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ABSTRACT 

This work studies the modulation and kinematics of short waves riding on non-

uniform velocity fields (solitary waves and long waves) and achieves theoretical 

and experimental conclusions. 

For the interactions between short waves and solitary waves, short waves and 

long.waves, this research shows that the wavenumber, frequency and amplitude 

of short waves riding on solitary waves and long waves are strongly modulated. 

It also demonstrates that the maximum values of the modulated short 

wavenumber, frequency, and amplitude always occur at the crests of solitary 

waves and long waves. By increasing either the amplitudes of solitary waves or 

the steepnesses of long waves the main conclusion--- that the modulated short 

wavenumber, frequency, and amplitude increase on the crest of solitary waves 

and long waves--- is achieved. 

The kinematics of two component waves (short waves and long waves) has been 

measured by PIV (Particle Image Velocimetry). Comparison of the results with 

linear theory and various stretching methods is also carried out. 

The mechanism of the modulation of short waves riding on solitary waves or long 

waves, as studied in this thesis, provides a useful base line for work on more 

general and complex local water wave breaking. 

111 



Contents 

Declaration 

Acknowledgments  

Abstract  

1 Introduction . ............................................................ .......................... 1 

1.1 General Description of Wave Interaction ........................................1 

1.2 Literary Review .............................................................................6 

1.3 Aims............................................................................................12 

1.3.1 Mathematical Aspect: development of a mathematical 
model and determination of the modulation of short waves riding 
on non-uniform velocity fields .................................................15 

1.3.2 Experimental Aspect: combination of water motion from 
short waves and long waves and prediction of kinematics within 
waves......................................................................................16 

2 	Mathematical Wave Theories . .......................................................... 19 

2.1 Introduction .................................................................................19 

2.1.1 Basic Assumptions ..........................................................20 

2.1.2 Governing Equations .......................................................21 

2.2 Solitary Waves .............................................................................24 

2.3 Stokes' Waves .............................................................................25 

2.4 Linear Theory and Modified Methods ...........................................26 

2.4.1 Linear Theory .................................................................26 

2.4.2 Modified Methods ...........................................................27 

iv 



2.4.2.1 Linear Extrapolation 	 .28 

2.4.2.2 The Wheeler Stretching Method ..........................29 

2.4.2.3 The Chakrabarti Stretching Method .....................31 

2.4.2.4 The Superposition Stretching Method..................31 

2.4.2.5 The Delta Stretching Method ..............................32 

2.5 The Boundary Integral Method .....................................................33 

2.6 Regions of Validity ......................................................................34 

3  Short Wave Modulation by Non-Uniform Velocity Fields . ............... 38 

3.1 Introduction .................................................................................38 

3.2 The Modulation Theory ................................................................42 

3.2.1 Governing Equation for Short Waves Riding on a Solitary 
Wave.......................................................................................42 

3.2.2 Governing Equations in Orthogonal Curvilinear Co- 
ordinates.................................................................................43 

3.2.3 Multiple-Scale Perturbation Method ................................. 46 

3.2.4 The Nonlinear Schrodinger Equation and Wave Action 
Conservation...........................................................................47 

3.2.5 The Numerical Scheme for Solitary Waves.......................48 

3.2.6 The Modulation of Short Waves Riding on a Long Solitary 
Waves.....................................................................................51 

3.2.7 Numerical Results ...........................................................54 

3.3 Discussions ..................................................................................60 

4 	Experimental Facilities for Water Waves . ....................................... 63 

4.1 The Wave Tank and the Wave Generator.......................................63 

4. 1.1 Wave Tank......................................................................63 

4.1.2 Wavemaker .....................................................................64 

4.1.3 Wave Generation Software...............................................65 

4.1.4 Reflection and Resonance ................................................66 

VA 



4.2 Surface Measurement Techniques: Wave Gauges...........................67 

4.3 Internal Kinematics Measurement .................................................69 

4.3.1 The Particle Image Velocimetry Acquisition ....................69 

4.3.1.1 Camera, Lens and Film .......................................71 

4.3.1.2 Laser and Scanning Beam System .......................73 

4.3.2 PIV Acquisition Errors and Limitations............................ 75 

4.3.2.1 System Error in the Scanning Beam System.........75 

4.3.2.2 System Error in Time Between Pulses .................76 

4.3.3 The PlY Analysis System ................................................78 

4.3.3.1 Young's Fringe and Autocorrelation Calculation .78 

4.3.4 PIV Analysis Errors and Limitations ................................83 

5 	Short Wave Modulation by Long Waves . ......................................... 86 

5.1 Introduction .................................................................................86 

5.2 The Modulation: Frequency ..........................................................88 

5.2.1 Experimental Frequency Modulation ..............................100 

5.2.2 Theoretical Approaches .................................................107 

5.2.3 Comparisons .................................................................114 

5.3 Kinematics of Waves .................................................................. 115 

5.3.1 Comparisons with Linear Theory ....................................117 

5.3.2 Comparisons with the Wheeler Stretching Method ..........119 

5.3.3 Comparisons with the Chakrabarti Stretching Method.....121 

5.3.4 Comparisons with the Superposition Stretching Method.. 122 

5.3.5 Comparisons with the Time-Stepping Technique ............124 

5.3.6 Comparisons Between Theories......................................128 

vi 



6 	Further Work 	 . 130 

6.1 The Stability of Solitary Waves ..................................................131 

6.2 Internal Solitary Waves ..............................................................133 

6.2.1 Governing Equations .....................................................134 

6.2.1.1 Generalized Stokes' Formula ............................136 

6.2.1.2 Green's Theorem ..............................................137 

6.2.1.3 Constrained Flat-Topped Internal Solitary Waves 
..........................................140 

7 	Conclusion ......................................................................................142 

7.1 Summary ...................................................................................143 

7. 1.1 The Modulation of Short Waves.....................................144 

7.1.1.1 The Modulation of Short Waves Riding on a long 
solitary wave ..............................................................144 

7.1.1.2 The Modulation of Short Waves Riding on long 
regular waves .............................................................144 

7.1.2 Wave Kinematics...........................................................145 

7.1.2.1 Kinematics of Monochromatic Long Waves .......146 

7.1.2.2 Kinematics of Short Waves Riding on Long Waves 
..........................................147 

7.1.2.3 General Assessment of Wave Modelling ............147 

7.2 Suggestions for Further Research................................................148 

Bibliography . ................................................................................................................. 151 

Appendix A The Conservations . ............................................................... 159 

A.1 The Phase Conservation............................................................. 159 

A.2 The Conservation of Wave Action..............................................161 

A.3 Dean's Stream Function.............................................................162 

vii 



Chapter 1 

INTRODUCTION 

1.1 General Description of Wave Interaction 

Scientists have long been trying to understand the mechanics of the ocean, 

particularly the motion of waves, currents and tides. In the past the main 

reason for this scientific pursuit has been the safety of ships. Recently, in 

coastal and offshore engineering, some urgent tasks have been encountered: 

the design of offshore oil rigs, problems of coastal erosion and impact, and so 

on. The need to understand and interest in the mechanics of waves has greatly 

increased. In particular the study of water wave interaction plays an important 

role in oceanography and coastal engineering. The design of offshore 

structures is significantly affected by the perceived impact of extreme storm 

environmental loading which is even more unpredictable in multi-component 

wave interaction. Although for any space-frame structure the calculation of the 
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extreme wave loading is likely to be dominated, according to the universally used 

Morison's equation (Morison et al. 1950), by a drag term proportional to the 

square of the calculated local wave velocity, the large discrepancy in local 

velocities occurs from the contribution of high-frequency waves. From another 

point of view, the recent development of remote sensing from satellites is used to 

measure the ocean wave spectrum. Also microwave radar images of the ocean 

surface give a mapping of wind speed. Therefore, based on the improvement of 

the empirical methods, the demand for a sound knowledge of wave interaction has 

been stimulated so as to ensure the integrity of offshore structures, the safety of 

the personnel manning them and the safety design of oil platforms. Analyzing 

wave energy exchange quantitatively resulted from wave interaction is also 

necessary. Meanwhile, the measurement of wave kinematics plays a key role in 

the development of the mathematical theories of wave kinematics and wave 

loading models used in the design of offshore structures. Furthermore kinematics 

of extreme waves and wave interaction are particularly relevant to the extreme 

loading case. 

Without doubt, the accurate prediction of the kinematics of irregular ocean 

surface waves is essential to offshore and coastal engineering, and it is also a 

challenging and sophisticated task in the study of nonlinear wave mechanics. 

Usually particle velocities in irregular waves have been approximated using the 

fast Fourier transform (FFT) spectral method. This is a traditional method used 

to linearly decompose the record of wave elevations into many regular 

component waves and superpose kinematics of such regular waves. 

Unfortunately, the process of linear decomposition and superposition ignores the 

nonlinear interaction of waves. 
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Part of this thesis can be treated as a basic study of the interaction between two 

monochromatic waves, a short wavetrain and a long wavetrain. Such interaction 

forms the simplest case in irregular waves. A previous doctoral work undertaken 

by Sutherland (1992) considered a similar interaction, in which his two 

monochromatic waves are comparable. 

In recent years there has been great interest in the study of the interaction of 

short waves riding on long waves (Zhang and Melville 1990). The evolution 

of short waves, generated both by wind and by gravity, riding on long ocean 

waves or currents has also long been an area of active research in wave 

mechanics (Miller, Shemdin and Longuet-Higgins 1991). While short waves 

riding on long waves are modulated by and interact with long waves, they tend 

to break on the crest of the long waves. By the breaking forms of spilling and 

plunging, they then transfer momentum to long waves. More detailed 

quantitative knowledge of the modulation of short waves, and of energy 

transfer to long waves, is required to understand the processes by which 

energy is relocated to the ocean surface. 

This thesis will discuss the modulation of short waves riding on non-uniform 

velocity fields. Long waves can be treated as one of specific non-uniform 

velocity fields for short waves riding on. There are two main reasons for 

studying mechanics of short waves riding on non-uniform velocity fields. 

Firstly, short waves can be considered as infinitesimal perturbations of 

deformed free surfaces. From the mathematical point of view, such 

perturbations can be linearized on the free surfaces and further derivation and 

discussion have been made (Zhang and Melville 1990). Secondly, large 

discrepancies are found between predicted and measured velocities near the 



free surface, where the contribution is from the large wavenumber (high 

frequency) tail of the wave spectrum. An explanation of such discrepancies is 

called for. 

Basic Description of Waves 

A basic description of waves can be helpful as a starting point in considering their 

behaviour in other complicated cases. Those most commonly used are described 

below: 

Solitary waves form a useful limit, that where the period tends to infinity and the 

necessarily two-dimensional wave is fully described by its height to depth ratio 

and the bed slope (usually zero). Solitary waves with long troughs and peaky 

crests are totally different from periodic waves. This is a mainly mathematical 

limit though the shoaling of small steep waves comes into this category. 

Shallow water waves are taken to be those in which the water depth is small 

compared to the wavelength, that is when their ratio is less than 1/20. The cnoidal 

theory is designed for describing shallow water waves. 

Deep water waves are taken to be where the depth to wavelength ratio exceeds 1/2. 

In this limit the sea bed can be ignored, thus slope and depth become irrelevant and 

the waves are completely defined by their period, amplitude and direction. 

Monochromatic waves are waves of a single period. They are purely sinusoidal 

having only an infinitesimal amplitude. Finite-amplitude monochromatic waves 

can be artificially reduced to many sinusoidal components, which means a 

fundamental period wave followed with a series of harmonics. These harmonics 

are termed 'bound harmonics'. To avoid confusion, the term 'monochromatic' is 

used rather than single period. 



Two-component waves are two monochromatic waves. In this thesis, the two 

monochromatic waves embody two different characteristics: one is the high-

frequency waves, i.e. short waves, and the other is the low-frequency waves, i.e. 

long waves. Small-wavelength disturbances may ride on large-amplitude long 

gravity waves, as orbital velocities of fluid particles provide a variable surface 

current through which the short waves propagate. 

Meanwhile, the non-uniformed current is comparable with the propagation 

velocity of the short waves relative to the long ones; actually their interaction is 

no longer weak. This is true of non-uniformed currents where the entire effect is 

that of a shift in reference frame and a subsequent Doppler shift in the short wave 

period. Short waves may be either gravity or capillary waves. In this thesis short 

waves are gravity waves; capillary waves generated by surface tension are 

beyond the study of this thesis. 

Fourier approach (Fast Fourier Transform FFT) is usually assumed to be a 

linear model. It analyses the sea state in terms of the sinusoidal components from 

time series of the surface, and transfers the wave energy from time domain into 

frequency domain. The fully spectral description includes energy as well as phase 

information and the direction of travel of each component. This is an assumption 

made in many measurements of sea spectra. Energy at any frequency is taken to 

represent a free wave of that frequency. However, much of the higher order 

harmonic energy is actually associated with the bound harmonics of lower 

frequency fundamental waves (Laing 1986). 

Spectral models based on substantial quantities of real sea data have been 

developed to predict the two-dimensional form of any sea state as functions of 

the wind fetch and history (The SWAMP Group 1985). The two models most 
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widely used are Pierson and Moskowitz (1964) and the JONSWAP (Hasselman et 

al. 1973). For waves of, or above, moderate height, non-linear effects become 

very important. Some properties, such as the description of the behaviour of the 

high crest, including the internal kinematics given by the simpler models, are 

entirely inadequate. Further modification, based on FFT, such as stretching, is 

desirable. 

Conservation of wave energy: a general concept appears to be conservation of 

'wave action', which in the simplest linear cases is energy flux divided by an 

appropriate frequency. The conservation of wave action is originally given by an 

average variational principle and is a general result valid when involving slowing 

varying media. The average variational principle involves a Lagrangian and takes 

the variations of the variational equations averaged by one wavelength, i.e. 

averaged-Lagrangian equation. 

1.2 Literary Review 

With the general description of waves as the starting point for all modelling in 

the above section, there are three substantial simplifications: (i) wave interaction 

behaviour can be studied separately from the interaction of wind and waves, and 

of structures and waves; (ii) the water is assumed to be an inviscid and 

incompressible fluid of uniform density; (iii) waves are assumed to be gravity 

waves by ignoring the effects of surface tension. 

Unna (1941, 1942) first attacked the problem and came to the striking conclusion 

that for the modulation of secondary (short) waves riding on primary (long) 



waves; the short waves become shorter in wavelength and larger in amplitude on 

the crests of the long waves; and conversely, become both longer and smaller on 

the troughs of the long waves. That is, the steepnesses of short waves are steeper 

on the crest and flatter on the trough of the long waves. 

The studies of interaction for one short wavetrain riding on a long wavetrain 

became active almost thirty years ago. Short waves riding on long waves can be 

viewed as if they are travelling on currents with a varying horizontal velocity field, 

provided that the wavelength ratio of long waves to short waves is significant. 

Longuet-Higgins and Stewart (1960, 1964) based their approach on the 

weakly nonlinear wave assumption. They first explored the interaction 

between a linear short wavetrain and a weakly nonlinear long wavetrain by 

using the perturbation method. The phenomenon was first predicted by using 

the perturbation method (Longuet-Higgins and Stewart 1960) based on the 

assumption that both short and long waves are weakly nonlinear. The 

phenomenon was also found in investigating the superharmonic instability 

(disturbances with short wavelength) of a finite-amplitude periodic wavetrain 

(Longuet-Higgins 1978 a). Even in the ideal situation, namely, in the absence 

of wind, viscosity and wave breaking, the analysis of the interaction between 

finite-amplitude short and long waves is still very complicated (Phillips 

1979). Phillips (1981) and Longuet-Higgins (1987) computed the modulation 

of linear short waves riding on a finite-amplitude long wave. Based on the 

assumption of small wavelength ratio, Phillips (1981) extended the study of 

Longuet-Higgins and Stewart (1960) to a long wave with finite amplitude and 

applied the wave action conservation theory to a short wave riding on a finite-

amplitude long wave. 
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Whitham (1965) first introduced the theory of the conservation of wave 

action. Bretherton and Garrett (1968) applied the wave action conservation 

theory to study the modulation of short waves travelling on long waves. Their 

results confirmed the modulation of a short wave on a long wave by Longuet-

Higgins and Stewart (1960, 1964). As the velocity field of a finite-amplitude 

long wave can be accurately computed through the numerical schemes 

developed by Schwartz (1974), the modulation of the short wave on the finite-

amplitude long wave can be quantitatively predicted, with the assumption that 

the envelope of the short wave amplitude is steady with respect to the long 

wave surface. Although the long wave is of finite amplitude in Phillips' study 

(1981), the short wave is essentially linear. 

Most related work concentrated on the modulation of short waves riding on 

long waves. References on the topic of short waves riding on long solitary 

waves are very scarce. So far, most of theoretical and experimental research 

investigation has been focused on how short waves may be trapped by internal 

waves, see Hughes and Grant (1978), Lewis, Lake and Ko (1974) and Kwoh, 

Lake and Rungaldier (1988). However, it is expected that the mechanism of 

short waves riding on long solitary waves is similar to that of short waves 

riding on internal waves. 

