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(i) Abstract 
 

 
Macrophages are present in virtually all tissues and account for approximately 10% of 

all body mass. Although classically credited as the scavenger cells of innate immune 

system, ridding a host of pathogenic material and cellular debris though their 

phagocytic function, macrophages also play a crucial role in embryogenesis, 

homeostasis, and inflammation. De-regulation of macrophage function is therefore 

implicated in the progression of many disease states including cancer, arthritis, and 

atherosclerosis to name just a few. The diverse range of activities of this cell can be 

attributed to its exceptional phenotypic plasticity i.e. it is capable of adapting its 

physiology depending on its environment; for instance in response to different types of 

pathogens, or specific cocktail of cytokines detected. This plasticity is exemplified by 

the macrophages capacity to adjust rapidly its transcriptional profile in response to a 

given stimulus. This includes interferons which are a group of cytokines capable of 

activating the macrophage by interacting with their cognate receptors on the cell. The 

different classes of interferons activate downstream signalling cascades, eventually 

leading to the expression (as well as repression) of hundreds of genes.  

 

To begin to fully understand the properties of a dynamic cell such as the macrophage 

arguably requires a holistic appreciation of its constituents and their interactions. 

Systems biology investigations aim to escape from a gene-centric view of biological 

systems. As such this necessitates the development of better ways to order, display, 

mine and analyse biological information, from our knowledge of protein interactions 

and the systems they form, to the output of high throughput technologies. The 

primary objectives of this research were to further characterise the signalling 

mechanisms driving macrophages activation, especially in response to type-I and type-

II interferons, as well as lipopolysaccharide (LPS), using a ‘systems-level’ approach to 

data analysis and modelling. In order to achieve this end I have explored and 

developed methods for the executing a ‘systems-level’ analysis. Specifically the 

questions addressed included: (a) How does one begin to formalise and model the 
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existing knowledge of signalling pathways in the macrophage? (b) What are the 

similarities and differences between the macrophage response to different types of 

interferon (namely interferon-β (IFN-β) and interferon-γ (IFN-γ))? (c) How is the 

macrophage transcriptome affected by siRNA targeting of key regulators of the 

interferon pathway? (d) To what extent does a model of macrophage signalling aid 

interpretation of the data generated from functional genomics screens?  

 

There is general agreement amongst biologists about the need for high-quality 

pathway diagrams and a method to formalize the way biological pathways are 

depicted. In an effort to better understand the molecular networks that underpin 

macrophage activation an in-silico model or ‘map’ of relevant pathways was 

constructed by extracting information from published literature describing the 

interactions of individual constituents of this cell and the processes they modulate 

(Chapter-2). During its construction process many challenges of converting pathway 

knowledge into computationally-tractable yet ‘understandable’ diagrams, were to be 

addressed. The final model comprised 2,170 components connected by 2,553 edges, 

and is to date the most comprehensive formalised model of macrophage signalling. 

Nevertheless this still represents just a modest body of knowledge on the cell. Related 

to the pathway modelling efforts was the need for standardising the graphical 

depiction of biology in order to achieve these ends. The methods for implementing this 

and agreeing a ‘standard’ has been the subject of some debate. Described herein (in 

Chapter-3) is the development of one graphical notation system for biology the 

modified Edinburgh Pathway Notation (mEPN). By constructing the model of 

macrophage signalling it has been possible to test and extensively refine the original 

notation into an intuitive, yet flexible scheme capable of describing a range of 

biological concepts. The hope is that the mEPN development work will contribute to 

the on-going community effort to develop and agree a standard for depicting 

pathways and the published version will provide a coherent guide to those planning to 

construct pathway diagrams of their biological systems of interest.  
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With a desire to better understand the transcriptional response of primary mouse 

macrophages to interferon stimulation, genome wide expression profiling was 

performed and an explorative-network based method applied for analysing the data 

generated (Chapter-4). Although transcriptomics data pertaining to interferon 

stimulation of macrophages is not entirely novel, the network based analysis of it 

provided an alternative approach to visualise, mine and interpret the output. The 

analysis revealed overlap in the transcriptional targets of the two classes of interferon, 

as well as processes preferentially induced by either cytokine; for example MHC-Class 

II antigen processing and presentation by IFN-γ, and an anti-proliferative signature by 

IFN-β. To further investigate the contribution of individual proteins towards generating 

the type-I (IFN-β) response, short interfering RNA (siRNA) were employed to repress 

the expression of selected target genes. However in macrophages and other cells 

equipped with pathogen detection systems the act of siRNA trasfection can itself 

induce a type-I interferon response. It was therefore necessary to contend with this 

autocrine production of IFN-β and optimise an in vitro assay for studying the 

contribution of siRNA induced gene-knock downs to the interferon response 

(described in Chapter-5). The final assay design incorporated LPS stimulation of the 

macrophages, as a means of inducing IFN-β autonomously of the transfection induced 

type-I response. However genome-wide expression analysis indicated the targeted 

gene knock-downs did not perturb the LPS response in macrophages on this occasion. 

The optimisation process underscored the complexities of performing siRNA gene 

knockdown studies in primary macrophages. Furthermore a more thorough 

understanding of the transcriptional response of macrophages to stimulation by 

interferon or by LPS was required. Therefore the final investigations of this thesis 

(Chapter-6) explore the transcriptional changes over a 24 hour time-course of 

macrophage activation by IFN-β, IFN-γ, or LPS and the contribution of the macrophage 

pathway model in interpreting the response to the three stimuli. 

 

Taken together the work described in this thesis highlight the advances to be made 

from a systems-based approach to visualisation, modelling and analysis of macrophage 

signalling. 
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Chapter 1. Introduction 
 

Mechnikov discovered phagocytosis after experimenting on the larvae of starfish. His 

theory was that certain white blood cells now called phagocytes (from the Greek 

phagos – to eat, cyte – cell) could engulf and destroy harmful bodies such as bacteria. 

In a pioneering experiment he observed these cells surrounding and attempting to 

devour a splinter he had introduced into the transparent body of a starfish larva. He 

proposed the role of these cells was to maintain integrity of the organism by 

protecting the animal from foreign invaders or clearing the body of unwanted cellular 

debris [1-2]. In vertebrates these phagocytes were analogous certain white blood cells. 

In drawing parallels between the phagocytes role in various species or settings, other 

important functions of these cells became apparent. In the tail of the tadpole muscle 

cells were ‘eaten’ at appropriate times of metamorphosis by the adjacent cells. Thus 

under certain developmental conditions, it appeared this cell was ‘responsible’ for 

defining organismal structures [2].  

 

Figure 1.1: Scanning electron micrograph (30 μm × 25 μm) of a phagocytic macrophage; Taken from 
Rosenberger and Finley, 2003 [3]. 
 

 
The pioneering studies of Mechnikov earned him a Nobel prize in 1908. Since then a 

century of research into phagocytes, has shed light on their role in immunology (host 

defence), and other functions beyond simply eating [2], such as growth and 
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development. This progress has seen the characterisation of different phagocyte 

populations and their precursor cells; the key mammalian phogocytes being 

macrophages, dendritic cells, neutrophils and mast cells. This thesis explores the 

signalling events occurring in the macrophage.  

 

The Macrophage 
    
Macrophages are a heterogeneous population of antigen-presenting cells, varying in 

their anatomical location, phenotype, morphology, and specialised physiological 

function. The original definition and term “macro-phage” from the Greek “big-eater”, 

is derived from the prodigious phagocytic properties of the cell. As the elegant studies 

of Mechnikov demonstrated, these phagocytic actions are not only required for the 

propagation of an innate immune response i.e. ridding a host of pathogenic material 

and cellular debris, but are also crucial for non-immunological trophic roles during 

development and homeostasis. Macrophages constitute ~10-15% of cells in most 

tissues and are found in every organ where they have a specialised function and are 

also recruited to sites of infection, injury, and inflammation [4-9].  

 

Origin of Macrophages and the Mononuclear Phagocyte System 
 
In the traditional view, macrophages are derived from pluripotent stem cells in the 

bone marrow which can develop into the macrophage precursors known as 

monocytes. Monocytes then enter the blood stream and under appropriate signals 

differentiate into macrophages. The mononuclear phagocytic system (MPS) is a 

classification scheme for defining macrophages, based on their bone marrow and 

monocytic origins.  The MPS therefore comprises bone marrow progenitors, blood 

monocytes and resident tissue macrophages. In recent years the concept of the MPS 

and specialised cell lineages is being challenged in light of several developments 

including the transdifferentiation of MPS cells into other MPS populations, the 

existence of a separate embryonic phagocyte lineage and the local renewal of tissue 

macrophages as opposed to monocyte recruitment [10]. 
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Macrophages originate from hematopoietic stem cells (HSC) found in both adult bone 

marrow and the developing foetus. However macrophage precursors found in the yolk 

sac may have distinct origins from the macrophage precursors found in adult bone 

marrow and in the foetal liver following the full initiation of hematopoiesis [11-12]. In 

the yolk sac and early hepatic hematopoiesis, primitive macrophages are thought to 

develop from their macrophage precursors without undergoing stages of monocytic 

cell development (as occurs in adult hematopoiesis) [13]. These primitive-foetal 

macrophages have the potential to proliferate and differentiate into resident 

macrophages in tissues in late ontogeny [13]. Later on in foetal hematopoiesis and in 

adult bone marrow, it is the progression through monocytic cell stages that eventually 

gives rise to monocyte-derived macrophages. Monocytes in the bone-marrow 

originate from a common myeloid progenitor. The hematopoetic stages in macrophage 

development are summarised in Figure 1.2 and include the development of the HSC 

into a progenitor of both macrophages and granulocytes i.e. the 

granulocytemacrophage colony-forming-unit (GM-CFU). The GM-CFU population can 

then commit to the macrophage colony-forming unit (M-CFU), or the granulocyte 

colony forming unit (G-CFU) group of cells. The M-CFU differentiate into monoblasts, 

pro-monocytes and monocyte cell stages, prior to becoming macrophages, in a process 

requiring the growth factor CSF-1 (also known as Macrophage Colony Stimulating 

Factor (M-CSF)). Monocytes migrate from the bone marrow into peripheral blood and 

then into tissues. Here they are thought to differentiate into resident macrophages or 

related cells (dendritic cells or osteoclasts) under the influence of appropriate growth 

factors. Other monocytes may migrate into tissues in response to infection/ 

inflammatory stimuli and differentiate into exudate macrophages. However it is now 

also appreciated that resident tissue macrophages possess proliferative capacity and 

can be replenished by self-renewal i.e. autonomously of bone-marrow recruited 

monocytes [10]. Moreover the local proliferation of macrophages, (as opposed to 

recruitment from peripheral blood) has also been demonstrated under certain 

inflammatory pathologies [14].  In general the developmental origins of macrophages, 

process of self-renewal, and function of tissue macrophage subsets are poorly 

understood [15].   
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Figure 1.2: Mononuclear Phagocyte System (MPS); Taken and adapted from Gordon and Taylor, 2005 
[11]. Hematopoietic stem cells (HSC) in the fetal liver or adult bone marrow develop into a progenitor of 
both macrophages and granulocytes; the granulocytemacrophage colony-forming-unit (GM-CFU). The 
GM-CFU population can commit to the macrophage colony-forming unit (M-CFU), or the granulocyte 
colony forming unit (G-CFU) group of cells. The M-CFU differentiate into monoblasts, pro-monocytes 
and monocyte cell stages, prior to becoming macrophages, in a process requiring the growth factor CSF-
1. In mice Ly6C is a marker of the ‘inflammatory’ population of monocytes. The concept of the MPS has 
come under scrutiny following the discovery of a separate embryonic phagocyte lineage in the yolk sac. 
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The G-CFU population develop into neutrophilic granulocytes. Monocytic macrophages 

and neutrophilic granulocytes have therefore been traditionally viewed as distinct 

lineages. However there is a growing body of evidence suggesting a more 

interchangeable relationship, with the proposal that macrophages and granulocytes 

may interconvert [10]. This is based on the observations of highly overlapping 

transcriptional profiles of macrophages and granulocytes as well as the in vitro 

manipulation of granulocytes with various stimuli which induces them to adopt a 

macrophage-like phenotype [10, 16-17]. Macrophages and dendritic cells are also 

highly related cell populations; in fact the concept of distinct macrophage and 

dendritic cell lineages in peripheral tissue is currently being fervently debated [15, 18-

20]. Dendritic cells (DCs) are generally considered the key initiators of the adaptive 

immune response, and are defined by their ability to activate naïve T-cells and the 

expression of particular markers, namely the integrin CD11c. Discrimination between 

macrophage and DC populations is blurred by a range of factors [10] e.g. the 

macrophage differentiation factor CSF-1 has also been shown to influence DC numbers 

(which express the CSF-1R) [21]; purified CD11c- negative macrophages have been 

shown to prime naïve T-cells in vivo [22]; the preferred DC marker CD11c is also 

expressed in some macrophage populations e.g. alveolar macrophages. In fact there 

seems to be no single unambiguous morphological or protein marker of macrophages 

or  DCs, since conventional markers (such as F4/80, CD11c, CD11b and MHC class II) 

have turned out not to be specific [20]. As a result some argue that it is not possible to 

define macrophages and DCs as separate entities [10, 19-20]. Instead they are a 

“continuum of progeny of a common precursor” [20]. Whereas others suggest that 

there is ample evidence correlating the distinct functions of macrophages and DCs 

with different phenotypic markers [20]. More collaborations and open dialogue 

between ‘macrophage’ and ‘DC’ biologists is advocated to being to unravel the 

complexities in defining these cells [20].  
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Macrophage Growth Factors 
 

Several growth factors are involved in the development of macrophages from 

monocyte populations. Perhaps the most crucial is CSF-1, also called M-CSF. CSF-1 

regulates the survival, proliferation and differentiation of macrophages and their 

precursors. CSF-1 can also synergise with other factors including CSF-2 (GM-CSF) or IL-3 

to mediate the proliferation of early haematopoietic progenitors. In vitro macrophage 

differentiation has also been demonstrated in the presence of CSF-2 and IL-3 in 

combination with CSF-1 [23-24]. The most commonly utilized method of differentiating 

macrophages in vitro is to culture progenitor cells obtained from bone marrow or 

blood in the presence of CSF-1 or in conditioned medium (containing CSF-1 secreted by 

a cell, such as from the L929 murine fibroblast cell line). Monocytes and macrophages 

can also be readily obtained from the peritoneal cavity or lungs.  

 

The CSF-1 receptor, CSF1R, is expressed by all cells of the MPS. The transcription factor 

PU.1 is involved in the regulation of CSF1R expression. PU.1, CSF-1 or CSF1R deficiency 

are all associated with reduced macrophage numbers [25]. Mice with a targeted null 

mutation in Csf1r (Csf1r-/- mice) have a reduced life span (<5 weeks). Mice with a 

naturally occurring mutation in the Csf1 gene (Csf1op/op), known as osteopetrotic mice, 

display a range of developmental abnormalities attributed to reduced macrophage 

populations [25-26]. In particular, a lack of osteoclasts (bone remodelling 

macrophages) in Csf1op/op mice results in osteopetrosis. Csf1op/op rodents are commonly 

referred to as “toothless”, due to lack of teeth. These phenotypic defects can however 

be reversed by systemic CSF1 administration [27]. Although CSF1R is likely to be the 

only receptor for CSF-1, CSF1R also binds IL-34 [28] as well as CSF-1; which may explain 

phenotypic differences in Csf1r-/- and Csf1op/op mice [26]. 
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Monocyte Populations and Markers of Monocytes and Macrophages 
 
Defining a macrophage has been a constant challenge in developmental biology [25]. 

The complexity of the macrophage is epitomised by the fact no single marker can 

define all populations. Similarly the progenitor cells giving rise to macrophages are 

exceptionally heterogeneous.  Many efforts have been made to define subpopulations 

of monocytes based on the expression of surface markers. It is thought the 

developmental fates and phenotypic properties of monocyte subpopulations are 

defined by the pattern and extent of marker expression. Determining the functional 

roles of monocyte subsets in a physiological context remains a challenge [11].  

 

Human monocyte populations are generally identified and defined by the expression 

of CD14, CD16 and CD64. Incidentally CD14 forms part of the receptor complex for 

lipopolysaccharide (LPS).  CD14hiCD16- monocytes are generally considered to be 

‘classic monocytes’, since they resemble the original description of monocytes. The 

CD14hiCD16- sub-population are highly phagocytic, produce significant amounts of 

cytokines and express CCR2 [11]. CD14+CD16+ monocytes tend to express higher levels 

of MHC class II molecules as well as the chemokine receptor CCR5 and are thought to 

be likely precursors for DCs. Other monocyte subsets are defined using CD64 (FcγRI); 

CD14+CD16+CD64+ population are similar in their characteristics to CD14hiCD16- 

monocytes, but distinct from CD14+CD16+CD64- population [11].  

 

Murine monocytes can be identified by their expression of F4/80 and CD11b, and 

further subdivided based on the expression of CCR2, CD62L and CX3CR1. Ly6C (or GR-

1), a granulocyte surface antigen is also a marker of CCR2+ monocytes and is widely 

used as marker for monocyte subsets in mice [11, 29]. Mouse monocytes that express 

CCR2 (Ly6C+) are considered to be the inflammatory subset, which differentiate into 

macrophages required for pathogen clearance and resolution of inflammation. 

CX3CR1hi/Ly6C- monocyte subsets are thought to differentiate into tissue resident 

macrophage and DC populations. Certain murine monocyte subsets correspond to 

human monocyte subsets (CCR2+CD62L+CX3CR1lowLy6C+ mouse monocytes are thought 
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to correspond to the classic human monocyte subset; whereas CCR2-CD62L-

CX3CR1hiLy6C- correspond to the human CD14+CD16+CD64- subset).  
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Macrophage Diversity and Biological Functions 
 
The use of antigen markers (F4/80 in mouse and CD68 in mouse and human), has 

permitted the identification of the macrophages in every organ [30]. Development of 

mice expressing an enhanced green fluorescent protein (EGFP) linked to a promoter 

region of CSF1R has further permitted the identification and study of macrophage 

/macrophage-like populations in mouse tissues [4]. These animals are dubbed 

“macgreen mice” and images of fluorescent cell populations across various tissues are 

available on www.macrophages.com. Essentially monocytes adapt to their micro-

environment and develop into the unique categories of macrophages found 

throughout the body. These resident tissue macrophages are distributed during 

development and throughout life. Resident macrophages are often stationed 

strategically, permitting their sentinel function, but also play a role in homeostasis, 

clearance  of senescent cells, initiation of acute inflammation, remodelling and repair  

following inflammation and vascular changes [11]. This specialised function of 

macrophages is largely determined by their anatomical location and macrophages in 

these different setting often coined with specific names (Table 1.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.macrophages.com/


                                                                                                       Chapter 1: Introduction 

10 

Tissue Macrophage name Function 

Bone Osteoclast Bone remodelling and providing a stem cell niche 

Bone marrow 
Macrophage 

Erythropoiesis 

Brain Microglial cell Neuronal survival and connectivity, and repair 
after injury 

Epidermis Langerhans cell Immune surveillance 

Eye Macrophage Vascular remodelling 

Intestine Crypt macrophage Immune surveillance 

Kidney NA Ductal development 

Liver Kupffer cell Clearance of debris from blood and liver tissue 
regeneration after damage; liver development? 

Lung Alveolar Macrophage Immune surveillance 

Mammary 
Gland 

Macrophage Branching morphogenesis and ductal 
Development 

Ovary Macrophage Steroid hormone production and ovulation 

Pancreas Macrophage Islet development 

Testis Macrophage Steroid hormone production; Leydig-cell 
development? 

Uterus Uterine DC Angiogenesis and decidualization 

Uterine macrophage Cervical ripening 
Table 1.1: Macrophage diversity across tissues. Taken and adapted from Pollard, 2009 [25]. 
Macrophages are found in different tissues where they have specialised functions.  
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Each organ requires a specialised immune response shaped by the organs requirement 

for absolute or relative sterility [31]. For example the spleens response to bacteria is in 

contrast to the gut or colon response to bacteria [31]. Macrophages in the gut are 

highly phagocytic and bactericidal but produce relatively low levels of pro-

inflammatory cytokines [32]. This phenotype is critical in maintaining the balance 

between the response against harmful pathogens and the induction of tolerance to 

commensal bacteria. Thus the tissue micro-environment is significant in defining the 

phenotypic properties of the macrophage. In addition to the organ specific responses, 

macrophages must elicit specialised response to different types of pathogens. Each 

scenario specific response witnesses an adaptation of the gene expression and 

secretory protein profiles of the macrophages. In essence exceptional plasticity and 

heterogeneity are hallmarks of macrophages.  
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Macrophages in Disease Pathologies  
 
Given their heterogeneity and presence in every tissue, it is no surprise that 

macrophages play a role in almost all disease pathologies. The influence of 

macrophage signalling in a given disease can be both beneficial and detrimental to the 

host. Deregulation of macrophage signalling is seen to contribute to a number of 

chronic diseases e.g. cancer where macrophages recruited to the tumour micro-

environment are known as “tumour associated macrophages” (TAMs). The role of 

TAMs in cancer in general is ambiguous and possibly cancer specific. Beneficial roles in 

the context of the host include detection, rejection and killing of cancer cells as well as 

clearance of apoptotic cells. At the same time TAMs are known to promote tumour 

progression and malignancy, for example by promoting angiogenesis [25, 33-35]. In 

fact, TAM density in human tumours correlates with poor prognosis in over 80% of 

cases [36].  

 

Macrophages have also been attributed with the progression of acute and chronic 

symptoms of rheumatoid arthritis. These cells are activated and numerous in the 

inflamed synovial membrane (joint lining) [37-38] and there is a correlation between 

progression of joint destruction and extent of synovial macrophage infiltration [38]. 

Other examples of pathologies where macrophages are implicated include; 

atherosclerosis (where fat-laden macrophages, known as foam cells contribute to 

vascular occlusion); emphysema (which is associated with the uncontrolled activation 

of alveolar macrophages); and septic shock (where an over-zealous cytokine response 

is propagated by macrophages).  

 

Development of targeted therapeutics requires an understanding of the signalling 

pathways underpinning macrophage activity and their deregulation in a given disease 

pathology. Although macrophages have been studied extensively in vitro, the challenge 

remains in translating this research into an in vivo understanding. 
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Macrophage Activation Pathways 
 
Macrophage activation has been defined as the “acquisition of competence to execute 

a complex function” [39]. Gene Ontology (GO) describes the term macrophage 

activation as “a change in morphology and behaviour of a macrophage resulting from 

exposure to a cytokine, chemokine, cellular ligand, or soluble factor”. Ultimately 

macrophage activation arises as results of the cells interactions with its surrounding 

environment. These environmental cues are detected by macrophage receptors.  

 

Macrophages express an extensive repertoire of receptors which coupled with 

downstream signalling cascades mediate their activation and capacity to execute any 

number of diverse functions. The receptors may be expressed on the surfaces, in the 

cytosol, as well as vacuolar compartments e.g. endosomes. To avert unnecessary 

activation, inflammation, and/or damage to tissues, macrophages must distinguish 

between self and non-self. The detection of microbes or patterns associated with 

microbes is largely performed by pattern recognition receptors (PRRs). PRR categories 

include scavengers receptors, C-type lectins, Toll-like receptors, NOD-like receptors, 

RIG-like receptors, and others not strictly falling into those categories e.g.  CD14 and 

AIM2 [40].  Between them the range of PRRs detect bacteria, virus, protozoa, fungi and 

their components (examples include; double and single stranded RNA, DNA, CpG DNA, 

flagellin, lipoprotein, envelope proteins, LPS, and lipteichoic acid (LTA)).  

 

Macrophages also respond to endogenous stimuli e.g. cytokines, chemokines and 

growth factors, generated following infection/injury and homeostatic possesses. These 

stimuli are often produced by cells of innate immune system including the 

macrophages themselves and are crucial in defining macrophage activity. One group of 

cytokines central to the investigations in this thesis are known as “interferons”, 

originally coined so due to their ability to interfere with viral replication.  
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Receptors for microbial or endogenous stimuli are coupled to downstream intracellular 

signal transduction pathways. Signalling pathways can broadly be defined as the series 

of interactions between cellular components, usually proteins and proteins complexes, 

which lead to the modulation of a given process.  Some receptor initiated pathways 

are linked to specific downstream response pathways and others converge at common 

factors. The interactions underpinning some of the key signalling pathways activated in 

macrophages are discussed in greater detail in Chapter-2. The functional programmes 

regulated by the vast array of signalling pathways include (but are not limited to) 

growth, survival, apoptosis, migration, phagocytosis, antigen-presentation, 

remodelling, metabolic reprogramming and cytotoxicity [41]. The signalling pathways 

mediating these processes often do so by regulating the expression of specific cohorts 

of genes. In fact macrophage interaction with any given stimulus or combination of 

stimuli elicits a tailored transcriptional response. The customised transcriptional 

responses are necessary to provide functional specificity to a given response. For 

example different pathogens present different challenges for the host; therefore the 

macrophage response must be adaptable to deal with the specific challenges. LPS, an 

outer membrane component of gram negative bacteria, is commonly studied 

transcriptional activator of macrophages. LPS induces a complex transcriptional 

response, comprising multiple gene sets that encode a number of functional 

programmes [42]. The gene sets are often co-ordinately regulated by specific 

transcription factors [42].  

 

Macrophage Activation States  
 

Activated macrophages were originally defined as cells that secreted inflammatory 

mediators and killed intracellular pathogens. It is now appreciated that macrophages 

are a far more heterogeneous group of cells and their ‘activated’ status may in fact 

refer to a number of phenotypes required for performing distinct immunological 

functions.  The terms M1 and M2 polarised macrophages were introduced to reflect 

the two extremes of the activated state which are analogous to T-helper cell 

polarisation (TH1-TH2) [43]. M1 polarised macrophages, otherwise known as “classically 
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activated” macrophages were originally described as being induced by the TH1 cytokine 

IFN-γ in concert with microbial stimuli (e.g. LPS) or other cytokines (e.g. TNF-α, GM-

CSF) [44]. Cytokine production characteristic of M1 activated macrophages includes 

high expression of the interleukins IL12, IL23, the TH1 cell attracting chemokines CXCL9, 

CXCL10 and nitric oxide [45-46]. In contrast the “alternatively activated” M2 polarised 

phenotype is induced by the TH2 cytokine IL-4 as well as IL-13 [47-49].  IL10, IL-1RA, 

CCL17, CCL22 and CCL24 are examples of cytokines preferentially induced in M2 

polarised cells [46, 50]. M2 macrophages have been further classified into “M2-like” 

categories, which overlap with some but not all significant features of M2 

macrophages (reviewed in [51]). For example in CMV infection of monocytes, the cells 

are biased towards a M1 phenotype but express what are described as typical M2 

cytokines (Il1RA, IL10, CCL18), [52]. Crude categorisation of the physiological roles of 

the polarised macrophages places the M1 subtype as promoters of the TH1 response, 

antigen presentation and as cells with intracellular microbiocidal as well as tumoricidal 

capacity [53]. In contrast alternatively activated macrophages are regarded as 

immunosuppressive cells, which promote the TH2 response, tissue remodelling and 

parasite encapsulation and clearance [49]. Crucially the M1-M2 categories are not the 

only forms of macrophage polarisation but instead represent extremes across a 

spectrum of activation states. Even the advocates of M1-M2 polarisation (theory) of 

macrophage function emphasise this should be viewed as “an operationally useful, 

simplified, conceptual framework” for describing a continuum of diverse functional 

states [46]. Others have proposed grouping of macrophage populations based on their 

different homeostatic activities; host defence, wound healing and immune regulation 

[23].  

 

There is limited understanding of the differential transcriptional cascades and 

secretory responses induced in macrophages following interaction with different 

stimuli (cells, cytokines, microbes). Therefore classifying macrophages based on their 

activation states remains a challenge. Moreover, the mechanism of transcriptional 

control and regulatory events that mediate the expression of functional gene sets is 

not well characterised. Ultimately a better understanding of gene expression patterns 
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in different macrophage populations may aid the development of therapeutics 

targeting this cell (e.g. gene therapy and anti-inflammatory drugs).  

 

Interferon Signalling System  
 

Biological Functions of Interferon Signalling 
 

   
Interferons are a family of multifunctional cytokines that can modulate the 

transcription of subsets of genes in the target cells they stimulate. They are induced 

transiently in vivo and in vitro by viruses, microbial products, or other chemical and/or 

synthetic inducers. The interferon (IFN) family of cytokines are acknowledged as 

fundamental components of the innate immune system. The original definition of 

interferons was based on their ability to “interfere” with viral replication, although 

they are now also known to have anti-microbial, anti-proliferative and 

immunomodulatory effects. Furthermore, interferons are also being investigated for 

their role in the immuno-surveillance for malignant cells. Accordingly IFNs and 

components of the IFN system are exploited clinically for different therapeutic 

indications [54]. Recombinant interferon is used to treat hairy cell and chronic 

myelogenous leukaemias, and has shown to be effective in reducing tumour cell mass 

and/or malignancy of several other cancer types [54]. Interferons are also used to limit 

viral replication and control hepatitis B virus (HBV), hepatitis C virus (HCV), and other 

chronic viral infections (herpes zoster, HSV and cytomegalovirus infections) [54]. One 

type of IFN (known as IFN-β) is effective at reducing episodes of relapsing–remitting 

Multiple sclerosis (MS), an inflammatory disorder of the central nervous system which 

results in demyelination of axons. The therapeutic use of IFN in inflammatory disorders 

is somewhat a paradox given IFNs are immunostimulatory cytokines. However, viral 

infection is postulated to be a likely contributory factor in the pathogenesis of MS and 

early studies did indicate that MS patients secrete less IFN than controls following viral 

infection [55]. Defects in IFN production also contribute to the aetiology of systemic 

lupus erythematosus (SLE), a systemic autoimmune disease. Unabated production of 

IFN is common in SLE patients as is the up-regulation of interferon stimulated genes in 
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the peripheral blood mononuclear cells (PBMCs) of the patients [56-57].  The cellular 

actions of interferons are mediated via their regulation of subsets of genes (known as 

interferon stimulated genes (ISGs)). Different classes of IFNs have largely overlapping 

gene targets, but they also induce distinct sets of ISGs. The transcriptional responses 

induced by two classes of interferons (type-I and type-II) form the basis of the 

investigations in Chapters-4 and -6.  

 

Classification of Interferons 
 

There have been three types of interferons identified, classified according to receptor 

specificity and sequence homology.  Type-I and type-II are by far the best characterised 

and studied interferons to date.  The most recent class of interferon like molecules are 

the IFN-λ molecules, IFN-λ1, λ2, and λ3 also known as interleukins IL29, IL-28A and IL-

28B, respectively. Table 1.2 summarizes the members of each class of interferon.  
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Type I Interferons Type II Interferons Other Interferons 

IFN-α1, -α2, -α4, -α5, -α6, -
α7, -α8, -α10, -α13, -α14, -
α16, -α17, -α21 
 
IFN-β 
 
IFN-δ *, IFN-ε, IFN-κ, IFN-τ **, 
IFN-ω 
 
IFN- ζ zeta? 
 
* described only for pigs 
** described only for cattle 

IFN-γ IFN-λ1, λ2, λ3 

Chromosomal Location 
Origin: 
9 (human) 
4 (mice) 

Chromosomal Location 
Origin: 
12 (human) 
10 (mice) 

Chromosomal Location 
Origin: 
19 (human) 

Induced by: 
Viruses, some intracellular 
bacteria, protozoans, other 
cytokines. 

Induced by: 
Antigen stimulated T-cells, 
Natural Killer (NK) cells, 
Natural Killer T (NKT) cells 

Induced by: 
Viruses 

Functions: 
Antiviral, anti-proliferative, 
increase MHC class I 
expression. 

Functions: 
Antiviral, increase MHC I and 
II expression, growth and 
maturation factor for some 
cells. 

Functions: 
Anti-viral 

Table 1.2: Summary of different classes of interferons. An overview of the three different classes of 
interferons including the different types of interferons in each class, their chromosomal location origin, 
induction and function. 
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There are two main classes of type-I interferons; IFN-α and IFN-β. In humans there are 

13 known subtypes of IFN-α, and one class of IFN-β [58]. All type-I subtypes share 

considerable structural homology. In contrast to type-I interferons there is only one 

type-II IFN; IFN-γ (originally termed macrophage-activating factor) that is structurally 

unrelated to type-I interferons. Type-I interferons are synthesised in direct response to 

viral infection. Type-II interferons on the other hand are synthesised in response to 

recognition of infected cells by CTLs (CD4+ T helper 1 cells (Th1) and CD8+ T cytotoxic 

lymphocytes) and NK cells. There is now also evidence that other cells types such as B-

cells, NKT cells and professional antigen presenting cells may also secrete IFN-γ [59]. 

All type-I IFNs bind a common cell surface receptor; the type-I IFN receptor and IFN-γ 

binds to a different receptor; the type-II IFN receptor.  

 

Interferon-γ 
 

Macrophages stimulated with IFN-γ induce direct anti-microbial and anti-tumour 

mechanisms in addition to up-regulating antigen processing and presentation 

pathways [59].  Additionally this cytokine can direct growth, maturation, and 

differentiation of many cell types as well as orchestrating leukocyte attraction. IFN-γ 

increases the expression of Fc receptors for IgG on macrophages and is the only type 

of interferon capable of efficiently up-regulating the MHC Class II expression on a 

variety of cells, and in turn promoting peptide-specific activation of CD4+ T cells [59-

60].  IFN-γ is a key factor required for the ‘classical’ activation of macrophages.  

 

The IFN-γ receptor is comprised of two ligand binding chains (IFNGR1) associated with 

two signal transducing (IFNGR2) chains. Both receptor chains lack intrinsic kinase / 

phosphatase activity and therefore associate with other signalling machinery for signal 

transduction. Arguably the best characterised association is with the JAK-STAT 

signalling cascade. The IFNGR1 intracellular domain contains binding motifs for JAK1 

(Janus tyrosine kinase) and the intracellular region of IFNGR2 contains a binding motif 

for recruitment of JAK2. A phosphorylated IFNG-receptor complex can then transduce 

signal by phosphorylating the signal transducer and activator of transcription (STAT)1 
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on the tyrosine residue at position 701 (Tyr701) [61]. This phosphorylation then results 

in the formation of STAT1-STAT1 homodimers that translocate to the nucleus and bind 

IFN-γ activated sites (GAS) elements in the promotors of certain target genes. The 

transcription of type-II dependent genes is regulated by these GAS elements. Figure 

1.3 provides a simplified schematic of type-I and type-II interferon signalling. 
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Figure 1.3: Simplified overview of signalling events following type-I or type-II interferon receptor 
activation. The pathway diagram is depicted using the modified Edinburgh Pathway Notation (a 
graphical notation for biology discussed in Chapter-3), and describes the series of events following type-I 
and type-II receptor engagement with their respective ligands. Type-I receptor activation leads to the 
auto-phosphorylation of the type-I receptor complex, which can then phosphorylate STAT2. 
Phosphorylated STAT2 can combine with STAT1, IRF9 to form the archetypal type-I transcription factor 
ISGF3. The activated type-II receptor complex phosphorylates STAT1, which is then capable of forming a 
STAT1 homodimer, or a complex of STAT1:STAT1:IRF9. The resultant type-I and type-II transcription 
factors bind to specific elements in the ‘interferon stimulated’ genes they target. Overlap between the 
transcriptional targets of type-I and type-II signalling exists.  



                                                                                                       Chapter 1: Introduction 

22 

Interferon-β 
 

Type-I IFNs are secreted at low levels by almost all cell types. Viral infection is generally 

the classical stimuli for IFN-α or IFN-β production.  Hematopoietic cells are the major 

producers of IFN-α, whereas fibroblasts are the major source of IFN-β. IFN-β is also 

produced by macrophages under appropriate stimuli [59].  

 

As with the IFN-γ receptor, the type-I receptor also comprises multi-chain structures 

which are composed of at least two distinct subunits: IFNAR1 and IFNAR2. The IFNAR1 

subunit is constitutively associated the tyrosine kinase 2 (TYK2), whereas IFNAR2 is 

associated with JAK1. The initial step is activation of the receptor associated JAK(1), 

which occurs in response to a ligand dependant rearrangement and dimerization of 

the receptor subunits. The activated receptor complex then phosphorylates STAT2 and 

from this a key type-I transcriptional complex ISG factor 3 (ISGF3) is formed. ISGF3 is 

composed of the phosphorylated (and activated) STAT1 and STAT2 along with the 

interferon regulatory factor (IRF)9. This complex binds specific elements known as IFN-

stimulated response elements (ISREs) that are present in the promotors of some ISGs. 

As well as activation of the classical JAK-STAT pathway, there is evidence that 

activation of the IFN receptor associated JAKs may regulate (directly or indirectly) 

other downstream signalling cascades such as the mitogen activated protein kinase 

p38, and phosphatidylinositol 3-kinase signalling pathways [58].  

 
 

The Post Genomics Era and its Technologies 
 
The post-genomics era refers to the period following the sequencing of the human 

genome [62-63] a milestone in genomic research. This era has seen the has seen the 

emergence of novel functional genomics techniques and the significant improvement 

in existing technologies, not least; high-throughput DNA sequencing, DNA microarrays, 

high-throughput cell based assays, improvements in mass spectrometry, the discovery 

of RNA-interference (RNAi), cap analysis gene expression (CAGE) for predicting 

transcription start sites, and two-hybrid screening. Essentially the post-genomic era 
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has witnessed an exponential increase in available data facilitated by the increasing 

ease of gathering genomic and other high-through-put data. Consequently the fields of 

computational-biology and bioinformatics have also grown rapidly over the years. The 

premise of post-genomic research has been the transformation medicine and drug 

discovery. To achieve this end, the challenge lies in managing, interpreting and 

integrating the different data-sets to better understand the system of interest.  

 

RNAi and gene expression microarrays are two investigative tools central to the studies 

described in this thesis and are therefore described in some detail below.  

 

RNA-interference 
 

RNA interference (RNAi) is a naturally occurring mechanism for gene regulation found 

in many eukaryotes [64]. The pathway used in this system is now exploited routinely in 

the biological sciences for investigating the role of various genes in a given cell or 

condition. The RNAi pathway involves small non-coding RNAs (e.g. exogenously 

introduced short interfering RNA (siRNA) or the endogenous microRNA (miRNA)) 

which associate with nuclease-containing regulatory complexes, then pair with 

complementary mRNA, and in doing so prevent their expression. The RNAi process 

begins with the processing of long double-stranded RNA (dsRNA) (that is endogenous 

to, or introduced into, the cell), into small RNA duplexes by a ribonuclease III (RNaseIII) 

enzyme known as Dicer (reviewed in [65-66]). These duplexes are then unwound, and 

one strand (guide strand) is preferentially loaded into a protein complex known as the 

RNA-induced silencing complex (RISC). The RISC complex complete with loaded single-

stranded RNA (ssRNA), then directs the cleavage of messenger RNAs that contain 

sequence homologous to the ssRNA [65-66]. The endonuclease responsible for this 

cleavage has been identified as an Argonaute protein [67-69].  

 

Systematic knockdown of protein function by RNAi used in combination with 

molecular and cellular phenotyping analysis is a powerful technique for elucidating 

gene function. Commonly the approach is used to explore gene function in in vitro cell 

culture and in vivo in model organisms. Synthetic siRNA or short hairpin-RNA (shRNA) 
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are used to mediate the RNAi pathway in experimental settings. shRNA (a short 

sequence of RNA that makes a tight hairpin turn), can also be synthesized in vivo from 

RNA polymerase III promoters  [70-71]. shRNA are introduced into cells using a (viral) 

vector, allowing integration of the shRNA expression cassette into the host genome, 

and are therefore preferred in studies requiring long-term stable knockdown of 

targets [72]. siRNA tend to be easier to design and transfect than shRNA and so are 

generally preferred for screening experiments [72]. Moreover the dosing of silencing 

ssRNA is better controlled with the siRNA method [72]. 

 

Application of RNAi as a therapeutic is also being considered with great interest since 

it would potentially provide a powerful method for inhibiting any gene whose 

expression and protein product may contribute to disease [73-74]. Consequently RNAi 

has unveiled the opportunity to manipulate a vast number of disease targets that are 

otherwise currently intractable to traditional small-molecule and protein based 

intervention approaches. Macrophages are particularly attractive targets for (gene) 

therapeutic interventions given their central role in a wide variety of biological 

processes and pathologies. 

 

There are however a number of obstacles to be addressed in order for siRNA use to be 

successful both in vitro as a laboratory tool and in vivo as a therapeutic [75]. These 

include challenges in siRNA delivery, immune activation and immune mediated 

toxicities, as well as non-immune off target effects. Initial studies in mammalian cells 

suggested that siRNA are specific and small enough to evade immune detection [64]. 

Others went on to report inadvertent effects such as activation of the interferon 

response at even low siRNA concentrations [76-77], and mRNA degradation mediated 

by partial sequence complementation [78-79]. A range of strategies have been 

deployed to design stable, specific synthetic siRNAs which circumvent immune 

activation and off target effects. These include computational screening of potential 

siRNA sequences to avoid use of known immuostimulatory sequences and those with 

a high potential for off target effects [80-81], as well as structural and chemical 

modifications to the siRNA [82-85]. 
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Microarrays for Gene Expression Analysis 

 
Microarrays permit the comprehensive and simultaneous analysis of nucleic acid 

sequences [86]. The most common applications of DNA microarrays are for measuring 

changes in gene expression level and for detecting or genotyping single nucleotide 

polymorphisms (SNPs).  Arrays comprise of DNA probes which are generally 

immobilised onto a solid surface (e.g. glass slide, silicon chip or microscopic beads). 

Probes are generally either spotted cDNA or commonly oligonucleotides and are 

designed to interrogate specific gene or intergenic sequences (or polymorphisms) in a 

given organism. The probes for assaying gene expression i.e. mRNA transcript 

abundance are commonly designed to detect cDNA/cRNA generated from total RNA 

samples. The general procedure for expression analysis by microarrays involves the 

fluorescent labelling of samples, which are then hybridised to the microarrays under 

specific conditions. The arrays are washed to eliminate non-specific binding to probes 

and are scanned to determine fluorescent signal at all probes. The signal strength at 

each probe position corresponds to amount of complementary target bound. Raw 

signal data from multiple microarrays (to be compared) is subjected to a normalisation 

step to make adjustments for systematic/technical errors introduced when batch 

processing arrays e.g. differences in scanning or hybridisation. 

 

The very first miniaturised microarray could assay 45 gene sequences of Arabidopsis 

thaliana [87]. Subsequent advances in microchip technology as well as the growing 

availability of sequence data for complex genomes, facilitated the development of 

more comprehensive microarrays. Current microarrays technology can interrogate all 

known and predicted genome sequences as well as individual exons.  Multiple probes 

may be used to target a given sequence. For example the Affymetrix Human 1.0 ST 

array is comprised of 764,885 distinct probes targeting 28,869 well-annotated genes.  

 
As microarray analysis developed, standards for recording information about 

microarray experiments were proposed [88]. Commercially available microarrays are 

now relatively inexpensive, robust and reproducible. Moreover, microarray data has 
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existed for over a decade; giving time for researchers to develop and debate analysis 

techniques to analyse this data. Indeed there is some debate as to whether 

microarrays will eventually become obsolete with the emergence of an alternative 

method for gene expression analysis; RNA-Seq (or Whole Transcriptome Shotgun 

Sequencing) [89]. RNA-Seq in principle can provide a more accurate measurement of 

transcript levels, makes no prior assumptions of sequences, and has become more 

affordable in recent years [90]. As with many high- throughput technologies, RNA-Seq 

analysis also faces a number of challenges, not least the computational management; 

from storage, processing, and optimal methods for data analysis.    

 

Systems Biology  
  

What is Systems Biology? 
 
 
The traditional (or reductionist) approach to biology has centred on dissecting the 

properties of individual genes/proteins and their contribution to the operation of a 

process. Systems biology is a paradigm and discipline centred on the comprehensive 

quantitative analysis of all the components of a biological system and how their 

interactions influence the properties of a given system (or process). The holistic 

systems-level approach to modelling and analysis has been fostered by technological 

advances in high throughput technologies as well as breakthroughs in functional 

genomics techniques (discussed earlier). In fact, managing, mining and interpreting the 

mountains of available data arguably requires a systems level approach.   

 

The ‘system’ in question can range from signalling networks, a cell, tissue, organ, 

organism etc. Systems are comprised of networks of interacting components. For 

example protein and gene regulatory networks are fundamental to the operation of a 

cell. The chief motivation and objective of systems biology is therefore to identify the 

components of a given system and how they interact with each other, in order to 

understand and/or predict emergent behaviour of the system; that is behaviour which 
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cannot be predicted from analysing individual components [91]. The premise of these 

endeavours is that it should eventually be possible to (i) predict the behaviour of a 

system in response to perturbation and (ii) redesign/perturb the systems-model to 

create new emergent properties [91]. If these points are eventually achieved they 

would revolutionise the fields of preventative medicine and drug discovery.  

 
In practice systems biology often refers to efforts to both model systems both in terms 

of defining the interactions between the components of a system and computationally 

modelling its activity, as well as new approaches to interpreting and mining biological 

data derived from genome-wide studies.  

  

Systems Level Analysis of Immune Signalling 
 

A ‘systems-level’ approach is particularly suited for better understanding complex 

biological systems and processes (e.g. immune signalling, neurobiology). Although it is 

becoming increasingly evident that systems based challenges permeate all areas of 

biology and medicine.  Emergence, robustness and modularity have been identified as 

three key concepts central to systems biology [91]. All of these concepts are relevant 

to our understanding of immune signalling and macrophage biology. Emergence 

relates to system properties which cannot be explained by the activity of individual 

components alone e.g. the activation status of a macrophage depends on the balance 

of activity of numerous proteins. Robustness refers to the maintenance of phenotypic 

stability in spite of perturbations. Robustness is a critical feature of the immune system 

which must be adaptable to environmental fluctuations and tolerant to errors, in order 

to contend with various challenges posed by microbes. Finally in biological systems, 

modularity describes networks of components e.g. proteins/genes that interact 

together in undertaking a common function [91].  Signalling pathways comprise 

networks of interacting proteins, and in the macrophage regulation of transcriptional 

networks is vital in defining the phenotypic properties of the cell.  

 

There are now numerous systems-based approaches to studying the immune system 

and macrophage biology which have been employed (reviewed in [92]). These include 
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a number of initiatives to collate data and investigate immune signalling systems and 

pathways; examples including  the INTERFEROME database of interferon gene targets 

[93], the Alliance for Cellular Signaling collaborations [94], the LIPID MAPS consortium 

[95], the Inflammation and Response to Injury Project [http://www.gluegrant.org/], 

the DC-ATLAS resource for interpreting high-throughput data generated from dendritic 

cells [96], and the Innate Immunity Project [www.innateimmunity-

systemsbiology.org/], to name just a few.  

 

The macrophage possesses a host of features which render it an attractive if not vital 

target for ‘systems-level’ analysis [97]. These features include; the substantial range of  

well characterised signalling pathways; the plasticity of the cell; the relative ease of 

obtaining and culturing primary macrophages (from human blood, mouse bone 

marrow and peritoneum); the availability of macrophage-like immortalised cell lines; 

and crucially the clinical significance and therapeutic appeal the macrophage holds 

[97]. Whilst the ability to perform quantitative and qualitative measurements on the 

cellular components of the macrophage has increased massively, as has knowledge on 

how they interact with each other. The challenge still remains in converting these 

observations into detailed systems-models. However, without such models we cannot 

hope to truly understand macrophages or indeed any other cell at a systems level. 

Detailed and well characterised models of the signalling pathways, disease processes 

active in the macrophage are still scarce. Other key challenges in deploying the 

systems-level approach include standardising datasets, and integrating different levels 

of data (e.g. transcription, protein expression, kinetic data) to build and inform system-

models. Defining modularity, especially the transcriptional networks activated in 

macrophage and how these relate to the phenotypic properties of the cell is essential 

in understanding the heterogeneous behaviour of this cell.   

 

Pathway Modelling  
 

Interest in ‘pathway biology’ has never been greater as we struggle to comprehend 

cellular systems from a combination of targeted studies and the deluge of data flowing 

http://www.gluegrant.org/
http://www.innateimmunity-systemsbiology.org/
http://www.innateimmunity-systemsbiology.org/
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from ‘omics platforms. This is reflected by the escalating efforts to assemble pathway 

diagrams [98-102], develop standards for depicting pathways [103-106], software to 

support their construction [107-109] and exchange [110-112], and the development of 

approaches to model and predict pathway behaviour [113-115]. Whilst arguably there 

is no such thing as a pathway only one big integrated network of molecular 

interactions, it is still useful to think in terms of pathways as being connected modules 

of this network. As such a pathway may be considered to consist of a specific biological 

input or event that initiates a series of directional interactions between the 

components of a system leading to an appropriate shift in cellular activity. As we begin 

to appreciate the potential complexity of these molecular networks, there is increasing 

interest in modelling pathways in order to expand our understanding of biology from 

the traditional gene-centric view of life, to a systems level appreciation of biological 

function. 

