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Abstract 

The euchromatin of mammalian chromosomes is broadly divided into two types with 

opposing characteristics: 

•G-bands are revealed by Giemsa staining. These bands are generally late replicating, 

AT-rich, low in gene density and appear to have a closed chromatin structure. 

• R-bands are revealed by reverse Giemsa staining. These bands are generally early 

replicating, GC-rich, high in gene density and appear to have a more 'open' chromatin 

structure. 

These two band types are intercalated throughout the mammalian genome making 

comparative studies of their behaviour difficult. However, in the human genome, 

chromosome 18 predominantly displays the features of G-bands and chromosome 19 

generally displays the features of R-bands. These chromosomes were shown to be 

comparable in DNA content and size at metaphase and are, thus, ideal to investigate further 

the apparent links between chromosome structure and function. 

Some models of chromosome structure suggest differences in the higher order packaging of 

the different band types of metaphase chromosomes. Any differences should be reflected in 

the overall structure of chromosomes 18 and 19. Combining fluorescence in situ 

hybridisation and biochemical extraction of metaphase chromosomes, I detected no 

significant differences in their structure. 

In contrast, the two chromosomes demonstrated different structural characteristics in the 

interphase nucleus. I found that chromosome 18 occupies a relatively condensed territory, 

close to the periphery of the nucleus, while chromosome 19 occupies a considerably larger 

territory, more centrally located. My studies of different cell types and on cells at different 

stages of the cell cycle suggest that these characteristics generally apply in human cells, but 

not in a somatic cell hybrid background. Analysis of nuclei with a reciprocal 18:19 

translocation showed that the translocated segments were orientated towards the positions 

occupied by their structurally normal homologues. The size but not the positioning of an 

interphase territory appears to be dependent on transcriptional activity. 

Furthermore, differences in the way that chromosomes 18 and 19 associate with the 

interphase nuclear matrix were found. Following salt extraction of nuclei, chromosome 19 
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remained firmly attached to the residual matrix, while chromosome 18 was released into the 

DNA loops. 

Models of interphase territory organisation have been suggested where genes are 

preferentially localised to the outer surface of a territory. Using CpG-islands as gene 

markers, I found no evidence for this in metaphase and interphase chromosomes. 

Histone modifications and histone variants allow chromatin structure to be modulated. The 

acetylation of the core histories is the most studied of such modifications and data in this 

thesis confirms that acetylation is a dynamic process. Analysis using an antibody to 

acetylated histone H4 and treatment of cells with inhibitors of deacetylation established that 

turnover of acetylation is greater in the gene-rich R-bands than in the gene-poor G-bands. 

Surprisingly, levels of acetylation are very low in the most highly transcribed regions of the 

human genome, the rRNA encoding regions. An alternative mechanism of chromatin 

remodelling may be involved in the organisation of these regions. 

Only one third of the mass of a human chromosome is DNA, one third is made up of histories 

and the remainder consists of the relatively uncharacterised non-histone proteins. Human 

metaphase chromosomes were isolated and injected into mice, in an attempt to raise 

monoclonal antibodies to novel chromosomal proteins. Eight new antibodies were produced 

to nuclear components, none of which, however, localised to metaphase chromosomes. 

The data presented in this thesis support the concept that the mammalian nucleus is a highly 

structured and compartmentalised organelle. This view is developed by demonstrating that 

each chromosome has a characteristic territory shape and position, relative to the nuclear 

periphery. This configuration appears to be determined by the functional properties of the 

chromatin types within a specific chromosome, and may be conferred by interactions with 

different nuclear structures mediated by histone and non-histone proteins. These findings 

have implications for how the organisation of the nucleus is orchestrated and suggest that 

chromosome structure and function are closely correlated. 
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2-D two-dimensional 
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A adenine (purine) 
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CBP CREB-binding protein 

CCD charged couple device camera 

cDNA complementary DNA 

C.elegans Caenorhabditis elegans 

CENP centromere protein 
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CUP centromere linking protein 

CpG cytosine and guanine 

CREB cAMP response element-binding 

CREST calcinosis, 	aynauds phenomenon, esophageal dysmotility, 

sclerodactyly, elangiectasia 

DAPI 4, 6-diamidino-2-phenylindole 
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dCTP deoxycytidine triphosphate 

dGTP deoxygaunosine triphosphate 

dH2O distilled water 

D.melanogaster Drosophila melanogaster 
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DMEM Dulbecco's modified Eagle's medium 

DMSO dimethyl suiphoxide 

DNA deoxyribose nucleic acid 

DNAse deoxy ribonuc lease 

dNTP deoxynucleoside triphosphate 

dTTP deoxythymidine triphosphate 

dUTP deoxyuridine triphosphate 

EDTA ethylenediaminetetra-acetic acid, disodium salt 

EtOH ethanol 

FACS fluorescence activated chromosome/cell sorting 

FCS foetal calf serum 

FISH fluorescence in situ hybridisation 

FITC fluoroscein isothiocyanate fluorochrome 

g gravities 

G guanine (purine) 

G-band longitudinal chromosome pattern produced by Giemsa staining 

GI-phase growth phase I of the cell cycle (pre-replication) 

G2-phase growth phase 2 of the cell cycle (post-replication) 

GC guanine and cytosine 

GFP green fluorescent protein 

H histone protein, also heavy isochore 

HAT hypoxanthine, aminopterin and thymidine, also 

histone acetyltransferase 

HCI hydrochloric acid 

HD histone deacetylase 

HEPES N- [2-hydroxyethyl]piperazine-N'- [2-ethanesulphonic acid] 

HMG high mobility group 

hnRNA heterogeneous nuclear RNA 

hnRNP heterogeneous nuclear RNP 

HPRT hypoxanthine phosphoribosyl transferase 

HTF HpaiI tiny fragment (1 00-600bp) 

INCENP inner centromere protein 

Kb kilobase pairs of DNA 

KCI potassium chloride 

KCM potassium chromosome medium (120mM KCI, 20mM NaCI, 
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10mM Tris-HCI pH8.0, 0.5mM EDTA, 0.1% Triton X-100) 

KDa kilo Daltons (molecular weight/] 03) 

L light isochore 

LAP lamin-associated protein 

LBR lamin B receptor 

LINE long interspersed repeat element 

US lithium diiodosalicylate 

lys lysine amino acid 

M molar 

Mb megabase pairs of DNA 

MeCP methyl-C binding protein 

mRNA messenger RNA 

MOPS 3-[N-morpholino]propanesulfonic acid 

NaB sodium butyrate 

NaCl sodium chloride 

NOR nucleolar organising region 

N-terminal amino terminal 

OD optical density 

p chromosome short arm 

PAGE polyacrylamide gel electrophoresis 

PBS phosphate buffered solution 

PEG polyethylene glycol 

PEV position effect variegation 

P/CAF p300/CBP-associated factor 

PcG Polycomb group 

PCNA proliferating cell nuclear antigen 

PCR polymerase chain reaction 

PT propidium iodide fluorochrome 

PML promyelocytic leukemia 

PMSF phenylmethylsulphoxide 

pOl polymerase 

q chromosome long arm 

R-band longitudinal chromosome pattern produced by reverse Giemsa 

staining 

R'-band mundane R-band 

lx 



rDNA rRNA encoding DNA 

RNA ribose nucleic acid 

RNAse ribonuclease 

RNP ribonucleoprotein 

RNase ribonuclease 

rRNA ribosomal RNA 

S Svedberg unit (sedimentation coefficient) 

S-phase synthesis phase of the cell cycle (replication) 

SAR scaffold attached region 

Scil scaffold protein II 

S. cerevisiae Saccharornyces cerevisiae 

SDS sodium dodecyl sulphate 

SINE short interspersed repeat element 

S.,naculata Salamandra maculata 

SMC structural maintenance of chromosomes 

S.pombe Schizosaccharoinyces pombe 

SSC standard saline citrate (lx: 150mM NaCl, 15mM tn-sodium 

citrate, pH7.4) 

SSCM 4xSSC, 5% Marvel dried skimmed milk 

ST Student's T-test 

T thymidine (pyrimidine) 

T-band telomeric band (extreme form of R-band) 

TBE Tris, boric acid, EDTA buffer (90mM Tris-HCI, 90mM boric 

acid, 2mM EDTA pH8.0) 

TBS Tris buffered saline (50mM Tris-HC1, 150mM NaCl, pH7.5) 

TBST IxTBS, 0.1% Tween20 

TE Tris, EDTA buffer (10mM Tris, ImIVI EDTA, pH8.0) 

TEMED N,N,N' ,N' -tetramethylethylenediamine 

topo topoisomerase 

TR Texas Red fluorochrome 

trxG trithorax group 

Tris 2-amino-2-(hydroxymethyl)- I ,3-propandiol 

TSA Trichostatin A 

UV ultraviolet 

Xa active X chromosome 
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Xi 	 inactive X chromosome 

X.Iaevis 	 Xenopus laevis 
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Introduction 

1.1 The structure of human metaphase chromosomes 

B roadly, the chromosome has two basic functions: 

I. Efficient packaging of DNA into the interphase nucleus to allow for transcription, 

replication and repair. 

Highly condensed packaging at cell division ensuring disjunction of two identical sets of 

DNA. The highest degree of compaction is achieved at metaphase of mitosis and meiosis. 

The present understanding of chromosome structure is based on several levels of 

organisation. At the first level, the DNA double helix wraps twice around a core histone 

protein octamer to form "nucleosomes" (Figure 1.1). The first electron microscope 

observations of chromatin fibres at low salt concentrations revealed nucleosomes as "beads 

on a string of DNA" (Miller & Bakken, 1972). The octamer consists of two each of the 

histone proteins H2A, H2B, H3 and H4. The nucleosome has been crystallised and is now 

well defined at 2.8A resolution (Luger et al., 1997). 

The nucleosome was originally considered to merely prevent any process requiring DNA as 

the template, for example, transcription and replication. This has been revised to 

incorporate a more specific and dynamic role with selective interactions of the core histone 

proteins between themselves, DNA and other proteins (Pruss et al., 1995; Czarnota & 

Ottensmeyer, 1996). Different types of nucleosome, making use of histone variants, appear 

to be involved with specialised functions, for example, at the centromere (Wolffe, 1995a). 

The core histones are subject to a number of post-translational modifications (Section 

1.4.1.2). 

At the second level of packaging, nucleosomes are organised into the "condensed fibre" 

mediated by the linker histone protein HI and its variants (Figure 1.1) (Section 1.4.1.1). 

The helical "solenoid" model for packaging at this level was postulated by Finch and Klug 

in 1976, and has become well established (Bartolome et al., 1994). Various other models 

have arisen, including that of a zigzagged ribbon (Woodcock et al., 1993). Despite years of 

study, no single model has been substantiated. It is becoming more apparent that the 

condensed fibre is an irregular structure with some degree of helical coiling and zigzagging, 



but more work using minimally destructive techniques is required (Horowitz et al., 1994; 

van Holde & Zlatanova, 1995; Bednar etal., 1995). 

The final levels of packaging are much debated, but the radial "scaffold/ loop" model has 

predominated over the years (Figure 1.1) (Laemmli etal., 1978; Marsden & Laenunli, 1979; 

Rattner & Lin, 1985; Boy de la Tour & Laemmli, 1988; Manuelidis & Chen, 1990; 

Bickmore & Oghene, 1996). In this model the condensed fibre is formed into loops of 

50-200 Kb, attached at their base to a non-histone protein scaffold (Jackson et al., 1990; 

Filipski et al., 1990). Ultimately, the chromosome is compacted to form the chromatid of a 

metaphase chromosome. Longitudinal contraction is considered to occur through helical 

coiling of the central scaffold and lateral contraction by the twisting and coiling of the radial 

loops towards the scaffold (Boy de la Tour & Laemmli, 1988; Saitoh & Laemmli, 1994b). 

The scaffold can be visualised microscopically following silver staining of hypotonically 

swollen chromosomes (Howell & Hsu, 1979) or as a residual fibrous framework surrounded 

by a cloud of DNA loops following histone extraction of metaphase chromosomes (Paulson 

& Laemmli, 1977; Earnshaw & Laemmli, 1983; Paulson, 1989; Bickmore & Oghene, 1996). 

This structure was upheld by the demonstration of fixed and symmetrical positions of genes 

on sister chromatids of non-extracted metaphase chromosomes (Baumgartner et al., 1991). 

Further support for this model was received from the observations of the loops of the giant 

meiotic interphase lampbrush chromosomes of newt cells (Callan, 1982). Three-

dimensional reconstruction of unfixed, unstained chromosomes revealed neither a dense nor 

hollow core within a chromatid (Harauz et al., 1987). It is probable that the "scaffold" is a 

non-contiguous aggregate of discrete anchoring complexes and not a solid central rod 

(Earnshaw, 1988; Hock et al., 1996). However, models exist which have no anchoring of 

DNA loops to a chromosome axis, the solenoid fibre instead twists and coils to form a 

randomly folded "chromonema" fibre (Belmont et al., 1989; Belmont & Bruce, 1994; 

Robinett etal., 1996). 
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Figure 1.1 A model for the packaging of DNA into a metaphase chromosome 
Adapted from Craig (1995). The DNA double helix wraps twice around the histone octamer 
to form nucleosomes (6x compaction). These are then organised into the condensed (solenoid) 
fibre (40x). This is formed into loops attached at their base to the scaffold (-'680x). The 
scaffold folds to form the metaphase chromatid (>10000x). 
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1.2 Human chromosome banding techniques 

O ver the years a number of different staining and labelling techniques have been 

developed that result in reproducible longitudinal patterns on chromosomes from a 

wide range of species. The mechanisms involved in producing these patterns are not fully 

understood, but there is an apparent interdependence between base composition, 

transcription, replication, recombination, repair and structure. It seems that bands reflect a 

basic level of chromosome organisation. Described here are the most widely used human 

chromosome banding techniques, whilst Section 1.3 discusses the striking functional 

differences that occur between the reciprocal band types. 

1.2.1C-banding and heterochromatin 

Constitutive heterochromatin is traditionally defined as the portion of a chromosome that 

remains condensed throughout the cell cycle. It consists of highly repetitive DNA and in the 

human genome is found at the centromeres of every chromosome, on the long arm of the Y 

and at the pericentric regions of chromosomes 1, 9 and 16 (Miklos & John, 1979). These 

sites are genetically inert. Amounts of constitutive heterochromatin present at each site vary 

between individuals with no phenotypic consequences, and no active genes have been 

mapped to there in mammals as yet (Craig & Bickmore, 1993). However, there are genes 

which reside in the heterochromatic regions of D.melanogaster and only function correctly 

when in such an environment (Review: Gatti & Pimpinelli, 1992). Centromeric (C) banding 

results from denaturation of the DNA with alkali followed by renaturation with hot saline 

then staining with Giemsa (Figure 1.2) (Arrighi & Hsu, 1971; Sumner, 1990). C-bands are 

usually equated with constitutive heterochromatin although not all organisms show complete 

correspondence. Comings et al. (1973) showed that there was extraction of non-C-band 

DNA and retention of C-band DNA during the technique. Burkholder & Weaver (1977) 

showed that C-band DNA was protected against DNAse by the presence of non-histone 

proteins and it is likely that there is a tight association between DNA and protein in these 

regions. 

1.2.2 G-banding, Q-banding and meiotic chromomeres 

Quinacrine (Q) mustard was the first fluorochrome noted to produce a differential staining 

pattern along the length of both human and plant chromosome euchromatin and led to the 
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full karyotype analysis of the human complement (Figure 1.2) (Caspersson et al., 1968 & 

1970). The bright Q-bands are generally considered to be AT-rich, although the exact 

relationship with base composition is complex (Sumner, 1990). 

If Giemsa or Leishmean's stains are preceded by treatment with hot saline (Sumner & Evans, 

197 1) or trypsin (Seabright, 1971), a reproducible pattern of light and dark bands along the 

length of the chromosomes is observed, termed 0-banding (Figure 1.2). The bright 

Q-positive bands are also dark 0-positive bands. However, Q-banding also reveals 

additional patterns in constitutive heterochromatin and hence the two are not strictly 

equivalent. 

There is, as yet, no satisfactory hypothesis to explain the mechanism of G-banding. The 

observation that positive G-bands correspond to the bead-like structures of stained, 

untreated meiotic pachytene (stage of prophase I) chromosomes, called "chromomeres", 

suggests that these regions have an intrinsically different chromatin organisation (Okada & 

Comings, 1974; Ambros & Sumner, 1987). 

1.2.3 R- and T-banding 

Reverse (R) banding is produced when chromosome spreads are incubated in hot phosphate 

buffer before staining with Giemsa, producing a banding pattern complimentary to 

0-banding (positive R-bands correspond to negative 0-bands and vice versa) (Figure 1.2) 

(Dutrillaux & Lejeune, 1971). The basis of R-banding seems to be the preferential 

denaturation of AT-rich DNA followed by intercalation of Giemsa at the under-denatured 

GC-rich regions. R-banding can also be achieved using a number of GC-specific 

fluorochromes (Section 1.3.1.1). Acridine orange stains single-stranded DNA red and 

double stranded DNA green. This stain has also been used to produce R-banding, further 

supporting the hypothesis of preferential DNA denaturation since negative R-bands appear 

red and positive R-bands appear green (Sumner, 1990). 

Telomeric (T) banding is essentially the same as R-banding but the heat treatment is more 

severe or prolonged (Dutrillaux, 1978). A subset of R-bands are stained by this approach, 

greater than half of which are telomeric in location in humans, hence the name. The process 

of T-banding is thought to denature all but the most GC-rich parts of the genome. R-bands 

that are not T-bands will be referred to as mundane R-bands (R' bands) (Holmquist, 1992). 
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1.2.4 Replication banding 

The incorporation of thymidine analogues during defined stages of S-phase can be used to 

study the relationship between timing of replication and chromosome banding. Both 

tritiated thymidine (Ganner & Evans, 1971) and 5-bromo-2'-deoxyuridine (BrdU) 

(Dutrillaux et at., 1976; Somssich et al., 1981; Vogel et al., 1989; Fetni et al., 1996; 

Bourgeois et al., 1996; Review: Drouin & Holmquist, 1994) (Figure 1.2) have been used to 

label cells. Incorporation of analogues can be detected at the subsequent metaphase, most 

directly by immunofluorescence (Vogel et al., 1989) or scanning ion analytic microscopy 

(Bourgeois et at., 1996). Such experiments have revealed that R-bands replicate early and 

G-bands replicate late (Figure 1.2). In addition, different subsets of bands replicate at 

different times (Camargo & Cervenka, 1982). However, a recent high resolution study 

showed that the boundaries between G- and R-bands are defined by a gradient of replication 

timing rather than a sharp distinction (Strehl et al., 1997). It has been shown that genes 

within a band (Goldman etal., 1984; Hatton etal., 1988), whole bands (Adolph etal., 1992) 

and whole chromosomes (Riggs & Pfiefer, 1992; Hansen et al., 1996) can have different 

replication times dependent upon cell type and developmental stage (Reviews: Holmquist, 

1987; Villarreal, 1991). 

1.2.5 Standardised nomenclature 

Standardised karyotypes and ideograms for human chromosome banding have long been 

defined by the International System of Cytogenetic Nomenclature (ISCN, 1985). More 

elongated chromosomes show more bands and ISCN (1985) illustrates human karyotypes 

with approximately 400, 550 and 850 band resolution. Higher resolution ideograms have 

been published with approximately 1250 bands achieved by R-banding (Drouin & Richer, 

1988) and 2000 bands attained by G-banding (Yunis, 1981). Positive bands show a range of 

staining intensities and both G-bands (Francke, 1994) and R-bands (Holmquist, 1992) have 

been sub-classified. A comparison of each of the different banding methods is depicted in 

Figure 1.2 for human chromosome 9. 
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Figure 1.2 Banded human chromosomes 
Taken from Bickmore & Sumner (1990). (Top) G-banded human metaphase 
chromosome spread. (Bottom) Examples of banded human chromosome 9. G- G-
banding Q- Q-banding R- R-banding rep- replication banding, with early replicating 
regions staining dark chrom- meiotic pachytene chromomeres C- C-banding 
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1.3 Properties of the human chromosome bands 

The bands of human chromosomes (Section 1.2) have a spectrum of associated 

functional properties (Table 1.1) (Reviews: Bickmore & Sumner, 1989; Craig & 

Bickmore, 1993; Gardiner, 1995; Bickmore & Craig, 1997). 

Table 1.1 A summary of some of the properties of human chromosome bands 
There is an apparent interdependence between the mechanisms of chromosome banding and 
processes of transcription, replication, recombination, repair and chromatin structure. 

Band type R T 
Relationship Negative 0-bands Subset of R-bands 

Some Late replicating Early replicating Very early replicating 
properties 

Not investigated 
Correspond to meiotic Correspond to meiotic 
chromomeres inter-chromomeres 

Relatively AT-rich Relatively GC-rich Very GC-rich 

May contain more May contain more May contain more 
triplex DNA Z-DNA Z-DNA 

LINE-rich SINE-rich Very SINE-rich 

Early condensing Late condensing Latest condensing 

Low frequency of High frequency of Highest frequency of 
mitotic and meiotic mitotic and meiotic mitotic and meiotic 
chiasmata and chiasmata and chiasmata and 
breakpoints breakpoints breakpoints 

Low gene density High gene density Highest gene density 

Low CpG-island Higher CpG-island Highest CpG-island 
density density density 

Low levels of histone High levels of histone Not investigated 
acetylation acetylation 

8 



1.3.1 Base composition 

In general, G-bands are AT-rich, R-bands are GC-rich and T-bands are the GC-richest 

portions of the human genome. The evidence for this is outlined below. 

1.3.1.1 Base-specific fluorochromes and antibodies 

There are a number of molecules which show variations in their degree of fluorescence 

dependent upon the base composition of the bound DNA. AT-specific fluorochromes reveal 

a G-band pattern, while the GC-specific fluorochromes give R-bands (Review: Sumner, 

1990). Interestingly, it has been argued that base composition alone cannot account for the 

banding patterns observed with some fluorochromes. For example, significant fluorescence 

of daunomycin, which gives a G-banding pattern, will only occur when bound to DNA of 

<35% GC content (Comings & Drets, 1976). This figure is lower than the GC-poorest 

G-bands. Since Holmquist et al. (1982) found only a 3.2% average difference in base 
1-7 

composition between G- and R-bands, it seems that this is not sufficient to account for 

daunomycin banding. 

Antibodies to specific bases can be used to band denatured chromosomes. Anti-A and 

anti-T-bind preferentially to G-bands, and anti-C and anti-G bind preferentially to R-bands 

(Review: Sumner, 1990). Furthermore, Magaud et al. (1985) used an antibody to 

double-stranded DNA with stretches of polyG and polyC to identify R-bands. 

The restriction enzyme HaeII! has a restriction site of GGCC and will, therefore, cut most 

frequently within the GC-richest parts of the genome. Fluorescence in situ hybridisation 

(FISH) with small HaeIII fragments from human genomic DNA reveals a strong signal on 

all GC-rich R-bands with a significantly weaker signal on GC-poor G-bands (Craig & 

Bickmore, 1994). 

1.3.1.2 Isochores 

On average the mammalian genome is 40% GC, but density gradient centrifugation reveals 

base distribution to be rather heterogeneous. Bernardi et al. (1985) divided non-satellite 

DNA segments of >2001(b into five arbitrary "isochores". The heavy isochores (HI, H2 and 

H3) are GC-rich and in humans represent approximately 62% of the total genorne, while the 



light isochores (Li and L2) are GC-poor. The GC content of exons, introns and 3rd codon 

position of several genes was found to correlate well with the associated isochore (Bernardi, 

1989; Mouchiroud etal., 1991). 

FISH with the individual isochores was used to determine their gross distribution along 

metaphase chromosomes (Saccone et al., 1993). The Li and L2 isochores picked out 

G-bands while R-bands were predominantly hybridised by the HI, H2 and H3 isochores. 

The H3 isochore alone labelled T-bands, in addition to the rDNA repeat regions. On a finer 

scale, a study of sequences from the GenBank data base showed that a major proportion of 

GC-rich genes were located in T-bands, while GC-poor genes were restricted to G-bands 

and R'-bands (Ikemura & Wada, 1991). Genes linked by <100Kb were found to have a 

similar GC content (Ikemura et al., 1990), although within a length of sequence GC content 

could vary by up to 10%. GC content of sequences within a chromosome band can vary 

widely and adjacent G- and R-bands can contain sequences with similar base composition 

(Gardiner et at., 1990; Pilia et al., 1993). A close study of 8Mb of DNA in an X 

chromosome terminal R'-band, revealed that a single band can contain a composite of DNA 

from different isochores, but that the region of highest GC content corresponded to the 

region of highest gene density (DeSario et at., 1996). 

1.3.2 DNA distribution and unusual DNA conformations 

The comparability between G-bands and meiotic chromomeres (Section 1.2.2) argues for a 

difference in packaging between G- and R-bands at mitosis. Indeed, chromosomes can be 

banded by Giemsa with no pre-treatments (Sumner, 1990) and G-bands have been observed 

on fixed, unstained mitotic chromosomes using phase microscopy and UV illumination at 

the maximum absorption for DNA (McKay, 1973). Using atomic force microscopy it was 

more recently shown that fixed, unstained, mitotic chromosomes display a longitudinal 

variation in thickness corresponding to a G-band pattern (Musio et al., 1994). These 

observations may be a consequence of different quantities of DNA being packaged into the 

opposing band types. Alternatively, they may be the result of the differential distribution of 

proteins involved in chromatin packaging and modelling (Saitoh & Laemmli, 1994a & b). 

Several conformational variations of DNA from the traditional B-form helix exist. One such 

variation is the left-handed Z-form helix which can be formed from alternating purine-

pyrimidine sequences (Rich et al., 1984). Antibodies to this form of DNA have been found 
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to identify primate R-bands (Viegas-Pequignot et al., 1983). Triplex DNA forms when two 

pyrimidine strands share a common purine strand and antibodies to this type of DNA have 

been shown to identify mouse and human G-bands (Burkholder etal., 1988). Whether these 

forms of DNA are present in unfixed or native chromosomes (Hill & Strollar, 1983), and 

what the function of such DNA could be, is still unknown. 

1.3.3 Interspersed repeat elements 

There are two major types of repeated sequences in the mammalian genome: satellites and 

interspersed repeats (Review: Singer, 1982). Satellites are long tandem repeats of short 

sequences (<200bp), reaching several Kb-Mb in total length. In humans, all centromeres are 

associated with a-satellite (Review: Willard, 1991), while n-satellite (Waye & Willard, 

1989; Greig & Willard, 1992) and satellites I-IV (Miklos & John, 1979) are located at the 

non-centric C-banded regions on chromosomes 1, 9, 16 and Y (Section 1.2.1), and the short 

arms of the acrocentric chromosomes. 

Interspersed elements are families of related sequences scattered at a high frequency 

throughout the genome and are considered to move by retrotransposition (Reviews: Singer, 

1982; Weiner et al., 1986). Short Interspersed Elements (SINEs) are <500bp long and are 

reiterated 105_ 106 times in the human genome. Long Interspersed Elements (LINEs) are 

several Kb long but occur in the order of 104_ 106 times. The Alu family of SINEs, are 

—300bp in length and are present <910,000x, occupying almost 10% of the human genome. 

The full length Li LINE is 6.4Kb, although frequent truncation, attributed to incomplete 

reverse transcription, results in smaller fragments. Full and truncated sequences are 

reiterated <200,000x and —100,000x respectively, together accounting for 7% of the human 

genome (Sun et al., 1984; Hwu et al., 1986). The two families differ in their base 

composition: A!u elements are 56% GC and Li elements are 42% GC (overall the whole 

human genome is approximately 40% GC) (Craig, 1995). 

FISH studies in humans and mice, have revealed A!u elements to be concentrated in 

R-bands, the brightest regions corresponding to T-bands. Reciprocally, but less clear cut, Li 

elements show a predominance of hybridisation to G-bands, plus a sub-set of R-bands 

(Manuelidis & Ward, 1984; Korenberg & Ryowski, 1988; Moyzis et al., 1989; Baldini & 

Ward, 1991; Boyle et al., 1990). In accordance, A!u elements occur in the most GC-rich 



isochores while LI elements are found most commonly in the GC-poor isochores (Soriano et 

al., 1983). Digesting with the rare cutter restriction enzyme, Not! (CG I GOCCGC) results 

in digestion more frequently within R-bands than in G-bands (Section 1.3.7.4) allowing size 

fragmentation of the genome. Alu elements were shown to be enriched in smaller Not! 

fragments and depleted in longer ones. For Ll elements the reverse was the case (Chen & 

Manuelidis, 1989; Sainz et al., 1992). This reciprocal distribution is not absolute, since 

large-scale sequencing has revealed that SINEs are distributed relatively evenly in all band 

types (Chen etal., 1989; Edwards etal., 1990; Reviewed in Bickmore & Craig, 1997). One 

suggestion to reconcile this is that only elements that have retrotransposed recently are 

sufficiently close in sequence to the progenitor copy to hybridise to probes based on 

consensus sequence (Yoshiura et al., 1994). The more recent retrotransposition events 

must, therefore, have occurred into R-bands and, indeed, retrotransposition in several 

species has been demonstrated to occur preferentially within transcriptionally active regions 

(Natsoulis et al., 1989; Scherdin et al., 1990; Capel et al., 1993). Distribution of elements 

may be directed by timing retrotransposition with replication of the different band types. 

1.3.4 Condensation 

The process of condensation of DNA from interphase to metaphase occurs at different rates 

in different regions. Drouin et al. (1991) demonstrated that 0-bands condense early and 

R-bands condense late. This was revealed by the fact that R-sub-bands fuse more readily 

than 0-sub-bands as the number of overall visible bands reduces from prophase to 

metaphase (Reviewed in: Bickmore & Craig, 1997). Similarly, it was shown that late 

replicating regions condense earlier in prophase than early replicating regions (Kuroiwa, 

1971). The exact process of fusing is unclear and it has been argued that it is due to 

chromatin reorganisation and not merely contraction (Messier et al., 1989). However, 

condensation is reversible and Claussen et al. (1994) stretched chromosomes up to five 

times the usual metaphase length to reveal prophase sub-bands. 

Condensation can be inhibited by a variety of agents including the DNA intercalating dyes 

DAPI and ethidium bromide (Rocchi et al., 1979), and the base analogue and 

methyltransferase inhibitor 5-azacytidine (Schmid et al., 1984). Depleting ScH (Hirano & 

Mitchison, 1994) (Section 1.4.7), topoisomerase II (topo II) (Adachi et al., 1991) (Section 

1.4.6), or sequestering scaffold attachment sequences (SAR5) (Strick & Laemmli, 1995) 

(Section 1.5. 1) in Xenopus !aevis egg extracts interferes with normal chromosome 
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condensation. Thus, it seems likely that the interaction of DNA with the chromosome 

scaffold is an integral part of the condensation process. Condensation, controlled by topo H, 

may play a role in sister chromatin decatenation and segregation (Holm, 1994). 

1.3.5 Recombination, mutation and repair 

Studies of the distribution of mitotic chiasmata in cells from patients with Blooms 

Syndrome have revealed hot-spots of recombination. Blooms Syndrome patients have an 

increased risk of developing cancer due to a high rate of mitotic crossing-over leading to 

rearrangements, amplifications and regions of homozygosity (Review: Rothstein & 

Gangloff, 1995). The causal mutation is in a gene encoding a DNA helicase considered to 

be involved in recombination repair (Ellis et al., 1995), supported by the cytogenetic 

phenotype of increased chromatid exchange and chromosome breakage. Mapped chiasmata 

occur most frequently in R-bands (Kuhn et al., 1985). There are indications that hot-spots 

occur at the same points in normal human mitotic cells which recombine at much lower 

frequencies. Blood cells subjected to X-irradiation show breakpoints and chiasmata which 

map most frequently to R-bands, and especially T-bands (Holmberg & Jonasson, 1973; 

Barrios et al., 1989). Furthermore, breakpoints and rearrangements associated with cancer 

cells also cluster in R-bands, particularly T-bands (Trent et al., 1989; Mitelman etal., 1997). 

This may be influenced by selection in tumour cells for mutations in proto-oncogenes and 

tumour suppressor genes. Translocation breakpoints and inversions in mice (Ashley, 1988) 

and DNAse I-induced breakpoints in Chinese hamster ovary cells also prevail in R-bands 

(Folle et at., 1997). In accordance, recombination frequency is highest in the GC-rich 

isochores and lowest in the GC-poor isochores (Eyre-Walker, 1993). 

Studies of meiotic recombination, comparing physical and genetic maps, have resulted in the 

conclusion that the highest frequency of meiotic chiasmata occurs in T-bands, followed by 

R'-bands, G-bands and finally C-bands (Fang & Jagiello, 1988; Povey et al., 1992; 

Chumakov et at., 1992; Holmquist, 1992). In humans and mice, irrespective of band-type 

there is a high rate of recombination at telomeres and a low rate across centromeres (Laurie 

& Hulten, 1985; Nachman & Churchill, 1996). 

Studies in organisms, as diverse as yeast and maize, have linked hot spots of recombination 

with regions of high gene density (Shenkar et al., 1991; Goldway et al., 1993; Civardi et al., 

1994; Wu & Litchen, 1994). Mutations that derepress transcriptional silencing at the 
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mating-type loci of Schizosaccharomyces pombe also relieve recombinational constraints 

(Thon et at., 1994) and increased transcription in hamster cells enhances recombination 

(Nickoloff, 1992). Thus, susceptibility to recombination may purely be a consequence of an 

active, open chromatin structure, a feature of mammalian R-bands. However, in 

Caenorhabditis elegans meiotic recombination occurs in gene-poor regions (Barnes et at., 

1995) and mutants have been reported which alter the pattern but not the overall frequency 

of recombination (Zetka & Rose, 1995). 

Fixed mutations at the molecular level have been shown to differ along regions of the 

mammalian genome. GC-rich genes show fewer base substitutions than AT-rich genes 

(Wolfe et al., 1989). Levels of repair are loosely correlated with regions of highest gene 

activity in bacteria and humans alike (Downes et al., 1993). This is logical, since a high 

mutation rate in regions containing many genes would be more deleterious than in gene-poor 

regions. 

1.3.6 Methylation and sensitivity to digestion 

DNAse I and II, micrococcal nuclease and most restriction endonucleases preferentially 

digest within R- and T-bands of intact chromosomes (Review: Sumner, 1990). C-bands are 

most resistant to digestion (Burkholder & Weaver, 1977). The precise banding patterns 

observed following nuclease treatment are dependable on various factors, including: 

duration of digestion, base content and length of recognition site, banding protocol, size of 

enzyme molecule and the ability of digested DNA to diffuse away from the chromosome. 

For example, studies using restriction endonucleases with AT-rich recognition sites have 

shown a preferential digestion in G-bands (Sumner et at., 1990), R-bands (Ludena et at., 

1991; Tagarro etal., 1992) and no particular band type (Ferrero etal., 1993). 

The most predominantly methylated nucleotide in the human genome is cytosine of the 

dinucleotide CpG. Antibodies to methyl-C have revealed R-bands and most strongly, 

T-bands and heterochromatic regions by immunofluorescence (Miller et al., 1974; Barbin et 

al., 1994). Methylation is involved in the control of gene expression, with high methylation 

of inactive genes and under-methylation of active genes, but this relationship is not clear cut 

(Reviews: Bird, 1992; Eden & Cedar, 1994; Bird et al., 1995; Martienssen & Richards, 

1995; Razin & Shemer, 1995) (Section 1.4.5). Methylation does have a clear role in 

genomic imprinting, where a gene is expressed dependent upon whether it has been 
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inherited paternally or maternally (Reviews: Efstratiadis, 1994; John & Surani, 1996). 

There is also support for the primary purpose of methylation being the neutralising of 

transposable elements, proviruses and other potentially harmful sequences (Yoder et at., 

1997). Roles in replication control have been recently suggested (Rein et at., 1997). 

The restriction enzyme MspI cuts naked DNA at C I CGG regardless of methylation status, 

however, it shows a strong bias for cutting non-methylated sites in chromatin. Methylation 

appears to be a general inhibitor of digestion in a chromatin context (Antequera et al., 

1989). When chromatin is treated with 5-azacytidine, which inhibits CpG methylation, 

nuclease accessibility is increased (Jablonka et at., 1985; Sentis et at., 1993), and 

heterochromatin and G-bands appear under-condensed (Viegas-Pequignot & Dutrillaux, 

1976; Schmid etal., 1984). 

1.3.7 Gene distribution 

There are a number of different approaches that have been taken to assess the distribution of 

genes across the human karyotype. Genes are most abundant in T-bands, while G-bands, 

and especially C-bands, have a dearth of genes. 

1.3.7.1 Evidence from cDNA and RNA hybridisation 

Yunis et al. (1977) isolated total human polyadenylated (polyA) mRNA from a lymphocyte 

cell line and made tritiated cDNA which was then hybridised to fixed chromosome spreads 

and autoradiographed. At a resolution of 300 bands, approximately 80% of signal localised 

to R-bands. Further to this, hybridisation of radiolabelled polyA RNA and heterogeneous 

nuclear RNA (hnRNA) revealed over 70% of the signal from each to emanate from R-bands 

(Yunis & Tsai, 1978). There is likely to be a bias with the samples of RNA used since 

genes transcribe at different levels within different cells. 

1.3.7.2 Evidence from correlation with nuclease sensitivity mapping 

Active or potentially active genes are preferentially digested with DNAse I due to the 

specific conformation of chromatin in these regions (Weintraub & Groudine, 1976; 

Reviews: Gross & Garrard, 1987; Elgin, 1988). This selective sensitivity is maintained in 

fixed mitotic chromosomes (Gazit et al., 1982). In situ nick translation of fixed 
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chromosome spreads using radioactively labelled bases and autoradiography has shown that 

DNAse I sensitive segments correspond generally to R-bands (Kerem et al., 1984; Sumner et 

al., 1993). However, there will be a collection of inactive genes, mainly tissue-specific, that 

will not be detected by this method. 

1.3.7.3 Evidence from isochore studies 

Mouchiroud et al. (1991) calculated that the gene density of the GC-richest 3% of the 

genome (H3 isochore) is about eight times higher than that of the GC-rich Hi and H2 

isochores, which make up 31% of the genome, and about sixteen times more than the 

AT-rich Li and L2 isochores, which make up the remainder of the genome. This data 

supports the fact that the GC-richest T-bands are more gene-rich than the GC-rich R-bands, 

which are more gene-rich than the GC-poor G-bands (Review: Gardiner, 1996). 

1.3.7.4 CpG-islands as gene markers 

Approximately 98% of the human genome possesses the dinucleotide CpG at a lower 

frequency than that expected by comparison with GpC frequency. Depletion of CpG is 

proposed to be due to the high rate of mutability of methyl-C to T followed by partner strand 

change from G to A (Selker & Stevens, 1985; Yebra & Bhagwat, 1995; Review: Bestor & 

Coxon, 1993). The remaining minor fraction of DNA has CpG at the expected frequency 

and cytosine is almost always non-methylated. This fraction is distributed throughout the 

genome in regions of 1-2 Kb in length called CpG-islands (Bird et al., 1985; Bird, 1987). 

There are about 45,000 islands in the haploid human genome (Antequera & Bird, 1993). 

Almost 60% of human genes have a CpG-island at the 5' end, including all housekeeping 

genes and widely expressed genes, and approximately 40% of tissue-specific genes or genes 

with limited expression so far studied (Larsen et al., 1992). CpG-islands are useful 

landmarks for identifying genes in the genome. Although approximately 60% of 

tissue-specific genes are not represented, there is no significant difference between the 

distribution of genes with and without islands (Larsen et al., 1992; Craig, 1995). 

CpG-islands have an open chromatin structure with nucleosome free regions, low levels of 

HI (Section 1.4.1.1) and highly acetylated H3 and H4 (Section 1.4.1.2). It seems likely that 

these are sites of interaction between transcription factors and promoters (Tazi & Bird, 

1990). 
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The restriction site of HpaII (C I CGG) is methylation sensitive and 25% of genomic Hpa!! 

sites are within CpG-islands (Bickmore & Bird, 1992). Unmethylated and accessible Hpa!I 

sites have been shown to cluster in R-bands which suggested that CpG-islands would 

preferentially be localised to these bands (Sentis et al., 1993). CpG-islands may be isolated 

as the discrete small fractions (100-600bp) generated by cleavage with Hpa!I (Bird et al., 

1985). Craig and Bickmore (1994) biotinylated such fragments and used FISH to detect 

hybridisation to fixed human chromosome spreads. A strong correlation with R-bands, the 

strongest signal mainly being in the T-bands was revealed (Figure 1.3). 

Cleavage of human genomic DNA with the methylation-sensitive restriction enzymes; 

BssHII (G I CGCGC), Eagi (C I GGCCG) and Sac!! (CCGC I GG), in combination cuts 

CpG-islands but leaves inter-island DNA intact. FISH with the fraction separated using 

pulse-field gel electrophoresis, where inter-island distances were <100 Kb reflected the 

CpG-island profile, indicating that the majority of islands are within 100 Kb of each other 

(Craig & Bickmore, 1994; Review: Cross & Bird, 1995) (Figure 1.3). 

The distribution of CpG-islands on rodent chromosomes also equates to the early replicating 

R-bands (Cross etal., 1997a). Additionally, in chickens CpG-islands are concentrated to the 

microchromosomes (McQueen et al., 1996), which constitute 25% of genomic DNA and 

replicate earlier than the macrochromosomes (Schmid etal., 1989). 

Complete Notl restriction maps have been constructed for the long arms of chromosome 21 

(Ichikawa et al., 1993) and chromosome 11 (Hosoda et al., 1997). Not! (GC I GGCCGC) 

cuts almost exclusively within CpG-islands. Approximately 30% of islands in the human 

genome possess this site (Bickmore & Bird, 1992). Not! sites were most frequently located 

in R- and T-bands and the average spacing was less than in G-bands. 

1.3.7.5 Evidence from mapped genes 

Although the number of genes being mapped in the human genome is increasing almost 

exponentially, there is no database to assess the band locations. Discrepancies between 

banding resolution and mapping techniques would make results difficult to interpret. Using 

a resolution of 400 bands, Craig (1995) made an assessment of the location of 1771 genes, 

approximately 2% of the estimated total of 80,000 human genes (Antequera & Bird, 1993). 

He concluded that, based on relative proportion of euchromatin, T-bands contained over 
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twice the expected gene density, while G-bands possessed less than half of the number of 

expected genes (Table 1.2). A tendency for expressed sequence tags (ESTs) to cluster in 

R-bands was recently eluded to as evidence that genes cluster in these regions (Schuler et 

al., 1996). 

Table 1.2 Gene distribution across the human chromosome bands 
Adapted from Craig (1995). 400 band resolution. 1771 mapped genes taken from listings in 
the Human Genome Data Base, Baltimore and from scanning the literature. Expected gene 
densities were estimated by assuming an even distributed of genes across euchromatin. 

Band type G R T 
Proportion of euchromatin 45.5% 54.4% 20.2% 

Proportion of genes 20.0% 80.0% 45.6% 

Observed/expected gene density 0.44 1.47 2.26 

It is interesting that in mice, genes appear to show considerably less variation in number 

across the chromosomes than in humans (Cross et al., 1997a). It is considered that the 

human genome is more representative of an ancestral mammal and more closely linked in 

organisation to the genomes of cows, pigs and cats, than that of mice (O'Brien et at., 1988). 

The genomes of rodents have become rearranged such that at the cytological level, large 

blocks that are gene-rich and gene-poor are not visible, as revealed by FISH with 

CpG-island fragments (Cross et at., 1997a). However, this organisation does appear to be 

maintained on a finer scale, possibly indicating a functional constraint on maintaining such 

compartments. 
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Figure 1.3 The clustering of CpG-islands throughout the human genome 
Taken from Craig & Bickmorc (1994). BrdU incorporation detected with anti-BrdU -
FITC reveals late replicating regions in green. (Left) Biotin labelled HpaIl fragments. 
selected to represent CpG-islands. and detected with avidin-TR (red). (Middle) Biotin 
labelled inter-island frarnents <100 Kb, selected to represent regions of the genome 
where CpG-islands are high in density. and detected with avidin-TR (red). (Right) DAPI 
(blue) stained Chromosomes. 
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1.4 Chromosomal proteins 

The previous section discussed the pattern of attributes of chromosome bands. Each of 

the properties and processes described require interactions between DNA and an array 

of different proteins, acting at the various levels of chromosome packaging. This section 

discusses some of the key proteins involved. 

1.4.1Histone modifications and variants 

Histories were originally considered to be metabolically inert components of chromatin, but 

the discovery of histone acetylation, methylation, ribosylation, ubiquitination and 

phosphorylation has altered that view. Both core and linker histones are subject to a 

different array of modifications and variant substitutions (Reviews: Bradbury, 1992; Wolffe, 

1995a & b). 

1.4.1.1 Linker histone modifications and variants 

Variations in the degree of packaging of the condensed fibre may be achieved by 

substitution of alternative forms or differing amounts of HI (Huang & Cole, 1984; Sun et 

al., 1989; Brown et al., 1996). Hi is considered to have a general role in chromatin 

condensation (Thoma et al., 1979; Huang & Cole, 1984; Kamakaka & Thomas, 1990; Shen 

et al., 1995), although it is not essential for mitotic chromosome formation (Ohsumi et at., 

1993; Shen et at., 1995). It has recently been proposed that linker histone variants have a 

subtle and specific role in transcriptional regulation (Dimitrov & Wolffe, 1996; Shen & 

Gorovsky, 1996; Steinbach etal., 1997; Review: Wolffe etal., 1997a). 

Phosphorylation of Hi creates an interesting paradox. Increased phosphorylation of all HI 

variants increases throughout the cell cycle, peaking at mitosis (Talasz et al., 1996), 

suggesting a correlation with increased condensation. In contrast, phosphorylation has been 

shown to loosen links between Hi and DNA, and to be associated with transcription and 

replication competent chromatin (Lu etal., 1994 & 1995; Halmer & Gruss, 1996; Chadee et 

al., 1997). It has been proposed that Hi phosphorylation is a first step mechanism, 

promoting transient decondensation and allowing access of proteins for transcription, 

replication and condensation (Roth & Allis, 1992; Lu et al., 1994 & 1995), although 

condensation can occur without HI phosphorylation (Guo etal., 1995). 
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1.4.1.2 Core histone modifications and variants 

The tight association of the core histories in the nucleosome is due to their globular 

C-terminal domains. Sites of ubiquitination on H2A and H213 are located here, but there is 

no evidence that ubiquitination results in the degradation of labelled histories. This 

modification appears most commonly on H2A and 14213 of transcriptionally active 

chromatin (Nickel et al., 1989) and is present throughout the cell cycle until prophase, when 

it is lost until metaphase (Matsu] et at., 1979; Mueller et at., 1985). The modification is 

required for transition from S-phase to G2 but apparently must be removed for metaphase 

chromosomes to condense (Review: Bradbury, 1992). Ubiquitinated H2A colocalises with 

replication complex proteins at interphase (Vassilev et al., 1995). 

The flexible N-terminal domains of core histories are the most highly conserved and possess 

the sites for most modifications. The most studied of these modifications is acetylation 

which will be discussed below. Little is known about the processes of phosphorylation and 

ribosylation. Ribosylation preferentially occurs on acetylated histories (Golderer & 

Grobner, 1991) suggesting possible links with transcriptional regulation. Phosphorylation 

has been shown to be promoted by factors that enhance levels of transcription (Mahadevan 

et at., 1991), however, this modification has also been associated with heterochromatin and 

spreads along chromosomes coincident with condensation at the onset of mitosis (Hendzel et 

at., 1997). 

The number of known core histone variants is continually increasing. The transcription 

factor complex, TFIID contains a structure closely resembling that of the heterodimer of H3 

and H4 (Hoffmann et at., 1996; Xie et al., 1996). It is tempting to envisage that DNA may 

wrap around parts of TFIID in a similar manner to the nucleosome and create a 

conformational change permissive for transcriptional initiation. Another such variant is that 

of the centromere-specific H3-11ke protein, CENP-A (Section 1.5.2). 

1.4.1.3 Core histone acetylation 

Acetylation occurs in the absence of histone synthesis and is a reversible process (Review: 

Loidl, 1994). The sites of acetylation are a defined set of lysine (lys) residues which are 

modified in a general order in most organisms (Turner & Fellows, 1989; Turner & O'Neill, 

1995). Experiments with antibodies raised to the different isoforms of acetylated H4 
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suggest that each mediates a different effect on chromatin structure. In Drosophila 

melanogaster centric heterochromatin, H4 is hypoacetylated at lys5, 8 and 16, but shows 

high levels of lysl2 acetylation (Turner etal., 1992). H4 acetylated at lysl6 is found in the 

most acetylated forms and is located at numerous sites along the hyperactive X chromosome 

of male but on no other chromosome in males or females (Turner et al., 1992). This has 

been directly linked to dosage compensation allowing an increase in transcription of genes 

on the X chromosome in males to equalise X-linked gene expression to that of females 

(Section 1.4.8). Conversely, in female mammals the single inactive X chromosome (Xi) has 

low levels of H4 acetylation correlated with a general decrease in X-linked gene expression 

allowing for dosage compensation (Jeppesen & Turner, 1993; Belyaev etal., 1996; Boggs et 

al., 1996). However, three regions on Xi showed persistence of acetylated H4. Two of 

these regions are known to contain genes which are expressed on Xi and this supports the 

suggestion that H4 acetylation defines regions of transcriptional activity (Jeppesen & 

Turner, 1993). However, Keohane et al. (1996) demonstrated that deacetylation of Xi 

followed reduced gene expression and transition to late replication, and suggested that 

hypoacetylation is necessary for the maintenance but not the initiation of X-inactivation. 

Levels of H4 acetylation are not uniform along metaphase chromosome. There is relatively 

high acetylation at regions corresponding to R-bands while, in contrast, heterochromatic 

regions are underacetylated (Jeppesen et al., 1992). This appears to be maintained at 

interphase, as demonstrated by FISH with chromatin fragments fractionated by their general 

level of acetylation (Breneman et al., 1996). Reflecting this colocalisation with gene-rich 

chromatin, interphase CpG island chromatin fractions have highly acetylated core histories 

(Tazi & Bird, 1990). In plants also, it has been shown that high levels of acetylation mirror 

the distribution of genes along chromosomes (Houben et al., 1996; Idei et al., 1996; Houben 

etal., 1997). 

Is core histone acetylation associated with genes generally, or only those which are 

transcriptionally active? Is the modification a passive marker or actively required for 

transcription? Probing of specific genes in chromatin fractionated by levels of lys 

acetylation suggested a correlation between high core histone acetylation and transcription 

(Hebbes et al., 1988). However, immunofluorescence revealed that the transcriptionally 

active puffs of D.melanogaster polytene chromosomes were not associated with levels of H4 

acetylation higher than that of the remaining euchromatin (Turner et al., 1990). In addition, 
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the chicken P globin gene was shown to be endowed with highly acetylated forms of H4 

even when not active (Hebbes et at., 1992, 1994). Studies with a large number of genes in 

human cells support the hypothesis that states of H4 acetylation are connected with 

transcriptional potential rather than transcriptional activity directly (O'Neill & Turner, 

1995). 

In accordance, substitution experiments in Saccharoinyces cerevisiae define a role for H4 

acetylation in the regulation of transcriptional silencing. Substitution of lys 16 with neutral 

amino acids, mimicking acetylation, results in derepression at the mating-type loci and 

telomeres. Substitution with a positively charged amino acid show no such affect, 

suggesting that it is conservation of the positive charge at this position that correlates with 

repression (Review: Thompson et at., 1993). Interestingly, acetylation of H3 and H4 may 

have different affects. While deletions of the H4 N-terminus results in general derepression, 

deletions of the N-terminus of H3 results in hyperactivity of some genes. (Mann & 

Grunstein, 1992) and swapping the N-terminus of H3 onto H4 shows a more severe 

derepression than the deletion of the H4 N-terminus alone (Ling et al., 1996). The silent 

mating-type loci and telomeres of yeast correspond to regions of hypoacetylation of the core 

histones (Braunstein et al., 1996). Additionally, hypoacetylation is essential for gene 

repression in centromeric heterochromatin and for proper chromosome function (EkwalI et 

at., 1997). 

Lee et al. (1993) demonstrated a positive role for acetylated H4 and the other core histories 

in the binding of the transcription factor, TFUTA to chromatin in vitro. Removal of the 

N-terminal tails from the core histories also facilitated this interaction. In separate studies, 

both acetylation and removal of the N-terminal of H4 aided binding of the transcription 

factor GAL4 (Vettese-Daley et al., 1994 & 1996). This facilitation of transcription was 

independent of, but inhibited by, linker histone binding (Ura et al., 1997). There is a modest 

reduction in wrapping of DNA around the core histone octamer as a result of acetylation and 

this could hold the key to the mechanism of derepression and transcriptional promotion 

(Review: Garcia-Ramirez et at., 1995). However, it is also possible that histone acetylation 

creates or eliminates binding sites for particular activator or repressor proteins, aside from 

any changes in general chromatin structure. 
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Treatment of cells with the inhibitors of histone deacetylase activity, sodium butyrate (Riggs 

et at., 1977; Vidali et at., 1978) and Trichostatin A (Yoshida et at., 1990), cause a 

generalised increase in transcription. In addition, silent, virally transduced genes can be 

reactivated by treatment with Trichostatin A (Chen et al., 1997). However, van Lint (1996) 

showed an altered activity in only 8 of 340 human genes examined after treatment with 

Trichostatin A. In complete contrast, treatment has been shown to actually inhibit 

transcription of specific genes. For example, steroid-dependent activation of chicken egg 

white genes was blocked by treatment with sodium butyrate (McKnight et at., 1980). 

Recent studies in S.cerevisiae suggest that an alternative region in each of the core histones, 

distinct from those containing the sites for acetylation, are responsible for basal 

transcriptional repression (Lenfant et at., 1996). It is likely that acetylation plays a subtle, 

possibly indirect and gene-specific, role in transcriptional regulation. 

1.4.1.4 Acetyltransferases, deacetylases and acetylated histone binding proteins 

The most direct link between acetylation and transcriptional activity has arisen from the 

cloning of several histone acetyltransferases and deacetylases (Reviews: Grunstein, 1997; 

Wade et at., 1997; Woiffe et at., 1997b). Histone acetylatransferases (HATs) are 

characterised into two types: A and B. Cytoplasmic acetylation for chromatin assembly 

involves the B-type HATs (see below). It was a nuclear, A-type HAT that was purified and 

cloned in Tetrahymena (Brownell et at., 1996), and found to have homology to the 

S.cerevisiae transcriptional coactivator, GCN5 (Georgakopoulos & Thireos, 1992). The 

HAT domains of each protein are complementary (Wang et at., 1997). Gcn5p has the 

capacity to acetylate H3 and H4 at specific residues most commonly modified for 

transcription (Kuo et at., 1996) however, in viva Gcn5p is required to be part of a complex 

for HAT activity (Candau et at., 1997). Similar enzymatic activities have since been 

established for the human GCN5 homologue, P/CAP (p300/çBP -associated factor) (Yang et 

at., 1996b), a factor which interacts with the coactivator complex p300/CBP (CBP: çREB-

binding protein; CREB: cAMP responseelement-binding protein), which also has intrinsic 

HAT activity (Bannister & Kuozarides, 1996; Ogryzko et at., 1996). p300/CBP interacts 

with a variety of sequence-specific transcription factors via several activators, including 

CREB (Figure 1.4). Interestingly, P/CAF competes with the adenovirus transcription factor, 

EIA, for association with p300/CBP. The E1A-p300/CBP complex also has HAT activity 

and it could be that EIA directs this activity to alternative targets resulting in inappropriate 

gene expression and transformation (Yang et at., 1996b). Further to this, a component of 
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TFIID has been shown to have HAT activity in humans, flies and yeast, alike (Mizzen et al., 

1996) (Figure 1.4). Interestingly, a putative HAT encoded by the D.;nelanogaster males-

absent on the first (mof) is considered to be involved in dosage compensation, since 

mutations in this gene are lethal and lead to hypoacetylation of the male X chromosome 

(Hilfiker et al., 1997) (Sections 1.4.1.3 & 1.4.8). There is little significant sequence identity 

or structural similarity with any of the above mentioned HATs, emphasising the diversity of 

such Gcn5p-like proteins (Neuwald & Landsman, 1997). 

Histone deacetylases (HDs) are also linked directly to transcriptional control, but not 

explicitly to repression. An affinity matrix containing trapoxin, a deacetylase inhibitor, was 

used to isolate the human HD, HDACI (Taunton et al., 1996). This protein is homologous 

to S.cerevisiae RPD3, mutations in which disrupt both the activation and repression of 

specific genes (Vidal & Gaber, 1991). In addition, a second human HD, HDAC2, binds to 

YY1, a DNA-binding protein that can act as both a repressor or activator (Yang et al., 

1996a). A complex picture is being built to explain the gene-specificity of HD-mediated 

repression (Reviews: Grunstein, 1997; Pazin & Kadonaga, 1997). It remains to be 

determined whether deacetylation actually causes repression. That the effects of HD 

mutations interfere with both activation and repression, suggests that it is not simply a 

matter of deacetylation passively corresponding to repression. The binding of other 

repressor proteins appear to be modulated by histone acetylation (Edmondson etal., 1996). 

Chromatin is assembled during replication using H4 acetylated at lys5 and 12 but 

hypoacetylated H3 in mammals (Sobel et al., 1995; Turner & O'Neill, 1995). The B-type 

HATs are responsible for this H4 acetylation (Review: Brownell & Allis, 1996). The 

chromatin assembly complex (CAC) is made up of H3, acetylated H4 and CAF-1 (chromatin 

assembly factor-I). Many chromatin assembly factors construct nucleosomes in the absence 

of replication and do not discriminate between newly synthesised histories and histories 

isolated from chromosomes (Review: Kaufman & Botchan, 1994). However, CAF-1 

possesses both of these specificities. This protein has three sub-units, one of which is p48 

(Verrault et al., 1996), a polypeptide shared with yeast B-type HAT (Parthun et al., 1996) 

and human HDACI (Taunten et at., 1996), and which is involved in the high affinity 

interaction of these complexes with H4. This link between p48 and both HAT and HD 

activity has led to the model in which deacetylation, following assembly, may be required to 

release CAF- 1 and allow subsequent maturation of chromatin (Review: Roth & Allis, 1996). 
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Is the specific acetylation of H4 essential for chromatin assembly? The N-termini of H3 or 

H4 can be deleted without preventing nucleosome assembly in yeast (Kayne et at., 1988; 

Megee et al., 1995; Ling et at., 1996) and X.laevis egg extracts (Freeman et al., 1996), but 

deletion of both simultaneously does block assembly, suggesting a degree of redundancy. 

CAF-1 is also needed for reassembly of chromatin after DNA repair (Gaillard etal., 1996), 

and indeed the presence of lys residues at the H4 N-terminus appears to be necessary for 

maintaining genome integrity and progress through the cell cycle (Megee et al., 1995; 

Review: Turner, 1995). 

1.4.2 The Polycomb- and trithorax-group proteins 

The homeotic genes of D.melanogaster provide a model for the study of maintenance of 

gene expression states through development. Two classes of chromatin maintenance 

proteins have proved to be important: Polycomb group (PcG) repressors and trithorax group 

(trxG) activators (Review: Simon, 1995). 

Over a dozen PcG proteins are known and although diverse, some share certain motifs. The 

chromodomain of the Polycomb protein is also found in the constitutive heterochromatin 

associated protein HP1 (Paro & Hogness, 1991; Messmer et al., 1992; Suso Platero et al., 

1995), as well as a number of other heterochromatin associated proteins in a variety of 

species, and is essential for chromosomal localisation and repressive activity (Singh et al., 

1991; Pearce etal., 1992; Saunders etal., 1993; Review: Lohe & Hilliker, 1995). Protein-

protein interaction is probably the function of the chromodomain (Ball et al., 1997). This 

has led to the belief that PcG proteins exert their affects via formation of large complexes, 

which vary in composition from site to site (Pelegri & Lehmann, 1994; Muller et al., 1995; 

Strutt & Paro, 1997). Once associated with chromatin, how does the PcG complex cause 

repression? Support is gathering for a model involving the formation of heterochromatin-

like structures, where the cooperating PcG proteins wrap the locus into an inaccessible 

configuration which can extend along chromatin in a manner similar to that of position 

effect variegation (PEV) (Paro, 1993; Henikoff, 1996; Strutt et at., 1997; Review: Pirrotta, 

1997) (Section 9.4.1). Disruption of the PcG complex results in local decondensation of 

polytene chromosomes at expected sites (Rastelli et at., 1993). However, it has recently 

been shown that PcG binding blocks DNA polymerase II activation, but does not simply 

exclude all proteins since T7 RNA polymerase finds access to transcribe the region (McCall 

& Bender, 1996). 
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It is the role of the trxG proteins to counteract PcG-induced repression. These proteins are 

heterogeneous in sequence, structure, site of action and mechanism and there is no evidence 

that they form a complex (Reviews: Orlando & Paro, 1995; Pirrotta, 1995). The trxG 

proteins work to facilitate the binding of activators to promoter regions by creating an open 

chromatin configuration. A much studied example is the D.inelanogasrer GAGA protein, 

encoded by the trithorax-like gene, which acts in conjunction with the ATP-dependent 

chromatin remodelling protein NURF (Tsukiyama etal., 1994; Review: Granok etal., 1995) 

(Section 1.4.3). 

There are equivalents of PcG and trxG proteins in other eukaryotes (Singh et al., 1991; 

Pearce et al., 1992; Muller et al., 1995; Goodrich et al., 1997; Reviews: Lohe & Hilliker, 

1995; Gould, 1997; Schumacher & Magnuson, 1997). The mouse Thni/ gene shares striking 

homology to the D.rne!anogaster PcG protein Posterior sex combs (Brunk et al., 1991; van 

Lohuizen etal., 1991). Bmil has recently been shown to be part of a multimeric complex 

with other PcG-like proteins which colocalise in speckles in interphase nuclei. Mutations in 

Bmi 1 which destroy complex formation also disrupt embryonic development (Alkema et al., 

1997). Bmil coimmunoprecipitates with HPH1, a human homologue of the D.melanogaster 

PcG protein Polyhomeotic (Alkema etal., 1997; Gunster etal., 1997), and RING], a human 

RING-finger containing protein (Satijn et at., 1997). The RING-finger has been implicated 

in DNA- and protein-protein interactions (Review: Freemont, 1993) and RING! can act as a 

transcriptional repressor. This data suggests that BMI1, RINGI and HPHI are all 

components of a mammalian PcG complex. 

1.4.3 ATP-dependent chromatin remodelling complexes 

Evidence points to a competition model for transcriptional activity, where transcriptional 

activators work to counteract multiprotein repression complexes (Elgin, 1996; Kingston et 

al., 1996). Such activators include the SWIJSNF multisubunit complex consisting of 

approaching a dozen components (Reviews: Peterson & Tamkun, 1995; Peterson, 1996). 

The SWIJSNF complex interacts directly with DNA in an ATP-dependent manner. Models 

have been constructed in which this binding displaces H2A-H2B from the core nucleosome 

creating access for transcription factors such as GAL4 in S.cerevisiae (Cote et al., 1994; 

Owen-Hughes etal., 1996). The SWI and SNF proteins are also an integral part of the RNA 

polymerase II holoenzyme in S.cerevisiae (Wilson et at., 1996). In this capacity the 

SWTISNF complex is probably used to facilitate binding of the transcription initiation 

27 



complex. 	Homologues of the SWIISNF complex have been identified in both 

D.melanogaster and humans but recent studies have shown that the story is far from simple. 

Functionally distinct SWJ/SNF-like complexes exist, made up of different combinations of 

subunits and involved in chromatin remodelling at different gene loci (Cairns et al., 1996; 

Wang et al., 1996; Review: Peterson, 1996). 

NURF (micleosome remodelling factor) was purified by Tsukiyama & Wu (1995) from 

D.melanogaster and is also a multi-subunit ATP-dependent chromatin remodelling complex. 

NURF is distinct from SWIJSNF but interestingly, one of the sub-units of NURF is ISWI, 

the imitation SWI gene (Tsukiyama et al., 1995). The interaction between NURF and the 

nucleosomes is impaired by removal of the N-termini of the core histories (Georgel et al., 

1997). Therefore, while the substrate recognised by SWIISNF is DNA (Laurent et at., 

1993), NURF requires a DNA-histone complex. 

It is likely that there are a great number of other protein complexes involved in modulating 

access to DNA within chromatin (Review: Krude & Elgin, 1996). 

1.4.4 High mobility group (HMG) proteins 

There are three families of HMG proteins all characterised by being of low molecular 

weight, highly charged and abundant. All were originally identified by their association 

with chromatin, but between families there is little sequence and motif homology (Review: 

Bustin et al., 1990). 

HMG-14 and -17 bind specifically to the core nucleosomes (Alfonso et al., 1994) and are 

preferentially localised to regions of the genome which are actively being transcribed 

(Postnikov et at., 1991; Review: Bustin et al., 1990). Both proteins increase the efficiency 

of initiation of transcription (Paranjape et al., 1995; Trieschmann et al., 1997 and, at least 

for HMG-14, this is achieved by disruption of H 1-dependent chromatin compaction (Ding et 

al., 1997). Abundance, wide distribution and evolutionary conservation suggest an 

important role for these proteins, however, an open chromatin structure and normal growth 

is maintained in the absence of both proteins in a chicken cell line (Li etal., 1997). 