Gargett and Hughes (1972) showed that short gravity waves may be trapped 

by long internal waves, thus caustic formation and local wave breaking may 

occur. The study by Shen, Evans, Easson and Greated (1994) gave the 

modulation of short waves riding on a long free-surface solitary wave and 

provided a new insight into local wave breaking. 

EV 



West, Brueckner and Janda (1987) employed a set of .free surface boundary 

conditions (Zakharov 1968) and expanded a numerical technique developed by 

Watson and West (1975) for solving the nonlinear partial differential equations 

describing the evolution of wave interaction. They used this technique to 

compute the simplest case of interaction between strongly nonlinear short and 

finite-amplitude long waves with a ratio of 8 in wavenumber and amplitude. Short 

wave amplitude was smaller than long wave amplitude. From their numerical 

computation they arrived at two main conclusions. Firstly, the location of the 

maximum modulation of short waves may be unsteady instead of being fixed at 

the crest of the long wave. Secondly, short waves appear to be phase locked to 

the long waves instead of being free travelling waves. 

The two conclusions above in the paper by West, Brueckner and Janda (1987) 

were questioned by Zhang (1987). He pointed out the contradiction caused by 

different assumptions made in studying long and short wave interactions. The 

different assumptions provided acceptable explanations to the contradictions 

mentioned above and the Watson-West method used by West, Brueckner and 

Janda (1987) was based on Taylor's expansion which was powers of wave 

amplitude (or wave slope) at the calm water level. The expansion may be poor if 

waves of quite different wavelengths and amplitudes were present. Therefore, the 

poor convergence of the Taylor's expansion was expected in the context of long 

and short wave interactions. It is possible that their observations may result from 

the poor convergence in evaluating the vertical velocity at the free surface. But 

from another point of view, the computations of West, Brueckner and Janda 

(1987) considered the wave slopes of short and long waves to be 0.314 and 0.157 

respectively, these being strongly nonlinear. However, their numerical technique 

included both resonant and non-resonant random wave interaction. 



Unfortunately, Zhang (1987) did not report any numerical correction for 

supporting his criticism. Nevertheless the combination of the Hamiltonian system 

and probabilistic methods in approaching the dynamical system of complicated 

wave motions in open seas is suitable. 

Zhang and Melville (1990) studied the steady modulation of weakly nonlinear 

short waves riding on a finite-amplitude long wave taking into account the 

surface tension. The instability of short waves riding on long waves has been 

discussed by Zhang and Melville (1992). They adapted the nonlinear Schrodinger 

equation which was derived in the paper of Zhang and Melville (1990). 

Furthermore, the study of the stability of a short wavetrain riding on a long 

wavetrain shows that the strong assumption of the steady envelope of the short 

wave amplitude is valid when the short wave train is weakly nonlinear. Naciri and 

Mei (1992) also studied the stability of short waves riding on long waves, but 

they gave another SchrOdinger equation and applied the inverse transformation to 

the nonlinear Schrodinger equation. The comparison between the stability of both 

cases is not clear, since different assumptions and simplifications have been 

employed in both studies. 

Besides these theoretical approaches, there are also a few experimental studies 

discussing on the modulation of short waves riding on long waves. 

Zhang, Randall and Spell (1991) measured a regular and a two-component wave 

field and compared the results to Wheeler stretching, linear extrapolation and a 

nonlinear numerical scheme developed in the paper of Zhang and Melville 

(1990). The two-component waves were generated by the separate generation of 

two monochromatic wavetrains. The higher frequency (short) waves were 

generated first and were then overtaken by the low frequency (long) waves. The 
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periods and amplitudes were in the ratio 1:3 with the higher frequency having the 

lower amplitude. The wave profiles and kinematics were measured using wave 

gauges and LDA. Linear theory and the Wheeler stretching method were 

calculated from the measured wave spectrum. 

In contrast to their findings in the regular wave case, they found and concluded that 

Wheeler stretching underpredicted crest and trough velocities and linear 

extrapolation and numerical theory (Zhang and Melville 1990) were very close to 

the measured results for the regular case; Wheeler stretching and linear theory were 

more accurate and linear extrapolation overestimated crest and trough velocities 

significantly for the two-component case. In the regular wave case the cut-off 

frequency was chosen to exclude the second and higher harmonics. For the two-

component waves the cut-off frequency was just above double the higher 

frequency. The higher harmonics shall make a real contribution to wave kinematics 

in deep water depending on the bandwidth of spectrum of the sea being measured, 

the choice of filter cut-off frequency therefore plays an important role. 

Miller, Shemdin and Longuet-Higgins (1991) and Chu, Long and Phillips 

(1992) studied steady wind-generated short waves riding on long wave groups. 

They all concluded and confirmed the short wind-generated waves are strongly 

modulated by long wave groups, i.e. the steepness of short waves are a function 

of the long wave phase when wind-generated short waves are riding on the long 

waves. The results of Miller, Shemdin and Longuet-Higgins (1991) were compared 

with the linear and non-dissipative theory of Longuet-Higgins and Stewart (1960), 

which described the modulation of short wave groups by long waves as due to the 

orbital motions of the long waves. The theory fitted the experiments well while the 

short waves were not too steep; i.e. the wind speed was well below 10 ms -1 . In the 
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work of Chu, Long and Phillips (1992), they described pre-existing statistically 

steady wind waves which were taken over by long wave groups. The long wave 

groups were mechanical-generated. Their frequency range of short wind-generated 

waves was from 2.5 Hz to 7.5 Hz depended on the fetch. 

1.3 Aims 

The purpose for the research presented here lies in the desire to determine the 

modulation of short waves riding on any given non-uniform velocity fields (long 

waves and solitary waves). The present work approaches the interaction of 

weakly nonlinear short waves riding on non-uniform velocity fields both in 

shallow water (solitary waves) and deep water (long waves). As the previous 

analyses cannot be applied to study the modulation of a weakly nonlinear short 

wavetrain travelling on a long solitary wave with finite amplitude, the study in 

this thesis reveals useful guidelines for the formulation of the relevant numerical 

scheme. Also it may provide the quantitative information which might then be 

used to check the corresponding numerical computation. 

There are three main reasons for -the present work. Firstly, the recent 

development of remote sensing from satellites makes it possible to measure the 

ocean wave spectrum and infer the wind velocity from microwave radar images 

of the ocean surface. Accurate measurements require more detailed quantitative 

knowledge of the modulation of short waves. The new technique in remote-

sensing to detect, from Synthetic Aperture Radar (SAR), radar waves Bragg-

scattered by the sea free surface in the range from a few centimetres (X-band) to 
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a few metres (L-band), makes it possible to measure wave interaction phenomena 

in the ocean. From the empirical point of view the images of microwave radar on 

the ocean surface also help in an understanding of the interaction between wind 

and waves (Allan 1983; Stewart 1985). It is important to have a sound knowledge 

of oceanographic wave interaction in order to understand the exchange of energy 

among waves. Usually, multi-component waves have been approximated by using 

the fast Fourier transform (FFT) spectral method, which linearly decomposes the 

time series of wave elevation into monochromatic waves and superposes the 

kinematics of such monochromatic waves (Sutherland, Easson and Greated 

1990). Under the linear wave superposition assumption, the nonlinear wave 

interaction is not clear. Therefore, the long-term objectives are to understand in 

depth the nonlinear interaction of two-component waves and of multi-component 

finite-amplitude waves. 

Secondly, in this world there is a large proportion of oil reserves situated below 

the sea bed in areas of deep and unpredictable wave environment. Even though 

the technology to build offshore structures exists, the design procedure has to 

make very large allowances for the uncertainty in the environmental loading 

because of the interaction of waves. There are also several other sources of 

uncertainty resulting from wave motions. The aim of this present research is to 

reduce these uncertain factors by increasing the knowledge of free surface fluid 

mechanics and the behaviour of wave interaction in particular. 

Thirdly, the mathematical modelling of wave breaking behaviour is an area of 

active research. For example, an initial long wave is deformed by applying a non-

uniform dynamic pressure distribution on the free surface with time-stepping 

technique (Longuet-Higgins. and Cokelet 1976). Meanwhile some methods of 
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extrapolation are in favour of the more extreme measured waves and do not 

directly describe the mechanics of breaking (Department of Energy 1986). From 

another point of view, the distinction between spilling and plunging breakers is 

noted by Longuet-Higgins (1987) who mentioned the former being caused by 

short waves travelling forward to long waves, and the latter by perturbations of 

short waves travelling in the opposite direction of long waves. The design method 

does not include the mechanics of breaking. Also the mechanics of short waves 

riding on long waves and the instability of steep long waves are believed to be of 

the same family of breaking. These would have to include studies which focus on 

the factors causing wave breaking. 

The occurrence of breaking is a limited case which determines the extreme wave 

conditions at any location. The extreme sea state is the result of the energy balance 

between incoming wind force and outgoing dissipation through breaking. This is 

particularly important in the extrapolation of wave height. If the data includes 

waves that are predominantly non-breaking, then the extrapolation will not reflect 

the effect of wave breaking. Only if the extrapolated wave height exceeds either 

0.78 times the water depth, or 0.143 times the wave length is the design wave 

thought to be breaking. It is worth noting that it is precisely because waves in 

storms do break and they do not have heights in excess of the above limits which 

cause them to be regarded in design as non-breaking (Kuo and Kuo 1974). The 

breaking of extreme waves is a source of concern to offshore designers. Therefore 

the mechanism of local wave breaking and caustics is still worth approaching. 

The present research bears on both mathematical and experimental aspects of this 

problem of short waves riding on non-uniform velocity fields (solitary waves and 

long regular waves). 
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1.3.1 Mathematical - Aspect: development of a mathematical model and 

determination of the modulation of short waves riding on non-uniform 

velocity fields 

The flow of the non-uniform velocity field can be considered as potential 

flow. Consequently the free surface of the non-uniform velocity field is 

treated as a streamline in the conformal mapping plane when the non-uniform 

velocity field is in steady state, if short waves are not imposed. In the 

presence of short waves, it is assumed that the velocity field and profile of 

non-uniform velocity fields are subject to a very small perturbation. 

Therefore, the free surface boundary conditions constituted by short waves 

and the non-uniform velocity fields can be expanded along the surface of the 

non-uniform velocity field. That means the expansion is on the calm water 

level of the mapping plane. In this thesis solitary waves in shallow water and 

long waves in deep water are chosen as the non-uniform velocity fields. 

Furthermore using the traditional multi-scale perturbation method, a non-

linear Schrodinger equation is derived to describe the evolution of the short 

wavetrain riding on the non-uniform velocity field (solitary waves and long 

waves). Furthermore, a simplification of the nonlinear SchrOdinger equation 

results in a conservation of wave action. Based on the conservations of wave 

action and phase, the short wave modulation by a non-uniform velocity field 

is determined. Besides, there are two strong assumptions in discussing the 

short wave modulation: 1) solitary waves and long waves are weakly 

nonlinear, i.e. solitary waves and long waves are of finite amplitude, and 

short waves are linear, and 2) the envelope of the short wave amplitude is 

steady (time-invariant) with respect to the surface of solitary waves and 

long waves. 
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1.3.2 Experimental Aspect: combination of water motion from short waves 

and long waves and prediction of kinematics within waves 

The two-component waves generated by the wavemaker are linearly superposed. It 

is assumed from signal inputs that there is negligible interaction between the two. 

The combination of short waves with long waves is an area where laboratory work 

is necessary. Before this work there was no systematic laboratory study of internal 

kinematics within the interaction between short waves and long waves. Some 

mathematical models can incorporate the interaction of Short waves with long 

waves, but it is most critical in the extreme high crest region where breaking makes 

the flow behaviour difficult to measure and model. 

First, the wave elevations are recorded by a wave gauge for the cases of long waves, 

and short waves riding on long waves. The wave records will be used in a function 

fitting scheme for short wave frequency modulation and also be used in fast Fourier 

transform for predicting wave kinematics. Full detailed descriptions will be shown 

in Chapter 5. Secondly, the role of wave kinematics research cannot be 

overestimated in the development of offshore design practice. In fact the general 

theoretical development of fluid kinematics has consistently relied on 

measurements for verification and simulated areas of research. In fluid dynamics 

the flow velocity is the most useful physical property; whiles many devices, such 

as Pitot tubes, hot-wire anemometers and Laser Doppler Anemometry, have been 

used to provide point velocity measurements in the past. Also accurate 

experimental data has rarely been obtained near the crest of long waves, and they 

are in this region that velocities and free surface errors are greatest; therefore this 

is the most important region in the calculation of wave-induced forces. Therefore, 

part of the aim of this research is to test current theoretical predictions (linear 
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theory, the stretching methods and the time-stepping technique are concerned in 

this study) and to accurately measure kinematics close to the free surface. The 

chosen method is to make a set of accurate measurements of wave kinematics on 

different combinations of design waves using the particle image velocimetry 

technique developed at Edinburgh. These measurements of wave kinematics 

concentrate on the crest region of long waves, considering whether or not short 

waves exist, and cover a number of different wave conditions. 

In Chapter 2 there is a basic introduction for various contemporary mathematical 

models of design waves including solitary waves, Stokes' waves, linear theory 

and stretching modifications, the time-stepping method and then a discussion for 

the validity of various theory. In Chapter 3, by following the methodology given 

by Zhang and Melville (1990), orthogonal curvilinear coordinates are applied to 

study the modulation of a weakly nonlinear short wavetrain riding on a long 

solitary wave with finite amplitude. Using the multi-scale perturbation method, 

the nonlinear SchrOdinger equation describing the evolution of the short 

wavetrain riding on the long solitary wave is derived. With the assumption of the 

steady envelop of the short wave amplitude and the conservation of the short 

wave action, the modulation of short waves riding on a long solitary wave is 

derived. The modulation contains the modulated short wave frequency, 

wavenumber and amplitude. Chapter 4 is the introduction for the experimental 

facilities which have been used in this thesis including wave gauges and the 

particle image velocimetry technique (PlY). PlY is the only experimental 

technique used for wave internal kinematics. All experimental results and 

theoretical comparisons are shown in Chapter 5. There are two sections shown in 

Chapter 6. Both sections are treated as extensions of this thesis work. The first 

section is to discuss the stability of solitary waves using the normal-mode 
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technique. The other section of Chapter 6 is to derive a new numerical scheme of 

internal solitary waves. Chapter 7 gives the summary and conclusions of the 

modulation of short waves riding on non-uniform velocity fields (solitary waves 

and long waves). 

Here as presented below, is an outline of the main research objectives that helps 

constructing this work: 

• To investigate the theoretical modulation of short waves riding on long 

solitary waves. Using the concept of conformal mapping, a nonlinear Schrodinger 

equation will be derived for describing a narrow-banded short wavetrain riding 

on a long solitary wave. Also a linear conservation of wave action can be given 

by approximating the nonlinear Schrodinger equation. By applying the steady-

state conservations of wave phase and wave action, the modulated short 

wavenumber, frequency and amplitude will demonstrate how short waves are 

strongly modulated by a long solitary wave. 

• To investigate the modulation of short waves riding on long regular 

waves from both the experimental and theoretical point-of-views. The theoretical 

aspect for the modulation of short waves riding on long regular waves is similar 

to that of short waves riding on a long solitary wave. 

• To measure the kinematics within regular waves and within two-

component waves, short waves and long waves, by the particle image velocimetry 

(PIV) technique, and to carry out assessment on linear theory, various stretching 

methods (the Wheeler, Chakrabarti and superposition stretching methods) and the 

time-stepping technique in predicting wave kinematics. 
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Chapter 2 

MATHEMATICAL WAVE MODELLING 

2.1 Introduction 

The Chapter introduces contemporary wave theories in terms of their ability to 

represent the physical aspects of real waves. The regions of validity for the 

theories used are discussed in Section 2.6. 

This chapter can be regarded as a background to Chapter 5. In Sections 2.2 and 

2.3 there are basic introductions of solitary waves and Stokes' waves. Both waves 

are treated as the non-uniform velocity fields of shallow water waves and deep 

water waves in the modulation of short waves riding on them. Linear theory 

(Section 2.4), which deals with small perturbation on still water, is strictly 

applicable to waves of small amplitude, and provides some good results for 

surface properties, e.g. dispersion relation. Also -a detailed introduction is given 
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for several commonly used stretching methods in Section 2.4. The boundary 

integral method is a well-known numerical scheme to simulate and describe 

plunging breaking waves. This method (Section 2.5) is applied to a parallel 

computing simulation scheme of numerical wave tanks as developed by She, 

Greated and Easson (1992) and mounted on AMT Distributed Array Processors 

(DAP) 608. This is a supplement to kinematics comparisons, as demonstrated in 

Section 5.3, of various modified theories for monochromatic long waves. 

2.1.1 Basic Assumptions 

The problem is that of describing gravity waves (interfacial gravity waves) 

which are travelling along the interface of two fluids of different densities in 

a uniform gravitational field. The density of the upper fluid (like air) is 

infinitesimal to that of the lower fluid (like water). Therefore the upper fluid 

is taken as influencing the lower fluid only through the static pressure it 

applies at the interface. Such waves are defined as surface waves. The lower 

fluid is assumed to be inviscid, incompressible and irrotational. An intention 

to discuss waves (internal waves) between two fluids with comparable 

densities will appear in Chapter 6. 

