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Abstract 

Solitons have been proposed as information carriers in next generation fibre optic 

networks. As the stable waveform in nonlinear optical fibres, solitons are resistant 

to a wide variety of perturbations from fibre effects, optical devices and other 

solitons. These fibre effects include fibre loss which is due to scattering and 

absorption phenomena. This fibre loss must be compensated for by some form 

of amplification and filtering, preferably all-optical in nature. It is of interest to 

determine the evolutionary behaviour of solitons in fibre optic networks containing 

the above mentioned optical devices and fibre properties. 

The constituent equation modelling pulse evolution in a nonlinear optical fibre 

is the nonlinear Schrodinger (NLS) equation. The NLS equation possesses an 

exact inverse scattering solution. However the evolution to the steady state from 

an initial pulse is governed by an integral equation and so is difficult to determine. 

It is this evolutionary behaviour which is of interest. In addition, modelling 

the above mentioned optical devices and fibre effects requires adding perturbing 

terms to the NLS equation. These perturbed NLS equations do not possess 

inverse scattering solutions and so analytical solutions do not exist. Both of 

these factors lead to the use of approximate and computational techniques to 

analyse evolutionary pulse behaviour of perturbed NLS equations. 

Using conserved quantities of the NLS equation, ordinary differential equa-

tions describing pulse parameters can be derived. Key to the use of this method 

is the choice of trial function substituted into the conservation and moment equa-

tions. The trial function used in the present work is based upon a soliton-like 

pulse with independently varying amplitude and width and a term describing low 

frequency radiation in the vicinity of the pulse. The effect of dispersive radiation 

shed by the pulse as it evolves is also coupled to these evolution equations. These 

approximate evolution equations are solved numerically and compared to numer-

ical solutions of the constituent NLS equation describing the system. Where 

available, comparisons are also made with previous analytical and computational 

work. The optical devices and fibre effects modelled in this thesis are fibre loss and 

amplification, sliding-frequency filters and fibre compressors. Good agreement is 

obtained using the above analysis technique. 
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Chapter 1 

Introduction 

The propagation of light in a uniform, monomode, polarisation-preserving, non-

linear optical fibre in the anomalous group-velocity dispersion regime is governed 

by the nonlinear Schrödinger (NLS) equation [19]. A monomode fibre supports 

two degenerate fibre modes that are polarised in orthogonal directions. In an 

ideal, perfectly cylindrical optical fibre, these two modes do not couple. However, 

in a real fibre, where the geometry is not perfectly cylindrical, the two polarisa-

tion states mix, leading to two coupled NLS equations describing pulse evolution. 

This property is defined as birefringence. Assuming perfect cylindrical symmetry 

allows us to neglect this birefringence and write the NLS equation governing light 

in an optical fibre, in a nondimensional form, as the single partial differential 

equation 

3u 	1,9'u
i— + 	+ 	=  

[2, 19]. Here u is the complex amplitude of the light, z is the normalised spatial 

variable along the length of the fibre and t is the normalised time in a frame of 

reference moving with linear group velocity. The time t has also been normalised 

by the characteristic time to, which is related to the pulse width. The distance 

z has been normalised by the dispersion distance z0 , which is a length scale over 

which pulse parameters evolve. The dispersion distance z0  and the characteristic 

time to  are related by 

to 
zo  = —j, 	 (1.2) 

where k" is the group velocity dispersion at the carrier frequency. 

The second term in the NLS equation (1.1) represents the dispersion of the 

group velocity, while the the third term originates from the nonlinear dependence 

of the refractive index of glass on the strength of the electric field. The refractive 

index of the glass depends on the amplitude squared of the electric field of the 
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light, the so-called Kerr nonlinearity. The group velocity dispersion acts to spread 

a pulse, while the Kerr nonlinearity acts to trap the wave energy in a localised 

area. Conservation of energy requires that the pulse width contract as the electric 

field grows in intensity. Under certain circumstances the pulse broadening, due to 

dispersion, and the pulse contraction, due to the nonlinear effect, balance exactly, 

forming a stable pulse. This pulse is called a soliton and the NLS equation (1.1) 

has the exact soliton solution 

= 	sech(t - TO  - Vt) exp (i(712 - V 2)z + iVt + i8). 	(1.3) 

Here 17, the soliton amplitude, V, the soliton velocity (which is a deviation from 

the group velocity), To, the initial time and the phase, 8, are all constant. Setting 

TO = V = 0 centres the reference frame moving with the soliton. 

1.1 	Soliton as Information Carrier 

Hasegawa and Tappert [18], working with computer simulations of soliton stabil-

ity, were the first to conjecture that an optical pulse in a nonlinear optical fibre 

can form a soliton. The previous year Zakharov and Shabat [57] had published 

a paper on the integrability of the NLS equation (1.1) and showed that the NLS 

equation possesses an exact inverse scattering solution. This verified the conjec-

ture of Hasegawa and Tappert concerning the propagation of stable, nonlinear 

waves in optical fibres. However, at the time, experimental validation of soli-

ton transmission in optical fibres was impossible for two reasons. Firstly, fibre 

dissipation was far too high for the transmission of solitons in an optical fibre, 

and secondly, and more fundamentally, no method existed for the generation of 

solitons in optical fibres. It took several years before an optical fibre with low 

enough fibre loss was developed. Simultaneously, the development of a suitable 

laser source by Mollenauer and Bloom [40] enabled both of these deficiencies to be 

remedied. In 1980, Mollenauer et al. [43] experimentally verified optical soliton 

transmission for the first time. With the experimental validation of soliton trans-

mission in optical fibres, it became feasible for their use as information carriers in 

fibre optic networks. Fibre optic systems based on linear wavetrains exhibit sig-

nificant distortion owing to dispersion. This pulse broadening is combated by the 

periodic use of electronic repeaters which reshape the incoming pulse. However 

repeaters are the major cost in fibre optic systems and are the limiting factor 

in the transmission rate due to the response time of the electronics. Solitons, 

however, due to the dispersion being compensated by the nonlinear effects, do 

not require electronic repeaters and so an all-optical communication system is a 



possibility. 

However, work still remains to be done before a soliton based fibre optic system 

can come into widespread use. While solitons are not degraded by the dispersion 

of the glass, they are still affected by fibre loss. As this is an inherent property 

of the glass fibre, it must be compensated for. Hasegawa [17] proposed using the 

Raman gain of the fibre itself for amplification purposes. In Raman amplification, 

a high frequency amplifying pump wave is transmitted down the fibre simulta-

neously with the lower frequency carrier wave. Higher frequency photons from 

the amplifying pump wave are annihilated to create phonons and photons at the 

lower frequency of the carrier wave. Properly tuned, Raman gain can perfectly 

compensate for the fibre loss, creating a lossless transmission window for soliton 

propagation. However Raman gain has drawbacks in that the amplifying Raman 

pump wave requires large amounts of power. Raman amplification can also lead 

to difficulties when used with a multi-channel wavelength division multiplexing 

(WDM) system. 

Another problem concerning amplification was discovered by Gordon and 

Hans [14]. They noticed that amplification of a soliton also amplified the noise 

in the vicinity of the soliton. This noise amplification can lead to random fluctu-

ations in the soliton position and hence in the arrival time of the solitons, thus 

degrading system performance. Two discoveries helped to overcome the limita-

tions due to Raman amplification and the random walk of Gordon and Haus. The 

development of erbium doped fibre amplifiers (EDFA's) [35] overcame the difficul-

ties introduced by Raman amplification. EDFA's, consisting merely of a section of 

fibre optic cable doped with rare-earth elements, required less power than Raman 

amplifiers and were suitable for use with multi-channel WDM systems. With the 

introduction of the concept of sliding-frequency filters (SFF's) [41], which help 

mitigate the effects of the Gordon-Haus jitter, much of the framework was in 

place for soliton based optical networks. 

In addition to the above devices and fibre effects which are necessary for 

stable pulse transmission, other fibre optic devices have been proposed for the 

enhancement of fibre optic system performance. One such device, discussed in the 

present work, is a fibre compressor. A fibre compressor, in this work, is defined 

as a section of dispersion decreasing fibre (DDF). DDF is a section of fibre in 

which the dispersion decreases down the length of the fibre. This decrease may 

take place in a continuous or discrete fashion. Sections of DDF can be used for 

two purposes. Firstly, when a sinusoidal input wave is passed into a section of 

DDF, it evolves into a train of soliton-like pulses. In this manner DDF may be 

used as a means of soliton generation [31, 54]. Secondly, a pulse train travelling 
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in a section of DDF will decrease in width due to the decreasing dispersion of the 

fibre. As a result significant pulse compression, and hence data transfer rate, can 

be achieved [27, 30]. 

1.2 Analysing Pulse Behaviour 

Work still remains in obtaining an accurate model of pulse evolution in an optical 

network incorporating various devices and fibre effects, such as those discussed 

previously. As a pulse evolves in a nonlinear optical fibre, with or without the 

effects of fibre loss or optical devices, a layer of low frequency radiation accumu-

lates underneath the pulse. As the pulse evolves, attempting to reach the soliton 

steady state, it sheds dispersive radiation which is fed through the shelf of radia-

tion under the pulse before dispersing from the pulse. This interplay between the 

pulse and shelf of radiation leads to oscillations in the pulse amplitude and width 

and the height of the shelf of radiation. These amplitude oscillations are eventu-

ally damped by the shedding of dispersive radiation through the shelf. A variety 

of mathematical and computational techniques have been developed and used to 

study this evolution. While the NLS equation (1.1) possesses an exact inverse 

scattering solution, the dynamic, transient evolution of an initial condition to the 

steady state is complicated and not easily analysed using inverse scattering since 

this transient behaviour is governed by an integral equation which is difficult to 

solve. Also, the addition of fibre optic devices, as discussed above, and higher 

order effects lead to perturbing terms on the right hand side of the NLS equation 

(1.1). In this case, inverse scattering solutions do not exist and approximate and 

numerical techniques are generally used to study the effect of these factors. 

Perturbed inverse scattering theory [23] has often been used to study the 

effects of small perturbations on solitons. It has been applied to the study of 

soliton evolution in lossy fibres with periodic forcing [23] and sliding-frequency 

filters [6]. However, perturbed inverse scattering theory is based on a slowly 

varying soliton solution and as such is unable to deal with pulses which do not 

have the inverse amplitude/width relationship of a soliton (see the soliton solution 

(1.3)). Furthermore, the inclusion of the effect of the radiation shed by an evolving 

pulse is difficult via perturbed inverse scattering theory as it is a higher order 

effect. Burtsev and Kaup [6] found equations describing the shed radiation by 

extending their perturbation solution to higher order. However, they did not link 

these equations to those describing pulse parameter evolution, and so did not 

fully incorporate the effect of this shed radiation. 

Approximate evolution equations describing pulse evolution may also be ob- 

10 



tamed by substituting a trial function into the NLS Lagrangian and taking vari-

ations with respect to the trial function parameters. Obviously the choice of 

trial function is very important as it constrains the future evolution of the pulse. 

Anderson [3] attempted to include the effects of amplitude-width oscillations by 

choosing a trial function with independently varying amplitude and width and 

with a quadratic frequency chirp. This trial solution was an improvement upon 

previous work as it allowed amplitude oscillations as seen in full numerical solu-

tions of the NLS equation (1.1). However, as the effects of shed radiation were 

not included, the amplitude oscillations were non-decaying and persistent, so the 

pulse could not evolve to a steady soliton. 

Based upon the work of Anderson [3], Kath and Smyth [22] modified the trial 

function again, replacing the quadratic frequency chirp with a term representing 

the low frequency radiation in the vicinity of the pulse. Also, by analysing the lin-

earised NLS equation, expressions were found for the shed radiation and included 

in the evolution equations obtained from a Lagrangian analysis similar to that 

of Anderson [3]. When solved, the approximate equations of Kath and Smyth 

[22] accurately portrayed the dynamic, transient evolution of an initial pulse to 

a steady soliton. The method of Kath and Smyth, employing a trial function 

which incorporates independently varying amplitude and width, and the effects 

of radiation in the vicinity and away from the pulse, has been successfully used 

in the study of pulse propagation and switching in nonlinear twin-core fibres [53], 

pulse propagation in non-uniform fibres [52] and pulse propagation in birefringent 

fibres [51]. As a result of this work, it was found that for an accurate portrayal 

of pulse evolution in nonlinear optical fibres two things are necessary. Firstly, an 

independently varying amplitude and width must be assumed. Secondly, some 

account of dispersive radiation, both in the vicinity of the pulse and away from 

the pulse, must be included. 

1.3 Organisation of Thesis 

Taken together, an averaged Lagrangian method based on a trial function with 

independently varying amplitude and width, to which is added the effect of the 

dispersive radiation shed by the pulse, provides an accurate and flexible means of 

analysis for pulse evolution in nonlinear optical fibres. This is the method used 

in this thesis to analyse pulse evolution in nonlinear optical fibres when various 

loss processes, amplification, non-uniform fibres, and optical devices are added. 

Specifically the work of Kath and Smyth [22] will be extended to the study of fibre 

loss and optical devices such as sliding-frequency filters, amplifiers and fibre com- 
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pressors. As the work of Kath and Smyth was based upon a Lagrangian analysis 

[22], which is unsuitable for studying non-conservative systems, an alternative 

method based upon conservation and moment equations for the NLS equation is 

used. This conservation and moment equation technique is intimately connected 

to the Lagrangian method of analysis due to Noether's Theorem for conservative 

systems. Chapter 2 discusses this conservation and moment equation technique 

and its relation to the previous Lagrangian method of analysis. Chapter 3 dis-

cusses the numerical techniques used in the solution of the approximate equations 

derived via the conservation and moment equation technique along with the nu-

merical techniques used in the numerical solution of the NLS equation (1.1) and 

its variations. In Chapter 4 these analysis methods and computational techniques 

are applied to the study of fibre loss and its compensation by amplification. Much 

of this work has been done in previous studies and is well documented and so is 

mainly included to explore the strengths and weaknesses of the solution methods 

outlined in Chapters 2 and 3. Chapter 5 is concerned with the study of SFF's 

and their effect on pulse evolution. As discussed earlier, SFF's are used to filter 

radiation, which left unchecked leads to random fluctuations in the soliton arrival 

times. As stable pulses do not exist for all values of filter and amplifier strengths, 

conditions for the existence of stable pulses are also examined. This work is com-

pared to that of Kaup [6], based on perturbed inverse scattering, and the work 

of Wabnitz, Malomed and Mamyshev [26, 29, 32], based upon a multiple scales 

analysis. The evolution equations derived using the method outlined above give 

better agreement with full numerical solutions than those of Kaup [6] and provide 

a more straight-forward means of analysis. It is shown that this superior agree-

ment is due to the flexibility of the trial function used, along with the inclusion 

of the effects of dispersive radiation in the pulse parameter evolution equations. 

Chapter 6 discusses pulse generation and compression using DDF's. This work is 

based upon that of McKinnon et al. [34]. In that work an optimisation procedure 

was utilised to find the dispersion profile giving maximum pulse compression. The 

present work extends the work of McKinnon et al. [34] to include the effects of 

fibre loss and the results of the soliton stability study of Chapter 5. The results 

obtained are in good agreement with full numerical solutions of the governing 

NLS equation. Chapter 7 concludes by summing up relevant information and 

suggesting improvements and further work. 
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Chapter 2 

Analysis Method 

The NLS equation (1.1) possesses an exact inverse scattering solution [47], which 

shows that an arbitrary initial condition will evolve into a finite number of soli-

tons plus dispersive radiation. The final soliton state which develops from an 

initial condition is determined by the solution of an eigenvalue problem, and so 

its determination is fairly straightforward. However, the evolution to this soli-

ton state is determined by the interaction of the solitons with shed dispersive 

radiation, which in turn is governed by a linear integral equation. Hence the de-

tailed evolution to the soliton state is difficult to determine in practice. It is this 

space evolution of the pulse which is of importance in optical applications. The 

difficulty of determining the interaction of the shed radiation with the evolving 

solitons via inverse scattering suggests that approximate methods may be useful 

as an alternative means of analysing the evolutionary behaviour of optical pulses. 

Another reason for using approximate methods to study pulse behaviour is that 

perturbed NLS equations do not possess an inverse scattering solutions and so 

exact solutions do not exist. So approximate methods must be used to get any 

useful information about pulse evolution for such perturbed equations. 

The analysis method used in the work of this thesis is based upon a conserva-

tion equation technique linked to linearised equations for the dispersive radiation 

shed by the evolving pulses. This is closely related to the Lagrangian method of 

analysis as conserved quantities for the NLS equation are directly associated with 

symmetries of the NLS Lagrangian via Noether's theorem [13]. The basis of the 

method is that a suitable trial function can be substituted into these conservation 

equations to obtain evolution equations for the pulse parameters. To include the 

effect of the dispersive radiation shed by the pulse the linearised NLS equation 

is examined, since the radiation is of small amplitude relative to the pulse. The 

radiation loss determined in this manner is then added to the evolution equations 

obtained from the conservation equations. The inclusion of the dispersive radi-

ation has the effect of damping the amplitude oscillations of the evolving pulse, 
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driving it to a steady soliton. 

The first section of this chapter introduces the conservation equation technique 

used in the analysis of a pulse governed by an NLS-type equation. This is followed 

by a section discussing the analysis of the dispersive radiation and how the results 

of this analysis are included in the previously obtained evolution equations. As an 

illustrative example, we analyse the evolution of a pulse for the unperturbed NLS 

equation (1.1) using the outlined technique. This is the same problem studied by 

Kath and Smyth [22]. However, their analysis was based upon taking variations 

of an averaged NLS Lagrangian. It will be shown that both the conservation 

equation and averaged Lagrangian methods lead to the same equations for the 

pulse parameters, as required. 

2.1 Pulse Evolution Without Shed Radiation 

Several approximate methods for describing soliton evolution have been devel-

oped. One method closely related to the present work is the Lagrangian method. 

The Lagrangian density for the NLS equation (1.1) is 

L = i(u*u  - 	- 1Ut12 
+ 

JUJI, 	 (2.1) 

where * denotes the complex conjugate, and where u and u are treated as sep-

arate variables when variations are taken [3]. To apply the Lagrangian method, 

one must now choose a trial function to substitute into the NLS Lagrangian. An-

derson [3] chose a soliton-like pulse with a quadratic phase variation, called chirp, 

and independently varying amplitude and width 

t 	/ 	ibt2 '\ 

. 

	

= q sech - exp (iG + —) 	 (2.2) 
W 	 2wj 

While this trial solution yielded improved results upon previous work, which as-

sumed amplitude and width were inversely proportional, as for an NLS soliton, 

it was unable to account for the radiation shed by the evolving pulse. Without 

this shed radiation, the pulse parameters do not evolve to a steady state but un-

dergo oscillations. It is known from both inverse scattering theory and numerical 

solutions that an initial pulse will evolve to steady solitons. 

Later work by Kath and Smyth [22] improved upon the trial function used by 

Anderson [3] and also showed that inclusion of the effect of the radiation shed as 

the pulse evolves is necessary in order for the initial pulse to evolve to a steady 

soliton and to obtain good agreement with numerical solutions. The effect of 

radiation shed as the pulse evolves was determined by solving the linearised NLS 

equation. The details of this radiation analysis will be discussed in Section 2.2. 
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However to return to the systems studied in the present thesis, a Lagrangian 

only exists for conservative systems, such as the NLS equation (1.1). The mod-

elling of non-conservative systems, such as when fibre loss or filters are added, 

requires another method. The method used in this work is one utilising conser-

vation equations [23], and is illustrated in this chapter by applying it to the NLS 

equation (1.1). The NLS equation has three conserved quantities, commonly re-

ferred to as mass, momentum, and energy [23]. In this regard the three quantities 

P = 	 (2.3) 

J = (ut4_u*ut ), 	 (2.4) 

E =Ut12-  u, 	 (2.5) 

are defined, which are referred to as mass density, momentum density and en-

ergy density, respectively [19]. With these definitions, the following conservation 

equations can be derived from the NLS equation (1.1) 

ap DJ 

	

+ 	= 0, 	 (2.6) 
at 

	

ai 
 + 	

1 
+ 	

2 
- 1  PttJ = 0 	 (2.7) 

9E 	3rj 	 1 

	

+ 	(utu - 4utt) - 2pJj = 0. 	 (2.8) 

Integrating these conservation laws with respect to t we obtain 

d 00 

	

fPdt = 0, 	 (2.9) 
dz 

f 

00 

	

Jdt = 0, 	 (2.10) 

d°° 

	

Edt = 0. 	 (2.11) 
dz -00 

The NLS equation also possesses moment equations. The moment equation 

of interest in the present work is the moment of momentum equation, which can 

also be derived directly from the NLS equation (1.1) 

(ti) + 	[t - t (uu + ui4) + (uu + uufl] = E + 12 	(2.12) 
3z 

Integrating this moment equation with respect to t then gives 

d 00

J_

00 

	

/ tJdt= 	E+—p2  dt. 	 (2.13) 
dzj_00 	00 	2 

An approximate solution consisting of a soliton with varying parameters is then 

substituted into these conservation and moment equations so that ODE's for the 
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soliton parameters are determined. These ODE's for the pulse parameters are 

the same as those derived from the averaged Lagrangian for the NLS equation 

(1.1) by Kath and Smyth [22], as required. 

It should be mentioned that the phase of the pulse is not determined by the 

conservation or moment equations as they are all independent of the phase. An 

equation for the phase can be derived from an extension of Noether's theorem 

[13, 56] based on scale invariance of the NLS equation [22]. However the equations 

for the other parameters are independent of the phase and so the phase equation 

is not dealt with in this work. 

The trial solution used in the above conservation and moment equations is 

[22] 

U = (77 sech+i)exP(i9) 	 (2.14) 

where the amplitude i, width w, phase 9, and g are functions of z. Variations 

based on this particular trial function will be used for the particular optical device 

being modelled and will be discussed in the relevant sections. The first term in 

the trial function (2.14) represents a soliton-like pulse with independently varying 

amplitude and width. The second term in g, which is independent of t, represents 

the low frequency radiation in the vicinity of the pulse. The reason for this long 

wavelength radiation can be seen from the following argument. The group velocity 

for the linearised NLS equation is c9  = —2ic, so that low frequency radiation has 

low group velocity and so stays in the vicinity of the pulse, creating a shelf on 

which the soliton sits. This shelf of low frequency radiation, referred to as a 

pedestal in the experimental literature, can be seen in Figure 2.1. The radiation 

cannot continue to be fiat away from the pulse however, as otherwise it would 

contain infinite mass. It is therefore assumed that the radiation is flat in the 

region —/2 < t < £/2 about the pulse. Furthermore, numerical solutions show 

that the radiation is of small amplitude, so that IgI <<ij. 

To illustrate the method in action, we will now analyse the solution of the 

NLS equation (1.1). This is the same equation studied in Kath and Smyth [22], 

the difference here being that the conservation and moment equation technique 

will be used rather than the averaged Lagrangian. 

Substituting the trial function (2.14) into the conservation and moment equa- 
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Figure 2.1: Full numerical solution of the NLS equation (1.1) with boundary 
condition u(0, t) 	1.25 sech t showing the formation of the shelf. 

tions (2.9)-(2.11) and (2.13), we obtain the following three equations 

_ (2w + g2) = 0, 	 (2.15) 
dz 

- 
(772

dz  - w 
-2 W ) = 0, 	 (2.16) 

d 2 2  2 
- (giw) = 	- -p4w, 	 (2.17) 

	

dz 	 3w 3 

the first two being mass and energy conservation for the pulse. By Galilean in-

variance, the pulse can be centred in a reference frame moving with the group 

velocity. In this frame of reference the momentum of the pulse is zero by sym-

metry, so that the momentum conservation equation (2.10) is identically satisfied 

by the trial solution (2.14). By manipulating the equations (2.15)-(2.17) and 

removing higher order terms in g that do not contribute to mass conservation 

these equations can be simplified to 

	

dg 	2,q  = _(q2_w_2), 	 (2.18) 

	

dz 	37 

d 	2 	

-(ijw) = 	( - 1W_2) 	 (2.19) 

-( -2W = 0. 	 (2.20) 
dz\\w 	/ 

These approximate equations are the same as those formed by Kath and Smyth 

[22]. 

17 



1.9 

1.8 

1.7 

1.6 

11 
1.5 

1.4 

1.3 

19 	

2 	4 	6 	8 	10 	12 	14 	16 	18 	20 
z 

Figure 2.2: Pulse amplitude as a function of distance z with boundary condition 
u(0, t) = 1.25secht. Full numerical solution of (1.1): 	solution of approximate 
equations (2.18)—(2.20): - - - 

Kath and Smyth [22] found the length £ of the shelf by matching the frequency 

of oscillations of the solution of the approximate equations (2.18)—(2.20) near the 

fixed point ij = k and w = 1/k to the steady soliton oscillation frequency k2 / 2, 

obtaining 

8k 
	 (2,21) 

Finally, the steady amplitude k was found from the energy conservation equation 

(2.20) as 

1/3 

k 277 - 
] 

- 	. 	 (2.22) 
W 

The analysis is not yet complete as the effect of dispersive radiation shed 

from the pulse has not been included. Without the dispersive radiation loss the 

pulse will oscillate about the steady state given by equation (2.22) without ever 

settling to it. Figure 2.2 shows just such a comparison between the solution of 

the approximate equations (2.18)—(2.20), which neglect shed dispersive radiation, 

and the full numerical solution of (1.1). The dispersive radiation acts to damp 

the oscillations of the approximate solution. The form of this shed dispersive 

radiation is the subject of the next section. 



