

∣∣∣∣∣
t=0+

(4.2.3)

exist and are continuous at u = 0.

An alternative characterization of the affine property in the sense of Cuchiero et al. (2011)
can be provided in terms of the generator of the process X, a formal definition of which is given
below. One can refer to Alfonsi (2015) for a detailed discussion on generators.
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Definition 24. Generator For an affine process X taking values in S+
d ⊂ Sd the infinitesimal

generator is defined as

Af (x) = lim
t→0+

E [f (Xx
t )]− f (x)

t
for x ∈ S+

d , f ∈ C2 (Sd,Rd) with bounded derivatives.

(4.2.4)

The diffusion, drift, jump and killing characteristics of an affine process X depend in an
affine way on the underlying state as shown in Theorem 26 below. To proceed to this result we
need the following important definition.

Definition 25. Truncation Function Let χ : Sd → Sd be some bounded continuous trunca-
tion function with χ (ξ) = ξ in the neighborhood of 0. An admissible parameter set given by(
α, b, βij , c, γ,m, µ

)
associated with χ consists of:

� a linear diffusion coefficient
α ∈ S+

d , (4.2.5)

� a constant drift term
b � (d− 1)α, (4.2.6)

� a constant killing rate term
c ∈ R+, (4.2.7)

� a linear killing rate coefficient
γ ∈ S+

d , (4.2.8)

� a constant jump term: a Borel measure m on S+
d \ {0} satisfying∫

S+
d \{0}

(‖ ξ ‖ ∧1)m (dξ) <∞, (4.2.9)

� a linear jump coefficient: a d× d matrix µ = (µij) of finite signed measures on S+
d \ {0}

such that µ (E) ∈ S+
d for all E ∈ B

(
S+
d \ {0}

)
and the kernel

M (x, dξ) :=
〈x, µ (dξ)〉
‖ ξ ‖2 ∧1

(4.2.10)

satisfies ∫
S+
d \{0}

〈χ (ξ) , u〉M (x, dξ) <∞ for all x, u ∈ S+
d with 〈x, u〉 = 0, (4.2.11)

� a linear drift coefficient: a family βij = βji ∈ Sd such that the linear map B : Sd → Sd
of the form

B (x) =
∑
i,j

βijxij (4.2.12)

satisfies

〈B (x) , u〉 −
∫
S+
d \{0}

〈χ (ξ) , u〉M (x, dξ) ≥ 0 for all x, u ∈ S+
d with 〈x, u〉 = 0. (4.2.13)

We now state without proof Theorem 2.4 of Cuchiero et al. (2011) which we require to make
further advancement with the application of the theory of affine process in pricing actuarial
products like GAOs. Let D (A) denote the domain of the generator A and this is taken to be
the space S+ of rapidly decreasing C∞-functions on S+

d .
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Theorem 26. Suppose X is an affine process on S+
d . Then X is regular and has the Feller

property. Let A be the infinitesimal generator on C0

(
S+
d

)
. Then S+ ⊂ D (A) and there exists

an admissible parameter set
(
α, b, βij , c, γ,m, µ

)
such that for f ∈ S+, we have

Af (x) =
1

2

∑
i,j,k,l

Aijkl (x)
∂2f (x)

∂xij∂xkl

+
∑
i,j

(bij +Bij (x))
∂f (x)

∂xij
− (c+ 〈γ, x〉) f (x)

+

∫
S+
d \{0}

(f (x+ ξ)− f (x))m (dξ)

+

∫
S+
d \{0}

(f (x+ ξ)− f (x)− 〈χ (ξ) ,∇f (x)〉)M (x, dξ) , (4.2.14)

where B (x) is defined in (4.2.12), M (x, dξ) by (4.2.10) and

Aijkl (x) = xikαjl + xilαjk + xjkαil + xjlαik. (4.2.15)

Moreover φ (t, u) and ψ (t, u) in Definition 22 solve the generalized Riccatti differential equations
for u ∈ S+

d ,
∂φ (t, u)

∂t
= = (ψ (t, u)) , φ (0, u) = 0, (4.2.16)

∂ψ (t, u)

∂t
= < (ψ (t, u)) , ψ (0, u) = u, (4.2.17)

with

= (u) = 〈b, u〉+ c−
∫
S+
d \{0}

(
e−〈u,ξ〉 − 1

)
m (dξ) (4.2.18)

and

< (u) = −2uαu+BT (u) + γ

−
∫
S+
d \{0}

(
e−〈u,ξ〉 − 1 + 〈χ (ξ) , u〉

‖ ξ ‖2 ∧1

)
µ (dξ) , (4.2.19)

where BTij (u) = 〈βij , u〉.
Conversely, let

(
α, b, βij , c, γ,m, µ

)
be an admissible parameter set. Then there exists a

unique affine process on S+
d with infinitesimal generator given in (4.2.14) and (4.2.2) holds for

all (t, u) ∈ R+ × S+
d , where φ (t, u) and ψ (t, u) are given by (4.2.16) and (4.2.17).

Remark 2. (c.f. Remark 2.5 in Cuchiero et al., 2011) A sufficient condition for X to be
conservative is c = 0 and γ = 0 and∫

S+
d ∩{‖ξ‖≥1}

‖ ξ ‖
(
µ+
ij (dξ) + µ−ij (dξ)

)
<∞ for all 1 ≤ i < j ≤ d,

where µij = µ+
ij − µ

−
ij denotes the Jordan decomposition of µij.

In the next sections, we move to the application of the theory of affine processes to price
Zero Coupon Bonds by considering the short rate to be driven by a stochastic process on the
cone of positive semi-definite matrices and assuming them to be correlated. In the next chapter
we utilize this theory to price ‘Survival Zero Coupon Bonds’ or in short SZCBs and then use
the technique to determine a fair price for GAOs. A good reference to build the foundations is
Gnoatto (2012).
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4.3 The General Affine Pricing Model

4.3.1 The Set Up

To apply the theory of affine process to the pricing of actuarial products, we focus on models
where the short rate is given as

rt = r̄ + 〈R,Xt〉 (4.3.1)

where r̄ ∈ R+, R ∈ Rd and X is a time homogeneous affine Markov process taking values
in a non-empty convex subset E of Rd, (d ≥ 1) endowed with the scalar product 〈, ·, ·〉. This
means that the interest rate is a linear projection of X along constant directions given by the
parameter R. We will be interested in the cases where the X is a classical affine process on
the state space Rm+ ×Rn or an affine Wishart process on the state space S+

d . In the latter case
(4.3.1) is called the Wishart short rate model and R ∈ S+

d . In the next chapter we use a similar
set up to model force of mortality and then price actuarial products under the assumption of
correlation between interest rate and mortality rate.

In the next section we will provide a fairly general formula for zero coupon bonds for this
family of models. Then we will derive the same under Wishart short rate model. We will
follow the approach used in Gnoatto (2012). A similar type of model appears in Gourieroux
and Sufana (2003) and Grasselli and Tebaldi (2008). Buraschi et al. (2008) have examined the
properties of this model with respect to many issues concerning the yield curve and interest rate
derivatives. Chiarella et al. (2010) have analysed the impact of specification of the specification
of the risk premium in regards to this model. Deelstra et al. (2016) use this model to price
actuarial products assuming that interest rate and mortality rate are correlated.

4.3.2 Zero Coupon Bond Pricing

Before we begin the mathematical formulation of bond pricing, it is very important to discuss
the choice of the risk neutral measure that will be used for pricing purpose. Clearly,the short
rate is not a traded asset, hence the bond market is arbitrage free but not complete. This
implies the existence of many risk neutral pricing measures. Following the standard practice,
it is appropriate to assume that the right risk neutral measure Q can be chosen on the basis of
available market data and so will result from a calibration procedure.

We now state without proof a slight modification of Proposition 2.1 of Gnoatto (2012)
which provides the necessary methodology to compute the price of a zero coupon bond under
the model (4.3.1).

Proposition 27. Let X be a conservative affine process on S+
d under the risk neutral measure

Q. Let the short rate be given in accordance with (4.3.1). Let τ = T − t, then the price of a
zero-coupon bond is given by

P (t, T ) = EQ
[
e−
∫ T
t

(r̄+〈R,Xu〉)du|Ft
]

= e−r̄τe−φ̃(τ,R)−〈ψ̃(τ,R),Xt〉, (4.3.2)

where φ̃ and ψ̃ satisfy the following Ordinary Differential Equations (ODEs):

∂φ̃

∂τ
= =̃

(
ψ̃ (τ,R)

)
, φ̃ (0, R) = 0, (4.3.3)

∂ψ̃

∂τ
= <̃

(
ψ̃ (τ,R)

)
, ψ̃ (0, R) = 0, (4.3.4)

with

=̃
(
ψ̃ (τ,R)

)
= 〈b, ψ̃ (τ,R)〉 −

∫
S+
d \{0}

(
e−〈ψ̃(τ,R),ξ〉 − 1

)
m (dξ) , (4.3.5)
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and

<̃
(
ψ̃ (τ,R)

)
= −2ψ̃ (τ,R)αψ̃ (τ,R) +BT

(
ψ̃ (τ,R)

)
−
∫
S+
d \{0}

(
e−〈ψ̃(τ,R),ξ〉 − 1 + 〈χ (ξ) , ψ̃ (τ,R)〉

‖ ξ ‖2 ∧1

)
µ (dξ) +R (4.3.6)

We now consider the case where the process X in (4.3.1) is a Wishart Process and then
apply the above proposition to obtain the zero coupon bond price under the Wishart set up.

4.4 The Wishart Short Rate Model

4.4.1 The Set Up

In this section, we assume that the affine process (Xt) is a d-dimensional Wishart process. Given
a d × d matrix Brownian motion W (i.e a matrix whose entries are independent Brownian
motions) the Wishart process Xt (without jumps) is defined as the solution of the d × d-
dimensional stochastic differential equation

dXt =
(
βQTQ+HXt +XtH

T
)
dt+

√
XtdWtQ+QT dWT

t

√
Xt, t ≥ 0, (4.4.1)

where X0 = x ∈ S+
d , β ≥ d− 1, H ∈Md, Q ∈ GLd and QT denotes its transpose. In short, we

assume that the law of Xt is WISd (x0, β,H,Q).

4.4.2 Existence and Uniqueness of Solution

This process was pioneered by Bru (1991) and she showed the existence and uniqueness of
a weak solution for equation (4.4.1). She also established the existence of a unique strong
solution taking values in S++

d , i.e. the interior of the cone of positive semi-definite symmetric
d× d matrices that we have denoted by S+

d .

4.4.3 Generator

Bru (1991) has calculated the infinitesimal generator of the Wishart process as:

A = Tr
((
βQTQ+Hx+ xHT

)
DS + 2xDSQTQDS

)
, (4.4.2)

where Tr stands for trace and DS = (∂/∂xij)1≤i,j≤d. A good reference for understanding the

detailed derivation of this generator is Alfonsi (2015).

4.4.4 Zero Coupon Bond Pricing

Continuing with the same ideas as in Section 4.3.2 we prove the main result of this chapter,
which gives us an explicit formula for calculating the zero coupon bond price under the Wishart
short rate model.

Theorem 28. Let the short rate be given in accordance with equation (4.3.1) as

rt = r̄ + Tr (R,Xt) (4.4.3)

for a process Xt with law WISd (x0, β,H,Q). Let R ∈ S++
d and τ = T − t, then the price of a

zero-coupon bond under the Wishart short rate model (4.4.3) is given by

Pt (τ) = EQ
[
e−
∫ T
t

(r̄+Tr(RXu))du|Ft
]

= e−φ̃(τ,R)−Tr(ψ̃(τ,R)Xt), (4.4.4)
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where φ̃ and ψ̃ satisfy the following system of ODEs:

∂φ̃
∂τ = Tr

[
βQTQψ̃ (τ,R)

]
+ r̄,

φ̃ (0, R) = 0,
∂ψ̃
∂τ = ψ̃ (τ,R)H +HT ψ̃ (τ,R) ,

−2ψ̃ (τ,R)QTQψ̃ (τ,R) +R,

ψ̃ (0, R) = 0.

(4.4.5)

Proof. A detailed proof appears in Chapter 5 for the integrated market framework.

Remark 3. The methodology of solving the system of Riccati equations given in (4.4.5) appears
in Da Fonseca et al. (2008) where the authors propose that matrix Riccati equations can be
linearized by doubling the dimension of the problem, Interested readers can also refer to Grasselli
and Tebaldi (2008) and Deelstra et al. (2016). We state without proof the solution in the
following proposition.

Proposition 29. The functions φ̃ and ψ̃ in Theorem 28 are given by{
ψ̃ (τ,R) = A−1

22 (τ)A21 (τ) ,

φ̃ (τ) = β
2

(
log (det (A22 (τ))) + τTr

[
HT
])
.

(4.4.6)

where [
A11 (τ) A12 (τ)
A21 (τ) A22 (τ)

]
= exp

[
τ

[
H 2QTQ
R −HT

]]
(4.4.7)

Alternative approaches for the pricing of zero coupon bond under the Wishart short rate
model can be found in Grasselli and Tebaldi (2008) and Gnoatto and Grasselli (2014).

In the next chapter we seek to apply the above theory to devise a methodology to compute
sharp bounds for Guaranteed Annuity Options.
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Chapter 5

General Price Bounds for
Guaranteed Annuity Options

This chapter has been published on Arxiv. The full reference follows:

R. K. Bahl and S. Sabanis. General Price Bounds for Guaranteed Annuity Options.
Working Paper, Arxiv, 2017. URL arXiv:1707.00807v1[q-fin.PR].

Previous versions of this chapter were presented at the following winter schools, work-
shops and conferences:

- January 2017. Perspectives on Actuarial Risks in Talks of Young Researchers
(PARTY), Winter School (organized by Institute of Actuarial Sciences, Universit de
Lausanne) at Monte Veritá, Ascona, Switzerland. “General Price Bounds for Guaran-
teed Annuity Options”.

- May 2017. Workshop on Recent Developments in Dependence Modeling with Applica-
tions in Finance and Insurance: Fourth Edition (organized by Vrije Universiteit Brussel
(VUB)) at Hotel Danae, Aegina, Greece. “General Price Bounds for Guaranteed Annu-
ity Options when Mortality and Interest Rate Risks are Correlated”.

- July 2017. International Congress on Insurance: Mathematics and Economics (IME),
TU Wien (Technische Universität Wien), Vienna, Austria. “General Price Bounds for
Guaranteed Annuity Options”.
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In this chapter, we are concerned with the valuation of Guaranteed Annuity Options (GAOs)
under the most generalised modelling framework where both interest rate and mortality risk
are stochastic and correlated. Pricing these type of options in the correlated environment is
a challenging task and no closed form solution exists in the literature. We employ the use
of doubly stochastic stopping times to incorporate the randomness about the time of death
and employ a suitable change of measure to facilitate the valuation of survival benefit, there by
adapting the payoff of the GAO in terms of the payoff of a basket call option. We derive general
price bounds for GAOs by employing the theory of comonotonicity, the Rogers-Shi (Rogers and
Shi, 1995) approach and the general closed form basket option pricing bounds as discussed
in Caldana et al. (2016). The theory is then applied to affine models to present some very
interesting formulae for the bounds under the affine set up. Numerical examples are provided
in Chapter 6 and they are benchmarked against Monte Carlo simulations to estimate the price
of a GAO for a variety of affine processes governing the evolution of mortality and the interest
rate.

5.1 Introduction

In the present era when financial institutions are facing serious challenges in the advent of im-
proving life expectancy, pricing of key products such as ‘Guaranteed Annuity Options’ which
involve survival benefit has gained a lot of momentum. It is the need of the hour to equip
the longevity product designers with an insight to efficient pricing of these instruments. This
involves designing an apparatus that provides state of art solutions to measure the random
impulse of mortality, which indeed calls for looking at mortality in a stochastic sense. Till, very
lately the conventional approach of actuaries consisted in treating mortality in a deterministic
way in contrast to interest rates which were assumed to possess a stochastic nature. Post this
came the era of the assumption that mortality evolves in a stochastic manner but is indepen-
dent of interest rates (see for example Biffis, 2005). However, the latter assumption is also
far from being realistic. This is because both extreme mortality events such as catastrophes
and pandemics as well as improving life expectancy go a long way in influencing the value of
interest rate. While the former shows a stronger effect in a short term, the latter affects the
financial market in a gradual manner. Interested readers can refer to Deelstra et al. (2016),
Liu et al. (2014), Liu et al. (2013) and Jalen and Mamon (2009) and the references therein. To
the best of our knowledge, Miltersen and Persson (2005) were the first ones to introduce de-
pendence between mortality and interest rates in the actuarial world. In the context of the real
world, a study by Nicolini (2004) to understand the relation between these two underlying risks
demonstrates that the decline of interest rate in pre-industrial England was perhaps triggered
by the decline of adult mortality at the end of the 17th century. More recently Dacorogna and
Cadena (2015) examine correlation between mortality and market risks in periods of extremes
such as a severe pandemic outbreak while Dacorogna and Apicella (2016) explore existence of
this dependence within the Feller process framework.

As remarked in the beginning of this section ‘The Life Expectancy Revolution’ has pres-
surised social security programs of various nations thereby triggering fiscal crisis for governments
who find it hard to fulfill the needs of an ever growing aging population. The price for this
imbalance affects the financial markets adversely leading to a downtrend in returns on invest-
ments. To take care of these issues, EU’s Solvency II Directive has laid out new insurance risk
management practices for capital adequacy requirements based on the assumption of depen-
dence between financial markets and life/health insurance markets including the correlation
between the two underpinning risks viz. interest rate and mortality (c.f. Quantitative Impact
Study 5:Technical Specifications QIS5, 2010).

In this chapter, we consider the most generalised modelling framework where both interest
and mortality risks are stochastic and correlated. In a set up similar to Biffis (2005), we
advocate the use of doubly stochastic stopping times to incorporate the randomness about the
time of death.
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We then utilize this set up and the theory of comonotonicity to devise model-independent
price bounds for Guaranteed Annuity Options (GAOs). These are options embedded in certain
pension policies that provide the policyholders the right to choose between a lump sum at time
of retirement/maturity or to convert the proceeds into an annuity at a guaranteed rate. The
reports of the Insurance Institute of London (1972) (c.f. IIL, 1972) show that the origin of
GAOs dates back to 1839. However these instruments came into the limelight in UK in the era
of 1970-1990. In the advent of increased life expectancy, the research on pricing of GAOs has
gained a lot of momentum as the under pricing of such guarantees has already caused serious
solvency problems to insurers, for example in the UK, as an after effect of encashment of too
many GAOs, the world’s oldest life insurer - Equitable Life had to close to new business in
2000.

The existing literature in the direction of pricing of GAOs under the correlation assumption
is very thin and only Monte Carlo estimation of the GAO price is available for sophisticated
models (c.f. Deelstra et al., 2016). But Monte Carlo method is generally extremely time con-
suming for complex models (c.f. Fenga et al., 2017). This chapter is a concrete step in the
direction of pricing of GAOs under the correlation direction. It investigates the designing of
price bounds for GAOs under the assumption of dependence between mortality and interest rate
risks and provides a much needed confidence interval for the pricing of these options. Moreover
the proposed bounds are model-free or general in the sense they are applicable for all kinds of
models and in particular suitable for the affine set up. Keeping pace with the relevant literature
(c.f. Liu et al., 2013; Deelstra et al., 2016), we applied a change of probability measure with
the ‘Survival Zero Coupon Bond’ as numéraire for the valuation of the GAO. This change of
measure facilitates computation and enhances efficiency (c.f. Liu et al., 2014). The organiza-
tion of the chapter follows. In section 2 we introduce the market framework with the necessary
notations. In section 3 we define GAOs and show that their payoff is similar to that of a basket
option. This is followed by Section 4 which highlights the technicalities of affine processes.
Sections 5 and 6 are the core sections which present details on finding lower and upper bounds
for GAOs. In section 7 we present examples while numerical investigations in support of the
developed theory appear in Chapter 6.

5.2 The Market Framework

In this section, we introduce the necessary set up required to construct the mathematical
interplay between financial market and the mortality model. We denote by P, the physical
world measure and we utilize the fact that in the absence of arbitrage, at least one equivalent
martingale measure (EMM) Q exists. We consider a filtered probability space (Ω,F,F,P) where
F = {Ft}t≥0 such that the filtration is large enough to support a process X in Rk, representing
the evolution of financial variables and a process Y in Rd, representing the evolution of mortality.
We take as given an adapted short rate process r = {rt}t≥0 such that it satisfies the technical

condition
∫ t

0
rsds < ∞ a.s. for all t ≥ 0. The short rate process r represents the continuously

compounded rate of interest of a risk-less security. Moreover, we concentrate on an insured life
aged x at time 0, with random residual lifetime denoted by τx which is an Ft-stopping time.

The filtration F includes knowledge of the evolution of all state variables up to each time t
and of whether the policyholder has died by that time. More explicitly, we have:

Ft = Gt ∨Ht

where
Gt ∨Ht = σ (Gt ∪Ht)

with
Gt = σ (Zs : 0 ≤ s ≤ t) , Ht = σ

(
1{τ≤s} : 0 ≤ s ≤ t

)
and where Z = (X,Y ) is the joint state variables process in Rk+d. Thus we have

Gt = GXt ∨ GYt .
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In fact H = {Ht}t≥0 is the smallest filtration with respect to which τ is a stopping time. In
other words H makes F the smallest enlargement of G = {Gt}t≥0 with respect to which τ is a
stopping time, i.e.,

Ft = ∩s>tGs ∨ σ (τ ∧ s) , ∀t.

We may think of Gt as carrying information captured from medical/demographical data col-
lected at population/ industry level and of Ht as recording the actual occurrence of death in
an insurance portfolio.

To make the set up more robust, we assume that τx is the first jump-time of a nonexplosive
Ft-counting process N recording at each time t ≥ 0 whether the individual has died (Nt 6= 0)
or not (Nt = 0). The stopping time τx is said to admit an intensity µx if N does, i.e. if µx is

a non-negative predictable process such that
∫ t

0
µx (s) ds < ∞ a.s. for all t ≥ 0 and such that

the compensated process M = {Nt −
∫ t

0
µx (s) ds : t ≥ 0} is a local Ft-martingale. Our next

assumption is that N is a doubly stochastic process or Cox Process driven by a subfiltration Gt
of Ft, with Gt-predictable intensity µ. This implies that on any particular trajectory t 7→ µt (ω)
of µ, the counting process N is a Poisson-inhomogeneous process with parameter

∫ .
0
µs (ω) ds,

i.e., we have that for all t ∈ [0, T ] and non-negative integer k,

P (NT −Nt = k|Ft ∨ GT ) =

(∫ T
t
µsds

)k
k!

e−
∫ T
t
µsds. (5.2.1)

The main reason for the consideration of a strict sub-filtration GT of Ft is that it provides
enough information about the evolution of the intensity of mortality, i.e., about the likelihood
of death happening, but not enough information about the actual occurrence of death. Such
information is carried by the larger filtration Ft, with respect to which τ is a stopping time.
From (5.2.1) by putting k = 0, we now proceed to compute the ‘probability of survival’ up to
time T ≥ t, on the set {τ > t}. Let A be the event of no death in the interval t ∈ [0, T ], i.e.,
A ≡ {NT −Nt = 0}, then the tower property of conditional expectation tells us that

P (τ > T |Ft) = E[1A|Ft]
= E [E (1A|Ft ∨ GT ) |Ft]
= E [P (NT −Nt = 0|Ft ∨ GT ) |Ft]

= E
[
e−
∫ T
t
µsds|Ft

]
. (5.2.2)

In fact, we characterize the conditional law of τ in several steps. Given the non-negative Gt-
predictable process µ is satisfying

∫ t
0
µx (s) ds <∞ a.s. for all t > 0, we consider an exponential

random variable Φ with parameter 1, independent of G∞ and define the random time of death
τ as the first time when the process

∫ t
0
µsds is above the random threshold Φ, i.e.,

τ
.
= {t ∈ R+ :

∫ t

0

µs (s) ds ≥ Φ}. (5.2.3)

It is evident from (5.2.3) that {τ > T} = {
∫ t

0
µsds < Φ}, for T ≥ 0. Next, we work out

P (τ > T |Gt) for T ≥ t ≥ 0 by using tower property of conditional expectation, independence
of Φ and G∞ and facts that µ is a Gt-predictable process and Φ ∼ Exponential (1), i.e.,

P (τ > T |Gt) = E
[
e−
∫ T
0
µsds|Gt

]
. (5.2.4)

In fact, the same result holds for 0 ≤ T < t. Further, we observe that {τ > t} is an atom of
Ht. As a result, in a manner similar to Biffis (2005), we have constructed a doubly stochastic
Ft-stopping time driven by Gt ⊂ Ft in the following way (c.f. Billingsley, 1995, ex 34.4, p.455):

P (τ > T |GT ∨ Ft) = 1{τ>t}E
[
1{τ>T}|GT ∨Ht

]
= 1{τ>t}e

−
∫ T
t
µsds. (5.2.5)
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Next, the conditioning on Ft can be replaced by conditioning on Gt as shown in the Appendix
C of Biffis (2005) and Appendix A.2 of this thesis. We remark that, we do not take Gt∨σ(Φ) as
our filtration Gt because, in that case, the stopping time τ would be predictable and would not
admit an intensity. The construction potrayed here guarantees that τ is a totally inaccessible
stopping time, a concept intuitively meaning that the insureds death arrives as a total surprise
to the insurer (see Protter, 1990, Chapter III.2, for details). With this, we move to the focal
point of this chapter viz. GAOs.

5.3 Guaranteed Annuity Options

5.3.1 Introduction

A Guaranteed Annuity Option(GAO) is a contract that gives the policyholder the flexibility to
convert his/her survival benefit into an annuity at a pre-specified conversion rate. The guar-
anteed conversion rate denoted by g, can be quoted as an annuity/cash value ratio. According
to Bolton et al. (1997), the most popular choice for for the guaranteed conversion rate g for
males aged 65 in the UK in the 1980s was g = 1

9 , which means that per £1000 cash value can
be converted into an annuity of £111 per annum. The GAO would have a positive value if the
guaranteed conversion rate is higher than the available conversion rate; otherwise the GAO is
worthless since the policyholder could use the cash to obtain higher value of annuity from the
primary market. As a result, the moneyness of the GAO at maturity depends on the price of
annuity available in the market at that time and this in turn is calculated using the prevailing
interest and mortality rates.

5.3.2 Mathematical Formulation

Consider an x year old policyholder at time 0 who has an access to a unity amount at his
retirement age Rx. Then, a GAO gives the policyholder a choice to choose at time T = Rx− x
between an annual payment of g or a cash payment of 1. Let äx (T ) denote a whole life annuity
due for a person aged x at time 0, which gives an annual payment of one unit amount at the
start of each year, this payment beginning from time T and conditional on survival. If w is the
largest possible survival age then we have

äx (T ) =

w−(T+x)−1∑
j=0

E
[
e−
∫ T+j
T

(rs+µs)ds|GT
]

=

w−(T+x)−1∑
j=0

P̃ (T, T + j) , (5.3.1)

where
P̃ (t, T ) = E

[
e−
∫ T
t

(rs+µs)ds|Gt
]

(5.3.2)

denotes the price at time t of a pure endowment insurance with maturity T for an insured of age
x at time 0 who is still alive at time t. This insurance instrument is nomenclated as a survival
zero-coupon bond abbreviated as SZCB by Deelstra et al. (2016) and the authors remark that
it can be used as a numèraire because it can be replicated by a strategy that involves longevity
bonds (c.f. Lin and Cox, 2005) in analogy with the usual bootstrapping methodology used to
find the zero rate curve starting by coupon bonds. This insurance instrument pays one unit of
money at time T upon the survival of the insured at that time. In fact r + µ can be viewed as
a fictitious short rate or yield to compare these instruments with their financial counterparts.

At time T , the value of the contract having the above embedded GAO can be described by
the following decomposition

V (T ) = max(gäx (T ) , 1)
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= 1 + gmax

(
äx (T )− 1

g

)
. (5.3.3)

In order to apply risk neutral evaluation, we state a result from Biffis (2005) to compute
the fair values of a basic payoff involved by standard insurance contracts. These are benefits,
of amount possibly linked to other security prices, contingent on survival over a given time
period. We require the short rate process r and the intensity of mortality µ to satisfy the
technical conditions stated in section 5.2.

Proposition 30. (Survival benefit). Let C be a bounded Gt-adapted process. Then, the time-t
fair value SBt (CT ;T ) of the time-T survival benefit of amount CT , with 0 ≤ t ≤ T , is given
by:

SBt (CT ;T ) = E
[
e−
∫ T
t
rsds1{τ>T}CT |Ft

]
= 1{τ>t}E

[
e−
∫ T
t

(rs+µs)dsCT |Gt
]

(5.3.4)

In particular, if C is GXt -adapted and X and Y are independent, then, the following holds

SBt (CT ;T ) = 1{τ>t}E
[
e−
∫ T
t
rsdsCT |GXt ]E[e−

∫ T
t
µsds|GYt

]
(5.3.5)

Proof. A comprehensive proof can be found in Biffis (2005) and is summarized in Appendix
A.3.

Thus, we have the value at time t = 0 of the second term in (5.3.3), which is called the
GAO option price entered by an x-year policyholder at time t = 0 as

C(0, x, T ) = E

[
e−
∫ T
0

(rs+µs)dsg

(
äx (T )− 1

g

)+
]
. (5.3.6)

In order to facilitate calculation, we adopt the following change of measure.

5.3.3 Change of Measure

We advocate a change of measure similar to the one adopted in Deelstra et al. (2016). We
define a new probability measure Q̃ with the Radon-Nikodym derivative of Q̃ w.r.t Q as:

dQ̃

dQ
:= ηT =

e−
∫ T
0

(rs+µs)ds

E
[
e−
∫ T
0

(rs+µs)ds
] (5.3.7)

where E denotes the usual expectation w.r.t the EMM Q and we will use Ẽ to denote the
expectation w.r.t the new probability measure Q̃. Further on using Bayes’ Rule for conditional
expectation, the survival benefit in (5.3.4) can be rewritten as

SBt (CT ;T ) = 1{τ>t}P̃ (t, T ) Ẽ [CT |Gt] (5.3.8)

The advantage of the change of measure approach is that the complex expectation appearing
in the survival benefit given in (5.3.4) has been decomposed into two simpler expectations: the
first one corresponds to the price of the SZCB given in (5.3.2) and the second one is connected
to the expected value of the survival benefit CT under the new probability measure Q̃ which
needs to be determined. In the passing, one notes that in (5.3.8) if CT = 1, we get a very
interesting relationship

SBt (1;T ) = 1{τ>t}P̃ (t, T ) . (5.3.9)

In particular
SB0 (1;T ) = 1{τ>t}P̃ (0, T ) . (5.3.10)

A similar change of measure has been employed by Liu et al. (2014) and Liu et al. (2013) with
the only difference that they use the unitary survival benefit given in (5.3.9) as the numèraire.
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On the contrary, Jalen and Mamon (2009) have used a twin change of measure to compute
value of a GAO.

5.3.4 Payoff

Under the new probability measure Q̃ defined in (5.3.7), the GAO option price decomposes into
the following product

C(0, x, T ) = gP̃ (0, T ) Ẽ

[(
äx (T )− 1

g

)+
]

(5.3.11)

where P̃ (0, T ) is defined in (5.3.2). To develop ideas further, we express the payoff in a more
appealing form as follows:

C(0, x, T ) = gP̃ (0, T ) Ẽ

(n−1∑
i=1

S
(i)
T − (K − 1)

)+
 (5.3.12)

where we utilize the fact that P̃ (T, T ) = 1 and define n = w − (T + x) and

S
(i)
T = P̃ (T, T + i) ; i = 1, 2, ..., n− 1. (5.3.13)

The last term on the R.H.S in the payoff of the GAO resembles the payoff of a basket option (see
Appendix A.7.2) having unit weights and the SZCBs, maturing at times T+1, T+2, ..., w−x−1
acting as the underlying assets. We seek to evaluate tight model-independent bounds for the
GAOs in the ensuing sections. To the best of our knowledge, the equations (5.3.6) and (5.3.11)
have only been valued by Monte Carlo simulations for specific choice of models. In Liu et al.
(2014), numerical experiments in the Gaussian setting have shown that (5.3.11) is a little bit
more precise and in particular it is less time consuming than the implementation of (5.3.6).
Deelstra et al. (2016) have investigated these calculations for different affine models such as the
multi-CIR and the Wishart cases. Liu et al. (2013) have computed very specific comonotonic
bounds for GAOs in the Gaussian framework.

5.4 Affine Processes

Affine processes are essentially Markov processes with conditional characteristic function of the
affine form. A thorough discussion of these processes on canonical state space appears in Duffie
et al. (2003) and Filipovic (2005). More recently the development of multivariate stochastic
volatility models has lead to the evolution of applications of affine processes on non-canonical
state spaces, in particular on the cone of positive semi-definite matrices. A plethora of research
papers are available to explore and interested readers can refer to Cuchiero et al. (2011) for
details. A unified approach on affine processes is presented in Keller-Ressel and Mayerhofer
(2015). We have already presented the details of the affine processes in Chapter 4. We outline
some important results below. In regards to the evolution of interest rates and the force of
mortality we consider a set up similar to Deelstra et al. (2016).

Suppose we have a time-homogeneous affine Markov process X taking values in a non-empty
convex subset E of Rd, (d ≥ 1) equipped with the inner product 〈·, ·〉. We then assume that
the dynamics of the interest rate and force of mortality are given respectively as follows.

rt = r̄ + 〈R,Xt〉 (5.4.1)

and
µt = µ̄+ 〈M,Xt〉 (5.4.2)

where r̄, µ̄ ∈ R, M,R ∈ Rd or Md where Md is the set of real square matrices of order d.
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This means that the interest rate and mortality are linear projections of the common stochas-
tic factor X along constant directions given by the parameter R and M respectively. We will
be interested in the cases where the X is a classical affine process on the state space Rm+ × Rn
or an affine Wishart process on the state space S+

d , which is the set of d× d symmetric positive
semi-definite matrices. The inner product possesses the flexibility to condense into scalar prod-
uct or trace depending on the nature of R and M being respectively vectors or matrices. In
the former set up we consider multi-dimensional CIR case (c.f. Cox et al., 1985). In the case of
Vasicek model (c.f. Vasicek, 1977), the affine set up is uni-dimensional. A very good reference
to show that the stochastic processes underlying the Vasicek and CIR models fall under the
affine set up is Keller-Ressel (2011).

In the passing it is important to note that the affiness of the underlying model is preserved as
we move from the physical world to the risk neutral environment, although new affine dynamics
emerge (c.f. Biffis and Millossovich, 2006; Duffie et al., 2000). In fact, more recently Dhaene et al.
(2013) examine the conditions under which it is possible or not to translate the independence
assumption from the physical world to the pricing world.

We now state without proof the following proposition which presents the methodology to
value SZCBs and in turn GAOs. A detailed proof appears in Gnoatto (2012) and the necessary
notations are defined in Chapter 4.

Proposition 31. Let X be a conservative affine process on S+
d under the risk neutral measure

Q. Let the short rate be given in accordance with (5.4.1). Let τ = T − t, then the price of a
zero-coupon bond is given by

P̃ (t, T ) = E
[
e−
∫ T
t

(r̄+µ̄+〈R+M,Xu〉)du|Ft
]

= e−(r̄+µ̄)τe−φ̃(τ,R+M)−〈ψ̃(τ,R+M),Xt〉, (5.4.3)

where φ̃ and ψ̃ satisfy the following Ordinary Differential Equations (ODEs) which are known
also as Riccati ODEs.

∂φ̃

∂τ
= =̃

(
ψ̃ (τ,R+M)

)
, φ̃ (0, R+M) = 0, (5.4.4)

∂ψ̃

∂τ
= <̃

(
ψ̃ (τ,R+M)

)
, ψ̃ (0, R+M) = 0, (5.4.5)

with

=̃
(
ψ̃ (τ,R+M)

)
= 〈b, ψ̃ (τ,R+M)〉 −

∫
S+
d \{0}

(
e−〈ψ̃(τ,R+M),ξ〉 − 1

)
m (dξ) , (5.4.6)

and

<̃
(
ψ̃ (τ,R+M)

)
= −2ψ̃ (τ,R+M)αψ̃ (τ,R+M) +BT

(
ψ̃ (τ,R+M)

)
−
∫
S+
d \{0}

(
e−〈ψ̃(τ,R+M),ξ〉 − 1 + 〈χ (ξ) , ψ̃ (τ,R+M)〉

‖ ξ ‖2 ∧1

)
µ (dξ)

+R+M. (5.4.7)

In fact it is interesting to note that assuming this kind of affine structure means that our
fictitious yield model is “affine” in the sense that there is, for each maturity T , an affine mapping
ZT : Rn → R such that, at any time t, the yield of any SZCB of maturity T is ZT (Xt) echoing
the results obtained in the seminal paper of Duffie and Kan (1996).

As a result we have for i = 1, 2, ..., n− 1,

S
(i)
T = e−(r̄+µ̄)ie−φ̃(i,R+M)−〈ψ̃(i,R+M),XT 〉, (5.4.8)
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where φ̃ (i, R+M) and ψ̃ (i, R+M) satisfy the equations (5.4.4) and (5.4.5) with τ = i. Al-
ternatively, one may write

S
(i)
T = S

(i)
0 eX

(i)
T ; i = 1, 2, ..., n− 1, (5.4.9)

with
S

(i)
0 = e−((r̄+µ̄)i+φ̃(i,R+M)) (5.4.10)

and
X

(i)
T = −〈ψ̃ (i, R+M) , XT 〉. (5.4.11)

As a result in the affine case, by using equation (5.4.8) in (5.3.12) the formula for GAO payoff
can be written in a very compact form as shown below.

C(0, x, T ) = gP̃ (0, T ) Ẽ

(n−1∑
i=1

e−(r̄+µ̄)ie−φ̃(i,R+M)−〈ψ̃(i,R+M),XT 〉 − (K − 1)

)+
 , (5.4.12)

where P̃ (0, T ) given by equation (5.4.3) with τ = T . As a result in the affine case, our quest
of bounds for the GAO becomes simplified as we are dealing only with XT .

The analytical tractability of affine processes is essentially linked to generalized Riccati
equations as given above which can be in general solved by numerical methods although explicit
solutions are available in the Vasicek (c.f. Vasicek, 1977) and CIR (c.f. Cox et al., 1985) models
without jumps.