First the flow can be represented by the velocity potential, as a direct assumption 

of the above characteristics, i.e. inviscid, incompressible and irrotational 

characteristics, of the water. The velocity of the fluid is by definition the gradient 

of the velocity potential. Traditionally either the velocity potential or the 

stream function, forms the basis for all wave models. They obey Laplace's 

equation and consequently have a useful property: once either the velocity 

potential or the stream function is known on the boundary of a potential flow, 

then any of the two is uniquely defined everywhere within the interior of the 
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fluid. Thus, for waves under the assumption of potential theory if the velocity 

potential is known at the free surface and on the bed, and the end boundary 

conditions can be specified, then the potential and the velocities can be 

calculated everywhere within the wave. Also a wave train is identical when 

travelling over a flat bed. That is, periodic boundary conditions can be 

assumed. The wave propagation will not change its form and the static 

pressure along the free surface keeps constant. 

2.1.2 Governing Equations 

Navier-Stokes equations (2.1-2.3) were derived as the equations of motion of a 

Newtonian fluid. The derivation can be found in textbooks of fluid mechanics. 

	

Du - _1 a (p+pgh) -i-vV 2 u 	 (EQ2.1) 

Dv_ la 

	

- ----—(p4-pgh) +vV 2 v 	 (EQ2.2) 

Dw_ la 

	

- ----(p+pgh) +vV2w 	 (EQ2.3) 

where = (u,v,w) represents the velocity vector and t is time. 

p, p, v and h are density, dynamic pressure, kinematic viscosity, and height 

above a horizontal datum line. 

The principle of continuity is equal to the conservation of mass which means the 

divergence of the velocity vector being zero Eqn. (2.4). The rotational vector can 

be given by the curl of the velocity vector Eqn. (2.5). 
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au av aw 
V u = -+ ay-+  a-z = 0 	 (EQ2.4) ax  
Vxi = 	 (EQ2.5) 

1 aw av = 	
( 5, - 	 (EQ 2.6) 

1 	au aw 
coy  = 	( 	- (EQ 2.7) 

1 av au 
(Oz= 	- 	 (EQ 2.8) 

FX FY 

where o, coy, and (oz  are the components of the rotation vector (and give the 

intensity of the vorticity). The subscripts x, y and z represent the directions of the 

rotation vector. 

The fluid can also be assumed to be irrotational, that is to say that the angles 

between diagonals of the fluid element structure keep constant during motion. 

Mathematically this can be expressed as 

(O = (J), = CO = 0 
	

(EQ 2.9) 

Thus, no generation or loss of vorticity is allowed. From Cauchy-Riemann's 

equations Potential theory is applicable to potential flow. If the flow is assumed 

to be irrotational then it is possible to define a continuous, differentiable scale 

function, a potential function of position and time. So the gradients of the 

potential function satisfy the irrotational condition automatically. The gradients 

of the velocity potential, as is known, give the flow velocity at that time and 

place, i.e. 

U = —, v = —,w = - 	 (EQ2.1O) ax 	ay  
Moreover, substituting into the continuity equation (2.4) results in a second order 

linear differential equation which is known as Laplace's equation: 
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= 	a 2  a 2  
= 0 	 (EQ2.11) 

ax2  ay2 2  

Laplace's equation (2.11) is the governing field equation. Any specified solution for 

it requires appropriate boundary conditions. These boundary conditions are the bed 

condition and the free surface kinematic and dynamic boundary conditions. The bed 

condition assumes that no flow crosses a flat horizontal bottom boundary at the bed 

(z=O is the still water level, and h is the water depth); 

ao 
az = Oat z= -h (EQ 2.12) 

At the free surface (air/water interface) the kinematic boundary condition states 

that any particle at the free surface (z = i (x, y, t)) will not leave it. 

Mathematically this can be represented by Eqn. (2.13): 

- = - 
az at 	ax ay  (EQ 2.13) 

Using the irrotational condition, the dynamic boundary condition can be 

determined from Bernoulli's equation (2.14): 

4Y- = 0, for z = il 	 (EQ2.14) 

where in this case the subscript denotes differentiation. This equation (2.14) may 

also be derived from the unsteady Navier-Stokes' Equation by assuming 

irrotationality and no kinematic viscosity, expressing velocities in terms of the 

velocity potential and then integrating with respect to the spatial co-ordinates 

Although Laplace's equation is linear, it is difficult to solve because its two free 

boundary conditions are fully nonlinear. The following sections aim to discuss 

some well-known models of water waves. In fact there are many mathematical 

models of waves, which vary in complex computation from the linear, sinusoidal 
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approximation, to the time-stepping methods which can model overturning waves 

with fast parallel computing. 

2.2 Solitary Waves 

Two models, cnoidal waves and solitary waves, are suitable and applicable to the 

waves in shallow water. The cnoidal method uses and takes the wave profile 

(measured vertically up from the mean water level) given by a general and 

complex Jacobian elliptical function. The first approximation from KdV 

equations was developed by Kortweg and de Vries (1895). Their attempt was to 

replace trigonometric functions in the representation of wave motion. In 

particular shallow waves with their peaky crests and long shallow troughs have 

obviously non-sinusoidal surface profiles. The waves with small amplitude and 

long wavelength limits were discussed by Boussinesq (1871) and Rayleigh 

(1876). These are two important limits that tie solitary waves with other periodic 

wave representations. 

Solitary waves may be regarded as the limiting case of cnoidal waves for which 

the wavelength is infinitely long. Scott-Russell (1844) first introduced the 

phenomenon of shallow water waves and called 'the wave of translation'. Like 

the sinusoidal wave approach, the solution forms of solitary waves can be 

explored as the basis of an expansion method; for example, Fenton (1972 and 

1979) extended the solution form to any high order. Byatt-Smith (1970) showed 

0  the 120  Stokes' cusp of the maximum wave and Stokes' formula. The most 

notable works for solitary waves were by Byatt-Smith (1970) and Evans and Ford 
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(1994). Both papers gave their own exact solutions for their respective integral 

equations. The more detailed discussion of free surface solitary waves will 

appear in Chapter 3. Solitary waves form the non-uniform velocity field used fOr 

the modulation. 

2.3 Stokes' Waves 

Stokes' waves are a kind of basic solution to the design wave problem. The 

method works by expressing the velocity potential, or the stream function, as a 

truncated Taylor's series expansion, which is called Stokes' series, in sinusoidal 

function of the horizontal coordinate. The dynamic boundary condition is applied 

by substituting terms of the velocities and the elevation derived from the series 

expansion of the velocity potential. These expressions are subsequently 

simplified by excluding all terms of higher order than that previously chosen for 

the expansion parameter in the expression of the velocity potential. 

The work is involved in the mathematical manipulation for a set of nonlinear 

equations which are constituted by the expansion coefficients. The evaluation of 

the coefficients for higher orders from the set of nonlinear equations is based on 

the Newton-Raphson method. Originally Stokes (1847) developed the general 

case for second order and the simplified deep water case for third order. This has 

led to the very widespread use of Stokes' fifth in engineering practice. Using 

newly available computing resources the extension to high order has been 

presented by Schwartz (1974). Based on the high order expansions, subharmonic 

and superharmonic phenomena have been discussed (Longuet-Higgins 1978 a, b). 
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The instability of Stokes' waves has also been shown both in deep and shallow 

water by a numerical scheme of normal-mode perturbations of finite-amplitude 

Stokes' waves, McLean (1982 a, b). In large amplitude Stokes' waves, the two-

dimensional instability (Benjamin-Feir type, Benjamin and Feir 1967) will 

become a three-dimensional perturbation, McLean (1982 a, b). A similar 

discussion for the stability of free surface solitary waves, which is also based on 

normal-mode perturbation, will appear in Chapter 6. 

2.4 Linear Theory and Modified Methods 

2.4.1 Linear Theory 

This theory was first developed by Airy (1845), called Airy waves, it uses the 

assumption that the wave amplitude is much smaller than both the wavelength 

and the still water depth h. Both of the nonlinear free surface boundary conditions 

can become linear by discarding all terms above the first order of Taylor's 

expansions in wave amplitude. Explicitly, the linear free surface boundary 

conditions are: 

11 t =4)z at z = 0 
	

(EQ 2.15) 

= Oat z = 0 
	

(EQ 2.16) 

If the free surface elevation is periodic Eqn. (2.17) and the variables are separated 

in the velocity potential, then it transpires that the velocity potential has a 

periodic component Eqn. (2.18), that is: 

11 = A e 1 _ cot ) 	
(EQ 2.17) 
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cI = Z(z)e i(kx - at) 	 (EQ2.18) 

These linear boundary conditions, Eqns. (2.15) and (2.16), are then applied at the 

still water level and they lead to the following results: 

Velocity potential: 

ig 
= -A 

cosh (kz) i(kx - (t) 
e 

o cosh (kh) 	
(EQ2.19) 

 

Linear dispersion relation: 

Co 2=  gktanh(kh) 
	

(EQ 2.20) 

These results are only strictly applicable to infinitesimally small amplitude 

waves. In particular, the linear dispersion relation gives a basic assumption for 

other complicated wave circumstances, such as random seas. 

2.4.2 Modified Methods 

Linear theory is only valid for small-amplitude waves up to still water level 

and a kinematic prediction for finite-amplitude waves is required. Therefore, 

there is a need to modify linear theory in order to predict the kinematics of 

finite-amplitude waves on crests as well as on troughs. Furthermore there is a 

phenomenon known as high frequency contamination with a large tail of the 

wave spectrum whose contribution to kinematics is more intractable. Also 

short waves are waves of high frequency which may be said to be riding on top 

of long finite-amplitude waves. This leads to very high contribution from high 

frequency components in the long wave crests. So the contribution of short waves 

will lead to much larger discrepancy. Therefore a further explanation is needed. 

Only short gravity waves are covered in this thesis. 
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Before introducing the modification of linear theory for finite-amplitude 

waves, it is necessary to explain the traditional spectral method (FFT). Using 

a Fourier transform, a two dimensional wave elevation Eqn. (2.17) can be 

decomposed into a summation of single-component waves. 

00 	 CO 

11L (x, t) = 	i, (x, t) = 	a,cos0 1 	 (EQ 2.21) 
i=1 	 1=1 

00 	 o° 
a coshk1 (z+d) 

	

L (x, z, t) = 	4 (x, z, t) 
= 	 COE cosO 	(EQ 2.22) 

1=1 	 1=1 	
oshk1d 

CO 	 00 	
coshk,(z+d) 

	

UL (x, z, t) = 	u, (x, z, t) = 	ao 	
sinhk1d 	

cosO, 	(EQ 2.23) 

00 

i=1 	 1=1 

sinhk 1 (z+d)
00  

	

WL (x, z, t) = 	w. (x, z, t) = 	ao1 	
sinlik1d 	

sin 0, 	(EQ 2.24) 
i=1 	 1=1 

where 0. = k,x - 0i,t + öø, and the subscript L represents linear theory. ôO, is the 

initial phase of the component wave with index i 

2.4.2.1 Linear Extrapolation 

The simplest modified method is linear extrapolation that is taking a sinusoidal 

profile of the required amplitude and assuming that the expressions derived for 

the infinitesimal wave are transformable at all positions within the finite-

amplitude wave. Performing a Taylor's series expansion about still water level 

allows values to be calculated up to an elevation. Linear extrapolation is applicable 

in the region under the long wave crests and above the still, water level and is a 

modification of linear theory, which assumes that the vertical partial derivative 

of a kinematic variable is a constant above the still water level. The value of 

velocity at the surface is then: 



Uex(XZt) = u(x,O,t) +z—u(x,O,t) for O<z<fl 	 (EQ2.25) 

The vertical velocity Wex  has a similar equation of Eqn. (2.25) from (2.24). 

Apparent discrepancies between measured and predicted linear theory values led 

Wheeler (1969) to suggest the first of several stretching approximations to linear 

theory. What is 'stretching'? Generally speaking, it is a co-ordinate 

transformation from mean water level to the instantaneous water level. There are 

four frequently used stretching methods: 

2.4.2.2 The Wheeler Stretching Method 

The stretching approximation of Wheeler (1969) is a linear filtering technique. 

The Wheeler stretching method maps the vertical co-ordinate z onto a 

computational vertical co-ordinate zws . This method assumes that the finite 

sinusoidal profile for each phase of the wave is stretched in the vertical direction 

so that the top value defined for z=O becomes the value at the surface of the wave. 

All the values within the wave are similarly shifted. 

It avoids the problems of high frequency contamination by stretching the vertical 

co-ordinate z so that the velocity value previously calculated for the still water 

level is now calculated for the surface. All other vertical co-ordinates are 

stretched or compressed from the bed by using the same transformation in z, 

namely: 

ZWS 
+ d = (z + d) d 

d+ 	
(EQ 2.26) 

rl 

In deep water 
zws = z 
	

(EQ 2.27) 

(z+d) d/(r1+d) is an effective height which is always less than mean water 

level. It is the same ratio to mean water height as the actual height z to the free 
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surface. This is to reduce velocities above mean water level and to enhance 

velocities below mean water level. Forristall (1985) suggested that the results of 

the Wheeler stretching method provides a lower kinematic boundary condition 

error than linear wave theory does. 

Therefore the equation for horizontal velocity (2.23) becomes: 

coshk(z+d) 
(x, z, t) = 	u (x, z,, t) = 	ao) 	 sinO 	(EQ 2.28) 

i=1 	 i=1 	
sinhk1d 

The subscript ws denotes calculation by the Wheeler stretching method. The 

vertical velocity is derived using the same substitution. Figure 2.1 shows the 

diagram comparing linear theory, linear extrapolation and the Wheeler stretch-

ing method. 

vertical 
position 

wave profile 

Wheeler 
stretching 

------------ 

SWL 

extrapolation 

linear theory 

horizontal velocity 

Fig. 2.1: Sketch for comparing linear theory with linear extrapolation and the 

Wheeler stretching method. 
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2.4.2.3 The Chakrabarti Stretching Method 

The expression for the dynamic pressure term, which is derived from linear 

theory, is only valid for z<O. Inversely in the dynamic boundary condition the 

dynamic pressure term is not valid for z>O. Chakrabarti (197 1) suggested that the 

dynamic pressure term should be changed so that a new expression for the 

dynamic pressure completely and exactly satisfies the dynamical boundary 

condition in any position within waves. The transformation in this case is in the 

denominator of the depth decay term of (2.22), (2.23) and (2.24), is 

d5 = ri-i-d 	 (EQ2.29) 

It results in a velocity potential of 

°° a.coshk,(z+d) 
(x, z, t) = E0 coshk,d 	

smO g 	 (EQ 2.30) 
Cs 

This leads to an expression for the horizontal component of velocity u cs  given by: 

00 	

coshk1(z-4-d) 
UCS (x, z, t) = 	a10 	

sinhkldCS 
cos O, 	 (EQ 2.31) 

1=1 

The vertical velocity is derived from using the same approximations. 

2.4.2.4 The Superposition Stretching Method 

This is a direct modification from linear theory and Wheeler stretching. Pawsey 

and Dello Stritto (1983) noted that while Wheeler stretching suppresses the 

extrapolation of high frequency components well above their region of 

theoretical applicability, it also suppresses the extrapolation of the dominant 

wave in an irregular sea state above the still water level. Each component wave 

is extended up to its own wave component amplitude. So it is proposed that each 

component could be stretched up to its instantaneous wave elevation rather than 
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stretching waves to the still water level. In other words instead of the elevations 

being altered in the ratio like Eqn. (2.26) in the calculation of the velocity 

potential, horizontal velocity and etc., it could be altered in the ratio, given in 

Eqn. (2.32). Both authors called the technique superposition stretching. The 

transformation in the vertical co-ordinate is 

d + 71. 
ZSS + d = (z + d) 

d+q 	
(EQ 2.32) 

where the subscript ss denotes superposition stretching and i1 i  is given by Eqn. 

(2.21). The velocity potential and horizontal component of velocity become: 

d+11 

	

00 	 00 	 cosh k,(z+d) 
a 

Z, t) = Ec1j(x, 	t) = 	 coshk,d 	
sinO1 	(EQ 2.33) 

d+i 1  

	

00 	 00 	 coshk 1 (z+d) 

u (x, z, t) = 	u 1  (x, z 5 , t) = 	a10 	
sinhk1d 	

cosO, 	(EQ 2.34) 

	

i=1 	 i=1 

The vertical velocity is derived using the same transformation. 

2.4.2.5 The Delta Stretching Method 

Linear theory, linear extrapolation and the above-mentioned stretching 

methods provide different validities to wave kinematics with respect to a 

lower bound and an upper bound, see Rodenbusch and Forristall (1986). They 

suggested combining the two bounds for predicting wave kinematics and they 

called such a combination 'delta stretching', in order to reduce the error. 

The most commonly used stretching approximations have been detailed in the 

above paragraphs. No one can say which stretching method is better than any 

other, or indeed whether any of them are appropriate. 
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2.5 The Boundary Integral Method 

The present model developed by She, Greated and Easson (1992) is established 

on the basis of the boundary integral method based on Green's Theorem with 

intention to model a laboratory wave flume. The boundary is set as the fluid 

boundary in a two-dimensional wave tank. The wave tank dimensions and 

geometries are the inputs to fit various environments. It has the advantage of a 

direct analogy between a numerical model and a real wave flume. Therefore such 

numerical simulation is close to the study of two-dimensional waves in the 

laboratory. 