 

Much of this work describing pathways and their interactions remains locked in the 

literature where specific insights into pathway function are subject to the semantic 

irregularities that come with their description by different authors. Pathways are 

understood more generally by their description in reviews and diagrams produced on 

an ad hoc basis. Whilst such diagrams are clearly useful aids to understanding specific 

cellular processes, even at their best, they are not sufficient by themselves, relying on 

extensive textual descriptions to explain what is shown pictorially. Furthermore these 

pathways are rarely available as a cohesive network with pathway diagrams usually 

focusing only on a small part of a biological system which often reflects the curator’s 

bias, such that the ‘same’ pathway described by different individuals may share little in 

common. In this sense pathway resources offer a fragmented view of systems with 

some proteins or metabolites being members of numerous pathways; the concept of 

pathway membership being a highly subjective division. Figure 1.4 shows the apoptosis 

pathway as curated by four different sources and underscores some of the issues with 

current pathway depiction.  Whatever the source of these pathways and networks 

they generally suffer from graphically poor representation with ambiguity around the 

precise identity of what is being shown and the exact nature of their interaction. 
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Figure 1.4: Apoptosis pathways curated and assembled by four different sources. The ‘same’ pathway 

may share little in common in terms of layout, pathway components, standard graphical notation and 

nomenclature systems (if any used) for pathway components. (a) Apoptosis Pathway as extracted from a 

review article; Johnstone et. al 2008, Nat Rev Cancer. (b) Mitochondrial Control of Apoptosis, taken from 

www.cellsignal.com/pathways/apoptosis-signaling. (c) Apoptosis Signalling as portrayed by Ingenuity 

Systems a commercial queriable pathway resource. (d) Apoptosis as taken from KEGG (Kyoto 

Encyclopaedia of Genes and Genomes) Pathways.  In all cases these clearly highly simplified 

representations of the molecular interactions leading to apoptosis. 

 

 

 

 

 

http://www.cellsignal.com/pathways/apoptosis-signaling
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In order to escape the gene-centric view of biological systems, requires the 

development of better ways to order and display our knowledge of protein 

interactions and the systems they form. Moreover the creation and developments of 

standards is essential to enhance and permit the exchange of pathway knowledge. 

Until very recently biology has lacked standardised graphical notation schemes for 

illustrating pathway information [103, 116-118], and even now these standards are still 

being developed and are far from universally applied. Formalized diagrams (i.e. those 

constructed using a graphical language) act as a visual representation of the 

interactions between cellular components and provide a valuable resource for 

modelling network structure and the dependencies between components [119]. In 

addition, pathway models are an invaluable resource for interpreting the results of 

genomics studies [120-126], for performing computational modelling of biological 

processes [115, 127-130] and fundamentally important in defining the limits of our 

existing knowledge. Large integrated diagrams of metabolic pathways have been 

available for many years, for example Gerhard Michal’s classic biochemical pathways 

wall chart first published by Boehringer-Mannheim in 1968. Such pathway diagrams 

are inevitably complex, but potentially liberate the user to explore the 

interconnectivity between what might be seen as separate pathways and get an 

overview of topology of the system as a whole. In contrast, the assembly of detailed 

diagrams of signalling pathways as integrated networks rather than a series of 

disconnected views has been little explored.  

 

To gain a better understanding of a heterogeneous cell such as macrophage will 

require characterisation of its constituents and how they interact over time. As with 

many biological systems, certain macrophage pathways are very well characterized 

whereas little is known about many others. Even where pathway domain knowledge 

does exist however, it is generally fragmentary and subjective. Chapters-2 and -3 will 

explore means of creating a macrophage pathway resource and the in silico 

representation of the biological interactions underpinning the activity of this cell.  
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Networks in Biology 
 

Visualisation and analysis of biological data as networks is now becoming a widespread 

and increasingly important approach in biological and medical research [131]. In 

classical graph theory, a network (or graph) consists of nodes connected by edges.  For 

biological networks the nodes may represent a biological entity (for examples genes, 

proteins, organisms) and the edges denote a type of relationship or interaction (for 

example protein-protein binding, metabolic coupling, genetic origin as well as 

experimentally determined similarities). Biological relationships analysed using 

networks have included; sequence similarity, protein structure, protein interactions 

and evolutionary relationships [132-134].  Most biological networks tend not to be 

random, but follow a series of basic organizing principles in their structure and 

evolution. This also applies to other natural networks, as wells as technological and 

social systems, and distinguishes them from randomly linked networks. The structure 

of such “non-random” networks can provide insight, often overlooked by other 

methods of data representation.  

 
Many biological networks show a high degree of clustering i.e. highly interlinked local 

regions in the network or topological modules [131].   A number of network-clustering 

tools, designed for identifying such modules have emerged over recent years [133, 

135-137]. The clustering technique has performed exceptionally well for analysis of 

protein-protein similarity networks [133] and demonstrated that clustering nodes 

according their graph context, rather than iterative pair-wise clustering has great 

potential for the discovery of novel aspects of biological function.  

 
 

Network Based Approach for Gene Expression Data Analysis 
 

 

Traditionally statistical methods have taken precedence for the analysis of microarray 

transcriptomics data. These pair-wise comparison methods can include fold 

change/significance analysis between two or more conditions e.g. between treatment 

vs. controls.  Whilst statistical methods are often viewed to be rigorous, there are 
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certain caveats to reliance purely on statistics for microarrays experiments, especially 

those with a large and varied number of treatment conditions. For example statistical 

methods ideally require multiple replicates of a condition to determine the significance 

threshold of a result. This can become inherently expensive and impractical for large 

scale screens or experiments with many conditions. There are also often limitations on 

the quantity of data that can be presented in an intuitive manner. In many cases the 

most changing transcripts (one condition vs. another) will be determined and much of 

the remaining data overlooked. Furthermore the individual sample by sample 

comparison approach does not take into account the relationship of all the data 

samples or arrays to each other.  Correlation based methods whereby cohorts of genes 

related in their behaviour across a data set are identified, are also a commonly applied 

approach in expression analysis. 

 

Although network analysis is proving to be valuable for the analysis of a range of 

biological data, its application for examining microarray gene expression data has until 

years recently been overlooked, possibly due to lack of supporting software tools. 

However the general quality, abundance and high-dimensional nature of expression-

data make it compatible with network analysis [138]. Typically microarray expression 

data consists of many thousands of measurements of relative transcript abundance 

and depending on the study these measurements are derived from a few to several 

thousand biological samples [139]. The collection of expression values of any given 

transcript across the samples of interest is referred to as its expression profile. The 

network paradigm for the analysis of gene expression data is based on defining the 

level of correlation (degree of similarity) between expression profiles of different 

transcripts. The basic principles of generating and analysing gene-expression networks 

are described below. 

 

Basic principles of correlation based network analysis for gene expression data 
 

For the purpose of gene expression analysis in this thesis I have applied a network 

based approach to explore the microarray data generated by this project.  Generation 



                                                                                                       Chapter 1: Introduction 

34 

of network graphs from gene expression data has used the Pearson correlation 

coefficient as a measure of similarity between expression profiles, where an 

expression profile is defined as the collection of numerical data values (expression 

values) of an individual probe or probe-set targeting a defined transcript, derived from 

the range of samples being investigated. Pair-wise Pearson correlation coefficients are 

calculated for every transcript represented on the array, and each calculation then 

defines the strength of a relationship between two transcripts or in essence provides a 

similarity score between their expression profiles between +1 (perfectly correlated) 

and -1 (negatively correlated). Correlation coefficients above a predefined threshold 

can be used to draw edges between genes (nodes) and generate a network graph of 

expression relationships. Figure 1.5 provides a simple worked example of a correlation 

based gene expression network.  
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Figure 1.5: Example of a network graph consisting of nodes (genes) and edges (correlation between 
the genes). (a) The network graph has not been filtered so all Pearson correlation relationships are 
displayed, therefore all nodes (genes) form connections with each other. (b) The network graph has 
been filtered so only Pearson correlations above a threshold of 0.7 are displayed. Consequently the 
network is connected by fewer edges, defining only relationships above 0.7. In this scenario Gene 5 does 
not form part of the main network, since all of its relationships with other genes fall below the 0.7 
Pearson correlation filter, indicating that its expression profile is poorly related to the other genes.   
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Expression data can be influenced by both biological variations across the samples and 

by technical artefacts. However generation of these network graphs from expression 

data makes no prior assumption of experimental variables, including design, 

normalisation method, microarray platform or even the questions being addressed by 

the study. Thus in essence this approach provides a truly unbiased view of the data.  

 

BioLayout Express3D is a software tool designed specifically for the visualization, 

clustering and analysis of large network graphs in two- and three-dimensional space 

derived primarily, but not exclusively, from biological data [138-139]. The tool had now 

been optimised so it can render graphs of approximately 45,000 nodes in size 

(connected by ~5,000,000 edges, although this is hardware dependant) and also has an 

inbuilt application for clustering graphs using the Markov clustering (MCL) algorithm 

[137]. The MCL algorithm is an unsupervised approach for sub-dividing graphs non-

subjectively into discrete sets of genes sharing similarities in their expression, 

otherwise known as clusters (or graph modules). Clusters are defined on the basis of 

node connectivity and edge weight (strength of relationships). Consequently nodes 

(transcripts) contained within clusters are in close proximity in the graph and are highly 

related in their expression profiles. The MCL algorithm can be adjusted by use of an 

MCL-inflation value, to alter the stringency of the cluster membership and 

consequently the granularity of clustering. The higher the MCL inflation value is set, 

the stronger the correlation (in pattern of expression) between the cluster members. 

Although this also reduces the size of clusters within the graph as modules are sub-

divided further based on their graph context.  

 

 

Previous Use of Network Based Approach for Interpreting Transcriptomics 
Data 
 

BioLayout Express3D is a network analysis tool that has been specifically designed for 

the analysis of gene expression data and is especially suited for large and complex data 

sets. It has now been utilized in the analysis of a number of published studies 
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addressing a range of biological questions [140-144].  In order to explore the network 

based approach for analysis of transcriptomics data and to gain a better understanding 

of the transcriptional profile of macrophages I have contributed to the analysis of a 

number of gene expression datasets [145-147]. This includes a large data set assaying 

gene expression across 44 purified primary mouse cell populations or untransformed 

cells and two mouse organs; the spleen and mesenteric lymph nodes [145].  The 

approach allowed the concurrent analysis of 20,346 nodes (transcripts), and their 

relationships (944,650 edges) in one network graph (Figure 1.6), a scale that would 

otherwise be unattainable using other methods or network tools. From the network 

graph it was possible to extract a number of interesting observations; firstly that some 

patterns of expression i.e. clusters of transcripts were specific to particular cell types 

(Figure 1.6), some of which may prove to be markers for those cells.  In other cases 

some of the clusters appeared to be associated not with cell lineage but with broad 

biological processes. This not only provided insight into the processes shared or 

specific to cohorts of cell types, but also demonstrated the potential to characterise as 

yet un-annotated proteins since the likely function or process in which they are 

involved can be inferred by their co-expression with genes encoding proteins of known 

function [145].  
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Figure 1.6: Network analysis of mouse transcriptomics atlas (extracted from Hume et al., 2010). 
Samples of 44 mouse cell populations and 2 tissues (lymph node, spleen) were collected and analysed 
on Affymetrix MOE430 2.0 arrays in duplicate, see GEO dataset: GSE10246 (www.biogps.org). Results 
were normalised using the MAS5 algorithm and the tool BioLayout Express3D used to calculate pair-wise 
Pearson correlation coefficients for every transcript represented on the array. A network graph of 
20,346 nodes (transcripts), connected by 944,650 edges was generated by filtering data to display only 
Pearson correlation relationships (between transcripts) of 0.8 or above. The resultant graph was then 
clustered using the Markov clustering algorithm with an inflation value of 2.2 resulting in 812 clusters 
containing > 4 nodes. Examples of these clusters, shown isolated from the main graph alongside the 
average expression profile of the transcripts that make up the cluster. The number of transcripts in each 
cluster is shown bottom right next to the graph of the cluster. Transcripts belonging to the five example 
clusters are largely expressed in specific cell types and/or under specific conditions i.e. LPS activation of 
macrophages.   

 

 

 

 

 

 

 

 

 

http://www.biogps.org/
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The network based approach had also been used to assess genome wide changes in 

transcript abundance in response to targeted RNA-interference induced suppression of 

the expression of a number of key genes associated with IFN signalling in murine 

macrophages prior to stimulation with mouse IFN-γ (Figure 1.7) [146].  The original 

objectives of this investigation were to further our understanding of the mechanism by 

which certain ISG’s contributed to the protective effect of IFNγ during viral infection by 

targeting the genes with siRNA. However the act of siRNA transfection itself induced a 

type-I IFN transcriptional response, thus even in the absence of IFN-γ treatment IFN 

response genes appeared to be regulated. Moreover one cluster of regulated genes 

represented transcriptional changes occurring regardless of IFN-γ treatment. This 

cluster-(d) was enriched for type-I response genes. Interestingly six siRNA treatments 

(targeting Ifnb1, Irf3, Irf5, Nfkb2, Stat1, Stat2) perturbed the transcriptional networks 

associated with IFN signalling (Figure 1.7).  Some of these siRNA targets were known to 

act within the IFN pathway. The observations made by this study formed the basis of 

the follow up experiments described in Chapter-5. 
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Figure 1.7: Clusters extracted from a transcriptional network of expression data from RNAi treated BMDMs, and the median expression profiles of transcripts within 
the clusters (Taken from Lacaze et al., 2009). A network graph filtered at a Pearson correlation r ≥ 0.9 was clustered using Markov clustering algorithm at an inflation 
value of 2.2). 4a: Five main clusters of co-expression emerged containing genes influenced most by siRNA & IFNγ treatment. A consistent disruption of transcriptional 
activity of mouse BMDM was observed using six particular siRNAs (shaded in blue) targeting Ifnb1, Irf3, Irf5, Nfkb2, Stat1 & Stat2 mRNAs. 4b: Cluster 1 – 234 genes 
whose expression is induced by IFNγ and repressed by the six active siRNAs. 4c: Cluster 2 – 179 genes repressed by IFNγ but de-repressed by six siRNAs. 4d: Cluster 3 – 
67 genes whose expression is not influenced by IFNγ at 24 hour assay point but repressed by six siRNAs. Many of these are innate immune response genes 4e: Cluster 4 
– 86 genes de-repressed by siRNAs, many of which have known functional association with cell cycle 4f: Cluster 5 – 44 genes enriched with annotation for NF-kB 
signalling.  
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Aims and Objectives  
  

The overall objective of this thesis was to gain a better understanding of the signalling 

pathways underpinning macrophage activation (particularly in response to interferons) 

by applying a ‘systems-levels’ approach to biological modelling, data analysis and 

mining. Systems biology aims to escape the traditional gene-centric, reductionist view 

of biological investigations. This necessitates the development of better ways to order, 

display, mine, and analyse biological information, from the output of high-through-put 

‘omics technologies to our growing knowledge of protein interactions and the systems 

they form. Crucially these developments are necessary if we are to improve our 

understanding of complex and dynamic biological entities.  The work described in this 

thesis is associated with three main objectives: 

 

1. A wealth of literature describing the individual interactions of signalling pathways 

active in the macrophage currently exists. The challenge lies in capturing this 

information in a format with the potential for ‘systems-level’ analyses. Therefore an 

initial objective of this work was to develop a pathway resource of the signalling 

events active in the macrophage, particularly of receptor initiated pathways and 

type-I and type-II interferon signalling. Associated with this objective was the desire 

to explore and develop a graphical notation scheme for depicting biological 

concepts i.e. a language for drawing and exchanging pathway models.   

 

2. Pathway models are a working hypothesis of how a system may operate over time 

and under given conditions. As such, models must undergo cycles of iterative 

refinement to become more accurate and detailed. In this case evaluation of the 

pathway resource created, exposed its limited coverage of transcriptional events. 

Thus a second objective of these studies was to explore the transcriptional networks 

associated with macrophage activation in response to type-I and type-II interferon, 

as well as LPS; three stimuli which are considered to prime macrophages towards 

the M1-type activation state. Traditionally statistical fold-change cut offs and lists of 
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the most differentially expressed genes are the approach applied for expression 

analyses. However the objective here was to explore the use of network-based 

analysis and presentation for transcriptomics data derived from macrophage 

activation studies.  

 

3. Previous investigations by the group revealed that transcriptional networks 

associated with type-I interferon signalling, were perturbed using siRNA targeting 

genes which may act in the same pathway. In order to expand on these findings 

there was the desire to design and optimise a cell based assay to investigate the 

role of genes of interest in type-I interferon and LPS signalling.  
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Chapter 2. Construction of Large-Scale Diagrams of 
Macrophage Signalling and Effector Pathways 
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Introduction 
 

This and the following chapter present my work on one of the central challenges in 

pathway biology: How does one construct clear concise pathway diagrams of the 

known interactions between cellular components that can be understood by and 

useful to a biologist? In our efforts to understand the signalling cascades fundamental 

to macrophage biology, I have endeavoured (as part of the group’s efforts) to generate 

large integrated graphical models of these pathways.  

In recognition of the importance of documenting pathway knowledge, many efforts 

have been made to collate pathway knowledge, together with information derived 

from large-scale interaction studies and literature mining, into public and commercial 

databases [148-157]. These offer searchable access to pathway diagrams and 

interaction data derived from a combination of manual and automated (text mining) 

extraction of primary literature, reviews and large-scale molecular interaction studies. 

Whilst invaluable and in many ways the best we have, a major problem with these 

efforts is that the information content of these diagrams is frequently limited and 

visualizations of these systems are of variable and often poor quality; Pathway 

components are often labelled using inconsistent nomenclature systems and depicted 

using a variety of shapes (glyphs) to illustrate component ‘type’ (see Chapter-3). 

Furthermore, notation schemes used for pathway diagrams to depict one molecule’s 

interactions with another are not standard and are often limited in their ability to 

convey the exact nature of the relationship between components. Finally, pathway 

diagrams are generally highly subjective reflecting the curator's bias, such that two 

diagrams depicting the ‘same’ pathway may share little in common (see Chapter-1 

Figure 1.4). Together these factors commonly result in uncertainty as to what exactly is 

being shown. The diagrams thereby fail to fulfil their basic purpose – to provide a 

comprehensive and unambiguous picture of what is known about a pathway. In an 

effort to address some of these issues, a number of groups have suggested notation 

schemes for drawing ‘wiring diagrams’ of cellular pathways [103-105, 158]. The 

evolution of one of these notation schemes, the modified Edinburgh Pathway Notation 

(mEPN) forms the basis of discussion in Chapter-3). 
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During the course of this thesis I have been engaged in constructing process diagrams 

[102, 159] of pathways important in regulating macrophage immune biology and 

known to be activated in these cells during infectious and inflammatory disease. The 

eventual aim being of these efforts would be a pathway resource that would serve to 

inform and aid the interpretation of wet-lab analyses of this cell and would also have 

the potential to be applied for computational modelling. The task of converting the 

literature into understandable, unambiguous, and useful pathways diagrams posed a 

range of challenges. Examples of these included; deciding on reliable sources for 

collecting pathway interaction data, deciding what constitutes a valid interaction, and 

how and what interaction data to store, how to arrange pathway components in a 

diagram, as well as choosing a suitable software for assembling the diagrams. In order 

to address these challenges and define a suitable protocol for constructing pathways, I 

was assigned the task of assembling a pathway diagram of apoptosis signalling (or 

programmed cell death). At the time of embarking on this task, the existing pathways 

of apoptosis were highly abstract and ambiguous (Chapter-1 Figure 1.4). Apoptosis is a 

carefully regulated process in the macrophage and is controlled by a diverse range of 

cell signals; both intrinsic (DNA damage, organelle stress) and extrinsic (cytokines, 

pathogens). 

 

In constructing a model of apoptosis signalling it was necessary to establish some 

principle rules for assembling pathways. This stage of the pathway construction effort 

is described in Phase 1 of the results section. Essentially the lessons learnt from this 

process laid the foundations for generating further pathways of interest, and in an 

effort to better understand the signalling cascades fundamental to macrophage 

activation, I then constructed an integrated framework diagram of macrophage 

signalling encompassing the TLR (Toll-Like-Receptor), IFN (interferon), NF-κB and 

apoptosis pathways. These signalling events are of central importance in defining the 

macrophages response to pathogens and do so in a highly inter-dependant manner 

[160]. The results of these labours are presented below (Phase 2) and in Raza et al., 

2008 [102]. The framework diagram comprised 295 nodes including 140 proteins and a 
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total of 272 interactions. Although this coverage was an improvement on other 

available macrophage pathways at the time this was still a very limited view of 

macrophage signalling. However the pathway proved to be a useful and a desire to 

expand this into a more comprehensive and powerful resource led the group to 

construct additional diagrams of pathways active in the macrophage including; antigen 

presentation, MAPKinase, non-TLR pathogen detection, to name just a few. These 

pathways and the framework diagram were then amalgamated to generate an 

integrated network of macrophage pathogen recognition and detection systems. 

These efforts are presented in Phase 3 of the results and in Raza et al., 2010 [159]. The 

current macrophage diagram is to our knowledge the most comprehensive network of 

signalling events in the macrophage constructed using a formalised graphical notation 

[159].  

 

The pathways described were constructed using the Edinburgh Pathway Notation 

(EPN). In doing this another objective was to road test the Edinburgh Pathway 

Notation (EPN), (see Chapter-3) for its usability in portraying pathways.  By 

constructing these graphical models which encompass a diverse range of biological 

pathways and concepts, it was found necessary to refine the Edinburgh Pathway 

Notation (EPN) scheme as previously proposed [102, 105]. The current ‘modified’ EPN 

(mEPN) scheme has been arrived at through extensive use and testing and is described 

in Chapter-3 and at http://www.mepn-pathway.org/ [116].  

 

The macrophage pathway models presented here, explores some of the challenges 

associated with meeting the various demands of a pathway diagram. The hope is the 

integrated pathway will prove to be a useful resource for macrophage biologists, as 

well as an important contribution to the debate on pathway notation and depiction. 

 

 

 
 

http://www.mepn-pathway.org/


                                                                                                                             Chapter 2 

47 

Results 
 

Phase 1: Evolution of pathway construction methodology 
 

When embarking on the task of pathway construction for the first time it was 

necessary to define a standard procedure for doing so. In fact the most time 

consuming aspect of the process was establishing the methodology of how to 

construct the pathway. Some of the crucial choices to be made were; deciding on the 

‘best’ software for the task; how to arrange pathway components; how to improve the 

aesthetics of the pathway to make it more readable; and how to adapt the notation 

where needed to better reflect the biology of the interactions; how to record the 

interaction data of the pathways. The phases of the early pathway construction efforts 

are summarized in the workflow chart (Figure 2.1) 
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Figure 2.1: A workflow diagram summarizing the early stage approach taken to assemble pathway 

diagrams. This process aids the establishment of rules for constructing further pathways. 
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Some time was spent in exploring software options for constructing pathways. Initially 

pathways were constructed using a relatively new academic software; Edinburgh 

Pathway Editor (EPE) (http://epe.sourceforge.net/SourceForge/EPE.html). However at 

the time of use the EPE was still in its early phase of development and lacked a user 

friendly GUI (graphical user interface), required extensive use and testing to resolve 

software ‘bugs’ and had significant stability issues. There were also limitations on the 

spectrum of graphics available and the editing capability (such as changing size and 

colours). Essentially it would take some time before this software is capable of 

supporting the scale (and quality) of pathways we were hoping to construct. An early 

draft of an apoptosis pathway generated in EPE (Figure 2.2a), exemplifies the issues 

with visualising diagrams constructed in this editor and using the early draft of the 

EPN. Efforts were made to improve the ‘readability’ of the pathway (Figure 2.2b) for 

example by increasing text to the maximal size permitted by the software, 

standardising component sizes, and adding colour to reflect the type of component. 

However even this version appeared cluttered and complicated and the software still 

limited the graphical rendering of biological concepts. One such example being, sub-

cellular compartments could only be shown as blocks extending the width of the 

pathway. For this reason compartments such as the mitochondrion would be placed 

between the cytoplasm and nucleus. Therefore when components were shuttling 

between the cytoplasm and nucleus, edges defining this movement would also extend 

through the mitochondrion and in this way the translocation events of pathway 

components could easily be open to misinterpretation. 

 

 

http://epe.sourceforge.net/SourceForge/EPE.html


                                                                                                                             Chapter 2 

50 

 
Figure 2.2: (a) Draft apoptosis pathway in Edinburgh Pathway Editor (EPE). Initial draft of the apoptosis 

pathway constructed using the original Edinburgh Pathway Notation (EPN) scheme and Edinburgh 

Pathway Editor software. The pathway runs from top (extracellular) to bottom (nuclear) with other sub-

cellular compartments shown as the background layers. Text, symbols, and arrowheads were difficult to 

visualise in this version. 
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Figure 2.2: (b) An edited version of the draft apoptosis pathway in 2.2a. Text has been increased to 

maximal permitted size by the EPE software, as are notation symbols. Component sizes have been 

standardised and the use of colour is explored as a visual cue to assist with differentiation of 

components and interaction edges. Here proteins are coloured blue and protein complexes yellow. 

Additional textual annotation is added to add clarity as to where the end-point and process of apoptosis 

is executed. 
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Other network and pathway editing software including Cytoscape 

(www.cytoscape.org/) and Cell Designer (www.celldesigner.org/) were considered for 

the task but also suffered from a number of the following; limited graphics or 

restrictive support for notation schemes, limitations on the size of networks the 

programmes could support, unintuitive or complicated GUI’s and finally at the time of 

starting the pathway construction (2007) these software did not support automated 

layout of networks and edge routing (a very useful functionality, especially for large 

networks). Microsoft PowerPoint was also explored although for improving visual 

aesthetics of the pathway and was not appropriate as a pathway editing tool. Figure 

2.3 displays the apoptosis pathway illustrated using PowerPoint. This version 

demonstrated the pathways may benefit from running left to right rather than top to 

bottom and the display of compartments within compartments. 

 

 

 

 

 

 

 

 

http://www.cytoscape.org/
http://www.celldesigner.org/
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Figure 2.3: The apoptosis pathway assembled in Microsoft PowerPoint. The pathway runs from left 

(extracellular) to right (nucleus) with some compartments displayed as entities within other 

compartments, e.g.  The mitochondrion and endoplasmic reticulum are placed within the cytoplasm. 

This arrangement allows for pathways to be more compact. Components can be aligned and arranged 

more precisely in this software than EPE. Although the visual aesthetics of the pathway have arguably 

improved in this version, PowerPoint is not a suitable pathway editing tool. 
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Eventually yEd (www.yworks.com), a Java2D generic graph editor was chosen for 

generating the pathway diagrams. The software was suited to the task for several 

reasons; it is available as a free download with no restrictions on its use, it is stable and 

‘bug’ tested prior to release of new versions, has an intuitive interface with exceptional 

navigation, visualisation, multiple import/export possibilities and supports large 

graphs. Additional features which made yEd particularly appealing as a pathway editor 

included its integrated data storage, various network presentation possibilities and 

numerous automated layout algorithms to assist with the arrangement of a networks 

nodes and edges. An extract of the apoptosis pathway generated using yEd (Figure 2.4) 

exemplifies the progress made in creating readable pathways (cf., initial pathways 

Figure 2.2a and b) since the start of the task.    

 

 
 

http://www.yworks.com/
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Figure 2.4:  Apoptosis signalling pathway constructed using the yEd graph editor. The pathway is 
arranged to flow from left to right. Components are coloured according to type (protein, complex or 
gene) and arranged within the sub-cellular compartments in which they are active. yEd grap editor 
serves as a pathway editing tool and has exceptional graphics for producing clear diagrams. This 
pathway can be initiated by both intrinsic and extrinsic signals.  
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Apart from helping to establish the best choice of software the process of re-

constructing the apoptosis pathway several times helped to uncover other obstacles 

with pathway construction that required addressing.  Crucially the evolving pathways 

demonstrated how basic changes to the aesthetics of the pathway could drastically 

improve its readability. The process of data collection for the apoptosis pathway raised 

a number of questions as to where to obtain ‘reliable’ sources of information of 

collecting interactions of the pathway. Extensive group discussions explored which 

repositories would be an acceptable source for pathway interaction. With a plethora of 

interaction data now available, ranging from established published interactions, 

predicted interactions based on functional associations, hits from yeast-2-hybrid 

screens, it was key to define how ‘inclusive’ the pathways should be.  Eventually it was 

agreed that only peer-reviewed published evidence, that explicitly cites an interaction 

would be used for the pathways. Although the pathways are designed to be a 

consensus of knowledge, if all sources of interaction data are included, integrity of the 

pathways is compromised and there would be the danger of creating an interaction 

network, rather than a pathways with a clear beginning and output.     

 

Another issue arising whilst collecting interaction data, was that a given protein may 

have several alias names, for example NFKB1 is also referred to as p50 in the literature. 

In terms of presenting pathway components it was therefore deemed essential to 

identify whether a protein/gene has already been captured under another alias name. 

It soon became obvious to us that a standard nomenclature scheme should be 

adopted to label pathway components. HGNC were chosen for this, given the potential 

application of the pathway for overlaying results of transcriptomics data.  

 

To summarize the main principles established during the task of constructing an 

apoptosis pathway were;  

 

(1) Pathways can be constructed to an acceptable standard using the freely 

available graphing tool yEd graph editor. 
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(2) To improve aesthetics of the pathway and in turn its readability; sizes of 

pathway components and text should be standardised.  

(3) Used carefully, the addition of colour can enhance the ‘readability’ of the 

pathways 

(4) Component layout should be performed manually or with the assistance of 

layout algorithms, however components can only be placed in their site of 

cellular activity, represented as predetermined areas (compartments) on the 

canvas. 

(5) A conventional naming scheme should be adopted for labelling pathway 

components to avoid ambiguity of what is being represented; in this case HGNC 

was chosen. 

(6) No interaction may be included within the pathway without published 

evidence. More than one paper may be used to support the same interaction 

(two or more is preferable).  

(7) Evidence of an interaction between one component and another should be 

stored in an interaction table. Evidence to support an interaction should be 

derived from the primary literature (and reviews). This must include the 

interacting partners, the direction of the interaction is inferred by order HGNC1 

-> HGNC2, the type of interaction (phosphorylation, cleavage), method, 

PubMed ID, site of specific change of state [P-Ser123].  

 

These principles now form the basis for assembling the pathway diagrams within the 

group and are described in more detail in the methods section of this Chapter. The 

process of ‘road-testing’ apoptosis pathway construction was crucial in defining some 

standard methodology for the task. However not all issues with pathway construction 

were identified at this stage. In practise some issues would only come to surface with 

greater experience of building pathways; for example when trying to model new 

biological concepts or when creating larger pathway diagrams or when combining 

diagrams of multiple but associated pathways. The next stage of the pathway mapping 

efforts was to model other pathways of interest in macrophage biology and combine 

them into one diagram by identifying links between these pathways. 
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Phase 2. Construction of a framework diagram of macrophage 

activation pathways 
 

The TLR (Toll Like Receptor), type-I and type-II IFN (interferon) signalling, NF-κB and 

apoptosis pathways are of central importance in defining the macrophages response 

to pathogens and do so in a highly inter-dependant manner [160]. In an effort to 

describe and consolidate knowledge of these signalling events, I set out to construct a 

pathway diagram based on published literature and using the EPN. Given the extensive 

cross talk between these pathways, they were combined into one integrated diagram. 

This initial framework map of macrophage activation [102] (Figure 2.5) a total of 295 

nodes of which 140 are proteins, 99 complexes, 44 genes, and 12 other components 

(pathogens, DNA, RNA etc).  A total of 272 interactions are described in the pathway 

map, of these 85 are binding events, 149 are various activation state modulations (67 

activation of gene expression, 26 phosphorylation, 7 auto-phosphorylation, 1 

dephosphoylation, 23 cleavage, 9 translocations and 16 activation by processes not 

defined). There are 10 inhibition reactions, 4 of these are inhibition of gene expression, 

3 are inhibition of cleavage, and 1 is an inhibition of translocation.  A total of 26 

translocation events occur as well as 2 protein dissociations.  282 different references 

support the interactions shown on the pathway. In many circumstances the same 

paper may describe multiple interactions, for example Chaudhary et al., (1997) report 

that both TNFRSF10A and TNFRSF10B recruit the protein FADD during apoptosis 

signalling [161]. 
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Figure 2.5: Framework integrated pathway map of signalling in the macrophage. The diagram includes 
the interferon signalling, NF-κB, apoptosis and toll-like receptor pathways, all represented as one 
integrated pathway due to their overlapping interactions. In general interactions of the interferon 
response pathway are in the top quarter of the map, with NF-κB directly below. Apoptosis is presented 
halfway down the map and toll-like receptor signalling is in the bottom quarter. 154 different protein or 
gene nodes are included in the pathway, along with 80 different complexes and 12 other molecular 
species (such as pathogens, DNA, RNA). The pathway diagram represents 272 different interactions. 
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The four signalling pathways were combined into one diagram since there is extensive 

crosstalk between them. Therefore, in order to check the integrity of the network each 

input (e.g. cytokine or pathogen molecule), was highlighted in turn and the logical flow 

of information from this input followed through the diagram.  By following the flow of 

information from each pathway input, a different but expected output was observed, 

be that the activation of transcription or a process such as apoptosis (Figure 2.6).  This 

suggests that although several signalling pathways have been integrated to form this 

diagram the specificity of connectivity has not been lost.   
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Figure 2.6: Follow through of signalling pathways stimulated by IFNG (a) and FASLG (b). The signalling 

events following the input signals of IFNG and FASLG have been highlighted on the entire map in lilac 

and orange, respectively. The nodes activated or directly affected by FASLG or IFN-gamma binding to 

their receptors are coloured and the interaction edges and gates are also highlighted. Nodes and edges 

not directly downstream of the FASLG or IFNG signalling are shown in grey. This figure demonstrates 

inputs into the pathway can clearly be followed to the expected outcome events. In the case of IFNG-

input, gene transcription is the resulting event, and in the case of FASLG, apoptosis. Furthermore these 

examples clearly depict the interactions of the pathway can be followed logically and do not result in 

unexpected crosstalk. 
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Use of the Framework Pathway Diagram in the Interpretation of 

Transcriptomics Data  

 

In order to explore the utility of this framework pathway diagram in the interpretation 

of transcriptomics data, the transcriptional events following the treatment of mouse 

bone marrow derived macrophages (BMDMs) with interferon-gamma (IFN-γ) were 

examined (This data set is discussed in more detail in Chapter-4).  Using the network 

analysis tool BioLayout Express3D [162] a 3-D network of transcripts identified as being 

differentially expressed following IFN-γ stimulation was constructed. 1,491 transcripts 

were represented within the network.  Of the 154 unique proteins/genes represented 

on the pathway map, 58 of were represented within the transcriptional network.  All of 

the genes represented on the map were up-regulated in the data set.  None of the 

transcripts down-regulated in response to IFN-γ were present on the map. Clusters of 

transcripts representing genes activated at different times following treatment were 

then further collated into 3 groups of up-regulated genes; genes activated at (1) 1-2 

hours, (2) 2-4 hours and (3) 4-8 hours post-treatment.   Genes that were activated and 

included in the set of mapped genes were then highlighted on the map and the 

possible downstream consequences (assuming de novo protein synthesis and activity 

following an increase in gene transcription) were highlighted (Figure 2.7).  In this way it 

has been possible for the first time to interpret these transcriptional events in the 

context of the possible consequences of these observations. 

 

Using this data overlay approach onto the pathway it was possible to extrapolate some 

interesting observations by visualizing the changes and the possible downstream effect 

of the changes. It was also possible to appreciate the connectivity and co-dependency 

of the changes over time. Although the framework pathway at this stage did show 

much promise of being a useful resource for data interpretation the group was acutely 

aware that in its current form the diagram covered only a limited snapshot of activity 

in the macrophage. For instance only a relatively small number of the genes shown to 

be transcriptionally regulated following IFN-γ treatment were present on the diagram. 

Furthermore none of the genes shown to be down-regulated by IFN-γ are shown in the 

diagram.  
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Figure 2.7:  The integrated framework pathway diagram presented at (a) 1–2 hours, (b) 2–4 hours and 

(c) 4–8 hours post-IFN-γ treatment. Differentially expressed genes are highlighted in red and the 

possible consequential downstream events resulting from the changes, (assuming de novo protein 

synthesis) are highlighted in blue. 
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The exercise of constructing the framework pathway was essential in order to define a 

process for doing so and to explore how best to graphically depict complex biological 

systems. During Phase 2 of this exercise the resulting pathway proved to be a valuable 

resource to the group and for others with an interest in macrophage signalling events 

[146, 163].  It was possible to demonstrate that despite the integration of several 

pathways the diagram still maintained integrity as to the biology being portrayed 

(Figure 2.6).   Furthermore, the pathway showed potential for being useful in the 

interpretation of transcriptomics data. However, it was apparent that the pathway 

provides just a snapshot of the processes active in the macrophage, as was evident 

from the IFN-γ-transcriptional response analysis, where only 58 of the 1,491 regulated 

transcript were represented on the map. As we explored more transcriptomics analysis 

performed on these cells it was apparent that a whole range of pathways regulated by 

different macrophage stimuli were absent from the diagram. It was also observed that 

the TLR representation was more simplistic than current knowledge, for example links 

with MAPKinase signalling were absent. Also pathways key to macrophage function, 

such as antigen presentation were not presented. 

 

In order to obtain a more comprehensive resource on macrophage signalling and to 

assist with the interpretation of genomics data derived from this cell, additional 

pathways of interest were assigned to a cohort of MSc students registered for an MSc 

in Genomics and Pathway Biology at the Division of Pathway Medicine, who were 

presented with the task of assembling the interaction networks of the following;  

detailed views of the TLR pathways, other pathogen recognition systems (RIG’s, NOD’s 

NALPS’s) , extensive view of NF-kappa-B signalling,  MAP-kinase cascades, MHC antigen 

presentation and proteasome assembly. A workflow for constructing pathways was 

established from the lessons learnt from constructing the original framework diagram 

as summarized in the schematic Figure 2.8. The pathways were then combined along 

with the framework diagram into one integrated network. I supervised the 

reconstruction of the TLR system and related pathways, oversaw the integration of the 

separate pathways into one network diagram, and participated in regular discussions 
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with other pathway constructers to assess the progress of the pathways and addressed 

any issues that pertained to the graphical portrayal of specific biological concepts. 
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Figure 2.8: Pathway construction workflow. A workflow diagram summarizing the main stages of 

pathway assembly from concept to final diagram. Blue boxes portray the pathway construction phase. 

Each phase embodies a number of tasks (shown as lilac boxes or yellow-ellipses for data storage and 

processing), which when completed lead to progression towards the next stage of pathway construction 

(connected by green arrows). Red arrows indicate feedback to a previous construction phase. Lilac 

boxes describe the construction steps required pre-pathway assembly, whereas green boxes are linked 

to post-construction phases and describe the possible applications of the constructed and validated 

pathway diagram. 
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Phase 3. A large scale integrated map of macrophage pathogen 
recognition and effector systems 
 

The work described in this section followed in the footsteps of earlier efforts to 

construct process notation diagrams of macrophage pathways [99-100, 159]. In the 

course of phase 3, solutions were sought to issues associated with the depiction of a 

variety of different biological systems, combining diagrams from multiple curators and 

the layout and integration of a large network model of these systems. Teams of 1-2 

junior biologists (MSc students) were given a remit to describe a given pathway system 

using the mEPN scheme [116]. The signalling systems were chosen based on their 

significance to macrophage biology and/or the group’s interest in interpreting the 

results of tanscriptomics studies.  Macrophages are professional antigen presenting 

cells, however these pathways were missing entirely from the framework diagram. 

Therefore antigen processing and presentation was assigned as one remit. Closely 

linked to this pathway was unbiquitination and proteasome assembly, which also 

appeared to be regulated transcriptionally in response to a number of macrophage 

stimuli, however very few detailed pathways of these systems existed in the public 

domain. The framework diagram also lacked coverage of non-TLR-pathogen 

recognition systems, and the existing TLR system required further expansion, including 

links with other pathways such as MAPkinase signalling. The group also had a desire to 

contextualise gene expression results showing many members of the NF-κB family to 

be regulated, however the framework diagram only incorporated the most well 

characterised NF-κB members and pathways. Therefore an expansion of the NF-κB 

systems was undertaken and the results of this labour highlighted how simplistic the 

original views of this signalling system were. Once all individual pathways had been 

assembled by individual teams of curators, they underwent extensive editing in 

attempt to unify their notation usage, stylistic qualities and overall appearance. The 

original pathway diagram [102] was then used as a framework on to which the new 

pathways were connected. The final product of this labour provides what is to date the 

most comprehensive model of macrophage signalling in the public domain and one of 

the largest examples of a pathway constructed using a formalised graphical notation 

scheme. 
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Integrated Pathway Diagram 

 

The pathway diagram presented here (Figure 2.9, also available at 

http://www.macrophages.com/macrophage-pathway-resources) is a consensus view 

of a number of pathway modules assembled based on the interpretation of the 

literature describing these systems. A given interaction between components of the 

pathway may be supported by evidence derived from one or more publications and a 

publication may provide evidence supporting more than one interaction. A total of 

1,000 different interactions have been recorded, supported by 728 different original 

papers and reviews (the full list of interactions and supporting publications at 

http://www.macrophages.com/macrophage-pathway-resources). The network 

diagram is comprised of 2,170 nodes connected by 2,553 edges. The diameter of this 

network (maximum distance from one node to another) is 58 and there is an average 

node connectivity (number of inputs/outputs) of 2.37 (max 37). A detailed breakdown 

of the class (type) of the nodes that make up the diagram is shown in Figure 2.10. 

Briefly, 496 unique proteins are represented in the diagram many of which are shown 

to go on to be modified into different forms or bind together resulting in 412 different 

complexes. 81 genes are shown to be transcriptionally regulated by these pathways 

based on known associations between transcription factors and target genes. The 

interactions between these components are represented by 552 process nodes, 120 

Boolean logic operators and 158 edge annotations. The pathway is drawn using the 

mEPN scheme, a full description of which can be found in Chapter-3 and on 

www.mepn-pathway.org  and in Freeman et al., 2010 [116]. The macrophage-related 

pathways are also available through www.macrophages.com. 

 

http://www.macrophages.com/macrophage-pathway-resources
http://www.macrophages.com/macrophage-pathway-resources
http://www.mepn-pathway.org/
http://www.macrophages.com/
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Figure 2.9: Integrated pathway diagram of innate immune and macrophage activation pathways.  

The modified Edinburgh Pathway Notation (mEPN) scheme is used to describe the interactions of 

signalling pathways active in the macrophage. A total of 2,170 components in this network are 

connected by 2,553 edges. Components include 496 unique proteins, the complexes formed between 

them (412), 181 genes/ DNA/ promotor regions, in addition to other molecular species (e.g. pathogens, 

drugs, RNA) and the nodes representing the processes in which the components are involved. 

Components are arranged to reflect the location in which they are active and background colour is used 

to distinguish between different sub-cellular locations. 
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Description of the Biological Content of the Integrated Pathway Diagram 

 

The pathway diagram presented (Figure 2.9 and 

http://www.macrophages.com/macrophage-pathway-resources) incorporates detailed 

views of some of the best characterized pathways associated with macrophage-specific 

biology, as well as some that are generic but in some way linked to the activity of these 

cells. Figure 2.10b shows the approximate location of the different pathway modules 

within the diagram. The size of the diagram requires it to be ideally viewed on a 

computer. Every effort was made to arrange modules so those with shared nodes and 

high connectivity are located in close proximity, however given the issues in depicting 

information on this scale, arriving at an ‘ideal’ arrangement of components is 

challenging. The interactions between components and limited views of the pathways 

they form have been described in detail in the literature used to construct this diagram 

(the interaction table, is available at http://www.macrophages.com/macrophage-

pathway-resources). An overview of the pathway biology depicted by the diagram 

follows. 

 

http://www.macrophages.com/macrophage-pathway-resources
http://www.macrophages.com/macrophage-pathway-resources
http://www.macrophages.com/macrophage-pathway-resources
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Figure 2.10 (a) Breakdown of node class in the integrated pathway diagram and (b) Key to the 

pathway layout and content of the integrated diagram. (a) Components, Boolean Logic, Process Nodes 

and Edge Annotation form the category of possible nodes. A detailed breakdown of the number of each 

type of node in each category is given. (b) The key reflects the approximate location of the different 

pathway modules depicted in the integrated diagram (Figure 2.9). Ideally pathways with high 

connectivity and sharing identical components are spatially located in close proximity. 
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Macrophage Pathogen Receptor Systems 

Macrophages are equipped with a complex array of pattern recognition receptors 

(PRRs) that bind a varied assortment of pathogen-associated ligands. Perhaps the best 

studied of these are the membrane-associated toll-like receptors present on the cell’s 

surface (TLRs 1/2/4/5/6/10) and lining their endosomal compartments (TLRs 3/7/8/9) 

[164-165]. The receptors commonly form complexes comprised of 6-8 protein subunits 

which undergo a series of phosphorylation, dissociation and binding events following 

engagement of the receptor with their respective ligand class. As with all such 

receptor-ligand interactions shown in the diagram, each successive stage in the 

formation and activation of the receptor complex is explicitly shown (Figure 2.11 a&b). 

TLR’s are comprised of two functionally significant domains; one for recognizing 

specific pathogen associated molecular patterns (PAMPs) and one for recruiting 

signalling adaptor proteins following binding of an appropriate pathogen-derived 

ligand. The pathogen recognition domains of different TLR’s are structurally highly 

variable [166], thereby allowing the recognition of diverse pathogen-derived molecular 

species ranging from viral double- and single-stranded RNA [167-168] bacterial flagellin 

[169-170], lipopeptides [171-172], lipopolysaccharides [173-174], and bacterial and 

viral CpG motifs [175-176]. In contrast, the internal domains tend to be more 

conserved, reflecting the ability of different TLR’s to recruit the same adaptor proteins; 

in particular MYD88, IRAK4, IRAK1, TOLLIP, TIFA, and TRAF6 are common to most of 

the TLR receptor complexes. The use of common adaptor proteins by many of the TLR 

complexes represented a significant challenge in depiction, with many edges 

emanating out of each adaptor molecule. Much effort was therefore put into layout of 

this system so as to provide visual clarity. A comprehensive and systematic effort to 

depict TLR signalling has been reported elsewhere [100] however this was not used in 

the construction of the current view of TLR signalling. These receptors ultimately 

activate a number of downstream signalling pathways including the NF- B, IRF 

(interferon regulatory factor) [177] and MAPKinase, ERK, and JNK signalling [178]. 

Also represented here are 9 non-TLR cytoplasmic PRRs, including the NOD (nucleotide-

binding oligomerization domain)-Like Receptors and RNA helicases, whose role it is to 
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detect endogenous stress signals and intracellular pathogens. NOD-like receptors 

(NLRs) can be broadly divided into various classes, the NODS, NALPS and other types of 

NLRs, based on their protein domain structures. Bacterial associated PAMPs (e.g. 

flagellin and various classes of peptidoglycans) are recognised by NOD1, NOD2 and 

NLRC4 (IPAF1) which activate the NF- B and MAPKinase pathways. NOD1 can also lead 

to the cleavage of IL1B into its active form. The NALPS (NLRP1, NLRP2, and NLRP3) 

detect a range of stress signals such as K+ efflux, DNA, ATP or membrane damage, 

often collectively referred to as danger-associated molecular patterns (DAMPs). Once 

activated by DAMPs the receptors form oligomers with inflammatory caspases 

(CASP1/5) and in doing so activate the cleavage of the caspases [179]. The active 

complexes are known as ‘inflammasomes’ owing to their ability to cleave and activate 

interleukin proteins, and are crucial mediators of the inflammatory response. Although 

three NALP receptors have been depicted up to 14 different NALPS have been 

reported [180-181]. Finally, RNA helicases are responsible for the intracellular 

recognition of viral single stranded and double stranded RNA. The diagram shows 

DDX58 (RIG-1) and IFIH1 (MDA5) which recruit factors via their CARD domains and 

eventually initiate anti-viral gene expression by activation of the NF- B system. The 

ZBP1 protein was recently characterized as a sensor of viral DNA [182] and activates 

the IRF3 transcriptional pathway. As such the PRR systems depicted represent a 

comprehensive view of these receptors and the signalling pathways they activate. 

However the diagram still lacks other known macrophage PRRs, including the surface 

mannose receptor, secreted receptors e.g. those belonging to the complement system 

and the recently described DNA receptor AIM2 [183-186].  

Cytokine Activation Pathways 

The diagram also describes a number of the main cytokine signalling systems active in 

macrophages. These include the interferon (type-I - IFNA/IFNB and type-II IFNG), 

interleukin 1B (IL1B), TNF, TNFSF10 (TRAIL), TNFSF13B, FASLG and CD40LG signalling 

pathways. In each case these have been depicted starting from their interaction with 

their receptor complexes (Figure 2.11a) through to the activation of their downstream 

signalling and effector pathways. Interestingly, the expression of a number of these 



                                                                                                                             Chapter 2 

74 

ligands is activated by PRR pathways (e.g. IL1B, IFNB) producing autocrine feed-

forward loops. IFNB is perhaps one of the best studied genes in the whole genome in 

terms of its transcriptional regulation [165, 187-189]. It is also one of the primary 

targets for a number of the macrophage PRR activation pathways described above and 

we therefore constructed a detailed model of its regulation (Figure 2.11h). Part of the 

reason behind this was also to grapple with the issues with depicting transcriptional 

networks and we believe the solution arrived at should work for other systems. In the 

current diagram however, we have generally chosen not to depict the links between 

cytokine gene activation (or indeed between other genes) and their respective 

proteins (via translation). The depiction of these edges adds to the visual complexity to 

the diagram. For modelling purposes however these connections can be added. 