The DNA binding domain common to HMG-1 and -2 gave rise to the term "HMG-box, a 

motif since found in a diversity of other proteins (Reviews: Grosschedl et al., 1994; Bianchi 
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& Lilley, 1995). There are two sub-families of HMG-box proteins. HMG-1 and -2 and the 

nucleolar transcription factor, UBF are members of the sub-family characterised by proteins 

that are present in all cell types, have multiple HMG-boxes and have a low sequence binding 

specificity. Proteins that have a restricted distribution, one HMG-box and bind to specific 

sequences make up the other sub-family, and include the mammalian male sex determining 

factor, SRY and enhancer binding factors LEF- 1 and TCF- 1. All of these proteins share the 

common capacity to bend DNA and a binding affinity for distorted DNA structures (Suda et 

al., 1996). They have been assigned architectural roles, moulding and bending DNA. 

HMG-1 and -2 are involved in: recombination (van Gent et al., 1997), chromatin assembly 

(Review: Travers, 1994), transcriptional activation by stabilising promoter complexes 

(Shykind et at., 1995; Zappavigna et at., 1996) and transcriptional repression by replacing 

Hi as a linker (Ner & Travers, 1994; Ura et at., 1996). No differences in HMG-1 and -2 

abundance in transcribed versus non-transcribed chromatin has been identified by 

immunoprecipitation of chicken chromosomes (Postnikov et at., 1991), and HMG-1 has 

been shown to not be stably associated with chromatin in vivo (Falciola et at., 1997). 

However, HMG-i has been localised to D.metanogaster polytene chromosome puffs, again 

suggesting a link with transcriptional activity (Ghidelli et al., 1997). Some mitotic banding 

has also been reported for HMG-2 (Smith et al., 1978). The functions of HMG-1 and -2 

remain poorly understood. 

HMG-I and -Y differ by the presence or absence of an 11 amino acid sequence but the 

functional difference between the two forms is not yet known (Friedmann et at., 1993). 

Both forms of the protein bind specifically to AT-rich sequences in vivo and in vitro 

(Struass & Varshavsky, 1984; Reeves & Nissen, 1990; Reeves & Woiffe, 1996), including 

AT-rich SARs (Saitoh & Laemmli, 1994a). HMG-I (Y) is a structural component of 

chromatin required for normal enhancer function by facilitating protein-DNA and protein-

protein interactions promoted by DNA bending, as demonstrated with the human interferon-

P gene promoter (Thanos et at., 1993; Falvo et al., 1995; Yie et al., 1997) and T-cell 

receptor cc-chain promoter (Bagga & Emerson, 1997). Displacement of Hi by HMG-I (Y) 

correlates with derepression (Zhao et at., 1993). Disney et al. (1989) and Saitoh and 

Laemmli (1994a) have both shown by immunolocalisation that HMG-I (Y) is concentrated 

in C- and G-bands, consistent with a preference for AT-rich DNA. However, it is difficult 

to reconcile how this relates to its transcription promoting abilities. In contrast, HMG-I has 

been localised to the transcriptionally active puffs of D.me!anogaster polytene 



chromosomes (Ghidelli et at., 1997). A general architectural role may be accompanied by a 

requirement for its DNA binding abilities at genes to promote transcription, perhaps 

particularly within AT-rich repressed regions. 

1.4.5 Methylated-DNA binding proteins 

The requirement for cytosine methylation during development has been highlighted by the 

lethality of methyltransferase gene disruption in mice (Li et al., 1992). The correlation 

between transcriptional repression and cytosine methylation has long been established 

(Section 1.3.6). To cause gene inactivation, methyl-CpGs must be close to a gene promoter 

(Murray & Grosveld, 1987), which must, in turn, be controlled by methylation sensitive 

transcription factors (Tate & Bird, 1993). The degree of repression is proportional to the 

density of methylation and depends upon promoter strength (Boyes & Bird, 1992). There is 

some confusion as to the exact mode of repression. CpG-islands have been shown to confer 

a permissive environment for expression of a globin transgene, which depends to a degree 

on the site of integration (Shewchuk & Hardison, 1997). Expression of the same transgene 

was previously shown to be directly linked to chromatin accessibility, but not methylation 

status (Garrick et al., 1996). One report has suggested that methylation does not alter bulk 

chromatin structure since no decrease in DNAse accessibility of a methylated, 

under-expressed, transgene was observed. However, there was increased resistance to the 

methylation-insensitive restriction enzyme MspI (CCGG) (Weng et at., 1995). 

Repression by methylation is accompanied by a more stable chromatin structure which is 

generally resistant to nucleases (Keshet et al., 1986) (Section 1.3.6). There is considerable 

debate as to how this change in structure arises. HI is involved in chromatin condensation 

(Thoma et at., 1976; Huang & Cole, 1984; Kamakaka & Thomas, 1990; Shen et at., 1995) 

and reduction of nucleosome mobility (Ura et al., 1995), and has been shown in several 

studies to bind preferentially to methylated DNA (Ball et at., 1983; Levine et at., 1993; 

McArthur & Thomas, 1996). Other studies refute this observation (Bird et at., 1995; 

Campoy et at., 1995), although lower levels of HI have been confirmed at methylation-free 

CpG-islands than in methylated chromatin (Tazi & Bird, 1990). Alternatives point to the 

increasing number of methylated DNA binding proteins. 

The ubiquitously expressed, vertebrate methylated DNA binding protein I (MDBP-1), is 

associated with specific DNA sequences which contain methyl-C (Supakar et at., 1988). A 
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second protein, MDBP-2 has been found to be an Hi variant and binds in a non-sequence 

specific manner to methyl-CpG containing DNA (Jost & Hofsteenge, 1992). Methyl-C 

binding protein 1 (MeCP1), also a ubiquitously expressed, vertebrate protein, binds to DNA 

containing at least 12 methyl-CpGs and blocks transcription in vivo and in vitro (Meehan et 

at., 1989; Boyes & Bird, 1991). It has recently been shown to share a motif with 

mammalian HRX protein which is related to D.me!anogaster trithorax (Cross et al., 1997b) 

(Section 1.4.2). MeCP2 is a very abundant vertebrate protein which, unlike MeCP1, 

requires only one methyl-CpG to bind (Lewis et al., 1992; Meehan et al., 1992). 

Immunofluorescence revealed this protein to be associated with heterochromatin in mice and 

rats with less bright and uniform signals throughout euchromatin. The association with 

heterochromatin is methyl-CpG dependent (Nan et al., 1996). MeCP2 is essential for mouse 

development (Tate et al., 1996) and has been shown to displace HI and cause repression at 

methyl-CpG containing promoters (Nan et at., 1997). It is considered to be a global 

repressor of transcription. Each of the different methylated DNA binding proteins are likely 

to act together in their specific and non-specific manners to aid tight transcriptional control 

in a complex genome (Bird, 1995; Bird et at., 1995). 

1.4.6 Topoisomerase II 

Topoisomerase II (topo H) is the best characterised protein from the chromosome scaffold 

fraction (Sd) (Lewis and Laemmli, 1982; Review: Wang, 1996). Indeed, strong evidence 

for the existence of the scaffold was obtained from immunolocalisation studies of topo II in 

chickens (Earnshaw & Heck, 1985; Eamshaw etal., 1985) and humans (Gasser etal., 1986). 

Adachi etal., (1989) showed that topo II preferentially bound to DNA sequences considered 

to be associated with the chromosome scaffold (Section 1.5.1). 

Acting as a dimer, topo H is an enzyme that catalyses strand-passage reactions where one 

intact DNA double helix passes completely through another in an ATP-dependent manner 

(Reviews: Roca, 1995; Wang, 1996). It has been implicated in many aspects of 

chromosome function in eukaryotes, including: separation of newly replicated DNA (Yang 

etal., 1987), pre-mitotic condensation (Uemura etal., 1987; Adachi etal., 1991; Hirano & 

Mitchison, 1993), derepression of chromatin for transcription (Varga-Weisz et al., 1997) 

and separation of chromatids at anaphase (Holm et at., 1985; Uemura et al., 1987; Shamu & 

Murray, 1992; Ishida et al., 1994; Gimenez-Abian et al., 1995; Review: Holloway, 1995). 

The DNA decatenation ability of topo II has been linked to each of these roles. However, 
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recent studies have suggested that decatenation is not required for chromosome 

condensation and that topo II is required purely in its structural context for pre-mitotic 

condensation (Andreassen et al., 1997). 

The role of topo II as a loop anchoring protein of the chromosome scaffold has been 

challenged. Hirano and Mitchison (1993) showed that although essential for assembly and 

condensation of chromosomes in the X.laevis egg extracts, pre-formed chromosome 

morphology was maintained despite subsequent topo II depletion. Immunofluorescence 

revealed topo II to be uniformly distributed throughout the chromosomes and not restricted 

to the axis. This more general dispersal has been substantiated in histone depleted HeLa 

chromosomes (Boy de la Tour & Laemmli, 1988) and in D.melanogaster (Swedlow et al., 

1993). There are several possible explanations for these discrepancies. Alternative 

preparation and fixation protocols were used and may differentially affect chromosome 

structure and topo II localisation. In addition, it seems probable that various species of topo 

II exist, with differing functions and localisations at particular cell cycle stages. Different 

antibodies may recognise distinct topo II species-specific epitopes. 

In mammalian cells two isoforms of topo II have been identified: a (170KDa) and J3 

(1 8OKDa). Differential immunofluorescence has revealed that it is topo II a that is located 

on the chromosomes. Topo II P shows a more diffuse localisation throughout the 

nucleoplasm at interphase and mitosis (Chaly et al., 1996). A clear function for the 

isoform has not been established. More detailed immunolocalisation studies have found that 

topo II a has a cell cycle stage dependent staining pattern (Swedlow et al., 1993; Rattner et 

al., 1996; Sumner, 1996; Cobb etal., 1997; Meyer etal., 1997). Non-proliferating cells lack 

detectable levels of topo II a (Heck & Earnshaw, 1986; Chaly et al., 1996). In 01, staining 

is low in intensity and diffuse. Chromosomes are stained strongly at prophase, becoming 

more directed to the axis at late prophase. At metaphase staining is most concentrated at the 

centromeres. In addition, topo II a inhibitors disrupt centromere structure and chromatid 

separation (Rattner et al., 1996). It seems likely that this enzyme plays several important 

roles in chromosome structure at various stages of the cell cycle (Review: Warburton & 

Earnshaw, 1997). This multitude of activity may be controlled by phosphorylation (Heck & 

Earnshaw, 1989; Taagepera etal., 1993) 
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1.4.7 Structural maintenance of chromosomes (SMC) proteins 

Scil, the second most abundant protein of the chromosome scaffold fraction, has been 

cloned and sequenced and immunolocalisation shows this protein to be located along the 

axis of metaphase chromosomes as seen for topo H (Saitoh et al., 1994). ScH is structurally 

related to the SMC (tructural maintenance ofchromosomes) family of proteins (Reviews: 

Peterson, 1994; Hirano et al., 1995; Saitoh et at., 1995). This family consists of a rapidly 

expanding number of proteins all concerned with chromosome condensation and sister 

chromatid separation. The over-lap between condensation and cohesion may reflect the 

necessity of the former for the latter (Sumner, 1991; Holm, 1994). Members of the SMC 

family include: S.cerevisiae SMCI and SMC2 (Strunnikov et al., 1993 & 1995), S.pombe 

Cut3 and Cut14 (cell untimely torn) (Saka et at., 1994), X.laevis XCAP-C and XCAP-E 

(Xenopusc hromosome-associated polypeptides) (Hirano & Mitchison, 1994), C.elegans 

DPY-27 (involved in sex chromosome dosage compensation) (Chuang et al., 1994) (Section 

1.4.8), and Mycoplasma hydorhinis lisp  (Notarnicola et at., 1991). The importance of 

these proteins in establishing the condensed chromosome state has been pointed to by 

mutations in the yeast SMC genes which result in chromosome condensation and 

segregation anomalies. Immunodepletion of XCAP-C and XCAP-E in X.laevis egg extracts 

leads to a block in chromosome assembly, and disassembly of previously condensed 

chromosomes, suggesting a further role in maintenance of chromosome structure (Hirano & 

Mitchison, 1994). 

All members of the SMC family share a common head-rod-tail structure. The head domain 

contains an NTP-binding domain, the rod domain is an extended central coiled coil and the 

tail domain is a conserved globular tail. The tail domain has some sequence homology to 

protein regions known to be involved in ATP binding and hydrolysis, however, the predicted 

folding of this region is analogous to DNA binding domains. The overall structure is 

reminiscent of mechanochemical motor proteins, for example kinesin. One model suggests 

that SMC proteins bind to the base of DNA loops on the chromosome scaffold with their tail 

and attach to the loop with their head, mechanochemically pulling the loop in towards the 

base (Reviews: Peterson, 1994; Hirano et al., 1995; Saitoh et al., 1995). Multiple SMC 

proteins occur in the cells of many organisms, each a member of a phylogenetic sub-group 

and these may physically interact to stabilise the condensed state (Review: Koshland & 

Strunnikov, 1996). 

33 



Topoisomerase I expression partly complements the cut3 mutation (Saka et al., 1994). An 

association between XCAP-C, XCAP-E and topo H has also been implicated by work with 

condensins. XCAP-C and XCAP-E make up the 8S condensin, of unknown function, and 

along with three other sub-units the 13S condensin, required for chromosome assembly. 

One of these additional sub-units, XCAP-H, is a homologue of the D.melanogaster barren 

gene product, originally identified by a mutation that causes defects in sister chromatid 

separation. Barren has been shown to regulate topo II activity (Bhat et al., 1996). Topo II is 

targeted to mitotic chromosomes independently of the 13S condensin (Hirano & Mitchison, 

1997), but both are required for chromosome condensation and structure, and possibly 

interact once chromosomally associated. The 13S condensin has been shown to possess an 

ATP-dependent ability to supercoil DNA in the presence of topoisomerase (Kimura & 

Hirano, 1997). A novel protein in S.cerevisiae which interacts genetically with Smclp has 

been identified independently by two groups. MCD! (mitotic  chromosome determinant) 

was identified by Guacci et al. (1997) and another allele of the same protein, termed SCCI 

(sister chromatidcohesion) was discovered by Michaelis et al. (1997). Mutations in the 

MCDI/SCC1 gene result in defects in chromosome condensation and cohesion (Review: 

Heck, 1997). 

Recently, an ATP-independent DNA renaturation promoting activity has been established 

for Cut3 and Cut14 as a complex (Sutani & Yanagida, 1997). This function may be 

mechanistically distinct from the function of these proteins during condensation. Smc 1 p 

and Smc2p have also been shown to possess an alternative function in recombination repair 

(Jessberger et al., 1996). 

1.4.8 Dosage compensation 

Since mammalian females possess two X chromosomes and males have just one, it is 

necessary to balance gene expression from the X chromosome between the two sexes. 

Random inactivation of one of the female X chromosomes has been found to be the solution 

in mammals, while other mechanisms of dosage compensation are used in D.me!anogaster 

and C.elegans (Reviews: Midgeon, 1994; Kelley & Kuroda, 1995; King etal., 1995). 

The human female inactive X chromosome (Xi) is associated with hypoacetylated H3 and 

H4 (Jeppesen & Turner, 1993; Belyaev etal., 1996; Boggs etal., 1996) (Section 1.4.1.3). 

This feature of X-inactivation is highly conserved in vertebrates suggesting that it plays a 
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key role (Wakefield et al., 1997). Keohane et al. (1996) demonstrated that deacetylation of 

Xi follows silencing of X-linked genes and expression of the XIST (X inactive specific 

transcript) gene, and therefore, was necessary for the maintenance but not the initiation of 

X-inactivation. The XJST gene is expressed only on Xi (Borsani etal., 1991; Brockdorff et 

al., 1991; Brown etal., 1991; Review: Rastan, 1994). This gene does not encode a protein 

but the RNA coats Xi, solely and entirely, at interphase (Brown et al., 1992; Clemson et al., 

1996; Lee et al., 1996), controlled possibly by altered RNA stability (Panning et al., 1997; 

Sheardown et al., 1997). XJST expression is required for initiation but not maintenance of 

inactivation (Brown & Willard, 1994). Xi shares features of heterochromatin other than 

hypoacetylation and gene silencing, namely, late replication (Camargo & Cervenka, 1982; 

Takagi et al., 1982; Riggs & Pfiefer, 1992) and hypermethylation (Miller et at., 1974; 

Bernardino et al., 1996). Distinctive staining properties, associated with 

heterochromatinisation are also apparent at interphase and metaphase (Barr & Bertram, 

1949; Kanda, 1973; Belmont etal., 1986). Late replication is not necessary for inactivation 

(Yoshida et al., 1993), while hypomethylation causes aberrant XIST expression and 

inappropriate inactivation of all X chromosomes (Beard et al., 1995; Panning & Jaenisch, 

1996). 

In D.melanogaster, the male X chromosome becomes transcriptionally hyperactive to 

compensate for the female possessing double the number of X-linked genes (Arkhipova & 

Meselson, 1997; Reviews: Bashaw & Baker, 1996; Lucchesi, 1996). This is accompanied 

by hyperacetylation of H4 (Turner et al., 1992; Bone et al., 1994) and a bloated appearance 

of the chromosome. The maleless (mie) gene and the four male-specific lethal (ms!) gene 

products are associated almost exclusively with the X chromosome in males, but not females 

(Kuroda et al., 1991; Palmer etal., 1993; Gorman etal., 1995; Zhou etal., 1995). Loss-of-

function mutations result in death of homozygous males and lethality correlates with a 

failure to dosage compensate. The formation of a complex is suggested from the fact that X 

chromosome-specific association of any one protein relies on the presence of the others. 

Binding of the complex is necessary for hyperacetylation of H4 (Bone et al., 1994; Bone & 

Kuroda, 1996). MLE has homology to DNA/RNA helicases, while MSL-1 contains 

characteristics common to transcriptional activators including HMG-I. MSL-3 contains two 

chromodomains, a motif considered to direct binding to chromatin via protein-protein 

interactions (Koonin etal., 1995) (Section 1.4.2). Finally, MSL-2 is a RING-finger protein 

(Bashaw & Baker, 1995; Zhou etal., 1995), a motif implicated in DNA-protein and protein- 
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protein interactions (Review: Freemont, 1993) (Section 1.4.2). MSL-2 has been implicated 

to be the key protein for complex localisation (Kelley et al., 1995) but, MLEIMSL complex 

X chromosome-association is RNA-dependent (Richter et al., 1996). A possible candidate 

for such a role is roXi encoded RNA (Meller et al., 1997). However, roXi mutant male 

flies still dosage compensate and the MLEIMSL complex localises to the X chromosome, 

suggesting possible redundancy. It is interesting to note the dependence upon RNAs as well 

as proteins in X-inactivation. 

Yet another mechanism for dosage compensation occurs in the nematode, C.elegans. 

Hermaphrodites (XX) reduce transcription levels of both X chromosomes to achieve the 

same levels produced by males (XO). The DYP-27 protein becomes specifically localised 

to the X chromosomes of hermaphrodites, but is diffusely distributed in male cells. 

Mutation in the dpy-27 gene results in elevated X chromosome transcript levels in XX 

animals and in XO lethal-] (xol-i) mutant XO embryos DPY-27 becomes localised to the X 

chromosome and the animals die from inappropriately low X chromosome transcript levels. 

DPY-27 is a member of the SMC family putatively involved in chromosome condensation 

(Chuang et at., 1994) (Section 1.4.7) so it is possible that this protein reduces transcription 

by condensing chromatin along the two X chromosomes. Binding of DPY-27 is dependent 

upon expression of a number of other genes including DPY-26 and the SDC proteins, some 

of which also have X chromosome binding specificity (Chuang et al., 1996; Lieb et al., 

1996). 
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Figure 1.4 Histone acetylation at the promoter 
Adapted from Yang et al. (1996b) and Wade et al. (1997). Activating transcription factors, 
for example CREB, recruit the coactivator/histone acetyltransferase complex p300/CBP-
P/CAF which derepresses the nucleosome allowing access for TFIID and the remainder of 
the basal transcription complex. TFIID also has histone acetyltransferase activity. P/CAF 
competes with the adenovirus transcription factor, EIA, for association with p300/CBP. The 
E1A-p300ICBP complex also has HAT activity and it could be that E1A directs this activity 
to alternative targets resulting in inappropriate gene expression and transformation (Section 
1.4.1.4). 
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1.5 Compartments of the metaphase chromosome 

S ection 1.1 outlined the structure of human metaphase chromosomes. In this section the 

functional compartments of metaphase chromosomes are discussed. 

1.5.1 DNA sequences associated with the chromosome scaffold 

The term "chromosome scaffold" is used in this thesis to describe the morphological 

framework remaining after histone extraction of metaphase chromosomes (Paulson & 

Laemmli, 1977; Earnshaw & Laemmli, 1983; Paulson, 1989), or the metaphase chromosome 

core traced immunologically with antibodies to topo H (Earnshaw & Heck, 1985; Earnshaw 

etal., 1985; Gasser etal., 1989) (Section 1.4.6) or Scil (Saitoh etal., 1994) (Section 1.4.7). 

FISH was used to visualise the types of sequences that bind to the morphological scaffold of 

salt extracted human metaphase chromosomes. Origins of replication correlated well with 

positions of attachment (Bickmore & Oghene, 1996). An inhibitor of topo II, 

epipodophyllotoxin, traps enzyme molecules covalently integrated into DNA. When topo II 

is denatured during DNA purification, a double strand break is left at sites of in vivo action. 

The same cutting sites have been identified in metaphase chromosomes and interphase 

nuclei (Razin et al., 1993) and a correlation between these attached sequences and 

replication origins was apparent. Many of these sequences were also reminiscent of SARs 

(Iarovaia et al., 1996) (Section 1.6.5). 

Only a subset of AT-rich SARs identified from US extracted nuclear scaffolds (Section 

1.6.5) have been shown to bind to chromosome scaffolds (Mirkovitch et al., 1988). 

However, using AT-specific fluorochromes, Saitoh & Laemmli (1994a & b) traced what 

they considered to be a SAR-rich chromosome backbone ("AT-queue"). The importance of 

SARs in chromosome structure is supported by the fact that the assembly of condensed 

chromosomes in X.laevis egg extract is inhibited by the addition of a synthetic protein that 

binds to AT-rich DNA (Strick & Laemmli, 1995; Review: Swedlow & Hirano, 1996). There 

appears to be no enrichment of transcribed sequences amongst SARs (Mirkovitch et al., 

1984; Gasser et al., 1989). Being AT-rich, SARs are likely to be more concentrated in 0-

bands and this has been shown to be the case (Jarman & Higgs, 1988; Saitoh & Laemmli, 

1994a & b; Craig etal., 1997). 



The nucleoskeleton prepared by electoelution of nuclei is associated with the processes of 

transcription and replication (Cook, 1984; Jackson & Cook, 1985 & 1986; Jackson et at., 

1988 & 1996) (Section 1.6.5). Cook (1994 & 1995) has postulated that there are no 

permanent sequences of attachment to the chromosome scaffold, but that polymerases 

involved in transcription and replication at interphase aggregate and pull together attached 

sequences, thus condensing the chromosomes for mitosis. However, Craig et al. (1997) 

demonstrated that when attached and loop DNA from electroeluted metaphase chromosomes 

were hybridised by FISH to metaphase chromosomes, there was no preferential localisation 

to gene-rich regions (Section 1.6.5). This argues that the sites of attachment to the 

chromosome scaffold are determined by sequence and not function. 

1.5.2 The centromere 

The centromere is a highly specialised chromatin environment and harbours a unique array 

of proteins (Review: Pluta et al., 1995). In mammals, the centromere forms at the primary 

chromosome constriction, a-satellite is found at all mammalian centromeres and is 

intimately associated with the mitotic scaffold (Bickmore & Oghene, 1996). Strissel et at. 

(1996) argued that loop sizes are smaller and SARs are more concentrated at centromeres 

compared with chromosome arms. However, in this study a similar degree of hybridisation 

appeared to be present at centromeres following FISH with non-SAR DNA suggesting that 

there was incomplete suppression of repeat sequences. In addition, Craig et at. (1997) did 

not find a concentration of SARs at centromeres. The apparently condensed chromatin 

packaging at centromeres may be accounted for by the resistance of kinetochore and other 

centrosomal components to extraction, thus sterically preventing DNA loop formation. 

Such chromatin packaging may be responsible for the physical appearance of this region in 

non-extracted chromosomes. It may also be related to its function, for instance, insulating 

the centromere from transcriptional activity and/or providing mechanical strength. That 

centromeres C-band highlights this underlying, condensed chromatin structure. In fission 

yeast, centromeres are heterochromatic and silence genes placed therein (Allshire et al., 

1994). Furthermore, it seems that the presence of heterochromatin is essential for 

centromere function in yeast (Allshire et al., 1995), just as the primary constriction is 

necessary for mammalian centromere function (Voullaire et at., 1993). 

There is an abundance of both topo II and ScIT at centromeres, in addition to CENPs 

(çentromere proteins) and INCENPs (inner centromere proteins). CENP-A is a homologue 



of H3 and appears to be incorporated specifically into centromeric nucleosomes (Sullivan et 

at., 1994). CENP-B (Earnshaw et al., 1987), binds specifically to a-satellite DNA (Haaf et 

at., 1992) and lies beneath the kinetochore (Cooke et at., 1990). It does not distinguish 

between an active and inactive centromere on a dicentric chromosome (Sullivan & 

Schwartz, 1 995). The kinetochore coats centromeric DNA (Cooke et at., 1993) and active 

components include CENPs C, E (Wood et al., 1997) and F, and MCAK. The location and 

function of CENP-D is not known, but interestingly, this protein has high homology to 

RCC I protein, a regulator for the onset of chromosome condensation (Bischoff et at., 1990: 

Review: Dasso, 1993). 

The INCENPs A and B were identified with a monoclonal antibody that was raised against 

the proteins of the chicken mitotic chromosome scaffold. Throughout mitosis these 

proteins, which are encoded by a single gene, are located between the centromeres of sister 

chromatids. At anaphase both proteins relocate to the spindle and the nascent cleavage 

furrow. Whether the INCENPs play a role in sister chromatid cohesion is unclear, but a role 

in formation of the cleavage furrow and in organisation of the cytoskeleton is likely (Cooke 

et at., 1987; Mackay et at., 1993; Eckley et al., 1997). INCENPs were the first of a set of 

proteins, termed passenger proteins, that are associated with mitotic chromosomes, but 

relocate as mitosis progresses. It is possible that rather than having a direct role in 

chromosome structure or dynamics, they are merely using the chromosomes to help them 

move to the right part of the nucleus at which their function is required (Review: Earnshaw 

& Bernat, 1991). 

CLiPs (hromatid linking proteins) contain epitopes which are recognised by the 

autoimmune sera found in CREST (calcinosis, aynaud's phenomenon, esophageal 

dysmotility, c1erodactyly, telangiectasia) scelrodoma patients, from which many of the 

CENPs were also identified. These proteins localise between the chromatids of mitotic 

chromosomes (Rattner et at., 1988). Although this localisation suggests a role in sister 

chromatid cohesion, no such function has been established. In D.melanogaster, specific 

proteins involved in this function have been identified (Kerrebrock et at., 1995; Stratmann 

& Lehner, 1996). 
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1.5.3 The telomere 

Human telomeres consist of tandem arrays of TTAGGG repeats bound to specific proteins. 

These structures act to protect chromosome ends from degradation, recombination and 

fusion, so preventing activation of DNA damage cell cycle check points (Review: Zakian, 

1997). In normal human cells, telomeres shorten with successive generations probably due 

to loss of terminal sequences as a result of DNA polymerase-mediated replication (Harley et 

al., 1990). In tumours and immortalised cells, this shortening is halted by the activation of 

telomerase, a reverse transcriptase capable of extending telomeric arrays (Counter et al., 

1992; Kim et al., 1994; Blasco et al., 1997). Telomere length is stably maintained in such 

cells suggesting the presence of a regulatory mechanism for limiting telomere elongation. 

This role in humans has been assigned to the telomeric-repeat binding protein (TRF1) 

(Chong et al., 1995; van Steensel & de Lange, 1997). TRF1 does not affect the expression 

of telomerase and thus appears to act in cis. A second protein, TRF2, may also be involved 

(Broccoli et al., 1997; Bilaud et al., 1997). In S.cerevisiae, Rapip is involved in telomere 

length regulation (Marcand et al., 1997). Overexpression of TRFI and Rapip results in 

shorter telomere length suggesting that a negative feedback loop exists which can detect the 

quantity of protein at the telomere. 

Telomeres are also characterised by an unusual chromatin configuration. The extreme ends 

of human telomeres are organised in a non-nucleosomal, nuclease-resistant chromatin 

(Tommerup et al., 1994). A heterochromatin-like structure is present at yeast and 

D.melanogaster telomeres that can silence genes placed in the vicinity by a phenomenon 

known as position effect variegation (PEV) (Levis et al., 1985; Aparicio et al., 1991; 

Renauld et al., 1993; Nimmo etal., 1994; Cockell etal., 1995). 

1.5.4 The mitotic chromosome periphery 

The surface of mitotic chromosomes is coated with a cocktail of proteins and RNAs, termed 

the perichromosomal layer (Reviews: Rattner, 1992; Hernandez-Verdun & Gautier, 1994). 

Identification of the constituents of the perichromosomal layer has been based mainly on 

antibodies cross-reacting with this compartment. Proteins identified include: 

. Nuclear matrix proteins - The peripherin antigen raised against isolated nuclear matrices 

coats the periphery of mitotic chromosomes (Chaly et al., 1984). This antigen has not 

been characterised further. 
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• Inner nuclear envelope proteins - One 70KDa member of the DNA-binding Ku proteins 

(Mimori et at., 1986) is localised to the mitotic chromosome periphery. At interphase it 

is localised to the nuclear periphery and is considered to link DNA loops to the inner 

nuclear envelope (Higashiura et at., 1992). 

• Nucleolar proteins - A surprising number of nucleolar proteins relocate to the 

chromosome periphery in mitosis. For instance, fibrillarin is believed to be involved in 

early processing of rRNA in the nucleolus but is associated with the mitotic 

chromosome periphery (Ochs et al., 1985; Jimanez-Garcia et at., 1989; Yasuda & Maul, 

1990). Ki-67, a nucleolar antigen and cell proliferation marker (Gerdes et at.. 1984; 

Verheijen et at., 1989), is associated with satellite DNA in the nucleoplasm of early GI 

cells (Bridger et at., 1997). In late GI, S and G2 the protein becomes localised to the 

nucleoli and during mitosis it is found at the chromosome periphery. It is considered 

that this protein may organise chromatin, including rDNA and aid nucleogenesis. 

• Ribonucleoproteins (RNPs) - The mitotic chromosome periphery is associated with a 

number of RNAs forming RNPs but these remain poorly characterised (Spector & 

Smith, 1986; Gautier et at., 1992). 

Little is known about how and why the perichromosomal layer forms, and different proteins 

may have alternative functions. These proteins may provide a protective blanket against 

cytoplasmic components when the nuclear membrane breaks down at mitosis. Alternatively, 

the chromosomes may act as a carrier, passive or active, ensuring that specific proteins and 

RNA are directed to the new nuclei. It is known that the chromosome surface acts as a 

template upon which the components of the new inner nuclear envelope assemble (Section 

1.6.6). These surface proteins may help orchestrate this assembly and may be involved in 

compartmentalising the nucleus and setting up chromosome territories. 
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1.6 Compartments of the interphase nucleus 

The interphase nucleus is a highly structured organelle and the processes involved in 

transcription and replication, which occur throughout interphase, appear to be 

compartmentalised. This segregation may be a result of, or a requirement for, efficient and 

controlled nuclear function. 

1.6.1 Packaging of chromatin in the interphase nucleus 

Chromatin compaction varies as cells move from GI. It is least condensed at S-phase, 

condensing again through G2 and reaching maximal condensation at metaphase (Gollin et 

at., 1984; Robinett et at., 1996). While in S.cerevisiae there may only be a 2-fold difference 

between the level of compaction at metaphase and S-phase (Umesono et at., 1983), in 

mammals the estimated total decondensation is approximately 10-fold (Rattner & Lin, 1985; 

Lawrence et at., 1990). 

Interestingly, compaction appears to be less in R-band regions than in G-band regions, as 

assessed by measuring the two-dimensional (2-D) distances between probes separated by 

0.1-1.5Mb and specifically localised in each of the band types (Yokota et at., 1997). 

Transcriptionally active chromatin may be less condensed as a requirement for or as a direct 

consequence of transcription. Surprisingly, this has not been found to be the case for the 

active (Xa) and inactive (Xi) mammalian X chromosomes (Section 1.4.8). 

Three-dimensional (3-D) analysis has revealed that the two chromosomes occupy similar 

volumes in the interphase nucleus (Eils et at., 1996). However, Xa has a more irregular, and 

thus larger, surface area when compared to Xi. The increased number of invaginations 

could allow access to transcription components from the interchromosomal channels 

(Section 1.6.3). The condensed appearance of G-band verses R-band regions in 2-D nuclei 

may be a result of a similar difference in shape between inactive and active regions, rather 

than a direct difference in volume. However, the Xa and Xi possess the same number of 

genes and X-inactivation acts to actively repress transcription. This repression is likely to 

be achieved by a distinct mechanism to the processes involved in chromatin structure at 

gene-poor G-bands. 
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1.6.2 Functional compartments 

The most striking sub-division of the nucleus is the nucleolus (Reviews: Warner, 1990; 

Hernandez-Verdun, 1991; Scheer & Weisenberger, 1994). This structure is the site of rRNA 

synthesis and is the location of the rRNA-encoding sequences (rDNA) (except 5S RNA 

which is synthesised outside of the nucleolus). Nucleoli are readily visualised by light 

microscopy as single or multiple dense, non-membranous nuclear structures. The exact 

organisation, size and number of nucleoli depends upon ribosome biogenesis. By FISH, 

some rDNA sites have been shown not to be associated with the nucleoli and are considered 

to be inactive, lacking the proteins required for nucleolus formation (Wachtler et al., 1986). 

A large number of proteins, generally involved in ribosome biogenesis, are preferentially 

located in nucleoli. These include: RNA polymerase I, nucleolin (Lapeyre et al., 1987; 

Caizergues-Ferrer et al., 1989) and fibrillarin (Ochs etal., 1985). 

A number of other nuclear bodies have been identified, each containing a specific array of 

proteins. These include: 

• Coiled bodies - In the nuclei of many mammalian cell types, 2-6 coiled bodies are 

present. Often associated with the periphery of the nucleolus, these bodies contain 

proteins and RNAs important for RNA splicing, including all snRNPs (small nuclear 

ribonucleoproteins) (Fakan et al., 1984; Carmo-Fonseca et al., 1991a & b) and the 

nucleolar-associated protein, fibrillarin (Jimenez-Garcia et al., 1994). Almost all of the 

relatively uncharacterised protein, p80-coilin, accumulates in the coiled bodies (Anrade 

et al., 1991; Bohmann et al., 1995a). Interestingly, one form of the Wilms' tumour 

suppressor gene (WTI) localises to coiled bodies in addition to the 20-50 speckles 

occupied by snRNPs throughout the nucleus (Larsson et al., 1995; Review: Charlieu et 

al., 1995) (see below). The role of WTI in RNA splicing remains unknown. Coiled 

bodies are likely to be involved in the processing of RNA, possibly of nucleolar-specific 

transcripts. Other possible roles include assembly, storage and/or regeneration of 

snRNPs (Reviews: Lamond & Carmo-Fonseca, 1991; Bohmann et al., 1995b; van Driel 

et al., 1995). 

. PML (proyelocytic leukaemia) bodies - Accumulations of PML protein form into 

dense fibrillar bodies in normal cells but show a general punctate distribution in cells of 

patients suffering from PML (Ascoli & Maul, 1991; Daniel et al., 1993; Weis et al., 

1994). The function of the PML protein and PML bodies remains unknown. Neither 
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pre-mRNA nor splicing components localise to these structures (Stuurman et al., 1992; 

Weis et al., 1994). 

• Gems - The protein encoded by a gene mutated in >98% of patients with spinal 

muscular atrophy termed SMN (urvival of motor neurons) (Lefebvre et at., 1995) is 

localised to 2-6 nuclear bodies, frequently found close to coiled bodies (Liu & Dreyfuss, 

1996). SMN is associated with hnRNPs (heterogeneous nuclear RNPs), responsible for 

processing and transport of mRNAs (Review: Dreyfuss et al., 1993), the nucleolar-

specific protein fibrillarin and other novel proteins. More recently SMN has been 

shown to have an essential role in snRNP biogenesis (Fischer et at., 1997; Liu et ci!.. 

1997). 

In addition to these relatively large nuclear bodies (0.1-1prn), components involved in the 

processes of transcription, splicing and replication have been shown to accumulate in foci, 

often referred to as speckles or interchromatin granules (Reviews: Haaf & Schmid, 1991; 

Spector, 1993; van Driel et at., 1995). Fluorescent labelling of nascent transcripts, and 

immuno local isation of RNA polymerase II and a variety of transcription factors and splicing 

components, in transcriptionally active nuclei, have revealed a generally dispersed 

distribution in addition to 20-50 speckles (Fu & Maniatis, 1990; Spector, 1990; Wansink et 

al., 1993; Bregman et al., 1996; Fay et at., 1997; Grande et al., 1997; Zeng et al., 1997). In 

poorly transcribing cells, or cells blocked for transcription using chemicals or heat shock, 

the majority of nascent transcripts, RNA polymerase II and splicing components relocate to 

the speckles, giving more accentuated and enlarged foci (Zeng et al., 1997). Only RNA 

polymerase II hyperphosphorylated at its C-terminal domain is located in speckles, while the 

hypophosphorylated enzyme is dispersed (Bregman et at., 1995). By FISH, polyadenylated 

RNA was shown to concentrate with the speckles (Carter et al., 1993). In addition, several 

unique pre-mRNAs have been localised there (Lawrence et al., 1993; Xing et at., 1993 & 

1995). Speckle localisation has also been established for microinjected RNAs and transcipts 

produced from transfected DNA in an intron-dependent manner (Wang et al., 1991; Huang 

& Spector, 1996). 

Speckles are probably storage sites for transcription and splicing factors and the bulk of 

transcription and splicing occurs throughout the nucleus (Review: Singer & Green, 1997). 

Not all speckles recognised by antibodies against the splicing component SC-35 are 

associated with nascent transcripts. Indeed, there are many sites within the nucleus, other 
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than speckles, where nascent transcripts are located (Wansink et at., 1993). Furthermore, 

Zhang et at. (1994) determined by FISH that sites of transcription of specific genes 

correlated with sites of splicing, but that these sites were located between speckles. This 

localisation was reminiscent of the perichromatin fibrils, previously described as sites of 

pre-mRNA processing (Review: Fakan, 1994). However, the sample size used by Zhang et 

al. (1994) was insufficient to draw any general conclusions. Recently, splicing factors fused 

to green fluorescent protein (GFP), which allows live cell observations, have been shown to 

leave speckles in peripheral extensions and accumulate at sites of newly activated genes 

(Misteli etat., 1997). 

Fluorescent labelling of nascent DNA and immunofluorescence to components of the 

replication machinery have shown that replication occurs in a specific spatial pattern. There 

are hundreds of small domains scattered throughout the nucleus in early S-phase and fewer, 

larger domains in late S-phase (Nakayasu & Berezney, 1989; Fox et at., 1991; Kill et at., 

1991; O'Keefe etal., 1992; Hutchison, 1995; Ferreira et al., 1997). 

1.6.3 The chromosome territory hypothesis 

It is now also widely accepted that chromosomes occupy separate and distinct territories in 

the interphase nuclei of animal and plant species. This organisation was first described by 

Rabi in 1885, in cells of Satamandra rnacutara. The work of Boveri in 1909, using Ascaris 

megalocephala, further established this hypothesis of constant chromosome identity 

throughout the cell cycle. Electron microscopy (EM) studies failed to distinguish 

chromosomal territories (Wischnitzer, 1973) and so these theories were discarded by most at 

that time. Models describing non-territorial chromosome arrangements were favoured 

(Comings, 1968) until the recent techniques of UV-laser-micro-irradiation and FISH 

prompted a wide acceptance of the chromosome territory hypothesis (Reviews: Hiliker & 

Appels, 1989; Haaf& Schmid, 1991; Cremer etal., 1993). 

By micro-irradiating Chinese hamster nuclei with a UV-laser, small sub-nuclear areas could 

be marked by spiking DNA repair with tritiated thymidine. When such cells were followed 

through to the subsequent mitosis, autoradiography or antibodies to UV-damaged DNA 

showed damage to be restricted to a few chromosomes (Zorn et at., 1979; Cremer et at., 

1982b; Hens et al., 1983; Review: Cremer et al., 1993). A correlation was found between 

the DNA content and frequency with which each chromosome was hit. Also, it is interesting 
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to note that homologous chromosomes were hardly ever damaged simultaneously. In 

contrast, in D.melanogaster homologous chromosomes are usually paired at interphase and 

have been shown to interact genetically (Tartoff & Henikoff, 1991). Using FISH, LaSalle & 

Lalande (1996) determined that the homologues of a human gene subject to imprinting were 

associated transiently during late S-phase. However, it seems that homologous pairing in 

human nuclei does not normally occur. 

Irradiation experiments have also suggested that mammalian chromosomes too may have a 

"RaM-conformation". This conformation, in which chromosomes are in a V-shape with 

telomeres close to each other at the nuclear periphery (Cremer et at., 1982a), has been 

observed in S.maculata (RabI, 1885), D.melanogaster polytene chromosomes (Hiraoka et 

al., 1990; Marshall et al., 1996) and in several plant species (Fussell, 1975; Rawlins et at., 

1991). Further analyses of mammalian centromeres and telomeres have revealed that their 

positioning during interphase is dynamic, with movement of centromeres from the periphery 

more internally as interphase progresses and telomeres generally randomly located 

throughout the nucleus (Manuelidis, 1985a; Bartholdi, 1991; Ferguson & Ward, 1992; 

Vourc'h et at., 1993; Broccoli & Cooke, 1994; He & Brinkley, 1996). However, live cell 

observations of the chromosomal protein CENP-B fused to GFP, found that centromeres 

show little movement throughout interphase and are located with no peripheral or central 

bias (Shelby et at., 1996). It seems likely that the different centromere arrangements are cell 

type-specific (Manuelidis, 1984). 

Isotopic in situ hybridisation and FISH made it possible to visualise whole chromosomes 

and interphase territories were observed directly in rodent-human somatic hybrid cells 

(Manuelidis, 1985b; Schardin et at., 1985) and later in human cells per se (Pinkel et al., 

1986; Lichter et al., 1988; Popp et at., 1990; Aquiles Sanchez et at., 1997; Reviews: 

Manuelidis, 1990; Cremer et al., 1993; Trask et al., 1993). In addition, probes delineating 

chromosome segments indicate that within a territory each chromosome portion has a 

distinct domain (Rappold etal., 1984; Lengauer etal., 1991; Zink etal., 1997). Robinett et 

al. (1996) integrated a vector containing the Eschericia co!i lac operator region into Chinese 

Hamster Ovary (CHO). Using a GFP-lac repressor fusion protein they were able to follow 

the position of the site of integration in live analysis. These, and other recent studies using 

laser bleaching (Abney et at., 1997) and fluorescently labelled topo II in D.metanogaster 

(Marshall et al., 1997b), have shown the chromatin of the interphase nucleus to be relatively 
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immobile. This is consistent with chromosome territory confinement. All of this work has 

culminated in the formation of two models for the arrangement of chromosome territories: 

The compartment and intercompartment model (Manuelidis, 1990; Cremer et al., 1993; 

Zirbel et al., 1993; Kurz etal., 1996; Strouboulis & Wolffe, 1996; Dietzel et al., 1998). 

The random-walk/giant-loop model (van den Engh et al., 1993; Sachs et al., 1995; 

Yokota etal., 1995). 

Although not completely contrasting, these hypotheses are distinct. It is likely that the 

reality is a compromise between the two. In the first instance, each chromosome has a very 

strict territory around which a series of channels connect the chromosome with the 

remainder of the nucleus and, via the nuclear pores, the cytoplasm (Dietzel et al., 1998; 

Reviews: Blobel, 1985; Manuelidis, 1990; Cremer et al., 1993; Strouboulis & Wolffe, 1996) 

(Figure 1.5). RNA transcript tracks extending from the nuclear interior to the nuclear 

periphery (Lawrence et al., 1989; Xing etal., 1993) were presumed to be moving along such 

channels. Splicing proteins and a specific RNA transcript have been shown to be excluded 

from the interior of chromosomal territories (Zirbel et al., 1993). 

The second model proposes that interphase chromosomes consist of flexible chromatin 

loops of several Mb attached to a supple backbone which also shows characteristic random 

walk behaviour (van den Engh et al., 1993; Sachs et al., 1995; Yokota et al., 1995). This 

arrangement would result in a degree of overlap between chromosomal domains and no 

strict interchromosomal channels would be maintained. 

1.6.4 Does each chromosome have a specific location? 

In metaphase spreads the acrocentric chromosomes are closer together than would be 

expected from a random distribution (Ferguson-Smith & Handmaker, 1961; Kaplan et al., 

1993) and the same particular rDNA containing chromosomes remain associated with one 

another through successive cell cycles (Bobrow & Heritage, 1980). This supports the idea 

that the distribution of chromosomes at metaphase reflects interphase chromosomal 

organisation. 

A surprisingly precise arrangement of chromosomes is maintained on the mitotic spindle 

(Naegele etal., 1995), supporting the notion that chromosomes are not distributed randomly 

with relation to one another. Some studies have suggested that mere physical size 
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determines the positioning of chromosomes, with small autosomes tending to be more 

centrally located on the metaphase plate than larger autosomes (Warburton et at., 1973; 

Wollenberg et al., 1982). There is also evidence, however, that size is not the major 

determinant and that early replicating, gene-rich chromosomes are more centrally located 

and late replicating, gene-poor chromosomes tend towards the periphery (Miller et al., 1963; 

Hens et al., 1982). Of course, it is well established that the inactive X chromosome, in the 

form of the Barr body, is positioned close to the nucleolus or at the periphery of the female 

interphase mammalian nucleus (Barr & Bertram, 1949; Dyer etal., 1989). Could the genetic 

inactivity of a chromosome or chromosomal domain impose a peripheral situation for that 

region in the interphase nucleus? And conversely, are active regions more centrally located? 

Condensed blocks of heterochromatin can be seen in the nuclei of many eukaryotes and in 

some instances they appear to preferentially lie at the nuclear periphery (Rae & Francke, 

1972; Mathog etal., 1984; Review: Comings, 1980). Interestingly, it has been demonstrated 

that upon infection by herpes simplex virus the chromatin of human HeLa cells is forced to 

the nuclear periphery and rendered transcriptionally inactive, while non-encapsidated viral 

genomes are exclusively centrally located, the region of the nucleus active for viral genome 

replication and nucleocapsid formation (Puvion-Dutilleul & Bessse, 1994). 

The fact that the human Y chromosome is significantly closer to the nucleolus than would 

be expected if randomly distributed, has been attributed to the association of the 

heterochromatic regions of the Y and the acrocentric chromosome short arms 

(Weipoltshammer et al., 1996). However, although characteristic positions have been 

implied in mammalian nuclei, no chromosome has been shown to occupy a consistent 

address with respect to another (Review: Manuelidis, 1990). In plant nuclei, however, this 

concept has been firmly established, with specific arrangements of chromosomes indicated 

from the frequencies of particular spontaneous or radiation-induced chromosomal exchanges 

(Example: Sax, 1940; Reviews: Avivi & Feldman, 1980; Heslop-Harrison, 1990). 

Probes for specific regions of human chromosomes were used for FISH to human central 

nervous system cells and analysed in 3-dimensions (3-D) by optical sectioning (Manuelidis 

& Borden, 1988). Probes for the heterochromatic regions of chromosomes 1 (1q12) and 9 

(9q12), were always associated with the nuclear periphery or nucleolus. Meanwhile, a 

probe for the T-band, lp36 was always found in the nuclear interior. This, and other FISH 

data (Lawrence et al., 1988; Lawrence & Singer, 1991; Xing et al., 1995), supports the 
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concept of a highly compartmentalised nucleus, with transcriptionally active chromatin more 

internally located, and transcriptionally inactive regions more peripherally located. 

Nonetheless, there is little consistent evidence that mammalian chromosomes regularly 

adopt defined positions within the nucleus that relate to their activity and, indeed some 

studies have suggested that positioning of chromosomes is random (Popp et al., 1990; 

Aquiles Sanchez et al., 1997). 

1.6.5 The nuclear matrix 

Nuclei can be extracted with salt to reveal a morphological framework, termed the "nuclear 

matrix", surrounded by loops of DNA (McCready etal., 1979; Vogelstein etal., 1980). The 

residual protein content of 2M salt extracted nuclei and metaphase chromosomes have been 

compared (Lewis etal., 1984; Pieck et al., 1985) and the predominant protein in both is topo 

II (Section 1.4.6). Nuclei show a more complex range of proteins, but there are also proteins 

which are present at the chromosome scaffold and not at the nuclear matrix, for example, 

Sd (Section 1.4.7). Many of the proteins of the nuclear matrix remain to be identified. 

Protein composition appears to differ between cell types, however, lamins are members of a 

common set of nuclear matrix proteins (Stuurman et al., 1990; Hozak et al., 1995) (Section 

1.6.6). 

There is evidence that the nuclear matrix is associated with nascent RNA and DNA 

(McCready et al., 1980; Berezney & Buchholtz, 1981; Voglestein et al., 1980; Jackson et 

al., 1981 & 1984), transcriptionally active sequences (Ciejek et al., 1983; Robinson et al., 

1983; Jackson & Cook, 1993); replication origins (Dijkwel etal., 1986; Razin etal., 1986 & 

1993; Amati & Gasser, 1988; Sykes et al., 1988), enhancers (Cockerill & Garrard, 1986; 

Jenuwein et al., 1997), chromatin domain boundaries (Phi-Van & Stratling, 1988; 

Thompson et al., 1994a; Kalos & Fournier, 1995), transcription factors (Sun et al., 1994), 

histone acetyltransferase activity (Hendzel et al., 1994) and histone deacetylase activity 

(Hendzel etal., 1991). 

Salt extraction was criticised by Mirkovitch et at. (1984) for causing sliding and 

randomising attachment sites. A less harsh protein extraction procedure was developed 

using the detergent-like molecule lithium diiodosal icy late (US). Thorough digestion of the 

extracted nuclei with restriction enzymes was followed by centrifugation, the insoluble 

"nuclear scaffold" attached DNA forming a pellet and the soluble loop DNA remaining in 
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the supernatant. Exonuclease Ill has also been used for the digestion of DNA from 

extracted nuclei (Gasser & Laenimli, 1986). Using these techniques SARs have been 

identified in many organisms (Review: Gasser et al., 1989). These SARs are AT-rich 

sequences (>70% AT) of several hundred base pairs, containing homopolymer tracts of dA 

and dT, and often containing the topo II in vitro consensus sequence 

(GTNA/TAC/TATTNATNNAJG) (Review: Laemmli et at., 1992). No preferential 

association of transcribed or replicated DNA with the US extracted nuclear scaffold was 

observed, however, SARs prepared following such extraction bind specifically to salt 

extracted nuclear matrices (Izaurralde et al., 1988). Proteins localised to the nuclear 

scaffold include: topo II (Adachi et at., 1989), Hi (Kas et al., 1989), lamin B (Luderus et 

al., 1992) (Section 1.6.6), HMGIJY (Zhao et al., 1993) (Section 1.4.4) and the nucleolar-

specific protein, nucleolin (Dickinson & Kohwi-Shigematsu, 1995). 

Jackson et al. (1990) found a large difference in loop sizes generated from the above 

techniques and argued that use of non-physiological conditions resulted in the artifactual 

attachments and associations (Cook, 1988; Jack & Eggert, 1992; Craig, 1995). A method 

was developed by Cook (1984) and Jackson et al. (1988) which involves encapsulating 

living cells in agarose beads, incubation in a physiological buffer, permeabilisation with a 

detergent, and restriction enzyme digestion. The cells and nuclei are protected from 

aggregation by the agarose, circumventing the use of hypertonic or hypotonic buffers and 

the need for chromatin stabilisers such as polyanions, Cu 2  and Ag. Electroelution is used 

to remove digested loop DNA from the agarose and the remaining residual framework in 

this instance is termed the "nucleoskeleton". Surprisingly, a similar set of sequences and 

processes have been assigned to nucleoskeletons as those of salt extracted nuclear matrices. 

Despite removal of most of the chromatin major cellular functions including transcription 

(Jackson & Cook, 1985; Jackson et at., 1996; Review: Cook, 1989) and replication (Jackson 

& Cook, 1986; Reviews: Jackson, 1990 & 1991, Cook, 1991) can be initialised at the 

nucleoskeleton. Proteins shown to be associated with the nucleoskeleton include: RNA 

polymerase (Jackson & Cook, 1985), DNA polymerase (Jackson & Cook, 1986; Hozak et 

al., 1993), proliferating cell nuclear antigen (PCNA) (Hozak etal., 1993), lamins (Hozak et 

al., 1995), and transcription factors (van Wijen etal., 1993; Sun etal., 1994). 

Craig et at. (1997) have used FISH to examine the distribution along metaphase 

chromosomes of attached and loop DNA prepared from nuclei extracted with salt, LIS and 
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electroelution. It was found that DNA attached to the nuclear matrix or scaffold hybridised 

preferentially to the gene-poor G-bands. Conversely, DNA attached to the nucleoskeleton 

preferentially hybridises to the gene-rich R-bands. This study demonstrated that the 

differing sequence characteristics of DNA associated with the nuclear scaffold, matrix and 

nucleoskeleton are maintained across the genome. This is further discussed in Section 4.2.4. 

1.6.6 The nuclear lamina and the inner nuclear membrane 

The nuclear membrane consists of two concentric bilayers. The outer nuclear membrane 

shares its proteins and properties with the endoplasmic reticulum, of which, it is a 

continuation. The inner nuclear membrane is distinct and contains a unique set of proteins 

(Review: Gerace & Foisner, 1994), including lamin B receptor (LBR) (Worman et at., 1988; 

Ye & Worman, 1994) and lamina-associated polypeptides (LAP) I (Martin et at., 1995) and 

2 (Furukawa et al., 1995). Direct interaction occurs between each of these proteins and the 

nuclear lamina, a meshwork of intermediate filaments that lines the surface of the inner 

nuclear envelope and associates with interphase chromatin (Glass & Gerace, 1990; Belmont 

et at., 1993; Taniura et at., 1995; Review: Gerace & Burke, 1988). Disruption of the 

nuclear lamina results in the redistribution of replication components and blocks replication 

progression (Ellis etal., 1997; Spann etal., 1997). 

Data from reconstituted liposomes and reassembly assays in sea urchin eggs suggests that 

LBR is a major chromatin docking protein (Pyrpasopoulou et at., 1996; Collas et al., 1996) 

and LBR interacts with chromodomain-containing human homologues of HP1 (Ye & 

Worman, 1996 & 1997) raising the possibility that this protein mediates interphase 

chromosome organisation via the heterochromatic, HP1-associated regions. LAP2 also 

binds chromatin but appears not to be a major docking protein. It was recently shown that 

LAP2 is involved in the regulation of lamina growth during the cell cycle (Yang et at., 

1997). 

Use of an LBR-GFP fusion protein has allowed the dynamics of the inner nuclear membrane 

to be observed in living cells (Ellenberg et al., 1997). It appears that during most of mitosis 

the entire nuclear membrane becomes an integral part of the endoplasmic reticulum. At 

telophase, a change in phosphorylation state would allow LBR (and possibly other inner 

membrane proteins) to bind chromatin. As each receptor becomes bound it will be 

immobilised and as new receptors are recruited the chromosomes are progressively coated 
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with the LBR-containing membrane and sealed off from the cytoplasm. The sites at which 

LBR specifically binds the chromosomes is likely to dictate where and how the 

chromosomes will be located in the nucleus (Chaudhary & Courvalin, 1993; Review: 

Marshall & Wilson, 1997). 
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Figure 1.5 The organisation of chromosome territories in the interphase nucleus 
Adapted from Cremer et al.(1993). In this hypothesis chromosomes occupy a distinct and 
discrete territory in the interphase nucleus (compartment). Channels (intercompartment) run 
between territories, along which RNAs and proteins travel. 



1.7 Proposed research: Utilising human chromosomes 18 and 
19 

The contrasting G- and R-band types (Sections 1.2 & 1.3) are intercalated throughout 

the mammalian genome, making comparative studies of their behaviour difficult. In 

the human genome, however, two chromosomes are unique in that they display the features 

of a particular band type in their entirety: chromosomes 18 and 19. 

Chromosome 18 is next in line to chromosome 19 in cytogenetic idiograms based on the 

physical length of human metaphase chromosomes. Attempts to determine the relative DNA 

content of each of the human chromosomes have used analysis of fluorescent DNA stains 

with no base bias, by image or flow cytometry, and measurements of incorporated 

radioactive DNA precursors by autoradiography. Morton (1991) determined an average 

relative DNA content from a number of such experiments. Chromosomes 18 and 19 were 

estimated to posses 2.7% and 2.1% respectively, of total DNA in the human genome. 

Taking the total DNA content of the human genome to be 3200Mb, chromosome 18 was 

estimated to be 85Mb in size and chromosome 19 to be 67Mb. This gives a ratio for 19:18 

of 0.79, and thus emphasises the comparability in size observed cytogenetically for these 

two chromosomes. 

However, while being comparable in size these two chromosomes are completely 

contrasting in their structural and functional features. The majority of R-bands along 

chromosome 18 are R'-bands while on chromosome 19 T-bands dominate (Holmquist, 1992) 

(Figure 1.6). Chromosome 18 consists of mainly dark-staining 0-bands, while there are no 

dark-staining 0-bands and few small light-staining G-bands on chromosome 19. Thus, 

chromosome 18, as a whole, may reflect many of the features of 0-bands and chromosome 

19 may show many of the features designated to T-bands. 

FISH with small fragments of human genomic DNA cut with HaelII (GO I CC), chosen to 

represent the GC-richest parts of the genome, reveals signal on chromosome 19 to be 

considerable and much stronger than that on chromosome 18. FISH with small Sau3Al 

(GATC) fragments with no sequence bias gives a similar intensity of signal on both 

chromosomes (Craig & Bickmore, 1994) (Figure 1.6). Chromosome 18 is thus GC-poor 

next to GC-rich chromosome 19. 
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FISH with CpG-island fragments (Figure 1.6) and fragments with small inter-CpG-island 

distances (Figure 1.6), show little hybridisation signal on chromosome 18 and heavy 

labelling on chromosome 19 (Craig & Bickmore, 1994) (Section 1.3.7.4). From these 

results it would be expected that chromosome 18 has a lower gene density than chromosome 

19. This appears to be the case. The Human Genome Database has a list of mapped genes 

allocated to each chromosome which is updated daily. At the end of October, 1997, 5801 

assigned genes were recorded and of these, 290 were pseudogenes. Table 1.3 shows the 

allocation of genes for several chromosomes. It is striking that chromosome 18 has the 

fewest genes of any autosome (when including pseudogenes), while chromosome 19 has 

almost 3x the expected number of genes and almost 5x the observed: expected ratio of 

chromosome 18 (Table 1.3). The pattern of gene distribution between chromosomes has 

remained the same. In a survey published by Schuler et al. (1996), mapped random ESTs, 

which are argued to mark genes, were recorded. A significant deficit of ESTs (xpressed 

equence rags) were shown to be present on chromosome 18 (0.7x expected number), while 

an excess of ESTs were mapped to chromosome 19 (1.6x expected number). 

Table 1.3 The allocation of genes to different human chromosomes 
Data is taken from the Human Genome Database, Baltimore. 5511 total genes were 
assigned as of the end of October, 1997 (excluding pseudogenes). Estimates of the 
proportion of total genomic DNA content are taken from Morton (1991). 

Chromosome Gene allocation Proportion of total 
genomic DNA 
content 

Observed/expected 
gene density 

556(10.1%) 8.2% 1.2 
2 318(5.8%) 8.0% 0.7 
11 368(6.7%) 4.5% 1.5 
13 77 	(1.4%) 3.6% 0.4 
18 82 	(1.5%) 2.7% 0.6 
19 335(6.1%) 2.1% 2.9 
21 89 	(1.6%) 1.6% 1.0 
22 117(2.1%) 1.7% 1.2 
X 376(6.8%) 5.1% 1.3 
Y 22 	(0.4%) 1.9% 0.2 

Interestingly, the three autosomes with the lowest gene load are the three most commonly 

found human trisomies. Trisomy of chromosome 18 occurs at a frequency of I in 6,600 live 

56 



births and results in Edwards' syndrome (Buyse, 1990). Individuals with this syndrome 

suffer developmental and mental retardation and are unlikely to live more than a few days. 

However, there are no recorded chromosome 19 trisomy live births. It has been suggested 

that trisomy for chromosome 19 is lethal, leading to early abortions which are not 

detectable, reflecting the very high gene load of this chromosome (Kuhn etal., 1985). 

After incorporation of BrdU into late replicating DNA, Craig and Bickmore (1994) used an 

antibody to BrdU conjugated with FITC (green fluorochrome) for visualisation of the late 

replicating regions of the genome (Figure 1.6). Chromosome 18 can be seen to be 

predominantly late replicating, while chromosome 19 is generally early replicating. 

Dutrillaux et al. (1976) divided replication into 18 arbitrary stages (1 being the earliest stage 

and 18 being the latest). The chromosome 18 G-bands replicated at stages 13 and 14, while 

the R-bands replicated at stages 7 and 8. By contrast, the chromosome 19 0-bands 

replicated at stages 10 and 11, while the R-bands replicated between stages 1-6. 

As expected, chromosome 18 shows low levels of H4 acetylation along its entire length. 

Aside from the centromere, chromosome 19 has a predominance of highly acetylated H4 

(Jeppesen etal., 1992) (Figure 1.6). 

Chromosomes 18 and 19 are comparable in size, but contrasting in their structural and 

functional features (Table 1.4). In their entirety, these chromosomes represent two extremes 

of chromosomal environment, that throughout the remainder of the human genome are 

intercalated and difficult to dissect apart. In this thesis I investigate whether human 

chromosomes 18 and 19 can be used as representations of the different band types and be 

utilised to explore the links between vertebrate chromosome structure and function further. 

At both metaphase and interphase, further differences between these two chromosomes are 

established and results extrapolated to elaborate on the relationship between the banding 

types which they each depict. 

The areas in which comparisons between these two chromosomes were made, are as 

follows: 

• Structure of traditionally fixed and salt extracted metaphase chromosomes. 

Dynamics of histone acetylation along the length of metaphase chromosomes. 

• Position and shape of territories taken up in interphase nuclei. 
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. An attempt to identify potentially novel non-histone proteins and/or histone 

modifications by the raising of new monoclonal antibodies to metaphase chromosomes. 

Table 1.4 A summary of the contrasting features of human chromosomes 18 and 19 
Chromosomes 18 and 19 are comparable in size but contrasting in their structural and 
functional features. 

Chromosome 18 Chromosome 19 

85Mb (2.7% total genome) 67Mb (2.1% total genome) 

No R-bands are T-bands All R-bands are T-bands 

Relatively GC-poor Relatively GC-rich 

Low CpG-island density High CpG-island density 

0.6x expected number of genes 2.9x expected number of genes 

High number of trisomies (1 in 6,600 new No recorded trisomies 
borns) 

Generally late replicating Generally early replicating 

Low levels of H4 acetylation High levels of H4 acetylation 



R. 

Figure 1.6 Some of the features of human chromosomes 18 and 19 
(a) ideogram of" the chromosomes at 4(X) hands/genomc resolution. Black- (i-hands Grey- R-hands White- T-hands (b-d) Taken Irom 
Craig (I 995. FISH signal froni hybridisation of I (X)-6(H)hp DNA fragments (red) generated by digestion of human genomic DNA with: 
(h) HaeIII (GGCC), (C) SauiA I (GATC) or. (d) fJ,naII (CCGG). In the latter of these panels, chromosomes were counierstained with DAPI 
(blue). (e) Taken front Craig & Bickmorc (1994). Incorporation of' BrdU into late replicating regions detected by immunofluorescence 
with anti-BrdU-FITC (green) on DAPI stained chromosomes (blue). (f) Immunotluorescence with an antibodv raised to acetylated H4 
(R4 I ) (TR/rcd) on DAPI stained chromosomes (blue). Antibody provided by Prof. B.M. Turner. University of Birmingham. 



2. Materials and methods 

2.1 Mammalian cell culture 

2.1.1 Cell counting and cell viability 

Cells were counted using a haemocytometer (Weber Scientific International Ltd.) which has 

a chamber 0.1mm in height with an etched grid of 1mm 2  subdivided into 400 squares. The 

total volume defined by the grid was lx10 4  ml. To simultaneously test for cell viability, 

250jtl cells were mixed with an equal volume of nigrosine (0.45% diluted in phosphate 

buffered saline (PBS)) and I0jil were added to the haemocytometer chamber. Nigrosine 

stains only dead cells. To obtain cell concentrations per ml, the total number of cells over 

the grid was multiplied by 2x10 4 . 

2.1.2 Thawing cells from storage in liquid nitrogen 

Cells were stored in liquid nitrogen suspended in freezing medium (6% DMSO in foetal calf 

serum (FCS)). On removal to thaw, tubes were immediately incubated at 37 °C in a beaker 

of water. Cells were diluted in medium, centrifuged at 400g for 5 minutes, resuspended in 

fresh medium and transferred to a tissue culture flask. 

2.1.3 Culture of human and rodent-human hybrid cell lines 

REN2 (49 XXXXY) and FATO (46 XY) are human lymphoblast cell lines. These cells 

were grown as suspension cultures in RPMI (Gibco BRL) supplemented with 10% FCS. 