2.2 Radiation Analysis 

Following the example in the last section, we will now discuss the analysis of the 

radiation shed from the pulse in the context of the NLS equation (1.1) based on 

the work of Kath and Smyth [22]. The extension to the perturbed NLS equations 

(4.1), (5.1) and (6.1) will be discussed in their respective chapters. 

Numerical solutions show that outside of the region of length £ centred about 

the pulse the radiation is of small amplitude. As such, the nonlinear term in the 

NLS equation (1.1) is negligible and can be ignored giving 

Du la2u 
i a Z 

— + 	= 0 	 (2.23) 

as the equation governing the shed dispersive radiation. This equation, being 

linear, can of course be solved exactly to give the form of the radiation leaving 

the pulse. However the functional form the radiation is not of importance in 

this analysis. What is important is the flux, or flow, of radiation away from the 

pulse. Knowing the amount of radiation leaving the pulse, one can then modify 

the evolution equations (2.18)—(2.20) to take account of this loss. 

Keeping this desire for flux information in mind, we note that the conservation 

of mass equation for the linearised NLS equation (2.23) is the same as the mass 

conservation equation (2.6). Integrating this equation from the edge of the shelf 

at t = £/2 to t = oo gives the mass flowing to the right away from the pulse as 

d °° 
u2dt = Im(u*u ) 	 (2.24) 

By symmetry, this is the same as the mass flowing to the left. The objective is 

to now find expressions for u and Ut at the edge of the shelf in order to calculate 

this mass flux to radiation. 

Taking the Laplace transform of the linearised NLS equation (2.23), we obtain 

1 d2  
ist + 	= 0, 	 (2.25) 

where 

00 

= £{u} = JO 

e szu dz 	 (2.26) 

is the Laplace transform of u in z. Equation (2.25) is an ordinary differential 

equation, in Laplace space, which can be solved for U. Doing this, we obtain 

IL = Ae t fort > £/2. 	 (2.27) 
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Differentiating this expression with respect to t one then obtains 

du 

	

= —
dt 	

ve 4 \/ ü, 	 (2.28) 

where we have used the principal root. This can also be written 

	

du  I = _ v/2 --e '4
dt 	

7  ü. 	 (2.29) 

Inverting the Laplace transform, using the convolution theorem, the relation 

Ut  = — e' 	
o 

d 	U(/2, 	
dT. 	 (2.30) 

- T) 

between u and Ut is obtained. 

The relation (2.30) between U and Ut can now be substituted into the mass 

conservation equation (2.24) to give 

d 	 r 	 d f z 

	

U(/2, ) d
1 	(2.31) 

dz £/2 

- 
J 	 dz 	(z - r) ] 

U 2 dt = —Irn Le_4U*2, z)— 

for the mass radiated to the right away from the pulse. Taking into account the 

symmetric mass radiated to the left away from the pulse, and noticing that the 

mass lost via this dispersive radiation must come from the pulse contained in 

< t < £/2, the mass conservation equation (2.15) for the pulse is modified 

to 

d f 

	

Z  U(/2, r)
dr. 	(2.32) = 2 	Im e_ 4U*(&/2 z) 

	(z - T) ) dz j 

to take account of the mass shed from the pulse to dispersive radiation. 

The expression U(/2, z) is the radiation at the edge of the shelf. To find 

an expression for this radiation, Kath and Smyth [22] noticed that the phase of 

the low frequency radiation in the vicinity of the pulse, seen in Figure 2.1, is 

nearly constant. As such, the above mass conservation equation is then nearly 

independent of the phase and so U(/2, z) and U*(/2,  z) can both be replaced by 

r = U(/2, z) 1 , which will be called the radiation height. An expression for r was 

found by doing a perturbation analysis on the mass conservation equation (2.15) 

near the fixed point (2.22) and comparing the difference in the mass between the 

pulse and an exact NLS soliton (the fixed point) to find 

= 	(2w - 2k + _9 2) 	 (2.33) 

We note that at the fixed point (2.22) g = 0 and r = 0 as required since there is 

no radiation. 
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With this expression for r (the radiation at the edge of the shelf), the pulse 

mass conservation equation (2.32) simplifies to 

(2]72W + 
372 	

= —2r 
1' 	

d. 	(2.34) 
dz 	8K / 	dz /ir(z—) 

This mass loss rate must now be included in the pulse parameter evolution equa-

tions (2.18)—(2.20) derived from the conservation and moment equations. The 

mass loss in the mass equation (2.34) can be added to either of (2.18) and (2.19) 

or distributed between both. Kath and Smyth found it more natural to place the 

mass loss in equation (2.18) for g since the shelf drives the mass loss to radiation. 

In addition Kath and Smyth found that solutions of the resulting equations were 

very insensitive to the distribution of the mass loss between (2.18) and (2.19). 

Doing this, equation (2.18) for g is modified to 

dg 2 ij (2.35) 
dz 37 w2 

where 

3kld f 	
T 

_ 	d. 	 (2.36) 

The coefficient of a was found by requiring that an appropriate combination of 

(2.35), (2.19) and (2.20) reduces to the mass equation (2.34). 

From this analysis we now have a full set of evolution equations for the pulse 

that includes loss from the pulse to dispersive radiation. These equations are 

dg 2,7 -- (772 - w 2) - 2g, (2.37) 
- dz 371 

—(77w) 	= d1_2" 
- 
fg 	

77 
2  
 

( 	
—w 	

), 
(2.38) 

dz 
d 	(772 	

2774 
-

w) = 0, (2.39) 
dz 	w 

= 
dz 

--- 
3kl 	f 	

_ 
r 

d 'r , (2.40) 
8 rd z 	o 	\/71(z—T) 

r2 	= 
(

2277 w - 2k + 
37 2 

_9 
2)  (2.41) 

Figure 2.3 shows the effect of adding radiation damping to the approximate 

equation (2.18)—(2.20). As can be seen from the figure the agreement between the 

solution of the approximate equations and the full numerical solution of (1.1) is 

much better when the effect of dispersive radiation is included. The comparison 

figures of this chapter are merely included to demonstrate the motivation for using 

the current analysis technique. More detailed comparisons and analysis can be 

found in [22]. 
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Figure 2.3: Pulse amplitude 77 as a function of distance z with boundary condition 

	

u(O, t) = 1.25 sech t. Full numerical solution of (1.1): 	solution of approximate 
equations (2.37)—(2.41): - - - solution of approximate equations (2.18)—(2.20): 

A variety of numerical techniques have been used to find the solutions shown 

in Figures 2.1, 2.2 and 2.3. The full numerical solution of the NLS equation 

(1.1) is obtained using a pseudo-spectral method similar to that of Fornberg 

and Whitham [11]. The solution of the approximate equations (2.37)—(2.41), 

obtained from the conservation and moment equations and radiation analysis, 

was obtained using a fourth-order Runge-Kutta method along with a numerical 

method for dealing with the singular integrand in the radiation integral (2.40). 

These numerical techniques are the subject of the next chapter. 
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Chapter 3 

Numerical Methods 

This section will describe the various numerical methods used in this thesis and 

will be split into three sections. Firstly, we shall discuss the numerical techniques 

used for the full numerical solution of the NLS (1.1) and perturbed NLS equations 

(4.1), (5.1) and (6.1). Secondly, we shall discuss the numerical techniques used 

for numerically solving the approximate equations derived via the perturbation 

technique discussed in Chapter 2. Lastly, we shall then discuss the numerical 

techniques used for the optimisation of the dispersion profile (see Chapter 6). 

3.1 Numerical Method for NLS Equation 

To numerically solve the NLS equation (1.1) a pseudospectral method similar to 

that of Fornberg and Whitham [11] was used. The main idea is to calculate t 

derivatives using discrete Fourier transforms and then integrate in space using 

Runge-Kutta methods. This method is also known as the integrating factor, 

or linearly exact, method for reasons which will become obvious shortly. The 

integrating factor method has been widely used in a variety of contexts ranging 

from free-surface flows in geophysics [38] to optical soliton propagation [4, 22, 34]. 

Fornberg and Driscoll [12] compared a variety of numerical techniques applied to 

the NLS equation, including the split-step Fourier method [2, 48], the method of 

Chan and Kerkhoven [7] and the integrating factor method. Their comparison 

showed the integrating factor method to be highly competitive and accurate. 

To describe the integrating factor method, we first define the Fourier transform 

of u(t, z) in the standard fashion as 

fl(w, z) = F{ u} 
= 	

u(t, z)e tdt 	 (3.1) 

and the inverse transform of u(w, z) as, 

u(t, z) = F1{fi} = 
	

ffl(w,z)e_ tdw. 	 (3.2) 
27r 
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Now taking the Fourier transform of the NLS equation (1.1), remembering that 

the Fourier transform of t-derivatives are 

F 
~ d(")u ~ 

 dt() 	
= (—iw), 	 (3.3) 

we obtain 

di 
+—w2 u=iF{u 2n}. 	 (3.4) 

dz 2 

Multiplying by the integrating factor e2z/2, equation (3.4) can be written as a 

first order ordinary differential equation in space 

(fie 22) 
= iF {u2u} e2 

dz 	
2 . 	 (3.5) 

We must now replace these continuous Fourier transforms with discrete Fourier 

transforms (DFT) suitable for numerical calculation. In doing so, we take 'a on 

some interval —L/2 < t < L/2, with u periodically extended outside of this inter-

val. In applying the DFT, the interval is discretised over N points with spacing 

At = L/N, with N chosen large enough for the required accuracy. Introducing 

periodicity into the problem is an artificial condition as an NLS soliton with radi-

ation should be allowed to extend to an arbitrary distance. With the periodicity, 

radiation cannot escape the system and over time will build up and compromise 

the soliton. However, as periodicity must be imposed in order to use the pseudo-

spectral technique we must minimise its impact. This is done by two methods. 

Firstly, Fornberg and Whitham [11] recommended that L is chosen large enough 

so that u is negligible at the boundaries t = —L/2 and t = L/2. However in 

doing so, one must make a corresponding increase in N, the number of points 

over which the interval is discretised. This places a practical limit on the size of 

L as larger N means longer computation times. 

In order to avoid inordinately long simulation times dictated by a large N, 

If et al. [21] suggested another method for dealing with the boundaries. They 

introduced an absorption profile at the boundaries t = +L/2 with the intent 

of absorbing any radiation leaving the cell bounded by t = ±L/2. Doing so 

would simulate dispersive radiation radiating away from the soliton indefinitely. 

Towards this end the NLS equation (1.1) was modified to 

Uz + 
1

Utt 
+ IU12U+ i8(t)u = 0 	 (3.6) 

where 8(t) is the absorbing function, 

8(t) = 8 (sech2 [c (t - L/2)] + sech2 [c (t + L/2)]). 	(3.7) 
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Figure 3.1: Absorbing boundaries obtained from equation (3.7) with Oo  = 40.0, 

= 1.0 and L = 51.2. 

Here 00  is the strength of the absorbing layer and oz is its inverse width. Figure 

3.1 shows an example boundary created using equation (3.7). 

Using the procedure outlined above we may incorporate the absorbing bound-

ary into the numerical procedure. By taking the Fourier transform of equation 

(3.6) and using an integrating factor, (3.6) may be rewritten in Fourier space as, 

	

(e22) = (iF {u2u} - F{0(t)u}) e22. 	 (3.8) 
dz 

For numerical calculations the Fourier transforms (3.1) and (3.2) are now 

replaced by their discrete analogues 

N/2 

fLk 	

/2irikj 
uexp 	N •)' u=u(jt,z) 	(3.9) 

j= N12+1 
N/2 

= u(jt,z) = 	 ukexp 
7— 	

(3.10) 
2ik 

k=—N/2+1 	

N i).  

Then the ordinary differential equation (3.8) in discrete Fourier space becomes, 

d 

	

	
( iwz\ 

(fi j  exp 
( 

iwj )) = ( iF {2  Jul u} - F{0(t)u}) exp 	 (3.11) 
dz 

with 

j = —N/2 + 1,... , N/2 	 (3.12) 
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In the numerical procedure, the Fourier transforms are calculated using the Fast 

Fourier Transform (FFT) algorithm [49]. The first order ordinary differential 

equation (3.11) can then be solved using Runge-Kutta methods [49]. A standard 

fourth-order Runge-Kutta method was used with the understanding that the 

space propagation takes place in Fourier space and an integrating factor is present. 

As at each space step Runge-Kutta routines calculate the right hand side at the 

points z, z+z/2 and z+Az, estimates of n at z+.z/2 and z+.z are needed. 

Since space steps of size Az/2 are required, the integrating factor in (3.11) can 

have z replaced by z/2 upon suitable choice of the lower limit of integration for 

the integrating factor. Hence 

d 	 (iWZ\ 
- (u) = f(u) exp 	

) = 
G(u, z), 	 (3.13) 

where f(u) = iF{u2u} - F{ 9u} and wj  =fLj(nz) exp (iwz/4). 

Now to progress from the n to the rt + 1 space-step, the fourth-order Runge-

Kutta algorithm, in Fourier space, is 

Ui  = w+- 
Az 

--G(u,z) 

U2 	w+ Az G(F1{Ul}z+ 
Az

) 

' 
= W+AZc(F-1{u2},z+ Az) 

U4 = _w+ AZ  c(F1{U3},z+AZ) 

with the solution at (n + 1)Az begin given by 

= 1 U1 	U2  + U3  + U4. 

The solution u at z = (n + 1)Az is then obtained by multiplying w' by the 

inverse integrating factor and inverting fi using the FFT algorithm. The Runge-

Kutta algorithm now works in the following fashion: 

As G is evaluated at z in U1  and u is known at this point 

U1  = w + - 
Az  

--G(u, z). 	 (3.14) 

As U2  requires u at z + Az/2 we need to propagate a distance Az/2 forward 

to estimate u at this point. The calculation of U1  is a Euler step of length 

Az/2 and so gives an estimate of w at z + Az/2. Multiplying U1  by the 

inverse integrating factor exp (—iwAz/4) and inverting the Fourier trans-

form then gives an estimate of u at z + Az/2. Hence U2  may be calculated. 
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U3  requires U2, and hence u, calculated at z + /z/2. Since u is already 

estimated at z + z/2, U3  can be calculated. 

(.14  requires u at z+Az. Now U3  is a Euler step of length Az from z, so that 

U3  gives an estimate of w at z + z. Multiplying U3  twice by the inverse 

integrating factor exp (—iwz/4) then gives an estimate of fL at z + Az. 

Inverting the Fourier transform finally gives an estimate of u at z + Az and 

so U4  may be calculated. 

The final solution F {u+i} is now just the Runge-Kutta sum of the above four 

components after multiplication by the inverse integrating factor. The solution 

u 4i  at z + Az can finally be obtained using the inverse FFT algorithm to get 

u in physical space. Notice that at each Runge-Kutta step the nonlinear part 

of (3.11) is calculated in physical space exactly and then converted to Fourier 

space numerically using Fast Fourier Transforms. This is standard practice in 

pseudospectral methods for the NLS and related equations. 

Equations which are perturbations of the NLS equation (1.1) can be solved 

in a similar fashion. The perturbing terms are incorporated into the integrating 

factor of equation (3.11) or included in the nonlinear terms on the right hand side. 

The equation is then solved numerically using the Runge-Kutta method outlined 

above. The form of these changes will be discussed in the relevant chapters. 

3.2 	Numerical Technique for Approximate Equa- 
tions 

This section discusses the numerical solution of the approximate ordinary differ-

ential equations obtained from the Lagrangian or Conservation/ Moment method 

applied to the various forms of the NLS equation as discussed in Chapter 2. 

First we write the set of ODE's as the matrix equation 

Ax' = b. 	 (3.15) 

Here x' is the vector of the derivatives of the soliton parameters, A is the matrix of 

coefficients of these derivatives and b is the inhomogeneous part of the differential 

equation. 

As a set of first order ODE's, equation (3.15) can be solved using Runge-Kutta 

methods. However, it must first be put in the form x' = A'b. This was done 

using LU decomposition on the matrix A. That is, the matrix A was numerically 

factored into a lower triangular matrix L and an upper triangular matrix U [49]. 

Using a numerical forward and backward substitution routine [49], the matrix 
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equation (3.15) was then solved for x'. Standard Runge-Kutta techniques [49] 

could then be used to calculate x. 

In calculating the solution of the approximate ODE's describing the pulse 

parameters, another numerical technique had to be used. This was for calculating 

the effect of the dispersive radiation propagating away from the pulse. As was 

discussed in Section 2.2, the equation governing the dispersive radiation is given 

by an integral of the form 

'r 
M= I 	

r () 
	T. 	 (3.16) 

J0 Z-T 

The difficulty in evaluating this integral is that the integrand is singular at the 

upper limit. 

To numerically evaluate this integral, the second order method of Miksis and 

Ting [37] was used. Following their method, we decompose the integral (3.16) 

into the sum 

(3.17) 

where 

r(T)
dT  

VIZ 
 (3.18) 

im 

—T 

and 

T (T) 
= 	_____dr. 	 (3.19) j z 

The integral change-over point, m, is chosen far enough away from z to make the 

integrand in M1  smooth. As the integrand of M1  is not singular over the range 

of integration, M1  can be calculated directly, in this case using the Trapezoidal 

Rule. 

To evaluate M2, we rewrite the integral as the sum of many small integrals 

= i=k 	= i=k 	
T' 	

(3.20) 

where Zk = m and 	= z. In the interval zi  < T < z i  we approximate r with 

the linear polynomial 

r(T) = r(z) + ( — z)r' , 	 (3.21) 

where 

/ 	r(z+i) — r(z) 
r = 	 . 	 (3.22) 

zi+1 — Zi 
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We now replace r in the integral (3.20) with the linear approximation (3.21) to 

obtain 

M= 
Z 

 

j+1  r(z) + r'(r - z) 
d.2

Ji 
 (3.23)  

By re-writing r'(T - z) = r'(z - z) - r'(z - T), the integral (3.23) can be written 

as 

M 	

fZj+1 r(z) + r'(z - z) - r'(z - 
_____ 	dr. 	(3.24) =j 

This integral can be integrated exactly as 

LZi 	2 
= -2(r(z) +r'(z - z))z - 	

1 
 + 

3 
-r (z - )3/2iZ+1 	(3.25) 

Evaluating this expression at the upper and lower limits, we obtain 

= 2(r(z) + r'(z - z)) (z - - 	- z +i) 

+ r' ((z - z1)312 - (z - z)3/2), 	
(3.26) 

giving for the integral M2  

M2 =(2(r+r'(z—zj))(z — zj — z — zi+i) 

i=k 

	

	 (3.27) 

+ r' ((z - z1)312 - (z - 

If z < m, splitting of the integral is not necessary. In this case It/I1  = 0 and 

M2  is evaluated over the entire range of integration. Once z > m, both integrals 

are necessary for the evaluation of the total loss integral (3.16). 

The choice of 'in is an issue which would appear to affect the accuracy of the 

numerical scheme. This point is discussed in [37], but not in great detail, beyond 

saying that m should be chosen far enough away from z to ensure the integrand 

of M1  is smooth. This was the criterion for choosing the value of m used in these 

calculations. Different values of 'in were chosen to examine the effect on the final 

integral, but as long as reasonable values were taken, no significant difference 

resulted. 
The primary reason for splitting the integral in the original work [37], as in 

equation (3.17), was to take advantage of the smooth nature of M1. Assuming M1  

is smooth means that a larger integration step size could be used when evaluating 

it. As M2  is evaluated near a singularity, a smaller step size could then be used 

to account for this. In this way, variable step sizes could be used to minimise 

calculation time and maximise accuracy. However in the integral being considered 
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(3.16), r is only known in discrete steps in z of length Az. Therefore we cannot 

take smaller step lengths in evaluating M2  as we do not know r at steps of 

less than Liz. However, with the speed of modern computers, and considering 

the specific problem of calculating (3.16), this is not a major limitation. As 

we are not dealing with particularly long integration times, the integral (3.16) 

can be evaluated with a small integration time step without too much difficultly. 

However, given this information, there is still justification for performing the 

integration using this integral-splitting method. The error associated with using 

the Trapezoidal Rule, used in evaluating integral (3.18), is O(Lz3r"). The error 

associated with evaluating integral (3.19) is O(z2r"), or a factor h less accurate. 

So to obtain good numerical results, it is advisable to keep m as close as possible 

to z, without compromising the smooth nature of the integrand in M1. 

3.3 Numerical Optimisation Technique 

In multidimensional optimisation, one must choose between two different tech-

niques. The first is based upon using evaluations of the function at the point in 

question, whereas the second also uses local gradient information at the point. 

Generally methods using gradient information are more powerful in that this extra 

information can "point" the algorithm in the right direction. However gradient-

dependent algorithms can be complicated and are not always the best choice for 

certain problems. Also for problems where the objective function, i.e. the func-

tion to be optimised, may contain discontinuities, gradient-based methods will 

not work. 

The optimisation problem of this thesis was to determine the dispersion profile 

in a fibre in order to maximise pulse compression. This consists of splitting 

the fibre into a number of sections and varying the length and dispersion over 

each section to maximise compression. Keeping the above comments regarding 

optimisation techniques in mind, one can examine the compressor at hand and 

use a method best suited to it. In the present work the function to be maximised, 

f, equivalent to minimising -f, is comprised of the steady-state amplitude, ij, of 

the soliton, minus various penalties. As was reported in McKinnon et al. [34], r 

is not a differentiable function of the dispersion parameters. In fact, T)j contains 

small discontinuities, which make finding gradient information impossible. As a 

similar objective function was used in the present work, the same difficultly is 

present. For this reason it was decided to use an optimisation method which was 

an extension of the method used in [34], which in turn was based on the method 

of [49]. This method is a variation of the downhill simplex method of Nelder and 
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Mead [46]. While no gradient information is required by this method, it can be 

extremely slow. However, if time is not a restriction, and an easily implementable 

optimisation method is required, the Nelder-Mead simplex method can work well. 

The method requires N + 1 initial points to form an initial N-dimensional 

simplex. Here N is the number of variables in the minimisation procedure. The 

N + 1 initial points are obtained by making a starting guess, say Po'  and creating 

the other N points via the equation 

Pi = Po + Xei 	 (3.28) 

where e, are N unit vectors and A, are N constants which are estimates of the 

problem's characteristic length scales. Taking a A2  = 0 would indicate a stationary 

point in the optimisation, i.e. it will remain constant. The simplex formed by the 

above points moves about the N-dimensional space in the manner recommended 

by Nelder and Mead [46], which can be summarised as follows [55]. Firstly define 

Ph : vertex with the highest function value 

p 	: vertex with the second highest function value 

Pt : vertex with the lowest function value 

centroid of all vertices except Ph,  i.e. 

1 
N+1 

PC 	Pi. 

jolt 

Also, let y = f(p), yh = f(Ph), and so on. Then the Nelder-Mead method 

proceeds as follows: 

Evaluate f(p) at all N vertices. 

Reflection Reflect Ph  using a reflection factor u to find a new point p0  

defined as 

Po = (1 + a)p - Ph• 

If Yt < Yo < Ys, replace the point p12  by Po  and go to step 2. 

Expansion If Yo < Yl, expand the simplex using an expansion factor 'y to 

obtain a new point p00  defined by 

Poo = yp0 + (1 - 

In other words, for a particularly small vertex, the algorithm expands the 

simplex further in that direction. 
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Expansion 

Figure 3.2: Reflections, expansions and contractions in the Nelder-Mead algo-
rithm. 

If yoo <Yl, replace Ph  by Poo  and go to step 2. 

If yoU > yl, replace Ph  by Po  and go to step 2. 

5. Contraction If Yo > Ys, contract the simplex using a contraction factor. 

This is analogous to the Expansion step 4 and there are two cases to con-

sider. 

Outside Contraction If Yo <Yh, calculate Poo  by 

Poo /3Po + (1 - 

Inside Contraction If Yo >_ yh, calculate POD  by 

Poo = /3Ph + (1 - 

Whichever of the two cases occur, there are then two further cases to 

consider 

If 1100 <yh and 1100 <110, replace Ph  by Poo  and go to step 2. 

Shrink If tioo > Yh or YOU > Yo reduce the size of the simplex by halving 

the distances from Pi  using p3 = Pi - (p3 - Pi)/2 for 1 < j < N + 1 

and jl. Go to step 2. 

Figure 3.2 shows the possible movement, bar the shrink step 5(d), of the Nelder-

Mead algorithm in two dimensions. Nelder and Mead [46] set the expansion and 

contraction parameters as c = 1, 0 = and 'y = 2. 
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In this way the simplex, moving simply by reflections, contractions and expan-

sions, moves about the N-dimensional space, hopefully bracketing and homing in 

on a minimum. 

Knowing when to stop the minimisation once a local minimum is found is 

difficult to define. In this thesis, we use the same minimisation criterion as used 

in the Nelder-Mead algorithm of [49]. Namely, minimisation is deemed complete 

once a cycle through the Nelder-Mead algorithm produces no appreciable change 

in the difference between the highest and lowest function values. Defining this 

change as 

rtol = Yh -  
Yh + Yl 

(3.29) 

a minimum was "found" when rtol < ftol, where ftol is a user-defined tolerance. 

This minimum is not necessarily a global minimum, but probably one of many 

local minima. To verify this, the Nelder-Mead method was modified in [34] in 

order to restart the optimisation procedure with a small perturbation from the 

claimed minimum as an initial point. In this fashion, one can obtain a family of 

local minima from which a "global" minimum can be chosen. 

One weakness of the Nelder-Mead method is that it is not guaranteed to 

converge to a minimum. However, ignoring the possibility of a shrink step (5(d) 

in the algorithm above), which indicates a failure of the simplex to find a value 

lower than Yh  through simple reflections, expansions or contractions, the Nelder-

Mead method will reduce the average of the function values at the simplex vertices 

[25]. That is 

N+1 
(3.30) 

will be reduced at the end of a Nelder-Mead cycle. 