5.5 Lower Bounds for Guaranteed Annuity Options

We now proceed to work out appropriate lower bounds for the payoff of the GAO as given in
(5.3.12). Invoking Jensen’s inequality , we have

Ẽ

(n−1∑
i=1

S
(i)
T − (K − 1)

)+
 ≥ Ẽ

(n−1∑
i=1

Ẽ
(
S

(i)
T |Λ

)
− (K − 1)

)+
 . (5.5.1)

The general derivation concerning lower bounds for stop loss premium of a sum of random
variables based on Jensen’s inequality can be found in Simon et al. (2000) and for its application
to Asian basket options, one can refer to Deelstra et al. (2008). Define

S =
n−1∑
i=1

S
(i)
T (5.5.2)

and

Sl =

n−1∑
i=1

Ẽ
(
S

(i)
T |Λ

)
(5.5.3)

Thus, we have obtained
S ≥cx Sl. (5.5.4)

Now, suitably tailoring the inequality (5.5.1), we obtain

C(0, x, T ) ≥ gP̃ (0, T ) Ẽ

(n−1∑
i=1

Ẽ
(
S

(i)
T |Λ

)
− (K − 1)

)+
 . (5.5.5)

To exploit the theory of comonotonicity see for example in Dhaene et al. (2002a), we now
have to show that the lower bound for S, i.e. Sl can be expressed as a sum of stop-loss
premiums. This task becomes trivial if we can choose the conditioning variable Λ in such a

way that Ẽ
(
S

(i)
T |Λ

)
is either increasing or decreasing for every i, so that the vector: Sl =
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(
Ẽ
(
S

(1)
T |Λ

)
, . . . , Ẽ

(
S

(n−1)
T |Λ

))
is comonotonic. Before proceeding, we define as in Dhaene

et al. (2002a), F−1
X as the generalized inverse of the cumulative distribution function (cdf), i.e.,

F−1
X (p) = inf{x ∈ R|FX (x) ≥ p}, p ∈ [0, 1] (5.5.6)

and F−1+
X is a more sophisticated inverse defined as

F−1+
X (p) = sup{x ∈ R|FX (x) ≤ p}, p ∈ [0, 1] . (5.5.7)

From this point onwards, we assume that K − 1 ∈
(
F−1+
Sl

(0) , F−1
Sl

(1)
)

which is not at all a
restriction for all practical purposes. Using comonotonicity (c.f. Corollary 16, Chapter 2),

Ẽ
[
(S − (K − 1))

+
]
≥

n−1∑
i=1

Ẽ

[(
Ẽ
(
S

(i)
T |Λ

)
− F−1

Ẽ
(
S

(i)
T |Λ

) (FSl (K − 1))

)+
]
−K1

(5.5.8)

where
K1 =

(
(K − 1)− F−1

Sl
(FSl (K − 1))

)
(1− FSl (K − 1)) (5.5.9)

In case if the marginal cdfs F
Ẽ
(
S

(i)
T |Λ

) are strictly increasing, we have the following compact

expression for K − 1 ∈
(
F−1+
Sl

(0) , F−1
Sl

(1)
)

Ẽ
[
(S − (K − 1))

+
]
≥

n−1∑
i=1

Ẽ

[(
Ẽ
(
S

(i)
T |Λ

)
− F−1

Ẽ
(
S

(i)
T |Λ

) (FSl (K − 1))

)+
]
. (5.5.10)

Thus we have been able to obtain a convex lower bound for GAO by conditioning on an arbitrary
random variable Λ, i.e.,

C(0, x, T ) ≥ gP̃ (0, T )

(
n−1∑
i=1

Ẽ

[(
Ẽ
(
S

(i)
T |Λ

)
− F−1

Ẽ
(
S

(i)
T |Λ

) (FSl (K − 1))

)+
]
−K1

)
(5.5.11)

where K1 is defined in (5.5.9).

However, if the comonotonic approach can not be applied, one may consider a non-comonotonic
lower bound as discussed in Section 5.5.3.

5.5.1 A First Lower Bound

In case, if the random variable Λ is independent of the prices of pure endowments having term

periods 1, 2, ..., n − 1 at the time T , i.e., of S
(i)
T ; i = 1, 2, ..., n − 1, respectively, the bound in

(5.5.5) simply reduces to:

C(0, x, T ) ≥ gP̃ (0, T ) Ẽ

(n−1∑
i=1

Ẽ
(
S

(i)
T

)
− (K − 1)

)+
 . (5.5.12)

or even more precisely as the outer expectation is redundant, we obtain a lower bound for GAO

expressed in terms of expectation of S
(i)
T , i.e.,

C(0, x, T ) ≥ gP̃ (0, T )

(
n−1∑
i=1

Ẽ
(
S

(i)
T

)
− (K − 1)

)+

=: GAOLB. (5.5.13)
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The First Lower Bound under the Affine Set Up

Under the affine set up of section 5.4 (c.f. equation (5.4.8)), the lower bound given in equation
(5.5.13) reduces to

GAOLBaff = gP̃ (0, T )

(
n−1∑
i=1

(
e−((r̄+µ̄)i+φ̃(i,R+M))L

(
ψ̃ (i, R+M)

))
− (K − 1)

)+

(5.5.14)

where L denotes the Laplace transform of XT with parameter ψ̃ (i, R+M) under the trans-
formed measure Q̃. This means that if one can lay hands on the distribution of XT , this bound
has a very compact form.

5.5.2 The Comonotonic Lower Bound

As the next step, we obtain a tighter lower bound by assuming that the endowment products
Si have an asset price process given in terms of exponential Lévy model as follows:

S
(i)
T = S

(i)
0 exp

(
X

(i)
T

)
; i = 1, 2, ..., n− 1, (5.5.15)

where X
(i)
T is a Lévy process observed at time T and S

(i)
0 is the price of pure endowment of

term i years at time 0. For each i, let µi and σ2
i represent the expectation and variance of Xi

respectively. Further, let ρij denote the correlation of X
(i)
T and X

(j)
T and assume that, for all

i, j, this is non-negative. Again using Jensen’s inequality, one may write

Ẽ
[
S

(i)
T |S

(j)
T = s

]
≥ S(i)

0 exp

(
Ẽ

[
X

(i)
T |X

(j)
T = loge

(
s

S
(j)
0

)])
(5.5.16)

Further, we assume that the Lévy process has no jumps so that

Ẽ
[
X

(i)
T |X

(j)
T = xj

]
= µ(i) + ρ(ij) σ

(i)

σ(j)

(
xj − µ(j)

)
(5.5.17)

where

µ(i) = Ẽ
[
X

(i)
T

]
= Ẽ

[
loge

(
S

(i)
T

S
(i)
0

)]
; i = 1, 2, ..., n− 1 (5.5.18)

(
σ(i)
)2

= Var
[
X

(i)
T

]
= Var

[
loge

(
S

(i)
T

S
(i)
0

)]
; i = 1, 2, ..., n− 1 (5.5.19)

ρ(ij) = Corr
[
X

(i)
T , X

(j)
T

]
= Corr

[
loge

(
S

(i)
T

S
(i)
0

)
, loge

(
S

(j)
T

S
(j)
0

)]
; i 6= j = 1, 2, ..., n− 1 (5.5.20)

Also from Dhaene et al. (2002a), we know that

S ≥cx
n−1∑
i=1

Ẽ
(
S

(i)
T |S

(j)
T

)
. (5.5.21)

Combining (5.5.16), (5.5.17) and (5.5.21), we get that

S ≥sl
n−1∑
i=1

S
(i)
0

(
S

(j)
T

S
(j)
0

)ρ(ij) σ(i)

σ(j)

exp

(
µ(i) − ρ(ij) σ

(i)

σ(j)
µ(j)

)
. (5.5.22)

On comparing (5.5.21) with (5.5.3) and (5.5.4), we see that S
(j)
T is in fact playing the role

of Λ. Further, let Y
(ij)
T denote the individual components of the sum on the right hand side

of equation (5.5.22). Since we have assumed that ρ(ij) ≥ 0 ∀i, j, it follows that the vector
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(
Y

(1j)
T , Y

(2j)
T , ..., Y

((n−1)j)
T

)
is comonotonic since its components are strictly increasing functions

of a single variable S
(j)
T and so we define

Sl2j =

n−1∑
i=1

Y
(ij)
T (5.5.23)

and from (5.5.22) and (5.5.23), it is evident that

S ≥sl Sl2j . (5.5.24)

Further, the stop-loss transform of Sl2j can be written as the sum of stop-loss transform of its
components (see for example in Dhaene et al. (2002a)), i.e.,

Ẽ

[(
Sl2j − (K − 1)

)+
]

=

n−1∑
i=1

Ẽ

[(
Y

(ij)
T − F−1

Y
(ij)
T

(
F
S
l2
j

(K − 1)
))+

]
−K2 (5.5.25)

where

K2 =

(
(K − 1)− F−1

S
l2
j

(
F
S
l2
j

(K − 1)
))(

1− F
S
l2
j

(K − 1)
)

(5.5.26)

and (K − 1) ∈
(
F−1+

S
l2
j

(0) , F−1
Sjl2

(1)

)
. Further, F

S
l2
j

(K − 1) is the distribution function of Sl2

evaluated at K − 1 so that we have:

F
S
l2
j

(K − 1) = P
[
Sl2j ≤ (K − 1)

]
= P

n−1∑
i=1

S
(i)
0

(
S

(j)
T

S
(j)
0

)ρ(ij) σi

σ(j)

exp

(
µ(i) − ρ(ij) σ

(i)

σ(j)
µ(j)

)
≤ (K − 1)


(5.5.27)

In fact Sl2j ≤ (K − 1) if and only if S
(j)
T ≤ xS

(j)
0 provided that ρ(ij) ≥ 0 ∀ i, j, where we

substitute x for Sj/S
(j)
0 in the above expression and obtain its value by solving the following

equation
n−1∑
i=1

S
(i)
0 (x)

ρ(ij) σ(i)

σ(j) exp

(
µ(i) − ρ(ij) σ

(i)

σ(j)
µ(j)

)
− (K − 1) = 0. (5.5.28)

As a result, we have:

F
S
l2
j

(K − 1) = F
S

(j)
T

(
xS

(j)
0

)
= F

Y
(ij)
T

(
S

(i)
0 (x)

ρ(ij) σ(i)

σ(j) exp

(
µ(i) − ρ(ij) σ

(i)

σ(j)
µ(j)

))
. (5.5.29)

Using this result in (5.5.25) along with the stop-loss order relationship between S and Sl2j as
given by equation (5.5.24), we obtain

C(0, x, T ) ≥ gP̃ (0, T )

(
n−1∑
i=1

S
(i)
0

(
S

(j)
0

)−ρ(ij) σ(i)

σ(j)

exp

(
µ(i) − ρ(ij) σ

(i)

σ(j)
µ(j)

)
×

P

(
xS

(j)
0 , T, ρ(ij) σ

(i)

σ(j)
, j

)
−K2

)
=: GAOLB

(2)
j , (5.5.30)
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where K2 is defined in (5.5.26). Further, µ(i),
(
σ(i)
)2

and ρ(ij) are given respectively in (5.5.18)-
(5.5.20) and P is defined as the asymmetric power expectation function given by

P (x, t, z, j) = Ẽ

[((
S

(j)
t

)z
− xz

)+
]
, (5.5.31)

where in our case t = T and we are using S
(j)
T in place of S

(j)
t . Since the above lower bound is

a lower bound for every j, we can maximise this for j ∈ {1, 2, ..., n − 1} to obtain an optimal
lower bound for GAO.

We have derived this lower bound under the assumption of positive correlation between the
objects viz. pure endowments in the basket. Although from the point of view of stochastic
processes, this assumption may be restrictive, in reality, it is quite a reasonable assumption.
This is because we talking about SZCBs or pure endowments of different duration issued to the
same set of lives at the same time T .

5.5.3 The General Lower Bound

To obtain a more general bound, we now relax the assumption of positive correlation between the
pure endowments. We adapt the approach undertaken by Deelstra et al. (2008) for Asian basket
options for GAOs. This approach considers a non-comonotonic sum based on the methodology
of Rogers and Shi (1995) for Asian options.

Let us define X
(i)
T in the same way as we have done in the comonotonic case. Next, we choose

a single random variable Λ such that
(
X

(i)
T ,Λ

)
for every i ∈ {1, 2, ..., n−1} is Bivariate Normally

Distributed (BVN) with correlation coefficient given by ρ(iΛ). Clearly a simple application of
Jensen’s inequality yields the following convex order lower bound for Si given any random
variable Λ.

S
(i)
T ≥cx Ẽ

(
S

(i)
T |Λ

)
. (5.5.32)

As a result

S ≥cx Sl :=

n−1∑
i=1

Ẽ
(
S

(i)
T |Λ

)
. (5.5.33)

We know that if (X, Y ) ∼ BVN
(
µX , µY , σ

2
X , σ

2
Y , ρ

)
, the conditional distribution of the

lognormal random variable eX , given the event Y = y is given as

FeX |Y=y (x) = Φ

 loge x−
(
µX + ρσXσY (y − µY )

)
σX
√

1− ρ2

 . (5.5.34)

where Φ denotes the c.d.f. of standard normal distribution. In our case by assumption, we

have (Xi,Λ) ∼ BVN
(
µ(i), µΛ,

(
σ(i)
)2
, σ2

Λ, ρ
(iΛ)
)

. As a result, the distribution function of S
(i)
T

conditional on the event Λ = λ is given as

F
S

(i)
T |Λ=λ

(x) = Φ (a (x)) (5.5.35)

where a (x) is given by

a (x) =
loge x−

(
log
(
S

(i)
0

)
+ µ(i) + ρ(iΛ) σ(i)

σΛ
(λ− µΛ)

)
σ(i)

√(
1−

(
ρ(iΛ)

)2) . (5.5.36)

As the differentiation of c.d.f. yields the p.d.f., therefore the conditional density function of Si
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given Λ = λ satisfies the following equation:

f
S

(i)
T |Λ=λ

(x) =
1

xσ(i)

√(
1−

(
ρ(iΛ)2))φ (a (x)) , (5.5.37)

where φ denotes the p.d.f. of standard normal distribution. As a result, the conditional expec-

tation of S
(i)
T given Λ = λ is given by the expression

Ẽ
(
S

(i)
T |Λ = λ

)
= S

(i)
0 e

µ(i)+
(σ(i))

2
(

1−(ρ(iΛ))
2
)

2 +ρ(iΛ)σ(i) (λ−µΛ)
σΛ . (5.5.38)

We utilize this expression to obtain a lower bound for Guaranteed Annuity Option under the
above setting. Clearly, using (5.5.5) and (5.5.33), we have

C(0, x, T ) ≥ gP̃ (0, T ) Ẽ

(n−1∑
i=1

S
(i)
0 e

µi+
σ2
i (1−ρ2iΛ)

2 +ρiΛσi
(λ−µΛ)
σΛ − (K − 1)

)+
 . (5.5.39)

To obtain the lower bound in a more compact form, we define

f (v) =

n−1∑
i=1

S
(i)
0 eµ

(i)+
(σ(i))

2
(1−ρ2iΛ)
2 +ρ(iΛ)σ(i)Φ−1(v) − (K − 1) (5.5.40)

where

v = Φ

(
Λ− µΛ

σΛ

)
(5.5.41)

Then
Ẽ
[(
Sl − (K − 1)

)+]
= Ẽ

[
(f (V ))

+
]

(5.5.42)

with V being uniformly distributed on (0, 1). An important consideration in the valuation of

Ẽ
[
(f (V ))

+
]

will be the interval upon which f is positive. This can be obtained by using the

following result. Clearly, f (v) is no longer a monotone function of v as in the comonotonic case
when not all ρ(iΛ) have the same sign.

Proposition 32. If ρ(iΛ) ≥ 0 for every i, then f has a unique root in (0, 1). Otherwise, f (v)
has two solutions if and only if infv∈(0,1) f (v) < 0.

Proof. Let us first assume that ρiΛ ≥ 0 for every i. Then, f is a continuous, strictly increasing
function of v. Furthermore, we see that f tends to − (K − 1) < 0 as v ↓ 0 and ∞ as v ↑ 1.
Therefore, by applying the Intermediate Value Theorem, we see that f has a single root in
(0, 1).

On the other hand, if ρ(iΛ) and ρ(jΛ) are of opposite sign for some i 6= j, then observe that
the derivative of f with respect to v satisfies

f ′ (v) =
1

φ (Φ−1 (v))

n−1∑
i=1

S
(i)
0 ρ(iΛ)σ(i)eµ

(i)+
(σ(i))

2
(

1−(ρ(iΛ))
2
)

2 +ρ(iΛ)σ(i)Φ−1(v) (5.5.43)

where as before φ denotes the standard normal density function. We see, that the denominator
of f ′ (v) is strictly positive for v ∈ (0, 1). Let as denote its numerator by N (v). We see that

N ′ (v) =
1

φ (Φ−1 (v))

n−1∑
i=1

S
(i)
0

(
ρ(iΛ)

)2 (
σ(i)
)2

eµ
(i)+

(σ(i))
2
(

1−(ρ(iΛ))
2
)

2 +ρ(iΛ)σ(i)Φ−1(v) (5.5.44)

is positive for v ∈ (0, 1). This means that N (v) is an increasing function of v. Moreover, if
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there exist ρ(iΛ), ρ(jΛ) of opposite sign, for some i 6= j, then

lim
v↓0

N (v) = −∞ and lim
v↑1

N (v) = +∞.

Therefore, there exists a unique v∗ ∈ (0, 1) such that N (v∗) = 0 and hence f ′ (v∗) = 0. Also

lim
v↓0

f (v) = +∞ and lim
v↑1

f (v) = +∞.

So that, f (v) is either positive upon the whole interval [0, 1] or has a strictly negative minimum
f (v∗). We therefore obtain the following result concerning the infimum of f .

inf
v∈(0,1)

f (v) = f (v∗) . (5.5.45)

If f (v∗) < 0, then f is a continuous, strictly decreasing function over the interval (0, v∗), which
tends to ∞ as v ↓ 0. Hence, there exists a unique v1 ∈ (0, v∗) such that f (v1) = 0. Moreover,
f is a continuous, strictly increasing function on (v∗, 1), which tends to ∞ as v ↑ 1. Therefore,
from the Intermediate Value Theorem, we obtain an additional v2 ∈ (v∗, 1) such that f (v2) = 0.
If inf
v∈(0,1)

f (v) ≥ 0, then it is immediate that f can only have at most one root. This completes

the proof.

We see from Proposition 32 that either f (v) ≥ 0 for all v ∈ (0, 1) or there exist v1 < v2 such
that f (v) ≤ 0 for all v ∈ [v1, v2], with f (v) positive otherwise. This then leads to the following
lower bound for guaranteed annuity options.

Theorem 33. Let S
(i)
T be a process given in terms of exponential Lévy model, i.e., S

(i)
T =

S
(i)
0 eX

(i)
T where i = 1, 2, ..., n − 1 and let Λ be a normally distributed random variable such

that
(
X

(i)
T ,Λ

)
∼ BVN

(
µ(i), µΛ,

(
σ(i)
)2
, σ2

Λ, ρ
(iΛ)
)

. Let f (v) be defined according to equation

(5.5.40). Then a lower bound for the value of a GAO bought by a life of present age x with
guaranteed rate g is given by

C(0, x, T ) ≤ GAOLB3,

where

GAOLB3 = gP̃ (0, T )

(
n−1∑
i=1

S
(i)
0 eµ

(i)+
(σ(i))

2

2 − (K − 1)

)
(5.5.46)

if f (v) ≥ 0 for all v ∈ (0, 1). Otherwise,

GAOLB3 = gP̃ (0, T )

(
n−1∑
i=1

S
(i)
0 eµ

(i)+
(σ(i))

2

2 Φ
(
ρ(iΛ)σ(i) − z2

)
− (K − 1) Φ (−z2)

)
(5.5.47)

if ρ(iΛ) are all of positive sign and

GAOLB3 = gP̃ (0, T )

(
n−1∑
i=1

S
(i)
0 eµ

(i)+
(σ(i))

2

2

(
Φ
(
z1 − ρ(iΛ)σi

)
+ Φ

(
ρ(iΛ)σ(i) − z2

))
− (K − 1)

(
Φ (z1) + Φ (−z2)

))
(5.5.48)

otherwise, where z1 ≤ z2 solve the following equation in z

n−1∑
i=1

S
(i)
0 eµ

(i)+
(σ(i))

2
(

1−(ρ(iΛ))
2
)

2 +ρ(iΛ)σ(i)z − (K − 1) = 0. (5.5.49)

Proof. The case where f (v) ≥ 0 is trivial. In the case where f (v) < 0 for some v, we see from
Proposition 3 that f (v) = 0 has one solution in (0, 1) if the ρ(iΛ) are of the same sign and
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two otherwise. By setting z1 = Φ−1 (v) for each i, we obtain the solutions to equation (5.5.49)
(where the case with ρiΛ > 0 for every i is analogous to setting z1 = −∞). Let z1 and z2 solve
equation (5.5.49) and set v = Φ (z). Then, defining I = (−∞, z1) ∪ (z2,∞), we can write the
stop-loss transform of Sl defined in equation (5.5.33) in the following way:

Ψ
(
Sl, (K − 1)

)
= Ẽ

[(
n−1∑
i=1

S
(i)
0 eµ

(i)+
(σ(i))

2
(

1−(ρ(iΛ))
2
)

2 +ρ(iΛ)σ(i)Z − (K − 1)

)
1{Z∈I}

]

=

n−1∑
i=1

S
(i)
0 eµ

(i)+
(σ(i))

2
(

1−(ρ(iΛ))
2
)

2

(∫ z1

−∞
eρ

(iΛ)zφ (z) dz +

∫ ∞
z2

eρ
(iΛ)zφ (z) dz

)
− (K − 1) (Φ (z1) + Φ (−z2)) . (5.5.50)

Therefore, we obtain equations (5.5.48) and (5.5.47).

5.6 Upper Bounds for Guaranteed Annuity Options

We derive a couple of upper bounds for the Guaranteed Annuity Options.

5.6.1 A First Upper Bound

This section will focus on finding an upper bound for Guaranteed Annuity Options by using
comonotonicity theory in a manner similar to Kaas et al. (2000), Dhaene et al. (2000), Chen
et al. (2008) and Linders et al. (2012). Hobson et al. (2005) uses the method of Lagrange
multipliers to find an upper bound for basket options.

Define the comonotonic counterpart of S =
(
S

(1)
T , ..., S

(n−1)
T

)
with U ∼ U (0, 1) as Su =(

F−1

S
(1)
T

(U) , ..., F−1

S
(n−1)
T

(U)

)
. Further define

Sc =

n−1∑
i=1

F−1

S
(i)
T

(U) =

n−1∑
i=1

Sci . (5.6.1)

Clearly (see for example in Dhaene et al., 2002a),

S ≤cx Sc (5.6.2)

In other words,

Ẽ

(n−1∑
i=1

S
(i)
T − (K − 1)

)+
 ≤ Ẽ

(n−1∑
i=1

Sci − (K − 1)

)+
 (5.6.3)

and we have

Ẽ

(n−1∑
i=1

Sci − (K − 1)

)+
 =

n−1∑
i=1

Ẽ

[(
S

(i)
T − F

−1

S
(i)
T

(FSc ((K − 1)))

)+
]
−K3 (5.6.4)

where
K3 =

(
(K − 1)− F−1

Sc (FSc (K − 1))
)

(1− FSc (K − 1)) (5.6.5)

and it is understood that (K − 1) ∈
(
F−1+
Sc (0) , F−1

Sc (1)
)
. As a result, an upper bound for GAO

is given as

C(0, x, T ) ≤ gP̃ (0, T )

(
n−1∑
i=1

Ẽ

[(
Si − F−1

S
(i)
T

(FSc (K − 1))

)+
]
−K3

)
(5.6.6)
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where K3 is defined in (5.6.5). Further we write the upper bound given above as

C(0, x, T ) ≤ gP̃ (0, T )

(
n−1∑
i=1

Ẽ

[(
S

(i)
T − F

−1

S
(i)
T

(x)

)+
]
−K3

)
:= GAOUB1 (5.6.7)

where x ∈ (0, 1) (see for example Dhaene et al. (2002a)) is the solution of the equation

n−1∑
i=1

F−1

S
(i)
T

(x) = K − 1. (5.6.8)

5.6.2 An Improved Upper Bound by conditioning

We can improve on the upper bound obtained above by finding a conditioning variable Λ under
which the Si are dependent. This is discussed in detail for basket options in Deelstra et al.

(2004) using a choice of Λ such that Λ ≥ dΛ implies

n−1∑
i=1

S
(i)
T ≥ (K − 1). We use a different

more simplified approach for GAOs. We assume that some additional information is available

concerning the stochastic nature of
(
S

(1)
T , S

(2)
T , ..., S

(n−1)
T

)
. That is, we can find a random

variable Λ, with a known distribution, such that the individual conditional distributions of S
(i)
T

given the event Λ = λ are known for all i and all possible values of λ. Such an approach can
be found in Kaas et al. (2000), Dhaene et al. (2002a) and Dhaene et al. (2002b).

Define

Su =

n−1∑
i=1

F−1

S
(i)
T |Λ

(U) =

n−1∑
i=1

Sui , (5.6.9)

where U ∼ U (0, 1). Then we have

S ≤cx Su ≤cx Sc (5.6.10)

Now let Su =
(
Su1 , ..., S

u
n−1

)
. Since

(
F−1

S
(1)
T |Λ=λ

, ..., F−1

S
(n−1)
T |Λ=λ

)
is comonotonic, we have,

F−1
Su|Λ=λ (p) =

n−1∑
i=1

F−1

S
(i)
T |Λ=λ

(p) , p ∈ (0, 1) . (5.6.11)

It follows that, in this case

n−1∑
i=1

F−1

S
(i)
T |Λ=λ

(
FSu|Λ=λ (K − 1)

)
= K − 1. (5.6.12)

and so we have

f (λ) = Ẽ

(n−1∑
i=1

Sui − (K − 1)

)+
∣∣∣∣∣∣Λ = λ


=

n−1∑
i=1

Ẽ

[(
S

(i)
T − F

−1

S
(i)
T |Λ=λ

(
FSu|Λ=λ (K − 1)

))+
∣∣∣∣∣Λ = λ

]
−K4, (5.6.13)

where

K4 =
(

(K − 1)− F−1
Su|Λ=λ

(
FSu|Λ=λ (K − 1)

)) (
1− FSu|Λ=λ (K − 1)

)
(5.6.14)

and it is clear that (K − 1) ∈
(
F−1+
Su|Λ=λ (0) , F−1

Su|Λ=λ (1)
)

. By applying the tower property and
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using the convex order relationship given by (5.6.10), we obtain an upper bound for GAO, i.e.,

C(0, x, T ) ≤ gP̃ (0, T ) Ẽ
[
(Su − (K − 1))

+
]

= gP̃ (0, T ) Ẽ [f (λ)]

= gP̃ (0, T )×(
n−1∑
i=1

∫ ∞
−∞

Ẽ

[(
S

(i)
T − F

−1

S
(i)
T |Λ=λ

(
FSu|Λ=λ (K − 1)

))+
∣∣∣∣∣Λ = λ

]
dFΛ (λ)−K4

)
(5.6.15)

where K4 is defined in (5.6.14). Given the event Λ = λ, let x be the solution to the following
equation

n−1∑
i=1

F−1

S
(i)
T |Λ=λ

(x) = K − 1. (5.6.16)

Further, we see from equation (5.6.12), that x = FSu|Λ=λ (K − 1). It therefore follows, as a
result of equation 93 of Dhaene et al. (2002a) that an upper bound for GAO is given as

C(0, x, T ) ≤ gP̃ (0, T )

(
n−1∑
i=1

∫ ∞
−∞

Ẽ

[(
S

(i)
T − F

−1

S
(i)
T |Λ=λ

(x)

)+
∣∣∣∣∣Λ = λ

]
dFΛ (λ)−K4

)
=: GAOUB

(2)
j , (5.6.17)

where x is obtained by solving (5.6.16).

Since the above upper bound is an upper bound for all j, it follows that we can find the
optimal upper bound by maximizing equation (5.6.17) over j ∈ {1, 2, ..., n − 1}. As remarked
earlier, this bound improves upon the unconditional bound given by (5.6.7). In case if the
marginal cdfs F

S
(i)
T |Λ

are strictly increasing, one can put K4 = 0 in (5.6.17) to obtain the upper

bound.

5.6.3 An Upper Bound based on the Arithmetic-Geometric Mean In-
equality

In order to obtain an upper bound for GAOs which is directly applicable to the affine set up, we
make use of arithmetic-geometric mean inequality in a manner similar to Caldana et al. (2016)
who used this methodology to arrive at an upper bound for basket options.

Let us first define the arithmetic and geometric mean of the (n− 1) pure endowments
appearing in the payoff of GAO (c.f. (5.3.12)) respectively as

A
(n−1)
T =

1

n− 1

n−1∑
i=1

S
(i)
T (5.6.18)

and

G
(n−1)
T =

(
n−1∏
i=1

S
(i)
T

) 1
n−1

, (5.6.19)

where S
(i)
T ; i = 1, 2, ..., n− 1 are defined in equation (5.3.13). It is well known that

A
(n−1)
T ≥ G(n−1)

T a.s. (5.6.20)

Further, let us define the log-geometric average as

Y
(n−1)
T =

1

n− 1

n−1∑
i=1

lnS
(i)
T . (5.6.21)
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Next we define as in equation (5.4.9),

X
(i)
T = ln

(
S

(i)
T

S
(i)
0

)
; i = 1, 2, ..., n− 1. (5.6.22)

Further, we assume that the joint characteristic function of
(
X

(1)
T , ..., X

(n−1)
T

)
can be obtained

under the transformed measure Q̃, where we define

φT (γ) = Ẽ
[
ei
∑n−1
k=1 γkX

(k)
T

]
(5.6.23)

with γ = [γ1, γ2, ..., γn−1]. As the next step, we obtain the relationship between log-geometric

average and X
(i)
T ’s as follows

Y
(n−1)
T =

1

n− 1

n−1∑
i=1

ln

(
S

(i)
T

S
(i)
0

S
(i)
0

)

=
1

n− 1

n−1∑
i=1

X
(i)
T + Y

(n−1)
0 . (5.6.24)

Next, we try to express the characteristic function of log-geometric average under the trans-

formed measure Q̃ in terms of the joint characteristic function of X
(i)
T ’s viz. φT (γ) defined

in equation (5.6.23). Let φYT (γ0) denote the characteristic function of log-geometric average

Y
(n−1)
T with parameter γ0. Then we have

φYT (γ0) = Ẽ
[
eiγ0Y

(n−1)
T

]
= Ẽ

[
eiγ0Y

(n−1)
0 +i

∑n−1
k=1 ( γ0

n−1 )X(k)
T

]
= eiγ0Y

(n−1)
0 φT

(
γ0

n− 1
1

)
(5.6.25)

where 1 = (1, 1, ..., 1) is a 1 × (n− 1) vector of 1’s, so that γ0

n−11 is 1 × (n− 1) vector with
components γ0

n−1 and φT (γ) is defined in (5.6.23). In light of equation (5.6.18), we can express
the GAO payoff formula given in equation (5.3.12) as

C(0, x, T ) = g (n− 1) P̃ (0, T ) Ẽ

[(
A

(n−1)
T −K ′

)+
]
, (5.6.26)

where

K ′ =
K − 1

n− 1
. (5.6.27)

Adding and subtracting G
(n−1)
T within the max function on R.H.S. of equation (5.6.26), and

exploiting equation (5.6.20), we obtain an upper bound of GAO as

C(0, x, T ) ≤ g (n− 1) P̃ (0, T )

(
Ẽ

[(
G

(n−1)
T −K

′
)+
]

+ Ẽ
[
A

(n−1)
T

]
− Ẽ

[
G

(n−1)
T

])
=: GAOUB (5.6.28)

We make use of Fourier inversion to compute the call type expectation involved in the upper
bound and we state the result in the following proposition.

Proposition 34. Given the geometric mean of n − 1 pure endowments defined in equation
(5.6.19) and K

′
> 0,

Ẽ

[(
G

(n−1)
T −K

′
)+
]

=
e−δ lnK′

π

∫ ∞
0

e−iη lnK
′

ΨG
T (η; δ) dη (5.6.29)
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where ΨG
T (η; δ) denotes the Fourier transform of Ẽ

[(
G

(n−1)
T −K ′

)+
]

with respect to lnK
′

along with the damping factor eδ lnK
′

such that

ΨG
T (η; δ) = ei(η−i(δ+1))Y

(n−1)
0

φT

(
η−i(δ+1)
n−1 1

)
δ2 + δ − η2 + iη (2δ + 1)

, (5.6.30)

where the parameter δ tunes the damping factor (c.f. Carr and Madan, 1998; Caldana et al.,
2016) and φT (.) is defined in equation (5.6.23).

Proof. Let fYT (y) denote the probability density function (p.d.f.) of the log-geometric average

Y
(n−1)
T . We introduce the damping factor in accordance with Carr and Madan (1998). Then,

by definition, the Fourier transform of Ẽ

[(
G

(n−1)
T −K ′

)+
]

with respect to lnK
′

along with

the damping factor eδ lnK
′

is given as

ΨG
T (η; δ) =

∫
R
eiη lnK

′
+δ lnK

′

Ẽ

[(
eY

(n−1)
T −K

′
)+
]
d lnK

′

=

∫
R
eiη lnK

′
+δ lnK

′
∫ ∞

lnK′

(
ey −K

′
)
fYT (y) dy d lnK

′

=

∫
R
eiη lnK

′
+δ lnK

′
∫ ∞

lnK′
eyfYT (y) dy d lnK

′

−
∫
R
eiη lnK

′
+δ lnK

′
∫ ∞

lnK′
K
′
fYT (y) dy d lnK

′

= ΨG1

T (η; δ)−ΨG2

T (η; δ) . (5.6.31)

We evaluate both integrals by adopting a change of order of integration, as detailed below

ΨG1

T (η; δ) =

∫
R
ey
(∫ y

−∞
eiη lnK

′
+δ lnK

′

d lnK
′
)
fYT (y) dy

=
1

iη + δ

∫
R
ei(η−i(δ+1))yfYT (y) dy

=
φYT (η − i (δ + 1))

iη + δ

= ei(η−i(δ+1))Y
(n−1)
0

φT

(
η−i(δ+1)
n−1 1

)
iη + δ

. (5.6.32)

where the last couple of statements follow from the definition of the characteristic function of

Y
(n−1)
0 given in (5.6.25) and its link to the joint characteristic function of joint characteristic

function of
(
X

(1)
T , ..., X

(n−1)
T

)
defined in (5.6.23). On the same lines we have

ΨG2

T (η; δ) = ei(η−i(δ+1))Y
(n−1)
0

φT

(
η−i(δ+1)
n−1 1

)
iη + (δ + 1)

. (5.6.33)

Substituting ΨG1

T (η; δ) and ΨG2

T (η; δ) in equation (5.6.31), remembering the damping factor we
get the requisite result given in equation (5.6.29).

In a similar manner we obtain

Ẽ
[
G

(n−1)
T

]
= eY

(n−1)
0 φT

(
−i
n− 1

1

)
. (5.6.34)

We then plug the formulae (5.6.29) and (5.6.34) into equation (5.6.28) to obtain the upper
bound GAOUB.
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The Upper Bound under the Affine Set Up

Consider the affine set up of section 5.4 (c.f. equations (5.4.8)-(5.4.11)). Let φXT denote the
characteristic function of XT with parameter Λ under the transformed measure Q̃ so that

φXT (Λ) = Ẽ
[
ei〈Λ, XT 〉

]
. (5.6.35)

Now using equation (5.4.11), we see that the joint characteristic function of
(
X

(1)
T , ..., X

(n−1)
T

)
under the transformed measure Q̃, given in equation (5.6.23) becomes ,

φaff
T (γ) = φXT

(
−
n−1∑
k=1

γkψ̃ (k,R+M)

)
, (5.6.36)

where
(
−
∑n−1
k=1 γkψ̃ (k,R+M)

)
is the parameter of the characteristic function, with ψ̃ (k,R+M)

satisfying the equations (5.4.5) with τ = k. As a result, ΨG
T (η; δ) given in equation (5.6.30)

can be written in a more compact way as

ΨGaff

T (η; δ) = ei(η−i(δ+1))Y
(n−1)
0

φXT

(
− (η−i(δ+1))

n−1

∑n−1
k=1 ψ̃ (k,R+M)

)
δ2 + δ − η2 + iη (2δ + 1)

. (5.6.37)

Similarly, we have from equation (5.6.34),

Ẽaff
[
G

(n−1)
T

]
= eY

(n−1)
0 φXT

(
i

n− 1

n−1∑
k=1

ψ̃ (k,R+M)

)
. (5.6.38)

Moreover, using the definition of arithmetic average given in equation (5.6.18) and utilizing
(5.4.8), we see that

Ẽaff
[
A

(n−1)
T

]
=

1

n− 1

n−1∑
k=1

(
e−((r̄+µ̄)k+φ̃(k,R+M))L

(
ψ̃ (k,R+M)

))
, (5.6.39)

where as defined in Section 5.5.1, L denotes the Laplace transform of XT with parameter
ψ̃ (k,R+M) under the transformed measure Q̃. Finally we substitute equation (5.6.37) in the
expression (5.6.29) and then the result and equations (5.6.38)-(5.6.39) into (5.6.28) to get

GAOUBaff = g (n− 1) P̃ (0, T )

(
1

n− 1

n−1∑
k=1

(
e−((r̄+µ̄)k+φ̃(k,R+M))L

(
ψ̃ (k,R+M)

))
−eY

(n−1)
0 φXT

(
i

n− 1

n−1∑
k=1

ψ̃ (k,R+M)

)

+
e−δ lnK′

π

∫ ∞
0

e
−i
(
η lnK

′
−(η−i(δ+1))Y

(n−1)
0

)
δ2 + δ − η2 + iη (2δ + 1)

×

φXT

(
− (η − i (δ + 1))

n− 1

n−1∑
k=1

ψ̃ (k,R+M)

)
dη

)
, (5.6.40)

where φXT (.) is defined in equation (5.6.35) and L denotes the Laplace transform of XT under
the transformed measure Q̃.