 

Apoptosis (Programmed cell death) 

A potential output of the innate immune response is to culminate in host cell suicide 

(apoptosis) thereby potentially limiting further reproduction of pathogenic organisms 

such as viruses. Two major routes of apoptosis execution have been identified, termed 

the intrinsic and extrinsic pathways. The intrinsic pathway is activated as a result of 

stress signals detected within the cell, for example, penetration of a viral pathogen 

into the cell or UV light induced DNA damage. Extrinsic apoptosis on the other hand is 

triggered by extracellular death-signalling ligands (FAS, TNFSF10 (TRAIL), TNF which are 

also members of the cytokine activation pathways) binding to the cell membrane 

receptors. Both intrinsic and extrinsic pathways activate a number of the caspase 

family of cysteine proteases. The initial caspases to be activated are categorized as 

initiators, (CASP2/4/6/8/9/10) and are capable of cleaving downstream executioner 

caspases, specifically CASP3 and CASP7. Caspases 3 and 7 initiate the series of events 

that directly lead to the morphological changes in a cell associated with apoptosis by 

the cleavage or inactivation of an array of molecules including, structural proteins, 

DNA repair proteins, and anti-apoptotic proteins. 
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Signal Transduction and Transcription Factor Networks   

The NF- B (nuclear factor kappa-light-chain-enhancer of activated B cells) family of 

transcription factors are pivotal in the regulation of a wide variety of biological 

processes [190-193]. This includes many aspects of the innate and adaptive immune 

response, as well as the regulation of a diverse range of stress-related stimuli [194]. 5 

different NF- B proteins (REL (c-Rel), RELB (REL), RELA (p65), NFKB2 (p100 or p52), 

NFKB1 (p105 or p50) have been identified and these form a variety of homo- or 

hetero-dimers resulting in an array of different NF- B complexes. Previously [102] the 

framework diagram described the activation of two of the best-characterized NF- B 

dimers; NFKB1:RELA (also known as p50-p65) and NFKB2 (p52):RELB, often referred to 

as the canonical and non-canonical pathways, respectively. However, it was soon 

realized that this diagram was a rather naïve view of the NF- B system and the 

students were assigned to explore the literature on this system in greater detail. These 

efforts have resulted in the depiction of 14 different NF- B dimers formed from 

combinations of the five NF- B proteins. In addition to the 14 dimers, some NF- B 

complexes form further complexes with a number of accessory proteins 

(NFKBIA/B/E/Z, BCL3, HMGA1, CREBBP, HDAC3, NCOR2) and together with their 

regulation by multiple phosphorylation events, give great diversity in the form and 

control of this important class of transcription factors. This goes someway to 

explaining the pleiotropic effects regulated by this system [195]. It is unlikely however 

that all the possible NF- B systems depicted are active in the macrophage or indeed 

any other single cell type. NF- B signalling is often cited in loose terms in literature 

with little reference to the exact NF- B complex active in any given situation. The 

pathway diagram presented here demonstrates the complexity of this system and 

underscores the need for acknowledging the range of possibilities beyond the 

canonical and non-canonical NF- B pathways.  

 

As mentioned above, phosphorylation is a key element in the activation process of 

many of the NF- B complexes. In the pathway, dimers of the core proteins may bind to 

NFKBIA, NFKBIB or NFKBIE, a group of I-kappa-B or NF- B inhibitor proteins. When 

bound to their inhibitor, the NF- B complexes are restricted to the cytoplasm. Upon 
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stimulation the I-kappa-B proteins are phosphorylated, leading to their ubiquitination 

and eventual degradation, and the release of the active NF- B complex. Dissociation of 

the inhibitors exposes the nuclear localization domain on the NF- B complex causing it 

to translocate to the nucleus where it can modulate transcriptional activity of target 

genes [196-197]. Other NF- B complexes (which are not bound to inhibitors) are 

activated following cleavage into smaller DNA-binding subunits. This is induced by 

stimuli phosphorylating the complex leading to its ubiquitination and subsequent 

processing of one or more of their subunits into smaller DNA binding peptides e.g. 

NFKB2 is processed from p100 to p52. Currently there are 34 genes shown on the 

diagram as the transcriptional targets of NF- B signalling (Figure 2.12g). In reality this 

is only a small percentage of the known NF- B targets [198]. Furthermore, the 

representation of the transcriptional regulation of these genes is almost certainly a 

gross over simplification, as there are likely to be other transcription factors acting in 

concert with NF- B to modulate gene expression.  

 

The pathway diagram presented here also includes preliminary views of some of the 

kinase signalling pathways known to be associated with macrophage activation. These 

include the MAP2K1/2 (MEK1/2)-MAPK3/1 (ERK1/2) cascade known to be activated by 

TLR signalling and the MAPK8 (JNK)-JUN (AP1) and MAPK14 (p38) (Figure 2.12e) 

cascades activated by NOD1/2 and TLR signalling. These pathways are clearly 

important to macrophage activation and are known to influence a range of different 

processes such as cell differentiation, cell cycle, phagocytosis and apoptosis. Future 

efforts will need to integrate these pathways into the overall signalling network to 

improve the predictive value of the pathway diagrams.   

 

Antigen Presentation and Related Pathways 

Antigen presentation is not exclusive to macrophage biology but equally central to it. 

We have attempted to depict the MHC class I and II pathways from either the 

degradation of cellular proteins or the phagocytosis of pathogens, to the presentation 

of cellular/pathogen peptide antigens to CD8 cytotoxic T-cells or CD4 T-helper cells, 

respectively. In order to achieve this however, it was found necessary to construct 
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diagrams of the ubiquitination pathway (due to it role in tagging cellular and pathogen 

proteins with ubiquitin) and proteasome formation (due to the role of the proteasome 

in the digestion and/or processing of ubiquitinated proteins). These latter two systems 

are also crucial to many aspects of cell biology, being responsible for the activation 

and/or degradation of many cellular and pathogen proteins alike. Depiction of these 

systems proved to be challenging. In the first instance, whilst our view of phagocytosis 

is greatly simplified, we had to find ways to show the passage of key molecules in the 

antigen presentation pathways from their assembly in the endoplasmic reticulum 

(Figure 2.12f) to their transport to the phagosome via the golgi and intermediate 

endosomal compartments. This required us to show events both at the molecular 

level, as well as the transition of compartments in which they reside from one state to 

another. In this case nodes representing pathway modules have been used to link one 

compartment to another indicating a series of vesicular transitions and fusions; 

complex processes in their own right. Another challenge was the depiction of the 

ubiquitination pathway. In short, proteins are tagged for degradation or cleavage 

through their binding to E3 ligases. Each E3 ligase or E3 ligase complex binds specific 

protein targets. We have shown a number of classes of these molecules i.e. the 

HERC/HECT, ring finger, U-box and SCF E3 ligases, encompassing over 80 proteins in 

total (Figure 2.11c). However many more proteins are thought to be associated with 

this role, perhaps as many as 500 [199-200]. To add to this complexity there are 36 

known E2 ligases and 6 E1 ligases which add further specificity to this system. Clearly it 

would be impossible to show each individual protein and their associated E3 ligase 

passing through the ubiquitin pathway (even if the details were known) and therefore 

it has been depicted as a generic process; proteins bind E3 ligases, which provide a 

scaffold for ubiquitin transfer from E2 ligases, resulting in the ubiquitinated-protein 

being presented subsequently to the proteasome for processing. When a protein in 

the pathway is ubiquitinated it is shown using a process node with the symbol Ub, 

which is essentially a short cut to showing this process. In the original framework 

pathway [102] the proteasome was depicted as a single node responsible for the 

cleavage and activation of ubiquitinated NF- B complexes. However looking further 

into the nature of the proteasome, it was then appreciated that there is not just a 
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single proteasome but at least 5 specific proteasome complexes; the 26S, 11S capped 

and 19S+11S capped hybrid constitutive proteasomes, and 11S and 19S+11S capped 

hybrid immunoproteasomes [201-202]. In an effort to show something of the structure 

of these large barrel-like complexes, we chose to depict the layered arrangement of 

core subunits into four stacked rings (7 subunits per ring/layer), where appropriate 

capped with other subunits that form the regulatory particles (Figure 2.11d). By linking 

the proteasomes with the generic model of the ubiquitination pathway we have also 

attempted to show each proteasome’s preference for the cleavage of a specific class of 

peptides. However in doing this, it is not possible to show whether the given output of 

a proteins ubiquitination and cleavage is an activated peptide, a peptide for antigen 

presentation or the complete destruction of the protein. Where a protein in a pathway 

is degraded the sink glyph (Ø) has been used as a short cut to indicate that the protein 

has been removed from the system by proteasomal degradation. 
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Figure 2.11 Snapshots from the integrated macrophage pathway diagram. (a) Activation of the 

interferon type-1 receptor through its interaction with interferon-α (IFNA) or interferon-β (IFNB1).   In 

each case binding of the ligand causes autophosphorylation of JAK1 which eventually leads to the type1-

interferon response (not shown). (b) Activation of TLR7 by single stranded RNA in the endosome.  This 

sequential multistep process involves binding events, autophosphorylations and dissociations steps. (c) 

E3 ligase system.  Up to 500 proteins may potentially function as E3 ligases and here the well 

documented members are shown. (d) Depiction of the proteasome.  In some cases it is useful to lay out 

the subunits of a complex to reflect the complexes known structure. Represented here are the layers of 

the proteasome’s barrel structure and cap. (e) Activation of MAPK14 (p38).   Phosphorylation of p38 is 

reversible; numerous kinases will phosphorylate p38.  p38 is dephosphorylated by DUSP1 and inhibited 

by the specific inhibitor SB203580.  (f) Combinatorial assembly of the MHC class 2 HLA-D (alpha/beta) 

complexes.  The & and OR Boolean operators indicate the combinatorial assembly of HLA-D (alpha/beta) 

complex from different classes of MHC class 2 proteins. (g) Genes activated by NFKB1 (p50):RELA (p65) 

complex. A number of genes activated by the binding of the p50:p65 complex to known NFKB elements 

in their promoter.  In each case the likely functional consequence of this activation is shown as a 

pathway output. (h) Regulation of IFNB1 expression.  Shown are the known promoter elements and 

factors that bind to them leading to IFNB1 expression. 
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Compatibility of mEPN Pathways with Other Pathway Analysis Tools  

The pathway model presented here is primarily designed to function as a computation 

resource.  Its size as well as the fact that additional information is available through 

mouse-over or hyper-linked from it, means that it is best viewed on a computer. The 

diagram has been constructed using the freely available program yEd graph editor 

(yFiles software, Tubingen, Germany), a general purpose tool designed for the 

depiction of network-based diagrams. The standard file format used with this program 

is .graphml which is also supported by other network/pathway editing tools [203-206]. 

In this format pathways are available for editing and expansion or alternatively using 

the yEd editor, can be exported from the program in a number of image (.jpeg, .png, 

.pdf) and exchange formats (.tgf, .gml, .ygf, .xml, .html). The pathway is also available 

as .pdf and .html formats (see http://www.macrophages.com/macrophage-pathway-

resources or http://www.biomedcentral.com/1752-0509/4/63). In order to enhance 

options for the display, analysis and integration of these pathways with other data 

types the group has recently implemented the import of .graphml files into Biolayout 

Express3D, a network analysis tool [206]. This program supports a range of other 

network analysis features and is suited for working with small or large networks 

derived from other data sources. A ‘layout’ file can be generated such that the diagram 

can be viewed in this tool as either a conventional 2D or 3D network diagram, in both 

cases using the node co-ordinates from the .graphml file (although polylines are not 

supported). Alternatively the diagram can be viewed in 3D using a modified 

Fructerman-Rheingold organic layout algorithm [207]. A notation system consisting of 

3-D shapes is applied in the 3-D view of the pathway [116] (also see Chapter-3 and 

www.mepn-pathway.org). With the ever increasing amounts of interaction data it 

becomes more evident that an extra dimension will be valuable for the visualisation of 

large pathways and eventually an in silico cell.  The BioLayout Express3D interface also 

supports the follow through of connectivity in pathways such that the parent or 

children nodes of a given selection can be highlighted and selected nodes hidden or 

isolated.  

 

http://graphml.graphdrawing.org/
http://www.macrophages.com/macrophage-pathway-resources
http://www.macrophages.com/macrophage-pathway-resources
http://www.biomedcentral.com/1752-0509/4/63
http://www.biolayout.org/
http://www.biolayout.org/
http://www.mepn-pathway.org/


                                                                                                                             Chapter 2 

81 

Pathway diagrams are frequently used as an aid to the interpretation of experimental 

data e.g. gene expression analyses, proteomics screens whereby the results of these 

studies are be overlaid on top of pathways to provide context to the findings. To 

facilitate these analyses the group has recently implemented an “import class-sets” 

functionality into Biolayout Express3D, allowing lists of genes of interest and/or 

annotations to be easily exported directly from the tool and identified on the pathway 

(demonstrated in Raza et al., 2010 [159]).  

 

In the ways described above, the diagram presented here represents a detailed 

consensus view of a range of pathway systems that are of interest to and the subject 

of ongoing research into macrophage biology. It has been designed to be easily 

accessible, distributable and can be modified by end users to suit their interests or 

knowledge-base. Finally software has been developed to facilitate the use of the 

pathway as a resource for pathway modelling and interpretation of genomics data.  
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Discussion 

The studies of this Chapter set out to create a pathway resource describing the 

signalling events active in the macrophage. The pathways described here are of central 

importance to understanding macrophage biology and therefore innate immunity, and 

the diagrams provide a consensus view of these systems. This is not to say that the 

model is either viewed as complete or necessarily even correct, but only as a working 

model. Amongst the key signalling pathways yet to be incorporated into the 

macrophage model are the classical stress response, the hypoxia response, a number 

of PRRs, a range of cytokine and chemokine receptor activated pathways, and greater 

representation of transcriptional events and regulation.  The pathway has been 

designed with the idea that it will need to be modified and expanded based on new 

publications, experimental observations or deeper insight into specific systems. All of 

the pathways depicted are reasonably well characterized and as such there is a relative 

abundance of information on them from a wide variety of sources. What was lacking 

prior to this work was a way of collating our understanding of these pathways and 

integrating this view with the abundance of data generated on these cells by ourselves 

and others. A key objective has therefore been the creation of a pathway diagram that 

graphically reflects the current view of a pathway system in a visibly intuitive manner. 

In so doing the hope was to create a resource for data integration, pathway modelling 

and hypothesis generation. In order to achieve these objectives it was found necessary 

to modify both the PDN [103] and EPN schemes [105] for pathway depiction (see 

Chapter-3). The original diagram [102] (Figure 2.5) acted as a framework for the 

current effort helping to highlight the many gaps in our understanding and together 

with developing interests in macrophage biology, helped to prioritize areas for future 

modelling. Modelling of the pathways continued to be based on labour-intensive 

curation of the literature. Post-graduate students were given an area of biology to 

examine, and all the resources for researching the literature and depicting their chosen 

pathway module. Regular debates on the progress of the pathway models were held, 

and through this process deficiencies were plugged in the graphical depiction of 

events, pathway content, notation, component labelling and the recording of the 

supporting information; a process which in itself was highly informative. An important 
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point is that the diagrams can be shared and understood by all those familiar with 

notation, and as a result all the work presented here has been subjected to form of 

internal critiquing. However, each new area of biology included in the current diagram 

has presented its own problems in layout and concept representation. As a result there 

has been subtle but almost constant re-evaluation of various aspects of the notation 

scheme and as it has been necessary to deal with new issues in the depiction of 

different systems. The mEPN scheme has matured to the point where little need to 

change the majority of the notation scheme presented is foreseen (see Chapter-2 and 

Freeman et al., 2010 [116]), although clearly the modelling of other systems and ideas 

from others may present a case for further modifications.  

 

Pathway diagrams are an established tool in our effort to interpret and explain results 

from functional genomics investigations. Overlay of results, usually from studies of the 

difference between one biological state and another, on top of pathway diagrams 

allows the investigator to visualize and link observations to defined pathways. 

BioLayout Express3D, a network analysis tool developed within the group [138, 206], 

provides a powerful approach to visualize and analyze ‘omics data from a variety of 

sources [138]. Recently implemented is the import of .graphml files into BioLayout 

Express3D and the tool now supports the visualization of pathway diagrams as 3D or 2D 

networks [206].  A parser automatically converts the mEPN notation into the 

equivalent 3D notation scheme and can use the diagrams original node co-ordinates to 

layout the pathway. Also implemented is the ability to export analyses from one 

dataset e.g. clustering of microarray gene expression data and import and overlay 

these analyses on to another network. As standard gene nomenclature is used in the 

assembly of this pathway it is possible to map directly between gene identifiers from 

data to genes/proteins in the pathway. In practice any number of lists with 

annotations can be imported as class-sets onto the pathway and one can envisage how 

this would facilitate the comparison of numerous data sets in the context of the 

macrophage pathway. Although the concept of data mapping onto pathways is not 

new and is supported by other pathway resources [122, 151, 208] these pathways 

suffer from a number of issues pertaining to the lack of standard graphical notation 
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used to depict them. Furthermore the nature of the pathway presented here (in terms 

of scale, detail, formalised notation, range of pathways covered and integrated nature 

of their presentation) presents a valuable additional resource for those interested in 

macrophage biology or any of the more generic pathways included. Clearly the better 

and more extensive the pathway diagrams are the easier it will be to provide a working 

hypothesis on the interpretation of data. Increasingly, it is now experimental data that 

is helping to refine existing pathway models and observations that are yet to be fully 

understood that are now driving the groups current modelling efforts. 

 

The task of assembling this diagram has been time consuming and laborious involving 

1,000’s of hours of work. On the other hand, it summarizes the results of investigations 

that have taken many times that amount of time to perform and it is difficult to 

envisage how one could précis this body of work in any meaningful way other than as a 

diagram. To gain a systems level view of these pathways is to gain an insight into the 

molecular networks that regulate normal immune function and whose malfunction or 

manipulation underpins inflammatory and infectious disease. Greater understanding 

of the overall architecture of the immune system and its susceptibility to deregulation 

by pathogens and other disease causing agents, should ultimately lead to new 

strategies and targets for therapeutic intervention. Apart from summarizing decades of 

research, pathways depicted with formalized graphical notation schemes should aid 

the communication and comparison of biological data. During a thorough process of 

internal critiquing sections of the pathway were presented to others who were familiar 

with the notation scheme but not involved in constructing the pathway presented to 

them and asked to interpret the biology shown. This process ensured that the 

interactions of the pathway were not ambiguous in their depiction.  

 

Another major incentive for generating pathways with standard notations is to permit 

the conversion of graphical models into computationally tractable ones, suitable for 

simulation analyses. For this purpose members of the group have been exploring the 

use of signalling Petri nets (SPN) [114] for modelling “flow” in the integrated pathway 

diagram. The approach is suited to large scale models and pathways drawn using the 
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mEPN system can easily be converted into a bipartite graph of places (nodes) and 

transitions connected by arcs (edges) that are required to support this approach..  The 

SPN algorithm uses stochastic flow simulations to distribute 'tokens' representing 

quantitative estimates of activity through a network graph over time using only the 

network structure to determine outcomes. The technique has the advantage of 

offering fast computational simulations on large networks (< 1 sec for ~100 node 

networks), can support concepts of co-dependency between components and requires 

no kinetic details for interactions. In this way it should be possible to estimate the 

dynamics of information flow through a network and the effects of perturbations on 

that flow. Having developed the comprehensive pathway resource the hope was it 

would serve as a dynamic tool to aid the groups’ research in addition to being a useful 

point of reference for macrophage pathway knowledge. This is now being achieved 

with the application of the pathway for genomics data analysis, aid in informing wet-

lab investigations and now with the potential for computational modelling.    

  

The exercise of pathway construction has provided a resource for training, pathway 

modelling, literature/data interpretation, hypothesis generation and as such is now 

central to ongoing investigations of macrophage biology. Importantly however, the 

pathway model presented here also serves as a worked example of how pathways 

might be represented in a logical, unambiguous and biologist-friendly fashion, 

whatever the system of interest. What is arguably essential for the development of 

this resource is the support of the wider community in assembling and editing such 

diagrams. Such efforts are already underway [154-156] and are already providing a 

vital forum for debate on the known details of pathways in different cell systems. 

Ideally these efforts will result in detailed models of biological systems that can be 

shared and assimilated. However, in order to achieve this end pathway models clearly 

need to be assembled using standard rules and graphical languages. The hope is that 

this work will contribute to the ongoing community effort to develop such standards 

[158]. 
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Conclusions 

The formalised depiction of biological pathways is increasingly recognised as a crucial 

requirement for the exchange of pathway data, modelling of their activity and systems 

level interpretation of biological data. However, there are just a handful of worked 

examples of large pathway diagrams constructed using a formalised graphical 

modelling language. The model of macrophage signalling and effector pathways 

presented here is to our knowledge the most comprehensive pathway of its kind 

published to date. As such it offers a worked example of how large pathway and has 

also proved to be a testing ground for the mEPN system [116]. When presented in this 

manner the network reflects the extensive cross-talk between pathway modules and 

transcriptional networks and high degree of feedback and feed-forward control taking 

place.  

 

Although a time consuming and laborious exercise, the act of converting literature 

derived knowledge into a formalised computational models is essential if we wish to 

truly gain a systems level understanding of any cellular system. The macrophage model 

presented here summarizes the results of years of investigations and has allowed the 

thorough testing of the notation system used to depict it. The hope is that this work 

will provide a useful resource for others interested in the macrophage and the 

pathways depicted, and will help contribute to the development of standard graphical 

depiction in biology. 
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Methods and Materials 

 

Data mining, curation and organization 

Ongoing analysis of macrophage-related datasets and an interest in consolidating 

knowledge of a number of signalling pathways directed the choice of pathways to be 

mapped. Public and propriety databases were initially used as resources for data 

mining, but ultimately all molecular interaction data was sourced from published 

literature. Manual curation of the literature was performed to firstly evaluate the 

quality of the evidence supporting an interaction and secondly, to extract the 

necessary and additional pieces of information required to ‘understand’ the pathway 

and construct an interaction diagram. Pathways have been drawn based on the groups 

long term desire to model pathways active in a human macrophage and therefore all 

components have been depicted using standard human gene nomenclature (HGNC). 

However, the understanding of the pathway components and the interactions 

between them, have been drawn largely from a consensus view of literature 

knowledge. As such the pathways presented here are based on data derived from a 

range of different cellular systems and mammalian species (human and mouse). The 

following details were captured in an interaction list spreadsheet: PubMed ID (of the 

paper citing the interaction); the names and official HUGO and Entrez IDs of the 

interacting components; the nature of the interaction, an extract from the interaction 

table can be found in Figure 2.12 (and the full list is available at 

http://www.macrophages.com/macrophage-pathway-resources).  

 

Pathway construction  

Phase 1 and phase 2 of this work was carried out largely by myself.  In phase 3 of the 

work individual pathway diagrams focused on a specific area of biology were 

constructed by myself or by teams of 1 or 2 curators who were given a remit to 

describe a given pathway system using the mEPN scheme [116], over a 6 month 

period. Primary curators were junior biologists (MSc students) who were encouraged 

to use all information resources available to first build up an overall picture of these 

pathways prior to more detailed analyses and literature-based verification of 

http://www.macrophages.com/macrophage-pathway-resources
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interactions. Great emphasis was also placed on the need to discuss and justify the 

information they were attempting to represent to others. Layout was assessed by 

several curators, as was pathway content and notation usage. Essentially, it was 

attempted to ensure that the graphical depiction of pathway/interactions was 

intelligible and unambiguous to another individual familiar with the notation scheme. 

Teams of curators were therefore encouraged to show and discuss their progress with 

other members of the group on a regular basis. 

 

All pathways have been constructed as directional networks. Interactions between 

pathway components are drawn using the principles laid down by the mEPN scheme 

[116] and diagrams assembled according to the workflow described in Figure 2.9. The 

current mEPN scheme and a detailed description of the notation scheme and rules for 

its use are provided in Chapter-3 and Freeman et al., 2010 [116] and www.mepn-

pathway.org. Individual pathway maps were drawn using the freely available program 

yEd graph editor (yFiles software, Tubingen, Germany) and later the pathways were 

integrated using the same software. In order to make these diagrams an information-

rich vehicle for conveying details about pathway components and the reactions 

between them, PubMed IDs supporting the interactions are stored on appropriate 

edges or nodes within the .graphml version of the diagram, as are URL-links to Entrez 

gene for each protein or gene component in the pathway and notes from the curators. 

Due to the nature of pathway construction edges are often moved, deleted then 

redrawn to optimise the pathway layout and for this reason annotation may also be 

linked to an appropriate process and/or edge annotation node. 

 

Pathway optimization and integration 

Following an initial development period, the focused diagrams went through extensive 

editing in attempt to unify their notation usage, stylistic qualities and overall 

appearance. All aesthetics of the pathways (component colours, text font, text size, 

edge thickness etc.) were standardized between the diagrams. The original pathway 

diagram [102] was then used as a framework on to which new pathways were joined. 

A central rule of the mEPN is that a particular component in a given state may only be 

http://www.mepn-pathway.org/
http://www.mepn-pathway.org/
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene


                                                                                                                             Chapter 2 

89 

represented once in any sub-cellular compartment [102, 105, 116].  Thus when 

integrating the diagrams a crucial step was to identify, using the interaction and 

component lists, overlap between pathway members in the individual diagrams. 

Connections could then be built between the individual pathways based on shared 

pathway members and common interactions. For example, a number of the systems of 

interest feed into the NF-кB system including the TLR and non-TLR pathogen detection 

receptor signalling, TNF-receptor activation, apoptosis and MAPKinase signalling. If the 

representation of interactions differed between individual diagrams they were re-

examined by going back to the literature. Furthermore, annotations and curators notes 

were moved and preliminary layouts optimized. Depicting this interconnectivity 

ultimately leads to numerous challenges in arranging the layout of the diagram. This 

was particularly acute when laying out the integrated diagram. A significant leap 

forward was made with the realization that however ‘optimized’ the layout of the 

diagram it was too large to be displayed in a readable format on a single page (as had 

always been the aim when working on a smaller scale when trying to produce a 

‘publication ready’ layout). With this in mind it was possible to be more free with use 

of space and in the final layout, pathway ‘modules’ consisting of numbers of connected 

nodes involved in a similar system are separated out. This has the effect that more 

space is available to run tracks of parallel edges between modules and subsequent 

additions or editing are easier to perform. Following the integration of TLR system with 

the original diagram, the NF-кB, non-TLR and proteosome maps were added 

sequentially according to the same principles. The fully integrated map then 

underwent an extensive series of layout optimizations in order to bring visual clarity to 

final product. 
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Figure 2.12: Extract from table of interaction data. For each interaction depicted on a pathway diagram it is crucial to keep a record of the supporting evidence for that 

interaction and unambiguous identifications for each interacting components. As the very minimum it is advisable to store the following information; Official Gene 

Symbol for both interactants, Gene IDs, the type of interaction, the appearance of the interactant as shown on the map (i.e. if a protein is interacting whilst it is in 

complex with other proteins then it’s full complex name/ details are shown), the type of interaction (usually corresponding to the process node involved), the location of 

the interaction and the PubMed-ID references for each interaction. Some interactions have multiple references sources shown on the line below so new interactions are 

separated by a yellow line break. Other information, such as the technique used to identify the interaction, the cell type in which the interaction was identified and 

other supporting information can also be stored. 
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Pathway overlay of the transcriptional response analysis of mouse bone 

marrow derived macrophages to interferon-γ treatment 

For details of cell culture, treatment, RNA preparation and microarray processing see 

Chapter-4. Genes that were considered transciptionally activated in response to IFN-γ 

treatment and included in the set of mapped pathway genes were manually 

highlighted on the map and the possible downstream consequences (assuming de 

novo protein synthesis and activity following an increase in gene transcription) were 

followed highlighted. 

 

Chapter Contributions and Acknowledgements 

I performed the work described in phase 1 and phase 2 of this Chapter with the 

guidance of Prof. Tom Freeman. This entailed the development and exploration of how 

to build pathway diagrams, the evolution of pathway construction process at the DPM 

(Division of Pathway Medicine), and generation of the first framework diagram of 

macrophage signalling at the DPM. During Phase 3 I was instrumental in the 

development of the mEPN scheme, oversaw the assembly of TLR signalling and 

integrated pathway diagrams, contributed to the development of the notation system, 

standardisation of pathway data collection. Neil McDerment played a major role in the 

integration of the final pathway diagram and together with Stephanie Monk, helped 

redefine the TLR signalling pathway; Paul A Lacaze constructed the initial interferon 

pathways and oversaw the construction of the non-TLR pathogen detection by George 

Eleftheriadis and Maire O'Sullivan; Dr. Kevin Robertson and Dr. Steven Watterson 

provided some useful comments and discussion on the development of the pathway 

notation and standardization of pathway data collection; Ying Chen and Michael 

Chisholm assembled the NF- B pathway; Arran Turnbull assembled the antigen 

presentation, ubiquitin and proteasome pathways; Athanasios Theocharidis has been 

developing the program BioLayout Express3D to enhance its capabilities to support 

these pathways for visualization and data integration; Dr. Cristelle Roberts has been 

developing the macrophages.com website and has made the macrophage pathways 

available on this site; Prof. Peter Ghazal originally conceived the EPN scheme and 
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supported the current development; finally Prof. Tom Freeman oversaw the pathway 

construction, orchestrated the development of the mEPN scheme, has directed the 

development of improved computational resources for these pathways. 
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Chapter 3. Towards the Standardisation of the Graphical 
Representation of Biological Pathways: Development of 

the modified Edinburgh Pathway Notation (mEPN) 
Scheme 
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Introduction 
 

Graphical Notation Schemes for Describing Pathways 

Despite having a high ratio of graphical to textual information, biology has lacked 

standard graphical notations for illustrating pathway information.  Standard notation 

for circuit diagrams has proven fundamental to the evolution of the electronics 

industry (http://www.iec.ch/; http://www.ansi.org) and in the design of computational 

network systems for example UML diagrams (http://www.uml.org/) diagrams. With 

the advent of analytical techniques able to perform genome-wide analysis of cell 

systems and the unprecedented increase in data to interpret, there is a pressing need 

in biology for formalised methods to depict molecular and cellular systems.  Moreover 

there is also a need for comprehensive pathway models to assist with the 

interpretation of the vast quantities of medium to high-throughput-data now 

available.  

 

In order to address these issues the groups of Kohn and Kitano began to devise new 

approaches to pathway notation using many ideas adopted from the electronics and 

computer industries [103-104, 209].  In particular the MIM (molecular interaction map) 

notation [209] a form of entity-relationship representation and the process description 

notation (PDN) [103], respectively. Examples of pathways that have been published 

using these notation systems include a molecular interaction map of macrophage 

signalling [210], Toll-Like-Receptor signalling [100], epidermal growth factor receptor 

signaling [101] and the RB/E2F pathway [98] which have been depicted using the PDN 

scheme; cell cycle control and DNA repair has been presented in the MIM notation 

[104]. However, in the course of our investigations it was found that the diagrams 

resulting from these elegant and pioneering efforts were not always easy to interpret 

and the notation system was a challenge to implement (Figure 3.1 provides examples 

of pathways constructed in the PDN and MIM schemes). Furthermore, it was found 

that the PDN did not support all of the concepts that are required to reflect the 

diversity of pathway components and the relationships between them. The original 

http://www.iec.ch/
http://www.ansi.org/
http://www.uml.org/
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Edinburgh Pathway Notation (EPN) scheme [105] was designed to allow the logical 

depiction of signalling pathways and is largely based on the original concepts of the 

PDN. The notation incorporated many of the ideas of the process PDN scheme but 

notably introduced the idea of using Boolean logic operators (AND/OR/NOT) nodes to 

represent co-dependencies between components. The basic objectives of the EPN 

were to create a notation scheme that was: a) flexible enough to allow the detailed 

representation of a diverse range of biological entities, interactions and pathway 

concepts; b) able to represent pathway knowledge in a semantically and visually 

unambiguous manner; c) able to the construct pathway diagrams that are 

understandable by a biologist; and d) able to produce diagrams that are sufficiently 

well defined that software tools can convert graphical models into formal models, 

suitable for analysis and simulation. Of primary importance to the EPN scheme is the 

desire to develop pathway maps that are ‘readable’ by a biologist.  Since the pathway 

maps are primarily produced as a tool for communication it is critical that they are 

easily understandable and the notation can be applied and read by biologists with 

minimal training.  Other objectives are that the notation should be computable, 

compact, show sub-cellular localization and be tolerable of incomplete knowledge. 

Whilst all of these objectives are valid, fulfilling them in practice is far from trivial and 

at the time of publication on the original EPN scheme there were few worked 

examples of large pathway diagrams depicted in standard notations, available in the 

public domain.   
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Figure 3.1: Examples of biological pathways depicted with graphical notations. Pathways depicted with 
existing notation schemes in 2006/2007 were found by our group to be complex to interpret and to 
difficult to implement at the time; this included their complicated depiction of protein-complexes; 
multiplicity of arrowheads; struggle of following pathway inputs to their outputs; and limited choice of 
software which could depict these edges and symbols (a) Extract from the Toll-like-receptor signalling 
pathway by Oda, et al. 2006 [100] depicted with the process description notation (PDN). (b) Extract from 
a map of epidermal growth factor receptor family signalling by Kohn, et al., 2006 [117] depicted using 
the molecular interaction map (MIM) notation.  
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Development of the modified Edinburgh Pathway Notation 

scheme  

The original EPN was conceived and published in 2006 [105].  During early stages of 

“road-testing” of the original EPN it became evident that further refinements were 

necessary, if the scheme was to be able to fulfil its original objectives.  Figure-3.2 

shows a sketch created using the original EPN and original pathway editing software, 

the Edinburgh Pathway Editor (EPE) and Figure 3.3 displays the original EPN scheme as 

proposed in 2006. It became apparent that changes were needed to the aesthetics of 

the notation, choice and range of symbols, pathway syntax, as well as choice of 

supporting software if the notation was to fulfil its original objectives. Chapter 2 

(Results  Phase 1) discusses how the appearance and readability of the pathways 

improved with change of supporting software. The improvement in aesthetics of the 

pathway was also heavily linked with changes made to the original notation scheme; 

from increasing size of the original symbols (see Figure 3.3), to amending symbols to 

appear more intuitive, addition of colour as a visual cue to assist with differentiating 

between components (for example complexes and proteins) and the eventual removal 

of numerous different arrow heads to depict interaction since these can easily become 

difficult to memorise. All in all changes were made where needed to improve the 

notation scheme to allow it to fulfil one of its fundamental objectives; produce 

diagrams that are easily understandable by a biologist. Hence in constructing pathway 

models of the apoptotic, NF-κB, interferon and toll-like receptor pathways [102], I have 

also been central to the group’s effort to refine this notation scheme such that it was 

fit for purpose. This pathway construction exercise initiated the huge the jump forward 

from a theoretically useable notation scheme to one that was workable in practice.  

However as the group’s pathway mapping efforts continued to develop it was 

necessary to further refine the EPN scheme from when deployed to construct a 

framework map of macrophage signalling. Changes were necessary in order to model a 

range of different pathways and biological concepts [211]. The objectives of the EPN as 

originally proposed remain preserved as do many of its original concepts [212]. 

However substantial modifications have been made to the notation system from the 
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introduction of new symbols, to changes in the aesthetics of the scheme and pathway 

syntax.  

 

 

 

Figure 3.2: Extract from apoptosis pathway drawn using the original Edinburgh Pathway Notation 
(EPN) scheme. The sketch was drawn using the original EPN palette and supporting software Edinburgh 
Pathway Editor (EPE). Drawn during the early phases of notation testing the sketch displays some of the 
deficiencies of the scheme prior to optimization. Some of the original symbols were not intuitive, 
supporting software did not aid layout and aesthetics, and resulting diagrams were not easy to follow.  
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Figure 3.3: The original EPN scheme. The original symbols and descriptions of the Ediburgh Pathway 
Notation as proposed by Moodie et al., 2006.  
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This Chapter will describe the work which followed on from the initial publication of 

the EPN [105] and define a modified version of the EPN scheme which is aligned with 

the developing international standard, the Systems Biology Graphical Notation (SBGN), 

but has a number of important differences with this scheme as currently proposed.  

The mEPN graphical language has reached a sufficient level of maturity to now be 

formally described [212]. Arguably the mEPN has some important advantages over 

other proposed pathway notation schemes and attempts to address some of their 

shortcomings. As such we believe it is a positive contribution to the debate on 

standardizing pathway depiction. 
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Results 
 

Definition of the modified Edinburgh Pathway Notation (mEPN) scheme 

A pathway may be considered to be a directional network of molecular interactions 

between components of a biological system that act together to regulate a cellular 

event or process. In this context a component is any physical entity involved in a 

pathway e.g. a protein, protein complex, nucleic acid (DNA, RNA), molecule, etc. 

Interactions are generally the relationships between one component and another 

where one component influences the activity of another e.g. through its binding to, 

inhibition of, catalytic conversion of, etc. Interactions between cellular components 

thereby lead to a change in the status of the system. A pathway notation scheme is a 

collection of predefined symbols (shapes, lines, figures) that represent the constituent 

parts of a graphical system for depicting the components of a biological pathway, the 

interactions between them and the cellular compartments in which they occur. A 

scheme should also include rules for the use of these symbols in depicting information. 

Glyphs are stylized graphical symbols that impart information nonverbally and are used 

to portray different classes of biological entities e.g. protein, gene, pathogen etc. and 

the nature of the relationships between them. In network terminology all glyphs are 

nodes (vertices) of a specific type and the connectivity between them is defined by 

edges (lines/arcs). The entire set of glyphs employed in the mEPN scheme are shown in 

Figure 3.4 and their detailed description and rules for use have been published in a 

published specification document [116] available at 

http://www.biomedcentral.com/1752-0509/4/65/additional/ as well as at 

http://www.mepn-pathway.org/.   

. 

 

 

 

 

http://www.biomedcentral.com/1752-0509/4/65/additional/
http://www.mepn-pathway.org/
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Figure 3.4: List of the glyphs used by the modified Edinburgh Pathway Notation (mEPN) scheme. Unique shapes and identifiers are used to distinguish between each 
element of the notation scheme. The notation scheme essentially consists of the following categories of nodes representing; cellular components, compartments, 
Boolean logic, edge annotations, reactions and processes. 
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Pathway Components  

The mEPN uses a set of standard shapes to represent classes of molecules 

(components) from a rounded rectangle to represent proteins and protein complexes, 

to a diamond shaped glyph to represent simple ions and molecules e.g. Na+, K+, H2O 

etc. Components play some role within the pathway and exist in one or a number of 

locations within a cell. An important rule of the mEPN is that a component may only be 

represented once in any given cellular compartment. Whilst this rule can potentially 

lead to a tangle of edges due to certain components possessing numerous connections 

to other components spread across the pathway, the benefits of the rule outweigh the 

issues in adhering to it. The number of edges leaving each node gives the reader an 

exact indication of a component’s connections to other components and hence 

potential activity, without the need for scanning the entire diagram to find other 

instances where the component is described. A notable exception to this rule is in the 

depiction of small and ubiquitously present ions and molecules which may be 

represented numerous times and be involved in numerous processes. A component 

may however be shown more than once in a given cellular compartment if it changes 

from one state to another e.g. from an inactive form to an active form, in which case 

both forms are represented as separate components.  

 

Component Annotation  

Multiple names are often available to describe any given component e.g. a number of 

different names for the same protein may be in use in the literature at any one time. 

Likewise some common names may be used to describe more than one protein or 

complex. When non-standard nomenclature is adopted to name pathway components 

it therefore frequently leads to ambiguity as to the exact identity of what is being 

depicted. Use of standard nomenclature also assists in the comparison and overlay of 

experimental data with pathway models. The mEPN recommends the use of standard 

gene nomenclature systems e.g. HGNC or MGD to name human or mouse 

genes/proteins, respectively. These nomenclature systems now provide a near 

complete annotation of all human and mouse genes and their use in the naming of 

proteins provides a direct visual link between the identity of the gene and the 
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corresponding protein. Where other names (alias’) are in common use these names 

may be shown as an addition to the label on the glyph representing the protein and 

are included as part of the node’s label after the official gene symbol in rounded ( ) 

brackets. Protein complexes are named as a concatenation of the proteins belonging 

to the complex separated by a colon. Again if the complex is commonly referred to by 

a generic name this may be shown below the constituent parts. There are no strict 

rules as to the order in which the protein names are shown in the complex and are 

often shown in the order in which proteins join the complex, in the position they are 

likely to hold relative to other members of the complex (where known) or position 

relative to cellular compartments e.g. with receptor proteins in a membrane bound 

protein complex protruding into the extra-cellular space.  

 

Where a specific protein is present multiple times within a complex, this may be 

represented by placing the number of times a protein is present within the complex in 

angle brackets < >. If the number of proteins in the complex is unknown this may be 

represented by <n>. The particular ‘state’ of an individual protein or a protein within a 

complex may be altered as a consequence of a particular process. This change in the 

component’s state is marked using square * + brackets following the component’s 

name; each modification being placed in separate brackets. This notation may be used 

to describe the whole range of protein modifications from phosphorylation [P], 

truncation [t], ubquitinisation [Ub] etc. An example of an annotated complex is shown 

in Figure 3.5. Where details of the site of modification are known this may be 

represented e.g. [P-L232] = phosphorylation at leucine 232. Alternatively the details of 

a particular modification may be placed as a note on the node visible only during 

‘mouse-over’ or when viewing a node’s properties. Where multiple sites are modified 

this may be shown using multiple brackets, each modification (state) being shown in 

separate brackets. 
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Figure 3.5: Example of a multimeric protein complex, the apoptosome depicted using the mEPN. The 
active apoptosome consists of 7 APAF1 proteins, 7 CYCS proteins, and 7 truncated CASP9 proteins. 

 

Depiction of Interactions Between Components 

Interactions are depicted by edges, sometimes referred to as lines or arcs, and signify 

the relationships between one component and another. Edges denote that an 

interaction occurs between components/processes in a pathway and convey the 

directionality of that interaction. The nature of an interaction is inferred through the 

use of edge annotation nodes, process nodes, and Boolean logic operators. Interaction 

edges may be coloured for visual emphasis but as with nodes, the definition of 

meaning is not reliant on colour. A number of edges contain an in-line annotation node 

to indicate the ‘type’ of interaction, as is sometimes depicted by the use of different 

arrowheads. An edge annotation is generally characterized as having only one input 

and one output, and functions to describe the type of activity implied by the line e.g. 

activation, inhibition, catalysis. Figure 3.6 provides an example of an interaction, as 

depicted using the mEPN. 

 

 
 

Figure 3.6: Depiction of a component interaction using the mEPN: BIRC2 inhibits the process of CASP3 
activation by preventing its cleavage into the truncated form of the protein. 

  

Depiction of Biological Processes  

A process is a defined event occurring between components or to a component. A 

process node in the context of this notation system can be defined as a node that 

infers an action, transformation, transition or process. They impart information on the 
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type of process that is associated with transformation of a component from one state 

to another or movement in cellular location. They also act as junctions between 

components and as such may have multiple inputs or outputs to components. In the 

mEPN all process nodes are represented by a small circular glyph and the process they 

represent is defined by a one-to-three letter code. Colour is used as a visual clue for 

quick recognition of the nature of the process depicted and group processes into ‘type’ 

but again is not necessary for inferring meaning. There are currently 31 process nodes 

recorded under the mEPN. Different process nodes generally have different 

connections. For instance a ‘binding’ node will have multiple inputs and one output, 

the opposite is true for a dissociation node.  

 

Boolean Logic Operators 

Boolean logic operators define the dependencies between components of a system 

describing the relationship between multiple inputs into a process. An ‘AND’ operator 

is used when two or more components are required to bring about a process i.e. an 

event is dependent on more than one factor being present. In modelling flow through 

networks these act in a similar manner to ‘bind’ process nodes i.e. all inputs must be 

present before a product is formed or reaction proceeds. In contrast an ‘OR’ operator 

is used when one component or another may orchestrate the same change in another 

component. For instance multiple kinases e.g. MAP2K3, MAP2K6, MAP2K7 may 

catalyze the phosphorylation of p38 (MAPK14) and therefore shown connecting with 

p38 via an OR operator. OR operators have also occasionally been used to infer that a 

component(s) has potentially multiple out comes. The Boolean ‘NOT’ operator has not 

been included in the mEPN as it would seem self evident that if an event is not 

depicted it is not occurring or at least there is no recoded evidence that it is.   

 

Other Nodes  

There are a number of glyphs that represent concepts that do not sit neatly under the 

headings of being a component, a process or logic operator. These include:  
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Energy/molecular transfer nodes are used to represent simple co-reactions associated 

with or required to drive certain processes (e.g. ATPADP, GTPGDP, 

NADPHNADP+). They are linked directly to the node representing the process in 

which they take part.  

 
Conditional gates are used where there are potentially multiple fates of a component 

and the output is dependent on other factors such as the components concentration, 

time or is associated with a cellular state. These have been used to depict events such 

as the check point controls in cell cycle where the decision to go on to the next phase 

cell replication is under the control of a number of factors and two or more outcomes 

are possible. Another example is where cholesterol, depending on its intracellular 

concentration, may be either exported out of the cell or trigger the cholesterol 

synthesis pathway. 

 

Pathway modules define complicated processes or events that are not otherwise fully 

described. Examples include signalling cascades, endocytosis, compartment fusion etc. 

They are a short-hand way of representing molecular events that are not known, not 

recorded or not shown.  

 
Pathway outputs detail the cumulative output of series of interactions or function of 

an individual component at the ‘end’ of a pathway. Pathway outputs are shown in 

order to describe the significance of those interactions in the context of a biological 

process or with respect to the cell. The input lines leading into a pathway output node 

have been coloured light blue to emphasize the end of the pathway description.  

 

Depiction of Cellular Compartments 

A cellular compartment can be a region of the cell, an organelle or cellular structure, 

dedicated to particular processes and/or hosting certain sub-sets of components e.g. 

genes are found only in the nuclear compartment. Sub-cellular compartments are 

defined by a labelled background to the pathway and arranged with spatial reference 

to cell structure. Compartments are coloured differently for emphasis and to ease 

awareness the location of components. Similar or related compartments share the 
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same fill colour but have different coloured perimeters to define internal boundaries 

within a compartment e.g. membrane vs. lumen or to define the origin of 

compartments e.g. different classes of vesicles derived from the endoplasmic 

reticulum or plasma membrane. 

 

mEPN Use of Colour 

The mEPN scheme has been designed to function in the absence of colour and no 

aspect of it is dependent on colour for its full understanding, hence avoiding issues 

variable colour recognition capabilities between individuals and issues with a poor 

reproduction of figures. However colour is a powerful visual tool and has been used in 

the deployment of the mEPN for emphasis. A proposed colour scheme is described 

below although is open for adaptation to suit the end users needs or aesthetic tastes. 

Nodes may be coloured to differentiate between different node types e.g. between a 

protein, complex or gene, to denote their cellular location or expression/activity level.  

 

IFNγ Activation of MHC Class II Gene Expression: A Worked Example of 

the mEPN in Use 

In order to demonstrate the pathway notation system in action on a scale that can be 

viewed in this format, a small part of the pathway diagram in Chapter-2 has been 

extracted for discussion. Figure 3.7 depicts the activation of MHC class II genes by 

interferon-gamma (IFNG) as described in the literature and represented here using the 

mEPN scheme. 
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Figure 3.7: Graphical representation of the Interferon-gamma pathway leading to MHC Class II Antigen Presentation. Shown here are the known events between the 
release of IFNү and the subsequent up regulation of MHC class 2 antigen presentation by macrophages using the mEPN scheme. See results for a full description of this 
pathway.
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Going through these series of events (shown in Figure 3.7) in detail: IFNγ is secreted by 

T and NK cells upon activation [213-215] (not shown). It oligomerises to form a 

homodimer which then binds of to its receptor complex situated in the plasma 

membrane of macrophages [216]. This complex is formed from IFNGR1, IFNGR2, JAK1 

and JAK2 [217-218], two copies of all proteins being present in the receptor complex. 

Binding of IFNγ causes the autophosphorylation of JAK2 [219] which in turn 

phosphorylates STAT1 [217]. The autophosphorylation of JAK2 can be inhibited by 

SOCS1 or SOCS3 [59, 220], and the activated complex dephosphorylated by PTPN2 

[221-222]. STAT1 now activated, oligomerises, is further phosphorylated by PRKCD 

[223] and translocates to the nucleus where it directly activates gene expression by 

binding to STAT sites present in the promoters of numerous genes. Shown on the 

diagram are just two of these genes, SOCS1 and IRF1 [192, 224]. These form feedback 

inhibition and feed-forward activation loops, respectively. SOCS1 blocking further 

signal propagation through the inhibition of the IFNγ receptor complex (reviewed in 

[225] and IRF1 being necessary for the activation of STAT1 expression as well as being 

a necessary component of the CIITA transcriptional initiation complex [148]. At least 

two complexes are reported to be necessary to activate the expression of CIITA 

(reviewed in [226], the first composed of STAT1, IRF1, USF1 and IRF2 which binds to 

the so called pIV element of the CIITA, the second is comprised of STAT1, CREB1, 

RUNX2/3, TCF3, SPI1 and IRF4 which binds to the pIII element of the gene. CIITA is a 

co-activator and the key missing element in the transcription of MHC class II genes. 