The Nelder-Mead method is not guaranteed to converge even for smooth func-

tions [33]. When the Nelder-Mead method converges on a point which is not a 

local minimum, this is defined as stagnation. Stagnation can be remedied by reini-

tialising the simplex and beginning the optimisation from the stagnation point. 

Towards this end, we define the following quantities as in [24, 25]. Assume the 

vertices of the simplex pi  are ordered 

Yi Y2 	YN+1 	 (3.31) 

from the smallest function value to the largest. Now let V denote the N x N 

matrix of simplex directions for a simplex S defined by 

V(S) = (P2 - P1P3 - 	PN+1 - Pi). 	 (3.32) 
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We now let ö(f : S) denote the vector of objective function differences 

	

S) = (Y2 -Y1,Y3 - yl)... ,YN+i —Yi). 	 (3.33) 

Kelley [24] also defined two oriented lengths as 

at(S) = max 11p, -pJJ and a_(S) = mill 11P,  -p. 	(3.34) 

	

2<j<N+1 	 2<j<N+1 

With the above definitions (3.32)-(3.34), Kelley [24] defined a simplex gradient 

D(f S) as 

D(f: S) = (VT)-16 (f  S). 	 (3.35) 

While the simplex gradient defined in (3.35) is not a traditional gradient in the 

continuous sense (f may be discontinuous), it does provide some information 

about the directional dependence of f, the objective function, on p, the simplex 

vertices. If we denote the simplex S at the kth iteration as Sk  we may simplify 

the above notation as 

Vk = V(Sk) and Dkf = D(f: Sk) 

The criterion for stagnation in [24] was taken to be the failure of 

fk+1 - jk < _cDk fM 2, 	 (3.36) 

but 1k+1 - fk < 0, which is satisfied by the Nelder-Mead method assuming no 

shrink steps take place and the initial simplex vertices are linearly independent, 

which they are by (3.28). Here a is a small positive parameter. When stagnation 

takes place, Kelley [24] suggests replacing the original stagnated simplex with a 

new, smaller simplex having vertices r3  with r1 = p, and 

r j  = r1 +I3_,e_i  for  < j <N+ 1. 	 (3.37) 

Here e, is the ith coordinate vector as in (3.28) and 

	

1 	o-- (S') sign ((Dkf)i ) ,  (Dkf) 	0, 	
(3.38) 

	

= - 
	a- (S'), 	 (Dkf) = 0 

and (D/cf)  is the ith component of D'f. By shrinking the simplex and making 

the simplex edges orthogonal, individual simplex reflections take smaller steps in 

many more directions, making it more likely that (3.36) is satisfied. While the 

above reorientation will not eliminate stagnation in the Nelder-Mead method, 

Kelley [24] found it to be a significant improvement upon the original method. 
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Chapter 4 

Soliton Evolution in Lossy Fibres 
with Amplifiers 

Previous work [22] has shown that for an accurate model of pulse evolution in 

a fibre without loss it is necessary to include the radiation shed as the pulse 

evolves. Without radiation loss the equations describing pulse evolution show 

that it oscillates about a fixed point without ever actually decaying to this fixed 

point. So for an accurate model of pulse evolution in a fibre, radiation loss must 

be accounted for. It is of interest to determine how the inclusion of intrinsic fibre 

loss affects the evolution of a propagating pulse, this being the subject of the 

present chapter. 

This intrinsic fibre loss comes from two distinct causes, namely absorption and 

scattering. The scattering phenomenon, known as Rayleigh scattering, results 

from random density variations in the fibre material. These density variations re-

sult in local variations in the index of refraction causing light to scatter. Rayleigh 

scattering is a fundamental effect in glass fibres. The absorption phenomenon is 

due to the fibre material absorbing photons. Pure silica glass absorbs in the in-

frared region beyond wavelengths of 2tm, well beyond the optimum transmission 

wavelength. However, a very small amount of impurity can lower the absorption 

band to anywhere between wavelengths of 0.5 - 2,um, thus affecting transmission 

of optical pulses. Absorption can be controlled to a certain extent by ensuring the 

purity of the glass. Taking both of these types of fibre loss into consideration, the 

minimum fibre loss is approximately 0.2 dB/km at a wavelength of 1.55im, the 

loss being dominated by Rayleigh scattering. It is therefore of practical interest 

to determine how the inclusion of this loss in the fibre affects the evolution of a 

pulse. 
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4.1 Fibre Loss 

The propagation of light in a uniform, monomode, polarisation-preserving, non-

linear optical fibre in the anomalous group-velocity dispersion regime is governed 

by the nonlinear Schrodinger (NLS) equation (1.1). When the effect of fibre loss 

is added, the governing equation is the perturbed NLS equation 

3u 132u 
i 	+ 	+ tL 2U = — ian, 	 (4.1) 

where a is the normalised damping rate [2, 19]. The distance z and time t have 

been normalised as in Chapter 1. The normalised damping rate a is defined as 

damping rate per dispersion distance by 

a = 0.1158z0 
	 (4.2) 

where 6 is the fibre loss rate in dB/km and z0  is the dispersion distance in km 

given by equation (1.2). Hence a constant fibre loss rate 6 can result in different 

values for the normalised damping rate depending on the dispersion distance z0. 

For the perturbed NLS equation (4.1) the conservation and moment equations 

(2.6)—(2.8) and (2.12) are modified to 

ap ai 
+ = —2ap, (4.3) 

at 
aJ 

+ 
a 

[E + 1 P2 - 	Ptt] 	—2aJ, (4.4) 

aE 
+ 

a [ i 	 1 - UUtt) - 2pJj = 2a (P2 - E), 
2

(uu (4.5) 
at 

ti + 
3 
- 

(1 	1 
( —tE - —t (U*Utt  + uu) + 	(uu + uufl) 

Dz 3t\2 4 

= E + 
1 

p - 2atJ, (4.6) 

where * denotes the complex conjugate. Integrating these conservation and mo-

ment equations with respect to t then gives the integrated conservation and mo-

ment equations 

d °° DO  
- 	pdt = —2a / pdt, 	 (4.7) 
dzj_ 	CO 

d°°  

-f,,
Jdt 	—2a / Jdt, 	 (4.8) 

dz 	00 
00 

 f 
00 

 Edt = 2af (p2 —E) dt, 	 (4.9) 

	

z 00 	 00 

d 00 	 1 	
J00 / tJdt 

= 

(CO

E+—p2  t-2a tJdt. 	(4.10) 

	

dzj_00 	 2 
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Substituting the trial function (2.14) into the integrated conservation and moment 

equations (4.7)—(4.10) yields the approximate equations 

(2 2w + £g2) = —2a (2 2w + £g2), 	 (4.11) 
dz 

--(-w 
- 277 

W) 
= 8U774 	2c- 2a 

w  
2—, 	 (4.12) 

dz  

—(irgw) = 	- - 	- 2cr7grw, 	(4.13) 

for the pulse parameters. The conservation of momentum equation (4.8) is iden-

tically satisfied by symmetry after the trial function is inserted into it. This is 

because the pulse is centred in a reference frame moving with the group velocity, 

and as such, has no momentum relative to this reference frame. 

After some manipulation, which involves discarding 0(g2) terms, the above 

equations can be written in the simplified form 

d 	£g (772 1-2'(iw) =- w ) - aw, 	(4.14) 
dz 

	

	 ' 	/ 
dg - 2'q 2 -- (  - W-2) - g, 	 (4.15) 
dz - IT 

d (?-2 - 27)4w) = 2a (4774w - 77-) . 	 (4.16) 

Notice also that setting the loss parameter, a, to zero will return the equations 

to those derived for the unperturbed NLS equation (2.18)—(2.20), as required. 

As was discussed in Section 2.1, in the absence of fibre loss the shelf length, £, 

is given by equation (2.21), where k, the steady amplitude, is given by equation 

(2.22). We shall use the same expressions for £ and k when fibre loss is present 

with the following justification. The only fixed point of the approximate equations 

(4.14)—(4.16) is k = 0, so the method used by Kath and Smyth to determine £ for 

the NLS equation (1.1) will not work when fibre loss is included. When there is no 

loss, Pc is constant; loss causes Pc to decrease (ultimately to zero). Taking £ to be 

given by (2.21) will then be valid when Pc is slowly varying, which will be the case 

for small loss a. The method used here to calculate the shelf length £ then gives 

the local value of amplitude Pc that the pulse would achieve if the fibre loss were 

turned off at some point. Also with this value of £, setting a = 0 in (4.14)—(4.16) 

reduces the approximate equations to those derived from the averaged Lagrangian 

of Kath and Smyth [22]. 

4.2 Radiation Analysis 

As the radiation outside of the region —/2 < t < £/2 has small amplitude, the 

nonlinear term in the perturbed NLS equation (4.1) is negligible there and can be 
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ignored. Therefore, the equation governing radiation away from the neighbour-

hood of the pulse is 

itLz + 1Utt = —icru. 	 (4.17) 

Making the substitution u = Ue°, the linearised NLS equation (4.17) becomes 

iUz  + Utt = 0, 	 (4.18) 

which is the same equation, in the variable U, as used in the radiation analysis of 

Kath and Smyth and discussed in Section 2.2. The conservation of mass equation 

for the linearised NLS equation (4.18) is 

+ 	(U*Ut - UUfl = 0. 	 (4.19) 
0z 	2 at 

Integrating this conservation equation from the edge of the shelf at t = £/2 to 

t = cc yields an expression for the mass radiated to the right away from the pulse 

as 

dt 

	

J/2 U
2  dt = Tm (U*Ut) t=/2. 	 (4.20) 

dz 

As in Section 2.2, taking the Laplace transform of the linearised NLS equation 

(4.18) yields the convolution relation 

	

jz

U(/2,) _ d 
	 (4.21) U=—e 

j7r/4U 

	n(z—) 

between U and Ut  at t = £/2. Using this convolution relation, the radiation 

expression (4.20) becomes 

d(e 

i/4U* 	
d I z 

	

U(/2, 
) di. 	(4.22) 

1/2 
U2dt=—/Im - (/2,z)

dz dz 	n(z - ) ) 

Changing back to the original variables via the transformation U = ue°, the 

radiation expression (4.22) becomes 

d°°  
dZL 	(Z_Y)dT). - / 	eudt = —v/ 	

Z  eUTu(/2,Y) 

dz 
(4.23) 

Carrying out the differentiation on the left hand side and simplifying the right 

hand side, the radiation expression becomes 

d '°° 	 d j z u(/2Y)e7r 

J 	u2dt = e_ u*(/2,  z)— 	 dT, 	(4.24) 
dz 	 dz 	\/lt(z - T) 



which gives the total mass radiated to the right away from the pulse. In deriving 

this final expression, a term proportional to a, the loss parameter, was left out 

as it has already been included via the original mass conservation equation (4.7) 

and so does not contribute to the extra mass radiated away from the pulse. 

Combining this expression for mass radiated to the right away from the pulse 

with an analogous expression for mass radiated to the left, and remembering that 

this shed radiation must come from the pulse, via mass conservation, the original 

mass conservation equation (4.11) is modified to 

d 	00 
  - 

	jz re 
dT. (4.25) 

	

pdt = — 2a (2 2w +£g2 2er 
d,z 00 	

dz 	/ir(z - 'r) 

This modified mass conservation relation then includes the extra mass loss from 

the pulse due to shed dispersive radiation. Here r = u(/2, z) I is the height of 

the shelf at its edges t = ±/2. As above, where the expressions for shelf width, 

, and the steady state amplitude, k, were assumed to be the same as in Kath 

and Smyth [22], the shelf height r is assumed to be the same as for the lossless 

case a = 0, for similar reasons. Taking r to be the same as for the lossless case 

a = 0 is valid in the slowly varying limit when loss or is small. So in the current 

work, for small fibre loss a, the shelf height will be the same as that discussed 

earlier, namely 

r2  = 
U 

 (2,02  
 - 2k + 

37 2 i_9 2
8 	 8k ) 

(4.26) 

As in Section 2.2, the modified mass conservation equation (4.25) must be 

incorporated into the evolution equations (4.14)—(4.16). As the variable g is 

linked to the radiation under the evolving pulse, it is the equation for g which is 

modified to include loss to dispersive radiation. In this manner equation (4.15) 

for g becomes 

- - 	(2 - w 2) - ag - 2g, 	 (4.27) 
dz 	3ir 

where the equation for c is 

	

d. 	 (4.28) 
8r 

3k1 	d fZ  rere"
a = --e 

Setting a = 0 in the equation for g will reproduce the equation of Kath and 

Smyth [22] as discussed in Section 2.2, as required. 

The full set of approximate equations describing pulse evolution in the pres- 
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ence of fibre loss is given by 

dg - 

	

2,7 	2 	-2 

	

-- 	- w ) - ag - 2g, (4.29) 
- dz 37 

d £ = 	(772 - 1W_2) - aw, (4.30) 

d 

 ( 	_ 
27/4w) = 	2a ( 4774w - 77 (4.31) 

dz 	w 
3k1 	d f 

= 	—e  
rere"

— 	 dT, (4.32) -j- 
z 	/ir(z 

-
r) 

r2 = 	(2rq 2  w - 2k + 372 g2). (4.33) 

4.3 	Amplification of Pulse 

In a fibre with loss, the pulse will have to be periodically amplified and reshaped 
if it is to travel any useful distance. One method of amplification is to use the 

Raman gain of the fibre itself. A light wave incident on the fibre material can 
excite the resonance. In doing so an incident photon is annihilated to create a 
photon at a downshifted frequency along with a phonon which conserves energy 
and momentum. This is known as Raman scattering and plays an important 
part in light wave propagation in nonlinear optics. In Raman amplification a 
pump wave with a frequency higher than the soliton frequency is passed through 
the fibre simultaneously with the carrier wave. The pump wave excites the Ra-
man effect in the fibre stimulating photon creation at the lower soliton frequency. 
When properly tuned, this will cancel the fibre loss. This is known as Raman 

amplification and was first proposed by Hasegawa [17]. It has been shown to suc-
cessfully amplify the soliton and aid in the long-distance transmission of solitons 

[42, 44]. However, Raman amplification has a drawback in that it can lead to 
crosstalk between different channels in wavelength-division multiplexing (WDM) 
systems which can seriously degrade performance. Also the pump wave which 

is responsible for the Raman amplification requires relatively large amounts of 

power. 
An alternative to Raman amplification is to use another type of all-optical 

amplifier known as a doped fibre amplifier. These are simple, highly efficient 

devices and, being all-optical, they are very fast. In addition, they are easily 
implemented in a fibre optic system as they merely involve doping sections of the 
fibre with rare-earth metals. A small, low-power diode laser is used to excite the 
rare-earth metal ions in the doped section of the fibre. The carrier wave then 
stimulates photon emission from the excited rare-earth metal ions. In particular, 
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the erbium-doped fibre amplifier (EDFA) [35] is of special interest as it operates 

near the 1.5trn wavelength region where the optical fibre assumes minimum loss. 

It has been demonstrated that EDFA's successfully reshape solitons in fibre optic 

systems [45] and current amplification of fibre optic cables involve EDFA's for 

amplification. 

In optical applications if the dispersion distance is much longer than the am-

plifier spacing, the amplifiers can be treated as continuous. This is known as the 

distributed-amplifier approximation. At this point it would be useful to define 

the soliton width and its relation to dispersion distance. We define the width 

in the standard fashion as the width which corresponds to half the peak power 

of the soliton (FWHM). So the soliton width of an optical soliton which has an 

amplitude of sech(/to) is given by 

= 1.76t0 . 	 (4.34) 

The pulse width can be related to the dispersion distance by equation (1.2) as 

75 2 1 
Zü 

= - 
/ 	

7. 	 (4.35) 
1.76 V 

According to Malomed [29], solitons with widths of 10 picoseconds (ps) or 

greater typically satisfy the distributed-amplifier approximation. Solitons in-

tended for use in long-distance telecommunications generally have widths that 

range from 10 to 20 ps. In this width range the amplifiers can be taken to bal-

ance loss on a continuous basis, which is equivalent to setting a = 0. However, 

for narrow solitons, where the dispersion distance may be less than the amplifier 

spacing, amplifiers have to be treated as discrete. However making the solitons 

too narrow presents its own set of difficulties. The smaller the pulse width, the 

more important higher order effects become in the NLS equation. In general for 

solitons with widths less than 0.1 ps higher order effects must be accounted for [2]. 

For the present amplifier analysis, a balance was chosen between narrow pulses 

which satisfy the discrete amplifier approximation, but wide enough so that we 

can neglect higher order effects. 

To model the effect of discrete amplifiers, at each amplifier the amplitude, 77, 

and shelf height, g, are simultaneously multiplied by a factor of (1 + (), where 

is the amplifier coefficient. The modified pulse plus shelf is then treated as a 

new initial condition. At each amplifier the shelf is incorporated into the pulse by 

adding the shelf mass to its mass and adjusting the width of the pulse to reflect 

this. Mass conservation then gives the new width, w1, of the pulse as 

277 2w + £g2  = 277 2w1 	 (4.36) 
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so that, 

Wl=W+;- . 	 (4.37) 
2772  

Here 17 is the amplitude of the pulse after amplification. At this point we now 

have a new initial value problem with initial conditions 7] for the amplitude and 

w1  for the width. The pulse then propagates along the new section of fibre to 

the next amplifier according to the approximate equations (4.29)-(4.33) or the 

perturbed NLS equation (4.1). 

4.4 Results 

Full numerical solutions of the perturbed NLS equation (4.1) were compared 

with numerical solutions of the approximate equations (4.29)-(4.33). The nondi-

mensionalised fibre loss term a is defined as damping rate per distance and is 

wavelength dependent. So for a given wavelength, changing the scaling of the 

NLS equation will alter the fibre loss a. As was discussed at the beginning of the 

chapter, the minimum fibre loss is 6 = 0.2 dB/km at a wavelength of 1.55jm. 

Using this value of fibre loss, a normalised fibre loss of a = 0.3 will correspond to 

a dispersion distance of z0  = 12.5 km. 

4.4.1 Modifications to Full Numerical Code 

As was discussed in Section 3.1 perturbed NLS equations can be solved using the 

integrating factor method. The perturbations due to loss to the NLS equation 

(1.1) can be incorporated into the integrating factor. The perturbed NLS equation 

incorporating fibre loss and damping at boundaries is 

iu 	
1 

+ 	+ u 2n + iO(t)u = -ian. 	 (4.38) 

Fourier transforming this equation gives 

di 	2 - + -w i iF {u 2u} - F{9(t)u} - aü, 	 (4.39) 
dz 2 

where a is the fibre loss. This loss term can now be incorporated into the inte-

grating factor of equation (3.5) as 

I
ftexp ( 
	

+ az)] = [iF {u  2n} - F {9(t)u}] exp 
(iw2z 

 + az). (4.40) 
dz 

This equation is now solved numerically using the Runge-Kutta procedure out-

lined in Section 3.1. 
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4.4.2 Modification to Approximate Numerical Code 

To numerically evaluate the radiation loss integral (4.28) a modification to the 

method of Section 3.2 is necessary. The radiation integral is now of the form 

M 
= j z reT

d. 	 (4.41) 

Following the method of [37] outlined in Section 3.2, the integral (4.41) is written 

as the sum of two integrals 

(4.42) 

where 
'm r(r)e" 

= 	_ dr 	 (4.43) 
Jo0 z — y 

and 
r(Y)e T  A/12

_____ d. 	 (4.44) 
fm ZT 

Again, as M1  does not contain a singularity, it can be evaluated directly using 

the Trapezoidal Rule. 

The integral M2  is evaluated by dividing it into the sum of many small integrals 

reT 	
(4.45) 

i=k 	i=k 'Zi 	

z  _ T  

where zk = m and z 1  = Z. In the region zi < r < z+ of integration the 

numerator of (4.45) is approximated by a linear function as 

r(z)e 	+ ( P7-  - z)r', 	 (4.46) 

where the derivative r' is 

r(zj+i)ezi+1 - r(z)e olzi  
TI  = 

	

	 . 	 (4.47) 
zi+1 - z 

Placing this expression for r(-r)e" in equation (4.45) gives 

M'iZi
t+' r(z)e + r'(r - z) 

(4.48) 
= Jz, 	

dr. 

After rearranging the numerator as in (3.24) this integral can be evaluated exactly 

as 

= 2 (r(z)e + r'(z - z)) (z --z  - 	-z+1) 

+ r'  ((z - z 1 )312  - (z - z)3/2). 	
(4.49) 
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Figure 4.1: Pulse amplitude 77 as a function of distance z with a 	0.01 and 
boundary condition u(0, t) = 1.25 sech t. Approximate solution with radiation: - 
— -; without radiation: - - -; full numerical solution: 

4.4.3 Numerical Results 

Figure 4.1 shows a comparison between the solutions of the approximate equations 
(4.29)—(4.33), with and without radiation loss, and the full numerical solution of 
the perturbed NLS equation (4.1). The loss parameter is set to a = 0.01 and 

the boundary condition is a non-NLS soliton pulse with ij = 1.25 and w = 1. As 

can be seen in Figure 4.1, for low values of fibre loss a the inclusion of radiation 

loss gives approximate solutions in much better agreement with full numerical 
solutions. This shows that for low fibre loss it is necessary to include radiation 
loss to adequately describe the evolution of a pulse in a iossy fibre. The phase 
shift between the numerical and approximate solutions apparent in this figure is 
a result of assuming the instantaneous formation of the shelf [22]. However, as 

mentioned above, an accurate determination of the phase is not necessary in the 

present work and so this phase difference is not critical. 
Figure 4.1 shows a comparison for a non-soliton boundary condition. It is 

of interest to see how a pulse would evolve under the same conditions, but with 

a soliton boundary condition. Figure 4.2 shows such a comparison between the 
solutions of the approximate equations (4.29)—(4.33), again both with and without 
radiation loss, and the full numerical solution of the perturbed NLS equation (4.1). 
The loss is the same as in Figure 4.1, a = 0.01, but the boundary condition is 

an NLS soliton with 77 = w = 1.0. As can be seen in Figure 4.2, there is little 
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Figure 4.2: Pulse amplitude 7] as a function of distance z with a = 0.01 and 
boundary condition u(0, t) = sech t. Approximate solution with radiation: - -; 
without radiation: - - -; full numerical solution: 

radiation shed by the pulse as it evolves and including radiation loss yields no 

improvement in the agreement with the full numerical solution. This is because 

optical pulses mainly shed radiation in an attempt to become a soliton. Once 

this state is achieved, or nearly achieved, the amount of shed radiation drops 

dramatically, so that at this point the radiation loss is less important. This can 

be seen in equation (4.25) for conservation of mass. The pulse loses mass at a 

rate proportional to r. As was discussed in Section 2.2, r is found by examining 

the relation between the amount of mass present in the pulse at a given value of z 

and the amount of mass present at the fixed point. When these are nearly equal, 

r, the shelf height, will become very small, decreasing the rate of mass loss due 

to radiation. 

For loss values approximately equal to the real loss value of a = 0.3 the picture 

is more ambiguous. Figure 4.3 shows a comparison between the solutions of the 

approximate equations (4.29)—(4.33), both with and without radiation loss, and 

the full numerical solution of the perturbed NLS equation (4.1). As mentioned 

above, the real fibre loss is a = 0.3. The boundary condition chosen was a non-

NLS soliton pulse with i = 1.25 and w = 1. As can be seen in Figure 4.3, 

the approximate solutions are virtually identical while the full numerical solution 

slowly oscillates. For this value of fibre loss it appears that including radiation 

loss may not be necessary, but it is difficult to draw any firm conclusions. 
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Figure 4.3: Pulse amplitude 77 as a function of distance z with a = 0.3 and 
boundary condition u(0, t) = 1.25 sech t. Approximate solution with radiation: 
- -; without radiation: - - -; full numerical solution: 

For large values of fibre loss a, radiation loss plays little part in pulse evo-
lution. Figure 4.4 shows a comparison between the solution of the approximate 
equations (4.29)—(4.33), both with and without radiation loss, and the full nu-
merical solution of the perturbed NLS equation (4.1). The fibre loss parameter 
is a = 0.5 and the boundary condition is a non-NLS soliton with 77 = 1.25 and 

w = 1. As can be seen from Figure 4.4, the large fibre loss completely dominates 
the evolution of the pulse, so that radiation losses are negligible by comparison. 
This value of fibre loss is well above real values for this scaling and is only included 

to test the model. 
In a potential soliton-based communication systems using EDFA's for pulse 

amplification, the optical amplifiers would be spaced anywhere from 30-100 km 
apart, depending on implementation. To reflect this, a different scaling was used 

with z = 1 corresponding to a dispersion distance of z0  = 60 km, which gives a 

normalised fibre loss of a = 1.5. Taking the amplifiers to be 60 km apart then 

means that the discrete amplifier approximation is correct as the dispersion length 
is roughly equal to the amplifier spacing. In analysing the effects of dispersive 
radiation in Section 4.2 it was assumed that the fibre loss a would be small. 
However with the scaling being used this is no longer the case. As a result the 
radiation analysis of Section 4.2 may not strictly be applicable. Figure 4.5 shows a 
comparison between the solution of the approximate equations (4.29)—(4.33) with 
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Figure 4.4: Pulse amplitude ij as a function of distance z with a = 0.5 and 
boundary condition u(0, t) = 1.25 sech t. Approximate solution with radiation: - 
- -; without radiation: - - -; full numerical solution: 

radiation loss, and the full numerical solution of the perturbed NLS equation 
(4.1) travelling a distance of almost 1000 km. The fibre loss is a = 1.5 and 

the boundary condition is an NLS soliton with 'q = w = 1.0. It can be seen in 

Figure 4.5 that the full numerical and approximate solution diverge over time. 