5.7 Examples

We now derive lower and upper bounds by choosing specific models for the interest rate and
force of mortality.
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5.7.1 Vasicek Model

Let us consider the case where the interest rate (rt) and the force of mortality (µt) for an
insured aged x at time 0 obey the Vasicek model (c.f. Vasicek, 1977), with dynamics given by

drt = a (b− rt) dt+ σdW 1
t , (5.7.1)

where a, b and σ are positive constants and W 1
t is a standard Brownian motion and

dµt = cµtdt+ ξdZt, (5.7.2)

where c and ξ are positive constants and Zt is a standard Brownian motion correlated with W 1
t

so that
dW 1

t dZt = ρdt. (5.7.3)

This means that Zt = ρW 1
t +

√
1− ρ2W 2

t , where W 2
t is a standard Brownian motion indepen-

dent of W 1
t . It is important to fine tune the model in case of mortality by choosing c and ξ

properly to avoid the possibility of negative mortality rates. In fact, under this model, we have
(c.f. Liu et al., 2013, for details)

S
(i)
T = S

(i)
0 eX

(i)
T (5.7.4)

where
S

(i)
0 = α(i) (5.7.5)

with
α(i) = eD

(i)+H̃(i)

(5.7.6)

such that for i = 1, 2, ..., n− 1

D(i) =

(
b− σ2

2a2

)(
A(i) − i

)
− σ2

4a

(
A(i)

)2

(5.7.7)

with

A(i) =
1− e−ai

a
(5.7.8)

and

H̃(i) =

(
ρσξ

ac
− ξ2

2c2

)(
G̃(i) − i

)
+
ρσξ

ac

(
A(i) − φ(i)

)
+
ξ2

4c

(
G̃(i)

)2

(5.7.9)

with

G̃(i) =
eci − 1

c
(5.7.10)

and

φ(i) =
1− e(a−c)i

a− c
. (5.7.11)

Further
{
X

(i)
T

}
i=1,2,...,n−1

is defined as:

X
(i)
T = −

(
A(i)rT + G̃(i)µT

)
, (5.7.12)

where A(i) and G̃(i) are defined respectively in equations (5.7.8) and (5.7.10). Here we have
(c.f. Liu et al., 2013)

(rT , µT ) ∼ BVN
(
µrT , µµT , σ

2
rT , σ

2
µT , ρ (rT , µT )

)
(5.7.13)

where BV N stands for bivariate normal distribution and

µrT = Ẽ [rT ] = e−aT r0+b
(
1− e−aT

)
− σ2

2a2

(
1− e−aT

)2−ρσξ
c

[
ecT

(
e−cT − e−aT

)
a− c

− 1− e−aT

a

]
,

(5.7.14)
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σ2
rT =

σ2

2a

(
1− e−2aT

)
, (5.7.15)

µµT = Ẽ [µT ] = ecTµ0 −
ξ2

2c2
(
1− ecT

)2 − ρσξ

a

[
e−aT

(
eaT − ecT

)
a− c

− ecT − 1

c

]
, (5.7.16)

σ2
µT =

ξ2

2c

(
e2cT − 1

)
, (5.7.17)

and

Cov [rT , µT ] =
ρσξ

a− c

(
1− e−(a−c)t

)
(5.7.18)

with Cov standing for covariance. In light of equation (5.7.12) and (5.7.13), it is clear that

X
(i)
T ∼ N

(
µ(i),

(
σ(i)
)2
)

(5.7.19)

where µ(i) and
(
σ(i)
)2

are defined respectively in equations (5.5.18) and (5.5.19) are given as
follows in the context of the Vasicek model.

µ(i) = −
(
A(i)µrT + G̃(i)µµT

)
(5.7.20)

(
σ(i)
)2

=
(
A(i)

)2

σ2
rT +

(
G̃(i)

)2

σ2
µT + 2A(i)G̃(i)Cov [rT , µT ] . (5.7.21)

In fact, one may write

X
(i)
T = −W (i)

T , (5.7.22)

where W
(i)
T ∼ N

(
−µ(i),

(
σ(i)
)2)

. Finally, for i 6= j we note that

ρ(ij) = Corr
(
X

(i)
T , X

(j)
T

)
= Corr

(
W

(i)
T ,W

(j)
T

)
(5.7.23)

where Corr stands for correlation and for i 6= j = 1, 2, ..., n− 1

ρ(ij) =
A(i)A(j)σ2

rT +
(
AiG̃

(j) +A(j)G̃(i)
)
Cov [rT , µT ] + G̃(i)G̃(j)σ2

µT

σ(i)σ(j)
. (5.7.24)

The computation of the price bounds for GAO hinges upon the availability of the price of
SZCBs P̃ (0, T ). We refer to Liu et al. (2013) for the price of these instruments under the
Vasicek model and note that

P̃ (0, T ) = α(0)eV
(0)

(5.7.25)

with
α(0) = eD

(0)+H̃(0)

(5.7.26)

where

D(0) =

(
b− σ2

2a2

)(
A(0) − T

)
− σ2

4a

(
A(0)

)2

(5.7.27)

with

A(0) =
1− e−aT

a
(5.7.28)

and

H̃(0) =

(
ρσξ

ac
− ξ2

2c2

)(
G̃(0) − T

)
+
ρσξ

ac

(
A(0) − φ(0)

)
+
ξ2

4c

(
G̃(0)

)2

(5.7.29)

with

G̃(0) =
ecT − 1

c
(5.7.30)

and
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φ(0) =
1− e(a−c)T

a− c
. (5.7.31)

and finally

V (0) = −
(
A(0)r0 + G̃(0)µ0

)
, (5.7.32)

where A(0) and G̃(0) are defined respectively in equations (5.7.28) and (5.7.30) and r0 and µ0

are the initial (time 0) values of the interest rate and mortality rate. We now derive lower and

upper bounds for the Vasicek model on the lines of GAOLB
(2)
j and GAOUB

(2)
j respectively.

The Lower Bound GAOLB
(V S)
j

We know that if (X, Y ) ∼ BVN
(
µX , µY , σ

2
X , σ

2
Y , ρ

)
, the conditional distribution of the lognor-

mal random variable eX , given the event eY = y is given as

FeX |eY =y (x) = Φ

 loge x−
(
µX + ρσXσY (loge y − µY )

)
σX
√

1− ρ2

 . (5.7.33)

where Φ denotes the c.d.f. of standard normal distribution. Clearly for two assets, say the
ith and jth asset in the basket considered above, it is evident from (5.7.19) and (5.7.23) that

(Xi, Xj) ∼ BVN
(
µ(i), µ(j),

(
σ(i)
)2
,
(
σ(j)

)2
, ρ(ij)

)
. Further from equation (5.7.4) as S

(i)
T =

S
(i)
0 eX

(i)
T , we have from equation (5.7.33) that the distribution function of S

(i)
T conditional on

the event S
(j)
T = s is given as

F
S

(i)
T |S

(j)
T =s

(x) = Φ (a (x))

where a (x) is given by

a (x) =

loge x−
(

log
(
S

(i)
0

)
+ µ(i) + ρ(ij) σ(i)

σ(j)

(
log

(
s

S
(j)
0

)
− µ(j)

))
σ(i)

√(
1−

(
ρ(ij)

)2) . (5.7.34)

As the differentiation of c.d.f. yields the p.d.f., therefore the conditional density function of

S
(i)
T given S

(j)
T = s satisfies the following equation:

f
S

(i)
T |S

(j)
T =s

(x) =
1

xσ(i)

√(
1−

(
ρ(ij)

)2)φ (a (x)) , (5.7.35)

where φ denotes the p.d.f. of standard normal distribution. As a result, the conditional expec-

tation of S
(i)
T given S

(j)
T is given by the expression

Ẽ
(
S

(i)
T |S

(j)
T

)
= S

(i)
0

(
S

(j)
T

S
(j)
0

)ρ(ij) σ(i)

σ(j)

e
µ(i)+

(σ(i))
2
(

1−(ρ(ij))
2
)

2 −ρ(ij) σ(i)

σ(j)
µ(j)

(5.7.36)

Invoking equation (5.5.21) and denoting the individual components of the sum on the r.h.s.
of equation (3.5.6) as Yij , we see that under the assumption ρ(ij) ≥ 0 ∀i, j, the vector(
Y1j , Y2j , ..., Y(n−1)j

)
is comonotonic, and so define

Sl3j =

n−1∑
i=1

Yij (5.7.37)

and from (5.7.36), (5.5.21) and (5.7.37), it is evident that
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S ≥cx Sl3j . (5.7.38)

Further, the stop-loss transform of Sl3j can be written as the sum of stop-loss transform of its
components (see for example in Dhaene et al., 2002a), i.e.,

Ẽ

[(
Sl3j − (K − 1)

)+
]

=

n−1∑
i=1

Ẽ

[(
Yij − F−1

Yij

(
F
S
l3
j

(K − 1)
))+

]
(5.7.39)

where F
S
l3
j

(K − 1) is the distribution function of Sl3 evaluated at K − 1 so that we have:

F
S
l3
j

(K − 1) = P
[
Sl3j ≤ (K − 1)

]
= P

n−1∑
i=1

S
(i)
0

(
S

(j)
T

S
(j)
0

)ρ(ij) σ(i)

σ(j)

e
µ(i)+

(
1−(ρ(ij))

2
)

2 −ρ(ij) σ(i)

σ(j)
µ(j)

≤ (K − 1)


(5.7.40)

In fact Sl3j ≤ (K − 1) if and only if S
(j)
T ≤ xS

(j)
0 provided that ρ(ij) ≥ 0 ∀ i, j, where we

substitute x for Sj/S
(j)
0 in the above expression and obtain its value by solving the following

equation

n−1∑
i=1

S
(i)
0 (x)

ρ(ij) σ(i)

σ(j) e
µ(i)+

(σ(i))
2
(

1−(ρ(ij))
2
)

2 −ρ(ij) σ(i)

σ(j)
µ(j)

− (K − 1) = 0. (5.7.41)

As a result, we have:

F
S
l3
j

(K − 1) = FSj

(
xS

(j)
0

)
= F

Y
(ij)
T

S(i)
0 (x)

ρ(ij) σ(i)

σ(j) e
µ(i)+

(σ(i))
2
(

1−(ρ(ij))
2
)

2 −ρ(ij) σ(i)

σ(j)
µ(j)

 .(5.7.42)

Using this result in (5.7.39) along with the convex order relationship between S and Sl3j as
given by equation (5.7.38), we obtain

C(0, x, T ) ≥ gP̃ (0, T )

(
n−1∑
i=1

S
(i)
0

(
S

(j)
0

)−ρ(ij) σ(i)

σ(j)

e
µ(i)+

(σ(i))
2
(1−ρ2ij)
2 −ρ(ij) σ(i)

σ(j)
µ(j)

×

P

(
xS

(j)
0 , T, ρ(ij) σ

(i)

σ(j)
, j

))
(5.7.43)

where µ(i),
(
σ(i)
)2

and ρ(ij) for the Vasicek model are given respectively in (5.7.20), (5.7.21)
and (5.7.23) and P is defined in (5.5.31) so that we have

P

(
xS

(j)
0 , T, ρ(ij) σ

(i)

σ(j)
, j

)
=

(
S

(j)
0

)ρ(ij) σ(i)

σ(j)

(
e
ρ(ij) σ(i)

2σ(i) (ρ(ij)σ(i)σ(j)−2µ(j))Φ
(
d(1j)

)
− xρ

(ij) σ(i)

σ(j) Φ
(
d(2j)

))
, (5.7.44)

where d2j and d1j are given respectively as

d(2j) =
loge

(
1
x

)
− µ(j)

σ(j)
(5.7.45)
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d(1j) = d(2j) + ρ(ij)σ(i) (5.7.46)

Inserting (5.7.44) in (5.7.43), we achieve the lower bound GAOLB
(V S)
j as follows

C(0, x, T ) ≥ gP̃ (0, T )

(
n−1∑
i=1

S
(i)
0 e

µ(i)+
(σ(i))

2
(

1−(ρ(ij))
2
)

2 −ρ(ij) σ(i)

σ(j)
µ(j)

×

(
e
ρ(ij) σ(i)

2σ(j) (ρ(ij)σ(i)σ(j)−2µ(j))Φ
(
d(1j)

)
− xρ

(ij) σ(i)

σ(j) Φ
(
d(2j)

)))
=: GAOLB

(V S)
j . (5.7.47)

Since the above lower bound is a lower bound for every j, we can maximise this for j ∈
{1, 2, ..., n− 1} to obtain an optimal lower bound for GAO in the Vasicek Case.

The Improved Upper Bound GAOUB
(V S)
j

In section 5.6.2, we have shown that the upper bound SWUB1 can be improved by assuming

that there exists a random variable Λ such that Cov
(
S

(i)
T ,Λ

)
6= 0 ∀i. Suppose this assumption

is true here and we choose

Λ =

n−1∑
k=1

Y
(k)
T (5.7.48)

where

Y
(k)
T =

X
(k)
T − µ(k)

σ(k)
(5.7.49)

where in the context of the Vasicek Model, X
(k)
T , µ(k) and σ(k) are defined respectively in

equations (5.7.12), (5.7.20) and (5.7.21) and it is evident from (5.7.19) that

Y
(k)
T ∼ N (0, 1) ; k = 1, 2, ..., n− 1 (5.7.50)

and as a result by the definition of Λ in equation (5.7.48)

Λ ∼ N
(
0, σ2

Λ

)
(5.7.51)

where

σ2
Λ = (n− 1) +

n−1∑
k=1

n−1∑
l=1

k 6=l

ρ(kl) (5.7.52)

where ρ(kl) is defined in equation (5.7.23). Also simple calculations show that the correlation

coefficient between X
(k)
T and Λ is given by

ρkΛ =

n−1∑
l=1

ρ(kl)

√
(n− 1) +

∑n−1
k=1

∑n−1
l=1

k 6=l
ρ(kl)

; k = 1, 2, ..., n− 1. (5.7.53)

As a result (
X

(k)
T , Λ

)
∼ BVN

(
µ(k), 0,

(
σ(k)

)2

, σ2
Λ, ρkΛ

)
. (5.7.54)

Now, from equation (5.6.17) noting that the marginal cdfs F
S

(i)
T |Λ=λ

are strictly increasing so

that K4 = 0, we see that an upper bound for GAO is given as

C(0, x, T ) ≤ gP̃ (0, T )

n−1∑
i=1

∫ ∞
−∞

E

[(
S

(i)
T − F

−1

S
(i)
T |Λ=λ

(x)

)+
∣∣∣∣∣Λ = λ

]
dΦ

(
λ

σΛ

)
, (5.7.55)
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where using equation (5.6.16), we see that x is obtained by solving the following equation

n−1∑
i=1

F−1

S
(i)
T |Λ=λ

(x) = K − 1. (5.7.56)

An explicit formula for the conditional inverse distribution function of S
(i)
T given the event

Λ = λ, is provided by the following result.

Proposition 35. Under the assumptions of the Vasicek model, conditional on the event Λ = λ,

the conditional inverse distribution function of S
(i)
T for i = 1, 2, ..., n− 1 is given by

F−1

S
(i)
T |Λ=λ

= S
(i)
0 e

µ(i)+ρiΛ
σ(i)

σΛ
λ+σ(i)

√
1−ρ2

iΛΦ−1(x)
. (5.7.57)

Proof. The proof follows directly from equations (5.5.35) and (5.5.36) of Section 5.5.3.

From equation (5.7.56), we then wish to solve the following for x

n−1∑
i=1

S
(i)
0 e

µ(i)+ρiΛ
σ(i)

σΛ
λ+σ(i)

√
1−ρ2

iΛΦ−1(x)
= K − 1. (5.7.58)

As a result, using equation (5.7.55), the improved upper bound for Guaranteed Annuity Option
is given by the following set of equations

C(0, x, T ) ≤ gP̃ (0, T )

∫ ∞
−∞

(
n−1∑
i=1

S
(i)
0 e

µ(i)+ρiΛ
σ(i)

σΛ
λ+ 1

2 (σ(i))
2
(1−ρ2

iΛ)Φ
(
c
(i)
1

)
− (K − 1) (1− x)

)
dΦ

(
λ

σΛ

)
=: GAOUB

(V S)
j (5.7.59)

and

c
(i)
1 = σ(i)

√
(1− ρ2

iΛ)− Φ−1 (x) i = 1, 2, ..., n− 1 (5.7.60)

where x ∈ (0, 1) solves equation (5.7.58).

5.7.2 The Multi-CIR Model

We now consider a p-dimensional affine process X := (Xt)t≥0 having independent components
(Xit)t≥0 that function according to the following CIR risk-neutral dynamics:

dXit = ki (θi −Xit) dt+ σi
√
XitdW

Q
it , i = 1, ..., p. (5.7.61)

One can refer to Deelstra et al. (2016) to show that this model fits into the general affine
framework.

Survival Zero Coupon Bond Pricing

Adhering to the notations of the affine set-up defined in section 5.4, in context of mortality and
interest rate, let M,R ∈ Rn with respective components Mi, Ri; i = 1, 2, ..., p. The price of a
zero-coupon bond under the multi CIR model (5.7.61) is given by

P̃ (t, T ) = E
[
e−
∫ T
t

(r̄+µ̄)+〈(R+M),Xs〉ds|Ft
]

= e−(r̄+µ̄)(T−t)
p∏
i=1

E
[
e−
∫ T
t
〈(Ri+Mi),Xis〉ds|Ft

]
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= e−(r̄+µ̄)(T−t)
p∏
i=1

e−φ̃i(T−t,Ri+Mi)−ψ̃i(T−t,Ri+Mi)Xit (5.7.62)

where φ̃i and ψ̃i satisfy the following Riccatti equations for every i = 1, 2, ..., p (c.f. Duffie et al.,
2000): {

∂ψ̃(τ,ui)
∂τ = 1− kiψ̃i (τ, ui) +

uiσ
2
i

2 ψ̃i (τ, ui)
2
,

∂φ̃(τ,ui)
∂τ = kiθiuiψ̃i (τ, ui) ,

(5.7.63)

with τ = T − t, ui = Ri + Mi and initial conditions ψ̃i (0, ui) = 0 and φ̃i (0, ui) = 0. The
solutions of this system with i = 1, 2, ..., p are

ψ̃i (τ, ui) =
2ui

η (ui) + ki
− 4ui + η (ui)

η (ui) + ki

× 1

(η (ui) + ki) exp [η (ui) τ ] + η (ui)− ki
(5.7.64)

φ̃i (τ, ui) =
kiθi
σ2
i

[η (ui) ki] τ

+
2kiθi
σ2
i

log [(η (ui) + ki) exp [η (ui) τ ] + η (ui)− ki]

−2kiθi
σ2
i

log (2η (ui)) (5.7.65)

where η (ui) =
√
k2
i + 2uiσ2

i .

Price of the GAO

We use equations (5.4.12) and (5.7.62) to obtain the price of the GAO under the transformed
measure Q̃ as

C(0, x, T ) = gP̃ (0, T ) Ẽ

n−1∑
i=1

e−(r̄+µ̄)i

p∏
j=1

e−φ̃j(i,Rj+Mj)−ψ̃j(i,Rj+Mj)XjT − (K − 1)

+
(5.7.66)

where P̃ (0, T ) given by equation (5.7.62) with τ = T while ψ̃j (i, Rj +Mj) and φ̃j (i, Rj +Mj)
are given by equations (5.7.64) and (5.7.65).

Distribution of XT

In order to obtain explicit bounds for the GAO in the multidimensional CIR case, we need to
obtain the distribution of XjT under the transformed measure Q̃. We state this in the following
proposition (c.f. Cox et al., 1985; Deelstra et al., 2016, for details).

Proposition 36. The dynamics of the CIR process Xjt defined in equation (5.7.61) under the

transformed measure Q̃ are given by

dXjt = k
′

j

(
θ
′

j −Xjt

)
dt+ σj

√
XjtdW

′

jt, j = 1, ..., p. (5.7.67)

where
k
′

j = kj + σ2
j ψ̃j (0, Rj +Mj) , (5.7.68)

θ
′

j =
kjθj

kj + σ2
j ψ̃j (0, Rj +Mj)

(5.7.69)

and Xj0; j = 1, 2, ..., p is the initial value of the process. Then the density function of XjT is
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given by
fXjT (x) = f

χ2(νjT ,λjT )
cjT

(x) = cjT fχ2(νjT , λjT ) (cjTx) (5.7.70)

where fχ2(νjT , λjT ); j = 1, 2, ..., p is the p.d.f. of non-central χ2 with degrees of freedom νj and
non-centrality parameter λjT such that

cjT =
4k
′

j

σ2
j

(
1− e−k

′
jT
) , (5.7.71)

νjT =
4k
′

jθ
′

j

σ2
j

(5.7.72)

and
λjT = cjTXj0e

−k
′
jT . (5.7.73)

The moment generating function (m.g.f.) of XjT has a very interesting exposition as detailed
below (c.f. Dufresne, 2001, for details).

MXjT (sj) = (β (sj))
ν̄j eλ

′
jT (β(sj)−1) (5.7.74)

where
β (sj) = (1− sjµjT )

−1
, (5.7.75)

with

µjT =
2

cjT
, (5.7.76)

ν̄j =
νjT
2

(5.7.77)

and
λ
′

jT = 2λjT . (5.7.78)

The Lower Bound GAOLB(MCIR)

The lower bound GAOLB obtained in equation (5.5.13) condenses into a very compact formula
for the Multi-CIR case in a manner similar to the formula (5.5.14) under the affine set up.
Before unravelling the same, we see that in light of the notations defined in section 5.4, one can
write

S
(i)
T = S

(i)
0 eX

(i)
T ; i = 1, 2, ..., n− 1, (5.7.79)

where
S

(i)
0 = e−((r̄+µ̄)i+

∑p
j=1 φ̃j(i,Rj+Mj)) (5.7.80)

and

X
(i)
T = −

p∑
j=1

ψ̃j (i, Rj +Mj)XjT , (5.7.81)

where φ̃j (i, Rj +Mj) and ψ̃j (i, Rj +Mj) for i = 1, 2, ..., n − 1 and j = 1, 2, ..., p are given in
equations (5.7.64)-(5.7.65) with τ replaced by i. Further, XjT ; j = 1, 2, ..., p are independent
random variables and their m.g.f. is given in equation (5.7.74). This leads us to the formulation
of the lower bound for the Multi-CIR case presented in the form of the following proposition:

Proposition 37. The lower bound under the multi-CIR case is

GAOLBMCIR = gP̃ (0, T )

(
n−1∑
i=1

(
e−((r̄+µ̄)i+

∑p
j=1 φ̃j(i,Rj+Mj))+

∑p
j=1 λ

′
jT (β(−ψ̃j(i,Rj+Mj))−1)

 p∏
j=1

(
β
(
−ψ̃j (i, Rj +Mj)

))ν̄j)− (K − 1)

)+

(5.7.82)
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where β (.) is defined in (5.7.75) and ν̄j and λ
′

jT are given in equations (5.7.77)-(5.7.78) and

ψ̃j (i, Rj +Mj) for i = 1, 2, ..., n− 1; j = 1, 2, ..., p are given in (5.7.65).

Proof. Using the formula for lower bound given in equation (5.5.13)

GAOLB = gP̃ (0, T )

(
n−1∑
i=1

Ẽ
(
S

(i)
T

)
− (K − 1)

)+

(5.7.83)

Using the formula of S
(i)
T given in equations (5.7.79)-(5.7.81) we have

GAOLBMCIR = gP̃ (0, T )

(
n−1∑
i=1

(
e−((r̄+µ̄)i+

∑p
j=1 φ̃j(i,Rj+Mj))

×
p∏
j=1

MXjT

(
−ψ̃j (i, Rj +Mj)

))
− (K − 1)

)+

. (5.7.84)

Using the definition of m.g.f. of XjT ; j = 1, 2, ..., p given in equation (5.7.74) we obtain the
requisite result.

The Upper Bound GAOUB(MCIR)

Under the formulation of the pure endowments constituting the GAO basket under the MCIR
case ((5.7.79)-(5.7.81)), we write

Y
(n−1)
0 = − (r̄ + µ̄)n

2
− 1

n− 1

n−1∑
k=1

p∑
j=1

φ̃j (k,Rj +Mj) (5.7.85)

using the definition of log-geometric average Y
(n−1)
T given in equation (5.6.21) in Section 5.6.3.

We now exploit the set up of the upper bound under the affine case given in section 5.6.3 and note
that here instead of φ̃ (k,R+M) and ψ̃ (k,R+M), we have respectively

∑p
j=1 φ̃j (k,Rj +Mj)

and
∑p
j=1 ψ̃j (k,Rj +Mj) since we are dealing with a p-dimensional CIR process. Thus the

joint characteristic function of
(
X

(1)
T , ..., X

(n−1)
T

)
under the transformed measure Q̃, given in

equation (5.6.23) becomes ,

φMCIR
T (γ) =

p∏
j=1

φXjT

(
−
n−1∑
k=1

γkψ̃j (k,Rj +Mj)

)
, (5.7.86)

where γ = [γ1, γ2, ..., γn−1], φXjT ; j = 1, 2, ..., p denotes the characteristic function of the

XjT with parameter
(
−
∑n−1
k=1 γkψ̃j (k,Rj +Mj)

)
for j = 1, 2, ..., p, with ψ̃j (k,Rj +Mj) for

k = 1, 2, ..., n − 1; j = 1, 2, ..., p are given in equation (5.7.65) with τ replaced by k. φXjT (s)
can be obtained from the formula of its m.g.f. given in equation (5.7.74) by replacing s by is.
Further, we see that ΨG

T (η; δ) given in equation (5.6.30) reduces to

ΨGMCIR

T (η; δ) = ei(η−i(δ+1))Y
(n−1)
0

∏p
j=1 φXjT

(
− (η−i(δ+1))

n−1

∑n−1
k=1 ψ̃j (k,Rj +Mj)

)
δ2 + δ − η2 + iη (2δ + 1)

. (5.7.87)

Next, we obtain ẼMCIR
[
G

(n−1)
T

]
from equation (5.6.37) by utilizing (5.7.86). Further, we

compute

ẼMCIR
[
A

(n−1)
T

]
=

1

n− 1

n−1∑
k=1

e−((r̄+µ̄)k+
∑p
j=1 φ̃j(k,Rj+Mj))

p∏
j=1

MXjT

(
−ψ̃j (k,Rj +Mj)

) .

(5.7.88)
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Finally, we plug in the components one by one into equation (5.6.28) to obtain the upper bound

GAOUB(MCIR).

5.7.3 The Wishart Short Rate Model

The Set Up

In this section, we assume that the affine process X := (Xt)t≥0 is a d-dimensional Wishart
process. Given a d× d matrix Brownian motion W (i.e a matrix whose entries are independent
Brownian motions) the Wishart process X (without jumps) is defined as the solution of the
d× d-dimensional stochastic differential equation

dXt =
(
βQTQ+HXt +XtH

T
)
dt+

√
XtdWtQ+QT dWT

t

√
Xt, t ≥ 0, (5.7.89)

where X0 = x ∈ S+
d , β ≥ d− 1, H ∈Md, Q ∈ GLd and QT denotes its transpose. Md has been

defined in section 5.4 while GLd denote the set of invertible real d × d matrices. In short, we
assume that the law of X is WISd (x0, β,H,Q).

Existence and Uniqueness of Solution

This process was pioneered by Bru (1991) and she showed the existence and uniqueness of
a weak solution for equation (5.7.89). She also established the existence of a unique strong
solution taking values in S++

d , i.e. the interior of the cone of positive semi-definite symmetric
d× d matrices that we have denoted by S+

d .

Generator

Bru (1991) has calculated the infinitesimal generator of the Wishart process as:

A = Tr
((
βQTQ+Hx+ xHT

)
DS + 2xDSQTQDS

)
, (5.7.90)

where Tr stands for trace and DS = (∂/∂xij)1≤i,j≤d. A good reference for understanding

the detailed derivation of this generator is Alfonsi (2015) and following this reference we have
defined generator in Chapter 4.

Survival Zero Coupon Bond Pricing

We now give an explicit formula for calculating the survival zero coupon bond price under the
Wishart short rate model.

Theorem 38. Let the dynamics for short rate and mortality rate be given in accordance with
equation (5.4.1) respecively as

rt = r̄ + Tr [RXt] (5.7.91)

and
µt = µ̄+ Tr [MXt] (5.7.92)

for a process X with law WISd (x0, β,H,Q). Let R,M ∈ S++
d and τ = T − t, then the price of

a zero-coupon bond under the Wishart short rate model ( (5.7.91)-(5.7.92)) is given by

P̃ (t, T ) = E
[
e−
∫ T
t

(r̄+µ̄+Tr[(R+M)Xu])du|Ft
]

= e−φ̃(τ,R+M)−Tr[ψ̃(τ,R+M)Xt], (5.7.93)
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where φ̃ and ψ̃ satisfy the following system of ODEs:

∂φ̃
∂τ = Tr

[
βQTQψ̃ (τ,R+M)

]
+ r̄ + µ̄,

φ̃ (0, R+M) = 0,
∂ψ̃
∂τ = ψ̃ (τ,R+M)H +HT ψ̃ (τ,R+M) ,

−2ψ̃ (τ,R+M)QTQψ̃ (τ,R+M) +R+M,

ψ̃ (0, R+M) = 0.

(5.7.94)

Proof. Consider the expectation in equation (5.7.93). As remarked in section 5.2, the condi-
tioning on Ft can be reduced to that on Gt and so we define t ≤ T , define

F (t,Xt) = f (τ,Xt) = E
[
e−
∫ T
t

(r̄+µ̄+Tr[(R+M)Xu])du|Xt

]
. (5.7.95)

This conditional expectation is the Feynman-Kac representation which satisfies the following
Partial Differential Equation (PDE):{

∂f(τ,x)
∂τ = Af (τ, x)− (r̄ + µ̄+ Tr [(R+M)x]) f (τ, x) ,

f (0, x) = 1,
(5.7.96)

for all x ∈ S+
d , where A is the infinitesimal generator of the Wishart process given in equation

(5.7.90). We introduce a candidate solution given below

f (τ, x) = e−φ̃(τ,R+M)−Tr[ψ̃(τ,R+M)x] (5.7.97)

so that
∂f (τ, x)

∂τ
=

(
−∂φ̃
∂τ
− Tr

[
∂ψ̃

∂τ
x

])
f (τ, x) (5.7.98)

Also it is clear that

Ae−φ̃(τ,R+M)−Tr[ψ̃(τ,R+M)x] = e−φ̃(τ,R+M)Ae−Tr[ψ̃(τ,R+M)x], (5.7.99)

where on using the generator of the Wishart process given in equation (5.7.90), we have

Ae−Tr(ψ̃(τ,R+M)x) =

(
− Tr

[
βQTQψ̃ (τ,R+M)

]
+ Tr

[(
2ψ̃ (τ,R+M)QTQψ̃ (τ,R+M)

−ψ̃ (τ,R+M)H −HT ψ̃ (τ,R+M)

)
x

])
e−Tr(ψ̃(τ,R+M)x) (5.7.100)

Using equations (5.7.98)-(5.7.100) in equation (5.7.95) and canceling f (τ, x) throughout, we
get

−∂φ̃
∂τ
− Tr

[
∂ψ̃

∂τ
x

]
= −Tr

[
βQTQψ̃ (τ,R+M)

]
− (r̄ + Tr [(R+M)x]) + Tr

[(
2ψ̃ (τ,R+M)

×QTQψ̃ (τ,R+M)− ψ̃ (τ,R+M)H −HT ψ̃ (τ,R+M)

)
x

])
(5.7.101)

Comparing the terms independent of x and the coefficients of x on both sides of equation
(5.7.101), we get the required system of ODEs given in equation (5.7.94). This completes the
proof.

The methodology of solving the system of Riccati equations given in (5.7.94) appears in
Da Fonseca et al. (2008) where the authors propose that matrix Riccati equations can be
linearized by doubling the dimension of the problem (see Grasselli and Tebaldi, 2008; Deelstra
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et al., 2016). We state without proof the solution in the following proposition.

Proposition 39. The functions φ̃ and ψ̃ in Theorem 38 are given by{
ψ̃ (τ,R+M) = A−1

22 (τ)A21 (τ) ,

φ̃ (τ,R+M) = β
2

(
log (det (A22 (τ))) + τTr

[
HT
])

+ r̄ + µ̄.
(5.7.102)

where (
A11 (τ) A12 (τ)
A21 (τ) A22 (τ)

)
= exp

(
τ

(
H 2QTQ

R+M −HT

))
(5.7.103)

Alternative approaches for the pricing of zero coupon bond under the Wishart short rate
model can be found in Grasselli and Tebaldi (2008) and Gnoatto and Grasselli (2014).

Price of the GAO

We use Theorem 38 and equation (5.4.12) to obtain the price of the GAO under the transformed
measure Q̃ as

C(0, x, T ) = gP̃ (0, T ) Ẽ

(n−1∑
i=1

e−(r̄+µ̄)ie−φ̃(i,R+M)−Tr[ψ̃(i,R+M)XT ] − (K − 1)

)+
 ,

(5.7.104)
where P̃ (0, T ) is given by equation (5.7.94) with τ = T while ψ̃ (i, R+M) and φ̃ (i, R+M)
for i = 1, 2, ..., n− 1 are given by the system of equations (5.7.102) with τ = i.

Distribution of XT

In order to obtain explicit bounds for the GAO in the Wishart case, we need to obtain the
distribution of XT under the transformed measure Q̃. We state this in the following proposition
(c.f. Deelstra et al., 2016; Kang and Kang, 2013, for details).

Proposition 40. The dynamics of the Wishart process X defined in equation (5.7.89) under
the transformed measure Q̃ are given by

dXt =
(
βQTQ+H (t)Xt +XtH (t)

T
)
dt+

√
XtdWtQ+QT dWT

t

√
Xt, t ≥ 0, (5.7.105)

where
H (t) = H −QTQψ̃ (τ,R+M) , (5.7.106)

X0 = x ∈ S+
d , β ≥ d− 1, H ∈Md and Q ∈ GLd. Then

XT ∼Wd

(
β, V (0) , V (0)

−1
ψ (0)

T
xψ (0)

)
, (5.7.107)

where Wd stands for non-central Wishart Distribution with parameters as d, β, V (0) and

ψ (0)
T
xψ (0) with the last parameter known as non-centrality parameter and is denoted by Θ.

Moreover V (t) and ψ (t) solve the following system of ODEs{
d
dtψ (t) = −H (t)

T
ψ (t) ,

d
dtV (t) = −ψ (t)

T
QTQψ (t) ,

(5.7.108)

with terminal conditions ψ (T ) = Id and V (T ) = 0.

We now state two propositions in context of non-central Wishart Distribution which are
very important for the derivation of bounds for the GAO in the Wishart case (c.f. Pfaffel, 2012;
Gupta and Nagar, 2000).

Proposition 41. (Laplace Transform of Non-Central Wishart Distribution) Consider XT ∼
Wd (β, V (0) ,Θ) with Θ = V (0)

−1
ψ (0)

T
xψ (0). Then the Laplace transform of XT is given
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by

L (U) = Ẽ
[
eTr[−UXT ]

]
= det (Id + 2V (0)U)

− β2 eTr[−Θ(Id+2V (0)U)−1V (0)U] (5.7.109)

where U ∈ S+
d .

Proposition 42. (Characteristic Function of Non-Central Wishart Distribution) Consider

XT ∼ Wd (β, V (0) ,Θ) with Θ = V (0)
−1
ψ (0)

T
xψ (0). Then the Characteristic Function

of XT is given by

φXT (Λ) = Ẽ
[
eTr[iΛXT ]

]
= det (Id − 2iV (0) Λ)

− β2 eTr[iΘ(Id−2V (0)Λ)−1V (0)Λ] (5.7.110)

where Λ ∈Md.

The Lower Bound GAOLB(WIS)

Under the Wishart set up, lower bound GAOLB obtained in equation (5.5.13) reduces to a
very neat form. Before arriving at the formula, we define the following notations in the spirit
of section 5.4.

S
(i)
T = S

(i)
0 eX

(i)
T ; i = 1, 2, ..., n− 1, (5.7.111)

where
S

(i)
0 = e−((r̄+µ̄)i+φ̃(i,R+M)) (5.7.112)

and
X

(i)
T = −Tr

[
ψ̃ (i, R+M)XT

]
, (5.7.113)

where ψ̃ (i, R+M) and φ̃ (i, R+M) for i = 1, 2, ..., n− 1 are given by the system of equations
(5.7.102) with τ = i. Further, XT has a non-central Wishart distribution with Laplace trans-
form given in equation (5.7.109). This result along with the formula (5.5.14), the lower bound
for the Wishart case manifests itself into the following form.

GAOLB(WIS) = gP̃ (0, T )

(
n−1∑
i=1

(
e−((r̄+µ̄)i+φ̃(i,R+M)) det

(
Id + 2V (0) ψ̃ (i, R+M)

)− β2
× eTr

[
−Θ(Id+2V (0)ψ̃(i,R+M))

−1
V (0)ψ̃(i,R+M)

])
− (K − 1)

)+

(5.7.114)

The Upper Bound GAOUB(WIS)

Under the formulation of the assets in the basket under the Wishart case ((5.7.111)-(5.7.113)),
we have

Y
(n−1)
0 = − (r̄ + µ̄)n

2
− 1

n− 1

n−1∑
k=1

φ̃ (k,R+M) (5.7.115)

using the definition of log-geometric average Y
(n−1)
T given in equation (5.6.21) in section 5.6.3.

Further, obtaining the upper bound for the GAO in the Wishart set up is a straightforward
exercise as one can exploit the upper bound GAO formula under the affine case given in equation
(5.6.40) by calculating the Laplace transform given in equation (5.7.109) such that for k =
1, 2, ..., n− 1,

L
(
ψ̃ (k,R+M)

)
= det

(
Id + 2V (0) ψ̃ (k,R+M)

)− β2
e
Tr
[
−Θ(Id+2V (0)ψ̃(k,R+M))

−1
V (0)ψ̃(k,R+M)

]
(5.7.116)

and using the formula (5.7.110) to calculate the functions φXT

(
− (η−i(δ+1))

n−1

∑n−1
k=1 ψ̃ (k,R+M)

)
and φXT

(
i

n−1

∑n−1
k=1 ψ̃ (k,R+M)

)
, by replacing Λ by − (η−i(δ+1))

n−1

∑n−1
k=1 ψ̃ (k,R+M) and

i
n−1

∑n−1
k=1 ψ̃ (k,R+M) respectively.
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Numerical computations to support the theory are presented in Chapter 6 while a review of
the key findings and further research avenues appears in Chapter 7. We end this chapter with
some important concluding remarks and observations.

5.8 Final Remarks

The theory developed in this chapter is a very important milestone in the direction of pricing of
Guaranteed Annuity Options in a scenario where mortality rate and interest rate are correlated.
We have been successful in developing bounds for GAOs under the most general framework and
for some mild additional model assumptions, improvements of these bounds have been achieved.
The underlying theory does not pin point to any particular model and in this sense offers the
freedom for choosing the model. We show that the affine class of models is particularly conducive
in obtaining the bounds as it reduces the dimensionality of computation to uni-fold. Moreover
the bounds in the affine case have an edge over the Monte Carlo counterpart as the former
can be computed in the blink of an eye while the latter can be extremely time consuming
for complex models such as Wishart. These observations are discussed in greater detail in
Chapters 6 and 7. For complex affine models, one just needs to lay hands on the ‘Laplace
Transform’ and the ‘Characteristic Function’ to get the bounds and these are readily available
in most cases. One could implement this methodology for many different scenarios/models
due to its quick implementation so as to calculate the ‘worst case bounds’ for a large class of
models and in this way reduce model risk. Thus, the important point to note here is that the
strength of these bounds is their wider applicability beyond model specifications and, clearly,
for a fully specified model one can improve the bounds considerably. In fact even if the model
is fully specified, determining the price of the GAO analytically in most cases is still not a
straightforward exercise because of the dependence that exists between the endowment prices
and the correlation of mortality rate and financial markets.