The work by Longuet-Higgins and Cokelet (1976) was the first successful 

numerical simulation in overturning steep gravity waves by the pressure variation 

of Bernoulli's equation on the free surface. Some of the most notable subsequent 

works is that of Dold and Peregrine (1985). 

A two-dimensional numerical wave tank has been set up on AMT DAP-608 

with the same dimensions as those of the short wave tank at Edinburgh. Two-

dimensional waves are generated by a hinged wave maker at one end of the 

wave flume and are absorbed by a damper at the other end. In this thesis the 

model has been used to simulate long monochromatic waves, which are low 

frequency waves, for comparing with experimental measurements by PIV, but 

it is not successful in simulating the case of short waves riding on long 

monochromatic waves, because the local slope becomes too high during the 

simulation. 
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2.6 Regions of Validity 

The different wave theories outlined above were derived under specific 

circumstances and assumption. The question of the most accurate solution for a 

given circumstance is important yet difficult to answer. In fact, there is no 

universal model for all design waves. Either a mathematical or empirical method 

has been used to establish the validity of its own wave theory. Ideally their 

predictions of internal kinematics should be compared with full scale waves over 

a range of conditions. 

It is important to know which validity of the various water wave theories to apply 

to a particular problem, where the wave characteristics and water depth are 

specified. For example, should we prefer linear theory or the cnoidal theory? In 

fact the validity consists of two aspects: the mathematical verification and the 

physical verification. The mathematical validity is the ability of any given wave 

theory to satisfy the mathematically posed boundary condition problem. For 

example, the cnoidal theory only approximately satisfies Laplace's equation. 

Stokes' waves and solitary waves satisfy the dynamic free surface boundary 

approximately. 

On the other hand, the physical validity refers to how well the predictions of the 

various theories agree with the actual measurements. It is difficult to draw a short 

conclusion regarding the physical validity due to the physical design and real 

measurement requirements. Experimental verification is usually performed by 

comparing the measured and the predicted values of the kinematics within the 

wave. 
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The validity of various wave theories has been examined by Dean (1970) and Le 

Méhauté (1976). Explicit comparisons between measured and theoretical results 

have been also made: Le Méhauté, Divoky and Lin (1968) compared the 

horizontal velocities below the crest for measured results and various theories. 

Comparisons for two-component waves (both components are comparable) have 

been done, see Sutherland (1992). 

In terms of the design use of wave theories, there are a range of waves which need 

to be described. The three parameters, period, height and depth, determine a two-

dimensional design wavetrain. The regions of validity have usually been drawn 

as areas on a graph with the y axis as the non-dimensional relative steepness (HI 

gT2) and the x axis as the non-dimensional relative depth (dIgT2), where H and 

T are wave heights and wave periods and g is the gravity acceleration. Figure 2.2 

shows the boundaries of applicability of the various theories. 

This decision for predicting wave mechanics can be made on the basis of 

comparison to experiments (as performed in the following chapters) or using 

theoretical considerations. Dean (1970) has compared several wave theories 

by seeing which has the lowest free surface dynamic boundary condition 

errors for each of a series of regular waves. He chose to use the dynamic 

boundary condition, as Laplace's equation and the bed boundary condition are 

linear and the kinematic boundary condition is always matched by the stream 

function solution. The results are included in fig. 2.2 and formed the basis of 

Sleath's diagram. 
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Fig. 2.2: The validity of wave theories (after Sleath 1984). 

The process of determining which theory produces the lowest error in the 

dynamic free surface boundary condition does not necessarily determine which 

theory produces the lowest error in wave kinematics predictions. Moreover, all 

theories are based on specific idealisation, often centring on Laplace's equation 

thereby excluding viscosity, compressibility and vorticity. Hence even a highly 

accurate solution is only a good solution to a highly idealised wave condition. 

Le Méhauté (1976) suggested that the cnoidal theory is preferable to small-

amplitude theory for 

HX 2  
—>26 	 (EQ2.35) 
d3  

where H, ?. and d are the wave height, wavelength and depth. 
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Dean (1965) gave two solutions for defined surface profiles and the design wave 

problems respectively. Then Dean (1970) showed that his stream function theory 

gave better results than the small-amplitude and shallow-water theories in the 

shaded region in fig. 2.2. 

To sum up, the most common alternatives are the Stokes' fifth and the cnoidal 

theories. The cnoidal theory is derived to fit shallow water waves. While in deep 

water, Stokes' wave theory is recommended. It is surprising that the linear wave 

theory did well for the intermediate depths. 

Furthermore, some very high order approximations have been made for 

predicting design wave kinematics. For example, Stokes', Dean's and cnoidal 

approaches of high order expansions have been developed by Schwartz (1974), 

Chaplin (1980) and Fenton (1979) respectively. There are also some 

investigations concerning numerical techniques for calculating irregular wave 

kinematics from the recorded free surface elevation record. To estimate the 

kinematics of irregular waves, Lambrakos (1981) was first to set up a double 

Fourier series expansion and reduced the errors in the kinematic and dynamical 

boundary conditions by the Newton-Gauss method, and Sobey (1992) gave a 

local Fourier approximation to estimate the kinematics of irregular waves and 

deduced the equivalent errors by a least-squares solution. Recently, Baldock and 

Swan (1994) developed a numerical technique, which is also a form of a double 

Fourier series expansion and reduces the errors in the kinematic and dynamical 

boundary conditions through the Newton-Raphson method and the least-squares 

algorithm, and provided good results to the comparison between prediction and 

measurements in wave kinematics. 
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Chapter 3 

SHORT WAVE MODULATION BY NON-UNIFORM 

VELOCITY FIELDS 

3.1 Introduction 

The propagation of waves riding on non-uniform velocity fields is different from 

that of waves on uniform velocity fields. The difference results from the 

nonlinear kinematic and stress boundary conditions at the deformable boundary; 

while the role of these boundary conditions is governed by non-uniform velocity 

fields. In view of the difference, therefore, considerable modifications are 

necessary in dealing with weakly nonlinear waves riding on a free surface. It is 

usually reasonable to suppose that waves propagate through a known slowly-

varying, depth-independent, horizontal current and that the depth also varies 

slowly for waves riding on non-uniform velocity fields. In this chapter a long 

solitary wave is treated as the major non-uniform velocity field; hence the 



following discussion will be on the interaction between short waves and long 

solitary waves. 

Solitary waves can be found in the sea, in deep water, and even in shallow water. 

For a long time this has been an attraction to mathematicians and engineers as an 

interesting subject of research, as a result of such research many insights into 

wave phenomena have been acquired. In the solution of the solitary wave it has 

been acceptably assumed that a solitary wave is of a two-dimensional potential 

flow and that the pressure is constant along the surface streamline. Scott-Russell 

(1844) first described this complicated phenomenon of solitary waves, and later 

Boussinesq (1871), Rayleigh (1876), and Korteweg and de Vries (1895) 

developed approximate descriptions applicable to the small amplitude and long 

wavelength limits. With the help of a computer programme, Byatt-Smith (1970) 

demonstrated that the form of his integral equation proved the physical properties 

° of solitary waves assumed by Stokes, such as the 120 Stokes' cusp of the 

maximum wave and Stokes' formula, F 2=tan i I .t, for the exponential decay 

coefficient J.L. Evans and Ford (1994) obtained an alternative exact integral 

equation for the solitary wave profile, which was considered a function of the 

distance x along the solitary wave rather than a function of velocity potential 4 

along the surface (Byatt-Smith 1970). Both the above-mentioned integral 

equations describe exact solutions for the solitary wave profile. In following 

Evans' numerical scheme, it is necessary to know the velocity distribution U0 , 

the scale factor H0  and the effective gravity acceleration g 1  along the free surface 

of solitary waves prior to beginning a discussion of the modulation of short waves 

riding on a solitary wave. 

As a much-researched area in nonlinear wave dynamics, the interaction of short 

39 



waves riding on long regular waves/currents has been studied with emphasis. 

Short waves riding on long waves are strongly modulated by the long waves. This 

kind interaction is almost fully discussed by Zhang and Melville 1990 and Naciri 

and Mci 1992. Owing to the occurrence of new technique in remote sensing, to 

detect, with Synthetic Aperture Radar (SAR), radar waves Bragg-scattered by the 

free sea surface ranging from a few centimetres (X-band) to a few metres (L-

band), it has become possible to measure the ocean wave spectrum and wave 

interaction phenomena in the ocean. From the empirical point of view, the images 

of microwave radar on the ocean surface also help the understanding of the 

interaction between wind and waves (Allan 1983; Stewart 1985). Having a sound 

knowledge of the oceanographic wave interaction is indispensable in realizing 

the energy exchange among waves. The problem of short waves interacted by 

long waves in shallow water is not thoroughly explored. Particularly shallow-

water waves (sometimes called cnoidal waves) with their peaky crests and long 

shallow troughs are obviously not purely sinusoidal surface profiles. Seen from 

this view, sinusoidal waves will not be able to represent solitary waves which 

exist in the sea. A short wave is considered as a form of deep-water wave from 

the aspect of physical interpretation, and solitary waves as shallow-water waves; 

therefore it is of importance to study the modulation of short wavetrains riding 

on solitary waves. 

By using the perturbation method, Longuet-Higgins and Stewart (1960) first 

explored the interaction between a linear short wavetrain and a weakly nonlinear 

long wavetrain; after that Phillips (1981) and Longuet-Higgins (1987) computed 

the modulation of linear short waves riding on finite-amplitude long waves. The 

conservation of wave action, as an alternative to a non-conservation equation 

which is involved with a radiation-stress tensor, was first introduced by Whitham 
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(1965). Bretherton and Garrett (1968) developed the concept of wave action 

conservation to study short waves riding on long waves. Zhang and Melville 

(1990) studied the steady modulation of the nonlinear short waves riding on a 

finite-amplitude long wave using conformal mapping. As Phillips (1981), 

Longuet-Higgins (1987) and Zhang and Melville (1990) concluded, in deep water 

as the short waves interact on the crest of long waves, their wavelengths become 

shorter and the amplitudes become larger. Conversely, the short waves become 

longer and smaller in the trough of the long waves. Zhang and Melville (1992) 

and Naciri and Mei (1992) discussed the instabilities of short waves riding on 

long waves. Both papers developed their own nonlinear Schrodinger equations. 

Furthermore from observations, short waves travelling along internal solitary 

waves are modulated by the internal solitary waves (Osborne and Burch 1980). 

Therefore similar results are expected for free surface solitary waves. Under 

specific circumstances the short waves tend to break on the crest of the solitary 

waves, not on the trough. By breaking, the energy of the short waves transfers to 

the solitary waves. But in shallow water the factors of wave interaction which 

cause wave breaking are still not clear. Through the work presented in this 

chapter the author wishes to provide some evidence for the mechanism of local 

wave breaking as in the case of short waves on regular long waves (Longuet-

Higgins 1987). It is, therefore, of importance to study the modulation of short 

wavetrains riding on solitary waves. 

In this chapter the focus is on two waves travelling in the same direction and the 

methodology is based on that of Zhang and Melville (1990). By applying the theories 

of conservation and considering the conservations with respect to solitary waves, the 

discussion of the modulation of short wavenumber, frequency and amplitude will 

provide a further understanding of wave interaction in shallow water. 
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3.2 The Modulation Theory 

3.2.1 Governing Equations for Short Waves Riding on a Solitary Wave 

A 

undisturbed water level 

h 

Enlarge A 

L+h+cosO) 

Fig. 3.1 Sketch of short waves riding on a solitary wave. 

The first task is to introduce the governing equations for a two-dimensional short 

gravity wave riding on a collinear two-dimensional solitary wave. Both are 

travelling in the same direction. The flow is assumed to be incompressible and 

irrotational and the pressure on the free surface is constant. The governing 

equations (3.1)-(3.4) for short waves riding on the solitary wave in the fixed 

rectilinear co-ordinates (OX, OZ). (3.5)-(3.8) are for the rectilinear co-ordinates 

(x, z) which are moving at the phase velocity of the solitary wave C. 

42 



(DXX 	= 0, 	0<Z:9++h 	 (EQ3.1) 

ii++ 	(+4) - 	 -•0Z= 0 	atZ = 	 (EQ3.2) 

4+4+g(i+) + 	 (4)2] = 0 atZ = T++h (EQ33) 

	

IVI -* 0, atZ - O 
	

(EQ 3.4) 

where and Tl+h  represent the velocity potential and the profile of the solitary 

wave, 4) and represent the potential and profile of the short wave, and g is the 

gravitational acceleration. The coordinates are fixed in space with the z-axis 

being positive upwards and with z=h defined at the level of the calm water with 

the depth h. 

	

= 0, 	0<z:g1+cos0+h 	 (EQ3.5) 

cosOC + 	+ ( cosO)) (C + + 4) = 	+ 	at z = i + cos0 + h (EQ 34) 

+ )2. (4 +$ )2] +g(i+cos0) = CO3  at x 	x 	z 	z 

	

z = 11 + CcosO + h 	 (EQ 3.7) 

	

atz-30 
	

(EQ 3.8) 

where Co  is the Bernoulli constant, and 0 is the angle between the horizontal axis and 

the profile of the solitary wave. 

3.2.2 Governing Equations in Orthogonal Curvilinear Co-ordinates 

Using the conformal mapping technique, a transformation of the governing 

equations (3.5)-(3.8) from rectilinear coordinates into orthogonal curvilinear 

coordinates (s,n) is based on the velocity potential and the stream function 1P of 

the solitary wave. So let 

ku 
(EQ3.9) 
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Fig. 3.2: Sketch of conformal mapping. 

	

—oo<n!5; t 	 (EQ3.1O) 

	

as 	 an 

+[(u0(sn) + 5) +_]+g11(s) +gh cos 8 = Co 	at  = 	(EQ3.11) 

	

(U0 (s,n) +) C S = On 	at n = 	 (EQ3.12) 

-3O 	at n--°° 	 (EQ3.13) 

where h is the scale factor in the coordinate transformation. 

0. 

-0. 

-1. 

S 

-1. 

ox 

n=o 

S 



h = h(s,n) 
- C 
- U0 (s,n) 

(EQ 3.14) 

The subscripts s, n and t denote the partial derivatives Here there are three 

assumptions to be explained before applying Taylor expansions for expanding 

the free boundary conditions, Eqns. (3.11) and (3.12), at the solitary wave 

surface. First, the steady profile and velocity field of the solitary waves will 

not be changed by the riding of the short waves. Secondly, it is necessary to 

assume the velocity field (J0  (s, n) of the solitary wave can be analytically 

extended to the region between n = 0 and n = , even it is weak, Eqn. (3.15). 

U0  (s, n) = U0  (s, 0) + 	(s, n) I 	+ Q (2) 
n=0 

(EQ 3.15) 

Last, since the wavelength ratio of the short waves to the solitary waves is 

near zero (the solitary wavelength is infinite) and assuming the slope of the 

short waves is small, then Eqns. (3.11) and (3.12) can be expanded at the free 

surface of solitary waves. Subtracting the steady solution of the solitary wave, 

the governing equations become: 

4 ss + nfl  =0, 	-°°<n :!~ 0 	 (EQ3.16) 

Ot  +H0 U0 (s. 0) 4 + 	+ +H0U(s, 0) 	+ 2H05  rn 

+H (4 + 4) + 	+ HQUO4 S ,j ,j  (s, 0) 2  + 2H0 4 5 2  

= 0 	at n = 0 	 (EQ3.17) 
fl 

+ /olo (s, 0) - 	 + 2H05  - 2gH0  +H 

+H(4 2) = 0 	at n = 0 	 (EQ3.18) 
Sn 

4' fl -30 	at n-3-°° 	 (EQ3.19) 

= _U0 (s,n)I 0 	 (EQ3.20) 
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g1 = gcosE)  
HO  

(EQ 3.21) 

g is the acceleration of gravity and g1 is the effective acceleration of gravity. 

U 
HO  (S) =

0(s,O) 

 C 	
(EQ3.22) 

H0  is the scale factor. 

3.2.3 Multiple-Scale Perturbation Method 

Stokes' expansions for 0 (s, n, t) and (s, t) of short waves are given by: 

0) +  4) (1)  e'()  + * + (2) 	i2Ô e 	+ * 	 (EQ3.23)  

= 	°) +e10 +*+ (2) 	i20 	* 	 (EQ 3.24) e 	+ 

D7S = k and 	= —co 	 (EQ 3.25) 

where * denotes the complex conjugate and Ô, k and co' are the phase function, 

wavenumber and frequency of the short wave respectively. and are the 

velocity potential and amplitude of the solitary wave caused from the interaction 

of two waves. 41) ,  ( 1) (2) and (2)  are the short wave velocity potential and 

amplitude plus higher harmonics. They can be further expanded with respect to 

see Eqns. (3.26)-(3.29). The physical meaning of 	is defined according to 

the steepnesses of the short waves. 