Cells were split 1:3 in fresh medium every 2-3 days. Every 7 days the cells were spun at 

250g for 5 minutes and resuspended in fresh medium at a concentration of 5x10 5 cells/ml. 

The following lines were grown as monolayer cells. The human mesothelioma cell line, 

JU77 and the mouse-human monochromosome hybrid cell line, PgMe-25 were grown in 

RPMI supplemented with 10% FCS. The two Chinese hamster-human monochromosome 

hybrid cell lines, GM110I0 and GM10449A, and the human fibrosarcoma cell line, 

HTI080, were grown in DMEM (Gibco BRL) supplemented with 10% FCS. The mouse-

human monochromosome hybrid cell line, A91neo was grown in RPMI supplemented with 

10% FCS and 400.xg/mi G418 Sulphate (Gibco BRL) to select for the resistance tagged 
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human chromosome 1. Finally, the myeloma cells, Sp2/0 were grown in RPMI 

supplemented with 10% myoclone FCS. The cells from each of these lines were allowed to 

grow to near confluence before splitting. Medium was poured off, the cells washed twice in 

PBS then covered in a thin layer of 10% trypsin in versene and placed at 37 °C for 5 minutes. 

Gentle agitation dislodged the cells, medium was added and the cells were pelleted at 250g 

for 5 minutes. 

All cells were incubated at 37 °C with 5% CO2 . To promote the number of cells at 

metaphase, 2 hours prior to harvesting 0. I .ig/ml of colcemid (Gibco BRL), a microtubule 

poison, was added. 

2.1.4 Primary lymphocyte culture 

Fresh peripheral blood from a normal male was taken and cultures were set up immediately. 

0.8ml of blood were added to 9.2m1 of RPMI supplemented with 10% FCS, and stimulated 

with the mitogen phytohaemagglutinin at a final concentration of 4.tgIml. Best results were 

obtained when blood was cultured in 20m1 round-bottomed universals (Life Technologies). 

Cells were incubated at 37 °C and 5% CO2. 

Cells were synchronised after 48 hours in culture. Methotrexate was added to a final 

concentration of 10 7M. This prevents the formation of thymidine and thus blocks cells at 

the GUS boundary, or within S phase if already entered. After 16 hours the medium was 

replaced with fresh medium warmed to 37 °C. After a further 4.5 hours colcemid was added 

to a final concentration of 0. ltg/ml. The cells were harvested after a further 10 minutes. 

2.1.5 Primary fibroblast culture 

A normal male foetal lung primary fibroblast cell culture, GM0I604A, was obtained from 

the National Institute of General Medical Sciences Human Genetic Mutant Cell Repository, 

New Jersey. The culture was grown and harvested by Dr. J.A. Fantes, MRC Human 

Genetics Unit, Edinburgh. The growth medium was RPMI supplemented with 15% FCS, 

100.1g/ml streptomycin and 100 units/ml penicillin. Cells were incubated at 37°C and 5% 

CO2. 



Fibroblast cultures arrested in G  were obtained by growing to monolayer confluency then 

replacing with medium containing only 2% FCS. After 2-3 days, when no rounded mitotic 

cells could be seen, the cells were harvested (Tobey et al., 1988). Medium was poured off 

and the cells washed twice in PBS. Cells were covered in a thin layer of 10% trypsin in 

versene and placed at 37 °C for 5 minutes. Gentle agitation dislodged the cells, medium was 

added and the cells were pelleted at 250g for 5 minutes. 

2.1.6 Harvesting and fixing metaphase spreads 

After harvesting, cells were suspended in a mildly hypotonic solution, 0.075M KCI, at a 

concentration of 2x10 6  cells/mi. The hypotonic solution was added dropwise while 

continually agitating the tube. The cell suspension was left at room temperature for 30 

minutes before centrifuging at 400 g  for 5 minutes. Cells were then fixed with fresh 3:1 

methanol:glacial acetic acid. 2m1 of fix was added dropwise to the cells while the tube was 

agitated using a vortex. A further 8rnl of fix were added and the tubes were placed on ice 

for a minimum of 10 minutes or stored at -20 °C overnight. Cells were fixed twice more and 

stored indefinitely at -20 °C. 

2.2 Preparation of DNA 

2.2.1 Treatment of cells for DNA extraction 

Cells for extraction were washed in ice cold PBS. Human peripheral blood was centrifuged 

at 180g for 5 minutes and resuspended in an equivalent volume of ice cold red blood cell 

lysis buffer (154mM NH4C1, 10mM KHCO 3, 0.1mM EDTA). Tubes were left on ice for 10 

minutes, centrifuged as before and washed in ice cold PBS. 

Using Sml Sarstedt tubes, cells were suspended in sufficient PBS such that the suspension 

was cloudy and viscous but relatively easy to manipulate (2x10 7-108  cells/ml). An equal 

volume of lysis buffer (100mM Tris-HCI pH7.5, 100mM NaCl, 10mM EDTA, 1% Sarkosyl) 

was added slowly then the tubes were inverted to mix over a period of 5 minutes. RNAse 

was added to a concentration of 100tg/mi and the lysate left at 37 °C for 30 minutes. 

Proteinase K (Boehringer) was then added to a final concentration of lOOp.g/ml and the 

tubes incubated at 55°C for 4 hours, being inverted every 30 minutes for 3 minutes. 
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2.2.2 Phenol/chloroform extraction 

DNA was extracted from the cell lysate with an equal volume of phenol (pre-heated to 

60°C), followed by phenol:chloroform:octan-2-ol (25:24:1) and finally chloroform:octan-2-

ol (24:1). Tubes were repeatedly inverted over a period of 10 minutes, left for 5 minutes on 

ice then centrifuged at 700g for 5 minutes. The aqueous layer was transferred to a new tube 

after each extraction step. 

2.2.3 Dialysis 

Dialysis tubing (Visking) was prepared by boiling for 10 minutes in a large volume of 2% 

NaHCO3  in 1mM EDTA pH8.0, rinsing in dH 20 and storing submerged in 1mM EDTA 

pH8.0 at 4°C. Immediately prior to use, a length of tubing was boiled for 10 minutes in 

dH2O. Extracted DNA was dialysed against 1000x volume of TE buffer (10mM Tris, 1mM 

EDTA, pH8.0) with 100mM NaCI at 4 °C for 24 hours then against 1000x volume TE buffer 

only, at 4°C for 24 hours. DNA was stored at 4 °C. 

2.2.4 Ethanol precipitation 

DNA was precipitated by adding 0.lx volume of 3M sodium acetate and 2.5x volume 

ethanol. Samples were incubated at -20 °C for a minimum of 1 hour or overnight before 

centrifuging at 12000g for 15 minutes at 4 °C. DNA pellets were washed twice in 80% 

ethanol, vacuum dried and suspended in the appropriate volume of TE buffer. Samples were 

stored at 4 °C. 

2.2.5 Measuring quality and quantity of DNA 

DNA concentration was measured spectrophotometrically and/or by gel electrophoresis 

alongside DNA of known concentration (Section 2.3). 

DNA was diluted 1:1000 in TE buffer and transferred to a quartz cuvette. The absorbence 

or optical density (OD) at 260nm (A 260) was measured. An OD of I corresponds to 

-50.tg/ml of DNA. To determine the purity of DNA the A28 0  was also measured. Pure 

DNA has an A260  /A280  of 1.8, values lower than this indicate contamination by proteins, 

RNA or phenol. 
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2.3 Electrophoresis of DNA 

Horizontal agarose gels (0.5-1% in 1xTBE) were used to resolve molecules of 0.2 to 50Kb. 

The electrophoresis buffer was IxTBE (90mM Tris-HCI, 90mM boric acid, 2mM EDTA 

pH8.0). To resolve small fragments (0.05 to 5Kb) horizontal 2% Nusieve gels were used. 

To provide DNA samples with a density high enough to sink to the bottom of the wells, I 

volume of 6x loading buffer (15% Ficoll 400, 0.25% Bromophenol Blue, 0.25% xylene 

cyanol) was added to 5 volumes of DNA. The dyes included in this buffer provided 

convenient size markers whose electrophoretic mobility depended on gel concentration. 

Commercially available DNA size markers (X174 DNA HaeIII digest and 2c DNA Hind!!l 

digest) were diluted to 50ng4il and 250-500ng loaded per well. 

The DNA-intercalating fluorescent stain ethidium bromide (2,7-diamino-10-ethyl-9-phenyl-

phenathridium bromide) was used to stain DNA gels. Gels were soaked in 0.25.1g/ml of 

ethidium bromide with mild agitation for 30 minutes, then destained in dH2O for a further 

30 minutes. Stained DNA was visualised with UV light from a transilluminator. Gels were 

photographed using an Appligene (Oncor) television camera and images were printed 

instantly using a Mitsubishi video copy processor or with a Kodak MP-4 Land camera using 

Kodak Plus-X pan film with 1-3 minute exposure. 

2.4 Polymerase chain reaction (PCR) 

2.4.1 Human-specific Alu PCR 

2.4.1.1 Choice of primers 

The following primers were used for human-specific Alu PCR: 

#153 5' GGGAUACAGGCGTGAGCCAC 3' (Breen et al., 1992), 

#154 5' TGCACTCCAGCCTGGGCAACA 3' (Breen et al., 1992), 

#451 5' GTGAGCCGAGATCGCGCCACTGCACT 3' (Al veiler & Porteous, 1992), 

#SB30 5' ACAGAGCGAGACTCCGTCTC 3' (Ms. S. Boyle, MRC Human Genetics Unit, 

Edinburgh). 

64 



The positions of each of these are shown relative to the human Alu consensus sequence in 

Figure 3.9. 

2.4.1.2 Preparation of the primers 

All primers were synthesised at the MRC Human Genetics Unit, Edinburgh and stocks were 

provided in imi ammonium hydroxide. 350g1 of stock were precipitated (Section 2.2.4) and 

resuspended in 2001.tI TE buffer. The concentration was determined (Section 2.2.5) and the 

oligo diluted to 250ng/pl. 

2.4.1.3 Amplification method 

This method was adapted from Arveiler & Porteous (1992). The following were mixed in a 

5001.tl tube: lOj.tl 1OxPCR buffer (Perkin Elmer Cetus); lOp.l 25mM magnesium chloride 

(Perkin Elmer Cetus); 2p.l dNTP mix (2mM each of dATP, dGTP, dCTP and dTTP 

(Promega)); SOng template DNA; 25ng primer DNA; 2.5 units Taq polymerase (Perkin 

Elmer Cetus) and dH 20 to 100R1.  The reaction was mixed, spun briefly and overlaid with 

50.tl mineral oil (Sigma) to prevent evaporation. Reactions were amplified using a thermal 

cycler (Perkin Elmer Cetus). The following cycling conditions were used: 94 °C for 5 

minutes pre-soak, denaturation at 94 °C for 45 seconds, annealing at 60°C for 1 minute and 

extension at 72°C for 1 minute increasing by 6 seconds/cycle. After 40 cycles, reactions 

were frozen at -20 °C. An aliquot of lOp! was analysed by electrophoresis. Products from 

each primer reaction were pooled, precipitated (Section 2.3.4) and the concentration was 

determined (Section 2.3.5). Products were labelled for FISH by nick translation (Section 

2.5.1). 

2.4.2 Linker PCR 

2.4.2.1 Catch-linkered products and primers 

Dr. S.H. Cross, University of Edinburgh, provided catch-linkered DNA from fractions of 

human chromosome 18 and 22 DNA purified using the methylated DNA binding column 

(Cross et al., 1994) (Section 4.3). Chromosomes were sorted using fluorescence activated 

chromosome sorting (FACS) by Dr. N. Carter, Sanger Centre, Cambridge (Section 2.8.2), 

digested with MseI (T I TAM and a sample of this DNA was catch-linkered. The remaining 
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DNA was purified through the column and fractions representing CpG-island and non-CpG-

island DNA were also catch-tinkered. The following catch linkers were used: 

Chromosome 18 

CH 18-1 5'TACCGT7AAGCGTCAATCATGG3' 

CH18-2 3' GGCAATfCGCAGTTACTACCS' 

Chromosome 22 

CH22- 1 5'TAAGTACTGCACCAGCAAATCC3' 

CH22-2 3' TCATGACGTGGTCGrVFAGG5' 

The pairs of linkers were annealed together and ligated to the MseI digested DNA. CH 18-2 

and CH22-2 were used as primers for linker PCR. 

2.4.2.2 Amplification method 

The following were mixed in a 5001.t1 tube: 5t1 lOx tricine PCR buffer (20mM MgCl', 

300mM tricine pH8.4, 100mM 13-mercaptoethanol, 0.1% gelatin); 2011 dNTP mix (2mM 

each of dATP, dGTP, dCTP and dTTP (Promega)); 50ng template DNA; 25ng primer DNA; 

2.5 units Taq polymerase (Perkin Elmer Cetus) and dH20 to 50tl. The reaction was mixed, 

spun briefly and overlaid with 50tl mineral oil (Sigma). Reactions were amplified using a 

thermal cycler (Perkin Elmer Cetus). The following cycling conditions were used: 94 °C for 

7 minutes pre-soak, denaturation at 94 °C for 30 seconds, annealing at 50°C for 45 seconds 

and extension at 72 °C for 1 minute increasing by 1 second/cycle. After 35 cycles, reactions 

were frozen at -20 °C. An aliquot of 10tl was analysed by electrophoresis. 

2.4.2.3 Labelling products for FISH by PCR 

Products were labelled for FISH by a second round of PCR incorporating biotin-16-dUTP or 

digoxigenin-11-dUTP. The following were mixed in a 500j.il tube: 5tl lOx tricine PCR 

buffer (20mM M902,  300mM tricine pH8.4, 100mM 13-mercaptoethanol, 0.1% gelatin); 5.11 

each of 2mM dATP, dGTP and dCTP (Promega); 2.5tl 0.5mM dTTP; SpA 50nM biotin-16-

dUTP (Boehringer) or SpA 125nM digoxigenin-1 l-dUTP (Boehringer); 50ng template DNA; 

25ng primer DNA; 2.5 units Taq polymerase (Perkin Elmer Cetus) and dH 2O to 50pA. 

Cycling conditions as in Section 2.4.2.2. 



2.5 Non-isotopic DNA labelling 

DNA was labelled using biotin-16-dUTP or digoxigenin-! l-dUTP. These analogues were 

incorporated into DNA by PCR (Section 2.4.2) or nick translation. Following either 

method, unincorporated nucleotides were removed and efficiency of labelling was assessed 

as described in Section 2.5.3. 

2.5.1 Nick translation 

I .5.tg of DNA were added to 441 lOx nick translation salts (0.5M Tris-HCI-HCI pH7.5, 

0-IM MgSO4, 1mM DTT, 500p.g/ml Bovine serum albumin (BSA)), 411 each of 2mM 

dATP, dGTP and dCTP, 2tl of 0.5mM dTFP and 4tl 1 m biotin- I 6-dUTP or digoxigenin-

1 l-dUTP. DNAse I (Gibco BRL) was diluted to a concentration of 20units/ml in dH2O at 

4°C and 2.tI added to the reaction mixture to give a final concentration of lunit/mi. After 

the addition of Ipi DNA polymerase I (Gibco BRL, lOunits/pi), dH 20 was added to make 

the total volume of reaction mixture 40pi.  The reaction was mixed thoroughly and allowed 

to proceed at 16 °C for 90 minutes. The reaction was stopped by placing at -20 °C. 

A plasmid containing chromosome 1 centromeric heterochromatin (Cooke & Hindley, 1979) 

was labelled directly with a fluorochrome, by Mrs. P. Malloy, MRC Human Genetics Unit, 

Edinburgh. This was achieved by nick translation using the following concentrations: 

SOOng DNA, 2il lOx nick translation salts (as above), 2.5p.l each of 2mM dATP, dGTP and 

dCTP, 1.5l.Ll of 0.5mM dTTP and Ijil 1mM dUTP conjugated to Spectrum Orange 

fluorochrome (Gibco BRL). DNAse I and DNA polymerase I were added and remaining 

procedures carried out as directed above. 

2.5.2 Removal of unincorporated label 

Sephadex G50 (Pharmacia) was swollen in an excess of dH 2O, washed several times in 

dH2O, equilibrated in TE and autoclaved. Spin columns were made by inserting a small 

plug of sterile siliconised glass wool in a Iml syringe, filling the syringe with Sephadex and 

centrifuging at bOg for 5 minutes. Reactions were made up to 100.tl with TE buffer and 

centrifuged through the spin columns at lOOg for 5 minutes, separating the unincorporated 
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nucleotides from the nick translated DNA fragments. Collected labelled DNA probes were 

stored at -20°C. 

2.5.3 Quantifying label incorporation 

Gridded nitrocellulose membranes were prepared by soaking briefly in dH 2O followed by 

20xSSC (3M NaCl, 0.3M tn-sodium citrate, pH7.4) for 10 minutes then allowing to air dry. 

Labelled DNA probes were diluted to lxlO 2  and 1x10 3  and Ipi of each was spotted twice 

onto a gridded membrane. After the spots had dried, a further I .tl was added to one of each 

dilution. On the same membrane 20, 10, 2 and lpg of appropriately labelled lambda DNA 

standards (Boehringer) were spotted. DNA was cross-linked onto the membrane by 

exposure to 30mJ of UV irradiation. 

For detection, the membrane was immersed in buffer 1 (0.IM Tris-HCI pH7.5, 0.15M 

NaCI) for 5 minutes at room temperature then in 3% BSA in buffer I at 37 °C for 30 minutes. 

10W streptavidin-alkaline phosphatase (Boehringer) and/or anti-digoxigenin-alkaline 

phosphatase (Boehringer) were added to lOmI of buffer I and placed in a sealed polythene 

bag with the membrane for 30 minutes at room temperature with continuous agitation. The 

membrane was washed twice for 15 minutes in buffer 1 then for 5 minutes in 0.1M 

Tris-HC1, pH9.5. The colour reaction was developed by incubation of the membrane, in a 

sealed polythene bag, with 5m1 of 0. 1M Tris-HC1, pH9.5 and 2 drops from bottles 1-3 from 

the alkaline phosphatase substrate kit IV (Vector). The substrates in this colour reaction are 

5-bromo-4-chloro-3-indolyl phosphate and nitroblue tetrazolium, which produce a blue 

reaction product. A complete colour reaction was usually observed within an hour and an 

estimate of the concentration of DNA labelled probe was made by comparison with the 

lambda standards. 

2.6 Fluorescence in situ hybridisation (FISH) 

The technique of fluorescence in situ hybridisation (FISH) is used to determine the 

chromosomal origin of isolated DNA (Langer-Safer et al., 1982). Methods used here were 

developed by Dr. J.A. Fantes, MRC Human Genetics Unit, Edinburgh (Fantes et al., 1992). 
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2.6.1 Slide preparation 

Glass slides were prepared by soaking in detergent solution and washing with dH7O before 

storage in a dilute solution of HCl in ethanol. Immediately prior to slide making, slides 

were polished with muslin. 

Methanol:acetic acid fixed cells (Section 2.1.5) were removed from storage at -20°C, left to 

warm to room temperature for 30 minutes and centrifuged at 400g for 5 minutes. Fresh fix 

was added to a volume of 0.5-2m1, depending on the number of fixed cells, and the cells 

resuspended. One drop of suspension from a narrow-mouthed pastette was dropped onto a 

horizontal slide from a height of about 30cm. The spread of cells on the slide was improved 

by coating the slides with a thin layer of moisture, usually by breathing. An air humidity of 

>50% also aided spreading. The slides were gently blown upon until the spread dried. 

Spreading was monitored by phase contrast microscopy. Slides were stored under vacuum 

for 2-6 days prior to hybridisation. When fixed material of more than 2 years old was to be 

used, slides were treated with pepsin prior to hybridisation (Section 2.6.2). 

Cytocentrifuged slides (Section 2.10) were stored for up to 1 month prior to FISH. Fixation 

was reversed by immersing slides in 2:5 0.07M NaOH:EtOH for 3 minutes then washing in 

2xSSC (300mM NaCl, 30mM tn-sodium citrate, pH7.4) before RNAse treatment and 

hybridisation as described in Section 2.6.3. 

Slides of salt extracted chromosomes and nuclei (Section 2.9) were stored for up to I week 

prior to FISH. No RNAse treatment was required and thus the slides were dehydrated 

through an ethanol series and hybridisation was carried out as described in Section 2.6.3. 

2.6.2 Pepsin treatment 

Slides were dehydrated in acetone for 5 minutes then dried under vacuum. RNAse 

treatment was carried out as in Section 2.6.3. 43ji1 of I 1M HC1 was added to 50m1 of dH 20 

and pre-heated to 37 °C. 125pi of 2% pepsin was then added and the slides were incubated 

for 5 minutes before washing in PBS with 50mM MgCl,. Slides were dehydrated through 

an ethanol series and hybridisation was carried out as described in Section 2.6.3. 
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2.6.3 Hybridisation 

Slides were mounted vertically in a metal slide rack and subsequent incubations carried out 

in 200m1 glass troughs. Slides were first treated with 100ig/ml RNAse in 2xSSC for 1 hour 

at 37°C, washed briefly in 2xSSC and dehydrated through an ethanol series (2 minutes each 

in 70%, 90% and 100% ethanol). The slides were left to dry under vacuum for 10 minutes 

before being heated in a 70°C oven for 5 minutes and immediately denatured in 70% 

formamide, 2xSSC at 70°C for 2-3 mm. After passing through 70% ethanol at 4°C and an 

ethanol series as above, slides were again vacuum dried. 

Concurrent with slide preparation the probes were prepared. 150ng of labelled DNA 

(Section 2.5), usually suspended in TE was precipitated with 5tg salmon sperm DNA and 

human Cot I DNA (the amount of which varied from 5 to 50.ig, depending on the potential 

repeat content of the probe) (Gibco BRL). After the addition of two volumes of ethanol, 

probes were spun down under vacuum until they had precipitated, and resuspended in 10.tl 

hybridisation mix (50% deionised formamide, 10% dextran sulphate, and 1% Tween20, in 

2xSSC) at 4°C. Commercial probes were usually provided in or with hybridisation buffer 

and did not require addition of salmon sperm DNA or human C ot 1 DNA. All probes were 

denatured at 70°C for 5 minutes and reannealed at 37°C for 15 minutes before spotting onto 

pre-cleaned coverstips. The denatured slides were carefully laid onto the appropriate 

coverslip and sealed with rubber solution (TipTop) before placing in a metal tray in a 37°C 

water bath overnight. 

2.6.4 Washing and detection 

Slides were washed in glass racks in 200m1 troughs. After removal of the rubber cement, 

they were immersed in 50% formamide in 2xSSC at 45°C for 3 minutes, with gentle 

agitation to facilitate detachment of the coverslips. Slides were washed a further 3x in the 

same buffer then for 40 minutes in 2xSSC at 45°C and 4x3 minutes 0.1 xSSC at 60°C 

before transferring to 4xSSC/0.1% Tween 20. Detection was carried out in a moist chamber 

pre-heated to 37°C. Biotin was detected with sequential layers of fluorochrome-conjugated 

avidin (Fluorescein (FJTC) or Texas Red (TR) -avidin), biotinylated anti-avidin, and a 

further layer of fluorochrome-conjugated avidin. Digoxigenin was detected with sequential 

layers of FITC-conjugated anti-digoxigenin and Ff1'C-conjugated anti-sheep. Detection 
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reagents were diluted in SSCM (4xSSC, 5% Marvel dried skimmed milk) to the appropriate 

concentration (Table 2.1). After incubation with 401.11 SSCM for 5 minutes at room 

temperature, 401.Ll of the appropriate detection layer were applied to each slide and covered 

with a square of parafilm. Slides were incubated in the moist chamber at 37°C for 45 

minutes, followed by 3 washes of 2 minutes in 4xSSC/0. I % Tween20 at 37°C. 

All slides were mounted with lJ.LgIml DAPI, or 0.21g/ml Propidium Iodide (PT) in 

Vectashield (Vector). Coverslips were sealed with rubber solution (Pang) and slides were 

stored in the dark at 4 °C. 

2.6.5 Detecting bromodeoxyuridine incorporation 

Bromodeoxyuridine (BrdU) at 1mM final concentration, was added to cells in culture 30 

minutes-4 hours prior to harvesting, to allow determination of the late replicating regions of 

the genome. As an additional detection layer following FISH, FITC-conjugated anti-BrdU, 

diluted to the appropriate concentration in SSCM (Table 2.1), was applied to each slide and 

covered with a layer of parafilm. Slides were incubated in a moist chamber at 37°C for 1 

hour, followed by 3 washes of 2 minutes in 4xSSC/0.1% Tween 20 at 37°C, before 

mounting. 

Since the FITC-conjugated anti-BrdU antibody used here detects BrdU only in single 

stranded DNA, slides not undergoing FISH must be denatured. Slides were dipped in 2:5 

0.07M NaOH:EtOH for 90 seconds, then washed in PBS/1% Marvel for 10 minutes. 

Anti-BrdU was applied as above. Slides were mounted and stored as in Section 2.6.4. 

2.6.7 FISH on three-dimensional nuclei 

This method for the maintenance of three-dimensional nuclei through the process of FISH 

was obtained from Dr. J.M. Bridger, University of Heidelberg. 

HTI080 human fibrosarcoma cells were grown on microscope slides that had been 

previously dipped in EtOH and flamed, by placing each slide in a sterile petri dish and 

covering with medium containing approximately 5x 105  cells/mi. Slides were ready for FISH 

once the cells were approximately 70% confluent. Slides were washed 3x 5 minutes in PBS, 
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fixed in 4% paraformaldehyde for 20 minutes, washed for 3x 5 minutes in PBS and 

permeabilised in 0.5% saponin/ 0.5% Triton X- 100 in PBS for 20 minutes. The slides were 

washed again for 3x 5 minutes before incubating in 20% glycerol in PBS for 30 minutes. 

All incubations were carried out at room temperature. Slides were then dipped into liquid 

nitrogen 5x until the slides were completely frozen then allowing the slides to thaw slowly 

to room temperature each time before re-freezing. Following this, slides were placed in 

0.IM HCI in dH2O for 5 minutes, rinsed in dH2O then heated in a 70°C oven for 5 minutes, 

before denaturing in 70% formamide, 2xSSC for 3 minutes then 50% formamide, 2xSSC for 

1 minute, both at 75°C. Slides were washed briefly in 2xSSC immediately before applying 

the probe. Probes were prepared, hybridised and detected as described in Sections 2.6.3 and 

2.6.4. 

Table 2.1 Antibodies and fluorochrome-conjugates used for FISH 
CS - cell sorting grade 

Antibody or 
fiuorochrome- 
conjugate 

Source Stock 
concentration 

 (mg/ml)  

Dilution 

FITC-avidin D CS Vector 2.0 1:500 
TR-avidin D CS Vector 2.0 1:500 
Biotinylated anti- 
avidin D  

Vector 0.5 1:100 

Anti-sheep-FITC Vector 1.5 1:100 
Anti-digoxigenin- 
FITC F(ab') 2  

Boehringer 0.2 1:40 

Anti-B rdU-FITC Boehringer 0.1 1:10 

2.7 Cell cycle fractionation 

2.7.1 Cell cycle fractionation by elutriation 

FATO cells (Section 2.1.3) were fractionated, according to size and density, using the JE-

5.0 Elutriation System (Beckman) (Section 6.5). BrdU was added to the cell culture 45 

minutes prior to harvesting (Section 2.6.5). 1x10 8  cells were washed in PBS, suspended in 

50m1 of elutriation buffer (PBS, 1% FCS, 0.3mM EDTA, 0.1% glucose) then passed 

through a 40.tm pore filter. lx 106  cells were removed for FACS analysis (Section 2.14.2) 

and 2x106  cells were fixed (Section 2.1.5). The remaining cells were fractionated from the 
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standard 5m1 chamber, at 15°C, at increasing flow rates with a rotor speed of 2500rpm 

(Table 2.2). 

For each fraction, 200m1 were collected, the middle lOOmI were kept and the remainder 

discarded. Between collection of fraction I and 2, a further lOOmI were collected and 

discarded. This was to prevent contamination between fractions. From each fraction the 

cells were counted (Section 2.1.1), a sample set aside for analysis by flow cytometry 

(Section 2.7.2) and the remainder fixed for slide preparation (Section 2.6.!). 

Table 2.2 Flow rates and estimated particle sizes of each elutriator fraction 
Rotor speed was 2500rpm except where indicated. 

Fraction Flow rate 
(mi/minute) 

Particle diameter 
(p.m) 

1 20 9 
2 22.5 10 
3 28 11 
4 33 12 
5 39 13 
6 45 14 
7 51 15 
8 59 16 
9 59 at 1500rpm 26 

2.7.2 Flow cytometry of cells 

The flow cytometer used for the fluorescence activated cell sorting (FACS) analysis of cell 

fractions was a FACScan (Becton Dickenson). The method of preparation of cells for 

analysis was adapted from Vindelov etal. (1983). A sample of cells from each fraction 

were suspended in FACS citrate buffer (250mM sucrose, 40mM tn-sodium citrate, 5% 

DMSO, pH7.6) at lxl06cells/400tl. Cells were stored at this stage, at -20 °C, until required 

for analysis. FACS stock solution (3.4mM tn-sodium citrate, 0.5mM Tris-HCI, 1.5mM 

spermine tetrahydrochloride, 0.1% Nonidet P40, pH7.6) was used to make up all subsequent 

FACS solutions. After thawing rapidly, 900.tl of FACS solution A (3 jig/mI trypsin) was 

added and the cells incubated for 10 minutes at room temperature, with gentle agitation. 

750j.tl of FACS solution B (lOOj.ig/ml RNAse, 500jtg/ml BSA) was added and the cells 

incubated for 30 minutes at room temperature, with gentle agitation. Finally, 750jil of ice 
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cold FACS solution C (2igJml P1, 5.7mM spermine tetrahydrochloride) was added and the 

cells stored on ice for 30 minutes or at 4 °C for up to I week. Forward scatter (particle size) 

and fluorescence emission were recorded for 10000 events from each cell sample using 

software developed by Becton Dickinson. 

2.8 Preparation of metaphase chromosomes 

2.8.1 Isolation of metaphase chromosomes 

This technique has been adapted by Dr. J.A. Fantes, MRC Human Genetics Unit, 

Edinburgh, from Sillar & Young (198 1) (Fantes et al., 1983). The REN2 or FATO human 

cell line (Section 2.1.3) was seeded at 4x10 5  cells/ml and after 30 hours colcemid was added 

to a final concentration of 0.1.tg/mI. Cells were harvested 16 hours later by centrifuging at 

400g for 5 minutes and washed in fresh ice-cold complete medium to remove dead cells and 

debris. The pellet was resuspended in 0.075M KCI hypotonic solution (5x10 6cells/mI). 

After incubation for 20 minutes at 37 °C the cells were placed on ice and 250j.tl removed to 

determine the mitotic index. 5mls of 3:1 methanol:acetic acid was added to the sample and 

allowed to stand on ice for 10 minutes. After centrifugation at 180g for 5 minutes the 

supernatant was removed and the pellet resuspended in a small volume of fixative. A slide 

was prepared from this (Section 2.6.1) and the number of divisions observed in 

approximately 100 cells. A mitotic index of >60% was expected and if this was achieved 

the cells in hypotonic solution were centrifuged at 180g for 5 minutes and resuspended in 

ice cold polyamine buffer (15mM Tris-HCI, 0.2mM spermine, 0.5mM spermidine, 2mM 

EDTA, 0.5mM EGTA, 80mM KCI, 20mM NaCl, 14mM -mercaptoethanol, pH7.2) at 10 

cells/mi. An estimate of the number of chromosomes and nuclei expected were calculated 

from the mitotic index. 

The cells were centrifuged at 180g for 5 minutes and resuspended in ice cold polyamine 

buffer with 0.1% digitonin. The cellular membranes were disrupted by immediately 

vortexing the cells for 60 seconds. This was monitored by placing a drop of suspension on a 

slide previously spread with Hoechst 33258 and observing using a fluorescence microscope. 

Whole nuclei were removed by centrifugation at 180g for 10 minutes. The supernatant was 

kept and the pellet resuspended in polyamine buffer with 0.1% digitonin, vortexed for 5 

seconds, centrifuged at 180g for 10 minutes. The supernatants were pooled and stored for 



up to 4 weeks at 4 °C or up to 6 months at -70 °C with 15% glycerol. The pellets were pooled 

as a nuclear fraction and stored as with the chromosome fraction. 

2.8.2 Flow cytometry of chromosomes 

Pure preparations of chromosomes 18, 19 and X were sorted using fluorescence activated 

chromosome sorting (FACS) by Dr. D. Green, MRC Human Genetics Unit, Edinburgh and 

Dr. N. Carter, Sanger Centre, Cambridge. Metaphase chromosomes were prepared from the 

REN2 human cell line (Section 2.8.1) and stained with 0.5tg/ml Hoechst 33258 

immediately prior to sorting. A sample of 0.75ml was loaded into a cooled syringe set to 

infuse at a rate of 0.4m1/hour. This resulted in a chromosome flow rate of 1000/second 

through a 50.tm glass nozzle into a stream of PBS. A 1W 35 1-364nm wavelength laser 

beam was focused with crossed cylindrical lenses onto the liquid stream. The average peak 

fluorescence intensity of each chromosome measured on opposite sides of the stream and 

perpendicular to the laser beam was accumulated. Under computer control the appropriate 

sorting thresholds were set for the chromosome of interest and chromosomes fluorescing 

between these values were sorted by charged droplet deflection into a small quantity of 

polyamine buffer. 

2.9 Salt extraction of chromosomes and nuclei 

Metaphase chromosomes prepared from the REN2 cell line at a concentration of lx I 0 8/ml 

or nuclei prepared from the FATO cell line at a concentration of — lx I 0 7/ml (Section 2.8. 1), 

were applied to slides 12 hours in advance of salt extraction. 20.tl was distributed in the 

centre of a slide and spread across the surface using the pipette tip. Slides were air dried 

horizontally. 

Using isolation buffer (10mM Tris-HCI pH8.0, 10mM EDTA, 0.1% NP40 detergent, 

20p.g/ml PMSF, 0.1mM CuSO 4), the following salt extraction solutions were made: OM, 

0.5M, l.OM, 1.2M, 1.8M NaCl. Each extraction solution was placed in a large trough 

permitting sufficient depth for the slides to be totally immersed. 

Slides were lowered into each trough using a mesh platform, allowing the slides to be gently 

flooded with extraction solution. Chromosomes and nuclei showed best morphology when 

extracted sequentially: 30 minutes extraction in OM NaCl solution and 15 minutes extraction 
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in all subsequent salt concentrations. 	Slides were fixed by immersing in 3:1 

methanol:glacial acetic acid for 2x 15 minutes. Slides were air dried and stored at room 

temperature for FISH (Section 2.6). 

2.10 Cytocentrifugation and immunofluorescence 

Metaphase spreads for immunofluorescence cannot be fixed with methanol/acetic acid, as 

this process may destroy the antigenic epitope or even extract the proteins under 

investigation. Instead, spreads are produced by spinning cells onto slides by 

cytocentrifugation. 

2.10.1 Cytocentrifugation 

After harvesting, cells were suspended in 0.075M KCI, at a concentration of 2x 106  cells/ml. 

The cell suspension was left at room temperature for 30 minutes before placing on ice and 

diluting with ice cold hypotonic solution to a concentration of 2x10 5cells/ml. 5001d of cell 

suspension was aliquoted into buckets (Cyto-Tek) loaded with slides and ImI filter paper 

(Sakura). Buckets were spun at 400g for 10 minutes in the cytospin (Cyto-Tek). Slides 

were then washed in potassium chromosome medium (KCM) (120mM KCI, 20mM NaCl, 

10mM Tris-HCI pH8.0, 0.5mM EDTA, 0.1% Triton X-100) for 10 minutes. 

Buckets were washed in detergent overnight then rinsed in EtOH and allowed to air dry 

before re-using. Filters were discarded after use. 

2.10.2 Immunofluorescence 

Slides were not allowed to dry out and were agitated as little as possible. 40.tl of primary 

antibody, diluted to the required concentration in KCM with 10% serum (Table 2.3), was 

applied to each slide and covered with a square of parafilm. Incubation was carried out in a 

moist chamber at room temperature for 2 hours. Slides were washed by immersion in KCM 

for 10 minutes in a lOOml glass trough. 40pi of secondary antibody, diluted in KCM with 

10% of the appropriate serum (Table 2.3), was applied and again, covered with a square of 

parafilm. 30 minute incubation was carried out in a moist chamber before immersing the 

slides in KCM for 10 minutes. Slides were fixed in <4% paraformaldehyde, diluted in KCM 

for 15 minutes, before washing in dH 2O. Slides were then allowed to air dry and were either 
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mounted with lj.tg/ml DAPI in Vectashield (Vector) and coverslips sealed with rubber 

solution, or stored in the dark at room temperature for FISH. 

Table 2.3 Dilutions of primary and secondary antibodies used for immunoflourescence 
N - not known 

Antibody Produced 
in 

Source Stock 
concentration 
(mg/mi)  

Dilution 

Anti-histone, pan Mouse Boehringer 0.2 1:100 
Anti-acetylated 114 
(R41) 

Rabbit Prof. B. Turner, 
 Birmingham  

N 1:100 

Anti-mouse-FITC Sheep 
F(ab' )2  

Sigma 1.0 1:100 

Anti-mouse-TR Sheep Vector 1.5 1:100 
Anti-rabbit-FITC Goat Vector 1.5 1:100 
Anti-rabbit-TR Goat Vector 1.5 1:100 

2.11 Immunocytochemistry 

This protocol was modified from Larsson et al., 1995. 400111 of JU77 human mesothelioma 

cells (Section 2.1.3) at a concentration of 5x10 3  cells/mi were seeded into each 1cm 2  well of 

a chamber slide (Nunc). Slides were incubated at 37 °C for 1 week or until chambers were 

—75% confluent. Cells were rinsed in PBS at 4 °C, fixed in methanol: acetone, 1:1 at -20 °C 

for 10 minutes then rehydrated and stored immersed in PBS/0.02% sodium azide at 4 °C for 

up to I week. 

For staining, cells were pre-incubated for 45 minutes in blocking buffer (2% BSA, 0.1% 

sodium azide, 0.2% Tween20, 6.7% glycerol) at room temperature. Cells were incubated 

with primary antibody (100111/chamber) for 1 hour at room temperature and washed with 

PBS/0.2% Tween20. Secondary antibodies conjugated with FITC or TR were used against 

mouse, rabbit or human IgG, F(ab')2 (Table 2.4). After 30 minutes incubation with 

secondary antibody (100111/chamber), slides were washed with PBS/0.2% Tween20. 

Primary and secondary antibodies were diluted, as appropriate, in blocking buffer (Table 

2.4). 
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Table 2.4 Dilutions of primary and secondary antibodies used for 
immunocytochemistry 
N - not known 

Antibody Produced Source Stock Dilution 
in concentration  

(mg/ml)  
Anti-(x tubulin Mouse Sigma N 1:500 
Anti-Spi Rabbit Santa Cruz 0.1 1:50 
Anti-PCNA Human DrC.J. Hutchison, N 1:10 

Dundee 
Anti-histone, pan Mouse Boehringer 0.2 1:100 
Anti-Sm Mouse Dr. I. Mattaj, N 1:100 

Heidelberg  
Anti-U1A Rabbit Dr. I. Mattaj, N 1:100 

Heidelberg  
Anti-human-TR Goat Jackson Laboratories 1.5 1:250 
F(ab ' )2 

Anti-rabbit-TR Goat Jackson Laboratories 1 .5 1:250 
F(ab ' )2 ___  
Anti-mouse-FITC Sheep Sigma 1.0 1:250 
F(ab ' ) 2 

Chambers were disassembled to allow mounting. All slides were mounted with 1J.ig/ml 

DAPI in Vectashield (Vector), or incubated in 1001g/m1 RNAse in 2xSSC for 1 hour at 

37°C, rinsed in 2xSSC and mounted with 0.2.tg/m1 P1 in Vectashield. Coverslips were 

sealed with rubber solution (Pang). Slides were stored in the dark at 4 °C. 

2.12 Monoclonal antibodies 

Methods for monoclonal antibody production used here were modified from Kennet et al. 

(1978) and Yelton et al. (1978) and developed by Ms. A. Seawright, MRC Human Genetics 

Unit, Edinburgh. 

2.12.1 Immunisation 

Five Baib-C mice were immunised. Pre-immune serum was collected from each mouse. 

For the initial injection the antigens were prepared in TiterMax adjuvant. Subsequent 

injections did not include an adjuvant. Booster immunisations were carried out one month 



following this and finally, four days prior to removal of the mouse spleen for fusion. For all 

immunisations, 200p.l of antigen was injected subcutaneously in the abdomen. 

2.12.1.1 Preparation of the adjuvant 

TiterMax (Vaxcel) is a synthetic copolymer adjuvant in a microparticulate-stabilised water-

in-oil emulsion. The stock tube was allowed to warm to room temperature and vortexed for 

30 seconds to produce a homogenous suspension. 5001.tl of TiterMax was added to 500il of 

aqueous antigen and vortexed for 1 minute. The emulsion looked like "whipped cream" and 

held together when a drop was submerged on a pipette tip into a beaker of water indicating 

that it was stable. 2001.11 of emulsion was injected into each mouse. 

2.12.1.2 Preparation of the aqueous antigen 

Metaphase chromosomes prepared from the REN2 human cell line (Section 2. 1 .3) were 

retrieved from storage at -70 °C. Tubes were spun at 3500g for 5 minutes and the 

supernatant carefully removed using a thin tipped pastette. The pellets were pooled and 

made up to a final concentration of Ix 10 9  chromosomes/ml in polyamine buffer (excluding 

digitonin). 

Nuclei for injection were obtained from the nuclear fraction attained during the preparation 

of metaphase chromosomes (Section 2.8.1). Tubes were retrieved from storage at -70 °C, 

spun at 3500g for 5 minutes and the supernatant removed. The pellets were pooled and 

made up to a concentration of lx 10 9  nuclei/ml in polyamine buffer (excluding digitonin). 

FACS sorted chromosomes (Section 2.8.2) were retrieved from storage at -70 °C, spun at 

3500g for 5 minutes and the supernatant removed. The pellets were pooled and made up to 

lx 10 chromosomes/ml in polyamine buffer (excluding digitonin). 

2.12.2 Fusion 

The spleen of one mouse was removed and placed in a 60mm petri dish in complete medium 

(RPMI, 10% myoclone FCS, 0.2 units/ml human insulin, 0.2mM pyruvate, 0.5mM 

oxaloacetate, 2mM L-glutamine, 12.5mM MOPS buffer). The cells were removed from the 

spleen using two syringes with 26 gauge needles. Several holes were poked in the spleen 
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then medium was forced gently through the spleen with one syringe while the tissue was 

held in place by the other. Care was taken not to pull displaced cells back into the syringe. 

The cells were pelleted in a conical tube at 180g and the supernatant was removed. The 

pellet was tapped loose then suspended in 5ml of ice cold 0.17M NH 4CI for 10 minutes. Ice 

cold RPMI was added and the cells were pelleted as before then resuspended in lOmi of ice 

cold RPMI. 

Cells were counted and tested for viability (Section 2.1.1). 50% of spleen cells were 

suspended in freezing medium (Section 2.1.2) and stored in liquid nitrogen for fusion at a 

later date. The remaining spleen cells were mixed at a ratio of 1:5 with previously grown 

myeloma cells, Sp2/0 (Section 2.12.2.1) then spun at 250g for 5 minutes. The supernatant 

was removed, the pellet tapped loose then 0.5m1 of freshly made 35% polyethylene glycol 

(Koch Light) was added and the tube gently swirled to resuspend the cells. The tube was 

spun at 90g for 5 minutes. After a further 3 minutes, 5m1 of RPMI was added slowly over a 

period of 2 minutes. The tube was gently swirled over a period of 5 minutes to resuspend 

the cells then spun at 250g for 5 minutes. The supernatant was removed and 5m1 of 

complete medium supplemented with 13.6mg/l hypoxanthine, 0.4mg/I aminopterin and 

5mg/1 thymidine (HAT) was added without disturbing the pellet. The pellet was left 

undisturbed for 7 minutes then the tube was gently swirled to resuspend the cells. HAT 

supplemented complete medium was added to make a total volume of 60m1 and the cells 

were plated into 4x96 0.2rnl well plates previously coated with macrophage feeder cells 

(Section 2.12.2.2). Cells retrieved from liquid nitrogen for fusion were plated into 2x96 

0.2m1 well plates. 4 drops from a lml graduated pastette were distributed into each well. 

On the following day, 2 drops of HAT supplemented complete medium were added. 

On each occasion, cells from the spleen from one mouse and stored cells from a second 

mouse were fused and plated. 6x96 0.2m1 plates were the maximum number being 

maintained. Plates would be incubated at 37 °C in one of two separate incubators using one 

of two separately made bottles of complete medium. 

2.12.2.1 Myeloma cells for fusion 

2 weeks prior to fusion an ampoule of myeloma cells, Sp2/0 was retrieved from liquid 

nitrogen (Section 2.1.2) and cultured (Section 2.1.3) to attain <1x10 8  cells. To harvest the 

flasks, medium (RPMI, 10% myoclone FCS) was poured off and the cells washed twice in 

PBS. Cells were covered in a thin layer of 10% trypsin in versene and placed at 37 °C for 5 
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minutes. Gentle agitation dislodged the cells, medium was added and the cells were pelleted 

at 400g for 5 minutes. Cells were resuspended in 20ml of serum-free RPMI and counted 

(Section 2.1.1). 

2.12.2.2 Macrophage feeder cells 

Mouse peritoneal macrophages were activated by intra-peritoneal injection of thioglycollate 

medium. After 4 days cells were collected by injection of 5ml of ice cold PBS into the 

peritoneal cavity. The body of the mouse was pummelled a few times before withdrawing 

the PBS and placing in a tube on ice. Any cells were pelleted at 750g for 10 minutes. After 

removal of the supernatant, the pellet was tapped loose and suspended in 5m1 of ice cold 

0.17M NH4CI for 10 minutes. The cells were pelleted as before, washed several times and 

resuspended in PBS. A sample was diluted 1:4 in methyl violet acetic acid for counting 

(Section 2.1.1). Cells were stored in liquid nitrogen in ampoules of 6x10 6/ml in freezing 

medium (Section 2.1.2). 

One ampoule of macrophages was retrieved from liquid nitrogen to coat 6x96 0.2ml well 

plates. On removal to thaw, tubes were immediately incubated at 37 °C in a beaker of water. 

Cells were diluted in medium (RPMI, 10% FCS), centrifuged at 400g for 5 minutes then 

suspended into 80mIs of medium. 2 drops from a lml graduated pastette were distributed 

into each well and the plates incubated at 37 °C. 

2.12.3 From fusion mixture to stable secreting hybrid 

Every 2-3 days, supernatant was removed from each well with a pastette and replaced with 

fresh medium. A fresh pastette was used for each column of wells, producing minimal 

cross-contamination. After 7 days hybrid colonies were usually visible. Once a colony 

occupied between 50-75% of the well, supernatant was removed for testing using 

immunocytochemistry (Section 2.11). 

Colonies which were positive antibody producers were subbed up into 2ml wells by 

scraping the surface of the 0.2m1 well with a pastette and transferring the majority of 

dislodged cells. imI of fresh medium was added to each 2m1 well. 4 drops of fresh medium 

were added to the 0.2ml well to maintain until the 2ml well colony had taken. Colonies 
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were continually tested and subbed into several 2m1 wells on different plates, fed from 

different bottles of medium and placed in separate incubators. 

Colonies of interest were eventually subbed into 25cm 2  flasks (2 separate flasks for each 

hybridoma). Once confluent, a flask was split. 75% of the cells were suspended in freezing 

medium for storage in liquid nitrogen. The remaining cells were used to maintain the flask 

until 6 ampoules were stored and a successful subcloning had been carried out (Section 

2.12.4). 

2.12.4 Dilution subcloning 

Cells were counted (Section 2.1 . 1) and a series of dilutions prepared until concentrations of 

100 cells/ml and 50 cells/nil were reached in total volumes of lOml. Half of a 96x0.2ml 

well plate was seeded with each cell concentration: 2 drops from a ImI graduated pastette 

distributed into each well, plus 2 drops of fresh medium. Concentrations of 10 cells/well 

and 5 cells/well were, thus, achieved. 

Colonies were fed and screened as before (Section 2.11). Any wells with more than one 

initial colony was disregarded. The best antibody producing colonies were selected for 

subbing (Section 2.12.3) and were maintained until 6 ampoules were stored in liquid 

nitrogen. Each hybridoma was subcloned twice. 

Supernatants from interesting hybridomas were collected throughout, any cells were pelleted 

by centrifugation at 400g for 10 minutes and discarded. Supernatants were stored in 

aliquots at 4 °C and -20°C. 

2.13 Protein analysis 

2.13.1 Preparation of nuclear and cytoplasmic proteins 

This procedure was adapted from Lee et at. (1987). REN2 cells (Section 2.1.3) were 

harvested gently at bOg for 5 minutes and washed twice in PBS. Cells were counted 

(Section 2.1.1), washed in ice cold RSB hypotonic (10mM HEPES pH6.2, 10mM NaCl, 

1.5mM MgCl,, 100tg/ml PMSF, 1Ig/ml aprotinin, 1.tg/ml leupeptin, l.tg/ml  pepstatin) then 

suspended in RSB hypotonic solution at Sxl07cells/ml and kept on ice. The cell suspension 



was homogenised using a tight fitting Dounce homogeniser for up to 100 strokes. Cell 

fractionation was monitored by phase contrast microscopy. The homogenate was 

centrifuged in eppendorf tubes, at 400g for 10 minutes at 4°C. The supernatant was 

separated into further tubes and centrifuged as before. This supernatant was distributed into 

ampoules, glycerol added to 10% and stored at -70°C as the cytoplasmic fraction. 

The pellets were resuspended in RSB hypotonic solution and centrifuged as before. These 

pellets were then pooled and resuspended in ice cold lysis buffer (50mIVI Tris-HCI pH8.0, 

I.2M NaCl, 1% Triton X-100, 0.02% sodium azide, 100.tg/m1 PMSF, ltg/ml aprotinin, 

l.tg/m1 leupeptin, 1tg/ml pepstatin) at —lx10 8nuclei/ml. The tubes were vortexed for 5 

seconds then kept on ice for 15 minutes before being sonicated at 10 amplitude microns for 

30 seconds. This fraction was distributed into ampoules, glycerol added to 10% and stored 

at -70°C as the nuclear fraction. 

2.13.2 Sodium dodecyl sulphate - polyacrylamide gel electrophoresis of 
proteins (SDS-PAGE) 

Polyacrylamide gels, 10.OxlO.5cm and 0.75mm thick were poured using an SE245 Mighty 

Small Dual Gel Caster (Hoefer). 40% 29:1 acrylamide:bis (Bio-Rad) was diluted to the 

appropriate concentration (8-15%) with 375mM Tris-HC1 pH8.8 and 0.1% sodium dodecyl 

sulphate (SDS) for the resolving gel. Polymerisation was initiated by adding ammonium 

persulphate (AMPS) to 0.1% and N,N,N' ,N'-tetramethylethylenediamine (TEMED) to 

0.1%. Gels were poured immediately between a glass and an alumina plate, to a level 0.5cm 

below the teeth of an inserted comb, overlaid with 0.1% SDS and allowed to set for at least 

30 minutes. The overlaid SDS was tipped off and a layer of stacking gel poured to the top 

of the comb. For the stacking gel, 40 010 29:1 acrylamide:bis was diluted to 5% with 125mM 

Tris-HCI pH 6.8 and 0.1% SDS. Polymerisation was initiated by adding 0.1% AMPS and 

0.1% TEMED. Stacking gels were allowed to set for at least 30 minutes. Combs were 

carefully removed and wells washed with dH 2O. Gel sandwiches were placed into an SE 

260 Mighty Small Vertical Slab Unit (Hoefer) and Tris-HCI-glycine running buffer (25mM 

Tris-HCI, 250mM glycine, 0.1% SDS) was added. 

Samples were diluted in loading buffer (50mM Tris-HCI pH6.8, 2% SDS, 0.1% 

bromophenol blue, 10% glycerol). 100mM dithiothreitol was added immediately prior to 

loading. Samples were run against Rainbow coloured protein molecular weight markers 
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(Amersham) (Table 2.5). Samples were heated in a hot block to 90°C for 4 minutes before 

loading. Gels were run at a constant 200V until the proteins had been separated by the 

required amount (monitored by positions of the Rainbow coloured protein markers). 

Gels were either stained with Coomassie Blue (Section 2.13.3) or used to establish a 

Western blot (Section 2.13.4). 

Table 2.5 Rainbow coloured protein molecular weight markers 
(Amersham) 

Protein Molecular 
weight (KDa) 

Colour Low 
 range 

High 
range 

Insulin chain A 2.35 blue * 

Insulin chain B 3.4 blue * 

Aprotinin 6.5 blue/black * 

Lysozyme 14.3 magenta * 

Trypsin inhibitor 21.5 green * * 

Carbonic anhydrase 30.0 orange * * 

Ovalbumin 46.0 yellow * * 

Bovine serum albumin 66.0 red * 

Phosphorylase J3 97.4 brown * 

Myosin 220.0 blue * 

2.13.3 Coomassie staining 

Gels were immersed in 5 volumes of Coomassie Blue staining solution (0.25% Coomassie 

Blue dye, 45% methanol, 10% glacial acetic acid) for a minimum of 2 hours with gentle 

agitation. The staining solution could be re-used. 45% methanol with 10% glacial acetic 

acid was used to soak the gel overnight to destain. Gels were rinsed several times more in 

destaining solution before photographing then drying. 

For drying, gels were laid on Whatman 3MM paper and covered over with Saran wrap. This 

sandwich was placed in a gel dryer and the gel was allowed to dry under suction for 1 hour 

at 80°C. 



2.13.4 Semi-dry blotting of proteins (Western blotting) 

A MilliBlot graphite electrode system was used for semi-dry transfer (Millipore). The 

following three buffer system was used for most blots. An alternative system used for the 

transfer of strongly negatively charged proteins is described in Section 2.13.5. 

Gels were marked for orientation by cutting away the top right corner, then immersed in 

cathode buffer (0.025M Tris-HC1, 0.04M glycine, 20% methanol, pH 9.4) and gently 

agitated for 30 minutes. Seven sheets of Whatman 3MM filter paper and one sheet of 

Immobilon-P PVDF transfer membrane (Millipore) were cut to the size of each gel. The 

transfer membrane was soaked sequentially in 70%, 90% and 100% methanol for 15 

seconds, then in dH 20 for 15 seconds before equilibrating in anode buffer 2 (0.025M Tris-

HCI, 20% methanol, pH 10.4) for 5 minutes. 2 sheets of filter paper were soaked in anode 

buffer I (03M Tris-HCI, 20% methanol, pHl0.4) then placed on the anode electrode plate. 

I sheet of filter paper was soaked in anode buffer I and placed on top of the other 2 sheets. 

The transfer membrane was placed on top of this (the top right corner was cut away to allow 

orientation), followed by the gel and the 4 remaining sheets of filter paper, pre-soaked in 

cathode buffer. Care was taken to avoid air bubbles between the layers and any trapped air 

was eased out by rolling a glass rod gently over the stack. The cathode electrode plate was 

assembled over the stack. A constant current was passed through the system calculated from 

the size of the gel being blotted: 2mAJcm 2  for 90 minutes. 

Transfer membranes were allowed to dry and were stored at room temperature for up to I 

week prior to protein detection. Lanes were marked on the membrane with indelible ink to 

allow future identification. Post-transfer gels were stained with Coomassie Blue (Section 

2.13.3) to ensure that adequate transfer had occurred. 

2.13.5 Semi-dry blotting of negatively charged proteins 

For highly negatively charged proteins, for example, histones, it was necessary to use an 

alternative transfer system for semi-dry blotting. Gels, filter paper and transfer membrane (2 

pieces for each gel) were prepared as in Section 2.13.4, except only one transfer buffer 

(10mM CAPS buffer, 10% methanol) was required, replacing cathode buffer and anode 

buffers, I and 2. Three pieces of filter paper were stacked on the anode electrode plate, 

followed by the first transfer membrane, the gel, the second transfer membrane and the 4 



remaining sheets of filter paper. The cathode electrode plate was assembled over the stack 

and the blotting carried out as in Section 2.13.4. The highly negatively charged proteins 

transferred, generally to the upper transfer membrane, while in the previous three transfer 

buffer system, such proteins remained in the gel. This was probably because the basic 

charge of these proteins was neutralised by SDS and remained uncharged in the three 

transfer buffer system. As before, however, the majority of proteins transferred to the lower 

transfer membrane. 

2.13.6 General protein staining 

For general permanent staining of proteins on the transfer membrane amido black stain 

(0.1% amido black, 45% methanol, 10% acetic acid) was used. Dry membranes were not 

pre-soaked. Membranes were immersed in amido black stain for 1 hour with gentle 

agitation, washed in dH 20 then destained (45% methanol, 10% acetic acid) overnight. 

Amido black stain could be re-used. 

For general transient staining of proteins Ponceau S solution (0.1% Ponceau S, 5% acetic 

acid, Sigma) was used. Dry membranes were pre-soaked in dH 2O. Membranes were 

immersed in Ponceau S solution for 10 minutes then rinsed in dH 20. Presence of the 

appropriate protein bands were assessed before continuing with immunostaining of the 

membrane for specific proteins (Section 2.13.7). Ponceau S staining did not interfere with 

subsequent protein detection and was washed out of the membrane during immunostaining. 

Ponceau S solution could be re-used. 

2.13.7 Immunostaining of specific proteins 

For detecting specific proteins the Boehringer chemiluminescence system was used. Dry 

membranes were pre-soaked in methanol for 5 minutes, rinsed in dH2O then washed briefly 

in Tris-HCI buffered saline (TBS) (50mM Tris-HCI, 150mM NaCl, pH7.5). Membranes 

were incubated in 1% blocking reagent in TBS, 125il/cm 2  of membrane, for 1 hour at room 

temperature. Primary antibodies were diluted to the appropriate concentration in 0.5% 

blocking reagent in TBS (Table 2.6). Membranes were incubated in a sealed bag, with 

primary antibody at 125p.1/cm 2  of membrane, for 12-60 hours at 4 °C, with gentle agitation. 

A further 1 hour incubation at room temperature was occasionally carried out. Membranes 

were washed twice in an excess of TBS, or more stringently in TBST (IxTBS, 0.1% 



Tween20), for 10 minutes at room temperature, with vigorous agitation. Horseradish 

peroxidase-labelled secondary reagent was diluted to 20U/ml in 0.5% blocking reagent in 

TBS. Membranes were incubated in a sealed bag, with secondary reagent at 12511/cm 2  of 

membrane, for I hour at room temperature. Prior to detection, blots were washed in an 

excess of TBS or TBST for 4x 15 minutes at room temperature, with vigorous agitation. 

Excess buffer was drained from the washed blots and placed, sample side up, in a tray. 

Detection reagent was added to cover the blots for 1 minute. The detection reaction is based 

on the oxidation of a diacylohydrazide, luminol, in the presence of hydrogen peroxide and 

horseradish peroxidase. An intermediate reaction product is formed, which decays to the 

ground state by emitting light. Blots were then transferred to a piece of Saran Wrap and 

wrapped, ensuring that no air bubbles were trapped. The blot was exposed, sample side up, 

to Kodak X-Omat film for 10 seconds-I hour. 

Table 2.6 Dilutions of primary antibodies for detection of proteins on a Western blot 
N - not known 

Antibody Source Concentration 
(mg/ml)  

Dilution  

Anti-Spi Santa Cruz 0.1 1:100 
Anti-cxtubulin Sigma N 1:500 
Anti-acetylated H4 (r41) Prof. B. Turner, 

Birmingham  
N 1:250 

Anti-acetylated H4 (r41) 
pre-immune serum 

Prof. B. Turner, 
Birmingham  

N 1:250 
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2.14 Image capture and analysis 

2.14.1 The Zeiss microscope with a charged couple device (CCD) camera 

Slides were screened with a Zeiss Axioplan fluorescence microscope equipped with a triple 

band-pass filter set (Chroma) which allowed sequential visualisation of FITC (green), TR 

(red) and DAPI (blue) images using a computer-driven excitation filter wheel. As the 

polychroic filter and emission filter remained in place while acquiring the three images, 

image registration was perfect. Metaphase spreads were imaged using a cooled charged 

couple device (CCD) camera fitted with a KAF 1400 chip (Photometrics). Separate grey 

scale images of probe signal and counterstain were pseudocoloured and merged using an 

Apple Mackintosh Quadra 900 computer with SmartCapture software, developed by Digital 

Scientific. Background hybridisation was remove by normalisation and removal of the 

lowest-intensity pixels. Care was taken that this did not interfere with chromosome 

hybridisation signals. Images were stored on portable hard discs (SyQuest) and were printed 

using a Kodak ColourEase dye sublimation printer. 

2.14.2 The confocal microscope 

Slides were screened with a BioRad MRC600 confocal laser scanning microscope equipped 

with a dual filter set which allowed visualisation of both FITC (green) and PT (red) images, 

simultaneously. Nuclei were scanned and imaged using BioRad Som software. Images 

from 7 high resolution scans were averaged using a Kalman electronic filter and displayed 

side by side. These images could be pseudocoloured and merged. Images were stored and 

printed as above. 



3. Tools from the human genome for exploring links 
between chromosome structure and function 

3.1 Introduction 

In order to study links between vertebrate chromosome structure and function, I chose to 

focus in particular upon the comparably sized, but behaviourally contrasting, human 

chromosomes 18 and 19. In addition, I used human chromosomes 1, 11 and 22 for a number 

of studies. 

Chromosome 1 is the largest human chromosome and possesses adjacent cytological bands 

that represent the two most extreme and contrasting band types. The tip of the p-arm of this 

chromosome consists of several T-bands, which are highly GC-rich and very early 

replicating (Figure 3.1) (Sections 1.2 & 1.3). This region shows a high density of 

CpG-islands (Craig & Bickmore, 1994) and a high level of histone acetylation (Jeppesen et 

al., 1992) (Section 1.6.1). Directly adjacent to this, and between it and the centromere, is a 

region that is dominated by GC-poor, late replicating and particularly dark staining G-bands 

(Francke, 1994). The R-bands present are R'-bands, which have less extreme features than 

T-bands (Figure 3.1) (Sections 1.2 & 1.3). Reflecting this, the region shows a low density 

of CpG islands and low levels of histone acetylation. These juxtaposing regions can be 

taken to represent the banding type which predominates in each: the tip of the chromosome 

having the general features of R-bands and the adjacent region reflecting G-band 

behaviours. Chromosome 1 possesses an unusually large region of pericentric 

heterochromatin at its q-arm (Figure 3.1). 

Chromosome 11 is a metacentric chromosome, of middling size, containing a relatively even 

distribution of both of G- and R-bands (Figure 3.1). It has been allocated a generally high 

gene number (Table 1.3). 

Human chromosomes 18 and 19 are comparable in DNA content, but contrasting in their 

structural and functional features (Section 1.7). Each one can be taken as a whole 

chromosome representation of the two extremes of band type. Chromosome 18 is GC-poor, 

has a low density of CpG islands, has one of the lowest number of gene assignments of any 

human autosome and replicates predominantly late in S phase. Very little hyperacetylated 
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histone H4 is detected on this chromosome. These are all of the features common to 

0-bands, and indeed, chromosome 18 consists mainly of 0-bands, many of which are dark 

staining, and R'-bands (Figure 3.1) (Sections 1.2, 1.3 & 1.7). Chromosome 19, however, is 

GC-rich, has a very high density of CpG islands, has a disproportionately high number of 

gene assignments for its size and replicates generally early in S phase. A high level of 

hyperacetylated histone H4 has been detected along its length. The majority of R-bands are 

T-bands, and there are few, small G-bands on chromosome 19 (Figure 3.1) (Sections 1.2, 1.3 

& 1.7). These chromosomes are, thus, ideal tools to study the links between mammalian 

chromosome structure and function. 

Finally, chromosome 22, one of the smallest of the human chromosomes is an acrocentric 

chromosome (Figure 3.1). The centromere and p-arm of each acrocentric chromosome 

consists of many highly repeated sequences, including satellite sequences (Miklos & John, 

1979) and clusters of genes that encode 18S, 5.8S and 28S ribosomal RNA (rRNA) 

(Henderson et at., 1972; Schmickel et al., 1985) (Section 7.3). The rRNA encoding genes 

are transcribed by RNA polymerase I (with the exception of the 5S rRNA genes which are 

situated at various, non-acrocentnc regions of the genome and are transcribed by RNA 

polymerase III). These regions are of the most intensely transcribed in the human genome 

and 30-40 copies of each rRNA encoding array are present at each site (Warton et at., 1988; 

Review: Sollner-Webb & Tower, 1986). As a handle to this unique chromosomal 

environment, chromosome 22 was chosen to study. The q-arm of this chromosome is 

CpG-island-rich, early replicating (Figure 1.3) and gene-rich (Table 1.3). 

In order to study these chromosomes in human cells, hybridisation probes for the entire 

length of each specific chromosome were required for use in FISH (Section 2.6) (Reviews: 

van Ommen et al., 1995; Heng et al., 1997). For FISH, the DNA probe is labelled, usually 

with biotin or digoxigenin (dig). Chromosomes or nuclei are prepared on glass slides then, 

both the slides and DNA probe are denatured, added together and allowed to hybridise over 

night. After washing off non-specifically bound probe, hybridisation is detected using 

fluorescently-label led avidin (a molecule with a high affinity for biotin) or anti-dig antibody. 