In fact, in order to get some illustration of the numerical performance of the bounds, we first
experiment with a Vasicek model with specified parameters chosen carefully so as to circumvent
the scenario of producing negative mortality rates. We then follow this up with Multi CIR and
Wishart Models. In fact we perform sensitivity analysis to see how a changing correlation
structure between mortality and interest rate influences the GAO price bounds obtaining some
interesting results for Wishart case where all kinds of behaviours are visible, viz. an increase in
correlation may lead to an increase or decrease or a non-monotonic change in the GAO price.
These observations pave the way for further research with a variety of models for GAOs and
other similar instruments. Clearly the results obtained in this research should ring bells for
pension planners and annuity designers who should do multi-scenario testing to get the most
appropriate price range for a correlated mortality and financial set up.
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Chapter 6

Numerical Results

This thesis details novel ways of valuing mortality and longevity linked derivatives under a wide
variety of underlying models. In this chapter, we attempt to describe how our bounds derived
in the previous chapters behave numerically by comparing each one of them to the benchmark
Monte Carlo value. We begin by considering the results obtained in Chapter 3 to obtain tight
bounds for the Swiss Re Mortality Bond 2003. This is followed up by the computation of
bounds for Guaranteed Annuity Options derived in Chapter 5.

MATLAB codes for the execution of the theory in respect of Swiss Re Bond and Guaranteed
Annuity Options have been furnished respectively in Appendices C and D.

6.1 Bounds for the Swiss Re Bond

The stage is now set to investigate the applications of the theory derived in Chapter 3. We
have successfully obtained a number of lower bounds and an upper bound for the Swiss Re
bond in sections 3 and 4 of this chapter. In section 3.5 we have furnished a couple of examples.
We now test these vis-a-vis the well-known Monte Carlo estimate for the Swiss Re bond. We
assume that C = 1 in all the examples. We first carry out this working under the well known
Black and Scholes (1973) model in finance and then for a couple of transformed distributions.
The nomenclature for the bounds has already been specified in sections 3.3 and 3.4. In all the
examples, the marginal cdfs are strictly increasing.

6.1.1 Black-Scholes Model

In tables 6.1 and 6.2, we assume that the mortality evolution process {qt}t≥0 obeys the Black-
Scholes model, specified by the following stochastic differential equation (SDE)

dqt = rqtdt+ σqtdWt.

In order to simulate a path, we will consider the value of the mortality index in the three
years that form the term of the bond, i.e., n = 3. In fact we consider the time points as
t1 = 1, ..., tn = T = 3. We invoke the following equation to generate the mortality evolution:

qtj = qtj−1
exp

[(
r − 1

2
σ2

)
δt+ σ

√
δtZj

]
Zj ∼ N (0, 1) , j = 1, 2, . . . , n. (6.1.1)

We highlight below the parameter choices in accordance with Lin and Cox (2008). The value
of the interest rate is varied in table 6.1 while table 6.2 experiments with the variation in the
base value of the mortality index while assuming a zero interest rate. Parameter choices for
tables 6.1 and 6.2 with t specified in terms of years are:

q0 = 0.008453, T = 3, t0 = 0, n = 3, σ = 0.0388.
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Table 6.2 is followed by figures 6.1-6.3. While figures 6.1 and 6.2 depict comparisons between
the bounds, figure 6.3 portrays the price bounds for the Swiss Re bond generated by the Black-
Scholes model. We will let MC denote the Monte Carlo estimate for the Swiss Re bond.

Table 6.1 reflects that the relative difference (= |bound−MC|
MC ) between any bound and the

benchmark Monte Carlo estimate increases with an increase in the interest rate for a fixed value
of the base mortality index q0. This observation is echoed by figure 6.1. On the other hand,
figure 6.2 depicts the difference between the Monte Carlo estimate of the Swiss Re bond and the

derived bounds. The bound SWLB
(BS)
t fares much better than SWLB1. The absolute difference

between the estimated price and the bounds increase as the value of the base mortality index
is increased and then there is a switch and this gap begins to diminish. This observation is
supported by the fact that an increase in the starting value of mortality increases the possibility
of a catastrophe which leads to the washing out of the principal or in other words the option
goes out of money.

6.1.2 Transformed Normal (Su) Distribution

We now consider an additional example. Assume that the mortality rate {qt}t≥0, t = 1, 2, 3
obeys the four-parameter transformed Normal (Su) Distribution (for details see Johnson, 1949;
Johnson et al., 1994, Chapter 2 and Appendix A.5) which is defined as follows

sinh−1

(
qt − αt
βt

)
= xt ∼ N

(
µt, σ

2
t

)
, (6.1.2)

where αt, βt, µt and σt are parameters (βt, σt > 0) and sinh−1 is the inverse hyperbolic sine
function.

For table 6.3, we vary the interest rate as in table 6.1 and use the parameter set employed
by Tsai and Tzeng (2013). The aforesaid authors use the mortality catastrophe model of Lin
and Cox (2008) to generate the data and then utilize the quantile-based estimation of Slifker
and Shapiro (1980) to estimate the parameters of the Su-fit. The initial mortality rate and
time points are same as for tables 6.1 and 6.2. The following arrays present the values of the
parameters for the three years 2004, 2005 and 2006 that were covered by the Swiss Re bond.

α = [0.008399, 0.008169, 0.007905], β = [0.000298, 0.000613, 0.000904],

µ = [0.70780, 0.58728, 0.58743] and σ = [0.67281, 0.50654, 0.42218].

The value of SWLB
(2)
t in table 6.3 has been calculated by using ‘Numerical Integration’ in

MATLAB since the first term in (3.3.36) can not be calculated mathematically. Table 6.3 adds
weight to the claim that the bounds are extremely tight for a large class of models assuming a
variety of distributions for the mortality index.

6.1.3 Log Gamma Distribution

Finally in tables 6.4 and 6.5, we experiment with log gamma distribution by varying the interest
rate in table 6.4 and the base mortality rate in the latter. The parameters are chosen as in
Cheng et al. (2014) who employ an approach similar to Tsai and Tzeng (2013) outlined above
with q0 = .0088 but use maximum likelihood estimation to obtain the parameters of the fitted
log gamma distribution. As before, the following arrays present the year wise parameters

p = [61.6326, 64.2902, 71.8574], a = [0.0103, 0.0098, 0.0080],

µ = [−5.2452,−5.4600,−5.7238] and σ = [7.4× 10−5, 9.5× 10−5, 9.4× 10−5].

Tables 6.4 and 6.5 clearly show that even for non-normal universe, the bounds are extremely
precise. Figures 6.4-6.6 are drawn on the lines of figures 6.1-6.3 and strongly support our
observation.
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Figure 6.1: Relative Difference of SWLB
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under Black-Scholes model
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Figure 6.4: Relative Difference of Lower Bounds and SWUB1 w.r.t. MC estimate under Trans-
formed Gamma Distribution
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6.2 Bounds for Guaranteed Annuity Options

Now we investigate the applications of the theory derived in Chapter 5. We have successfully
obtained a number of lower bounds and an upper bound for GAOs in sections 5.5 and 5.6. We
now test these vis-a-vis the well-known Monte Carlo estimate for the GAO. We first carry out
this working under the well known Vasicek (1977) model in finance and then for a couple of
more general affine models. The nomenclature for the bounds has already been specified in
sections 5.3 - 5.7. In all the examples, the marginal cdfs are strictly increasing and we have the
following ‘Contract Specification’:

g = 11.1%, T = 15, n = 35;

6.2.1 Vasicek Model

In table 6.6, we assume that the interest rate (rt) and the force of mortality (µt) for an insured
aged x at time 0 obey the Vasicek model, with dynamics given by the specifications in equations
(5.7.1)-(5.7.3). We highlight below the parameter choices in accordance with Liu et al. (2013).
The value of the correlation coefficient between the interest rate and the force of mortality is
varied in table 6.6. Parameter choices for table 6.6 are

Interest Rate Model:

a = 0.15%, b = 0.045, σ = 0.03, r0 = b;

Mortality Model:
c = 0.1%, b = 0.045, ξ = 0.0003, µ0 = 0.006.

Using equations (5.7.15) and (5.7.17)-(5.7.18), we see that

Corr [rT , µT ] =
2ρ
√
ac

(a− c)

(
1− e−(a−c)t)√

(1− e−2aT ) (e2cT − 1)
(6.2.1)

As a result, we infer that the correlation between mortality and interest rate is directly pro-
portional to the ρ which depicts the correlation between the underlying Brownian motions
governing these two risks. In table 6.6, we vary ρ from -0.9 to 0.9 and investigate the effect
of changing correlation between the two aforementioned risks on the lower and upper bounds
and Monte Carlo estimate for the GAO price under the Vasicek model. To obtain the general
lower bound given in section 5.5.3 we adhere to the same choice of Λ as that for the improved
upper bound for the Vasicek case given in section 5.7.1. It is evident that when the correlation
between these underlying rates grows, the prices of the GAO begin to swell. This finding is
in line with the results of Liu et al. (2013). However, while the bounds obtained by these
authors are vague, we succeed in deriving tight lower and upper bounds for the GAO price.
The numerical findings of Table 6.6 are portrayed in figures 6.7-6.9. While figures 6.7 and 6.8
depict comparisons between the bounds, figure 6.9 portrays the price bounds for the GAO price
under the Vasicek Model. We do not work out the third upper bound GAOUB for the Vasicek
case since inversion of the distribution function is possible here yielding extremely tight upper
bounds especially using the conditioning approach. Table 6.6 reflects that the relative difference

(= |bound−MC|
MC ) between any bound and the benchmark Monte Carlo estimate decreases with

an increase in the correlation between mortality and interest rate. This observation is echoed
by figure 6.7. On the other hand, figure 6.8 depicts the difference between the Monte Carlo esti-

mate of the GAO price and the derived bounds. The bound GAOLB
(V S)
j fares much better than

GAOLB3, although the former is restricted to the assumption of positive correlation between
the two competing risks viz. mortality and interest rate which is by all means a very sensible
assumption. The absolute difference between the estimated price and the bounds diminishes as
the value of the correlation is increased. The competing worms in figures 6.7 and 6.8 show the
efficacy of additional information as the ones exploiting extra knowledge completely outperform
the thread of trivial lower bound by a huge margin. Finally figure 6.9 is a testimony to the fact
that the bounds are extremely tight. There is indeed a clustering of the bounds around the line
depicting Monte Carlo estimator.
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Figure 6.7: Relative Difference of Lower and Upper Bounds w.r.t. MC estimate under Vasicek
model with GAOLB0 denoting GAOLB and GAOLB denoting GAOLB3
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Figure 6.8: Comparison of different bounds under Vasicek Model in terms of difference from
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6.2.2 Multi CIR Model

First we consider a 3-dimensional CIR process X := (Xt)t≥0 having independent components
(Xit)t≥0, i = 1, 2, 3 (c.f. Deelstra et al., 2016, for details). We assume the following dynamics
for the interest rate process and the mortality process.

rt = r̄ +X1t +X2t (6.2.2)

and
µt = µ̄+m2X2t +m3X3t, (6.2.3)

where r̄, µ̄, m2 and m3 are constants. We use model specifications similar to Deelstra et al.
(2016) and make a minute alteration in the parameter set. We fix the value of m2 and obtain
the value of m3 such that the expectation of the mortality is fixed to a specified level denoted
by Cx (T ) which is predicted by e.g. a Gompertz-Makeham model (c.f. Dickson et al., 2013) at
age x+ T for an individual aged x at time 0, i.e.,

E [µt] = Cx (T ) , (6.2.4)

Applying expectation on both sides of equation (6.2.3) and substituting in (6.2.4) we get

µ̄+m2E [X2t] +m3E [X3t] = Cx (T ) , (6.2.5)

where as Xit; i = 1, 2, 3 is obtained using the Stochastic Differential Equation (SDE) given by
(5.7.61), we have

E [Xit] = Xi,0e
−kiT + θi

(
1− e−kiT

)
. (6.2.6)

Using our contract specifications outlined in the beginning of this section we fix the expected
value in (6.2.4) to the level C50 (15) = 0.0125. A very good discussion in regards to the validity
of the model to be used for mortality appears in Deelstra et al. (2016). In fact this model was
completely calibrated in Chiarella et al. (2016).

Using the set up defined by equations (6.2.2)-(6.2.3), the linear pairwise correlation between
(rt)t≥0 and (µt)t≥0, denoted by ρt forms a stochastic process given by

ρt =
m2σ

2
2X2t√

σ2
1X1t + σ2

2X2t

√
m2

2σ
2
2X2t +m2

2σ
2
2X2t

. (6.2.7)

We vary the value of m2 and therefore obtain the value of m3 using equation (6.2.4) and this
finally yields the value of ρ. Further in line with Deelstra et al. (2016), we make the following
parameter specifications

r̄ = −0.12332, µ̄ = 0

Table 6.7: Parameter Values for the 3-dimensional CIR process

CIR process Parameters

X1 k1 = 0.3731 θ1 = 0.074484 σ1 = 0.0452 X1,0 = 0.0510234

X2 k2 = 0.011 θ1 = 0.245455 σ2 = 0.0368 X2,0 = 0.0890707

X3 k3 = 0.01 θ1 = 0.0013 σ3 = 0.0015 X3,0 = 0.0004

Table 6.8 depicts the lower bound, the upper bound based on arithmetic geometric inequality
and the Monte Carlo estimate of the GAO price for different values of m2 and therefore for
different values of the initial pairwise linear correlation coefficient ρ0. The nomenclature of
the bounds appear in section 5.7.2. Due to the lack of availability of the inverse distribution
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function of weighted sum of non-central chi-square variates, we have to restrict ourselves to
calculate only the third upper bound. We find that an increase in the value of ρ0 enhances the
value of the GAO in a manner similar to the Vasicek model shown in Table 6.6. The lower
bound is extremely sharp. On the other hand, upper bound is slightly wider. The results of
Table 6.8 are portrayed in figures 6.10-6.12.

Figure 6.10 reflects that the relative difference (= |bound−MC|
MC ) between the upper bound

and the benchmark Monte Carlo estimate decreases with an increase in the correlation between
mortality and interest rate while the relative difference for the lower bound almost remains
constant with varying ρ0. On the other hand, figure 6.11 depicts the absolute difference between
the Monte Carlo estimate of the GAO price and the derived bounds which remain more or less
constant. The lower bound fares much better than GAOUB. Finally figure 6.12 shows the
price bounds and in fact the lower bound stick completely camouflages with that of the MC
estimate which is a testimony to the tightness of the lower bound.

Table 6.8: Lower Bound and Upper Bound for Guaranteed Annuity Option under the MCIR
Model with partial parameter choice in accordance with Deelstra et al. (2016). MC Simulations:
50000

m2 ρ GAOLB(MCIR) MC GAOUB(MCIR)

-0.300 -0.570960646515027 0.153351236437789 0.153431631010533 0.216286630652776
-0.100 -0.460513730466363 0.181641413947461 0.181871723226662 0.243710313225013
-0.070 -0.403426257094426 0.187186872445969 0.187285214852833 0.249173899703122
-0.060 -0.376271648827787 0.189122188373390 0.189373949402726 0.251083730739797
-0.050 -0.343007585286942 0.191102351580502 0.191474297920361 0.253039217047040
-0.040 -0.301756813619030 0.193128263182051 0.195421232722993 0.255041205164633
-0.030 -0.250041147986350 0.195200853300304 0.195132243321684 0.257090572307459
-0.020 -0.184739400604580 0.197321081986930 0.197531098187496 0.259188227324353
-0.010 -0.102346730178820 0.199489940182500 0.199619257104038 0.261335111674878
-0.001 -0.011167160239806 0.201484335480591 0.201710195921424 0.263310203859562
0.000 0.000000000000000 0.201708450715130 0.201879045816498 0.263532200435103
0.001 0.011370596893292 0.201933073002533 0.202090425152612 0.263754709122691
0.010 0.122142590872118 0.203977669339908 0.204292134604299 0.265780503352825
0.020 0.257493768936871 0.206298685820891 0.206369996912367 0.268081065972310
0.030 0.391761086281179 0.208672625057373 0.208709896009824 0.270434970824946
0.040 0.508145173072700 0.211100648256358 0.211180180724315 0.272843338639536
0.050 0.596334605305204 0.213583954153270 0.213584231985838 0.275307329501738
0.060 0.656025897318996 0.216123780282872 0.216228415988778 0.277828143936307
0.070 0.693071640464574 0.218721404302618 0.218840241843838 0.280407024005732
0.100 0.730953349866014 0.226874471461256 0.226934772658478 0.288505131181583

6.2.3 Wishart Model

As a final step we test our bounds in the backdrop of the celebrated Wishart model for mortality
and interest rate. The functional form of the model for the two aforesaid risks has been detailed
in equations (5.7.91)-(5.7.92). To present the application of our methodology we stick to a 2-
dimensional Wishart process, i.e., d = 2 due to the fact that higher dimensional Wishart
processes are difficult to implement. The law for the underlying process X governing the
mortality and interest rate processes has been outlined in equation (5.7.89). We consider
partial choice of the parameter set in accordance with Deelstra et al. (2016). For all examples
considered below, let

β = 3, r̄ = 0.04, µ̄ = 0,

H =

(
−0.5 0.4
0.007 −0.008

)
, M =

(
0 0
0 1

)
, R =

(
1 0
0 0

)
(6.2.8)

in equations, (4.4.1) and (5.7.91)-(5.7.92).
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Figure 6.10: Relative Difference of Lower and Upper Bounds w.r.t. MC estimate under MCIR
model
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In light of this data considered for the Wishart model, the stochastic correlation between
(rt)t≥0 and (µt)t≥0, denoted by ρt forms a stochastic process given by

ρt =
(Q11Q12 +Q22Q21)X12

t√
(Q2

11 +Q2
21)X11

t (Q2
22 +Q2

12)X22
t

. (6.2.9)

As is evident from (6.2.9), using a Wishart formulation for underlying process X produces a
more richer dependence structure for the underlying risks than was available under the multi-
dimensional CIR case. This calls for carrying out a more sophisticated sensitivity analysis in
regards to the involved parameters. In the same spirit as Deelstra et al. (2016), we carry out a
two-fold testing

� the first one by varying the off-diagonal elements of the initial Wishart process X0 and
investigating the impact on the prices of the GAO,

� the second one by experimenting with the off-diagonal elements of the matrix Q.

In each case, we compute the first lower bound, the upper bound based on arithmetic geometric
inequality and the Monte Carlo estimate of the GAO price which is computed using 20000
simulations. The nomenclature of the bounds appear in section 5.7.3. Due to the lack of
availability of the inverse distribution function of weighted sum of non-central chi-square random
variables, we have to restrict ourselves to calculate only the third upper bound. For stability
checks in relation to the expected values of the interest rate and mortality intensity w.r.t.
varying correlation, interested readers can refer to Deelstra et al. (2016).

Effect of a Change in Initial Value X0

In order to see the behaviour of the price bounds for the GAO price vis-a-vis change in the
initial value of the Wishart process, we experiment with two cases:

� Negative off-diagonal elements in the volatility matrix Q

� Positive off-diagonal elements in the volatility matrix Q.

Example 1. In this case we consider the following Wishart process:

Q =

(
0.06 −0.0006
−0.06 0.006

)
, X0 =

(
0.01 X12

0

X12
0 0.001

)
. (6.2.10)

Table 6.9 portrays the lower bound, the upper bound and the Monte Carlo estimate of the
GAO price for different values of X12

0 and therefore for different values of the initial pairwise
linear correlation coefficient ρ0. We find that an increase in the value of ρ0 enhances the value
of the GAO in a fashion similar to the one shown for the Multi-CIR set up in Table 6.8 and
the Gaussian set-up in Table 6.6. In this case both the lower and the upper bounds show close
proximity to the GAO value.

Example 2. In the second investigation, we consider the following Wishart process:

Q =

(
0.06 0.00001

0.0002 0.006

)
, X0 =

(
0.01 X12

0

X12
0 0.001

)
. (6.2.11)

As can be seen, in this example, we consider positive off-diagonal elements for the matrix Q.
Table 6.10 portrays the lower bound, the upper bound and the Monte Carlo estimate of the
GAO price for different values of X12

0 and therefore for different values of the initial pairwise
linear correlation coefficient ρ0. The results obtained present a sharp contrast to those obtained
in Table 6.9 and the value of the GAO price and the corresponding bounds begin to drop as
the value of ρ0 is increases. Both the bounds continue to perform well even on this occasion.

A good justification of the behaviour of the GAO price in the first two examples (also see
Deelstra et al., 2016) vis-a-vis the values of X12

0 can be provided by noting that under dynamics
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Table 6.9: Lower Bound and Upper Bound for Guaranteed Annuity Option under the Wishart
Model Example 1 with parameter choice in accordance with Deelstra et al. (2016). MC Simu-
lations: 20000

X12
0 ρ GAOLB(WIS) MC GAOUB(WIS)

-0.003 0.734240363158475 0.241898614923743 0.241247798732840 0.241898616247735
-0.002 0.489493575438983 0.241133565561902 0.240529742517039 0.241133567256078
-0.0015 0.367120181579237 0.240751892681841 0.239890712272120 0.240751894570155
-0.0005 0.122373393859746 0.239990246464251 0.239141473598451 0.239990248759807

0 0.000000000000000 0.239610271506445 0.238621509824004 0.239610274015476
0.0005 -0.122373393859746 0.239230860904335 0.238198077279364 0.239230863633664
0.0015 -0.367120181579237 0.238473729539084 0.237679950746197 0.238473732730283
0.002 -0.489493575438983 0.238096007164703 0.237331879397777 0.238096010597887
0.003 -0.734240363158475 0.237342245012764 0.236699850447918 0.237342248953105

of the Wishart process (5.7.89) the positive factors (i.e. X11
t & X22

t ) swell on an average when
the initial value X12

0 increases. Moreover, for the aforementioned parameter choice, the models
for mortality and interest rate for t ≥ 0 are given as

rt = 0.04 +X11
t (6.2.12)

and
µt = X22

t . (6.2.13)

Now, it is clear from the formula for GAO price given in equation (5.7.104), that the exponential
term containing rt and µt decays when X12

0 increases and this causes the GAO price and
corresponding bounds to diminish when X12

0 soars.

Table 6.10: Lower Bound and Upper Bound for Guaranteed Annuity Option under the Wishart
Model Example 2. MC Simulations: 20000

X12
0 ρ GAOLB(WIS) MC GAOUB(WIS)

-0.003 -0.004743383550130 0.332948404889575 0.341196353690094 0.332948737923275
-0.002 -0.003162255700087 0.331667762094902 0.340868095614857 0.331668129236460
-0.0015 -0.002371691775065 0.331029148831226 0.339651861654315 0.331029534152954
-0.0005 -0.000790563925022 0.329755328754714 0.339133498851769 0.329755752815905

0 0.000000000000000 0.329120118025352 0.338246665341653 0.329120562698337
0.0005 0.000790563925022 0.328486037563152 0.337667153845205 0.328486503712013
0.0015 0.002371691775065 0.327221259643971 0.336913730200477 0.327221771448801
0.002 0.003162255700087 0.326590558297188 0.336554330647556 0.326591094339721
0.003 0.004743383550130 0.325332521129667 0.335045167150194 0.325333108616048

Effect of a Change in Volatility Matrix Q

We now carry out an experiment to vary the off-diagonal elements of the volatility matrix Q
which we assume to be symmetric while specifying the initial value X0 of the Wishart process.

Example 3. Here the Wishart process is as follows:

Q =

(
0.06 Q12

Q12 0.006

)
, X0 =

(
0.01 0.001
0.001 0.001

)
. (6.2.14)

Table 6.11 depicts the lower bound, the upper bound and the Monte Carlo estimate of the GAO
price for different values of Q12 and therefore for different values of the initial pairwise linear
correlation coefficient ρ0. The results obtained show that the value of the GAO price and the
corresponding bounds do not show a monotone behaviour in respect of the linear correlation
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between mortality and interest rate risks. The tightness of the bounds around the Monte
Carlo estimate still remains intact. These observations are echoed in Figure 6.15. In addition

Figure 6.13 reflects that the relative difference
(

= |bound−MC|
MC

)
between the lower bound and

the benchmark Monte Carlo estimate increases with an increase in the correlation ρ0 between
mortality and interest rate. For example looking at table 6.11, we see that the relative difference
for GAOLB increases from a meagre 0.2% for ρ0 = −0.3 to about 7.7% for a ρ0 = 0.3. However,
under the same set, the relative difference between the estimated GAO price and the upper
bound increases and then there is a switch at ρ0 = 0.3 and this gap begins to diminish. The
last observation is also seen in Figure 6.14 for the absolute difference between the bounds and
the MC estimate of GAO price.

The reason for this behaviour of the GAO price lies in the structure of the matrix QTQ (also
see Deelstra et al. (2016)). It is clear that the diagonal elements of QTQ increase with a rise in
the absolute value of Q12. A glance at the law of the Wishart process given in equation (4.4.1)
and equations (6.2.12)-(6.2.13) brings out the fact that the drift and in particular the long term
value of the positive factors of the Wishart process and in turn the drift of mortality and interest
rate process is an increasing function of the absolute value of Q12. Thus an upward rise in the
value of Q12 will enhance the positive factors. As a result, it is evident from equation (5.7.104)
describing the GAO price in the Wishart case, that the exponential term containing rt and µt
decreases when Q12 moves away from zero and this causes the GAO price and corresponding
bounds to diminish.

Overall our numerical experiments provide strong evidence in support of the extremely
adequate performance of our proposed bounds.

Table 6.11: Lower Bound and Upper Bound for Guaranteed Annuity Option under the Wishart
Model Example 3 with parameter choice in accordance with Deelstra et al. (2016). MC Simu-
lations: 20000

Q12 ρ GAOLB(WIS) MC GAOUB(WIS)

-0.01 -0.294220967543866 0.290016256883993 0.290601398401997 0.290593286187411
-0.006 -0.244746787719492 0.331837945818948 0.332421093218907 0.331843140669134
-0.002 -0.109938939767707 0.339526376457815 0.344143066326585 0.339526466816062
0.002 0.109938939767707 0.308919593324378 0.322579113504993 0.308928343737340
0.006 0.244746787719492 0.257040019380241 0.274376988651895 0.257891897298705
0.01 0.294220967543866 0.196440417823759 0.212744888444368 0.204994244625801

6.2.4 Computational Speed of the Bounds

We summarize the time consumed in computation of the bounds and the Monte Carlo estimate
in Table 6.12. Further, these observations are portrayed in the figure 6.16 which shows an
phenomenal increase in the time taken by Monte Carlo estimation as the number of simulations
increase.

Table 6.12: Time taken in seconds for Bounds and Simulations

Number of Simulations for Monte Carlo
Example GAOLB GAOUB 1000 10000 20000 50000

MCIR 0 1 44 352 696 1800
Wishart 1 0 1 47 369 749 2100
Wishart 2 0 1 49 379 757 2200
Wishart 3 0 1 43 359 724 2000
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Figure 6.13: Relative Difference of Lower and Upper Bounds w.r.t. MC estimate under Wishart
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All computations in section 6.2.4 are carried out on a personal laptop with Intel(R) Core(TM)
i5 CPU-M450 at 2.40 GHz and a RAM of 4.00 GB.
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Chapter 7

Conclusions

The gains from this research are manifold. We have been successful in obtaining model-free
price bounds for two very useful mortality-linked products viz. ‘Catastrophic Mortality Bonds’
and ‘Guaranteed Annuity Options’. We have utilized up to date methodology available in the
literature for the pricing of these products. We summarize the conclusions of these innovative
experiments and throw light on future research perspectives in the ensuing sections.

7.1 Mortality Pricing

Mortality forecasts are extremely significant in the management of life insurers and private
pension plans. Securitization and construction of mortality bonds has become an important
part of capital market solutions. Prior to the launch of the Swiss Re bond in 2003, life insurance
securitization was not designed to handle mortality risk.

Our research investigates the designing of price bounds for the Swiss Re mortality bond
2003. As stated in Deng et al. (2012), an incomplete mortality market that has no arbitrage
guarantees the existence of at least one risk-neutral measure termed the equivalent martingale
measure Q that can be used for calculating fair prices of mortality securities. We rely on this
fact and devise model-independent bounds for the mortality security in question. To the best
of our knowledge, there is only one earlier publication by Huang et al. (2014) in direction of
price bounds for the Swiss Re bond. However, these authors propose gain-loss bonds that suffer
from model risk. Our results assume the trading of vanilla options written on the mortality
index, as in that case one can use the market price of these options to create bounds which
are truly model independent. A worthy observation is that the stimulant for the present work
is the theory of comonotonicity. One can therefore easily extend this approach for computing
tight bounds for other mortality and longevity linked securities.

7.2 Longevity Pricing

We have derived some very general bounds for the valuation of GAOs under the assumption of
a prevailing correlation between mortality and interest rate risk. These bounds serve as a useful
tool for financial institutions which are striving hard to find methodologies that offer efficient
pricing of longevity linked securities. The techniques used in this research are successful in
circumventing the issue of dealing with sums of a large number of correlated variables. More-
over they are extremely useful in reducing the burden of dealing with cumbersome stochastic
processes. In fact, the bounds are extremely tight particularly when the underpinning risks are
governed by Vasicek models.

The most successful finding of this research is that in the affine case, both the lower and the
upper bound depend on the properties of the distribution of the random variables connected
to the transformed stochastic processes underlying mortality and interest rate. Moreover the
lower bound manifests itself in form of Laplace transform of the underlying random variable
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while the upper bound reveals itself in the form of the associated characteristic function. Both
of these tools are the most conveniently obtained vital statistics for any distribution. The most
satisfying aspect is that we need to work in one dimension, in contrast to what would have been
atleast a 34-dimensional set up, assuming that a person lives atleast 100 years making n = 35.
As a result in cases where inversion of the distribution function is unavailable, an upper bound
can still be find provided the characteristic function of the log prices of the underlying assets
viz. pure endowments in our case is known. This is generally available as an explicit expression
in case of affine processes subject to the solution of a system of a generalized Riccati equations.

Another feather in the cap of the bounds is their computational speed. As indicated in
section 6.2.4, the Monte Carlo method is extremely slow for large number of simulations in case
of sophisticated models. As a result given the same time budget, Monte Carlo estimates are
deemed to be extremely inaccurate. Moreover for highly sophisticated multivariate distributions
like non-central Wishart, generating random samples generally involves complex algorithms,
which are not inbuilt in libraries of packages such as MATLAB. It is indeed not less than
magical that our lower bound takes just 0.133 or 0.192 seconds on an average to execute in the
MCIR and Wishart case while an average of about 0.286 or 0.659 seconds are required by the
upper bound respectively in the two cases. In other words pricing of complex GAOs can be
done in no time.

Last but not the least the fact that the upper bound performs much better in the case of
Wishart is a noteworthy observation since the Wishart model is much more intricate in terms
of gauging the mesh of correlation between mortality and interest rate.

The sensitivity analysis done in this chapter reiterates the fact that it is not possible to
explain the value of a GAO completely in terms on the initial pairwise linear correlation between
mortality and interest rate risks as highlighted by the Wishart model (c.f. Deelstra et al., 2016,
for earlier work in this direction) . This finding sends alarm signals for the risk management in
the presence of an unknown dependence as various scenarios are possible.

If the prices of a GAO increase with the (initial) linear correlation coefficient as in the multi-
CIR model or the Wishart specifications in Example 1, then the most risk-averse methodology
when pricing a GAO would be to take the linear correlation coefficient equal to unity. This will
protect the seller from an awkward scenario of underestimation of the GAO price in the event
of a high correlation. However, Example 2 of the Wishart case, presents an opposite scenario
where prices decrease with increasing initial linear correlation and therefore, risk-adverse seller
would adopt the opposite rule in that situation. Example 3 in the Wishart case portrays prices
which are not monotone with respect to the correlation, but which seem to lead to the highest
prices for zero correlation. Therefore, in this situation, choosing zero correlation might be the
appropriate risk-averse choice. In fact the Wishart model comes across the most versatile model
presenting all possible dependence scenarios.

The methodology proposed in our research is extremely flexible and can be easily extended
to value other insurance products such as indexed annuities or to instruments with option em-
bedded features such as equity-linked annuities, equity-indexed annuities and variable annuities.

7.3 Future Perspectives

The essence of this thesis is the computation of model-free robust bounds for complex mortality
and longevity linked products. The thesis utilizes a number of mathematical and statistical
tools to obtain the desired results with the theory of comonotonicity being the front runner in
simplifying mathematical complexity. This research has a lot of potential to be exploited for
valuation of other mortality and longevity linked derivatives.

Applying the techniques used for the pricing of Swiss Re Mortality Bond to the valuation
of the ‘Longevity Trend Bond’-‘Kortis’ is a project that is already in the pipeline. The latter
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has structural similarities to Catastrophic Mortality Bonds with a payoff contingent on the
performance of an index called the ‘Longevity Divergence Index’. A more easier application of
the derived theory is to obtain the price of any other catastrophic mortality bond by suitably
adapting the settings.

Experiments to incorporate jumps in the models for mortality to price GAOs will also be
very interesting. Moreover, the methodology employed for furnishing bounds for GAOs can be
extended to obtain bounds for Guaranteed Minimum Income Benefits (GMIBs).

Hedging risks for insurance companies is far more complicated than hedging financial risks
due to the longevity market being in its formative age and lacking liquidity in terms of trading
mortality-linked derivatives. A future aim of this research is to devise appropriate hedging
techniques for these newly emerging mortality and longevity-linked products.
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Appendix A

Some More Building Blocks

We furnish here some more fundamental results that provide clarity regarding the calculations
undertaken in this research work.

A.1 The Assumption for SWLB
(2)
t

We discuss the relation of the equation (3.3.28) to exponential Lévy models.

Proposition 43. The following assumption holds for exponential Lévy models with mortality
evolution qt = q0e

Xt , where (Xt)t≥0 is a Lévy process

S
′

=

n∑
i=1

qi ≥sl

n∑
i=1

E [qi|qt] ≥
j−1∑
i=1

q
(1−ti/t)
0 q

ti/t
t +

n∑
i=j

er(ti−t)qt, (A.1.1)

Proof. Assume t > ti. Clearly we have,

E [qi|qt = s] = q0E
[
eXti |q0e

Xt = s
]

= q0E

[
eXti |Xt = loge

(
s

q0

)]
≥ q0e

(
E
[
Xti |Xt=loge

(
s
q0

)])
, (A.1.2)

where the last step follows from Jensen’s inequality. Clearly

E

[
Xt|Xt = loge

(
s

q0

)]
= loge

(
s

q0

)
(A.1.3)

Clearly, using that for a Lévy process X0 = 0,

Xt = (Xt −Xt−1) + (Xt−1 −Xt−2) + ...+ (X1 −X0) . (A.1.4)

Now, on using the independence and stationarity of increments of a Lévy process (c.f. Chapter

2) on the R.H.S. of (A.1.4), we have that Xi −Xi−1
d
= X1 for i = 1, 2, ..., t are independently

and identically distributed (i.i.d.) random variables. Thus for any i = 1, 2, ..., t

E

[
Xi −Xi−1| (Xt −Xt−1) + ...+ (X1 −X0) = loge

(
s

q0

)]
= E

[
X1|Xt = loge

(
s

q0

)]
(A.1.5)

Summing both sides over i = 1, 2, ..., t and taking summation inside the expectation on the
L.H.S. and noting that we have a telescopic sum, we have

E

[
Xt|Xt = loge

(
s

q0

)]
= tE

[
X1|Xt = loge

(
s

q0

)]
(A.1.6)
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From equations (A.1.3) and equation (A.1.6), we get

E

[
X1|Xt = loge

(
s

q0

)]
=

1

t
loge

(
s

q0

)
. (A.1.7)

On the same lines we have for ti < t

E

[
Xti |Xt = loge

(
s

q0

)]
= E

[
(Xti −Xti−1) + ...+ (X1 −X0) |Xt = loge

(
s

q0

)]
= tiE

[
X1|Xt = loge

(
s

q0

)]
(A.1.8)

Substituting equation (A.1.7) in equation (A.1.8), we get

E

[
Xti |Xt = loge

(
s

q0

)]
=
ti
t

loge

(
s

q0

)
. (A.1.9)

Substituting equation (A.1.9) in equation (A.1.2), we get

E [qi|qt = s] ≥ q0e

(
ti
t loge

(
s
q0

))

= q
1− tit
0 s

ti
t . (A.1.10)

This implies that for all t > ti, we have

E (qi|qt) ≥ q
1− tit
0 q

ti
t
t . (A.1.11)

For ti ≥ t, using the fact that discounted asset prices are martingales, we can write E (qi|qt) =
er(ti−t)qt. Combining these results we get the following stop-loss order relationship:

S
′

=

n∑
i=1

qi ≥sl

n∑
i=1

E [qi|qt] ≥
j−1∑
i=1

q
(1−ti/t)
0 q

ti/t
t +

n∑
i=j

er(ti−t)qt, (A.1.12)

where j = min {i : ti ≥ t}, which is the requisite assumption (A.1.1).

A.2 Interchange of Sigma Algebras in Combined Market
Framework

We consider a filtered probability space (Ω,F, {Ft}t≥0,P) that is large enough to support a
process X in Rk, representing the evolution of financial variables and a process Y in Rd,
representing the evolution of mortality. Moreover, we concentrate on an insured life aged x at
time 0, with random residual lifetime denoted by τx which is an Ft-stopping time.

The filtration {Ft}t≥0 includes knowledge of the evolution of all state variables upto each
time t and of whether the policyholder has died by that time. More explicitly, we have:

Ft = Gt ∨Ht

where
Gt ∨Ht = σ (Gt ∪Ht)

with
Gt = σ (Zs : 0 ≤ s ≤ t) , Ht = σ

(
1{τ≤s} : 0 ≤ s ≤ t

)
and where Z = (X,Y ) is the joint state variables process in Rk+d. Thus we have

Gt = GXt ∨ GYt .
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In fact {Ht}t≥0 is the smallest filtration with respect to which τ is a stopping time. In other
words {Ht}t≥0 makes {Ft}t≥0 the smallest enlargement of {Gt}t≥0 with respect to which τ is
a stopping time, i.e.,

Ft = ∩s>tGs ∨ σ (τ ∧ s) , ∀t.

We may think of Gt as carrying information captured from medical/demographical data col-
lected at population/ industry level and of Ht as recording the actual occurrence of death in
an insurance portfolio.

We now show that we can carry out conditioning interchange between Ft and Gt.