(1) = 01)+e(12)+E2(13)+ 	 (EQ3.26) 

(2) = c(22)+c2(23)+ 	 (EQ3.27) 

= 01)+E(12)+8203)+ 	 (EQ3.28) 

(2) = E(22)+E2(23)+ 	 (EQ3.29) 

4(11) = -ibe kn (EQ3.30) 
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= a 	 (EQ 3.3 1) 

agi  b = 	 (EQ3.32) 
a 

a2  = Hg1 k 	 (EQ 3.33) 

where a = o' - kH Ø U0  (s, 0). Equation (3.33) is the dispersion relation of the 

short waves riding on a solitary wave. 

3.2.4 The Nonlinear Schrodinger Equation and Wave Action Conservation 

Here it is necessary to recall the equations of Zhang and Melville (1990). The 

above equations are similar to those, because either the flow of solitary waves or 

that of long waves is based on potential theory. So the following nonlinear 

Schrodinger equation has been derived (see Eqn. (3.5) of Zhang and Melville 

(1990), from c12 (12) (13) and 13) )  to describe the evolution of short 

waves riding on a long solitary wave. 

1 ab H20C H1j, HCb a 

91 	91 2a 11 91 

[at + HC--- 1 91
.! 	

HCab1 2k4HDIbl 2b cy 	
s1 at ] 	

(EQ3.34) 
g 1 a  

where D=l+ 4H0 
a 

Ignore all the terms, which are higher-order, on the right-hand side of Eqn. 

(3.34), and then multiply Eqn. (3.35) with the complex conjugate of b. 

ia[  HOC H1aiHcba a 
g1t [ g 1 	2ajas 	2a 	

= 0 	 (EQ3.35) 

Then Eqn. (3.36), which is originally derived by Zhang and Melville (1990), describes 

the wave action conservation for linear short waves riding on a long solitary wave. 
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a ('a, 	+ _A 
(U(SO) +t) IaF =

asd 	

2' 

	

2a ) 	
(EQ 3.36) 

t2a) 

j= H og 1  

ladl is the modulated short wave amplitude normalized by its own value at the 

'outskirts' of the solitary wave. The subscript d denotes that the parameters ladi 

and Sd  are in the original physical lengthscale. 

3.2.5 The Numerical Scheme for Solitary Waves 

In this scheme, the solitary wave is considered from the co-ordinates (x,z) 

moving with this wave. The function z(x) describes the solitary wave profile as 

measured from the canal bed. Clearly the water in the 'outskirts' of the solitary 

wave moves with velocity -C1 and the dimensionless Froude number F is given 

by C/(gh) 112 . As conventional, i (x) represents the wave amplitude as measured 

from the still water level h; that is z (x) = r (x) + h. 

	

undisturbed water level 	 - 

- C 	 h 	 z(x)/h 	 C 

-6 	 -4 	 -2 	 0 	 2 	 4 	 6 

x/h 

Fig. 3.3: Sketch of solitary wave as viewed from a co-ordinate system moving 

with the wave. 



As the solitary wave is considered as a phenomenon of potential flow, velocity 

potential cb and stream function W obey the 2-1) Laplace's equation. As 

described in Evans and Ford (1994), Green's theory is applied to the domain 

'P(r0) = ('P(r)V (G(r,r0)) —G(r,r0)VW) •dA 	 (EQ3.37) 

with a choice of Green's function 

1 	(Ir — roi\ 
G(r,r0 ) = - mi' 

27t 	
(EQ3.38) 

where 	(x0 , —z0 ) is the image of r0 in the canal bed (line ED in fig. 3.4), 2 

and k are the unit vectors in the moving co-ordinates (x,z). This form of the 

Green's function evidently vanishes at all points along the canal bed. 

dA = (—z'(x)2)dx 

dA = 

Fig. 3.4 Sketch for Green's theorem. 

Utilizing Bernoulli's equation 

P + pU2  (x) + pgz (x) = constant 	 (EQ 3.39) 



along the surface streamline, the relation is given 

	

U2  (x) = C2  - 2g (z (x) - h) = C2  - 2g (x) 	 (EQ 3.40) 

where p=l, the fluid density; P is constant along the free surface. 

U(x) is the local velocity on the free surface of the solitary wave. 

Then, for any point, r0  m (x0, z0), within ABCDE, adopting the convention that 

'P vanishes along the surface streamline, it is shown that (in units where h=l) 

'P (xe , z0) 	- 

F 

00 

1 	 ((1' (x) 2)  (1 - 2 (x) 	1/2  1 (x —x0) 2  -( 1 + 11 (x) - 

+ J 	+ 1 

	

F2 	' (x_x0) 2 + ( 1+1(x) 
-00 

(EQ 3.41) 

whence, if '1' is evaluated at the surface, i.e. 'P (x 0, 1 + r (x0)), a self-consistent 

integral equation (3.42) is given through Eqn. (3.41). 

00 	
21j (x) 	1/2 	(x-x0)2- ( 11  (X) 

- 1(x0)) 2  'dx 
1+  J ((1+1'(x)2) 	

F2 	
1fl(()2 

(2+1(x) +1(x0))2)4 = 
-00 	

(EQ 3.42) 

for the surface profile function 1  (x). Equation (3.42), of course, applies at all 

values of x0. To solve the above, Evans' numerical scheme is employed for the 

integral equation (3.42) with tailored quadrature weights and abscissas and 

parametrise the form of i (x) by a polynomial in e viz. 

NL 

11 (x) = 	b,e-mlix 
	 (EQ 3.43) 

M= 1 

where .t is Stokes' decay coefficient given by 

F2  = 	 (EQ3.44) 
J.1 



The parametric form (3.43) will have the correct asymptotic decay in the out-

skirts and is capable of representing both a flat-topped wave and one with a cusp 

at x=O. In an early paper, Longuet-Higgins (1974) used a similar form with just 

three terms to obtain a very good parametrization of the maximum wave profile. 

The cases discussed here typically have ten or more terms in the polynomial 

which affords an excellent parametrization. The integral equation (3.42) has a 

logarithmic singularity at x=x 0, which was handled in the computation using a 

'tailored quadrature' extension of Gaussian quadrature (see Harris and Evans, 

1977) to accurately cater for this type of integrable end-point singularity. The 

solitary wave profiles obtained in this manner were highly accurate even at large 

amplitudes. The various types of solitary waves are best characterised by 

Longuet-Higgins and Fenton's co (1974) parameter defined by 

NL 

co=2Ebm+l_ 
tan  

(lI) 	 (EQ3.45) 
I.L 

M= 1 

which ranges from 0 for the lowest amplitude solitary wave to 1 for the maximum 

wave. It is in 1 1 correspondence with the various solitary wave solutions in 

contrast to, say, the Froude number F. As Longuet-Higgins and Fenton (1974) 

discovered, where more than one large amplitude solitary wave can have the same 

F value (velocity maximum as the height tends towards the maximum). 

3.2.6 The Modulation of Short Waves Riding on a Long Solitary Wave 

Longuet-Higgins & Stewart (1961,1962) introduced a radiation stress tensor to 

determine the evolution of water waves in non-uniform velocity fields with 

variable depth or horizontal current. After that Whitham (1965) first introduced 

a conservation law of wave action Eqn. (3.47). 
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A E 1— 

a 
(EQ 3.46) 

JA 1  
+V. [((J+Cg)Ail =0 	 (EQ3.47) 

Cg =- 	 (EQ3.48) 
DCF 

ak 

A1: the wave action; E: the energy of short waves. 

Cg : the group velocity observed in a frame moving with the local mean flow U. 

: the local frequency (intrinsic frequency) as seen by an observer moving with 

the local velocity U. 

The short wavetrain is assumed to remain coherent: that is, it can be described, 

locally, in terms of a single wave-mode of wavenumber k. 

- 	 . 

+ V (a+ U k) = 0 	 (EQ 3.49) 

Equations (3.47) and (3.49) are called the equation of conservation of action and 

the equation of conservation of 'wave crest' or of 'phase'. 

In this chapter the main purpose is to consider the steady modulation of a linear short 

wavetrain riding on a long solitary wave. From the mathematical point of view it is 

reasonable to interpret short waves riding on the free surface streamline ('P = 0) of 

the solitary wave. So applying conformal mapping, the co-ordinates (s,n) are 

equivalent to ((D, 'I'). The notations follow those in the paper given by Zhang and 

Melville (1990). In Eqns. (3.47) and (3.49) the Laplace operator V can be al (es). 

Furthermore under the steady assumption, from the phase conservation and the 

wave action conservation, the modulated short wave riding on the solitary wave 

in shallow water is described by Eqns. (3.50), (3.51) and (3.54). More details for 

the conservations are given in Appendix A. 
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1 ak - 	2 au0- 	
as 

1 	g1 	
3.50) 

1 ks - H0s 	
2g 1  (R C  +) 

iacyag, 1 
-- = 	1— 	 (EQ3.51) Cy s 	2g1os 	

2(R+) 

k: the modulated short wavenumber normalized by its own value at the 'outskirts' 

of solitary wave. 

a: the modulated short wave frequency (intrinsic frequency) normalized by its 

own value at the 'outskirts' of solitary wave. 

Recall Eqn. (3.21) and let 0 = 0. Then 

g (s) Cos O 
g, (S) = 	 (EQ3.52) 

HO  (S) 

g: the gravity acceleration; g 1 : the effective gravity acceleration. 

0: the angle between the surface profile of the solitary wave and the horizontal 

axis. Where 

CF 

R=C- 
91 

R: the phase velocity ratio of the long wave to the short wave. 

HO  (s)= 
(J0(s)

(EQ3.53) 

H0: the scale factor. 

[(U05

I'dIgl  
2a 2a ] = C 

(EQ 3.54) 
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3.2.7 Numerical Results 

The following cases have been considered, the solitary wave profiles shown in 

fig. 3.5; the effective gravity acceleration g1 shown in fig. 3.6; the scale factor 

H0 shown in fig. 3.7; the modulated short wavenumber (fig. 3.8), intrinsic 

frequency (fig. 3.9), and amplitude (fig. 3.10), along the free surface of a long 

solitary wave (note: along X-axis) for each value of the parameter o. Let 

= 0.20, 0.40,0.60. The derivatives of the modulated short wavenumber, 

frequency and amplitude with respect to X are shown in figs. 3.11, 3.12 and 3.13. 

Furthermore it is worth looking at the steady modulated short wavenumber (fig. 

3.14), frequency (fig. 3.15) and amplitude (fig. 3.16) at the solitary wave crest as 

against the parameter o. Here let R c  = 10 at the 'outskirts' of solitary wave. 
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- w=0.60 
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X-axis 

Fig. 3.5: The solitary wave profiles. 
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Fig. 3.6: The effective gravity acceleration g1. 
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Fig. 3.7: The scale factor H 0 . 
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Fig. 3.8: The modulated short wavenumber along the solitary wave. 
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Fig. 3.9: The modulated short wave frequency along the solitary wave. 
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Fig. 3.10: The modulated short wave amplitude along the solitary wave. 
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Fig. 3.11: The derivative of the modulated wavenumber with respect to X along 
the solitary wave. 
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Fig. 3.12: The derivative of the modulated frequency with respect to X along the 

solitary wave. 
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Fig. 3.13: The derivative of the modulated amplitude with respect to X along the 
solitary wave. 
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Fig. 3.14: The modulated short wavenumber at the solitary wave crest. 
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Fig. 3.15: The modulated short wave frequency at the solitary wave crest. 

4.. 
a, a, - - 
U 

C 
0 

> 
0 
C a, 
0 a, 
I- 

.4- 

a, 
> 
a, 

4- 
I- 

0 

U, 

V 
a, 
4. 
a, 

0 

59 



0 

I- 
0 
C 
0 

0 

4- 

a 
E 
0 

0 
> 
0 

4- 
I.. 

0 

0 

0 
0 
4- 
0 

0 
Tu 
U 

0.0 0.05 0.1 	0.15 0.2 025 0.3 0.35 0.4 0.45 0.5 0.55 0.6 
W 

Fig. 3.16: The modulated short wave amplitude at the solitary wave crest. 

3.3 Discussions 

In this chapter, which is principally based on the linear theory of wave 

conservation, the steady modulation of linear short waves riding on long solitary 

waves has been discussed. Along the free surface of the solitary wave, from the 

'outskirts' to the crest, the short wavelength is shortening, and the short wave 

amplitude and frequency are increasing. Another main physical conclusion for 

the modulation is that the short wavelength becomes shorter, and the amplitude 

and frequency become larger on the crest of the solitary wave as the amplitudes 

of the solitary waves increase. It is found that the 'outskirts' of the solitary wave 

provide a natural position for normalization of the modulation because of their 

asymptotic decay. Figures 3.8, 3.9, and 3.10 demonstrate that the maximum 

modulated wavenumber, frequency, and amplitude of short waves always occur 
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at the crest of the solitary waves. In figs. 3.14, 3.15, and 3.16 it is shown that the 

modulated short wavenumber, frequency, and amplitude increase on the crest of 

solitary waves by increasing the amplitude of solitary waves. In comparing figs. 

3.14, 3.15, and 3.16, when U) is from 0 to 0.6, the modulated short wavenumber 

grows 206.96%, the modulated short wave frequency grows 25.15% and the 

modulated short wave amplitude grows 45.24%. The growth rate of the 

modulated short wavenumber on the solitary wave crest is the largest among the 

three. From the curve in fig. 3.14 the relationship between the modulated short 

wavenumber and parameter (o is fully nonlinear; i.e., the short wavenumber is 

strongly modulated by the long solitary waves. It is therefore reasonably 

concluded that the modulated short wavenumber is most sensitive within the 

interaction of short waves and solitary waves. That means the significant 

shortening of the short wavelength on the crest of the solitary waves is related to 

local breaking and caustics. 

It is shown that the modulated short wavenumber, frequency and amplitude have 

asymptotic decay. Their derivatives with respect to the horizontal co-ordinate are 

shown in figs. 3.11, 3.12 and 3.13 which are symmetric about the z axis. These 

results for the modulation by solitary waves are different from those of the 

modulation by long waves. 

Unlike the regular wave case where Zhang and Melville (1990) suggested an 

upper limit of the steepness of long waves as 0.3 for the modulation, there is no 

limitation for solitary waves on the value of co because of the asymptotic decay 

of solitary waves. However, it is to be expected that for large values of U) the 

short waves may well break. The limit for the parameter co in the numerical 

modulation is not clear. So it should be noted that in the large amplitude solitary 
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waves the local disturbance and the instability will appear, i.e. CO > 0.88, with .a 

large growth rate of instability (Tanaka 1986). Furthermore the problem of the 

evolution of short waves and the problem of weakly nonlinear short waves riding 

on a long solitary wave based on the nonlinear Schrodinger equation (3.34) 

remain open. 
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Chapter 4 

EXPERIMENTAL FACILITIES FOR WATER WAVES 

4.1 The Wave Tank and the Wave Generator 

4.1.1 Wave Tank 	 3m 	
so -.4 

wavemaker beach 	 I wavegauge 	

L " mwmmwmmmm~  

0. 54m 

.4 
4m 

.4 
6m 	

rTmedesATO 

Fig. 4.1: Sketch of the short wave tank. 
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All the experimental work was undertaken in the short wave flume at Edinburgh 

University. The flat-bedded tank, which has a still water depth of 0.54m, has a 

width of 0.3m and a length of 6m (4m long for waves freely travelling and 2m 

long with a wave absorber, which is an expanded aluminium beach). The walls 

and the bed in the 2m long central section are made out of 19mm thick glass to 

allow optical access. The waves, two dimensional, are generated by a single 

hinged paddle which serves as a wavemaker. The wavemaker employed in this 

tank is of the single flap type produced by Edinburgh Designs (Salter 1982). The 

paddle pivots on a fabric hinge fixed to the bottom edge of the wavemaker box. 

Figure 4.1 shows the structure of the short wave tank. 

4.1.2 Wavemaker 

The paddle is driven by a servo-motor via a drive belt and springs. The servo-

motor is a torque driver to offset the hydro-dynamic force. In addition there is a 

tachometre in line with the motor for measuring the angular velocity of the 

paddle. The offset torque is calculated through two high-gain feedback loops. 

The first loop is to calculate the torque between the motor and a piezo-electric 

torque transducer. The second loop is to calculate the externally required torque 

which equates the angular velocity and the angular position. The piezo-electric 

torque transducer is located between the drive belt and the paddle, and filters the 

velocity of the paddle. Also the position of the paddle is calculated from the 

tachometre, velocity encoder, on the servo-motor. These are used to optimise the 

process of absorbing reflected waves. The paddle therefore acts as an absorber of 

reflected waves as well as a wave generator. This is because the paddle 

incorporates a force feedback mechanism which balances the hydro-dynamic 

force, the sum of the drive signal and the filtered velocity signal, and it therefore 
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simultaneously generates waves and absorbs reflected waves. The drive signal to 

the paddle is given by an Arcon Archimedes A310 micro-computer which can 

also sample wave resistance gauges and trigger one camera. All the processes can 

be programmed and operated synchronously. Figure 4.2 shows the mechanism of 

the Edinburgh-design wavemaker. 

tor 

hinge 

Fig. 4.2: Sketch of the mechanism of the wavemaker of Edinburgh Designs. 