Whole chromosome probes are a complex mixture of DNA sequences complimentary to 

specific regions along the length of a single chromosome, which when used together in a 

single hybridisation reaction, "paint" the chromosome of interest. In addition, these paints 

will contain repeat sequences that are genome-wide and it is often necessary to suppress 
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hybridisation from these sequences. This is usually achieved by adding an excess of human 

Cot 1 DNA to the probe mixture prior to denaturation. Human Cot 1 DNA is prepared from 

the fraction of sheared and heat denatured total human DNA that has been re-annealed 

before Cot = 1, where C o=  concentration (moles/litre) of single stranded DNA at time 0, and 

t= time after cooling commences (seconds). This fraction contains fragments that are high 

in copy number (>10 copies) and re-annealed early in the reaction (Review: Lewin, 1994). 

In the human genome, these sequences include a-satellite, LINEs and SINEs (Section 1.3.3). 

There are several approaches that have been taken to make single chromosome painting 

probes: 

•FISH probes have been prepared from DNA libraries cloned from FACS sorted 

chromosomes (Pinkel et al., 1988; Lichter et al., 1988; Fuscoe et al., 1989). There is 

frequently a lack of hybridisation to portions of the target chromosome by such probes, 

possibly due to the absence of sequences in the cloned library that are inherently difficult 

to clone. Alternatively, the digestion of FACS sorted chromosomal DNA with a 

restriction enzyme and attachment of a catch-linker, allows linker PCR to produce 

labelled DNA for FISH. This will be further described in Section 3.3.2. A remaining 

problem is that FACS does not always produce entirely pure fractions of specific 

chromosomes, thus, careful monitoring of sorting is required. 

• Labelling DNA from rodent-human monochromosome hybrid cell lines (Kievits et al., 

1990). A further development of this method, involves using human-specific Alu or Li 

PCR to amplify the human DNA present in the hybrid (Nelson et al., 1989; Lichter et al., 

1990). In this instance, a non-uniform distribution of signal may be observed along the 

chromosomes, since each repeat element shows a bias of distribution towards a particular 

set of bands, Alu elements to R-bands and Li elements to G-bands (Section 1.4.3). 

• Degenerate oligo PCR (DOP-PCR) of FACS sorted chromosomes (Telenius etal., 1992). 

To create apparently cleaner and region-specific probes, chromosomes prepared by 

microdissection have been used as the starting material for DOP-PCR (Guan et at., 

1994). However, microdissection is time consuming and requires specialised equipment. 

DOP-PCR has a high potential for amplification of contaminant DNA. 

Commercial paints are available for most human chromosomes and this source was adequate 

for human chromosome 1 and 11 paints. A large amount of chromosome 18 and 19 specific 

paint was required and it was considered to be more efficient and economical to make paints 



for these chromosomes than purchase them commercially. The strategy I decided to use in 

the first instance was a human specific Alu-PCR protocol to amplify human DNA from 

rodent-human hybrid cell lines containing either chromosome 18 or 19 as the only human 

material. Such hybrid cell lines are readily available and the PCR protocol is well 

established. The chromosome 22 paint used, was provided by Dr. S. Cross, University of 

Edinburgh. This paint was prepared from FACS sorted chromosomes which were digested 

and a catch-linker attached. 

Rodent-human monochromosome hybrid cell lines were also collected for human 

chromosomes I and 22. These, along with the hybrid cell lines containing only human 

chromosome 18 or 19, were used as starting material for several experiments throughout this 

thesis. Characterisation of each of these hybrids is described in the following section. 
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Figure 3.1 R-banding ideograms of human chromosomes 1, 11, 18, 19 and 22 
Adapted from Holmquist(] 992). Ideograms are of the 300 bands/genome resolution. Chromosome 
18 consists of G-bands and R'-bands and in its entirety shows the features generally associated 
with G-bands. By contrast, the majority of R-bands are T-bands and there are few G-bands on 
chromosome 19. This chromosome shows the features generally associated with R-bands. 
These two extremes of environment are also represented by adjacent regions at the tip of the 
p-arm of chromosome 1. Chromosome 22 was the chromosome chosen to exemplify the 
human acrocentric chromosomes. 
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3.2 Rodent-human somatic hybrid cell lines 

Rodent-human somatic hybrid cell lines were developed in the 1960s, following 

observations that cells in culture could be induced to fuse by chemical treatment, or 

addition of inactivated Sendai virus (Review: Witowski, 1986). When rodent-human cell 

fusions are made and subsequently cultured, there is a progressive loss of human genetic 

material, until often only a single or partial human chromosome are retained. Such hybrid 

cells have been selected and propagated, and a large number of repositories stocking a 

variety of lines exist. 

Rodent-human monochromosome hybrid cell lines containing chromosomes 1, 18, 19 and 

22 were obtained. These lines proved useful as starting material for several experiments. 

Hybrid cell lines are intrinsically unstable and it was, thus, important to characterise each 

before utilisation. 

3.2.1 Selection and source of the hybrid cell lines 

Chinese hamster-human monochromosome hybrid cell lines were obtained from the 

National Institute of General Medical Sciences, Human Genetic Mutant Cell Repository, 

New Jersey. 1101010 was stated to contain chromosome 18 as the only human component 

and GM10449A was stated to contain only human chromosome 19. 

The A91neo hybrid cell line consists of mouse A9 cells carrying a single human 

chromosome I tagged with a dominant selectable marker (pSV2-neo) for resistance to G418 

Sulphate (Koi et al., 1989). Thus, it was possible to select for maintenance of the human 

chromosome, by growing cells in culture medium containing G418 Sulphate. This line was 

supplied by the National Institute of Environmental Health Sciences, North Carolina. 

The mouse-human monochromosome 22 hybrid cell line, PgMe-25, was produced by fusing 

Pg19 mouse cells derived from a malignant melanoma with human leukocytes using an 

inactivated Sendai virus (Guerts van Kessel etal., 1981). This line was stocked at the MRC 

Human Genetics Unit. 
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3.2.2 Confirming the human complement of the hybrid cell lines 

To assess the human complement of the hybrid cell lines used in this study, total DNA was 

extracted from each (Section 2.3), biotin labelled by nick translation (Section 2.4) and 

hybridised to human metaphase spreads by FISH (Section 2.9). ]Ogg of C ot I DNA was 

added for 1 5Ong of DNA probe to suppress hybridisation of repeat sequences. 

Figure 3.2 shows the hybridisation of total DNA from the GMI 1010 cell line to a 

representative human metaphase spread. The hybridisation signal is confined to a single 

chromosome (Figure 3.2a), which was confirmed to be chromosome 18 after analysis of the 

enhanced DAPI stain (Figure 3.2b). However, the hybridisation signal along the length of 

the chromosome was consistently weaker on the q-arm than on the p-arm. This suggests that 

some GMIIOIO cells lack part of the q-arm of human chromosome 18. 

Figure 3.3 shows the hybridisation of total DNA from the GM10449A cell line to a 

representative human metaphase spread. The hybridisation signal is confined to a single 

chromosome (Figure 3.3a), confirmed as chromosome 19 by analysis of the enhanced DAPI 

stain (Figure 3.3b). GM10449A contains an intact chromosome 19 and this is the only 

human component in this cell line. 

Figure 3.4 shows the hybridisation of total DNA from the PgMe-25 cell line to a 

representative human metaphase spread. It was necessary to add a large amount of human 

Cot I, for cross-hybridisation suppression, since this probe had a wealth of repeat sequences 

due to the repeat-rich p-arm of chromosome 22 (Section 1.4.3). 50ig of C ot I DNA was 

added for 1 5Ong of probe, plus the length of time for pre-annealing of the probe to this DNA 

was extended to 37°C for 30 minutes. Even with this suppression, FISH signals were 

present on several other regions of the genome, as well as covering the entirety of 

chromosome 22. In particular, the short arms of the other acrocentric chromosomes and a 

region close to the centromere of the X chromosome had probe bound. Repeats present on 

chromosome 22 may have homologies with sequences at these other regions, not represented 

in human C0t1 and thus not competed out. Such middle repeat sequences may include 1-
satellite and satellites I-IV, or rRNA-encoding sequences (Section 1.4.3 & 7.3). 

Alternatively, mouse repeats may have homologies with sequences at these human regions. 
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Finally, it is possible that these human regions are represented in the hybrid cell line in 

addition to a complete chromosome 22. 

Figure 3.5 shows the hybridisation of total DNA from the A91neo cell line to a 

representative human metaphase spread. It is apparent that this hybrid cell line contains the 

entire length of chromosome I as its only human component. 

It was important to next assess the state of the human chromosomes in each of these cell 

lines, especially GMl 1010, which was suggested to lack part of the q-arm of human 

chromosome 18 in a proportion of hybrid cells (Figure 3.2), and PgMe-25, which potentially 

contained material originating from several human chromosomes other than chromosome 22 

(Figure 3.4). 

3.2.3 Assessing the integrity of the human component of the hybrid cell 
lines 

Section 3.2.2 confirmed that the rodent-human hybrid cell lines GMI 1010, GM10449A and 

A91neo contained human chromosomes 18, 19 and I respectively, as their sole human 

component. However, Figure 3.2 indicated that part of the q-arm of human chromosome 18 

was missing in a proportion of cells. Also, in addition to lighting up human chromosome 

22, PgMe-25 DNA hybridised to other regions of the genome, probably through 

cross-hybridisation of highly repetitive sequence but possibly through contamination of 

human material other than chromosome 22 in the hybrid cell line (Figure 3.4). In order to 

assess the state of the human chromosome within the hybrid cell lines, total human genomic 

DNA was biotin labelled by nick translation and hybridised, by FISH to metaphase spreads 

from each of the four hybrid cell lines. Probes were pre-annealed with human C ot] DNA. 

For each hybrid cell line, approximately 50 metaphase spreads were analysed for the 

presence of the expected human chromosome and any additional human material was 

recorded. 

Figure 3.6 shows hybridisation of total human genomic DNA to a metaphase spread from 

the hybrid cell line GMI 1010. Almost one fifth of metaphase spreads from this hybrid cell 

line were lacking the expected human chromosome 18 (Table 3.1). Of those that did have a 

human chromosome 18, 35% of spreads revealed part of the q-arm of the chromosome to be 
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missing, hence the weak signal along this region of chromosome 18 after FISH with DNA 

prepared from this hybrid cell line (Figure 3.2). No additional human material was found. 

Hybridisation of total human genomic DNA to metaphase spreads of GM10449A revealed 

the hybrid to apparently contain an intact chromosome 19 as its only human component 

(Figure 3.7). This cell line was very stable and no spreads were observed where human 

chromosome 19 was not present, nor where extra human material was present (Table 3.1). 

Table 3.1 The integrity of the human genetic material in the rodent-human hybrid cell 
lines 
Approximately 50 metaphase spreads were analysed after FISH with total human genomic 
DNA, to the rodent-human hybrid cell lines GMI 1010, GM10449A, PgMe-25 and A91neo. 
These hybrid cell lines were supposed to contain human chromosomes 18, 19, 22 or I, 
respectively, as their only human component. The extra human material present in the 
PgMe-25 line was of chromosome 22 origin, with 100% of spreads revealing an extra band 
of material integrated into a rodent chromosome and 10% possessing, in addition, an 
autonomous but small fragment of chromosome 22 (Figure 3.8c). 

Cell line GM1 1010 GM10449A PgMe-25 A9lneo 
Number of chromosomes per 17-23 20-44 30-58 54-65 
spread  
% spreads with human 17.1 0.0 19.0 3.2 
chromosome absent  
% spreads with human 28.6 0.0 81.0 19.4 
chromosome incomplete  
% spreads with complete 54.3 100.0 0.0 77.4 
expected human 
chromosome  
% spreads with extra human 0.0 0.0 100.0 0.0 
component _ 

Figure 3.8a shows hybridisation of total human genomic DNA to a metaphase spread of the 

human chromosome 22 containing hybrid, PgMe-25. Every spread contained an 

autonomous acrocentric human chromosome, presumed to be chromosome 22, but smaller 

than might be anticipated. In addition, all metaphase spreads observed contained an extra 

band of human material incorporated into one of the rodent chromosomes (Table 3. 1). FISH 

using a chromosome 22 paint (Section 3.3.3) established that both the autonomous 

acrocentric chromosome and the extra band were of chromosome 22 origin (Figure 3.8c). 

Less than 10% of spreads possessed extra autonomous human material which was very 
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small and lacked any telling morphology. This, too was confirmed to be of chromosome 22 

origin (Figure 3.8c). 

Figure 3.9 shows hybridisation of total human genomic DNA to a metaphase spread from 

A91neo. Few cells in this hybrid line were lacking human chromosome 1, however, almost 

20% of human chromosomes I present were missing part of the p-arm (Figure 3.9c & d). 

The analyses of each of these hybrid cell lines was made early in their passage. Long 

passage of the cells was avoided and preparation of DNA, or other experimentation, was 

carried out during the first few weeks after retrieving the cells from liquid nitrogen. Frozen 

ampoules were replaced the first time the cells were split after reaching close to confluency. 

In conclusion, the rodent-human monochromosome 19 hybrid cell line was the only line that 

contained a stable and complete human chromosome. The deficiencies of the other hybrids 

did not prevent these lines from being used, with careful consideration of the exact 

inadequacies of each. 
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Figure 3.2 Identification of human material from the rodent-human hybrid cell line 
GMI1O1O 
Total DNA was extracted from GMI IOJU, hiotin labelled and hybridised to REN2 
human metaphase spreads (49, XXXXY) by FISH. (a) The probe was detected using  
avidin-FITC (green). Chromosomes were counterstained with DAN (blue). (b) Grey 
scale representation of the DAPI stained spread. 
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Figure 3.3 Identification of human material from the rodent-human hybrid cell line 
GM 1 0449A 
Total DNA was extracted from GMI(449A, biotin labelled and hybridised to REN2 
human metaphase spreads (49, XXXXY) by FISH. (a) The probe was detected using 
a ,,,idin-FITC (green). Chromosomes were counterstained with DAM (blue). (b) Grey 
scale representation of the DAPI stained spread. 
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Figure 3.4 Identification of human material from the rodent-human hybrid cell line 
PgMe-25 
Total DNA was extracted from PgMe-25, hiotin labelled and hybridised to FATO human 
metaphase spreads (46, XY) by FISH. Arrow indicates the X chromosome. (a) The 
probe was detected using avidin-FITC (green). Chromosomes were counterstained with 
DAPI (blue). (h) Grey scale representation of the DAN stained spread. 
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Figure 3.5 Identification of human material from the rodent-human hybrid cell line 
A9lneo 
Total DNA was extracted from A91neo, hiotin labelled and hybridised to REN2 human 
metaphase spreads (49. XXXXY) by FISH. (a) The probe was detected using avidin-TR 
(red). Chromosomes were counterstained with DAPI (blue). (b) Grey scale 
representation of the DAPI stained spread. 



Figure 3.6 The integrih of the human material in the rodent-human hybrid cell line 
(;M1 1010 
Total genomic human DNA was labelled with hiotin and h ybridised to metaphase spreads 
froni the hybrid cell line using FISH-(a) (C) The probe was detected using avidin-FJTC 
(green). Chromosomes were counterstained with DAPI (blue). (b) (d) Grey scale 
representation of the DAPI stained human material. (a) (b) A spread with a complete 
chromosome 18 and no additional human material. (C) (d) A spread with an incomplete 
chromosome 18. A pOrtli)fl 01 the q-arm is apparently missing. 



Figure 3.7 The integrity of the human material in the rodent-human hybrid cell line 
GM 10449A 
Total genomic human DNA was labelled with biotin and hybridised to metaphase spreads 
from the hybrid cell line using FISH. (a) The probe was detected using avidin-FITC 
(green). Chromosomes were counterstained with DAPI (blue). (b) Grey scale 
representation of the DAPI stained human material. Human chromosome 19 appears to 
he present in its entirety, as the only human material. 
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Figure 3.8 The integrity of the human material in the rodent-human hybrid cell line 
PgMe- 25 
(a) (I) Total genomic human DNA was labelled with biotin and hybridised to metaphase 
spreads from the hybrid cell line using FISH. (C) (d) Hybridisation of a biotin labelled 
chromosome 22 probe (Section 3.3.3) to a PgMe-25 spread. (a) (c) Probes were 
detected using avidi nFlTC (green). Chromosomes were counterstaincd with DAPI 
(blue). (h) (d) Grey scale representation of the DAPI stained human material. (i) 
Apparently incomplete chromosome 22. (ii) Autonomous chromosome 22 material, (iii) 
Extra hand of chromosome 22 material integrated into a rodent chromosome, present in 
all spreads observed. 
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Figure 3.9 The integrity of the human material in the rodent-human hybrid cell line 
A9Ineo 
Total genomic human DNA was labelled with biotin and hybridised to metaphase spreads 
from the hybrid cell line using FISH. (a) (e) The probe was detected using avidin-FITC 
(green). Chromosomes were counterstained with DAPI (blue). (b) (d) Grey scale 
representation of the DAPI stained human material. (a) (b) A spread with a complete 
chromosome I and no additional human material. (c) (d) A spread with an incomplete 
chromosome I. 
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3.3 Human monochromosome paints 

Labelling of total DNA from GMI 1010 resulted in a paint that was weak along the q-

arm of human chromosome 18 compared to the remainder of the chromosome (Section 

3.2.2 & Figure 3.2). This probe was not adequate for a useful human chromosome 18 paint. 

However, labelling of total DNA from the chromosome 19 hybrid produced a probe that, 

although covered chromosome 19 completely, often showed hybridisation to other regions 

of the human genome despite a high degree of C ot 1 suppression (Section 3.2.2). 

Human-specific AIu-PCR is a good way of amplifying the human DNA specifically from 

hybrids, and so this approach was taken to try to prepare complete and consistent human 

chromosome 18 and 19 paints. 

3.3.1 Human-specific Alu-PCR 

The Alu family of short interspersed repeat elements (SINEs) constitutes at least 10% of the 

human genome. Each element is approximately 300bp in length and reiterated, in either 

orientation, between 500,000 and 1,000,000 times (Section 1.3.3). Rodent DNA also 

contains SINEs, dominated by a major family with sequence homology to the human Alu 

element. However, unlike the human Alu element, the rodent equivalent is only -130bp 

long (Jelinek & Schmid, 1982). A portion of the consensus sequences of the human and 

Chinese hamster Alu elements is shown aligned in Figure 3.10. PCR using primers specific 

to the human Alu consensus sequence can be used to amplify human DNA specifically from 

a rodent-human cell hybrid (Nelson et al., 1989). The primers are made in one orientation 

and, thus, inter-element amplification will only occur if two human Alu elements lie an 

appropriate distance apart, in opposite orientations. 

The human specific Alu primers (#153, #154, #451 and #5B30), chosen to amplify human 

DNA from the hybrid cell lines, are shown in Figure 3.10 and described in Section 2.4.1.1. 

The cycling conditions for PCR are described in Section 2.4.1.3. Each primer was shown 

individually to amplify fragments of total human DNA but not Chinese hamster DNA 

(Figure 3.1 la). To produce paints for chromosome 18 and 19, Alu-PCR using each of these 

human specific primers was used to amplify human DNA specifically from GMI 1010 and 

GM10449A, respectively (Figure 3.11 b). The products of each primer reaction were pooled. 
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Approximately, 1.5.tg of DNA were biotin labelled by nick translation (Section 2.5. 1) and 

150ng used as a probe for FISH onto human metaphase spreads. 

The labelled Alu-PCR products from GM10449A produced a chromosome 19 paint which 

consistently gave strong FISH signal covering the entire length of the chromosome, except 

for at centromeric heterochromatin, as expected (Figure 3.12c). However, the same method 

using GM  1010 DNA as the template did not produce a good paint for chromosome 18. As 

discussed in Section 3.2.3, GM1IO1O is very unstable and the chromosome 18 is lacking 

part of the q-arm in approximately 30% of cells, while the whole chromosome is absent 

from almost 20% of cells. The deficiencies of the hybrid cell line were exaggerated by Alu-

PCR (Figure 3.12a). Since Alu elements dominate in R-bands, particularly T-bands, of 

which chromosome 18 has few (Korenberg & Rykowski, 1988; Baldini & Ward, 1991; 

Holmquist, 1992) (Section 1.4.3), Alu-PCR will amplify fragments from chromosome 18 far 

less efficiently than from chromosome 19, which is rich in T-bands. An alternative strategy 

adopted for the production of a complete monochromosome 18 paint is described in the next 

section. 

3.3.2 Producing a complete human monochromosome 18 FISH paint 

FACS was used to sort and collect chromosomes 18 by Dr. N. Carter, Sanger Centre 

Cambridge (Section 2.8.2). DNA from the collected chromosomes were digested with MseI 

(TI TAA) and catch-linkered (Section 2.4.2.1) by Dr. S. Cross, University of Edinburgh. 

The sequences of the catch-linkers used were as follows: 

CH 18-1 5' TACCGTFAAGCGTCAATCATGG3' 

CHI8-2 3' GGCAATFCGCAGTI'ACTACC5' 

Using the CHI 8-2 sequence as a primer, the fragments were amplified by linker PCR using 

the cycling conditions described in Section 2.4.2.2. Fragments were labelled for FISH by 

incorporating dUTP conjugated with biotin or dig into the PCR reaction (Section 2.4.2.3). 

These fragments should be representative of the entire length of chromosome 18. Figure 

3.13 shows an example of a human metaphase spread after hybridisation the catch-linkered 

chromosome 18 material. This probe paints the whole of chromosome 18. 



3.3.3 FISH paints for other human chromosomes 

A commercial FISH paint was used for chromosome I (Gibco BRL) which had been 

prepared from FACS sorted chromosomes which were digested, cloned (Fuscoe et at., 1989) 

and directly labelled with Spectrum Orange fluorochrome. This probe had to be 

supplemented with a chromosome I centromeric heterochromatin probe since the repeat 

sequences present in this region were under-represented in the cloned library. This 

additional DNA probe was cloned by Cooke & Hindley (1979) and labelled directly by Mrs. 

P. Malloy, MRC Human Genetics Unit, Edinburgh, by incorporating dUTP conjugated to 

Spectrum Orange into a nick translation reaction (Section 2.5.1). Figure 3.14a shows a 

typical human metaphase spread hybridised with these two probes. Approximately half of 

the p-arm of chromosome I in every spread showed a weaker hybridisation signal than the 

remainder of the chromosome. This may be due to the absence of representative sequences 

in the cloned library. 

Another FISH paint used was for human chromosome 11. An adequate probe was 

purchased commercially (Cambio) and Figure 3.15 shows hybridisation of this to a human 

metaphase spread. This paint was made by DOP-PCR of FACS sorted chromosomes 

(Telenius et al., 1992) (Section 3.1) and covers the entire length of the chromosome. 

A chromosome 22 FISH paint was obtained from Dr. S. Cross, University of Edinburgh. 

This paint was produced from FACS sorted chromosomes that were digested and catch-

linkered. As before, Msei (T I TAA) was used for digestion and the catch-linker sequences 

were as follows: 

CH22- I 5'TAAGTACTGCACCAGCAAATCC3' 

CH22-2 3' TCATGACGTGGTCGTmTAGG5' 

Using linker CH22-2 as a primer, fragments were amplified by PCR and labelled for FISH 

by incorporating dUTP conjugated with biotin into the PCR reaction (Section 2.4.2). Figure 

3.16 shows a human metaphase spread hybridised with this FISH paint. Despite a high 

quantity of suppression, with 50ig of Cot I DNA added for I SOng of probe and an extended 

period of re-annealing of 30 minutes at 37°C, signal appeared on all of the acrocentric 

chromosomes. This was expected due to the homology of the repeat sequences at these sites 
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(Section 3.2.2). However, the predominance of signal was on chromosome 22 and its entire 

length was illuminated. 



153 

CCGGGCGTGGTGGCGCGCGCCTGTAATCCCAGCTACTCGGGAGGCTGAG 
Cr 	 CCACC  

* 	*t 	
A

*** 	*** 	* 	* 	* 

T 

GCAGGAGAATCGCTTGAJ\CCCGGGAGGCGGAGGTTGCAGTGAGCCGAGA 
G ( 7  'CCCI\i 

I 

451 	 154 
* 	

SB30 

TCGCGCCACTGCACT CCAGCCTGG GCGACAGAGCGAGACTCCGTCTC poly A 
--------------- CCAGCCTGG/C/ACACAC//AAACCC1G r 

*** ** 	* 
32bp insert 

Figure 3.10 Human and Chinese hamster Alu consensus sequences 
The human sequence is taken from Jurka & Milosavljevic( 1991) (black). The Chinese hamster 
sequence is taken from Jelinek & Schmid(1982) (red). Only one strand of each is shown for 
clarity. The dashed line (-) indicates a portion of the human sequence not present in Chinese 
hamster Alu elements. The Chinese hamster has a 32bp insert not represented in the human 
sequence. The blue portion of sequence indicates a highly conserved 9bp region. The arrows 
indicate the position and direction of the human-specific Alu-PCR primers: #153 and #154 
(Breen etal., 1992), #451 (Alvieler & Porteous, 1992) and #SB30 (Ms. S. Boyle, MRC Human 
Genetics Unit, Edinburgh) (Section 2.4.1 .1). 
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Figure 3.11 Confirming the specificity of human Alu-PCR primers 
2% Nusieve agarose gel run in 1xTBE (Section 2.3). Total DNA was prepared from (a) 
human or Chinese hamster cell lines, or (b) the Chinese hamster-human monochromosome 
cell lines GM  1010 (human chromosome 18) or GM10449A (human chromosome 19). 50ng 
of template DNA were amplified by Alu-PCR (Section 2.4. 1) using each of the primers 
(#153, #154, #451 and #SB30) shown in Figure 3.10 and described in Section 2.4.1.1. lOjiJ 
product was loaded in each lane and stained with ethidium bromide. Each primer was 
confirmed as being human specific since amplified DNA was detected in all lanes except 
those where Chinese hamster DNA alone was the template. 
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Figure 3.12 Painting human metaphase spreads by FISH with Alu PCR 
monochromosome probes 
(a) (C) Fragments amplified by human-specific Alit PCR of DNA from the hybrid cell 
lines, GM  1010 (a) and GM 10449A (C), were biotin labelled and hybridised to REN2 
human metaphase spreads (49, XXXXY) by FISH (Section 3.3.1). The probe was 
detected using avidin-FITC (green). Chromosomes were counterstained with DAPI 
(blue). (C) (d) Grey scale representation of the DAPI stained spreads. Note the partial 
coverage of the chromosome 18 probe but the complete coverage of the chromosome 
19 probe. 
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Figure 3.13 A complete human chromosome 18 FISH paint 
(a) FACS sorted chromosomes 18 were digested, catch-linkered and labelled by 
incorporation of hiotin-dUTP in a PCR reaction using one of the catch-linkers as a 
primer (Section 3.3.2). Provided by Dr. S. Cross. University of Edinburgh. The 
probe was hybridised to REN2 human metaphase spreads (49. XXXXY) by FISH 
and detected using avidin-FITC (green). Chromosomes were countersTained with 
DAPI (blue). (b) Grey scale representation of the DAPI stained spread. 
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Figure 3.14 FISH paint for human chromosome I 
(a) Chromosome I paint directly labelled with Spectrum Orange (Gihco) and 
supplemented with a centric heterochrornatin probe directly labelled with Spectrum 
Orange by Mrs. P. Malloy, MRC Human Genetics Unit, Edinburgh (Section 3.3.3). 
The probe was hybridised to FATO human metaphase spreads (46, XY) by FISH and 
chromosomes were counterstained with DAPI (blue). (b) Grey scale representation of 
the DAPI stained spread. 
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Figure 3.15 FISH paint for human chromosome 11 
(a) Chromosome 11 FISH paint labelled with biotin (Camhio) and detected with 
avidin-FITC (green) (Section 3.3.3). The probe was hybridised to FATO human 
metaphase spreads (46. XY) by FISH and chromosomes were counterstainei with 
DAPI (blue). (b) Grey scale representation of the DAPI stained spread. 
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Figure 3.16 FISH paint for human chromosome 22 
(a) FACS sorted chromosomes 22 were digested. catch-linkered and labelled by 
incorporation of biotin-dUTP in a PCR reaction using one of the catch-linkers as a 
primer (Section 3.3.3). Provided by Dr. S. Cross. University of Edinburgh. The 
probe was hybridised to FATO human metaphase spreads (46. XY) by FISH and 
chromosomes were counterstained with DAPI (blue). (b) Grey scale representation of 
the DAPI stained spread. 
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3.4 Comparing the physical size of human chromosomes 18 and 
19 at metaphase 

The sites at which DNA attaches to the chromosome scaffold and the nature of this 

scaffold are the cause of much controversy. Several types of DNA sequence have 

been implicated and, indeed, some or all of these may be true sites of attachment. Such 

sequences include origins of replication, sites of active transcription and/or AT-rich 

sequences (Section 1.6.1). Chromosomes 18 and 19 are completely contrasting in their 

functional features (Section 1.7 & 3.1). Does this influence the way the DNA of these two 

chromosomes are packaged for mitosis as dictated by the DNA scaffold attachment 

sequences? 

In typical, 3:1 methanol:acetic acid fixed human chromosome spreads these two 

chromosomes appear to be of similar size. Estimates of DNA content associate chromosome 

18 with 2.68% and chromosome 19 with 2.12% of total DNA in the human genome, giving a 

ratio for 19:18 of 0.79 (Morton, 1991) (Section 1.7), with chromosome 18 having on 

average 20% more DNA than chromosome 19. This data was collected from a number of 

analyses carried out using image or flow cytometry, and measurements of incorporated 

radioactive DNA precursors by autoradiography. Care was taken to avoid any base specific 

bias with the use of fluorochromes. 

Chromosome condensation is a dynamic process which proceeds, through prophase to 

metaphase, at different rates along the length of each chromosome and probably does not 

result in the same ultimate level of compaction in all regions (Drouin et at., 1991) (Section 

1.4.5). Because of differences in compaction between the different stages of mitosis, it was 

necessary to compare chromosomes that were within the same spread. Mid-metaphase 

spreads from 3:1 methanol:acetic acid fixed primary male lymphocytes and a lymphoblast 

cell line, FATO were prepared (Section 2.1) and hybridised to the monochromosome paints 

for chromosomes 18 and 19 by FISH (Section 2.6). Using differentially labelled probes 

allowed simultaneous detection of the paints with distinct fluorochromes (Figure 3.17a & c). 

After identification of the chromosomes of interest from each spread, IPLab Spectrum 

software was used to measure the length, width and area, of each chromosome from images 

showing the chromosomes stained with the DNA stain DAPI (Figure 3.17b & d). Twenty 

five images were analysed and measurements averaged for the two homologues of each 

chromosome (Table 3.2). A previous study of 3:1 methanol:acetic acid fixed human male 
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lymphocyte spreads are also recorded in Table 3.2 (Van Dyke et al., 1986). Despite the 

variability in mean length measured for the primary lymphocyte and cell line spreads, the 

ratio of chromosomes 19:18 remained approximately the same, at 0.9. The length 

differences between different cell types probably reflects the degree of condensation in 

response to colcemid treatment. 

Table 3.2 The ratio of physical size of human chromosomes 18 and 19 at metaphase 
The mean length or area taken up by the two homologues of the chromosomes of interest in 
each spread were measured and the ratio of chromosome 19 to chromosome 18 was 
calculated. In each case 25 mid-metaphase spreads were assessed. * data taken from Van 
Dyke etal., 1986 +1- standard error of mean 
N- not calculated 

Origin of spreads Measurement Mean value  19:18 
19  18 

Primary lymphocytes Length (gm) 53+2 44+10.2 0.850002 

Primary lymphocytes Area (jim2) 79.828 72.6 0  0.92 00  
Lymphoblast cell line Length (jim) 3.5°' 3 . 2 0 I 0. 89+1002  

Lymphoblast cell line Area (jim2) 
537+/2.O 477+/I8 0.90+1002 

*pri mary  lymphocytes FLength (gm) 2.8°' 2.60F1001 097+/-N 

II 
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Figure 3.17 Identifying human chromosomes 18 and 19 in the same 
metaphase spread 
(a) (b) All chromosomes counterstained with DAPI (blue). Typical metaphase spread 
from primary lymphocytes (46, XY) hybridised with chromosome 18 FISH paint. 
labelled with biotin and detected with avidin-TR (red), and chromosome 19 FISH 
paint, labelled with dig and detected with anti-dig-FITC (green). (C) (d) Representative 
metaphase spread from the FATO human lymphoblastoid cell line (46. XY) hybridised 
with chromosome 18 FISH paint, labelled with dig and detected with anti-dig-FJTC 
(green), and chromosome 19 FISH paint, labelled with biotin and detected with avidin-
TR (red). (b) (d) Grey scale representation of the DAPI stained spreads. 
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3.5 Summary 

Human chromosome 18 has approximately 20% more DNA and is on average 10% 

larger than chromosome 19 in typical 3:1 methanol:acetic acid fixed metaphase 

spreads. It appears that the DNA of chromosome 18 may be more tightly packaged than that 

of chromosome 19, although these differences are not as large as might be expected 

considering the extreme reciprocal functional characteristics of these two chromosomes 

(Section 1.7). Using these data (Section 3.4) and the chromosome FISH paints produced 

(Section 3.3), more specific questions can now be asked about the packaging of these two 

chromosomes. This is approached in the next chapter by use of salt extraction to strip away 

proteins and so unravel the chromosomes. 



Exploring higher order human metaphase 
chromosome packaging 

4.1 Introduction 

S alt can be used to extract proteins, including histones, and release chromosomal DNA 

into loops, tethered to a scaffold which runs along the chromosome axis. This chapter 

uses salt extraction of human chromosomes 18 and 19 to examine further their DNA 

packaging, determining sequences that might be involved in attachments to the chromosome 

scaffold. These experiments have implications upon the packaging of DNA for the entire 

human genome. 

4.2 The scaffold attachments of human metaphase chromosomes 

The chromosome scaffold (Section 1.5.1) is a morphological term used to decribe the 

residual framework which remains following protein extraction of metaphase 

chromosomes (Paulson & Laemmli, 1977; Earnshaw & Laemmli, 1983; Paulson, 1989) with 

salt or polyanions. Various operational techniques have also been developed to determine 

the nature of the proteins and DNA associated with the scaffold. Scaffold attached regions 

(SARs) were identified from US extraction of nuclei. SARs are AT-rich and contain 

homoploymer tracts of dA and dT (Mirkovitch et at., 1984; Gasser & Laenm1i, 1986; Gasser 

et al., 1989; Laemmli et al., 1992). Electroelution of physiologically extracted, agarose 

embedded nuclei assigned sites of replication and transcription to the, so called, 

nucleoskeleton (Jackson & Cook, 1985 & 1986; Jackson, 1991; Jackson et at., 1996). 

Finally, mapping the cutting sites of topo II, a long established scaffold protein (Section 

1.4.6), on salt extracted nuclei and metaphase chromosomes has suggested that replication 

origins may play a key role in chromosome organisation (Razin et at., 1993). This possibility 

is upheld by the visualisation some origins of replication, by FISH, at the core of salt 

extracted metaphase chromosomes (Bickmore & Oghene, 1996). 

Three hypotheses of scaffold-loop metaphase chromosome folding now predominate (Figure 

4.1) and will be discussed in turn. These are differentiated by the types of DNA attachments 

involved: 

AT-rich SARs (Saitoh & Laemmli, 1994a & b). 

Sites of transcription (Cook, 1994 & 1995). 

Origins of replication (Razin etal., 1986 & 1993; Bickmore & Oghene, 1996). 



4.2.1 Chromosome bands and the AT-queue 

The fluorescent dye, daunomycin, shows a greater fluorescence when bound to AT-rich DNA 

(>65% AT). It has been argued that this dye can be used to trace the path of AT-rich SARs 

in metaphase chromosomes (the AT-queue). The non-fluorescent dye, methyl green, also 

binds preferentially to AT-rich DNA and using this to quench the general fluorochrome 

YOYO-1, DNA excluded from the AT-queue can be delineated. Combining these staining 

protocols, Saitoh & Laemmli (1994a & b) produced a striking reciprocal pattern along the 

length of the metaphase chromosomes of the Indian muntjac. Daunomycin highlighted the G-

bands and methyl green/YOYO- I stained the R-bands. It was concluded from this that the 

AT-queue is more tightly coiled within G-bands, with consequently more DNA and possibly 

smaller loop sizes in these regions. The R-bands are likely to contain an unfolded AT-queue, 

with larger DNA loop sizes predicted (Figures 4.1 & 4.2). 

The AT-queue was also identified immunologically by tracing topo II and HMG-I (Y) 

localisation (Saitoh & Laemmli, 1994a & b). Both of these proteins are concentrated within 

G-bands, consistent with a more tightly folded scaffold in these regions. Topo II has been 

previously shown to have a non-uniform distribution along chromosomes (Earnshaw & Heck, 

1985) (Section 1.4.6). ScIl has been demonstrated to colocalise with topo II, also showing a 

non-uniform distribution along chromosomes (Saitoh et at., 1994). HMG-I (Y) is not 

considered as a structural protein and, indeed has been shown to be involved in 

transcriptional activation (Section 1.4.4). However, this protein has been previously shown 

to have a preference for AT-rich DNA (Struass & Varshavsky, 1984; Disney et al., 1989; 

Reeves & Nissen, 1990; Reeves & Wolffe, 1996) and may be involved in promoting 

transcription in generally repressed regions. 

At a finer resolution, Jarman & Higgs (1988) showed eight operational SARs to be located 

within the human -globin locus, situated within a G-band, while none where found within 

the a-globin locus, situated in a T-band, supporting the bias distribution of SARs. 

Originally determined in nuclei, the relationship between SARs present at interphase and at 

metaphase is unclear. Only a subset of SARs identified from US extracted nuclear scaffolds 

have been shown to bind to chromosome scaffolds (Mirkovitch et at., 1988). Since 

chromosomes refold in exactly the same way each metaphase, it seems likely that there will 

be some consistency in sites of attachment throughout the cell cycle. 
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4.2.2 Polymerases as structural determinants of the chromosome 

The model postulated by Cook (1994 & 1995) is in sharp contrast to that described above and 

proposes that RNA polymerases are the basis of metaphase chromosome structure, that is, 

DNA attachments are functionally determined. It is proposed that transcription factories, 

observed at interphase as discrete foci (Jackson et al., 1993; Wansink et al., 1993; Grande et 

al., 1997) are immobile and attached to the nucleoskeleton (Jackson & Cook, 1985; Cook, 

1989). During prophase these foci may aggregate, as the nucleoskeleton depolymerises, 

condensing each chromosome and being visible as chromomeres. One flaw in this model is 

that chromomeres actually correspond to gene-poor G-bands, not gene-rich R-bands (Section 

1.4.2). The model also implies that loop size will vary between chromosome bands, with 

R-bands containing smaller loops since they are more transcriptionally active, and thus 

associated with more transcription factories, than G-bands (Figure 4.1). 

4.2.3 Associations between the origins of replication and the chromosome 
scaffold 

The precise nature and organisation of mammalian origins of replication is unclear (Reviews: 

Hand, 1978). It seems likely that origins are spaced fairly frequently throughout the genome, 

but at different stages of development and in different tissues, alternative sets of origins are 

initiated (Hamlin & Dijkwel, 1995). Fibre autoradiographic studies have shown that 

chromosomal DNA is replicated by two divergent replication forks sharing a common origin. 

These replicons are spaced 30-300Kb apart and clusters of 5-20 replicons are activated 

synchronously, possibly each representing a high resolution replication band (Holmquist, 

1987) (Section 1.3.4). 

A similarity between the size of loops and replicon frequency has been recognised at 

metaphase and interphase in many species (Buongiorno-Nardelli et al., 1982) including 

humans (Marsden & Laemmli, 1979; Tomilin et al., 1995). Additionally, where the 

frequency of replication origin usage in X.laevis becomes less, as cell cycle length shortens 

during embryogenesis (Blumenthal et al., 1974), the size of nuclear DNA loops become 

smaller and metaphase chromosomes become larger and fatter, in accordance (Micheli et al., 

1993). 

Attachments to the salt extracted nuclear matrix have been shown to map with putative 

origins of replication throughout the cell cycle (Berezney & Buchholtz, 1981; Dijkwel etal., 
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both the salt extracted nuclear matrix (Vogelstien etal., 1980; Berezney & Buchholtz, 1981) 

and to the physiologically extracted nucleoskeleton (Jackson & Cook, 1986; Jackson, 1990 & 

1991; Cook, 1991). By FISH, origins of replication have been shown to associate with the 

scaffold of salt extracted human metaphase chromosomes (Bickmore & Oghene, 1996), and 

topo II cleavage sites correlate well with known origins of replication in Danelanogaster 

(Razin et al., 1993). In S.cerevisiae, autonomously replicating sequence (ARS) elements 

have also been shown to associate with a chromosome scaffold (Amati & Gasser, 1988 & 

1990). The remnants of replication origin clusters have been observed to persist at the 

chromosome scaffold throughout the cell cycle in a number of species (Meng & Berezney, 

1991; Adachi & Laemmli, 1992; Diffley et al., 1994; Sparvoli et al., 1994). However, 

clustering of replication loci does not require an interaction with a predefined nuclear matrix 

(Cox &Laskey, 1991). 

4.2.4 Different sites of scaffold attachment probed by different extraction 
protocols 

In an attempt to resolve the discrepancies of the three hypotheses described above, Craig et 

al. (1997) took scaffold and loop DNA from nuclei and chromosomes extracted with salt, US 

or by electroelution. This DNA was labelled and hybridised to human metaphase 

chromosomes by FISH. Attached DNA from LIS extracted nuclei was shown to 

preferentially hybridise to G-bands confirming that SARs are, indeed, more frequent in these 

regions than in R-bands. Reciprocally, attached DNA from electroeluted nuclei 

preferentially hybridised to R-bands, consistent with transcriptionally active sequences being 

the predominant sites of attachment to the nucleoskeleton. Finally, attached DNA from salt 

extracted nuclei tended to localise to G-bands but to a lesser extent than was observed for 

LIS extracted nuclei. 

Attached DNA from US extracted metaphase chromosomes, rather than from nuclei, 

hybridised preferentially to G-bands, as before. When attached DNA was collected from 

electroeluted metaphase chromosomes, there was no biased hybridisation. This suggests that 

transcriptional activity may only be involved in setting up attachments to a nuclear 

substructure at interphase. Similarly, a more even distribution resulted from hybridisation 

with attached DNA from salt extracted metaphase chromosomes. These data suggest that the 

attachments being analysed by electroelution and salt extraction are dynamic. Clearly, the 

nuclear scaffold, nuclear matrix and nucleoskeleton are not equivalent. 
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From this study, it seems likely that DNA attachments mediated by transcription may only be 

involved at interphase. DNA attachments to US extracted nuclei and chromosomes appear to 

be relatively consistent, suggesting that SARs may be permanent sites of attachment to a 

nuclear and chromosome scaffold. DNA attachments sampled by salt extraction of 

chromosomes show a relatively even distribution of attachment sites along the length of 

chromosomes. How does this compare with the morphological scaffold of salt extracted 

chromosomes? 

4.2.5 The implications of the three scaffold-loop models of metaphase 
chromosome structure for human chromosomes 18 and 19 

What differences in the structure of chromosomes 18 and 19 might be expected for each of 

the three models of scaffold-loop metaphase chromosome structure (Figure 4.1)? If the AT-

rich SAR queue was the basis of packaging, then it might be expected that there would be 

more loop attachments in the AT-rich G-bands than the R-bands. Thus, AT-rich chromosome 

18 would have more attachments along its length and smaller DNA loop sizes than GC-rich 

chromosome 19. If, on the other hand, as proposed by Cook (1994 & 1995) actively 

transcribed genes form the majority of scaffold attachment sites then gene-poor chromosome 

18 would, by complete contrast, have fewer attachment sites and longer DNA loops than 

gene-rich chromosome 19. Finally, if origins of replication were the key binding sites then 

the relatively evenly spaced distribution of these would be reflected in regular attachments 

and roughly equal DNA loop sizes in these two chromosomes. Of course, it is possible that 

evenly spaced attachments may be defined by sequences other than replication origins, for 

example, boundary elements. 

To assess each of these possibilities, metaphase chromosomes were extracted with increasing 

concentrations of salt, stripping proteins and releasing the DNA loops, leaving the scaffold 

attachments intact. The loop sizes of chromosomes 18 and 19 were then compared. 
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Figure 4.1 Three models of higher order packaging of human metaphase chromosomes 
(a) Binding of AT-rich SARs to a protein scaffold (Saitoh & Laemmli, 1994a & 1995b). (b) 
Binding of transcriptionally active regions to a scaffold by polymerases (Cook, 1994 & 1995). 
(c) Evenly spaced attachment to a scaffold at sites corresponding to, for example, replication 
origins (Razin etal., 1986 & 1993; Bickmore & Oghene, 1996). Each model has implications 
for the looping of DNA in G-bands and R-bands. 
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Figure 4.2 The AT-rich queue 
Taken from Laemmli el al. (1994a & b) (Left) Hypothetical chromatid fibre which folds to 
form the more compact metaphase chromosome (Right). Daunomycin stains the AT-rich DNA 
queue (yellow), while AT-binding methyl green is used to quench the general fluorochrome 
YOYO so that it is excluded from the AT-queue (green). Loops are not directly observed but 
inferred. QIG relates to G-bands, and R indicates R-bands. Loop sizes are considered to be 
smaller in G-bands than R-bands. 
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4.3 Salt extraction of human chromosomes 18 and 19 

Metaphase chromosomes from the REN2 human lymphoblastoid cell line (49, 

XXXXY) were prepared in polyamine buffer (Section 2.8.1). To enrich for 

metaphase chromosomes, cells growing exponentially were treated with colcemid, a spindle 

depolymerising agent, up to 16 hours before harvesting. A mitotic index of >60% was 

required to be achieved. Cells were then swollen in hypotonic solution, pelleted and 

resuspended in polyamine buffer containing digitonin. Polyamines are basic molecules and 

their presence helps maintain the chromosomes in a condensed state during isolation 

(Wallace et al., 1971). Digitonin pierces the cellular membrane, but not the nuclear 

membrane, and since cells undergoing mitosis have no nuclear membrane, metaphase 

chromosomes are released into the supernatant (Blumenthal et al., 1979; Sillar & Young, 

1981). Cells were spun, and the nuclear pellet and chromosome containing supernatant were 

stored with glycerol independently at -70°C. Chromosomes were later spread on slides and 

allowed to settle overnight. For extraction, slides were lowered gently into extraction buffer 

in the absence of salt and then sequentially into extraction buffers with increasing salt 

concentration (Section 2.9). The morphology of the chromosomes was more consistently 

maintained with sequential extraction than direct extraction in the desired salt concentration. 

It is apparent that metal ions occur naturally in chromosomes and are involved in stabilising. 

the scaffold, thus, Cu 2  was included in the extraction buffer (Lewis & Laemmli, 1982). This 

method was adapted from Bickmore & Oghene (1996). Previous attempts to obtain mitotic 

cells from an adherent cell line grown on slides resulted in few spreads with insufficient 

separation of the individual chromosomes. 

Different proteins are stripped from the chromosomes at different salt concentrations. The 

following salt concentrations were selected because they correlate with the specific loss of 

each of the core and linker histones (Wolffe, 1995): 

• 0.5M-H1 

• 1 .OM - H2A and H213 

• l.2M-H3 and H4 

• 1.8M - All core and linker histones should be completely extracted 

Following salt extraction chromosomes were fixed in 3:1 methanol:acetic acid, ensuring that 

the chromosomes would withstand the rigours of FISH. To identify chromosomes 18 and 19, 

FISH using the paints produced for each chromosome (Section 3.3) was carried out and 

extracted chromosomes were counterstained with DAPI (Figure 4.3). The general shape of 
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the chromosomes were maintained throughout these procedures. The primary centromeric 

constriction was obvious in all images, revealed as a bright region of DAPI staining. 

Chromosome 18 was clearly observed as acrocentric and chromosome 19 as metacentric. 

The sister chromatids of most of the chromosomes were separated, particularly at higher salt 

concentrations, often with a brightly staining axis along each. Sister chromatids showed a 

high degree of structural symmetry, arguing against artifactual DNA aggregation. 

Twenty five chromosomes 18 and 19 with good morphology and obvious orientation, 

extracted at each salt concentration, were selected. Using IPLab Spectrum software, DAPI 

stained chromosome images were used to assess the maximum width, length and total area 

taken up by chromosomes at each salt concentration (Tables 4.1 & 4.2). The range of widths 

for both chromosomes at 1.8M NaC1 extraction was 7-12tm. This is less than the 

dimensions (12-20j.tm) measured by electron microscopy of 2.OM NaCl extracted 

chromosomes (Paulson & Laemmli, 1977). DAPI staining is generally poor at discerning the 

outer limits of the halo where the relative concentration of DNA is low, thus explaining the 

underestimate of halo extent from DAPI stained images. Indeed, FISH signal was sometimes 

observed to extend beyond the DAPI staining. However, DAPI was the only fluorescent dye 

compatible with the fluorescence filter set used. 

The range of lengths for both chromosomes at 0.OM NaCl was 4-5.im, which is 

approximately 40% longer than typical 3:1 methanol:acetic acid fixed lymphoblast 

chromosomes (Table 3.2). This suggests that some swelling of chromosomes occurs in 

extraction buffer, even in the absence of added salt. Such swelling has been previously 

described and is attributed to the chelation of divalent cations, for example Mg', by EDTA 

present in the extraction buffer (Marsden & Laemmli, 1979; Bickmore & Oghene, 1996). 

Both chromosomes 18 and 19 maintain a ratio of 1:1, length:width from extraction in buffer 

without salt through to 1.8M NaCl. From the experiments in Section 3.4 it was calculated 

that the mean ratio of length:width for both chromosomes, from lymphoblastoid 

chromosomes fixed with 3:1 methanol:acetic acid, was 2:1. Therefore, it appears that this 

initial swelling occurs width-wise. Extraction with increasingly high salt causes the 

chromosomes to continue to expand equally both longitudinally and laterally, suggesting that 

the coiled scaffold gradually unwinds in addition to loops of DNA being released (Figures 

1.1 & 4.1). 

When mean width, length and area of the chromosomes at each salt concentration are shown 

graphically (Figure 4.4), it can be seen that they expanded to the same extent as salt 

127 



concentration increased. Indeed, the ratios of 19:18, for both width and area, remained at 

approximately 0.85, that is chromosome 18 was approximately 15% larger than chromosome 

19, at every salt concentration (Table 4.2). An approximately 4-fold overall level of 

decondensation was achieved for each chromosome from 0.OM to 1.8M NaCl extraction 

(Table 4.2). 

These experiments suggest that chromosome 18 has DNA loop sizes that are broadly the 

same as those of chromosome 19. The even spacing of sites of attachment, equally 

distributed along both chromosomes is the model best supported by these measurements 

(Section 4.1.3). This is also supported by Craig et al. (1997), who showed by FISH that 

attached DNA from salt extracted metaphase chromosomes hybridise relatively evenly along 

metaphase chromosomes. Exactly what constitutes such attachments remains to be 

established and it might be that a variety of different sequences are involved. Loop size was 

relatively even along the length of each chromatid and there was reasonable symmetry 

between chromatids of both chromosomes 18 and 19 (Figures 4.3 & 4.4). However, this does 

not eliminate the possibility that attachments have been randomised as suggested by 

Mirkovitch et al. (1984) (Section 1.6.5). 

Cook's model (1994 & 1995), that regions of active transcription are the only permanent sites 

of attachment to the metaphase chromosome scaffold, is not supported by my results. There 

is no evidence from these experiments and those of Craig et al. (1997) to show that gene-rich 

regions have more attachments to the metaphase chromosome scaffold than gene-poor 

regions. If genes are not strongly associated with the scaffold, where are they positioned 

within the chromosome loop? Do they tend towards the outer region of loops where they 

might be most accessible to transcription machinery and involved in associations with a 

nuclear network outside of the chromosome? 
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Table 4.1 The width and length of metaphase chromosomes 18 and 19 extracted at increasing salt concentrations 
Metaphase chromosomes from the REN2 human lymphoblastoid cell line were extracted with increasing concentrations of salt. FISH was used to 
identify chromosomes 18 and 19 and the width, length and area occupied by each of 25 chromosomes were measured using IPLab Spectrum software. 
+1- standard error of mean 

Salt 
concentration  

Mean width (p.m) Mean length (pm) Mean length/width Area of chromosome (.tm) 

18 [19 18 19 18 19 18 19 
0.OM 4.63"° 4.22+/.0.08 4.75 +/-0.11 4.66 +10.10 I.03004 1.09+/- 0.03 379.5+/- 4.5  326.3+/- 10.2 
0.5M 7.000l4 575+1.013 7.07 +/.0.I5 6•100M i.00 °°4  L06°°3 726.9255 5747+117.7 

1.OM 9 .08 020  7.700M 9.20 ° ' 8.13 °" 1.01 +/-°°4  1.05+/- 0.0 
 1256.2 985 . 1 2 I 4  

1.2M 9.96 0 ' 8.96+/-0' 
1 
 9.41 +1-0.17 8.67 +/-0.12 0.93+/-°°  0.96+/- 0.0 

 14l8.3' I 193.6" 
1.8M 10. 1 2 °  8.800l9 9.76 +1-0.16 8.91 +/-0.18 O.96 °°  l459.5' 1266. 

Table 4.2 Comparing the DNA loops of salt extracted chromosomes 18 and 19 
The ratio of mean width and area (Table 4.1) for chromosome 19:18 following extraction at increasing salt concentrations. 

Salt concentration 	7,9:18 area comparison 19:18 width comparison 
0.OM 0.86 0.91 
05M 0.79 0.82 
I .OM 0.78 0.85 
1.2M 0.84 0.91 
1.8M 0.87 0.87 
Mean value 0.83 0.87 



r. 

Figure 4.3 Salt extraction of human chromosomes 1$ and 19 
Grey scale images of' DAN stained chromosomes, representative for chromosomes IS and 19. extracted at increasing salt concentrations. FISH 
with chromosome specific paints was used to identify the chromosomes. The centromcres are marked by bright regions of DAN staining. The 
two sister chromatids of each chromosome can he observed. The two chromosomes do not change significantly in site with respect to one 
another as salt concentration increases. Bar = I pm 
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Figure 4.4 Comparisons between salt extracted human metaphase chromosomes 18 and 
19 
Graphs showing the parameters of human metaphase chromosomes 18 and 19 when extracted 
with increasing salt concentrations: (a) mean width (pm), (b) mean length (pm), (c) mean area 
(jim2), and (d) mean length divided by width. FISH was used to identify chromosomes 18 and 
19 and the width, length and area occupied by each of 25 chromosomes of each was measured 
using IPLab Spectrum software. +1— standard error of mean 
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4.4 The location of genes in salt extracted chromosome 18 

The chromosome territory hypothesis of interphase nucleus organisation (Section 1.5.3) 

emphasises the importance of the periphery of each territory. Channels are considered 

to exist, which allow the movement of protein and RNA, but do not penetrate the confines of 

each territory area. RNA transcripts and splicing components are generally excluded from 

chromosome territories (Zirbel et at., 1993). Further to this, Kurz et al. (1996) located 

coding and non-coding sequences in relation to chromosome territories. Their analysis of 

three coding sequences showed them to be positioned close to the periphery of the 

chromosome territories in which they reside, regardless of the activity of the genes which the 

sequences represented. The two non-coding sequences studied were localised either 

randomly or preferentially in the interior of the corresponding territory. The sample size in 

this experiment was very small and the authors suggest that further analysis of an increasing 

number of sequences are required. Genes located on the surface of a territory would be more 

readily in contact with transcription complexes and be able to recruit splicing factors from 

speckles (Section 1.5.2). The composition of proteins at the mitotic chromosome periphery 

may reflect this suggested distribution of genes (Section 1.6.5). The perichromosomal layer 

includes ribonuclear proteins, many of which remain uncharacterised (Spector & Smith, 

1986; Gautier et al., 1992), but may be remnants of splicing complexes. Also included are 

some nucleolar proteins, for example, fibrillarin, which is believed to be involved in early 

processing of rRNA in the nucleolus (Ochs etal., 1985; Jimanez-Garcia et al., 1989; Yasuda 

& Maul, 1990). 

CpG-islands are ideal markers for human genes, with almost 60% of human genes having a 

CpG-island at the 5' end (Larsen et al., 1992) (Section 1.3.7.4). Can CpG-islands be used 

collectively as gene markers to show exactly where genes are located within chromosomes? 

To test this, FISH probes were prepared from CpG-islands fractionated from individual 

chromosomes and hybridised to salt extracted mitotic chromosomes. 

4.4.1 Preparing chromosome 18 CpG-island and non-CpG-island 
fragments for FISH 

Cross et al. (1994) devised a methylated DNA binding column for the purification of 

CpG-island fragment libraries. By addition of linkers, these fragments could be amplified by 

PCR and labelled to be used as probes for FISH. Since chromosome 18 has so few 

CpG-islands and genes located along its length (Section 1.7 & Figure 1 .3), this may be a 
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good chromosome on which to determine any pattern of CpG-island and, thus, gene 

distribution with respect to either the periphery or the interior of the chromosome. FISH 

using CpG- and non-CpG-island DNA fragments was performed upon salt extracted mitotic 

chromosomes and the distribution compared with the signal from whole chromosome 18 

paint. 

The chromosome 18 CpG-island fragment library was produced by Dr. S.H. Cross, 

University of Edinburgh. A preparation of chromosomes 18 were sorted by FACS (Dr. N. 

Carter, Sanger Centre, Cambridge) and digested with the restriction enzyme MseI. This 

enzyme has a cutting site of TTAA which cuts rarely within CpG-islands but frequently 

within bulk DNA and, thus, it leaves CpG-islands relatively in tact. The methyl-CpG binding 

domain (MBD) of the rat chromosomal protein, MeCP2 (Section 1.4.5) binds specifically to 

single symmetrically methylated CpG pairs (Cross et al., 1994). MBD was attached to a 

column matrix, over which the chromosome 18 MseJ fragments were passed. Methyl-CpG 

containing fragments were retained in the column while CpG-island fragments were 

contained in the fraction of fragments that bound weakly and were stripped from the column. 

The stripped fraction was then subjected to treatment with bacterial methyltransferase, to 

methylate all non-methylated CpGs. CpG-island containing fragments were then converted 

from weak binding to strong binding fragments and on a second run over the column those 

fragments which eluted at high salt were selected as a CpG-island library. The remaining 

fragments were kept as a non-CpG-island fraction. To confirm the identity of these fractions, 

a sample of fragments were cloned and tested for the presence of BstUI sites. This 

restriction enzyme recognises the sequence CGCG which occurs frequently within 

CpG-islands but rarely in bulk DNA (Cross etal., 1994). 

Catch-linkers CH18-land CH18-2 (Section 3.3.2) were attached to the fragments of both the 

CpG- and non-CpG-island fractions. Using the CH18-2 sequence as a primer, the fragments 

were amplified by linker PCR using the cycling conditions described in Section 2.4.2.2. 

Fragments were labelled for FISH by incorporating dUTP conjugated with biotin or 

digoxigenin (dig) into the PCR reaction (Section 2.4.2.3). Prior to FISH, 200ng of probe 

were pre-hybridised with 201g of human Cot  DNA to suppress highly repetitive sequences. 
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4.4.2 FISH with chromosome 18 CpG- and non-CpG-island fragments to 
extracted mitotic chromosomes 

Figure 4.5a shows hybridisation of the chromosome 18 CpG-island probe to a typical 3:1 

methanol:acetic acid fixed chromosome. When a whole human CpG-island probe is used to 

paint metaphase chromosomes, little or no hybridisation is observed along chromosome 18 

(Craig & Bickmore, 1994) (Figure 1.3), due to the dominant hybridisation of this probe to 

regions of the genome with a high CpG-island density. However, hybridisation of 

CpG-islands from chromosome 18 alone resulted in a pattern of hybridisation that generally 

reflected its banding distribution, with the highest levels of hybridisation correlating with 

R-bands (compare Figure 4.5a & c with Figure 4.5e). This pattern of hybridisation was also 

revealed by FISH with the chromosome 18 CpG-island probe to salt extracted chromosomes 

(compare Figure 4.5b & d with Figure 4.5e). These data argue that this CpG-island probe 

truly reflects the distribution of genes along chromosome 18. 

Metaphase chromosomes extracted with increasing salt concentrations (Section 4.3) were 

hybridised with differentially labelled chromosome 18 CpG-island probe and whole 

chromosome 18 paint (Section 3.3.2). Figure 4.6 shows a representative chromosome at each 

salt concentration. For each chromosome a graph of mean signal intensity laterally across the 

chromosome was drawn. To do this, the chromosome length was measured in pixels using 

IPLab Spectrum software. A line was then drawn manually width-wise, dividing the 

chromosome exactly in half length-wise. The parameters of the graph command were set 

such that it produced an average of the pixel intensities for each fluorochrome along the total 

length of the chromosome, for each pixel across its width. 

The chromosomes were reasonably flat on the slide with the majority visible within one focal 

plane. The loops of DNA appear to spread across the surface of the slide resulting in a 

symmetry of loop sizes between sister chromatids and suggesting that loops above and below 

the chromosome axis have also spread horizontally (Also see: Bickmore & Oghene, 1996). If 

genes were preferentially located toward the periphery of the mitotic chromosome, that is, at 

the end of each loop, it might be expected that there would be a higher amount of signal from 

the CpG-island probe compared with that of the total chromosome paint at the extremes of 

the graphs. However, it is clear from Figure 4.6 that the distribution of CpG-island signal 

exactly mirrors that of total chromosome 18 paint. 
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As a reciprocal experiment, the non-CpG-island fraction was also hybridised to extracted 

mitotic chromosomes in conjunction with total chromosome 18 paint. Figure 4.7 shows a 

pattern of distribution very similar to that in Figure 4.6. It might have been expected that the 

signal from the non-CpG-island probe would drop away at the extremes of the graphs more 

sharply than the signal from the total chromosome paint. 

It is difficult to prove that chromosomes prepared by salt extraction exactly preserve their 

intracellular structure. However, topo II is maintained along the chromosome axis and 

centromere proteins and the primary constriction appear to remain at the intracellular site of 

the chromosome (Personal communication: Dr. W.A. Bickmore). Analysing the distribution 

of CpG-island fragments on salt extracted chromosomes, I could detect no bias of signal 

either towards the chromosome axis or towards the outer edge of the loops. A similarly 

uniform distribution was observed with non-CpG-island fragments. From this it appears that 

there is no gross level of gene organisation laterally in metaphase chromosomes. These 

results argue against Cook's model (1994 & 1995) of transcription regions defining the sites 

of attachment and driving the condensation of the mitotic chromosome, since this would 

predict that CpG-islands would be located most frequently at the chromosome axis. The data 

in this section also demonstrate that genes are not preferentially located towards the outer 

edge of the metaphase chromosome, contradicting the conclusions of Kurz et al. (1996). - 

However, the data set used in the latter study was small and, thus, may not be representative. 

The chromosome 18 CpG-island probe used in my investigations is likely to represent over 

half the number of coding genes present and indicates no bias of distribution of coding 

sequences towards the chromosome 18 periphery. Additionally, the experiments of Kurz et 

al. (1996) were carried out at interphase. It is possible that the decondensation of 

chromosomes following mitosis is accompanied by a reorganisation that results in coding 

sequences being brought preferentially to the surface of interphase chromosome territories. 

This will be further discussed in Section 7.5. 
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Figure 4.5 The distribution of ('p(;-island DNA along the length of chromosome 1 
(a) (h) Hybridisalion of chromosome 18 CpG-island fragments isolated using the methyl-CpG binding column (Cross e/ al., 1994), labelled 
with hiutin and detected with avidin-TR (red). Chroniosomes counterstained with DAN (blue). (c) (d) Graphs of average signal over the 
width o[ each chroniosoiiic. (rum the tip of the p-arm to the lip of the cl-arm.  The lines are the appropriate colour for the lluorochroine 
that they represent. (a) (c) Typical 3: 1 methanol acetic acid fixed chromosome 18. (h) (d) Chroiiiosonic 18 extracted with 1.2M salt. (e) 
ldcoerani of chromosoiiie 18at 3(X) hands/genuine resolution. Grey- R-hands White- G-hands Black- centromere 

C) 

2 

- 

p 11  

p 	 q 



Cd 

L. 

Figure 4.6 1 he distribution of CpG-island DA laterally across salt extracted human chromosome iS 
Chromosomes IS extracted at increasing salt concentrations. (a) ('o-hyhridisation 01 chromosome 18 CpG-island fragments isolated using 
a methyl-CpG binding column (Cross el al.. 1994), labelled with hiotin and detected with avidin-TR (red), and total chromosome 18 FISH 
paint, labelled with dig and detected with anti-dig-FITC (green). Chromosomes were counterstained with DAPI (blue). Grey scale 
representations ol each liuorochrome are shown: (h) DAPI. (c) CpG-island DNA (TR). and (d) total human DNA (FITC). (e) Graphs of'  
mean signal over the length, measured across the width of the each chromosome Iron) leFt to right. The lines are the appropriate colour br 
the bluorochronie that they represent. 



Figure 4.7 The distribution of non - Cp( -island DNA laterally across salt extracted chromosome IS 
Chromosome 18 extracted at increasing salt concentrations. (a) Co-hybridisation of* chromosome 18 non-CpG-island Fragnietits isolated 
using the incthyl-CpG binding column (Cross et al.. 1994. labelled with hiotin and detected with avidin-TR (red). and total chromosome I 
FISH paint, labelled with digoxigenin and detected with anti-digoxigenin-FITC (green). Chromosomes were counterstained with DAPI 
(blue). Grey scale representations of each Iluorochromc are shown: (h) DAPI, (c) non-CpG-island DNA (TR). and (d) total human DNA 
(FIT('). ( e) Graphs of mean signal over the length of each chromosome, measured across the width of the chromosome from left to right. 