We characterize the conditional law of τ in several steps. We assume that a non-negative
Gt-predictable process µ is given satisfying

∫ t
0
µx (s) ds <∞ a.s. for all t > 0. We then consider

an exponential random variable Φ with parameter 1, independent of G∞ and define the random
time of death τ as the first time when the process

∫ t
0
µsds is above the random threshold Φ,

i.e.,

τ
.
= {t ∈ R+ :

∫ t

0

µs (s) ds ≥ Φ}. (A.2.1)

It is evident from (A.2.1) that {τ > T} = {
∫ t

0
µsds < Φ}, for T ≥ 0. Next, we work out

P (τ > T |Gt) for T ≥ t ≥ 0 by using tower property of conditional expectation, independence
of Φ and G∞ and facts that µ is a Gt-predictable process and Φ ∼ Exponential (1), i.e.,

P (τ > T |Gt) = E
[
1{Φ>

∫ T
0
µsds}|Gt

]
= E

[
E
(
1{Φ>

∫ T
0
µsds}|GT

)
|Gt
]

= E

[
P

(
Φ >

∫ T

0

µsds

)
|Gt

]
= E

[
e−
∫ T
0
µsds|Gt

]
(A.2.2)

In fact, the same result holds for 0 ≤ T < t. Further, we observe that {τ > t} is an atom of
Ht. As a result, we have constructed a doubly stochastic Ft-stopping time driven by Gt ⊂ Ft
in the following way (c.f. Billingsley, 1995, ex 34.4, p.455):

P (τ > T |GT ∨ Ft) = 1{τ>t}E
[
1{τ>T}|GT ∨Ht

]
= 1{τ>t}

P ({τ > T} ∩ {τ > t}|GT )

P ({τ > t}|GT )

= 1{τ>t}
P ({τ > T}|GT )

P ({τ > t}|GT )

= 1{τ>t}e
−
∫ T
t
µsds (A.2.3)

Next, we show that the conditioning on Ft can be replaced by conditioning on Gt. We first

note that e−
∫ T
t
µsds is GT -measurable and so σ

(
e−
∫ T
t
µsds

)
⊂ GT and observe that the inde-

pendence of Φ and GT implies independence of Φ and σ
(
e−
∫ T
t
µsds

)
and in turn of Φ and

Gt ∨ σ
(
e−
∫ T
t
µsds

)
. This also implies that e−

∫ T
t
µsds is independent of σ (Φ). As a result, we

can write:
E
[
e−
∫ T
0
µsds|Gt ∨ σ (Φ)

]
= E

[
e−
∫ T
0
µsds|Gt

]
, (A.2.4)

for all T ≥ t ≥ 0. Finally we note that Ht ⊂ σ (Φ) and so Ft ⊂ Gt ∨ σ (Φ). Thus, on using
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tower property and (A.2.4), we have:

E
[
e−
∫ T
0
µsds|Ft

]
= E

[
E
(
e−
∫ T
0
µsds|Gt ∨ σ (Φ)

)
|Ft
]

= E
[
E
(
e−
∫ T
0
µsds|Gt

)
|Ft
]

= E
[
e−
∫ T
0
µsds|Gt

]
(A.2.5)

which proves the conditioning interchange between Ft and Gt.

We remark that, we do not take Gt ∨ σ(Φ) as our filtration Gt because, in that case, the
stopping time τ would be predictable and would not admit an intensity. The construction
portrayed here guarantees that τ is a totally inaccessible stopping time, a concept intuitively
meaning that the insured’s death arrives as a total surprise to the insurer (see Protter, 1990,
Chapter III.2, for details).

A.3 Survival Benefit

We now compute the fair value of a basic payoff - ‘Survival Benefit’ involved by standard
insurance contracts. These are benefits, of amount possibly linked to other security prices,
contingent on survival or death over a given time period. The modelling set up is as described
in Chapter 5. We require the short rate process r and the intensity of mortality µ to satisfy
the technical conditions stated in Section 5.2

Proposition 44. (Survival benefit). Let C be a bounded Gt-adapted process. Then, the time-t
fair value SBt (CT ;T ) of the time-T survival benefit of amount CT , with 0 ≤ t ≤ T , is given
by:

SBt (CT ;T ) = E
[
e−
∫ T
t
rsds1{τ>T}CT |Ft

]
= 1{τ>t}E

[
e−
∫ T
t

(rs+µs)dsCT |Gt
]

(A.3.1)

In particular, if C is GXt -adapted and X and Y are independent, then, the following holds

SBt (CT ;T ) = 1{τ>t}E
[
e−
∫ T
t
rsdsCT |GXt ]E[e−

∫ T
t
µsds|GYt

]
(A.3.2)

Proof. First of all, we note that if we are looking at the time T survival benefit, then the life
must have survived upto time T and so

SBt (CT ;T ) = E
[
e−
∫ T
t
rsds1{τ>T}CT |Ft

]
= E[e−

∫ T
t
rsdsCTE

[
1{τ>T}|Ft ∨ GT ]|Ft

]
(A.3.3)

where, we have used the law of iterated expectations and the fact that r and C are Gt-adapted.
Equation (A.3.3) implies that SBt (CT ;T ) is zero on the set {τ ≤ t}. Concentrating on the set
{τ > t}, we exploit the doubly stochastic property given in (A.2.3), to obtain:

E
[
1{τ>T}|Ft ∨ GT

]
= 1{τ>t}e

−
∫ T
t
µsds (A.3.4)

Substituting equation (A.3.4) in equation (A.3.3), and noting that 1{τ>t} is Ft-measurable, we
obtain

SBt (CT ;T ) = 1{τ>t}E
[
e−
∫ T
t

(rs+µs)dsCT |Ft
]

(A.3.5)

and then we replace Ft by Gt.

Expression (A.3.2) is finally obtained by exploiting the independence of the filtrations GXt
and GYt . We use the following fact: given two independent filtrations F1

t and F2
t , for any
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bounded random variables V 1 and V 2 that are respectively F1
∞ and F2

∞-measurable,we have

E
[
V 1V 2|F1

t ∨ F2
t

]
= E

[
V 1|F1

t ]E[V 2|F2
t

]
(A.3.6)

for all t ≥ 0.

A.4 The Black Scholes Model

To begin, let (Ω,F,P), with P as the real world probability measure, be a complete probability
space coupled with the filtration F = {Ft}t≥0. Let Q be the risk-neutral measure which is
equivalent to the real world probability measure P and is known as the ‘Equivalent Martingale
Measure’ (EMM). Assume that there are two primary traded securities: a stock St and a bond
(risk-free asset) Bt. Then we specify in detail the Black-Scholes Model.

Assumptions

The standard Black-Scholes economy is based on the assumptions of constant volatility, no
arbitrage, no dividends, no friction, constant interest rate, efficient markets and stock price
process following a Geometric Brownian Motion.

The Model

In the Black-Scholes model, the risk-free asset and the stock price have dynamics given by

dBt = rBtdt

dSt = µStdt+ σStdWt,

where µ ∈ R is a constant appreciation rate of the stock price called the ‘drift’ and σ > 0 is
a constant volatility coefficient and Wt, t ∈ [0, T ] is the standard Brownian motion defined on
the filtered probability space (Ω,F,F,P).

Equivalent Martingale Measure

The unique EMM Q which is equivalent to the real world probability measure P is calculated
as shown below by employing Radon-Nikodym derivative1

dQ
dP

= exp

[(
r − µ
σ

)
W ∗T −

1

2

(r − µ)
2

σ2
T

]

and W ∗t = Wt − (r−µ)
σ t is a standard Brownian motion on (Ω,F,F,Q). The dynamics of the

price under Q are:
dSt = rStdt+ σStdW

∗
t , S0 > 0.

Thus, in the Black-Scholes model Bt = B0e
rt and St = S0 exp

[
σW ∗t +

(
r − 1

2σ
2
)
t
]
.

Black-Scholes Option Pricing Formula

According to Black and Scholes (1973), the current price C (K,T ) of a European call option
written on a product St with exercise price K and maturity T is given as:

C (K,T ) = S0Φ (d1)−Ke−rTΦ (d2) , (A.4.1)

where

d1 =
loge

(
St
K

)
+
(
r + 1

2σ
2
)
T

σ
√
T

(A.4.2)

1By Girsanov’s Theorem; Refer to Baxter and Rennie (1996)
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and
d2 = d1 − σ

√
T , (A.4.3)

where Φ is the standard normal distribution function S0 is the product price at time 0.

A.5 Call Option Pricing Formula under Su Distribution

Suppose that the product price ‘St’ obeys the four-parameter transformed Normal (Su) Distri-
bution specified in Chapter 2, with parameters α, β, µ and σ. Assuming the complete filtration
as in the Black-scholes case with the EMM as Q, we refer to Tsai and Tzeng (2013) to furnish
the current price C (K,T ) of a European call option written on a product St with exercise price
K and maturity T , which is given as:

C (K,T ) = e−rT
(
β

2
eµQ+ 1

2σ
2

Φ (d1)− β

2
e−µQ+ 1

2σ
2

Φ (d2) + (α−K) Φ (d3)

)
, (A.5.1)

where

d1 =
−sinh−1

(
K−α
β

)
+ µQ

σ
+ σ, (A.5.2)

d2 =
−sinh−1

(
K−α
β

)
+ µQ

σ
− σ, (A.5.3)

d3 =
−sinh−1

(
K−α
β

)
+ µQ

σ
(A.5.4)

and where

µQ = sinh−1

(
1

β
e−

1
2σ

2 (
S0e

rT − α
))

(A.5.5)

is the risk-adjusted mean. S0 is the price of the product at time 0.

A.6 Call Option Pricing Formula under Log Gamma Dis-
tribution

Suppose that the product price ‘St’ obeys the four-parameter log Gamma Distribution specified
in Chapter 2 with parameters µ, σ, p and a. Assuming the complete filtration as in the Black-
scholes case with the EMM as Q, we refer to Vitiello and Poon (2010) to furnish the current
price C (K,T ) of a European call option written on a product St with exercise price K and
maturity T , which is given as:

C (K,T ) = S0 [1−G (d1, p)]−Ke−rT [1−G (d2, p)] , (A.6.1)

where G (., .) is the Gamma c.d.f. given as

G (X, p) =
Γ (X, p)

Γ (p)
(A.6.2)

where Γ (., .) is the incomplete gamma function defined as

Γ (X, p) =

∫ X

0

zp−1e−zdz (A.6.3)

and Γ (.) is the Gamma function defined in equation (2.7.10) in Chapter 2. Further

d1 =
logeK − µ

(S0erT−µ)
1
p − 1

, (A.6.4)

152



d2 = d1 + (logeK − µ) (A.6.5)

with S0 is the price of the product at time 0. Vitiello and Poon (2010) also show that the
risk-neutral density under the measure Q in this case is

fQ (x) =

(
1

σ′

)p
1

xΓ (p)
(loge x− µ)

p−1
e−

1
σ′ (loge x−µ), x ∈ R+ (A.6.6)

where
σ
′

= 1−
(
S0e

rT−µ)−1/p
. (A.6.7)

A.7 The Key Exotic Options

This thesis dwells upon expressing the payoff of mortality contingent securities in terms of exotic
options (c.f. Rubinstein, 1992, for the term ‘exotic’) such as Asian and Basket. We present the
basic definition and payoff structure of these options below assuming that (Ω,F,P), with P as
the real world probability measure, is a complete probability space coupled with the filtration
F = {Ft}t≥0 and Q is the EMM.

A.7.1 Asian Options

An Asian option also known as an “average option” in literature is a financial instrument whose
payoff depends on the average price of the underlying asset during the span of the option.

We are interested in discrete sampled fixed strike European-type Asian call option, having
the payoff: (

1

n

n∑
i=1

Sti −K

)+

,

where {St} is price of a product observed at the monitoring times 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn = T.

The value of the Asian option given above is:

AC (K,T ) = e−rTEQ

( 1

n

n∑
i=1

Sti −K

)+
 . (A.7.1)

The corresponding put option payoff can be obtained by multiplying the term inside the max-
imum function by (−1).

A.7.2 Basket Options

Given a vector of weights w = (w1, w2, ..., wn) ∈ Rn, a basket is defined as the weighted sum

of the n product prices S
(i)
T ; i = 1, 2, ..., n at time T , i.e,

A
(n)
T =

n∑
i=1

wiS
(i)
T .

A basket call option gives the holder the right, but not the obligation, to purchase a portfolio
of assets at a fixed price K, known as the option’s strike price. We consider European-style
options, where the buyer has the option to exercise the option only at maturity T . As a result,
the basket option payoff at time T is (

A
(n)
T −K

)+
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The value of the basket option given above is:

BC (K,T ) = e−rTEQ

[(
A

(n)
T −K

)+
]
. (A.7.2)
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Appendix B

Some Interesting Results

Apart from the results that have been presented in the thesis, there were some other connected
results that we have derived an can be exploited to a greater detail in future research work. We
furnish these results here.

B.1 The Lower Bound SWLB
(1)
t

To further improve the bounds post the Lower Bound SWLB1, for the Swiss Re Bond, additional
assumptions are required. The following inequality holds for every random variable Y and every
constant c

E
[
a+
]
≥ E

[
a1I{Y≥c}

]
. (B.1.1)

Motivated by Albrecher et al. (2008), we choose a =

(
n∑
i=1

Si − q0

)
and Y = qt, where they

make an appropriate choice for t later on. This leads to

P1 ≥ De−rTE

[(
n∑
i=1

Si − q0

)
1I{qt≥c}

]
. (B.1.2)

This reduces to:

P1 ≥ De−rTE

[
n∑
i=1

Si1I{qt≥c} − q01I{qt≥c}

]
. (B.1.3)

Now, again utilizing (B.1.1) we choose: a = 5 (qi − 1.3q0) and Y = qt so that (B.1.3) along
with the definition of Si in (3.2.9) yields:

P1 ≥ De−rTE

[
n∑
i=1

5 (qi − 1.3q0) 1I{qt≥c} − q01I{qt≥c}

]
. (B.1.4)

We then split the first sum into two parts at j = min {i : ti ≥ t} and condition the second part
on the information available up to time t depicted by Ft so as to yield

P1 ≥ De−rT

(
5

j−1∑
i=1

E
[
qi1I{qt≥c}

]
+ 5

n∑
i=j

E
[
1I{qt≥c}e

r(ti−t)qt

]

− 6.5q0

n∑
i=1

P [qt ≥ c]− q0P [qt ≥ c]

)
, (B.1.5)

155



where in the last equation, in the second term, we utilize the fact that discounted asset prices
are martingales. We further modify the second term as follows.

E
[
1I{qt≥c}e

r(ti−t)qt

]
= E

[
1I[qt≥c]e

rtie−rt (qt − c+ c)
]

= ertie−rtE
[
1I{qt≥c} (qt − c)

]
+ cer(ti−t)P [qt ≥ c]

= ertie−rtE
[
(qt − c)+

]
+ cer(ti−t)P [qt ≥ c]

= ertiC (c, t) + cer(ti−t)P [qt ≥ c] . (B.1.6)

where C (c, t) denotes the price of a European call on the mortality index with strike c, maturity
t and current mortality value q0. Putting equation (B.1.6) in equation (B.1.5), we obtain

P1 ≥ De−rT
(

5

j−1∑
i=1

E
[
qi1I{qt≥c}

]
+ 5

n∑
i=j

ertiC (c, t)

−P [qt ≥ c]

(
q0 (1 + 6.5n)− 5c

n∑
i=j

er(ti−t)

))
. (B.1.7)

Further, we assume that qi and 1I{qt≥c} are non-negatively correlated for t > ti

⇒ Cov
(
qi, 1I{qt≥c}

)
≥ 0⇒ E

[
qi1I{qt≥c}

]
≥ E [qi] E

[
1I{qt≥c}

]
.

Using equation (3.3.17) we can bound the first term in equation (B.1.7) from below as follows.

E
[
qi1I{qt≥c}

]
≥ q0e

rtiP [qt ≥ c]

and this finally yields:

P1 ≥ De−rT
5

n∑
i=j

ertiC (c, t)−P [qt ≥ c]

q0 (1 + 6.5n)− 5q0

j−1∑
i=1

erti − 5c

n∑
i=j

er(ti−t)

 .

(B.1.8)
Clearly, we have

C (c, t) = e−rtE
[
(qt − c)+

]
= e−rtE

[
1I{qt≥c} (qt − c)

]
,

which finally leads to:

C (c, t) = e−rtE
[
1I{qt≥c}qt

]
− ce−rtP [qt ≥ c] .

Let g (.) denote the probability density function (p.d.f.) of the mortality index qt. Then, we
can write the above equation as

C (c, t) = e−rt
[∫ ∞

c

x g (x) dx− c
∫ ∞
c

g (x) dx

]
. (B.1.9)

Differentiating C (c, t) w.r.t c, using Leibnitz rule for differentiation under the integral sign,
since the limit involves c, we obtain

∂

∂c
C (c, t) = e−rt [−c g (c)−P [qt ≥ c] + c g (c)]

⇒ P [qt ≥ c] = −ert ∂
∂K

C (K, t)
∣∣∣
K=c

=: −ertCK (c, t)
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Substituting P [qt ≥ c] in equation (B.1.8) and rearranging the terms, we achieve

P1 ≥ 5De−rT
n∑
i=j

erti

(
C (c, t) +CK (c, t)

(
(0.2 + 1.3n) q0 −

∑j−1
i=1 e

rtiq0∑n
i=je

r(ti−t)
− c

))
. (B.1.10)

Now define:
∼
ct =

(0.2 + 1.3n) q0 −
∑j−1
i=1 e

rtiq0∑n
i=je

r(ti−t)
. (B.1.11)

Clearly, the right-hand side would be maximal if c =
∼
ct is given by (B.1.11). Hence, the optimal

lower bound for the Asian-type call option is given by:

P1 ≥ 5De−rT max
0≤t≤T

C
(
∼
ct, t

) n∑
i=j

erti =: lb
(1)
t (B.1.12)

where c =
∼
ct is given by (B.1.11) and j = min {i : ti ≥ t}.

The existence of lb
(1)
t hinges upon the assumption of non-negative correlation between qti

and 1I{qt≥c} for t > ti. Finally, in the light of put-call parity derived in section 3.2.2, the trivial
lower bound for the Swiss Re mortality bond is given as

P ≥
(

lb
(1)
t −G

)+

=: SWLB
(1)
t . (B.1.13)

where G is defined in (3.2.17).

B.2 Performance of SWLB
(1)
t

We present below in tables B.1 and B.2, the values of lower bound SWLB
(1)
t for various models

considered in section 6.1 of Chapter 6.

Table B.1: The Lower Bound SWLB
(1)
t for the Swiss Re Mortality Bond under the Black-Scholes

(B-S) Model, Transformed Normal (Su) Distribution and Transformed Gamma Distribution
with parameter specifications in Tables 6.1, 6.3 and 6.4 respectively

r B-S Model Su Distn. T. Gamma Distn.

0.035 0.899130889163 0.884321427702 0.848490721687
0.030 0.913324024548 0.904010021303 0.873845296963
0.025 0.927447505803 0.921935518851 0.897255685548
0.020 0.941626342687 0.938576980454 0.918981602796
0.015 0.955935721003 0.954369722665 0.939286791779
0.010 0.970419124546 0.969677756802 0.958429070674
0.005 0.985101139986 0.984779521693 0.976649121750
0.000 0.999995778016 0.999868375732 0.994170066411

The bound is extremely tight around the Monte Carlo values as can be compared from the
respective tables in Chapter 6.

B.3 An Alternative Method to obtain the First Upper
Bound SWUB1

This section will focus on finding the upper bound SWUB1 for the Swiss Re Bond 2003 by
employing a Lagrange optimization technique. Before formally beginning the derivation of the
upper bound, we throw light on an interesting proposition regarding the convexity of the value
of a call option which would help us to arrive at the requisite upper bound.
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Table B.2: The Lower Bound SWLB
(1)
t for the Swiss Re Mortality Bond under the Black-

Scholes Model and Transformed Gamma Distribution with parameter specifications in Tables
6.2 and 6.5 respectively

r B-S Model T. Gamma Distn.

0.008 0.999999915252 0.999766071152
0.009 0.999821987950 0.989146149900
0.01 0.978310383929 0.888049181230
0.011 0.610962123857 0.596089667857
0.012 0.040209770810 0.271045973760
0.013 0.000000000000 0.082740708460
0.014 0.000000000000 0.012702023135

Proposition 45. The payoff of the call option is a convex function1 of the strike price, i.e.,

E
[
(X − x)

+
]

is convex in x.

Proof.

E
[
(X − (ax+ (1− a) y))

+
]

= E
[
((a+ 1− a)X − (ax+ (1− a) y))

+
]

= E
[
(a (X − x) + (1− a) (X − y))

+
]

≤ E
[
a (X − x)

+
+ (1− a) (X − y)

+
]

= aE
[
(X − x)

+
]

+ (1− a) E
[
(X − y)

+
]
.

Now, to begin, consider a vector λ = (λ1, . . . , λn) such that λi ∈ R and
∑n
i=1 λi = 1. Now,

with the help of λ we can write the payoff of the Asian-type call option as shown below.

P1 = Ce−rTE

( n∑
i=1

(
5
(
qi
q0
− 1.3

)+

− λi
))+

. (B.3.1)

Using the above proposition, equation (B.3.1) implies that the upper bound for the above
Asian-type call can be expressed as follows:

P1 ≤ Ce−rT
n∑
i=1

E

[(
5
(
qi
q0
− 1.3

)+

− λi
)+
]

(B.3.2)

⇒ P1 ≤ 5De−rT
n∑
i=1

E
[(
qi − q0

(
1.3 + λi

5

))+]
= 5De−rT

n∑
i=1

ertiC

(
q0

(
1.3 +

λi
5

)
, ti

)
. (B.3.3)

As the λi are arbitrary, the goal is then to minimise this bound over all possible λ ensuring that
q0

(
1.3 + λi

5

)
> 0. This in turn is equivalent to minimising the sum

∑n
i=1 e

rtiC
(
q0

(
1.3 + λi

5

)
, ti
)
.

In order to achieve this, we assume that the European call option payoff viz. C (K,T ) > 0 for
every positive K, T and that C (K,T ) ↓ 0 as K →∞. Then C is a convex, strictly decreasing

1A function f : I → R , where I is an interval in R, is convex if and only if f (ax + (1− a) y) ≤ af (x) +
(1− a) f (y) ∀a ∈ [0, 1] and any pair of elements x, y ∈ I .
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function of K with a continuous, strictly increasing derivative ∂C/∂K < 0. We define

di = q0

(
1.3 +

λi
5

)
; i = 1, 2, ..., n. (B.3.4)

Next, we define the Lagrangian as

L (λ, φ) =
5

q0

n∑
i=1

ertiC (di, ti) + φ

(
n∑
i=1

λi − 1

)

where φ is the Lagrange’s multiplier. We wish to find λi for each i, that minimises L. Differ-
entiating L w.r.t λi, we obtain

∂L

∂λi
= −P [qi ≥ di] + φ.

Thus, it is evident that the function L has a point of maxima or minima when λi solves the
following equation for every i, i.e.,

λi =
5

q0

(
F−1
qi (1− φ)− 1.3q0

)
(B.3.5)

where F−1
qi is the inverse distribution function of the mortality index qi. Further more, since

qi ≥ 0, we have that the strike prices of the call viz. di = q0

(
1.3 + λi

5

)
> 0, ∀i. The next aim

is to check that the constraint
∑n
i=1 λi = 1 is satisfied. For this, we define H as

H (φ) =

n∑
i=1

λi − 1 =
5

q0

n∑
i=1

(
F−1
qi (1− φ)− 1.3q0

)
− 1. (B.3.6)

Under the aforesaid assumptions, H is a continuous function of φ. Moreover, since by assump-
tion Fqi is injective for all ti, i = 1, 2, ..., n, it follows that H is strictly decreasing in φ. Hence,
a solution to H (φ) = 0 exists if inf H (φ) < 0 < supH (φ). For φ = 1, H (φ) = −6.5n− 1 and
for the Swiss Re bond as n = 3, we have H (1) = −20.5. As far as searching for such a value
of φ is concerned, for which H (φ) > 0, we can immediately see that Fqi (K) = 1, only when
K →∞. Thus, lim φ↓0H (φ) =∞ and so the application of intermediate value theorem ensures
that we can find φ∗ that satisfies H (φ∗) = 0. Also φ∗ is unique since H is strictly decreasing.

The final task is to check that the stationary point of L, which is obtained when λ = λ (φ∗),
is a point of minima. This is indeed straightforward because ∂C/∂K is strictly increasing. This
implies that on using equation (B.3.5) in conjunction with equation (B.3.3), a minimal upper
bound for the call counterpart of the Swiss Re bond is given by

P1 ≤ 5De−rT
n∑
i=1

ertiC
(
F−1
qi (1− φ∗) , ti

)
. (B.3.7)

Evidently, the argument of F−1
qi in this result is identical to the one in equation (B.3.6) and

this allows us to rewrite the upper bound as

P1 ≤ 5De−rT
n∑
i=1

ertiC
(
F−1
qi (x) , ti

)
=: ub1. (B.3.8)

where x ∈ (0, 1) is the solution of the equation

n∑
i=1

F−1
qi (x) =

q0

5
(1 + 6.5n) (B.3.9)

which is a direct consequence of (B.3.6).

As in the case of lower bounds, invoking the put-call parity of section 3.2.2, we have for the
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Swiss Re bond
P ≤ (ub1 −G)

+
=: SWUB1. (B.3.10)

where G is defined in (3.2.17). This provides an alternative methodology in comparison to
comonotonicity approach employed in section 3.4.1 to obtain SWUB1.

160



Appendix C

MATLAB Codes

We now present the relevant algorithms that have been used to produce the numerical results
in Chapter 6.

C.1 Bounds for the Swiss Re Bond

We now present programs written on the basis of theory derived in Chapter 3 to furnish bounds
for the Swiss Re Mortality Bond 2003 presented in Chapter 6.

C.1.1 The Black-Scholes Model

The parameter choices for the tables 6.1 - 6.2 have been indicated in Chapter 6. We vary the
time points according to the structure of the Swiss Re Bond in the codes presented below. We
present below the parameter choice for these tables and this snippet is a part of every code in
this sub-section. To obtain Table 6.1, we vary the values of interest rate while fixing the base
value of the mortality index, i.e., q0 = 0.008453. In Table 6.2, we vary the base values of the
mortality index while specifying the interest rate as r = 0.0. We present the MATLAB codes
below. These will take care of both scenarios. The varying base mortality index is denoted by
w0.

Snippet C.1.1.1: Parameter Choice for Table 6.1

% Parameters
n=3; %Duration of the Swiss Re Bond
q0=0.008453; %Base Value of the Mortality Index
w0=.008453; %Value of the Base Mortality Index which is varied for Table 6.2
r=0.035; %Risk Free Rate
s=0.0388; %Volatility of the B−S Model

The snippet given below follows Snippet C.1.1.1 to initialize arrays and values used in every
program. For the program to compute, Monte Carlo estimate of bond price, we do not use this
snippet.

Snippet C.1.1.2: Initializing

t=zeros(n,1); %Vector of Time Points
C1=zeros(n,1); %Vector of Call Options in equation (3.2.16)
G1=0; %Initial Value of Sum used in G

The snippet that we now present is an integral part of each of the codes in this section and
specifies the time points at which the principal loss percentage viz. Li; i = 1, 2, 3, is computed
(c.f. equation (3.2.2)) and as a result Sis are calculated at these time points (c.f. equations
(3.2.9) - (3.2.11)). It also computes the value of G given in equation (3.2.17) which is required
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to compute price bounds for Swiss Re Bond 2003 exploiting put-call parity. For the program
to compute Monte Carlo estimate of bond price, we do not use this snippet.

Snippet C.1.1.3: Specification of Time Points and Computation of G

%Specifying Time Points and Computing G given in equation (3.2.17)
for i=1:n;

t(i)=i;
end
for i=1:n;

C1(i)=blsprice(w0,1.3*q0,r,t(i),s,0); %The Computation of Call option in (3.2.17)
G1=G1+C1(i)*exp(r*t(i));

end
G=exp(−r*3)*(5*G1/q0−1)

1. The Trivial Lower Bound SWLB0

%Snippet C.1.1.1
%Snippet C.1.1.2
s1=zeros(n,1); %Initializing the vector of terms in the Sum in (3.3.18)
SUM1=0; %Initializing the Sum in SWLB0
%Snippet C.1.1.3
%Computation of SWLB0
for i=1:n;

s1(i)=5*max((w0*exp(r*t(i))−1.3*q0),0);
SUM1=SUM1+s1(i);

end
lb0=exp(−3*r)*max((SUM1/q0−1),0); %Equation (3.3.18)
format 'long'
LB0=max(lb0−G,0) %To ensure positive value
format 'short'

2. The Lower Bound SWLB1

%Snippet C.1.1.1
%Snippet C.1.1.2
x lower=0; %First initial guess for equation (3.3.22)
x upper=1000; %Second initial guess for equation (3.3.22)
stn=zeros(n,1); %Initializing the vector of coefficients of x in (3.3.22)
AVl=0; %Initializing the sum on L.H.S. of (3.3.22) for lower guess
AVu=0; %Initializing the sum on L.H.S. of (3.3.22) for upper guess
AVm=0; %Initializing the sum on L.H.S. of (3.3.22) for midpoint of guesses
terml=zeros(n,1); %Initializing the summand on L.H.S. of (3.3.22) for lower guess
termu=zeros(n,1); %Initializing the summand on L.H.S. of (3.3.22) for upper guess
termm=zeros(n,1); %Initializing summand on L.H.S.:(3.3.22) for mid pt. of guesses
st=zeros(n,1); %Initializing the vector of coefficients of call in (3.3.27)
POW=zeros(n,1); %Defining the vector of terms in the sum in equation (3.3.27)
SPOW=0; %Initializing the terms in the sum in equation (3.3.27)
K=zeros(n,1); %Defining the vector of strike prices of the calls in (3.3.27)
%Snippet C.1.1.3
%Code to find the Solution of the equation (3.3.22) using Bisection Method
for i=1:n;

stn(i)=exp(r*(t(i)−t(1)));
terml(i)=max((stn(i)*x lower−1.3),0);
termu(i)=max((stn(i)*x upper−1.3),0);
AVl=AVl+terml(i);
AVu=AVu+termu(i);

end
fl=AVl−0.2; %L.H.S.−R.H.S. value for equation (3.3.22) for lower initial guess
fu=AVu−0.2; %L.H.S.−R.H.S. value for equation (3.3.22) for upper initial guess
while x upper−x lower>0.000000001;

x mid=(x lower+x upper)/2; %Average of Guesses
AVm=0;
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for i=1:n;
termm(i)=max((stn(i)*x mid−1.3),0);
AVm=AVm+termm(i);

end
fm=AVm−0.2; %L.H.S.−R.H.S. for (3.3.22) for mid pt. of guesses
if (fm*fu)<0;

x lower=x mid;
fl=fm;

else
x upper=x mid;
fu=fm;

end
end
soln=x mid; %The solution of equation (3.3.22)
% Code to compute lb1 using equation (3.3.27)
for i=1:n;

K(i)=q0*(1.3/stn(i)+max((soln−1.3/stn(i)),0)); %Strike of the call in (3.3.27)
POW(i)=blsprice(w0,K(i),r,t(1),s,0); %The terms in the sum in (3.3.27)
SPOW=SPOW+st(i)*POW(i); %Computation of the sum in (3.3.27)

end
lb1=5*exp(−r*3)*SPOW/q0;
format 'long'
SWLB1=max(lb1−G,0) %To ensure positive value
format 'short'

3. The Lower Bound SWLB
(BS)
t

%Snippet C.1.1.1
%Snippet C.1.1.2
x lower=zeros(n,1); %Initialising the vector of Initial guess for equation (3.5.9)
x upper=zeros(n,1); %Initialising vector of second Initial guess for (3.5.9)
x mid=zeros(n,1); %Initialising vector of Average of Two Initial Guesses for (3.5.9)
soln=zeros(n,1); %Vector of Solutions for n time points
fl=zeros(n,1); %Vector of the L.H.S.−R.H.S. value of (3.5.9) for lower initial guess
fu=zeros(n,1); %Vector of the L.H.S.−R.H.S. value of (3.5.9) for upper initial guess
fm=zeros(n,1); %Vector of the L.H.S.−R.H.S. value of (3.5.9) for midpt. of guesses
stl=zeros(n,1); %Vector of first term for lower guess in the sum on L.H.S of (3.5.9)
stu=zeros(n,1); %Vector of first term for upper guess in the sum on L.H.S of (3.5.9)
stm=zeros(n,1); %Vector of first term for mid pt. of guesses in sum on L.H.S:(3.5.9)
AVl=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(3.5.9) lower guess
AVu=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(3.5.9) for upper guess
AVm=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(3.5.9) for midpt. of guesses
std=zeros(n,1); %The Vector of Coeff. of x inside the Second sum on L.H.S. of (3.5.9)
AVdl=zeros(n,1); %Initializing vector of 2nd sum:L.H.S.(3.5.9) for lower guess
AVdu=zeros(n,1); %Initializing vector of 2nd sum:L.H.S.(3.5.9) for upper guess
AVdm=zeros(n,1); %Initializing vector of 2nd sum:L.H.S.(3.5.9) for midpt. of guesses
stdl=zeros(n,1); %Vector of 2nd term for lower guess in the sum on L.H.S of (3.5.9)
stdu=zeros(n,1); %Vector of 2nd term for upper guess in the sum on L.H.S of (3.5.9)
stdm=zeros(n,1); %Vector of 2nd term for mid pt. guesses in sum on L.H.S of (3.5.9)
stau=zeros(n,1); %Vector of square root of time points
POW1=zeros(n,1); %Initializing the vector of terms in 1st sum in lbt(BS) in (3.5.15)
SPOW1=zeros(n,1); %1st sum in lbt(BS) in (3.5.15)
POW2=zeros(n,1); %Initializing vector of terms in 2nd sum in lbt(BS) in (3.5.15)
SPOW2=zeros(n,1); %2nd sum in lbt(BS) in (3.5.15)
d=zeros(n,1); %Initializing the sum in lbt(BS) in (3.5.15)
C2=zeros(n,1); %Initializing vector of calls:2nd term in lbt(BS) in (3.5.15)
%Snippet C.1.1.3
%Code to find the Solution of the equation (3.5.9) using Bisection Method
for j=1:n;

x lower(j)=0;
x upper(j)=2;
for i=j:n;

std(i)=exp(r*(t(i)−t(j)));
stdl(i)=max((x lower(j)*std(i)−1.3),0);
stdu(i)=max((x upper(j)*std(i)−1.3),0);
AVdl(j)=AVdl(j)+stdl(i);
AVdu(j)=AVdu(j)+stdu(i);

end
for k=1:j−1;
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stl(k)=max((x lower(j)ˆ(t(k)/t(j))*exp(sˆ2*t(k)*(t(j)−t(k))/...
(2*t(j)))−1.3),0);
AVl(j)=AVl(j)+stl(k);
stu(k)=max((x upper(j)ˆ(t(k)/t(j))*exp(sˆ2*t(k)*(t(j)−t(k))/...
(2*t(j)))−1.3),0);
AVu(j)=AVu(j)+stu(k);

end
fl(j)=AVl(j)+AVdl(j)−0.2; %L.H.S.−R.H.S. for (3.5.9) for lower guess
fu(j)=AVu(j)+AVdu(j)−0.2; %L.H.S.−R.H.S. for (3.5.9) for upper guess
while x upper(j)−x lower(j)>0.000000000000001;

x mid(j)=(x lower(j)+x upper(j))/2;
AVm(j)=0;
AVdm(j)=0;
for m=1:j−1;

stm(m)=max((x mid(j)ˆ(t(m)/t(j))*exp(sˆ2*t(m)*(t(j)−t(m))/...
(2*t(j)))−1.3),0);
AVm(j)=AVm(j)+stm(m);

end
for m1=j:n;

std(m1)=exp(r*(t(m1)−t(j)));
stdm(m1)=max((x mid(j)*std(m1)−1.3),0);
AVdm(j)=AVdm(j)+stdm(m1);

end
fm(j)=AVm(j)+AVdm(j)−0.2; %L.H.S.−R.H.S. in (3.5.9) for mid pt. of guesses
if (fm(j)*fu(j))<0;

x lower(j)=x mid(j);
fl(j)=fm(j);

else
x upper(j)=x mid(j);
fu(j)=fm(j);

end
end
format 'long'
soln(j)=x mid(j)

end
%Computation of the second Term in lbt(BS) in (3.5.15)
for j=1:n;

for k=j:n;
modisoln=max((soln(j)−1.3/exp(r*(t(k)−t(j)))),0);
dnk=q0*(1.3/exp(r*(t(k)−t(j)))+modisoln); %Strike for call:2nd term (3.5.15)
C2(k)=blsprice(w0,dnk,r,t(j),s,0); %Call price:2nd term (3.5.15)
POW2(k)=5*exp(r*t(k))*C2(k)/q0; %Summand of the 2nd term in lbt(BS)
SPOW2(j)=SPOW2(j)+POW2(k); %Computation of the second sum in lbt(BS)

end
end
%Computation of the first term in lbt(BS) in (3.5.15)
for j=1:n

stau(j)=sqrt(t(j));
for i=1:j−1;

modi2soln=max(((soln(j))ˆ(t(i)/t(j))−1.3/exp(sˆ2*t(i)*(t(j)−t(i))...
/(2*t(j)))),0);
di=q0*(1.3/exp(sˆ2*t(i)*(t(j)−t(i))/(2*t(j)))+modi2soln)ˆ(t(j)/t(i));
d2i=(−log(di/w0)+(r−sˆ2/2)*t(j))/(s*stau(j));
d1i=d2i+(s*t(i))/stau(j);
p1=normcdf(d1i);
p2=normcdf(d2i);
POW1(i)=5*((w0/q0)ˆ(t(i)/t(j))*exp(r*t(i))*p1−(1.3...
+max(((soln(j))ˆ(t(i)/t(j))*exp(sˆ2*t(i)*(t(j)−t(i))/(2*t(j)))−1.3), 0))*p2);
SPOW1(j)=SPOW1(j)+POW1(i); %Computation of the first sum in lbt(BS)

end
d(j)=SPOW1(j)+SPOW2(j); %Computation of the consolidated lbt(BS) in (3.5.15)

end
m=max(d);
format 'long'
lbt2=exp(−3*r)*m; %The Optimal Lower Bound lbt(BS) given by equation (3.5.16)
format 'long'
SWLBtBS=max(lbt2−G,0)
format 'short'