Once translated it binds to a preassembled transcription factor complex, including 

members of the RFX and NFY family of proteins and CREB1, thereby activating the 

expression of the MHC class II genes [226]. This class of genes includes CD74, HLA-

DPA/B, HLA-DQA/B, HLA-DRA/B [225, 227] and through combinatorial assembly form a 

wide variety of complexes denoted here generically as CD74 (li):HLA-D (alpha):HLA-D 

(beta). It is this class of complexes that is shown in the main diagram to go on through 

a long series of steps to bind peptide antigen derived from the lysosomal degradation 

of pathogen proteins and present them to T-helper cells. As such this diagram serves 

as a graphical representation of the known pathway connecting IFNγ secretion to the 

activation of MHC class II antigen presentation.  
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Efforts in developing this notation scheme have now reached a point where little need 

to change the majority of the mEPN scheme as presented here is foreseen. Clearly the 

modelling of other systems and ideas from others however may in the future present a 

case for further modifications or refinements. 

 

Visualization of Pathway Information in 3D Environments  

The reliance of the mEPN scheme on the principles of network graphs and use of 

simple node shapes, labels, edges and colour to convey pathway information has 

presented the opportunity to examine the use of other environments in which to 

visualize pathways. Layout of pathways in 3D space begins to address the issue of 

scalability associated with visualizing very large pathway diagrams and offers a little 

explored environment to visualize and interact with pathway models. Hence devised 

for the first time is a 3D translation of mEPN scheme (Figure 3.8). The scheme is 

devised to reflect the colours and where possible glyphs used in the 2D mEPN process 

diagrams converting the 2D shapes into 3D objects. The proposed notation scheme is 

currently supported by the network visualization and analysis tool BioLayout Express3D 

(see Figure 3.9) [138, 206]; http://www.biolayout.org/) which also currently supports 

the direct import of pathways as .graphml files, the main file type used by us to 

support our pathway modelling efforts. The potential of representing pathways in 3D 

environments is discussed below. 

 

 

 

 

 

 

 

 

 

 

 

http://www.biolayout.org/
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Figure 3.8: The mEPN3D scheme. Presented here is a conversion of the standard mEPN scheme into a 
series of shapes that can be used to depict the same pathway concepts in 3D environments. 
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Figure 3.9: Pathway Representation in 3D Environment. Large macrophage activation pathway 
rendered in 3D environment where node shape, size and colour represents a components identity. (a) 
Nodes coloured according to type e.g. light blue - proteins, yellow - protein complexes, purple – generic 
molecular species. All process nodes are depicted as small cubes and coloured according to type. (b) 
Nodes coloured according to cellular location e.g. brown – plasma membrane, yellow – cytoplasm, 
purple – endosome, green nucleus. Process nodes/Boolean logic operators are shown as having no 
cellular location and are coloured dark blue (no class). (c) Nodes coloured according to overlay of data, 
in this case expression data. Colour of nodes represents co-expression cluster following stimulation of 
mouse macrophages with IFN-β (d) A representation of the interferon-beta signalling pathway and the 
transcriptional network it controls. The signalling network is represented using the mEPN3D notation 
with the addition of transition nodes for use in modelling studies. Connected to it are clusters of genes 
up or down regulated by IFN-β which have been stacked in at different layers depending on the their 
time course of activation/repression. 
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Discussion 
 

Models of pathways produced either as a graphical representation of known events or 

as a resource for mathematical modelling, are fundamental to our understanding the 

workings of biological systems. However the task of assimilating the large amounts of 

available data and representing this information in an intuitive manner remains a 

challenge. Accordingly there has been increasing interest in the biology community to 

develop approaches for representing biological pathways. The Molecular Interaction 

Map (MIM) and Process Description Notation (PDN) schemes were proposed by Kurt 

Kohn [104, 209] and Hiroaki Kitano (Kitano 2005), respectively, and their ideas laid the 

foundations for much of the work on pathway notation that has followed. The current 

mEPN scheme is the based on ideas from the PDN and original EPN schemes but 

importantly the experience of over four years of pathway construction, notation 

testing and discussions.  

 

The objectives of the EPN as originally proposed remain preserved, as do many of the 

original concepts of the EPN and PDN schemes [103, 105]. However substantial 

modifications have been made to the notation system from the introduction of new 

symbols to changes in the aesthetics of the scheme and pathway syntax in order to 

achieve the schemes original objectives. Firstly was the desire to develop a notation 

system that was flexible enough to allow the detailed representation of diverse 

biological entities, interactions and pathway concepts. In this respect, the mEPN as 

described here has not only been used in the construction of the large macrophage 

pathway diagram [211] detailed in Chapter-2, which in its own right covers a diverse 

range of signalling and effector pathways, but also for the depiction of cholesterol 

metabolism and the cell cycle by other students (not shown). In all of these 

endeavours the mEPN scheme has been able to depict the literature-based 

understanding of these systems and where it was formerly unable to support a 

concept, it was modified to allow it to do so. Secondly was the need for a system for 

presenting pathway knowledge in a semantically and visually unambiguous manner. To 

some degree this is down to actually labelling components in a way that is 
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unambiguous. The use of standard gene nomenclature to label genes/protein 

components, together with a formalized system to describe modifications to them, 

goes some way to achieving this. This has meant in many cases that the literature 

which describes these systems using numerous different names for the same protein 

or complex must be de-convoluted. It means however that one component is unlikely 

ever to be represented more than once but with different names. It also facilitates use 

of the diagrams in the interpretation of experimentally derived data which is usually 

annotated using standard gene nomenclature. The third aim, which is related to the 

second, is that diagrams are as simple as possible to construct and are understandable 

by a biologist. To help ensure this to be the case all the work in creating the pathway 

diagrams has been performed by relatively junior biologists (myself as a PhD student 

and MSc students). Those constructing the pathways were encouraged to discuss their 

ideas and pathways with each other so as iron out areas where the information was 

not clearly depicted. For this to happen one must be able to communicate complicated 

biological concepts using the diagrams. The readability of a diagram is not only 

dependent on the notation system but also on its layout. Although a variety of 

automated layout algorithms exist for network graphs they do not perform as well as a 

human curator with an artistic eye for the task. Pathway layout is relatively trivial for 

small diagrams, but a long time has had to be spent on optimizing the layout all of our 

large pathways so that they are easily interpreted. Finally, pathway diagrams are 

central to efforts to computationally model the observed behaviour of biological 

systems [119]. The fourth objective has therefore been to develop the mEPN such that 

the semantics of the resulting network diagrams are sufficiently well defined that 

software tools can convert graphical models into formal models, suitable for analysis 

and simulation. Whilst the primary objective behind the efforts has been to create a 

graphical model of events, the group has been mindful to construct pathway diagrams 

as directional networks that could in principle support studies on the dynamics of 

these systems. In examining various approaches to pathway modelling some are 

clearly not scalable, such as those using ordinary differential equations (ODEs) that 

require interaction parameters to be known or computed. Other approaches do not 
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support the modelling of the co-dependencies between components of a pathway or 

give quantitative outputs (reviewed in [128, 227].  

 

With the increasing interest in pathway science and depiction a community effort to 

develop a standard notation was formed, known as the Systems Biology Graphical 

Notation (SBGN)[228], and running concurrently with mEPN work has been this 

ongoing community effort to establish rules for best practice in pathway depiction. 

This effort aims to combine the strengths of the various proposed notation schemes 

and arrive to a consensus approach for representing biological pathways and only 

recently and a manuscript describing the SBGN Process Diagrams Level 1 specification 

was published [158, 228]. The mEPN scheme as described here aspires to many of the 

same goals as the SBGN and where possible we have tried to harmonize the mEPN 

scheme to the emerging SBGN specification. However, experience in building large-

scale pathway models of a variety of biological systems has required the group to 

depict concepts not currently supported by the SBGN scheme. Furthermore, a lack of 

available pathway editing tools when this work began, as well as the scale of diagrams 

produced (see Chapter-2), have both played their part in determining the mEPN 

approach to pathway depiction. As a result there are a number of important 

differences that exist between the mEPN scheme described here and the SBGN 

scheme as currently proposed. Firstly, in common with the proposed SBGN scheme, 

the mEPN uses simple shapes to define the class of a component but only a labelling 

system to define the exact identity of components (nodes). The SBGN scheme 

proposes the use of circles overlaid on nodes to depict protein modifications. This has 

been found to be a considerable overhead to implement and can interfere the clarity 

of what is depicted rather than enhancing it. Furthermore the notation scheme is not 

supported by many of the general purpose network visualization tools e.g. yEd, 

Cytoscape, BioLayout Express3D [108, 229-230] in general use, requiring instead the use 

of dedicated pathway software. Secondly, the mEPN avoids the use of different styles 

of arrowheads to depict the nature of interactions (edges) which limits the vocabulary 

of edges and is a system that can be challenging to remember. Instead where 

appropriate, inline annotation nodes are used to depict the meaning of edges; these 
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carry a visual clue (a letter symbolizing the meaning of the edge e.g. A for activation, I 

for inhibition) and can potentially support a wider range of edge meanings. Again the 

use of a wide variety of arrowheads is not supported by many pathway/network 

editing software packages. Finally, using the mEPN one can explicitly state the nature 

of interactions by the use of labelled process nodes. In the proposed SBGN scheme 

process nodes are used but generally not as a means to convey the nature of 

interactions except in the case of protein binding (association) and dissociation. When 

pathways are large and the distance between interacting species may be great, having 

a visual clue as to the nature of interactions is very important. Whilst on these and 

other points the mEPN and SBGN schemes may differ, we are fully supportive of the 

SBGN’s efforts to promote a common notation system and hope that current the work 

presented will contribute to the adoption of common notation schemes for pathway 

depiction. A full description of the differences between the SBGN level 1 notation and 

the mEPN as described here follows.  

 

Comparison of the mEPN Scheme with the current SBGN Level 1 

specification for the Depiction of Process Diagrams 

The mEPN (modified Edinburgh Pathway Notation) and SBGN (Systems Biology 

Graphical Notation) schemes provide two similar but different ways to depict process 

diagrams.  Each scheme is divided into a set of glyphs to depict different concepts 

(components, processes, relationships, cellular compartments) for the use of depicting 

what is known about a biological pathway as a network diagram. Both schemes were 

developed over roughly the same period of time the SBGN scheme by members of the 

SBGN community (which includes some of those involved with the mEPN); the mEPN 

scheme at the Division of Pathway Medicine, the Centre for Systems Biology Edinburgh 

(CSBE) and Roslin Institute, University of Edinburgh. Both schemes also aspire to fulfil 

many of the same goals. 

 

Although many of the concepts are named differently, many glyphs differ between the 

two notation systems they are similar enough to compare. Below is a comparison of 

the main features of both notation schemes and the glyphs used within them. Since 
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different naming conventions are used by the notation systems to describe glyphs, the 

most similar or conceptually equivalent nodes are compared below. Where a glyph 

exists in one notation scheme but not in the other a blank space can be found in the 

adjacent area of the table.  

Full details of the SGBN scheme can be found at (Le Novère, N. et al., The Systems 

Biology Graphical Notation. Nature Biotechnology 27: 735-741 (2009). 
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Concept mEPN Node mEPN Glyph 
SBGN 

equivalent 
SBGN Glyph 

Pathway 

Componentsi 

( Entity Pool 

Nodes) 

Peptide, protein, 

protein complex 
 

Macromolecule 

 

Gene 
 Nucleic acid 

feature  DNA sequence (e.g. 

promoter element)  

Simple biochemical 

 

Simple chemical 

 

Ion/ simple 

molecule 
 

Simple chemical 

 

Generic entity 

 

Unspecified entity 

 

Drug 

 

  

Multimers 

(also complex) 
 

Multimers 

 

Other 

Pathway outputii 

 

Observable 
 

Pathway module 

 

Submap 

 

Energy/ molecular 

transferiii 

 

 

 

Conditional switch 
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  Tag 
 

  Perturbation 
 

Cellular 

Compartment

iv 

Cellular 

Compartment  

Container Node 

 

Process 

Nodes 

(Transitions) 

Binding 
 

Association 

 

Dissociation 
 

Dissociation 

 

Sinkv 
 

Source/Sink 
 

Other processesvi 

  
Transition 

 

 Omitted process 
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  Uncertain process 
 

Boolean Logic 

Operators 

AND 
 

AND 
 

OR 
 

OR 
 

  NOTvii 

 

 

 

Interaction 

Edges 

(Connecting 

Arcs)viii 

Catalyses 
 

Catalysis 
 

Inhibits 
 

Inhibition 
 

Activates 
 

Stimulation 
 

Details unknown 
 

  

Non-covalent or 

covalent bond  
  

  Consumption 

 

  Production 
 

  Modulation 
 

  Trigger 
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Table 3.1: Comparison of the mEPN and SBGN.  

 

Notes 

i Pathway Interactant Depiction 

Nodes which are the biological constituents participating in a particular metabolic or signalling pathway 

are referred to as Components in the mEPN and Entity Pool Nodes are the equivalent in the SBGN.  

ii Comparisons of observable and pathway output glyphs 

Observable and pathway output are comparable nodes; observable is used to describe a process 

affected by, or a phenotype generated as a result of pathway signalling. Pathway Output is also used for 

this purpose and always at the end of a series of directional interactions to highlight the consequence of 

a set of interactions.  

iii Energy/Phospho Transfer Depiction 

SBGN use two nodes (simple chemical) each time to show the transfer of x-tri-phosphate  x-di-

phosphate (e.g. ATP  ADP, GTP  GDP, whereas in the mEPN we have chosen to depict these 

reactions in one glyph which points to the process requiring energy/phosphate transfer. The use of a 

single glyph to depict energy/phospho-transfer was determined to be the most space efficient way to 

depict these co-reactions due their widespread occurrence in biology. 

iv Compartmentalisation 

In both notation schemes the glyphs used to contain nodes present in a given sub-cellular-compartment 

can take any geometry. The SBGN container nodes are also used for containing a complex or a submap 

(a node used to encapsulate processes within one glyph).  

  Logic Arc 
 

  Equivalence Arc 
 

Component 

Annotationix 

(Auxiliary 

Items) 

Component ID 
Recommended standard 

gene ID 
Component ID No standard  specified 

Component 

Modifications 

(examples) 

 State Variables 

(examples) 

 

  

Component State 

 

Unit of information 
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v Sink Nodes 

Sink is an entity pool node in the SBGN and considered a process node in mEPN. Furthermore in mEPN 

the use of the sink node is restricted to defining the removal of a component from a system which in all 

cases to date has been by proteasomal degradation. 

vi Other Processes 

Other processes in the mEPN shown reading from left to right in the table are Activation (A), Inhibition 

(I), Oligomerisation (O), Cleavage (X), Auto-cleavage (AX), Catalysis (C), Auto-catalysis (AC), Translocation 

(T), Transcription/Translation (TL), Secretion (S), Phosphorylation (P), De-phosphorylation (-P), Auto-

phosphorylation (AP), Phospho-transfer (PT), Ubiquitination (Ub), sumoylation (Su), selenylation (Se), 

glycosylation (Gy), prenylation (Pr), methylation (Me), acetylation (Ac), palmitoylation (Pa), protonation 

(H+), sulphatation (S), pegylation (Pe), oxidation (Ox), myristoylation (My), and hydroxylation (OH). Use 

of colour is optional. The nature of processes (transitions) are not generally defined under the current 

SBGN specification. 

vii Boolean Logic Operators 

Both notation systems make use of Boolean logic commands AND / OR, however extensive use of the 

mEPN has yet to find use of the NOT command for signalling pathways and is therefore currently not 

included from the mEPN notation. Something NOT doing something would seem to be obvious by its 

omission. 

viii Edges 

The lines connecting components and process nodes are referred to as edges in mEPN or connecting 

arcs in SBGN. The mEPN does not make use of different styles of arrowheads to depict the nature of 

interactions (edges) instead where appropriate an diamond-shaped inline annotation node carrying a 

visual clue (a letter symbolising the meaning of the edge e.g. A for activation, I for inhibition) is used to 

depict the meaning of edges. 

ix Node Annotations 

No naming conventions are currently recommended by SBGN.  When non-standard nomenclature is 

adopted it frequently leads to ambiguity as to the exact identity as to what is being depicted as multiple 

component names are often available to describe a given component. Under mEPN we recommend the 

use of standard nomenclature systems for components e.g. HGNC or MGD conventions to name human 

or mouse genes/proteins, respectively. Use of standard nomenclature also assists in the comparison and 

overlay of experimental data with pathway models. Additional information about a component 

(modifications, states, numbers of given components within a complex) are referred to as annotations 

in the mEPN and auxiliary items according to the SBGN.  
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Other Differences 

Cloning concept of SBGN 

If a component (entity pool node) is duplicated on the map it is indicated by using a 

‘clone marker’ (shading in the bottom third of the node) the purpose of this being to 

allow the reader a visual indication that the node has been duplicated elsewhere on 

the map. Whilst on a map of moderate size this maybe practical (allowing the reader to 

identify how many times the node is duplicated) on a larger scale and where multiple 

nodes are cloned it may become difficult to trace how many times the node is cloned.  

 

In contrast to the SBGN, mEPN usage rules dictate that a component node (proteins, 

complexes, etc) representing a given entity may only be represented once in the in a 

given sub-cellular compartment (this rule does not apply to ubiquitous components or 

reactions e.g. simple ions, energy transfer reaction nodes). The trade off here is that so 

called ‘hub’ nodes (those with many connections) will have many edges emanating 

from them to other components in various different locations of the map. However, 

the number of edges leaving each node gives the reader an exact indication of its 

connections and hence activity in the map without the need for scanning the entire 

diagram to find cloned nodes. Furthermore, the SBGN has laid out rules as to which 

glyphs may be cloned and which then require clone markers, adding yet another set of 

rules that map constructers must learn. Although both notation systems do not 

provide a perfect solution to dealing with highly connected nodes arguably the mEPN 

rule (biological component can be shown only once in a given sub-cellular 

compartment) is a more practical resolution for readers and constructors of the 

diagram for the reasons discussed above and also since repetition of identical nodes 

consumes more space on the map. 

 

3D Rendering of the mEPN 

One advantage of the simple node and edge based approach to pathway element 

depiction in the mEPN is that it supports the notations conversion into other software 
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environments. In particular there is a growing use of technology developed in the 

gaming and animation industries to support the visualization of data in virtual 3D 

environments. BioLayout Express3D, a network analysis tool developed at the Roslin 

Institute and EBI and employing the 3D graphics application programming interface 

(API) OpenGL, provides a powerful tool with which to visualize and analyze a variety of 

types of ‘omics data as networks [138, 206]. Recently implemented is the import of 

.graphml files into BioLayout Express3D such that the pathway diagrams can be viewed 

in 3D as well as a 2D environment. In this environment node walks can also be 

performed to identify the parents or children of any given node or set of nodes, 

thereby allowing the connectivity between components in large pathway systems to 

be explored. Interestingly and at first a surprise, was the effect of translating a 2D 

pathway layout as described in the original .graphml node co-ordinates into a 3D 

environment. In this way diagrams may be rotated, zoomed in on and generally 

explored in an environment which is quite different to that of a 2D representation. In 

the 3D environment colour is a powerful device that can be used to further overlay 

visual information on to nodes (Figures 3.9.a c). Pathways can also be visualized using 

3D organic layout algorithms (Figure 3.9. d.). This visualization of the pathways is 

engaging but is currently of limited utility. However, it is possible to imagine much 

larger models of pathway systems where the spatial layout of components in 3D space 

is based on a components cellular location and the visualization more closely 

approximating an in silico cell. With BioLayout Express3D now capable of supporting 

networks comprising of up to 45,000 node graphs there is considerable scope for 

building ever larger pathway models and further exploring the potential of 3D 

environments for pathway visualization and analysis. 

 

Conclusions  

There are significant efforts already underway to garner the support and interest of 

the wider biological community in assembling resources, information and pathway 

diagrams covering a broad spectrum of biology. Indeed, the need has never been 

greater for these resources. However, if they do not record pathways in a standardized 

way, integration of the results of these efforts will continue to be a considerable issue. 
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To this end the mEPN is fully supportive of the SGBN’s effort to promote the principles 

of standard notation systems even if as a group we cannot fully support the proposed 

SBGN specification for process diagrams. The hope is that this work in its published 

form [212] and the pathway diagrams [102, 211](and Chapter-2) will act as a positive 

contribution to the debate about how best to graphically model pathway knowledge.  

 

 

Chapter Contributions and Acknowledgements 
 

I have been instrumental in the development of many of the pathway diagrams that 

have driven the evolution of mEPN scheme and in doing so have made a major 

contribution to the development of the mEPN itself; Athanasios Theocharidis has been 

developing the program BioLayout Express3D to enhance its capabilities to support the 

visualization of pathways drawn using the mEPN scheme and their integration with 

data; Prof. Peter Ghazal oversaw the original development of the EPN scheme and 

supported the current development. Prof. Tom Freeman oversaw and contributed to 

the development of the mEPN scheme, and has directed the development of improved 

computational resources to support the scheme and supervised my role in developing 

the notation. 

 
 

 
 
 
 

 
 

 
 
 
 
 
 



                                                                                                                             Chapter 3 

128 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

This page has been left intentionally blank



                                                                                                                             Chapter 4 

129 

Chapter 4. Analysis of the transcriptional networks 
induced by type I and type II interferons 
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Introduction 
 

Transcriptional response of macrophages to interferons 

IFNs induce or repress the expression of hundreds of genes known to mediate a wide 

range of biological responses. Transcriptional targets of the interferon response are 

collectively referred to as Interferon Stimulated Genes (ISGs).  Presently around 2,000 

[231] ISGs have been identified by transcript profiling. However these have been 

derived from a variety of studies based on the analysis of different cell types using 

different array platforms and only a few of the genes are functionally well defined. 

Some of the best studied ISGs [232] are known to play pivotal roles in host defence 

including; the double-stranded RNA-dependent kinase “protein kinase RNA-regulated” 

(PRKR) [233], a family of  2’-5’-Oligoadenylate Synthetases (2’5’OAS) that lead to the 

activation of RNase L and degredation of cellular RNA [234], and the Mx proteins 

(these possess GTP binding and GTPase activity) and have been shown to restrict 

growth of certain viruses [235-236]. However the anti-viral effects of IFNs can only be 

partially attributed to these genes since mice triply deficient for PRKR, RNase L and Mx 

genes retain a degree of responsiveness to the antiviral effects of IFNs [237]. Hence 

alternative antiviral pathways and other ISGs yet to be (fully) functionally characterised 

may yet play role as potent antiviral effectors.   

 

Some ISG’s are regulated by both type-I and type-II IFNs i.e. there is a degree of 

overlap in the transcriptional networks they activate, whereas others are selectively 

regulated. IFITM1 for example is induced by all interferons whereas 2’-5’-

Oligoadenylate Synthetase I is induced in response to type-I interferons IFN-α and IFN-

β, and not the type-II IFN-γ [238]. IRF1 expression on the other hand is preferentially 

induced by IFN-γ [238]. Moreover the activation of MHC Class II antigen presentation 

in macrophages is only efficiently achieved by IFN-γ regulation of the CIITA gene [239-

240](depicted in Chapter-3 Figure 3.7). Selective regulation of ISGs by type-I or type-II 

IFN signalling could be attributed to the activation of different downstream signalling 

cascades, differential activation of transcription factors, and variation of promotor 



                                                                                                                             Chapter 4 

131 

elements in target genes; since some ISGs contain only ISRE’s and others only GAS 

elements in their promotors, whereas others have both elements. 

 

The JAK-STAT signalling cascades immediately downstream of the IFN type-I and type-II 

receptors is well characterised (and represented on our pathway model) however their 

links to other signalling pathways and the precise regulation of the transcriptional 

response is not well characterised or fully understood. 

 

Functional relevance of type I and type II signalling convergence 

The type-I and type-II signalling pathways cross-talk at multiple levels; sharing pathway 

components and overlapping in their transcriptional targets (see Chapter-1; Figure 

1.3). IFN-γ primarily signals through STAT1:STAT1 homodimers, although it also 

activates to a lesser extent the archetypal type-I transcription factor ISGF3.  ISGF3 is 

able to induce the expression type-I interferon and thereby amplify its response. 

Conversely type-I interferon can activate classical type-II signalling molecules e.g STAT1 

and thereby modulate the transcription of ISGs with GAS elements. The cross-talk and 

convergence of these signalling pathways is biologically relevant, since in vivo cells are 

not generally exposed to single cytokines but rather a cytokine cocktail [59]. 

 

It has been suggested that the two interferon systems may have evolved to 

complement each other in overlapping but non-redundant activities in order to defend 

against a broad range of pathogens [241]. IFN-γ-/- and IFNGR1-/- mice appear to 

develop a normal immune system, however they show deficiencies in natural 

resistance to bacteria, parasitic and viral infections [241]. Some viruses appear to 

require both type-I and type-II pathways [241] and others require predominantly type-I 

or type-II interferon for efficient clearing [242]. Since IFNs illicit their response by 

activating a large transcriptional cascade, the differential regulation of genes by the 

two types of interferons warrants further analysis to advance our understanding of the 

overlap and differences in functionality of the different interferons.  
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Microarray experiments examining the transcriptional changes induced by interferons 

are available [238, 243-247] however those based on the response induced in 

macrophages (and specifically mouse BMDMs) are not as comprehensive as those 

investigating the LPS response.   There are also limitations to some of the existing 

available microarray data. For example, studies conducted prior to 1995 are not 

genome wide; studies conducted before 2001 are not MIAME (minimum information 

about a microarray experiment) compliant and therefore unavailable as raw data files 

or poorly described and annotated. Other studies are not necessarily performed on 

robust platforms, for instance those conducted on spotted arrays [247]. Finally some 

experiments have a limited number of data-points (time-points analysed) and the 

overall experimental design is not conducive to exploring the temporal changes in 

transcription induced by interferons or contrasting the type-I/type-II response.  
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Results 
 

In order to further our understanding of the transcriptional events in response to 

stimulation of mouse bone marrow derived macrophages (BMDMs) by type-I and type-

II IFNs, microarray analysis was performed over a time-course of stimulation by these 

cytokines. IFNs are well known for their anti-proliferative effects.  Murine BMDMs 

(when cultured in CSF-1) are actively in cell cycle; do generally not constitutively 

express IFN-β; and are MHC Class-II negative [11]. Thus this system includes a biology 

of IFNs not easily seen in other cellular systems. In separate experiments mouse 

BMDMs were stimulated with either 10 U/ml mouse IFN-γ or 10 U/ml mouse IFN-β, 

where one U/ml is defined as the concentration required to inhibit viral replication by 

50%. In the case mouse IFN-γ and IFN-β biological activity is determined (by the 

manufacturers) by measuring the ability to induce cell resistance to infection by 

encephalomyocarditis virus (EMCV).  

 

In both experiments, cells were harvested for 1, 2, 4, 8, and 24 h post-IFN treatment or 

pre-treatment (0 h). High quality RNA was processed for labelling and hybridisation to 

the Affymetrix Mouse Exon 1.0 ST arrays.   

 

IFN-γ transcriptional network 
 
12 Affymetrix Mouse Exon 1.0 ST Arrays were processed for this study although one 

array failed due to array scanning-equipment failure. This resulted in the loss of one of 

the two, 2-hour biological replicate sample. Remaining arrays were normalised using 

RMA. Statistical filters were applied as a method for removing noisy and potentially 

un-interesting data. I,678 transcript passed this filter and a network-graph of the data 

was generated by filtering edges at a Pearson correlation threshold of 0.9 . The 

resultant network graph (Figure 4.1) of 1,474 nodes connected by 26,617 edges was 

clustered using the graph-based clustering algorithm MCL [137] set at an inflation 

value of 2.2 resulting in 40 clusters with a membership of 6 or more nodes 

(transcripts).  
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Figure 4.1: Transcriptional network formed from expression data of a time-course of IFN-γ stimulation 
of mouse BMDMs. Mouse BMDMs were treated for 1, 2, 4, 8, and 24 h with IFN-γ or were not treated (0 
h). Gene expression across each time-point was measured on Affymetrix Mouse Exon ST1 Arrays and a 
network graph of the data generated using BioLayout Express3D. The network was filtered to display only 
relationships at or above a Pearson correlation threshold of 0.9, resulting in a graph 1,474 nodes 
connected by 26,617 edges. The resultant network was then clustered using the graph-based clustering 
algorithm MCL set at an inflation value of 2.2. Nodes (transcripts) belongings to same cluster share the 
same colour.  
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Description of clusters 

 

Each cluster in the network represents a group of genes with a related pattern of 

expression over the time-course. Some clusters represent very similar patterns of 

expression, however form separate clusters due to subtle difference in their 

expression patterns.  Individual clusters were assigned a description based on the 

expression pattern the cluster represented. Descriptions were based on a number of 

characteristics of the cluster, including;  

(i) the directionality of the change; where Up or Down defines up regulation 

or down regulation of transcripts within the cluster relative to time 0 h.  

(ii) The dynamics of the temporal change in expression; where transient 

implies the change in expression is reversible / not continuous/ occurs over 

given periods of time and then returns to basal levels. Sustained implies the 

change in expression is maintained over the time points studied. 

(iii) The time point(s) where maximal or minimal expression is reached in 

comparison to basal levels. This is denoted by the number(s) following the 

Up or Down description. 

(iv) The duration over which any change in expression is taking place; this is 

denoted by the numbers in brackets. 

(v) The original identifying cluster number is shown at the end of description. 

 

For example the following description “Ifng_transient_Up_8_(4-8)_C1” would imply 

transcripts belonging to this cluster one are up-regulated in expression, reach maximal 

expression at 8 hours, however the increase in expression is already apparent from 4 

hours and lasting until 8 hours. The same cluster naming scheme is adopted to 

describe clusters from the IFN-β time-course study.  

 

Clusters were annotated based on their gene membership and over-representation of 

cohorts of functionally associated genes. Annotation was performed using the online 

Database for Annotation, Visualization and Integrated Discovery (DAVID) which 
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identifies enriched biological themes within gene lists [248-249]. For the purpose of 

annotating these datasets GO (Gene Ontology) annotations defining both biological 

processes and metabolic function were assessed using DAVID. The most over-

represented terms (based on DAVID analysis of GO Ontology terms (GO FAT category)) 

were chosen to describe the biology of the clusters. Table 4.1 provides an overview of 

the major clusters of interest in the IFN-γ response data set, along with the number of 

transcripts within each cluster, examples of gene members and the most represented 

GO terms as determined by DAVID. The clusters are ordered in the table according to 

the temporal phase the transcripts are changing in expression; immediate early (1-2 

hours), early (2-4 hours), mid (4 > 8 hours), mid to late (4 < 8 hours) and late (8-24 

hours).  
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Cluster Description 
Example 

Gene 
Member 

Processes/ Functions 
Im

m
e

d
ia

te
 

Ea
rl

y 

re
sp

o
n

se
 16 ↑ 13 Ifng_transient_Up_1_C16 

Fos, Myc, 
Cxcl1 

Positive regulation of transcription; positive regulation of 
gene expression; positive regulation of RNA metabolic 

process; negative regulation of apoptosis 

28 ↑ 7 Ifng_transient_Up_1_(1-2)_C28 
Ier3, Ccl3, 

Nfkbiz 
Defence response; positive regulation of gene expression 

/transcription 

23 ↑ 9 Ifng_transient_Up_2_(1-2)_C23 Fosl2, Socs3 
Regulation of phosphorylation; regulation of intracellular 

signalling cascade 

Ea
rl

y 

re
sp

o
n

se
 25 ↑ 8 

Ifng_Early-sustained_Up_4_(1-
4)_C25 

Ccl2, 
Ccl7,Ifi27 

Response to organic substance (nitrogen); regulation of cell 
cycle, chemokine activity. 

11 ↑ 21 Ifng_transient_Up_2-4_C11 Il17ra, Bach1 
Response to wounding; regulation of phosphoinositide 3-

kinase cascade; regulation of transcription 

38 ↓ 7 Ifng_transient_Down_2-4_C38 Fgd3 guanyl-nucleotide exchange factor activity 

M
id

- 
re

sp
o

n
se

 

22 ↓ 10 Ifng_transient_Down_4_(2-4)_C22 Kns2 Annotation Stats Unavailable 

   3 
↑ 

131 Ifng_transient_Up_4_C3 
Map2k3, 

Foxp1, Stat5a 

Positive regulation of cell proliferation/ differentiation; 
regulation of mesenchymal cell proliferation; regulation of 

transcription 

24 ↓ 8 Ifng_transient_Down_4_C24 Oma1 Transcription factor binding 

36 ↓ 7 Ifng_transient_Down_4_C36 Irak3 Annotation Stats Unavailable 

37 ↓ 7 Ifng_transient_Down_4_C37 Ccdc128 Ribonucleotide binding 

   2 
↑ 

175 Ifng_transient_Up_4_(4-8)_C2 
Tnf, Daxx, 
Fas, Aqp9, 

Cxcl10 

positive regulation of NF-ĸB transcription factor activity; 
immune response; regulation of apoptosis; regulation of 

transcription 

4 ↓ 84 Ifng_transient_Down_4-8_C4 
Mcm2, Pole, 

Cdc2a 
DNA replication; DNA replication initiation, cell cycle, DNA 

repair, DNA packaging, DNA binding,  

5 ↓ 62 Ifng_transient_Down_4_(4-8)_C5 
Cdc6, Cep55, 

Ccne2 

Cell cycle; cell division; mitotic cell cycle; M phase of cell 
cycle; organelle fission; chromosome segregation; DNA 

replication 

30 ↓ 7 Ifng_transient_Down_4_(4-8)_C30 Fli1 Ion binding 

31 ↓ 7 Ifng_transient_Down_4_(4-8)_C31 Mvd ATP binding 

10 ↓ 24 Ifng_transient_Down_4-8_C10 Gab3, Coro1a Nucleotide receptor activity, G-protein coupled 

27 ↓ 8 Ifng_transient_Down_4-8_C27 Dusp19, Ing4 Annotation Stats Unavailable 

26 ↓ 8 
Ifng_4-min_8-max_Down_Up_4 & 

8_C26 
Rab32, Prkcd Cell activation; leukocyte activation 

M
id

-l
at

e
 r

e
sp

o
n

se
 

1 ↑ 224 Ifng_transient_Up_8_(4-8)_C1 

Traf1, Traf2, 
Irf5, Nfkb1, 

Nfkb2, Nod2, 
Tlr2 

(Innate) Immune Response; programmed Cell Death; 
Defence response;  

7 ↓ 39 Ifng_transient_Down_8_(4-8)_C7 
Ccdc5, Mxd4, 

Alox5 
Oxidation reduction; fatty acid metabolic process; 

coenzyme binding 

12 ↓ 21 Ifng_transient_Down_8_(4-8)_C12 Scamp5 
Lipid localization / transport; fatty acid transport; vesicle 

mediated transport 

13 ↓ 20 Ifng_transient_Down_8_(4-8)_C13 Scd2 
Organic acid catabolic/ biosynthesis process; fatty acid 

metabolic process 

14 ↓ 16 Ifng_transient_Down_8_(4-8)_C14 Aldoc Annotation Stats Unavailable 

17 ↑ 13 Ifng_Up_8_(4-8)_C17 Entpd1 
Response to extracellular stimulus; protein maturation; 

protein processing 

8 ↑ 27 Ifng_transient_Up_8_C8 Nfe2l1, Bag3 
Negative regulation of apoptosis; regulation of RNA 

metabolic process 

15 ↓ 15 Ifng_transient_Down_8_C15 Gas6 Protein transport; establishment of protein localization 

La
te

 

R
e

sp
o

n
se

 18 ↓ 13 Ifng_sustained_Down_8_(4-24)_C18 Cd14 Annotation Stats Unavailable 

9 ↑ 24 Ifng_late-response_Up_24_(8-24)_C9 
Psmb9, 
Psma7 

Proteolysis; peptidase activity; MHC class I protein binding; 
protein catabolic process 

6 ↑ 47 Ifng_late-response_Up_24_C6 
H2-Ea, Il2rg, 

Ccr5 

Antigen processing and presentation of exogenous antigen; 
oxidation reduction; antigen processing and presentation of 

peptide antigen via MHC class II 

Table 4.1: Description of clusters of co-ordinately expressed transcripts in response to IFN-γ stimulation of 
mouse BMDMs. Clusters are arranged according to the timing of response they reflect.  
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During the immediate early response (1-2 hours post IFN-γ) there were relatively few 

genes changing in expression as compared to the rest of the data. During this early 

phase a positive regulation of transcription was observed including the regulation of 

many transcription factors (TFs). These TFs may control the next waves of response 

observed in the data.  Also during this immediate early phase there are indications of 

cytokine signalling regulation; for example the suppressor of cytokine signalling 3 

(Socs3) known to control the extent and duration of the interferon response, increases 

very transiently in expression. Indications of an immune response are observed 

(chemokines/defence response) in a handful of changing transcripts during the early 

phase.   

 

During the mid-response there is initially an increase in expression of genes 

contributing to a positive regulation of cell proliferation, however this closely followed 

by a strong signal to repress cell cycle (clusters-5 and 6). The mid-response stage also 

comprises the first major immune signalling response cluster (2) enriched for innate 

immune, apoptosis, and NF-kB signalling transcripts. However the largest cluster (1) 

containing the major interferon-stimulated-genes, appears from mid-late reaching 

maximal expression at 8 hours. Also during this mid-late phase fatty acid metabolism, 

lipid transport and metabolic processes are repressed. Interestingly and in contrast to 

cluster-2, there is an up-regulation during the mid-late phase of negative regulators of 

apoptosis. Finally during the late response genes involved in proteolysis and antigen 

processing and presentation are expressed. 

 

 

IFN-γ Network Architecture 
 
To better visualise the architecture of the IFN-γ transcriptional-response network, a 

hierarchical interaction network of the clusters and their relationships was generated. 

(Figure 4.2). With the aid of an automated layout algorithm the cluster relationships 

were arranged to flow from left to right and in this direction display the temporal 

changes in transcription (from early to late response). Up regulated components 
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(coloured red) form discreet clusters with distinct expression profiles and three of 

these are the largest in the data set.  The down-regulated graph component (in green) 

on the other hand is made up of comparatively smaller clusters with more intricate 

connections. The largest portion of transcriptional changes occurred during the mid-

period (taking place at 4 h post treatment).  In comparison fewer genes were regulated 

at the early (1-2 h) or late stages (24 h).  Furthermore only up-regulated clusters 

formed the immediate early response. 

 

To better visualise the temporal changes in gene expression, the average expression 

profile of all transcripts within clusters across a given time phase (immediate early, 

early, mid, mid-late and late) was plotted across the 11 arrays (Figure 4.3). Average 

expression for up and down regulated clusters was calculated separately, and the 

average maximal/ minimal expression varies across the different time phases.  
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Figure 4.2: Hierarchical interaction network of the IFN-γ transcriptional response in mouse BMDMs. 
Clusters relationships are shown by edges connecting the large red or green spheres, representing up 
(red) or down (green) regulated components of the response. Cluster membership (and relative size) is 
shown by the smaller red or green spheres connected to the larger cluster node and clusters are 
arranged to follow the order of temporal changes in expression. Transcripts within immediate-early 
clusters change in expression ~ 1-2 hours post treatment, those in early clusters ~ 2-4 hours, mid ~ 4-8 
(4>8) hours, mid to late ~ 4-8 (4<8) hours and late ~8-24 hours. 
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Figure 4.3: The average expression of transcripts stimulated (red) or suppressed (green) in response to 
IFN-γ treatment of BMDM across different temporal phases of the transcriptional response.  
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IFN-β transcriptional network 
 
12 Affymetrix Mouse Exon ST Arrays were successfully processed for this study all 

passing the QC. As with the IFN-γ-analysis raw data was normalised using RMA and 

statistical filters were applied to the normalised data as a method for removing noisy 

and potentially un-interesting data. A network graph of the filtered data was 

generated resulting in a graph of 2,045 nodes, connected by 92,947 edges at a Pearson 

correlation threshold of 0.9 or above (Figure 4.4). The resultant graph was clustered 

using the graph-based clustering algorithm MCL set at an inflation value of 2.2 

resulting in 33 clusters (with greater than 5 nodes). 18 of these clusters were 

considered to represent interesting patterns of expression. As with the IFN-γ network 

graph the IFN-β network also comprises two main graph components representing up-

regulated transcripts or down regulated transcripts. 
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Figure 4.4: Transcriptional network formed from expression data of a time-course of IFN-β stimulation 
of mouse BMDMs. Mouse BMDMs were treated for 1, 2, 4, 8, and 24 hours with IFN-β or were not 
treated (0 hours). Gene expression across each time-point was measured on Affymetrix Mouse Exon 1.0 
ST Arrays and a Network graph of the data generated using BioLayout Express3D. The network was 
filtered to display only relationships at or above a Pearson correlation threshold of 0.9, resulting in a 
graph 2,045 nodes connected by 92,947 edges. The resultant network was then clustered using the 
graph-based clustering algorithm MCL set at an inflation value of 2.2. Nodes (transcripts) belongings to 
same cluster share the same colour. 
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Using the same cluster description process as used with the IFN-γ dataset, the clusters 

were assigned a description based on the timing and duration of the expression 

pattern they represented. The IFN-β clusters were also annotated based on their gene 

membership and over-representation of cohorts of functionally associated genes using 

DAVID analysis of GO biological and metabolic process annotations. Table 4.2 

summarizes the major clusters of interest in the IFN-β response data set arranged 

according to the temporal phase of the response they represent (early (1-2 h), early (2-

4 h), mid (4-8 h), mid to late (4-8 h) and late (24 h)).  

 

The immediate early response consisted of 16 transcripts increasing in their 

expression, including the suppressor of cytokine signalling, Socs3. The function of 

many of the genes represented within the immediate early clusters is currently poorly 

characterised and the only relevant annotation obtained from DAVID was ‘receptor 

linked signal transduction’.  Regulation of phosphorylation and transcription factor 

activity were the predominant signals during the early-phase of the IFN-β response, 

although this phase also saw the repression of genes related transcription-regulation 

and MAPKinase phosphatase activity. The mid-phase response consists of two of the 

largest clusters (clusters 1 and 2), both of similar size (379 and 376 transcripts 

respectively).  Transcripts within cluster-2 reached maximal expression around 4 h post 

IFN-β stimulation and are enriched for many of the well-known interferon-response 

genes including; Ifit1, Ifit2, Oasl1. In contrast, cluster-1 represents the repression of 

cell-cycle related activity including DNA replication, DNA repair and mitosis. By the 

mid-to-late phase only 52 transcripts are represented in the Up-regulated portion of 

the network graph and 81 transcripts in the down-regulated side. The late response 

predominantly comprises the repression of additional cell cycle related genes (cluster-

5), as well the induction of a handful of transcripts associated with T- and B-cell 

activation, potentially suggesting facilitation of adaptive immune response. 
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Cluster Description Example Gene 
Member 

Processes/ Functions 

Im
m

e
d

i

at
e

 

Ea
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y 

18 ↑ 10 Ifnb_transient_Up_1-2_C18 Socs3, Nfkbiz Annotation Stats Unavailable 

30 ↑ 6 Ifnb_transient_Up_2_C30 
Olfr410 
Olfr568 

Trib3 

Cell surface receptor linked signal 
transduction 

Ea
rl

y 

7 ↑ 75 Ifnb_transient_Up_2_(1-4)_C7 Socs1,Irf1, Nod2 
Regulation of phosphorylation, 

transcription factor activity, response to 
wounding hemopoiesis 

10 ↓ 32 Ifnb_transient_Down_2_(1-4)_C10 Mapk7, Zfp52 
Regulation of transcription; zinc ion 

binding; MAPkinase phosphatase activity. 

23 ↓ 7 Ifnb_transient_Down_2_(1-4)_C23 
Phf23 

Zfp275 
Zfp708 

Zinc ion binding 

19 ↑  9 Ifnb_sustained_Up_4_(1-8)_C19 
Rab9 
Rtp4 

Negative regulation of cell proliferation 

M
id

 R
e
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o

n
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2 ↑ 376 Ifnb_transient_Up_4_(1-4)_C2 
Casp7, Cd40, 

Ifit1, Irf5, Nod1 

Immune response; defense response; 
cytokine activity; regulation of leukocyte 

activation; regulation of leukocyte 
proliferation; innate immune response; 

regulation of apoptosis 

3 ↑ 208 Ifnb_transient_Up_4_(2-4)_C3 
Stat1, Stat2, 

Gbp1, Psmb9 
Immune response; ribonucleotide binding; 

antigen processing and presentation 

8 ↓ 40 Ifnb_transient_Down_4_(2-4)_C8 Cdca7, Zfp60 
Regulation of transcription, DNA binding, 
zinc ion binding, chromatin organization 

1 ↓ 379 Ifnb_transient_Down_4_C1 
Brca1, Cdk2, 

Mcm2, Mdm1 

Cell cycle; DNA metabolic process; DNA 
replication; cellular response to stress; 
DNA repair; M phase; mitotic cell cycle 

4 ↓ 197 Ifnb_transient_Down_4_C4 
Dusp3, 

Mapkapk3,  

Nucleotide receptor activity-G-protein 
coupled; dephosphorylation; transcription 

regulator activity; ,  

M
id
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at

e
 

R
e
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o

n
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16 ↓ 13 
Ifnb_4-min_24-

max_Down_Up_4_&_24_C16 
Cxcr3 
Gas6 

Annotation Stats Unavailable 

9 ↑ 39 Ifnb_sustained_Up_8_(1-8)_C9 Ccl5, Tlr7 

Immune response; inflammatory response; 
antigen processing and presentation; 
immune effector process; chemokine 

activity.  

6 ↓ 81 Ifnb_transient_Down_8_(4-8)_C6 Pdk1, Rak3 
Oxidation reduction; response to oxidative 

stress 

La
te

 R
e
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o

n
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15 ↓ 15 Ifnb_sutained_Down_2-24_C15 
Ccdc18 
Dus4l 
Fbxo5 

Meiosis, M phase of Meiotic cell cycle, 
tRNA metabolic process 

5 ↓ 173 
Ifnb_sustained_Down_24_(2-

24)_C5 
Bub1, Kif22, 
Serpinb10 

Cell cycle; cell division, M phase, mitotic 
cell cycle, nuclear division, organelle 

fission, DNA replication 

14 ↑ 20 Ifnb_sustained_Up_8-24_C14 Fdg4, Tmem178 Annotation Stats Unavailable 

12 ↑ 30 Ifnb_sustained_Up_24_(8-24)_C12 Ccr5, Cd28, Ly9 

Positive regulation of interleukin-2 
production, T cell selection, T cell 

proliferation, positive regulation of B cell 
activation. 

Table 4.2: Description of clusters of co-ordinately expressed transcripts in response to IFN-β stimulation of 
mouse BMDMs. Clusters are arranges according to the timing of response they reflect. 
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IFN-β Network Architecture 
 
In order to better visualise the structure of the transcriptional response network of 

mouse BMDMs to IFN-β stimulation a hierarchical interaction network of the clusters 

and their relationships was generated (Figure 4.5). As with the IFN-γ network (Figure 

4.2) the clusters are arranged to follow the temporal response (moving from early to 

late) and the ‘up’ and ‘down’ regulated graph components are shown in red and green 

respectively. The overall sizes of the Up and Down graph components is comparable, 

suggesting the extent of transcriptional induction is similar to the extent of 

transcriptional repression. The majority of transcriptional changes occur during the 

mid-phase, and the immediate-early response is reserved to up-regulated transcripts. 

The average expression profile of transcripts within clusters across a given time phase 

(immediate early, early, mid, mid-late and late) is shown in Figure 4.6. The average 

expression for up and down regulated clusters was calculated separately, and the 

average maximal/minimal expression varies across the different time phases.  
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Figure 4.5: Hierarchical interaction network of the IFN-β transcriptional response in mouse BMDMs. 
Cluster relationships are shown by edges connecting the large red or green spheres, representing up 
(red) or down (green) regulated components of the response. Cluster membership (and relative size) is 
shown by the smaller red or green spheres connected to the larger cluster node and clusters are 
arranged to follow the order of temporal changes in expression. Transcripts within immediate-early 
clusters change in expression ~ 1-2 h post treatment, those in early clusters ~ 2-4 h, mid ~ 4-8 (4>8) h, 
mid to late ~ 4-8 (4<8) h and late ~8-24 h.  
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Figure 4.6: The average expression of transcripts stimulated (red) or suppressed (green) in response to 
IFN-β treatment of BMDM across different temporal phases of the transcriptional response. 
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Comparison of transcriptional responses of BMDMs to IFN-β 
and IFN-γ 
 
The IFN-β and IFN-γ time-course experiments were originally conceived and analysed 

separately. Thus every aspect of the experimental set-up (from cell culture to 

microarray processing) was performed separately. However given our desire to 

understand the interplay between the type-I and type-II response [146], methods for 

comparing the two responses were explored. Ideally for comparative purposes the two 

experiments would have been set up and processed alongside each other. 

Nevertheless there was some legitimate reasons to believe that amalgamating the raw 

expression data from the two data sets and analysing these together would work, 

given the similarities of the experimental set up and the use of the same microarray 

platform. To explore whether the combined analysis of the two time-courses was 

viable the raw data sets were normalised together and some basic QC steps 

performed. A Pearson correlation matrix (Figure 4.7) of the normalised signal intensity 

across all 23 arrays (12 IFN-β and 11 IFN-γ) illustrated that the array samples correlate 

more strongly by the date of the experiment rather than by time post-treatment. In 

particular the 0 h IFN-β and 0 h IFN-γ pre-treatment samples do not appear closely 

correlated, as would be expected with un-treated samples of the same cell lineage, 

implying the concatenation of two datasets may not generate robust normalised data. 