The lines arc the appropriate colour for the lluorochronie that they represent. 



4.5 Summary 

The data presented in this chapter indicate that at metaphase, chromosomes 18 and 19 do 

not differ significantly in their structure and DNA packaging. In 3:1 methanol:acetic 

acid fixed spreads chromosome 18 was consistently found to be 10% larger than chromosome 

19 (Section 3.4). When salt was used to strip away the proteins involved in chromatin 

folding, releasing a halo of DNA loops, chromosome 18 remained larger than chromosome 

19 to a similar degree. This suggests that the loop sizes along the length of these two 

chromosomes are similar and that the loops are attached to the chromosome axis at positions 

that are relatively evenly spaced throughout the genome. These sites of attachments are not 

likely to be purely AT-rich SARs, nor transciptionally active regions, since these sites would 

be predicted to have completely contrasting distributions along these two chromosomes. In 

addition, genes, represented by CpG-islands, are neither predominantly distributed at the 

chromosome axis nor the surface of the chromosome loops. This conflicts with models that 

suggest that sites of transcription are the sites of attachment to the chromosome scaffold. It 

also suggests that genes are not exposed to the surface of metaphase chromosomes. 

Although there is no striking difference in the higher order DNA packaging of human 

chromosomes 18 and 19 at metaphase that reflects the different gene densities of these two 

chromosomes, it has been previously demonstrated that there are contrasting differences at 

the level of the nucleosome (Section 1.7). Immunofluorescence to metaphase chromosomes 

has shown low levels of core histone H4 acetylation along the entire length of chromosome 

18, while chromosome 19 has a predominance of highly acetylated H4 (Jepessen et al., 1992) 

(Figure 1 .6), consistent with acetylation being correlated with transcriptionally active 

chromatin. These immunofluorescence studies reveal the steady state of histone acetylation, 

but acetylation is a reversible process. Could human chromosomes 18 and 19 be used to 

investigate the dynamics of core histone acetylation? Chapter 5 approaches this question, 

attempting to build a more detailed picture of the differences and similarities between the 

chromatin of these two chromosomes. 
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5. Immunofluorescence studies of core histone 
acetylation along human metaphase chromosomes 

5.1 Introduction 

The previous chapter examined the DNA packaging of human chromosomes 18 and 19 at 

metaphase, showing no striking differences between the two chromosomes that reflect 

their contrasting functional features. This chapter steps back a structural level to that of the 

nucleosomes and core histones. The core histones are subject to a number of modifications, 

of which, acetylation is the most studied (Section 1.4.1). High levels of core histone 

acetylation in chromatin are correlated with potential transcriptional activity (Hebbes et at., 

1988, 1992 & 1994; Tazi & Bird, 1990; O'Neill & Turner, 1995), while hypoacetylation has 

been revealed at regions of transcriptional repression (Braunstein et at., 1996; Ekwall et at., 

1997; Review: Thompson etal., 1993). 

The most direct link between acetylation and transcriptional activity has come from the 

cloning of the several histone acetyltransferases and deacetylases, many of which have been 

assigned activities as transcriptional co-activators (Brownell et al., 1996; Yang et al., 1996b; 

Taunton et al., 1996; Reviews: Grunstein, 1997; Wade et at., 1997). Acetylation facilitates 

the binding of transcription factors (Lee et al., 1993; Vettese-Daley etal., 1994 & 1996) and 

is considered, by most, to cause a reduction in the wrapping of DNA around the nucleosome, 

resulting in a more "open" chromatin structure (Review: Garcia-Ramirez et al., 1995). 

Antibodies raised to the different isoforms of acetylated H4 have been used, at the 

cytological level, to reveal patterns of distribution along metaphase chromosomes in several 

organisms. In general, the tn- and tetra-acetylated isoforms correlate with the most gene-rich 

regions of the genome (Jeppesen et at., 1992; Turner et al., 1992; Jeppesen & Turner, 1993; 

Houben et al., 1996 & 1997; Idei et al., 1996). Particularly striking is the link between 

hyperacetylation and the highly transcribed X-chromosome of D.me!anogaster males (Turner 

et al., 1992). Conversely, in humans the inactive X-chromosome (Xi) of females is 

hypoacetylated (Jeppesen et al., 1992). Acetylation is clearly involved in sex chromosome 

dosage compensation, although not in its initiation (Keohane et al., 1996). The study of 

human X-chromosomes segregated as micronuclei has shown Xi is also hypoacetylated at 

interphase (Surralles et al., 1996), suggesting that acetylation patterns are generally 

maintained throughout the cell cycle. Since many transcription factors and polymerases 

appear to be displaced from mitotic chromosomes (Marti nez-B al bas et al., 1995; Segil et al., 



1996), it seems that heritable histone modifications, such as acetylation are likely to be a 

means of passing on information regarding the transcriptional status of a particular region 

(Jeppesen, 1997; Wade et al., 1997). Breneman et al. (1996) fractionated chromatin derived 

from human interphase nuclei by their general levels of acetylation and hybridised these 

fragments to metaphase spreads by FISH. No competition of highly repetitive sequences was 

used resulting in some spurious hybridisation, but generally, regions of high acetylation 

hybridised to R-bands and hybridisation of fragments with low levels of acetylation 

corresponded to G-bands and heterochromatic regions. 

Acetylation is reversible. Turnover of the acetylation of core histories continues throughout 

the cell cycle, with depletion of the more acetylated isoforms and a change in site usage, 

during mitosis (Turner, 1989). Two distinct populations of core histones have been shown to 

exist. By following incorporation of tritiated acetate, it was calculated that <15% of histories 

made up a minor population showing rapid acetylation and removal, while the remainder 

showed a less rapid turnover. No interconversion between the two populations appeared to 

occur. The turnover of acetylation for tetra-acetylated H4 was concluded to be greater than 

that of mono-acetylated H4 (Covault & Chalkley, 1980). How are these two populations of 

histories distributed throughout the genome? Is there a connection between acetylation 

turnover and transcriptional activity? What can be established about the turnover of 

acetylation along chromosomes 18 and 19? 

To answer these questions, I made use of an antibody raised to acetylated H4 and observed 

differences in the pattern of binding along metaphase chromosomes following treatment of 

the cells with different inhibitors of deacetylation. By blocking deacetylation it is possible to 

compare the rates of the forward acetylation reaction only and, indeed, inhibitors of 

deacetylation have often been used to enhance patterns of immunofluorescence against 

acetylated histories. I used the changes in intensity of immunofluorescent signal at different 

chromosomal locations to establish a difference in acetylation turnover between G- and 

R-bands. 

52 The dynamics of core histone acetylation 

A rabbit polyclonal antibody (R41) raised to H4 acetylated at lysine 5 (lys5) was 

obtained from Prof. B. Turner, University of Birmingham. In mammals, lys16 is the 

position most commonly modified in mono-acetylated H4. Next to be acetylated is usually 

lys12 or lys8 and lastly, lys5 (Turner & Fellows, 1989), hence, the R41 antibody recognises 

141 



the most highly acetylated forms of 114. Immunofluorescence with this antibody to human 

metaphase chromosomes, has been previously shown to correlate strongly with R-bands 

(Jeppesen et al., 1992) and to show little staining along the inactive X chromosome 

(Jeppesen & Turner, 1993). 

Figure 5.1 shows a selection of human metaphase chromosomes following 

immunofluorescence with this antibody. Metaphase chromosomes for immunofluorescence 

cannot be fixed with typical 3:1 methanol:acetic acid, since this destroys or may even extract 

the antigenic epitope. Instead, metaphase spreads were attached to slides by 

cytocentrifugation (Section 2.10.1). Slides were incubated with R41 antibody for 2 hours at 

room temperature, followed by anti-rabbit antibody conjugated to Texas Red (TR) 

fluorochrome for 30 minutes (Section 2.10.2). They were fixed gently in 4% 

paraformaldehyde for 15 minutes before mounting with DAPI counterstain. 

Immunofluorescence with the pre-immune serum resulted in a general background and no 

staining of the chromosomes (results not shown). Figure 5.1 also shows chromosomes 

hybridised by FISH with HpaII tiny fragments, chosen to represent CpG-islands, which have 

also been shown to correlate strongly with R-bands (Craig & Bickmore, 1994). Strong R41 

signal at R-bands was not unexpected, since R-bands are gene-rich (Section 1.3.7) and, thus 

more highly transcribed than G-bands. Particularly striking is that chromosome 18 shows 

very little R41 signal along its length and, thus, low levels of H4 acetylation while 

chromosome 19 shows a high degree of fluorescence, consistent with its high gene density 

and transcriptional activity (Figures 1.6 & 5.1). 

This experiment demonstrates an overall state of acetylation of chromosomes in metaphase. 

To investigate the dynamics of acetylation, the patterns of fluorescence obtained along 

metaphase chromosomes using the R41 antibody were assessed following the treatment of 

cells with two different inhibitors of histone deacetylation: 

oSodium butyrate (NaB) - This has been known for a long time to result in increased 

histone acetylation (Riggs et al., 1977; Vidali et al., 1978) due to the non-competitive 

inhibition of histone deacetylase activity (Cousens et al., 1979). The effective 

concentration is, however, rather high which causes subsidiary effects on other enzymes, 

in addition to altering both phosphorylation and methylation states of histones, other 

nuclear proteins and DNA (Boffa etal., 1981 & 1994; Kruh, 1982; D'Anna et al., 1983). 

o Trichostatin A (TSA) - This is a very potent and specific inhibitor of histone 

deacetylation. It reversibly blocks the action of the histone deacetylase(s) by acting on the 
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enzymes themselves by a mechanism that is not fully understood (Yoshida et al., 1990; 

Review: Yoshida etal., 1995). 

Both of these histone deacetylase inhibitors cause generalised increases in histone 

acetylation, with no distinction between the different lysine residues (Yoshida et al., 1995). 

By assessing the increase of immunofluorescent signal at different regions along a metaphase 

chromosome, the turnover of acetylation in those regions can be compared. The degree of 

immunofluorescence signal obtained across a metaphase spread can sometimes vary and, 

thus, two regions on the same chromosome were chosen to study rather than comparing 

chromosomes 18 and 19 directly. An adjacent G- and R-band region on chromosome I were 

used for comparison. The tip of the p-arm of chromosome 1 consists of several T-bands and 

the region is generally early replicating, CpG-island-rich and shows a low level of steady 

state acetylation (Figure 5.1). Between this and the centromere, is a region that is dominated 

by particularly dark staining G-bands, is generally late replicating, poor in CpG-islands and 

shows a high level of steady state histone acetylation (Figure 5.1). 

Cultures of the human REN2 lymphoblastoid cell line were treated prior to harvesting, as 

follows: 

I. 4mM NaB for 2hours 

lOng/mi TSA for 2 hours 

No treatment 

These treatments have been previously shown to be sufficient to perturb patterns of 

replication in human lymphoblastoid cells (Bickmore & Carothers, 1995). Cells were 

swollen in hypotonic and cytocentrifuged onto slides. Slides were incubated with R41 

antibody for 2 hours at room temperature, followed by anti-rabbit-TR for 30 minutes (Section 

2.10.2), then fixed in 4% paraformaldehyde for 15 minutes before mounting with DA-PI 

counterstain. Figure 5.2 shows examples of immunofluorescence with R41 to chromosome I 

following each treatment. Following cytocentrifugation, sister chromatids of metaphase 

chromosomes are usually separated. The profiles of red and blue fluorescence intensity 

along the length of the p-arm are shown for the left chromatid of each representative 

chromosome. Visual patterns and profiles of immunofluorescence from sister chromatids 

were consistently similar. It is clear from the R41 (red) signal profile in Figure 5.2, that the 

distance from each peak to adjacent trough, is greater following treatment with NaB and 

greater still following treatment with TSA, than along untreated chromosomes. This is not 

paralleled by similar changes in DAPI (blue) fluorescence profile that might be attributed to 
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changes in chromosome condensation. Therefore, the data in Figure 5.2 suggests that the 

regions of highest acetylation on chromosome 1 become even more highly acetylated relative 

to the regions of lowest acetylation when deacetylation is inhibited. 

In order to quantify this, a script was devised by Dr. P. Perry, MRC Human Genetics Unit, 

Edinburgh, using IPLab Spectrum software. The analysis performed by the script was as 

follows: 

I. Manually a line was drawn along the length of the chromosome p-arm. 

The line was divided into five segments of equal length (Figure 5.3a). 

The total amount of red (R41) and blue (DAPI) fluorescent signal emanating from each 

segment was calculated by summing the intensity from each pixel within that segment 

(Table 5.1). 

A direct comparison could now be made between segment 2, which was within the T-band 

dominated region of the p-arm (Figure 5.3a) and segment 4, which was within the dark 

G-band region. These two segments were chosen because they were entirely representative 

of the band type in which they resided. Both sister chromatids of 20 chromosomes for each 

treatment were analysed and the ratio of the total amount of red fluorescence for the selected 

segments was calculated (Table 5.1 & Figure 5.3b). The same analysis was made for the 

DAPI fluorescence. These measurements would act as an internal control for the possible 

effects of different degrees of chromatin compaction, since the chromosome length varied 

considerably between spreads (Table 5.1 & Figure 5.3c). Therefore, the R41 fluorescence 

was normalised by dividing by the DAPI fluorescence of the corresponding segment. 

Segment 2 has a higher mean normalised total R41 fluorescence intensity than segment 4 in 

untreated chromosomes. In addition, the increase in intensity is greater for segment 2 than 

segment 4 after treatment with NaB and TSA. This difference is reflected in the increase in 

ratios of segment 2:4 following each treatment (Figure 5.3b). Using Student's T-test (ST), it 

was calculated that the increase in ratio was statistically significant (ST p<0.0004) between 

treated and untreated chromosomes. The increase in ratio between NaB and TSA treated 

chromosomes was also statistically significant (ST p<0.0003). From this it can be concluded 

that the rate of acetylation is faster in segment 2, than segment 4, implying that the rate of 

acetylation is faster in R-banded regions than G-banded regions. 

The ratio of segment 2:4 DAPI fluorescence remains constant throughout (Figure 5.3c). This 

AT-specific fluorochrome gives a G-banding pattern of fluorescence reflected by the fact the 
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Table 5.1 The dynamics of histone acetylation along human chromosome 1 
Cells were treated with one of two inhibitors of histone deacetylation, or subjected to no treatment, prior to harvesting. Immunofluorescence was 
carried out using an antibody to acetylated H4 (R41) on metaphase spreads counterstained with DAPI and images of 20 chromosomes 1, from slides 
following each treatment, were collected. One metaphase chromosome was analysed from the rodent-human somatic cell hybrid, A91neo (Figure 
5.1 lc). Using a computer script devised by Dr. P. Perry, MRC Human Genetics Unit, Edinburgh, the p-arm of each chromosome was divided into five 
segments, of equal length (Figure 5.3) and the total amount of fluorescence in each segment was calculated for each segment. R41 fluorescence was 
normalised by dividing by the DAPI fluorescence for the corresponding segment. Segment 2 and 4 are representative of R- and G-band regions, 
respectively. +I standard error of mean 

Treatment Mean normalised total R41 
fluorescence (pixels): 
segment 2 

Mean normalised total R41 
fluorescence (pixels): 
segment 4 

Ratio of total R41 
fluorescence (pixels): 
segment 2:4 

Ratio of DAPI fluorescence 
(pixels): 
segment 2:4 

None 0.99 0.48 1.5+/.0.02 0.7°° 
Sodium butyrate 1.07 0.41 1.7 °° ' 0.7 00  
Trichostatin A 1.42 0.49 2.0 00 ' 

Rodent-human 
somatic cell hybrid 

1.01 

I 
0.42 1.6 0.8 



ratio of segment 2:4 is approximately 0.5. The consistency of this figure confirms that the 

compaction of the chromosomes in each spread was approximately the same in these regions 

and was not affected by inhibition of deacetylation. 

These data support the fact that there is a constant turnover of acetylation and that different 

regions of the genome show different rates of turnover. The gene-poor, G-bands show a rate 

of forward acetylation (and probably turnover) slower than the gene-rich, R-bands. 

Acetylation, in itself, may not be the only control of transcriptional activity of a gene, the rate 

at which an acetylation pattern is altered between different lysine residues and different 

nucleosomes may have consequences on gene activity. This is consistent with the findings of 

Covault & Chalkley (1980) who concluded that turnover of acetylation was greater for a 

minor population of highly acetylated species of H4. It is likely that this population of 

histones, which was estimated to be <15% of total histones, would be present in the most 

A lu-rich T-bands of the genome, which make up approximately 13% of the total genome 

(Holmquist, 1992). These experiments suggest that the turnover of histone acetylation along 

human chromosome 18 will generally be lower than along chromosome 19. 
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Figure 5.1 Immunofluorescence with R41 to human metaphase chromosomes 
(a) Emmunotluorescence with anti-acetylated H4 antibody (R41) detected with anti-
rahhit-TR (red). Chromosomes were counterstained with DAPI (blue). (b) Adapted from 
Craig ( 1995). Chromosomes hybridised with small, biotin labelled HpaII fragments 
selected to represent CpG-islands and detected with avidin-TR (red). BrdU incorporation 
detected with anti-BrdU-FITC reveals late replicating regions in green. 
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Figure 5.2 Immunofluorescence with R41 to human chromosome 1 following 
treatment with inhibitors of histone deacetylation 

Immunoiluorescence with anti-acetylated H4 antibody (R41) detected with anti-
rahhit-TR (red. Chromosomes counterstained with DAPI (blue). (Top) Chromosome I 
with no treatment. (Middle) Chromosome I following treatment with sodium hulyrate. 
(Bottom) Chromosome I lollowing treatment with Trichostatin A. (b) Grey scale 
representation of R41 (TRlred) signal. (C) Graphs of mean signal intensity over the width 
of the chromosome, measured along the length from the tip of the p-arm to the tip of the 
q-arm. Lines are the appropriate colour for the lluorochrome that they represent. 
Arrows indicate the position of the centromeres. 
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Figure 5.3 The dynamics of acetylation of 114 along the length of human chromosome 1 
(a) An ideogram of chromosome 1 divided into the five equal segments along the p-arm used 
for analysis. (b) The ratio of segment 2:4 DAPI (blue) fluorescence. (c) The ratio of segment 
2:4 R41 (TR/red) fluorescence. +I standard error of the mean N- no treatment NaB- 4mM 
sodium butyrate added to cells for 2 hours prior to harvesting TSA- lOng!ml Trichostatin A 
added to cells for 2 hours prior to harvesting 
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5.3 The chromatin environment of human rDNA 

While analysing human metaphase spreads by immunofluorescence with R41 antibody, 

it was observed that the p-arms of each of the five acrocentric chromosomes showed 

little or no signal (Figure 5.4). This suggested that these regions were hypoacetylated, which 

is surprising, since they are one of the most highly transcribed regions of the human genome 

(Review: Sollner-Webb & Tower, 1986). This apparent hypoacetylation of rDNA was 

previously noted by Jeppesen (1997) but not adequately explained. The bulk of mammalian 

rDNA is hypomethylated and GC-rich, hence it fractionates with CpG-islands (Bird & 

Taggart, 1980; Cross et at., 1994), and FISH with CpG-island fragments show strong 

hybridisation to the acrocentric p-arms (Craig & Bickmore, 1994) (Figures 1.3 & 5.4). Thus, 

like R-bands, rDNA is GC-rich and hypomethylated, but, unlike R-bands, it is 

hypoacetylated. 

The centromere and p-arm of the acrocentric chromosomes (chromosomes 13, 14, 15, 21 and 

22)can be broadly divided into four regions (Figure 5.5a) (Review: Choo, 1990), composed 

of various repetitive DNA sequences: 

The most distal p-arm region is p13. On all acrocentrics this region constitutes 3-satellite 

(Waye & Williard, 1989; Greig & Willard, 1992), 724-satellite (Kurnit et al., 1986) and a 

single copy sequence, designated ACR1 (Worton et al., 1988). 

The genes for the 28S, 18S and 5.8S ribosomal RNA (rDNA) are located within the stalk 

region, p12, often referred to as the nucleolar organising region (NOR) (Henderson et at., 

1972; Schmickel et al., 1985). The 5S rDNA is situated at various non-acrocentric 

regions of the human genome. Each acrocentric chromosome possesses 30-40 copies of 

the 44Kb tandemly arranged ribosomal repeats, comprising of a 13Kb transcribed portion 

and an average 31Kb non-transcribed spacer (Figure 5.5b) (Worton etal., 1988). 

Adjacent to this region is a second variable region, p1  1, containing several types of 

repetitive DNA, but composed principally of satellites I, II, ifi and IV (Gosden et al., 

1975). All acrocentric chromosomes have satellite Ill DNA, while satellites I, II and IV 

are present at only a subset of the acrocentric chromosomes. Satellite us a 42bp repeat 

and satellites II and ifi comprise of simple Sbp repeat units (Prosser et al., 1986). Other 

sequences mapped to p1  1 include0-satellite (Waye & Willard, 1989; Greig & Willard, 

1992) and 724-satellite (Kirnut et at., 1986). Using FISH to extended chromatin fibres, 

these satellites appear to be arranged in contiguous blocks with little or no intervening 

DNA (Shiels etal., 1997). 
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Finally, the primary constriction is universally considered to be the centromere of 

acrocentric chromosomes. It consists, as with all human centromeres, primarily of arrays 

of a-satellite DNA (Manuelidis, 1978; Mitchell et al., 1985; Review: Singer, 1982). 

The transcription of rDNA is catalysed by RNA polymerase I (pol I), differing from the 

remainder of the genome which relies upon RNA pol II (with the exception of the 5S rDNA 

which is transcribed by p01 III). In order for a cell to produce its requisite of rRNA, the 

rDNA is required to be one of the most actively transcribed regions of the genome (Review: 

Sollner-Webb & Tower, 1986). Indeed, almost 80% of total cellular RNA is rRNA. This 

activity has been beautifully visualised by electron micrographic spreads of nucleolar 

chromatin which reveal "christmas-tree" structures as gradients of nascent transcripts 

emanate from the rDNA (Miller & Bakken, 1972). This high intensity of transcription is due 

to three factors: 

The large number of pol I molecules simultaneously involved in transcription. 

The high rate of elongation of poll. 

The high copy number of the template. 

Figure 5.6 shows immunofluorescence with R41 simultaneously with FISH using CpG-island 

fragments for chromosome 22, fractionated using the methyl-CpG binding column (Cross et 

al., 1994) (Section 4.3.1). Slides were incubated with the R41 antibody for 2 hours, at room 

temperature, followed by incubation with anti-rabbit-TR for 30 minutes. As before, slides 

were fixed with 4% paraformaldehyde for 15 minutes. For a reasonable FISH signal, 

incubation of slides in 2:5 0.07M NaOH:EtOH for 3 minutes immediately prior to FISH was 

used to reverse the paraformaldehyde fixation (Section 2.6.1). FISH was then carried out as 

previously described (Section 2.6). It is striking that the R41 signal drops away exactly at the 

point at which CpG-island hybridisation increases, at the transition from centromere to p-

arm (Figure 5.6). In fact, it appears that levels of acetylation are even less than those present 

at the centromere. This is surprising since hypoacetylation is generally considered to be 

associated with transcriptional inactivity (Section 1.4.1.3). 

At interphase the human acrocentric chromosomes aggregate at the nucleoli, 

non-membranous nuclear structures which are associated with rRNA synthesis (Reviews: 

Warner, 1990; Hernandez-Verdun, 1991; Scheer & Weisenberger, 1994) (Section 1.5.2). 

Figure 5.7 shows immunofluorescence with R41 and anti-histone, pan antibody (Boehringer) 

to human interphase nuclei. Cells from the JU77 human mesothelioma line were grown on 

slides and fixed with 1:1 methanol: acetone at 4°C. Slides were incubated with either 
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antibody for 1 hour at room temperature, followed by anti-rabbit-FITC for 30 minutes. 

Reduction in DAPI DNA staining is a marker for the nucleoli. Using IPLab Spectrum 

software, a graph of fluorescence intensity was measured along a line drawn through several 

nucleoli and it was demonstrated that R41 signal was reduced to a greater extent than the 

anti-histone, pan antibody signal and DAPI stain (Figure 5.7). This was consistently 

observed for 20 nuclei from each slide. Thus, it appears that nucleolar H4 is hypoacetylated, 

consistent with the observations of metaphase chromosomes, and supports the concept of 

acetylation as an inherited marker, maintained throughout the cell cycle. However, 

observations in three-dimensionally maintained nuclei and colocalisation of R41 and anti-

histone, pan antibody are necessary to firm this conclusion. 

The rDNA clusters are, so far, the only identified transcribed sequences on the p-arms of the 

human acrocentric chromosomes. The rDNA is in a unique chromatin environment, 

surrounded by repetitive sequences. It is possible that these repetitive sequences produce a 

chromatin structure that could not be penetrated by the R41 antibody. Alternatively, histories 

may not be present at all in these regions, with chromatin folding being organised by 

rDNA-specific core histone variants. To test this, immunofluorescence was performed on 

cytocentrifuged metaphase spreads of the REN2 human lymphoblastoid cell line, using an 

anti-histone, pan antibody which is described as recognising a common but uncharacterised 

histone epitope (Boehringer). Figure 5.8 shows three acrocentric chromosomes (13, 14 or 

15), clearly showing fluorescent signal along the entire length of each. Graphs (Figure 5.8d) 

showing the mean intensity of signal over the width of one of the chromatids, show a 

relatively even intensity throughout the q-arm and even an increase in immunofluorescence at 

the p-arm. There is consistently a dip in fluorescence at the centromere. This is puzzling, 

since it has previously shown that immunofluorescence with an antibody to H3 peaks at the 

centromere (Personal communication: Dr. B.A. Sullivan). The anti-histone, pan antibody 

used here, is described as detecting an antigenic determinant which is present on all five 

histone proteins (HI, 112A, H2B, H3 and H4). Binding to Western blots of nuclear protein 

extracts (Section 2.13) failed to produce a signal in my experiments (data not shown), 

suggesting that the determinant may not be present in denatured histories. 

The presence of anti-histone, pan antibody at the acrocentric p-arms establishes that antibody 

inaccessibility is apparently not the cause of the lack of R41 signal at these regions. It is still 

possible, however, that although most of the core histories are present, H4 may be lacking 

from these regions, although this seems unlikely, since there appears to even be an increase 

in the number of core histories present at the p-arms. It would be interesting to observe the 
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distribution of the core histones and each of their modified forms throughout the human 

genome, by immunofluorescence. 

The presence of rDNA-specific core histone variants would not be an unusual concept. 

CENP-A is a centromere-specific H3 variant that has been suggested to be involved in setting 

up a distinct chromatin environment (Section 1.5.2). The nucleolus is associated with many 

specific proteins (Review: Hernandez-Verdun, 1991) (Section 1.6.2), including the 

transcription factor, UBF, which is necessary for rDNA transcription. This protein contains 

several HMG-box DNA-binding motifs (Leblanc et al., 1993) (Section 1.4.4) and has been 

shown to bind to and bend DNA, juxtaposing two essential upstream transcriptional control 

elements of the rDNA (Bazett-Jones et al., 1994). This UBF-DNA structure is termed an 

enhancesome and may disrupt or replace potential nucleosomes (Review: Wolffe, 1994a). 

The wrapping of DNA around enhancesomes is reminiscent of nucleosomes. Formation of 

an enhancesome appears to allow access of the poi I complex to rDNA for transcription. 

Another possibility is that histone hyperacetylation is not required for poi I activity. The 

alterations in chromatin structure created by core histone acetylation may not be required for 

p01 I, or may even act to repress activity. In addition, hypoacetylation may prevent p01 II 

activity in the region, thus allowing p01 I exclusive access. This is further discussed in 

Section 9.1.2. 
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Figure 5.4 Immunotluorescence sith R41 to the human acrocentric metaphase 
chromosomes 
(a) Immunofluorescence with anti-acetylated H4 antibody (R41) detected with anti-
rahhit-TR (red). Chromosomes were counterstained with DAPI (blue). (h) Grey scale 
representation of R4 I (TR/red) image. (C) Adapted from Craig (1995). Chromosomes 
hvhridised with small. biotin labelled HpaII fragments selected to represent CpG-islands 
and detected with avidin-TR (red). BrdU incorporation detected with anti-BrdU-FETC 
reveals late replicating regions in green. 
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Figure 5.5 Schematic representation of the major repeats of the human acrocentric 
chromosome p-arms 
(a) Taken from Sullivan(1995). The consensus organisation of the human acrocentric chromosome 
p-arms. (b) Adapted from Worton et aL(1985). The consensus organisation of the repeat unit 
of human ribosomal DNA. 
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Figure 5.0 Ininuinofluorescenee with R41 simultaneously with FISH of Cp(-island DNA on human chromosome 22 
Iniiiiunt luorcsccncc to REN2 human metaphase spread (49, XXXXY) with anti-acetylated H4 antibody ( R4 I) detected with anti-rabbit-FR 
(red) (a), lollowed by FISH with hiotin labelled chromosome 22 ('pG-islands, isolated using a methyl-CpG binding column, and detected 
with avidin-FITC (green) (h). Chromosomes were counterstained with DAM (blue). (C) Greyscale representations of DAPI and signal 
Fluorescence. Chromosome 22 Iroin an alternative spread to that shown in (a). (e) Graph of mean signal intensity over the width of the 
chromosome. measured along the length from the tip of the p-arm to the tip of the q-arm. The lines are the appropriate colour br the 
Ii u r chn me that I hey represent. 
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Figure 5.7 Imniunofluorescence with R41 and anti-histone, pan antibody to human interphase nuclei 
(a) lnìniiinutluoiescence with anti-histone, pan antibody detected with anti -mouse-FITC (green) (Top): and anti -acetylated 114 antibody 
(R41) detected with anti-rahhit-FITC (green) (Bottom). Nuclei were co Lill terstained with DAPI (blue). Arrows indicate prominent 
nucleoli. (h Grey scale representation of the DAPI image. Note the concentration ot chromatin around the nucleoli. (C) Grey scale 
representation of the FITC (green) signal. (d) Graphs of mean signal intensity measured along the lines indicated in (a) froni Lii to 
right. The lines are the appropriate colour For the lluoruchrome that they represent . Arrows indicate prominent nucleoli From (a). 
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Figure 5.8 ImrnunoI1uorseenee with an anti-histone pan antibody to human acrocentric metaphase chromosomes 
(a) Selection ol human acrocentric chromosomes (13,14  Oi I 5) following,  i niniunolluorescence with a monoclonal anti-histonc, pan 
antibody detected with anti -mouse-TR (red). Chromosomes were counierstained with DAPI (blue). ( h ) Grey scale representation (it' the 
DANstained chromosome. (C) Grey scale representation of anti-histone. pan antibody (TR/red ) signal ( d ) Graphs of mean signal intensity 
over width of the left chromatid of each chromosome, measured along the length from the tip of the p-arm to the tip of the q-arm. Arrow 
indicates centrornere. 



5.4 Histone acetylation of human chromosomes in a somatic cell 
hybrid background 

Are the acetylation patterns of human metaphase chromosomes maintained in a somatic 

cell hybrid background, where normal transcription from human genes might be 

perturbed? Making use of the rodent-human somatic cell hybrids detailed in Section 3.2, I 

cytocentrifuged metaphase spreads of each onto slides for imrnunofluorescence with the R41 

antibody (Section 2.10 & 5.2). FISH was performed simultaneously with total human DNA 

to aid identification of the human chromosome (Section 2.6 & 5.3). 

Figure 5.9a shows a metaphase spread from the human chromosome 18 containing hybrid 

cell line, GMI 1010, following immunofluorescence with R41. The level of acetylation 

detected by R41 fluorescence on the human chromosome did not appear to be strikingly less 

than that on the Chinese hamster chromosomes, although the level of signal was more 

equivalent to the regions of least fluorescence on the hamster chromosomes. There was no 

distinct pattern of signal along the length of chromosome 18 (Figure 5.9c) and it was difficult 

to establish the exact location and acetylation level of the centromere, since many of the 

human chromosomes in this line had been previously shown to be incomplete (Section 3.2). 

A metaphase spread from the human chromosome 19 containing hybrid cell line, 

GM10449A, is shown in Figure 5.10a after immunofluorescence with R41. It is clear that 

chromosome 19 maintains its high level of acetylation, with R41 signal as high as the highest 

levels on the Chinese hamster chromosomes along both chromosome 19 arms, but absent 

from the centromere (Figure 5. lOc). 

Figure 5.1 la shows a metaphase spread from the human chromosome 1 containing hybrid 

cell line, A9Ineo, following immunofluorescence with R41 antibody. The pattern of R41 

signal seen along chromosome I at metaphase in a human spread (Figure 5.2c) is maintained 

in the hybrid cell background, as shown by the graphs of mean signal intensity (Figure 5.1 ic 

& d). There is a high level of fluorescence at the tip of the p-arm, adjacent to a region of 

very low fluorescence. The difference between these two regions was assessed using the 

script described in Section 5.2. The ratio of segment 2:4 DAPI and R41 fluorescence was 0.8 

and 1 .6, respectively, comparable with the ratios calculated for normal human spreads (Table 

5.1). The centromere shows the characteristic dip in fluorescence, demonstrating a lack of 

acetylated H4 in this region as seen in human cells. 
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A metaphase spread from the human chromosome 22 containing cell line, PgMe-25, is shown 

in Figure 5.12a following immunofluorescence with the R41. The level of fluorescence 

appears to be generally equivalent to that observed along most of the mouse chromosomes. 

A graph of signal intensity along the length of the chromosome (Figure 5.12c & d), although 

indicating a small dip at the centromere, shows a high level of R41 signal at the p-arm, in 

contrast to observations of chromosome 22 at metaphase in human spreads (Figures 5.4 & 

5.6). 

The general level of transcription from the human chromosomes in these hybrid cell lines is 

unknown, although the neo gene integrated for selection into human chromosome 1 of the 

A9 I neo cell line must be active. Transcription of some human genes is known to be normal 

in rodent cell backgrounds. The general patterns of H4 acetylated at lys5 along human 

chromosomes are maintained in a hybrid cell background. For example, the constitutive 

heterochromatin of the centromeres and the pericentric heterochromatin of chromosome 1 

remains hypoacetylated, and chromosome 18 shows generally low levels of acetylation while 

chromosome 19 has generally high levels of acetylation. However, it appears that the 

mechanisms involved in reducing acetylation at the rDNA-containing chromosome 22 p-arm 

are not functional in a hybrid cell background. It has been previously established that human 

rDNA genes are transcriptionally inactive in a rodent hybrid cell background and that human 

acrocentric chromosomes do not associate with rodent nucleoli (Miller et al., 1976; Miesfeld 

et al., 1984; Kass et at., 1987; Dante etal., 1992). I also did not observe human chromosome 

22 to be predominantly associated with the nucleolus in PgMe-25 nuclei (data not shown). 

The change in levels of human rDNA histone acetylation could be due to the absence or 

altered specificity of a particular deacetylase or protein which blocks acetylation, the 

presence or altered specificity of a specific acetyltransferase, or a different nuclear location. 

The requirement for nucleolar-specific histone deacetylases and/or acetyltransferases is 

supported by the finding of a nucleolar-specific histone deacetylase in maize (Lusser et al., 

1997). 
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Figure 5.9 Immunotluorescence ith 1(41 to metaphase spreads from the hhrid cell 
line, GM1IOIO 
Immunotluorescence to GMIIW() metaphase spreads (human chromosome 18-
containing hybrid cell line) with anti-acetylated H4 antibody (R41) detected with anti-
rahhit-TR (red) (a), followed by FISH with biotin labelled whole human DNA, and 
detected with avidin-FITC (green) (b). Chromosomes were counterstained with DAPI 
(blue). c) Greyscale representations of DAPI and signal fluorescence. Chromosome 18 
trorn an alternative spread to that shown in (a). 

141 



Figure 5.10 Immunofluorescence with R41 to metaphase spreads from the hybrid cell 
line. GM19449A 
Ininiunofluorescence to GM10449A metaphase spreads (human chromosome 19-
Containing hybrid cell line) with anti -acetylated H4 antibody (R41) detected with 
anti-rabbit-TR (red) (a), followed by FISH with biotin labelled whole human DNA, and 
detected with avidin-FITC (green) (b). Chromosomes were counterstained with DAPI 
(blue). (C) Grcyscalc representations of DAPI and signal fluorescence. Chromosome 19 
from an alternative spread to that shown in (a). 
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Figure 5.11 Immunofluorescence with R41 to metaphase spreads from the hybrid cell 
line. A9Ineo 
Inimunolluorcscence to A91neo metaphase spreads (human chromosome 1-containing 
hybrid cell line) with anti-acctvlated H4 antibody (R41 ) detected with anti-rabbit-TR 
(red) (a), followed by FISH with hiotin labelled whole human DNA. and detected with 
avidin-FITC (green) (h). Chromosomes were counterstained with DAM (blue). (C) Grey 
scale representations of DAM and signal fluorescence. Chromosome I from an 
alternative spread to that shown in (a). (d) Graph of mean signal intensity over the width 
of the chromosome I shown in (c), measured along the length. The lines are the 
appropriate colour for the lluorochrume that they represent. Arrow indicates the 
centromere. 
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Figure 5.12 Immunofluorescence with R41 to metaphase spreads from the hybrid cell line. PgMe-25 
1nht11un)(1u()rescence lo PMe-25 metaphase spreads (human chromosome-22 containing hybrid cell line) with anti -acetylated H4 antibody 
(R41) detected with anti-rabbit-TR (red) (a). followed by FISH with biotin labelled whole human DNA. and detected with avidin-FITC 
(green) (h). Chromosomes were counterstained with DAPI(blue). (c) Grey scale representations of DAM and signal fluorescence. 
Chromosome 22 taken from an alternative spread to that shown in (a). (d) Graph of mean signal intensity over the width of the 
chromosome 22 shown in (C). measured along the length. The lines are the appropriate colour for the Iluorochrome that they represent. 
Arrow indicates the ceniromere. 



5.4 Summary 

Core histone acetylation acts as a marker for transcriptional activity of regions of the 

human genome. Immunofluorescence studies have shown the most highly acetylated 

regions correspond to the gene-rich, transcriptionally active, R-bands. Acetylation is not 

static, there is a turnover and steady state levels reflect the balance of acetyltransferase and 

deacetylase activities. Data presented in this chapter suggests that the rate of this turnover 

differs in different regions of the genome, with R-band regions showing a higher rate of 

acetylation than G-band regions. I predict that the <15% of histories which show a high 

turnover of acetylation (Covault & Chalkley, 1980) are located at the Alu-rich T-bands which 

make up approximately 13% of the human genome (Holmquist, 1992). 

While acetylation has tended to correlate well with actively transcribed regions, the most 

highly transcribed regions of the human genome, the rDNA-containing regions are 

hypoacetylated. This apparent contradiction can be assigned several possible explanations. 

Although the rRNA genes that are being transcribed are hyperacetylated, these are 

interspersed with regions of under-transcribed, hypoacetylated DNA, not resolvable by the 

studies described here. Alternatively, the rDNA regions may possess an 114 variant which is 

required to alter chromatin structure and allow efficient pol I transcription. Finally, 

hypoacetylation may block pol II transcription while allowing, or even promoting pol I 

transcription. This is further discussed in Section 9.1.2. Clearly, the rDNA is a unique 

region which has implications on the absolute requirement of acetylated core histories for 

transcriptional activity. 

The patterns of acetylated 114 distribution along human metaphase chromosomes are 

generally maintained in a hybrid cell background. The hypoacetylation of the 

rDNA-containing human chromosome 22 p-arm, however, is lost in a rodent cell background. 

This phenomenon needs to be confirmed for this and other human acrocentric chromosomes 

in hybrids and further studies may help to establish the mechanism and function of human 

rDNA hypoacetylation in normal human cells. 

Chapter 4 concluded that the higher order levels of DNA packaging of the human 

chromosomes 18 and 19 is similar. This chapter has emphasised one of the differences 

between these two contrasting chromosomes at the chromatin level. Chromosome 18 has 

consistently low steady state levels of histone acetylation along its length, and is likely to 

have a generally low turnover of acetylation. Chromosome 19 is associated with high levels 
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of histone acetylation and will have a high level of acetylation turnover, reflecting its high 

density of R-bands and high transcriptional activity. Chapter 6 addresses the question of what 

happens to their DNA packaging in the interphase nucleus, when transcription takes place 

and when this and the other differences of behaviour between these chromosomes becomes 

manifest. 



6.Interphase chromosome territories I: Functional 
compartmentalisation of the interphase nucleus 

6.1 Introduction 

The interphase chromosome territory hypothesis, in which each chromosome takes up a 

discrete and distinct region within an interphase nucleus, is now well established 

(Reviews: Hiliker & Appels, 1989; Manuelidis, 1990; Haaf& Schmid, 1991; Cremer et at., 

1993; Spector, 1993) (Section 1.6.3). Characteristic configurations and positions have been 

implied from isotopic in situ hybridisation and FISH studies of whole or partial human 

chromosomes in rodent-human hybrid cell lines (Manuelidis, 1985b; Scardin et at., 1985) 

and later in human cells (Pinkel et at., 1986; Lichter et al., 1988; Popp et al., 1990; Aquiles 

Sanchez et at., 1997). 

There is a precise arrangement of human chromosomes maintained on the mitotic spindle 

(Naegele et at., 1995) and observations of chromosomes in metaphase spreads have 

suggested a non-random distribution. Some studies indicate that small autosomes tend to be 

more centrally located than larger autosomes (Warburton et at., 1973; Wollenberg et al., 

1982), while other studies have shown early replicating, gene-rich chromosomes are more 

centrally located and late replicating, gene-poor chromosomes tend towards the periphery 

(Miller et at., 1963; Hens et at., 1982). It is well established that the inactive X-

chromosome, in the form of the Barr body, is positioned close to the nucleolus or at the 

periphery of the female interphase mammalian nucleus (Barr & Bertram, 1949; Dyer et at., 

1989). 

Probes for a variety of sequences from specific regions of human chromosomes have been 

used for FISH to show that transcriptionally inactive, heterochromatic regions are more 

peripherally located than active sequences (Lawrence et al., 1988; Manuelidis & Borden, 

1988; Lawrence & Singer, 1991; Xing et al., 1995). Few previous studies have examined 

the shape and position of entire human chromosomes and none have related these territories 

to their functional characteristics. Popp etal. (1990) used a human chromosome 18-specific 

alphoid DNA probe to determine the positioning of this chromosome in 2-D and 3-D 

primary human amniotic fluid cells. They determined that although this chromosome was 

not located at the ends of these ellipsoid cells, it was significantly more often associated 
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with the nuclear envelope than might be expected from a random distribution. An X 

chromosome-specific alphoid DNA probe revealed a completely random distribution for the 

active X chromosome, while the inactive X chromosome was preferentially located centrally 

and attached to the nuclear envelope. Recently, Aquiles Sanchez etal. (1997) used paints to 

human chromosomes 2, 18, X and Y in neutrophils in 3-D. These cells consist of three or 

four lobes with specific appendages which can act as landmarks. However, this study 

implied that chromosome positioning was essentially random. Surprisingly, it was found in 

addition that chromosome 2 occupied a territory smaller than chromosome 18. The 

chromosome 2 paint used, however, clearly did not cover the entire metaphase chromosome 

evenly and so any estimates of territory size at interphase were flawed. 

Therefore, there is little consistent evidence that mammalian chromosomes regularly adopt 

territory shapes in defined positions within the nucleus that relate to their activity. Given 

their functional differences, could chromosomes 18 and 19 occupy territories, specific in 

shape and position, that reflect the functional organisation of the interphase nucleus? 

To answer this question, FISH was carried out with paints for human chromosomes 18 and 

19, in addition to chromosome 1, 11 and 22 (Section 3.3) to 2-D, 3:1 methanol:acetic acid 

fixed interphase nuclei from a human lymphoblastoid cell line. The area and the position 

with relation to the nuclear periphery of the interphase chromosome territories were 

measured and compared. Further analysis of the chromosome 18 and 19 territories was then 

carried out on paraformaldehyde fixed 2-1) nuclei, nuclei from different cell types and nuclei 

from distinct stages of the cell cycle. Finally, analysis of the location of these two 

chromosomes in 3-D interphase nuclei was attempted. 

6.2A rapid, two-dimensional approach to analysing the 
interphase territories of human chromosomes 

To observe the interphase territories of a selection of human chromosomes FISH was 

carried out on slides prepared from the human lymphoblastoid cell line, FATO, using 

each of the whole chromosome paints described in Section 3.3. The interphase territories of 

chromosomes 18 and 19 were compared with each other and with those of chromosomes I, 

11 and 22. 
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The FATO lymphoblastoid cell line was chosen because it has a normal male karyotype 

(Figures 3.4, 3.14 - 3.16). Cells were harvested from an exponentially growing culture and 

fixed with 3:1 methanol:acetic acid (Section 2.1.5) resulting in a suspension of 

asynchronous nuclei (Table 6.1). Approximately 5% of cells were undergoing mitosis, as 

counted from slides made from this suspension and stained with DAPI. The thymidine 

analogue, bromodeoxyuridine (BrdU) was added 45 minutes prior to harvesting and detected 

with anti-BrdU-FITC (Section 2.6.5) allowing assessment of the number of nuclei 

undergoing replication (S-phase). The proportion of cells in the gap phases were estimated 

from FACS analysis (Section 2.7.2 & 6.5). Since most material was visible in a single 

optical plane, the nuclei could be considered to be essentially 2-D. 

Table 6.1 Distribution of cell cycle stages in an exponentially growing culture of the 
FATO human lymphoblastoid cell line 
Percentage of mitotic cells estimated by counting metaphase spreads present on a fixed slide 
(Section 2.1.5). BrdU was added 45 minutes prior to harvesting and detected with 
anti-BrdU-FITC (Section 2.6.5) allowing assessment of the number of nuclei undergoing 
replication (S-phase). Proportion of cells in the gap phases were estimated from FACS 
analysis (Section 2.7.2 & 6.5). S - synthesis phase (replication) 01, G2 - gap phases M - 
mitosis 

Stage of cell cycle % of nuclei in population 

Gi 51.6 
S 17.8 
G2 25.4 
M 5.2 

The advantages of analysing 3:1 methanol:acetic acid fixed 2-D nuclei are that they are easy 

to obtain from well established protocols, give good FISH signals, and large numbers of 

nuclei can be observed rapidly. Observations, however, are subjective and it was necessary 

to design two computer scripts for an objective analysis of the data. 

6.2.1 Devising scripts for objective image analysis 

To assess a large number of images, two scripts were designed to take a number of 

measurements in relation to the interphase nucleus and the territory occupied by each human 

chromosome of interest. Only interphase nuclei where the appropriate number of signals 

me 



were present and separate were selected. Experiments to be compared were carried out 

simultaneously and the exposure times for each image kept the same. 

Both scripts were developed by Dr. Paul Perry, MRC Human Genetics Unit, Edinburgh 

using the Digital Scientific software, IPLab Spectrum. The steps involved in each script, are 

briefly described below. Script 1 was used for most analyses where the nuclei were 

approximately circular. 

Script 1: Determining the size and position of a FISH signal within circular nuclei 

The DAPI stained nucleus was automatically segmented from the background and the 

following measurements calculated for the segment (Figure 6.1): 

• Area (pixels). 

• Centroid co-ordinates. 

To enhance the FISH signal, a mean intensity value was calculated for the background and 

subtracted from the image. A region of interest was drawn around the appropriate signal 

manually and the signal was automatically segmented from any remaining background. The 

following parameters were calculated for the signal segment (Figure 6.1): 

• Area (pixels). 

• Weighted centroid co-ordinates (this is the centre of the signal accounting for intensity). 

The nuclear segment was converted to binary form. Using the co-ordinates of the signal 

weighted centroid as the centre, an appropriately sized segmentation disc was automatically 

adjusted by dilation and erosion until a single pixel with zero intensity was determined. 

This point was taken as the nearest edge of the nucleus to the signal. The distance from this 

point to the centroid of the signal, and the centroid of the nucleus to the centroid of the 

signal were calculated. The signal segment was converted to binary form, a chord was 

drawn automatically from the centroid of the segment to the nearest edge of the nucleus and 

the co-ordinates established for the first pixel with zero intensity. This was taken to be the 

edge of the signal nearest to the periphery of the nucleus and the distance between these two 

sets of co-ordinates were calculated. In this way, the following distances were recorded 

(Figure 6.1): 

• The centre of the nucleus to the centre of the signal (pixels). 
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. The centre of the signal to the nearest edge of the nucleus (pixels). 

The edge of the signal to the nearest edge of the nucleus (pixels). 

Fibroblast nuclei tend to be ellipsoid and, thus, measurements of distance for the signal from 

the centre or edge of the nucleus would be meaningless. Script 2 divided the nucleus 

according to total percentage area and the percentage of signal present in each segment was 

comparable whether the nucleus is circular or ellipsoid. 

Script 2: Determining the distribution of FISH signal within ellipsoid nuclei 

The DAPI stained nucleus was automatically segmented from the background and the area 

and centroid co-ordinates were calculated from the segment. The nucleus was divided into 

five concentric segments of equal area, from the periphery towards the centre of the nucleus. 

For each segment, the amount of FISH and DAPI fluorescence were calculated and 

represented as a percentage of the total (Figure 6.2). 

Data for each experiment were stored as Microsoft Excel spreadsheets. All data analysis 

and statistics were carried out with help from Dr. P. Teague, MRC Human Genetics Unit, 

Edinburgh. 

6.2.2 Assessing the representation of the chromosome 18 and 19 paints in 
interphase nuclei 

Representing two opposing extremes of chromosomal environment, the most informative 

comparisons were those between chromosomes 18 and 19. However, the paints for these 

chromosomes were made in different ways and it was important to assess that the two 

probes represented the entire lengths of each chromosome. Observations at metaphase 

suggested that both chromosomes 18 and 19 were completely coated by their respective 

paints (Figure 3.17). A comparison was made between the areas taken up by the paints that 

I prepared (Section 3.3), commercially available probes for each chromosome and total 

DNA from the appropriate hybrid cell lines, following FISH to interphase nuclei. Also 

assessed was any difference in signal area due to the fluorochrome used. The fluorochromes 

used for these experiments were either FITC (green) or TR (red). 
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The specific chromosome 18 paint that I prepared consisted of FACS sorted chromosomes 

18 which were digested and catch-linker sequences attached (Section 2.4.2 & 3.3.2). 

Amplification by PCR using one of the linkers as a primer and incorporating biotin-dUTP, 

allowed DNA to be labelled for use as a FISH probe. It is possible that many fragments of 

the digested chromosome are an inappropriate size for PCR and this could create patches 

with a dearth of hybridisation. The specific chromosome 19 paint that I prepared, was 

produced by a human specific Alu PCR protocol used to amplify the human component of 

the rodent-human monochromosome 19 hybrid cell line, GM10449A (Section 2.4.1 & 

3.3.1). This strategy was expected to result in a concentration of probe representing 

R-bands, since such regions are AIu-rich and similarly could have resulted in a paint that 

was lacking in particular regions of the chromosome. Probes were labelled with biotin or 

digoxigenin and lOjig of human C 0t1 DNA were added for 150ng of probe to suppress 

hybridisation to highly repetitive sequences (Section 3.1). 

The commercial paints (Oncor) were produced by combined human-specific Alu and Ll 

PCR to amplify human DNA from a human monochromosome-rodent hybrid cell line 

(Lichter et al., 1990) (Section 3.1). Probes were provided in hybridisation buffer premixed 

with "blocking" DNA for repeat suppression and previously labelled with digoxigenin. 

For the total paints, DNA was extracted (Section 2.3) from cells of the GM 11010 (human 

chromosome 18) (Section 3.2) and GM10449A (human chromosome 19) (Section 3.2) 

hybrid lines. These DNAs were labelled with biotin by nick translation (Section 2.4). 10tg 

of human Cot I DNA were added for 1 5Ong of probe to suppress binding to repeat sequences. 

All paints were hybridised to FATO human interphase nuclei (Figures 6.3 & 6.4). 

Figure 6.3a shows FISH signal from the catch-linkered chromosome 18 paint, labelled 

separately with biotin and digoxigenin and detected simultaneously with both F1TC and TR 

fluorochromes, respectively. Using Script I (Section 6.2.1) the signals from each 

fluorochrome in 50 nuclei were assessed for the percentage of the total nuclear area covered 

by each probe (Table 6.2). Using a Student's T-test (ST), the signal area revealed by the red 

fluorochrome (TR) was calculated to be significantly (ST p<0.0003) larger than that shown 

by the green fluorochrome (FITC). The mean difference was 15%. This was expected since 

the cooled CCD camera is sensitive in the red part of the spectrum (>600nm). A BG38 filter 
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was placed in front of the camera to reduce far red emission (>680nm) which reduces a 

potentially greater problem. The green emission spectrum is confined (510-550nm) and less 

background signal is detected, hence, a more clearly defined signal area is established. 

Table 6.2 Area comparisons between different chromosome paints and fluorochromes 
Biotin and dig labelled catch-linkered chromosome 18 paints were hybridised 
simultaneously by FISH to FATO human lymphoblastoid nuclei and detected with anti-dig-
F1TC and avidin-TR (Figure 6.3). 50 randomly selected nuclei were assessed. This was 
repeated with the chromosome 19 inter-Alu PCR paint (Figure 6.4). For the commercial 
(Oncor) and total hybrid DNA paints, 50 randomly selected and independent nuclei were 
assessed for each chromosome. The area of each signal was divided by the total nuclear 
area, determined using Script 1 (Section 6.2.1). 

Chromosome paint % of total nuclear area 

FITC TR 

18 catch-linkered 5 6.1 +1-0.2 

19 inter-AIu PCR 6.8 7.6 °  
18 commercial 4 7+IM.l - 

19 commercial 6 . 2 02  - 

18 total hybrid DNA  
19 total hybrid DNA - 79+I0i 

Figure 6.4a shows FISH signal from the inter-Alu PCR chromosome 19 paint, labelled with 

biotin and digoxigenin and detected simultaneously with each fluorochrome. As before, 

using Script 1 (Section 5.2.1), the two signals in each fluorochrome from 50 nuclei were 

assessed for the percentage of the total nuclear area that was revealed by each probe (Table 

6.2). As anticipated the signal area revealed by TR was, again, significantly larger than that 

shown by F1TC (ST p.cz0.0004). The mean difference was 12%. Clearly, it was important to 

take this into consideration when assessing the signal domains in future experiments. 

Ideally domains to be compared should be detected with the same fluorochrome. 

Figure 6.3 also shows FISH signal from the commercial (Figure 6.3b) and total hybrid DNA 

(Figure 6.3c) chromosome 18 paints. Using Script I (Section 5.2.1), the two signals for 

each paint from 50 nuclei were assessed for the percentage of the total nuclear area (Table 

6.2). The commercial paint consistently took up a smaller area (approximately 10%) than 

the catch-linkered paint detected with the same fluorochrome (ST p<0.01 6). The mean area 

for the total hybrid DNA paint was slightly, though not significantly (ST p<0.150) smaller 
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than for the catch-tinkered paint detected with the same fluorochrome, which was not 

unexpected, since it has previously been shown that the 1101010 hybrid cell line contains 

an incomplete human chromosome 18 (Section 3.2). These data suggest that the catch-

linkered chromosome 18 paint (Section 3.3.2) reveals a domain for chromosome 18 that can 

be considered to be representative of the entire chromosome. 

Figure 6.4 shows a similar analysis for the commercial (Figure 6.4b) and total hybrid DNA 

(Figure 6.4c) chromosome 19 paints. The commercial paint consistently took up an 

approximately 10% smaller area than the inter-Alu PCR paint detected with the same 

fluorochrome (ST p<0.023). The area taken up by the total hybrid DNA paint, when 

compared to the inter-Alu PCR paint detected with the same fluorochrome, was not 

significantly different (ST p<0.340). These data argue that the inter-Alu PCR chromosome 

19 paint (Section 3.3.2) reveals a domain for chromosome 19 that can also be considered to 

be representative of the entire chromosome. 

6.2.3 The areas of territories occupied by human chromosomes in the 
interphase nucleus 

Each of the FISH paints described in Section 3.3 were used to assess the territories of these 

chromosomes in 2-D 3:1 methanol:acetic acid fixed human lymphoblastoid FATO 

interphase nuclei. The chromosome 1 paint was directly labelled with Spectrum Orange 

fluorochrome (Figures 3.14 & 6.5a) and was supplemented with a pericentric 

heterochromatin probe also labelled with Spectrum Orange (Section 3.3.3). Biotin labelled 

probes for chromosomes 11 (Figures 3.15 & 6.5b), 18 (Figures 3.13 & 6.6a), 19 (Figures 

3.12 & 6.6b) and 22 (Figures 3.16 & 6.5c) were detected with avidin-FITC (Section 2.6). 

Using Script 1 (Section 6.2.1), the percentage of the total nuclear area for each of the two 

signals in 50 randomly selected nuclei were recorded for each chromosome of interest 

(Table 6.3). The percentage of total DNA content of the human genome contributed to by 

each chromosome (Morton, 1991), was used to estimate the expected percentage volume 

occupied in a 3-D nucleus. It was assumed that the 3-D nucleus contained each 

chromosome territory with no overlaps and no interchromosomal gaps. The estimated 

volumes were used to calculate an expected percentage of total nuclear area likely to be 

observed in 2-D nuclei (Dr. A. Carothers, MRC Human Genetics Unit, Edinburgh). 
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Table 6.3 The areas of human chromosome territories in human lymphoblastoid 
nuclei 
Biotin labelled paints for chromosomes 11, 22, 18 and 19 were hybridised by FISH to FATO 
human lymphoblastoid nuclei and detected with avidin-FITC (Figures 6.5 & 6.6). 
Chromosome I paint was directly labelled with Spectrum Orange (Figure 6.5a). Observed 
% of total nuclear area was calculated from the two signals for each chromosome in 50 
randomly selected nuclei. The area occupied by each signal was divided by the total nuclear 
area, determined using Script I (Section 6.2.2). The expected % of total nuclear area was 
estimated from the % DNA content of total genome contributed by each chromosome 
(Morton, 1991). +/- standard error of mean 

Chromosome Observed % of total 
nuclear area 

Expected % of total 
nuclear area 

Observed/ 
expected 

8.3+'02 11.9 0.7 
11 _____________ 8.1 0.9 
18 53l 5.8 0.9 
19 6.8' °  4.9 1.4 
22 5.2+/-0-1 4.3 1.2 

I' 

Figure 6.7 shows histograms comparing the distribution of standardised territory areas for 

each chromosome tested. The territory sizes for all of the described chromosomes show a 

normal distribution. In general, the mean interphase area decreases with chromosome size 

(1>11>18>22). However, chromosome 19 is the exception. Interestingly, with almost three 

times as many genes allocated as might be predicted from its DNA content, this 

chromosome takes up an area 40% larger that expected (Tables 1.4 & 6.3) (Figures 6.6b & 

6.7). In contrast, chromosome 18, with almost half the number of allocated genes as 

expected but approximately the same DNA content as chromosome 19, is 10% smaller than 

the estimated area (Tables 1.4 & 5.3) (Figures 6.6a & 6.7). Chromosome 11 has 

approximately 50% more genes associated with it than estimated from its DNA content 

(Table 1.4) and has the same observed: expected area ratio as chromosome 18 (Table 6.3). 

This suggests that chromosome 19 is highly under-condensed, rather than chromosome 18 

being over-condensed at interphase. This transcriptionally active chromosome may have a 

very "open" configuration to allow access to the transcription machinery. 

The analysis of variance for territory areas occupied by chromosomes 18 between nuclei 

was calculated to be 0.010, while within nuclei the figure for homologues was 0.007. This 

difference was not significant (p<0.079). Interestingly, the analysis of variance for territory 

areas occupied by chromosome 19 between nuclei was 0.040, in contrast, within nuclei the 
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figure was 0.0 16. This difference was relatively significant (p<O.00I) and implies that the 

areas occupied within a particular nucleus were more similar than when compared to the 

areas in other nuclei. Larger territories are possibly more prone to variation in visualised 

area due to differences in strength of hybridisation and degree of detection across slides. 

Alternatively, it could be that chromosome 19 shows different levels of compaction in 

between nuclei, suggesting that it is more dynamic throughout the cell cycle than 

chromosome 18. 

Chromosome I had a surprisingly small mean territory area, at only twice that estimated 

from its DNA content (Tables 1.4 & 6.3) (Figures 6.5a & 6.7). It is possible that the large 

region of centromeric heterochromatin present on this chromosome (Figure 3.1) is highly 

compacted and has had a strong influence on the overall area. Also, the chromosome I paint 

used for FISH was previously shown to hybridise weakly at the tip of the p-arm (Figure 

3.14) which will result in an under-representation of the interphase territory area. Human 

chromosomes 9 and 16 also possess regions of centric heterochromatin and t would be of 

interest to determine the compaction of these interphase chromosome territories. 

Chromosome 22, has 20% more genes allocated to it than estimated from its DNA content 

and is a highly transcriptionally active chromosome as a result of the rDNA located on the 

p-arm (Section 5.3). This is reflected in the fact that it has a 20% larger area than estimated 

(Tables 1.4 & 6.3) (Figure 6.5c & 6.7). It also seems possible that there is a current 

under-representation of genes on chromosome 22 in the literature (Table 1.4) since there is a 

high density of CpG-islands along the length of this chromosome (Craig & Bickmore, 1994) 

(Figure 1.3). The influence of the rDNA regions on the interphase territory area of tle other 

acrocentric chromosomes may also prove interesting. 

Are there equally striking differences in the position of the territories of these chromosomes 

in the interphase nucleus? Can the position within the interphase nucleus of each of the 

chromosomes studied so far tell something more about the distribution of transcription 

within the nucleus? 

6.2.4 The position of human chromosomes within the interphase nucleus 

Aside from the differences in overall chromatin compaction, could there be differences in 

relative position within the nucleus between human chromosomes 18 and 19? The late- 
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replicating, gene-poor chromosome 18 may be positioned predominantly centrally where 

DNAse resistant, inactive chromatin is considered by some to reside (Hutchison & 

Weintraub, 1985; De Graaf et al., 1990; Krystosek & Puck, 1990; Park & De Boni, 1996). 

Alternatively, chromosome 18 may show a preference for the periphery of the nucleus, with 

more actively transcribed chromosome 19, more centrally located, a concept suggested by 

the localisation pre-mRNA splicing components (Reviews: Lawrence et al., 1993; Spector, 

1993), polyadenylated RNA (Carter et al., 1993) and active and inactive gene sequences 

(Lawrence et al., 1988; Lawrence & Singer, 1991; Xing et al., 1995). Other studies, 

however, have shown no bias in the distribution of nascent transcripts (Review: Fakan & 

Puvion, 1980), RNA polymerase II and a variety of transcription factors (Wansink et al., 

1993; Zeng et al., 1997; Grande et al., 1997) suggesting that there is no 

compartmentalisation within the nucleus that relates to transcription. 

Script I (Section 6.2.1) measured several parameters that could be used to assess the 

position of chromosome specific FISH signals within each nucleus. The following distances 

(pixels) were calculated: 

• The edge of the signal to the nearest edge of the nucleus standardised by dividing by the 

square root of the nuclear area (edge to edge). 

• The centre of the signal to the edge of the nucleus standardised by dividing by the square 

root of the nuclear area (centre to edge). 

These data for each chromosome are recorded in Table 6.4 and displayed in Figure 6.8. 

Both sets of distance measurements resulted in a similar pattern of territory distribution, 

suggesting that the size of a territory does not significantly influence these measurements. 

For example, the edge to edge distance for chromosome I places this chromosome generally 

at the periphery of the nucleus. Since this chromosome takes up one of the larger territory 

areas in the interphase nucleus, it has an increased likelihood of being observed juxtaposing 

the nuclear periphery than smaller territories. However, the centre to edge distance is also 

small, indicating that this chromosome territory is placed more peripherally not simply due 

to its large size. When the edge to edge distances are subtracted from the centre to edge 

distances similar values are obtained for each chromosome territory, although as expected, 

larger territories gave slightly larger differences (Table 6.4). 
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Table 6.4 The position of human chromosome territories in human lymphoblastoid 
nuclei 
Biotin labelled probes for chromosomes 11, 22, 18 and 19 were hybridised by FISH to 
FATO human lymphoblastoid nuclei and detected with avidin-F1TC (Figures 6.5 & 6.6). 
Chromosome 1 probe was directly labelled with Spectrum Orange (Figure 6.5a). The 
distances calculated for each signal in 50 randomly selected nuclei were divided by the 
'Inuclear area (estimate of nuclear radius), determined using Script 1 (Section 6.2.1) and 
measured in pixels. +1- standard error of mean 

Chromosome Mean standardised 
edge to edge distance 
(a) 

Mean standardised 
centre to edge 
distance (b) 

Mean (a) - (b) 

1 0 .04 0006  0.1 7+10.007 0.1 3+ 

11 0.18 	0006 0.32+10006 0.14'-000 
18 0 .08 009  0.18+/-0-010  0.1 	0004 

19 0.18 +/-0.00 0.34+0006 0.16 +/-0.00 

22 0. 16 °°°  0.27' °°°  0.1 i °°°3  

In contrast to chromosome 1, chromosome 11 was rarely observed at the nuclear periphery 

(Figure 6.5b) and relatively large edge to edge and centre to edge distances were calculated 

(Table 6.4). Chromosome 18 was found to be peripherally located, while chromosome 19 

was significantly more centrally positioned (ST p<0.0001). Chromosome 22 adopted a 

more intermediate position being more central then chromosomes 1 and 18, and more 

peripheral than chromosomes 11 and 19 (Figure 6.8). 