This is because small differences between the two solutions are magnified at each 
amplifier, leading to growing errors. Also, as mentioned above, the radiation 
analysis is no longer strictly valid for such a large value of fibre loss. However, 

initially at least, the comparison is very good and divergence only sets in after a 

significant distance has been travelled. 
While the comparison in all of the above figures was good, the approximate 

equations gave the best agreement for small fibre loss a. As will be seen in the 
next chapter, modelling sliding frequency filters with fibre loss greatly benefits 
from the analysis of the present chapter of fibre loss. The most important effects 
included in this analysis are the independently varying amplitude and width of 
the pulse and the inclusion of the radiation propagating away from the pulse. As 

will be shown, inclusion of both of these effects proves essential for an accurate 
model of pulse evolution when filters, fibre loss and amplification are included. 
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Chapter 5 

Sliding-Frequency Filters 

Sliding-frequency filters (SFF's) are used to suppress the effect of the sponta-

neous noise generated by erbium doped fibre amplifiers (EDFA's) (see Section 

4.3) in optical communication systems [20, 41]. These all-optical amplifiers are 

used to counteract the loss inherent in fibre optic cables. However, while the 

EDFA's amplify the signal, they also amplify the noise in the system. In a soliton 

based communication system, this noise amplification causes a shift in the soli-

ton parameters, most importantly in its amplitude and frequency. As the soliton 

frequency is coupled to its velocity, this then causes random fluctuations in the 

soliton velocity and thus in the arrival time of the soliton. This negative effect of 

amplification is known as Gordon-Haus (GH) jitter [14]. 

To reduce the effect of noise, optical filters are used [36]. A fixed-frequency 

filter can reduce Gil jitter by creating an attractive value of soliton frequency, 

and thus velocity. Random noise will therefore not drive the soliton too far from 

its preferred velocity, reducing fluctuations in the soliton arrival time. However, a 

fixed-frequency filter is unable to reduce radiation within the filter's passband. To 

reduce this noise, an SFF is employed [41]. An SFF allows the central frequency 

of the filter to change along the length of the fibre. As the filter passband changes, 

the nonlinear soliton re-adjusts to this new frequency, while the linear radiation 

underneath does not. In this way radiation around and under the soliton is filtered 

out, reducing Gil jitter. 

There is no exact solution of the perturbed NLS equation which results when 

the effect of SFF's are added. Therefore it is a perfect candidate for approximate 

and numerical analysis methods. As mentioned above, to counteract the pulse 

damping due to the filtering and the inherent fibre loss, periodically spaced op-

tical amplifiers are used, which in the limit of the amplifier spacing being much 

smaller than the dispersion length of the soliton, can be modelled by a continu-

ous system of amplifiers [20]. In an experimental and numerical study, Mamyshev 

and Mollenauer [32] showed that stable soliton propagation was possible with am- 
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plification for a range of filter sliding rates and strengths. In particular it was 

found that there are upper and lower bounds on the soliton energy for which 

stable propagation is possible. For energies below the lower bound, the pulse 

decays into dispersive radiation due to excessive filtering and for energies above 

the upper bound, a second soliton is formed, as may be expected from inverse 

scattering theory [50]. Kodarna and Wabnitz [26] used a multiple scales analysis 

based on a slowly varying NLS soliton to derive ordinary differential equations 

governing the parameters of a soliton propagating in the presence of SFF's and 

amplification. It was shown that these equations possessed two fixed points, one 

of which was stable and the other unstable. It was further shown that the fixed 

point existed for energies above a certain threshold, in agreement with Marnyshev 

and Mollenauer [32]. However, the multiple scales analysis did not predict the 

upper energy bound. Burtsev and Kaup [6] used perturbed inverse scattering the-

ory to derive the same approximate equations governing the soliton parameters 

as Kodama and Wabnitz [26]. Now, as a perturbed soliton propagates, it sheds 

dispersive radiation. Burtsev and Kaup [6] deduced that it was this radiation 

that gave rise to the second soliton. By extending their perturbation analysis to 

higher order, Burtsev and Kaup [6] obtained estimates on this radiation which 

enabled them to find an approximation to the upper energy bound. This deduced 

upper bound was found to be in good agreement with that found from numerical 

results by Mamyshev and Mollenauer [32]. Soliton propagation in the presence 

of SFF's was also studied by Malomed and Tasgal [29] using the same multiple 

scales method of Kodoma and Wabnitz [26], but for ultra-short pulses for which 

the amplifiers must be taken as discrete. 

All of the previous analytical work on pulse propagation in the presence of 

SFF's was based on a slowly varying soliton. However, the choice of a slowly-

varying NLS soliton as the approximate solution of the perturbed NLS equation 

has drawbacks. Firstly, the evolution equations obtained using this assumption 

monotonically evolve to a steady state in the presence of amplification and fil-

tering. However this is not reflected in full numerical solutions of the perturbed 

NLS equation (5.1) where amplitude oscillations are present. These oscillations 

are due to variations in the amplitude/width relation and oscillations of mass 

and energy between the pulse and shelf of radiation on which the pulse sits. Both 

of these factors lead to oscillations in the evolving pulse which are seen in full 

numerical solutions. The present work takes both of these factors into account. 

Furthermore, radiation is shed by the pulse. The effect of this shed radiation is 

to damp the amplitude oscillations, driving the pulse to a steady soliton. Again, 

this behaviour is seen in full numerical solutions of (5.1) and is included in the 
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present analysis. While the second order perturbed inverse scattering work of [6] 

does find equations for this shed radiation, it does not include the coupling of 

this radiation to the evolving pulse and the equations for the soliton amplitude 

and velocity are the same as those of [26, 29]. Again, there is no need to take into 

account this dispersive radiation away from the pulse as there are no amplitude 

oscillations to damp due to the monotonic evolution. 

In this chapter the analysis method of Chapter 2 will be extended to study 

the evolution of pulses under the action of SFF's, fibre loss and amplification. It 

is found that the approximate equations of this chapter give solutions in better 

agreement with numerical solutions than those of [6, 26, 29]. The main reason for 

this is that the amplitude and width oscillations of the pulse are now independent. 

The present approximate equations also give the same lower energy bound for 

stable pulse propagation as [6, 26]. However, in addition by using mass and 

energy conservation, an approximation to the upper energy bound due to the 

formation of a second soliton is also found. This new upper bound is found to be 

in good agreement with numerical results. 

5.1 Approximate Equations 

Light propagating in a monornode, polarisation-preserving, nonlinear optical fibre 

operating in the anomalous group-velocity dispersion regime is described by the 

NLS equation [19]. When the effects of fibre loss and an SFF are added, the 

governing equation is the perturbed NLS equation 

.3u 132uIU12 U 
2 

_iCUi-Y (5.1) 
az 	2 (9t2 	 ( at 

in nondimensional form [20]. Equation (5.1) is valid when the dispersion length 

is longer than the amplifier /filter spacing. Here u is the complex-valued envelope 

of the pulse, z is the normalised spatial variable along the length of the fibre and 

t is the normalised time in a frame moving with the linear group velocity. The 

first term on the right hand side represents uniform fibre loss, where a is the loss 

parameter [19]. The second term represents an SFF with filter strength 'y  and 

frequency sliding rate Q [20]. When the amplifier spacing is much smaller than 

the dispersion length scale of the soliton, the term —ian on the right hand side 

of (5.1) represents the excess gain over loss for a < 0 [19, 20]. 

The dimensionless filter and loss parameters, 'y,  l and a can be related to 

physical parameters, assuming that one uses Fabry-Perot filters with mirror re- 
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fiectivity r, via 

1z0 	1 	r 
= 2Z(FSRtO)2(1T)2 	

(5.2) 
a   

ci = 27f'tozo 	 (5.3) 
1 

0rZO 	 (5.4) 

where z3  is the dispersion length (1.2). Za is the spacing between amplifier/ filter 

points. FSR is the free spectral range of the filter and f is the sliding rate of 

the filter, measured in frequency per distance. ar  is the dimensional excess gain, 

measured in units of inverse distance. Taking typical values of the dimensional 

parameters to be [6, 32] k" = -2.2 ps2 /krn, to  = 16 ps, z,, = 39 km, a,- = 1.5 

MM-1  and f" = 13 GHz/Mm gives z0  = 116 km, y = 0.2, ci = 0.15 and a = 

0.085. As the dispersion length z0  is longer than the filter/ amplifier spacing Za 

the perturbed NLS equation (5.1) is valid. 

For this perturbed NLS equation (5.1), the conservation and moment equa-

tions (2.9)-(2.11) and (2.13) are modified to 

j-,,, 
pdt = 

- f 
 [(2a + 2ci2 z2) p + 47cizJ + 2 (E +p2)] dt, (5.5) 

dz 	 -00 

d

fo. 
OO 	 /00 

a- 	
Jdt = 

- J 
 [(2a + 2'yci2z2)J + 4yciz (E +p2) 
-00 

+iy (uu -  UUtt)] dt, 	 (5.6) 
d°° 

Edt = J 
[(2a+2yci2z2)(p2-E) 

dz -00 	 -00 

+2 	+ (u*)2  u + u2 (*)2 - 	2) 

+ 2iyciz (UUtt - UtU + 2u 2u4 -2  IU12U*Ut) 2 u 2u*ut) dt, (5.7 

d

f0c 

°° 	 p00 	1 

- 	
tJdt 

= J 	
E + 	- (2a + 2yQ2z2) tJ + i7t (UUtt -UtUtt  

-00 

-4'ycizt(E+p2)] dt. 	 (5.8 

The trial solution (2.14) needs to be extended in order to account for two 

phenomena that are present here. The first is that the pulse no longer travels 

with a constant group velocity. Also, connected with this, the reference frame is 

no longer centred at the soliton, but rather at a mean position y. Incorporating 

these two changes into a trial solution, (2.14) becomes 

U =sech 
(

77
t  - 

w 	
+ig ) exp [iG + iV (t - y)], 	 (5.9) 

where V is the deviation from the group velocity. Substituting this new trial 
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solution (5.9) into the conservation and moment equations (5.5)—(5.8) yields 

(2 2w + £g2) 	= - 	(z + V) 77  2  , 	 (5.10) 
dz 	3 	w 

( 	
—2 4w) = 2 (a + 2z2  + v2  + 2QzV) (4n4w - 

dz w 	 w 

(2474w2 - 141]2 \ 
(5.11) 

50 

d 	 2(712 _ q4W) -(irijgw) = 

—2 (a + l2z2  + 37V 2  + 4V2z) rrijgw, 	(5.12) 

(2 2w + £g2) = —2 (a + 2z2  + V 2  + 2zV) (2712w + £g2) 
dz 	

-4. 	 (5.13) 
3w 

The last equation is 

dy V 
dz 

(5.14) 

which links the soliton centre position to the velocity. After some manipulation, 

the conservation and moment equations (5.10)—(5.13) become 

(2ij 2w + £g2) 
dV 
 = —'y (z + V) 2-, 	 (5.15) 

d 
 ( 	2714w) = 2 (a + 2z2  + V 2  + 2zV) (4714w - T1 

 2)  

dz (w 
(24714w2 - 14712  

5w3 	) 	
(5.16) 

d£gl-2(71w)2  
= —(a+2z2+V2+2zV)riw— 	2 dz 

	

	 27r 	w 
-yl] 

	

+--, 	 (5.17) 
5w 

dg 271 	2 - -_--[1_(71w)]_(a+yQ2z2+5'yV2+6'yQzV)g 
dz 	37 w2 

7g 

	

2 	 (5.18) 

In deriving these equations, terms of 0(g2) and higher have been dropped, except 

for the quadratic term in g proportional to £, since this term is important in mass 

conservation [22]. 
For the case of the NLS equation (1.1) and as discussed in Section 2.1, Kath 

and Smyth [22] found the length £ of the shelf by matching the frequency of os-

cillation of the solution of the NLS approximate equations near the fixed point 

71 = k, w = 1/k to the steady NLS soliton oscillation frequency k 2 /2, obtaining 

equation (2.21), where k was given by (2.22). However, the situation for the 
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perturbed NLS equation (5.1) is the same as that of Section 4.1. The only fixed 
point of the present approximate equations (5.14)—(5.18) in the absence of am-

plification is 77 = 0 due to the loss terms. Therefore the method of [22] cannot 

be used to determine £. If the loss parameters a and 'y  are small, then a slowly 

varying approximation to £ is (2.21). In a similar vein, since the fixed point of 
the present approximate equations (5.14)—(5.18) (in the absence of amplification) 

is 'i = 	0, the NLS fixed point (2.22) will be used to determine £ via (2.21). 

For a and 'y  small, R given by (2.22) is not constant, but slowly varying in z. 

This slowly varying approximation gives the local value of amplitude I that the 

pulse would achieve if the fibre loss and filter strength were set instantaneously 

to zero. Furthermore, with this value of £, setting a = 	= 0 in the present 

approximate equations (5.15)—(5.18) reduces the equations to those derived from 
an averaged Lagrangian by Kath and Smyth [22]. However, as will be discussed 
in Section 5.3.3, steady state solutions of (5.14)—(5.18) do exist when the amplifi-
cation (a <0)is sufficient to compensate for the filtering. The form of that fixed 

point will be discussed in Section 5.3.3. 
Kodama and Wabnitz [26] and Malorned and Tasgal [29] derived another set 

of approximate equations for the pulse amplitude and velocity based on another 
trial function. Their method uses a trial solution in the form of an NLS soliton 

with variable parameters 

u =77sech (77 (t - y)) exp (—i9 - iV (t - y)). 	(5.19) 

This trial solution assumes that the amplitude 17 and width 17' of the pulse 
are inversely related. The pulse phase is 9 and the pulse velocity is V. Finally 

the parameters are all functions of t. Based on this trial solution, Kodarna and 
Wabnitz [26] used the method of multiple scales and Malomed and Tasgal [29] used 
the balance-equation technique [28] to derive the following approximate equations 

for the pulse parameters of (5.19) 

- _277 { a +[+(V_ z) 2]} 	 (5.20) 
dz - 

dV 	4 
(V - Qz). 	 (5.21) 

Notice that setting ij = 1/w and g = 0 in the present approximate equations 

(5.15)—(5.18) give these equations, as expected. 
The approximate equations (5.14)-(5.18) along with (2.21) and (2.22) for £ 

and k are not yet complete as they do not incorporate the effect of the dispersive 
radiation shed by the evolving pulse. This shed radiation is the subject of the 

next section. 
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5.2 Radiation Loss 

Following the method of Section 2.2 and that of Kath and Smyth [22], the effect 

of the shed radiation on the evolution of the pulse will be analysed. 

As the shed radiation has small amplitude, the nonlinear term in the perturbed 

NLS equation (5.1) is negligible away from the pulse. Therefore, the equation 

governing the shed radiation is 

jug  + utt = —10,U + l7Utt - 2zut  - i 2z2u. 	(5.22) 

The substitution 

u = U(t, z) exp (z - i  _a 	2Z3) 	 (5.23) 

transforms the linearised equation (5.22) to 

iUz  + ( - i-/)  Utt  = —2zU. 	 (5.24) 

Now the conservation of mass equation for this transformed radiation equation 

(5.24) is 

U2 	(UU - UUfl + 	(U*Ut  + UUt*) - 2U2 	
(5.25) az 	2 at 

- 2iQz'y (UU, - U*Ut). 

Integrating this mass equation from the edge of the shelf t = y+/2 to t = 00, and 

noticing that the last two terms on the right hand side in (5.25) do not represent 

radiation shed from the pulse, yields an expression for the mass radiated to the 

right away from the pulse as 

J 	U dt = - VU 12  + Tm (U*Ut) ty+/2 	
(5.26) dz 

- 2'y Re (U*Ut) I t=y+t/2.  

Kath and Smyth [22] used Laplace transforms to solve the linearised NLS 

equation and thus determined an expression for the mass radiated by the evolving 

pulse. It was this method that was outlined in Section 2.2 and utilised to study 

the dispersive radiation with fibre loss in Section 4.2. However the linearised 

equation (5.24) has non-constant coefficients and so Laplace transforms are not 

really useful for its analysis. If we assume that the frequency sliding rate, Q, is 

small, the non-constant coefficient Qz in the linearised equation (5.24) is slowly 

varying, and so may be taken to be constant on the fast scale z. This is equivalent 

to saying that the filter's central frequency, Qz, changes slowly over the length 



scale z, which is governed by the dispersion length. There is another, related 

complication in solving (5.24) for which the assumption of small Q will be needed. 

The radiation equation (5.24) is a moving boundary problem with an unknown 

moving boundary since a boundary condition will be imposed at the edge of 

the shelf t = y + £/2. The location of the moving boundary is determined by 

the approximate equations (5.15)—(5.18). Because of this coupling, the radiation 

equation (5.24) could not be solved even if it had constant coefficients. However 

if the frequency sliding rate Q is again taken to be small, the velocity V is then 

slowly varying on the scale z and so can be taken to be constant. The moving 

boundary is therefore known and the radiation equation (5.24) can be solved. 

Once this slowly varying assumption is made, Laplace transforms may then be 

used to solve the linearised equation (5.24). Doing this, it is found that 

(-
+ 2QzU + isU = 0, i-y) Utt (5.27) 

where an overbar denotes a Laplace transform and s is the Laplace transform 

variable. The solution of this equation is of the form 

U = exp (\t) 	 (5.28) 

with ) given by 

	

—2Qz7 +~4Q2Z2 
ly 2 - 4 ( - 	 is 

= 

	

	 (5.29) 
1-2i'y 

Neglecting the quadratic term in Q and using the Taylor series expansion 

	

/fii 2i7 = 1 - i'y +0 (2) 	 (5.30) 

Assuming the filter strength, -y, is small, which was already done to derive an 

expression for £, the shelf length, the equation for the roots of the characteristic 

polynomial (5.29) becomes 

i7r'\ 

~e
xp = -2Qz+ 

(-4) 

	

+exp 
() 	]. 	

(5.31) 

The root ) corresponds to a decaying solution as t -p oc and the root '+ to a 

growing solution as t -p oo. Choosing the decaying solution, we have 

/ in" 	 7 i'jr '\ 
[_2Qz_ exp 

-) 	
—exp 

) 	B ] 

U. 	(5.32) 

Inverting using the convolution theorem then gives 

l
exp 

(-4) 
Ut = - 2clzyU - V' 	) + 'y exp 

( 4 

7 d 	U 	
(5.33) 

d) 
X 
	

n(z — r) j 



Substituting this expression into the radiated mass equation (5.26) and ignoring 

quadratic terms in 7, we obtain 

d [y00

+f/2 

[Z

I U12 	I12  dt = —VU 12  + (1 + 7)U*_ I 	 d 	(5.34) 
dz Jo \/7r(z - T) 

for the mass radiated to the right of the pulse (i.e. into t > y + £/2). An expres-

sion for the mass radiated to the left of the pulse (i.e. into t < y - £/2) may be 

obtained in a similar manner, the only difference to the mass expression (5.34) 

being that the sign of the VU 2  term is reversed. Then inverting the transforma-

tion (5.23) and substituting the right and left mass loss expressions into the mass 

conservation equation (5.5) for the pulse results in the modified mass conservation 

equation for the pulse 

d 00 

f 
pdt 

= - f 
[(2a + 2 2z2) p + 47QzJ + 27 (E + p2)] dt 

-00 	 -00 

- 2(1 + 7)r exp (_az - 17 2z3) 

d j z rexp (a +7Q2r3) dT (5.35) 
X

dz 	0 
	

V/7  (Z - 

which incorporates mass lost to shed dispersive radiation. Again r = 

is the height of the shelf at its edge. The second term on the right hand side of 

(5.35) is the mass shed by the pulse in the form of dispersive radiation. When a 

and 	are small, the height of the shelf is given by the same expression, to first 

order, as that in Kath and Smyth [22] and discussed in Section 2.2. Therefore, 

2 	2 r = 
3k 
--(2?7 w-2k+g2) . 	 (5.36) 

The extra mass loss term in the mass conservation equation (5.35) is incor-

porated into the approximate equations (5.14)—(5.18) by modifying the equation 

for g to 

[1 - (w)2] - (a + 7 2 Z2  +57 V2  + 67QzV) g 
dz 	37F w2 

ly  g —2(1+7)g, 
5 w2 

where 

A  fz r exp (a + 17l2T3) 

	

a =
3k 

 exp 
1 	

_az - 72z3) dz  

	

8r 	 (z - 	
d. 	(5.38) 

In a similar manner, the momentum lost to shed dispersive radiation can be 

added to the momentum conservation equation (5.6). However it is found that 
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the same momentum equation (5.6) results since V is taken to be constant for 

small . The energy lost to shed dispersive radiation is of higher order than the 

lost mass and momentum, and so can be neglected. Hence the full set of equations 

governing pulse evolution with fibre loss and SFF's, including radiation loss, is 

(277 2w + £g
2 dV 
) -- 	— 8 
	712 
y (lz + V) -, 	 (5.39) 

d 	(,72 	TI 
2) 

_ 2 71gw) = 2 (a + 2z2  + 7V 2  + 2zV) (4i4w - 

(24774W2 - 14u12\ 
+7 	

5w3 	) ' 
	 (5.40) 

d £gl-2(ijw)2  
—(71w) = —(a+7Q2z2+7V2+27zV)71w-- 
dz 	 27 w2  

(5.41) 

dg - 2 Tj [1 - (71w)2] - (a + 2z2  + 57V 2  + 67zV) g 
dz 	37 w2 

7 g - 2a(1 + 'y)g, 	 (5.42) 
5 w2 

dy
dz  - 

V, 	 (5.43) 

with 

3k 1  d 	çz r exp (UT  + 17 2T3) 
a = __ exp (_az _ 7 2z3 	 d , (5.44) )J 

8r 

2 (271 
3k 	2 = -- 	w - 2k + £g2). 	 (5.45) 

5.3 Results 

In this section, solutions of the approximate equations (5.39)—(5.45) and the equa-

tions (5.20)—(5.21) of [6, 26, 29] will be compared with full numerical solutions 

of the governing perturbed NLS equation (5.1). The approximate ODE's (5.39)—

(5.45) and (5.20)—(5.21) were solved using the method described in Section 3.2. 

The perturbed NLS equation (5.1) was solved numerically using the method de-

scribed in Section 3.1. 

5.3.1 Modifications to Full Numerical Code 

The procedure for numerically solving the NLS equation with sliding-frequency 

filters (5.1) is similar to that for the original unperturbed case as discussed in 

Section 3.1. However the integrating factor is no longer constant in distance Z. 

Notice that in the case of the unperturbed NLS equation (3.5), and for NLS 



incorporating fibre loss (4.40), the z-coefficient in the integrating factor is a con-

stant, being comprised of the Fourier frequency and loss. This is not the case for 

variable coefficient equations, such as those for sliding-frequency filters (5.1) or 

for variable dispersion fibre (6.1). 

To modify the numerical procedure to account for variable-coefficient equa-

tions, we write the NLS equation incorporating SFF's and fibre loss, along with 

absorbing boundaries, as 

Du 10u 	
(at 

	

0 	
2 

+ 	+ u 2u + iO(t)u = —ian + i 	+ iz) U. (5.46) 

Taking Fourier transforms, this equation becomes 

dfL i 
-+ —w 2ü + a2 + 'yw2u + 2yQzwü + yc22z2u = IF {u 2u} - F {9(t)u}. 
dz 2 

(5.47) 

Taking the lower limit of integration as the previous space point z for the calcu-

lation of 'u at z + Az, the integrating factor for the half space step z/2 is then 

exp(Az/2) where 

A= -u) 2 + + w2  + 2zw + 7 2 Z2. 	 (5.48) 

5.3.2 Modifications to Approximate Code 

Numerically evaluating the radiation integral (5.38) requires a modification to the 

numerical method as in the case of fibre loss as outlined in Section 4.4.2. The 

current radiation integral is 

fz r exp (a + -yQ2T 3) 

	

dT. 	 (5.49) 

This integral can again be decomposed into the sum of two integrals 

M=M1 +M2, 	 (5.50) 

where 

cm r() exp (UT + - cl2r3  
= / 

	) dT 	 (5.51) 
Z—T 

and 

M2= , 
Jm 	

dT. 	 (5.52) 
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Again the integral M1  does not have a singular integrand and so is evaluated 

directly using the Trapezoidal Rule. To evaluate M2, whose integrand is singular 

at r = z, M2  is written as the sum of many small integrals 

n 	71 	r exp (a + 	23) 
d, 	(5.53) M2 M=f 

i=k 	i=k j 	 VZ - 

where Zk = m and z 1  = z. In the region zi < 'r < zH1 of integration, the 

numerator of (5.53) is assumed linear and approximated as 

	

r() exp (a + 	
23) 	r(z) exp (azi + 	+ ( - -)r', 	(5.54) 

where 

/ 	r(z +1) exp (azj+i  + 3 	i+'yQ2z1) - r(z) exp (azj + 'yQ2z) 	
(555) 

zi+1 - z 

Substituting this approximation for r(T) exp (a + 'yQ2r3 ) into equation (5.53) 

gives 

fzi 

z+i  r(z) exp (az + 	2z) + r'( - z) 
_____ dT. 	(5.56) 

M 

After rearranging the numerator as for the similar integral (3.24), this integral 

can be evaluated exactly as 

	

=2 [r(zi ) exp 	+ 	+ r'(z - zi)] (z - z - VI  z - z +1) 

(5.57) 

+ r' ((z - z+1)32 - (z - z)3/2) 

5.3.3 Numerical Results 

When the effect of amplification is added, the parameter a in the perturbed NLS 

equation (5.1) is negative. In this case, the approximate equations (5.39)—(5.45), 

which include the effect of radiation loss, possess a steady state. This steady 

state corresponds to a pulse with a steady profile that travels with constant 

acceleration. The requirement of constant acceleration means that 

V = az + b, 	 (5.58) 

where a is a constant, denoting the constant acceleration. Taking the approximate 

equation derived from momentum conservation (5.10) and seeking a solution with 

constant acceleration, we find 

(2 2w) a = - 	(z + az + b) 77 	 (5.59) 
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to first order in g. It should be noted that for the steady state, in the presence of 

amplification and filtering, g 0 and g = O('y). The shelf variable g is non-zero 

at the steady state because the shelf of radiation, which moves with the pulse, 

is being amplified by the amplifiers and filtered by the SFF's and the balance of 

these two effects results in a steady, non-zero shelf under the pulse. Since the 

filter strength -y  has been assumed to be small, g is small at the steady state. For 

a steady pulse, the right hand side of (5.59) must be independent of z. This gives 

a = -Q which in turn implies 

b = --w . 	 (5.60) 
4-y 

Equation (5.58) for the velocity in the steady state now becomes 

V = —c2z ±3Q 2 
4,y 

To first order in -y equation (5.18) for g gives ij = 1/w = at the steady state, 

where k is the steady amplitude of the soliton, as expected for an NLS soliton. 