4.1.3 Wave Generation Software 

A simple C programme includes several intrinsic functions and the inputs of the 

programme are the numbers of waves, wave amplitude, frequency and initial 

phase for wave generation. To drive the wavemaker it is necessary to have a 

calibration between drive voltage signals and desired waves. A transfer function 

is found by driving the wavemaker with small sinusoidal voltage signals of 

known amplitude at a series of frequencies. This is an intrinsic calibration for 

wave generation programmes. Skyner (1992) found that the required sinusoidal 
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voltage to drive the wavemaker and produce a wave of given height in the flume 

depends strongly on the frequency. The transfer function, which is the relation 

for signal voltage, wave amplitude and initial phase, could be predicted by linear 

theory or experiments. The transfer function applied in the short tank has been 

experimentally measured by Dave Skyner. 

The calibration contributing to its own value can be given in a straightforward 

spectrum experiment. The spectrum experiment is an algorithm for wave 

spectrum generation represented by continuous spectra with a list of linear wave 

fronts, each with an amplitude, frequency, and phase. Therefore a desired wave 

field is generated by a specific continuous spectrum. The desired wave elevation 

record is then measured by a wave gauge in the tank so that the transfer function 

is calculated from the wave elevation for spectral analysis and shifted back to the 

wavemaker using linear theory. 

Because of the strongly non-linearity of steep waves, in extreme cases the 

transfer function is not ready-made, therefore Skyner (1992) suggested that the 

empirical transfer function for such particular waves can be achieved by iteration 

of the above procedures. However, for all experiments in this thesis the required 

wave fields are generated in the flume and then chosen as desired. 

4.1.4 Reflection and Resonance 

The absorbing beach is made from wedge-shaped, expanded aluminium 

meshwork. The main function of the absorbing beach is to reduce wave 

reflection. The reflection coefficient is defined by two spectra that split from two 

gauges into incident and reflected components for determining the reflection 

coefficient. For example, the calculated wave reflection coefficient is 5.1% for 

the wave of 0.94 Hz and 20 mm, 3.3% for the wave of 0.94 Hz and 30 mm, and 
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2.8% for the wave of 0.94 Hz and 40 mm. Therefore, the reflection of long waves 

is also playing a minor role in the empirical modulation of short waves riding on 

long waves. This spectra analysis under the assumption of linear wave 

superposition breaks down in both the most extreme cases as well as those of high 

frequencies. Therefore, this analysis is used only to calculate a reflection 

coefficient at the wave generation frequencies (frequency range is between 0.75 

and 1.5 Hz). The reflection coefficient of this beach decreases as wave 

amplitudes increase. So the effect of wave reflection decreases as wave 

amplitudes increase. 

The resonant effect is produced by waves of an integer multiple of wavelengths 

equal to the length of the flume, 6 metres. These resonant frequencies and 

wavenumbers are calculated from the linear theory of dispersion. The spectra 

have then been checked to see if the wave amplitude increases more than 0.3 mm 

on specific frequencies from the resonant effect. 

4.2 Surface Measurement Techniques: Wave Gauges 

Surface elevations are measured in the short wave flume using resistance-type 

wave gauges. These gauges are used to sample the resistance at a specific 

frequency between two parallel metal conductors, and the elevation measurements 

depend on the different resistivities between water and air. As changes occur to the 

part of the length of immersed-in-water conductors, so the voltage across the 

conductors changes and this is sampled by a micro-computer (Archimedes A310) 

which also controls the wave generation. The change in voltage is taken to vary 

linearly with surface elevation so wave surface elevation is determined by 
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subtracting the voltage given at the mean water line and multiplying by a 

calibration constant. A diagram of a wave gauge is shown in fig. 4.3 (a). Figure 

4.3(b) gives the relationship of output voltages from the wave gauges against the 

length of wave gauges immersed in wa 

in 

conduct 

Lng blocks 
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Fig. 4.3 (a): Sketch for a resistance-type wave gauge. 
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Fig. 4.3 (b): The graph for reading voltage against the length of wave gauges 

immersed in water (mm). 



For a reading to be made, the wave surface must be between the two insulating 

blocks. The secondary conductor is used to determine the conductivity of the 

water. The calibration factor and the voltage at mean water level are determined 

experimentally each time the gauges are used. 

4.3 Internal Kinematics Measurement 

In this thesis the Particle Image Velocimetry technique (PIV) is the only 

experimental technique used for wave internal kinematics. In PIV, small seeding 

particles illuminated by high-power laser are introduced into fluids and 

photographed onto negative films. The seeding images on the negative have been 

studied for flow kinematics. 

The development of Laser Doppler Anemometry (LDA) resulted in the first non-

intrusive point flow measurement technique. The advantage of LDA is that it is 

non-intrusive. But its disadvantage is that each time it only measures at one point. 

The desire to achieve a greater degree of accuracy from flow field measurements 

is the driving force behind the development of what becomes known as Particle 

Image Velocimetry (Ply). 

4.3.1 The Particle Image Velocimetry Acquisition 

The PIV apparatus is sketched in fig. 4.4. The short tank can be seen with the 

measurement area (actually a volume due to the finite width of the laser beam) 

illuminated by the high-power laser. The parabolic mirror of the scanning system is 

located below the tank and the camera is facing and located 1.7 metres away from the 



side wall of the flume. An Acorn Archimedes micro-computer (A310) controls the 

wave paddle, samples the signals from wave gauges and triggers the camera with 

specific time delay. The laser beam path can be traced back under the flume (seen in 

fig. 4.4). 

scanning 
mirror 

ravemakei 

w. LU 

Fig. 4.4: Sketches of the scanning beam system and the PlY apparatus. 
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4.3.1.1 Camera, Lens and Film 

The choice of photographic equipment is of importance in Ply. The camera 

should be equipped with a flat-field lens if image plane distortions are not to be 

a problem. The choice of the focal length of the lens can reduce the effect of out-

of-illuminated-plane motions and improve the imaged region of the flow. 

The lens employed here is of focal length 80mm or 150mm, depending on 

experimental considerations. Lens distortion was measured by Gray (1989), who 

mentioned 1.5% distortion will be at the edge of the photographed film. 

The two timing aspects of the camera's operation rely on mechanical devices which 

are checked. An accurate knowledge of the delay between triggering the camera 

and its shutter opening is essential, and an idea of the actual shutter timing is 

important if the number of particle exposures is to be reasonably well predicted. 

parameter setting 

film rate 100 ASA 

apperture f4 

shutter speed 1/30 sec 

laser power 12W 

scanning period 7.4 as 

Tab. 4.1: The parameters for the PIV acquisition. 

The trigger and shutter times are measured by detecting the signal from a 

photodiode placed on the path of a low-powered laser beam passing through the 

lens. From the duration of the signal the actual shutter times are determined from 

80mm lens, which houses the timing mechanism, and these are given in tab. 4.1. 
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These are some large departures from the nominal speeds, but the consequence 

of this is only a small change in the number of particle images recorded. 

The PIV photographs are taken with a Hasseiblad 500ELJM camera with a Zeiss 

Planar CF 80mm f/2.8 flat focus lens, which is positioned about 1.7 m away from the 

illuminated plane, with the camera's view centred 0.2 m below the still water surface. 

The choice of lens is to minimize distortion. The film used is T MAX 100 which is 

120 format (i.e. negative size = 56.5 x 56.5 mm2). This film is rated 100 ASA and 

has a high resolution of 200 lines/mm over 5000 dpi. The shutter is triggered (via a 

relay switch) by the Acorn Archimedes micro-computer which also controls the wave 

generation and samples the wave gauge signals. 

The above factors make the combination of lens, camera and film ideally suited 

to the full-field measurement of an area as it can then be analyzed accurately, 

using a relatively small interrogation spot area, over a large grid of points. 

The optical axis of the camera is lined up on a small reference cross-marker on 

the side of the flume at the calm water level. The kinematics near the long wave 

crests is of most interest here. As image distortions are the smallest near the 

optical axis and velocities near the crest are difficult to measure due to reflections 

off the underside of the wave free surface. These considerations are reduced by 

having the camera close to the surface. 

The shutter speed is set so that multiple exposures (3 to 5 preferred) can be taken. 

The effect of sharpening the Young's fringes is related to the particle image pair 

density and the correlation between pairs separated by the flow. The choice of 

shutter speed balances the desire for multiple images and the separations between 

two consequent images with the proper scan period and the need to 'freeze' the 

wave motion (to limit velocity gradients in the analysis region). According to the 
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maximum speed of waves, a shutter speed of 1/60 second is set with a typical scan 

period of 4 - 5 ms to ensure 3 or 5 images to each particle. 

The photographic magnification is determined by placing a ruler in the location 

of the illuminated region. This is then photographed and the magnification 

determined from the image of the ruler. The camera must not be moved during 

calibrating the magnification and the PIV photos. The distortion, due to the 

lenses and air-glass-water interface, will be ignored. 

4.3.1.2 Laser and Scanning Beam System 

The laser used in the experiments is a Spectra Physics 15W continuous wave 

Argon-Ion laser, model 171. The produced wavelengths range from 454 to 515 

nm. This is reflected off special high-power laser mirrors onto the scanning beam 

system. 

The purpose of the illumination is to produce multiple well-exposed, sharp 

images of the seeding particles. The illumination must therefore occur for a short 

period of time (relative to the period during one exposure and the movement of 

particles) so that the motion of the particles is frozen and the image displacement 

of particles is large compared to the size of particles. The only purpose in using 

a high-power laser is to illuminate the seeding particles. The optical coherent 

property is not important. 

The scanning beam system at Edinburgh was originally designed by Gray (1989), 

as shown in fig. 4.4. The laser beam in the system is reflected off, an octagonal 

rotating mirror onto a parabolic mirror and up into the flow. As the octagonal 

mirror rotates, the beam is swept along the parabolic mirror. As the octagonal 

mirror is at the focus of the parabolic mirror, the expanding beam is recollimated. 
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Here the direction of the beam off the parabolic mirror is vertically up through 

the glass base of the flume. This provides a non-divergent scan through the 

measurement region. One of the advantages of the scanning-beam system over the 

expanded sheet is an increase in the percentage of available light used. 

In this system, the rotating mirror is controlled by an adjustable control circuit. A 

photodiode is placed at the end of parabolic mirror to detect the scan rate, which is 

stored and analyzed by a Thurlby Digital Storage Analyser and a 20 MHz CR0. 

Scanning rate is sensitive in production high-quality PlY negatives, at the 

dynamic range that can be limited by the analysis system. The scanning rate must 

be adjusted to try to make the maximum velocities which produce the maximum 

separation measurable on the negative (about 0.25 mm). Adjusting the scanning 

rate also depends on the photographic magnification. The scanning rate may be 

altered depending on the results of the first run of the experiment. 

The seeding used is conifer pollen. Conifer pollen is able to reflect the laser light 

reasonably well and provides sharp and clear images on the film. Moreover, if the 

photographic magnification is 0.08, then 5 J.Lm in diameter is a minimum 

resolvable size of the image on the film. So the size of conifer pollen with a 

diameter of 70 p.m is approximately the optimal value for the acquisition of PlY. 

According to experience, it is also almost neutrally buoyant and small enough to 

drift with the flow. This suggests that it will follow the fluid motions accurately 

and so is suitable for use as PlY seeding. The seeding density is adjusted to yield 

about ten particle pairs in each interrogation zone of one negative. 

A sketch of a negative photographed by the PIV technique is shown in fig. 4.5. 
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Fig. 4.5: Sketch of a negative photographed by the PlY technique. 

4.3.2 PIV Acquisition Errors and Limitations 

4.3.2.1 System Error in the Scanning Beam System 

The system error includes several aspects which can affect the accuracy of the 

final velocity measurements in the acquisition of PIV photographs due to 

inadequacies in the apparatus and experimental uncertainties. The error aspects 

of PIV acquisition here were first considered by Gray (1989). Geometric 

distortions are due to the imperfection of camera lens and refractive index 

changes between the camera and the measurement zone can be thought of as 

introducing a small modification onto the magnification dependent on the 

position within the negative. The region of greatest interest of the flow field will 

be photographed in the area of minimum distortions of lenses. A similar type of 

error is introduced by the deviations of the light sheet due to flatness and 

thickness. The consequences of the 3 mm variation of flatness and random 

thickness are to give systematic and random errors of up to 0.3% and 0.2% when 

the camera is positioned 1.7 m from the measured zone. There are two particular 

concerns about how well the seeding follows the flow as well as the seeding's 
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ability to drift with unsteady flows. Typical systematic and random errors in the 

acquisition of PIV photographs are summarised in tab. 4.2. However, the errors 

are small, in practice they are conveniently ignored. 

Error 
Factor 	 S  

Random 
Error 

Systematic 
Error 

Illumination Interval 0.2% 

Photographic Magification 0.3% 

Illumination Plane Thickness 0.1% 

Illumination Plane Flatness 0 - 0.3% 

Photographic Distortion 0 - 0.3% 

Scanning-Beam Time Effect 0 - 0.2% 

Seeding not Following Flow 0.1% 

Tab. 4.2: The errors involved for the PlY acquisition. 

Besides the errors introduced in the above paragraph, one disadvantage of the 

scanning beam system-results from a small systematic error due to the movement 

of the seeding and the variation of pulse duration with position. 

4.3.2.2 Systematic ErrOr in Time Between Pulses 

Equation (4.1) was derived in the paper of Gray et al. (1987) for the systematic 

error introduced in the scanning beam system by the movement of the seeding and 
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the non-uniform scan velocity through the measured area. The error caused by the 

movement of the particles is calculated, assuming an average scanning velocity 

of the beam through the measurement region. Moreover, the same paper gave an 

expression for the scanning velocity which is dependent on horizontal position 

within the measuring volume and geometrical factors of the system. 

The horizontal and vertical co-ordinates are x and z which the origin being on the 

horizontal and vertical axes of symmetry of the parabola, which is of length L and 

height L/2. The laser beam is incident onto, and reflected from, the rotating 

mirror at the point (0, L/2). The systematic error 4 in the calculation of horizontal 

velocities can now be given: 

LXLN 

= 

 

2Tc  
(EQ 4.1) 

where Ax is the measured horizontal particle displacement, L is the scan length, 

N is the number of faces in the rotating mirror and x is the horizontal position 

along the scan length (measured from x=0 below the rotating mirror, hence 

0:9 x :!~ L). It can be seen that the measured velocity should be multiplied by the 

correction factor (1 - 4) -1  in Eqn. (4.2). The systematic error of vertical 

velocities have a similar expression as Eqn. (4.1). The formula for calculating 

PIV velocities is 

CM 
vxz  = (1) ,; Sxz  (EQ 4.2) 

where v and v is the x (horizontal) and z (vertical) velocity components 

respectively in the illumination plane. C is a scale factor of the system, M is the 

photographic magnification, 4 is a correction given by Eqn. (4. 1), - is the scan 

period and s, z  is the measured displacement peak location of the seeding. 
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It should be noted that the systematic and random errors could in principle be 

measured or estimated, and a correction made to the data. 

4.3.3 The PlY Analysis System 

The aim of the PIV analysis method is to measure the accurate separation of 

two consecutive images from localised regions or interrogation areas on the 

developed negative photographed by the PIV technique, and hence to 

determine the local velocity by knowing the time duration between the 

separation. 

4.3.3.1 Young's Fringe and Autocorrelation Calculation 

The analysis system used at Edinburgh is a two-dimensional Fourier transform 

technique first developed by Gray (1989) by applying Huntley's method 

(Huntley 1986) which gave more accurate results than other methods used. 

Huntley's method involves a fully automated fringe analysis based on the 

two-dimensional Fourier transformation of the fringe intensity distribution. 

So the photographic negatives containing velocity information are analysed 

using Young's fringe technique (Huntley 1986). The previous description of 

this is merely pointed out how to produce Young's fringes and stated that the 

flow velocities could be determined from the separation and orientation of 

two consecutive images. The schematic diagram of the analysis system is 

illustrated in fig. 4.6. 
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Fig. 4.6: Sketch of the PlY analysis system. 

In the implementation of Young's fringe analysis method at the Edinburgh-design 

Ply analysis system- i.e. the Fourier method- is adopted. The fringe pattern, which 

are the first optical transform, is captured and digitised via the CCD (Charge-

Coupled Device) camera and averaged into 64x64 arrays. Then the arrays are 

processed in Arcon Archimedes micro-computer A440 in order to determine local 

velocities. The optical Fourier transform is achieved by illuminating with a low-

power laser beam. A two-component precision micro-translation stage is used to 

physically transport the negative between the fixed optics. 

The negative photographed by the PlY technique is framed on two orthogonal 

micro-translational stages, which are used for the horizontal and vertical 

movements of the framed negative and are controlled by the analysis computer, 

an Acorn Archimedes micro-computer A440. The PIV negative is analysed in 

small regions, about 1 mm 2  (defined by the size of the laser beam interrogation 

spot). Each spot has been analysed and then the stages move the negative so that 

a new area is interrogated by the beam. The process is repeated over a grid of 

points until the area of the desired flow field is covered. 
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The interrogation spot on the PIV negative is from a He-Ne laser with power 

0.5mW and wavelength 633 nm. The laser power is controlled by a pair of 

polarisers, and the spatial noise of the beam is limited by a spatial filter. This is 

one focal length from the converging lens centred on the beam path and a further 

focal length from a CCD video camera, also on the beam path. There is a small 

optical stop in the centre of the video lens to remove the DC (un-deviated) 

component of the beam. 