4. The Upper Bound SWUB1
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%Snippet C.1.2.1
%Snippet C.1.2.2
x lower=−6.5; %First initial guess for equation (3.4.15)
x upper=10000; %Second initial guess for equation (3.4.15)
stn=zeros(n,1); %Initializing the vector of coefficients of call in (3.4.15)
AVl=0; %Initializing the sum on L.H.S. of (3.4.13) for lower guess
AVu=0; %Initializing the sum on L.H.S. of (3.4.13) for upper guess
AVm=0; %Initializing the sum on L.H.S. of (3.4.13) for midpoint of guesses
POW=zeros(n,1); %Defining the vector of calls in ub1 in (3.4.15)
SPOW=0; %Initializing the terms in the sum in equation (3.4.15)
K=zeros(n,1); %Defining the vector of strike prices of the calls in (3.4.15)
%Snippet C.1.1.3
%Code to find the Solution of the equation (3.4.13) using Bisection Method
for i=1:n;

mu1(i)=(r−sˆ2/2)*t(i); %Parameter in inverse distribution function
sigma1(i)=sqrt(sˆ2*t(i)); %Parameter in inverse distribution function
AVl=AVl+exp(mu1(i)+sigma1(i)*x lower);
AVu=AVu+exp(mu1(i)+sigma1(i)*x upper);

end
fl=AVl−(0.2+1.3*n); %L.H.S.−R.H.S. for equation (3.4.13) for lower initial guess
fu=AVu−(0.2+1.3*n); %L.H.S.−R.H.S. for equation (3.4.13) for upper initial guess
while x upper−x lower>0.000000000000001;

x mid=(x lower+x upper)/2;
AVm=0;
for i=1:n;

AVm=AVm+exp(mu1(i)+sigma1(i)*x mid);
end
fm=AVm−(0.2+1.3*3); %L.H.S.−R.H.S. for (3.4.13) for mid pt. of guesses
if (fm*fu)<0;

x lower=x mid;
fl=fm;

else
x upper=x mid;
fu=fm;

end
end
soln=x mid %The solution of equation(3.4.13)
% Code to compute ub1 using equation (3.4.15)
for i=1:n;

stn(i)=exp(r*t(i)); %Coefficient of call in (3.4.15)
K(i)=q0*exp(mu1(i)+sigma1(i)*soln) %Strike of the call in (3.4.15)
POW(i)=blsprice(w0,K(i),r,t(i),s,0); %The call price in (3.4.15)
SPOW=SPOW=SPOW+stn(i)*POW(i); %Computation of the sum in (3.4.15)

end
ub1=5*exp(−3*r)*SPOW/q0;
format 'long'
SWUB1=max(ub1−G,0) %To ensure positive value
format 'short'

5. The Upper Bound SWUB
(BS)
t

%Snippet C.1.1.1
%Snippet C.1.1.2
x lower=zeros(n,1); %Initialising the vector of Initial guess for equation (3.5.22)
x upper=zeros(n,1); %Initialising vector of second Initial guess for (3.5.22)
x mid=zeros(n,1); %Initialising vector of Average of Two Initial Guesses for (3.5.22)
soln=zeros(n,1); %Vector of Solutions for n time points
fl=zeros(n,1); %Vector of the L.H.S.−R.H.S. value of (3.5.22) for lower initial guess
fu=zeros(n,1); %Vector of the L.H.S.−R.H.S. value of (3.5.22) for upper initial guess
fm=zeros(n,1); %Vector of the L.H.S.−R.H.S. value of (3.5.22) for midpt. of guesses
stl=zeros(n,1); %Vector of first term for lower guess in the sum on L.H.S of (3.5.22)
stu=zeros(n,1); %Vector of first term for upper guess in the sum on L.H.S of (3.5.22)
stm=zeros(n,1); %Vector of first term for mid pt. of guesses in sum on L.H.S:(3.5.22)
AVl=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(3.5.22) lower guess
AVu=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(3.5.22) for upper guess
AVm=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(3.5.22) for midpt. of guesses
std=zeros(n,1); %Vector of Coeff. of x inside Second sum on L.H.S. of (3.5.22)
AVdl=zeros(n,1); %Initializing vector of 2nd sum:L.H.S.(3.5.22) for lower guess
AVdu=zeros(n,1); %Initializing vector of 2nd sum:L.H.S.(3.5.22) for upper guess
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AVdm=zeros(n,1); %Initializing vector of 2nd sum:L.H.S.(3.5.22) for midpt. of guesses
stdl=zeros(n,1); %Vector of 2nd term for lower guess in the sum on L.H.S of (3.5.22)
stdu=zeros(n,1); %Vector of 2nd term for upper guess in the sum on L.H.S of (3.5.22)
stdm=zeros(n,1); %Vector of 2nd term for mid pt. guesses in sum on L.H.S of (3.5.22)
x=zeros(n,1); %Inializing Vector of NORMAL cdf of solution
y=zeros(n,1); %Inializing second term in (3.5.23)
%The same arrays as above for ANTITHETIC CASE
x lower2=zeros(n,1); %Initialising the vector of Initial guess for equation (3.5.22)
x upper2=zeros(n,1); %Initialising vector of second Initial guess for (3.5.22)
x mid2=zeros(n,1); %Initial. vector of Average of Two Initial Guesses for (3.5.22)
soln2=zeros(n,1); %Vector of Solutions for n time points
fl2=zeros(n,1); %Vector of L.H.S.−R.H.S. value of (3.5.22) for lower initial guess
fu2=zeros(n,1); %Vector of L.H.S.−R.H.S. value of (3.5.22) for upper initial guess
fm2=zeros(n,1); %Vector of L.H.S.−R.H.S. value of (3.5.22) for midpt. of guesses
stl2=zeros(n,1); %Vector of first term for lower guess in sum on L.H.S of (3.5.22)
stu2=zeros(n,1); %Vector of first term for upper guess in sum:L.H.S of (3.5.22)
stm2=zeros(n,1); %Vector of first term for mid pt. guess in sum:L.H.S:(3.5.22)
AVl2=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(3.5.22) lower guess
AVu2=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(3.5.22) for upper guess
AVm2=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(3.5.22) for midpt. of guesses
std2=zeros(n,1); %Vector of Coeff. of x inside Second sum on L.H.S. of (3.5.22)
AVdl2=zeros(n,1); %Initializing vector of 2nd sum:L.H.S.(3.5.22) for lower guess
AVdu2=zeros(n,1); %Initializing vector of 2nd sum:L.H.S.(3.5.22) for upper guess
AVdm2=zeros(n,1); %Initializing vector of 2nd sum:L.H.S.(3.5.22) for midpt. guess
stdl2=zeros(n,1); %Vector of 2nd term for lower guess in the sum on L.H.S of (3.5.22)
stdu2=zeros(n,1); %Vector of 2nd term for upper guess in the sum on L.H.S of (3.5.22)
stdm2=zeros(n,1); %Vector of 2nd term for mid pt. guesses in sum on L.H.S of (3.5.22)
%The other initializations
M=1000000; %Twice the number of Simulations
M1=M/2; %The number of Simulations
%Calculation of the option for the first case
POW1=zeros(n,1);
SPOW1=zeros(n,1);
POW2=zeros(n,1);
SPOW2=zeros(n,1);
d=zeros(n,1);
C2=zeros(n,1); %(3.5.23): i=1:j−1
C2a=zeros(n,1); %(3.5.23): i=j:n
w=zeros(n,M1); %First set of random normal numbers
w2=zeros(n,M1); %Second set of random normal numbers
%Calculation of the option for the Antithetic Case
POW12=zeros(n,1);
SPOW12=zeros(n,1);
POW22=zeros(n,1);
SPOW22=zeros(n,1);
d2=zeros(n,1);
C22=zeros(n,1); %(3.5.23): i=1:j−1
C22a=zeros(n,1); %(3.5.23): i=j:n
%The other arrays required for (3.5.23)
UBC2=zeros(n,1); %Initializing (3.5.24)
UBC1=zeros(n,1); %Initializing Normal c.d.f. of (3.5.24)
UBC22=zeros(n,1); %Initializing (3.5.24): Antithetic Case
UBC12=zeros(n,1); %Initializing Normal c.d.f. of (3.5.24): Antithetic Case
UBt=zeros(n,1); %Initializing the array of upper bounds
ubt=zeros(n,1);
SUBt=zeros(n,1);
UBt2=zeros(n,1); %The array of upper bounds: Antithetic case
ubt2=zeros(n,1);
SUBt2=zeros(n,1);
CUBt=zeros(n,1); %Summing the original and antithetic case upper bounds
%Snippet C.1.1.3
%Code to find Solution of (3.5.22) using Bisection Method:Both cases
for j=1:n;

for is=1:M1;
w(j,is)=sqrt(t(j))*randn;
w2(j,is)=−(w(j,is));
x lower(j)=−1000;
x upper(j)=10000;
x lower2(j)=−1000;
x upper2(j)=100000;
for i=j:n;
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stdl(i)=std(i)*exp(s*w(j,is)+s*sqrt(t(i)−t(j))*x lower(j));
stdu(i)=std(i)*exp(s*w(j,is)+s*sqrt(t(i)−t(j))*x upper(j));
AVdl(j)=AVdl(j)+stdl(i);
AVdu(j)=AVdu(j)+stdu(i);
stdl2(i)=std(i)*exp(s*w2(j,is)+s*sqrt(t(i)−t(j))*x lower2(j));
stdu2(i)=std(i)*exp(s*w2(j,is)+s*sqrt(t(i)−t(j))*x upper2(j));
AVdl2(j)=AVdl2(j)+stdl2(i);
AVdu2(j)=AVdu2(j)+stdu2(i);

end
for k=1:j−1;

stl(k)=std(k)*exp(s*t(k)*w(j,is)/t(j)+...
s*sqrt(t(k)*(t(j)−t(k))/t(j))*x lower(j));
AVl(j)=AVl(j)+stl(k);
stu(k)=std(k)*exp(s*t(k)*w(j,is)/t(j)+...
s*sqrt(t(k)*(t(j)−t(k))/t(j))*x upper(j));
AVu(j)=AVu(j)+stu(k);
stl2(k)=std(k)*exp(s*t(k)*w2(j,is)/t(j)+...
s*sqrt(t(k)*(t(j)−t(k))/t(j))*x lower2(j));
AVl2(j)=AVl2(j)+stl2(k);
stu2(k)=std(k)*exp(s*t(k)*w2(j,is)/t(j)+...
s*sqrt(t(k)*(t(j)−t(k))/t(j))*x upper2(j));
AVu2(j)=AVu2(j)+stu2(k);

end
fl(j)=AVl(j)+AVdl(j)−(0.2+1.3*3); %L.H.S.−R.H.S.(3.5.22):lower guess
fu(j)=AVu(j)+AVdu(j)−(0.2+1.3*3); %L.H.S.−R.H.S.(3.5.22):upper guess
fl2(j)=AVl2(j)+AVdl2(j)−(0.2+1.3*3); %L.H.S.−R.H.S.(3.5.22):guess1 (Anti)
fu2(j)=AVu2(j)+AVdu2(j)−(0.2+1.3*3); %L.H.S.−R.H.S.(3.5.22):guess2 (Anti)
while x upper(j)−x lower(j)>0.00000000000001;

x mid(j)=(x lower(j)+x upper(j))/2;
AVm(j)=0;
AVdm(j)=0;
for m=1:j−1;

stm(m)=std(m)*exp(s*t(m)*w(j,is)/t(j)+...
s*sqrt(t(m)*(t(j)−t(m))/t(j))*x mid(j));
AVm(j)=AVm(j)+stm(m);

end
for m1=j:n;

stdm(m1)=std(m1)*exp(s*w(j,is)+s*sqrt(t(m1)−t(j))*x mid(j));
AVdm(j)=AVdm(j)+stdm(m1);

end
fm(j)=AVm(j)+AVdm(j)−(0.2+1.3*3);
if (fm(j)*fu(j))<0;

x lower(j)=x mid(j);
fl(j)=fm(j);

else
x upper(j)=x mid(j);
fu(j)=fm(j);

end
end
while x upper2(j)−x lower2(j)>0.00000000000001;
x mid2(j)=(x lower2(j)+x upper2(j))/2;
AVm2(j)=0;
AVdm2(j)=0;

for m=1:j−1;
stm2(m)=std(m)*exp(s*t(m)*w2(j,is)/t(j)+...
s*sqrt(t(m)*(t(j)−t(m))/t(j))*x mid2(j));
AVm2(j)=AVm2(j)+stm2(m);

end
for m1=j:n;

stdm2(m1)=std(m1)*exp(s*w2(j,is)+s*sqrt(t(m1)−t(j))*x mid2(j));
AVdm2(j)=AVdm2(j)+stdm2(m1);

end
fm2(j)=AVm2(j)+AVdm2(j)−(0.2+1.3*3);
if (fm2(j)*fu2(j))<0;

x lower2(j)=x mid2(j);
fl2(j)=fm2(j);

else
x upper2(j)=x mid2(j);
fu2(j)=fm2(j);

end
end
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format 'long'
soln(j)=x mid(j);
soln2(j)=x mid2(j);
x(j)=normcdf(soln(j));
y(j)=1−x(j);
cons(j)=(0.2+1.3*3)*y(j);
x2(j)=normcdf(soln2(j));
y2(j)=1−x2(j);
cons2(j)=(0.2+1.3*3)*y2(j);
for k=j:n;

UBC2(k)=s*sqrt(t(k)−t(j))−soln(j);
UBC1(k)=normcdf(UBC2(k));
UBC22(k)=s*sqrt(t(k)−t(j))−soln2(j);
UBC12(k)=normcdf(UBC22(k));
C2(k)=w0*exp((r−(sˆ2*t(j))/(2*t(k)))*t(k)+s*w(j,is));
POW2(k)=C2(k)*UBC1(k);
SPOW2(j)=SPOW2(j)+POW2(k);
C22(k)=w0*exp((r−(sˆ2*t(j))/(2*t(k)))*t(k)+s*w2(j,is));
POW22(k)=C22(k)*UBC12(k);
SPOW22(j)=SPOW22(j)+POW22(k);

end
for i=1:j−1;

UBC2(i)=s*sqrt(t(i)*(t(j)−t(i))/t(j))−soln(j);
UBC1(i)=normcdf(UBC2(i));
UBC22(i)=s*sqrt(t(i)*(t(j)−t(i))/t(j))−soln2(j);
UBC12(i)=normcdf(UBC22(i));
C2a(i)=w0*exp((r−(sˆ2*t(i))/(2*t(j)))*t(i)+s*t(i)*w(j,is)/t(j));
POW1(i)=C2a(i)*UBC1(i);
SPOW1(j)=SPOW1(j)+POW1(i);
C22a(i)=w0*exp((r−(sˆ2*t(i))/(2*t(j)))*t(i)+s*t(i)*w2(j,is)/t(j));
POW12(i)=C22a(i)*UBC12(i);
SPOW12(j)=SPOW12(j)+POW12(i);

end
d(j)=SPOW1(j)+SPOW2(j)−q0*cons(j);
d2(j)=SPOW12(j)+SPOW22(j)−q0*cons2(j);
ubt(j)=exp(−3*r)*5*d(j)/q0;
ubt2(j)=exp(−3*r)*5*d2(j)/q0;
format 'long'
UBt(j)=max(ubt(j)−G,0); %To ensure positive value
SUBt(j)=SUBt(j)+UBt(j);
UBt2(j)=max(ubt2(j)−G,0); %To ensure positive value
SUBt2(j)=SUBt2(j)+UBt2(j);

end
format 'long'
CUBt(j)=(SUBt(j)+SUBt2(j))/M
end
m=min(CUBt)
format 'short'

6. The Monte Carlo Estimate (Antithetic Method)

%Snippet C.1.1.1
M=5000000; %Twice the Number of Simulations/Paths
M1=M/2; %Number of Simulations/Paths
t=zeros(n,1); %Vector of Time Points
q=zeros(M1,n+1); %Matrix of Mortality Indices at the n Time points for...

%M Paths beginning at time zero
Z=zeros(M1,n); %Same as S but Value begins at time point t(1)
X=zeros(M1,n); %Initializing the call counterpart of Swiss Re Bond
q2=zeros(M1,n+1); %Same as q but paths generated using Antithetic Variate
Z2=zeros(M1,n); %Same as q2 but Value begins at time point t(1)
AV=zeros(M1,1); %Initializing the sum of calls along each path
AV2=zeros(M1,1); %Initializing the sum of calls along...

%each path obtained using Antithetic Variate
swiss=zeros(M1,1); %Payoff of the Swiss Re Bond along each path
swiss2=zeros(M1,1); %Same as above but paths generated

%using Antithetic Variate
V=0; %Initializing the sum of bond payoffs to 0
%Specifying Time Points
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for i=1:n;
t(i)=i;

end
%Simulating the Black−Scholes Model using the Antithetic Method
for i=1:M1;

q(i,1)=w0;
q2(i,1)=w0;
for j=1:n

q(i,j+1)=q(i,j)*exp((r−sˆ2/2)*h+s*sqrt(h)*r1);
Z(i,j)=q(i,j+1);
X(i,j)=5*max((Z(i,j)/q0−1.3),0);
q2(i,j+1)=q2(i,j)*exp((r−sˆ2/2)*h+s*sqrt(h)*(−r1)); %(−r1) acts...

%as antithetic variate
Z2(i,j)=q2(i,j+1);
X2(i,j)=5*max((Z2(i,j)/q0−1.3),0);

end
end
%Monte Carlo Estimation of the Swiss Re Mortality Bond 2003
for i=1:M1;

for j=1:n;
AV(i)=AV(i)+X(i,j); %Computing the Total Price along each path
AV2(i)=AV2(i)+X2(i,j); %Same as above but along path generated...
%using Antithetic Variate

end
swiss(i)=max((1−AV(i)),0); %Computing Payoff of Swiss Re along

%each path
swiss2(i)=max((1−AV2(i)),0); %Same as above but path generated using...

%Antithetic Variate
V=V+swiss(i)+swiss2(i); %Summing the Payoffs of different paths

end
format 'long'
disp(' The Monte Carlo Estimate is')
MC=exp(−(r*T))*V/(2*M1) %Monte Carlo Estimate of the Swiss Re Bond 2003
format 'short'

7. The Lower Bound SWLB
(1)
t

%Snippet C.1.1.1
%Snippet C.1.1.2
std=zeros(n,1); %The vector of terms in the denominator of Strike Price...

%in Call Option Payoff in lbt1
AVd=zeros(n,1); %Initializing the above referred sum for each j
stn=zeros(n,1); %The Vector of Terms inside the Sum in lbt1 in (B.1.12)
AVn=zeros(n,1); %Initializing the above referred sum for each j
st=zeros(n,1); %The vector of terms in the numerator of Strike Price in...

%Call Option Payoff in lbt1
AV=zeros(n,1); %Initializing the above referred sum for each j
ct=zeros(n,1); %The Vector of Strike Prices in the Call Function for...

%different j
d=zeros(n,1); %R.H.S. of (B.1.12) for each j before discounting and...

%dividing by n
%Snippet C.1.1.3
%Computation of Various Sums involved in lbt1 given in (B.1.12)
for j=1:n;

for i=j:n;
std(i)=exp(r*(t(i)−t(j)));
stn(i)=exp(r*t(i));
AVd(j)=AVd(j)+std(i);
AVn(j)=AVn(j)+stn(i); %computes the multiplication factor in lbt1

end
for k=1:j−1;

st(k)=exp(r*t(k));
AV(j)=AV(j)+st(k);

end
end
%Computation of Strike Prices for each j; j=1,2,...,n
for l=1:n;

ct(l)=((0.2+1.3*3)*q0−q0*AV(l))/AVd(l); %computes the strikes
if (ct(l)>0);
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C2=blsprice(w0,ct(l),r,t(l),s,0); %Computation of Call...
%Price in lbt1

d(l)=C2*AVn(l);
else

d(l)=0;
end

end
m=max(d);
format 'long'
lbt1=5*exp(−3*r)*m/q0
format 'long'

lbt1=5*exp(−3*r)*m/q0; %The Optimal Lower Bound lbt1 given by (B.1.12)
SWLBt1=max(lbt1−G,0) %Ensures positive value
format 'short'

C.1.2 Transformed Normal (Su) Distribution

The parameter choices for the table 6.3 have been indicated in Chapter 6. We vary the time
points according to the structure of the Swiss Re Bond in the codes furnished below. We
present below the parameter choice for this table and this snippet is a part of every code in
this sub-section. The annual mortality index is assumed to follow Su) distribution specified
in section 6.1.2. To obtain Table 6.1, we vary the values of interest rate while fixing the base
value of the mortality index, i.e., q0 = 0.008453. We present the MATLAB codes for this table
below.

Snippet C.1.2.1: Parameter Choice for Table 6.1

% Parameters
n=3; %Duration of the Swiss Re Bond
q0=0.008453; %Base Value of the Mortality Index
r=0.035; %Risk Free Rate
%Parameters of Su Distn. in (6.1.2) for q1, q2 and q3
alpha=[.008399, .008169, .007905];
beta=[.000298, .000613, .000904];
mu=[.70780, .58728, .58743];
sigma=[.67281, .50654, .42218];

After this, we have the snippet C.1.2.2 to initialize arrays and values used in every program
except for the program to compute Monte Carlo estimate of bond price.

Snippet C.1.2.2: Initializing

t=zeros(n,1); %Vector of Time Points
C1=zeros(n,1); %Vector of Call Options in equation (3.2.16)
G1=0; %Initial Value of Sum used in G
%Arrays required for computation of (3.2.17) using (A.5.1)
muQ=zeros(n,1); %Parameter of the risk neutral density
d1=zeros(n,1);
d2=zeros(n,1);
d3=zeros(n,1);
num=zeros(n,1);

The snippet that follows is an integral part of each of the codes in this section except for
the program to compute Monte Carlo estimate of bond price. This snippet is constructed on
the same lines as snippet C.1.1.3.

Snippet C.1.2.3: Specification of Time Points and Computation of G

%Specifying Time Points and Computing G given in equation (3.2.17)
for i=1:n;

t(i)=i;
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end
K1=1.3*q0;
for i=1:n;

muQ(i)=asinh(exp(−sigma(i)ˆ2/2)*(q0*exp(r*t(i))−alpha(i))/beta(i));
num(i)=−asinh((K1−alpha(i))/beta(i))+muQ(i);
d1(i)=num(i)/sigma(i)+sigma(i);
d2(i)=num(i)/sigma(i)−sigma(i);
d3(i)=num(i)/sigma(i);
C1(i)=beta(i)/2*exp(muQ(i)+sigma(i)ˆ2/2)*normcdf(d1(i))−beta(i)...
/2*exp(−muQ(i)+sigma(i)ˆ2/2)*normcdf(d2(i))+(alpha(i)−K1)*normcdf(d3(i));
G1=G1+C1(i);

end
G=exp(−r*3)*(5*G1/q0−1);

1. The Trivial Lower Bound SWLB0

The MATLAB code for SWLB0 is similar to the one for Black-Scholes Model. So, we do not
rewrite it here.

2. The Lower Bound SWLB1

%Snippet C.1.2.1
%Snippet C.1.2.2
x lower=−1000; %First initial guess for equation (3.3.22)
x upper=10; %Second initial guess for equation (3.3.22)
stn=zeros(n,1); %Initializing the vector of coefficients of x in (3.3.22)
AVl=0; %Initializing the sum on L.H.S. of (3.3.22) for lower guess
AVu=0; %Initializing the sum on L.H.S. of (3.3.22) for upper guess
AVm=0; %Initializing the sum on L.H.S. of (3.3.22) for midpoint of guesses
terml=zeros(n,1); %Initializing the summand on L.H.S. of (3.3.22) for lower guess
termu=zeros(n,1); %Initializing the summand on L.H.S. of (3.3.22) for upper guess
termm=zeros(n,1); %Initializing summand on L.H.S.:(3.3.22) for mid pt. of guesses
st=zeros(n,1); %Initializing the vector of coefficients of call in (3.3.27)
POW=zeros(n,1); %Defining the vector of terms in the sum in equation (3.3.27)
SPOW=0; %Initializing the terms in the sum in equation (3.3.27)
K=zeros(n,1); %Defining the vector of strike prices of the calls in (3.3.27)
%Arrays to compute lb1 under Su Distribution
muQlb1=zeros(n,1); %Parameter of the risk neutral density
d1lb1=zeros(n,1);
d2lb1=zeros(n,1);
d3lb1=zeros(n,1);
numlb1=zeros(n,1);
%Snippet C.1.2.3
%Code to find the Solution of the equation (3.3.22) using Bisection Method
for i=1:n;

stn(i)=exp(r*(t(i)−t(1)));
terml(i)=max((stn(i)*x lower−1.3),0);
termu(i)=max((stn(i)*x upper−1.3),0);
AVl=AVl+terml(i);
AVu=AVu+termu(i);

end
fl=AVl−0.2; %L.H.S.−R.H.S. value for equation (3.3.22) for lower initial guess
fu=AVu−0.2; %L.H.S.−R.H.S. value for equation (3.3.22) for upper initial guess
while x upper−x lower>0.000000001;

x mid=(x lower+x upper)/2; %Average of Guesses
AVm=0;
for i=1:n;

termm(i)=max((stn(i)*x mid−1.3),0);
AVm=AVm+termm(i);

end
fm=AVm−0.2; %L.H.S.−R.H.S. for (3.3.22) for mid pt. of guesses
if (fm*fu)<0;

x lower=x mid;
fl=fm;

else

171



x upper=x mid;
fu=fm;

end
end
soln=x mid; %The solution of equation (3.3.22)
% Code to compute lb1 using equation (3.3.27)
for i=1:n;

K(i)=q0*(1.3/stn(i)+max((soln−1.3/stn(i)),0)); %Strike of call in (3.3.27)
muQlb1(i)=asinh(exp(−sigma(1)ˆ2/2)*(q0*exp(r*t(1))−alpha(1))/beta(1));
numlb1(i)=−asinh((K(i)−alpha(1))/beta(1))+muQlb1(i);
d1lb1(i)=numlb1(i)/sigma(1)+sigma(1);
d2lb1(i)=numlb1(i)/sigma(1)−sigma(1);
d3lb1(i)=numlb1(i)/sigma(1);
POW(i)=beta(1)/2*exp(muQlb1(i)+sigma(1)ˆ2/2)*normcdf(d1lb1(i))−beta(1)...
/2*exp(−muQlb1(i)+sigma(1)ˆ2/2)*normcdf(d2lb1(i))+...
(alpha(1)−K(i))*normcdf(d3lb1(i)) %Computation of the sum in (3.3.27)
SPOW=SPOW+stn(i)*POW(i); %Computation of the sum in (3.3.27)

end
lb1=5*exp(−r*3)*SPOW/q0;
format 'long'
SWLB1=max(lb1−G,0) %To ensure positive value
format 'short'

3. The Lower Bound SWLB
(2)
t

%Snippet C.1.2.1
%Snippet C.1.2.2
x lower=zeros(n,1); %Initializing the vector of Initial guess for equation (3.3.32)
x upper=zeros(n,1); %Initializing vector of second Initial guess for (3.3.32)
x mid=zeros(n,1); %Initializing vector of Average of Two Initial Guesses for (3.3.32)
soln=zeros(n,1); %Vector of Solutions for n time points
fl=zeros(n,1); %Vector of the L.H.S.−R.H.S. value of (3.3.32) for lower initial guess
fu=zeros(n,1); %Vector of the L.H.S.−R.H.S. value of (3.3.32) for upper initial guess
fm=zeros(n,1); %Vector of the L.H.S.−R.H.S. value of (3.3.32) for midpt. of guesses
stl=zeros(n,1); %Vector of first term for lower guess in the sum on L.H.S of (3.3.32)
stu=zeros(n,1); %Vector of first term for upper guess in the sum on L.H.S of (3.3.32)
stm=zeros(n,1); %Vector of first term for mid pt. of guesses in sum on L.H.S:(3.3.32)
AVl=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(3.3.32) lower guess
AVu=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(3.3.32) for upper guess
AVm=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(3.3.32) for midpt. of guesses
std=zeros(n,1); %Vector of Coeff. of x inside 2nd sum on L.H.S. of (3.3.32)
AVdl=zeros(n,1); %Initializing vector of 2nd sum:L.H.S.(3.3.32) for lower guess
AVdu=zeros(n,1); %Initializing vector of 2nd sum:L.H.S.(3.3.32) for upper guess
AVdm=zeros(n,1); %Initializing vector of 2nd sum:L.H.S.(3.3.32) for midpt. of guesses
stdl=zeros(n,1); %Vector of 2nd term for lower guess in the sum on L.H.S of (3.3.32)
stdu=zeros(n,1); %Vector of 2nd term for upper guess in the sum on L.H.S of (3.3.32)
stdm=zeros(n,1); %Vector of 2nd term for mid pt. guesses in sum on L.H.S of (3.3.32)
stau=zeros(n,1); %Vector of square root of time points
POW1=zeros(n,1); %Initializing the vector of terms in 1st sum in lbt(2) in (3.3.41)
SPOW1=zeros(n,1); %1st sum in lbt(2) in (3.3.41)
POW2=zeros(n,1); %Initializing vector of terms in 2nd sum in lbt(2) in (3.3.41)
SPOW2=zeros(n,1); %2nd sum in lbt(2) in (3.3.41)
d=zeros(n,1); %Initializing the sum in lbt(2) in (3.3.41)
C2=zeros(n,1); %Initializing vector of calls:2nd term in lbt(2) in (3.3.41)
%Arrays to compute lbt(2) in (3.3.41) under Su Distribution
muQlb2=zeros(n,1); %Parameter of the risk neutral density
d1lb2=zeros(n,1);
d2lb2=zeros(n,1);
d3lb2=zeros(n,1);
numlb2=zeros(n,1);
T2=zeros(n,1);
T3=zeros(n,1);
%Snippet C.1.2.3
%Code to find the Solution of the equation (3.3.32) using Bisection Method
for j=1:n;

x lower(j)=0;
x upper(j)=10;
for i=j:n;

std(i)=exp(r*(t(i)−t(j)));
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stdl(i)=max((x lower(j)*std(i)−1.3),0);
stdu(i)=max((x upper(j)*std(i)−1.3),0);
AVdl(j)=AVdl(j)+stdl(i);
AVdu(j)=AVdu(j)+stdu(i);

end
for k=1:j−1;

stl(k)=max((x lower(j)ˆ(t(k)/t(j))−1.3),0);
AVl(j)=AVl(j)+stl(k);
stu(k)=max((x upper(j)ˆ(t(k)/t(j))−1.3),0);
AVu(j)=AVu(j)+stu(k);

end
fl(j)=AVl(j)+AVdl(j)−0.2; %L.H.S.−R.H.S. for (3.3.32) for lower guess
fu(j)=AVu(j)+AVdu(j)−0.2; %L.H.S.−R.H.S. for (3.3.32) for upper guess
while x upper(j)−x lower(j)>0.000000000000001;

x mid(j)=(x lower(j)+x upper(j))/2;
AVm(j)=0;
AVdm(j)=0;
for m=1:j−1;

stm(m)=max((x mid(j)ˆ(t(m)/t(j))−1.3),0);
AVm(j)=AVm(j)+stm(m);

end
for m1=j:n;

std(m1)=exp(r*(t(m1)−t(j)));
stdm(m1)=max((x mid(j)*std(m1)−1.3),0);
AVdm(j)=AVdm(j)+stdm(m1);

end
fm(j)=AVm(j)+AVdm(j)−0.2; %L.H.S.−R.H.S. in (3.3.32) for mid pt. of guesses
if (fm(j)*fu(j))<0;

x lower(j)=x mid(j);
fl(j)=fm(j);

else
x upper(j)=x mid(j);
fu(j)=fm(j);

end
end
format 'long'
soln(j)=x mid(j)

end
%Computation of the second Term in lbt(2) in (3.3.41)
for j=1:n;

for k=j:n;
modisoln=max((soln(j)−1.3/exp(r*(t(k)−t(j)))),0);
dnk=q0*(1.3/exp(r*(t(k)−t(j)))+modisoln); %Strike for call:2nd term (3.3.41)
muQlb2(j)=asinh(exp(−sigma(j)ˆ2/2)*(q0*exp(r*t(j))−alpha(j))/beta(j));
numlb2(k)=−asinh((dnk−alpha(j))/beta(j))+muQlb2(j);
d1lb2(k)=numlb2(k)/sigma(j)+sigma(j);
d2lb2(k)=numlb2(k)/sigma(j)−sigma(j);
d3lb2(k)=numlb2(k)/sigma(j);
C2(k)=beta(j)/2*exp(muQlb2(j)+sigma(j)ˆ2/2)*normcdf(d1lb2(k))−...
beta(j)/2*exp(−muQlb2(j)+sigma(j)ˆ2/2)*normcdf(d2lb2(k))+...
(alpha(j)−dnk)*normcdf(d3lb2(k)) %Call Price :2nd term (3.3.41)
POW2(k)=5*exp(r*(t(k)−t(j)))*C2(k)/q0 %Summand of the 2nd term in lbt(2)
SPOW2(j)=SPOW2(j)+POW2(k); %Computation of the second sum in lbt(2)

end
end

%Computation of the first term in lbt(2) in (3.3.41)
for j=1:n

for i=1:j−1;
modi2soln=max(((soln(j))ˆ(t(i)/t(j))−1.3),0);
di=q0*(1.3+modi2soln)ˆ(t(j)/t(i));
Ki=diˆ(t(i)/t(j));
muQlb2(j)=asinh(exp(−sigma(j)ˆ2/2)*(q0*exp(r*t(j))−alpha(j))/beta(j));
num3i=−asinh((di−alpha(j))/beta(j))+muQlb2(j);
d3i=num3i/sigma(j);
d2i(i)=−num3i+muQlb2(j);
T2(i)=Ki*normcdf(d3i);
fun = @(x) (alpha(j)+beta(j).*(sinh(x))).ˆ(t(i)./t(j)).*...
exp(−(x−muQlb2(j)).ˆ2./(2.*sigma(j).ˆ2))./(2.*pi).ˆ0.5;
qu(i)= integral(fun,d2i(i),300); %Numerical Integration
T3(i)=qu(i);
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POW1(i)=5*(T3(i)−T2(i))/(q0ˆ(t(i)/t(j)));
SPOW1(j)=SPOW1(j)+POW1(i); %Computation of the first sum in lbt(2)

end
d(j)=SPOW1(j)+SPOW2(j); %Computation of the consolidated lbt(2) in (3.3.41)

end
m=max(d);
format 'long'
lbt2=exp(−3*r)*m; %The Optimal Lower Bound lbt(2) given by equation (3.3.38)
format 'long'
SWLBt2=max(lbt2−G,0)
format 'short'

4. The Upper Bound SWUB1

%Snippet C.1.2.1
%Snippet C.1.2.2
x lower=−1000; %First initial guess for equation (3.4.15)
x upper=100000; %Second initial guess for equation (3.4.15)
AVl=0; %Initializing the sum on L.H.S. of (3.4.13) for lower guess
AVu=0; %Initializing the sum on L.H.S. of (3.4.13) for upper guess
AVm=0; %Initializing the sum on L.H.S. of (3.4.13) for midpoint of guesses
POW=zeros(n,1); %Defining the vector of calls in ub1 in (3.4.15)
SPOW=0; %Initializing the terms in the sum in equation (3.4.15)
K=zeros(n,1); %Defining the vector of strike prices of the calls in (3.4.15)
%Arrays to compute ub1 under Su Distribution
muQub1=zeros(n,1); %Parameter of the risk neutral density
d1ub1=zeros(n,1);
d2ub1=zeros(n,1);
d3ub1=zeros(n,1);
numub1=zeros(n,1);
%Snippet C.1.2.3
%Code to find the Solution of the equation (3.4.13) using Bisection Method
for i=1:n;

muQub1(i)=asinh(exp(−sigma(i)ˆ2/2)*(q0*exp(r*t(i))−alpha(i))/beta(i)); %Pmt
%in inverse distribution function

AVl=AVl+(alpha(i)+beta(i)*sinh(muQub1(i)+sigma(i)*x lower));
AVu=AVu+(alpha(i)+beta(i)*sinh(muQub1(i)+sigma(i)*x upper));

end
fl=AVl−(0.2+1.3*n); %L.H.S.−R.H.S. for equation (3.4.13) for lower initial guess
fu=AVu−(0.2+1.3*n); %L.H.S.−R.H.S. for equation (3.4.13) for upper initial guess
while x upper−x lower>0.000000000000001;

x mid=(x lower+x upper)/2;
AVm=0;
for i=1:n;

AVm=AVm+(alpha(i)+beta(i)*sinh(muQub1(i)+sigma(i)*x mid));
end
fm=AVm−(0.2+1.3*3); %L.H.S.−R.H.S. for (3.4.13) for mid pt. of guesses
if (fm*fu)<0;

x lower=x mid;
fl=fm;

else
x upper=x mid;
fu=fm;

end
end
soln=x mid %The solution of equation(3.4.13)
% Code to compute ub1 using equation (3.4.15)
for i=1:n;

K(i)=alpha(i)+beta(i)*sinh(muQub1(i)+sigma(i)*soln) %Call strike:(3.4.15)
numub1(i)=−asinh((K(i)−alpha(i))/beta(i))+muQ(i);
d1ub1(i)=numub1(i)/sigma(i)+sigma(i);
d2ub1(i)=numub1(i)/sigma(i)−sigma(i);
d3ub1(i)=numub1(i)/sigma(i);
POW(i)=beta(i)/2*exp(muQ(i)+sigma(i)ˆ2/2)*normcdf(d1ub1(i))−...
beta(i)/2*exp(−muQ(i)+sigma(i)ˆ2/2)*normcdf(d2ub1(i))+...
(alpha(i)−K(i))*normcdf(d3ub1(i)) %The call price in (3.4.15)
SPOW=SPOW+POW(i); %Computation of the sum in (3.4.15)

end
ub1=5*exp(−3*r)*SPOW/q0;
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format 'long'
SWUB1=max(ub1−G,0) %To ensure positive value
format 'short'

5. The Monte Carlo Estimate (Antithetic Method)

%Snippet C.1.2.1
M=2000000; %Twice the Number of Simulations/Paths
M1=M/2; %Number of Simulations/Paths
t=zeros(n,1); %Vector of Time Points
q=zeros(M1,n+1); %Matrix of Mortality Indices at the n Time points for...

%M Paths beginning at time zero
X=zeros(M1,n); %Initializing the call counterpart of Swiss Re Bond
X2=zeros(M1,n); %Initializing call counterpart of Swiss Re: Anti. Case
q2=zeros(M1,n+1); %Same as q but paths generated using Antithetic Variate
AV=zeros(M1,1); %Initializing the sum of calls along each path
AV2=zeros(M1,1); %Initializing the sum of calls along...