Taking this inverse width-amplitude relation for an NLS soliton and the velocity 

steady state (5.61) and substituting these into the conservation of energy equation 

(5.16) produces 

f(k) 	6 	27 Q2 
+ 3ak4  + 	= 0 	 (5.62) 

16 'y 

for the steady amplitude k. This steady state equation for k is the same as 

that found by [6, 26] from a multiple scales analysis and from perturbed inverse 

scattering. The question now remains as to when equation (5.62) possesses real, 

positive solutions. In other words, what parameter combinations (a, -y,  Q) will 

produce steady pulses. A further question is then the stability of these steady 

pulses. 

Differentiating the function f in equation (5.62) with respect to k we find 

df 

	

= 60 (7i 2  + 2cr). 	 (5.63) 
dk 

So f has stationary points at k = 0 and k = +/2a/'y. The absolute values 

around a are due to a now being negative since this is amplification. As we are 

interested in positive solutions, let us examine the positive critical point. The 

second derivative with respect to k of f is 

d 2 

	

= 30-y 4  +36,7 k2. 	 (5.64) 
dic2  
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Evaluating this derivative at the critical point of interest, i 	\/2o/'y, shows 

that k = /2/'y is a minimum of f. Now 

f 
 (\/

i) = 
1 (27 - 	

(5.65) 
716 	) 

Therefore, if 

(5.66) 

f is negative at k = /2a/7, so that equation (5.62) possesses two positive 

solutions as f(0) = 27Q2/ (16-y) > 0. 

From numerical results it was found that the larger of the two critical points 

is stable, the other being unstable, in agreement with the previous work of [26]. 

Examining equation (5.41) for rw about the fixed point Rw = 1, we find 

	

27r(o 	92 
(5.67) 

	

f ~ k2 	16 -yk6 	5) 

for the fixed point of g. Using equation (5.62) for the fixed point amplitude k to 

eliminate a, equation (5.67) becomes 

	

g = -- 16715f l
y. 	 (5.68) 

Hence g = O('y) at the fixed point as stated above and the analysis above for the 

fixed point is valid for small 'y. The solution of the present approximate equations 

does not evolve to a steady-state in the absence of loss to dispersive radiation. 

Without radiative loss, numerical solutions show that the stable fixed point is 

absent and an amplitude-width-shelf oscillation is set up with mass and energy 

oscillating between the pulse and the shelf. 

To perform a full stability analysis on our approximate filter equations includ-

ing the effect of shed dispersive radiation one would have to linearise equations 

(5.39)—(5.42) about the steady state = 1/w = k and g = go, 

77 = k +7], 	 (5.69) 
1 

W =T+ W, 	 (5.70) 
k 

167r 
g = _iv+, 	 (5.71) 

V = —z + 	+ . 	 (5.72) 
4'yic 

Doing this stability analysis however would also require linearising the radiation 

integral (5.38) about the steady state. However this is impossible as the integral 
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requires the details of the pulse behaviour back to z = 0, remembering that the 

present approximate equations do not evolve to a steady state in the absence of 

radiative loss. This stability analysis is not possible. However numerical solutions 

of the approximate equations (5.39)—(5.43) show that the pulse evolves to a steady 

state critical point whose amplitude is the larger root of (5.62). In this context 

it should be noted that the approximate equations (5.39)—(5.43) give oscillatory 

evolution to the steady state, in agreement with full numerical solutions, whereas 

previous work [6, 26] gave monotonic evolution to the steady state. Hence the 

present approximate equations correctly determine the nature of the fixed point, 

whereas the previous work did not. The fixed point obtained from the analysis 

is then used in the calculation of the shelf length £ given by equation (2.21). In 

the absence of a steady state the slowly varying approximation to £ is still (2.21) 

with the fixed point k given by (2.22) as discussed in Section 5.1. 

The inequality (5.66) determines the lower energy bound on the existence of 

stable pulse propagation in the presence of SFF's and amplification [6, 26]. In 

other words, the amplification Jul has to be large enough to compensate for the 

losses associated with filtering. As for the converse of (5.66), 

321 
al < 4 Q 3 Y  3 	 (5.73) 

equation (5.62) possesses no real solutions and so no steady state pulse exists. 

For a given value of the filter strength 'y,  a sufficiently high value of the am-

plification Jul amplifies the dispersive radiation to the point at which a second 

soliton can form out of it. This formation of a second soliton is obviously un-

desirable in applications and was termed instability by [6, 321. However, this is 

not instability in the sense that the evolving pulse loses its coherence. The pa-

rameter values for which a second soliton will form were determined by [6] via 

the perturbed inverse scattering solution of the perturbed NLS equation (5.1). In 

the present work equations for mass and energy will be used to determine when 

a second soliton will form. 

From equations (2.5) and (5.11) it can be seen that the energy of a pulse is 

E = 	- 2 4w. 	 (5.74) 

If there is no filtering and amplification, then an initial pulse will evolve to a 

steady soliton for which r = R and w = 11k and whose energy is E = 

Hence an initial pulse can evolve to a steady soliton only if its initial energy is 

negative. If its initial energy is positive, then it will decay into dispersive radiation 

alone. The borderline case is then an initial pulse with energy E = 0. From the 
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energy expression (5.74) we see that for this borderline case, the pulse amplitude 

and width are related by 

1 
77W7. (5.75) 

Let us now consider a pulse of amplitude 77 and width w which has just enough 

mass and energy to break up into two solitons. At the boundary between one and 

two solitons forming, the second soliton will have zero energy. Let us take the 

final steady amplitude and width of the first soliton to be 77 = k and w = 1/k. 

Then the total energy is 

E = 	- 2774w = —ks , 	 (5.76) 

since the second soliton has zero energy. From (2.3) and (5.13) it can be seen 

that the total mass of the two solitons is 

M 	2i 2w = vf2,q+ 2k. 	 (5.77) 

The term 2772w is the mass of the pulse which is about to split into two solitons. 

The first term on the right is the mass of a pulse with zero energy, for which the 

amplitude-width relation (5.75) holds. The second term on the right is the mass 

of the final steady soliton with amplitude k. In making this division of the mass 

and energy, it has been assumed that in the borderline case no mass and energy 

are taken away by dispersive radiation. On eliminating k between the energy 

conservation result (5.76) and the mass relation (5.77), it is found that 

6 	 47 
w) +(7 w)2  - = 0, 	 (5.78) 

so that 'qw = 1.702.... Therefore for qw > 1.702 an initial pulse will break up 

into two solitons, both of non-trivial final amplitude. In the preceding analysis for 

the generation of a second soliton, the effects of amplification and filtering have 

been ignored. However the condition qw > 1.702 at some point in the evolution 

of a pulse for a second soliton to form will still be valid if it is assumed that when 

there is sufficient mass and energy for a second pulse to form, it will do so, and it 

will then evolve under the influence of amplification and filtering. Much the same 

assumption was made by [6] based on their perturbed inverse scattering solution. 

Their condition for a second soliton to form was based on the fact that the NLS 

equation (1.1) possesses an inverse scattering solution. Using this solution, [50] 

showed that for a boundary condition of the form u = sech t, a second soliton 

will form for the NLS equation when 71W > 1.5, which is in good agreement with 

the value w > 1.702 found from the present mass and energy argument. However 
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Figure 5.1: Number of stable pulses in the Jul - 'y plane as given by the ap-
proximate and full numerical solutions for the soliton boundary condition ij = 1, 
w = 1, and V = 1 for the filter sliding rate Q = 0.1. Boundaries from full 
numerical solution: - ; boundaries from approximate equations (5.39)—(5.45): 

the present mass and energy argument is applicable to equations for which there 

are no inverse-scattering solutions. 
The approximate equations (5.39)—(5.45) can now be used to determine when a 

second soliton will form during the evolution of an initial pulse. The combination 

'rw is calculated as the pulse evolves and a second soliton is said to form when 

rw > 1.702 at some distance z. Figure 5.1 shows a comparison in the Jul - 

plane of the boundary between the regions of one and two solitons as given by 
the approximate and full numerical solutions. Also shown is a similar comparison 
for the region (5.73) for no stable pulse, labelled cut off in the figure. It can 
be seen that there is excellent agreement for the region of no stable pulse, as 
was also found by [6]. The agreement between the numerical and approximate 
solutions for the region of two solitons is good in view of the approximations made 

to derive the boundary 'rw = 1.702. It can further be seen that the agreement 

for the region of two solitons decreases as 'y increases. This is to be expected as 
the analysis of Section 5.2 for the calculation of the effect of the shed dispersive 

radiation was based upon assuming that y  is small. The overall comparison for 

the region of two solitons is similar to that obtained by Burtsev and Kaup [6] 
from perturbed inverse scattering. 

If the effect of the dispersive radiation shed as the pulse evolves was neglected, 
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Figure 5.2: Amplitude 77 versus distance z: Comparison between approximate 
and numerical solutions for soliton boundary condition with 77 = i, w = 1 and 
V = 0 with parameter values f1 = 0.1, 'y = 0.03 and a = —0.1. Full numerical 
solution: - solution of approximate equations (5.39)—(5.45) with radiation: 
- - - - ; solution of approximate equations (5.39)—(5.45) without radiation: 
solution of approximate equations (5.20) and (5.21): - - - - 

so that o = 0, then the approximate equations (5.39)—(5.45) would not possess 

a steady state and there would be a persistent oscillation in i, w, and g about 

the state given by (5.62). As the amplitude and width of the pulse oscillate, 

dispersive radiation is generated in the shelf under the pulse, which is then am-
plified and filtered. The steady oscillations in the absence of radiation damping 
then represent a balance between the amplitude and width oscillations and the 

radiation in the shelf as mass and energy oscillate between the pulse and the 
shelf. The inclusion of the effect of the dispersive radiation shed as the pulse 
evolves is then vital in order to drive the system to settle to a steady state. In 
this regard, Mamyshev and Mollenauer [32] noted that full numerical solutions 

of the perturbed NLS equation (5.1) showed oscillations in the pulse amplitude 
which they attributed to the generation of radiation by the sliding and filtering. 

Figure 5.2 shows the evolution of the pulse amplitude as given by the full 
numerical solution of the governing perturbed NLS equation (5.1), by the present 
approximate equations (5.39)—(5.45), both with and without radiation damping, 
and by the solution of the approximate equations (5.20) and (5.21) of [6, 26], for 

a case of stable pulse propagation, for which the inequality (5.66) holds. The 
above dimensionless parameters correspond to a dispersion length of zo = 133 km 



and an amplifier filter spacing of Za = 285 km, and so do not correspond to a 

physically realistic situation. However the figure is included in order to illustrate 

various aspects of the solution which are evident at these small parameter values. 

It can be seen that the numerical amplitude shows an oscillation which is also 

present in the solution of the present approximate equations (5.39)—(5.45) with 

radiation loss and that there is excellent agreement between these two solutions. 

The main difference between the numerical and approximate solutions is a phase 

difference, which is expected as equations for the phase are of higher order than 

the modulation equations (5.39)-(5.45) [15, 16]. It can further be seen that the 

solution of the modulation equations (5.20) and (5.21) of [6, 26] does not oscillate 

and in fact gives the mean of the numerical oscillations. This is because their 

perturbed solution (5.19) has width w fixed to be the inverse amplitude 1/27, so 

that the pulse cannot undergo the amplitude-width oscillations exhibited by the 

full numerical solutions of (5.1) and by the solutions of the present approximate 

equations (5.39)—(5.45). The final observation to be made about Figure 5.2 is that 

if the radiation damping in the approximate equations (5.39)—(5.45) is neglected 

(i.e. a = 0), the approximate solution exhibits amplitude-width-shelf oscillations 

which do not settle to a steady state, as noted in the previous paragraph. The 

addition of loss due to dispersive radiation allows leakage from the shelf under 

the pulse so that the pulse can settle to a steady state, as noted in the previous 

paragraph. It can therefore be concluded that allowing the pulse amplitude and 

width to vary independently and the inclusion of radiative loss results in better 

agreement with the full numerical solution. Both of these effects were not included 

in the perturbation solutions of [6, 26]. 

Figure 5.3 shows the evolution of the pulse amplitude as given by the full 

numerical solution and by the solution of the present approximate equations for 

the same parameter values as Figure 5.2, but for a larger range of z. It can be seen 

that the numerical amplitude shows long term oscillations which are mirrored by 

the approximate solution. The approximate solution shows excellent agreement 

with the numerical solution both in terms of the final steady amplitude and the 

value of z at which the oscillations have basically died out. 

Whereas Figures 5.2 and 5.3 do not correspond to a practical physical situa-

tion, Figure 5.4 does. The dimensionless filter and loss parameters from Figure 

5.4 correspond to a dispersion length of z0  = 133 km and a filter/ amplifier spacing 

of za = 38 km. As the dispersion length is longer than the filter/ amplifier spac-

ing, the perturbed NLS equation (5.1) is physically valid. As can be seen from 

Figure 5.4, the solution of the approximate equations (5.39)—(5.45) is in good 

agreement with the full numerical solution of the perturbed NLS equation (5.1). 
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Figure 5.3: Amplitude 17 versus distance z: Comparison between approximate 
and numerical solutions for soliton boundary condition with 7) = 1, w = 1 and 
V = 0 with parameter values Q = 0.1, 'y = 0.03 and a —0.1. Full numerical 
solution: 	solution of approximate equations (5.39)-(5.45) with radiation: 

Again there is a phase difference between the two solutions for the same reasons 
outlined above. However the solution of the approximate equations (5.39)-(5.45) 
is superior to that given by the modulation equations (5.20) and (5.21) which do 
not reflect any of the dynamic evolutionary behaviour of the evolving pulse. It 
can also be seen from Figure 5.4 that the inclusion of radiation damping in the 
solution of the approximate equations (5.39)-(5.45) is essential for the pulse to 

decay to a steady soliton. 
Let us now consider the evolution of a pulse in the absence of amplification. 

Figure 5.5 shows a comparison between the solutions of the present approximate 
equations (5.39)-(5.45), the solution of the approximate equations (5.20) and 
(5.21) of [6, 26, 29] and the full numerical solution of the perturbed NLS equation 
(5.1). The present approximate equations were solved both with and without the 
effect of shed dispersive radiation. The parameter values used were the same 

as those of Malorned and Tasgal [29], Q = 0.1, 'y = 0.09 and a = 0.046. The 

boundary pulse at z = 0 was taken as an NLS soliton with 77 = 1 and w = 1 

and the initial velocity was V = 0. As can be seen from the figure, the solution 
of the present approximate equations is closer to the full numerical solution than 

the solution of the approximate equations of [6, 26, 29], especially for larger z. 

It can also be seen that for the NLS soliton boundary condition, the inclusion 
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Figure 5.4: Amplitude ij versus distance z: Comparison between approximate 
and numerical solutions for soliton boundary condition with ij = 1, w 	1 and 
V = 0 with parameter values Q = 0.15, -y = 0.1 and a = —0.1. Full numerical 
solution: 	solution of approximate equations (5.39)—(5.45) with radiation: 
- - - - solution of approximate equations (5.39)—(5.45) without radiation: 
solution of approximate equations (5.20) and (5.21): - - - 

of shed dispersive radiation makes little difference to the evolution of the pulse. 
This is because the non-zero loss a quickly damps the dispersive radiation so that 
it has basically no effect on the evolution of the pulse. Indeed, the approximate 
solution is slightly closer to the full numerical solution when the effect of the 
shed dispersive radiation is neglected. This counterintuitive result is due to the 
approximations made in the derivation in Section 5.2 of the effect on the pulse of 
the shed dispersive radiation and again implies that the shed dispersive radiation 

can be neglected for non-zero fibre losses a for a soliton boundary condition. 

Figure 5.6 shows a comparison between the pulse velocity V as given by the 

approximate and numerical solutions for the same parameter values as that of 
Figure 5.5. This velocity comparison shows a marked difference between the 
approximate solution of the present work and that of [6, 26, 29]. It can be seen 

that the velocity as given by the approximate equations of [6, 26, 291 approaches 
a steady value, while the velocity as given by the present approximate equations 

continues to decrease as z increases, in agreement with the full numerical solution. 

In addition, the velocity as given by the approximate equations (5.39)—(5.45) is 
in good agreement with the numerical velocity. As for the amplitude comparison 
shown in Figure 5.5, the inclusion of shed radiation makes little difference to 
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Figure 5.5: Amplitude i versus distance z: Comparison between approximate 
and numerical solutions for soliton boundary condition with i 	1, w = 1 and 
V 	0 with parameter values Q = 0.1, 'y = 0.09 and a = 0.046. Full numerical 
solution: 	solution of approximate equations (5.39)-(5.45) with radiation: 
- - - - solution of approximate equations (5.39)-(5.45) without radiation: 
solution of approximate equations (5.20) and (5.21): - - - - 

the approximate velocity due to the non-zero fibre loss a damping the dispersive 

radiation. 
As radiation loss makes little difference for NLS soliton boundary conditions, 

it cannot explain the difference between the solution of the approximate equations 
(5.39)-(5.45) and of the equations (5.20) and (5.21) of [6, 26, 29]. Therefore the 
only explanation for the difference must be in the trial function used. The trial 
function used by [6, 26, 29], (5.19), does not allow the pulse amplitude and width 
to vary independently. Rather, they are restricted to be inversely proportional, 

as in an NLS soliton. Figure 5.7 shows the product of amplitude and width 'nw as 

given by the solution of the approximate equations (5.39)-(5.45) with radiation 
loss for the same parameter values as for Figures 5.2 and 5.3. Notice that the 
amplitude and width are clearly not inversely proportional, in contrast to the 
assumption made by [6, 26, 29]. The trial function used in the present work, 

(5.9), allows for independently varying pulse amplitude and width. As found 
previously in the case of amplification, this added degree of freedom results in 
better agreement with full numerical solutions. 

Let us now examine the evolution of a non-NLS soliton boundary condition. 
As large loss and filter strength act as damping, killing off most dynamic, evolu- 
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Figure 5.6: Velocity V versus distance z: Comparison between approximate and 
numerical solutions for soliton boundary condition with 77 = 1, w = 1 and V = 0 
with parameter values Q = 0.1, 'y = 0.09 and a = 0.046. Full numerical solution: 

solution of approximate equations (5.39)—(5.45) with radiation: - - - - 
solution of approximate equations (5.39)—(5.45) without radiation: ...; solution 
of approximate equations (5.20) and (5.21): - - - - 

tionary behaviour, we shall take small values for fibre loss a and filter strength 

-y. Figure 5.8 shows a comparison between the pulse amplitude 77  as given by 

the solution of the present approximate equations (5.39)—(5.45), both with and 
without radiation damping, and by the full numerical solution of the perturbed 
NLS equation (5.1). The boundary condition is a non-NLS soliton pulse with 

77 = 1.25 and w = 1 at z = 0. The initial velocity was taken as V = 0.1 and the 

parameter values a = 0, -y = 0.01 and Q = 0.1 were chosen. The pulse is then 
propagating into a lossless fibre with an SFF, so that dispersive loss is expected 

to have an effect on the pulse evolution. No comparison was made with the so-
lution of (5.20) and (5.21) as these approximate equations are valid only for an 
NLS soliton boundary condition. It can be seen from the amplitude comparison 
shown in Figure 5.8 that incorporating radiation loss gives an approximate am-
plitude in better agreement with the full numerical amplitude. The radiation loss 
acts as damping, without which the pulse amplitude is overestimated at every 
oscillation. There is again a phase difference and a period difference between the 
approximate and numerical amplitude oscillations. The phase difference is due to 
the assumption that the shelf forms instantaneously, while the period difference is 
due to the amplitude dependence of the oscillation period, noting that the numer- 
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Figure 5.7: The product of amplitude and width rw versus distance z as given 
by the approximate equations (5.39)-5.45) with radiation for soliton boundary 
condition with r = 1, w = 1 and V = 0 and parameter values Q = 0.1, -y = 0.09 
and ci = 0.046. 

ical and approximate amplitudes are slightly different. Furthermore, the phase 

of the amplitude oscillation is a higher order effect, and while methods exist to 

determine equations for this phase [15, 16], these methods do not determine the 

initial phase, which is of importance here. In this regard, it should be noted that 

the amplitude of the phase oscillation is in good agreement with the numerical 

amplitude. 

Figure 5.9 shows the velocity V of the pulse as given by the solution of the 

approximate equations (5.39)-(5.45), both with and without radiation damping, 

and by the full numerical solution of the perturbed NLS equation (5.1). The 

boundary and parameter values are as for Figure 5.8. It can be seen that the 

inclusion of radiative loss is necessary in order to obtain good agreement with 

the numerical solution, particularly for large z. As for the amplitude oscillations 

of Figure 5.8, there is again a phase and period difference between the numerical 

and approximate velocity oscillations for the same reasons. 

Using the same parameter values as Malomed and Tasgal [29], Figure 5.10 

shows a comparison between the pulse amplitude 17 as given by the solution of 

the present approximate equations (5.39)-(5.45), both with and without radiation 

loss, and by the full numerical solution of the perturbed NLS equation (5.1) for 

the non-NLS soliton boundary condition with ij = 1.25, w = 1 and V = 0.1 at 
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Figure 5.8: Amplitude i versus distance z: Comparison between approximate and 
numerical solutions for non-soliton boundary condition with ij = 1.25, w = 1 and 
V = 0.1 with parameter values ci = 0.1, 'y = 0.01 and a = 0.0. Full numerical 
solution: - ; solution of approximate equations (5.39)—(5.45) with radiation: 
- - - - solution of approximate equations (5.39)—(5.45) without radiation: 

z = 0. The parameters used were ci = 0.1, 'y = 0.03 and a = 0.005 [29]. As for 

the comparison shown in Figure 5.5, adding radiation loss gives little change in 
the agreement with the full numerical solution except near the boundary z = 0. 

This is again due to the damping of the radiation by the fibre loss (a 	0). It 

can also be seen that radiation loss over-estimates the amplitude damping near 

the boundary z = 0. This is not surprising as the radiation loss was derived for 

large z behaviour [22] (see Section 4.2). Without radiation loss, the amplitude 

oscillation has too large an amplitude near z = 0. 
In conclusion it has been shown that for an accurate portrayal of pulse dynam-

ics with SFF's and fibre loss, two things are necessary. Firstly, an independently 
varying amplitude and width and secondly, incorporating the effects of dispersive 
radiation into the evolution equations. Oscillations in the amplitude-width-shelf 
relation lead to oscillatory behaviour in the evolving pulse. To account for this 
oscillatory behaviour it is necessary to decouple the amplitude and width and 
account for the dispersive radiation on which the pulse sits. The perturbed in-
verse scattering analysis of [6] and the multiple scales analysis of [26, 29] assume 

a solution based upon an NLS soliton, with amplitude and width inversely pro-
portional, and neglect the shelf of radiation upon which the pulse sits. As a 
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Figure 5.9: Velocity V versus distance z: Comparison between approximate and 
numerical solutions for non-soliton boundary condition with i = 1.25, w = 1 and 
V = 0.1 with parameter values Q = 0.1, = 0.01 and a = 0.0. Full numerical 
solution: 	solution of approximate equations (5.39)—(5.45) with radiation: 
- - - - solution of approximate equations (5.39)—(5.45) without radiation: 

result their equations monotonically evolve to a steady state missing out on the 
amplitude oscillations evident in full numerical solutions of (5.1). The effect of 
neglecting these factors can also be seen in the pulse velocity as shown in Fig-
ure 5.6. The equations of [26, 29] show the pulse velocity approaching a steady 
state value. This is not reflected in the full numerical solution which shows a 
pulse steadily accelerating. This is accurately reflected by the current evolution 
equations (5.14)—(5.18). Secondly, in order to damp the amplitude oscillations of 

the evolving pulse and drive it to a steady soliton, the effects of shed radiation 
must be accounted for as in the present work. No attempt is made to factor in 
the effects of the shed radiation on the evolving pulse, nor is it necessary as the 

evolution equations of [26, 29] monotonically evolve, missing out on much of the 

dynamic, evolutionary behaviour. 
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Figure 5.10: Amplitude 77 versus distance z: Comparison between approximate 
and numerical solutions for the non-soliton boundary condition with 77 = 1.25, 
w = 1 and V = 0.1 with parameter values Q = 0.1, 'y = 0.03 and a = 0.005. Full 
numerical solution: 	solution of approximate equations (5.39)-(5.45), with 
radiation: - - - - ; solution of approximate equations (5.39)-(5.45), without 
radiation: 
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Chapter 6 

Fibre Compressor 

With a soliton acting as an optical bit in a soliton-based fibre optic communi-

cation system, a major design objective would be to maximise the bit rate, or 

amount of information per second, which could be carried by the system. This can 

be achieved by narrowing the width of each individual soliton, thus fitting more 

solitons into a given length of fibre. This is the idea behind the fibre compressor. 