The Fourier transform of the fringe intensity equals the convolution of the 

amplitude of the interrogation-spot image field. This results in an autocorrelation 

plane with self-correlation peak, symmetrical and opposite displacement peaks 

and noise peaks. The self-correlation peak can be reduced by subtracting the 

average diffraction halo. An average diffraction halo is determined from an 

average of 40 sets of fringe patterns is sampled from random positions and angles 

throughout the flow. The diffraction halo is caused by singular particle images. 

This aids the resolution and detection of small particle separation. The self-

correlation peak is not usually completely removed so the central area of the self-

correlation plane is set to zero. 

The dominant separation is then found by locating the displacement peaks and 

measuring their distance from the centre (the function is symmetrical about its 

centre). This is done by locating the position of the highest correlation value and 

then calculating the centroid of the surrounding displacement peak. 

Young's fringe diagram shows that the lens is used to perform a two-dimensional 

Fourier transform from the interrogation spot of the PIV negative. Each seeding 

particle image acts as a point-light source and hence each pair of images acts as a 

pair of coherent light sources and produces a set of Young's fringes in the Fourier 



plane (the back focal plane of the lens where the video camera is situated). 

The random distribution of the seeding particles in the flow produces a random 

set of fringes which forms speckle-type background noise. Each pair of 

successive images of the same seeding particle also produces a set of fringes 

related to the flow characteristics. If there are no great velocity gradients across 

the analyzed region then the flow will superimpose a similar separation between 

successive images of all the particles and each set of images will form similar 

fringes. This leads to the reinforcement of that fringe pattern and the formation 

of a dominant set of fringes caused by the flow. These fringes are perpendicular 

to the flow direction and their separation is inversely proportional to the 

magnitude of the seeding displacement. 

The results, in arbitrary displacement units, are converted into velocities by the 

analysis programme using the photographic magnification, the scan period and a 

scale of the analysis system. PIV has a limited dynamic range. If the particle 

images are too close on negatives, they cannot be resolved. On the other hand, if 

they are too for apart, they are outside the measurement zone of the analysis rig. 

The film photographed by the PIV technique is a multi-exposure negative of a 

large flow area (here approximate 500mm x 500 mm). The raw output of the 

analysis of the negative is a set of results in a grid of points covering the negative. 

Each result comprises a pair of co-ordinates, horizontal and vertical velocity 

components and a measure of the displacement peak visibility at that point (a 

measurement of the signal-to-noise ratio). The output then undergoes post-

processing to remove spurious results. The processed output can then be used in 

comparisons with theories or to look at flow structures and turbulence etc. 
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The analysis system provides a result for every point on the analysis grid. 

Obviously this extends above the surface elevation at certain points on the grid 

and a spurious result is produced there when noise is measured. These results are 

removed by post-processing of the data. The velocity map is displayed on the 

screen of the analysis computer. Data points from above the surface are deleted 

by selecting them with the mouse. Other spurious points may be deleted in this 

way, too. These unsuccessful data points may result from a lack of seeding or 

illumination or a lack of correlation due to out-of-illuminated-plane motion. 

They tend to have a very low signal-to noise ratio and show no continuity in 

magnitude or direction with their immediate neighbours. 

The second major element of the post-processing is the scaling of positions and 

velocities back to full scale. This is done using the measured photographic 

magnification, measured scan period and a scaling factor of the analysis rig. 

Errors in these values are discussed in the previous section. 

All the quantitative velocity measurements are completed by the PIV analysis 

technique. A copy of the full field data is edited down to a few columns of data 

under the crest. The choice of which columns to retain was made by selecting the 

block at the centre of the negative where the horizontal crest velocities were 

highest and the vertical velocities lowest. The wave crests are at the centre of the 

negative due to the wave gauges iteration procedure. The measured wave phases 

are close to zero, but are not exactly zero. Therefore a block of results could be 

presented together. The block is typically 2 to 4 columns wide, which 

corresponds to about 2 to 4% of a wavelength. 

There are a few points at each elevation as results from 2 to 4% of a wavelength 

are shown to cover any error in fitting PIV measurements to theoretical results. 
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Errors are ignored to the PlY results as the magnitude of the errors was so small 

at the crest. The spread in velocities due to using a block of results provided a 

suitable measure of the uncertainty in fitting theoretical profiles to the 

measurements, as the wave phases measured are not always exactly zero. 

4.3.4 PIV Analysis Errors and Limitations 

A PlY negative contains information from which the underlying flow can be 

deduced. The accuracy of the analysis process depends on the optimisation of the PIV 

acquisition parameters, and, even if these were ideally set, is fundamentally limited. 

Random and systematic errors are two major types of error inherent in the 

analysis process. They vary with the velocity gradients present in the flow. 

General speaking, the systematic errors are more dangerous than the random 

errors, as the random errors manifest themselves clearly when the acquired data 

is of low quality. In fact, the random errors range between 0.3% to 0.5%. Actually 

these errors were obtained and estimated from artificially generated PIV 

negatives, made by plotting random patterns of dots, with known separations, 

followed by photographic reduction. Gray (1989) has investigated systematic 

errors and random errors using a Monte Carlo simulation for the measurement of 

waves in the flume and for the analysis rig used here. 

There is always uncertainty with regard to the location of the centre of the 

correlation peak, due to the random sampling of the particles in the interrogation 

area, and this uncertainty increases as the range of particle displacements 

increases and the correlation peak broadens. The systematic error associated with 

the displacement gradient tend to bias the average displacement measurement 

towards the lower displacement, since the larger particle image separations tend 

to locate outside the interrogation area. In algebraic and numerical studies it has 
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been found that there is a systematic bias introduced which varies linearly with 

the displacement gradient. 

Here it is necessary to recall Eqn. (4.2) for further discussion on the relative 

errors of the parameters. The scale factor C, which is estimated from the analysis 

of known measurements, has a relative error of 0.1% (Sutherland 1992). The 

magnification M is obtained from measurements of a photograph of a known 

reading. Its value varies systematically with position due to lens distortion and 

randomly due to measurement errors. A typical relative error of the magnification 

is estimated 0.5%. The scan period -c is determined using a digital storage 

analyser which is as reliable as possible. For the PIV system used here in Eqn. 

(4.1) Ex<<L so 4 is negligible. Normally, as Sutherland (1992) suggested, 

:9 0.006. Therefore the relative error of 4 was considered to be too small to be 

worth calculating explicitly. In fact the errors in 4 depend on geometrical factors 

and s and are taken to be small in comparison to 4 . As the term (1-) is itself 

treated as one, 	can be treated as an uncertainty, with relative error 

(1 - ) :9 0.006/0.994. 

There is a random error and a systematic error in determining s and s and they 

both depend on the displacement gradients present on the film which relates the 

velocity gradient. 

The relative uncertainty in v can be given by 

CYVx) 2 - 
	

2 	
aM 2 (a\2 (CS.,) 2 	2 

VX 	
b) 	+ 1I ++

( ,7s
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) 	s 	s 	1— 

There  is a similar equation for v. The error is taken to comprise a relative 

component of approximately 1% and an absolute error of about 1.1% of the 

maximum measurable velocity. The scan period is adjusted so that the anticipated 



crest velocity equals the maximum measurable and the experiment is repeated if 

the measured velocity is too high, so the maximum measured velocity is close to 

the upper limit. Therefore the absolute error may increase slightly but should be 

lower than about 1.3% of the highest measured velocity. 

The total relative error increases as the velocities decrease, due to the increasing 

relative importance of the absolute error. The total error, however, decreases as 

velocities decrease and should always be less than 2% of the maximum measured 

velocity. 

The papers of Keane and Adrian (1991) and Quinn et al. (1992) obtained values 

for the systematic error a and the random error a,  when the maximum
Sr  

measurable velocity was estimated. The errors determined will be the maximum 

for any of the waves measured. The values of random and systematic errors are 

0.3% and 1.1% respectively. 

However, these errors can be kept small (i.e. within 1%), by careful control. 

Another error in the PIV analysis is in the calibration of the analysis rig which 

was obtained by an artificially generated PIV film. In this way, the calibration 

values have been found with an accuracy of about 0.1%. The vertical and 

horizontal values found from the artificial PIV film were different because the 

pixels on the CCD array are not square (Skyner 1992). 
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Chapter 5 

SHORT WAVE MODULATION BY LONG WAVES 

5.1 Introduction 

The main purpose of this chapter is to present the modulation and kinematics of 

short waves modulated by long waves by comparing the experimental work with 

theoretical approaches. Section 5.2.1 discusses the experimental frequency 

modulation of short waves riding on long waves according to wave elevation 

measurements and a function fitting scheme. Section 5.2.2 gives the theoretical 

modulation of short waves riding on Stokes' waves which will be useful for further 

experimental survey in studying the interaction between short waves and long 

waves. The theoretical modulation of short waves riding on long waves will be 

shown in Section 5.2.2. Here conservations only under steady state are applicable 

because the evolution solution for the modulated short wave frequency is almost 

intractable. Besides, a theoretical long wave field is desired for the conservations. 
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Stokes' wave has been chosen as a mathematical model of the long waves as the 

major non-uniform velocity field, though so many mathematical models have been 

well established for monochromatic long waves. There are many further 

discussions based on Stokes' expansions, such as the instability problems 

(subharmonic and superharmonic instabilities). Also Stokes' waves are popular in 

engineering applications for monochromatic long waves. Therefore Stokes' wave 

is a reasonable and good model to represent the long waves in the theoretical 

approach of modulation. Section 5.3 presents kinematics comparisons between 

experimental measurements and linear theory, the Wheeler stretching, Chakrabarti 

stretching and superposition stretching methods. In addition, the comparisons 

between measurements and the time-stepping method for monochromatic long 

waves will be performed in Section 5.3.4. 

To empirically explore the modulation of short waves riding on monochromatic 

long waves, mechanically-generated short waves and long waves are produced in 

the same direction of propagation by a hinged wavemaker. In the theoretical work 

both waves are also travelling in the same direction. All waves are generated at 

frequencies given by f = j/25.6 Hz, where j is an integral input (for example, 

j=30 then f = f30 = 30/25.6 = 1.17Hz). In the past the relative steepness H/gT 2  

and the relative depth d/gT 2  are used to represent design waves. Nevertheless, 

either the relative steepness and depth or wave steepness ak can be chosen as 

representation of various wave environments. But in fact and traditionally, the 

theoretical modulation of short waves riding on long waves is a function along 

long wave phases as increasing long wave steepnesses ak. So for comparisons 

between the experimental and theoretical modulation by increasing long wave 

steepnesses, it will be convenient to use the steepness ak in representation rather 

than the relative steepness and the relative depth. 



5.2 The Modulation: Frequency 

In this section, a theoretical approach is compared with experiments for 

frequency modulation of short waves riding on monochromatic long waves. The 

theoretical methodology employed here was first presented by Zhang and 

Melville (1990). First of all, it is necessary to choose the frequency ranges for 

both short and long waves, to be used in the following experiments. Then the 

sectionized net records of short waves, which are deducted the cases of long 

waves from the cases of short waves riding on long waves with respect to long 

wave phases, will show amplitude modulation in quality. That means the local 

short wave heights are functions of the long wave phase. Long wave phases will 

be given by the long wave periods where are determined by down zero-crossing 

of long wave records. The spectra of wave records are also required, either the 

cases of regular waves or the cases of two-component waves, from FFT and will 

aid in understanding amplitude distribution against frequency ranges for 

amplitude and frequency modulation from other points of view. 

Choosing suitable frequency ranges for both short waves and long waves is a 

crucial task. Short wave frequency shall be much larger than long wave 

frequency. An assumption can then be made: short waves are strongly modulated 

by long waves and long waves are not affected by short waves. Since short wave 

frequency cannot be too large because of the physical limitation of the 

wavemaker and long wave steepnesses will be as high as possible if linear and 

weakly nonlinear long waves are qualified. This implies that the strongly 

nonlinear long waves will increase the difficulty for getting the empirical 

modulation. In this thesis, the frequency ratio of short waves and long waves is 



close to 3, but not exactly 3. This is a purpose for offsetting the modulation of 

short waves riding on long waves from the third harmonic effect of long waves. 

The ratio 3 gives three periods of short waves almost riding on one period of long 

waves; that means almost ten short wavelengths are involved in one long 

wavelength. Therefore, short waves are strongly modulated by long waves in a 

high wavelength ratio. However, any higher frequency ratio than 3 is not 

applicable because long wave frequency reduces as the ratio increases. The 

reduced long wave frequency is of the same reduced long wave steepness. 

Furthermore, if any smaller ratio - such as 2 - is chosen, then the second 

harmonics of long waves will play an important role in the interaction. Somehow, 

this will result in confusion between short waves and the second harmonics 

because the second harmonic amplitude of long waves will be of the same order 

as short wave amplitude. Both are involved in the modulation, and this 

involvement will lead to further complication. According to the above 

consideration, there are three frequencies used as long wave frequencies, 0.63 

Hz, 0.78 Hz and 0.94 Hz. Also by increasing either long wave amplitude or 

frequency, long wave steepness' increases. Table 5.1 gives the parameters of the 

design waves used in this chapter. 

experiment reference elt2 elt4 e3t2 e3t4 

long wave amplitude (mm) io 20 10 20 

short wave amplitude (mm) 0 0 0 0 

long wave frequency no. 16 16 20 20 

short wave frequency no. 49 49 59 59 

long wave steepness ak 0.02 0.04 0.027 0.054 

short wave steepness ak 0 	- 0 0 0 
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experiment reference e2tl e2t2 e4tl e4t2 

long wave amplitude () 10 20 10 20 

short wave amplitude (mm) 10 10 10 10 

long wave frequency no. 16 16 20 20 

short wave frequency no. 49 49 59 59 

long wave steepness ak 0.02 0.04 0.027 0.054 

short wave steepness ak 	1  0.147 0.147 1  0.214 0.214 

experiment reference e5t2 e5t4 e5t6 e5t8 

long wave amplitude (mm) io 20 30 40 

short wave amplitude (mm) 0 0 0 0 

long wave frequency no. 24 24 24 24 

short wave frequency no. 73 73 73 73 

long wave steepness ak 0.037 0.074 0.110 0.147 

short wave steepness ak 0 0 0 0 

experiment reference e6tl e6t2 e6t3 e6t4 

long wave amplitude (nun) 10 20 30 40 

short wave amplitude (mm) 10 10 10 - 10 

long wave frequency no. 24 24 24 24 

short wave frequency no. 73 73 73 73 

long wave steepness ak 0.037 0.074 0.110 0.147 

short wave steepness ak 0.327 0.327 	1  0.327 0.327 

Tab. 5.1: Notations of the cases of regular and two-component waves in this 

chapter. 
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The acquisition of experimental modulation is derived from the following 

procedures. Once the wave maker starts functioning, wave records in both cases: 

regular waves and two-component waves, are taken from the beginning of the 

16th second for 25.575 seconds at a sampling frequency of 40 Hz. These 

experiments are repeatable owing to the use of a computer-controlled digital time 

series for wave generation and sampling. For the cases of two-component waves, 

during the interaction between short waves and long waves, long waves are not 

perturbed by short waves as assumed. This means that if, since both records start 

and end at the same time during the measurements, a net record of short waves 

can be obtained by subtracting a record of long waves from a record of two-

component waves, this net record will show elevation difference modulation of 

short waves. The three sets shown in figs. 5.1 for both cases of long waves and 

short waves riding on long waves, (e5t2 and e6tl), (e5t6 and e6t3) and (e5t8 and 

e6t4) are detailed in tab. 5.1. The time series for the cases of regular waves (solid 

curves) and two-component waves (dashed curves) are shown in figs. 5.1(a), (d) 

and (g). The net records of short waves, which are obtained by deducting the 

records of regular wave from the records of two-component waves, are shown in 

figs. 5.1(b), (e) and (h). The trace of the derived wave elevation difference clearly 

demonstrates the amplitude modulation, see figs. 5.1(b), (e) and (h). 

Theoretically the modulation of short waves riding on long waves is a function 

of long wave phase. Therefore, it is more interesting to consider the elevation 

difference along long wave phase before approaching frequency modulation. To 

accomplish this stage one needs to recall the records of regular waves. The time 

series of regular wave elevation can be sectionized by down-zero crossing to 

determine a long wave period. Hence, a record of regular waves can be divided 

into many sections and each section is one long wave period. Therefore, any 
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specific time on the record can be identified into a phase of a long wave period 

according to the location of that specific time with respect to the long wave 

period. On the other hand,, the records of short waves riding on long waves have 

the same long waves involved as in the records of long waves, the above-derived 

net records are transformed into the records of elevation difference against long 

wave phase in contrast to the sectionized records of long waves. The net records 

of elevation differences with respect to long wave phase over one long wave 

period are shown in figs. 5.1(c), (f) and (i). Here, as long wave phase is 

normalized by 27t. So the long wave trough and crest are near 0.25 and 0.75 of 

the long wave phase. 
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28 	 29 	 30 	31 	 32 	 33 	34 	36 
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Fig. 5.1(a): The elevation records, e5t2 (solid curve: regular waves) and e6t1 

(dashed curve: two-component waves). 
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Fig. 5.1(b): The net difference record obtained by subtracting e5t2 from e6t1. 
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Fig. 5.1(c): A sectionized net record, obtained by subtracting e5t2 from e6tl, 

riding on one long wave period (: measured data, solid curve: best fitting). 
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Fig. 5.1(d): The elevation records, e5t6 (solid curve: regular waves) and e6t3 

(dashed curve: two-component waves). 
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Fig. 5.1(e): The net difference record obtained by subtracting e5t6 from e6t3. 
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Fig. 5.1(f): A sectioni zed net record, obtained by subtracting e5t6 from e6t3, 

riding on one long wave period (: measured data, solid curve: best fitting). 
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Fig. 5.1(g): The elevation records, e5t8 (solid curve: regular waves) and e6t4 

(dashed curve: two-component waves). 
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Fig. 5.1(h): The net difference record obtained by subtracting e5t8 from e6t4 
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Fig. 5.1(i): The sectionized net record, obtained by subtracting e5t8 from e6t4, 

riding on one long wave period (A: measured data, solid curve: best fitting). 
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Figs. 5.1: Wave records for the cases of regular waves and two-component waves, 

the net records of short waves (the records of regular waves deducted from those 

of two-component waves), and the sectionized net records riding on one long 

wave period. 