A concentric circle drawn for the outer most 20% of the radius of a 2-D circle would 

produce a ring representing 36% of the total area. This area would extrapolate to being 

representative of 21.6% of the total volume of a 3-D sphere. If a territory were randomly 

positioned within a 3-D nucleus and the nucleus was flattened with no skew to 2-D, then it 

would be present in the outer 36% of the nuclear area with a probability of 21.6%. Based 

upon this mathematical model, a randomly located territory would have a centre to edge 

distance of approximately 0.41 (Dr. A. Carothers, MRC Human Genetics Unit, Edinburgh). 

All of the centre to edge measurements in Table 6.4 place the chromosome territories tested 

more peripheral in the nucleus than a randomly placed territory. However, nuclei are not 

likely to flatten evenly and with no skew as assumed by this model (see Section 6.4.3). In 

addition, the measurements in Table 6.4 were standardised relative to a broad estimate of the 

nuclear radius given by the square root of the nuclear area. This approximation may account 

for the apparent lack of chromosome territories in the centre of the nucleus and suggesting 



that they do not give a true estimate for the position of a chromosome territory within the 

3-D nucleus. Nonetheless, these measurements give estimates of the positions of 

chromosomes relative to one another along the radius of the nucleus. 

The data presented in this section supports the concept of transcriptionally inactive 

chromatin being positioned towards the periphery of the nucleus, reserving the centre of the 

nucleus for transcriptionally active chromatin. Thus, the gene-poor chromosome 18 is 

peripherally located while the gene-rich chromosomes 11 and 19 are more centrally located. 

Chromosome 1, despite having a reasonable gene load, may be located at the nuclear 

periphery due to the influence of its large region of centric heterochromatin. However, the 

positioning of this chromosome may be evidence that this model is indeed incorrect. The 

positioning of chromosome 22, with its highly transcriptionally active rDNA, will be 

influenced by the positioning of the other acrocentric chromosomes and will determine the 

positioning of the nucleoli. 

Positioning human chromosomes relative to one another in the interphase nucleus, and 

relating this positioning to the characteristics of each chromosome, may considerably 

improve our understanding of interphase nucleus organisation. Are these territory attributes 

an artefact of fixation with 3:1 methanol:acetic acid fixed nuclei or can they be reproduced 

in nuclei fixed by an alternative protocol? 
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Figure 6.1 Script I: Determining the size and position of a FISH signal within 
circular nuclei 
Chromosome IS and 19 FISH paints labelled with biotin and detected with avidin-FITC 
(green). Nuclei were countcrsiaincd with DAPI (blue). (a) (h) The DAPI stained nucleus 
was automatically segmented from the background. The area and weighted centroid 
were calculated. (c) A region of interest around the signal was manually selected. The 
area and weighted centroid were calculated. (d) The nuclear segment was converted to 
binary form. Using the co-ordinates of the signal weighted centroid as the centre, an 
appropriately sited segmentation disc was automatically adjusted by dilation and erosion 
until a single pixel with tern intensity was determined. This point was taken as the 
nearest edge of the nucleus to the signal. (e) The distance from this point to the centroid 
of the signal. and the ccntroid of the nucleus to the centroid of the signal were calculated. 
(1) The signal segment was converted to binary form, a chord was drawn automatically 
from the centroid of the segment to the nearest edge of the nucleus and the co-ordinates 
established for the first pixel with tern intensity. This was taken to be the edge of the 
signal nearest to the periphery of the nucleus and the distance between these two sets of 
co-ordinates were calculated. 
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Figure 6.2 Script 2: I)etermining the distribution of FISH signal ithin ellipcoid 
nuclei 
(a) Chromosome 19 FISH paint labelled with hiotin and detected with avidin-FITC 
(green). Nucleus counterstained with DAPI (blue). The nucleus was automatically 
segmented from the background and the area and centroid co-ordinates were calculated. 
The area was divided equally by area into five scmcnts using concentric circles, from 
the periphery towards the centre of the nucleus. For each segment, the amount of FISH 
(h) and DAPI (C) fluorescence were calculated and represented as a percentage of the 
total. 
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Figure 6.3 The coverage of chromosome IS FISH paints 
(a) Catch-linkered chromosome 18 FISH paint (Section 3.3.2) labelled with hiotin and 
dig separately and detected simultaneously with avidin-TR (red) and avidin-FITC 
(green). (b) Commercial chromosome 18 FISH labelled with dig (Oncor) and detected 
with anti-dig-FITC (green). (C) Total DNA from the human chromosome 18-containing 
rodent hybrid cell line GM 11010. labelled with biotin and detected with avidin-FITC 
(green) (Section 3.2). All nuclei were counterstained with DAPI (blue). (Middle) I Right) 
Grey scale representations ot the FISH signals. 
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Figure 6.4 The coerage of chromosome 19 FISH paints 
(a) Inter-A lii PCR chromosome 19 FISH paint (Section 3.3. 1 labelled with hitin and 
dig separately and detected simultaneously with avidin-TR (red) and avidin-FITC 
(green). (h) Commercial chromosome 19 FISH labelled with dig (Oncor) and detected 
with anti-di-FtTC (green). (C) Total DNA from the human chromosome 19-containing 
rodent hybrid cell line GM lO449A. labelled with hiotin and detected with avidin-FITC 
(green) (Section 3.2). All nuclei were countersiaincd with DAM (hlue. (Middle) (Right) 
Grey scale representations of the FISH signals. 
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Figure 6.5 The interphase territories of human chromosomes 1. 11 and 22 in 
lymphohiastoid nuclei 
Representative interphase nuclei from the FATO human lymphoblastoid cell line (46. 
XY) hybridised with chromosome paints by FISH. Nuclei were counterstained with DAPI 
(blue). (a) Chromosome I paint directly labelled with Spectrum Orange Gihco) and 
supplemented with a centric heterochromatin probe directly labelled with Spectrum 
Orange (Section 3.3.3. (b) Chromosome 11 paint labelled with hiotin (Camhio) and 
detected with avidin-FITC green). (C) Chromosome 22 paint (Section 3 .3.3) labelled 
with hiotin and detected with avidin-FITC (green). 
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Figure 6.6 The interphase territories of human chromosomes 1$ and 19 in 
lymphoblastoid nuclei 
Representative interphase nuclei Ironi the FAT() human lvmphohlastuid cell line (46. 
XY) hybridised with chromosome paints by FISH. Nuclei were counterstained with DAPJ 
(blue). Paints labelled with hiotin and detected with avidin-FITC (green). (a) Catch-
linkered chromosome 18 paint (Section 3,3.2. and (h) inter-A/u PCR chromosome 19 
paint (Section 3.3.1). 
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Figure 6.7 Histograms comparing the areas of human chromosome territories in 
lymphoblastoid nuclei 
Using Script 1 (Section 6.2. 1) measurements were taken from both homologues in 50 randomly 
selected FATO human lymphoblastoid nuclei (46,XY) fixed with 3:1 methanol:acetic acid and 
hybridised with the appropriate human chromosome paint (Section 6.2.3 & Figures 6.5 & 6.6). 
FISH signal area given as a percentage of the total nuclear area. 
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Figure 6.8 Histograms comparing the positions occupied by human chromosome 
territories in lymphoblastoid nuclei 
Using Script 1 (Section 6.2.1) measurements were taken from both signals in 50 
randomly selected FATO human lymphoblastoid (46,XY) nuclei fixed with 3:1 
methanol:acetic acid and hybridised with the appropriate human chromosome paint 
(Section 6.2.3 & Figures 6.5 & 6.6). (a) Edge of the signal to the nearest edge of the 
nucleus. (b) Centre of the signal to the nearest edge of the nucleus. Distances 
standardised by dividing by the Vnuclear area (estimate of nuclear radius). 
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6.3 The effects of nuclear fixation on interphase chromosome 
territories 

To produce 2-D nuclei for FISH, 3:1 methanol:acetic acid is usually used to fix the cells 

(Section 2.6.1). This procedure causes the cells to dehydrate and proteins to 

precipitate. How and to what extent proteins are denatured is unknown (Pearse, 1968). 

However, comparisons with paraformaldehyde fixed, 3-D nuclei have suggested that any 

structural changes induced by this fixation are not significant (Manuelidis, 1985, Popp et al., 

1990; Lawrence & Singer, 1991; Hofers et al., 1993; Robinett et al., 1996). However, this 

has not been stringently tested and it was decided to use an alternative method of fixation to 

prepare slides for FISH and to assess any differences between the two methods. 

Cells from the FATO human cell line were harvested and swollen in hypotonic solution then 

cytocentrifuged onto slides (Section 2.10.1). Slides were incubated in potassium 

chromosome medium (KCM) to wash away cytoplasmic debris, and then fixed in 4% 

paraformaldehyde for 15 minutes. FISH was performed using the standard protocol (Section 

2.6) following reverse fixation in 2:5 0.07M NaOH:EtOH for 5 minutes. Paraformaldehyde 

does not cause dehydration, it fixes nuclei by crosslinking proteins in a number of complex 

reactions which can involve several different functional groups (Pearse, 1968). A recent 

study demonstrated that paraformaldehyde fixation resulted in a reduced level of histone 

displacement than typical 3:1 methanol:acetic acid fixation (Hendzel & Bazett-Jones, 1997). 

Figure 6.9 shows a representative selection of nuclei fixed with paraformaldehyde and 

showing the territories of chromosomes 18 and 19 as revealed by FISH. The nuclei 

appeared slightly more distorted than typically 3:1 methanol:acetic acid fixed nuclei and 

there was more thickness maintained, making it difficult to capture images in a single focal 

plane. Using Script 1, measurements were taken from 50 randomly selected nuclei that 

possessed two clear territories (Tables 6.5 & 6.6). 

The mean interphase territory area for both chromosome 18 and 19 were not significantly 

different between 3:1 methanol:acetic acid and 4% paraformaldehyde fixed nuclei (Table 

6.5). The interphase territory of chromosome 18 was significantly smaller than that for 

chromosome 19 in paraformaldehyde fixed nuclei (ST p<0.000I). 
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Table 6.5 The areas of human chromosome 18 and 19 territories in alternatively fixed 
nuclei 
Avidin-FJTC was used to detect biotin labelled FISH paints for chromosomes 18 and 19 
hybridised to human lymphoblastoid nuclei fixed with 3:1 methanol:acetic acid (Figures 
6.6a & b) or with 4% paraformaldehyde (Figure 6.9). The area of each signal was divided 
by the total nuclear area, determined using Script I (Section 6.2.1). +1- standard error of 
mean 

Chromosome% of total nuclear area in 
3:1 methanol:acetic acid 
fixed nuclei 

% of total nuclear area in 
4% paraformaldehyde 
fixed nuclei 

18 53+1-0.1 5.O+02 

19 6.8" 0  6.2 02  

19:18 1.28 1.24 

The distance measurements for the position of the chromosome 18 interphase territory were 

not significantly different between the two fixation protocols (Table 6.6). However, the 

distance measurements for the position of the chromosome 19 territory were significantly 

different between the two fixation protocols (Table 6.6). This may be due to the slight 

distortion of the paraformaldehyde nuclei making estimates of nuclear radius made from the 

total nuclear area unreliable. Nonetheless, chromosome 18 is still positioned closer to the 

edge of the nucleus than chromosome 19, with p<0.087 for edge to edge distance and 

p<0.0 10 for centre to edge distance, using a Student's T test. 

Table 6.6 The positions of human chromosome 18 and 19 territories in alternatively 
fixed nuclei 
Avidin-FITC was used to detect biotin labelled FISH paints for chromosomes 18 and 19 
hybridised to human lymphoblastoid nuclei fixed with 3:1 methanol:acetic acid (Figures 
6.6a & b) or with 4% paraformaldehyde (Figure 6.9). The distances calculated for each 
signal were divided by the s/nuclear area (estimate of nuclear radius), determined using 
Script 1 (Section 6.2. 1) and measured in pixels. +1- standard error of mean 

Chromosome Mean standardised 
edge to edge distance 

Mean standardised centre 
to edge distance 

3:1 methanol:acetic acid fixed 
18 0.08 000  0.18+/-0 -0 0  
19 0.1 80°° O.340006 

4% paraformaldehyde fixed 
18 0 .09 0010  0.21 00M 

19 0 . 12 0010  0.2400b0 



So far my analysis has focused on human lymphoblastoid cells. Are the contrasting areas 

and positions of the chromosome 18 and 19 interphase territories maintained in other cell 

types or are particular territorial organisations cell type-specific? 



Figure 6.9 The interphase territories of human chromosome 18 and 19 in 4% 
paraformaldehyde fixed nuclei 
Representative interphase nuclei from the FATO human lymphoblastoid cell line (46, 
XY). Nuclei were cytocentrifuged onto slides, fixed with 4% paraformaldehyde and 
hybridised by FISH with paints for: (a) chromosome 18 (Section 3.3.2), and (b) 
chromosome 19 (Section 3.2.1). Paints were labelled with biotin and detected with 
avidin-FITC (green). Nuclei were counterstained with DAPI (blue). 
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6.4 The territories of chromosomes 18 and 19 in interphase 
nuclei from different cell types 

Approximately 25% of human genes are housekeeping and have widespread 

expression, while the remainder are tissue-restricted in their expression (Craig, 1995). 

However, there is no definite distinction between housekeeping and tissue-specific genes. 

Some housekeeping genes may be expressed at different levels or be differentially spliced in 

some tissues, and some tissue-specific genes may be expressed mainly in one tissue but at a 

low level in other tissues. If a different set of genes are expressed in the cells of one tissue 

type compared to that of another, is it necessary that the nucleus must be reorganised to 

allow this to occur? 

In the first instance a human lymphoblastoid cell line was used for this study. The effects 

upon nuclear organisation of establishing a permanent growing cell line using Epstein-Barr 

virus are unknown (Neitzel, 1986). However, it has been shown that Herpes Simplex virus 

infection can cause a large re-organisation of endogenous chromatin in HeLa nuclei 

(Puvion-Dutilleul & Besse, 1994). Thus, it was important to compare the chromosome 

territory areas and positions established in lymphoblastoid nuclei with nuclei from primary 

lymphocytes. Nuclei from primary fibroblasts and fibrosarcoma cells were also analysed. 

6.4.1 Selection of human cells of different tissue origin 

Primary (1°) lymphocytes were collected from peripheral blood of a normal male, stimulated 

to divide with phytohaemagglutinin, cultured and fixed as described in Section 2.1.4. The 

karyotype was confirmed as normal after analysis of DAPI stained metaphase spreads 

(Figure 6.10). 

10 fibroblasts were obtained from a norrnc1 male foetal lung biopsy and cultured and fixed 

as described in Section 2.1.5. This culture had been enriched for GI nuclei. 

An immortal cell line derived from a fibrosarcoma of a male patient, HT 1080, was obtained 

from the European Collection of Animal Cell Cultures, Salisbury. This line was previously 

characterised to have 54% of cells with 46 chromosomes, however 80% of these cells had an 

extra C-group chromosome (6-12) and lacked a B-group chromosome (4 or 5). The 

remaining 46% of cells were lacking or had gained one or two chromosomes (Rasheed et al., 
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1974). Polyploidy was not recorded. Since these were not gross abnormalities and rarely 

involved chromosomes 18 or 19 it was considered that this cell line would be adequate for 

analysis. 

6.4.2 The areas occupied by human chromosome 18 and 19 territories in 
interphase nuclei from different cell types 

As a proportion of total nuclear area the territories of both chromosomes 18 and 19 were 

found to be distinct within each cell type. While in 10  lymphocytes and lymphoblasts the 

chromosome 18 territories were similar tb each other, the chromosome 19 territory was 

considerably larger in 10  lymphocytes than it was in lymphoblasts (Figure 6.10 & Table 

6.7). Consequently, there is a larger ratio between the chromosome 18 and 19 territories in 

10 lymphocytes, with chromosome 18 taking up less than half the area of chromosome 19. 

Chromosome 19 may be more transcriptionally active in 10  lymphocytes than lymphoblasts. 

Table 6.7 The areas of human chromosome 18 and 19 territories in nuclei of different 
cell types 
Avidin-F1TC was used to detect biotin labelled FISH paints for chromosomes 18 and 19 
hybridised to human nuclei from different cell types fixed with 3:1 methanol:acetic acid: 
primary lymphocytes (Figure 6.10), lymphoblasts (Figure 6.6), primary fibroblasts (Figure 
6.11 a) and fibrosarcoma cells (Figure 6.11 b). The area of each signal was divided by the 
total nuclear area, determined using Script 1 (Section 6.2.1). +1- standard error of mean p-
significance between the means for each chromosome in a particular cell type (Student's T 
test) 

Cell type 

% of total nuclear area 
19:18 p 

Chromosome 18 1  Chromosome 19 
10 lymphocytes 5•7+10.2 9.2 °  1.61 0.0001 
Lymphoblastoid cell line 
(FATO)  

53+/0.2 6.8 °  1.28 0.0002 

10 fibroblasts 47+/0.3 
5.1 °° 1.09 0.210 

Fibrosarcoma cell line 
(HT1080) 

390.3 6.7 °  1.72 0.0004 

The territory areas of both chromosomes 18 and 19 were smaller in 10  fibroblasts and 

fibrosarcoma cells than 1° lymphocytes and lymphoblasts when measured as a percentage of 

total nuclear area (Figure 6.11 & Table 6.7). This may reflect a slightly different nuclear 

organisation resulting from the ellipsoid shape of the nuclei from former two cell lines. 
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Interestingly, in 10  fibroblasts the differences in territory area for chromosome 18 and 19 

were not significant (ST p<0.210), while in fibrosarcoma cells chromosome 18 was almost 

one quarter the size of chromosome 19 (ST p<0.0004). This may reflect differences in the 

level of transcription of these chromosomes in the different cell types. A survey of the 

genes present upon these two chromosomes and the cell types in which they are likely to be 

active may prove useful. Clearly, alternative cell types offer different arrangements of 

chromosome territories which relate to their particular shape and transcriptional 

requirements. Nonetheless, the territory of chromosome 18 was consistently smaller than 

that of chromosome 19 (Figure 6.12 & Table 6.7). 

6.4.3 The positions of human chromosomes 18 and 19 within the 
interphase nuclei of different cell types 

The nuclei of both 10  fibroblasts and fibrosarcoma cells are ellipsoid in shape. Script 1, 

used for making position measurements based upon distances along an estimated radius, are 

invalid with this shape of nucleus, since there is no fixed radius. An alternative strategy was 

chosen to assess the relative positions of territories in the nuclei of such cells. The nucleus 

was divided into five concentric segments equal in area, from the periphery towards the 

centre of the nucleus (Section 6.1.2) (Figure 6.2) and the total amount of fluorescence from 

the FISH signal and DAPI counterstain was calculated in each segment. This method is 

equally valid for nuclei of all shapes. Several fibrosarcoma nuclei were shown to contain an 

extra chromosome 18 or 19. Images were collected of approximately 10 nuclei with trisomy 

18 or 19 and these were separately analysed. The expected distribution of fluorescence was 

calculated using a mathematical model in which a sphere was collapsed with no skew into a 

circle and is based upon the relative volume of the sphere that each concentric segment of 

the circle would represent (Dr. A. Carothers, MRC Human Genetics Unit, Edinburgh). The 

observed total percentage DAPI and chromosome 18 or 19 signal fluorescence for each cell 

type was divided by the expected distribution (Table 6.8). 

In all cell types the percentage of total DAPI fluorescence present in each segment followed 

the same pattern, with 30-40% more fluorescence at the nuclear periphery and <10% less 

fluorescence observed in the centre of the nucleus than expected (Table 6.8). An apparently 

higher density of DNA at the periphery of the nucleus compared to the centre suggests that 

the nuclei may have flattened by collapsing vertically pushing some of the nuclear volume to 

the edge. However, DAPI is an AT-specific fluorochrome and it may be that its 
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Table 6.8 The distributions of human chromosome 18 and 19 territories in nuclei of different cell types 
Biotin labelled paints for chromosomes 18 and 19 were hybridised by FISH to human nuclei from different cell types and detected with avidin-FITC. 
Nuclei were counterstained with DAPI. Using Script 2 (Section 6.2.2) the percentage of total DAPI and FITC fluorescence was calculated within five 
concentric segments of equal area. The expected percentage fluorescence for each segment was estimated from a model in which a sphere is 
compressed with no skew (Dr. A. Caruthers, MRC Human Genetics Unit, Edinburgh). 1- outer most concentric segment 5- inner most concentric 
segment 

Expected 
fluorescence 
distribution 

Cell type Primary 
lymphocytes 

Lymphoblast 
cell line 
(FATO) 

Primary 
fibroblasts 

Fibrosarcoma 
cell line 
(HT1080) 

Fibrosarcorna 
cell line 
(HT1080) with 
trisomies 

Chromosome 18 19 1 	18 ]_19 18 19 1 	18 	] _19  118 19 
Number of 50 
nuclei analysed  

1 47 1  49 1  50 1  50 1 49 1  50 1  50 10 8 

Observed/expected % FITC  
8.9 I 3.0 0.1 1.2 0.2 1.5 0.6 1.0 0.1 1.9 0.1 
16.4 2 1.8 0.3 1.4 0.3 1.1 0.8 0.7 0.2 1.0 0.4 
21.2 3 0.9 0.7 1.2 0.7 0.9 1.0 0.9 1.0 1.0 1.2 
25.1 4 0.5 1.3 0.9 1.4 1.0 1.2 1.1 1.3 1.0 1.3 
28.5 1 5 1 0.5 	1 1.6 1 0.6 1 	1.5 0.9 	1 1.2 1 	1.2 	1 1.3 	1 0.9 1.2 

Observed/expected % DAPI  
1.3 1.4 1.3 1.3 1.3 

2 1.0 I.! 1.0 1.0 1.0 
3 1.0 1.0 1.0 1.0 1.0 
4 1.0 0.9 1.0 	- 1.0 1.0 
5 0.9 1.0 1.0 1.0 0.9 



distribution is reflecting the distribution of AT-rich DNA. It would be interesting to assess 

the distribution of fluorescence from a number of different DNA fluorochromes to 

determine between these two possibilities. In addition, the way in which nuclei flatten 

following fixation with different protocols may be analysed using this Script. 

In each cell type, the observed percentage of total chromosome 18 paint fluorescence was 

always more (1-3x) than expected in the outer most segment, while the inner most segment 

showed generally less fluorescence (0.5-1.2x) than expected (Table 6.8). Reciprocally, in 

each cell type, the distribution of chromosome 19 paint fluorescence was always less (0.1-

0.6x) than expected in the outer most segment and more (1.2-1.6x) than expected in the 

inner most segment (Table 6.8). Figure 6.13 shows the ratio of mean chromosome 18 to 

chromosome 19 paint fluorescence for each segment in each cell type. It is clear from this 

data that in each cell type chromosome 18 territories are located more towards the periphery 

of the nucleus and chromosome 19 territories are located relatively more centrally (Table 

6.8 & Figure 6.13). The opposing distribution of chromosomes 18 and 19 paint 

fluorescence is most striking in 10  lymphocytes and fibrosarcoma cells (Figure 6.13). Such 

differences in chromosome paint distribution between cell types may reflect slight 

differences in transcriptional activity and nuclear organisation. 

6.4.4 The areas and positions of human chromosome 18 and 19 within a 
rodent-human hybrid nuclei 

Are the properties that establish the contrasting territory size and position of chromosomes 

18 and 19 in a human nucleus intrinsic to the chromosome or dependent upon the nuclear 

environment? This was tested by comparing the territories of these chromosomes in 

rodent-human monochromosome hybrid cell nuclei. 

GMI 1010 is a Chinese hamster-human hybrid cell line containing chromosome 18 as its 

only human material, however, chromosome 18 is missing a portion of the q-arm in 

approximately 35% of cells (Section 3.2). GM10449A is a Chinese hamster-human hybrid 

cell line containing chromosome 19 as its only human material and chromosome 19 in this 

cell line is apparently intact (Section 3.2). Cells from each of these cell lines were 

harvested, swollen in hypotonic and fixed with 3:1 methanol:acetic acid (Section 2.1.6). 

Slides were prepared and hybridised with the appropriate chromosome paint by FISH. 

Using Script 1 (Section 6.2.1), measurements were taken for 50 randomly selected nuclei. 



Figure 6.14a shows representative GM1 1010 nuclei hybridised with the chromosome 18 

paint by FISH. Only one territory was observed in each nucleus indicating that only one 

human chromosome 18 is present in this hybrid line, consistent with the observations of 

metaphase spreads (Section 3.2). Any estimates of territory area would be invalid since part 

of the q-arm of this chromosome has been demonstrated to be missing in a substantial 

number of cells (Section 3.2). However, the mean chromosome territory area was calculated 

to be 3.0% of the total nuclear area, clearly an underestimate of the territory size of a 

complete chromosome (Tables 6.3 & 6.9). Surprisingly, the chromosome 18 territory was 

rarely observed juxtaposing the nuclear periphery. This was substantiated by measurements 

of edge to edge and centre to edge distance which were much larger than observed in normal 

human lymphoblasts (Table 6.4) and, indeed, not significantly smaller than for chromosome 

19 in its respective rodent-human hybrid cell line (Table 6.9). 

Table 6.9 The areas and positions of human chromosome 18 and 19 territories in 
rodent-human hybrid nuclei 
Avidin-FITC was used to detect biotin labelled FISH paints for chromosomes 18 and 19 
hybridised to the appropriate rodent-human monochromosome hybrid cell nuclei: 
chromosome 18-containing GM11010 (Section 3.2) (Figure 6.14a) and chromosome 19-
containing GM10449A (Section 3.2) (Figure 6.14b). Using Script I (Section 6.2.1), 50 
randomly selected nuclei were analysed. The area of each signal was divided by the total 
nuclear area. The distances calculated for each signal were divided by the Inuclear area 
(estimate of nuclear radius), measured in pixels. +1- standard error of mean p- significance 
between the means for each chromosome (Student's T test) 

Hybrid cell line Chromosome % of total Mean Mean 
nuclear area standardised standardised 

edge to edge centre to edge 
distance I distance 

GM1 1010 18 3Ø026 0.2F'°°2 0.31002 

GM 10449A 19 8.0042 0.24' 00 ' 0.38 00 ' 

p 19:18 0.000 0.280 0.001 

Figure 6.14b shows representative GM10449A nuclei hybridised with chromosome 19 paint 

by FISH. As with the chromosome 18-containing hybrid cell line, one territory was 

observed in each nucleus consistent with the presence of one human chromosome 19 

(Section 3.2). The mean territory area was calculated as being 8.0% of the total nuclear 

area, which is very similar to the percentage area observed in normal human lymphoblasts 
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(Tables 6.3 & 6.9). The edge to edge and centre to edge distances were also similar to those 

observed in normal human lymphocytes (Tables 6.4 & 6.9). 

The sizes of territories occupied by chromosomes 18 and 19 remain very different from each 

other in a hybrid cell background (Table 6.9 & Figure 6.15a). Despite the underestimate of 

chromosome 18 territory size, it is so much smaller than the territory of chromosome 19 that 

the incompleteness of chromosome 18 in some nuclei alone cannot explain the difference. 

Histograms comparing the positioning of the chromosomes 18 and 19 within their respective 

hybrid nuclei are very similar (Figures 6.15b & c). There was no significant difference 

between either edge to edge mean distances (ST p<0.280) between the two chromosomes 

(Table 6.9). The centre to edge mean distances (ST p<0.001) were significantly different 

probably reflecting the difference in size between the two chromosome territories (Table 

6.9). Interestingly, there is an apparently bimodal distribution of positioning for 

chromosome 18 evident from the histograms in Figures 6.15b & c, possibly representing the 

intact verses the deleted chromosome. 

The transcriptional activity of chromosomes 18 and 19 in their respective hybrid lines is 

unknown. The degree of histone acetylation along the length of these chromosomes appears 

to be similar in normal and hybrid metaphase spreads (Section 5.4). Chromosome 18 is 

consistently hypoactylated along its entire length, consistent with transcriptional inactivity 

(Figure 5.9). On the other hand, chromosome 19 is consistently hyperacetylated along its 

entire length, indicating high transcriptional activity. (Figure 5.10) Thus, the nuclear 

territory area data conform with the apparent presumed transcriptional activities of the 

chromosomes in a hybrid cell background. Levels of histone acetylation only serve' as a 

marker for potential transcriptional activity (Section 1.4.1.3) and, thus, true measurements 

of activity remain to be tested at the gene level. It would be interesting to know whether the 

timing of replication of these two chromosomes were maintained in a hybrid background 

(Section 1.2.4). 

The positioning of the chromosome 18 and 19 territories are similar in their respective 

hybrid nuclei, with both chromosomes possessing a more central nuclear location. This data 

imply that the mechanisms involved in positioning chromosome 18 towards the periphery of 

the nucleus differ between Chinese hamster nuclei and human nuclei and possible 

mechanisms are discussed in Section 9.4. Manuelidis (1985) showed in nuclei of a 



mouse-human hybrid with four human chromosomes (1,3,4 and X) that the human 

chromosomes had a reproducible position and shape. How these dispositions relate to those 

in normal human nuclei was not explored, however, this study does support the fact that 

mechanisms are in place in other mammalian nuclei for establishing a specific chromosome 

territory organisation, be there differences between species. An alternative explanation for 

the altered nuclear positioning of chromosome 18 is that the absence of part of the q-arm 

may be involved. It is possible that the portion of the chromosome that is missing includes 

an "organising" centre, that is, a sequence which binds particular proteins involved in 

directing this chromosome to the periphery of the nucleus. This explanation would be ruled 

out if after tagging the chromosome and introducing it into normal human lymphoblasts the 

chromosome repositioned to the nuclear periphery. Alternatively, hybridisation of a probe 

specific for the tip of the chromosome 18 q-arm, in addition to a chromosome 18 paint, 

would enable identification of and comparison between the intact and deleted chromosomes. 

The study of a human chromosome 18 and 19 translocation in Section 7.2 addresses these 

possibilities. 

Up to this stage I have studied asynchronous cell populations. Do interphase chromosome 

territories alter in disposition throughout the cell cycle? 

[vJ, 



Figure 6.10 The interphase territories of human chromosomes 18 and 19 in 
10 lymphocyte nuclei 
Human 10  lymphocytes (46 XY) fixed with 3:1 methanol:acetic acid and hybridised with: 
(a) (c) human chromosome 18 paint (Section 3.3.2), and (b) (d) human chromosome 19 
paint (Section 3.2.1). Both paints were labelled with biotin and detected with 
avidin-FITC (green). Nuclei and chromosomes were counterstained with DAPI (blue). 
(a) (b) Representative metaphase spreads. (c) (d) Selection of representative interphase 
nuclei. Bar=lp.m 
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Figure 6.11 The interphase territories of human chromosomes 18 and 19 in 
10 fibroblast and fibrosarcoma cell nuclei 
(a) (b) Representative human 1° fibroblast nuclei (46, XY) fixed with 3:1 methanol:acetic 
acid. (c) (d) Representative human HT1080 fibrosarcoma cell nuclei (46, XY) fixed with 
3:1 methanol:acetic acid. (e) (f) Examples of human HTI080 fibrosarcoma cell nuclei 
with trisomy for the chromosome 18 or 19, fixed with 3:1 methanol:acetic acid. Nuclei 
hybridised with: (a) (c) (e) human chromosome 18 paint (Section 3.3.2), and (b) (d) (IT) 
human chromosome 19 paint (Section 3.2.1). All paints labelled with biotin and 
detected with avidin-FJTC (green). Nuclei were counterstained with DAPI (blue). 
Bar=lj.tm 
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Figure 6.12 Histograms comparing the areas of human chromosome 18 and 19 territories 
in nuclei of differing cell types 
Avidin-FITC was used to detect biotin labelled paints for human chromosomes 18 and 19 
hybridised to human nuclei from different cell types fixed with 3:1 methanol:acetic acid: primary 
lymphocytes (Figure 6.10), lymphoblasts (Figure 6.6), primary fibroblasts (Figure 6.1 la) and 
fibrosarcoma cells (Figure 6.11 b). Using Script 1 (Section 6.2. 1) measurements were taken 
from both homologues in 50 randomly selected nuclei. FISH signal area given as a percentage 
of the total nuclear area. 

u p 

I 

202 



C.,  

30 

25 

o 20 

OC 

15 

CO 
Cz 

10 

5 

0 

Segment 
1 	2 	3 	4 	5 

Segment 

30 

25 

c. 20 

00 

15 

CO 

10 

5 

0 

30 

25 

c' 20 

00 

15 

CO 

10 

5 

0 
1 	2 	3 	4 	5 

	
1 	2 	3 	4 	5 

Segment 
	

Segment 

30 

25 

20 

00 

15 - 
C 

CO 

10 

0 
1 	2 	3 	4 	5 

Segment 

Figure 6.13 Histograms comparing the distribution of human chromosome 18 and 19 
FISH paints within nuclei of different cell types 
Avidin-FITC was used to detect biotin labelled paints for human chromosomes 18 and 19 
hybridised to human nuclei from different cell types fixed with 3:1 methanol:acetic acid: 
primary lymphocytes (Figure 6.10), lymphoblasts (Figure 6.6), primary fibroblasts (Figure 
6.11a) and fibrosarcoma cells (Figure 6.11b). Using Script 2 (Section 6.2.1) measurements 
were taken from —50 randomly selected nuclei with two FISH signals for each cell type, or 
—10 randomly selected fibrosarcoma nuclei with three FISH signals (Figure 6.11 c & Table 
6.8). The total fluorescence in each concentric segment was calculated as a percentage of the 
total nuclear fluorescence. The mean percentage chromosome 18 paint fluorescence was 
divided by the mean percentage chromosome 19 paint fluorescence for each concentric segment 
in each cell type. 
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Figure 6.14 The interphase territories of human chromosomes 18 and 19 in rodent-
human hybrid nuclei 
(a) Representative interphase nuclei from the rodent-human chromosome 18-containing 
hybrid cell line, GM1I010 (Section 3.2) hybridised with chromosome 18 paint (Section 
3.3.2) labelled with biotin and detected with avidin-FITC (green). (b) Representative 
interphase nuclei from the rodent-human chromosome 19-containing hybrid cell line, 
GM10449A (Section 3.2) hybridised with chromosome 19 paint (Section 3.3.1) labelled 
with biotin and detected with avidin-FITC (green). All nuclei were counterstained with 
DAPI (blue). Bar=1.im 
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Figure 6.15 Histograms comparing the territories occupied by human chromosome 
18 and 19 in rodent-human hybrid nuclei 
Avidin-FITC was used to detect biotin labelled paints for chromosomes 18 and 19 hybridised 
to the appropriate rodent-human monochromosome hybrid cell nuclei fixed with 3:1 
methanol: acetic acid: chromosome 18-containing GM 11010 (Section 3.2) (Figure 6.14a) 
and chromosome 19-containing GM10449A (Section 3.2) (Figure 6.14b). Using Script I 
(Section 6.2. 1) measurements were taken from the signals in 50 randomly selected nuclei. 
(a) FISH signal area given as a percentage of the total nuclear area. (b) Edge of signal to 
the nearest edge of the nucleus. (c) Centre of the signal to the nearest edge of the nucleus. 
Distances standardised by dividing by the Vnuclear area (estimate of nuclear radius). 
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6.5 The interphase territories of human chromosomes 18 and 
19 and different stages of the cell cycle 

F ISH using centromeric and telomeric probes has shown that chromosomes are not static 

throughout the cell cycle (Manuelidis, 1985a; Bartholdi etal., 1991; Ferguson & Ward, 

1992; Vourc'h etal., 1993; He & Brinkley, 1996). It is possible that while the orientation of 

a chromosome territory changes as centromeres move from a peripheral to more central 

location, that the same relative organisation is maintained. However, it might be necessary 

that chromosomes alter their territory locations at particular stages of the cell cycle to be 

appropriately positioned for replication, for example, to take place at the correct time. 

During replication, it may also be necessary for chromatin to decondense, allowing access to 

the replication machinery. All nuclei analysed so far have been prepared from asynchronous 

cell cultures. For the case of human lymphoblasts, almost 50% of cells were at 01 in the 

cell cycle (Table 6.1), which is typical of an exponentially growing cell culture. 

To look at chromosome territory dispositions throughout the cell cycle, a population of 

exponentially growing FATO human lymphoblasts were fractionated by centrifugal 

elutriation (Section 2.7.1). Cells were introduced into the centrifuge and an opposing flow 

rate of medium was set up such that the cells were maintained in an equilibrium. The flow 

rate was increased in a step-wise manner to force cells of a increasing size and density out of 

the chamber. In total, eight fractions of FATO cells were collected. From each fraction cell 

number was counted (Table 6.10) and an aliquot was analysed by fluorescence activated cell 

sorting (FACS). For FACS, nuclei were treated with RNAse and stained with propidium 

iodide (P1) (Section 2.7.2). P1 is a stochiometric dye which stains both RNA and DNA. 

Fluorescence emission was assessed for each sample and plotted against frequency (Figure 

6.16). Two peaks of fluorescence were observed in each sample, the second at twice 

fluorescence intensity of the first. The first peak corresponded to G  cells and the second 

peak to 02 cells. Using software developed by Becton Dickenson, each peak was integrated 

to estimate the number of cells at each cell cycle stage (Table 6.10). Cells undergoing 

replication (S-phase) make up the trough between the 01 and G2 peaks. 

The remainder of cells from each fraction were fixed with 3:1 methanol:acetic acid, slides 

were prepared and stained with DAPI. From these slides a random sample of 30 nuclei were 

imaged and using IPLab Spectrum software, the diameter and area of each nucleus was 
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Table 6.10 Analysis of the samples of lymphoblasts fractionated by elutriation 
FATO human lymphocytes fractionated by centrifugal elutriation (Section 2.7.1). Samples from each fraction were fixed and slides made, images from 
which were used to calculate the mean size of 30 randomly selected nuclei. BrdU incorporated 45 minutes prior to cell harvesting and detection by 
imunofluorescence (Section 2.6.5) was used to assess the percentage of cells in S-phase. The number of cells present in each fraction were counted on 
a haemocytometre (Section 2.1 . I). Proportions of cells in the gap phases were estimated from FACS analysis (Section 2.7.2 & 6.5). 

Fraction Mean nuclear 
area (l.tm 2) 

__________ 

Mean nuclear 
diametre 

_________________ 

% of nuclei 
BrdU+ 
(S- phase) 

Number of cells 
(x105) 

% of nuclei in Gi- 
phase 

 (FACS analysis) 

% of nuclei in G2-
phase 
(FACS an alysis) 

67.4+/.3.2 94+1.0.20 12 1.0 81.3 18.7 
2 80.7 -7-' -- 0.7 1 l.1023 10 2.1 90.0 10.0 
3 73.629 10.8 ° ' 16 5.0 76.5 23.5 
4 l06.6 11.9012 28 5.4 73.2 26.8 
5 146.7 13.7+/016 54 1.3 55.7 44.3 
6 167.256 15.4 0 " 58 1.9 31.8 68.2 
7 296.5 +1- 1 2 . 5 19.1025 38 1.1 28.6 71.4 
8 45l.1 22.4+l028 20 0.6 20.4 79.6 
Asynchronous - - 16 - 57.3 42.7 



calculated (Table 6.10). Bromodeoxyuridine (BrdU) had been added to the cells 45 minutes 

prior to harvesting and elutriation. This thymidine analogue is incorporated into replicating 

DNA. Distribution of BrdU incorporation was detected in nuclei using an anti-BrdU-FITC 

antibody (Boehringer) (Section 2.6.6) (Figure 6.17). BrdU incorporation shows a specific 

spatial pattern of replication throughout S-phase of the cell cycle, with hundreds of small 

domains scattered throughout the nucleus in early S-phase and fewer, larger domains in late 

S-phase (Nakayasu & Berezney, 1989; O'Keefe et at., 1992) (Figures 6.17 & 6.18). The 

percentage of nuclei revealing BrdU incorporation in each fraction was calculated from 200 

nuclei from each slide (Table 6.10). 

Using the data from Table 6.10, four fractions were chosen to represent each of the four 

major stages of the cell cycle: 01(2), early S (5), late S (6) and G2 (8). FISH was carried 

out on these nuclei using the paints for chromosome 18 (Section 3.2.3) and chromosome 19 

(Section 3.2.2) labelled with biotin and detected with avidin-TR (red). BrdU was 

simultaneously detected with anti-BrdU-FITC (green). Nuclei from each slide were 

assessed for size and pattern of BrdU incorporation. For each of the four cell cycle stages, 

images were collected for 50 nuclei that showed appropriate characteristics for that 

particular stage and using Script 1 (Section 2.1.2), the areas and positions of the 

chromosome 18 and 19 interphase territories were established. 

6.5.1 The areas occupied by human chromosome 18 and 19 territories in 
interphase nuclei at different stages of the cell cycle 

Figure 6.18 shows lymphoblast nuclei selected to represent each stage of the cell cycle 

following FISH with either human chromosome 18 or 19 paint and BrdU detection. Using 

Script 1, the signal areas for human chromosome 18 or 19 were collected from both signals 

in 50 randomly selected nuclei from each cell cycle stage (Table 6.11). The chromosome 18 

interphase territory appeared to take up a larger area of 01 nuclei than nuclei from any other 

stage, although it remained significantly smaller than the chromosome 19 territory area at 

01 (Figures 6.18 & 6.19). The chromosome 19 interphase territory takes up its largest 

nuclear area during early S-phase (Figures 6.18 & 6.19). Since chromosome 19 is replicated 

during early S-phase, the increase in territory size at this stage may reflect a more open 

chromatin configuration, required to allow access to replication machinery and/or an 

increase in the DNA content of this chromosome. Chromosome 18 replicates late in S-phase 

and would be anticipated to show its largest percentage area at this stage of the cell cycle if 
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protein accessibility were the key to determining territory size. There is no evidence that 

this is the case. However, this effect might be masked by the increase in nuclear size by late 

S-phase (Figure 6.17). By late S-phase the majority of chromatin has been duplicated and 

the nucleus is almost doubled in size. An increase in chromosome 18 territory area at this 

stage would not be as easily distinguished. 

Chromosome 18 occupies a consistently significantly smaller territory than chromosome 19 

throughout the cell cycle (Table 6.11), with p<0.0001 calculated at every stage using a 

Student's T-test. The difference between the areas of the two chromosome territories peaks 

in early S-phase due entirely to the increase in chromosome 19 territory size at this stage. 

Table 6.11 The areas of human chromosome 18 and 19 territories in nuclei at different 
stages of the cell cycle 
Avidin-TR was used to detect biotin labelled FISH paints for chromosomes 18 and 19 
hybridised to human lymphoblastoid nuclei representing each of the stages of the cell cycle. 
Cell cycle stage determined from FACS analysis (Figure 6.21), nuclear size (Figure 6.22) 
and pattern of BrdU incorporation (Figure 6.23). The area of each signal was divided by the 
total nuclear area, determined using Script 1 (Section 6.2.1). +1- standard error of mean 

Stage of cell cycle 

% of total nuclear area 
19:18 p 

chromosome 18 chromosome 19 
Asynchronous 5•3fI 6.8 °  .28 0.0003 
GI 6.1 0

' 7.3 2 1 .20 0.0003 
Early S 55+/0.2 93+10.3 .70 0.0001 
Late S 5.4°I 77+/0.2 .43 0.0002 
G2 4.8 6 . 6 02  1.40 0.0002 

6.5.2 The positions of human chromosome 18 and 19 territories in 
interphase nuclei at different stages of the cell cycle 

Chromosome 18 looks to be peripherally located throughout the cell, however, there is a 

tendency for the territory to be less peripheral as cells progress from GI through to mitosis 

as assessed using Script 1 (Section 6.2. 1) (Table 6.12 & Figures 6.18 & 6.20). Reciprocally, 

it can be seen that chromosome 19 remains more centrally located in the nucleus than 

chromosome 18 throughout the cell cycle. There is a tendency, in this instance, for the 

chromosome to move more peripherally as the cells progress from GI through to mitosis. 
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The differences in territory position between chromosomes 18 and 19 remain significant, 

with p<0.0003 calculated at all stages using a Student's T-test. 

Table 6.12 The positions of human chromosome 18 and 19 territories in nuclei at 
different stages of the cell cycle 
Avidin-TR was used to detect biotin labelled FISH paints for chromosomes 18 and 19 
hybridised to human lymphoblastoid nuclei representing each of the stages of the cell cycle. 
Cell cycle stage determined from FACS analysis (Figure 6.21), nuclear size (Figure 6.22) 
and pattern of BrdU incorporation (Figure 6.23). The distances calculated for each signal 
were divided by the Inuclear area (estimate of nuclear radius), determined using Script I 
(Section 6.2.1). +1- standard error of mean 

Stage of cell cycle Mean standardised edge to 
edge distance 

Mean standardised centre to 
 edge distance 

Chromosome 18 19 18 19 
Asynchronous 0 .08 0009  0.1 8+0007 0.18+/-0-010 034+IM.006 

G 1 0.08+ 0008  0.18 +/-0.00 0.19+/-0.009 0.320001 

Early S 0 . 11 00 b 0  0 . 16+ 0006  0 .22 00 h 1  0.3o+/-0.006 

Late S 0.120011 0.170006 0.230011 0.3140007 

02 0.1 1+00I 1 0. 160008 0.227°° 0.3040007 

The characteristic territory areas and positions of human chromosomes 18 and 19 appear to 

be set up at GI, immediately following mitosis, and maintained throughout the cell cycle. 

How closely do these 2-D observations relate to the organisation of these two chromosomes 

in nuclei in which 3-D has been preserved? The next step in confirming the relevance of 

this data so far is to compare these two contrasting chromosome territories in 3-D nuclei. 
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Figure 6.16 FACS analysis of human lymphoblasts fractionated by elutriation 
FATO human lymphoblasts were fractionated by centrifugal elutriation (Section 2.7.1). A 
sample from each of the 8 fractions collected, in addition to a sample of asynchronous cells, 
were treated with RNAse and stained with P1. Fluorescence intensity was assessed by FACS 
analysis (Section 2.7.2). Two peaks of fluorescence were observed in each sample, the 
second at twice the degree of fluorescence of the first. The first peak corresponded to GI 
nuclei and the second peak to G2 nuclei. Peaks were integrated under the lines indicated, 
to estimate the number of cells at each of these stages of the cell cycle (Table 6.10). 
A - asynchronous polulation 
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Figure 6.17 Comparing human lymphoblasts fractionated by elutriation 
FATO human lymphoblasts were fractionated by centrifugal elutriation (Section 2.7.1). Slides 
were made from a fixed sample from each fraction stained with DAPI and used to calculate 
the mean (a) area (jim 2), and (b) diameter (pm), of 30 randomly selected nuclei. (c) Percentage 
of nuclei undergoing replication (S-phase). (d) Total number of cells present in each fraction. 
+1— standard error of mean 
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Figure 6. 18 The territories of* human chromosomes IN and 19 in nuclei at different stages of the cell c',cle 
BnlL) was incorporated into late replicating DNA br 45 minutes prior to cell harvesting and detected using anti-Brd(J-FITC (green). 
Patterns 0) incorporation were used to help determine the cell cycle stage ot a nucleus, with larger and fewer loci in late S-phase compared 
with early S-phase. Avidin-TR (red) was used to detect biotin labelled FISH paints br human chromosomes 18 and 19. All nuclei were 
counterstained with DAPI (Hue). Bar= ltni 
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Figure 6.19 Histograms comparing the areas of human chromosome 18 and 19 territories 
in nuclei at different stages of the cell cycle 
Using Script I (Section 6.2. 1) measurements were taken from both signals in 50 randomly 
selected lymphoblastoid nuclei representative of each stage of the cell cycle fixed with 3:1 
methanol:acetic acid and hybridised with human chromosome 18 or 19 paint. Cell cycle stage 
determined from FACS analysis (Figure 6.16), nuclear size (Figure 6.17) and pattern of BrdU 
incorporation (Figure 6.18). FISH signal area given as a percentage of the total nuclear area. 
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Figure 6.20 Histograms comparing the positions occupied by human chromosome 18 
and 19 territories at different stages of the cell cycle 
Using Script 1 (Section 6.2. 1) measurements were taken from both signals in 50 randomly 
selected lymphoblastoid nuclei representing each of the stages of the cell cycle following 
FISH with a human chromosome 18 or 19 paint. Cell cycle stage determined from FACS 
analysis (Figure 6.16), nuclear size (Figure 6.17) and pattern of BrdU incorporation (Figure 
6.18). (a) Edge of signal to the nearest edge of the nucleus. (b) Centre of the signal to the 
nearest edge of the nucleus. Distances standardised by dividing by the Vnuclear area (estimate 
of nuclear radius). 
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6.6 The interphase territories of human chromosomes 18 and 
19 by confocal sectioning of three-dimensional nuclei 

It is difficult to imagine how a nucleus is compacted to form a 2-D structure. What forces 

cause the flattening of the nucleus: the physical dropping of the cellular suspension onto 

a slide, dehydration following evaporation of the methanol in the fixative or the squashing 

of a coverslip over the slide when mounting? It is probably a combination of all of these 

forces. Clearly, the contents of the nucleus are not homogenous and, thus, it is likely that a 

nucleus will not flatten evenly. To establish this, comparisons between the distribution of 

stochiometric DNA stains in 2-D and 3-D nuclei, denatured and not denatured and fixed 

with a variety of methods, may prove interesting. Measuring the degree of fluorescence in 

concentric segments of equal area (Script 2) showed that there is greater DAPI fluorescence 

in the centre of the nucleus than the periphery in several different cell types (Section 6.4.3). 

This suggests that nuclei may compact by collapsing in on themselves with relatively little 

skewing. The observations made with 2-D nuclei give a trend for the likely volume and 

position of the human chromosomes studied in normal, 3-D nuclei. Previous comparisons 

with paraformaldehyde fixed, 3-D preserved nuclei have suggested that any changes in 

nuclear organisation are not significant (Manuelidis, 1985, Popp et al., 1990; Lawrence & 

Singer, 1991; Hofers etal., 1993; Robinett etal., 1996) and that projections of findings from 

2-D to 3-13 are valid. However, this has not been rigorously tested and, thus, analysis of 

3-D preserved nuclei is necessary. 

The protocol used here was developed by Dr. J.M. Bridger, University of Heidelberg 

(Section 2.6.7). Nuclei from the human fibrosarcoma cell line, HT1080 were grown on 

microscope slides until the cells were approximately 70% confluent. Slides were washed 

then fixed in 4% paraformaldehyde for 20 minutes. Triton X-100 detergent was used to 

permeabilise the cell membrane which was aided by a series of freeze and thaw steps. 

Slides were incubated in glycerol prior to this in order to help maintain nuclear morphology. 

Slides were placed in 0.1 M HCl for 5 minutes to reverse fixation before FISH was carried 

out using the standard protocol (Section 2.6). The temperature of formamide denaturation, 

however, was performed at 75°C (5°C higher than the usual protocol). Nuclei were 

counterstained with the stochiometric DNA stain, PT (red). This procedure resulted in nuclei 

which had maintained a reasonable level of thickness. A typical ellipsoid fibrosarcoma cell 

nucleus was 4-5tm at the short diameter, 12-15jim at the long diameter and 7-12tm in the 
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vertical plane. Nuclei were imaged using a confocal microscope (Section 2.14.2) taking 

Ip.m vertical sections (z-series). 

Figure 6.21 shows a 3-D preserved fibrosarcoma cell nucleus following FISH with a 

chromosome 18 paint and confocal sectioning. During the sectioning of nuclei from this 

slide fluorescence from both the signal and counterstain faded rapidly. The reasons for this 

are unknown. This resulted in few sections being obtained and, thus, the nucleus 

represented here is incomplete. Nonetheless, it is apparent that both chromosome 18 

territories are associated with the nuclear periphery throughout the z-series, at the side of the 

nucleus (Figure 6.21a). When a rotation of the nucleus was made about the x-axis, the 

territories also appeared to be in contact with the upper surface of the nucleus, which being 

the first section taken and, thus, having faded to a relatively small extent, probably is the 

boundary of the nuclear envelope (Figure 6.21b). 

Figure 6.22 shows a 3-D preserved fibrosarcoma cell nucleus following FISH with a 

chromosome 19 paint and confocal sectioning. From this slide, nuclei produced between 7-

1 2 sections at 1.tm intervals with no significant degree of fading. As was seen previously 

with 2-D nuclei, chromosome 19 territories were less condensed than the chromosome 18 

territories (Figure 6.22). The two chromosome 19 territories were not in contact with the 

periphery of the nucleus at any point through the z-series (Figure 6.22a). When a rotation of 

the nucleus was made about the x-axis, both territories appeared not to contact the nuclear 

envelope at either the upper or lower surface of the nucleus (Figure 6.22b). The regions of 

the nucleus with a dearth of PT staining correspond to the nucleoli. Both chromosome 19 

territories seem to be juxtaposing the nucleoli. 

It was difficult to obtain 3-D preserved nuclei with good FISH signals. The two examples 

shown here were selected from slides to represent the general trend observed for each 

chromosome of interest. Clearly, it is now necessary to improve this technique to obtain 

consistently good FISH signals and collect sections from a larger number of nuclei. There 

are several steps within the protocol that can be modified to enhance the FISH signals, these 

include, increased temperature of formamide denaturation, larger amount of probe, 

prolonged length of hybridisation and reduced stringency washes. 
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Figure 6.21 The territories of human chromosome 18 in a 3-E 
Avidin-FLTC (green) was used to detect biotin labelled paint for 
following FISH to 3-D preserved nuclei (Section 6.6). Nuclei 
P1 (red). (a) Z-series from upper to lower plane. Ijirn intervals. 
the x-axis. 

preserved nucleus 
human chromosome 18 

were counterstained with 
(b) 360 °  rotation about 
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Figure 6.22 The territories of huiiiaii chromosome 19 in a 3-I) preserved nucleus 
Avidin-FITU (green) was used to detect hiotin labelled paint for human chromosome 19 following FISH to 3-D preserved nuclei (Section 
6.0). Nuclei were counterstained with Pt (red). (a) Z-series from upper to lower plane. I ini intervals. (h) 36 °  rotation about the x-axis. 



6.7 Summary 

The data in this chapter support the concept of the nucleus as an organised and 

structured organelle. It has been demonstrated that chromosomes occupy distinct and 

discrete interphase territories and that these territories are probably defined by the functional 

behaviour of a chromosome and the organisation of functional compartments of the 

interphase nucleus. 

Yokota et al. (1997) used FISH in 2-D human interphase nuclei with probes separated by 

0.1-1.5Mb specifically from G- or R-band regions of the human genome and determined that 

the chromatin of 0-bands was more condensed than that of R-bands. Human chromosome 

18 consists mainly of dark-staining G-bands and R'-bands and in its entirety reflects many 

of the features of G-bands, being gene-poor, late replicating and hypoacetylated (Section 1.7 

& 3.1). Conversely, chromosome 19 possesses few, small G-bands and its R-bands are 

T-bands and therefore, this chromosome is generally gene-rich, early replicating and 

hyperacteylated (Section 1.7 & 3.1). Chromosome 18 consistently occupied a significantly 

smaller territory area than chromosome 19 in 2-D nuclei fixed typically with 3:1 

methanol:acetic acid (Section 6.2), as used by Yokota et at. (1997), and 4% 

paraformaldehyde fixed nuclei (Section 6.3). This difference was also maintained in 

different human cell types (Section 6.4) and throughout all stages of the cell cycle in 

lymphoblastoid nuclei (Section 6.5). Additionally, chromosome 1, with its large region of 

pericentric heterochromatin took up a smaller than expected area in interphase nuclei and 

conversely, transcriptionally active chromosomes 11 and 22 took up larger areas than 

expected based upon their DNA content (Section 6.2). These results and the study of 

Yokota et al. (1997) indicate that gene-poor, transcriptionally inactive chromatin remains 

condensed within the interphase nucleus and that gene-rich, transcriptionally active 

chromatin is more open, possibly allowing easier access to transcription complexes. 

Surprisingly, despite the superficial appearance of the X chromosome in 2-D nuclei, 

evidence from 3-D studies have revealed that the mammalian active X chromosome (Xa) 

occupies a similar volume in the interphase nucleus to the inactive X chromosome (Xi) (Eils 

et at., 1996). Xa was also shown to have a more irregular, and thus larger, surface area than 

Xi. The increased number of invaginations would allow access to transcription components. 

The condensed appearance of 0-band verses R-band regions and chromosome 18 verses 
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chromosome 19 in 2-D nuclei may be a result of a similar difference in shape between 

inactive and active regions, rather than a direct difference in volume. Alternatively, 

X-inactivation may occur by a different mechanism to that involved at inactive autosomal 

regions that lack genes. While chromosomes 18 and 19 differ in gene content and 

transcriptional activity, Xa and Xi possess exactly the same gene density differing only in 

transcriptional activity. The 3-D studies presented in Section 6.6 are incomplete, but 

together with the results from 2-D nuclei (Figure 6.6), suggest that the volume and shape of 

chromosome 18 territories are very different to those of chromosome 19. Chromosome 18 

territories probably occupy a smaller volume and/or are likely to show a smoother surface 

than chromosome 19 territories, which are likely to not only be larger but more dispersed. 

The positioning of chromosome interphase territories also appears to be defined and distinct. 

There are conflicts in the literature as to where transcriptionally active verses inactive 

chromatin might be positioned in the interphase nucleus (Section 1.5.2). The comparisons 

made in this chapter between human chromosomes 18 and 19 suggest that tr4nscriptionally 

inactive, late replicating chromatin shows a strong tendency to be located towards the 

nuclear periphery, with transcriptionally active, early replicating chromatin being more 

centrally located. Gene-poor, late replicating chromosome 18 was consistently and 

significantly observed closer to the periphery of the nucleus when compared with gene-rich, 

early replicating chromosome 19. This difference was revealed in 2-D 3:1 methanol:acetic 

acid fixed and paraformaldehyde fixed human lymphoblastoid nuclei (Sections 6.2 & 6.3). 

Contrasting territory positions were also maintained throughout the cell cycle (Section 6.5) 

and in nuclei of primary lymphocytes, primary fibroblasts and fibrosarcoma cells (Section 

6.4). Human chromosome I was predominantly peripherally located which may be 

influenced by the positioning of its large region of pericentric heterochromatin. By 

comparison, transcriptionally active chromosomes II and 22 were more internally located 

(Section 6.2). 

Transcriptional activity appears to play an important role in determining the positioning of 

chromosome territories in the interphase nucleus. How might this very specific 

chromosome territory organisation be orchestrated? The DNA sequence of a chromosome 

might determine its interphase territory disposition, either through the influence of the 

overall sequence composition, for example, GC- or AT-richness, or through specific 

"organising" blocks of sequence that may contain binding sites for specific nuclear proteins. 

On 



Alternatively, transcriptional activity per se or properties associated with transcriptionally 

active chromatin, for example, acetylation, may dictate chromosome territory dispositions. 

These possibilities are the focus of the next chapter. 
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7.Interphase chromosome territories II: Determinants 
of nuclear compartmentalisation 

7.1 Introduction 

C hapter 6 established that human chromosomes occupy discrete and distinct territories 

in the interphase nucleus. Gene-poor, late replicating human chromosome 18 

occupies a condensed territory at the periphery of the nucleus while, in contrast, gene-rich, 

early replicating chromosome 19 produces a large and centrally located territory. In this 

chapter I try to address how the opposing dispositions of chromosome 18 and 19 territories 

arise: Are they intrinsic to some aspect of DNA sequence, are they an effect of 

transcriptional differences, or are they due to differences in chromatin structure? To begin 

to answer these questions, the behaviour of territories in nuclei from a reciprocal 

chromosome 18 and 19 translocation were studied. In addition, I analysed the effects of 

inhibiting transcription and histone deacetylation upon chromosome 18 and 19 territories in 

normal nuclei. Finally, the interaction of these chromosomes with the nuclear matrix was 

analysed. 

7.2 The interphase territories of the derived chromosomes from 
a human chromosome 18 and 19 translocation 

The physical proximity of different chromosomes in interphase nuclei can be inferred 

from the frequency of translocations seen between them (Qumsieyeh, 1995). In 

support of this, the most frequent chromosome rearrangements in humans are the 

Robertsonian translocations between the acrocentric chromosomes that are known to be 

physically close to each other in metaphase and interphase (Ferguson-Smith & Handmaker, 

1961; Kaplan et at., 1993), and the same particular rDNA-containing chromosomes remain 

associated with one another through successive cell cycles (Bobrow & Heritage, 1980). 

Translocations between chromosomes 18 and 19 appear to be very rare which might be due 

to the opposing physical proximities of the two chromosomes in the nucleus. In general, 

chromosome 18 is found as a partner in translocations with other chromosomes more than 

chromosome 19 (MRC Human Genetics Registry, Edinburgh). This bias might be driven by 

selection for the less deleterious effects of rearrangements involvin .g gene-poor 

chromosomes as opposed to gene-rich chromosomes, such as chromosome 19. 
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It has been argued that lack of phenotypic abnormalities in individuals with balanced 

translocations is evidence that spatial arrangement of chromosome territories in the nucleus 

is not biologically important. This has been based upon the assumption that such 

translocations do not disrupt the normal nuclear localisation of chromosome territories 

(Qumsieyeh, 1995). Fixed primary lymphocytes were obtained from an individual with a 

balanced translocation between chromosomes 18 and 19 by Prof. P. Jacobs, Wessex 

Regional Genetics Laboratory, Salisbury (18;19)(pll;pl3). The individual showed no 

clinical phenotype as a result of this translocation. The total amount of DNA exchanged 

was estimated to be 20Mb from chromosome 18 and 24Mb from chromosome 19. Slides 

were prepared from the 3:1 methanol:acetic acid fixed material and hybridised with the 

chromosome 18 and 19 paints, each labelled alternatively to allow simultaneous detection. 

Figure 7.1 shows a representative metaphase spread and examples of interphase nuclei from 

these slides. Script 1 (Section 6.2.1) was used to determine the positioning of both sets of 

normal and derived chromosomes from 50 randomly selected nuclei (Table 7.1). 

Table 7.1 The interphase territory positions of the normal and derived human 
chromosomes 18 and 19 in t(18;19) nuclei 
Nuclei from primary lymphocytes of an individual with a balanced translocation between 
chromosomes 18 and 19 hybridised with paints to human chromosomes 18 and 19. The 
distances calculated for each signal in 40 randomly selected nuclei were divided by the 
'Itotal nuclear area (estimate of nuclear radius), determined using Script 1 (Section 6.2.1). 
+1- standard error of mean 

Chromosome Mean standardised edge 
to edge distance 

Mean standardised 
centre to edge distance 

18 normal 0.06.0013 0.1 60016 

18 derived 0.09 00l8  0.2 10021 

19 normal 0.1 8001 1 034+IM.015 

19 derived 0.15+/-0-009  0. 29 0010  

Although the derived chromosome 18 tended to be less peripheral than the normal 

chromosome 18, this difference was not significant (ST p<0.059) (Table 7.1 & Figure 7.2). 

Also, the derived chromosome 19 tended to be less centrally located than the normal 

chromosome 19 but, again, this difference was not significant (ST p<O.11O) (Table 7.1 & 

Figure 7.2). It is possible that the translocated portions of each derived chromosome has a 

small influence upon the positioning of the derived chromosomes. There was a striking 

difference in the orientation of the derived chromosomes and Figure 7.3 outlines the 



analysis used to assess this. For each derived chromosome from the images of 60 randomly 

selected nuclei the translocated portion was determined to be either central or peripheral. If 

the majority of the translocated portion lay between the centre of the territory and the centre 

of the nucleus it was designated as being central. Reciprocally, if the majority lay between 

the centre of the territory and the nearest edge of the nucleus it was designated as being 

peripheral (Table 7.2). The translocated portion originating from chromosome 19 was 

centrally positioned in relation to the remainder of the derived chromosome 18 in almost 

80% of nuclei. Reciprocally, the translocated portion originating from chromosome 18 was 

peripherally positioned in relation to the remainder of the derived chromosome 19 in almost 

90% of nuclei. This suggests that <25Mb is sufficient to confer territory positioning and 

that this is influenced by DNA sequence differences between chromosomes, for example, 

base composition and/or interspersed repeat distribution. Alternatively, transcriptional 

activity, replication timing and/or levels of core histone acetylation may be involved. No 

live cells were available for this translocation, however, the following section perturbs 

transcription and histone deactetylation in normal nuclei to test some of these possibilities. 

Table 7.2 The orientation of the derived chromosome territories in t(18;19) interphase 
nuclei 
Nuclei from primary lymphocytes of an individual with a balanced translocation between 
chromosomes 18 and 19 hybridised with paints to human chromosomes 18 and 19. 
Orientation of the translocated portion with respect to the remainder of the derived 
chromosome determined as described in Section 7.2 and Figure 7.3 for 60 randomly selected 
nuclei. 