The term fibre compressor is used to describe a section of dispersion-decreasing fi-

bre (DDF) whose dispersion decreases along its length. A soliton passing through 

a section of DDF will decrease in width and show a proportional increase in am-

plitude. Therefore using such a DDF, a train of solitons can be compressed, 

dramatically increasing data transfer rates. 

Using DDF fibre to compress optical solitons was first proposed by Kuehl 

[27]. It was later demonstrated theoretically by Mamyshev and Chernikov [30] 

that very narrow, sub-picosecond pulses could be generated using DDF. However, 

it was not until the work of Bogatyrev et al. [5] that a practical method existed 

for the manufacture of suitable DDF's. Since then there has been numerous 

experimental validations of pulse compression by DDF's [8, 9, 101. 

Another use of DDF is in the generation of solitons. It has been shown ex-

perimentally [31, 54] that passing a sinusoidal wave into a DDF will produce a 

periodic train of solitons. The dispersion profile of a DDF can either be com-

posed of sections of constant dispersion, known as a discrete compressor, as in 

[10, 54], or be continuously varying along the length of the compressor [5, 8, 9]. 

Using both the soliton generation and pulse compression properties of a DDF, 

a sinusoidal wave input can be used to produce a train of solitons, which can 

then be compressed, ready for data transmission. This was the scenario studied 

by McKinnon et al. [34]. In that work, a Lagrangian method based on the work 

of Kath and Smyth [22] was used to study propagation in DDF's. This work 

was based on using a trial solution, with independently varying amplitude and 

width, in the Lagrangian for the NLS equation to obtain variational equations for 
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the wavetrain properties. Good agreement between the so-obtained approximate 

equations and full numerical solutions was found. 

Besides getting an accurate representation of wavetrain evolution in DDF's, 

it is also of interest to find the dispersion profile of the DDF that will give maxi-

mum compression. This was also studied in [34] by utilising a multi-dimensional 

optimisation procedure to maximise the pulse amplitude, since increasing the am-

plitude decreases the width, thus leading to large data-transfer rates. The subject 

of this chapter is to extend the work of McKinnon et al. [34] by including the effect 

of fibre loss and radiation loss in the analysis. Two different analysis methods 

were utilised, one of which proved unsuccessful. However, for completeness, both 

methods will be discussed. 

6.1 Approximate equations 

As has been discussed previously, light travelling in a monomode, polarisation pre-

serving, nonlinear optical fibre operating in the anomalous group-velocity regime 

is modelled by the NLS equation (1.1). If the dispersion is allowed to vary down 

the length of the fibre, the governing equation is the perturbed NLS equation 

3u 1 a2u 
i— + 	+ F(z)u 2u = —ian 	 (6.1) 

in nondimensionalised form [20], where a is the (linear) fibre loss (see Chapter 

4). As before, u is the complex-valued envelope of the pulse, z is the normalised 

spatial variable along the length of the fibre and t is the normalised time in a 

frame of reference moving with the linear group velocity. The fibre is non-uniform, 

reflected in the fact that the dispersion coefficient 0 and nonlinear coefficient F 

are functions of the spatial variable z. 

To study wavetrain evolution in DDF's, McKinnon et al. [34] used the La-

grangian method of Kath and Smyth [22]. When fibre loss is ignored, so that 

a 	0, the NLS equation (6.1) possesses a Lagrangian. A trial solution based on 

a cnoidal wavetrain was substituted into the NLS Lagrangian and variations were 

then taken with respect to the wavetrain parameters to obtain ODE's for the 

evolution of these parameters. However, as the perturbed NLS equation (6.1) is 

not conservative, the Lagrangian method utilised in [34] cannot be used directly 

in the present work. 

The first analysis method used to analyse the perturbed NLS equation (6.1) 

utilised conservation laws for this equation. This method is similar to that out-

lined in Section 2.1 for pulse evolution. However due to the algebraic complexity 

of the resulting ODE's, another method was investigated. This involved perform- 
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ing a transformation of the perturbed NLS equation (6.1), which reduced the 

equation to the unperturbed NLS equation of [34]. Based on this transformation, 

the approximate evolution equations of McKinnon et al. [34] can then be used 

to obtain approximate equations for wavetrain evolution for the perturbed NLS 

equation (6.1). Both of these methods will be discussed in turn. 

Before discussing the techniques used to analyse evolving wavetrains, it will 

be useful to determine the form of the trial solution which will be used in the 

analysis. The scenario being studied is that in which a sinusoidal wave is used to 

create a train of compressed solitons. So the trial function must be able to mimic 

this evolutionary behaviour and must exhibit two unique traits. Firstly, the 

trial solution must incorporate an independently varying amplitude and width 

and a shelf of dispersive radiation as in (2.14) and (5.9) for pulse evolution. 

Secondly, the trial solution must be able to smoothly evolve from a sinusoidal 

input waveform to a train of solitons. The trial solution possessing both of these 

characteristics, and which was used in the study of McKinnon et al. [34] for the 

NLS equation, is 

U = (du+ig)exP(i9) 	 (6.2) 

where cn x = cm(xftn) is the Jacobean elliptic cosine function of parameter rn [1]. 

As cn x = cos x when rn = 0 and cn x = sech x when rn = 1, this trial solution 

displays the evolutionary behaviour desired. We also note that the trial solution 

includes the effect of the local long wavelength radiation through the parameter 

g, as in [4, 22]. The amplitude 17, width w, phase 9 and local radiation term 9  are 

all functions of z. The boundary condition, as assumed by McKinnon et al. [34], 

is a sinusoidal wave with amplitude A and frequency 1/W 

u(0, t) 	Acos(t/W). 	 (6.3) 

In earlier chapters, the second term in the trial solution (6.2), corresponding 

to the radiation in the vicinity of a pulse, was assumed to hold in a region —/2 < 

t </2 about the pulse. However, we are now dealing with a periodic wavetrain 

rather than a single, isolated pulse. To account for the periodic nature of the 

trial solution (6.2), McKinnon et al. [34] assumed that the radiation term holds 

in a region - K w <t <K w about the pulse and is extended as an odd periodic 

function outside of this region. K(m) is the complete elliptic integral of the first 

kind [1] and the elliptic function cnx has period 4K. The radiation outside of 

the region - K w < t < K w, which is shed by an individual pulse, will be dealt 

with in a later section. 
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6.1.1 Conservation Equation Technique 

For the perturbed NLS equation (6.1) the differential form of the conservation 

and moment equations (2.6)—(2.8) and (2.12) are modified to 

Op 
 +/3 ai 
 

-- = —2o- p, 	(6.4) 
19Z 	at 

a 	r 
+ 

19Z at[ (P2 
+ E - Ptt) - FP2] = —2aJ, 	(6.5) 

( (E + p2) - Fp2) + 	(uu* - UUtt) 
az 	 at [2 	

(6.6) 

- 2FPJ] = 4aFp2  - 2a,8 (E + p2), 

+ ?- 	+ /3tp2  - /3tp - Fp2  

(6.7) 

+ 1  0 (uu + uufl] + Fp2  - 	- 	—2atJ, 

where F and 0 are functions of z. Again these equations are conservation of 

mass, momentum, energy and moment of momentum respectively. Integrating 

these modified conservation and moment equations with respect to t over one 

period of the elliptic function cn x/w, —2 K w < t < 2 K w, gives 

d 
j 

2Kw 	 p2Kw 
pdt = —2a / pdt, 	 (6.8) 

dz2K 	 J-2Kw 
d121<w 	

f2Kw 

2Kw
Jdt = _2a Jdt, 	 (6.9) 

dz 2Kw  

d 

f 2' 
(01 	—Fp2) dt 

2Kw 	
2Kw 	 (6.10)  

=2a1 	(2Fp2 —ut 2) dt, 
-2Kw 

d p21<w 	
p2K (OlUtI2

w 1

— 	
tJdt 

= J
- Fp2 - 2atJ) dt. 	(6.11) 

dz J -2Kw 	-2Kw 	2 

Notice that the boundary condition (6.3) does not contain a t-dependent ampli-

tude or phase, which means that the period P of the cnoidal wavetrain has 

Kw=P= _WI 	 (6.12) 
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since K(0) = 7/2 is constant. Substituting the trial solution (6.2) into the con-

servation and moment equations (6.8)—(6.11) gives, after extensive algebra, 

d (E—Tn,K,,2 	 (E —miK 2 

dz 	mK 	
+g) = —2a 	

mK 	
+g2), 	(6.13) 

d (2gParcsin(') 
- 23ij2K [(2m— 1)E+mi K] 

dz 	K/ 	)3Prn 

[(2— 3m)mi K+2(2m— 1)E1 
- 3Km2  

2F7;I2Pg2 	 4a'qgP 
- 	(E —m1  K) 

-K  , 
	arcsin (\/), (6.14) 

Km 

d [K2 	 1 
13 	

[3Pm 
((2m - 1) E+mi  K)] 

d [Pi14 	
E) + 

2i2Pg2 
(E —m1  K)] 

- ãi 	
((2-3m)mi K+2(2m-- 1) 	

Km 
[K/3 2  

=2[3Pm 
((2m_1)E+miK)] 

- 4Fai4P 
[(2-3m) mi K+2 (2m— 1)E] 

3Km2  
- 81'ai72  Pg2  

(E —m1  K) (6.15) 
Km 

where m1  = 1 - m is the complementary parameter and E(m) is the complete 

elliptic integral of the second kind [1]. As in the case of fibre loss in a uniform 

fibre, discussed in Chapter 4, the wavetrain can be taken to have zero velocity, 

and hence momentum, in a reference frame moving with the linear group velocity. 

This is reflected by the fact that the conservation of momentum equation (6.9) is 

identically satisfied by the trial solution (6.2). 
What now remains is to perform the required differentiation in equations 

(6.13)—(6.15) to get them into a form ready for the approximate equation solver 

outlined in Section 3.2. While this was attempted for some time, the overwhelm-

ing complexity of the equations rendered much of the algebra virtually unwork-

able. As a result, another method was investigated to analyse the perturbed NLS 

equation (6.1). 

6.1.2 Transformation Technique 

While the conservation equation technique outlined in the previous section proved 

difficult, another method proved tractable. Let us perform the transformation 

u = U(, t)e° 	 (6.16) 

FBI 



on the perturbed NLS equation (6.1), where 

1 - e 2°  
(6.17) 

2a  

The perturbed NLS equation (6.1) is then transformed to the NLS equation 

iU + 	+ FU 2U = 0, 	 (6.18) 

where 

	

= 	 (6.19) 

The transformed NLS equation (6.18) is the same equation, in the new variables, 

as that examined in the study of McKinnon et al. [34]. In that work, the NLS 

equation with variable dispersion was analysed using a Lagrangian technique. 

Specifically, the trial solution (6.2) was substituted into the Lagrangian for the 

NLS equation (6.18). Variations were then taken with respect to the wavetrain 

parameters, resulting in ODE's for these parameters. The Lagrangian for the 

NLS equation (6.18) is 

L = i(U*Ue  - UUfl - iUt 2  + FU 4, 	 (6.20) 

where * denotes the complex conjugate. Substituting the trial solution (6.2), 

suitably transformed as 

U = (Acn +iG) exp(iO), 	 (6.21) 

into the Lagrangian (6.20), the averaged Lagrangian 

Ew 
w 	 pKw 

£=Ldt=2JLdt 	 (6.22) 
-Kw 

can be evaluated, on using symmetry. The averaged Lagrangian is therefore found 

to be 

I 
 1C  2P arcsin(\/)(CA - AG') 

- 2PE —m1 KA2O, 
K 	 K m 

P arcsin(/) E —m1 KAG, - 2PG29' - /3-mi A2  
0 	mmi  

- 1)E+2m1 K A2 FP(3m1 - 1)mlK+2(1_2m1)EA4 (6.23) 
P 	3m 	 K 	 3m2  

Taking variations of the averaged Lagrangian (6.23) with respect to the wavetrain 

parameters A, C, 0 and m, noting that w is given by equation (6.12), we obtain 
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the variational equations describing wavetrain parameter evolution as 

4Parcsin( \/) dA PAK 

K (mv/-m—i(6.24) 
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after extensive algebraic manipulation and simplification. Notice that the above 

evolution equations contain 9, the phase. These equations were derived by taking 

variations of the averaged NLS Lagrangian and, as such, an equation for the phase 

is obtained, unlike for the conservation and moment equation approach. 

Transforming back to the original variables using the transformations 

A 	 (6.28) 

C = ge, 	 (6.29) 
d 

= 	
e 2oz 

, 	 (6.30) 

the approximate evolution equations for the perturbed NLS equation (6.1) are 

4P arcsin(/) d?] P17 
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_K 	arcsin(/) 2 E —m1 K\ dm 
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dz 	 MVM)dz 

E —m1  K d9 - 4 (3m1  - 1) mi  K +2 (1 - 2m1) E 
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uP (arcsin(V/—
M) (2 E —m1  K) - K 	g. (6.34) 

In calculating the right-hand side of equation (6.34) numerical difficulties can 

be encountered as the numerator and denominator of the first two terms vanish 

for small m. To overcome this, they are expanded as a Taylor series in m [1] as 

2m1  EK-3mK2  —(1— 2m1) E2  
Tn2  

E2  +4m1  E K —2m1  E2  —3m1  K2  
Tn 

3ir2m - - 	+ 0(m2), 	(6.35) 
- 64 

3rr2m - - 	+ 0(m2). 	(6.36) 
- 	32 

As the wavetrain, modelled by the above equations, travels along the DDF 

it will evolve from the sinusoidal input waveform (6.3) to a train of solitons. So 

as z increases, m - 1 as cn z = sech z when m = 1. However the evolution 

equations (6.31)—(6.34) are singular as m - 1 since K - oo as m - 1 [1]. This 

singularity is due to the fact that the period P is constant, so that from (6.12), 

w - 0 as m -* 1. This in turn is a reflection of the fact that a periodic wavetrain 

can never become an exact train of solitons since a soliton is an isolated wave on 

—oc<t<oc. 



To overcome this singularity as m -+ 1 McKinnon et al. [34] noted that as 

M -+ 1, the trial solution (6.2) approaches the pulse solution 

	

u = 	sech exp(iG) + ig exp(i9). 	 (6.37) 

which is the same as that utilised in Chapter 4. Therefore as in -+ 1 the approx-

imate equations (6.31)—(6.34) must approach pulse equations similar to those of 

Chapter 4. 

To obtain these pulse equations as in -+ 1, we note that the transformations 

(6.16) and (6.17) can again be used to transform the NLS equation (6.1) with loss 

to the NLS equation (6.18). To obtain the approximate equations for the NLS 

equation (6.18), the pulse trial function 

U = (A sech + iC) exp(iO) 	 (6.38) 

is substituted into the NLS Lagrangian (6.20), which is then averaged by inte-

grating in t from —oc to oo. Taking variations of this averaged Lagrangian results 

in the approximate equations 

(Au)) = 
	
(FA 2 - 

71 	 )' 	
(6.39) 

dC
- - 

	
(FA2 -~.-2) 	 (6.40) 

371 

dG
FA2 - 	 (6.41) 

2/3 	- 8F 	
\dA - / A2 	" dw 

( 	A w) -- (- + 2FA) -- = 0. 	(6.42) 
e 	 / 

Transforming these evolution equations back to the original variables using the 

transformations (6.28)—(6.30), we obtain the equations 

	

d 	
= 

g(2 /3) 
- 	- 	 - crqw, 	 (6.43) 

	

dz 	7 	2w2

dg 
- _ 

271 (2 - /3w2) 
- ag, 	 (6.44) 

dz - 37 
dO 	2 	/3 (6.45) 
dz 	2w 

	

- 8173w) 	- 
(0712

4  
dw 	

4 	 232LL(2/3
w 	dz 	w

17) 
 dz 	

8o,77 	(6.46) 

for the parameters of the pulse (6.37). It can be verified that the variational 

equations (6.31) to (6.34) for the cnoidal wavetrain reduce to these pulse equations 
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in the limit rn -p 1. For a pulse, the shelf length £ can again be found by matching 

the frequency of oscillations of solutions of the approximate equations (6.43)—

(6.46) near the fixed point 17 = , w = 7.b, where 00 = /3/1', to the NLS soliton 

oscillation frequency, which gives 
£ - 32 \/ 

- 8k' 

where the fixed point k is determined by 

(6.47) 

1/3 

k = (2174w - 

	

(6.48) 
VFw 

The steady amplitude k was found from the energy conservation equation (6.46) 

with fibre loss a 	0. In deriving £, it has also been assumed that /3 and F are 

constant. If /3 and F are, however, slowly varying, it is assumed that the same 

expression will hold. A similar assumption was made in Chapters 4 and 5. The 

method used here and in Section 2.1 for determining k will give the local value 

of k that the pulse would achieve if the fibre loss was removed. With this value 

of £, setting a = 0 in (6.43)—(6.46) will give the approximate evolution equations 

for the NLS equation as found in [34]. 

Studying the evolution of the cnoidal wavetrain now involves numerically solv-

ing the approximate equations (6.31)—(6.34). As the wavetrain evolves, the mod-

ulus m -p 1, reflecting that the wavetrain is approaching a train of solitons. As 

m gets sufficiently close to 1, say rn = 0.9999 at a distance z = z8 , we switch over 

to the pulse evolution equations (6.43)—(6.46) with the initial value of the pulse 

width w given by the period relation (6.12) as 

W = 	. 	 ( 6.49) 

After z = z8  we must include the effects of the dispersive radiation shed away 

from the pulse in order for the solution of the approximate equations (6.43)—(6.46) 

to evolve to a steady pulse. The form of this radiation is dealt with in the next 

section. After the final point at which the dispersion changes , z = Zf, the fibre 

loss is removed. This has the effect of allowing the pulse train to settle down to 

a steady amplitude in the constant dispersion section in z > Zf. The lack of fibre 

loss can be interpreted as perfect amplification, meaning there is no net loss in 

the fibre. 

6.2 Radiation Analysis 

As mentioned in the last section, the effects of dispersive radiation are added 

after the switch is made to the soliton equations (6.43)—(6.46) at z = z3  defined 



by the value of z for which m = 0.9999. This point is generally close to the 

last dispersion point defined by z = Zf. The radiation integral which gives this 

radiation loss will be similar to that derived in Section 4.2 for the NLS equation 

with fibre loss. However, a radiation integral of this form is not suitable for 

use with the numerical optimiser. This is because the time required for a single 

numerical solution of the approximate equations is significantly increased when 

the radiation integral is included. This is not a problem for a single solution, 

but in the case of the optimised dispersion profiles, where hundreds of numerical 

solutions may be necessary, it proves prohibitive. Kath and Smyth [22] found 

an asymptotic expression for z - oo to the radiation integral (2.36) based on 

the assumption that the radiation loss is dominated by the loss near z = 0. As 

this expression requires no numerical integration at every time-step, as for the 

integral (2.36), execution is very fast. However, a similar asymptotic expansion 

for a radiation integral incorporating fibre loss, as in (4.28) is not possible as the 

radiation loss is not dominated by the loss near z 	0. Rather in the fibre loss 

case radiation is lost throughout the evolution of the pulse, not necessarily near 

z = 0. However, as mentioned above, the point at which we switch to the pulse 

equations, z = z is usually close to the last dispersion point defined by z = zj. 

As the fibre loss is neglected after the final dispersion point, z = Zf, as discussed 

above, fibre loss only effects the radiation integral in a small region z5  < z < Zf. 

As such it seems reasonable to neglect the extra contribution due to the fibre loss 

in this small region. This will allow us to obtain a radiation integral for which an 

asymptotic approximation exists, thus making the inclusion of radiation damping 

in the optimiser a reasonable proposition. 

Taking the perturbed variable coefficient NLS equation (6.1) and neglecting 

fibre loss, so that a = 0, we obtain the NLS equation 

jUz  + 
1  Outt + Fu 2u = 0. 	 (6.50) 

Under the transformations 

U 	
=4IFF 

u, 	 (6.51) 

Z = /3(z - z), 	 (6.52) 

this NLS equation then becomes 

iU +Utt + U2U = 0. 	 (6.53) 

This is the same equation, in the transformed variables Z and U, as that studied 

by Kath and Smyth [22] and also considered in Section 2.2. As such we may use 



the radiation analysis of Section 2.2. Using a pulse trial function of the form of 

(6.38), the pulse parameter evolution equations, from Section 2.2 are 

(Aw) =
GL  

A  (2 - 	w2) (6.54) 

dG 2A 
----- (1 - A2w2) - 2C (6.55) 

- dZ 37 w2 
dO 

A2 - 	w_2, (6.56) 
dZ 

( 2A 	
8A 3WdA_ )+2A4) 

(A2 	dw 
=O. (6.57) 

W dZ 	W2 	dZ 

where 

3Kld f z 	R 
d'i-. (6.58) 

8RdZ 7r(Z— 

Energy conservation gives that the steady state, K, is given by 

/ 
K 	(2A4w 

- 

A2 
1/3 

	
(6.59) 

W ) 

and the shelf width L is given, as before, by 

L 
= 32 	

(6.60) 

From the results of Section 2.2, the shelf height at the edge of the shelf, R, is 

given by 

= 	(2A2W —2K +
37 2 
	 (6.61) 
8K 

Transforming back to the original variables via 

A = 61, 77, 	
(6.62) 

C = 	g, 	 (6.63) 

Z = /3(z - z5 ), 	 (6.64) 

these expressions become 

1/3 

- v K = 	(2 4W 	 = 	 (6.65) 
Fw) 

Wi 



and 

R2 = 	[2 ?72w - 2/ +e2 	= r. 	(6.66) 

In the above two equations, the steady amplitude k and the radiation height at 

the edge of the shelf r are the same expressions as in McKinnon et al. [34]. The 

shelf width L is the same as that given by equation (6.47). The expression for 

the radiation integral, &, becomes 

3i 	1 d ff3(z_z.)  
= --- I 	 ____________ dT 	(6.67) 

8 r 	dz Jo 	 /[/3(z - z) - 

in the original variables. Introducing the new variable of integration y = T//3, 

the radiation integral (6.67) simplifies to 

= 3icv1d fz_zs 	r 	
dy. 	(6.68) 

8 r(y)/3dz 	 ZZs Y) 

The final step is to transform pulse evolution equations (6.54)—(6.56) back to 

the original variables to get 

-(17w) = 2 (rq2 - 13 
2 
	

(6.69) 
dz 	7T 	2w 

dg 	2,7 = - 	(Fij2  - 3w2) - 2d/3g, 	 (6.70) 
dz 	37r 

= Fi72— 13 	 (6.71) 
dz 	201  

with the loss coefficient & given by equation (6.68). 

Due to the large number of numerical integrations required when the opti-

misation of the pulse compression is performed, it is of significant importance to 

make the individual numerical integrations of the approximate equations as quick 

as possible. Keeping this in mind, the radiation integral & in equation (6.68) for 

g is a potential problem. At each distance step in a numerical integration, the 

integral in (6.68) must be calculated over all the distance z - z3 . In other words, 

as the integration progresses and z increases, the numerical integration becomes 

progressively slower. For a small number of integrations this is not a problem. 

However, for a large number of individual integrations over the fibre length, as 

for dispersion optimisation, the calculations of the integral in (6.68) can ren-

der the optimisation impractical. To avoid this problem, Kath and Smyth [22] 

found an asymptotic approximation for the integral in (6.68) when this integral 

is dominated by r near z = z8 . Using this asymptotic expression, equation (6.58) 

becomes 
3K R 

	

= 	 (6.72) 
8 
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Figure 6.1: Amplitude i versus distance z: Comparison between approximate 
solutions for non-soliton boundary condition with ii = 1.25, w = 1. Solution of 

approximate equations (6.43)-(6.46) with (6.58): - solution of approximate 
equations (6.43)-(6.46) with (6.72): - - - - 

Transforming this expression back to the original variables, we obtain 

3iFCe 	
r 

= 8R(z3)(z - z)' 	
(6.73) 

where R(z3) is given by (6.66) evaluated at the distance at which the wavetrain 

is approximated by a train of solitons, i.e. when in = 0.9999. The approximation 

(6.72) to the true radiation integral (6.58) is in general quite accurate. Figure 6.1 

shows a comparison between the solution of the approximate equations (6.69)-

(6.71), with constant dispersion 0 = 1.0 using the two different radiation expres-

sions (6.72) and (6.68). The initial condition is a soliton-like pulse with ij = 1.25 

and w = 1. As can be seen in the figure, there is very little difference between 

the two solutions. The radiation given by (6.72), is slightly over-estimated in 

comparison to the full expression (6.68), but overall, there is very little differ-

ence. So, in the interest of keeping numerical computation times to a minimum, 

it seems reasonable to use the asymptotic expression (6.73) as an estimate of the 

radiation. 