This was further corroborated by plots of the average normalised expression of 

negative control probes on the arrays (Figure 4.8) where expression appeared elevated 

across the IFN-β arrays. Expression of control probes would be expected to be of 

similar intensity across all arrays but markedly different normalised values for negative 

control probes would further indicate fundamental differences between the two 

datasets.   
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Figure 4.7: A Pearson correlation matrix of the normalised signal intensity across 23 microarrays (12 
IFN-β and 11 IFN-γ). Raw data (CEL intensity files) from both the IFN-β and IFN-γ time-course 
experiments were normalised together using RMA. A Pearson correlation matrix of the signal intensity 
across the arrays was generated to gain an indication of which arrays were most correlated.  
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Figure 4.8: Average expression of Affymetrix negative control probes across 23 microarrays sampling 
IFN-β or IFN-γ treatment of macrophages. Raw data (CEL intensity files) from both the IFN-β an IFN-γ 
time-course experiments were normalised together using RMA. The average normalised expression of 
negative control probes on all 23 arrays was plotted. 
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The distinct differences of two sets of samples processed on different occasions 

impeded their combined analysis.  However the network analyses of the individual 

data sets can still be utilized to compare and contrast the transcription response to 

these cytokines.  Lists of co-ordinately expressed transcripts i.e clusters can be 

imported from one data-set and highlighted onto the network graph of another. 

Although absolute values of expression cannot be compared, it is possible to identify 

overlap in transcriptional activity and patterns of expression. 524 transcripts (matched 

by their unique gene-probe ID’s) were found to be common between the IFN-β and 

IFN-γ networks. DAVID analysis of GO annotations revealed the most over-represented 

biological process terms for the overlapping transcripts were ‘immune response’, ‘cell 

cycle’ and ‘intracellular signalling cascade’.   

 

In order to better visualise areas of overlap between the type-I and type-II response, 

the transcripts common to both networks were highlighted on the IFN-γ network 

according to their membership in IFN-β clusters (Figure 4.9).  Conversely the common-

transcripts were also highlighted on the IFN-β network according to their membership 

in IFN-γ clusters. 71 transcripts from the IFN-β cluster-01 (Ifnb_transient_Down_4_C1) 

were represented exclusively in the down-component of the IFN-γ network. Over half 

(201) of the transcripts within IFN-β cluster-02 were present in (only) the up-response 

of the IFN-γ network and 69% of these were represented in the mid phase of the 

response. In contrast IFN-β_cluster-03 transcripts were predominantly present during 

the mid-to-late stage of the IFN-γ-Up response. Up to half of IFN-γ cluster-05 

transcripts were common with transcripts from IFN-β cluster-05, both of which 

according to their GO annotations suggest repression of genes associated with the cell 

division and the mitotic phase of cell cycle. Four of the six transcripts (Axud1, Nfil3, 

Nfkbiz, Socs3) belonging to immediate early IFN-β-cluster-30 were also present in IFN-γ 

immediate early response. IFN-γ clusters with very little overlap of IFN-β cluster-

transcripts included cluster-06, cluster-08 and cluster-16, all representing up-regulated 

transcripts. The DAVID based annotations for these three clusters suggest their 

transcripts are associated with positive regulation of transcription (cluster-16), 
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negative regulation of apoptosis (cluster-08), and antigen processing and presentation 

(cluster-06).
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Figure 4.9: IFN-β transcript representation in the IFN-γ transcriptional network. Clusters of transcripts co-ordinately expressed in response to IFN-β stimulation of 
mouse BMDMs were imported from the IFN-β response network and highlighted on the IFN-γ network to reveal areas of overlap between the type-I and type-II 
response. 524 transcripts were common between the two data sets and these have been enlarged, elongated and coloured according to their IFN-β cluster membership. 
Transcripts that are not shared with the IFN-β network are shown as compressed, dark blue spheres. (See text for a description of the cluster overlap).   
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110 transcripts from IFN-γ cluster-01 and 122 transcripts from IFN-γ cluster 02 were 

present within the IFN-β network, and over 90% of these were within the mid-phase of 

the Up-response (see Figure 4.10 for illustration of cluster overlap). In total 57 

members of IFN-γ cluster-03 appeared within the IFN-β network, the majority were 

within the IFN-β early or mid-phase Up response. 50 transcripts belonging to IFN-γ 

cluster-04 were scattered across the different phases of the IFN-β down response. 47 

transcripts from IFN-γ cluster-05 were represented within the IFN-β network and 70% 

of these were within IFN-β cluster-05. Whereas IFN-y cluster-05 represents down 

regulation around the mid-phase, the IFN-β cluster-05 bears transcripts repressed 

during late stage of the IFN-β response. Other interesting areas of overlap include 

eight transcripts from the IFN-γ early response cluster-11 also present across the Up-

early phase of the IFN-β response. IFN-β clusters with little overlap with IFN-y network 

transcripts were the down-response clusters; cluster-08, cluster-10 and cluster 15. 

DAVID based GO annotations for these clusters suggest transcripts belonging to either 

cluster-08 or cluster-10 are associated with regulation of transcription and zinc ion 

binding.   
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Figure 4.10: IFN-γ transcript representation in the IFN-β transcriptional network. Clusters of transcripts co-ordinately expressed in response to IFN-β stimulation of 
mouse BMDMs were imported from the IFN-γ response network and highlighted on the IFN-β network to reveal areas of overlap between the type-I and type-II 
response. 524 transcripts were common between the two data sets and these have been enlarged, elongated and coloured according to their IFN-γ cluster membership. 
Transcripts that are not shared with the IFN-γ network are shown as compressed, dark blue spheres. (See text for a description of the cluster overlap). 
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Discussion 
 
The investigations of this Chapter set out to explore the pattern of transcriptional 

events in mouse BMDMs in response to type-I and type-II interferons. Specifically the 

objectives were twofold: (1) to gain a better understanding of the transcriptional 

events over a 24h time-course in response to IFN-β and IFN-γ respectively, and (2) to 

explore the application of network-based visualisation and analysis for the 

interpretation of the expression data generated. 

 

The Affymetrix Exon Arrays are designed for two complementary levels of analysis; 

gene expression and alternative splicing. Multiple probes (approximately four) are 

designed to target each exon and these probes can also be summarised into an 

expression value of all transcripts from the same gene.  A relatively new technology at 

the time, the arrays had many (17,000) probes un-annotated at the exon level. 

Furthermore the software support for analysing splicing events was still in its infancy. 

Exon-level analysis was explored for the data sets generated, but ultimately ‘gene-

level’ analysis was used as few if any convincing alternative-splicing events could be 

detected over the time-course of investigation. Thus having considered these caveats 

and given the original interests and objectives were not to identify alternative splicing 

events, a ‘gene-level’ analysis was more apt for this purpose. The raw expression data 

was normalised and statistical filtering applied beforehand to remove those transcripts 

with little change in expression across the arrays. A network based explorative 

approach was performed to visualise and analyse the expression data.  

 

Analysis of the individual data sets was performed first and overlap in the 

transcriptional response to the two cytokines was assessed.  Attempts were also made 

to concatenate the raw data sets to analyse them together.  In theory this was a 

feasible option since the two experiments were set up in similar formats; identical 

time-points, cell lineage, similar stimuli, and identical microarray platform. However in 

practice the data sets could not be analysed as one. This could be for several reasons 

technical reasons; the experiments were processed at different times, as were RNA 
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preparation, RNA labelling and microarray processing each factor potentially giving rise 

to systematic differences between the two data sets. Other biological reasons may 

have also influenced the differences in the two data-sets, for example the CSF-1 state 

of the cells. In the IFN-γ experiment cells were differentiated in L929-conditioned 

medium, whereas in the IFN-β experiment the cells were differentiated directly with 

recombinant CSF-1. CSF-1 was present throughout the time-course treatments in both 

experiments and is known to regulate a range of signalling pathways in macrophages 

[250]. The differences in cell culture techniques may therefore have influenced the 

concentration and action of CSF-1 on the cell and could be responsible for biological 

differences in the data sets.  

 

Network visualisation and analysis 
 
BioLayout Express3D was used to generate network graphs of the expression data 

derived from mouse BMDM stimulated with either IFN-β or IFN-γ over a time-course of 

24 h.  The network graphs generated from the data of both experiments (Figures 4.1 

and 4.4) encompassed two main graph structures, one comprising nodes (or 

transcripts) whose expression was up-regulated in response to interferon stimulation 

and the other containing transcripts whose expression was repressed. The resulting 

networks were divided into clusters of co-ordinately expressed transcripts using the 

MCL algorithm and those representing interesting patterns of expression (i.e. not 

clusters representing co-ordinately regulated but not differentially expressed 

transcripts) were retained for further analysis. The clusters derived from the IFN-β 

time course data ranged from 379 nodes to 6 nodes and IFN-γ cluster membership 

ranged from 224 nodes to 7 nodes. Total combined IFN-β cluster membership was 

greater (1,711 transcripts) than total IFN-γ cluster membership (1,038 transcripts), 

suggesting the extent of transcriptional regulation in macrophages is greater in 

response to IFN-β compared to IFN-γ. Stimulation of human PBMCs with a number of 

cytokines over a 24-hour period also revealed the extent and scale of transcriptional 

changes are greater in response to type-I interferons (IFN-α, IFN-β, and IFN-ω) 

compared to the type-II interferon IFN-γ [246].   
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Methods to automatically organise networks (otherwise known as layout algorithms) 

can enable interesting relationships and structure within data to be seen more easily. 

Automated layouts are rarely perfect (discussed Chapter-2) and most are easier to 

interpret after subsequent manual node rearrangement. To better visualise the 

structure of the IFN-β an IFN-γ response networks, cluster relationships and cluster 

membership information were extracted from the 3D-network graphs (Figures 4.1 and 

4.4) and with the aid of an automated layout algorithm in yED Graph editor [251] a 

hierarchical layout of the information was generated. With additional manual 

arrangement, clusters were arranged to flow according to the temporality of the 

transcriptional changes they represent, whereby early changes in transcription were 

placed at the left of the graph and later changes to the right. Arguably the hierarchical 

arrangement of the networks (Figures 4.2 and 4.5) facilitated the visualisation of the 

structure of the interferon response. The networks clearly illustrate, the majority of 

transcriptional changes take place during the mid-phase following IFN-β stimulation 

and across the mid and mid-to-late phase following IFN-γ stimulation. Genes of 

interest can be imported and highlighted onto to the (hierarchical) networks and their 

behaviour or annotation based on previous analyses can be contrasted to what is 

depicted in the existing network. This functionality was utilized to identify the overlap 

between the two networks and gain an appreciation how transcripts within IFN-β 

clusters behaved in the context of the IFN-γ network (and vice versa). Networks are 

well-defined mathematical objects and computational analysis of patterns within the 

network such as the use of the MCL algorithm here enables an automated and 

unbiased approach to data analysis and hypothesis generation. Nevertheless manual 

interpretation of the results is always necessary to ensure biological relevance. 

 
 

The IFN-β and IFN-γ transcriptional response in mouse BMDMs 
 

The networks generated (Figures 4.2 and 4.5) and functional annotation of clusters 

reveals both IFN-β and IFN-γ induce a complex transcriptional response, consisting of 

multiple gene sets encoding functional programmes controlling a number of different 
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processes. The structure and content of the type-I and type-II responses observed in 

this analysis concur with the previous studies [58, 238, 246].  IFN-β stimulation of 

macrophages resulted in the repression of a large number of genes associated with cell 

cycle and DNA replication around 4-8 h post treatment, including checkpoint-

associated genes; Chek1, Chek2. Another cluster of genes associated with cell cycle 

were repressed during the late phase and included Bub1, Bub1b, Mcm5, Mcm6. The 

most changing transcripts, in terms of the up-regulated response, were present in the 

major mid and mid-to-late phase of the IFN-β network and were indicative of main 

immune-related signature. Typical interferon response genes, Ifit1, Ifit2 were present 

within these clusters, as well as cytokines (Il10, Il15, Tnf, Fas), and apoptosis related 

machinery (Daxx, Casp7, Casp12). The largest proportion of changes in response to 

IFN-β treatment occurred during the mid-phase (4 h > 8 h), whereas in the IFN-γ 

response, the main body of changes were spread across the mid and mid-to-late phase 

(8 h > 4 h). This mid and mid-to late-phase of the IFN-γ up-regulated response was 

indicative of the activation macrophage anti-microbial signalling pathways and 

comprised; a number of genes encoding Toll-like-receptors (Tlr2, Tlr3, Tlr6), STAT 

proteins (Stat1, Stat2, Stat3, Stat5a and Stat5b), interferon regulatory factors (Irf5, and 

Irf8) as well as apoptosis related signalling (Tnf, Daxx, Fas, Traf1, Traf2). Ifng-cluster-01 

(of the mid-to-late phase) also comprised the gene encoding the MHC Class II 

transactivator; Ciita (the pathway depicting its activity is described in detail in Chapter-

3; Figure 3.7). As expected the late response to IFN-γ comprised the transcriptional 

activation of genes associated with MHC Class II antigen presentation (Ifng-cluster-6). 

The down regulated response induced by IFN-γ included the repression of cell cycle 

and DNA replication processes (Cdc6, Ccne2, Pole), as well as metabolic processes 

(clusters-7, 12 and 13). 

 

In comparison to the main body of the interferon response the role and significance of 

the genes regulated during the immediate early response is less well understood. The 

IFN-β immediate early response consists of 16 nodes of which five are currently un-

annotated and 29 transcripts make up the IFN-γ immediate early response (Figure 

4.11). In both IFN-β and IFN-γ networks the immediate early response comprises only 
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transcripts whose expression was induced in response to interferon stimulation. Socs3, 

Nfil3, Nfkbiz and Axud1 were present in the immediate early response to both 

cytokines. The role of the Socs (or suppressor of cytokine signalling) proteins is well 

characterised as part of a classical negative feedback loop induced to regulate the 

extent and duration of the response to cytokines [252-253]. The role of the other 

shared immediate early transcripts in the interferon response is less well understood. 

One study suggests the protein encoded by the Nfkbiz gene may positively regulate 

IFN-γ production in KG-1 cells (a human myeloid cell line)[254]. Other immediate early 

transcripts common between the two networks (although not within immediate early 

clusters in the corresponding study) included Trib3, Arid5b, Lrrc39, Ccl3 and Ccl4.  

Unique to the IFN-β network is Prdm1, which encodes a protein that is reported to act 

as a repressor of Ifnb1 gene expression [255] thereby forming another level of 

feedback regulation. A number of IFN-γ induced transcripts, including Dusp1, 

Gadd45G, Errfil and Ier3 have been implicated in some way in the cellular stress 

response [256-259]. Based on the limited annotation and studies related to these 

immediate early transcripts it is plausible their expression is induced in response to the 

stress of being exposed to the cytokines and well processes for regulating the extent of 

the activation by the cytokines e.g. Socs3 and Prdm1.  
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Figure 4.11: The IFN-β and IFN-γ immediate early transcriptional response.  Transcripts belonging to 
the immediate early response clusters of the IFN-β and IFN-γ response. * denotes un-annotated probe 
sets.  
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The type-I and type-II transcriptional response are known to share a number of 

transcriptional targets and such overlap in response was observed during this analysis  

(Figures 4.9 and 4.10). The role of type-I and type-II interferons is generally 

acknowledged to be non-redundant since efficient clearing of some viruses requires 

both types of interferon, whereas others require only type-I or type-II interferon. Thus 

exploration of the overlap and variation in the transcriptional response of IFN-β and 

IFN-γ may provide insight into their functional role. 524 transcripts were common to 

both the IFN-β and IFN-γ networks (Figures 4.9 and 4.10). It is probable that there are 

other shared transcripts not identified on this occasion as they may not have met the 

original network filtering thresholds. The most common GO annotations for the 

overlapping transcripts were ‘immune response’, ‘cell cycle’ and ‘intracellular signalling 

cascade’.  A number of the shared ISGs are transcription factors (including Stat1, Stat2, 

Stat3, Irf2, and Irf5) and may drive the subsequent waves of transcription response 

following initial interferon stimulation.  Network graphs highlighting the overlap 

between the IFN-β and IFN-γ data suggest the activity of the shared transcripts is on 

the whole consistent between the two responses. For example IFN-β cluster-02 and 

cluster-03 transcripts appear predominantly across the IFN-γ Up-response graph 

component around the mid- and mid-to-late phase.  Although comparison of the data 

sets is somewhat confounded the overall response observed is still typical of the type-I 

and type-II response reported elsewhere [58, 238, 246]. For example the IFN-γ cluster-

06 comprising transcripts associated with MHC class II antigen presentation and 

processing (a process regulated efficiently by type-II interferon [239-240]) shared very 

little overlap with the IFN-β network. 

 

Conclusions & Further Work 

The transcriptional changes observed in response to IFN-γ and IFN-β were fitting with 

the well known and documented activities of these cytokines, for examples; MHC Class 

II activation by IFN-γ, the anti-proliferative signature induced by the IFNs, as well as the 

classical anti-microbial response. The network based analysis of the gene-expression 

data illustrated clear structure in the transcriptional response generated by the two 

cytokines. Moreover the analyses also revealed a complex network of co-ordinately 
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expressed transcripts, many of aspects of which are currently poorly characterised and 

understood (e.g. the immediate early response genes). Future efforts may seek to 

unravel the significance of these genes in the type-I and type-II IFN responses.  

 

The comparison of the IFN-β and IFN-γ response in mouse BMDM was limited by 

experimental differences in the generation and processing of samples for the two 

micro-array studies. For a more rigorous comparison the two time-course studies 

would be conducted on the same days on samples derived from the same culture of 

cells. Processing of the samples for hybridisation to microarrays (from RNA extraction 

to labelling) would also be conducted simultaneously as well as the all aspects of the 

microarray processing (for example use of scanners).   

 

To further explore and validate the transcriptional responses observed, it would be 

valuable to follow up these findings using appropriate techniques. For example the 

IFN-β network analysis revealed a large response associated with the repression of 

cell-cycle related transcripts, suggesting cell division is being halted. FACS analysis 

could corroborate this suggestion as well as provide insight into the exact cell cycle 

phase the cells are in.   
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Methods and Materials 
 

 

Generation of type I and type II interferon response data sets  
 

During the course of these investigations I had two separate opportunities to run 12 

Affymetrix Mouse Exon arrays as part of the Wellcome Trust Advanced Course (WTAC) 

series in Functional Genomics and Systems Biology, where I was participating as an 

assistant. Given the interest in better understanding the transcriptional response of 

macrophages to IFN, a time-course of IFN-γ stimulation of mouse BMDM was 

generated during the 2007 WTAC.  Twelve microarrays were used to analyse 6 time-

points in duplicate (0, 1, 2, 4, 8 and 24 hours); the final MIAME compliant dataset is 

available in Array Express (record E-MEXP-1490). During the 2009 WTAC the 12 

microarrays were utilized to examine transcriptional events following IFN-β stimulation 

of mouse BMDMs at the same time points as the IFN-γ study and is available in the 

Gene Expression Omnibus (GEO accession: GSE20403).     

 

During the interim period between the two courses I moved from the Division of 

Pathway Medicine (UoE) to the Roslin Institute (UoE) where a slightly different 

macrophage cell culture technique was adopted (see Methods) to that used in the 

previous lab. Thus the two time-course experiments were performed on different 

years and in different laboratories with slightly different cell culturing techniques. 

However, even if this compromised cross-comparison of experiments, the individual 

data sets generated were of high quality.  

 

 

IFN-γ Study 

 

Cell culture and treatment 

Primary mouse bone marrow derived monocytes were prepared from male BALB/c 

mice 10–12 weeks old. Cells were washed, resuspended in DMEM-F12/10% FCS/L929 

medium and counted before being plated in a 24-well plate at a concentration of 5 × 

http://www.wellcome.ac.uk/Education-resources/Courses-and-conferences/Advanced-Courses/Courses/WTX026850.htm
http://www.ebi.ac.uk/arrayexpress/browse.html?keywords=E-MEXP-1490&expandefo=on
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20403
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105 cells/well. To differentiate the cells from monocytes into primary macrophages, 

cells were then incubated for 7 days in DMEM-F12 growth media supplemented with 

10% L929 cell suspension releasing the MCP-1 macrophage stimulating factor, with 

media changes on days 3 and 5. On day 7 the growth medium was replaced with 

DMEM-12/10%FCS medium containing 10 U/ml recombinant mouse interferon gamma 

(Pierce-Thermofisher Scientific, Rockford US) and harvested 1, 2, 4 & 8 h following 

treatment or collected pre-treatment (0 h).  

 

RNA extraction, QC and labelling for arrays 

Total RNA was harvested from the cells using an RNeasy Plus kit (Qiagen) according to 

manufacturer's instructions. RNA was quantified and quality controlled using a 

NanoDrop spectrophotometer (Nano-Drop Technologies) and BioAnalyser 2100 

(Agilent). Replicate 150 ng samples of total RNA derived from two separate wells per 

time point were labelled using the Affymetrix whole transcript labelling protocol and 

hybridized for 16 h at 45°C to Affymetrix mouse exon 1.0 ST arrays. They were then 

washed and scanned according to manufacturer's recommendations. 

 

Data processing and network analysis 

Data (ArrayExpress Ac. No: E-MEXP-1490) was normalized using the RMA package 

within the Affymetrix Expression Console software and annotated. Transcripts which 

might be considered to be differentially expressed were identified using either the 

Empirical Bayes function within Bioconductor (http://www.bioconductor.org/) or using 

the annova function within GeneSpring (Agilent Technologies, Stockport, Cheshire) 

with a 1.6 fold cut-off. In total 1,678 transcripts were identified by one or both of these 

filters. The data corresponding to this list was then loaded into the network 

visualization tool BioLayout Express3D [23] using a Pearson correlation cut-off of 0.9 to 

filter edges. The resultant network graph (Figure 4.1) of 1,474 nodes was clustered 

using the graph-based clustering algorithm MCL [137] set at an inflation value of 2.2 

resulting in 40 clusters with a membership of 6 or more nodes (transcripts).  

 

http://www.bioconductor.org/
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IFN-β Study 

 

Cell culture and treatment 

Bone marrow derived macrophages (BMDM) were prepared from femurs of 8-9 week 

old male BALB/c mice. RPMI 1640 medium (Sigma-Aldrich, Gillingham, UK) 

supplemented with 10% heat inactivated foetal bovine serum (FBS) (Sigma-Aldrich 

Gillingham, UK), 25 U/ml penicillin (Invitrogen, Paisley, UK), 25 µg/ml streptomycin 

(Invitrogen, Paisley, UK), and 2 mM L-glutamine (Invitrogen) (complete medium) was 

used for culture of the BMDM. Briefly, bone marrow cells were cultured for 6 days in 

complete medium in the presence of 10,000 U/ml CSF1 (a gift from Professor David 

Hume) on 10 cm square bacteriological plastic plates, with a re-supplement of CSF1 on 

day 5. On day 6 cells were harvested, counted, re-suspended in complete medium with 

10,000 U/ml CSF1 and plated out onto 6-well tissue culture plates at a density of 1 x 

106 cells per well and cultured for a further 24 h. Cells were maintained in a 37°C 

incubator containing 5% CO2. On day 7 cells were treated with 10 U/ml recombinant 

mouse interferon-beta (IFN-β) (PBL Interferon Source, New Jersey, USA) and harvested 

1, 2, 4, 8 and 24 h following treatment or collected pre-treatment (0 h).  RNA 

extraction, QC and labelling for arrays was performed as for the IFN-γ study with the 

exception that 300 ng of RNA was used instead of 150 ng. 

 

Data processing and network analysis 

Data (GEO accession no GSE20403) was normalized using the RMA package within the 

Affymetrix Expression Console software and annotated. Transcripts which might be 

considered to be differentially expressed at each time point compared to 0 h were 

identified using the Empirical Bayes function within the Bioconductor 

(http://www.bioconductor.org/) package of the R statistical programme using a 1.5 

fold cut-off and a p-value of 0.05. According to this analysis 2,300 transcripts were 

considered to be differentially expressed. Data corresponding to these transcripts was 

then loaded into the network visualization tool BioLayout Express3D [138, 206] using a 

Pearson correlation cut-off of 0.9 to filter edges. The resultant network graph (Figure 

4.4) of 2,045 nodes (connected by 92,947 edges) was clustered using the graph-based 

http://www.bioconductor.org/
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clustering algorithm MCL [137] set at an inflation value of 2.2 resulting in 33 clusters 

(with greater than 5 nodes). Manual inspection of the clusters revealed 21 clusters of 

interest i.e. their expression profile was consistent with the genes being regulated by 

IFN-β. Resulting clusters represent patterns of co-expression amongst transcripts in the 

network graph. The clustered data was then exported as “class-sets” for overlaying 

onto other datasets (including the IFN-γ response network) as well as the macrophage 

pathway diagram. 
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Chapter 5. siRNA Targeting of Key Regulators of the 
Interferon Pathway 
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Introduction 
 
Chapters 2 & 3 described the assembly of an in silico model of receptor-initiated 

signalling pathways in the macrophage, including type-I and type-II interferon 

signalling cascades. The analyses included in Chapter-4 attempted to characterise the 

transcriptional response of BMDMs to IFN-β and IFN-γ using a network based approach 

to analyse microarray data. Leading on from these studies (in Chapters-2 to 4) and 

other investigations within the group [146] was the desire to study the contribution of 

individual pathway components to the interferon response. Based on previous 

investigations we found the siRNA induced knockdown of certain genes, perturbed 

transcriptional networks associated with type-I interferon signalling [146] and using 

the pathway model it was possible to hypothesise a rational explanation for these 

observations. The investigations described in this Chapter-(5) aimed to reproduce our 

previous findings [146] and extend these investigations to other genes known or 

hypothesised to modulate type-I interferon signalling. In order to begin to perform 

such an analysis it was first necessary to optimise an in vitro assay for using siRNA-

based screening in mouse primary BMDMs. Therefore the major focus of the work 

described here was to define and optimise an in vitro screening assay to study the 

effect of gene knockdowns on the interferon response. The secondary focus was to 

then use (and test) the optimised screening protocol to the study the role of genes of 

interest in type-I interferon signalling.   

 

Modulation of type-I interferon signalling by targeted siRNA induced 
gene knockdown - Prior work 
 
Previous data generated by our group suggested targeted knockdown of certain genes 

by siRNA in mouse BMDMs perturbs siRNA-lipofection induced type-I interferon 

signalling [146]. Specifically the siRNA’s resulting in this marked shift in the 

macrophage transcriptome, targeted the Ifnb1, Irf3, Irf5, Stat1, Stat2 and Nfkb2 

transcripts. Transfection of other siRNA’s (in this case targeting the Casp4, Ifi47, Lyn, 

Sod2, Traf1 transcripts), resulted in the activation of transcriptional networks typically 
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associated with interferon signalling to a similar degree to control non-targeting siRNA 

(Chapter-1; Figure 1.7). A simplified schematic describing the expected outcome (in 

terms of ISG expression) to treatment with non-targeting siRNA or with siRNA 

targeting a gene which acts as a positive regulator of type-I signalling is shown in 

Figure 5.1.  

 

Certain macrophage PRRs (TLR3, TLR7, TRL8, RIG-like-receptors) are thought to be 

sensitive to synthetic siRNA resulting in activation of the immune system in 

mammalian cells [260-263]. Engagement of these receptors with viral RNA or in this 

case the synthetic siRNA leads to the eventual assembly and activation of the IFN-β 

enhancesome. Four (Irf3, Ifnb1, Stat1, Stat2) of the six gene targets which perturbed 

transcriptional networks associated with type-I IFN signalling [146] are known to act 

within the same (IFN-β) pathway [189, 264-265].  

 

The role of the Irf5 and Nfkb2 transcription factors in the IFN response is less well 

characterised and/or established, particularly at the pathway level. There is evidence 

to implicate these proteins in the immune and IFN response [266-271]. The most 

compelling of this evidence suggests high IRF5 expression (in mice and humans) is 

characteristic of the M1 phenotype of macrophages in which it directly activates the 

transcription of certain genes encoding inflammatory mediators [272]. 
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Figure 5.1: Predicted response of primary mouse macrophages to siRNA tranfection using a lipid delivery vector. Macrophages not exposed to siRNA/lipid are 
expected to express low/ basal levels of interferon stimulated genes. Transfection of a siRNA-lipid complex is expected to induce autocrine IFN-β production in the 
macrophage, as the siRNA/ lipid are detected by pattern recognition receptors. If the siRNA transfected into the macrophage happens to target a key component of IFN-
β/ type-I signalling (such as the Ifnb1 gene itself), it would be expected that level of autocrine IFN-β production and subsequent ISG expression would be lower relative 
to cells transfected with control-Non-Targeting siRNA or siRNA targeting genes not critical in the propagation of the interferon response.  
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Further studies are required to understand how and at what level the Irf5 and Nfkb2 

proteins are acting in the (type-I) interferon pathway. Other members of the group are 

currently investigating the role of Nfkb2 in macrophage signalling to follow up the 

observed effects of siRNA/ type-I response study [146] and to gain a better 

understanding of its action on macrophage signalling. Preceding these investigations 

was the desire to develop methods of studying the effects of siRNA mediated 

knockdown of the Nfkb2 gene, as well as other genes, with the objectives of:  

 

(i) Investigating whether it was possible to replicate the observations of the 

previous siRNA screen [146] (under new laboratory settings). 

(ii) Exploring whether other genes (not considered during the original study 

[146]) might also be implicated in mediating the type-I response in mouse 

macrophages.  

(iii) Optimising an experimental assay for screening genes by siRNA knockdown 

and thereby assessing their contribution to the type-I response or other 

macrophage activation pathways. 

 

Requirement for a new in vitro assay to study the role of other GOI in 
the type-I interferon response and a preliminary assay design  
 
The experimental setup of the previous study was not specifically designed to assay 

the effects of the gene knockdowns in the siRNA-induced type-I response. In fact the 

original study was designed to understand the role of the genes of interest in the 

context of the type-II interferon response (see Chapter-1 and [146]). The discovery 

that siRNA’s targeting the six genes (described above) perturbed transcriptional 

networks associated with type-I interferon signalling was to some extent 

serendipitous. For the investigations in this Chapter a new in vitro assay was designed 

to test the role of genes in the type-I response using siRNA.  One of the major reasons 

for the design of a new assay, as opposed to keeping entirely with the methodology of 

the previous screen was that the system of studying type-I response perturbation 

using a method (siRNA lipofection) that induces the signalling of interest may 

complicate the analysis of the role of the GOI. For example, it is possible the act of 
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siRNA transfection may induce Ifnb1 expression before the siRNA has had sufficient 

time to knockdown the GOI, therefore masking any influence the GOI may have in 

Ifnb1 regulation.  Alternatively by allowing sufficient time for gene KD, then using 

another (exogenous) stimulator of Ifnb1 expression in macrophages it may be possible 

to better attribute the contribution of the GOI to Ifnb1 production and/or subsequent 

type-I response. An exogenous stimulator of IFN-β signalling in macrophages is 

Lipopolysaccharide (LPS). LPS is the major component of the outer membrane of 

Gram-negative bacteria. It causes monocytes, macrophages and neutrophils to up-

regulate phagocytic functions and to release inflammatory mediators, including 

interleukins (IL-1, IL-6, IL-12), TNF, nitric oxide (NO) and interferons [273-274]. In 

macrophages, LPS stimulation induces the rapid transcription of IFN-β mRNA and 

protein secretion [275].  In turn IFN-β signalling forms a key portion of the LPS 

transcriptional response and LPS induced lethality [276-277]. Studying the effect of 

GOI knockdown in the context of the LPS response could be valuable not only because 

LPS serves as a stimulator of Ifnb1 expression, but also to further explore the 

contribution of IFN-β signalling in the LPS response. Thus another motivation to 

develop a novel in vitro assay was the interest in studying the role of the GOIs in the 

context of the LPS (induced-type-I) response. 

 

Figure 5.2 describes how LPS stimulation of macrophages could be incorporated to 

study the role of the GOI in the type-I interferon signalling response. The basic design 

of the assay was firstly to knockdown the genes using siRNA and measure any 

consequential change in Ifnb1 and type-I gene expression, and secondly challenge the 

cells with LPS to determine variability in Ifnb1 and type-I gene expression induction. 

Given this analysis was based on the desire to replicate and expand on observations in 

the previous siRNA screen [146] some consistency between the previous screen were 

maintained, including the supply of siRNA used (Dharmacon (Thermo Scientific) ON-

TARGET plus SMARTpool), and the choice of transfection method and reagent 

(Lipofectamine 2000). Previous data from the group suggested BMDMs are sensitive to 

Lipofectamine, but less so than Lipofectamine in combination with siRNA [146]. Others 

have optimised siRNA delivery by electroporation in primary BMDMs and suggested 
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this method does not affect macrophage function and phenotype [278]. However the 

study of lipid based siRNA delivery to macrophages warrants investigation in itself 

since it is argued to be the most tractable form of siRNA delivery in in vivo settings 

where electroporation is not viable. Furthermore synthetic non-viral, lipid-based 

vectors are considered the most feasible method for delivering DNA/RNA therapeutic 

agents since they are regarded to be safer than their viral counterparts and 

improvements in their chemistry and formulation are beginning to position them as 

viable alternatives to viral vectors [279].  
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Figure 5.2: Preliminary work flow for investigating the role of genes of interest (GOI) in the IFN-β 
signalling pathway. GOI knocked down in mouse bone marrow derived macrophages using siRNA, and 
then challenged with LPS. Subsequent Ifnb1 and type-I gene expression was measured, and some of the 
possible outcomes are shown. If a GOI knockdown results in either a reduced or augmented type-I 
response and Ifnb1 expression compared to controls, it could be plausible the GOI is either a positive or 
negative regulator respectively, of type-I response signalling. Other outcomes (not shown) are possible; 
a GOI knockdown may repress Ifnb1 expression but, enhance type-I expression or contrariwise.  
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Questions to be addressed in the design of an assay to study the role of 
genes of interest in the type I response in BMDMs 
 
Despite the advances in siRNA design to improve potency and reduce off-target 

effects, siRNA effectiveness can still vary across different cell types [280]. Furthermore 

conditions for optimal siRNA efficacy may need to be altered depending experimental 

design factors, for example the scale of throughput (screening in 6/24/96/384 well 

plates), method of siRNA delivery, other treatments the cells are exposed to, and the 

cellular environment [281].  Ultimately each experimental scenario requires careful 

optimisation to find a balance between siRNA induced knockdown potency and off-

target effects. Some of the specific questions that were to be addressed during the 

assay optimisation included: 

 

 What is the ‘ideal’ siRNA concentration to use for screens in mouse BMDMs? 

To explore this point the following parameters were investigated: 

o Uptake of increasing concentrations of siRNA in mouse BMDMs  

o Knockdown efficiency of increasing concentrations of siRNA targeting a gene of 

interest 

o Assessment of type-I response gene induction with increasing concentrations of 

siRNA 

o Changes in cell morphology with increasing concentrations of siRNA combined 

with LPS treatment. 

 

 What concentration of LPS should be used in the in vitro assay?  

To explore this point the following parameters were investigated:  

o Comparison of type-I response induced by LPS, IFN-β and NT-siRNA 

o Analysis of macrophage response to combined siRNA and LPS treatment 

o Analysis of macrophage response to 5 ng/ml LPS and 20 nM siRNA 

(concentrations which were chosen for the in vitro assay). The individual 

response and combined response to these stimuli was studied.  
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 What is the ideal siRNA-treatment time for obtaining optimal gene knockdown 

and type-I repression following LPS stimulation?  

To explore this point the following parameters were investigated: 

o Analysis of protein level knockdown over time 

o Analysis of gene-level knockdown and efficacy of downstream response 24 h or 

48 h post-siRNA transfection 

In addressing the above points the optimal time for measuring Ifnb1 expression in 

response to siRNA transfection as well as following LPS stimulation in mouse BMDMs 

was determined. Finally using the parameters established in the optimisation process 

(siRNA concentration, LPS dose, time of siRNA treatment), an in vitro assay for studying 

the role of GOI in the type-I and LPS response using siRNA was finalised. To test the 

assay as well as the potential role of the GOI in LPS signalling, a siRNA screen targeted 

a number of genes was performed and type-I signalling levels assayed by QPCR as well 

as genome-wide transcriptional profiling using siRNA.  
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Results 
 

Optimisation of an in vitro assay for screening the role of gene 
knockdowns in the interferon-β response and LPS response 
 
 
(1) Determination of ‘ideal’ siRNA concentration to use for screens in 

mouse BMDMs 

 

Previous data generated within the group relied on a final concentration of 20 nM 

siRNA when transfecting primary mouse BMDMs [146]. This concentration was not 

previously optimized.  I therefore examined the dose-dependence of siRNA actions in 

mouse BMDMs. 5, 20, 50 and 100 nM final concentrations of siRNA were transfected 

(using Lipofectamine 2000) into mouse BMDMs and cell morphology, siRNA 

transfection efficiency, target gene knockdown levels and immune activation were 

assessed.  

 

(1.1) Uptake of increasing concentrations of siRNA in mouse BMDMs  
 
Fluorescently labelled siRNA, siGLO Green, is a RISC-independent non-targeting control 

intended as a qualitative indicator of delivery, especially lipid-mediated transfection. In 

order to gauge the extent and dynamics of lipid-based siRNA delivery, the uptake of 20 

nM or 50 nM final concentration of siGLO in mouse BMDMs was monitored over time 

by confocal microscopy and cell images taken at 4, 7 and 24 h post transfection. This 

process was first performed at a cell seeding density suited for confocal imagery, (that 

is 50,000 cells per glass slide placed in a well of 24-well tissue culture plate) and was 

then repeated closer to a seeding density used in 24-well tissue culture experiment.  

 

At 50,000 cells per slide and challenged with 50 nM final concentration siRNA, almost 

every cell contained the fluorescently labelled siRNA (Figure 5.3a&b). At 4 h post-

transfection, cells contained granular clusters of green fluorescence, as well as staining 

overlapping with the nuclear dye DAPI. By 7 h this staining was more diffuse and even 

more so by 24 h. Furthermore by 24 h patches of staining were observed in areas not 
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overlapping with cells. Subsequent observations suggested this may be residual stain 

from cellular debris arising from cell death (Figure 5.3.a&b). When 50,000 cells were 

treated at a final siGLO concentration of 20 nM, every cell appeared to overlap with 

fluorescent staining. Although at 4 h there appeared to be fewer granules of 

fluorescence compared to the 50 nM siRNA treatment, by 24 h there were large and 

clearly visible pools of staining overlapping or surrounding the DAPI staining (Figure 

5.4). Hence even with 20 nM siRNA every cell appeared to be transfected by 24 h of 

treatment. To determine if the extent of transfection was changed at a seeding density 

closer to that normally used in a well of 24 well plate, 163,000 cells per glass slide were 

exposed to a final concentration of 20 nM siRNA. Over the time-course of treatment 

the intensity of the staining increased and by 24 h the fluorescence overlapped or 

surrounded all nuclear staining, suggesting that even at a higher seeding density the 

siRNA is transfected into most if not every cell (Figure 5.5). 
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Figure 5.3. (a) Time-course of uptake of 50 nM fluorescently labelled siRNA (siGLO) in mouse bone 
marrow derived macrophages. Mouse BMDMs were seeded at a density of 50,000 cells per glass cover 
slip placed in a well of a 24-well tissue culture plate. Lipofectamine 2000 was used to transfect the 
BMDMs with siGLO (fluorescent siRNA) at a final concentration of 50 nM and cells were fixed at 4, 7 and 
24 hours post-transfection. Nuclei were stained with DAPI. siGLO is chemically labelled with a 6-FAM 
fluorophore. Cell images were captured using confocal microscopy. No fluorescence was visible in the 
FITC channel of control (untreated) cells.  
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Figure 5.3. (b) Detailed cell images extracted from figure 5.3a showing uptake of 50 nM fluorescently 
labelled siRNA (siGLO) in mouse bone marrow derived macrophages over time. Mouse BMDMs were 
seeded at a density of 50,000 cells per glass slide place in a well of a 24-well tissue culture plate. 
Lipofectamine 2000 was used to transfect the BMDMs with siGLO (fluorescent siRNA) at a final 
concentration of 50 nM and cells were fixed at 4, 7 and 24 hours post transfection. Nuclei were stained 
with DAPI. siGLO is chemically labelled with a 6-FAM fluorophore. Cell images were captured using 
confocal microscopy.  No fluorescence was visible in the FITC channel of control (untreated) cells. 
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Figure 5.4: Time-course of uptake of 20 nM fluorescently labelled siRNA (siGLO) in mouse bone 
marrow derived macrophages. Mouse BMDMs were seeded at a density of 50,000 cells per glass slide 
place in a well of a 24-well tissue culture plate. Lipofectamine 2000 was used to transfect the BMDMs 
with siGLO (fluorescent siRNA) at a final concentration of 20 nM and cells were fixed at 4, 7 and 24 
hours post transfection. Nuclei were stained with DAPI. siGLO is chemically labelled with a 6-FAM 
fluorophore. Cell images were captured using confocal microscopy. No fluorescence was visible in the 
FITC channel of control (untreated) cells.  
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Figure 5.5: Time-course of uptake of 20 nM fluorescently labelled siRNA (siGLO) in mouse bone 
marrow derived macrophages. Mouse BMDMs were seeded at a density of 163,000 cells per glass slide 
placed in a well of a 24-well tissue culture plate. Lipofectamine 2000 was used to transfect the BMDMs 
with siGLO (fluorescent siRNA) at a final concentration of 20 nM and cells were fixed at 4, 7 and 24 
hours post transfection. Nuclei were stained with DAPI. siGLO is chemically labelled with a 6-FAM 
fluorophore. Cell images were captured using confocal microscopy. No fluorescence was visible in the 
FITC channel of control (untreated) cells.  
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1.2 Knockdown efficiency of increasing concentrations of siRNA targeting gene of 
 interest 
 
Having established that lipofection results in an efficient uptake of siRNA into 

macrophages at concentrations previously used, was the desire to then determine how 

the extent of gene knockdown would vary with differing siRNA concentrations. It might 

be expected that increasing concentrations of siRNA may achieve higher levels of gene 

KD, nevertheless any increase in efficiency of gene or protein knockdown should be 

evaluated alongside other variable factors including; the increase in cost of reagents, 

extent of immune activation, changes in cell morphology and cell toxicity. 

 

siRNA targeting either Nfkb2 or Irf7 genes was transfected into mouse BMDMs at 5, 

20, 50 or 100 nM final concentration for 24 h and expression of the target genes 

assayed by QPCR.  To control for any transfection induced changes in expression of the 

genes, non-targeting (NT) siRNA and a negative control designed to lack identity with 

known gene targets, were also transfected at the same concentrations into mouse 

BMDMs for 24 h. The data generated (Figure 5.6) several observations of interest; (1) 

Nfkb2 expression was suppressed beyond basal levels in samples treated with siRNA 

targeting Nfkb2, however Irf7 expression, even if lower than NT-siRNA treated 

samples, was slightly elevated compared to basal levels;  (2) regardless of the siRNA 

concentration used the expression levels of the GOI in the target-siRNA (Nfkb2 or Irf7)  

treated cells was similar (3) however increasing concentrations of NT-siRNA resulted in 

an almost exponential increase in GOI expression. Thus in terms of knockdown 

efficiency, comparing target gene expression at 100 nM NT siRNA treated cells vs. 100 

nM siRNA targeting the GOI, would appear to give the largest percentage knockdown. 

However, when transfected with 100 nM NT-siRNA the target genes are induced well 

beyond their basal expression level and this may have consequential downstream 

effects on macrophage signalling.   

 

Nfkb2 protein expression was also induced by tranfection of NT-siRNA, and to a 

greater extent with higher doses of siRNA (≥50 nM) (Figure 5.7), substantiating the 
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observations at the transcriptional level. In cells transfected with increasing 

concentrations of siRNA targeting the Nfkb2 gene, protein expression was supressed 

relative to cells transfected with the corresponding concentrations of NT-siRNA.  
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Figure 5.6: Assessment of gene knockdown efficiency 24 hours post treatment with increasing 
concentrations of siRNA. (a) Mouse BMDMs were transfected with four different concentrations of 
siRNA targeting the Nfkb2 gene or four different concentrations of non-targeting siRNA, or cells were 
untreated (control). Following 24 hours of treatment Nfkb2 expression was assayed in all samples. (b) 
Mouse BMDMs were transfected with four different concentrations of siRNA targeting the Irf7 gene or 
four different concentrations of non-targeting siRNA, or cells were untreated (control). Following 
24hours of treatment Irf7 expression was assayed in all samples. 
 

(b) 

(a) 
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Figure 5.7: Assessment of Nfkb2 protein knockdown efficiency 48 hours post treatment with 
increasing concentrations of siRNA targeting the Nfkb2 gene. Mouse BMDMs were transfected with 
four different concentrations of siRNA targeting the Nfkb2 gene or four different concentrations of non-
targeting siRNA, or cells were untreated (control). Following 48 hours following siRNA transfection cell 
were harvested and Western blot analysis performed on protein extracts from the cells using an Nfkb2 
antibody targeting the p100 and p52 isoforms of the Nfkb2 protein.    
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                             Chapter 5 

190 

1.3 Assessment of type-I response gene induction with increasing concentrations 

 of siRNA 

 

The gene knockdown results (Figure 5.6) suggested similar levels of knockdown are 

achievable with a range of siRNA concentrations, however GOI expression (Irf7, and 

Nfkb2) is induced by transfecting increasing concentrations of NT-siRNA. To better 

understand how type-I response signalling could be affected by increasing 

concentrations of siRNA, expression of Oasl1 and Ifit1 was measured in the 24 h gene 

knockdown samples (Figure 5.8). Measurement of these classical type-I response 

genes across the screen of siRNA concentrations suggests different patterns of 

concentration dependant expression. An exponential increase of Oasl1 and Ifit1 was 

observed in response to increasing concentrations of NT-siRNA; the response genes 

were induced to similar levels in samples treated with increasing concentrations of 

siRNA targeting the Irf7 gene, with the exception of 100 nM Irf7-siRNA, and finally; 

decreasing expression of Oasl1 and Ifit1 were observed with increasing concentration 

of siRNA targeting the Nfkb2 gene, with the exception of 100 nM Nfkb2-siRNA.  
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Figure 5.8: Type-I response gene expression in response to increasing concentrations of siRNA 
transfected into mouse BMDMs. (a) expression of Oasl1 or (b) Ifit1 was measured by QPCR in samples 
treated with four different concentrations of siRNA targeting either Irf7 gene or Nfkb2 gene or non-
targeting for 24 hours.  

(a) 

(b) 
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1.4 Changes in cell morphology with increasing concentrations of siRNA 
combined with  LPS treatment. 
 
A key aspect of the assay design was to incorporate LPS stimulation of the 

macrophages in order to better understand how siRNA induced knockdown of the GOI 

may perturb the (interferon component of the) LPS response. Consequently the cells 

would be exposed to two waves of immune activation, firstly by the process of siRNA 

lipofection and secondly by LPS stimulation.  Results suggest different concentrations 

of siRNA stimulate type-I response to varying extents (Figure 5.8), although the effects 

of subsequent LPS stimulation of the macrophages is unknown. In order to better 

understand the effects of the double stimulation of macrophages, cell morphology was 

monitored in BMDMs pre-treated with NT-siRNA at four different concentrations and 

then stimulated with modest concentrations of LPS (5ng/mL). Distinct changes in cell 

morphology in response to LPS stimulation were observed in cells treated pre-treated 

for 24 h with 50 nM or 100 nM NT-siRNA; the cells appeared highly granular, irregular 

in shape, with evidence of apoptotic bodies (Figure 5.9). These observations suggested 

the phenotype of the LPS stimulated macrophages pre-treated with 50 nM to 100 nM 

siRNA are considerably different from those stimulated with LPS alone or LPS in 

combination with lower doses of siRNA. The combination of results (Figures 5.3 – 5.9) 

indicate 50 – 100 nM does not enhance target gene knockdown levels, induces 

stronger immune signalling than lower concentrations, and in combination with LPS 

drives the phenotype of the cells to one indicative of cell death.  

 

Variability between the actions of 5 and 20 nM final concentration of siRNA was less 

distinguishable, and arguably the use of 5 nM concentration could have been 

investigated further. Given the effect of siRNA is transient and may wear off over time, 

and also since the previous siRNA screen was performed using 20 nM, this 

concentration was chosen over any lower dose for the remainder of the assay 

optimisation.     

 



                                                                                                                             Chapter 5 

193 

  
Figure 5.9: Changes in cell morphology with increasing concentration of siRNA and in combination 
with LPS. Mouse BMDMs were transfected with 5nM, 20 nM, 50 nM or 100 nM non-targeting siRNA for 
24 hours and subsequently challenged with 5ng/mL of LPS (Salmonella Minnesota rough strain) for 7 
hours. Cell morphology was assessed using a Nikon Diaphot inverted microscope and images captured at 
x400 magnification.  
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(2) Analysis of LPS response in mouse bone marrow derived 
macrophages 
 

To assess the ideal concentration of LPS to use following siRNA treatment of BMDMs 

the LPS response in these cells was examined. Specific questions explored included; 

how the LPS response compares with IFN-β stimulation of BMDMs; the concentration 

of LPS required to induce IFN-β mRNA detectable by QPCR; and the effects of 

stimulating macrophages that have already undergone siRNA lipofection with LPS. 