Derived Chromosome Translocated Translocated Undetermined 
chromosome of origin of portion portion 

translocated towards towards centre 
portion periphery of of 

nucleus nucleus 

L1
18 19 15.0% 78.3% 7.7% 
9 18 88.3% 5.0%  % 7.7% 
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Figure 7.1 The interphase territories of normal and derived human chromosomes 18 
and 19 in t(18;19) nuclei 
(a) Metaphase spread from primary lymphocytes of an individual with a balanced 
translocation between chromosomes 18 and 19 hybridised simultaneously with paints for 
human chromosomes I (F1TC/reen) (Section 3.3.2) and 19 (TR/red) (Section 3.3 1). 
Chromosomes were counterstained with DAPI (blue). (h) Grey scale representation of 
DAN stained metaphase spread. (C) Representative nucleus hybridised simultaneously 
with paints for human chromosome 18 (TR/rcd) and 19 (FITC/green). (d) Representative 
nucleus hybridised simultaneously with paints for human chromosome l (FITC/green) 
and 19 (TR/red). Nuclei were counterstained with DAPI (blue). 
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Figure 7.2 Histograms comparing interphase territory areas and positions of normal 
and derived human chromosomes 18 and 19 in t (18;19) nuclei 
Using Script 1 (Section 6.2.1) measurements were taken from both signals in 50 randomly 
selected nuclei hybridised with paints for human chromosomes 18 or 19 by FISH. Paints 
were alternatively labelled to allow simultaneous hybridisation and detection with different 
fluorochromes. (a) Edge of the signal to the nearest edge of the nucleus. (b) Centre of the 
signal to the nearest edge of the nucleus. Distances standardised by dividing by the 'I'nuclear 
area (estimate of nuclear radius). 
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Chromosome 18 paint 

Chromosome 19 paint 

Figure 7.3 Analysing the orientation of derived translocation chromosome territories in 
interphase nuclei 
Paints for human chromosomes 18 and 19 were alternatively labelled to allow simultaneous 
hybridisation and detection with different fluorochromes to t( 18; 19) nuclei. For each derived 
chromosome from the images of 60 randomly selected nuclei and the translocated portion was 
determined to be either central or peripheral. If the majority of the translocated portion lay 
between the centre of the territory and the centre of the nucleus it was designated as being 
central. Reciprocally, if the majority lay between the centre of the territory and the nearest 
edge of the nucleus it was designated as being peripheral. 
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7.3 The involvement of transcriptional activity in determining 
nuclear organisation 

If chromosome 19 is maintained in an open configuration in interphase nuclei due to its 

high transcriptional activity then the territory may become more condensed if 

transcription was blocked. Additionally, the positioning of this chromosome at the centre of 

the nucleus may depend upon continued transcriptional activity. Epigenetic properties 

associated with potential transcriptional activity, for example, histone acetylation may also 

play a role in nuclear chromosome territory organisation. 

7.3.1 The effects of blocking transcription with Actinomycin D (AD) upon 
nuclear organisation 

One study has reported that treatment of human cells with chemicals which block 

transcription by RNA polymerase (pol) I and II causes chromosome territories to disperse 

and rDNA extends into "beaded strands" (Haaf & Ward, 1996). Blocking of poi I 

transcription alone does not cause disruption to chromosome territories, including the 

rDNA-containing nucleolus. In this section, the specific territories of chromosomes 18 and 

19 in human nuclei are studied following a block in p01 I and II transcription. Actinomycin 

D (AD) is considered to block transcription by binding tightly to DNA, preventing it from 

being an efficient template for RNA synthesis (Review: Stryer, 1981). AD concentrations 

of <O.1Ig/m1 inhibit p01 I but not poi II, concentrations of >0.5igIml are required to have an 

affect upon poi II activity (Perry & Kelley, 1970). 

AD was added to a culture of human FATO lymphoblasts at a concentration of 5.Lg/m1, 2 

hours prior to harvesting. The concentration and duration of treatment was adapted from 

Carmo-Fonseca et at. (1992) and Pinol-Roma & Dreyfuss (1991). Most of the cells were 

fixed with 3:1 methanol:acetic acid for FISH, however, a sample of cells was 

cytocentrifuged onto slides for immunofluorescence with a monoclonal anti-Sm antibody 

that recognises Ui, U2 and U4-6 snRNPs (Dr. I. Mattaj, EMBL, Heidelberg) (Lerner et al., 

198 1) (Section 2.10.2 & Figure 8.11). It has been demonstrated that in transcriptionally 

active nuclei, nascent transcripts, RNA polymerase II and splicing components, including 

snRNPs, have a generally dispersed distribution in addition to 20-50 speckles of local 

concentration (Fu & Maniatis, 1990; Spector, 1990; Wansink et al., 1993; Bregman et al., 

1996; Pay et al., 1997; Grande et at., 1997; Zeng et al., 1997; Review: Spector, 1993). In 
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cells blocked for transcription, these speckles become more accentuated and enlarged 

(Spector et al., 1983; Carmo-Fonseca et al., 1992; Zeng et al., 1997; Review: Spector, 

1993). Slides were incubated with primary antibody for 1 hour at room temperature, 

followed by incubation with anti-mouse-FITC for 30 minutes and finally fixed with 4% 

paraformaldehyde. Figure 7.4 shows the immunolocalisation of anti-Sm antibody in nuclei 

from cells with and without treatment with AD. There was a noticeable, but not prominent, 

reorganisation of the speckles identified by this antibody, the speckles being larger and 

fewer following AD treatment. The 3:1 methanol:acetic acid fixed cells from the same 

culture were used to make slides and hybridised separately with the human chromosome 18 

or 19 paints. The paints were labelled with biotin and detected with avidin-FITC (green) 

and nuclei were counterstained with DAPI (Figure 7,4). The continued presence of discrete 

chromosome territories contradicts the observations of Haaf & Ward (1996). However, a-

amanitin and the adenosine analogue 5,6-dichloro-f3-D-ribofuranosylbenzimidazole (DRB) 

were used to block pol II transcription in this instance, possibly accounting for the different 

affects upon nuclear organisation. Treatment of cells with DRB at a number of 

concentrations and durations did not result in a convincing alteration in anti-Sm antibody 

immunolocalisation and thus, was not used for this experiment. However, subsequent 

experiments using DRB, a-amanatin and AD have also not resulted in the break-down of 

interphase chromosome territories and confirms the results for the size, and positioning of 

chromosome 18 and 19 territories recorded here (Presonal communication: Dr. J.M. 

Bridger). This is further discussed in Section 9.3. 

Using Script I (Section 6.2.1), the areas and positions of chromosome 18 and 19 territories 

in nuclei following each treatment were assessed (Tables 7.3 & 7.4). The area occupied by 

the chromosome 18 territory following treatment with AD was not significantly different 

from that occupied by the chromosome in non-treated nuclei previously calculated (ST 

p<0.280). Interestingly, however, the chromosome 19 territory area was smaller than the 

area in non-treated nuclei although not highly significantly (ST p<O.OIO). As a result, 

chromosomes 18 and 19 occupied similar percentage areas in treated nuclei (Table 7.3 & 

Figure 7.5). There was no significant difference between the positioning of chromosome 18 

and 19 territories within treated and non-treated nuclei (Table 7.4 & Figure 7.6). 
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Table 7.3 The effects of AD and TSA upon the interphase territory areas of human 
chromosomes 18 and 19 
The FATO human lymphoblast cell line was treated with AD to block transcription or TSA 
to prevent histone deacetylation. Avidin-FITC was used to detect biotin labelled paints for 
chromosomes 18 and 19 hybridised to slides made from treated cells fixed with 3:1 
methanol:acetic acid. Data for the nuclei from untreated cells are taken from Section 6.2.3. 
The area of each signal was divided by the total nuclear area, determined using Script I 
(Section 6.2.1). +1- standard error of mean p-significance of difference between 
chromosomes 18 and 19 (Student's T-test) 

Treatment % of total nuclear area  19:18 p 
Chromosome 18 [Chromosome 19 

None 5.3 °I  6.8 °  1.28 0.0002 
AD 5402 5.602 1.03 0.400 
TSA 49+/M.1 74+/.0.3 1.51 0.0001 

Table 7.4 The effects of AD and TSA upon the interphase territory positions of human 
chromosomes 18 and 19 
The FATO human lymphoblast cell line was treated with AD to block transcription or TSA 
to prevent deacetylation. Avidin-FITC was used to detect biotin labelled paints for 
chromosomes 18 and 19 hybridised to slides made from treated cells fixed with 3:1 
methanol:acetic acid. Data for the nuclei from untreated cells are taken from Section 6.2.3. 
The distances calculated for each signal were divided by the Jnuclear area (estimate of 
nuclear radius), determined using Script I (Section 6.2.1). +1- standard error of mean 

Treatment Mean standardised edge to 
edgedistance 

Mean standardised centre to 
edge distance 

18 119 18 119 
None 0.08  0.1 8+/-0 -010 

Ø34+10.006 

AD 0.090009 0.1 7+/ 0.007 01 0.200 	I 

_ 
0.300008 

TSA 0.09 +/-0 .011 

_ 
0. 19 0006  0 . 19+1.0 . 013  

_ 
0. 31 0006  

7.3.2 The effects of blocking histone deacetylation with Trichostatin A 
(TSA) upon nuclear organisation 

Hyperacetylation of core histones is associated with transcriptional potential while 

hypoacetylation has been established at regions of transcriptional repression (Sections 

1.4.1.3 & 5.1). Consistent with this, human chromosome 18 has been shown to be 

hypoacetylated by lack of immunofluorescence with antibodies to hyperacetylated H4. 

Conversely, human chromosome 19 possesses hyperacetylated histones along its length 

(Jeppesen & Turner, 1993) (Figure 5.1). Being intimately linked to transcriptional potential, 
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alteration of acetylation levels may disrupt the disposition of the interphase territories of 

these chromosomes in interphase nuclei. Trichostatin A (TSA) is a very potent and specific 

inhibitor of histone deacetylation (Section 5.2). It reversibly blocks the action of the histone 

deacetylase(s) (Yoshida et al., 1990; review: Yoshida et al., 1995) causing generalised 

increases in histone acetylation. 

TSA was added to a culture of FATO human lymphoblasts at a concentration of I OngJml for 

2 hours. This treatment was previously shown to enhance levels of histone acetylation, with 

the most gene-rich regions of the genome, for example, chromosome 19, becoming more 

highly acetylated than the gene-poor regions, such as, chromosome 18 (Section 5.2). 

However, there was no direct proof that TSA had worked in this particular experiment. 

Cells were harvested, swollen in hypotonic solution and fixed with 3:1 methanol:acetic acid. 

Slides were hybridised separately with the human chromosome 18 or 19 paints by FISH. 

The paints were labelled with biotin and detected with avidin-FITC (green) and nuclei were 

counterstained with DAPI. 

Using Script 1 (Section 6.2.1), the areas and positions of chromosome 18 and 19 territories 

in nuclei following each treatment were assessed (Tables 7.3 & 7.4). The mean 

chromosome 18 territory area was smaller than was observed in non-treated nuclei but this 

difference was not highly significant (ST p<0.010). The mean chromosome 19 territory was 

larger than was observed in non-treated nuclei but, again, this difference was not significant 

(ST p.<0.0003) (Table 7.3 & Figure 7.5). However, these differences result in an 

exaggerated difference between the territory areas between the two chromosomes. There 

was no significant effect upon the positions of chromosomes 18 and 19 in treated nuclei 

(Table 7.4 & Figure 7.6). 
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Figure 7.4 The effects of AD on nuclear organisation 
(a) (b) Imniunulluorescence with anti-Sm antibody detected with anti -niouse-FITC 
(green) on FATO human lymphoblasts. Nuclei were counterstained with DAPI (blue). 
(a) No treatment. (b) Cells treated with 5flg/rnl AD for 2 hours to block transcription 
prior to harvesting. Note that the detected nuclear speckles are larger and fewer 
following,  AD treatment. (C) (d) Representative nuclei from FATO human lymphoblasts 
treated with AD hybridised with paints for human chromosomes (c) 18. and (d) 19. by 
FISH (Section 3.3). Paints were labelled with hiotin and detected with avidin-FITC 
(green). Nuclei were counterstained with DAPI (blue). 
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Figure 7.5 Histograms comparing the areas of human chromosome 18 and 19 territories 
in nuclei treated with AD and TSA 
Cells were treated with 5g/ml AD (Section 7.3.1) or lOng/ml TSA (Section 7.3.2) for 2 hours 
prior to harvesting. Using Script 1 (Section 6.2. 1) measurements were taken from both signals 
in 50 randomly selected nuclei hybridised with paints for human chromosomes 18 or 19. 
Paints were labelled with biotin and detected with avidin-FITC. FISH signal area given as a 
percentage of the total nuclear area. 
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Figure 7.6 Histograms comparing the areas of human chromosome 18 and 19 territories 
in nuclei treated with AD and TSA 
Cells were treated with 5j.tglml AD (Section 7.3. 1) or lOng/mi TSA (Section 7.3.2) for 2 hours 
prior to harvesting. Using Script 1 (Section 6.2.1) measurements were taken from both signals 
in 50 randomly selected nuclei hybridised with paints for human chromosomes 18 or 19. 
Paints were labelled with biotin and detected with avidin-FITC. (a) Edge of the signal to the 
nearest edge of the nucleus. (b) Centre of the signal to the nearest edge of the nucleus. 
Distances standardised by dividing by the 'Inuclear area (estimate of nuclear radius). 
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7.4 The involvement of the nuclear matrix in nuclear 
organisation 

When nuclei are extracted with salt, DNA loops distend to form halos around a 

morphological framework, termed the "nuclear matrix" (McCready et at., 1979; 

Vogeistein et at., 1980). The residual protein content of the nuclear matrix includes topo II 

and proteins of the lamina, and a number of other proteins, many of which remain to be 

identified (Lewis et al., 1984; Pieck et al., 1985; Stuurman et at., 1990; Hozak et at., 1995). 

The types of DNA sequences shown to be associated with the nuclear matrix, principally in 

biochemical assays, include active genes (Ciejek et al., 1983; Robinson et at., 1983; Gerdes 

et al., 1994), replication origins (Dijkwel et al., 1986; Razin et al., 1986 & 1993; Amati & 

Gasser, 1988; Sykes et at., 1988), enhancers (Cockerill & Garrard, 1986; Jenuwein et al., 

1997) and chromatin domain boundaries (Phi-Van & Stratling, 1988; Thompson et al., 

1994a; Kalos & Fournier, 1995). Functionally the nuclear matrix has been shown to support 

the processes of transcription (Jackson et al., 1981; Jackson & Cook, 1993; Sun et al., 

1994), replication (McCready et at., 1980; Vogelstein et at., 1980; Berezney & Buchholtz, 

1981; Jackson et al., 1984; Gerdes et al., 1994) and histone acetyltation and deacetylation 

(Hendzel etal., 1991; Hendzel etal., 1994). 

Salt extraction has been criticised as being a harsh treatment, destroying many of the sites of 

DNA attachment and creating artificial ones. Subsequently, other extraction techniques 

have been developed including the use of lithium diiodosalicylate (US) to produce a nuclear 

scaffold (Mirkovitch et al., 1984) and the use of electroelution to produce a nucleoskeleton 

(Cook et al., 1984; Jackson et at., 1988) (Section 1.5.5). The DNA sequences involved at 

sites of attachment and the functions associated with each of these residual nuclear 

frameworks differ. While replication and transcription have been associated with both the 

nuclear matrix and the nucleoskeleton (Jackson & Cook, 1985 & 1986; Jackson et al., 

1996), these functions have not been shown to occur at the nuclear scaffold (Mirkovitch et 

at., 1984; Gasser et at., 1988). The AT-rich DNA sequences fractionating with the nuclear 

scaffold and termed "scaffold attachment sequences" (SARs) (Section 1.5.5) have been 

shown to associate with the nuclear matrix but not the nucleoskeleton (Izaurralde et al., 

1988). Each of these extraction procedures appear to "sample" different sets of DNA 

attachments to a residual nuclear framework (Craig et al., 1997). The relationship between 

the nuclear matrix, nuclear scaffold, nucleoskeleton and the morphological nuclear matrix 

remains unclear. To further understand the DNA attachments made to the nuclear matrix 
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and their involvement in transcription and in maintaining the dispositions of chromosome 

territories, the position of human chromosomes 18 and 19 in salt extracted nuclei were 

analysed. 

7.4.1 The areas and positions of human chromosomes 18 and 19 in nuclei 
extracted with salt 

Nuclei were prepared from the FATO human lymphoblast cell line in polyamine buffer 

(Sections 2.8.1 & 4.2). For extraction, nuclei were spread on slides and allowed to settle 

overnight. Slides were then lowered gently into extraction buffer in the absence of salt and 

then sequentially into extraction buffers with increasing concentrations of salt (Section 2.9) 

Prior to FISH, slides were fixed in 3:1 methanol:acetic acid. The paints for human 

chromosomes 18 and 19 were alternatively labelled to allow simultaneous hybridisation and 

detection with different fluorochromes. The residual nucleus was stained with DAPI. 

Table 7.5 The areas of human chromosomes 18 and 19 territories in nuclei extracted 
with salt 
Nuclei from the FATO human lymphoblast cell line were treated with 5pg/mI AD for 2 
hours to block transcription. Treated and non-treated nuclei were extracted with increasing 
concentrations of salt. Alternatively labelled paints for chromosomes 18 and 19 were 
hybridised simultaneously and detected with different fluorochromes. The area of each 
signal was divided by the total nuclear area, determined using Script I (Section 6.2.1) from 
50 randomly selected nuclei in which no DNA halo was observed. +1- standard error of 
mean 

Salt 
concentration  

% of total nuclear area 19:18 

1 
Chromosome 
18 

Chromosome 
19 

No treatment 0.OM 5.6°' 7.102 1.27 
0.5M 7.8 ° ' 10.2 °  1.31 
1.OM 8.9 10 ' 10. 1 °  1. 13 
1.2M 8 . 9h/.02  10702 1.12 

AD treatment 0.OM 570I 7.2 °  1.26 
0.5M  7.802 0.99 
1.OM 6.3 °  8.1 °  1.29 
1.2M 7.0+102 6.9 °  0.99 

Each slide contained both nuclei that possessed DNA halos and nuclei that had not been 

fully extracted or in which DNA loops did not fully distend. Slides extracted at higher salt 
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concentrations revealed an increased proportion of fully extracted nuclei, such that, at 0.5M 

NaCl, no nuclei were fully extracted, while at 1.8M NaCl, very few nuclei that had not been 

fully extracted were observed. Figure 7.7 shows representative nuclei in which most DNA 

remained confined within the nuclear envelope, hybridised simultaneously with the paints to 

human chromosome 18 and 19. The fluorochrome used to detect each signal was alternated. 

Using Script I (Section 6.2.1), position and area measurements for each signal were taken 

from 50 randomly selected nuclei (Tables 7.5 & 7.6). 

Table 7.6 The positions of human chromosomes 18 and 19 territories in nuclei 
extracted with salt 
Nuclei from the FATO human lymphoblast cell line were treated with 5ig/m1 AD for 2 
hours to block transcription. Treated and non-treated nuclei were extracted with increasing 
concentrations of salt. Alternatively labelled paints for chromosomes 18 and 19 were 
hybridised simultaneously and detected with different fluorochromes. The distances 
calculated for each signal were divided by the 'Inuclear area (estimate of nuclear radius), 
determined using Script 1 (Section 6.2.1) from 50 randomly selected nuclei in which no 
obvious DNA halo was observed. +1- standard error of mean 

Salt 
concentration 

Mean standardised edge to 
edge distance 

Mean standardised centre 
 to edge distance 

18 19 18 19 

No treatment 0.OM 0. 07 0008  0.18'°°° 0 . 17 0006  0. 35 00 I 2  

0.5M 0.07 0006  0.1 7+/-0.007  0.1 9+/0.008  
1 .OM 0 .05 0009  0 . 20+ 0009  0.190008 0.35°°'° 
1.2M 0. 10' °°°  0.15+/-0-010 0.1 5+/4010  0.3 100I I 

AD treatment 0.OM 0 .08 0004  0 . 14+' 0006  0. 18 0007  0. 34 0010  

0.5M 0.04 	0006 0 . 14 00® 0.16 000  0.30 °° ' °  
1 .OM 0.070010 0. 1600I4 0.19 +/-0.01 I 0.3 10013 

1.2M 0 . 04+ 0010  0 . 15 0013  0. 14 00 I 5  0.29 00 l 2  

Both chromosomes 18 and 19 occupied a slightly larger territory area as a proportion of the 

total nuclear area (approximately 50% larger in both instances) in 0.5M NaCl extracted 

nuclei than was observed in non-extracted 3:1 methanol:acetic acid fixed nuclei (Tables 6.3 

& 7.5). With increasing salt concentrations, while the chromosome 19 territory occupied a 

similar area, the chromosome 18 territory became less condensed (Table 7.5 & Figure 7.8). 

At 1.2M NaCl all of the core and linker histones should have been extracted in addition to 

other structural proteins (Wolffe, 1995). It appears that the condensed state of chromosome 

18 may be mediated by proteins that are extractable by salt (>0.5M). 
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Measurements of edge to edge and centre to centre distances were unreliable, since often 

nuclei were quite distorted following salt extraction (Table 7.6). Nonetheless, chromosome 

18 continued to occupy a territory that was consistently and significantly closer to the 

periphery of the nucleus than that of chromosome 19, at all salt concentrations (ST 

p<0.0002 at all salt concentrations) (Figure 7.9). 

Table 7.7 The distribution of signal from paints for human chromosomes 18 and 19 in 
nuclei with a DNA halo following extraction with salt 
Nuclei from the FATO human lymphoblast cell line were treated with 5p.g/ml AD for 2 
hours to block transcription. Treated and non-treated nuclei were extracted with increasing 
concentrations of salt. Alternatively labelled paints for chromosomes 18 and 19 were 
hybridised simultaneously and detected with different fluorochromes. Using IPLab 
Spectrum software, the total amount of fluorescence present in the DNA halo of 25 fully 
extracted nuclei was measured and calculated as a percentage of the total amount of 
fluorescence (Figure 7.11). +1- standard error of mean 

Salt 
concentration  

Mean % of signal in DNA halo 

18 19 DAPI 
No treatment 1.0M 42.020 3.4 347+1.1.6 

1.2M 1 39.9+/- --3   22 . 6+ 24  27 .7 21  

AD treatment I 1.0M 23.0"- 36.528 

1.2M 39 .2 l.29  18 . 6 8  3O . 1 27  

Figure 7.10 shows representative nuclei that had been extracted with salt and from which 

loops of DNA were released hybridised simultaneously with the paints to human 

chromosome 18 and 19. Images were taken of 25 randomly selected nuclei that were 

extracted at 1 .OM and 1.2M NaC1 concentrations. At 1.8M NaCl nuclei were very distorted 

and morphology was often indiscernible (Figure 7.10c). It was instantly clear that in the 

majority of nuclei, the entirety of chromosome 18 was released into the DNA halo, while 

chromosome 19 remained within the residual nucleus. In a count of 200 nuclei at 1.2M 

NaCl, over 60% of chromosome 18 signals were considered as being in the DNA halo, while 

20% of chromosomes 19 were localised to the DNA halo. To quantify this further, using 

IPLab Spectrum software, a line was drawn manually about the apparent residual nuclear 

matrix defined by bright DAPI fluorescence (Figure 7.11). The total amount of signal and 

DAPI fluorescence was measured within and outside of this defined region, that is, at the 

nuclear matrix and within the DNA halo respectively (Table 7.7). Approximately 30-35% 

of the DAPI signal was present in each DNA halo. On average 40% of chromosome 18 
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signal was in the DNA halo, while only 20% of chromosome 19 signal was located there. It 

appears that after extraction of soluble nuclear proteins with high salt chromosome 18 is free 

to migrate out of the nucleus. Chromosome 19 remains relatively tightly bound to the 

nuclear matrix. Is this attachment dependent upon continued transcription? 

7.4.2 The areas and positions of human chromosomes 18 and 19 in nuclei 
treated with AD and extracted with salt 

FATO human lymphoblastoid nuclei were treated with 5j.tg/ml of AD for 2 hours prior to 

harvesting (Section 7.3), extracted with salt at increasing concentrations and hybridised with 

paints for human chromosomes 18 and 19 by FISH. Using Script 1 (Section 6.2.1), position 

and area measurements for each signal were taken from 50 randomly selected nuclei in 

which DNA remained constrained within the confines of the nucleus (Tables 7.5 & 7.6). 

The territory area of chromosome 18 was larger in 0.5M NaCl extracted nuclei than 3:1 

methanol:acetic acid fixed nuclei (Tables 6.3 & 7.5), as observed with extracted non-treated 

nuclei (Section 7.4.1). However, this increased area was not observed at 1.OM NaCl 

extraction. This anomaly may be due to poor probe hybridisation and/or nuclear distortion 

but was not repeated due to lack of time. The territory area of chromosome 19 was smaller 

in salt extracted nuclei following treatment with AD than in untreated salt extracted nuclei, 

as seen in 3:1 methanol:acetic acid fixed nuclei before and after AD treatment (Tables 6.3 & 

7.5). 

Chromosome 18 territories remained predominantly peripheral while chromosome 19 

territories were relatively central in the nucleus, with distance measurements broadly similar 

to those calculated for 3:1 methanol:acetic acid fixed nuclei and salt extracted nuclei not 

treated with AD (Tables 6.4 & 7.6). Thus, the positioning of the two chromosomes is 

maintained. 

Nuclei that had been fully extracted by salt were also examined. Images were taken of 25 

randomly selected nuclei that were fully extracted at 1 .OM and 1.2M NaCl. As with cells 

that had not been treated with AD, in the majority of nuclei, chromosome 18 was present 

within the DNA halo, while chromosome 19 remained attached to the nucleus. The extent 

of the DNA halo was not increased when compared to nuclei without AD treatment. On 

average, 30-35% of DAPI fluorescence, 42% of chromosome 18 signal and 20% of 
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chromosome 19 signal was present in the DNA halo (Table 7.7), similar to non-treated 

nuclei. This suggests that the nuclear matrix attachments which chromosome 19 maintains 

are not dependent on active transcription. However, it is possible that AD acts to secure the 

possible nuclear matrix attachments of transcription complexes and the associated DNA. 

Attachment of sequences with transcriptional potential to the nuclear matrix may be 

mediated by a protein(s) distinct from the transcription complex itself. 
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Figure 7.7 The interphase territories of human chromosomes 18 and 19 in nuclei with 
no DNA halo following extraction with salt 
Representative nuclei from the FATO human lymphohiast cell line extracted with 
increasing concentrations of salt. Alternatively labelled paints for chromosomes IS and 
19 (Section 3.3) were hybridised simultaneously and detected with different 
lluorochromes. Nuclei counterstained with DAPI (blue). (a) (C) Chromosome IS paint 
detected with FITC (green). Chromosome 19 paint detected with TR (red). (b) 
Chromosome IX paint detected with TR (red). Chromosome 19 paint detected with FITC 
(green). 
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Figure 7.8 Histograms comparing the areas of human chromosomes 18 and 19 territories 
in nuclei extracted with salt 
Slides were made from FATO human lymphoblast nuclei extracted with increasing concentrations 
of salt and hybridised simultaneously with alternatively labelled paints for human chromosomes 
18 and 19 by FISH. Using Script 1 (Section 6.2.1) measurements were taken from both signals 
in 25 randomly selected nuclei, in which no DNA halo was observed. FISH signal area given 
as a percentage of the total nuclear area. 
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Figure 7.9 Histograms comparing the positions of human chromosomes 18 and 19 
territories in nuclei extracted with salt 
Slides were made from FATO human lymphoblast nuclei extracted with increasing concentrations 
of salt and hybridised simultaneously with alternatively labelled paints for human chromosomes 
18 and 19 by FISH. Using Script I (Section 6.2. 1) measurements were taken from both signals 
in 25 randomly selected nuclei, in which no DNA halo was observed. (a) Edge of the signal 
to the nearest edge of the nucleus. (b) Centre of the signal to the nearest edge of the nucleus. 
Distances standardised by dividing by the Vnuclear area (estimate of nuclear radius). 
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Figure 7.10 The territories of human chromosomes 1$ and 19 in nuclei with a DNA halo following extraction with salt 
Representative nuclei ironi the FAT() human lymphohiastoid cell line extracted with increasing concentrations of salt. Alternatively 
labelled paints br chromosomes 18 and 19 (Section 3.3) were hybridised siniullaneouslv and detected with different I]uorochromes. 
Nuclei counterstained with DAPI (blue). (a) (c) Chromosome IS paint detected with TR (red). Chromosome 19 paint detected with F1TC 
(green). (1)) Chroniosonie 18 paint detected with FITC (green). Chromosome 19 paint detected with TR (red). Barr I .i in 



Figure 7.11 Analysing the distribution of paints for human chromosomes 18 and 19 
in nuclei with a DNA halo following extraction with salt 
Representative nuclei from the FATO human lymphoblastoid cell line extracted with 
increasing concentrations of salt. Alternatively labelled paints for chromosomes IS and 
19 (Section 3.3) were hybridised simultaneously and detected with different 
Iluorochrornes. Nuclei were counierstained with DAN (blue). Using IPLab Spectrum 
software, a line was drawn manually about the apparent residual nuclear matrix defined 
by bright DAPI fluorescence. The total amount of signal and DAN fluorescence was 
measured within and outside of this defined region, that is, at the nuclear matrix and 
within the DNA halo, respectively. 
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7.5 The location of genes in the interphase nuclear territory of 
human chromosome 18 

The periphery of interphase chromosome territories have been associated with nascent 

transcripts and splicing components (Zirbel et al., 1993). In addition, a sample of 

coding sequences have been demonstrated to lie preferentially to the edge of chromosome 

territories at interphase, while non-coding sequences were either randomly or preferentially 

located inside of territories (Kurz et al., 1996). However, using CpG-islands as markers for 

genes, I demonstrated in Chapter 4 that there was no bias in distribution of genes laterally 

across salt extracted human chromosome 18 at metaphase. It is possible, however, that there 

is reorganisation as chromosomes decondense following mitosis, such that coding sequences 

are predominantly moved to the periphery of interphase chromosome territories. Therefore, 

I assayed whether CpG-islands locate to the outer surface of chromosome 18 interphase 

nuclear territories. 

Nuclei extracted with salt (Section 7.4. 1) were hybridised with differentially labelled 

chromosome 18 CpG-island probe (Section 4.3. 1) and whole chromosome 18 paint (Section 

3.2.3). Figure 7.12 shows nuclei extracted with 1.2M NaCl in which no DNA halo was 

observed. Figure 7.13 shows nuclei extracted with 1.2M NaCl from which DNA loops were 

distended. Where the red (TR) and green (FITC) fluorochromes colocalise, yellow signal is 

observed. Using IPLab Spectrum software, graphs measuring signal intensity were drawn 

along several axes at different angles through each chromosome territory (Figures 7.12 & 

7.13). Consistently, there was no bias of signal distribution observed for either probe. If 

genes were preferentially located toward the periphery of the chromosome territory it might 

be expected that there would be a larger amount of signal from the CpG-island probe 

compared with that from the total chromosome paint at the extremes of the graphs. 

Conversely, the non-CpG-island fraction from chromosome 18 was also hybridised to salt 

extracted nuclei in conjunction with total chromosome 18 paint. Figure 7.14 shows a 

pattern of distribution very similar to the territories in Figures 7.12 and 7.13. If genes were 

preferentially located toward the periphery of the chromosome territory it might have been 

expected that the signal from the non-CpG-island probe would drop away at the extremes of 

the graphs more sharply than the signal from the total chromosome paint. 
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These results argue against a predominant distribution of genes towards the periphery of 

chromosome territories at interphase and suggests that previously published studies have 

used an unrepresentative set of gene sequences. However, the apparently uniform 

distribution of genes across a chromosome territory may be the result of observations in 2-D 

made here, since there are likely to be genes on the upper and lower surfaces of the territory 

which may mask any peripheral signal bias. Since CpG-islands are 1-2Kb in length, spaced 

approximately every 300Kb (Craig & Bickmore, 1994), and loops have been estimated to be 

50-200Kb (Section 1.1), although indirect, CpG-islands offer a reasonably good resolution 

to determine gene distribution within a chromosome at both interphase and metaphase. It 

would now be of interest to use the chromosome 18 CpG- and non-CpG-island paints in 3-D 

FISH analysis of nuclei (Section 6.6). 
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Figure 7.12 The distribution of CpG-islands in the interphase territory of human 
chromosome 18 in nuclei with no DNA halo following extraction with salt 
Representative nuclei from the FATO human lymphohiast cell line extracted with 1.2 1 M 
NaCl in which no obvious DNA halo was observed. Nuclei counlerstained with DAN 
(blue). Hybridisation of chromosome 18 CpG-island fragments isolated using the 
methyl-CpG binding column (Cross et al., 1994) simultaneously with total chromosome 
18 paint. (a) CpG-island probe detected with TR (red). Whole chromosome IS paint 
detected with FITC (green). (C) CpG-island probe detected with FJTC (green). Whole 
chromosome IS paint detected ith TR (red). (h) (d) Graph of mean signal intensity. 
across 1Mm.  along lines drawn in figures (a) and (c). respectively, from left to right. The 
graph lines are the appropriate colour for the fluorochrome that they represent. 
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Figure 7.13 The distribution of CpG-islands in the interphase territory of human 
chromosome 18 in nuclei with a DNA halo following extraction with salt 
Representative nuclei from the FATO human lymphohiast cell line extracted with 1.2M 
NaCl in which DNA halos were observed. Nuclei counterstained with DAPI (blue). 
Hybridisation of chromosome 18 CpG-island fragments isolated using the methyl-CpG 
binding column (Cross et al.. 1994) simultaneously with total chromosome 18 paint. (a) 
CpG-island probe detected with TR (red). Whole chromosome 18 paint detected with 
FITC (green). (c) CpG-island probe detected with FITC (green). Whole chromosome 18 
paint detected with TR (red). (b) (d) Graph of mean signal intensity, across llJni. along 
lines drawn in figures (a) and (c). respectively. from left to right. The graph lines are the 
appropriate colour for the Fluorochronie that they represent. 
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Figure 7.14 The distribution of non -CPG-islands in the interphase territory of human 
chromosome 18 in nuclei extracted with salt 
Representative nuclei from the FATO human lymphoblast cell line extracted with 1.2M 
NaCl. Nuclei were counterstained with DAN (blue). Hybridisation 01 chromosome 18 
non-CpG-island fragments isolated using the methyl-CpG binding column (Cross el al.. 
1994) simultaneously with total chromosome IX paint. (a) Nucleus in which no obvious 
DNA halo was observed. non-CpG-island probe detected with TR (red). Whole 
chromosome 18 paint detected with FITC (green). (C) Nucleus with DNA halo. non-
CpG-island probe detected with FITC (green). Whole chromosome IS paint detected with 
TR (red). (h) (d ) Graph of mean signal intensity, across l)lm, along lines drawn in 
figures (a) and (c), respectively, from left to right. The graph lines are the appropriate 
colour for the fluorochrome that they represent. 
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7.6 Summary 

Jn this chapter, I addressed the factors involved in determining the size and position of 

interphase chromosome territories. The analysis of a reciprocal chromosome 18 and 19 

translocation is consistent with DNA sequences on these chromosomes playing a role in the 

relative interphase territory dispositions of the two chromosomes (Section 7.2). 

Examination of other translocations between chromosome 18 and 19 or each of these 

chromosomes and the X chromosome, may prove informative. It would be necessary to 

establish cell lines from such translocations to allow analysis of treated and/or extracted 

nuclei or chromosomes. The influence of epigenetic features could then be studied, for 

instance, the levels of histone acetylation of a translocated portion may be altered by the 

remainder of the derived chromosome which may then effect its influence upon positioning. 

Cell lines with deletions in chromosome 18 may be obtained, to determine if a particular 

chromosomal sequence were important, or if the overall chromatin environment was the key 

for correct nuclear positioning. 

Interestingly, AD treatment resulted in a significant decrease in the territory area of 

chromosome 19 when compared to that of chromosome 18. This suggests that 

transcriptional activity is instrumental in the organisation of chromosome territories in the 

nucleus. This data implies that chromosome 18 is not over-condensed in a normal human 

nucleus, but that chromosome 19 is actively decondensed, that is that the level of chromatin 

condensation observed for chromosome 18 is "default". Local decondensation may be the 

result of the presence of transcriptional complexes themselves or chromatin remodelling 

proteins such as trithorax-like proteins (Section 1.4.2). Alternatively, changes in chromatin 

configuration that accompany transcription, for example histone acetylation, may trigger the 

action of other, as yet unidentified, structural proteins. A previous study reported the 

dispersal of chromosome territories as a result of blocking transcription which was not 

observed here (Haaf & Ward, 1996). It would be worth repeating these experiments with 

other inhibitors of transcription and increasing the time of exposure to AD. 

ISA acts to increase the total amount of acetylated histories in chromatin and it has been 

shown that more transcriptionally active regions become more highly acetylated relative to 

transcriptionally inactive regions (Section 5.2). There is an exaggerated difference between 
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the territory areas of chromosomes 18 and 19 following treatment with TSA which may 

indicate a role for histone acetylation in determining territory area. 

Neither treatment with AD nor TSA altered the distinct positioning of the chromosome 18 

and 19 territories. It is likely that the location of a particular territory is set up immediately 

following mitosis and physical constraints that exist thereafter throughout interphase, 

probably in the form of the nuclear matrix, prevent territory migration. Recent studies have 

marked and traced the chromatin of the interphase nucleus and demonstrated that it is 

relatively immobile, consistent with chromosome territory confinement (Abney et al., 1997; 

Marshall et al., 1997b) (Section 1.5.3). The data presented here suggest that chromosome 

territory positioning is a separate property to territory condensation. 

The consistent localisation of chromosome 18 to the DNA halo of salt extracted nuclei 

suggests that this chromosome has fewer attachments to the matrix than chromosome 19, 

which remained confined to the residual nucleus. This supports models in which nuclear 

matrix attachments are mediated through transcriptionally active sequences. Surprisingly 

however, the use of AD to block transcription did not cause an increase in halo size, nor an 

increased localisation of chromosome 19 to the halo. Again, it would be worth repeating 

these experiments with other inhibitors of transcription and increasing the time of exposure 

to AD. Measurements of nuclei with no obvious DNA halo, showed that the chromosome 

19 territory area had contracted when compared with salt extracted nuclei which had not 

been subjected to AD. This is consistent with observations in 3:1 methanol:acetic acid fixed 

nuclei which also showed reduced chromosome 19 territory size following AD treatment 

(Section 7.3). Therefore, it appears that active transcription may be necessary for a region 

to have an expanded territory size but not to be attached to the nuclear matrix. 

The positioning of other chromosomes with regard to the DNA halo of extracted nuclei 

would be useful, particularly the positioning of probes specifically for G- and R-band 

regions of the genome. 

Finally, the positioning of genes within a chromosome territory, as sampled by the 

distribution of a chromosome 18 CpG-island probe, revealed no bias of distribution towards 

the periphery of the interphase territory (Section 7.5). This argues against models in which 

transcriptional activity is limited to the interphase territory periphery (Zirbel et al., 1993; 
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Kurz et al., 1996; Reviews: Maneulidis, 1990; Cremer et al., 1993; Strouboulis & Woiffe, 

1996). 

How are the contrasting sizes and positions of human chromosome 18 and 19 interphase 

territories established and maintained? Different proteins may be associated with each 

chromosome and the next chapter describes a method used to attempt to establish any such 

proteins. 
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8. Raising monoclonal antibodies against human 
metaphase chromosomes 	 - 

8.1 Introduction 

While one third of the mass of a human mitotic chromosome is DNA, one third is 

made up of the core and linker histories and the remaining one third consists of the 

relatively uncharacterised non-histone proteins (Earnshaw, 1988). In the previous chapters, it 

has been demonstrated that human chromosomes 18 and 19 are completely contrasting in 

their structural and functional features. These chromosomes differ in their DNA sequence, 

gene density, time of replication, histone content and chromatin packaging and territory 

positioning at interphase. Such characteristics are likely to be mediated through the 

non-histone chromosomal proteins. 

Gels separating the proteins of isolated metaphase chromosomes, have revealed a complex 

series of bands, including histories and many non-histone proteins (Lewis et al., 1984). 

Several approaches are being taken to identify non-histone chromosomal proteins. These 

include: 

•Protein purification - This strategy has only been useful for abundant chromosomal 

proteins and was used for the identification of the two major scaffold proteins: ScII and 

topo H (Lewis & Laemmli, 1982). Human metaphase chromosomes were stabilised with 

polyanions, digested with microccocal nuclease, extracted with 2M NaCl and the scaffold 

components pelleted. Topo II and ScIl were both purified from this scaffold pellet, 

representing 34% of total chromosomal proteins. Polyclonal antibodies raised to topo H 

have shown the protein localised to the scaffold of mitotic chromosomes (Earnshaw & 

Heck, 1985; Earnshaw et al., 1985; Gasser et al., 1986) (Section 1.4.6). ScH was only 

characterised more recently and is structurally related to the SMC family of proteins 

involved in chromosome condensation and sister chromatid separation (Saitoh et al., 

1994; Reviews: Peterson, 1994; Hirano etal., 1995; Saitoh etal., 1995) (Section 1.4.7). 

• Genetic screens - These have mainly been carried out in the yeasts or D.melanogaster, 

since phenotypes can be easily and rapidly analysed, and many new chromosomal proteins 

have been isolated this way. For example, the search for suppressors of mating and 

sporolation defects in S.cerevisiae led to the identification of the Sir proteins (Rine et al., 

1979; Klar et at., 1979). These proteins were further established to be involved in PEV 

following screens for mutants that caused derepression of marker genes affected by PEV 

at telomeres (Aparicio etal., 199 1) (Section 1.6.5). 
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• Homology based screens - A PCR probe encompassing the D.melanogaster 

chromodomain of HP1, the constitutive heterochromatin associated protein, was used to 

isolate homologues of HP  in mouse and human (Singh et al., 1991) (Section 1.4.2). The 

chromodomain has been found in a number of other heterochromatin associated proteins, 

including D.melanogaster Polycomb and other Polycomb group proteins (PcG) (Paro & 

Hognesss, 1991) (Section 1.4.2), and is essential for chromosomal localisation and 

repressive activity (Messmer et al., 1992; Suso Platero et al., 1995). The mouse 

proto-oncogene bmil cDNA was used in a screen to search for a D.melanogaster 

homologue and the Posterior sex combs PcG gene was isolated. These proteins share 

homology with a number of functional domains, aside from a chromodomain which is 

absent from bmil (Brunk et al., 1991; van Lohuizen et al., 1991). This homology 

screening approach has established a growing group of heterochromatin associated 

proteins across a range of species, with homologies between different domains helping to 

establish the particular functions of each (Reviews: Lohe & Hilliker, 1995; Gould, 1997; 

Schumacher & Magnuson, 1997). There are limits to the diversity of chromosomal 

proteins likely to be found following solely this strategy. 

Cloning autoantigens - A large number of autoimmune sera to nuclear antigens have been 

identified (Review: Tan, 1982). The classic example of this approach was the use of 

autoantibodies from patients suffering from CREST scleroderma, containing 

anti-centromere antibodies, to isolate the CENPs (centromere proteins) (Moroi et al., 

1980; Earnshaw & Rothfield, 1985; Eamshaw etal., 1987) (Section 1.6.9). 

The characterisation of the antigens detected by novel monoclonal and polyclonal antibodies 

has defined a number of chromosomal proteins. Davis & Rao (1982) immunised rabbits with 

mitotic HeLa cell extracts and obtained an antiserum directed against mitotic chromosomes 

and prematurely condensed interphase chromosomes. However, such serum is polyclonal 

and will thus recognise a diversity of epitopes and antigens. First described by Kohler & 

Milstein (1975) mouse monoclonal antibodies allow the specificity of an antibody produced 

by a single spleen cell to be coupled with the tireless production of that antibody by a mouse 

myeloma cell. A variety of extracts have been used to immunise mice for the production of 

novel monoclonal antibodies which can then be used as reagents for the isolation and 

characterisation of the specific antigens and epitopes recognised. There are several examples 

of mitotic nuclear proteins which have been defined in this way. 

Mice injected with purified HeLa nuclear non-histone chromatin proteins resulted in the 

production of a monoclonal antibody to the nuclear-mitotic apparatus (NuMA) protein 
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(Lyndersen & Pettijohn, 1980). This antigen is a constituent of the nuclear matrix at 

interphase but is concentrated at the spindle poles in mitosis. A chromatin containing 

fraction from rat liver cells was used to immunise mice and resulted in the production of a 

monoclonal antibody to another spindle apparatus protein, J17 (Newmeyer & Ohlsson-

Wilhelm, 1985). Cooke et al. (1987) raised monoclonal antibodies to chicken chromosome 

mitotic scaffolds and identified the antigens termed INCENPs (inner centromere proteins). 

The TNCENPs may play a role in sister chromatid cohesion, formation of the cleavage furrow 

or in organisation of the cytoskeleton (Cooke et al., 1987; Mackay et at., 1993 & 1997) 

(Section 1.5.2). 

More recently, Adams & Hodge (1996) raised monoclonal antibodies by injection of 

metaphase chromosomes and chromatids from anaphase/telophase (prenuclei) of HeLa cells. 

One of these antibodies detects an epitope on metaphase chromosomes and chromatids that is 

not recognised once the chromatids are fully coalesced, immediately prior to decondensation 

and nuclear envelope formation. In canine epithelial cells, a monoclonal antibody termed 

LFM-1, has been raised to metaphase chromosomes and the antigen has been localised to 

chromosomes throughout mitosis, localise to the nucleus at G  but excluded from the nucleus 

at G2 (Vega-Salas & Salas, 1996). Further analysis with this antibody suggests that this 

unknown, cell cycle regulated protein, localises to both the chromosomal surface and axis, 

both morphologically and biochemically. 

By immunisation of mice with mitotic HeLa cell extract, two monoclonal antibodies, 

designated MPM-1 and MPM-2, were raised to phosphoproteins present along metaphase 

chromosomes and within the cytoplasm of mitotic cells (Davis et at., 1983). MPM-2 has 

since been demonstrated to recognise a phosphoepitope present on a number of proteins 

phosphorylated immediately prior to mitosis, including microtubule organising centre 

proteins (Vandre et at., 1984 & 1991), topoisomerase II (Taagepera et at., 1993) and, most 

recently, the mitosis-promoting cdc25 phosphatase (Kuang et al., 1994). MPM-1 also 

recognises a phospho-epitope present on microtubule organising proteins (Vandre et at., 

1984). Also from this screen MPM-12 predominantly stains mitotic cells and co-purifies 

with histone Hl kinase activity (Ganju et al., 1992), and MPM-13 was shown to bind to the 

centrosome of interphase and metaphase cells (Rao et al., 1989). No monoclonal antibody 

specific for metaphase chromosomes alone was established in this case. 
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The immunisation of mice with mitotic chromosomes and cell extracts from a variety of 

organisms, has raised antibodies to an array of different proteins, many of which are 

associated with mitotic chromosomes. Clearly, this is a useful way of identifying proteins 

involved in mitotic chromosome structure and function. Using this strategy, I wished to raise 

antibodies specifically to human chromosome 18 or 19, and thus identify new proteins or 

modifications involved in the structure and/or function of one or other of these 

chromosomes? 

8.2 Synopsis for raising mouse monoclonal antibodies to human 
metaphase chromosomes 

This scheme for the production of mouse monoclonal antibodies to human metaphase 

chromosomes is outlined in Figure 8.1. 

8.2.1 Antigen preparation and immunisation 

Metaphase chromosomes were prepared from the REN2 human cell line (49, XXXXY), as 

previously described (Section 2.8.1 & 4.2.6). Briefly, cells were treated with colcemid, 

harvested and swollen in hypotonic solution. A mitotic index of >60% was usually obtained. 

Cells were pelleted and resuspended in polyamine buffer containing digitonin. Polyamines 

help maintain chromosome structure, while digitonin pierces the cellular membrane but not 

the nuclear membrane, and since cells undergoing mitosis do not have a nuclear membrane, 

chromosomes are released into the supernatant. The suspension was spun and the nuclear 

pellet and supernatant were each stored with glycerol at -70°C. 

All mice were injected initially with metaphase chromosomes prepared in an adjuvant, a 

non-specific stimulator of the immune system causing a local inflammatory response at the 

site of injection. Metaphase chromosomes were retrieved from storage, pelleted and pooled 

in polyamine buffer, excluding digitonin, to a final concentration of lx 10 chromosomes/mi. 

5001.tl of chromosome suspension were added to 500j.tl of adjuvant (Section 2.12.1.1) and 

2001.11 were injected into each of five mice subcutaneously in the abdomen. This location 

enhances lymphocyte production in the spleen. Approximately 1x10 8  chromosomes, then, 

were injected into each mouse. This was estimated to be approximately 25p.g of protein 

(Table 8.1), comparable to quantities used in previous attempts to raise monoclonal 

antibodies (4-1000p.g) (Example: Davis etal., 1983). 
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Table 8.1 Estimated protein content of human metaphase chromosome antigens 
Details of monoclonal antibody production outlined in Sections 2.12 and 8.2. If two thirds 
the mass of a chromosome is protein and 46 chromosomes consist of approximately 6pg 
DNA, then it can be estimated that 46 chromosomes contain 12pg of protein. From this, 
estimates of the protein content of each immunisation were calculated. PA- polyamine buffer 

Immunisation Mouse Antigen Estimated 
protein content 
(.tg) 

Initial All —lx 108  total human metaphase —25 
chromosomes in lOOp.l PA + lOOp.l 
adjuvant  

Primary booster (one I —2x 10 FACS sorted human —0.005 
month following  chromosomes 18 in 200p.l PA  
initial immunisation) 2 —2x104  FACS sorted human —0.005 

chromosomes 19 in 200p.l PA  
3 —2x 108  total human metaphase —50 

chromosomes in 200 j.tl PA  
4 —2x10 FACS sorted human X —0.005 

chromosomes in 2001.tl PA  
5 —2x108  human nuclei in 200.t1 PA —2400 

Secondary booster (four All —2x108  total human metaphase —50 
days prior to removal of chromosomes in 200pi PA 
spleen)  _________________________________  

One month later, the primary booster immunisation was carried out. No adjuvant was used 

on this occasion. Each mouse was injected with a different antigen, listed in Table 8.1. For 

the sorted chromosome injections, metaphase chromosomes were prepared as previously 

described (Section 2.8.1) and FACS sorted by Dr. D. Green, MRC Human Genetics Unit, 

Edinburgh, into pure preparations of chromosome 18, 19 and X (Section 2.8.2). To assess 

purity of the sort, l-lOj.il of chromosome suspension from each preparation were used as a 

template for Alu-PCR (Section 2.4.1). Products were labelled by nick translation (Section 

2.5. 1) and hybridised to 3:1 methanol:acetic acid fixed normal human metaphase spreads by 

FISH (Section 2.6). Figure 8.2 shows the hybridisation signal following FISH with probes 

produced from example sorts, the majority of which appeared to be clean. Any contaminated 

sorts were discarded. FACS sorting is a laborious process and after pooling several clean 

sorts for each chromosome, only final concentrations of approximately lx iø 

chromosomes/ml were achieved. Total metaphase chromosomes were prepared as described 

for the initial immunisation. Nuclei were obtained from the nuclear fraction attained during 

the preparation of metaphase chromosomes (Section 2.8.1). 
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Why chose each of these different antigens? It was my original aim to raise antibodies to 

human chromosomes 18 and/or 19, to determine any proteins that may be differentially 

associated with either of these contrasting chromosomes. In addition, the cell line from 

which the metaphase chromosomes were prepared possesses three additional X 

chromosomes, all of which are inactive. It would be intriguing if antibodies could be raised 

that specifically recognised the inactive X chromosome. The protein content of the FACS 

sorted injections was very low (<0.005pg) so to improve my chances of raising an antibody 

to a chromosomal antigen, total metaphase chromosomes, and total nuclei were also used as 

stimulants. 

Four days prior to removal of the mouse spleen, a final boost of 200jil of total metaphase 

chromosomes, at lx i09  chromosomes/ml in polyamine buffer, excluding digitonin and with 

no adjuvant, was given. 

8.2.2 Cell fusion 

This method is described in detail in Section 2.12.2. Briefly, the mouse spleen was removed 

and punctured. Lymphocytes were displaced by pushing medium through the spleen and on 

each occasion half were stored at -70°C for fusion at a later date. The remaining 

lymphocytes were fused with Sp2/0 mouse myeloma cells to produce hybridomas. The cells 

were mixed at a concentration of 1:5 myeloma cells to spleen cells along with polyethylene 

glycol (PEG). PEG causes the disruption of the cell plasma membranes which, on occasions, 

results in the fusion of adjacent cells. In medium containing hypoxanthine, aminopterin and 

thymidine (HAT) the myeloma cells used will not grow. Aminopterin blocks de novo purine 

and pyrimidine synthesis and, while the myeloma cells are able to convert thymidine to 

pyrimidines using the salvage pathway, they have been modified to lack the enzyme, 

hypoxanthine phophoribosyl transferase (HPRT), required to convert hpoxanthine to purines. 

This enzyme is present in the lymphocytes, however, these cells have a limited life-span and 

thus, only hybridoma cells will grow over several days in HAT medium (Figure 8.1). 

In total, 6x96 well plates were set up from each mouse spleen. Wells were previously coated 

with mouse macrophage feeder cells (Section 2.12.2.2) which act to ingest debris and dead 

cells. After 10 days most plates showed hybridoma colonies that occupied 50-75% of the 

well and the antibody containing supernatant was removed for screening (Section 8.2.3). The 

colonies obtained from each mouse spleen are recorded in Table 8.2. 
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Two mouse spleens produced the expected number of colonies. The reduced number of 

colonies produced from mouse 3 were due to bacterial contamination. The fusion of mouse 4 

spleen cells was inefficient but the exact cause was unknown. Unfortunately, one mouse died 

prior to removal of the spleen. 

Table 8.2 Number of hybridoma colonies produced from mice immunised with human 
metaphase chromosomes 
Details of monoclonal antibody production outlined in Sections 2.12 and 8.2. 

Mouse Primary booster Total number of Number of stable 
immunisation J colonies screened positive antibody 

producing colonies 
I Human chromosome 18 370 5 
2 Human chromosome 19 20 0 
3 Human X chromosome 35 0 
4 Total human metaphase 350 3 

chromosomes  
5 Human nuclei Mouse died prior to 0 

spleen removal 

8.2.3 Antibody screening by immunocytochemistry 

Screening was carried by immunocytochemistry, selecting for antibody epitopes with nuclear 

localisation. The JU77 human mesothelioma cell line was used to seed the chambers of an 

appropriate number of 8-chamber slides (Section 2.11) since REN2 cells from which the 

antigens were prepared grow in suspension and not as an attached monolayer. Slides were 

incubated at 37°C until the surface of each chamber was approximately 50% covered with 

cells. Slides were then fixed with 1:1 methanol: acetone at -20°C for 10 minutes. This 

fixation was sufficiently stringent to adhere the cells firmly and allow storage of the slides 

for up to a week without deterioration, but did allow the binding of several test antibodies 

(Figure 8.3). Slides were pre-incubated with blocking buffer (2% BSA) before addition of 

the primary antibody for 1 hour at room temperature. After washing, slides were incubated 

with secondary antibody for a further 30 minutes at room temperature. 

Along side each batch of hybridoma supernatants being tested, a number of controls were 

used. The appropriate control and secondary antibody dilutions were assessed using serial 

dilutions and are listed in Table 2.5. The controls were as follows: 



I. Secondary antibody (anti-mouse F(ab) 2  fragments conjugated to FITC) alone. This 

resulted consistently in a general but low level background of signal and no specific 

pattern. F(ab')2 fragments were used for specificity of binding. These fragments consist 

of the two antigen binding sites of an antibody without the tail region. The tail is 

responsible for the different functional activities of an antibody, for example, an ability to 

bind phagocytic cells and may instigate non-specific binding. 

Anti-histone, pan antibody (Boehringer) detected with anti-mouse-F1TC, colocalised with 

the DAPI fluorescence specifically within the cell nuclei (Figure 8.3a). Fluorescence was 

concentrated around but reduced in the nucleoli. The region surrounding the nucleoli 

often appears to be associated with heterochromatin (Personal communication: Dr. J.M. 

Bridger). 

Anti-cx-tubulin antibody (Sigma) detected with anti-mouse-FITC revealed a striking 

fibrous cytoplasmic pattern that was completely absent from the nucleus (Figure 8.3b). 

This distribution is typical of a cytoskeleton component (Blose et al., 1984). 

Each hybridoma supernatant was tested by immunofluorescence undiluted, in the first 

instance. For those supernatants showing nuclear localisation, hybridoma colonies were 

subbed into flasks and ampoules stored at -70°C. A series of hybridoma cell dilutions were 

set up to subclone until colonies were isolated that were stable in antibody production 

(Section 2.12.4). From all four mice from which hybridomas were obtained, 16 positive 

antibody producing colonies were identified during the initial screen. During hybridoma 

passage and subcloning several of these antibody patterns were lost until eventually 8 stable 

colonies were established. Ampoules of the stable colonies were stored at -70°C and 

collected supernatants were stored in aliquots at 4°C and -20°C. Antibodies were labelled 

with a number relating to the mouse from which they were obtained and the order in which 

the colonies were screened. The immunocytochemical patterns observed for the hybridoma 

supernatants were divided into three categories: 

Nuclear speckles (Figure 8.4) - Any pattern with >200 local concentrations of 

fluorescence was termed nuclear speckles. Speckles were generally <0.5jtm in diameter. 

Three of the supernatants: 1103, 1113 and 4225, revealed nuclear speckles that were 

evenly distributed throughout the nuclei but absent from nucleoli. The speckled pattern of 

1103 showed varying degrees of intensity between nuclei, possibly due to cell cycle 

variation. 

Nuclear spots (Figure 8.5) - Any pattern with <200 local concentrations of fluorescence 

was termed nuclear spots. Spots differed in size but were all <lp.m in diameter. 
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Supernatant 1180 showed <50 punctuate spots, while 1320 and 4210 revealed 200>50 

spots, in all instances evenly distributed throughout the nuclei. 	- 

3. Nucleolar staining (Figure 8.6) - A strong signal in the nucleolus was accompanied by <50 

spots in the remainder of the nucleus for supernatants from 1213 and 4247. 

In addition to the 8 antibodies produced here, two additional antibodies were donated by 

Dr. B. Lane, University of Dundee. These antibodies were obtained during a screen of 

hybridomas produced following immunisation with a keratin antigen. Both show a relatively 

uniform distribution in the nucleus with absence from the nucleolus (Figure 8.7), reminiscent 

of the anti-histone pan antibody (Figure 8.3). 
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Figure 8.1 A scheme for the production of mouse monoclonal antibodies to human 
metaphase chromosomes 
Details of monoclonal antibody production outlined in Sections 2.12 and 8.2. The spleen of 
mice immunised with human metaphase chromosomes were removed and punctured. Displaced 
lymphocytes were fused with Sp2/0 mouse myelorna cells to produce hybridomas using PEG. 
In HAT medium the myeloma cells used will not grow. Aminopterin blocks de novo purine 
and pyrimidine synthesis and, while the myeloma cells are able to convert thymidine to 
pyrimidines using the salvage pathway, they have been modified to lack the enzyme, HPRT, 
required to convert hpoxanthine to purines. This enzyme is present in the lymphocytes, 
however, these cells have a limited life-span and thus, only hybridoma cells, which are actively 
ccreting antibodies into the supernatant, will grow over a reasonable period of time in HAT 

medium. 
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Figure 8.2 Testing for purity of FACS sorted chromosomes 
Chromosomes IS and 19 were FACS sorted by Dr. D. Green, MRC Human Genetics Unit. 
Edinburgh. To assess the purity of the sort, a sample of suspension was used for AIu-PCR. 
products hiotin labelled by nick translation and hyhidised by FISH to REN2 human 
metaphase spreads. Probes were detected with (a) avidin-TR (red). or (C) avidin-FITC 
(rccn), and chromosomes counterstained with DAPI (blue). FACS sorts: (a) chromosome 
IS. and (C) chromosome 19. (h) (d) Grey scale representations of DAPI images. 
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Figure $.3 !iiimunocytocheiiiistr 	au known antibodies 
(Left) JU77 human niesothelionia cells hound with: (a) anti-histonc pan. and (I)) anti-CL-tuhu!in. Both antibodies were detected with anti-
mouse-FITC (green). Cells were counterstained with DAN (blue). (Middle) Grey scale representation of the DAN image. (Right) Grey 
scale representation of the antibody binding signal. 



Figure 8.4 Hybridoma supernatants with speckled nuclear localisation 
(Left) JU77 human mesothciioma cells hound with the following hybridoma supernatants 
established following immunisation with human metaphase chromosomes: (a) 1103: (h )  

1113: and (C) 4225. All antibodies were detected with anti-mouse-FLTC (green). Cells 
were counterstained with DAPI (blue). (Middle) Grey scale representation of the DAN 
image. (Right) Grey scale representation of the antibody binding signal. 
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Figure 8.5 F1hridoma supernatants with Spotted nuclear localisation 
(Left) Ju77 human mesuthelioma cells hound with the following hybridoma supernatants 
established following immunisation with human metaphase chromosomes: (a) 1180: (h) 
132)): and (C) 4210. All antibodies were detected with anti-mouse-FITC (green). Cells 
were cuunterstajncd with D.API (blue). (fiddle) Grey scale representation of the DAPI 
image. (Right) Grey scale representation of the antibody binding signal. 
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Figure 8.6 I fvhridona supernatants with nucleolar localisation 
Left Ju77 human mesuthelioma cells hound with the following hybridoma supernatants 

established following immunisation with human metaphase chromosomes: (a) 121 3: and 
(h) 4247. All antibodies were detected with anti-mouse-FITC (green). Cells were 
counterstained with DAPI (Hue). (Middle) Grey scale representation of the DAPI image. 
(Right) Grey scale representation of the antibody binding signal. 



Figure M Ilthridorna supernatants ith general nuclear localisation 
Left) JU77 human mesothelioma cells hound with the tullowing hybridoma supernatants 

donated by Dr. B. Lane. University of Dundee and established following inimuniSatioll 
with kera(in: (a) 4/2: and (h) 41/14. All antibodies were detected with anti-mousc-FITC 
(green). Cells were counterstained with DAPI (blue). (Middle) Grey scale representation 
of the DAN image. (Right) Grey scale representation of the antibody binding signal. 
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8.3 The distribution of antibody epitopes along human 
metaphase chromosomes 

C ells in mitosis were not detectable with the chamber slides used for screening the 

hybridoma supernatants, since when cells begin to divide they generally round up and 

become detached from the slide surface. In order to detect any antibody binding to mitotic 

chromosomes, colcemid was added to REN2 human cells one hour prior to harvesting. Cells 

were cytocentrifuged unfixed onto slides (Section 2.10). Slides were incubated with primary 

antibody for 2 hours at room temperature, followed by incubation with anti-mouse-FITC. To 

try and maintain the antibody epitopes, slides were fixed, following antibody incubation, in 

0.54% paraformaldehyde for 15 minutes at room temperature. This is one of the less 

stringent methods of fixation which acts by chemically cross-linking proteins (Pearse, 1968) 

(Section 6.3). A variety of alternative fixation methods were assessed, including 3:1 

methanol: acetone, methanol alone and <4% formaldehyde. 

Figure 8.8 shows the signal obtained with three of the hybridoma supernatants: 1103, 1113 

and 4225. All three revealed a speckled pattern in interphase nuclei, as seen in JU77 

mesothelioma cells (Figure 8.4), but no binding to metaphase chromosomes could be 

detected. 

The two monoclonal antibodies, 40/2 and 41/14 gave speckled binding within interphase 

nuclei and, in addition, there was uniform staining along the length of metaphase 

chromosomes (Figure 8.9). Analysis of a number of spreads could not define any pattern of 

staining along the chromosome arms with respect to band types or regions of 

heterochromatin. 

None of the remaining antibodies were found to bind to either nuclei or chromosomes 

prepared by cytocentrifugation. This may be due to an alteration in epitope shape or 

complete loss of epitope, caused by the treatment of the slides, both mechanical and 

chemical. Alternatively, there may be cell cycle changes to epitopes. 

To what nuclear proteins do the epitopes recognised by each of the hybridoma supernatants 

belong? An indication may be determined by comparison with the patterns created by 

antibodies to known nuclear proteins. 
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Figure 8.8 Inirnunocytochemistry with three hyhridorna supernatants to metaphase 
spreads 
Metaphase spreads of REN2 human lymphohlastoid (49. XXXXY) cells hoUfld with 3 of the 
hybridoma supernatants established lIIowing immunisation with human metaphase 
chromosomes: (a) 1103- ' (h) 1113: and (C) 4225. (Left) Antibodies were detected with anti-
mouse-FITC (green). Spreads were fixed with 4(4  paraformaldehyde following antibody 
incubation and counterstained with DAPI (blue). (Middle) Grey scale representation of ,  
DAPI image. (Right) Grey scale representation of the antibody signal. 

2.11 



Figure 8.9 ImrnunoQvtoehernislr with 4012 and 41/14 hybridoma supernatants to metaphase spreads 
Metaphase spreads ol REN2 human lyniphohlastoid (49, XXXXY) cells hound with (a) 40/2 and (b) 41/14, hyhridoina supernatants 
donated by Dr. B. Lane. University of Dundee. (Left) Antibodies were detected with anti-mouse-FI1C (green). Spreads were lixed with 4Y 
paralornialdehvde lollowint! antibody incubation and counterstained with DAN (blue). (Middle) Grey scale representation of' DAPI 
image. (Right) Grey scale representation of' the antibody signal 



8.4 The binding patterns of antibodies to known nuclear 
components 

In order to gain an idea of the type of protein being recognised by each of the hybridoma 

supernatants, inimunocytochemistry with antibodies to known nuclear proteins was 

carried out. Antibodies were selected to represent each of the major functions that occur in 

the nucleus: 

•Transcription - The abundant transcription factor, Spi binds to the GC-box consensus 

sequence (GGGGCGGGG) (Letovsky & Dynan, 1989) which is present at numerous 

promoters and regulatory sequences. Figure 8.10a shows immunolocalisation of a mouse 

monoclonal antibody to Spi (Santa Cruz) detected with anti-mouse-FITC (F(ab') 2). This 

speckled pattern, which is dispersed throughout the nucleus, but absent from nucleoli, has 

also been seen with other transcription factors (Grande et al., 1997) and RNA polymerase 

II (Zeng et al., 1997). 