Another possible solution to the problem of long integration times would be 

to split the radiation integral into two regions. In the first region, defined as 

z3  < z < Zf from the point at which radiation is just included up to the final 

dispersion point, the radiation could be evaluated using the full radiation integral 
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Figure 6.2: Amplitude ij versus distance z: Comparison between approximate 
solutions over a randomly varying decreasing dispersion profile of length 10 km 
with fibre loss a = 0.03. Solution of approximate equations (6.43)—(6.46) using 
asymptotic radiation approximation (6.73) over entire range: - ; solution of 
approximate equations (6.43)—(6.46) using full radiation approximation (6.68) for 
z <z <Zf and asymptotic approximation (6.73) for z > zf : - - - - 

(6.68). In the second region, defined by z > Zf after the final dispersion point, 

the asymptotic approximation (6.73) could be used. As the region z5  < z < Zf 

is usually quite small, the time required for the integration of (6.68) may be rea-

sonable. Figure 6.2 shows a comparison between a simulation using the above 

described radiation analysis method and one in which the asymptotic approxi-

mation (6.73) is used over the entire applicable range z > z. As can be seen in 

Figure 6.2 there is very little difference between the two methods beyond a small 

phase shift. Worth mentioning are the two small kinks seen in the numerical 

solutions at approximately z = 8 and z = 10. The first corresponds to the point 

z = z, where the switch to soliton equations is made. The second point corre-

sponds to z = Zf, the final dispersion point in the fibre. With this information, 

and considering the increased time required to perform the numerical integration 

required by (6.68), it still seems reasonable to use the asymptotic approximation 

(6.73) over the entire range of integration z > z. 

To summarise, the equations governing the evolution of a sinusoidal input 

wave to a train of compressed solitons consists of two sets. The first govern the 

evolution of the input wave to a train of compressed soliton-like pulses based 

Ell 



upon the wavetrain trial solution (6.2) and are 

4P arcsin( \/) d?7 Pr1 ( K 	arcsin(,/) 2 E -m1  K'\ drn 

K 	 mi 	 mm 
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When the wavetrain very nearly approximates a train of solitons, i.e. when 

m = 0.9999, we switch to the second set of evolution equations based upon the 

pulse trial solution (6.37) 

d 	g = 	(1,772 -- 07 W, 	 (6.78) 
dz 	7 	2w ) 

dg 	2,7  
= —- (F172  — 3w 2) — ag — 2%3g, 	(6.79) 

dz 	37 

- F172 
- - 
	 (6.80) 

dz 	2w2 ' 

(20LL - 8F173w) 	- (i- + 2F17 	= 8aF174w - 2a/3- 
 dw 	

, 	(6.81) 
dz 	w 	jdz 	 w 
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- - 	 dy, 	(6.82) 
r /3 dz J 

where 

and 

32\/ 
(6.83) 

8ift' 

1/3 
= (2 (~r' 77 4W

_ PO 77 2\ 
V 

j:; 	. 	 (6.84) 

When z > Zf, the pulse is in the constant dispersion section of the fibre for 

which /3 = /3(z1). Here amplification is assumed to balance loss so that the pulse 

train settles to a train of steady solitons. This is done by setting a = 0 in the pulse 

evolution equations (6.78)—(6.81). The shelf height, r, in the above expressions is 

the same as that of McKinnon et al. [34] and R is given by equation (6.84). 

To facilitate faster numerical integration, the radiation integral term in (6.82) 

is replaced by 

3kF 	r 
A 

= 8R(z3)/3(z - z)' 	
(6.85) 

where 

F 
R2 = 	

/j3 2 F U 61' (22W 
- 2 

13 
k+ 	

\ 
= r 

2
. 	(6.86) 

0 8 	 4F V 

R(z5 ) is obtained by evaluating this expression at the change-over point z z. 

6.3 Optimisation 

This section describes the optimisation procedure used to maximise pulse com-

pression in a section of DDF. As was mentioned in the previous section, the fibre 

has variable dispersion in the region 0 < z < Z1. For z > Zf, the fibre has 

constant dispersion. The optimisation procedure aims to find the form of the 

dispersion profile /3(z) for which the pulse has maximum compression after pass-

ing through the DDF. As we are forming NLS soliton-like pulses, the amplitude 

and width are inversely related, so maximum compression translates to maximum 

amplitude, which is the variable the optimisation is based upon. 

In this study, two distinct types of dispersion profiles were examined; discrete 

and continuous fibre compressors. In a discrete fibre compressor, the fibre is com-

posed of sections of fibre with constant dispersion. The optimisation procedure 
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then aims to achieve maximum pulse amplitude for z> Zf by varying the lengths 

and dispersion of each individual section. A continuous fibre compressor has dis-

persion which varies continuously along the DDF. The optimisation is performed 

by varying the dispersion at a fixed number of variable points along the DDF. To 

determine the continuous dispersion profile a cubic spline is then fitted through 

these points at which the dispersion is known. 

Ideally, one would use the perturbed NLS equation (6.1) directly for optimi-

sation purposes. However, with numerical integration times on the order of an 

hour per run, this is not practical for use with an optimiser for which hundreds 

of individual runs may be necessary. For this reason, the approximate equations 

derived in section 6.1.2, augmented by the radiation analysis of section 6.2, were 

used. Using the asymptotic approximation (6.85) to the radiation integral (6.82), 

the run times were generally less than 30 seconds each, making the approximate 

equations reasonable to use with the optimiser. As has been seen in previous 

Chapters, the solution of the approximate equations are generally in good agree-

ment with the direct numerical solution of the original NLS equations, and so the 

compromise of using the approximate equations seems a reasonable one. 

The end result of the optimisation should be a train of highly compressed 

solitons which have shed little dispersive radiation. In order to achieve this McK-

innon et al. [34] chose an optimisation function that optimised the pulse amplitude 

with various penalties for the production of dispersive radiation. As well as the 

production of dispersive radiation, there is another potential problem with com-

pressing pulses. This problem is that if the dispersion in the fibre is too low, 

the amplitude of the pulses can become very large and the pulses can split into 

two or more solitons. In the work of McKinnon et al. [34] this was avoided by 

setting a minimum dispersion /3 = /3j. In that work the dispersion in the final 

section z > Zf, was set to this minimum value /3 = /3min - With this information 

McKinnon et al. [34] chose to maximise 

In 

f = a f - ({Rrm +RQ [max (0,rj 
_)]2} +apenlog ( 	_4)

) 
, 	(6.87) 

\ a f  

where 

a0 =0. 	 (6.88) 

Here a f is the final steady amplitude of the solitons given by 

2aw 
- 	 a2 

af ~
/3mm 	

(6.89) 
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Again /3min was the preordained minimum possible dispersion. The radiation 

height at the edge of the shelf r is given by equation (6.66) as 

11~ 61'

[13 	2" = 	 (2a2w w -2 	+ r 8k g). 	(6.90) 

The ri in equation (6.87) is the radiation height as given by (6.90) at the ith space 

step in the Runge-Kutta integration of the approximate equations of section 6.1.2. 

The shed dispersive radiation was not included for the wavetrain trial solution 

(6.2), so r 	0 when this wavetrain solution is used. 

The first penalty in equation (6.87), Rr, is a linear penalty on the amount of 

dispersive radiation produced, as given by Ti. If the amount of radiation exceeds 

some set limit ri > , the quadratic penalty RQ [max(0, T 
- )]2 activates in an 

effort to quickly drive down the amount of dispersive radiation begin produced. 

The third penalty in (6.87) is a penalty on the amount of variation in successive 

pulse amplitudes. This penalty ensures the result is a train of smooth, stable 

solitons in the uniform section z > Zf. The coefficients 5 and 4 in this expression 

were found, by trial and error, to produce a smooth soliton train without imposing 

too much of a restriction on the oscillatory nature of the pulses. While various 

values were tried for the penalty strengths, the work in this thesis used [34] 

R = 10, RQ = 200, = 0.025, and ape,, = 1. 

As mentioned above, in the work of McKinnon et al. [34] a minimum disper-

sion was set to avoid the pulse splitting into two or more pulses. The minimum 

dispersions, /3(zf ) = 0.05 for the discrete case and /3(zf) = 0.001 for the con-

tinuous case, were found by performing a large number of numerical simulations 

and observing at what value of (z1) the pulse would split. However the current 

optimisation work utilised the results of Chapter 5. In Section 5.3.3, it was found, 

by performing an energy and mass analysis on the evolving pulses, that a soliton 

would split into two solitons if 77W > 1.702 at some point. As a result this was 

initially used as the criterion for a soliton splitting. Specifically it was included 

in the optimisation procedure by monitoring the product 'r,iw throughout the nu-

merical simulation. If at any point this product exceeded 1.702, that particular 

simulation was abandoned and a large penalty was subtracted from the predicted 

steady-state amplitude af in place of the three penalties discussed above. 

Not included in the above optimisation function (6.87) are penalties for pro-

ducing physically impossible situations. These include such situations as negative 

dispersion values and disordered spatial points. For example, in a fibre compres-

sor with five sections, z3 > z4 is impossible. However, the optimising routine may 

produce such spurious results and so penalties must be included to discourage 
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these. In the case of a physically impossible situation arising the solution of the 

approximate equations is not necessary, and in some cases impossible. This is 

handled in a similar fashion to that of pulse splitting discussed above. To stop 

physically impossible results, a large penalty is assumed and subtracted from a f  
in place of the three penalties discussed above, in which case 

f = aj - > RjPj, 	 (6.91) 

where R is the penalty factor for a particular physically unrealisable situation 

Pi. 
The actual optimisation procedure used is the Nelder-Mead method [25, 46], 

as discussed in Section 3.3. As discussed in that section, the function to be 

optimised, (6.87), is not differentiable and also contains discontinuities. These 

arise for a number of reasons, the main being the switch to the soliton equations at 

rn = 0.9999. Also the numerical algorithms used to calculate the elliptic integrals 

in the approximate equations contain convergence loops which are executed a 

different number of times depending on the parameters. As a result there may be a 

small discontinuity at the point at which there is a change in the number of times a 

loop is executed. A discrete dispersion profile also introduces discontinuities at the 

boundaries between regions of differing dispersion. All these factors preclude the 

use of an optimisation routine based on local gradient information. As the Nelder-

Mead method only uses function evaluations, and not gradient information, it is 

an ideal routine for this problem. As discussed in Section 3.3, the numerical 

routine has been modified to avoid the stagnation reported by [33] to which the 

Nelder-Mead method is susceptible. 

6.4 Results 

In this section numerical solutions of the approximate equations (6.74)-(6.77) and 

(6.78)-(6.81) are compared with full numerical solutions of the perturbed NLS 

equation (6.1). The approximate equations (6.74)-(6.77) and (6.78)-(6.81) were 

solved using the method of Section 3.2. The perturbed NLS equation (6.1) was 

solved numerically using the method described in Section 3.1. 

6.4.1 Modifications to Full Numerical Code 

The procedure for numerically solving the perturbed NLS equation (6.1) is similar 

to that described in Section 5.3.1 for the NLS equation governing sliding frequency 

filters. As in that case, the constituent NLS is a variable coefficient equation. 
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Following the method of Section 3.1, we write the NLS equation incorporating 

variable dispersion and nonlinear coefficient, fibre loss and absorbing boundaries 

&u 1 32u 
i -  + 3(z)--- + F(z)u 2u + iO(t)u = —ian. 	(6.92) 

Fourier transforming equation (6.92) we obtain 

dii
+ 

 i 
—/(z)w2 fi = iF {F(z)u 2n} - F {9(t)u} - aft, 	(6.93) 

dz 2 

where F denotes the Fourier transform. Taking the lower limit of integration as 

the previous space point z for the calculation of u at z + Az, the integrating factor 

for the half space step z/2 is then exp (Az/2), where 

A = 	/3(z)w2 + or 	 (6.94) 

on evaluating the integral to first order. At z = Zf, the distance at which the 

pulse is in the constant dispersion section of the fibre, fibre loss is turned off, so 

that a = 0, modifying A to 

A 	(z)w2. 	 (6.95) 

6.4.2 Modification to Approximate Code 

The radiation integral (6.82) is the same as that discussed in Section 3.2, so 

no changes to the numerical technique are necessary. However, as the radiation 

integral must be evaluated from y 0 to y = z - z at each individual time-step, 

the numerical evaluation of the integral becomes progressively slower. To keep 

each individual numerical solution of the approximate equations relatively short, 

the approximation (6.85) to the radiation integral is used in its place. As this 

expression requires no numerical integration, execution is extremely quick. 

6.4.3 Numerical Results 

In this section the approximate evolution equations (6.74)—(6.77) are solved using 

the Runge-Kutta technique discussed in Section 3.2. When m = 0.9999 the wave-

train is assumed to be a train of solitons and equations (6.78)—(6.81) are solved 

using the same Runge-Kutta method. The value of m at which we switch from 

the equations based on the Jacobian elliptic trial function (6.2) to the equations 

based on the pulse trial function (6.37) was varied. It was found that some dif-

ference in the resulting pulse evolution occurred. This is to be expected in that 

making the change-over point smaller, say in = 0.99, means that the switch to 

96 



the soliton equations happens earlier. Likewise, larger m delays this switch for 

longer. As the Jacobian elliptic cosine function cn approaches sech as m -f 1, it 

is reasonable to delay this change-over for as long as possible. This means making 

the change-over value of m as near 1 as possible. However as the equations are 

being solved numerically, there is a limit, determined by the step-size Az, as to 

how close to 1 we may set this change-over point since m < 1 and K(m) -f 00 

as m -f 00. Making it too close to 1 means that when m is close to 1 it would 

be possible to step over the value m = 1 into a region in which the Jacobian 

elliptic function cn is not defined. Various values of the change-over point going 

up from m = 0.99 were tried. It was found that values larger than m = 0.9999 

would occasionally cause numerical difficulty in the sense discussed above, and so 

m = 0.9999 was chosen as the change-over point. 

The solution of the approximate equations were then compared with full nu-

merical solutions of (6.1) using the method of Section 3.1 with the modifications 

of Section 6.4.1. These comparisons were carried out for both continuous and dis-

crete dispersion profiles of varying lengths. In all the following numerical solutions 

the input wave is 

u(0, t) 	cost 	 (6.96) 

and the dispersion is normalised so that 3 = 1.0 at z = 0. 

6.4.3.1 Discrete Dispersion Profiles 

We will start by examining discrete dispersion profiles. For discrete dispersion 

profiles the fibre was split into six regions of constant dispersion. The optimiser 

varied the length and dispersion of each section by varying the pair (z, 	i = 

1,... , 6. The Nelder-Mead algorithm could have easily been modified to account 

for varying F, the nonlinear coefficient, but this would double the number of 

vertices in the Nelder-Mead simplex, thus increasing computation time. As this 

work is primarily concerned with the effect of decreasing dispersion on pulse 

evolution, the effect of varying F was ignored. This is done by setting F = 1. The 

profile end points were fixed at (z,, /3k ) = (0, 1) and (Z6,06) = (15, 0.01) in the first 

instance. The final dispersion point /36 was fixed at 0.01 even though it could be 

allowed to vary freely as application of penalties based on the condition rw > 1.7 

should prevent any pulse splitting. However, /36  was fixed at 0.01 for two reasons. 

Firstly, it was useful to have a fixed minimum dispersion across a large range of 

DDF lengths. This allows a comparison in the amount of compression available to 

varying lengths of DDF over the same range of dispersion variation. Secondly, the 

work of McKinnon et al. [34] fixed the final dispersion point for discrete DDF's at 
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Figure 6.3: Pulse amplitude ij versus distance z for a discrete compressor of length 
15 km. Dispersion parameters are given in Table 6.1. Full numerical solution of 
(6.1): 	; solution of approximate equations with initial profile: - - - 
solution of approximate equations with optimised profile: 

Table 6.1: 0 
	 ameters for a compressor of length 15 km. 

Initial Dispersion Parameters 
	imised Dispersion Parameters 

zi  /3i - Zi i3 

3.0 0.7 3.88876922 0.71157971 
6.0 0.5 6.53057431 0.66029753 
9.0 0.2 9.19158189 0.09307016 

12.0 0.1 12.72807288 0.01598908 
15.0 0.01 15.0 0.01 

0.05 and noted that anything below this value could produce pulse splitting. 

However not all dispersion parameter combinations in which the final dispersion 

point is below 0.05 will produce pulse splitting. This is illustrated by the current 

work in which the inclusion of the pulse splitting condition nw > 1.702 allows 

us to use a smaller final dispersion without pulse splitting occurring. In other 

words, not all dispersion parameter combinations with 6 = 0.01 will produce 

stable pulse trains, however optimising the function (6.87) with the condition 

'r/w > 1.702 ensures a stable, compressed pulse train is produced. The fibre 

loss was set to a = 0.03, which means a length z = 1 corresponds to a dispersion 

distance of z0  = 1 km. So in this case we are examining a discrete fibre compressor 

15 km in length. 
As can be seen from Figure 6.3 the comparison between the approximate and 
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Figure 6.4: Pulse amplitude ? versus distance z for a discrete compressor of length 
10 km. Dispersion parameters are given in Table 6.2. Full numerical solution of 
(6.1): 	solution of approximate equations with initial profile: - - - 
solution of approximate equations with optimised profile: 

full numerical solutions, with the optimised dispersion profiles, is good. The 
relevant dispersion parameters are listed in Table 6.1. The final optimised pulse 
train however exhibits reasonably large amplitude oscillations, which makes this 

a less than ideal soliton train as it must shed a correspondingly large amount 
of radiation to evolve to a steady state. However it is instructive to examine 
the resulting pulses more closely. Firstly we note that the pulse train for the 

optimised dispersion profile is superior to that for the initial profile in a number 
of respects. The steady-state amplitude for the optimised dispersion profile is 

r/f = 3.103, while the initial profile gives u = 2.658. By itself, the increase in 

amplitude is not enough to say that the optimised profile is somehow better than 

the initial. It is perfectly possible to choose a dispersion profile which will give 
a larger steady state amplitude. However it may also produce more dispersive 
radiation, or exhibit larger amplitude oscillations. Both of these factors were 

considered in the choice of the optimisation function (6.87). So an optimum pulse 
train in this case is one in which there is some pulse compression, relative to the 
initial dispersion profile, with a minimum of dispersive radiation and amplitude 
oscillations. The optimised dispersion profile of Figure 6.3 satisfies these criteria. 

In addition to the increased pulse compression discussed above, the dispersive 
radiation has been decreased. The amount of dispersive radiation shed by the 
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Table 6.2: Optimised dispersion parameters for a compressor of length 10 km. 
Initial Dispersion Parameters Optimised Dispersion Parameters 

Zi  3j z 

1.5 0.8 2.26447663 1.20742390 
3.0 0.6 3.18126347 0.25295495 
5.0 0.4 5.79028096 0.10147737 
7.5 0.1 8.58691828 0.01653631 

10.0 0.01 10.0 0.01 

pulse is measured by r. As the amount of this radiation propagating away from 

the pulse is governed by r, a smaller r means less dispersive radiation. The initial 

dispersion profile produced a maximum r of 0.33 while the optimised dispersion 

profile produced a maximum r of 0.21. Comparing the amount of amplitude 

oscillation qualitatively, we can see the pulse formed in the optimised dispersion 

profile exhibits smaller amplitude oscillations than the pulse derived from the 

initial profile. Notice also the effect of including the shed dispersive radiation in 

the evolution equations (6.78)—(6.81). Doing so dampens successive amplitude 

oscillations in the uniform section of fibre in z > 15, forcing the pulse to a steady 

state. Taken together, these three factors indicate that the optimised pulse is 

superior to the initial. 

Figure 6.4 shows a similar comparison, this time with compressor length 10 

km. The dispersion parameters are listed in Table 6.2. The comparison between 

the approximate and full numerical solutions is good, but not of the same qual-

ity as in Figure 6.3. The amplitude oscillations of the full numerical solution 

are larger than in the approximate solution, but the steady state is nearly the 

same. Comparing the approximate solution with an optimised profile to that 

with the initial profile shows an immediate improvement. The steady state pulse 

amplitude with the optimised profile is 71f = 4.34, compared to i7f = 2.56 for 

the initial profile. In addition, the maximum shelf height for the optimised case 

is r = 0.29 versus r = 0.37 for the initial case. So a significant amount of 

compression has been achieved along with less background radiation. Both of the 

approximate solutions appear to exhibit similar amounts of amplitude oscillations 

so that it would appear that the optimised profile has not decreased the amount 

of oscillation. However, taking into account the improvement in compression and 

background radiation, and noticing that the amount of amplitude oscillation is 

not excessive, it is fairly easy to say that the optimised profile is superior to the 

initial one. 

Decreasing the compressor length again to 5 km, we get the results shown in 

Figure 6.5. The optimised dispersion parameters are listed in Table 6.3. Here 
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Figure 6.5: Pulse amplitude q versus distance z for a discrete compressor of length 
5 km. Dispersion parameters are given in Table 6.3. Full numerical solution of 
(6.1): 	; solution of approximate equations with initial profile: - - - 
solution of approximate equations with optimised profile: 

Table 6.3: Optimised dispersion parameters for a compressor of length 5 km. 
Initial Dispersion Parameters j Optimised Dispersion Parameters 
zi 13i zi  /3i 

1.5 0.7 1.82899996 1.23930512 
2.0 0.5 1.82906274 0.14069769 
3.0 0.2 3.63548774 0.06695649 
4.0 0.1 4.02582994 0.05640979 
5.0 0.01 5.0 0.01 
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the comparison between the approximate and full numerical solutions for the op-

timised dispersion profile is very good. Notice that the amplitude oscillations 

rapidly decay, giving a smooth steady train of solitons. In this case the inclusion 

of dispersive radiation in the solution of the approximate equations is vital for 

an accurate determination of the pulse evolution. Comparing the solution of the 

approximate equations for the initial and optimised dispersion profiles, we can see 

that the final steady amplitude for the optimised fibre has increased. The steady 

state amplitude for the optimised fibre is qf  = 3.67, compared with 77f  = 3.27 

for the initial fibre. While this is a fairly modest gain in compression, examining 

the background radiation provides more information. The maximum value of r 

for the initial dispersion profile was r = 0.54, while the maximum value for the 

optimised dispersion profile was r = 0.25, a significant reduction. Further, exam-

ining the amplitude oscillations for the initial and optimised dispersion profiles, 

it appears that the pulse for the initial profile may actually have smaller initial 

oscillations than the pulse for the optimised dispersion profile. However, as in the 

previous example shown in Figure 6.4, it is not necessary to improve all aspects 

of the pulse for it to be optimised. Rather the value of the function (6.87) must 

be increased. This could involve a significant decrease in one penalty followed 

by a small increase in another. However the net result is a pulse which meets 

the criteria of being compressed, having low background radiation and having 

reasonably small amplitude oscillations. 

For shorter compressor lengths it becomes increasingly difficult to find pos-

sible optimised profiles. For a shorter fibre compressor, the initial pulse must 

shed a large amount of dispersive radiation in a short distance. This contrasts 

with longer fibre compressors for which the pulse can evolve slowly over a longer 

distance. The radiation which is forced out of the initial wave in forming a train 

of solitons finds its way into the constant dispersion section of the fibre, where 

it travels with the train of solitons. This large amount of shed radiation makes 

it difficult to optimise the dispersion profile, as the optimising function (6.87) 

includes penalties for this radiation. Because of this, it proved difficult to find 

optimised profiles with /36 = 0.01. Raising the value of this final dispersion point 

to /36 = 0.1 helped in that not as much dispersive radiation had to be shed for the 

pulse to evolve to a steady state. As a result there were more possible optimised 

solutions with low values of r. 

Figure 6.6 shows a comparison for a compressor length of 2.5 km with the 

optimised dispersion parameters listed in Table 6.4. The most interesting thing 

about the results is that the soliton train formed for the optimised profile has a 

smaller steady state amplitude than the pulse train formed for the initial profile. 
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Figure 6.6: Pulse amplitude 17 versus distance z for a discrete compressor of length 
2.5 km. Dispersion parameters are given in Table 6.4. Full numerical solution 

	

of (6.1): 	solution of approximate equations with initial profile: - - - - 
solution of approximate equations with optimised profile: 

Table 6.4: Optimised dispersion parameters for a compressor of length 2.5 km. 
Initial Dispersion Parameters Optimised Dispersion Parameters - 
zi  13i zi /3i 

1.0 0.9 0.01304148 1.02459761 
1.3 0.7 2.23849044 0.84367563 
1.6 0.4 2.29882413 0.62809954 
1.9 0.2 2.44729244 0.18070287 
2.5 0.1 2.5 0.1 
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The steady state amplitude has decreased from n f  = 1.69 to rj = 1.66 in going 

from the initial to the optimised profile. Also, examining the maximum radiation 

height r, we find r = 0.133 for the initial profile and r = 0.134 for the optimised 

profile. Again this goes against what is expected in the optimisation process, i.e. 

lower r and higher amplitude. However, examining this case more closely confirms 

that the optimisation has succeeded. Firstly, remember that the optimisation 

function (6.87) has penalties based upon a summation of radiation values, rather 

than a single maximum value. The initial value of the optimising function was 

f = — 19.24. As the initial steady state amplitude was only 77f  = 1.69, this 

means a significant total of penalties must have been subtracted. The value of 

the optimising function for the optimum dispersion profile is f = —17.84. While 

there is very little difference in the steady state amplitudes, and from examining 

Figure 6.6 there appears to be very little difference in the amplitude oscillations, 

we can say that the improvement has come from a decrease in the total amount 

of dispersive radiation produced. Specifically, the maximum radiation height 

has increased for the optimum dispersion profile, but the total sum of radiation 

produced has decreased, as expected for the optimising function. So in some sense 

our optimised profile produces a cleaner, less noisy train of solitons. 

Examining these large negative values of the optimised function also confirmed 

the reasons given previously for the relative difficulty in finding optimised profiles 

for shorter dispersion lengths. For the 10 km fibre compressor, shown in Figure 

6.4, the value of the optimised function went from f = —3 for the initial profile to 

about f = 3 for the final profile. Compared to the optimised value of f = —19.24 

for the 2.5 km fibre compressor, it confirms the hypothesis that large amounts of 

shed radiation are produced very quickly when wavetrains evolve in short fibre 

compressors. This makes it increasingly difficult to find optimised profiles as this 

radiation forms a penalty in the optimised function (6.87). Also, as reported in 

[22], the interaction between the shelf of radiation under the pulses, measured 

by g, and the pulse itself leads to the amplitude oscillations seen in the previous 

figures. Large values of g, which in turn imply large values of r will lead to large 

amplitude oscillations, which again is a penalty in the optimising function (6.87). 