%each path obtained using Antithetic Variate
swiss=zeros(M1,1); %Payoff of the Swiss Re Bond along each path
swiss2=zeros(M1,1); %Same as above but paths generated

%using Antithetic Variate
V=0; %Initializing the sum of bond payoffs to 0
muQ=zeros(n,1); %Parameter of the risk neutral density
%Specifying Time Points
for i=1:n;

t(i)=i;
end
for i=1:n;

muQ(i)=asinh(exp(−sigma(i)ˆ2/2)*(q0*exp(r*t(i))−alpha(i))/beta(i));
end
%Simulating the Su Distribution using the Antithetic Method
for i=1:M1;

for j=1:n
r1=randn;
q(i,j)=alpha(j)+beta(j)*sinh(muQ(j)+sigma(j)*r1);
X(i,j)=5*max((q(i,j)/q0−1.3),0);
q2(i,j)=alpha(j)+beta(j)*sinh(muQ(j)+sigma(j)*(−r1)); %(−r1) acts...

%as antithetic variate
X2(i,j)=5*max((q2(i,j)/q0−1.3),0);

end
end
%Monte Carlo Estimation of the Swiss Re Mortality Bond 2003
for i=1:M1;

for j=1:n;
AV(i)=AV(i)+X(i,j); %Computing the Total Price along each path
AV2(i)=AV2(i)+X2(i,j); %Same as above but along path generated...
%using Antithetic Variate

end
swiss(i)=max((1−AV(i)),0); %Computing Payoff of Swiss Re along

%each path
swiss2(i)=max((1−AV2(i)),0); %Same as above but path generated using...

%Antithetic Variate
V=V+swiss(i)+swiss2(i); %Summing the Payoffs of different paths

end
format 'long'
disp(' The Monte Carlo Estimate is')
MC=exp(−(r*T))*V/(2*M1) %Monte Carlo Estimate of the Swiss Re Bond 2003
format 'short'

6. The Lower Bound SWLB
(1)
t

%Snippet C.1.2.1
%Snippet C.1.2.2
std=zeros(n,1); %The vector of terms in the denominator of Strike Price...

%in Call Option Payoff in lbt1
AVd=zeros(n,1); %Initializing the above referred sum for each j
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stn=zeros(n,1); %The Vector of Terms inside the Sum in lbt1 in (B.1.12)
AVn=zeros(n,1); %Initializing the above referred sum for each j
st=zeros(n,1); %The vector of terms in the numerator of Strike Price in...

%Call Option Payoff in lbt1
AV=zeros(n,1); %Initializing the above referred sum for each j
ct=zeros(n,1); %The Vector of Strike Prices in the Call Function for...

%different j
d=zeros(n,1); %R.H.S. of (B.1.12) for each j before discounting and...

%dividing by n
%Arrays required for calculating call price in (B.1.12)
C2a=zeros(n,1);
C2=zeros(n,1);
%Arrays to compute lbt1 in (B.1.12) under Su Distribution
muQlbt1=zeros(n,1); %Parameter of the risk neutral density
d1lbt1=zeros(n,1);
d2lbt1=zeros(n,1);
d3lbt1=zeros(n,1);
numlbt1=zeros(n,1);
%Snippet C.1.2.3
%Computation of Various Sums involved in lbt1 given in (B.1.12)
for j=1:n;

for i=j:n;
std(i)=exp(r*(t(i)−t(j)));
stn(i)=exp(r*t(i));
AVd(j)=AVd(j)+std(i);
AVn(j)=AVn(j)+stn(i); %computes the multiplication factor in lbt1

end
for k=1:j−1;

st(k)=exp(r*t(k));
AV(j)=AV(j)+st(k);

end
end
%Computation of Strike Prices for each j; j=1,2,...,n
for l=1:n;

ct(l)=((0.2+1.3*3)*q0−q0*AV(l))/AVd(l); %computes the strikes
if (ct(l)>0);

muQlbt1(l)=asinh(exp(−sigma(l)ˆ2/2)*(w0*exp(r*t(l))−alpha(l))/beta(l));
numlbt1(l)=−asinh((ct(l)−alpha(l))/beta(l))+muQlbt1(l);
d1lbt1(l)=numlbt1(l)/sigma(l)+sigma(l);
d2lbt1(l)=numlbt1(l)/sigma(l)−sigma(l);
d3lbt1(l)=numlbt1(l)/sigma(l);
C2a(l)=beta(l)/2*exp(muQlbt1(l)+sigma(l)ˆ2/2)*normcdf(d1lbt1(l))−...
beta(l)/2*exp(−muQlbt1(l)+sigma(l)ˆ2/2)*normcdf(d2lbt1(l))+...
(alpha(l)−ct(l))*normcdf(d3lbt1(l)) %Expectation in (B.1.12)
C2(l)=exp(−r*t(l))*C2a(l); %Computation of Call Price in lbt1
d(l)=C2*AVn(l);

else
d(l)=0;

end
end
m=max(d);
format 'long'
lbt1=5*exp(−3*r)*m/q0; %The Optimal Lower Bound lbt1 given by (B.1.12)
SWLBt1=max(lbt1−G,0) %Ensures positive value
format 'short'

C.1.3 Log Gamma Distribution

The parameter choices for the tables 6.4 - 6.5 have been indicated in Chapter 6. We vary the
time points according to the structure of the Swiss Re Bond in the codes presented below. We
present below the parameter choice for these tables and this snippet is a part of every code
in this sub-section. To obtain Table 6.4, we vary the values of interest rate while fixing the
base value of the mortality index, i.e., q0 = 0.0088. In Table 6.5, we vary the base values of
the mortality index while specifying the interest rate as r = 0.0. The MATLAB codes that we
present below, take care of both scenarios. The varying base mortality index for table 6.5 is
denoted by w0.
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Snippet C.1.3.1: Parameter Choice for Table 6.1

% Parameters
n=3; %Duration of the Swiss Re Bond
q0=0.0088; %Base Value of the Mortality Index
w0=.008453; %Value of the Base Mortality Index which is varied for Table 6.5
r=0.035; %Risk Free Rate
%Parameters of Log Gamma Distn. in (3.5.26) for q1, q2 and q3
p=[61.6326, 64.2902, 71.8574];
a=[.0103, .0098, .0080];
mu=[−5.2452, −5.4600, −5.7238];
sigma=[0.000074, .000095, .000094];

The snippet given below follows Snippet C.1.3.1 to initialize arrays and values used in every
program. For the program to compute, Monte Carlo estimate of bond price, we do not use this
snippet.

Snippet C.1.3.2: Initializing

t=zeros(n,1); %Vector of Time Points
C1=zeros(n,1); %Vector of Call Options in equation (3.2.16)
G1=0; %Initial Value of Sum used in G
%Arrays required for computation of (3.2.17) using (A.6.1)
d1=zeros(n,1);
d2=zeros(n,1);

The snippet that we now present is an integral part of each of the codes in this section and
specifies the time points at which the principal loss percentage viz. Li; i = 1, 2, 3, is computed
(c.f. equation (3.2.2)) and as a result Sis are calculated at these time points (c.f. equations
(3.2.9) - (3.2.11)). It also computes the value of G given in equation (3.2.17) which is required
to compute price bounds for Swiss Re Bond 2003 exploiting put-call parity. For the program
to compute Monte Carlo estimate of bond price, we do not use this snippet.

Snippet C.1.3.3: Specification of Time Points and Computation of G

%Specifying Time Points and Computing G given in equation (3.2.17)
for i=1:n;

t(i)=i;
end
K=1.3*q0;
for i=1:n;

d1(i)=(log(K)−mu(i))/((w0*exp(r*t(i)−mu(i)))ˆ(1/p(i))−1)
d2(i)=d1(i)+log(K)−mu(i)
C1(i)=w0*exp(r*t(i))*(1−gamcdf(d1(i),p(i),1))−...
K*(1−gamcdf(d2(i),p(i),1)) %The Computation of Call option in (3.2.17)
G1=G1+C1(i)*exp(r*t(i));

end
G=exp(−r*3)*(5*G1/q0−1)

1. The Trivial Lower Bound SWLB0

The MATLAB code for SWLB0 is similar to the one for Black-Scholes Model. So, we do not
rewrite it here.
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2. The Lower Bound SWLB1

%Snippet C.1.3.1
%Snippet C.1.3.2
x lower=−1000; %First initial guess for equation (3.3.22)
x upper=10; %Second initial guess for equation (3.3.22)
stn=zeros(n,1); %Initializing the vector of coefficients of x in (3.3.22)
AVl=0; %Initializing the sum on L.H.S. of (3.3.22) for lower guess
AVu=0; %Initializing the sum on L.H.S. of (3.3.22) for upper guess
AVm=0; %Initializing the sum on L.H.S. of (3.3.22) for midpoint of guesses
terml=zeros(n,1); %Initializing the summand on L.H.S. of (3.3.22) for lower guess
termu=zeros(n,1); %Initializing the summand on L.H.S. of (3.3.22) for upper guess
termm=zeros(n,1); %Initializing summand on L.H.S.:(3.3.22) for mid pt. of guesses
st=zeros(n,1); %Initializing the vector of coefficients of call in (3.3.27)
POW=zeros(n,1); %Defining the vector of terms in the sum in equation (3.3.27)
SPOW=0; %Initializing the terms in the sum in equation (3.3.27)
K1=zeros(n,1); %Defining the vector of strike prices of the calls in (3.3.27)
%Arrays to compute lb1 under log−Gamma Distribution
muQlb1=zeros(n,1); %Parameter of the risk neutral density
d1lb1=zeros(n,1);
d2lb1=zeros(n,1);
d3lb1=zeros(n,1);
numlb1=zeros(n,1);
%Snippet C.1.3.3
%Code to find the Solution of the equation (3.3.22) using Bisection Method
for i=1:n;

stn(i)=exp(r*(t(i)−t(1)));
terml(i)=max((stn(i)*x lower−1.3),0);
termu(i)=max((stn(i)*x upper−1.3),0);
AVl=AVl+terml(i);
AVu=AVu+termu(i);

end
fl=AVl−0.2; %L.H.S.−R.H.S. value for equation (3.3.22) for lower initial guess
fu=AVu−0.2; %L.H.S.−R.H.S. value for equation (3.3.22) for upper initial guess
while x upper−x lower>0.000000001;

x mid=(x lower+x upper)/2; %Average of Guesses
AVm=0;
for i=1:n;

termm(i)=max((stn(i)*x mid−1.3),0);
AVm=AVm+termm(i);

end
fm=AVm−0.2; %L.H.S.−R.H.S. for (3.3.22) for mid pt. of guesses
if (fm*fu)<0;

x lower=x mid;
fl=fm;

else
x upper=x mid;
fu=fm;

end
end
soln=x mid; %The solution of equation (3.3.22)
% Code to compute lb1 using equation (3.3.27)
for i=1:n;

K(i)=q0*(1.3/stn(i)+max((soln−1.3/stn(i)),0)); %Strike of call in (3.3.27)
d1lb1(i)=(log(K1(i))−mu(1))/((w0*exp(r*t(1)−mu(1)))ˆ(1/p(1))−1);
d2lb1(i)=d1lb1(i)+log(K1(i))−mu(1);
POW(i)=w0*exp(r*t(1))*(1−gamcdf(d1lb1(i),p(1),1))−...
K1(i)*(1−gamcdf(d2lb1(i),p(1),1)); %Computation of the sum in (3.3.27)
SPOW=SPOW+stn(i)*POW(i); %Computation of the sum in (3.3.27)

end
lb1=5*exp(−r*3)*SPOW/q0;
format 'long'
SWLB1=max(lb1−G,0) %To ensure positive value
format 'short'
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3. The Lower Bound SWLB
(2)
t

%Snippet C.1.3.1
%Snippet C.1.3.2
x lower=zeros(n,1); %Initializing the vector of Initial guess for equation (3.3.32)
x upper=zeros(n,1); %Initializing vector of second Initial guess for (3.3.32)
x mid=zeros(n,1); %Initializing vector of Average of Two Initial Guesses for (3.3.32)
soln=zeros(n,1); %Vector of Solutions for n time points
fl=zeros(n,1); %Vector of the L.H.S.−R.H.S. value of (3.3.32) for lower initial guess
fu=zeros(n,1); %Vector of the L.H.S.−R.H.S. value of (3.3.32) for upper initial guess
fm=zeros(n,1); %Vector of the L.H.S.−R.H.S. value of (3.3.32) for midpt. of guesses
stl=zeros(n,1); %Vector of first term for lower guess in the sum on L.H.S of (3.3.32)
stu=zeros(n,1); %Vector of first term for upper guess in the sum on L.H.S of (3.3.32)
stm=zeros(n,1); %Vector of first term for mid pt. of guesses in sum on L.H.S:(3.3.32)
AVl=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(3.3.32) lower guess
AVu=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(3.3.32) for upper guess
AVm=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(3.3.32) for midpt. of guesses
std=zeros(n,1); %Vector of Coeff. of x inside 2nd sum on L.H.S. of (3.3.32)
AVdl=zeros(n,1); %Initializing vector of 2nd sum:L.H.S.(3.3.32) for lower guess
AVdu=zeros(n,1); %Initializing vector of 2nd sum:L.H.S.(3.3.32) for upper guess
AVdm=zeros(n,1); %Initializing vector of 2nd sum:L.H.S.(3.3.32) for midpt. of guesses
stdl=zeros(n,1); %Vector of 2nd term for lower guess in the sum on L.H.S of (3.3.32)
stdu=zeros(n,1); %Vector of 2nd term for upper guess in the sum on L.H.S of (3.3.32)
stdm=zeros(n,1); %Vector of 2nd term for mid pt. guesses in sum on L.H.S of (3.3.32)
stau=zeros(n,1); %Vector of square root of time points
POW1=zeros(n,1); %Initializing the vector of terms in 1st sum in lbt(2) in (3.3.41)
SPOW1=zeros(n,1); %1st sum in lbt(2) in (3.3.41)
POW2=zeros(n,1); %Initializing vector of terms in 2nd sum in lbt(2) in (3.3.41)
SPOW2=zeros(n,1); %2nd sum in lbt(2) in (3.3.41)
d=zeros(n,1); %Initializing the sum in lbt(2) in (3.3.41)
C2=zeros(n,1); %Initializing vector of calls:2nd term in lbt(2) in (3.3.41)
%Arrays to compute lbt(2) in (3.3.41) under log Gamma Distribution
sigman=zeros(n,1); %sigma' in (3.5.27)
e1=zeros(n,1); %sigma'' in (3.5.27)
d1lbt2=zeros(n,1);
d2lbt2=zeros(n,1);
T2=zeros(n,1);
T3=zeros(n,1);
%Snippet C.1.3.3
%Code to find the Solution of the equation (3.3.32) using Bisection Method
for j=1:n;

x lower(j)=0;
x upper(j)=10;
for i=j:n;

std(i)=exp(r*(t(i)−t(j)));
stdl(i)=max((x lower(j)*std(i)−1.3),0);
stdu(i)=max((x upper(j)*std(i)−1.3),0);
AVdl(j)=AVdl(j)+stdl(i);
AVdu(j)=AVdu(j)+stdu(i);

end
for k=1:j−1;

stl(k)=max((x lower(j)ˆ(t(k)/t(j))−1.3),0);
AVl(j)=AVl(j)+stl(k);
stu(k)=max((x upper(j)ˆ(t(k)/t(j))−1.3),0);
AVu(j)=AVu(j)+stu(k);

end
fl(j)=AVl(j)+AVdl(j)−0.2; %L.H.S.−R.H.S. for (3.3.32) for lower guess
fu(j)=AVu(j)+AVdu(j)−0.2; %L.H.S.−R.H.S. for (3.3.32) for upper guess
while x upper(j)−x lower(j)>0.000000000000001;

x mid(j)=(x lower(j)+x upper(j))/2;
AVm(j)=0;
AVdm(j)=0;
for m=1:j−1;

stm(m)=max((x mid(j)ˆ(t(m)/t(j))−1.3),0);
AVm(j)=AVm(j)+stm(m);

end
for m1=j:n;

std(m1)=exp(r*(t(m1)−t(j)));
stdm(m1)=max((x mid(j)*std(m1)−1.3),0);
AVdm(j)=AVdm(j)+stdm(m1);

179



end
fm(j)=AVm(j)+AVdm(j)−0.2; %L.H.S.−R.H.S. in (3.3.32) for mid pt. of guesses
if (fm(j)*fu(j))<0;

x lower(j)=x mid(j);
fl(j)=fm(j);

else
x upper(j)=x mid(j);
fu(j)=fm(j);

end
end
format 'long'
soln(j)=x mid(j)

end
for i=1:n;

sigman(i)=(1−1/((w0*exp(r*t(i)−mu(i)))ˆ(1/p(i))));
end
%Computation of the second Term in lbt(2) in (3.3.41)
for j=1:n;

for k=j:n;
modisoln=max((soln(j)−1.3/exp(r*(t(k)−t(j)))),0);
dnk=q0*(1.3/exp(r*(t(k)−t(j)))+modisoln); %Strike for call:2nd term (3.3.41)
d1lbt2(k)=(log(dnk)−mu(j))/((w0*exp(r*t(j)−mu(j)))ˆ(1/p(j))−1);
d2lbt2(k)=d1lbt2(k)+log(dnk)−mu(j);
C2(k)=w0*exp(r*t(j))*(1−gamcdf(d1lbt2(k),p(j),1))−...
dnk*(1−gamcdf(d2lbt2(k),p(j),1)); %Call Price :2nd term (3.3.41)
POW2(k)=5*exp(r*(t(k)−t(j)))*C2(k)/q0 %Summand of the 2nd term in lbt(2)
SPOW2(j)=SPOW2(j)+POW2(k); %Computation of the second sum in lbt(2)

end
end
%Computation of the first term in lbt(2) in (3.3.41)
for j=1:n

for i=1:j−1;
e1(i)=1−(t(i)/t(j))*sigman(j);
if (e1(i)>0)

modi2soln=max(((soln(j))ˆ(t(i)/t(j))−1.3),0);
di=q0*(1.3+modi2soln)ˆ(t(j)/t(i));
Ki=diˆ(t(i)/t(j));
d2i=(log(di)−mu(j))/sigman(j);
d3i=d2i*e1(i);
T2(i)=Ki*(1−gamcdf(d2i,p(j),1));
T3(i)=(exp((t(i)/t(j))*mu(j))*(1−gammainc(d3i,p(j))))/((e1(i))ˆp(j));
POW1(i)=5*(T3(i)−T2(i))/(q0ˆ(t(i)/t(j)));
SPOW1(j)=SPOW1(j)+POW1(i); %Computation of the first sum in lbt(2)

else
SPOW1(j)=0;

end
end
d(j)=SPOW1(j)+SPOW2(j); %Computation of consolidated lbt(2):(3.3.41)

end
m=max(d);
format 'long'
lbt2=exp(−3*r)*m; %The Optimal Lower Bound lbt(2) given by equation (3.3.38)
format 'long'
SWLBt2=max(lbt2−G,0)
format 'short'

4. The Upper Bound SWUB1

%Snippet C.1.3.1
%Snippet C.1.3.2
x lower=−1000; %First initial guess for equation (3.4.15)
x upper=100000; %Second initial guess for equation (3.4.15)
AVl=0; %Initializing the sum on L.H.S. of (3.4.13) for lower guess
AVu=0; %Initializing the sum on L.H.S. of (3.4.13) for upper guess
AVm=0; %Initializing the sum on L.H.S. of (3.4.13) for midpoint of guesses
POW=zeros(n,1); %Defining the vector of calls in ub1 in (3.4.15)
SPOW=0; %Initializing the terms in the sum in equation (3.4.15)
K2=zeros(n,1); %Defining the vector of strike prices of the calls in (3.4.15)
%Arrays to compute ub1 under log−Gamma Distribution
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sigman=zeros(n,1); %sigma' in (3.5.27): used in ub1
d1ub1=zeros(n,1);
d2ub1=zeros(n,1);
%Snippet C.1.3.3
for i=1:n;

sigman(i)=(1−1/((w0*exp(r*t(i)−mu(i)))ˆ(1/p(i))))
end
%Code to find the Solution of the equation (3.4.13) using Bisection Method
for i=1:n;

AVl=AVl+exp(mu(i)+sigman(i)*x lower);
AVu=AVu+exp(mu(i)+sigman(i)*x upper);

end
fl=AVl−(0.2+1.3*n); %L.H.S.−R.H.S. for equation (3.4.13) for lower initial guess
fu=AVu−(0.2+1.3*n); %L.H.S.−R.H.S. for equation (3.4.13) for upper initial guess
while x upper−x lower>0.000000000000001;

x mid=(x lower+x upper)/2;
AVm=0;
for i=1:n;

AVm=AVm+exp(mu(i)+sigman(i)*x mid);
end
fm=AVm−(0.2+1.3*3); %L.H.S.−R.H.S. for (3.4.13) for mid pt. of guesses
if (fm*fu)<0;

x lower=x mid;
fl=fm;

else
x upper=x mid;
fu=fm;

end
end
soln=x mid %The solution of equation(3.4.13)
% Code to compute ub1 using equation (3.4.15)
for i=1:n;

K2(i)=exp(mu(i)+sigman(i)*soln); %Call strike:(3.4.15)
d1ub1(i)=(log(K2(i))−mu(i))/((w0*exp(r*t(i)−mu(i)))ˆ(1/p(i))−1);
d2ub1(i)=d1ub1(i)+log(K2(i))−mu(i);
POW(i)=w0*exp(r*t(i))*(1−gamcdf(d1ub1(i),p(i),1))−...
K2(i)*(1−gamcdf(d2ub1(i),p(i),1)); %The call price in (3.4.15)
SPOW=SPOW+POW(i); %Computation of the sum in (3.4.15)

end
ub1=5*exp(−3*r)*SPOW/q0;
format 'long'
SWUB1=max(ub1−G,0) %To ensure positive value
format 'short'

5. The Monte Carlo Estimate

%Snippet C.1.3.1
M=100000; %Number of Simulations/Paths
t=zeros(n,1); %Vector of Time Points
q=zeros(M1,n+1); %Matrix of Mortality Indices at the n Time points for...

%M Paths beginning at time zero
X=zeros(M1,n); %Initializing the call counterpart of Swiss Re Bond
AV=zeros(M1,1); %Initializing the sum of calls along each path
swiss=zeros(M1,1); %Payoff of the Swiss Re Bond along each path
V=0; %Initializing the sum of bond payoffs to 0
sigman=zeros(n,1); %sigma' in (3.5.27): used in MC estimate
%Specifying Time Points
for i=1:n;

t(i)=i;
end
for i=1:n;

sigman(i)=(1−1/((w0*exp(r*t(i)−mu(i)))ˆ(1/p(i))));
end
%Simulating the log−Gamma Distribution
for i=1:M;

for j=1:n
pn=p(j);
an=a(j);
r1=gamrnd(pn,1);
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r1=randn;
q(i,j)=exp(mu(j)+sigman(j)*r1);
X(i,j)=5*max((q(i,j)/q0−1.3),0);

end
end
%Monte Carlo Estimation of the Swiss Re Mortality Bond 2003
for i=1:M;

for j=1:n;
AV(i)=AV(i)+X(i,j); %Computing the Total Price along each path

end
swiss(i)=max((1−AV(i)),0); %Computing Payoff of Swiss Re along

%each path
V=V+swiss(i); %Summing the Payoffs of different paths

end
format 'long'
disp(' The Monte Carlo Estimate is')
MC=exp(−(r*T))*V/M %Monte Carlo Estimate of the Swiss Re Bond 2003
format 'short'

6. The Lower Bound SWLB
(1)
t

%Snippet C.1.3.1
%Snippet C.1.3.2
std=zeros(n,1); %The vector of terms in the denominator of Strike Price...

%in Call Option Payoff in lbt1
AVd=zeros(n,1); %Initializing the above referred sum for each j
stn=zeros(n,1); %The Vector of Terms inside the Sum in lbt1 in (B.1.12)
AVn=zeros(n,1); %Initializing the above referred sum for each j
st=zeros(n,1); %The vector of terms in the numerator of Strike Price in...

%Call Option Payoff in lbt1
AV=zeros(n,1); %Initializing the above referred sum for each j
ct=zeros(n,1); %The Vector of Strike Prices in the Call Function for...

%different j
d=zeros(n,1); %R.H.S. of (B.1.12) for each j before discounting and...

%dividing by n
%Arrays required for calculating call price in (B.1.12)
C2a=zeros(n,1);
C2=zeros(n,1);
%Arrays to compute lbt1 in (B.1.12) under log−Gamma Distribution
d1lbt1=zeros(n,1);
d2lbt1=zeros(n,1);
%Snippet C.1.3.3
%Computation of Various Sums involved in lbt1 given in (B.1.12)
for j=1:n;

for i=j:n;
std(i)=exp(r*(t(i)−t(j)));
stn(i)=exp(r*t(i));
AVd(j)=AVd(j)+std(i);
AVn(j)=AVn(j)+stn(i); %computes the multiplication factor in lbt1

end
for k=1:j−1;

st(k)=exp(r*t(k));
AV(j)=AV(j)+st(k);

end
end
%Computation of Strike Prices for each j; j=1,2,...,n
for l=1:n;

ct(l)=((0.2+1.3*3)*q0−q0*AV(l))/AVd(l); %computes the strikes
if (ct(l)>0);

d1lbt1(l)=(log(ct(l))−mu(l))/((w0*exp(r*t(l)−mu(l)))ˆ(1/p(l))−1);
d2lbt1(l)=d1lbt1(l)+log(ct(l))−mu(l);
C2a(l)=w0*exp(r*t(l))*(1−gamcdf(d1lbt1(l),p(l),1))−...
ct(l)*(1−gamcdf(d2lbt1(l),p(l),1)); %Expectation in (B.1.12)
C2(l)=exp(−r*t(l))*C2a(l); %Computation of Call Price in lbt1
d(l)=C2*AVn(l);

else
d(l)=0;

end
end
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m=max(d);
format 'long'
lbt1=5*exp(−3*r)*m/q0; %The Optimal Lower Bound lbt1 given by (B.1.12)
SWLBt1=max(lbt1−G,0) %Ensures positive value
format 'short'

C.2 Bounds for Guaranteed Annuity Options

We now furnish programs written on the basis of theory derived in Chapter 5 to furnish bounds
for the GAOs for a variety of models which were presented in Chapter 6.

C.2.1 Vasicek Model

In Chapter 6, table 6.6 presents the price bounds for GAO under the Vasicek Model. The
parameter choices for this table have already been detailed in the aforesaid chapter and we
present them in the form of snippet C.2.1.1 given below. This snippet is an integral part of
every code in this sub-section. In fact, table 6.6 depicts the changes in the price bounds for
GAO with respect to the variation in the value of the correlation coefficient between the interest
rate and the force of mortality. The MATLAB codes for this table are furnished below.

Snippet C.2.1.1: Parameter Choice for Table 6.6

% Parameters of GAO
n=35; % Number of years of life post the pension age
T=15; %Number of years to retirement
g=.111; %Guaranteed Annuity Rate (GAR)
K=1/g;
rho=0.9; %Corr. b\w interest and mortality rates varied in the codes
% Parameters of the Interest rate Model in (5.7.1)
a=0.15;
b=0.045;
sigma=0.03;
r0=b;
% Parameters of the Mortality Model in (5.7.2)
c=0.1;
xi=0.0003;
mu0=0.006;

The snippet given below, follows Snippet C.2.1.1 to initialize arrays used in every program.

Snippet C.2.1.2: Initializing

% The arrays required to compute ST(i) in (5.7.4)
A=zeros(n,1);
Gcurl=zeros(n,1);
D=zeros(n,1);
PHI=zeros(n,1);
Hcurl=zeros(n,1);
beta=zeros(n,1);
alpha=zeros(n,1);

The snippet that we now present is an integral part of each of the codes in this section and
specifies the computation of basic parameters given in equations (5.7.6) - (5.7.11).

Snippet C.2.1.3: Calculation of Basic Parameters

% Computation of the basic parameters
for i=1:n;

A(i)=(1−exp(−a*(i−1)))/a;
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Gcurl(i)=(exp(c*(i−1))−1)/c;
D(i)=(b−sigmaˆ2/(2*aˆ2))*(A(i)−(i−1))−sigmaˆ2*A(i)ˆ2/(4*a);
PHI(i)=(1−exp((a−c)*(i−1)))/(a−c);
Hcurl(i)=(−1)*(xiˆ2/(2*cˆ2))*(Gcurl(i)−(i−1))+...
(rho*sigma*xi)*(A(i)−PHI(i))/(a*c)+xiˆ2*Gcurl(i)ˆ2/(4*c);
beta(i)=exp(D(i)+Hcurl(i));
alpha(i)=beta(i);

end

The next snippet is used to compute mean and variance for mortality and interest rate as
well as the covariance between them at time T specified by equations (5.7.14) - (5.7.18).

Snippet C.2.1.4: Calculation of Parameters of Distributions

% Computation of mean, variances and covariance
merT=exp(−a*T)*r0+b*(1−exp(−a*T))−sigmaˆ2*(1−exp(−a*T))ˆ2/(2*aˆ2)−...
(rho*sigma*xi)*((exp(c*T)*(exp(−c*T)−exp(−a*T)))/(a−c)−(1−exp(−a*T))/a)/c;
memuT=exp(c*T)*mu0−xiˆ2*(1−exp(c*T))ˆ2/(2*cˆ2)+...
(rho*sigma*xi)*((exp(−a*T)*(exp(a*T)−exp(c*T)))/(a−c)−(exp(c*T)−1)/c)/a;
VarrT=sigmaˆ2*(1−exp(−2*a*T))/(2*a);
VarmuT=xiˆ2*(exp(2*c*T)−1)/(2*c);
CovrTmuT=rho*sigma*xi*(1−exp(−(a−c)*T))/(a−c)

The computation of the SZCB P̃ (0, T ) given in equation (5.3.2) is an integral part of every
program. The following snippet based on equations (5.7.25)-(5.7.32) details its calculation.

Snippet C.2.1.5: Calculation of P̃ (0, T )

% Computation of PCURL(0,T)
A0=(1−exp(−a*T))/a;
Gcurl0=(exp(c*T)−1)/c;
D0=(b−sigmaˆ2/(2*aˆ2))*(A0−T)−sigmaˆ2*A0ˆ2/(4*a);
PHI0=(1−exp(−(a−c)*T))/(a−c);
Hcurl0=(((rho*sigma*xi)/(a*c))−(xiˆ2/(2*cˆ2)))*(Gcurl0−T)+...
(rho*sigma*xi)*(A0−PHI0)/(a*c)+xiˆ2*Gcurl0ˆ2/(4*c);
beta0=exp(D0+Hcurl0);
V0=−(A0*r0+Gcurl0*mu0);
Pcurl0=beta0*exp(V0);

1. The Lower Bound GAOLB1

%Snippet C.2.1.1
%Snippet C.2.1.2
% Defining arrays for lower bound
MrTmuT=zeros(n,1); %Initializing the m.g.f.
POW=zeros(n,1); %Initializing vector of terms in the Sum in GAOLB in(5.5.13)
SPOW=0; %Initializing the Sum in GAOLB
%Snippet C.2.1.3
%Snippet C.2.1.4
%Snippet C.2.1.5
% Computation of JOINT MGF of rT and muT
for i=1:n;

MrTmuT(i)=exp(−(A(i)*merT+Gcurl(i)*memuT)+0.5*(A(i)ˆ2*VarrT+...
Gcurl(i)ˆ2*VarmuT+2*A(i)*Gcurl(i)*CovrTmuT));

end
for i=2:n; %To ensure 1 to (n−1)

POW(i)=alpha(i)*MrTmuT(i); %Expectation in (5.5.13)
SPOW=SPOW+POW(i);

end
SPOW1=max((SPOW−(K−1)),0);
format 'long'
GAOLB1=g*Pcurl0*SPOW1
format 'short'
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The next two snippets are used to compute mean and variance for X
(i)
T as well as the

covariance between X
(i)
T and X

(j)
T such that i 6= j specified by equations (5.7.20),(5.7.21) and

(5.7.24) and are used in some of the programs below.

Snippet C.2.1.6: Calculation of Mean and Variance of X
(i)
T

% Defining the arrays for Mean and Variance of XT(i)
E1=zeros(n,1); %Mean
V1=zeros(n,1); %Variance
% Computation of mean and variance of XT(i)
%Define Wi=A(i)*rT+Gcurl(i)*muT =−XT(i):(5.7.22)
%Define E1 and V1 as the mean and variance of W respectively
for i=1:n;
E1(i)=A(i)*merT+Gcurl(i)*memuT; %(5.7.20)
V1(i)=A(i)ˆ2*VarrT+Gcurl(i)ˆ2*VarmuT+2*A(i)*Gcurl(i)*CovrTmuT; %(5.7.21)
end

Snippet C.2.1.7: Calculation of Covariance b/w X
(i)
T and X

(j)
T

%Initializing
COV=zeros(n,n); %Covariance of Xk and Xj:Num. of (5.7.24)
CORR=zeros(n,n); %Correlation of Xk and Xj
SCORR1=zeros(n,1); %Sum of correlation between Xk and Xl
SCORR2=0; %Denominator of rho(k,lambda) if lambda is used
% Computation of Correlation of Xk and Xj (5.7.24)
%which is also the correlation of Wk and Wj
for k=2:n;

for j=2:n;
COV(k,j)=A(k)*A(j)*VarrT+(A(k)*Gcurl(j)+...
A(j)*Gcurl(k))*CovrTmuT+Gcurl(k)*Gcurl(j)*VarmuT;
CORR(k,j)=COV(k,j)/sqrt(V1(k)*V1(j));
SCORR1(k)=SCORR1(k)+CORR(k,j);
if (COV(k,j)<0)

A2=k;
A3=j;
C2=0;

else
C2=COV(k,j);

end
end
SCORR2=SCORR2+SCORR1(k);

end

2. The Lower Bound GAOLB

%Snippet C.2.1.1
%Snippet C.2.1.2
CORRkLAMBDA=zeros(n,1); %Correlation between Xk and LAMBDA
flag=0; %Indicator to test sign of covariance
% Defining arrays for lower bound
y=zeros(n,1);
d2=zeros(n,1); Array for c.d.f argument in sum in (5.5.47)
POW=zeros(n,1);
SPOW=0;
%Initializing for solving the equation
x lower=−6.5; %First initial guess for equation (5.5.49)
x upper=10000; %Second initial guess for equation (5.5.49)
AVl=0; %Initializing the sum on L.H.S. of (5.5.49) for 1st guess
AVu=0; %Initializing the sum on L.H.S. of (5.5.49) for 2nd guess
AVm=0; %Initializing the sum on L.H.S. of (5.5.49) for midpt. guess
%Snippet C.2.1.3
%Snippet C.2.1.4
%Snippet C.2.1.5
%Snippet C.2.1.6
%Snippet C.2.1.7
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% Calculation of Correlation between Xk and LAMBDA
for k=2:n;

CORRkLAMBDA(k)=SCORR1(k)/sqrt(SCORR2);
if (CORRkLAMBDA(k)<0)

flag=1
else

f=flag
end

end
% Solution of the equation (5.5.49)
for i=2:n;

AVl=AVl+alpha(i)*exp(−(E1(i))+0.5*V1(i)*(1−CORRkLAMBDA(i)ˆ2)+...
sqrt(V1(i))*CORRkLAMBDA(i)*x lower);
AVu=AVu+alpha(i)*exp(−(E1(i))+0.5*V1(i)*(1−CORRkLAMBDA(i)ˆ2)+...
sqrt(V1(i))*CORRkLAMBDA(i)*x upper);

end
fl=AVl−K+1; %L.H.S.−R.H.S. value for (5.5.49) for 1st guess
fu=AVu−K+1; %L.H.S.−R.H.S. value for (5.5.49) for 2nd guess
while x upper−x lower>0.000000000000001;

x mid=(x lower+x upper)/2;
AVm=0;
for i=2:n;

AVm=AVm+alpha(i)*exp(−(E1(i))+0.5*V1(i)*(1−CORRkLAMBDA(i)ˆ2)+...
sqrt(V1(i))*CORRkLAMBDA(i)*x mid);

end
fm=AVm−K+1;
if (fm*fu)<0;

x lower=x mid;
fl=fm;

else
x upper=x mid;
fu=fm;

end
end
soln=x mid;
% Computation of lower bound GAOLB
%Since the value of f=0, we present the following section
for i=2:n;

y(i)=alpha(i)*exp(−(E1(i))+0.5*V1(i)); %Coeff. of c.d.f. in Term 1 in (5.5.47)
d2(i)=−soln+CORRkLAMBDA(i)*sqrt(V1(i));

end
for i=2:n;

POW(i)=y(i)*normcdf(d2(i)); %Terms of sum in (5.5.47)
SPOW=SPOW+POW(i);

end
format 'long'
GAOLB=g*Pcurl0*(SPOW−(K−1)*normcdf(−soln)) %(5.5.47)
format 'short'

3. The Lower Bound GAOLB
(V S)
j

%Snippet C.2.1.1
%Snippet C.2.1.2
% Defining arrays for lower bound
y=zeros(n,1);
y2=zeros(n,1);
d1=zeros(n,1); %d2 in (5.7.45)
d2=zeros(n,1); %d1 in (5.7.46)
P=zeros(n,1); %Initializing Power expectation of (5.7.44)
POW=zeros(n,1); %Initializing elements of sum in (5.7.43)
SPOW=zeros(n,1);
%Defining the arrays for solving the equation
x lower=zeros(n,1); %Array for 1st guess for equation (5.7.41)
x upper=zeros(n,1); %Array for 2nd guess for equation (5.7.41)
x mid=zeros(n,1); %Array for midpt. guess for equation (5.7.41)
soln=zeros(n,1); %Initializing array of solutions for each j
fl=zeros(n,1); %Vector of the L.H.S.−R.H.S. value of (5.7.41) for lower initial guess
fu=zeros(n,1); %Vector of the L.H.S.−R.H.S. value of (5.7.41) for upper initial guess
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fm=zeros(n,1); %Vector of the L.H.S.−R.H.S. value of (5.7.41) for midpt. of guesses
stl=zeros(n,1); %Vector of first term for lower guess in the sum on L.H.S.:(5.7.41)
stu=zeros(n,1); %Vector of first term for upper guess in the sum on L.H.S.:(5.7.41)
stm=zeros(n,1); %Vector of first term for mid pt. of guesses in sum on L.H.S:(5.7.41)
AVl=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(5.7.41) lower guess
AVu=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(5.7.41) for upper guess
AVm=zeros(n,1); %Initializing vector of 1st sum:L.H.S.(5.7.41) for midpt. of guesses
%Snippet C.2.1.3
%Snippet C.2.1.4
%Snippet C.2.1.5
%Snippet C.2.1.6
%Snippet C.2.1.7
% Solution of the equation (5.7.41)
for j=2:n;

x lower(j)=−100;
x upper(j)=100;
for i=2:n;

stl(i)=alpha(i)*(x lower(j))ˆ(COV(i,j)/V1(j))*exp(−E1(i)+...
(COV(i,j)/V1(j))*E1(j)+0.5*V1(i)*(1−CORR(i,j)ˆ2));
stu(i)=alpha(i)*(x upper(j))ˆ(COV(i,j)/V1(j))*exp(−E1(i)+...
(COV(i,j)/V1(j))*E1(j)+0.5*V1(i)*(1−CORR(i,j)ˆ2));
AVl(j)=AVl(j)+stl(i);
AVu(j)=AVu(j)+stu(i);

end
fl(j)=AVl(j)−K+1;
fu(j)=AVu(j)−K+1;
while x upper(j)−x lower(j)>0.0000000000001;

x mid(j)=(x lower(j)+x upper(j))/2;
AVm(j)=0;
for k=2:n;

stm(k)=alpha(k)*(x mid(j))ˆ(COV(k,j)/V1(j))*exp(−E1(k)+...
(COV(k,j)/V1(j))*E1(j)+0.5*V1(k)*(1−CORR(k,j)ˆ2));
AVm(j)=AVm(j)+stm(k);

end
fm(j)=AVm(j)−K+1;
if (fm(j)*fu(j))<0;

x lower(j)=x mid(j);
fl(j)=fm(j);

else
x upper(j)=x mid(j);
fu(j)=fm(j);

end
end
format 'long'
soln(j)=x mid(j)

end
% Computation of lower bound
for j=2:n;

d1(j)=(log(1/soln(j))−E1(j))/sqrt(V1(j)); %(5.7.45)
y(j)=normcdf(d1(j));
for i=2:n;

d2(i)=d1(j)+COV(i,j)/sqrt(V1(j)); %(5.7.46)
y2(i)=exp(COV(i,j)*(COV(i,j)−2*E1(j))/(2*V1(j)))*normcdf(d2(i));
P(i)=(y2(i)−(soln(j))ˆ(COV(i,j)/V1(j))*y(j)); %(5.7.44)
POW(i)=alpha(i)*exp(−E1(i)+(COV(i,j)/V1(j))*E1(j)+...
0.5*V1(i)*(1−CORR(i,j)ˆ2))*P(i); %(5.7.43)
SPOW(j)=SPOW(j)+POW(i);

end
end
m=max(SPOW);
format 'long'
GAOLBVS=g*Pcurl0*m
format 'short'