 

2.1 Comparison of type-I response induced by LPS, IFN-β and NT-siRNA 

 

To compare the extent of (type-I) activation of macrophages by 100 ng/ml LPS with 

IFN-β at a concentration (10 U/ml) previously studied (Chapter-4) and the intended 

final concentration of siRNA to be used (20 nM), BMDMs were treated with the three 

stimuli for 24 h and type-I gene expression assessed by QPCR (Figure 5.10). At this 

time-point the expression of the Oasl1 response gene was 13 to 30 fold more potent in 

100 ng/ml LPS treated cells compared to IFN-β treated or NT-siRNA treated cells 

respectively. To further compare type-I response activation following IFN-β or LPS 

treatment, Oasl1 expression was assayed at 24 h post treatment in response to a range 

of concentrations of IFN-β and LPS. The most comparable induction of Oasl1 was 

achieved at 100 U/ml Ifn-β and 10 ng/ml LPS (Figure 5.11).  

 

 
 
 
 
 
 



                                                                                                                             Chapter 5 

195 

 
Figure 5.10: Oasl1 gene expression in mouse bone marrow derived macrophages 24 hours following 
stimulation with mouse Ifn-β or non-targeting siRNA or LPS.  Mouse BMDMs were treated with either 
10 U/ml mouse Ifn-β, or 100 ng/ml LPS, or with 20 nM final concentration siRNA for 24 hours, or were 
untreated (control). Expression of the type-I response gene Oasl1 was measured by QPCR and is shown 
relative to its basal expression (control).  
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Figure 5.11: Oasl1 gene expression in response to increasing concentrations of mouse IFN-β or LPS 
stimulation of mouse bone marrow derived macrophages. Mouse BMDMs were stimulated with either 
IFN-β at concentrations of 20 U/ml, 50 U/ml or 100 U/ml, or with LPS at doses of 10 ng/ml, 20 ng/ml, or 
100 ng/ml for 24 hours, or were untreated (control). The relative expression of the type-I response gene 
Oasl1 was measured by QPRC from RNA extracted from the 24 hour treated samples.   
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In the context of this assay, LPS would be used to stimulate IFN-β production and type-

I response gene expression. Although the contribution of IFN-β signalling in the overall 

LPS response is acknowledged, few studies have dissected the precise differences 

between LPS and IFN-β response.  To grasp some of the differences in the expression 

and dynamics of gene induction by LPS and IFN-β, the expression of a selection of 

interferon response genes was measured by semi-quantitative PCR over time in 

response to stimulation by a range of LPS or IFN-β doses (Figure 5.13). Also performed 

in parallel for comparative purposes was the stimulation of BMDMs with 20 nM NT-

siRNA. Finally, in order to determine the extent of IFN-β production in response to 

varying doses of LPS and in response to the NT-siRNA , Ifnb1 gene expression was 

measured by QPCR in the early time-point samples (1 and 2 h) (Figure 5.12).  

 

In agreement with previous results Ifnb1 expression was induced in a dose responsive 

manner following LPS stimulation (Figure 5.12). When contrasting equivalent LPS 

doses, Ifnb1 expression was in general twofold higher 2 h post LPS stimulation 

compared to 1 hour post stimulation. At 1 hour and 2 h post-NT-siRNA transfection, 

Ifnb1 gene expression was not detectable. As expected Ifnb1 expression was not 

induced in BMDMs stimulated with IFN-β.  
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Figure 5.12: Ifnb1 gene expression in mouse bone marrow derived macrophages following treatment with non-targeting siRNA, or varying doses of LPS, or varying 
concentrations mouse IFN-β cytokine. Mouse BMDMs were stimulated with any of; 20 nM NT-siRNA; LPS at 50ng/ml, 20ng/ml, 10ng/ml, 5ng/ml or 2.5ng/ml; or mouse 
IFN-β at 100U/ml, 50U/ml, 10U/ml, 1U/ml, or 0.5U/ml for 1 hour or 2 hours. Expression of the Ifnb1 gene was measured by QPCR and is shown relative to Ifnb1 
expression in 0 hour (untreated) control sample. 
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Of the response genes assayed by semi-quantitative PCR, Tnf was preferentially 

induced by LPS, Il1b expression was exclusive to LPS, and both genes were induced as 

early as 1 hour post-stimulation (Figure 5.13). Mx2 and Socs1 genes were induced 

earlier by IFN-β and later by LPS, possibly reflecting the time-lag between LPS 

stimulation and autocrine IFN-β production. Oasl1 was induced marginally earlier in 

response to IFN-β (1 h) compared to LPS treatment (2 h). However by 7 h both LPS 

stimulated cells and cells treated at 100 U/ml to 10 U/ml expressed comparable levels 

of Oasl1.  Irf5 was induced by both LPS and IFN-β. The response genes analysed were 

not induced at 1 hour or 2 hour post NT-siRNA transfection, however by 7 h Irf1, Irf5, 

Tnf, Mx2, Socs1 and Oasl1 were expressed in cells transfected with NT-siRNA. Since 

Socs1, Mx2 are expressed early in response to IFN-β stimulation, this might suggest 

that IFN-β is produced some hours after siRNA transfection and may explain the 

absence of Ifnb1 expression at 1 h and 2 h post transfection. 
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Figure 5.13: Time-course of expression of selected immune response genes in mouse bone marrow derived macrophages following treatment with non-targeting 
siRNA, or varying doses of LPS, or varying concentrations mouse IFN-β cytokine. Mouse BMDMs were stimulated with any of; 20 nM NT-siRNA; LPS at 50, 20, 10, 5 or 
2.5 ng/ml; or mouse IFN-β at 100, 50, 10, 1, or 0.5 U/ml for 1 hour, 2 hours or 7 hours. Expression of the selected immune response gene was measured by semi-
quantitative PCR. Expression of the macrophage cell surface marker (CD14), serves as an indicator of cDNA loading.  
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2.2 Analysis of macrophage response to combined siRNA and LPS treatment 

 

Clearly detectable levels of Ifnb1 and type-I response expression was induced at the 

LPS doses examined (50 to 2.5 ng/ml) (Figure 5.12). However the effects of combining 

LPS and siRNA treatment on Ifnb1 and type-I expression were unknown. Preliminary 

experiments, suggested treating BMDMs with 20 ng/ml LPS after they have undergone 

prior siRNA transfection is toxic to the cells (data not shown) and resulted in apoptosis 

and reduced yields of RNA, compared to cell cultures treated with siRNA or LPS alone. 

It was possible that using lower concentrations of LPS could circumvent this issue of 

toxicity, given the correlation between LPS dose and type-I response induction. 

Therefore the effect of combining siRNA transfection with subsequent LPS treatment 

was examined using lower concentrations of LPS (10 to 0.02 ng/ml) than previously 

employed (Figure 5.14). Ifnb1 expression was measured at 2 and 7 h post-LPS 

treatment in BMDMs with and without 24 h prior NT-siRNA transfection.  Also in 

parallel with the LPS treatment additional BMDMs were transfected with NT-siRNA 

and cells harvested at 2 or 7 h post-treatment. Once again a dose responsive induction 

of Ifnb1 expression was observed in response to increasing doses of LPS (Figure 5.14). 

Furthermore the results indicate Ifnb1 expression in response to LPS stimulation is 

amplified in cells pre-treated with siRNA. In cells treated with NT-siNA alone, Ifnb1 

expression was clearly evident at 7 h post-transfection. This suggests the optimal time 

to detect Ifnb1 expression in response to siRNA transfection is some h later than the 

transfection time and not 1 or 2 h post treatment as is suited to detecting Ifnb1 

expression in response to pathogen challenge. The results also showed slightly 

elevated levels of Ifnb1 expression in cells treated with NT-siRNA for 24 h compared to 

control untreated. On this occasion the combination of lower doses of LPS with prior 

siRNA treatment did not appear to induce cell death and consistent yields of RNA were 

extracted from all samples.   
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Figure 5.14: Ifnb1 expression in mouse bone marrow derived macrophages stimulated with varying concentrations of LPS, in the presence and absence of prior non-
targeting–siRNA transfection. Mouse BMDMs were transfected with 20 nM final concentration NT-siRNA or were untreated. 24 hours later both cells that had been 
transfected with siRNA or left untreated were further challenged with varying doses of LPS (10ng/ml, 2ng/ml, 05.ng/ml, 1ng/ml and 0.02 ng/ml) for 2 hours and 7 hours. 
Running parallel with the LPS treatment, additional mouse BMDMs were transfected with NT-siRNA for 2 hours and 7 hours. Ifnb1 expression was determined by QPCR 
and is shown relative to its expression in the 0 hours control sample. 
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2.2.1 Analysis of macrophage response to 5 ng/ml LPS and 20 nM siRNA (i.e. 

 concentrations chosen for the in vitro assay) 

 

A dose of LPS (5ng/ml) falling within the range of low doses examined (10 – 0.02 

ng/ml) was chosen as a potential concentration to be used in the final assay design. To 

compare the dynamics of Ifnb1 induction in response to 5ng/ml LPS or 20 nM siRNA, 

BMDMs were treated with LPS or siRNA and the expression of Ifnb1 assayed by QPCR 

over a time-course. Following 5ng/ml LPS treatment maximal Ifnb1 expression was 

reached 2-4 h post treatment (Figure 5.15). In response to 20 nM NT-siRNA Ifnb1 

expression was reached around 6-8 h, corroborating earlier results (Figures 5.13 and 

5.14).  
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Figure 5.15: Time-course of Ifnb1 expression in bone marrow derived macrophages following 
stimulation by LPS, or non-targeting siRNA. Mouse BMDMs were stimulated with 5ng/ml LPS, or 20 nM 
NT-siRNA, and the cells harvested at 1, 2, 4, 6, 8, and 24 hours post stimulation. Untreated (control) cells 
were also harvested at the same time-points and at time 0 hours. Ifnb1 gene expression was measured 
in the samples by QPCR and is shown relative to its expression at 0 hours (control).  
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To further validate the use of 5ng/ml LPS, BMDMs were transfected with siRNA 

targeting the Irf3 gene, or the Nfkb2 gene or with non-targeting-siRNA, and after 24 h 

cells were treated with 5ng/ml LPS (Figure 5.16). Ifnb1 expression was assayed at 0, 1, 

2, 4, 6, and 8 h post-LPS treatment, where 0 h equates to the 24 h time-point of siRNA 

treatment. Irf3 is a transcription factor known to bind to the Ifnb1 enhancesome [282], 

and could serve as a positive control when monitoring the effects of targeted gene 

knockdown on Ifnb1 expression and the type-I response. Ifnb1 expression was 

suppressed below basal levels in cells treated with Irf3 siRNA alone for 24 h (i.e. 0 h 

post LPS treatment) (Figure 5.16). Ifnb1 expression was also suppressed in cells treated 

with siRNA targeting the Nfkb2 gene (for 24 h), relative to cells treated with NT-siRNA 

for 24 h (Figure 5.16).   Furthermore for every comparable time-point post-LPS 

treatment, Ifnb1 expression was lower in those cells treated with siRNA targeting 

either Irf3 or Nfkb2 expression compared to those treated with NT-siRNA. In contrast 

to earlier observations (Figure 5.13) combining siRNA transfection with subsequent LPS 

treatment resulted in lower levels of Ifnb1 expression, compared to LPS treatment 

alone (Figure 5.16). The data also suggested maximal Ifnb1 expression is obtained 

around 2 h post-LPS treatment (with or without prior siRNA transfection). Finally, the 

cells appeared viable in response to 5ng/ml LPS treatment regardless of prior siRNA 

transfection and the phenotype of the cells was not altered compared to those 

untreated or treated only with LPS (data not shown).   

 

Based on the range of observations, 5ng/ml was chosen as the concentration of LPS to 

stimulate the BMDMs, following siRNA mediated knockdown of the GOI. The results 

also suggested that ~7 h post-siRNA transfection was the optimal time to detect siRNA 

lipofection induced Ifnb1 expression. Whereas LPS induced Ifnb1 expression was best 

detected ~2 h post-stimulation.   
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Figure 5.16: Time-course of Ifnb1 expression in bone marrow derived macrophages following stimulation by LPS, with and without prior siRNA transfection targeting 
the Irf3 or Nfkb2 genes or non-targeting. Mouse BMDMs were transfected with siRNA targeting the Irf3 or Nfkb2 genes or with non-targeting siRNA. 24 hours post 
siRNA lipofection, the cells were stimulated with 5ng/ml LPS, and the cells harvested at 1, 2, 4, 6, 8, and 24 hours post stimulation. Untreated (control) cells were also 
harvested at the same time-points and at time 0 hours. Ifnb1 gene expression was measured in the samples by QPCR and is shown relative to its expression at 0 hours 
(control). 
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(3) Determination of ideal siRNA treatment time for obtaining optimal 
 gene knockdown and type-I repression following LPS stimulation. 

 
3.1 Analysis of protein level knockdown over time 

Typical time-points for detecting optimal knockdown of target genes by siRNA at the 

transcriptional level (as recommended by the manufacturer (Dharmacon Thermo 

Scientific) range from 24 to 48 h. Knockdown at the protein level is typically observed 

around 48 h. To understand the dynamics of protein expression as well as suppression 

by siRNA, BMDMs were stimulated with NT-siRNA, LPS, or siRNA targeting Nfkb2 for 4, 

8, 24, and 48 h and Western blot analysis performed on protein extracts.  Nfkb2 

protein expression was induced by LPS to a greater extent than NT-siRNA transfection 

(Figure 5.17a). Expression of the p100 and p52 isoforms peaked at 24 h post LPS or NT-

siRNA treatment. Knockdown of Nfkb2 protein was apparent at 24 h post transfection 

with siRNA targeting Nfkb2, and was further reduced at 48 h (Figure 5.17a). Successful 

knockdown of Irf5 (relative to NT-siRNA transfected samples) at the protein level, was 

also observed 48 h following tranfection of siRNA targeting the Irf5 (Figure 5.17b).  
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Figure 5.17: (a) Time-course of Nfkb2 p100 and p52 protein subunit expression in mouse BMDMs 
following treatment with NT-siRNA, Nfkb2 siRNA or LPS (20ng/ml). Mouse BMDMs were treated with 
20 nM NT-siRNA, or 20 nM of siRNA targeting Nfkb2, or 20ng/ml LPS. Following 4, 8, 24 or 48 hours or 
treatment cells were harvested and western blot analysis performed on protein extracts from the cells 
using an Nfkb2 antibody targeting the p100 and p52 isoforms of the Nfkb2 protein. 20ng/ml LPS was the 
most potent inducer of Nfkb2 p100 and p52 subunit expression. NT-siRNA also induced p100 and p52 
expression following 24 hours of treatment. Nfkb2-siRNA was effective at knocking down p100 and p52 
expression by 24 and 48 hours of treatment.   

 

 

Figure 5.17: (b) Expression of Irf5 protein in BMDMs following treatment with siRNA targeting the Ifr5 
gene or NT-siRNA. Mouse BMDMs were transfected with 20 nM siRNA targeting the Irf5 gene or NT-
siRNA. 48 hours post transfection cells were harvested and western blot analysis performed on protein 
extracts from the cells using an Irf5 antibody. Ifn5 expression was induced in cells treated with NT-sRNA, 
but repressed (relative to control-untreated) in cells treated with Irf5 targeting siRNA. 
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3.2 Analysis of gene-level knockdown and efficacy of downstream response 24 h 

or 48 h post siRNA transfection 

 

Up until this stage all experiments exploring the role of GOIs in the type-I/LPS 

response, were based on 24 h of prior treatment with siRNA. The efficacy of GOI 

knock-down achieved at different time-points post-siRNA transfection had not been 

explored. Given knockdown at the protein level is apparent later than that at gene 

level there could be variability in the effect of GOI knockdown in the LPS response as 

monitored after different times of treatment with siRNA. Therefore to examine the 

efficacy of gene knockdown over time as well as determine the optimal time post-

siRNA to obtain the most efficacious response to GOI knock-down in the context of the 

LPS response, mouse BMDMs were transfected with siRNA targeting Nfkb2, and 24 or 

48 h post transfection cells were challenged with 5ng/ml LPS. At both 24 h and 48 h 

post siRNA transfection Nfkb2 expression was knocked down at the message level (~ 

40 – 50%) relative to NT-siRNA tranfected cells (Figure 5.18). In response to 

subsequent LPS stimulation, Nfkb2 expression followed a similar pattern of expression 

regardless of whether cells had been treated for 24 h or 48 h of prior siRNA (5.19).  In 

both cases Nfkb2 expression was induced by LPS stimulation alone and in combination 

with siRNA, and to a lesser extent in cells treated with prior siRNA targeting the Nfkb2 

transcript.   

 

Type-I expression was also assayed in response to LPS stimulation in cells with 24 or 48 

h prior siRNA targeting Nfkb2, Ifnb1, or Sod2 transcripts or non-targeting siRNA.  Ifit1 

expression was induced in a similar fashion and extent in response to pre-treatment 

with the different siRNAs at both 24 and 48 h (Figure 5.20).  LPS challenge in cells pre-

treated with NT-siRNA and siRNA targeting Sod2 induced Ifit1 expression to a greater 

extent than siRNA targeting Nfkb2 or Ifnb1, regardless of the duration of prior-siRNA 

treatment.   
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Taken together the data suggested there was not a major difference at the message 

level (in terms of knockdown efficiency and type-1 response) of treating with siRNA for 

24 or 48 h. Considering this and the fact our previous investigations [146] were based 

on 24 h of treatment with siRNA, this duration was chosen for the final assay design.  
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Figure 5.18: Nfkb2 expression in mouse bone marrow derived macrophages 24 hours or 48 hours post 
transfection with siRNA targeting the Nfkb2 gene.  Mouse BMDMs were transfected with siRNA 
targeting the Nfkb2 gene or non-targeting siRNA for 24 or 48 hours, or cells were left untreated for the 
duration (control). Expression of the Nfkb2 gene was then assessed by QPCR in all samples. 
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5.19: Nfkb2 expression in mouse bone marrow derived macrophages stimulated with LPS following 24 hours or 48 hours of treatment with siRNA targeting the Nfkb2 
gene. Mouse BMDMs were transfected with siRNA targeting the Nfkb2 gene or non-targeting siRNA for 24 or 48 hours, or cells were left untreated for the duration 
(control). Subsequently cells were stimulated with 5ng/ml LPS for 2 hours or 8 hours. Expression of the Nfkb2 gene was then assessed by QPCR in all samples, having 
undergone siRNA transfection and/or LPS stimulation, or no treatment (control).   



                                                                                                                             Chapter 5 

213 

 
Figure 5.20: Ifit1expression in mouse bone marrow derived macrophages in response to 2 hours of LPS stimulation, with and without 24 hours or 48 hours of 
treatment with siRNA targeting the Ifnb1 or Nfkb2 or Sod2 genes. Mouse BMDMs were transfected with siRNA targeting the Nfkb2 gene, or the Ifnb1, or Sod2 gene or 
with non-targeting siRNA. Cells were also left untreated (control). Following 24 hours or 48 hours incubation with the siRNA the cells were stimulated with 5ng/ml LPS 
for 8 hours. Expression of the Ifit1 gene was then assessed by QPCR in all samples, having undergone siRNA transfection and/or LPS stimulation, or no treatment 
(control).   
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Optimised work-flow for studying the role of Genes of Interest in the 

macrophage response to type-I interferons signalling stimulation 

 
Based on the series of questions addressed in results sections 1-3, the work-flow for 

assessing the role of GOI in the type-1 and LPS response was finalised as illustrated in 

Figure 5.21.  Mouse BMDMs were to be cultured from femurs of 7-10 week old male 

BALB/c mice with recombinant CSF-1. Although the assay optimisation process was 

performed on macrophages derived from the C57BL/6 strain of mice, the decision was 

taken to use BALB/c macrophages for the in vitro screen. The reasons for this change in 

mouse strain is discussed in greater detail and justified in the Discussion section. The 

siRNA and LPS induced effects on macrophages derived from the two mice strains 

were examined (data not shown). Similar levels of gene knockdown were achieved and 

similar patterns of type-I expression were observed in both strains. The major 

difference was the extent of type-I gene expression, which was higher in macrophages 

derived from C57BL/6 and has been observed by others [283].  

 

Following seven days of differentiation the cells were to be transfected with 20 nM 

final concentration of siRNA for a total of 24 h. However a portion of cells would be 

harvested at 7 h post transfection to monitor levels of Ifnb1 gene expression in 

response to the transfection process, since this was found to be the optimal time to 

monitor Ifnb1 expression following siRNA lipofection. Cells would also be harvested at 

24 h post siRNA transfection in order to assay type-I response stimulation. The 

remaining transfected cells would be stimulated with 5 ng/ml LPS and cells harvested 

at 2 h and 7 h post LPS to assay Ifnb1 expression and ISG expression respectively.  
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Figure 5.21: Finalised work flow for studying the role of gene of interests in the type-I response. Bone 
marrow derived macrophages are cultured by obtaining cells from 7-10 week old BALB/c male mice and 
differentiating using CSF-1. Following 7 days of differentiation cells are transfected with siRNA at a final 
concentration of 20 nM (siRNA) for 24hours before proceeding to the next stage of the experiment. 
However samples of siRNA treatment alone are taken at 7 hours and 24 hours post transfection to 
obtain RNA for assaying Ifnb1 production and type-I response activation respectively. The 24 hour 
samples can also be used to determine target gene knockdown. Remaining siRNA transfected samples 
are treated with 5ng/ml concentration of LPS and samples harvested at 2hours and 7hours post 
treatment to obtain RNA for assaying Ifnb1 production and type-I response activation respectively. 
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(4) Screen of siRNAs targeting genes of interest and their effect on the 

macrophage response to siRNA lipofection and LPS stimulation 

 
Having established and optimised a workflow for testing the effect of siRNA mediated 

gene knockdown in mouse BMDMs, the desire was to now (a) test the assay on a 

medium-throughput scale and (b) test the contribution of genes of interest (GOI) in 

type-I interferon signalling. The rationale behind the choice of genes selected is 

discussed below.  

 

Genes of interest (GOI) potentially implicated in IFN-β signalling 

To validate and extend the observations of previous investigation [146], genes that are 

either known or could potentially play a role in IFN-β signalling were chosen for 

analsysis in the in vitro assay (Table 5.1).  Some of the selected targets have well 

established roles in IFN-β signalling (Ifnb1, Irf3, Nfkb1, Rela and Irf7) [282] and were 

therefore expected to repress LPS induced type-I signalling. Conversely non-targeting 

siRNA, or siRNA targeting the Sod2 gene, would not be expected to repress the 

transfection or LPS induced type-I response; therefore if other gene knock-downs 

generate similar levels of ISG expression it may suggest they also are not crucial for 

type-I signalling. To validate previous observations, Irf5 and Nfkb2 were also selected 

for the in vitro screens.  According to the macrophage pathway model (Chapter-2), 

Nfkb2 can form a homodimer with itself or form heterodimers with Rel, Rela, Relb, as 

well other complexes along with Bcl3 and Nfkb1. Thus the transcriptional partners of 

Nfkb2 were also chosen as genes of interest for further investigation. Finally Nfkbia 

and Socs3 which serve as inhibitory proteins of NF-ĸB and cytokine signalling 

respectively were chosen to expore whether their knockdown would result in 

exaggerated ISG expression (compared to NT-siRNA transfected cells).  
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Table 5.1. Predicted effects of targeting different genes with siRNA in mouse bone marrow derived 
macrophages. 13 genes of Interest (GOI) and the control Non-Targeting siRNA (NT-siRNA) to be 
transfected into primary bone marrow derived macrophages. Knock-down of genes associated with 
positive regulation of IFN-β message production or the type-I response is expected to repress type-I 
signalling relative to transfection of NT-siRNA or siRNA targeting of a negative control gene. Knockdown 
of genes associated with the negative regulation of cytokine activation pathways are expected to 
exacerbate the type-I signalling. 
 

 

 

 

 

 

 

 

 

 siRNA 
targets 

Group/ Description Predicted Effect of 
knockdown on 

transfection induced 
Type-1 response 

1  Ifnb1  Interferon / Cytokine  Repress  

2  Irf3  Interferon regulatory factor  Repress  

3  Irf5  Interferon regulatory factor  Repress*  

4  Irf7  Interferon regulatory factor  Repress  

5  Nfkb1  Nfĸb transcription factor  Repress  

6  Nfkb2  Nfĸb transcription factor  Repress*  

7  Rela  Nfĸb transcription factor  Repress  

8  Relb  Nfĸb transcription factor  ?  

9  Rel  Nfĸb transcription factor  ?  

10  Nfkbia  Inhibitor of Nfĸb complex  Exacerbate  

11  Bcl3  Transcriptional co-activator 
(assoc NfĸB)  

?  

12  Socs3  Suppressor of cytokine 
signalling  

Exacerbate  

13  Sod2  Superoxide dismutase. 
Mitochondrial protein  

Induce type-I response (No 

Effect)  

14  Non-Targeting  N/A (siRNA that does not 
target any known/ predicted 
sequence)  

Induce type-I response (No 

Effect)  
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(4.1) Screen of Ifnb1 and type-I gene expression by QPCR following targeted gene 

knockdown of GOI in mouse BMDMs  

 

Two independent screens targeting the selected GOI were conducted.  Ifnb1 and type-I 

expression in response to siRNA lipofection are shown in Figure 5.22 and 5.23 

respectively and the targeted genes are ordered according to least-to-most-

immunostimulatory response (from left to right). The scale of Ifnb1 expression in 

response to siRNA transfection was ≈ 25 fold different between the two screens. 

Furthermore the order of least-to-most stimulatory gene targets was variable between 

the two screens; for example siRNA targeting Relb stimulated the greatest Ifnb1 

expression in one screen (5.22a), and was the least stimulatory gene target in the 

other screen (5.22b). Surprisingly in one screen (b) siRNA targeting Ifnb1 resulted in 

one the highest levels of Ifnb1 expression 7 h post transfection.  

 

Bcl3 and Relb were the gene targets resulting in the lowest levels Oasl1 expression 24 

h post-siRNA transfection in both screens (Figure 5.23). Cells treated with NT-siRNA or 

siRNA targeting Sod2 were amongst the samples with the highest levels of Oasl1 

expression. Contrary to the predicted response, targeting the Socs3 gene did not 

exacerbate the transfection induced type-I response (Figure 5.23), or indeed Ifnb1 

expression 2 h following LPS stimulation (Figure 5.24). Socs3, Blc3, Nfkbia and Irf3 were 

amongst the gene targets that resulted in the lowest levels of Ifnb1 expression in 

response to LPS stimulation in both screens. Cells treated with siRNA targeting the Rela 

gene had one of the highest inductions of Ifnb1 expression following LPS stimulation.  
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Figure 5.22: Ifnb1 gene expression in two independent screens of targeted RNA-interference in mouse 
BMDMs. BMDMs were transfected with siRNA using lipofecamine 2000 (L2K), targeting any of 13 
different genes (as identified in the graphs), NT-siRNA, L2K alone or were untreated (control). Following 
7 hours of treatment cells were harvested, and RNA extracted to determine Ifnb1 expression by QPCR. 
Two independent screens were performed (a and b). The bar graph is arranged to place to most 
stimulatory inducer of Ifnb1 to the right of the graph.  
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Figure 5.23: Oasl1 gene expression in two independent screens of targeted RNA-interference in mouse 
BMDMs. BMDMs were transfected with siRNA using lipofecamine 2000 (L2K), targeting any of 13 
different genes (as identified in the graphs), NT-siRNA, L2K alone or were untreated (control). Following 
24 hours of treatment cells were harvested, and RNA extracted to determine Oasl1 expression by QPCR. 
Two independent screens were performed (a and b). The bar graph is arranged to place to most 
stimulatory inducer of Oasl1 to the right of the graph.  
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Figure 5.24: Ifnb1 gene expression in response to LPS stimulation in two independent screens of 
targeted RNA-interference in mouse BMDMs. BMDMs were transfected with 20 nM siRNA using 
lipofecamine 2000 (L2K), targeting any of 13 different genes (as identified in the graphs), NT-siRNA, L2K 
alone or were untreated (control - No prior siRNA). 24 hours post siRNA treatment cells were treated 
with 5ng/ml LPS, and 2 hours post LPS treatment the cells were harvested and RNA extracted to 
determine Ifnb1 expression by QPCR. Two independent screens were performed (a and b). The bar 
graph is arranged to place to most stimulatory inducer of Ifnb1 to the right of the graph.  
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The QPCR results of the two screens were on the whole inconclusive as to the effect of 

individual gene knock-downs on IFN-β signalling. Interpreting the contribution of the 

targeted genes was complicated by both the lack of reproducibility between screens, 

and contradictory action of gene-KDs within the screen.  However some of the siRNA 

targets were more consistent in their action between screens (including Socs3, Bcl3, 

Rela) than others. Ultimately it was difficult to abstract a convincing argument as to 

what effect the gene knockdowns have on the type-I and LPS response, based on QPCR 

data for the two genes (Ifnb1 and Oasl1) alone. Therefore to further elucidate if and 

how the GOI knockdowns had influenced the macrophage transcriptome in the context 

of the LPS response, genome wide expression was assayed by microarrays in selected 

samples from screen-b.  

 
4.2 Genome-wide microarray analysis of the LPS response following targeted 
 knockdown of genes of interest 
 
Eight siRNA treatments (from screen-b) were chosen for follow up analysis by 

microarrays; NT-siRNA (would serve as a control); Nfkb2 and Irf5 were chosen based 

on their activity in previous screens [146]. Soc3, Bcl3 and Rela were selected given 

their activity in the QPCR screens was generally more consistent than the other 

targeted genes; namely cells treated with siRNA targeting Socs3 or Bcl3 generally 

expressed lower levels of type-I genes (Ifnb1 and Oasl1), whereas those targeting Rela 

expressed Ifnb1 to a greater extent than many of the other genes targeted following 

LPS stimulation in both screen-a and screen-b.  Rela along with Nfkb1 are known to 

bind to the IFN-β enhancesome so logically it might be expected that their knock-down 

should repress type-I induction. Relb was also chosen for further analysis.  

 

In addition to the siRNA targeted samples, a timecourse of (NT)-siRNA treatment of 

mouse BMDMs was also examined alongside the data. The samples examined by 

microarray analysis are summarised in Table 5.2. 
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Stimulus Concentration Pre-treatment? Time-points (hours) 

None  N/A No 2h post experiment start 

LPS   5 ng/ml No 2h post LPS 

LPS   5 ng/ml 24 hours of 20 nM Non-targeting siRNA 2h post LPS 

LPS   5 ng/ml 24 hours of 20 nM siRNA targeting Nfkb2 2h post LPS 

LPS   5 ng/ml 24 hours of 20 nM siRNA targeting Irf5 2h post LPS 

LPS   5 ng/ml 24 hours of 20 nM siRNA targeting Socs3 2h post LPS 

LPS   5 ng/ml 24 hours of 20 nM siRNA targeting Relb 2h post LPS 

LPS   5 ng/ml 24 hours of 20 nM siRNA targeting Bcl3 2h post LPS 

LPS   5 ng/ml 24 hours of 20 nM siRNA targeting Rela 2h post LPS 

LPS   5 ng/ml 24 hours of 20 nM siRNA targeting Nfkb1 2h post LPS 

None  N/A No 7h post experiment start 

LPS   5 ng/ml No 7h post LPS 

LPS   5 ng/ml 24 hours of 20 nM Non-targeting siRNA 7h post LPS 

LPS   5 ng/ml 24 hours of 20 nM siRNA targeting Nfkb2 7h post LPS 

LPS   5 ng/ml 24 hours of 20 nM siRNA targeting Irf5 7h post LPS 

LPS   5 ng/ml 24 hours of 20 nM siRNA targeting Socs3 7h post LPS 

LPS   5 ng/ml 24 hours of 20 nM siRNA targeting Relb 7h post LPS 

LPS   5 ng/ml 24 hours of 20 nM siRNA targeting Bcl3 7h post LPS 

LPS   5 ng/ml 24 hours of 20 nM siRNA targeting Rela 7h post LPS 

LPS   5 ng/ml 24 hours of 20 nM siRNA targeting Nfkb1 7h post LPS 

NT-siRNA 20 nM No 0 h (pre-treatment) * 

NT-siRNA 20 nM No 1 h post transfection * 

NT-siRNA 20 nM No 2 h post transfection * 

NT-siRNA 20 nM No 4 h post transfection * 

NT-siRNA 20 nM No 8 h post transfection * 

NT-siRNA 20 nM No 24 h post transfection * 

 
Table 5.2: Description of macrophage samples chosen for follow up analysis by genome wide 
expression profiling using microarrays. Mouse BMDMs were treated with 5 ng/ml LPS for either 2 or 7 
hours following 24 hours of prior targeted siRNA treatment. In a separate experiment a time course of 
NT-siRNA treatment was performed in mouse BMDMs;  with samples taken at 1, 2, 4, 8, 24 hours post-
treatment or pre-treatment (0 hours). Two biological replicates were run for samples marked with an* 
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32 RNA samples were processed for hybridisation to Affymetrix Mouse Gene 1.1. ST 

Arrays. These arrays were obtained as part of a 96-Array plate format, which enables 

the simultaneous high-throughput profiling of 96 samples, using the same content as 

the individual Mouse Gene 1.1 ST cartridge arrays. The remaining 64 arrays on the 96-

Array plate were used to process samples from experiments exploring other questions 

of interest to this thesis and are discussed accordingly in other Chapters (6).   

 

A network graph of the normalised data for the 32 microarrays pertaining to the 

investigations into targeted siRNA knockdown in mouse BMDMs was generated in 

BioLayout Express3D, by filtering for nodes with relationships across the arrays at a 

Pearson correlation of 0.85 or above. This resulted in a graph of 12,619 nodes, 

connected by 505,590 edges, which was was then clustered at an MCL inflation value 

of 2.2. After filtering to remove un-interesting clusters and those representing 

technical artefacts, the remaining graph comprised 4,674 nodes connected by 433,761 

edges (Figure 5.25). There were four main structures evident in the filtered graph; one 

representing up-regulated components, another, down-regulated components, and 

the remaining two were specific to changes during the NT-siRNA time-course.    

 
To determine whether the targeted siRNA treatment was effective at suppressing GOI 

expression following LPS challenge, GOI expression in the knockdown samples was 

compared to the untreated controls, LPS-only treated and LPS treated with prior-NT-

siRNA (Figure 5.26). All seven GOI’s were induced by LPS treatment alone (at 2 and 7 h) 

and LPS treatment in combination with 24 h prior NT-siRNA.  Relative to their 

expression in the LPS-with-prior-NT-siRNA samples, Nfkb2, Socs3, and Relb were all 

knocked down when treated with their specific targeting siRNA. Nfkb1 and Bcl3 were 

knocked down to their basal (control-untreated) levels of expression, and Rela and Irf5 

were further knocked down beyond their basal levels of expression. Therefore at the 

message-level all seven GOIs were convincingly repressed when targeted with the 

corresponding siRNA.  
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Figure 5.25: A network graph of the transcriptional changes occurring in response to siRNA treatment 
of mouse BMDMs A network graph of the normalised data for the 32 microarrays pertaining to the 
investigations into targeted siRNA knockdown in mouse BMDMs was generated in BioLayout Express3D, 
by filtering for nodes with relationships across the arrays at a Pearson Correlation of 0.85 or above. The 
resultant graph of 12,619 nodes connected by 505,590 edges was clustered at an MCL inflation value of 
2.2 to identify groups of co-ordinately expressed transcripts. Un-interesting clusters and those 
representing technical artefacts were removed from the graph leaving 4,674 nodes connected by 
433,761 edges (above). This filtered graph comprised three main components; transcripts up-regulated 
in response to LPS/ NT-siRNA treatment, transcripts down-regulated in response to LPS or NT-siRNA 
treatment and transcripts specifically regulated in the NT-siRNA timecourse. 
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Figure 5.26: Transcriptional expression and repression of genes of interest in response to LPS stimulation of BMDMS with/without prior targeted siRNA treatment. 
Mouse BMDMs were treated with specific targeting siRNA or control NT-siRNA for 24 hours, and subsequently treated with 5ng/ml LPS for 2 and 7 hours. Expression 
levels of the targeted genes (as measured by microarrays) is shown above for seven genes of interest in cells with no-treatment, LPS-treated only, NT-siRNA treated with 
subsequent LPS, and those treated with the specific targeting siRNA followed by LPS.   
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To explore the main transcriptional signatures associated with the data set as well as 

establish whether any of the targeted gene KDs had perturbed this signalling, the 

expression patterns associated with the clusters in the filtered network graph were 

examined. Despite clear indication of target gene knockdown (Figure 5.26), there was 

no evidence of transcriptional signatures associated with any of the specific knock-

downs; instead the majority of clusters were an outcome of LPS stimulation of 

macrophages and unaffected by the suppressed expression of any of the GOIs. The 

average expression of co-ordinately expressed transcripts was plotted across the 

siRNA-KD data set (Figure 5.27) for the major clusters within the data set which are 

also summarised in Table 5.3.  
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Cluster-
ID 

No of 
Transcripts 

Expression 
Pattern 

Go Terms/ associated processes 

Cluster-a 1,248 Repressed 7 h 
post LPS 
treatment. 
Repressed at 4 h 
in NT-siRNA time-
course 

Cell-cycle progression (e.g Cdc6, Cdca2/3/4/5/7/8), 
cyclins, (e.g Ccna2, Ccnb1, Ccnb2, Ccnd1, Ccne1/2), DNA 
polymerase subunits (Pola1, Pola2, Pole, Pole2). 

Cluster-b 1,029 Up-regulated 7 h 
post-LPS, and at 8 
h in the NT-siRNA 
time-course 

Regulation of immune signalling, leukocyte activation and 
cytokine production. (e.g Cxcl3/9/10/11, Ifit1/2/3), Il6, Il7, 
Il12a, Il15, Oasl1, Oasl1a, Oasl2, Oas2, Tlr1, Tlr3, Tlr6, Tlr8, 
Myd88)  

Cluster-c 351 Represses 7 h 
post LPS 
treatment. 
Repressed 8 h in 
the NT-siRNA 
time-course 

Membrane organisation and endocytosis 

Cluster-d 223 Upregulated 2 
and 7 h post LPS 
and from 4-8 
hours in the NT-
siRNA 
timecourse. 

Cytokine production and regulation (e.g. Ccl2, Cxcl1, 
Cxcl2, Cxcl16, Irf1, Il1a). Apoptosis signalling (Cflar, Fas, 
Tnf).   
 

Cluster-e 138 Upregulated 8h in 
NT-siRNA 
timecouse only. 

Response to virus exposure, regulation of kinase activity.   

Cluster-f 100 Upregulated 2 h 
post-LPS and 4-8 
hours in NT-siRNA 
timecourse 

Signalling cascades, and lymphocyte activation.    

Table 5.3: Overview of the main clusters of co-ordinatley expressed genes in the screen of siRNA 
knockdown effects on macrophage signalling. 
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If knockdown of certain genes specifically perturb type-I signalling it was possible this 

effect was obscured if the ISGs are members of clusters with transcripts whose 

expression was not affected by the gene KDs. Therefore to further verify the GOI-

knock-downs had not had an effect, the expression of genes regulated in response to 

IFN-β stimulation of macrophages, (as determined in Chapter-4) was examined in this 

array study. 1,639 of the IFN-β study genes mapped back to the data-set here. Cohorts 

of genes which were regulated across different temporal phases of the IFN-β response 

(as determined in Chapter-4) were identified and their average expression in this array 

study was plotted (Figure 5.28). However the expression of these IFN-β response genes 

was consistent across all of the LPS treated samples, regardless of any prior targeted 

gene KD. The data would therefore suggest on this occasion the gene knockdowns 

have not perturbed transcriptional networks associated with type-I and LPS signalling.   
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Figure 5.27: Average expression profile of cohorts co-ordinately expressed transcripts (clusters), 
generated from a network analysis of transcriptional changes in BMDM stimulated with LPS or NT-
siRNA. BMDMs were transfected with 20 nM siRNA using lipofectamine 2000 (L2K), targeting any of 
Nfkb2, Irf5, Socs3, Relb, Bcl3, Rela, Nfkb1 or Non-targeting-siRNA (control). 24 hours post siRNA 
treatment cells were treated with 5ng/ml LPS, and were then harvested at both 2 and 7 hours post 
treatment for microarray-expression analysis on RNA extracts. In a separate experiment a timecourse of 
NT-siRNA treatment of macrophages was performed. Network based analysis was of the entire data-set 
was performed and clusters of co-ordinately expressed transcripts identified. Six examples of clusters 
representing changes associated with LPS and/NTsiRNA treatment are shown. Data points are not 
continuous, but represented as such to ease interpretation.  
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Figure 5.27 (continued): Average expression profile of cohorts co-ordinately expressed transcripts 
(clusters), generated from a network analysis of transcriptional changes in BMDM stimulated with LPS 
or NT-siRNA. BMDMs were transfected with 20 nM siRNA using lipofectamine 2000 (L2K), targeting any 
of Nfkb2, Irf5, Socs3, Relb, Bcl3, Rela, Nfkb1 or Non-targeting-siRNA (control). 24 hours post siRNA 
treatment cells were treated with 5ng/ml LPS, and were then harvested at both 2 and 7 hours post 
treatment for microarray-expression analysis on RNA extracts. In a separate experiment a timecourse of 
NT-siRNA treatment of macrophages was performed. Network based analysis was of the entire data-set 
was performed and clusters of co-ordinately expressed transcripts identified. Six examples of clusters 
representing changes associated with LPS and/NTsiRNA treatment are shown. Data points are not 
continuous, but represented as such to ease interpretation. 
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Figure 5.28: Expression of IFN-β regulated transcripts (as determined in Chapter-4) in the siRNA-LPS-
screen and NT-siNRA time-course study.  The average expression of cohorts of transcripts regulated at 
specific temporal phases in response to IFN-β stimulation of macrophage was plotted based on their 
expression values in the current analysis described in Figure 5.27. 
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Figure 5.28: (continued) Expression of IFN-β regulated transcripts (as determined in Chapter-4) in the 
siRNA-LPS-screen and NT-siNRA time-course study.  The average expression of cohorts of transcripts 
regulated at specific temporal phases in response to IFN-β stimulation of macrophage was plotted based 
on their expression values in the current analysis described in Figure 5.27. 
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Discussion 
 
The investigations of this Chapter set out to optimise an in vitro assay to test the role 

of selected genes in the type-I response using targeted RNA-interference, QPRC and 

genome-wide expression profiling. Study of the type-I response using siRNAs is 

inherently complicated by the fact IFN-β and type-I response signalling is induced by 

the transfection of the siRNA itself. To contend with this, as well as better understand 

the macrophage response to stimulation with siRNA and/or LPS, a host of fundamental 

questions pertaining to the use of siRNA and LPS in mouse macrophages were 

examined, including;  

 The dose dependant effects of siRNA.  

 The dose dependant effects of LPS alone and in combination with prior siRNA 

treatment.  

 The timing of siRNA treatment to achieve efficient gene knockdown as well the 

most efficacious downstream response to knockdown.  

This optimisation process highlighted the issues surrounding the use of siRNA as a 

study tool in macrophages, and helped inform the design of an assay to study the roles 

of the selected GOI in the type-I and LPS response. The assay incorporated 5 ng/ml of 

LPS treatment in mouse BMDMs which had been transfected with siRNA targeting the 

selected GOI 24 h earlier.  Network analysis of genome-wide transcriptional data 

revealed there were no patterns of expression specifically associated with any of the 

prior gene knockdowns. These results would suggest that the LPS response was not 

sensitive to knockdown of any of the GOI.  

 

Factors explored during the assay optimisation process but not discussed as part of 

these results included the possibility of siRNA sequence specific effects on type-I 

responsiveness and the effect of using macrophages derived from different strains of 

mice (BALB/c and C57BL/6). Assay optimisation screens were at first performed on 

macrophages derived from C57BL/6 mice strain. The strain was later changed to the 

BALB/c since (i) the original study forming the basis of these investigations was 

performed in BALB/c derived BMDMs [146], (ii) other data generated in this thesis 
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(Chapters 4 and 6) is based on BALB/c derived BMDMs, (iii) C57BL/6 macrophages are 

more sensitive to DNA induced death and are hyper-responsive to LPS compared with 

BALB/c macrophages [283]. With respect to the latter point, during the course of these 

investigations it was found that C57BL/6 macrophages on some occasions but not 

others would be prone to siRNA-induced cell death (data not shown). In contrast 

viability of BALB/c macrophages following siRNA treatment was more consistent from 

week to week. BALB/c unlike C57BL/6, do not possess basal levels autocrine interferon 

signalling [283] this factor along with the greater sensitivity of C57BL/6 to nucleic acid 

induced cell death may have contributed to the observed differences. The effect of 

mice strain on the downstream response to siRNA could have been further explored. 

In essence this would form a study in itself, over and above the optimisation process 

given the vast number of variables that could be investigated.  

 

Also explored but not discussed in the context of these results was the presence and 

variability in possible immunostimulatory sequences across the panel of siRNAs used in 

these investigations.  It is possible the differences in the abundance of these 

sequences across the different siRNA’s may account for variability in their ability to 

induce a type-I response. The sequences implicated in siRNA immunostimulatory 

capacity include; GUCCUUCAA [284], UGUGU [285], UGGC [85], and GU [286].  Others 

have also found a correlation between the uradine content of the U-rich strand and 

the immunostimulatory activity of the siRNA duplex as well as the number of CG/ GC 

clamps interspersed along the length of the siRNA [287]. Attributing the contribution 

of individual sequences to the immunostimulatory capacity of the siRNAs is inherently 

complex. Ultimately the genome-wide transcriptional analysis revealed that the 

expression of type-I response genes following LPS stimulation was uniform across all 

samples regardless of the target of the siRNA (i.e. sequence of the siRNA duplexes) 

(Figure 5.27).  

 

Effect of increasing concentrations of siRNA in BMDMs 

Whilst lipofection of 50 to 100 nM has been recommended for stable knockdown in 

RAW cells [288], the data here indicated these concentrations were toxic to primary 
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macrophages and distorted their phenotype considerably from the control-untreated 

state, and more so when subsequently treated with LPS (Figures 5.9).  

 

Uptake of fluorescently labelled siRNA (siGLO) was observed as early as 4 h post-

transfection at both 20 and 50 nM concentrations and by 24 h post-transfection the 

siGLO staining was indicative of almost all cells having been successfully transfected 

(Figures 5.3-5.5). siGLO is intended as a qualitative indicator of siRNA transfection 

efficiency and in this respect it was apparent the cells were being transfected. 

Counterstaining with a cytoskeletal dye (e.g. actin) may have provided a more accurate 

indication of uptake of siRNA and the dynamics of uptake of siGLO (for example 

numbers of transfected vs. non-transfected cells).  

 

Efficient transfection does not necessarily correspond with efficient gene knock-down, 

in every cell type, as a cells proliferative rate [289] and capacity for degrading 

(exogenously introduced) nucleic acid may influence the potency of the siRNA KD. 

Hence also examined was the level of target gene repression by siRNA at a range of 

final concentrations. For the two genes tested (Irf7 and Nfkb2), their message level of 

expression was suppressed to the same extent regardless of the concentration of 

targeting siRNA used (Figure 5.6). However expression of Irf7 and Nfkb2 was induced in 

an exponential manner by non-targeting siRNA, as was expression of Oasl1 and Ifit1 

(type-I response genes). Interestingly the dynamics of Oasl1 and Ifit1 expression with 

increasing concentrations of siRNA varied across the three siRNAs tested (non-

targeting, Irf7 or Nfkb2-siRNA) (Figure 5.8). The results here indicate increasing the 

concentration of the siRNA (targeting key IFN-β signalling genes) does not necessarily 

correlate with enhanced repression of the type-I response. Ultimately there are likely a 

number of factors that influence the type-I induction for a given siRNA at a given 

concentration. These could be the kinetics of target gene repression, as well as that of 

protein knockdown, half-life and turnover.  

 

Others have also observed a dose responsive increase in Oasl1 and Ifit1 expression 

when transfecting RCC1 renal cell carcinoma cells with 10, 20, 50 and 100 nM of siRNA 
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targeting GAPDH. The study suggests that the IFN system is activated in response to all 

concentrations of siRNA tested, however some ISGs are only induced in a 

concentration-dependent manner [77]. The results here (Figure 5.8) suggested that 

although type-I responsiveness increases in a dose dependant manner to NT-siRNA, 

this does not necessarily hold true for other siRNAs, possibly given their known or 

potential role in interferon signalling. 

 

Examination of cell morphology suggested the phenotype of the LPS stimulated 

macrophages pre-treated with 50 nM to 100 nM siRNA are considerably distorted from 

those stimulated with LPS alone or LPS in combination with lower doses of siRNA 

(Figure 5.9). Further examination, for example an annexin-V apoptosis assay would 

provide a better indication of the extent of apoptosis the macrophages were 

undergoing.  

 

Ultimately a balance had to be achieved between using enough siRNA to achieve 

knockdown at the transcriptional and protein level, yet not causing toxicity and 

overriding the effect of any gene knockdown due to high levels of siRNA-dose 

dependant type-I expression. 20 nM siRNA (final) concentration was chosen for use in 

the screens in BMDMs for the remainder of the investigations. Knock-down of targets 

genes was achieved at both the message and protein level with this concentration of 

siRNA. 

 

Macrophage response to LPS and combining siRNA transfection with LPS 

treatment 

Type-I expression in response to a range of LPS doses was examined. Essentially a 

balance had to be drawn between using enough LPS to efficiently induce detectable 

levels of Ifnb1 and type-I expression yet avoiding causing toxicity to the cells as 

observed previously (due to the combinatorial use siRNA and LPS) (Figure 5.9).  