From the above examples for discrete fibre compressors of different lengths a 

few conclusions may be drawn. Firstly, compressors of longer length seem to pro-

duce pulse trains with large amplitude oscillations, even for the optimised case, 

as seen in Figures 6.3 and 6.4. This is not a major limitation however, as in prac-

tice, fibre compressors are not this long. Making the fibre compressor too short, 

however, can introduce difficulties as well, as seen in Figure 6.6. As the pulse 

evolves and is compressed over a very short distance, large amounts of disper- 

104 



sive radiation are produced. In order to find optimised profiles with a reasonable 

amount of dispersive radiation it is necessary to increase the minimum dispersion 

of the fibre. However this comes at the expense of having a less compressed final 

pulse train and the resulting pulse train also exhibits large and slowly decaying 

amplitude oscillations. In between these two extremes it appears that discrete 

fibre compressors with lengths on the order of 3 - 5 kin provide the best compro-

mise between practicality and performance. For example, as was seen in Figure 

6.5, a steady compressed pulse train with little shed dispersive radiation is easily 

produced in a 5 kin fibre compressor. 

6.4.3.2 Continuous Dispersion Profiles 

For a continuous dispersion profile DDF, six knots (z, /3) where chosen, with 

initial dispersion (zi , /31) = (0, 1) and final dispersion (z6 , 06) = (15.0, 0.01) in 

the first instance, as in the discrete case. A cubic spline was fitted through these 

knots to model the continuous variation and the optimisation code then varied 

the dispersion at and position of these knots. 

Notice that the final dispersion point ,36 is set to 0.01 as in the discrete disper-

sion profile case. In McKinnon et al. [34] it was shown that the final dispersion 

point in a continuously varying fibre compressor could be lowered to /36 = 0.001 

before pulse splitting would occur. Keeping this in mind the final dispersion point 

was chosen as /36 = 0.01 for two reasons. Firstly, while pulse splitting does not 

occur when the final dispersion point is set to /36 = 0.001, very large steady state 

amplitudes result. 

Table 6.5: Optimised dispersion parameters for a compressor of length 15 km. 
Zi 	 /3 

1.77429513 1.23030355 
3.06805498 0.33543980 
4.67864727 0.10842196 
4.94704047 0.08793691 

7.5 	0.000947200 

Figure 6.7 shows just such a situation. In this case the final dispersion point /36 

has been unconstrained. Again the optimising function (6.87) contains the pulse 

splitting condition rw > 1.702. Notice that the final dispersion point in Table 

6.5 has decreased slightly below 0.001 with no resulting pulse splitting. However, 

there are problems with obtaining such highly compressed pulse trains. With a 

large amplitude increase comes a proportionally large decrease in pulse width. For 

narrow pulses, higher order effects become important and these effects have not 

been accounted for in the present analysis. So the relevance of the full numerical 
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Figure 6.7: Pulse amplitude i versus distance z for a continuous compressor of 
length 7.5 km from full numerical solution. Dispersion parameters are given in 
Table 6.5. 

solution to practical situations for such large pulse amplitudes is questionable. 

Also, to obtain the full numerical solution for very large steady state amplitudes it 

is necessary to discretise the t-direction with very small time-steps. As the pulses 

have very narrow widths, the pulse dynamics occur on a very short time-scale 

and so require a correspondingly small time-step to capture this fast t behaviour. 

This means that the full numerical solutions can become impractically slow. On 

the available computing resources, individual simulations can take over 20 hours 

for very narrow pulse simulations. 

The other advantage to setting the final dispersion to the same value as for 

the discrete compressor case was that it was then possible to make comparisons 

between the discrete and continuous compressors for the same dispersion ranges. 

Comparisons between the amount of compression and the quality of the resulting 

pulse trains for discrete and continuous fibre compressors are then possible. 

Figure 6.8 shows a comparison between the approximate solution for the ini-

tial and optimised profiles and the full numerical solution for the optimised profile 

for a DDF of length 15 km. There is a large difference between the approximate 

and full numerical solutions in the region of uniform fibre that was not present for 

the discrete dispersion profiles. In an effort to find out the reasons for this large 

difference for the continuous dispersion profile, a comparison was made between 

the approximate and full numerical solutions for a DDF with the dispersion pa- 
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Figure 6.8: Pulse amplitude 77 versus distance z for a continuous compressor of 
length 15 km. Dispersion parameters are given in Table 6.6. Full numerical 
solution of (6.1): 	solution of approximate equations with initial profile: 
- 	- - ; solution of approximate equations with optimised profile: 

Table 6.6: Optimised dispersion parameters for a compressor of length 15 km. 
Initial Dispersion Parameters I Optimised Dispersion Parameters 

Zi  /3 Zi  /3 

3.0 0.7 3.38569415 0.63379736 
6.0 0.5 6.73283102 0.33296195 
9.0 0.2 9.75155672 0.13267236 

12.0 0.1 12.00284250 0.04695441 
15.0 0.01 -15.0 0.01 

rameters of Table 6.6 in the absence of fibre loss, so that a = 0. The results 

of this comparison are shown in Figure 6.9. Notice that while there is still a 

difference between the amplitudes in the uniform section of fibre, the comparison 

is much better than for the loss case of Figure 6.8. 

To examine this discrepancy further, let us examine a fibre compressor with 

continuously varying dispersion over 10 km, so that (z6 , /36) = (10.0, 0.01). This 

comparison is shown in Figure 6.10 based on the optimised dispersion parameters 

listed in Table 6.7. While the comparison is slightly better than that of Figure 6.8, 

there is still a large difference in the pulse amplitudes in the uniform section of the 

fibre between the approximate and full numerical solutions. Again this difference 

was not present in the results for the equivalent discrete fibre compressor. Figure 

6.11 shows a comparison between the approximate and full numerical solutions 
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Figure 6.9: Pulse amplitude 77 versus distance z for a continuous compressor of 
length 15 km with zero fibre loss. Dispersion parameters are given in Table 6.6. 
Full numerical solution of (6.1): 	solution of approximate equations: - - - - 

Table 6.7: Optimised dispersion parameters for a compressor of length 10 km. 
Initial Dispersion Parameters I Optimised Dispersion Parameters 

Zi  A z 

1.5 0.7 1.51319555 1.16731600 
3.0 0.5 3.80480860 0.31161317 
5.0 0.2 5.13947772 0.17252798 
7.5 0.1 6.72955973 0.08692482 

10.0 0.01 10.0 0.01 

using the optimised parameters of Table 6.7, but neglecting fibre loss, so that 

a = 0. 	As for the similar lossless case of Figure 6.9 the comparisons is very 

good in this lossless case, with very little difference between the amplitudes in 

the uniform section of the fibre. The comparisons of Figures 6.8-6.11 imply 

that the modelling of fibre loss in the approximate equations is responsible for 

the disagreement between the approximate and numerical solutions. However 

comparing the results of Figures 6.8 and 6.10 it can be seen that this effect is 

not uniform for fibre compressors of different length as the difference between the 

approximate and numerical solutions increases as the fibre compressor increases 

in length. To verify this conjecture, let us examine a 5 km continuous DDF, so 

that (Z6, 06) = (5.0, 0.01). 
Figure 6.12 shows this comparison. It can immediately be seen that the agree- 
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Figure 6.10: Pulse amplitude ij versus distance z for a continuous compressor 
of length 10 km. Dispersion parameters are given in Table 6.7. Full numerical 
solution of (6.1): 	; solution of approximate equations with initial profile: 
- - - - ; solution of approximate equations with optimised profile: 
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 Figure 6.11: Pulse amplitude 77 versus distance z for a continuous compressor of 
length 10 km with zero fibre loss. Dispersion parameters are given in Table 6.7. 
Full numerical solution of (6.1): - ; solution of approximate equations: - - - - 
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Figure 6.12: Pulse amplitude i versus distance z for a continuous compressor 
of length 5 km. Dispersion parameters are given in Table 6.8. Full numerical 
solution of (6.1): - solution of approximate equations with initial profile: 
- - 	-; solution of approximate equations with optimised profile: 

Table 6.8: Optimised dispersion parameters for a compressor of length 5 km. 
Initial Dispersion Parameters Optimised Dispersion Parameters 
zi  !3i zi  13i 

1.5 0.8 1.76804928 1.00864200 
2.0 0.6 2.01259291 0.66161478 
3.0 0.3 3.73214458 0.21306244 
4.0 0.1 4.74725867 0.11159053 
5.0 0.01 5.0 0.01 
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Figure 6.13: Pulse amplitude versus distance z for a continuous compressor 
of length 2.5 km. Dispersion parameters are given in Table 6.9. Full numerical 
solution of (6.1): 	solution of approximate equations with initial profile: 
- - - - solution of approximate equations with optimised profile: 

ment between the full numerical and approximate solutions, for the optimised 
profile, is much better than for the previous continuous dispersion profile DDF 

comparisons. This suggests that there is some cumulative error building up over 
distance in the continuous dispersion profile case when fibre loss is included that 
has not been accounted for. However, as much of the experimental work [8, 39] 
dealing with dispersion-decreasing fibre has used shorter compressor lengths (usu-
ally less than 5 km), this is not of great practical concern. 

However this is not to say that shorter continuous compressor lengths uni-
formly produce better pulse compression. As was seen Figure in 6.6, which was 

for a discrete compressor of length 2.5 km, short compressors are prone to produc-
ing pulses which have a large amounts of amplitude oscillation and background 

radiation. This is due to the wavetrain being forced to a train of compressed 
solitons over a very short distance, so that large amounts of radiation are shed 
very quickly. This leads to a relatively low quality compressed soliton train. 

This drawback of short pulse compressors is reflected in Figure 6.13, which 
shows the comparison between the full numerical solution of (6.1) and the solu-
tions of the approximate equations for the initial and optimised dispersion profile 
for a DDF of length 2.5 km. Notice that in Table 6.9 the last dispersion point 

has been fixed at (z6 , /36) = (2.5, 0. 1), as in Table 6.4. This is in contrast to the 
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Table 6.9: Optimised dispersion parameters for a compressor of length 2.5 km 
Initial Dispersion Parameters I Optimised Dispersion Parameters 
zi  13i zi  13i 

1.0 0.9 1.01379438 0.90494855 
1.3 0.7 1.03603132 0.91429825 
1.5 0.35 1.16333298 0.41231258 
1.9 0.2 1.58321347 0.21095415 
2.5 0.1 2.5 0.1 

other comparisons for the longer compressor lengths, for which /36 = 0.01. The 

reason for this is that when /36 = 0.01 in a compressor of length 2.5 km it was 

very difficult, due to the large amounts of dispersive radiation produced, for the 

optimiser to find steady, optimised pulse train solutions. Setting /36 = 0.1 less-

ened this problem at the expense of having less compression in the final soliton 

train. As can be seen in Figure 6.13 the comparison between the full numerical 

and approximate solutions is reasonable. They both have approximately the same 

amplitude oscillation mean (i.e. final steady state) but the full numerical solution 

exhibits larger and more persistent amplitude oscillations, as in Figures 6.4, 6.5, 

6.6 and 6.12. The optimiser was started with several different initial dispersion 

variations in an effort to find a soliton train with smaller amplitude oscillations, 

but all the profiles obtained from the optimiser resembled that seen in Figure 

6.13. 

As for the discrete compressor of Section 6.4.3.1, the best comparisons and 

optimised pulse trains came from compressors with lengths in the region of 3 - 5 

km. In the continuous case, the comparison between the full numerical and 

approximate solutions over longer lengths, that is DDF's of between 10 and 15 

km, were not good. However, as these lengths probably are not practical for use 

in a real system, this is not of immediate concern. At the other extreme, shorter 

fibre compressors produced the same difficulties as their discrete counterparts. 

Namely, the dispersion point of the uniform fibre must be increased to ward off 

the generation of excessive dispersive radiation. In doing so however, the final 

pulse compression is compromised. 

Overall, across all the comparisons presented in this chapter, a general conclu-

sion is that discrete dispersion profiles provide better agreement between the full 

numerical and approximate solutions in the presence of fibre loss. The continu-

ous compressor comparisons do get better as the compressor length is shortened; 

however, making the compressor too short presents its own set of problems. A 

possible reason for the discrepancy in the continuous compressor comparisons 

may be found in the phase of the two solutions. This phase difference between 
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the numerical and approximate solutions was discussed in Section 2.2. A small 

phase difference between the approximate and full numerical solutions means that 

when the pulse reaches the final dispersion point in the fibre, where 0 = , the 

two solutions could be very similar, except for a phase shift. This could result in 

the approximate pulse being at a slightly different point in its evolution when it 

reaches the uniform fibre in z > Z6, which then results in its amplitude evolution 

in the uniform fibre being different to that of the full numerical solution. 

Another possible factor in the difference between the full numerical and ap-

proximate solutions for the continuous dispersion compressors may be found in 

the analysis of the dispersive radiation. As previously discussed in Section 6.2, 

an asymptotic approximate (6.85) was used to the true radiation integral (6.82). 

Now as can be seen in Figure 6. 1, there is very little change in the pulse evolution 

if this asymptotic approximation is used in normal, constant dispersion fibres. 

However the fibre compressors, particularly the continuous version, can produce 

significant amounts of dispersive radiation. As the integrand of the radiation 

integral is proportional to r, the radiation height at the edge of the shelf, large 

amounts of radiation will produce a large value for the radiation integral. Un-

der these circumstances it is possible that the full radiation integral (6.82) may 

be necessary for an accurate description of dispersive radiation effects on pulse 

evolution. However, as we are examining pulse compressors producing soliton 

trains with large amplitudes, and so large changes of amplitude, a small space 

step is necessary in the solution of the approximate equations. This small space 

step can produce long computation times in numerically evaluating the integral 

(6.82) using the method outlined in Section 2.2. As a result, a parallel implemen-

tation of the code may be needed when the full radiation integral is used in the 

optimisation routine. 

The optimisation routine could also be based on the full numerical solution of 

the NLS equation (6.1). This was discussed in the work of McKinnon et al. [34]. 

While an implementation of the full numerical code in the optimiser is probably 

unrealistic, even in a parallel implementation, it would be possible to use the 

approximate equations in the optimiser to refine the initial dispersion profile. This 

refined profile could then be used as an initial profile for the optimisation routine 

based on the full numerical solution of (6.1). The idea is that much of the initial 

work in finding a dispersion profile in the vicinity of a region of optimal dispersion 

could be done relatively quickly with the approximate equations. Optimisation 

with the full numerical solution could then be used to fine-tune and finish off the 

optimisation problem. With a parallel version of the optimised code this does 

seem possible. 
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Chapter 7 

Conclusions 

Inverse scattering theory shows that an initial pulse in a nonlinear optical fibre will 

evolve to a finite number of solitons, the soliton being the steady state waveform 

for nonlinear optical fibres. The evolution occurs in a complicated, dynamic 

fashion which can be seen both experimentally and in numerical solutions of the 

constituent equations. Due to the nonlinear stability of solitons in the face of 

perturbations and fibre loss, they have been proposed as the information carriers 

in next generation fibre optic networks. As the solitons travel the network they 

lose energy due to fibre loss and so this loss must be compensated for in some 

fashion. In addition, filtering may be necessary to reduce the harmful effects of 

dispersive background radiation in the system. 

These fibre effects and optical devices are modelled by adding perturbing 

terms to the right hand side of the NLS equation (1.1). As analytical solutions 

for these perturbed NLS equations are not known, approximate and computa-

tional techniques are utilised to study pulse evolution in these systems. This was 

the subject of this thesis. Specifically, we have presented an analysis of pulse 

evolution in nonlinear optical fibres under the influence of fibre loss and optical 

devices including sliding-frequency filters, discrete amplifiers and fibre compres-

sion via dispersion-decreasing fibres. The analysis method was based upon using 

conserved quantities of the NLS equation to derive evolution equations for the 

pulse parameters. As found by Kath and Smyth [22] the choice of trial function 

substituted into the above conservation equations is very important. Using the 

same trial function (2.14) as Kath and Smyth [22] consisting of independently 

varying amplitude and width and a shelf of dispersive radiation in the vicinity 

of the pulse, evolution equations were obtained for the pulse parameters. By 

analysing the linearised NLS equation, expressions are obtained for the shed ra-

diation which can then be coupled to the parameter evolution equations. These 

evolution equations were then solved using a fourth-order Runge-Kutta method 

with a numerical technique employed for the integration of the singular radia- 
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tion integral. These approximate solutions are then compared to full numerical 

solutions of the particular perturbed NLS equation. These numerical solutions 

were obtained using a pseudo-spectral method with exponential space-stepping in 

Fourier space. The agreement between the solution of the approximate equations 

and the full numerical solutions of the NLS equations were in general good. 

7.1 Usefulness of Analysis Method 

In Chapter 4 we examined the effect of fibre loss and discrete amplification on 

evolving pulses. As this has been extensively studied in the past it is primar-

ily included to test the limits of the analysis technique. Doing so it was shown 

that radiation damping is very important for small values of fibre loss. With-

out the radiation damping the solution of the approximate equations was not in 

agreement with full numerical solutions. However adding the radiation damping 

gave very good agreement. For larger values of fibre loss the radiation damping 

became less important. This is because the large fibre loss overwhelmed most 

of the evolutionary dynamics in the evolving pulse including the amplitude os-

cillations. As such there was little difference between the approximate solutions 

with and without radiation damping. Adding periodic amplification proved to be 

problematic over long distances. This is because the amplifier would amplify the 

solution at periodic intervals as the pulse travelled down the fibre. Any difference 

between the approximate and full numerical solutions was then magnified by this 

amplification. 

Examining sliding-frequency filters in Chapter 5 proved the usefulness of the 

approximate method. As the radiation is continuously amplified and filtered, the 

radiation plays a crucial role not only in pulse evolution, but also in the behaviour 

of the steady state pulse which originates from the boundary conditions. It was 

particularly seen in this chapter how the inclusion of the independently varying 

amplitude and width and the effects of dispersive radiation in the vicinity of and 

away from the pulse are necessary for the accurate determination of evolutionary 

behaviour. Decoupling the amplitude and width allowed for small variations in 

their inverse relationship. These oscillations are due to mass and energy being 

transferred between the pulse and shelf of radiation upon which the pulse sits. 

Without the effect of shed radiation being included in the pulse parameter evo-

lution equations, this mass and energy, being trapped in the pulse, will oscillate 

between the pulse and shelf indefinitely. However including the effects of the 

shed radiation allows the pulse to settle to a steady soliton state as seen in full 

numerical solutions. 

115 



This analysis also allowed for a simpler approximation to the upper energy 

bound corresponding to the generation of a second soliton from the dispersive 

radiation. The upper bound as given by Burtsev and Kaup [6] is 

Re [g(k = 0, z)] < 
7r 	

(7.1) 

where g is is the amplitude of the dispersive waves. The expression Re [g(k = 0, z)] 

was interpreted as a correction to the area of the soliton. Hence as long as the 

correction never exceeded the value 7r/2 the soliton would not have enough mass 

and energy to form a second soliton. The inequality discussed in this work given 

by nw > 1.702, where 'ii is the pulse amplitude and w is the width, was found 

from an analysis of the mass and energy of the soliton and that required to 

form a second. This expression is physically clearer and seems to be a more 

straightforward condition on stability. As discussed in Chapter 5 it has been 

shown from inverse scattering that for a boundary condition u = 71 sech t, a second 

soliton will form for ri > 1.5. This is in good agreement with the value given by 

the current work of 17 > 1.702. 

The fibre compressor comparisons of Chapter 6 showed a variety of pulse 

behaviours. The original analysis method, utilising conservation and moment 

equations derived from the perturbed NLS equation (6.1), proved to be unsuc-

cessful. This was because of the extraordinary complexity of the resulting algebra 

which came about from the use of elliptic functions in the trial function (6.2). 

However, with a fortunate change of variables, it was possible to transform the 

perturbed NLS equation (6.1) to the unperturbed NLS equation (6.18) of McK-

innon et al. [34]. Hence their expressions for pulse parameter evolution, suitably 

transformed back to the original variables, could then be used. A variety of 

compressor lengths were examined ranging from 2.5 to 15 km over both discrete 

and continuous dispersion profiles. Using the approximate evolution equations 

derived from the variable transformation, it was possible to use the Nelder-Mead 

optimisation method to maximise pulse compression. 

The comparison between the approximate evolution equations and the full 

numerical solutions of the NLS equation describing the system over the discrete 

dispersion profiles were in general good. The approximate equations correctly 

predicted the steady state amplitude of the pulse train and accurately mimicked 

the decaying amplitude oscillations. While the comparisons over the entire range 

of sampled lengths were good, those resulting from shorter compressor lengths 

produced superior quality pulse trains. Pulse trains produced over compressors 

of lengths 10 and 15 km produced pulse trains with large amplitude oscillations. 

Decreasing the compressor lengths tended to increase the agreement between nu- 
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merical solutions of the approximate equations and the perturbed NLS equation. 

Also, the resulting amplitude oscillations were reasonably small and rapidly de-

cayed due to shed radiation, producing high quality compressed soliton trains. 

However shortening the compressor beyond a certain threshold was not beneficial 

and in fact seriously degraded the resulting pulse trains as was seen in Figure 

6.6 showing a comparison over a 2.5 km discrete compressor. This appears to re-

suit from compressing the pulse train over a short distance thus producing large 

amounts of dispersive radiation in a small area. This dispersive radiation is built 

up under the soliton. While this happens in all the compressor situations, the 

large amounts of radiation produced in a short distance for short compressors pro-

duces extremely large amplitude oscillations. This can be partially remedied by 

increasing the final dispersion point o f. However doing so means less compression 

in the final pulse train. 

Comparisons over the continuous compressors proved more problematic. The 

comparison between the approximate and full numerical solutions over longer 

compressor lengths (10 and 15 km) show large discrepancies in the final steady 

state amplitude of the pulses. While these longer compressors are not necessarily 

physically realistic it is still cause for concern. The discrepancy in the steady state 

of the approximate and full numerical solutions decreased with compressor length. 

Decreasing the compressor length too much however (less than 3 km) caused the 

same difficulties as in the discrete case. Namely, large amounts of dispersive 

radiation interacting with the pulse caused large amplitude oscillations. One 

possible reason for the discrepancy may be found in the phase. The determination 

of the phase in the approximate equations is a higher-order effect and is not 

predicted by the first order analysis presented here. In the previous work with 

fibre loss and sliding-frequency filters this has not been a problem. However 

phase differences here may be more important. This is because two wave forms, 

identical except for a phase shift, will be increased by different amounts at the 

final dispersion point o f. This would produce pulse trains with different steady 

state amplitudes. As discussed in Chapter 6 a more accurate determination of the 

phase could be determined by using the full numerical solution of the perturbed 

NLS equation. However, being prohibitively slow, it may be possible to use the 

full numerical solution at the end of the optimisation near a point of maximum 

compression. 

Overall the work of this thesis has shown that for an accurate portrayal of 

pulse evolution in nonlinear optical fibres two things are necessary. Firstly, a trial 

solution incorporating independently varying amplitude and width. Secondly, 

some account of radiation in the vicinity of and away from the pulse must be 
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taken. Decoupling the amplitude and width, and including the effect of radiation 

in the vicinity of the pulse, allows for the dynamic, oscillatory behaviour seen 

in full numerical solutions of the NLS equation. Incorporating shed dispersive 

radiation away from the pulses allows for the decay of these amplitude oscillations 

and allows for the pulse to settle to a steady soliton. The trial solution used in 

this work (2.14) incorporates both of these factors. 

7.2 Future Work 

There are many possibilities for future work based upon the results of this thesis. 

An obvious possible extension would be to include analysis of higher-order effects 

in the NLS equation (1.1). These include effects such as higher-order linear and 

nonlinear dispersion and Raman gain. While the effect of these terms are negligi-

ble for solitons of width greater than 10 Ps [20] they become significant over long 

distances or for subpicosecond solitons. As both long distance communication 

systems and subpicosecond solitons will figure into future fibre optic networks 

understanding of the effect of higher-order terms is crucial. As the higher-order 

terms are incorporated into the NLS equation (1.1) as small perturbations, the 

analysis method used in this thesis would provide an ideal means for their anal-

ysis. 

A more accurate determination of the phase of the approximate equations 

derived via the conservation and moment equation technique is another avenue 

for possible future work. While phase information was not crucial for the work, the 

lack of it proved detrimental in the fibre compressor analysis as discussed above. 

As the determination of the phase is a higher order effect, the current analysis 

method does not determine equations for the phase. The phase of the shelf of 

radiation under the soliton was assumed constant initially in order to facilitate 

the radiation analysis. However this is not true as the phase undergoes a transient 

evolution to a steady state. It may be possible to more accurately recover phase 

information by a careful numerical study of the radiation conservation equation 

(2.31). This more accurate initial phase information may improve the overall 

phase comparison and would be particularly useful for fibre compressor analysis. 

As was discussed in Chapter 6 another possible method to improve the results 

of the fibre compressor comparisons would be to utilise the full numerical solution 

in at least some of the optimisation. As an accurate determination of phase is 

possible with the full numerical solution this would provide the phase informa-

tion necessary. However due to the long simulation times necessary for the full 

numerical simulation, a complete optimisation based on it would be prohibitive. 
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However, using the approximate evolution equations to move the dispersion pro-

file to the vicinity of a point of maximum pulse compression would significantly 

reduce computational time. The optimisation could then be completed with the 

full numerical solution. 
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