4. The First Upper Bound GAOUB1

%Snippet C.2.1.1
%Snippet C.2.1.2
% Defining arrays for upper bound
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y=zeros(n,1);
d1=zeros(n,1);
d2=zeros(n,1);
POW=zeros(n,1); %Elements of sum in (5.6.7)
SPOW=0;
%Initializing for solving the equation (5.6.8)
x lower=−6.5; %First initial guess for equation (5.6.8)
x upper=10000; %Second initial guess for equation (5.6.8)
AVl=0; %Initializing the sum on L.H.S. of (5.6.8) for 1st guess
AVu=0; %Initializing the sum on L.H.S. of (5.6.8) for 2nd guess
AVm=0; %Initializing the sum on L.H.S. of (5.6.8) for midpt. guess
%Snippet C.2.1.3
%Snippet C.2.1.4
%Snippet C.2.1.5
%Snippet C.2.1.6
% Solution of the equation (5.6.8) (REMARK: x=norminv(1−x))
for i=2:n;

AVl=AVl+alpha(i)*exp(−(E1(i)+sqrt(V1(i))*x lower));
AVu=AVu+alpha(i)*exp(−(E1(i)+sqrt(V1(i))*x upper));

end
fl=AVl−K+1;
fu=AVu−K+1;
while x upper−x lower>0.000000000000001;

x mid=(x lower+x upper)/2;
AVm=0;
for i=2:n;

AVm=AVm+alpha(i)*exp(−(E1(i)+sqrt(V1(i))*x mid));
end
fm=AVm−K+1;
if (fm*fu)<0;

x lower=x mid;
fl=fm;

else
x upper=x mid;
fu=fm;

end
end
soln=x mid
for i=2:n;

y(i)=alpha(i)*exp(−(E1(i)+sqrt(V1(i))*soln));
d1(i)=(log(alpha(i)/y(i))−E1(i))/sqrt(V1(i));
d2(i)=d1(i)+sqrt(V1(i));

end
% Computation of upper bound
for i=2:n;

POW(i)=alpha(i)*exp((V1(i)−2*E1(i))/2)*normcdf(d2(i))−...
y(i)*normcdf(d1(i)); %Elements of sum in (5.6.7)
SPOW=SPOW+POW(i);

end
format 'long'
GAOUB1=g*Pcurl0*SPOW
format 'short'

5. The Improved Upper Bound GAOUB
(V S)
j

%Snippet C.2.1.1
%Snippet C.2.1.2
%The number of SIMULATIONS
M=10000;
%Defining the array for Monte Carlo Simulation
LAMBDA=zeros(M,1);
CORRkLAMBDA=zeros(n,1); %Correlation between Xk and LAMBDA
flag=0; %Indicator to test sign of covariance
% Defining arrays etc. for improved upper bound
y=zeros(n,1);
y2=zeros(n,1);
d1=zeros(n,1);
d2=zeros(n,1);
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POW=zeros(n,1); %Elements of sum in (5.7.59)
SPOW=zeros(M,1);
UB1=zeros(M,1);
SUB1=0;
%Defining the arrays for solving the equation (5.7.58)
AVl=zeros(M,1); %Initializing sum on L.H.S. of (5.7.58) for 1st guess
AVu=zeros(M,1); %Initializing sum on L.H.S. of (5.7.58) for 2nd guess
AVm=zeros(M,1); %Initializing sum on L.H.S. of (5.7.58) for midpt. guess
stl=zeros(n,1); %Vector of elements in sum:L.H.S of (5.7.58) for 1st guess
stu=zeros(n,1); %Vector of elements in sum:L.H.S of (5.7.58) for 2nd guess
stm=zeros(n,1); %Vector of elements in sum:L.H.S of (5.7.58) for midpt. guess
%Snippet C.2.1.3
%Snippet C.2.1.4
%Snippet C.2.1.5
%Snippet C.2.1.6
%Snippet C.2.1.7
MEANLAMB=0;
SDLAMB=sqrt(SCORR2);
% Calculation of Correlation between Xk and LAMBDA
for k=2:n;

CORRkLAMBDA(k)=SCORR1(k)/sqrt(SCORR2);
if (CORRkLAMBDA(k)<0)

flag=1
else

f=flag
end

end
% Solution of the equation (5.7.58)
for ik=1:M;

LAMBDA(ik)=normrnd(0,SDLAMB);
x lower=−100000;
x upper=100000;
for i=2:n;

stl(i)=alpha(i)*exp(−(E1(i))+CORRkLAMBDA(i)*...
sqrt(V1(i)/SCORR2)*(LAMBDA(ik)−MEANLAMB)+...
sqrt(V1(i)*abs(1−CORRkLAMBDA(i)ˆ2))*x lower);
stu(i)=alpha(i)*exp(−(E1(i))+CORRkLAMBDA(i)*...
sqrt(V1(i)/SCORR2)*(LAMBDA(ik)−MEANLAMB)+...
sqrt(V1(i)*abs(1−CORRkLAMBDA(i)ˆ2))*x upper);
AVl(ik)=AVl(ik)+stl(i);
AVu(ik)=AVu(ik)+stu(i);

end
fl=AVl(ik)−K+1;
fu=AVu(ik)−K+1;
while x upper−x lower>0.00000000000001;

x mid=(x lower+x upper)/2;
AVm(ik)=0;
for i=2:n;

stm(i)=alpha(i)*exp(−(E1(i))+CORRkLAMBDA(i)*...
sqrt(V1(i)/SCORR2)*(LAMBDA(ik)−MEANLAMB)+...
sqrt(V1(i)*abs(1−CORRkLAMBDA(i)ˆ2))*x mid);
AVm(ik)=AVm(ik)+stm(i);

end
fm=AVm(ik)−K+1;
if (fm*fu)<0;

x lower=x mid;
fl=fm;

else
x upper=x mid;
fu=fm;

end
end
soln=x mid;
% Computation of improved upper bound in (5.7.59) for (ik)th simulation
for i=2:n;

y(i)=alpha(i)*exp(−(E1(i))+CORRkLAMBDA(i)*sqrt(V1(i)/SCORR2)*...
(LAMBDA(ik)−MEANLAMB)+sqrt(V1(i)*abs(1−CORRkLAMBDA(i)ˆ2))*soln);
d1(i)=soln;
d2(i)=d1(i)−sqrt(V1(i)*abs(1−CORRkLAMBDA(i)ˆ2)); %(5.7.52) modified
POW(i)=alpha(i)*exp((V1(i)*abs(1−CORRkLAMBDA(i)ˆ2))/2−...
E1(i)+CORRkLAMBDA(i)*sqrt(V1(i)/SCORR2)*(LAMBDA(ik)−MEANLAMB))*...
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(1−normcdf(d2(i)))−y(i)*(1−normcdf(d1(i)));
SPOW(ik)=SPOW(ik)+POW(i);

end
UB1(ik)=g*Pcurl0*(SPOW(ik)); %For each simulation
SUB1=SUB1+UB1(ik);

end
format 'long'
GAOUBVS=SUB1/M
format 'short'

6. The Monte Carlo Estimate (Antithetic Method)

%Snippet C.2.1.1
%Snippet C.2.1.2
N2=5000000; %Half the Number of Simulations/Paths
S=0; %The GRAND SUM of all simulations
% Defining arrays for MC Estimate
POW=zeros(n,1); %Initializing the GAO value using (5.7.4)
SPOW=zeros(N2,1);
POW2=zeros(n,1); %Initializing the GAO value using (5.7.4) for Antithetic case
SPOW2=zeros(N2,1);
SPOWK=zeros(N2,1);
SPOWK2=zeros(N2,1);
R=zeros(N2,1);
MU=zeros(N2,1);
%Snippet C.2.1.3
%Snippet C.2.1.4
%Snippet C.2.1.5
% Computation of MC Estimate
for i=1:N2;

R(i)=randn;
MU(i)=randn;
R1=merT+sqrt(VarrT)*R(i);
R2=merT+sqrt(VarrT)*(−R(i));
MU1=memuT+sqrt(VarmuT)*(Corr*R(i)+sqrt(1−Corrˆ2)*MU(i));
MU2=memuT+sqrt(VarmuT)*(Corr*(−R(i))+sqrt(1−Corrˆ2)*(−MU(i)));
for k=1:n;

POW(k)=alpha(k)*exp(−(A(k)*R1+Gcurl(k)*MU1));
POW2(k)=alpha(k)*exp(−(A(k)*R2+Gcurl(k)*MU2));
SPOW(i)=SPOW(i)+POW(k);
SPOW2(i)=SPOW2(i)+POW2(k);

end
SPOWK(i)=max((SPOW(i)−K),0);
SPOWK2(i)=max((SPOW2(i)−K),0);
S=S+SPOWK(i)+SPOWK2(i);

end
format 'long'
GAOMC=g*Pcurl0*S/(2*N2)
format 'short'

C.2.2 Multi CIR Model

In Chapter 6, table 6.8 presents the price bounds for GAO for the Multi-CIR Model. The
parameter choices for this table have already been detailed in the aforesaid chapter and we
present them in the form of snippet C.2.2.1 given below. This snippet is an integral part of
every code in this sub-section. In fact, table 6.8 depicts the changes in the price bounds for GAO
with respect to the variation in the value of the parameter m2 and hence the initial correlation
coefficient between the interest rate and the force of mortality. The MATLAB codes for this
table are furnished below.

Snippet C.2.2.1: Parameter Choice for Table 6.8

% Parameters of GAO
n=35; % Number of years of life post the pension age
T=15; %Number of years to retirement
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g=.111; %Guaranteed Annuity Rate (GAR)
K=1/g;
rho=0.9; %Corr. b\w interest and mortality rates varied in the codes
% Parameters of the Multi CIR Model in (5.7.61)
m=3; %Dimension of the CIR process
k=[0.3731, 0.011, 0.01];
theta=[0.074484, 0.245455, 0.0013];
sigma=[0.0452, 0.0368, 0.0015];
rbar=−0.12332;
mubar=0;
Xi0=[0.0510234, 0.0890707, 0.0004];
R=[1, 1, 0];
m2=0.1;

The snippet given below, follows Snippet C.2.2.1 to initialize arrays used in every program.

Snippet C.2.2.2: Initializing

EQXiT=zeros(m,1); %(6.2.6)
C50=0.0125; %Used to compute m3
% The arrays required to compute ST(i) in (5.7.4)
u=zeros(m,1);
curl=zeros(m,1);
psiT=zeros(m,1);
phiT=zeros(m,1);
psi=zeros(n,m);
phi=zeros(n,m);
S1=0;
S2=0;
S1phi=zeros(n,1);
psi0=zeros(m,1); %Computing at T−T for transformed distribution
kcurl=zeros(m,1); %(5.7.68)
thetacurl=zeros(m,1);%(5.7.69)

The snippet given below, is used to compute the value of parameter m3 and hence specify
M (c.f. section 6.2.2) and is used in every program. It also details the calculation of the initial
correlation ρ0 between mortality and interest rate (c.f. equation (6.2.7)).

Snippet C.2.2.3: Computation of m3 and ρ0

for i=1:m;
EQXiT(i)=Xi0(i)*exp(−(k(i)*T))+theta(i)*(1−exp(−(k(i)*T)));

end
m3=(0.0125−mubar−m2*EQXiT(2))/EQXiT(3)
M=[0, m2, m3];
%Computation of Rho0
Rho0=(m2*sigma(2)ˆ2*Xi0(2))/(sqrt((sigma(1)ˆ2*Xi0(1)+...
sigma(2)ˆ2*Xi0(2))*(m2ˆ2*sigma(2)ˆ2*Xi0(2)+m3ˆ2*sigma(3)ˆ2*Xi0(3))))

The snippet that we now present is an integral part of each of the codes in this section and
specifies the computation of basic parameters given in equations (5.7.64) - (5.7.65) obtained by
solving the Riccatti equations.

Snippet C.2.2.4: Calculation of Basic Parameters

%Computation of the general psi and phis: tau=T+i−1−T = i−1
for i=1:m;

u(i)=R(i)+M(i); %used in (5.7.64)−(5.7.65)
curl(i)=sqrt(k(i)ˆ2+2*u(i)*sigma(i)ˆ2); %eta in (5.7.64)−(5.7.65)

end
for i=1:n;

for j=1:m; %j stands for dimension of CIR model
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psi(i,j)=(2*u(j))/(curl(j)+k(j))−...
((4*u(j)*curl(j))/(curl(j)+k(j)))*1/((curl(j)+k(j))*...
exp(curl(j)*(i−1))+curl(j)−k(j));
phi(i,j)=−((k(j)*theta(j))*(curl(j)+k(j))*(i−1))/...
(sigma(j)ˆ2)+(2*k(j)*theta(j)*log((curl(j)+...
k(j))*exp(curl(j)*(i−1))+curl(j)−k(j)))/(sigma(j)ˆ2)−...
((2*k(j)*theta(j))*log(2*curl(j)))/(sigma(j)ˆ2);
S1phi(i)=S1phi(i)+phi(i,j);

end
end

The computation of the SZCB P̃ (0, T ) given in equation (5.3.2) is an integral part of every
program. The following snippet details its calculation.

Snippet C.2.2.5: Calculation of P̃ (0, T )

%Calculation of Pcurl(0,T) under the original measure Q:
%tau=T−0=T for calculating psi and phi
for i=1:m;

psiT(i)=(2*u(i))/(curl(i)+k(i))−((4*u(i)*curl(i))/...
(curl(i)+k(i)))*1/((curl(i)+k(i))*exp(curl(i)*T)+curl(i)−k(i));
phiT(i)=−((k(i)*theta(i))*(curl(i)+k(i))*T)/(sigma(i)ˆ2)+(2*k(i)*...
theta(i)*log((curl(i)+k(i))*exp(curl(i)*T)+curl(i)−k(i)))/(sigma(i)ˆ2)−...
((2*k(i)*theta(i))*log(2*curl(i)))/(sigma(i)ˆ2);
S1=S1+phiT(i);
S2=S2+psiT(i)*Xi0(i);

end
Pcurl0=exp(0.12332*T)*exp(−(S1+S2));

To compute any bound for the GAO price under the Multi CIR case, we need to obtain the
distribution of XT under the transformed measure Q̃. The following snippet executes equations
(5.7.68) - (5.7.69) and appears in every program given below.

Snippet C.2.2.6: Calculation of Parameters of Transformed Distribution of XT

%Calculation of the transformed parameters under the change of measure:
%tau= T−T = 0 for calculating psi and phi
for i=1:m;

psi0(i)=(2*u(i))/(curl(i)+k(i))−((4*u(i)*curl(i))/...
(curl(i)+k(i)))*1/((curl(i)+k(i))*1+curl(i)−k(i));
kcurl(i)=k(i)+psi0(i)*sigma(i)ˆ2;
thetacurl(i)=(k(i)*theta(i))/kcurl(i);

end

1. The Lower Bound GAOLB(MCIR)

%Snippet C.2.2.1
%Snippet C.2.2.2
%Arrays for mgf
muiT=zeros(m,1);
lambdaT=zeros(m,1);
vbar=zeros(m,1);
phipsil=zeros(n,m);
MGF=zeros(n,m);
% Defining arrays for lower bound
PROD1=ones(n,1); %Product of m.g.f.s
EcurlSi=zeros(n,1); %(5.7.83)−(5.7.84)
POW=zeros(n,1); %Initializing vector of terms in the Sum in GAOLB in (5.7.84)
SPOW=0; %Initializing the Sum in GAOLB
%Snippet C.2.2.3
%Snippet C.2.2.4
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%Snippet C.2.2.5
%Snippet C.2.2.6
%Computation of mgf with parameter −phipsil for the three dim of the process
for i=1:m;

vbar(i)=(2*kcurl(i)*thetacurl(i))/(sigma(i)ˆ2);
lambdaT(i)=(2*kcurl(i)*Xi0(i))/(sigma(i)ˆ2*(exp(kcurl(i)*T)−1));
muiT(i)=(sigma(i)ˆ2*(1−exp(−kcurl(i)*T)))/(2*kcurl(i));

end
%Computation of EcurlSi
for i=1:n;

for j=1:m;
%the next equation computes the parameter of mgf: s=−phipsil(i,j)
phipsil(i,j)=(1+psi(i,j)*muiT(j))ˆ(−1); %(5.7.75)
%Equation (5.7.74)
MGF(i,j)=(phipsil(i,j))ˆ(vbar(j))*exp(lambdaT(j)*(phipsil(i,j)−1));
PROD1(i)=PROD1(i)*MGF(i,j);

end
EcurlSi(i)=exp(−(rbar+mubar)*(i−1))*exp(−S1phi(i))*PROD1(i); %(5.7.84)

end
for i=2:n;

POW(i)=EcurlSi(i);
SPOW=SPOW+POW(i);

end
SPOW1=max((SPOW−(K−1)),0);
format 'long'
GAOLBMCIR=g*Pcurl0*SPOW1
format 'short'

2. The Upper Bound GAOUB(MCIR)

%Snippet C.2.2.1
%Snippet C.2.2.2
%Arrays for mgf
muiT=zeros(m,1);
lambdaT=zeros(m,1);
vbar=zeros(m,1);
phipsil=zeros(n,m);
MGF=zeros(n,m);
% Defining arrays for upper bound
PROD1=ones(n,1); %Product of m.g.f.s
EcurlSi=zeros(n,1); %(5.7.83)−(5.7.84)
POW=zeros(n,1); %Initializing vector of terms in the Sum in GAOLB in(5.7.84)
SPOW=0; %Initializing the Sum in GAOLB
CFPMT=zeros(m,1);
phiCFPMT=zeros(m,1);
MGFGM=zeros(m,1);
S02=zeros(n,1); %The exponent part of S0(i)
YT0old=0;
∆=0.75; %The damping factor
%Snippet C.2.2.3
%Snippet C.2.2.4
%Snippet C.2.2.5
%Snippet C.2.2.6
%Computation of mgf with parameter −phipsil for the three dim of the process
for i=1:m;

vbar(i)=(2*kcurl(i)*thetacurl(i))/(sigma(i)ˆ2);
lambdaT(i)=(2*kcurl(i)*Xi0(i))/(sigma(i)ˆ2*(exp(kcurl(i)*T)−1));
muiT(i)=(sigma(i)ˆ2*(1−exp(−kcurl(i)*T)))/(2*kcurl(i));

end
%Computation of EcurlSi
for ii=2:n;

for j=1:m;
%the next equation computes the parameter of mgf: s=−phipsil(i,j)
phipsil(ii,j)=(1+psi(ii,j)*muiT(j))ˆ(−1);
MGF(ii,j)=(phipsil(ii,j))ˆ(vbar(j))*exp(lambdaT(j)*(phipsil(ii,j)−1));
PROD1(ii)=PROD1(ii)*MGF(ii,j); %Product of mgf of 3 components

end
EcurlSi(ii)=exp(−(rbar+mubar)*(ii−1))*exp(−S1phi(ii))*PROD1(ii);
S02(ii)=−(rbar+mubar)*(ii−1)−S1phi(ii);
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YT0old=YT0old+S02(ii);
end
%Computation of CFPMT: Parameter for c.f. and m.g.f.: Sum of psi's
for j=1:m; %note that j stands for the dimension index of the CIR model

for ii=2:n;
CFPMT(j)=CFPMT(j)+psi(ii,j);

end
end
%Computation of MGF for EGNT
% No looping on i is required since i IS SUMMED WITHIN THE PMT
for j=1:m;
%the next equation computes the parameter of mgf: s=−phiCFPMT(j)
%note −iˆ2=1 so −CFPMT(j) is retained making it + within beta

phiCFPMT(j)=(1+((CFPMT(j)*muiT(j))/(n−1)))ˆ(−1);
MGFGM(j)=(phiCFPMT(j))ˆ(vbar(j))*exp(lambdaT(j)*(phiCFPMT(j)−1));
PROD2=PROD2*MGFGM(j);

end
for ii=2:n;

POW(ii)=EcurlSi(ii);
SPOW=SPOW+POW(ii);

end
SPOW5=SPOW/(n−1); %This gives E[AT]
YT0=YT0old/(n−1);
EGNT=exp(YT0)*PROD2; %This gives E[GT]
%Product of three cf's is being inverted just once
fun7=@(gamma1) real(exp(−(1i.*gamma1).*log(Knew)).*exp((1i.*gamma1+(∆+1))....

*YT0).*(((1+1i.*(((gamma1−1i.*(∆+1))).*CFPMT(1).*muiT(1)./(n−1))).ˆ(−...
(vbar(1)))).*exp(lambdaT(1)*((1+1i.*(((gamma1−1i.*(∆+1))).*CFPMT(1).*...
muiT(1)./(n−1))).ˆ(−1)−1)).*((1+1i.*(((gamma1−1i.*(∆+1))).*CFPMT(2).*...
muiT(2)./(n−1))).ˆ(−(vbar(2)))).*exp(lambdaT(2).*((1+1i.*(((gamma1−1i.*...
(∆+1))).*CFPMT(2).*muiT(2)./(n−1))).ˆ(−1)−1)).*((1+1i.*(((gamma1−1i.*...
(∆+1))).*CFPMT(3).*muiT(3)./(n−1))).ˆ(−(vbar(3)))).*exp(lambdaT(3).*...
((1+1i.*(((gamma1−1i.*(∆+1))).*CFPMT(3).*muiT(3)./(n−1))).ˆ(−1)−1)))...
./(∆.ˆ2+∆−gamma1.ˆ2+(1i.*gamma1.*(2.*∆+1))));

qty9 = quadgk(fun7,0,inf);
qty7 = exp(−(∆*log(Knew)))*qty9/pi;
format 'long'
GAOUBMCIR=g*Pcurl0*(n−1)*(qty7+SPOW5−EGNT)
format 'short'

3. The Monte Carlo Estimate

%Snippet C.2.2.1
%Snippet C.2.2.2
%Initializing
M1=50000 %Number of Simulations
%Arrays for mgf
muiT=zeros(m,1);
lambdaT=zeros(m,1);
vbar=zeros(m,1);
phipsil=zeros(n,m);
MGF=zeros(n,m);
% Defining arrays for lower bound
PROD1=ones(n,1); %Product of m.g.f.s
EcurlSi=zeros(n,1); %(5.7.83)−(5.7.84)
POW=zeros(n,1); %Initializing vector of terms in the Sum in GAOLB in(5.7.84)
SPOW=0; %Initializing the Sum in GAOLB
%Snippet C.2.2.3
%Snippet C.2.2.4
%Snippet C.2.2.5
%Snippet C.2.2.6
%Defining pmts. of non−central chi−square variables defined in sum
for i=1:m;

vbar(i)=(2*kcurl(i)*thetacurl(i))/(sigma(i)ˆ2);
lambdaT(i)=(2*kcurl(i)*Xi0(i))/(sigma(i)ˆ2*(exp(kcurl(i)*T)−1));
muiT(i)=(sigma(i)ˆ2*(1−exp(−kcurl(i)*T)))/(2*kcurl(i));
DELTA(i)=2*lambdaT(i);
sqDELTA(i)=sqrt(DELTA(i));
H(i)=2*vbar(i);
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end
for i=1:n;

for j=1:m;
%The parameter used for converting the generated
%non−central chi square variates into weighted sum of XiT's
LAMBDA(i,j)=(psi(i,j)*muiT(j))/2;

end
end
% Computing the MC estimate
for l=1:M1;

SPOW(l)=0;
for i=2:n;

S1MC(i)=0;
for j=1:m;

R1 = ncx2rnd(H(j),DELTA(j));
SPEXP1(j)=LAMBDA(i,j)*R1;
S1MC(i)=S1MC(i)+SPEXP1(j);

end
POW(i)=S0i(i)*exp(−S1MC(i));
SPOW(l)=SPOW(l)+POW(i);

end
SPOWK(l)=max((SPOW(l)−(K−1)),0);
SMC=SMC+SPOWK(l);

end
format 'long'
GAOMC=g*Pcurl0*SMC/M1
format 'short'

C.2.3 Wishart Model

The parameter choices for the tables 6.9 - 6.11 have been indicated in Chapter 6. While the
first two tables experiment the effect on the price bounds of a change in the initial value X0,
the final table depicts the influence of a change in the volatility matrix Q on the bounds. In the
latter case, we assumed a symmetric volatility matrix Q and varied its off-diagonal elements.
As a result, we considered a total of 3 examples. The MATLAB codes for these examples are
similar with the corresponding change being made in the parameter snippet. We present below
the codes in respect of Example 1, i.e., table 6.9. The parameter choices for this example have
been indicated in section 6.2.3. We present the same through the following snippet.

Snippet C.2.3.1: Parameter Choice for Table 6.9

% Parameters of GAO
n=35; % Number of years of life post the pension age
T=15; %Number of years to retirement
g=.111; %Guaranteed Annuity Rate (GAR)
K=1/g;
rho=0.9; %Corr. b\w interest and mortality rates varied in the codes
% Parameters of the Wishart Model in (5.7.90)
rbar=0.04;
mubar=0;
R=[1, 0; 0, 0];
M=[0, 0; 0, 1];
X012=0.002;
X0=[0.01, X012; X012, 0.001]; %X012 is varied for Table 6.9
H=[−0.5, 0.4; 0.007, −0.008];
Q=[0.06 −0.0006; −0.06, 0.006];
beta=3;
d=2 %Dimension of Non−Central Wishart

The snippet given below, follows Snippet C.2.3.1 to initialize arrays used in every program.

Snippet C.2.3.2: Initializing

%Specifications of the arrays for the Levy Assumption
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S0i=zeros(n,1);
PSIi = cell(1, n);
PHIi=zeros(n,1);
SPSI=0;

The snippet given below, is used to compute the initial correlation ρ0 between mortality
and interest rate (c.f. equation (6.2.9)).

Snippet C.2.3.3: Computation of ρ0

% Computation of Rho0
Num=(Q(1,1)*Q(1,2)+Q(2,2)*Q(2,1))*X0(1,2);
Denom=sqrt((Q(1,1)ˆ2+Q(2,1)ˆ2)*X0(1,1)*(Q(2,2)ˆ2+Q(1,2)ˆ2)*X0(2,2));
Rho0=Num/Denom

The snippet that we now present is an integral part of each of the codes in this section and
specifies the computation of basic parameters given in the system of equations (5.7.94).

Snippet C.2.3.4: Calculation of Basic Parameters

%Computation of the general psi and phis: tau=T+i−1−T = i−1
for ii=2:n;

%Exponential of the matrix as in (5.7.103)
APHNEW=expm([(ii−1).*H,(ii−1).*(2*(Q'*Q));(ii−1).*(R+M),(ii−1).*(−(H'))]);
APHNEW11=APHNEW(1:2,1:2);
APHNEW21=APHNEW(3:4,1:2);
APHNEW12=APHNEW(1:2,3:4);
APHNEW22=APHNEW(3:4,3:4);
% Computation of PSIi and PHIi as in (5.7.102)
PSIi{ii}=APHNEW22\APHNEW21;
SPSI=SPSI+PSIi{ii};
PHIi(ii)=beta*(log(det(APHNEW22))+(ii−1)*trace(H'))/2;

end

The computation of the SZCB P̃ (0, T ) given in equation (5.3.2) is an integral part of every
program. The following snippet details its calculation.

Snippet C.2.3.5: Calculation of P̃ (0, T )

% Specification of new MATRICES Aij's USING (5.7.103)
%tau=T−0=T for calculating psi and phi
ANEW=expm([T.*H,T.*(2*(Q'*Q));T.*(R+M),T.*(−(H'))]);
A11=ANEW(1:2,1:2);
A21=ANEW(3:4,1:2);
A12=ANEW(1:2,3:4);%intersection
A22=ANEW(3:4,3:4);
% Computation of psi(T) and phi(T)
PSIT=A22\A21;
PHIT=beta*(log(det(A22))+T*trace(H'))/2;
% Computation of SZCBs: Pcurl(0,T):(5.7.102)
C=trace(PSIT*X0);
SZCB=exp(−(rbar+mubar)*T)*exp(−PHIT−C);

The next couple of snippets are executed independently to solve simultaneously the systems
of equations (5.7.94) and (5.7.108) and therefore provide the parameters of the non-central
Wishart distribution under the transformed measure Q̃ given in (5.7.107). These use the inbuilt
ode45 tool of MATLAB to solve the equations.
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Snippet C.2.3.6: Defining the System of Equations (5.7.94) and (5.7.108)

function dy = mnewwish7(¬, XYV, A, B, R)
[r,c] = size(A);
XYV = reshape(XYV, [r, c, 3]);
X = XYV(:,:,1);
Y = XYV(:,:,2);
V = XYV(:,:,3);

dy = [−A.'*X − X*A + 2*X*(B.'*B)*X − R, −(A−(B.'*B)*X).'*Y, −Y.'*(B.'*B)*Y];

dy = dy(:);

end

Snippet C.2.3.7: Solution of Equations Using ode45

%Solving systems (5.7.92) and (5.7.108)
A=[−0.5, 0.4; 0.007, −0.008];
B=[0.06 −0.0006; −0.06, 0.006];
R = [1 0; 0 1]; %R is actually R+M
X0 = [0, 0; 0, 0];
Y0 = [1 0; 0 1];
V0 = [0, 0; 0, 0];
[r, c] = size(A);

initial value = [X0, Y0, V0];
[T, XYV] = ode45(@(t,XYV)mnewwish7(t, XYV, A, B, R), [15 0], initial value(:));
nXYV = reshape(XYV, [], r, c, 3);
format 'long'
X = permute( nXYV(:,:,:,1), [2 3 1])
Y = permute( nXYV(:,:,:,2), [2 3 1])
V = permute( nXYV(:,:,:,3), [2 3 1])

pX = reshape( nXYV(:,:,:,1), [], r*c);
pY = reshape( nXYV(:,:,:,2), [], r*c);
pV = reshape( nXYV(:,:,:,3), [], r*c);

On the basis of the last snippet, we obtain the following parameter set which forms an
integral part of every program in this section.

Snippet C.2.3.8: Parameters of Distribution of XT under the Measure Q̃

%(5.7.107) and we call PSI as PSICURL
SIGMA=[0.006811791307233, −0.000407806990090; −0.000407806990090, 0.000392912436263];
PSICURL=[0.011526035149236, 0.013935191202735; 0.758273970303934, 0.955423605940771];

1. The Lower Bound GAOLB(WIS)

%Snippet C.2.3.1
%Snippet C.2.3.2
%Other Initializations
%Specifications of array for the Levy Assumption
S0i=zeros(n,1);
% Defining arrays for lower bound
POW=zeros(n,1); %Initializing vector of terms in the Sum in GAOLB in (5.7.114)
SPOW=0; %Initializing the Sum in GAOLB
%Snippet C.2.3.3
%Snippet C.2.3.4
%Snippet C.2.3.5
%Snippet C.2.3.8
%Computation of the non−centrality parameter THETA1
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THETA1=SIGMA\(PSICURL'*X0*PSICURL);
%Computation of Sum in Lower Bound in (5.7.114)
for ii=2:n;

S0i(ii)=exp(−((rbar+mubar)*(ii−1)+PHIi(ii))); %(5.7.112)
%Elements in (5.7.114)
POW(ii)=S0i(ii)*exp(trace(−((THETA1/(eye(2)+2.*SIGMA*PSIi{ii}))*...
SIGMA*PSIi{ii})))/((det(eye(2)+2.*SIGMA*PSIi{ii}))ˆ(beta/2));
SPOW=SPOW+POW(ii);

end
format 'long'
SPOW1=max((SPOW−(K−1)),0);
GAOLBWIS=g*SZCB*SPOW1
format 'short'

2. The Upper Bound GAOUB(WIS)

function UB7
qty = quadgk(@fun4,0,inf)
[y, ∆, n, Knew, g, SZCB, SPOW, EGNT] = fun4(1);
qty1 = exp(−(∆*log(Knew)))*qty/pi;
format 'long'
GAOUBWIS=g*SZCB*(n−1)*(qty1+SPOW−EGNT)
format 'short'

function [y, ∆, n, Knew, g, SZCB, SPOW, EGNT] = fun4(gamma1vec)
%Snippet C.2.3.1
%Snippet C.2.3.2
%Other Initializations
%Specifications of array for the Levy Assumption
S0i=zeros(n,1);
% Defining arrays for upper bound
POW=zeros(n,1); %Initializing vector of terms in the Sum in GAOUB in (5.6.40)
SPOW1=0; %Initializing the Sum in GAOUB
S0i2=zeros(n,1);
Yn0old=0;
∆=0.75; %The damping factor
%Snippet C.2.3.3
%Snippet C.2.3.4
%Snippet C.2.3.5
%Snippet C.2.3.8
%Knew is our K' and it is equal to (K−1)/(n−1)
Knew=(K−1)/(n−1);
%Computation of the non−centrality parameter THETA1
THETA1=SIGMA\(PSICURL'*X0*PSICURL);
%Computation of sums for E[AT] and E[GT]
for ii=2:n;

S0i(ii)=exp(−((rbar+mubar)*(ii−1)+PHIi(ii))); %(5.7.112)
%Elements in (5.6.40)
POW(ii)=S0i(ii)*exp(trace(−((THETA1/(eye(2)+2.*SIGMA*PSIi{ii}))*...
SIGMA*PSIi{ii})))/((det(eye(2)+2.*SIGMA*PSIi{ii}))ˆ(beta/2));
SPOW1=SPOW1+POW(ii);
S0i2(ii)=(−((rbar+mubar)*(ii−1)+PHIi(ii)));

end
Yn0=Yn0old/(n−1);
SPOW=SPOW1/(n−1); %This gives E[AT]
%Characteristic Function of Non−Central Wishart given by (5.7.110)
fun0=@(Gamma) exp(trace(1i.*((THETA1/(eye(2)−2i.*SIGMA*Gamma))*SIGMA*Gamma)))./...

((det(eye(2)−2i.*SIGMA*Gamma))ˆ(beta/2));
EGNT=exp(Yn0)*fun0((1./(n−1)).*1i.*SPSI); %This gives E[GT] using (5.6.34)
for j=1:numel(gamma1vec)

gamma1=gamma1vec(j);
y(j)=real(exp(−(1i.*gamma1).*log(Knew)).*exp((1i.*gamma1+(∆+1)).*Yn0).*...
(exp(trace(1i.*((THETA1/(eye(2)−2i.*SIGMA*((−(1./(n−1)).*(gamma1−1i.*...
(∆+1))).*SPSI)))*SIGMA*((−(1./(n−1)).*(gamma1−1i.*(∆+1))).*SPSI))))./...
((det(eye(2)−2i.*SIGMA*((−(1./(n−1)).*(gamma1−1i.*(∆+1))).*...
SPSI))).ˆ(beta./2)))./(∆.ˆ2+∆−gamma1.ˆ2+(1i.*gamma1.*(2.*∆+1))));

end

198



3. The Monte Carlo Estimate

%Snippet C.2.3.1
%Snippet C.2.3.2
%Other Initializations
M1=20000; %Number of Simulations
%Specifications of array for the Levy Assumption
S0i=zeros(n,1);
Yi=zeros(n,1);
% Defining arrays etc. for MC estimate
S1MC=zeros(n,1);
POW=zeros(n,1);
SPOW=zeros(M1,1);
SPOWK=zeros(M1,1);
SMC=0;
%Snippet C.2.3.3
%Snippet C.2.3.4
%Snippet C.2.3.5
%Snippet C.2.3.8
%Computation of a new parameter OMEGA: for random sampling from NCW
OMEGA=PSICURL'*X0*PSICURL;
%For random sample generation from non−Central Wishart (NCW)
%Computation of the Cholesky decomposition of SIGMA and OMEGA
SIG=chol(SIGMA);
CHECK=SIG'*SIG;
D=[chol(SIGMA)]';
OMG=chol(OMEGA);
Mhat=[chol(OMEGA)]';
Mtilde=D\Mhat;
% Snippet for computing the MC estimate
for l=1:M1;

Y=[Mtilde zeros(2,1)]+randn(2,3);
XT=D*(Y*Y')*D'; %Simulating NCW random matrix
for ii=2:n;

S0i(ii)=exp(−((rbar+mubar)*(ii−1)+PHIi(ii)));
Yi(ii)=trace(PSIi{ii}*XT); %XT(i) of Levy without negative sign
POW(ii)=S0i(ii)*exp(−Yi(ii));
SPOW(l)=SPOW(l)+POW(ii);

end
SPOWK(l)=max((SPOW(l)−(K−1)),0);
SMC=SMC+SPOWK(l);

end
format 'long'
GAOMC=g*SZCB*SMC/M1
format 'short'

C.2.4 Computational Speed of the Bounds

To gauge the efficiency of our working for the bounds in the Multi CIR case and the Wishart
case and generate table 6.12, we invoke the ‘Run and Time’ command on the MATLAB taskbar
and this generates the ‘Profile Summary’ depicting the execution time.
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