• Replication - The proliferating cell nuclear antigen (PCNA) is an essential component of 

the DNA replication machinery. The PCNA antibody used here has been previously 

shown to coincide exactly with regions of biotin-dUTP incorporation, that is, sites of 

active replication (Hutchison, 1995). This is a human auto-immune antibody (Dr. C.J. 

Hutchison, University of Dundee) and was detected with anti-human-TR (F(ab')2). A 

variety of immunolocalisation patterns were observed in different nuclei (Figure 8.10b) 

which correspond to the stages of the cell cycle (Kill etal., 1991). 

• RNA splicing - Two antibodies were obtained to components of the mRNA splicing 

complex (Dr. I. Mattaj, EMBL, Heidelberg) (Lerner etal., 1981). Figure 3.1 la shows 

human cells labelled with a monoclonal antibody directed against Sm proteins detected 

with anti-mouse-FITC F(ab)2. These proteins are common to all snRNPs (Pettersson et 

al., 1984) and show a speckled pattern of nuclear distribution in addition to a few bright, 

discrete foci termed coiled bodies (Fakan et al., 1984; Carmo-Fonseca et al., 1991a & b; 

Review: Spector, 1993) (Section 1.6.2). A more diffuse staining pattern was observed 

with a polyclonal antibody to the Ul snRNP specific protein, UIA (Scherly et al., 1989), 

detected with anti-rabbit-TR F(ab') 2  (Figure 8.1 lb). This antibody is also known to 

highlight coiled bodies. Both antibodies were absent from the nucleoli. A rather more 

spotted pattern was shown to label with an antibody to the non-snRNP splicing 

component, SC-35 (Fu & Maniatis, 1990) and there was no accumulation of this protein 

within coiled bodies (Carmo-Fonesca et al., 1991a). Speckled distribution and coiled 

body accumulation cannot be taken as the only indications of a component involved in 

mRNA splicing. 
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Attempts to perform colocalisation experiments with the hybridoma supernatants and these 

antibodies to known nuclear compartments were unsuccessful. Since the hybridoma 

supernatants originated from mouse, it was necessary to use antibodies produced in a 

different organism for colocalisation experiments. For colocalisation, slides were prepared 

as before (Section 8.2) and the known antibody, followed by the appropriate secondary 

antibody, were added as extra layers either before or after hybridisation with the hybridoma 

supernatant and its appropriate secondary antibody. Finally, slides were fixed with 4% 

paraformaldehyde. Unfortunately, patterns produced with an anti-Spi monoclonal antibody 

(Figure 8.10a) could not be reproduced with a rabbit polyclonal antibody (Santa Cruz). In 

addition, using the human anti-PCNA autoantibody (Figure 8.1ob) and rabbit polyclonal anti-

U1A antibody (Figure 8.11b), which alone produced defined patterns of distribution, in 

combination with the hybridoma supernatants, patterns were impossible to distinguish. The 

reasons for this were not clear and it would have been necessary to try a number of different 

known antibodies and colocalisation protocols. Each of the categories of nuclear patterns 

defined by the hybridoma supernatants described in Section 8.2 were, thus, superficially 

compared to the patterns of antibodies to known nuclear compartments defined above: 

Nuclear speckles - The speckled patterns of 1103, 1113 and 4225 were all reminiscent of 

the transcription factor pattern as exemplified by Sp 1 in Figure 8. lOa. 

Nuclear spots - This pattern may be observed because the antibody concentration in the 

tested supernatant was low. Similar patterns were revealed in titration experiments of the 

known antibodies at the lowest concentrations. Without co-localisation experiments it is 

impossible to tell whether the spots could be localised to coiled bodies (Figure 8.11) or 

other nuclear bodies (Review: Spector, 1993) but the number of spots in each nucleus 

suggest that this may be the case. 

Nucleolar - The number of proteins located in the nucleoli is very large (Review: 

Hernandez-Verdun, 1991). Nucleolar accumulation of some proteins, such as RNA 

polymerase I, are a result of the high transcriptional activity in this region. Many, 

however, are directed to the nucleolus and are not present in other nuclear regions, for 

example, nucleolin (Lapeyre et al., 1987) (Section 1.6.2). The nuclear speckles present 

along with the strong nucleolar staining of antibodies 1213 and 4225 suggests that these 

proteins are not solely nucleolar but are highly concentrated in the nucleolus. 

General nuclear - The immunofluorescence patterns observed for 40/2 and 41/14 

suggested that their corresponding proteins may be chromosomal since their distribution 

was similar to the anti-histone pan antibody (Figure 8.3a). This was confirmed by the 

observation of staining along the length of metaphase chromosomes (Section 8.3). 
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Clearly, these are merely conjectures and colocalisation experiments are essential. However, 

lack of time and priority for other experiments resulted in this approach being abandoned. 

To identify the antigens being recognised by the hybridoma supernatants, I performed 

Western blots with cytoplasmic and nuclear protein fractions. 
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Figure 8.10 lmmunoctochemistr with antibodies to components of transcription and 
replication complexes 
Human mesothelioma cells. JU77 hound with: (a) anti-Spi (transcription aclor): (h) 
anti-PCNA (member of the replication complex). (Left) Antibodies were detected with: 
(a) anti -mouse-FITC (green): (h) anti-human-TR (red). Cells were counterstained with 
DAPI (blue). (Middle) Grey scale representation of the DAPI image. (Right) Grey scale 
representation of the antibody ,  binding signal. In (h) note the variable pattern that 
probably reflects different stages of the cell cycle: top nucleus in early S-phase, middle 
nucleus in gap phase and bottom nucleus in late S-phase. 
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Figure $.11 Immunocytochemistry ith antibodies to mRNA splicing complex 
components 
Human mesothelioma cells, JU77 hound with: (a) anti-Sin. (b) anti-LI IA. 	(Left) 
Antibodies were detected with: (a) anti-mouse-F!TC (green): (h) anti-rabbit-TR (red). 
Cells were counterstained with DAPI (blue). (Middle) Grey scale representation of the 
DAPI image. (Right) Grey scale representation of the antibody binding signal. 



8.5 Analysis of the antigens recognised by the novel hybridoma 
supernatants by Western blotting 

D enaturing polyacrylamide gels were run of nuclear and cytoplasmic fractions from 

human cells, transferred to membranes and incubated with each of the hybridoma 

supernatants to confirm their nuclear specificity and to determine the size and complexity of 

the antigens being recognised. 

REN2 human cells were swollen in hypotonic solution and disrupted by homogenising 

(Section 2.13.1). The homogenate was centrifuged to separate the nuclear pellet from the 

supernatant, the cytoplasmic fraction. The nuclei were lysed using Triton X- 100 detergent to 

produce the nuclear fraction: Each fraction was separated by denaturing polyacrylamide gel 

electrophoresis (PAGE) containing sodium dodecyl sulphate (SDS) (Section 2.1.2). Gels 

were stained with Coomassie blue to determine the protein concentration and complexity in 

each fraction (Figure 8.12a) (Section 2.13.3). Gels were next blotted by semi-&y transfer 

onto a PVDF transfer membrane using a graphite electrode system (Western blotting) 

(Section 2.13.4). Efficient transfer was assessed following reversible staining of the 

membrane with Ponceau S solution. Figure 8.12b shows a membrane permanently stained 

with amido black stain. Note that there were gaps in the nuclear fraction where proteins had 

clearly not transferred and that these appeared to correspond with abundant nuclear proteins 

(compare with Figure 8.12a). 

Membranes were incubated with a number of control antibodies to test for fractionation and 

efficiency of transfer. Antibody binding was detected by chemi luminescence (Section 

2.13.7). Figure 8.12c shows the result obtained for anti-Spi polyclonal antibody (Santa 

Cruz). This antibody should detect peptides of 106 and 95KDa in the nuclear fraction. Three 

bands of approximately 100, 75 and 40KDa were consistently detected in this fraction, 

suggesting that there was specific break down of one of the peptides. There was no Sp 1 

present in the cytoplasmic fraction. A polyclonal anti-a-tubulin antibody revealed a band of 

the appropriate size (55KDa) in the cytoplasmic fraction and, to a lesser extent, in the nuclear 

fraction (Figure 8.12d). The presence of tubulin in the nuclear fraction may represent cells 

accumulating mitotic spindle prior to nuclear membrane breakdown. Alternatively, there 

may be some contamination between the nuclear and cytoplasmic fractions. 

One problem was the inability to detect histories with either a polyclonal anti-histone pan 

antibody or a polyclonal anti-acetylated H4 antibody (R41) (Prof. B. Turner, University of 
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Birmingham). Interestingly, the regions at which these antibodies would be located 

corresponded to the blank regions of amido black stained membranes (Figure 8.12b), 

suggesting that it was the transfer of these proteins that was failing. It was found that for 

highly negatively charged proteins, such as histones, it was necessary to use an alternative 

blotting buffer (Personal communication: Dr. K. Ekwall, MRC Human Genetics Unit, 

Edinburgh). CAPS was included in the transfer buffer (Section 2.13.5) which had an affect 

on the charge of these proteins causing them to move towards the cathode, in contrast to the 

majority of proteins. Figure 8.12e shows an amido black stained membrane following this 

type of transfer. The R41 antibody showed an extra band, when compared to the membrane 

following incubation with the corresponding rabbit pre-immune serum (Figure 8.120, of the 

expected size for H4 (I4KDa) (Figure 8.12g). No bands, however, were detected still with 

the anti-histone pan antibody. The reasons for this are unclear and this antibody is poorly 

characterised. 

Despite numerous attempts with membranes blotted in both the standard manner and adapted 

for highly negatively charged proteins, and using less stringent washing and longer 

incubations, no bands for any of the hybridoma supernatants were detected by Western 

analysis. There are a number of reasons as to why this may have occurred: 

•Poor protein transfer system. 

• Degradation of the antibody binding epitope due to denaturation of the proteins by SDS 

treatment. 

• Loss of specific protein modifications, for example, methylation, required for binding of 

the antibody to its epitope during processing. 

• Instability of the protein or antibody. 
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Figure 8.12 Incubation of control antibodies with Western blots of cytoplasmic and 
nuclear fractions 
10% SDS-PAGE gels of nuclear (N) and cytoplasmic (C) protein fractions. Antibody binding 
was detected by chemiluminescence. (a) Example of a Coomassie stained gel. (b) Amido black 
stained membrane following semi-dry transfer of proteins from a gel, similar to that in (a), 
using standard methanol transfer buffers. (c) Incubation with anti-Spi rabbit polyclonal antibody. 
(d) Incubation with anti-a-tubulin rabbit polyclonal antibody. (e) Amido black stained membrane 
following semi-dry transfer of proteins from a gel, similar to that in (a), using CAPS transfer 
buffer for transfer of highly negatively charged proteins. (f) Incubation with R41 pre-immune 
serum. (g) Incubation with R41 anti-acteylated H4 antibody (Prof. B. Turner, University of 
Birmingham). 



8.6 Discussion: The difficulties in producing hybridoma 
supernatants 

In this chapter I have described a strategy for the production of new mouse monoclonal 

antibodies to human metaphase chromosomes. Following immunocytochemistry to both 

interphase nuclei and metaphase chromosome spreads it seemed likely that none of the new 

antibodies were directed to chromosomal proteins. A number of improvements in this 

strategy may have produced a greater selection of nuclear and, thus potentially chromosomal 

antibodies: 

•Injection of mammalian chromosomes into a mammal is not likely to produce a large 

immune response. The New Zealand Black strain of mice is prone to spontaneous 

autoimmune disorders (Review: Howie & Heyler, 1968) and may have proved more 

useful (Personal communication: Prof. V. Van Heyningen). 

• The total amount of protein injected into each mouse was extremely variable (0.005-

2500pg) and, in most cases, small. From other such experiments in the literature, 

immunisation of a protein content of >500tg would have produced the required immune 

response. 

• The screening procedure used may have resulted in discrimination of potentially useful 

antibodies. To sort through several hundred colonies it was necessary to select a screen 

that was rapid and easy to reproduce. It may be an advantage to screen using several 

methods simultaneously, for example, immunocytochemistry with alternative fixation of 

test cells, ELISA (enzyme-labelled immunosorbent assay) and Western blot incubation. 

Hybridoma colonies are unstable and even after repeated subcloning it was difficult to 

maintain stable antibody producing colonies. The antibodies in storage were also unstable 

and often produced no or alternative staining patterns with immunocytochemistry a few days 

after being collected. This resulted in the loss of several antibodies producing interesting 

nuclear patterns. Eventually 8 reasonably stable antibodies were established. Added to these 

were two donated new mouse monoclonal antibodies (Dr. B. Lane, University of Dundee), 

which were shown by immunocytochemistry to localise to metaphase chromosomes. 

The inability of all of these antibodies to detect bands on Western blots were likely to be due 

to loss of the antibody epitopes since the procedure involves the denaturing of native 

proteins. These antibodies were to be used to screen a human cDNA expression library to 

clone the gene(s) encoding the protein target of any of the antibodies of interest. Due to the 
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lack of time, inability to detect binding to Western blots and the general unpredictability in 

the behaviour of these antibodies, it seemed best to not pursue them further. 
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9. Discussion 

In this thesis I have used selected human chromosomes, specifically 1, 18, 19, and 22 to 

examine the relationships between mitotic and interphase chromosome structure and 

function. My principal conclusions are that: 

The higher order folding at mitosis of gene-rich and gene-poor regions of the human 

genome are the same. 

Gene-rich regions not only have the highest steady state levels of hyperacetylated H4, 

but also show the highest turnover of acetylation. 

In interphase, gene-rich regions are less condensed and more centrally located in the 

nucleus than gene-poor regions. Attachment of gene-rich regions to the nuclear matrix 

are different to those of gene-poor regions. Condensation but not nuclear position or 

matrix attachment is a function of transcription. 

Human chromosomes 18 and 19 offer a unique system for studying chromosome structure 

and function. While G-bands and R-bands are generally intercalated throughout the 

mammalian genome, human chromosomes 18 and 19 are whole chromosome representations 

of these contrasting banding types. Chromosome 18 displays the features predominantly 

associated with G-bands: late replication, AT-richness, low gene density and low steady 

state levels of histone acetylation. By contrast, chromosome 19 generally displays the 

features of R-bands: early replication, GC-richness, high gene density and high levels and 

high turnover of acetylation (Section 1.7). These chromosomes were used throughout this 

thesis as tools to study the correlations between chromosome structure and function. 

9.1 Core histone acetylation 

C ore histones are subject to a number of different modifications, including acetylation, 

methylation, ribosylation, ubiquitination and phosphorylation (Section 1.4.1.2). To 

date, acetylation is the most studied and understood (Section 1.4.1.3). 

9.1.1 The dynamics of histone acetylation 

In Chapter 5, I showed that gene-rich, R-band regions have not only the highest steady state 

levels of hyperacetylated H4, but also have the highest turnover of acetylation. It was 

demonstrated that treatment of cells with sodium butyrate and Trichostatin A (TSA), which 
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specifically block the action of histone deacetylase(s) (Section 5.2), visibly enhances the 

differences in acetylation levels between R- and G-bands on the same chromosome (human 

chromosome 1) (Figure 5.2). This implies that hypoacetylation in G-bands is less to do with 

increased deacetylation and more a reflection of lower acetyltransferase activity. Covault & 

Chalkley (1980) concluded that turnover of acetylation was highest in a minor population of 

highly acetylated species of H4 estimated to be <15% of total histories. It is likely that this 

population of histories would be present in the most Alu-rich T-bands of the genome, which 

make up approximately 13% of the total genome (Holmquist, 1992). Therefore, 

chromosome 19 would be expected to have a greater turnover of acetylation, and on 

blocking deacetylation, would have a greater increase in tn- and tetra-acetylated histories 

than chromosome 18. 

Most transcription factors appear to be displaced from mitotic chromosomes (Martinez-

Balbas et al., 1995; Segil et al., 1996). Core histone acetylation is a strong candidate for a 

method of passing on information regarding transcriptional potential of a particular region 

(Jeppesen, 1997; Wade et al., 1997), since acetylation patterns are considered to be 

generally maintained throughout the cell cycle (Turner, 1989; Breneman et al., 1996; 

Surralles et al., 1996) (Section 5.1). However, recently a protein-dependent chromatin 

conformation has been demonstrated to mark genes scheduled for reactivation on mitotic 

chromosomes (Michelotti et al., 1997) and how this might be linked to acetylation status has 

yet to be explored. 

Acetylation has been demonstrated to facilitate the binding of transcription factors (Lee et 

al., 1993; Vettese-Daley et al., 1994 & 1996) and is widely considered to cause a reduction 

in the wrapping of DNA around the nucleosome, resulting in a more "open" chromatin 

structure (Review: Garcia-Ramirez et al., 1995). In chapter 7, I showed that treatment of 

cells with TSA appeared to exaggerate the differences between the nuclear territory sizes of 

chromosomes 18 and 19. Chromosome 18 took up slightly smaller, and chromosome 19 

occupied a considerably larger, proportion of the total nuclear area, when compared to 

untreated cells (Section 7.3.2). These data are in accord with the effects on mitotic 

chromosomes and suggest that acetylation acts directly to determine the degree of chromatin 

condensation at interphase, further establishing links between acetylation and transcriptional 

activity throughout the cell cycle. 
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9.1.2 Silencing at the rDNA 

The highest levels of histone acetylation on human mitotic chromosomes correspond with 

the regions of highest density of genes transcribed by RNA polymerase II (pol II) (Figure 

5.1). However, it was surprising that the rDNA-containing p-arms of the human acrocentric 

chromosomes were hypoacetylated, throughout the cell cycle, despite being of the most 

transcriptionally active regions of the human genome (Review: Sollner-Webb & Tower, 

1986) (Figure 5.4). Hypoacetylation may be needed directly for RNA poll activity and may 

even work to inhibit any RNA p01 II activity in the rDNA. Recent findings in the 

organisation of rDNA in S.cerevisiae are particularly interesting (Review: Sherman & 

Pillus, 1997). The yeast has approximately 120 rRNA genes, each 9Kb in length, situated in 

a large tandem array on chromosome XII (Petes, 1979). Yeast maintains a stable genome 

despite the presence of repeated sequences and efficient homologous recombination. 

Successive amplification and deletion of the rDNA array could be deleterious to growth. 

Recombination rates between the rDNA repeats in S.cerevisiae is about lOOx less frequent 

than meiotic exchange between unique sequences (Petes, 1979; Zamb & Petes, 1982). This 

recombinational repression has been shown to be dependent upon topoisomerases 

(Christman et at., 1988; Cavalli et at., 1996) and presence of the SIR2 protein (Gottleib & 

Esposito, 1989). Deletion and over-expression studies demonstrated that Sir2p, but none of 

the other known SIR proteins, were required to exert this recombinational repression (Fritze 

et at., 1997). Using immunofluorescence, Sir2p was located to the nucleolus, in addition to 

an association with the chromosome telomeres (Gotta et al., 1997). Recombination-

initiating double strand breaks have been mapped to regions of increased accessibility (Wu 

& Litchen, 1994), suggesting that repression of exchange in rDNA is likely to be brought 

about by an alteration in chromatin structure and that this would be an effective way of 

controlling the frequency of recombination. 

Is SIR2 also responsible for transcriptional regulation of rDNA? RNA p01 II transcribed 

reporter constructs integrated into rDNA were shown to be silenced in a SIR2-dependent 

manner (Bryk et al., 1997; Smith & Boeke, 1997). Potentially, SIR-2 repression may be 

responsible for blocking transcription from cryptic RNA pol H promoters that overlap with 

RNA pol I promoters in rDNA, indeed, episomal rDNA repeats can switch to being 

transcribed by RNA pol II (Conrad-Webb & Butow, 1995). The on/off switching of 

expression of RNA p01 11-transcribed reporter constructs observed by Smith & Boeke 

(1997), led to a model suggesting that RNA p01 11-gene expression alternates reciprocally 



with the RNA p01 I activity of the rRNA gene of insertion at any particular time. Using 

cross-linking techniques, active and inactive rRNA gene regions have been found in the 

same cell, with the ratio between them varying according to growth phase. Active regions 

were devoid of nucleosomes, randomly distributed along rDNA and no single locus was 

consistently active (Dammann et al., 1993 & 1995). SIR2 may play a role in the regulation 

of the proportion of transcriptionally active and inactive rDNA units. For this, SIR2 would 

have to form a closed chromatin structure in only a subset of rDNA units. SIR2 may 

function by altering histone acetylation, an ability previously assigned to this protein at the 

telomeres and silent mating type loci (Braunstein et al., 1993). 

Associations between factors that are involved in transcriptional and recombinational 

repression and rDNA have not been established in other organisms. Indirect evidence, 

however, does exist in D.melanogaster, where it has been reported that the rDNA cluster on 

the X chromosome can act to sequester some component(s) of heterochromatin, thus acting 

as a position effect variegation (PEV) modifier (Spoffard & DeSalle: cited in Henikoff, 

1990). This implies that the repressive protein complexes involved in PEV are required at 

the rDNA in addition. Indeed, transpositions that move the rDNA into euchromatin cause 

variegation of nucleolus formation (Hilliker & Appels, 1982). However, rDNA transposed 

via a P-element into euchromatin was demonstrated to be transcriptionally active and able to 

form nucleoli, although rDNA replication, effects upon surrounding euchromatin and rates 

of recombination within the rDNA were not assessed, but were noted to be possible reasons 

for the conserved localisation and organisation of rDNA (Karpen et al., 1988). 

It is clear that human rDNA does contain acetylated nucleosomes (Covault & Chalkley, 

1980) and that two distinct chromatin structures coexist: one containing nucleosomes, 

representing the inactive genes, and one lacking a regular nucleosome organised repeat 

structure, representing the active genes (Conconi et al., 1989). In rat, regions apparently 

lacking a regularly spaced nucleosomal pattern appear to be associated with acetylated core 

histones (Mutskov et al., 1996). It has been noted in vertebrates, that changes in rate of 

rRNA synthesis are not accompanied by changes in the proportion of active verses inactive 

chromatin structures, as observed in S.cerevisiae. This has been assigned to the fact that 

gene activity is controlled at the level of transcription at available acetylated, 

non-nucleosomal genes by transcription factors, in vertebrates (Damniann et al., 1993). 

These may include rDNA-specific transcription factors such as, TTF-1 (transcription 
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terminating factor 1) (Langst et at., 1997). Interspersed acetylation may not be visible by 

immunofluorescence at the resolution studied here. However, it is still clear that, although 

the active rDNA may contain acetylated core histones, the environment surrounding each of 

these genes is hypoacetylated and must offer a challenge to the RNA p01 II transcriptional 

machinery. 

Methylation is also likely to have a role in rDNA transcriptional regulation (Reviews: Bird, 

1993; Eden & Cedar, 1994; Martienssen & Richards, 1995; Razin & Shemer, 1995). It was 

recently shown that in rat, methylation within rDNA occurs mainly at the enhancer and 

promoter regions of inactive rRNA genes and that methylation of a particular promoter site 

correlated well with the transcriptional activity of that gene (Stancheva et at., 1997). 

In complete contrast to my results, immunofluorescence with antibodies to H4 acetylated at 

each of the four lysine residues revealed the NORs of both broad bean and barley to be 

hyperacetylated throughout the entire cell cycle (Houben et at., 1996; Idei et at., 1996). 

Labelling, on both mitotic chromosomes and in interphase nuclei, corresponded with 

localisation of rDNA (Hizume, 1992; Rawlins & Shaw, 1990) and silver staining, which 

highlights actively transcribing regions (Hizume, 1992). Recently, a histone deacetylase 

specific for the maize nucleolus was identified and its function appears to be regulated in a 

growth rate-dependent manner by phosphorylation (Lusser et at., 1997). This suggests that 

acetylation does play a role in the transcriptional activity of rDNA in plants, but it seems 

likely to be a rather different role than that in vertebrates. 

9.2 Sites of attachment to the chromosome scaffold and nuclear 
matrix 

The chromosome scaffold (Sections 1.1 & 1.5. 1) has been used as a morphological term 

throughout this thesis to describe the residual framework which remains following 

protein extraction of metaphase chromosomes (Paulson & Laemmli, 1977; Earnshaw & 

Laemmli, 1983; Paulson, 1989) with salt or polyanions. The metaphase chromosome axial 

core can also be traced immunologically with antibodies to topo II (Earnshaw & Heck, 

1985; Earnshaw etal., 1985; Gasser et at., 1989) (Section 1.4.6) or Sd (Saitoh et al., 1994) 

(Section 1.4.7). The nature of the DNA sequences and proteins involved in tethering DNA 

to the metaphase chromosome scaffold are much debated and various operational 

techniques, most based on extraction of interphase nuclei, have been developed from which 
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several models for scaffold-loop metaphase chromosome folding have been suggested. In 

Section 4.2, three predominating models and their possible effects upon the metaphase 

packaging of human chromosomes 18 and 19 were outlined (Figure 4.1). 

AT-rich scaffold attached regions (SAR5), which were originally defined from US extracted 

nuclei (Mirkovitch et at., 1984; Gasser & Laemmli, 1986; Gasser et at., 1989; Laemmli et 

at., 1992), are predicted to be more concentrated in AT-rich G-bands than AT-poor R-bands. 

Craig et al. (1997) showed by FISH that attached DNA from US extracted nuclei and 

metaphase chromosomes hybridises preferentially to G-bands confirming that SARs are, 

indeed, most frequent in these regions. Thus, SARs would be more concentrated along 

chromosome 18 than 19 if they were involved in metaphase chromosome scaffold 

attachment, resulting in smaller DNA loop sizes (Saitoh & Laemmli, 1994a &b). In a 

second model, transcriptionally active sequences have been suggested to be permanent 

attachments to the chromosome scaffold (Cook, 1994 & 1995), with a concentration of 

attachments in gene-rich R-bands. Indeed, attached DNA from electroeluted nuclei 

preferentially hybridises to R-bands, consistent with transcriptionally active sequences being 

the predominant sites of attachment to the nucleoskeleton (Craig et al., 1997). In this 

instance there would be a concentration of attachments along chromosome 19 compared to 

chromosome 18, resulting in smaller DNA loop sizes. However, attached DNA from 

electroeluted metaphase chromosomes showed no biased hybridisation (Craig et at., 1997), 

suggesting that interphase nucleoskeleton attachments do not equate with metaphase 

chromosome scaffold attachments. In addition, FISH with a chromosome 18 CpG-island 

probe showed no preference for genes to be located along the axis of metaphase 

chromosomes (Section 4.4). 

A third model, where metaphase chromosome scaffold attachments are relatively evenly 

spaced and where G- and R-bands have similar DNA loop sizes, was supported by analysis 

of salt extracted human chromosomes 18 and 19 (Section 4.2). These two chromosomes 

expanded to the same extent with increasing salt concentration. Craig et at. (1997) 

hybridised attached DNA from salt extracted metaphase chromosomes to human metaphase 

spreads by FISH and showed no bias in distribution. These data argue against the above 

models of scaffold-loop metaphase chromosome packaging. 
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To build upon these findings, probes that cover >200Kb at various points along 

chromosomes could be used for FISH to extracted chromosomes and their paths traced to 

determine the exact extent of individual loops. Paints that determine specific banded 

regions, including telomeres and centromeres, could also be used to light up these regions on 

extracted chromosomes and provide a means to directly compare loop sizes in different 

environments along the length of a chromosome. Bickmore & Oghene (1996) used this 

approach to show that origins of replication associate with the scaffold of salt extracted 

human metaphase chromosomes. There is increasing evidence that origins of replication 

may be involved in attachment to both the metaphase chromosome scaffold and the 

interphase nuclear structural framework. In S.cerevisiae, autonomously replicating 

sequence (ARS) elements have also been shown to associate with a chromosome scaffold 

(Amati & Gasser, 1988 & 1990). The salt extracted interphase nuclear matrix has also been 

associated with putative origin of replication sequences (Vogeistien et at., 1980; Berezney 

& Buchholtz, 1981; Dijkwel etal., 1986; Jackson & Cook, 1986; Razin et al., 1986 & 1993; 

Sykes etal., 1988; Jackson, 1990 & 1991; Cook, 1991; Razin et at., 1993) (Section 4.2.3). 

The remnants of replication origin clusters have been observed to persist at the chromosome 

scaffold throughout the cell cycle in a number of species (Meng & Berezney, 1991; Adachi 

& Laemmli, 1992; Diffley et al., 1994; Sparvoli et at., 1994). Interestingly, a similarity 

between the size of DNA loops and number of replicons has been recognised in a wide 

range of species (Marsden & Laemmli, 1979; Buongiorno-Nardelli et al., 1982; Micheli et 

al., 1993; Tomilin etal., 1995). 

A library of operationally defined matrix attachment sequences, selected by their the ability 

to attach to isolated salt extracted interphase nuclear matrices, has been cloned from human 

chromosome 19 (Nikolaev et at., 1996). Only 50% of sequenced clones were shown to be 

AT-rich (>75% AT). Thus, although the cytogenetically visualised AT-queue suggests more 

attachments within G-bands, there could additionally be less AT-rich attachment sequences 

that balance the number of attachments to an even spacing in G-bands and R-bands. 

Alternatively, there may be additional attachments to a structural framework which resides 

outside of the chromosome axial core. Nikolaev et al. (1996) went on to map several of 

their clones by FISH to human metaphase spreads and determined that they were spread 

evenly along chromosome 19, but too few clones were mapped to make a general statement 

as to the distribution of such sequences. It would be interesting to now map these clones to 

290 



salt extracted chromosomes and nuclei and determine if they are bonafide attachments sites, 

however, they are very small (<1Kb) making this difficult. 

Salt extraction of interphase nuclei, similarly to metaphase chromosomes, resulted in the 

production of a residual nuclear matrix surrounded by loops of DNA (Section 7.4). I found 

that chromosome 18 was consistently localised to the DNA halo, while chromosome 19 

remained associated with the residual matrix. It appears that after extraction of soluble 

nuclear proteins with high salt, chromosome 18 is free to migrate out of the nucleus. 

Chromosome 19 remains relatively tightly bound to the nuclear matrix. Craig et al. (1997) 

showed that attached DNA from salt extracted interphase nuclei tended to hybridise to 

G-band regions. These results suggest that chromosome 18 and other U-band-rich regions 

retain their attachments to a chromosome axial core scaffold but loose any attachments to a 

nuclear structural framework. This may be related to the strength of different attachments. 

The opposing locations of chromosomes 18 and 19 in salt extracted nuclei were not altered 

by blocking RNA p0t I and II transcription with Actinomycin D (AD) (Section 7.4.2), 

suggesting that active transcription is not required for chromosome 19 to remain bound to 

the nuclear matrix. This dramatic difference in behaviour is in contrast to their similar 

higher order metaphase chromatin structure. 

Taking all of this together, one conclusion might be that there are both permanent and 

temporary sites of attachment involved in chromosome architecture throughout the cell cycle 

(Razin & Gromova, 1995; Jackson, 1991; Craig et al., 1997). The permanent sites are 

relatively evenly spaced along the length of chromosomes and may serve as anchors to an 

internal structure, maintaining chromosome morphology and identity. Exactly what 

sequences constitute such permanent attachments will remain a source of debate for some 

time. Are they defined by origins of replication, or some other evenly spaced sequence, 

such as boundary elements, or sequences of a specific nature, for example, rich in purines or 

pyrimidines? SARs are likely to be important sequences since they appear to be maintained 

throughout the cell cycle (Mirkovitch et al., 1988; Craig et al., 1997). These attachments 

may be anchored along the axial core of metaphase chromosomes in addition to other 

attachments within R-bands which serve to produce an even distribution. It is possible that 

the R-band attachments are temporary and are released at interphase to allow interaction of 

these gene-rich regions with a nuclear structural framework and associated transcriptional 

complexes. These and/or additional temporary attachments would be brought into play at 
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interphase, tethering chromosomes to an external nuclear structural framework and would be 

determined by regions actively being transcribed and/or replicated. In my studies I found 

that interphase attachments to the nuclear matrix do not require continued transcription 

(Section 7.5), suggesting that they are mediated by proteins other than RNA p0111. 

9.3 The organisation of interphase chromosome territories 

I t is now also widely accepted that chromosomes occupy separate interphase nuclear 

territories. Models have been proposed by a number of groups in which genes are 

located at the periphery of interphase territories (Manuelidis, 1990; Cremer et al., 1993; 

Zirbel et at., 1993; Kurz et at., 1996; Strouboulis & Wolffe, 1996). Zirbel et al. (1993) 

noted that a specific nascent transcript and general splicing components were situated 

outside of interphase territories and suggested the presence of channels connecting 

territories with nuclear pores (Blobel, 1985) (Figure 1.5). RNA transcript tracks extending 

from the nuclear interior to the nuclear periphery (Lawrence et at., 1989; Xing et at., 1993) 

are presumed to be moving along such channels. In an attempt to visualise these structures, 

mammalian cells were transfected with a recombinant vimentin gene containing a nuclear 

localisation signal. In these cells, vimentin was organised in large filamentous nuclear 

structures which remained outside of chromosomal domains and colocalised to RNA and 

protein previously shown to be outside of chromosomal domains (Bridger et at., in press). 

In support of this Kurz et al. (1996) located active sequences to the territory periphery and 

showed an indifference for the location of inactive genes. However, experiments in this 

thesis have sampled the positioning of genes using chromosome 18 CpG- and 

non-CpG-island probes within metaphase chromosomes (Section 4.4) and interphase 

territories (Section 7.5) and have revealed no bias for the chromosome periphery at either of 

these cell cycle stages. The number of genes studied by both Zirbel et at. (1993) and Kurz 

et at. (1996) was very small and, thus, may not be representative. By contrast, CpG-islands 

represent almost 60% of genes (Larsen et at., 1992). 

It is possible that the apparently even distribution of genes that I observed across the 

chromosome 18 interphase territory was as a result of the flattening of nuclei into 2-D, with 

genes located on the upper and lower territory surfaces masking a peripheral bias. 

Alternatively, it may be that there is an alternative arrangement of genes within interphase 

territories. It was noted by Eils et al., (1996) that the mammalian active X chromosome 
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(Xa) occupies a similar volume in the interphase nucleus to the inactive X chromosome (Xi) 

but that Xa has a more irregular, and thus larger, surface area than Xi. The increased 

number of invaginations was presumed to allow access to transcription components. The 

condensed appearance of G-band versus R-band regions (Yokota et al., 1997) and 

chromosome 18 verses chromosome 19 in 2-1) nuclei (Section 6.2) may be a result of a 

similar difference in shape between inactive and active regions on autosomes. The 

chromosome 19 territory was consistently visualised as a more "open" structure with gaps 

within the territory where no probe had hybridised (for example see Figure 6.6). It can be 

envisaged that channels run throughout the interphase domains of transcriptionally active 

regions, providing a means of transporting transcription and splicing complexes to, and 

RNA transcripts from genes. 

Is continued transcriptional activity required for chromosome 19 to remain decondensed 

during interphase? It has been previously shown that blocking RNA p01 II transcription 

results in the dispersal of interphase territories (Haaf & Ward, 1996). In Chapter 7, the 

territories of chromosomes 18 and 19 were analysed in human lymphoblastoid cells treated 

with AD to block transcription by RNA p01 I and H. No dispersal of territories was 

observed (Section 7.3). Haaf & Ward (1996) used different inhibitors of transcription to 

AD. These experiments used cells cytocentrifuged onto slides and it is possible that the 

break-down of territories was associated with dead cells. Subsequent experiments using 

cells grown upon slides so that dead cells are washed off and treating DRB, a-amanatin and 

AD resulted in no dispersal of territories (Personal communication: Dr. J.M. Bridger). In 

my experiments chromosome 18 territories remained similar as a percentage of the total 

nuclear area when compared to non-treated nuclei. In contrast, chromosome 19 territories 

appeared to be more condensed following AD treatment. These results suggest that 

transcriptional activity may be instrumental in establishing territory size. 

Brown et al. (1997) observed that Ikaros proteins, implicated in the organisation of genomic 

loci in B lymphocyte nuclei (Section 9.5.2), redistribute during the cell cycle. These 

proteins localise to 8-12 foci in GI nuclei, disperse into bead-like structures during S-phase 

and rearrange into 16-24 foci in G2. These data support dynamic nuclear reorganisation 

during DNA replication and are in accord with my observations of changes in chromosome 

territory area at different cell cycle stages (Section 6.5.1). The chromosome 19 interphase 

territory takes up its largest nuclear area during early S-phase, the stage at which this 
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chromosome is replicated. Chromosome 18 replicates late in S-phase and might be expected 

to show its largest percentage area at this stage of the cell cycle. There was no evidence that 

this was the case. However, this effect might be masked by the increase in nuclear size by 

late S-phase. By late S-phase the majority of chromatin has been duplicated and the nucleus 

is almost doubled in size. An increase in chromosome 18 territory area at this stage would 

not be as easily distinguished. Decondensation of chromatin during S-phase may be 

required to allow access to replication machinery. 

9.4 The positioning of interphase chromosome territories 

The data in this thesis support the concept of the mammalian nucleus as a highly 

organised and compartmentalised organelle. It was established in Chapter 6 that 

human chromosomes occupy defined and distinct territories at interphase and that the 

positioning of these territories relate to the characteristics of the particular chromosome. 

9.4.1 The location of transcription within the nucleus 

Nascent transcripts, RNA polymerase II and a variety of transcription factors and splicing 

components have been shown to be concentrated in 20-50 speckles in the nucleus, which are 

probably sites of storage (Fu & Maniatis, 1990; Spector, 1990; Wansink et al., 1993; 

Bregman et at., 1996; Pay et at., 1997; Grande et al., 1997; Zeng et at., 1997; Review: 

Singer & Green, 1997) (Section 1.6.2). A bias for speckles to be located more internally in 

the nucleus has been noted (Lawrence et at., 1993). However, the majority of transcription 

is considered by most to take place throughout the nucleoplasm. Localisation of active and 

inactive gene sequences by FISH has suggested a preference for the centre of the nucleus for 

genes active in the particular cell type examined, while inactive genes were found close to 

the periphery of the nucleus or nucleolus (Manuelidis & Borden, 1988; Lawrence et at., 

1988; Lawrence & Singer, 1991; Xing et at., 1995). By contrast, mapping of 

DNAse-sensitive sequences, considered to co-localise with transcriptionally active 

chromatin, have indicated a peripheral localisation for the majority of transcription 

(Hutchison & Weintraub, 1985; De Graaf et al., 1990; Krystosek & Puck, 1990; Park & De 

Boni, 1996). This gives a completely contrasting model for the localisation of transcription 

within the nucleus from the evidence described above. The reason for this discrepancy 

remains to be determined but may be an experimental artefact, since DNA at the periphery 

of the nucleus is likely to be most easily accessed by DNAse. 

294 



Some studies have revealed that the bulk of replication at the periphery of the nucleus 

occurs during mid-S-phase (Nakayasu & Berezney, 1989; Kill et al., 1991; O'Keefe et at., 

1992), while others have reported that this chromatin replicates in late S-phase (Fox et at., 

1991; Hutchison, 1995; Ferreira et at., 1997). These latter observations correlate with a 

peripheral localisation for transcriptionally inactive, and thus, late-replicating chromatin. 

In support of the positioning of transcriptionally inactive chromatin at the periphery of the 

nucleus, gene-poor, late-replicating chromosome 18 was shown to located predominantly in 

this compartment (Section 6.2). Reciprocally, gene-rich, early replicating chromosome 19 

was generally more centrally located in the nucleus. In addition, chromosome 1, with its 

large region of pericentric heterochromatin, also showed a bias for the nuclear periphery, 

while relatively gene-rich chromosomes 11 was more centrally positioned. A continuation 

of this study would be to compare the positioning of a gene-poor and gene-rich region from 

the same chromosome (for example, the adjacent G- and R-bands on the p-arm of 

chromosome 1). Using a total human CpG-island probe for FISH to nuclei has not revealed 

a bias in distribution (Personal communication: Dr. W.A. Bickmore). However, a whole 

chicken CpG-island probe did show a tendency to hybridise strongly in the centre than at the 

periphery of the nucleus (Personal communication: Ms. M. Gomez). In chickens, 

CpG-islands are strikingly concentrated to the microchromosomes (McQueen et at., 1996), 

which constitute 25% of genomic DNA and replicate earlier than the macrochromosomes 

(Schmid et at., 1989). 

9.4.2 How is specific territory positioning orchestrated? 

Positioning of interphase nuclear territories may be dependent upon a number of 

chromosome properties: 

• Transcriptional activity 

• Levels of core histone acetylation (Section 1.4.1.3) 

• Presence of specific sequence motifs that bind particular proteins 

• General base composition (Section 1.3. 1) 

• Distribution of interspersed repeats (Section 1.3.3) 

Treatment of normal human nuclei with AD and TSA did not result in a change in the 

positioning of chromosomes 18 or 19 (Section 7.2). Therefore, it is likely that positioning 
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of chromosomes is independent of actual transcriptional activity or levels of core histone 

acetylation. Alternatively, once a chromosome is in a particular position, the constraints of 

the nuclear matrix may prevent any gross change. This is supported by the fact that 

chromatin of the interphase nucleus is relatively immobile (Robinett et al. 1996; Abney et 

al., 1997; Marshall etal., 1997b). 

The shapes and orientations of territories may prove interesting in establishing a mechanism 

for positioning. Using telomere-specific probes, it has been established that chromosome 18 

generally abuts the nuclear periphery along its length (Personal communication: Ms. S. 

Boyle). The telomeres were rarely found between the chromosome territory and the edge of 

the nucleus, suggesting that telomeres are not responsible for the peripheral nuclear 

positioning of this chromosome. In addition, Broccoli & Cooke (1994), showed that the 

targeting of telomeric sequences to an interstitial chromosome site did not alter the 

positioning of that site in the interphase nucleus. However, in S.cerevisiae, telomeres 

appear to play an important role in nuclear compartmentalisation (Section 9.5.2). 

The study of a reciprocal translocation between chromosome 18 and 19 showed that 

sequence could apparently influence territory positioning (Section 7.2). The translocated 

p-arm sections (-20Mb) were orientated towards the positions occupied by their structurally 

normal homologues and, although not significantly, did influence the positioning of the 

entire territory with respect to the nuclear periphery. Unfortunately, no unfixed material has 

yet been obtained for this, or any other chromosome 18 and 19 translocations. A mouse 

translocation between syntenic chromosomes may be of use. The location of introduced 

yeast artificial chromosomes originating from human chromosome 18 or 19 might prove to 

be a means of determining the amount and type of sequence necessary to influence 

positioning. Since it appears that the physical proximity of different chromosomes in 

interphase nuclei can be inferred from the frequency of translocations seen between them 

(Ferguson-Smith & Handmaker, 1961; Kaplan et al., 1993; Qumsieyeh, 1995), a 

comprehensive survey of naturally occurring human chromosome translocations would be 

interesting. 

In a human-rodent hybrid background chromosome 18 did not show a bias for the nuclear 

periphery (Section 6.4.4). It may be that the sequences which influence human chromosome 

positioning are not recognised by the rodent positioning proteins. However, there was 
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evidence for a bimodal distribution of positions, with some territories being more peripheral 

and others being more central in the nucleus (Figure 6.15b & c). In the hybrid cell line 

(GM1 1010) used for these studies, chromosome 18 had been previously shown to be lacking 

part of the q-arm (Section 3.2). It is possible that within this deleted region specific 

sequences required for peripheral positioning are located. Initially this experiment should 

be repeated using an 18q-specific probe to determine the positioning of the complete and 

incomplete chromosomes. By tagging the chromosome 18 with a selectable marker, it may 

be possible to introduce the chromosome into normal human nuclei and assess its ability to 

reposition itself at the nuclear periphery. Analysis of human nuclei with different 

chromosome 18 deletions might prove informative. The observed bias orientation of the 

translocated tip of the chromosome 18 p-arm described above, argues that sequences on I 8q 

are not solely responsible for directing the positioning of this chromosome. Interestingly, 

territory area (Section 6.4.4) and levels of acetylation (Section 5.4) for both chromosomes 

18 and 19, appeared to remain similar to observations in normal human nuclei. However, 

replication timing appears to be altered, with chromosome 18 showing an earlier replication 

time in its hybrid background than expected (Personal communication: Dr. W.A. 

B ickmore). 

What proteins may be involved in nuclear territory positioning? The inner nuclear 

membrane has been closely associated with peripheral chromatin and it seems that 

chromosomes contact the nuclear membrane at several points along their length (Mathog et 

al., 1984; Glass & Gerace, 1990; Belmont etal., 1993; Taniura et al., 1995; Marshall et al.,. 

1996; Review: Gerace & Burke, 1988). The proteins of the inner nuclear membrane include 

the lamin B receptor (LBR) (Worman et al., 1988; Ye & Worman, 1994). Recently, LBR 

has been shown to be a major chromatin docking protein (Pyrpasopoulou et al., 1996; CoIlas 

et al., 1996), which specifically interacts with chromodomain-containing human 

homologues of the HP1 protein (Ye & Worman, 1996 & 1997). Immunolocalisation of LBR 

to Chinese hamster chromosome spreads shows colocalisation with G-bands (Pyrpasopoulou 

et al., 1996), possibly mediated by its interaction with HPI-like proteins. Based upon this 

observation, human chromosome 18 is likely to have more contacts with LBR and more 

contacts with the inner nuclear envelope and, thus, be positioned more peripherally than 

chromosome 19. This mechanism would also account for the peripheral bias of 

chromosome 1 which, with its large pericentric heterochromatin region, is likely to be 

associated with HP1-like proteins. Such a mechanism has been suggested to act in 
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D.melanogaster. The YA (young Arrest) protein is an essential component of the nuclear 

lamina, which lines the inner nuclear membrane, and associates with chromatin, 

preferentially with the interbands of polytene chromosomes (Lopez et al., 1997). 

YA-deficient eggs and embryos show abnormalities in chromosome condensation 

suggesting that YA may have a role in organising chromatin (Liu et at., 1995). However, 

since YA mutant extracts are capable of decondensing chromatin and of supporting nucleus 

formation, it appears that this protein is primarily for the maintenance of nuclear 

organisation required during early development (Lopez et at., 1997). 

In human nuclei, Bridger et al. (1993) observed foci and fibres containing Ian -tins A and C 

distributed throughout the nucleus at GI. As cells progressed towards S-phase these internal 

lamina structures disappeared. It was suggested that such structures preferentially 

polymerised to heterochromatin and migrated to the nuclear periphery during GI, moving 

heterochromatic regions with them. Human chromosome 18 shows its peripheral bias early 

in 01 and is likely not to rely solely on such a mechanism for its positioning (Section 6.5). 

Peripheral positioning of human chromosome 18 may be attained at the moment of nuclear 

envelope formation. The arrangement of chromosomes upon the metaphase plate appears to 

be very precise and ordered (Naegele et at., 1995). Positioning may begin to be established 

as early as metaphase, anaphase or telophase and may be determined from FISH studies at 

these individual stages of mitosis. 

Using the system devised by Robinett et at. (1996), in which a vector containing the 

Escherichia coli lac operator region is integrated into a specific region and a GFP-lac 

repressor fusion protein is used to follow the fate of that region in live analysis, it might be 

possible to tag chromosomes 18 and 19 specifically. 

The Ki-67 protein is nucleolar for most of the cell cycle and coats mitotic chromosomes 

(Gerdes et al., 1984; Verheijen et al., 1989) (Section 1.5.4). In human early GI nuclei, 

Ki-67 has been shown to be associated with satellite DNA, including that at centromeres, 

telomeres, heterochromatin and rDNA (Bridger et al., 1997). This protein is not required 

for the existence of a functional nucleolus but is required for cell cycle progression. A 

possible explanation for the high affinity of Ki-67 with satellite DNA is that it directs these 

regions, particularly rDNA with which it remains associated throughout the entire of the cell 

cycle, to the nucleolus. Observations of chromosome territories in 3-D nuclei suggest that 



for a particular territory there is an association with either the nuclear envelope or the 

nucleolus (Section 6.6) (Personal communication: Dr. J.M. Bridger, University of 

Heidelberg). Invaginations of the nuclear envelope have been observed to penetrate 

mammalian nuclei of many cell types (Fricker et at., 1997), providing additional possible 

sites of chromatin attachment. It is plausible that there are several organising proteins with 

the affinity to bind to particular types of chromatin and to move this chromatin to specific 

regions of the nucleus. For a particular chromosome there may be a degree of competition 

between proteins destined for different locations and a compromise position is eventually 

reached by the end of G1. Human chromosome 18, for example, could be immediately 

associated with inner nuclear lamina proteins following mitosis due to LBR association. Ki-

67 may bind to the centromeres and telomeres and attempt to pull this chromosome from the 

periphery of the nucleus. The LBR and inner nuclear membrane would be the stronger force 

in this instance. Human chromosome 19, on the other hand, probably has few associations 

with LBR and the influence of Ki-67 may pull this chromosome centrally, hence the 

observation of juxtaposition to the nucleolus in 3-D nuclei (Section 6.6) (Personal 

communication: Dr. J.M. Bridger). Since Ki-67 is only present in proliferating cells (Gerdes 

et al., 1984; Verheijen et at., 1989), observations of chromosome territory positions in 

resting cells might prove interesting. It is likely that many proteins involved in nuclear 

organising have yet to be identified (Section 9.5). 

Human X chromosome inactivation as a mechanism of dosage compensation was introduced 

in Section 1.4.8. The XIST gene is expressed only on the inactive X chromosome (Xi) 

(Penny et al., 1996; Komura et al., 1997) and encodes an RNA which coats Xi, solely and 

entirely, at interphase (Brown et at., 1992; Clemson et al., 1996; Lee et al., 1996). XIST 

expression is required for initiation but not maintenance of inactivation (Brown & Willard, 

1994). Xi is associated with heterochromatic staining properties (Barr & Bertram, 1949; 

Kanda, 1973) and it is well established that this chromosome, in the form of the Barr body, 

is positioned close to the nucleolus or at the periphery of the female interphase mammalian 

nucleus (Barr & Bertram, 1949; Dyer et al., 1989; Belmont et al., 1986). Lee et al. (1996) 

introduced murine Xist sequences onto autosomes and induced dosage compensation in male 

cells. Interestingly, Xist RNA in transgenic male fibroblasts frequently occupied a 

peripheral nuclear position, thus resembling Xist RNA localisation in normal female 

fibroblasts. Whether Xist RNA directly influences the positioning of a chromosome has yet 
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to be established. It is possible that peripheral positioning is a requisite for inactivation of a 

chromosome. 

9.5 The purpose of nuclear compartmentalisation 

M ammals possess a highly complex genome, with 60-80,000 genes estimated to exist 

(Review: Bird, 1995). Spurious transcription from inappropriate genes and non- 

gene DNA could seriously effect the development and integrity of an organism, and it is 

therefore crucial for there to be accurate control of gene expression. Methods of controlling 

gene expression have been established throughout the entire process of protein production 

from transcription initiation and termination, mRNA processing and stability to translation. 

Mechanisms involved in the control of transcriptional initiation occur at all levels of 

chromosome structure. DNA methylation (Section 1.4.5), nucleosome positioning, and 

histone variants and modifications (Section 1.4.1) have all been demonstrated to play an 

important role in determining transcriptional activity. At the next level, chromatin 

remodelling protein complexes come into play, for example Polycomb and trithorax group 

proteins (Section 1.4.2). Nuclear compartmentalisation offers another level of 

transcriptional control at the highest level of chromatin packaging. 

9.5.1 Silencing by proximity to heterochromatin in cis 

There is an increasing awareness that the chromosomal and nuclear context of a gene can 

influence its activity. PEV occurs when a euchromatic gene is placed in the vicinity of 

heterochromatin, resulting in a variable but clonally inherited pattern of expression. This 

phenomenon is most generally considered to occur by the spreading of the heterochromatin 

associated repressive protein complexes, altering the structure of neighbouring euchromatin 

(Reviews: Karpen, 1994; Wallrath & Elgin, 1995). In D.melanogaster this spreading, which 

emanates from pericentric or telomeric heterochromatin, can cover as much as 2Mb. It has a 

gradient effect, with genes closest to the heterochromatin being most adversely affected. 

Extent of spreading appears to be controlled in a tissue-specific and developmental stage-

specific manner (Lu et al., 1996). 

The yeasts, S.cerevisiae and S.pombe, possess two mating-type loci, encoding proteins 

involved in establishing alternative mating kinds. 	These genes are maintained 

transcriptionally silent, awaiting recombination with a permissive locus. 	The 
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chromodomain present in D.melanogaster Pc and HP1 is also shared by the S.pombe 

protein, Swi6, which is implicated in repression at the mating-type loci, probably by 

heterochromatin-like remodelling (Lorentz et al., 1994). An increasing number of genes 

involved in repression of these loci are being established. In S.cerevisiae, mutations in 

several genes, including the SIR genes (ilent information regulator) (Rifle & Herskowitz, 

1987; Review: Rivier & Rine, 1992), lead to de-repression of the mating-type loci. Two of 

the SIR proteins, Sir3p and Sir4p, have been shown to interact with H3 and H4, which 

would enable them to organise nucleosomes into a transcriptionally inactive conformation 

(Hecht et al., 1995; Review: Grunstein et at., 1995). Significantly, mutations at the 

N-termini of H3 and H4 cause de-repression at S.cerevisiae telomeres and the mating-type 

loci (Kayne et al., 1988; Thompson et al., 1994b). 

S.pombe telomeres and centromeres, and S.cerevisiae centromeres have been shown to exert 

a PEV effect on genes placed in close proximity (Gottschling et al., 1990; Renauld et al., 

1993; Allshire et at., 1994; Nimmo et al., 1994). Telomeric PEV in S.cerevisiae is 

accompanied by inaccessibility of DNA to the DNA-modifying protein, DAM 

methyltransferase (Gottschling, 1992). Mutations in several of the genes involved in 

silencing of the mating-type loci have also been shown to alleviate PEV (Aparicio et at., 

1991; Nimmo et al., 1994; Allshire et at., 1995). Mutations which de-repress centromeric 

regions in S.pombe resulting in increased chromosome loss, have led to the suggestion that 

heterochromatin may be a requirement for a fully functional centromere (Allshire et at., 

1995). Over-expression of Sir2p and Sir3p in S.cerevisiae, also results in chromosome loss, 

again, possibly due to defective centromere function (Holmes et al., 1997). The SIR 

proteins have also been shown to be involved in DNA repair (Tsukamoto et al., 1997). 

Clearly, silencing is not the only role of these proteins, their function is also essential for 

chromosome stability and integrity. 

D.melanogaster HP1 is associated with constitutive heterochromatin and has 

dosage-dependent effects on PEV (Eissenberg et al., 1992). The protein contains a 

chromodomain (Platero et al., 1995), but has also been shown to bind directly to DNA 

(Sugimotoet al., 1996). In embryos lacking functional HPI, abnormalities in chromosome 

morphology and segregation occur, consistent with a defect in chromosome condensation 

(Kellum & Alberts, 1995). At metaphase and anaphase, in addition to heterochromatin 

association, a considerable fraction of the protein is dispersed around the segregating 
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chromosomes, however, the purpose of this is unclear (Kellum et al., 1995). Interestingly, 

D.melanogaster HP! has been demonstrated to associated with the origin recognition 

complex (ORC) (Pak et al., 1997). Various mutations in ORC subunits have been isolated 

that separate replication and silencing functions (Fox et al., 1995) indicating that ORC may 

play a role in organising heterochromatin formation aside from its role in replication. 

Targeting Sir!p directly to the mating-type loci bypasses the requirement for ORC binding 

suggesting that ORC may act to recruit repressor proteins (Fox et al., 1997). ORC may 

couple the end of replication with the onset of chromatin condensation and may regulate 

which regions will decondense at GI. 

PEV in mammalian cells has been described at the centromere in a murine cell line (Butner 

& Lo, 1986). PEV-like phenotypes have also been observed in murine X-autosome 

translocations, due to the spreading of X-inactivation to the autosome segment (Russell & 

Montgomery, 1970). Transgenes have been recorded to be subject to PEV following 

insertion close to centromeres (Al-Shawi et at., 1990; Robertson et al., 1995; Dobie et al., 

1996; Festenstein et al., 1996). Locus control regions (LCR5) are DNA sequences that 

direct high-level expression of a transgene independent of site of integration (Reviews: 

Epner et al., 1992; Felsenfield, 1992). These regions have been isolated from several genes 

and are often associated with enhancers. LCRs are considered to act by ensuring an open 

chromatin configuration, increasing the probability of forming a stable transcriptional 

complex and thereby blocking the encroaching heterochromatin protein complexes 

(Grosveld et at., 1987; Festenstein et al., 1996). The exact mechanism of LCRs has yet to 

be elucidated. 

There are now several naturally occurring murine and human mutations that are considered 

to be the result of position effects. Chromosomal rearrangements and deletions outwith a 

gene have been implicated in inappropriate repression or activation of that gene and the 

cause of the associated mutant phenotype. Such rearrangements can be up to several Kb 

from the gene in question, located either upstream or downstream and present in both 

somatic and germline cells (Reviews: Bedell et al., 1996; Milot et at., 1996). One such 

example in humans involves patients suffering from the eye disorder aniridia, usually 

associated with mutations in the PAX6 gene. Several pedigrees have been identified where 

no mutations have been found within the PAX6 gene but linked rearrangements have been 

located between 20 and 150Kb 3' of the gene (Fantes et al., 1995; Danes, 1996). However, 
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lack of expression may be the result of the disruption of a long range regulatory element in 

these cases. 

Interestingly, there are genes which reside in the heterochromatic regions of D.melanogasrer 

and only function correctly when in such an environment (Review: Gatti & Pimpinelli, 

1992). It is very possible that similar genes exist in other organisms. 

9.5.2 Silencing by proximity to heterochromatin in trans 

PEV apparently occurs in trans as well as in cis (Review: Marshall et al., 1997a). In 

D.me!anogaster, there is a dominant null mutation of the brown eye pigment gene (bw') 

caused by the insertion of a block of heterochromatin which misdirects this gene to associate 

with pericentric heterochromatin. Furthermore, as a result of homologous pairing, the 

wild-type allele localises to pericentric heterochromatin, providing an explanation for the 

variegated inactivation of this gene (Henikoff & Dreesen, 1989; Dreesen et al., 1991; 

Dernburg et al., 1996; Review: Henikoff, 1997). The silencing of bw' and the association 

between the locus and pericentric heterochromatin is disrupted by suppressors-of-PEV 

mutations (Csink & Henikoff, 1996). 

The telomeres of S.cerevisiae cluster at the periphery of the nucleus (Review: Gilson et al., 

1993) in association with the SIR3 and SIR4 products (Gotta et al., 1996), which are 

required for telomeric silencing (Cockell et al., 1995). Disruptions of SIR3 and SIR4 result 

in loss of telomere-nuclear membrane associations and cause derepression of telomeric and 

mating type silencing (Palladino et al., 1993). When a reporter gene flanked by two silencer 

sequences was placed >200Kb from a telomere the gene was not silenced. Repression was 

restored by creation of a new telomere 10Kb from the gene or by overexpression of SIR3 

and/or SIR4 (Maillet et al., 1996). Sir3 and Sir4 are dispersed throughout the nucleus when 

overexpressed resulting in the conclusion that for efficient silencer function sequences 

require proximity to pools of SIR proteins achieved by proximity to telomeres or 

delocalisation of SIR proteins (Review: Marcand et al., 1996). There is no evidence that 

human telomeres are heterochromatic and, indeed, they do not to occur in clusters but are 

dispersed randomly throughout the nucleus (Luderus et al., 1996). 

There is recent evidence showing the colocalisation of centromeric a-satellite DNA, HPI 

and specific inactive but not active genes in mouse B lymphocyte nuclei (Brown et al., 
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1997). Ikaros proteins also localise to these interphase heterochromatin domains and have 

been postulated to be "recruiters" of lymphoid-associated genes causing repression of 

specific genes essential to allow correct lymphocyte development. This creates a precedent 

for the role of nuclear positioning in the control of gene expression in mammals. 

The periphery of the human nucleus may be a compartment associated with repression. 

Thus, the positioning of particular chromosomal domains to this region may be a 

requirement for, or a result of transcriptional repression. In accordance with this, 

transcriptionally inert chromosome 18 was predominantly observed at the periphery of the 

human nucleus, as was chromosome 1 with its large region of pericentric heterochromatin 

(Section 6.2.4). It may prove informative to assess the types of genes located on 

chromosomes 18 and 19. It might be expected that chromosome 18 mainly harbours genes 

which are cell type-specific or have limited developmental timing of expression and require 

strict transcriptional regulation. 

9.5.3 Replication timing 

Replication timing is closely linked to transcriptional activity (Goldman et al., 1984; Hatton 

et at., 1988; Reviews: Holmquist, 1987; Goldman, 1988; Villarreal, 1991) (Section 1.2.4). 

G-bands and chromosome 18 replicate late in S-phase while R-bands and chromosome 19 

replicate early. The genes of the inactive X chromosome generally shift to become late 

replicating when compared to their active X chromosome alleles (Gartler et al., 1992; Riggs 

& Pfiefer, 1992; Hansen etal., 1996). 

Chromosomal architecture has been shown to determine the sites of initiation of replication. 

When Chinese hamster ovary (CHO) cells were permeabilised with digitonin preserving the 

nuclear membrane, X.laevis egg extracts initiated replication at sites indistinguishable from 

normal CHO nuclei, however, CHO chromatin reconstructed in vitro extracts initiated 

replication at non-specific sites (Gilbert et at., 1995; Wu & Gilbert, 1995; Lawlis et at., 

1996). Because of the physical differences between active early replicating and inactive late 

replicating genes, it is possible that by default replication begins at the most accessible sites. 

In addition, it has been suggested that when active genes are brought into contact with the 

nuclear matrix-associated transcription complexes, they are also brought into the proximity 

of replication complexes (Hassan & Cook, 1994). Hassan et al. (1994) found that both 

nascent RNA and DNA overlap, particularly early in S-phase, but also during mid and late 
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S-phase. This is surprising since, as previously noted, transcriptionally inactive chromatin is 

replicated during mid and late-S-phase. Wansink et al. (1994) showed that nascent RNA 

and DNA did not colocalise more than would be expected if the two were unrelated, 

concluding that transcription was temporarily halted in regions undergoing replication. The 

cause of these discrepancies is unclear. 

Alternatively, origins of replication could be tagged with temporal information in the form 

of specific proteins or modifications. For example, hyperacetylation may mark a gene for 

early and hypoacetylation for late replication. However, this seems unlikely since 

deacetylation of the mammalian female inactive X chromosome occurs following a shift to 

late replication (Keohane etal., 1994) (Section 1.4.8). 

Finally, it might be the positioning of particular origins of replication within the nucleus that 

determine their timing of replication. Sites of replication have been demonstrated to be 

scattered throughout the nucleus during S-phase but with the bulk of replication at the 

periphery of the mammalian nucleus occurring during mid-S-phase (Nakayasu & Berezney, 

1989; Kill et al., 1991; O'Keefe etal., 1992). However, others have reported that chromatin 

at the periphery of the nucleus replicates in late S-phase (Fox et al., 1991; Hutchison, 1995). 

Ferreira etal. (1997) labelled a variety of mammalian cell types at defined stages of S-phase 

by pulse incorporation of halogenated deoxynucleotides and showed clear patterns in 

Chinese hamster fibroblasts in which late replicating DNA was peripherally located in the 

nucleus, proposing that late-replicating G-band regions were generally positioned there. 

Interestingly, this nuclear organisation was also determined in micronuclei which contain a 

variable chromosome number. In addition, this pattern of replication organisation was 

established in the presence of transcription and translation inhibitors, consistent with my 

observations of unaltered chromosome territory positioning in nuclei from cells treated with 

AD (Section 7.3) and suggesting that positioning is not an effect of active transcription. 

9.5 New nuclear and chromosomal proteins 

To study the nuclear positioning of different regions of genomic DNA it will be 

important to define further nuclear and chromosomal proteins. 
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To pursue biochemical approaches to the regulatory mechanisms involved in the assembly 

of chromatin and nuclei, X.laevis egg extracts have proved to be a valuable tool (Review: 

Almouzni & Wolffe, 1993). The manipulation of egg cell-free preparations through 

fractionation, depletion and supplementation has led to the identification of many new 

proteins and DNA sequences involved in chromosome structure. For example, the 

importance of SARs in chromosome structure was supported by the fact that the assembly of 

condensed chromosomes in X.laevis egg extracts was inhibited by the addition of proteins 

that bind to AT-rich DNA (Strick & Laemmli, 1995; Review: Swedlow & Hirano, 1996). 

The formation of nuclei in vitro is not restricted to X.laevis chromatin, and successful 

reconstitution has been obtained using human chromatin (Brown et at., 1987). 

Chapter 8 describes an attempt to use monoclonal antibody production to identify new 

chromosomal proteins. This approach was not successful and the reasons and suggested 

improvements for this strategy are discussed in Section 8.6. 

A new and potentially very productive method of identifying new chromosomal and nuclear 

proteins involves the use of gene trap mutagenesis. When reporter constructs are transfected 

into cells in culture they potentially integrate randomly into each genome (Skarnes et at., 

1985). Tate et al. (personal communication), used a 3-galactosidase reporter construct 

transfected into mouse embryonic stem cells. Screening for nuclear f3-galactosidase enzyme 

activity by X-Gal staining was followed by further localisation of potentially interesting 

gene trap products, in nuclei and on metaphase chromosomes, by immunofluorescence with 

antibodies to -galactosidase. Several novel chromosomal proteins, amongst other 

interesting nuclear proteins, have been identified and cloned and await further 

characterisation. 
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