 

Initial investigations comparing the potency of type-I induction in response to IFN-β 

and LPS indicated a 12-fold difference between the extent of Oasl1 induction in 
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response to 10 U/ml IFN-β or 100ng/ml LPS (Figure 5.10). Given the extent of 

difference in type-I response activation by 100 ng/ml LPS and 10 U/ml IFN-β, the 

following investigations set out to determine how the type-I response varied in 

response to different concentrations of IFN-β and LPS. Macrophages induced Oasl1 

expression in a dose responsive manner in response to increasing concentrations of 

IFN-β and increasing doses of LPS respectively, 24 h post-treatment (Figure 5.11). The 

results indicated the extent of Oasl1 induction was far greater with doses of LPS used 

(10, 20, or 100 ng/ml), compared to doses of IFN-β examined (20, 50 or 100 U/ml) 

(Figure 5.11). 

  

Given the potency of type-I induction at 100 ng/ml LPS, a lower range of LPS doses 

were examined (50, 20, 10, 5, and 2.5 ng/ml). A dose dependant induction of Ifnb1 

expression was observed following 1 and 2 h of LPS treatment (alone) (Figure 5.12). By 

7 h post-LPS treatment type-I response gene induction was evident at all doses of LPS 

examined (as measured using semi-quantitative PCR) (Figure 5.13). Attempts were also 

made here to define the overlap in the transcriptional targets of LPS and IFN-β, 

however this analysis was very limited by the number of genes which were analysed by 

semi-quantitative PCR (Figure 5.13). Amongst the genes tested the results did 

demonstrate Il1b expression (and to a lesser extent Tnf expression) was exclusive to 

LPS treatment. There was also a time-lag between the induction of the interferon 

inducible genes in the LPS treated samples, possibly due to time taken for autocrine 

IFN-β signalling to initiate in LPS treated cells. Ultimately a better understanding of the 

overlap and differences in the LPS and IFN-β, may have aided the assay design. 

 

Although the investigations of this Chapter did not set out to specifically explore 

macrophage responsiveness to LPS following siRNA-lipofection, a better understanding 

of the cells response under these circumstances would have been valuable given the 

design of the assay. During the optimisation process, it was found that treatment of 

BMDMs with 20 ng/ml LPS after 24 h pre-exposure to siRNA, resulted in cell toxicity 

(data not shown). However at lower doses of LPS treatment, the cells were viable and 

in some experiments (Figure 5.14) generated higher levels of Ifnb1 in cells pre-treated 
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with NT-siRNA, compared to those treated with LPS alone. On other occasions Ifnb1 

expression was higher in cells which had not undergone prior siRNA transfection 

(Figure 5.16). Eventually a dose of 5ng/ml LPS was chosen for the assay, since 

detectable levels of Ifnb1 expression were induced at this concentration and cell 

viability did not appear compromised when 5 ng/ml LPS was used in combination with 

24 h prior siRNA. In a preliminary screen, Ifnb1 expression was lower at all measured 

time-points following 5 ng/ml LPS treatment in cells which had been pre-treated with 

siRNA targeting either Irf3 or Nfkb2 expression compared to those pre-treated with 

NT-siRNA (Figure 5.16). This observation was fitting with the original hypothesis that 

siRNA mediated knock-down of genes known to positively regulate type-I signalling will 

repress the LPS induced type-I response. Of the two genes tested, Irf3 is known to 

form part of the Ifnb1 enhancesome and Nfkb2 is suspected to play a role in type-I 

signalling regulation based on our previous observations [146]. 

 

The use of siRNA to investigate components of LPS signalling in primary and 

immortalised macrophages is not novel [290-291]. However the possibility that pre-

treatment with siRNA may in-itself modulate responsiveness to LPS in immune cells 

has broadly been overlooked.  Pre-exposure to immunological stimuli can make 

macrophages hyper-responsive or tolerant to subsequent LPS treatment. For example 

macrophages primed with IFN-γ display enhanced sensitivity to endotoxin, and in vivo 

IFN-γ pre-treatment followed by even subclinical endotoxin exposure is toxic [292-

293]. Viral infection induced type-I interferon also heightens sensitivity to LPS 

challenge as measured by increased lethality in vivo and augmented TNF-α serum 

levels [294]. In contrast, pre-exposure to low doses of LPS results in tolerance to 

subsequent LPS stimulation as determined by down-regulation of cytokine production 

in vivo [295-296] and in primary macrophage cultures [297-300]. The mechanism of 

endotoxin tolerance has been linked to the MyD88-dependent signalling, up-regulation 

of negative regulators of the TLR pathway, and transcriptional re-programming 

whereby proinflammatory cytokine expression is suppressed and anti-inflammatory 

cytokines are over-expressed [301].  
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The collection of data here strongly suggests siRNA trasfection in macrophages results 

in their activation by IFN-β stimulation, therefore the cells are type-I interferon primed 

prior to any subsequent LPS treatment.  In RAW264 macrophages, the sustained 

activation response to different TLR agonists has been found to be perfectly additive 

[302]; so that the response to activation of TLR4 by LPS was additive with that of 

TLR2/6 (but not with TLR4). Similarly LPS stimulation of macrophages which have been 

exposed to a lipid-based transfection reagent and siRNA, is likely to result in the 

activation of different TLR’s, the consequence of which is unclear.  

 

Determination of ideal siRNA treatment time for optimal KD and type-I 

repression following LPS stimulation 

 

Given knockdown at the protein level is apparent later than that at gene level there 

could be variability in the effect of GOI knockdown in the LPS response as monitored 

after different times of treatment with siRNA. For example one possibility is that by 48 

h post transfection the siRNA may have had more time to take effect at the protein 

level. Thus if the targeted GOI’s activity at the protein level is key to the LPS or type-I 

response then this could be better observed after 48 h following siRNA transfection. 

Conversely since the effect of siRNA is transient, it is possible the potency of the 

effects of knocking down a GOI may wear off over time following siRNA transfection.  

 

Protein level analysis of Nfkb2 expression indicated the peak induction of Nfkb2 by NT-

siRNA is achieved at 24 h post treatment (Figure 5.17a). Nfkb2 protein expression was 

repressed from 24 h post treatment in samples treated with siRNA targeting the Nfkb2 

gene, and to a greater extent by 48 h. At the message level, Nfkb2 expression was 

knocked-down to a similar extent at both 24 and 48 h post siRNA transfection (Figure 

5.18). Furthermore type-I response gene expression following LPS challenge presented 

a similar pattern of expression in cells pre-treated with siRNA for either 24 or 48 h 

(Figure 5.19). Thus the siRNA treatment time of 24 h was maintained for the remainder 

of the investigations. Knockdown analysis of GOI in the genome-wide microarray 
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screen revealed effective message level knockdown of the targets at both 2 and 7 h 

post LPS, when cells had been treated with 24 h prior siRNA (Figure 5.26). 

 

Studies of targeted gene knockdown in mouse BMDMs 

The purpose of the siRNA optimisation process was to aid the design an in vitro assay 

to study the role of GOI in the type-I response. LPS stimulation of macrophages 

induces the potent expression of IFN-β message and protein [275]. Consequently type-

I signalling forms a significant portion of the response to LPS [277, 303-304]. Therefore 

to measure the effect of gene knock-downs LPS was chosen as a stimulus of type-I 

signalling.  

 

BMDMs were transfected with siRNA targeting specific GOI, and 24 h later were 

treated with 5ng/ml LPS. Analysis of Ifnb1 expression demonstrated a great deal of 

variability in the level of Ifnb1 induction (following both lipid-transfection of the siRNA 

and the subsequent LPS stimulation), across the different knockdown samples. The 

magnitude of Ifnb1 induction also varied between the two screens performed. 

Furthermore reproducibility within and between screens was for many of the genes 

tested inconsistent, with respect to Ifnb1 expression (Figures 5.22 & 5.24). The siRNA 

targets which were more consistent in their action between the two screens included 

Socs3, Bcl3, and Rela. The discrepancies witnessed during these screens, and to some 

extent throughout the optimization process could be attributed to the innate 

variability of primary macrophage cell cultures. The variability in Ifnb1 expression 

observed between the two screens could partly be attributed to the very transient 

expression of Ifnb1, the peak induction of which may have been induced at slightly 

different times between the two screens and also between target-genes in a given 

screen. QPCR, semi-quantitative PCR and microarray data all suggest Ifnb1 is maximally 

expressed ~6-8 hours post-siRNA transfection (Figures 5.15, 5.16). Microarray analysis 

of a timecourse of NT-siRNA treatment in mouse BMDMs revealed the predominant 

transcriptional activity occurs at 8 h and later following transfection, with negligible 

changes at the earlier time-points analysed (1, 2 and 4 h) (Figure 5.27). These results 

underscore the importance of sample timing when trying to deduce levels of Ifnb1 
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expression in response to siRNA transfection. Moreover reproducibility of results in 

primary macrophage cultures is often unwieldy, as epitomised by the findings of the 

RNAi screen in BMDMs [146] where three biological replicates would yield variable 

outputs in terms of gene expression. To garner a more convincing view of the effects 

of the gene knockdowns on the IFN-β signaling, genome-wide analysis of the 

downstream response was performed.  

 

Efficient gene knockdown of the selected GOIs was observed relative to NT-siRNA 

(Figure 5.26). However the network based analysis of the results showed that the gene 

KDs did not perturb transcriptional signalling networks associated with the LPS and 

type-I interferon response (Figures 5.27, 5.28). One possibility is that some of the 

tested genes might be dispensable for eliciting the type-I response. Some of the GOIs 

have been shown elsewhere to play a role in type-I signalling. Interestingly in a 

recently published study Krausgruber et al, demonstrated high IRF5 expression in M1-

type human and mouse macrophages and argues that IRF5 directly activates the 

transcription of certain M1-characteristic imflammatory mediators [272]. In contrast to 

the experiments here, the authors differentiated the mouse BMDMs with GM-CSF 

rather than M-CSF (CSF-1) and found cells differentiated with GM-CSF had higher 

expression of IRF5 protein than M-CSF-derived BMDMs. Furthermore in human 

macrophages inhibition of  endogenous IRF5 via RNA-interference resulted in lower 

mRNA expression for a number of LPS induced inflammatory mediators [272].  

 

Knockdown of members of the classical/canonical NfĸB transcription factor, Nfkb1 and 

Rela also failed to distort type-I or LPS signalling based on the microarray analysis in 

this Chapter. Nfkb1:Rela are established to bind to the Ifnb1 enhancesome, but some 

have reported these proteins to be largely dispensable for the RIG-like-receptor 

triggered IFN-β induction [305-306]. Others found that Rela controls autocrine IFN-β 

and basal ISG expression [307] but is only required for a small subset of inducible ISGs . 

Despite this the authors argue Rela is critical in the interferon response as the absence 

of  Rela results in the delayed induction of IFN-β and subsequent ISG expression as well 

as increased susceptibility to viral infection [307]. It could therefore be possible that 
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although the knockdown of the GOI tested in the screen were not critical enough to 

abrogate IFN-β and ISG expression they may have influenced the timing of their onset; 

a factor not explored in these investigations.  

 

The screens in this Chapter suggest the LPS response is not sensitive to changes in 

expression of any of the GOIs. Such resilience to perturbation has been described as 

‘robustness’ in biological networks [308], a property allowing a given system to 

maintain its function despite internal and/or external assaults. IFN-β signalling is one of 

several pathways activated in response to LPS treatment of macrophages; the cells are 

also stimulated by the autocrine production of TNF-α, TGF-β, a number of interleukins 

as well as the differentiation factors CSF-1 and CSF-2 (reviewed in [309]). Activation of 

the downstream MAPKinase, PKC (protein kinase C), and heterotrimeric G-protein 

pathways are all recognised in response to LPS stimulation [309]. It is therefore 

plausible that activation of these various pathways contributed to the resistance of the 

overall transcriptional network to the gene knockdowns. A better understanding of the 

overlap and differences in the transcriptional response of macrophages to LPS and IFN-

β is required to further elucidate why the gene knockdowns were ineffective at 

perturbing the transcriptional signatures associated with LPS and type-I signalling.  

 

 

Conclusions and Further Work 

 

The work described in this Chapter has highlighted the issue that the optimisation and 

use of siRNA in macrophages is complex, requires many considerations, and is often 

confounded given the highly attuned pattern recognition machinery of these cells. At 

the same time exploring the use siRNA in macrophages remains imperative given its 

power as a tool for functional genomics screening and also since macrophages are 

attractive targets for siRNA-based therapeutics.  

 

One of the predominant issues during these investigations was the lack of 

reproducibility between experiments, which most likely could be attributed to the 
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plasticity and adaptability of primary macrophages. Arguably reproducibility may have 

been improved if the optimization process was performed in a macrophage-like cell 

lines (e.g. RAW macrophage). However the phenotype of immortalized macrophage-

like myeloid cell lines is often very different from primary tissue-derived macrophages. 

Thus to understand the immunobiology of macrophages one needs to analyse primary 

cells.  

 

There are a range of factors which could be further explored to improve the assay 

design including; testing of other lipid-based transfection vectors to determine if there 

was a difference in the immunostimulatory capacity of different transfection reagents; 

the inclusion of cell toxicity assays (for example annexin V apoptosis assays) would 

have given a more accurate indication of the levels of apoptosis induced by different 

variables (e.g. siRNA concentration; siRNA combination with LPS treatment; target 

gene of the siRNA).  In the assays described in this Chapter, IFN-β expression was 

measured at the message level by QPCR, however mRNA expression does not always 

correspond with protein expression therefore it would have been desirable to also 

measure IFN-β expression by ELISA’s.  

 

One possibility why the genome wide transcriptional profiling following the siRNA 

screens did not reveal a difference if type-I responsiveness could be because the LPS 

stimulation compensated for the lack of individual signalling components (siRNA target 

genes). Therefore a better understanding and comparison of the LPS and IFN-β 

induced transcriptional responses may have better informed the assay design.   
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Methods and Materials 
 
Cell culture 
Bone marrow derived macrophages were prepared from the femurs of 7-10 week old 

male BALB/c or C57BL/6, in the presence of CSF-1. Full cell culture technique is as 

described in Chapter-4 Methods and Materials – (IFN-β study). For Western Blot 

analysis cells were plated out in 6-well tissue culture plates on day six of differentiation 

at a density of 1,000,000 cells / well. For all other experiments cells were seeded in 24-

well tissue culture plates, on day six of differentiation at a density of 200,000-210,000 

cells/ well, which is equivalent to the seeding density (cell/ over given surface area) of 

6-well plates.  

 

LPS treatment 

LPS from Salmonella Minnesota (Sigma, Poole, UK) was used at a range of 

concentrations as indicated throughout the text of the Results section in cell culture 

experiments, and diluted in culture medium.   

 

siRNA transfections  

siRNAs (SMARTpools, Thermo Scientific, MA, USA) were purchased at a 5 nmol scale 

and redissolved in 1× siRNA buffer (Thermo Fisher Inc, MA, USA) to a final 

concentration of 10 μM. Each siRNA pool comprises a mixture of four siRNA duplexes 

targeting different sequences of the same mRNA, combined into one reagent. The 

SMARTpool siRNAs are selected (by the manufacturers) using a weighted algorithm 

which incorporates a number of criteria (including sequence specific and 

thermodynamic parameters) and is thought to improve identification of potent, 

functional siRNAs [310]. The ON-TARGET plus design of these reagents incorporates 

modifications to both the sense and anti-sense strands of the siRNA duplexes to 

destabilise off-target activity and enhance target specificity [311-312]. 

Details of the siRNA used in this Chapter are summarised in Table 5.4 
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Murine Target Gene Thermo Scientific SMARTpools ID 

Rela ON-TARGETplus SMARTpool L-040776-00-0005 NM_009045 

Nfkb1 ON-TARGETplus SMARTpool L-047764-00-0005 NM_008689 

Rel ON-TARGETplus SMARTpool L-047122-00-0005 NM_009044 

Socs3 ON-TARGETplus SMARTpool L-040626-01-0005 NM_007707 

Irf5 ON-TARGETplus SMARTpool L-041093-01-0005 NM_012057 

Sod2 ON-TARGETplus SMARTpool L-062893-00-0005 NM_013671 

Nfkb2 ON-TARGETplus SMARTpool L-046030-01-0005 NM_019408 

Relb ON-TARGETplus SMARTpool L-040784-01-0005 NM_009046 

Bcl3 ON-TARGETplus SMARTpool L-045102-01-0005 NM_033601 

Irf3 ON-TARGETplus SMARTpool L-041095-00-0005 NM_016849 

Ifnb1 ON-TARGETplus SMARTpool L-043699-00-0005 NM_010510 

Irf7 ON-TARGETplus SMARTpool L-041094-00-0005 NM_016850 

Nfkbia ON-TARGETplus SMARTpool L-044170-01-0005 NM_010907 

Non-Targeting ON-TARGETplus Non-targeting pool D-001810-10-05 
Table 5.4: Details of siRNA SMARTpool purchased to target murine genes.  

 

To transfect at a final concentration of 20 nM in a 6-well format the redissolved siRNA 

(10 μM) was diluted in nuclease free water to working concentration of 2 μM. For each 

treatment-well 10 μl of siRNA SMARTpool was combined with 90 μl of Optimem 

Reduced Serum Medium (Invitrogen, Paisley, UK) solution while 5 μl of Lipofectamine 

2000 (Invitrogen, Paisley, UK) was mixed with 95 μl Optimem. Following incubation for 

5 min, the siRNA mix was added to the L2K mix and incubated for a further 30 min, 

after which 800 μl of complete medium (+CSF-1) but lacking antibiotics was added to 

the siRNA:L2K complexes. The growth medium on the cells was removed and replaced 

with 1000 μl of the siRNA:L2K liposome medium. Cells were then incubated for a given 

period of time depending on the study (as denoted in the results section) at 37°C, 5% 

CO2. 

 

To transfect at a final concentration of 20 nM in a 24-well format the redissolved siRNA 

(10 μM) was diluted in nuclease free water to a working concentration 2 μM. For each 

treatment-well 5 μl of siRNA SMARTpool was combined with 45 μl of Optimem 

(Invitrogen, Paisley, UK) solution while 2.5 μl of Lipofectamine 2000 (L2K, Invitrogen, 

Paisley, UK) was mixed with 47.5 μl Optimem. Following incubation for 5 min, the 

siRNA mix was added to the L2K mix and incubated for a further 30 min, after which 
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400 μl of complete medium (+CSF-1) but lacking antibiotics was added to the 

siRNA:L2K complexes. The growth medium on the cells was removed and replaced 

with 500 μl of the siRNA:L2K liposome medium. Incubation conditions are as described 

above. Each biological sample was generated by pooling cells from three separate 

wells.  

 

For siRNA experiments performed at final concentrations other 20nM, the working 

concentration of the siRNA pools was adjusted and all other conditions remained the 

same. For example to treat at a final concentration of 50nM the redissolved siRNA (10 

μM) was diluted in nuclease free water to a working concentration 5 μM and the 

standard protocol followed as above.  

 

RNA extraction, quantification and quality control 
 
Procedures for RNA extraction, quantification, and QC are as described in Chapter-4 or 

Chapter-6 Methods. RNA integrity was screened across all (RNA-based) experiments 

described to ensure only high-quality RNA was used for QPCR and microarray 

procedures.  

 

mRNA analysis by genome wide Microarray profiling 
 
Full details of microarray processing are described in Chapter-6. The 32 RNA samples 

analysed in this Chapter were processed for hybridisation to Affymetrix Mouse Gene 

1.1. ST Arrays. These Arrays were obtained as part of a 96-Array plate format, which 

enables the simultaneous high-throughput profiling of 96 samples, using the same 

content as the individual Mouse Gene 1.1 ST cartridge arrays. The remaining 64 arrays 

on the 96-Array plate were used to process samples from experiments exploring other 

questions of interest to this thesis and are discussed accordingly in other Chapters (6).  

 

A network graph of the normalised data expression data was generated in BioLayout 

Express3D, by filtering for nodes with relationships across the arrays at a Pearson 

Correlation of 0.85 or above. This resulted in a graph of 12619 nodes, connected by 
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505590 edges. The graph was then clustered at an MCL inflation value of 2.2 and the 

expression profiles of the clusters were analysed to: (1) identify and remove un-

interesting clusters i.e. those representing technical artefacts or unchanged expression 

profiles, and (2) to identify clusters of interest i.e. those representing changes related 

treatment parameters. The filtered graph comprised 4674 nodes connected by 433761 

edges (Figure 5.25). 

 
mRNA analysis by QPCR 
 
Methodology for QPCR has been described previously [146, 313]. The following 

Taqman Primer probe sets (below) were purchased from Applied Biosystems, 

Warrington, UK.   

 
Gene Assay ID 

Ifnb1 Mm00439546_s1 

Nfkb2 Mm00479807_m1 

Irf5 Mm00496477_m1 

Oasl1 Mm00455081_m1 

Ccl5 Mm01302427_m1 

Nfkb1 Mm00476379_m1 

Rela Mm00501346_m1 

Gapdh Mm03302249_g1 

Relb Mm00485664_m1 

Bcl3 Mm00504306_m1 

Irf7 Mm00516788_m1 

Sod2 Mm00449726_m1 

Ifit1 Mm00515153_m1 

Irf3 Mm01203177_m1 

Rel Mm00485657_m1 

Nfkbia Mm00477798_m1 

Socs3 Mm01249143_g1 

 

Prior to proceeding with expression analysis, primers were tested on range of 

concentrations of murine BMDM RNA to determine PCR efficiency. Only an efficiency 

of 97% or > was accepted. An example, of primer efficiency test is shown below for the 

TaqMan primer designed for Gapdh detection.  
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Figure 5.29: Standard Curve for the Taqman Gapdh Primer-probe. Ct values for Gapdh were 
determined at six different concentrations of input RNA (200, 100, 50, 25, 12.5, and 6.25 ng), and each 
input RNA was tested in duplicate. The RSq value (between 0 and 1) is an indicator of the quality of the 
fit of the standard curve to the Standard data points plotted. The closer the value is to 1, the better the 
fit of the line. The slope of the curve is directly related to the average amplification efficiency 
throughout the cycling reaction. PCR Efficiency (calculated from the slope of the curve) corresponds to 
the proportion of template molecules that are doubled every cycle.  
 

 

Individual reactions (for each RNA sample against a given primer probe set) were 

performed in 20 µl volumes using MicroAmp Optical 96-well reaction plates and 

MicroAmp Optical Caps (Applied Biosystems). For each reaction 2 µl of RNA (≈100 ng 

total RNA) was added to 10 µl of 2× Brilliant® II QRT-PCR Master Mix, 1-Step (Agilent 

Technologies, Stockport, UK), 1 µl of a Taqman primer/probe set for the gene of 

interest at the recommended concentration, 6.9 µl of nuclease free double-distilled 

H20, and 0.1 RT Enzyme (Agilent Technologies, Stockport, UK). At least two technical 

replicates were included for each given reaction. 
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The reaction mixture were then incubated at the following conditions on the 

MXPRO3000P instrument (Stratagene, CA, USA): an initial step at 50°C for 30 min, 

followed by 95°C for 10 min after which the samples were then subject to 40 cycles 

under Taqman standard conditions of 95°C for 30 s and then a combined annealing 

and primer extension phase at 60°C for 1 min and a short denaturation at 72°C for 30 

s. Stratagene MXPro software (Stratagene, CA, USA) was then used to analyze the 

data. Threshold determinations were automatically performed by the instrument for 

each reaction. Gapdh was used as a loading control, for normalisation purposes. 

Nomalised CT values were exported into Microsoft Excel and relative quantification of 

marker gene mRNA expression was calculated with the comparative CT method. 

Standard error is calculated for technical PCR replicates.  

 
 

mRNA expression analysis by Semi-Quantitative RT-PCR  
 
Primer Design 
 
PCR primers of 20 bp in length with a 45-60 % GC content and TM of 57.3 – 61.4 °C 

were selected using Primer Designer (Scientific and Educational Software 3.0) to 

amplify products of 107-228 bp in length.  TM was calculated by the primer 

manufacturer (Eurofins MWG Operon) using the following formula: TM [°C] = 69.3 + 

[41(nG + nC) / s – (650 / s)], where n = number of nucleosides of type X and s = number 

of all nucleosides per sequence. Primers were pre-screened to determine the optimal 

conditions for specific cDNA amplification on cDNA derived from mouse macrophage 

RNA. They were tested using a range of PCR cycles (between 25 and 30) at 55oC 

annealing temperature under standard assay conditions (see below), to ensure only a 

single band of the predicted size was generated. If the latter was not achieved then 

primers were redesigned.   

 
 
Semi-Quantitative (Cresol Red and sucrose) RT-PCR  
 

First strand cDNA was generated from 5 µg of RNA using random hexamers as primers 

in a final reaction volume of 30 µl. cDNA synthesis was performed in the presence and 
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absence of superscript reverse transcriptase (Invitrogen, Paisley, UK) and RNA. PCR 

amplification of cDNA equivalent of 10 ng of total RNA was carried out in 20 μl 

reactions containing the cDNA in a 4 μl volume and; 1x Reaction/PCR buffer (3.5 mM 

MgCl2), 12.46% sucrose, 0.1 mM cresol red (Sigma, Gillingham, uk (#114480)), 12 mM 

beta-mercaptoethanol, 0.5 mM dNTPs (Invitrogen, Paisley UK (#10297018)), 0.6 U Taq 

DNA polymerase (Invitrogen, Paisley UK (#18038-026)), and primers were used at 100 

ng/reaction. The inclusion of cresol red and sucrose in the reaction mixture allows 

direct loading of the product onto an agarose gel without addition of loading buffer. 

Amplifications were carried out on DNA Engine Tetrad PTC-225 Peltier Thermal cycler 

(Tetrad, MJ Research, US). This process involved an initial 2 min denaturing step (92 

°C), after which each PCR cycle consisted of 30 sec denaturing (92 °C), 90 sec annealing 

(55 or 60 °C), and 60 sec elongation (72 °C). For each given primer pair-set an 

appropriate number of PCR cycles were chosen to allow termination of amplification in 

the linear phase of the PCR reaction. Otherwise all assays were conducted under 

identical conditions and only the number of cycles or annealing temperature varied. 

After the final PCR cycle, the reaction was held for 10 min at 72 °C. The PCR products 

were then separated on a 2.5% agarose gel, stained with SYBR safe DNA gel stain 

(Invitrogen, Paisley UK) in 1 X TBE and imaged on Syngene G:Box gel documentation 

system.  

 

The primer sequences and optimized number of PCR cycles for the genes analyzed by 

semi-quantitative RT-PCR in this Chapter is shown below: 
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Gene Primers (forward and reverse 5’ -3’) Size of 

amplified 
fragment 

Annealing 
temperature 

Number of 
cycles for linear 
phase detection 

Irf1 For-GAGGAACCAGAGATTGACAG 
Rev-AGCAGGCTGTCCATCCACAT 

107 55oC 27 

Irf5 For-GAGAAGAATGGCCTGATGTC 
Rev-GATGCTGTCTGCCGACCAAG 

125 55oC 25 

Tnf For-GGACAGTGACCTGGACTGTG 
Rev-GAGGCAACCTGACCACTCTC 

127 55oC Less than 25 

Il1b For-GAAAGCTCTCCACCTCAATG 
Rev-GTATTGCTTGGGATCCACAC 

193 55oC 25 

Mx2 For-CTGGATTGTGATTCAGGGAC 
Rev-GCTAAATGGTGGGCAAGAAG 

228 55oC 27 

Socs1 For-TGGTTGTAGCAGCTTGTGTC 
Rev-AATGAAGCCAGAGACCCTCC 

118 55oC Less than 25 

Oasl1 For-TGGCAGAAGGCTACAGATGG 
Rev-GCACGGTCACCTGGATATCG 

138 55oC 25 

Cd14 For-TACAGCTGCAAGGACTAGAC 
Rev-TCCAGCCTGTTGTAACTGAG 
 

175 55oC Less than 25 

 
Table 5.5 Primer sequences used in semi-quantitative PCR analysis.  

 
 
siGlo uptake analysis by confocal microscopy 
 
Cell culture for the purpose of preparing slides for confocal imaging was performed as 

described in the cell culture section with the following exceptions: sterilized (in 70% 

EtOH), dry, round glass coverslips were placed into wells of 24-well tissue culture 

plates. On day 6 of macrophage differentiation, cells were harvested from the 10 cm 

square bacteriological plates and counted. 100 μL of cell suspension containing 50,000 

or 163,000 cells (as stated in the text of the results sections) was added directly onto 

each glass coverslip and after 20 minutes (to allow the cells to adhere to the glass 

slides) 400 μL of culture medium (containing CSF-1) was added to the wells.  

 

Transfection of fluorescent siRNA (siGLO) did not differ from the standard siRNA 

transfection protocol (See siRNA transfection). (siGLO siRNA is chemically labelled with 

a 6-FAM fluorophore, which is visible/ excited under the FITC channel). At appropriate 

times post siGLO-transfection (see results) the culture medium was removed from the 

glass slides of BMDM which were then fixed in 4% PFA for 5 min at room temperature 
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and rinsed with 0.5ml PBS (with 0.1%Triton X-100). The cells were then treated with a 

blocking solution containing 1% goat serum in PBS for 10 min. The glass coverslips 

were mounted using Vectorshield HardSet Mounting Medium with DAPI at 1.5 µg/ml 

(Vector Laboratories, Peterborough, UK) onto frost-free slides.  

 

Fluorescence images were captured on a Nikon EC-1 confocal scanning laser 

microscope (Nikon Instruments, Surrey, UK). 2-D optical sections were acquired using 

Nikon EZ-C1 software (Nikon Instruments, Surrey, UK) with sequential acquisition 

(Frame Channel Mode) to give separate image files for each channel with minimal 

spectral overlap. The following stains and laser/filter combinations were used: DAPI 

nuclear stain (excitation 405 nm, emission BandPass460/50nm), 6-FAM fluorophore 

(siGLO), excitation 488nm, emission BandPass530/30nm). 

 

Protein analysis by western blotting 

BMDMs were washed with PBS and resuspended in a whole cell lysis buffer (50 mM 

HEPES, pH 7.5, 1% Triton X-100, 50 mM NaCl containing protease inhibitors (Roche 

Complete #11 697 498 001), phosphatase inhibitor cocktails I and II( Sigma P2850 and 

P5726)) at appropriate times (see results) post treatment or siRNA transfection. Cell 

lysates were centrifuged at 13000 rpm for ~ 1 min (at 4 °C) and the supernatants 

collected. Protein concentrations were determined by Lowry assays using the the Bio-

Rad Dc Protein assay (Bio-Rad Laboratories) and the NanoDrop Spectrophotometer as 

per manufacturer’s instructions. Western Blot analysis was performed by loading 10 µg 

of each protein sample onto a lane of a 10% polyacrylamide gel with a 4% stacking gel 

and separating proteins by SDS-PAGE. The proteins were then transferred to 

nitrocellulose membranes, and stained with Amido Black (Sigma, Gillingham, UK) to 

confirm equal loading of protein. Blots were then incubated in 1X TBS-triton for an 

hour at room temperature with gentle agitation followed by incubation with the 

primary antibody (anti-Nfkb2 (Cell Signalling Technology #4882) at 1:1000; or anti-Irf5 

(Cell Signalling Technology #4950) at 1:100) in immunomedium (DMEM (Invitrogen, 

Paisley, UK)) overnight at 4 °C. The following day the membrane was washed three 

times for 10 min each in TBS-Triton, before being placed in secondary antibodies in 
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immunomedium (anti-rabbit HRP at 1:7000 (Sigma, Gillingham, UK) (A9169)), coupled 

to horse raddish peroxidase for 1-2 h at room temperature. Proteins were visualized 

using ECL reagents (Pierce, Rockford, IL) and Amersham Hyperfilm ECL (GE Healthcare) 
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Chapter 6. Analysis of the transcriptional networks of 
mouse bone marrow derived macrophages in response 

to stimulation with a number of M1 phenotype 
activators 
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Introduction 
 

The primary objectives of the work described in this Chapter were to examine the 

transcriptional signatures arising in response to three stimuli known to activate or 

contribute towards the M1 polarisation of macrophages; IFN-γ, IFN-β, and LPS. 

Previous attempts in this thesis to compare the type-I and type-II interferon response 

were confounded by the fact the two treatments (IFN-γ, IFN-β) and microarray 

processing were performed on separate occasions. As described in Chapter-4, one of 

the key interests in comparing and contrasting the transcriptional response to type-I 

and type-II interferon lies in the fact that at the functional level these cytokines have 

evolved to complement each other in overlapping but non-redundant activities [241]. 

A recent clinically relevant example of this non-redundancy was demonstrated in 

monocytes and macrophages cultured from patients with complete IFN-γR deficiency 

[314]. These patients are prone to severe infections with even weakly virulent 

Mycobacteria and type-I interferon has been proposed as a treatment. However the 

authors demonstrated IFN-α was deficient at priming for certain LPS inducible 

cytokines (such as IL-23 and TNF), as well as killing of M. smegmatis [314]. Thus 

distinguishing what is common and unique in the transcriptional signatures of the two 

classes of interferons may aid the understanding of why one class of interferon cannot 

substitute for the lack of another in response to certain pathogens.  

 

As reflected in its original name, “macrophage activating factor”, one the key functions 

of IFN-γ is to sensitise macrophages to activation by pathogen challenge. Indeed the 

classical activation of macrophages arises from IFN-γ stimulation in combination with 

TLR ligation [44, 315]. The TLR4 agonist LPS, is arguably one of the best studied and 

most potent activators of macrophages [11, 316], and the priming of macrophages 

with IFN-γ is known to have a significant effect on the cells response to LPS (reviewed 

in [317]). IFN-γ and LPS signals synergise at a number of levels, from signal recognition 

to target gene regulation [317]. For example IFN-γ positively regulates TLR signalling 

components (including TLR2, TLR4, MYD88 and the CD14 co-receptor), thereby 

amplifying sensitivity to TLR signals [317]. In contrast LPS induces the SOCS (suppressor 
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of cytokine signalling) proteins, known to negatively regulate interferon-receptor 

activation [318]. Signals also converge at key transcription factors, such as LPS 

mediated phosphorylation of STAT1, a crucial cytosolic factor for IFN-γ-dependant 

gene regulation [317]. IFN-γ priming of RAW264.7 cells and monocytes have shown to 

potentiate NF-ĸB (NFKB1:RELA) activation in response to subsequent LPS stimulation 

[319].  

 

Also acknowledged in the literature is the extent of crosstalk and synergy between LPS 

and type-I interferon signalling. In macrophages, LPS stimulation induces the rapid 

transcription of IFN-β mRNA and protein secretion [275]. In turn IFN-β signalling forms 

a key portion of the LPS transcriptional response and LPS-induced lethality [276-277]. 

In Chapter-5 LPS-induced IFN-β production formed the basis of the assay design to 

study the role of selected genes of interest in type-I signalling. However these 

investigations underscored the need to better understand the overlap between the 

type-I and LPS response. For example, are all IFN-β regulated transcripts also regulated 

by LPS?  

 

The pathway construction efforts of Chapter-2 depicted the signalling pathways 

activated in response to these three stimuli (IFN-γ, IFN-β and LPS). A simplified 

schematic extracted from the larger integrated pathway (Figure 6.1) also illustrates the 

receptor activation and downstream signalling.  As discussed in previous Chapters, 

although type-I and type-II interferons are structurally distinct and bind to different 

receptors, the signalling pathways employed by the two cytokines are inter-related 

(Figure 6.1), and this is reflected in their overlapping target genes (Chapter-4). There is 

also overlap in the transcriptional targets of interferon and LPS signalling, given the 

induction of type-I interferon by LPS stimulation.  Recognition of LPS in mammalian 

cells involves a series of interactions with several proteins including the LBP (LPS 

binding protein), CD14, LY96 (MD-2) and TLR4 (reviewed in [320-321]) (Figure 6.1). 

TLR4 signal transduction is often divided into the MYD88 dependant and MYD88-

independant pathways. The latter pathway relies on TICAM1 an adaptor protein which 

plays a key role in the activation of the IRF3 transcription factor and subsequent type-I 
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interferon regulation. The MYD88 dependant pathway is the main protagonist in the 

activation of the MAPKinase and NF-ĸB signalling pathways which result in pro-

inflammatory cytokine expression.  
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Figure 6.1: Type-I interferon, Type-II interferon and LPS activation of their respective receptor 
complexes. Type-I (IFN-α/ IFN-β) and type-II interferon (IFN-γ) bind to their respective receptor 
complexes. Both signalling pathways share the transcription factor STAT1 and overlap I in the 
transcriptional response induced. TLR4 signalling is commonly divided into the MYD88-dependent and 
independent pathways; whereby the independent pathway leads to IRF3 activation subsequent 
regulation of IFN-β enhansesome, and the dependent pathway activates MAPKinase and NFκB signalling 
cascades. Type-I interferon, type-II interferon and LPS signalling overlap in their transcriptional targets, 
and are also expected to induce unique sets of genes.  
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Therefore based on the existing literature and the pathway models of these signalling 

systems it would be expected that IFN-β, IFN-γ and LPS overlap in their transcriptional 

profiles. However given there are also key differences in the downstream signalling, 

there are likely to be unique sets of genes induced in response to the three inputs. The 

transcriptional response to LPS might be expected to be broader ranging than that of 

interferon alone. This assumption is based on the fact that LPS stimulation of TLR4 will 

activate type-I interferon signalling (via the MYD88 independent pathway) as well 

additional signalling systems through via the MYD88-dependant pathway. Moreover, 

given this autocrine type-I signalling, one might predict that the transcriptional 

networks induced by LPS signalling, overlap to a greater extent with those induced by 

IFN-β signalling than those induced by IFN-γ. Unravelling the individual transcriptional 

responses to these cytokines may go some way to increasing our understanding of 

how they contribute to the activated (M1) macrophage phenotype and indeed what 

we understand by this label. Furthermore dissecting the transcriptional response 

would considerably improve the transcriptional coverage of the pathway models, 

where currently the regulation of only a handful of target genes is depicted. Recent 

searches of microarray data repositories (Array Express and GEO) show there are no 

data-sets submitted where all three stimuli are compared over a time-course series in 

primary mouse (bone marrow derived) macrophages. Furthermore, datasets where 

the transcriptional responses to at least two of three stimuli of interest are measured 

across multiple time-points in murine BMDMs are not available. The analysis described 

in this Chapter therefore represents a valuable insight into the transcriptional 

networks associated with factors known to contribute towards ‘classical’ activation of 

macrophages (IFN-β, IFN-γ, and LPS). The work presented will contribute in part to a 

more detailed, focused analysis for publication purposes. There are however several 

observations of interest to be made in this analyses.   
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Results 
 

Analysis of the transcriptional response to IFN-β, IFN-γ or LPS in BMDMs  

In order to analyse the transcriptional changes induced by three different stimuli (IFN-

β, IFN-γ and LPS) in mouse BMDMs, transcriptional profiling using microarrays was 

performed over a series of time-points pre- and post-treatment. Cells were challenged 

with 10 U/ml IFN-β, or 10 U/ml IFN-γ, or 5 ng/ml LPS for 1, 2, 4, 8, and 24 h, or were 

harvested pre-treatment (0 h). Two biological samples were generated for each time-

point per treatment regime. A description of the samples for this analysis is provided in 

Table 6.1. High quality RNA was processed for labelling and hybridisation to Affymetrix 

Mouse Gene 1.1. ST Arrays, which were obtained as part of 96-array plate (see 

Methods). 

 

Sample No Stimulus Concentration Time-points (hours) 

1 & 2 None N/A 0h (pre-treatment/ experiment start) 

3 & 4 IFN-β 10 U/ml 1 h post IFN-β 
5 & 6 IFN-β 10 U/ml 2 h post IFN-β 
7 & 8 IFN-β 10 U/ml 4 h post IFN-β 

9 & 10 IFN-β 10 U/ml 8 h post IFN-β 
11 & 12 IFN-β 10 U/ml 24 h post IFN-β 

13 & 14 IFN-γ 10 U/ml 1 h post IFN-γ 
15 & 16 IFN-γ 10 U/ml 2 h post IFN-γ 
17 & 18 IFN-γ 10 U/ml 4 h post IFN-γ 
19 & 20 IFN-γ 10 U/ml 8 h post IFN-γ 
21 & 22 IFN-γ 10 U/ml 24 h post IFN-γ 

23 & 24 LPS 5 ng/ml 1 h post LPS 
25 & 26 LPS 5 ng/ml 2 h post LPS 
27 & 28 LPS 5 ng/ml 4 h post LPS 
29 & 30 LPS 5 ng/ml 8 h post LPS 
31 & 32 LPS 5 ng/ml 24 h post LPS 

 
Table 6.1: The treatment regimes of 32 BMDM samples generated for genome wide transcriptional 
analysis. Mouse BMDMs were treated with 10 U/ml IFN-β or, 10 U/ml IFN-γ or 5 ng/ml LPS, over a time-
course. All treatments were performed simultaneously and on macrophages prepared from the same 
culture.  
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A network graph of the normalised data for the 32 samples was generated in 

BioLayout Express3D, by filtering for transcripts that shared a Pearson Correlation of 

0.85 or above. This resulted in a graph of 11,258 nodes, connected by 270,601 edges 

(not shown). The graph was then clustered at an MCL inflation value of 2.2, resulting in 

over 600 clusters with ≥3 nodes. 9,122 transcripts were represented within clusters. 

This initial network graph was then used to identify clusters representing cohorts of 

genes that did not exhibit a profile of expression that varied with treatment (such as 

those unchanging across all arrays or technical artefacts), and transcripts within these 

clusters were removed from the graph.  As might be expected many transcripts were 

relatively evenly expressed across all treatments, and after filtering only 3,747 

transcripts remained in clusters representing regulated genes.  

A further network graph of the transcriptional data pertaining only to the 3,747 

transcripts was generated, (again using a Pearson Correlation threshold of 0.85). Again 

two major graph components were identifiable; one representing up-regulated 

transcripts, the other down-regulate transcripts. The graph of 3,747 nodes connected 

by 172,688 edges was clustered at an MCL inflation value of 2.2 (Figure 6.2), resulting 

in over 70 clusters with ≥3 nodes. The clusters were then inspected for patterns of 

expression related to the three treatment regimes and annotated accordingly. The 

annotation of clusters was based on two predominant factors: 

(i) The directionality of the change; where Up or Down defines up or down 

regulation of expression of transcripts within the cluster.  

(ii) The specificity of the change with respect to a given treatment regime. 

Clusters annotated “Specific” represent transcripts which are only 

regulated in a given treatment. Whereas clusters annotated “Preferential” 

are regulated in all treatments, but to a greater extent in the denoted 

treatment regime. 

For example cluster-1 “Down Preferentially in LPS” indicates the transcripts within this 

cluster are down regulated in all treatments but more so in those cells treated with 

LPS.  On the other hand cluster-2 “Up Specifically in LPS” implies the induction of 

transcripts within this cluster is observed only in cells stimulated with LPS.  A handful 
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of clusters represented changes occurring in all three treatments to a similar extent 

and these are annotated “Up/Down Similar in All Treatments”.  
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Figure 6.2: Network graph of transcriptional changes occurring in mouse BMDMs in response to IFN-β, IFN-γ or LPS challenge. The network graph of transcriptional 
data pertaining to the treatment of BMDMs with IFN-β, IFN-γ or LPS over a time-course comprising 3,747 nodes (transcripts), connected by 172,688 edges at a Pearson 
correlation of 0.85 or above. The graph clustered at an MCL inflation value of 2.2 comprises over 70 clusters with ≥3 nodes. Nodes (transcripts) within the same cluster 
share the same colour. The upper component of the graph represents transcripts up-regulated in response to treatment, whereas the lower component represents 
transcripts down-regulated in response to treatment.  
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To further appreciate the structure of the transcriptional network generated (in Figure 

6.2) in response to the three treatments, a collapsed-cluster network graph was 

generated; whereby the nodes making up this graph represent the different clusters 

and the edges denote the relationships between the clusters. The size of the nodes 

shown in the graph is proportional to the cluster membership i.e. number of 

transcripts. The collapsed-cluster graph was arranged in 2-dimentions to reflect the 3-

dimentional (un-collapsed) network graph (Figure 6.3). The graph illustrates that only a 

few clusters represent transcriptional networks that are activated specifically in 

response to a given treatment. The majority of clusters represented transcriptional 

changes occurring preferentially in one treatment over the others. Furthermore the 

expression of most transcripts was preferentially altered in response to LPS treatment.  

 

As in previous Chapters the clusters generated from this analysis were annotated 

based on their gene membership and over-representation of cohorts of functionally 

associated genes using the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) [248-249]. The most over-represented terms (based on DAVID 

analysis of GO Ontology terms (GO FAT category)) were chosen to describe the biology 

of the clusters. Tables 6.2(a-e) provide an overview of all clusters (with ≥ 10 nodes); 

this includes the number of transcripts within each cluster, examples of gene members 

and the associated GO terms. The expression profiles of selected clusters of interest 

are also shown in Figures 6.4(a-d). The cluster profiles are sorted according to 

treatment centric changes (e.g. changing specifically/ preferentially in LPS/ IFN-β/ IFN-

γ), and the maximal/ minimal time of gene induction or repression, respectively.  
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Figure 6.3: Collapsed cluster relationship network of the transcriptional changes occurring in mouse 
BMDMs in response to IFN-β, IFN-γ or LPS challenge based on the transcriptional network shown in 
Figure 6.2.  Nodes represent individual clusters and are sized proportionally to their transcript 
membership and are coloured according to the treatment specific pattern of expression they represent. 
Edges denote relationships between clusters.  
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LPS Centric Clusters –Average Expression Profile 

 
 
Figure 6.4: (a) Average expression profiles across clusters associated with preferential or specific 
changes in LPS treated mouse BMDMs. Mean expression profiles for each sample (array) are calculated 
from the expression levels of all transcripts within the given clusters. Expression levels are plotted across 
the different time-points sampled and the three different treatment regimes (IFN-β, IFN-γ and LPS). GO 
terms associated with genes in each cluster are shown to the right of each plot.  
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LPS Centric Clusters –Average Expression Profile 

 
 
Figure 6.4: ((a) continued from previous page) Average expression profiles across clusters associated 
with preferential or specific changes in LPS treated mouse BMDMs. Mean expression profiles for each 
sample (array) are calculated from the expression levels of all transcripts within the given clusters. 
Expression levels are plotted across the different time-points sampled and the three different treatment 
regimes (IFN-β, IFN-γ and LPS). GO terms associated with genes in each cluster are shown to the right of 
each plot.  
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IFN-β Centric Clusters –Average Expression Profile 

 
Figure 6.4: (b) Average expression profiles across clusters associated with preferential or specific 
changes in IFN-β treated mouse BMDMs. Mean expression profiles for each sample (array) are 
calculated from the expression levels of all transcripts within the given clusters. Expression levels are 
plotted across the different time-points sampled and the three different treatment regimes (IFN-β, IFN-γ 
and LPS). GO terms associated with genes in each cluster are shown to the right of each plot.  
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IFN-γ Centric Clusters –Average Expression Profile 

 
Figure 6.4: (c) Average expression profiles across clusters associated with preferential or specific 
changes in IFN-γ treated mouse BMDMs. Mean expression profiles for each sample (array) are 
calculated from the expression levels of all transcripts within the given clusters. Expression levels are 
plotted across the different time-points sampled and the three different treatment regimes (IFN-β, IFN-γ 
and LPS). GO terms associated with genes in each cluster are shown to the right of each plot.  
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Other Clusters –Average Expression Profile 

 
 
Figure 6.4: (d) Average expression profile across clusters associated with changes across all three 
treatments studied in mouse BMDMs. Mean expression profiles for each sample (array) are calculated 
from the expression levels of all transcripts within the given clusters. Expression levels are plotted across 
the different time-points sampled and the three different treatment regimes (IFN-β, IFN-γ and LPS). GO 
terms associated with genes in each cluster are shown to the right of each plot.  
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LPS Centric Clusters – Down Regulated Response 
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1 886 Down Preferentially in LPS  

Bub1, Bub1b, Cdk1, Cdc20, 
Cdc25b, Cdc7, Cenpe, Cenpf, 
Chek1, Ccna2, Ccnb2, Ccnf, 
Mcm2,  

Cell Cycle, M Phase, M Phase of Mitotic Cell Cycle, 
Mitosis, Nuclear Division 

6 157 Down Preferentially in LPS  
Agfg2, Agap2, Rasa3, Dock2, 
Dgkz 

Regulation of Small GTPase mediated Signal 
Transduction, Regulation of Ras Protein Signal 
Transduction 

8 122 Down Preferentially in LPS  
Cdt1, Sigirr, E2f2, Cdc6, Cdt1, 
Ccne1, Cdk2,  

 -ve Regulation of Macromoecule Metabolic Process, -
ve Regulation of Cellular Biosynthetic Process, Cell 
Cycle, -ve Regulation of Gene Expression 

15 35 Down Preferentially in LPS  
Decr1, Nqo2, Aldh9a1, Dhrs7, 
Gpd1l 

Oxidation Reduction 

19 27 Down Preferentially in LPS  Adcy3, Nme3, Padi2,  
Nitrogen Compound Biosynthetic Process, Purine 
Nucleotide Biosynthetic Process 

23 22 Down Preferentially in LPS  Nfam1, Card9, Eif2ak3,  
 +ve Regulation of Binding, +ve Regulation of Signal 
Transduction 

25 19 Down Preferentially in LPS > IFN-γ > IFN-β  
Atp2a3, Cacna1d, Slc24a3, 
L1cam 

Calcium Ion Transport, Cell Adhesion 

26 18 Down Preferentially in LPS  Kdm1b, Dhrs7b, Spr Oxidation Reduction 

30 15 Down Preferentially in LPS  Plau, Rassf2  --Unavailable-- 

31 13 Down Preferentially in LPS & IFN-β  Sf1, Hnrnpa1, Ckap2l RNA Splicing, mRNA Processing 

Table 6.2: (a) Description of clusters associated with down-regulated transcriptional changes occurring preferentially/ specifically in LPS treatment. 
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LPS Centric Clusters – Up Regulated Response 
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2 454 Up Specifically in LPS  
Ccl5, Cxcl5, Aox1, Nos2, Prdx5, 
Cd38, Cd5, Tlr1 

Response to Wounding, Immune Response, Inflammatory 
Response, Oxidation Reduction, +ve Regulation of 
Immune System Process, Macrophage Activation 

3 380 Up Preferentially in LPS  
Il1b, Il6, Il18, Il12a/b, Nod2, 
Tlr6, Ccl17, Ccl22, Cxcl16, 
Cxcl3, Traf1/2/5, Casp7 

Regulation of: Phosphorylation, Phosphate/Phosphorus 
Metabolic Process, Lymphocyte Activation, T Cell 
Activation, Leukocyte Activation, Cytokine Activity, Cell 
activation, Apoptosis, Mononuclear Cell Proliferation 

5 168 Up Early Preferentially/ Specifically in LPS  
Bcl3, Bcl10, Rel, Tnf, Rela, Tlr2, 
Ifnar1, Ccl9, Cxcl1, Cxcl2, Csf1, 
Relb, Nfkbie, Icam1, Cflar,  

Regulation of Cytokine Production, Immune Response, 
+ve Regulation of Multicellular Organismal Process, 
Regulation of Transcription, +ve Regulation of Cytokine 
Biosynthesis, Adaptive Immune Response, Regulation of 
apoptosis 

9 92 Up Early Specifically in LPS  
Dusp1, Dusp4, Dusp5, Dusp8, 
Dusp14, Egr1, Eg2, Fosl1, Irf4 

Dephosphorylation, +ve Regulation of transcription,  

11 66 Up Preferentially/ Specifically in LPS  
Atp2b4, Slc22a21, Slc22a5, 
Slc39a14, Stat5, Tnfsf15 

(Cation) Transport, Intracellular Signalling Cascade 

17 28 Up Preferentially in LPS  C2, Irf7, Bst2 
Immune Response, Immunoglobulin Mediated Imme 
Response, B Cell/ Lymphocyte Mediated Immunity 

21 24 Up Preferentially in LPS > IFN-β > IFN-γ  Il15, Casp4, Zfp800  --Unavailable-- 

24 20 Up Late Preferentially in LPS  Ddit3, Derl1, Alkbh2, Aifm2 
Cellular Response to Stress, Cellular Response to 
Unfolded Protein, +ve Regulation of Apoptosis 

35 11 Up Preferentially in LPS  Phldb1, Plscr1  --Unavailable-- 

Table 6.2: (b) Description of clusters associated with up-regulated transcriptional changes occurring preferentially/ specifically in LPS treatment.
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IFN-β Centric Clusters  
C

lu
st

e
r-

N
o

-I
D

 

N
o

 o
f 

Tr
an

sc
ri

p
ts

 

C
lu

st
e

r-

D
e

sc
ri

p
ti

o
n

 

U
p

 o
r 

D
o

w
n

 *
 

Ex
am

p
le

 G
e

n
e

s 

En
ri

ch
e

d
 G

O
 

A
n

n
o

ta
ti

o
n

  

37 11 Down & Up Preferentially in IFN-β  Gba2, Gpr162, Map3k12  --Unavailable-- 

7 123 Up Preferentially in IFN-β > LPS  
Daxx, TCf4, Zfp213, Socs7, 
Usp12, Acvr1, Dll1, Foxf1a, 
Nr3c1 

Regulation of Transcription, Macromolecule Catabolic 
Process, Determination of Left/Right Symmetry, 
Chromatin Modification 

10 70 Up Preferentially/ Specifically in IFN-β  Il10, Casp2, Tnfsf8,   --Unavailable-- 

27 18 Up Preferentially in  IFN-β > IFN-γ > LPS  Fcgr1, Masp1, Treml2 
Acute Inflammatory Response, Innate Immune 
Response 

29 16 Up Preferentially in IFN-β  Abcb1a, Prnp Response to Metal Ion 

36 11 Up Late Preferentially/ Specifically in IFN-β  Cd4, Cdkn1c, Slc5a3, Spry3 
Protein Amino Acid N-linked Glycosylation, Sodium 
Ion Binding 

39 11 Up Preferentially in IFN-β  Pou3f1, Dennd1b  --Unavailable-- 

Table 6.2: (c) Description of clusters associated with transcriptional changes occurring preferentially/ specifically in IFN-β treatment.  
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IFN-γ Centric Clusters 
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13 53 Up Preferentially in IFN-γ > IFN-β > LPS   Cxcl9, Gbp4, IIgp1 
GTP Binding, Immune Response, Response to Cytokine 
Stimulus 

14 45 Up Preferentially/ Specifically in IFN-γ   
Il2rb1, H2-Dma, H2-Eb1, 
Ly6a, Ciita, C4b 

Immune/Adaptive Immune Response, Immunoglobulin 
Mediated Immune Response, Lymphocyte Mediated 
Immunity, Complement Activation 

32 13 Up Preferentially in IFN-γ   Gm2a, Pafah1b3, Scn3b Lipid Catabolic Process 

34 12 Up Preferentially in IFN-γ > LPS (not IFN-β)   Cd74, H2-Aa, H2-Ab1, H2-Ea 
Immune Response, Antigen Processing & Presentation 
of Peptide Antigen via MHC class II 

40 11 Up Preferentially in IFN-γ   Ccr1, Adora3, Sbno2, Gpr146 Myeloid Cell Activation During Immune Response 

44 10 Up Preferentially in IFN-γ   Selp, Traf3ip2, Ppard  +ve Regulation of Protein Kinase Cascade 

Table 6.2: (d) Description of clusters associated with transcriptional changes occurring preferentially/ specifically in IFN-γ treatment.  
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Other Clusters 
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18 27 Down Preferentially in IFN-γ & LPS  Cd9, Fn1, Clstn1, Itgax 
Cell Adhesion, Biological Adhesion, Cell Junction 
Assembly 

33 13 Down in all treatments  Ipo11, Psmg2, Chst11 Protein Complex Assembly 

41 10 Down & Up in IFN-β_Down in IFN-γ & LPS  Vash2, Gab3  --Unavailable-- 

4 335 Up Preferentially LPS-&-IFN-β > IFN-γ  

Oas2, Casp3, Pmepa1, Psma4, 
Usp18, Usp25, Ifih1, Tlr3, Tlr8, 
Usp18, Uba7, Ube2l6 

Cellular Macromolecule Catabolic Process, Response 
to Virus, ISG15-protein conjugation, Immune 
Response 

12 57 Up Similar in all treatments  
Gbp9, Gnb4, Gbp2, Gbp6, 
Irgm2, Gbp1, Irf5, Stat3 GTPase Activity, Immune Response, Transcription 

16 32 Up Similar in all treatments  Psme1, Psmb8, Tap2 
Antigen Processing & Presentation, Transmembrane 
Transport 

28 17 Up Similar in all treatments  Atxn7l3, Kdm2a, Mll5, Msl1 Chromatin Modification/Organisation 

43 10 Up Late Similar in all treatments  Tapbp, H2-T23, H2-T24 Antigen Processing & Presentation 
Table 6.2: (e) Description of clusters associated with transcriptional changes in response to any of IFN-β, IFN-γ or LPS. 
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To better visualise the overlap and distinction in the transcriptional response to IFN-β, 

IFN-γ, and LPS, network diagrams displaying the targets of each treatment (as 

determined in this analysis) were generated. Separate networks were generated for 

the up and down regulated gene targets. Connections (edges) were defined between 

the treatment-type (IFN-β, IFN-γ, and LPS) and the genes regulated in response to a 

given treatment. Therefore if a particular gene was regulated in response to all three 

treatments there would be thee input edges into that gene. Connections from 

treatment-type to genes were captured regardless of the extent of transcriptional 

induction/ repression, i.e. genes preferentially induced/repressed in LPS and also 

induced/repressed in response to IFN-β and IFN-γ (but to a lesser extent) are 

connected to all three treatment-types. 

 

The up-regulated response comprised transcriptional targets common to all three 

treatments (948 transcripts), targets shared between two treatments only (IFN-γ and 

IFN-β: 33, IFN-γ and LPS: 11, LPS and IFN-β: 111 transcripts), and genes unique to the 

individual treatments (IFN-γ: 50, IFN-β: 115, and LPS: 727 transcripts). In contrast to 

the inducible response all the down-regulated targets within clusters were common to 

all three stimuli.  
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Figure 6.5: Overlap in the up and down regulated transcriptional targets of IFN-β, IFN-γ, and LPS. (a) Overlap and divergences in the transcriptional networks induced 
by IFN-β, IFN-γ and LPS in mouse BMDMs. (b) Overlap in the transcriptional networks repressed by IFN-β, IFN-γ and LPS in mouse BMDMs. 
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Discussion 

This final results Chapter presents a high-level analysis of the macrophage response to 

three stimuli which are considered to prime cells towards what is often described as an 

M1 phenotype [44]. IFN-β, IFN-γ and LPS activated signalling pathways converge at a 

number of levels and elicit an anti-microbial response by regulating the expression of 

hundreds of genes. “Classical” activation of macrophages is considered to be attained 

by IFN-γ exposure in concert with a microbial stimulus such as LPS. Arguably LPS is by 

far the most extensively studied microbial activator of macrophage signalling and 

transcriptional cascades. LPS stimulation of macrophages induces the expression a 

number of cytokines including IFN-β which then act in an autocrine manner to 

contribute to the LPS transcriptional response [276-277]. As discussed in previous 

Chapters (1 & 4) the type-I interferon, IFN-β, and the type-II interferon, IFN-γ are 

structurally unrelated and bind to different receptors however they do share 

downstream signalling machinery and overlap in their transcriptional response. The 

variance in the type-I and type-II transcriptional signatures are potentially fundamental 

in the non-redundant activities of these cytokines; i.e. where one interferon cannot 

substitute for the lack of another as demonstrated in both experimental and clinical 

states of infection [241-242, 314].   

Despite the acknowledged signal convergence of these three stimuli and their 

interrelated activation of the macrophage transcriptome, high-quality detailed 

transcriptional datasets comparing and contrasting the actions of IFN-β, IFN-γ and LPS 

are not currently available. In an attempt to begin to understand and identify the 

common and distinct patterns of gene expression the analyses of this chapter have 

attempted to delineate the transcriptional events in response to each of the three 

stimuli of interest in mouse BMDMs. It is acknowledged that the individual reposes to 

these stimuli have been studied in great deal in their own right [97, 238, 243-244, 246-

247, 302, 309, 322-326]. Thus this analysis did not attempt to describe all 

characteristics of the macrophage response to endotoxin or to interferons. Instead the 
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focus was on identifying patterns of expression unique and overlapping in the three 

treatments.  

Overall Transcriptional Network Structure in BMDMs Following IFN-β, 

IFN-γ, or LPS Stimulation 

For this analysis primary mouse BMDMs were treated with 10 U/ml IFN-β or, 10 U/ml 

IFN-γ or, 5 ng/ml LPS over a time-course. The time-points analysed in this study (0, 1, 2, 

4, 8 and 24 h) had been effective at distinguishing temporal classes of inducible and 

repressible genes in the previous analysis Chapter-4.  

A filtered network graph of transcripts regulated in this data-set comprised 3,747 

nodes connected by 172,688 edges. As with the time-course study of Chapter-4 the 

network graph had two main components; one comprising up-regulated transcripts 

and the other down regulated transcripts. The up-regulated graph component had two 

predominant sections; changes which were preferential/specific to LPS treatment and 

changes which were preferential/specific to other treatments. Whilst the up-regulated 

response comprised a number of clusters representing changes specific to given 

treatments (e.g. cluster-2, cluster-4, and cluster-9), no such clusters existed in the 

down regulated response. Therefore all the down-regulated targets in this analysis 

were common to all three treatments (Figure 6.5). However 1,313 of the 1,423 down-

regulated transcripts were repressed to a greater extent in LPS treatment, compared 

to the interferon treatments.  

Similar to the down-regulated response, the inducible transcriptional response was 

much broader and potent (in terms of fold-change induction) in LPS treated 

macrophages compared to those treated with either IFN-β or IFN-γ. 727 transcripts 

belonged to clusters which were specific to changes in LPS treatment (e.g. cluster-2 

and cluster-9) or highly specific to LPS treatment (those annotated 

“Preferential/Specific”). It was hypothesised that LPS would induce a broader 

transcriptional response since TLR-4 activation stimulates a number of downstream 

pathways in addition to autocrine IFN-β signalling. Indeed, this was the observed 
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outcome and many of the LPS-specific genes were related to signalling pathways 

activated directly downstream of TLR-4 ligation (i.e. MAPKinase signalling and NF-ĸB). 

948 transcripts overlapped between all three treatments however 50% of these 

transcripts were preferentially induced by LPS stimulation. Amongst the overlap 

specific to two treatments, LPS and IFN-β had more (inducible) transcripts in common 

(111) than LPS and IFN-γ (11 transcripts).  Both IFN-γ and IFN-β induced small subsets 

of transcripts unique to each treatment (50 and 115 respectively) and not overlapping 

with LPS. Therefore as predicted each treatment type (IFN-β, IFN-γ and LPS) induced 

unique sets of genes, which might be attributed to the differences in the signalling 

pathways employed by these stimuli. However, a large number of the transcriptional 

targets of these three stimuli were overlapping, suggesting a non-specific general 

macrophage response to interferon and LPS. Discussed herein are some of the key 

observations in the differential and overlapping transcriptional response to IFN-β, IFN-

γ or LPS in mouse BMDMs.  

 

LPS Specific and Centric Transcriptional Changes 

The most distinguishable “early” induced set of transcripts belonged to cluster-9- 

representing changes occurring specifically in LPS treated macrophages (Figure 6.4a). 

The 92 transcripts within this cluster were induced transiently from 1 hour post-LPS 

treatment. Amongst the genes represented within this cluster, there were five dual 

specificity phosphatases (Dusp1, Dusp4, Dusp5, Dusp8, and Dusp14), regulators of the 

NF-ĸB system (Nfkbia, Nfkbid, and Nfkbiz), a number of transcripts representing 

microRNA’s (Mir17, Mir18, Mir19a, Mir19b-1, Mir221, Mir222, and Mir92-1), and the 

interferon regulatory factor Irf4. The changes observed in this cluster are fitting with 

the literature and highly indicative of negative feedback control of the TLR-4 activated 

pathways. For example IRF4 has been demonstrated as negative regulator of TLR 

signalling and proinflammatory cytokine production [290, 327]. Moreover IRF4-/- mice 

display increased sensitivity to LPS-induced shock and exaggerated TNF-α and IL-6 

production [290].  
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As established in the literature and the pathway diagrams (Chapter-2), the MAPKinase 

signal transduction pathways acts downstream of TLR-4 receptor activation and this 

signalling cascade is involved in cytokine production. Many DUSP proteins (often 

referred to as MAPKinase phosphatases), are responsible for dephosphorylating 

threonine and tyrosine residues on MAPKkinase proteins and in doing so control the 

duration and intensity of MAPKinase signalling [328]. For example DUSP-1 has been 

shown to be a key negative regulator of the inflammatory response by regulating the 

p38 and JNK (Jun N-terminal protein kinase) MAPKinase pathways and thereby pro- 

and anti-inflammatory cytokine production [329-332] (Figure 6.6).  
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Figure 6.6: Extract from the integrated pathway diagram illustrating the action of the MAPKinase 
phosphatase, DUSP1. DUSP1 catalyses the de-phosphorylation of both MAPK8 and MAPK14 proteins. 
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NF-ĸB-signalling is also activated in response to TLR4 receptor engagement and 

evidence of negative regulation of NF-ĸB was also observed in cluster-9. Both NFKBIA 

and NFKBIZ are represented on the pathway maps as inhibitors of the NFKB1:RELA 

(p50:p65) complex.  NFKBID currently not represented on the macrophage pathway 

model (Chapter-2), has not been studied as extensively as the other NF-ĸB inhibitor 

proteins. However there is some evidence to suggest a role for NFKBID as a negative 

regulator of a subset of TLR-dependant genes through inhibition of the NFKB1:RELA 

(p50:p65) transcription factor [333]. Interestingly, NFKBIA was a gene of interest in the 

siRNA screens of Chapter-5. It was expected that knock-down of the murine Nfkbia 

gene might perturb transcriptional networks associated with type-I signalling and the 

type-I component of the LPS response. This was not the case however, and one 

explanation could be that the transcriptional networks associated with LPS signalling 

compensated for the lack of Nfkbia expression. As the data here demonstrates the 

magnitude of change in expression of most of the regulated transcripts is far higher in 

LPS treated cells compared to IFN(-β or –γ) treated.  

Seven microRNAs were also induced early (from 1 h) in response to LPS stimulation. 

microRNAs have a well established role in viral infections [334-335] and have now also 

been suggested as belonging to the first line of anti-bacterial defence. A number of 

microRNAs have been shown to mediate the LPS response in both RAW264.7 and 

primary murine macrophages [336-338].  The microRNAs within this cluster-9 are 

potentially interesting candidates for further investigation into their functional role in 

the macrophage response to LPS. One plausible prediction, based on function of other 

genes within this cluster could be that these microRNAs are involved in the (negative) 

regulation of signalling pathways downstream of TLR-receptor activation. 

The gene content of cluster-5 was comparable to some extent with that of cluster-9 

(Figure 6.4a). Cluster-5 also contained inhibitors of NF-ĸB signalling, (Nfkbib, Nfkbie), a 

number of transcripts encoding microRNAs (Mir146, Mir155, Mir191, Mir425) and 

cytokines (Ccl9, Cxcl1, Cxcl2, and Tnf).  However in contrast to cluster-9 where genes 

were transiently expressed, cluster-5 represented transcripts whose expression was 

sustained from 1 h to 8 h. Differences in the degradation rate of mRNA has been 
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proposed to determine some of the temporal changes in RNA levels in mammalian 

cells [339-342]. In LPS treated dendritic cells changes in transcription rates are shown 

to determine the majority of temporal changes in RNA levels, however it is changes in 

degradation rates that tend to shape sharp ‘peaked’ responses [342]. It is therefore 

possible that higher mRNA degradation rates are a feature of genes in clusters 

representing (very) transient expression (e.g. cluster-9). Many of the cluster-5 

transcripts were also induced by IFN-β/γ (4-8 h) although not to the same magnitude 

as LPS. Whilst cluster-9 was highly indicative of (the negative) regulation of TLR4 

activated pathways, cluster-5 comprised factors required to execute these pathways; 

For example members of the NF-ĸB transcription factor family: Bcl3, Rel, Rela, Relb, 

and type-I interferon signalling (Ifnb1 and the type-I receptor component Ifnar1).  

Other genes of interest in this cluster included the major macrophage growth and 

differentiation factor Csf-1 and eight transcripts encoding zinc finger proteins. LPS is 

known to induce CSF-1 in macrophages [309, 343], and a number of zinc finger 

proteins have been found to regulate pro-inflammatory activation in macrophages 

[344-346].  

Cluster-3 comprised 380 transcripts up-regulated preferentially in LPS treated 

macrophages compared to IFN-β or IFN-γ treated macrophages (Figure 6.4a). Maximal 

expression of cluster-3 transcripts was reached at 8 h post-treatment. GO annotation 

analysis of these transcripts revealed an over-representation of terms associated with 

regulation of phosphorylation, lymphocyte activation, and cytokine activity. Indeed, the 

gene content of this cluster was highly representative of an anti-microbial response 

which included chemokines (Ccl17, Ccl22, Ccl24, Cxcl1, Cxcl16, Cxcl3), interleukins 

(Il12a, Il12b, Il17rd, Il18, Il1a, Il12, Il6) and interleukin receptor subunits (Il17rd, Il20rb, 

Il2ra). Also within this cluster were genes encoding other NF-ĸB family members 

(Nfkb1, Nfkb2) and three MAPKinase signalling components Map3k10, Mapkapk2 and 

Mapkbp1. Mapkapk2 (MK2), as represented on the pathway diagram is 

phosphorylated by MAPK14 and is suggested to play a role in the regulation of mRNA 

stability and pathogen phagocytosis [347] (Figure 6.7).  
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Figure 6.7: Extract from the integrated pathway diagram depicting the action of MAPKAPK2 protein. 
Phosphorylated MAPKAPK2 (and MAPKAPK3) play a role in the regulation of MRNA stability and actin 
reorganisation.  
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Cluster-2 (454 transcripts) represented transcriptional changes occurring specifically in 

LPS treatment, reaching maximal expression at 24 h post-treatment. GO annotation for 

this cluster was enriched for terms such as “positive regulation of immune system 

process” and “macrophage activation”. Concurrent with this annotation was the 

presence of the Nos2 (nitric oxide synthase) gene, one of the most characteristic 

inducible markers of (M1) (mouse) macrophage activation [48, 348]. The chemokine 

Ccl5, and chemokine receptor Ccr7, (present within cluster-2) have been reported as 

being expressed in M1-polarised macrophages [46]. Also present within this cluster 

were 15 solute carrier family member transcripts and the janus kinases Jak1 and Jak2. 

The latter two genes are required for type-I and type-II interferon receptor signal 

transduction. The solute carrier family proteins are predominantly involved in the 

transport of divalent cations and small organic molecules. They have been associated 

with immune and inflammatory disease susceptibility [349-350] although a specific 

role in macrophage activation has yet to be elucidated. Others have found classically 

activated macrophages are characterised by increased expression of certain solute 

carrier family members; namely SLC21A15 and SLC31A2 [50] the latter of which was 

present in cluster-2. This cluster therefore presents a number of other solute carriers 

that are potential markers of macrophage activation by LPS.  

 

Overlapping Transcriptional Changes 

Universal to all three treatments was the repression of genes associated with cell cycle 

(cluster-1). These genes were repressed to a greater extent in LPS treatment compared 

to cells treated with IFN-β or IFN-γ (Figure 6.4a). Specific categories of genes included 

those associated with cell-cycle progression (e.g. Cdc20, Cdc25b, Cdc25c, Cdc45, Cdc7), 

cyclins (e.g. Ccna2, Ccnb1, Ccnb2, Ccne2), centromere proteins (Cenpa, Cenpe, Cenpf, 

Cenph, Cenpi), DNA polymerase subunits (e.g. Pola1, Pold1, Pold2, Pole, Pole2) and 49 

transcripts encoding histones. Histones constitute half the mass of chromatin, and play 

a crucial role in DNA packaging, efficient replication and segregation of chromosomes 

[351].  
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Cell cycle arrest by LPS has also been linked with the down-modulation of the CSF-1 

receptor and some genes are induced as a consequence of the ablation of CSF1R 

signalling [352]. The gene encoding this receptor (CSF-1R) was not present within 

clusters in these analyses; however its expression profile revealed it was repressed 

specifically in LPS treatment and not in response to IFN-β or IFN-γ (Figure 6.8). This 

might suggest CSF-1R repression is a cell cycle arrest mechanism employed in response 

to LPS stimulation, but is independent of the anti-mitotic action of IFN-β. This data may 

also indicate there is possibly a (small) subset of genes repressed in LPS treatment but 

not by IFN-γ or IFN-β, however such genes have not met the Pearson filtering 

threshold set for this analysis.  
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Figure 6.8: Csf1r expression in mouse BMDMs following treatment with any of IFN-β, IFN-γ, or LPS 
over 24 hours. Expression of the transcript encoding the Csf1r protein, plotted across three treatment 
regimes from samples representing pre-treatment (0 h) to specific time-points post treatment (1,2,4,8, 
and 24h).  
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Transcripts within cluster-12 and cluster-16 were expressed to a similar extent in all 

three treatments (Figure 6.4d). The clusters differed marginally in the temporal 

patterns of their average expression profiles. Present within these clusters were the 

transcription factors Stat1, Stat3 and Irf5. Irf5 was a gene of interest in the siRNA 

screens of Chapter-5 and was pursued based on group findings that its siRNA induced 

repression perturbed transcriptional signatures associated with IFN-β signalling [146]. 

Recently high Irf5 expression has been suggested as being characteristic of M1 

macrophages, which encourage a T helper type 1 (TH1)-TH17 response [353]. The 

authors of the study demonstrated Irf5 was induced in the presence of GM-CSF [353]. 

This dataset shows Irf5 mRNA can also be induced by IFN-γ, IFN-β and LPS, further 

supporting its role in contributing towards an M1-type macrophage. Stat1 which is 

known to be required for executing both type-I and type-II interferon signalling as well 

as LPS induced gene expression [354] was induced to an almost identical magnitude 

and duration in each treatment (Figure 6.9). GO annotation analysis of cluster 16, 

indicated an over-representation of terms associated with antigen processing and 

presentation and included genes encoding proteasome subunits (Psme1, Psmb8, 

Psmb10) and a peptide transporter associated with antigen processing (Tap2).  
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Figure 6.9: Stat1 expression in mouse BMDMs following treatment with any of IFN-β, IFN-γ, or LPS 
over 24 hours. Expression of the transcript encoding the Stat1 protein, plotted across three treatment 
regimes from samples representing pre-treatment (0 h) to specific time-points post treatment (1,2,4,8, 
and 24h).  
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Cluster-4 comprised 335 transcripts whose expression was preferentially induced in 

IFN-β and LPS treatment to a greater extent than IFN-γ treated cells (Figure 6.4d). The 

gene content of this cluster was highly characteristic of a ‘classical’ type-I interferon 

response and included a number of interferon inducible proteins (Ifi202b, Ifi204, 

Ifi205, Ifih1, Ifi35, Ifi44, Ifit2, Ifit3), oligoadenylate synthetases (Oas1a, Oas1b, Oas1g, 

Oas2, Oasl1, Oasl2), the GTPase Mx1 and the viral-RNA detecting endosomal toll-like-

receptors, Tlr3 and Tlr8. Based on the expression profiles and gene content, it is 

tenable that other genes in cluster-4 are regulated via type-I interferon signalling; this 

included 40 as of yet functionally un-annotated RIKEN cDNA transcripts. Cluster-7 was 

related to cluster-4 in terms of its expression pattern. Cluster-7 transcripts were 

preferentially expressed in IFN-β treatment, followed by LPS-treatment and to a lesser 

extent IFN-γ treatment (Figure 6.4b). The 123 cluster-7 members included the 

intracellular pattern recognition receptors; Nod1 and Aim2 and the interferon 

inducible Ifit1, and Mx2. Nod1 is a member of family of intracellular proteins that 

mediate host recognition of bacterial peptidoglycan [355-357], and AIM2 is sensor of 

cytoplasmic double stranded DNA (dsDNA) [358]. Thus the gene content of cluster-7 

would suggest a priming of the intracellular pathogen detection systems by IFN-β. 

As expected the response to IFN-β and LPS was more overlapping than that of LPS and 

IFN-γ.  There were however a handful of transcripts (in cluster-34) expressed 

specifically in IFN-γ or LPS treatment but not IFN-β treatment.  The most convincing of 

these LPS/IFN-γ specific genes were MHC Class II antigens (Cd74, H2-Aa, H2-Ab1, H2-

Ea) or related proteins (Ctsh (cathepsin H) which encodes a lysosomal cysteine 

proteinase required for degradation of lysosomal proteins). In macrophages MHC Class 

II expression is only efficiently induced by IFN-γ, whereas in other cells (such as B-cells) 

its expression is constitutive.  Others have demonstrated LPS increases the expression 

of MHC II molecules in dendritic cells and B cells [359-360] and this is brought about by 

enhancing MHC Class II transcription independently of CIITA [361]. In macrophages LPS 

may enhance or inhibit IFN-γ induced MHC class II depending on the sequence of 

treatment; simultaneous IFN-γ and LPS treatment is inhibitory, whereas LPS added 

after IFN-γ augments class II expression [362]. This data-set presents a number of MHC 
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class II candidates induced (at the message level at least) by LPS in mouse BMDMs 

independently of IFN-γ.   

Transcriptional Changes Specific or Centric to Either IFN-β or IFN-γ 

Treatment 

In addition to cluster-34, MHC Class II genes were also found in cluster 14 (45 

transcripts) (Figure 6.4c). This cluster represented transcripts whose expression was 

most specific to IFN-γ treated cells and included the MHC class II related transcripts; 

H2-DMa, H2-DMb2, H2-Eb1, Ciita, as well as transcripts encoding complement 

components; C1qb, C1qc, C1qa, C4b. The full spectrum of ‘classical’ activation of 

macrophages is thought to be induced by IFN-γ in concert with a microbial stimulus, 

such as LPS. The data here shows, apart from a handful of transcripts (including those 

in cluster 14), LPS is capable of regulating the same targets as IFN-γ. Thus the major 

contribution of IFN-γ to the classically activated macrophage would appear to be the 

capacity to efficiently induce MHC Class II antigen presentation and the complement 

system, which is less recognised. 

Cluster-10 and cluster-36 comprised transcripts whose expression was mostly 

restricted to IFN-β treatment. However the role of the genes (within these clusters) in 

the IFN-β response is not well characterised, as well the reasons to why they are 

expressed in IFN-β treatment but not following LPS stimulation. LPS induces IFN-β 

mRNA and protein expression, and therefore IFN-β signals in an autocrine manner to 

stimulate the cells and forms a significant portion of the LPS response, as has been 

previously studied [275-277]. However the existence of genes induced by IFN-β but not 

by LPS, (i.e. IFN-β targets which are repressed by the actions of LPS), have not been 

previously studied to date. This repression of cytokine inducible genes could 

potentially be an interesting aspect of the macrophage response to microbe.  

Functional annotation of these IFN-β clusters was poor. Following further inspection of 

the expression profiles of genes within these clusters, a refined list of most IFN-β 

specific transcripts was generated (Table 6.3). Amongst these genes was Casp2, which 
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was induced as early as 1 h by IFN-β, yet repressed in response to LPS treatment 

(Figure 6.10). The LPS response is known to possess an anti-apoptotic component 

[363][, and the repression of Casp2 could be an example of an anti-apoptotic 

mechanism employed in macrophages in response to endotoxin. 
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Figure 6.10: Casp2 expression in mouse BMDMs following treatment with any of IFN-β, IFN-γ, or LPS 
over 24 hours. Expression of the transcript encoding the Casp2 protein, plotted across three treatment 
regimes from samples representing pre-treatment (0 h) to specific time-points post treatment (1,2,4,8, 
and 24h).  
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Gene Description 
Abcb1a ATP-binding cassette, sub-family B (MDR/TAP), member 1A  
Casp2 caspase 2  
Ccdc141 coiled-coil domain containing 141  
Ccdc39 coiled-coil domain containing 39  
Cd4 CD4 antigen  
Cdkn1c cyclin-dependent kinase inhibitor 1C (P57)  
Dio2 deiodinase, iodothyronine, type II  
Eif1 eukaryotic translation initiation factor 1  
Fgfbp3 fibroblast growth factor binding protein 3  
Gna14 guanine nucleotide binding protein, alpha 14  
Gprc5b G protein-coupled receptor, family C, group 5, member B  
Grap2 GRB2-related adaptor protein 2  
Il10 interleukin 10  
Klrg2 killer cell lectin-like receptor subfamily G, member 2  
Lrrc14b leucine rich repeat containing 14B  
Nsmaf neutral sphingomyelinase (N-SMase) activation associated factor  
Tnfsf8 tumor necrosis factor (ligand) superfamily, member 8  
Table 6.3: Gene expressed specifically in IFN-β of mouse BMDMs in a comparison of the transactional 
response to IFN-β, IFN-γ and LPS. A filtered list of genes expressed exclusively in response to IFN-β 
treatment of BMDMs, and not in response to IFN-γ or LPS.  
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Conclusions and Further Work 

The analyses of this Chapter set out to explore and better understand the overlap and 

distinctions in the transcriptional response generated in mouse BMDMs following 

stimulation with IFN-γ or IFN-β or LPS. The individual response to these three stimuli 

have been characterised previously and many of the major transcriptional changes 

found here confirmed the findings of previous studies [97, 238, 243-244, 246-247, 302, 

309, 322-326]. However to date no attempts have been made to thoroughly compare 

and contrast the response to these stimuli over time in primary macrophages.  

Therefore this data-set provides a valuable source of information to address this 

question. In these analyses it was found the treatments overlapped to a large degree 

in their transcriptional profiles but also induced unique sets of genes. LPS induced the 

greatest proportion of ‘unique’ transcripts in this comparison and shared a greater 

deal of overlap with IFN-β treatment, rather than IFN-γ. Surprisingly there were a 

group of genes induced in IFN-β treatment, yet not induced by LPS (and in some cases 

even repressed by LPS treatment). The response to LPS is generally assumed to 

comprise all aspects of the IFN-β response, thus the identification these “IFN-β-

exclusive” genes presents potentially interesting candidates for further study into a 

feature of the LPS response previously unexplored.   

The analyses presented in this Chapter are not exhaustive and represent the 

beginnings of attempts to delineate the shared and unique transcriptional response to 

the three stimuli. The clusters of co-ordinately expressed transcripts identified here 

could be further filtered to obtain a more refined list of transcripts preferentially or 

exclusively expressed in any given treatment or in two or more treatments. The study 

could also be complemented by sequence analysis of the promoter regions of the 

clusters of regulated genes to explore whether any particular transcriptional-factor 

binding sites were over-represented within these groups. It is also important to 

consider that the findings of this analysis may not fully correlate across species or 

indeed inter-species in other mice strain. Moreover some aspects of the transcriptional 

profiles generated in this study may well be specific to the doses studied (10 U/ml IFN-
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β/γ and 5 ng/ml LPS) on this occasion. Data in the preceding Chapter-(5), 

demonstrated the dose-dependant induction of certain LPS inducible genes. In a 

related analysis (also processed on this 96-array plate but) not discussed as part of 

thesis the macrophage response to three different doses of LPS was studied. The data 

revealed cohorts of genes which were clearly induced or repressed in a dose 

dependant manner, as well as genes unaffected by LPS dose (i.e. induced/repressed to 

the same extent regardless of treatment dose) (unpublished, data). This underscores 

another level of complexity when making comparisons across the treatment types, as 

genes found to be preferentially changing in one treatment over others may only hold 

true under the specific conditions studied.  

The analyses here, as with that of Chapter-4 highlights the fact that the full spectrum 

of macrophage activation is far from fully captured on our integrated pathway 

diagram. At the same time the function of many of the regulated components with 

respect to their role in macrophage activation has yet to be fully elucidated. For 

example many transcripts encoding microRNAs were found to be in clusters in this 

analysis, but are not currently represented on the macrophage pathways. However 

characterisation of the microRNAs themselves as well as their function in macrophage 

signalling has been an area of intense activity over recent years. This analysis also 

incorporates many regulated transcripts which are as of yet functionally un-annotated 

(e.g. Riken cDNA transcripts) but their expression is strongly co-ordinated with genes 

of know function and/or within clusters of genes contributing to a particular aspect of 

the macrophage activation response. Thus as with other analyses [143, 145, 364-366] 

there is the potential here to characterise as of yet un-annotated proteins since the 

likely function or process in which they are involved can be inferred by their co-

expression with genes encoding proteins of known function.  

Finally, one of the interests in exploring the overlap between these three stimuli is 

based on the fact the signalling pathways they activate are either inter-related or 

synergise at a number of levels.  As a means of extending this analyses and further 

characterising this synergy it would be interesting to compare the individual responses 
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to these stimuli with transcriptional data relating to the combinatorial stimulation of 

macrophage with the treatments.  

 

Methods and Materials 

 
Cell culture and treatment 

Cell culture is as described previously in Chapter-4 (for the IFN-β study), briefly; bone 

marrow derived macrophages (BMDM) were prepared from femurs of 7-8 week old 

male BALB/c mice, by differentiating bone marrow progenitors using the 

differentiation factor CSF-1. On day six of differentiation cells were harvested from 10 

cm square bacteriological plates and seeded into 24-well tissue culture plates at a 

density of 200,000 – 210,000 cells/ well. 24 hours later, (on day seven) cells were 

treated with one of; 10 U/ml recombinant mouse interferon-beta (IFN-β) (PBL 

Interferon Source, New Jersey, USA), 10 U/ml interferon-gamma (IFN-γ) (Perbio 

Science, Northumberland, UK), or 5 ng/ml LPS (from Salmonella minnesota Re595 

(Sigma, Gillingham, UK)) and harvested 1, 2, 4, 8 and 24 h following treatment or 

collected pre-treatment (0 h). All treatments were performed in the presence of CSF-1 

since CSF-1 is constitutively present in vivo. Moreover CSF-1 is itself induced upon 

macrophage activation with LPS and has been shown to enhance the activation of 

some genes by LPS [367]. It has therefore been argued that in vitro studies of 

macrophage activation should be performed in the presence of CSF-1 [283]. 

RNA extraction, QC and labelling for arrays 

Total RNA was harvested from the cells using an RNeasy Plus kit (Qiagen, Crawley, UK) 

according to manufacturer's instructions. RNA was quantified and quality controlled 

using a NanoDrop spectrophotometer (Nano-Drop Technologies, Delaware, USA) and 

BioAnalyser 2100 (Agilent, California, USA) to determine RNA purity and integrity. 

Replicate 250 ng samples of total RNA derived from two separate wells per time point 

were first processed using the Ambion WT (whole transcript) Expression Kit (Ambion) 
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to generate amplified and biotinylated sense strand DNA targets from the entire 

genome without bias. The senses strand DNA samples were then labelled, and 

hybridized to the Affymetrix® Mouse Gene 1.1 ST (obtained as part of a high-

throughput 96-array plate) using the Affymetrix GeneChip WT terminal labelling and 

hybridisation kit (Affymetrix) and according to manufacturer’s protocol. The 

Affymetrix® Mouse Gene 1.1 ST Array Plate enables the parallel processing and 

expression profiling of 96 samples. The individual arrays interrogate more than 28,000 

well-annotated genes with more than 770,000 distinct probes. Hybridisation, washing 

and scanning of the 96 arrays was performed using the Affymetrix GeneTitan 

instrument; this parallel and high-throughput processing reduces the chances of 

introducing technical variability that may well arise when processing the same number 

of samples of separate occasions.  

 

Data processing and network analysis 

Data (to be submitted to the GEO repository) was normalized using the RMA package 

within the Affymetrix Expression Console software and annotated. Network analysis of 

the normalised expression data was performed using BioLayout Express according to 

the network analysis principles described in Chapter-1 and as described in the 

Methods of Chapter-4. The parameters employed in this analysis included an initial 

filtering step of expression data relating to all the probes (transcripts) on the array) at 

a 0.85 Pearson correlation cut-off threshold. This network correlation graph of probes 

falling within this threshold (11,258 nodes, connected by 270,601 edges) was then 

filtered at an MCL inflation value of 2.2, to cluster the graph (and resulting in over 600 

clusters with at least ≥3 nodes). Clusters related to technical artefacts or patterns of 

expression unchanging across the 32 arrays were eliminated. A further network graph 

relating only to the data from probes within ‘interesting’ clusters of the filtered graph 

(3,747 nodes) was generated (by filtering relationships at a Pearson correlation of 0.85, 

and clustering the consequential graph at an MCL inflation value of 2.2). The clusters 

were inspected for patterns of expression associated with treatment over the time-

courses and gene lists associated with clusters were exported for GO annotation 
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analysis (Biological Processes Level-FAT) using the DAVID (Database for Annotation, 

Visualization and Integrated Discovery) tool.  
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Chapter 7. Conclusions  
 

Overview of main findings, challenges and future work 
 

The work described in this thesis explores the use of systems-level modelling and 

analysis methods to the study of macrophage activation and associated pathways. 

Specifically, the work outlined in Chapters 2 and 3 aimed to address the challenge of 

accurately modelling the large number of known interacting components and 

biological processes regulated in this cell.  Secondly, the interest was in investigating 

the transcriptional signatures generated in response to IFNs and what we understand 

by the classical-activation of macrophages (Chapters 4 and 6). Moreover was the 

desire to examine the role of genes of interest in the type-I IFN response pathway, by 

targeting their expression with siRNA. The exceptional plasticity and highly attuned 

pattern recognition systems of primary macrophages can complicate the use and 

reproducibility of functional genomics screening using siRNA, and therefore attempts 

were made to address this issue during the development of a cell-based assay 

(Chapter-5).  

 

Chapter-2 described the construction of pathway models of macrophage signalling. An 

initial framework map of macrophage activation comprising 272 interactions was 

published in 2008. During its construction process many challenges of converting 

pathway knowledge into computationally-tractable yet ‘understandable’ diagrams, 

were addressed. The lessons learnt and rules established from constructing the 

framework map then provided a more robust agenda for assembling further pathways 

of interest, and the subsequent integrated pathway resource included a total of 496 

unique proteins, 412 protein complexes, 81 genes, and 101 DNA sequence/promoter 

regions. In total the network comprised 2,170 nodes connected by 2,553 edges. This 

model of macrophage signalling is to our knowledge the most comprehensive pathway 

of its kind published to date. The work summarizes years of investigations, and brings 
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together thousands of published findings into one navigable, searchable, visual aid. 

The pathway has proven to be a valuable resource in the interpretation of functional 

genomics data. At the same time it is appreciated the model still only captures a 

modest number of changes occurring in the macrophage, as was evident from the 

transcriptional analyses performed in Chapters 4 and 6. Future efforts will need to 

integrate the transcriptional data as well as other signalling pathways known to be 

active in the macrophage, into the overall signalling network to improve the predictive 

value of the pathway diagrams. The longer term eventual aim will be to expand the 

pathway resource to create a more comprehensive in silico cell model of macrophage 

signalling with the predictive power to demonstrate the transcriptional networks 

activated in response to combinations of stimuli (pathogens and/or cytokines) as 

encountered in vivo.  

 
The desire to perform pathway analysis on the outputs of functional genomics screens 

and high-dimensional data has arguably never been greater. However the overhead of 

creating and maintaining pathway resources is often a thankless and onerous task. 

Recently (21 May 2011) it was announced the popular and previously free pathway 

repository KEGG pathways is to move away from its open-source/free-software roots 

and change to a paid-subscription system. Therefore in the interests of maintaining the 

availability of high-quality free-pathway resources to enhance academic research, the 

construction of such in-house pathways as described in Chapter-2 as well as keeping 

up the debate on how pathway information should be depicted and exchanged 

(Chapter-3) is more important than ever.  

 

Chapter-3 describes the development of the modified Edinburgh Pathway Notation 

(mEPN) scheme a graphical notation system for biology originally devised a number of 

years ago and now through use has been refined extensively. This development has 

been primarily driven by the attempts to produce process diagrams for a diverse range 

of biological pathways (described in Chapter-2). In addition to the pathways described 

in Chapter-2 the mEPN notation scheme has now been deployed to depict cell-cycle 

signalling as well as lipid-metabolism (unpublished). Through thorough testing and 
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refinement the mEPN has been found to be suitable to describe a number of biological 

concepts. The next challenge for both the mEPN and in a more general sense for 

systems biology is how we begin to model (in silico) the cellular interactions 

underpinning a biological process (in vivo) and their deregulation in disease states.  

With respect to the macrophage, its behaviour, phenotypic and genotypic properties 

vary depending on its surrounding cellular milieu. Thus to better understand the highly 

plastic nature of macrophages requires an understanding of its interactions with other 

cells in a given setting. Indeed, systems biology involves the study of biological 

processes at multiple levels of abstraction e.g. from molecules, to cells, to tissues, to 

organs and so on. The challenge remains in bridging the insights acquired from 

multiple levels and devising models to reflect multi-level concepts and observations. 

One of the key incentives for generating pathways with standard notations was to 

permit the conversion of graphical models into computationally tractable ones, 

suitable for simulation analyses. Efforts are now well advanced in the Group to convert 

the mEPN notation into language suitable of stochastic flow modelling (signalling Petri 

nets (SPN) [114]). This has required further adaptation of the notation scheme and 

development of supporting software (BioLayout Express3D) to visualise the output. 

Initial tests have been promising and the SPN approach is particularly well suited to 

large networks such as those generated in Chapter-2.  

 

Thus we are now closer to a pathway-model system where one can begin to perform 

computational predictions about pathway behaviour and the signalling response to 

pathway perturbation. In the latter case this could be how macrophage signalling 

responds to perturbation induced by siRNA gene knockdown. The potential for 

computational flow-modelling would not have been possible without first the 

development of the mEPN and the construction of extensive pathway models on which 

to perform/test the simulations. The longer term but ultimate objective in systems-

based therapeutics is to exploit the predictive power of these in silico models to 

identify novel drug targets. 
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The investigations of Chapter-4 set out to analyse the type-I and type-II interferon 

response in macrophages. Previous attempts to analyse the transcriptional response to 

these cytokines have predominantly relied on statistical fold-change cut offs. In this 

work the application of network-based explorations of correlation matrices were used 

to visualise and interpret the transcriptional events over a 24 h time-course. The IFN-β 

and IFN-γ time-course experiments were originally conceived and analysed separately. 

Later in the course of these investigations, the type-I and type-II time-course 

experiments were repeated under controlled conditions to allow for a more accurate 

comparison (Chapter-6). The clustering approach used to analyse the expression data 

provides a powerful method for identifying correlation amongst genes and from which 

the function of currently un-annotated genes may be inferred. The next challenge lies 

in unravelling the causality of the regulatory relationships in the transcriptional 

networks. This would require identifying negative and positive feedback loops in the 

response networks. Some feedback loop are very well characterised (e.g. CIITA 

regulation of MHC-Class II expression), whereas many other causal relationships 

remain to be identified.  

 

The studies of Chapter-5 set out to optimise an in vitro cell-based assay for 

investigating the role of selected genes in the type-I interferon and LPS response. The 

genes of interest were targeted with siRNA.  Genome-wide transcriptional analysis 

revealed that knockdown of genes of interest did not perturb transcriptional networks 

associated with the LPS response, including the expression of type-I response genes. 

On one level these observations may well have be indicative of the robustness of 

macrophage signalling networks, especially in response to a potent microbial stimulus 

(LPS). Future work could explore whether this robustness is impaired with 

combinatorial gene knockdowns (i.e. two or more genes targeted).  

 

The entire assay optimisation process also highlighted the complexities of using siRNA 

in primary macrophages. For example, increasing doses of different siRNAs generated 

different patterns of lipofection-induced type-I gene expression. siRNA pre-treatment 

would on some occasions enhance responsiveness to LPS and on other occasions 
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decrease responsiveness. The lack of reproducibility observed between investigations 

might be attributed to the innate plasticity of macrophages or variability in BMDMs 

prepared on different days. Ultimately targeting a heterogeneous cell type like the 

macrophage can generate a spectrum of responses depending on the collective state 

of the cells. Given their roles in numerous diseases, macrophages are attractive targets 

for siRNA based therapeutics. The observations of this Chapter mirror the obstacles 

faced in utilizing siRNA in the clinical setting.  

 

The final investigations described in this thesis set out to explore the transcriptional 

networks associated with the BMDM response to type-I interferon, type-II interferon 

and LPS stimulation. The investigations of Chapter-4 also attempted to contrast the 

type-I and type-II response in primary BMDMs, however this comparison was limited 

by the fact the experiments and microarrays were processed on separate occasions. 

Nevertheless Chapter-4 demonstrated the power of the network-based analysis 

approach for mining high-throughput transciptomics data, and this approach was again 

utilized in the analyses of Chapter-6. The overlapping and unique transcriptional 

responses to the three stimuli (LPS, IFN-β, and IFN-γ) were identified. Generally the 

inducible transcriptional response was much broader and potent (in terms of fold-

change induction) in LPS treated macrophages compared to those treated with either 

IFN-β or IFN-γ. Moreover under these experimental conditions 727 transcripts were 

specifically regulated in LPS treatment. 50 transcripts were unique to IFN-γ treatment 

and 115 transcripts were unique to IFN-β treatment. In concert with previous findings, 

MHC Class II related transcripts were among those specifically expressed in response 

to IFN-γ, as well as members of the complement system. The role of genes expressed 

specifically in IFN-β, is less well characterised. Interestingly some genes were induced 

by IFN-β, yet repressed by LPS treatment. The identification of “IFN-β-exclusive” genes 

presents potentially interesting candidates for further study into a feature of the LPS 

response previously unexplored. The output of the transcriptional screens in Chapters 

4 and 6, underscored the fact that the full spectrum of macrophage activation has yet 

to be fully captured on the integrated pathway diagram. The next steps in developing 

the macrophage pathway model will be its integration with transcriptional networks 
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identified in Chapters 4 and 6. Further work would also seek to build transcription 

factor networks, as a means of integrating the transcriptional data generated with the 

pathway model.    

 

Overall each of the aspects of the systems biology paradigm of model-manipulate-

measure and mine, have been explored in some sense in these investigations. The 

model in this case was the generation of in silico macrophage signalling pathways. The 

pathway resource then informed the stages of manipulation; by cytokine treatment or 

by gene knockdown using siRNA. Changes occurring in the macrophage were 

measured using appropriate techniques. Central to these investigations was 

measurement of transcriptional changes using microarray technology. The resulting 

data was then mined, and its interpretation can now inform further improvements and 

development of the macrophage pathways. For example developments could include 

the incorporation of feed-forward and negative feedback loops arising is response to 

specific treatments. Even with the integration of the additional information, it’s 

imperative to acknowledge the in silico model of macrophage signalling, is purely a 

model. Iterative cycles of development will continue to enhance the value of the 

model to inform further investigations. Eventually the hope is that such models will 

have the predictive power to identify targets for therapeutic intervention in diseases 

underpinned by macrophage activity.   
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