Meanwhile,, spectra analysis also provides an approach to investigate frequency 

modulation. The frequency of short waves is close to the third harmonic 

frequency of long waves. So there are four main amplitude peaks which will 

appear in a spectral map. It is found that the third harmonic amplitude of long 

waves in the cases of long waves is much smaller than the amplitude of the short 

waves riding on long waves in the spectral analysis, shown in figs. 5.2 (a), (b), 

(c) and (d). The four sets shown in figs. 5.2 for both cases of long waves and short 

waves riding on long waves, (fig. 5.2(a): e5t2 and e6tl), (fig. 5.2(b): e5t4 and 

e6t2), (fig. 5.2(c): e5t6 and e6t3) and (fig. 5.2(d): e5t8 and e6t4) are detailed in 

tab. 5.1. 
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Fig. 5.2(a): The spectra of e5t2 (solid curve: regular waves) and e6tl (dashed 

curve: two-component waves). 
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Fig. 5.2(b): The spectra of e5t4 (solid curve: regular waves) and e6t2 (dashed 

curve: two-component waves). 
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Fig. 5.2(c): The spectra of e5t6 (solid curve: regular waves) and e6t3 (dashed 

curve: two-component waves). 
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Fig. 5.2(d): The spectra of e5t8 (solid curve: regular waves) and e6t4 (dashed 

curve: two-component waves). 

Figs. 5.2: Amplitude spectra for the cases of regular waves (solid curves) and 

two-component waves (dashed curves). 

In figs. 5.2 the cut-off frequency is chosen as 4 Hz. This is because, when 

frequency is over 4 Hz, the amplitudes are small enough to be ignored. In these 

spectra of two-component waves (dashed lines in figs. 5.2), the short wave 

frequency is close to the third harmonic frequency of long waves, there are 

therefore fourmain amplitude peaks shown at specific frequencies. The first and 

largest peak is located at the frequency of long waves. The second peak appears 

at the frequencies of the' second harmonics of long waves and (-i),  where fs  and 

f1  are the frequencies of short waves and long waves. The amplitude of short 

waves gives the third peak in these spectra of two-component waves. The fourth 

peak is given by the amplitude of frequency (i)•  Nevertheless, the third and 

the fourth harmonic effects are not particularly important in the third and the 

fourth peaks. Both are small and can be ignored in the spectra of regular waves. 
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If the spectra of long waves (solid lines in figs. 5.2) have been focused on, the 

second harmonic amplitude would be changing by changing the amplitude of long 

waves. That means, the second harmonics of long waves becomes more important 

in the cases of short waves riding on long waves. Furthermore, it is necessary to 

point out that the first peaks are almost the same in both the cases of regular 

waves and those of two-component waves. This is evidence which shows that 

long waves are quite steady when being involved in the two-component cases 

during the interaction. If the amplitude ratios of the third main peaks in the 

spectra for regular waves over two-component waves are taken, all ratios are 

found to be quite small. That means the net short wave amplitude is strongly 

modulated by long waves and the third harmonic effect of long waves does not 

play an important role in the modulation. Also if the third main peaks are focused 

in the cases of the two-component waves, these peaks show broad-banded short 

waves are expected because of the modulation of short waves riding on long 

waves. 

5.2.1 Experimental Frequency Modulation 

Generally speaking, the sectionized net records of short waves are used for 

deriving the frequency modulation. Each section in the sectionized net records is 

one long wave period, i.e. there are three periods of short waves along one period 

of long waves, see figs. 5.1(c), (f) and (i). Because of long wave modulation, 

these three periods of short waves are not identical. It is interesting and necessary 

to demonstrate and explain the difference within these three periods in details. 

Within a whole period of long waves, short waves are modulated in frequency and 

amplitude and the modulation is a function of long wave phases. A cosine 

function will be chosen for fitting the net records of short waves. In a sampling 
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rate of 40 Hz, there are almost 42 - 44 data for short waves (2.85 Hz) riding on 

one period of long waves (1/0.94 second). These 42-44 points represent three 

periods of short waves well. Therefore any consecutive 13-14 points in this case 

can be used to sort out a cosine function with amplitude, frequency and phase for 

a period of short waves (1/2.85 second) using a functional fitting scheme, where 

the amplitude is given by half of the local short wave height for this cosine 

function. 

The routine E04FDF of the NAG library is applied for functional fitting. The 

consecutive points, which represent one short wave period within x 1  and x2 , 

where [x 1 , x2] is the selected interval of the long wave phase, are used to fit the 

cosine function for the modulated short wave frequency a. The modulated short 

wave frequency is normalized by the long wave frequency. Figure 5.3 shows the 

basic technique for function fitting. The modulated short wave frequency riding 

on long waves (the cases of elt2, e1t4, e3t2, e3t4, e5t2, e5t4 and e5t6: tabled in 

tab. 5.1) against the phase of the monochromatic long waves are shown in figs. 

5.4, where the two-component waves are e2tl, e2t2, e4tl, e4t2, e6tl, e6t2 and 

e6t3 as set in tab. 5.1 with respect to the cases of long waves. Each A represents 

((x2-x 1 )/2, a 1 ). The error for each A in function fitting programme (E04FDF) is 

less than 0.005. It should be pointed out that the short wave period is normalized 

by the long wave period. Figure 5.5 demonstrates the modulated short wave 

frequency at the long wave crest against long wave steepnesses. 
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Fig. 5.3: Sketch of short waves riding on one long wave period in use of 

functional fitting. 
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Fig. 5.4(a): The frequency modulation manipulated from elt2 (regular waves) 

and e2tl (two-component waves). 
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Fig. 5.4(b): The frequency modulation manipulated from e1t4 (regular waves) 

and e2t2 (two-component waves). 
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Fig. 5.4(c): The frequency modulation manipulated from e3t2 (regular waves) 

and e4tl (two-component waves). 
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Fig. 5.4(d): The frequency modulation manipulated from e3t4 (regular waves) 

and e4t2 (two-component waves). 
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Fig. 5.4(e): The frequency modulation manipulated from e5t2 (regular waves) 

and e6tl (two-component waves). 
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Fig. 5.4(f): The frequency modulation manipulated from e5t4 (regular waves) 

and e6t2 (two-component waves). 
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Figs. 5.4: Frequency modulation of short waves riding on long waves along the 

long wave phase. 
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Figures 5.4 show that modulated short wave frequency represents a narrow 

periodic strip along the long wave phase. Furthermore, it is interesting to look at 

the modulated frequency while short waves are riding on the crest and trough of 

long waves. The minimum modulated frequency always appears on the trough of 

long waves. Meanwhile the maximum modulated frequency shows up near the 

crest of long waves. Therefore, from the above seven cases in figs. 5.4 of different 

long wave steepnesses, fig. 5.5 shows the values of the maximum modulated 

frequency and the modulated frequency on the crest against long wave 

steepnesses. Both values of the maximum modulated frequency and the 

modulated frequency riding on the long wave crest are normalized by their own 

modulated frequency-on the trough. - 
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Fig. 5.5: The modulated frequency o, of short waves riding on the crest of long 

waves (0: max modulated frequency, A: modulated frequency at the long wave 

crest). 
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Obviously, from fig. 5.5 the maximum modulated frequency and the modulated 

frequency riding on the long wave crest increase by increasing long wave 

steepnesses and the maximum modulated frequency grows faster than the 

modulated frequency riding on the long wave crest. In theory (this will be 

discussed in the next section 5.2.2) both would be of the same value. But from 

figs. 5.4 it is found that the maximum modulated frequency moves forward from 

the long wave crest to the long wave trough by increasing long wave steepnesses. 

So it implies that the phenomena of growth and movement are involved in the 

mechanism of local wave breaking. 

5.2.2 Theoretical Approaches 

It is well established that Stokes' waves provide a good representation of 

monochromatic long waves and are used to explore the parameters such as the 

effective gravity acceleration g1 and the scale factor H 0. Since Stokes (1847) first 

discussed the irrotational theory of water waves in deep water or uniform finite 

depth, Stokes' waves have contributed a sound understanding of many periodic 

wave phenomena. However, viscosity did not play any role in this original paper. 

As a result, the numerical long waves are based on Stokes' expansions without 

considering viscosity or surface tension. The methodology of modulation 

employed here was first presented by Zhang and Melville (1990) who have 

discussed the theory of the weakly nonlinear short wave riding on a finite-

amplitude long wave, which theory is limited to moderate long wave steepnesses, 

i.e. ak=0.30. 

A monochromatic long wave is steady in the coordinates (OX-OZ) moving at its 

phase velocity C. According to the Cauchy theorem, its equipotential function 

(t=constant) and stream function (tP=constant)  in the moving rectilinear 
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coordinates (OX-OZ) may be projected onto straight lines (s=/C, n='P/C) in the 

s-n coordinates through conformal mapping, with the curved long wave surface 

corresponding to the free surface(n=0). A similar figure is shown in fig. 3.6. The 

parameters g1 and h0  are given by Eqns. (3.52) and (3.53). The modulated 

frequency can be solved from Eqn. (3.50) by letting R=4  and As = it/1024 and 

by applying the central finite difference technique. Here R C  m R 112 , if R is the 

wavelength ratio of long waves and short waves on the trough of long waves. 

The following four cases of different long wave steepnesses (ak=0.05, 0.10, 0.15 

and 0.20) have been considered. The elevations of Stokes' waves, the effective 

gravity acceleration g1, the scale factor H0, and modulated frequency and 

amplitude are shown in figs. 5.6, 5.7, 5.8, 5.9 and 5.10 along the free surface of 

a long wavetrain for each value of the parameter ak. The derivative of the 

modulated short wave frequency and amplitude with respect to the long wave 

phase is shown in figs. 5.11 and 5.12. 

Moreover, it is worth representing the steady modulated short wave frequency 

and amplitude (figs. 5.13 and 5.14) at the long wave crest against the parameter, 

long wave steepnesses ak. 
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Fig. 5.7: The effective gravitational acceleration g1, as a function of the long. 

wave phase for different long wave steepnesses. 
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Fig. 5.11: The derivative of the numerical modulated short wave frequency with 

respect to the long wave phase, as a function of long wave phase, for different 

long wave steepnesses. 
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Fig. 5.13: The numerical modulated frequency of short wave riding on long 
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Fig. 5.14: The numerical modulated amplitude of short wave riding on long 

Stokes' wave crest normalized by the value at the trough. 

Figures 5.9 and 5.10 show the modulated frequency and amplitude are periodic 

functions along the long wave phase and the maximum modulated frequency and 

amplitude appear on the long wave crest. From figs. 5.11 and 5.12 the anti-

symmetry of the modulated frequency and amplitude derivatives are expected, 

since the modulated frequency and amplitude along the long wave phase are 

symmetric. Furthermore, in figs. 5.13 and 5.14 the modulated frequency and 

amplitude riding on the long wave crest increase by increasing long wave 

steepnesses. The growth of the frequency and amplitude against the long wave 

steepnesses, both growth rates are in the same order. That is, both the frequency 

modulation and amplitude modulation of short waves riding long waves are 

equally significant. 
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5.2.3 Comparisons 

In Section 5.2 the main target is to compare the experimental modulated frequency 

with the theoretical modulated frequency. It has been 'demonstrated that the 

modulated frequency of the short waves riding on Stokes' waves, which represents 

a narrow periodic strip and is a function of the phase of the monochromatic long 

wave in different long wave steepnesses. It is found that the maximum/minimum 

modulated short wave frequency occurs near the crest/trough of the long wave. 

This is coherent to numerical prediction: the maximum/minimum modulated short 

wave frequency always occurs at the crest/trough of the long wave. By increasing 

the long wave steepness, the ratio of the modulated short wave frequency at the 

crest over the value at the trough of the long wave increases. In the numerical work 

the wavelength ratio of the long wave to the short wave is near 10 (let Rc  = 4) at 

the trough of the long wave and the steady solution is considered. But in the 

experimental work the wavelength ratio is almost 9 and the experimental 

modulated frequency is time dependent. The nonlinear modulation and the 

evolution of frequency play important roles in the experimental approach. Both 

lead to the difference in quantity between the experimental and numerical work. 

For the evolution, as Ramamonjiarisoa and Coantic (1976) and Ramamonjiarisoa 

and Giovanangeli (1978) have researched, a strong tendency for short waves to 

move with the phase speed of dominant longer waves can be observed. Such 

tendency, which are involved in the evolution of short waves riding on long waves, 

needs to be studied in depth. Figure 5.15 shows the comparisons between the 

theoretical and experimental modulation. The growth of the experimental 

frequency modulation is faster than that of the theoretical modulation by increasing 

the long wave steepnesses. 
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Fig. 5.15: Comparison between the max experimental (.), experimental 
() 
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numerical (x) modulated short wave frequencies riding on the long wave crest, 

normalized by their respective frequency at the trough. 

5.3 Kinematics of Waves 

Kinematics were measured using the PIV technique and the prediction were made 

from the spectra of wave records The PlY system has a limited dynamic range 

and is set up to work at the velocities which occur near the crest, as the velocities 

of the crest are emphasised. 

Actually the cut-off frequency of the spectra for wave kinematics is sensitive and 

depends on the frequency range of the waves involved. A criterion is necessary 

for choosing the cut-off frequency against various cases of wave kinematics from 
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moderate to steep waves and from monochromatic to multi-component waves. In 

this thesis the short wave frequency is close to the third harmonic frequency of 

long waves, therefore in the following kinematic comparisons the cut-off 

frequency is chosen under specific requirement. As Sutherland (1992) suggested 

the cut-off frequency is chosen up to the second harmonics of long waves for the 

cases of regular waves. For the cases of two-component waves, as mentioned 

before, there are four main peaks in the spectra. Therefore, under such a 

circumstance, the cut-off frequency shall be chosen just above the frequency f 5 +fi 

of the fourth peak, where f 5  and f1  are the frequencies of short and long waves. 

experiment reference e5t8 e6t4 

long wave amplitude (mm) 40 40 

short wave amplitude (mm) 0 10 

long wave frequency no. 24 24 

short wave frequency no. 73 73 

long wave steepness ak 0.147 0.147 

short wave steepness ak 0 0.327 

relative steepness of 
long waves  

0.72% 0.72% 

relative depth of 
long waves 

4.84% 4.84% 

relative steepness of 
short waves 0.00% 1.66% 

relative depth of 
short waves 44.8% 44.8% 

Tab. 5.2: The parameters of the cases of regular waves and two-component 

waves, e5t8 and e6t4, for kinematics comparisons. 
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The measurements of horizontal velocity for the cases of regular and two-component 

waves, e5t8 and e6t4 tabled in tab. 5.2, taken under the crest of the monochromatic 

long waves are compared to the horizontal velocity profiles calculated from the 

measured spectra. Based on the measured spectra, the techniques for wave 

kinematics are linear theory, Wheeler, Chakrabarti, superposition stretching methods 

and time-stepping technique. 

5.3.1 Comparisons with Linear Theory 

As a matter of fact, linear theory is only valid for the waves of infinitesimal 

amplitude and up to mean water level. However, the case of regular waves e5t8 

in tab. 5.2 being measured are only of 0.72% and 4.84% in the relative steepness 

and the relative depth. As Dean (1970) also suggested, linear theory fits the 

medium steepness of waves with finite depth well, so linear theory may be 

applied to this case of regular waves. Linear theory is also the basis for the 

following stretching methods which are the modified methods for multi-

component waves. 

The frequency range for regular waves to sum up Fourier components is from 

j=16 to j=50. Here j is an intergral input of wave frequency. Wave frequency is 

obtained by j/25.6 Hz. Also the frequency range for two-component waves to sum 

up Fourier components is from j=16 to j=100. The comparisons of the horizontal 

velocity under the crest of regular wave between the Ply measurements and the 

predictions of linear theory applied to the waves (e5t8 and e6t4) are shown in 

figs. 5.16. 
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Fig. 5.16(a): i measured by Ply; the solid curve calculated from linear theory for 

the case of e5t8; the horizontal dashed line is MWL. 
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Fig. 5.16(b): A measured by PlY; the solidcurve calculated from linear theory for 

the case of e6t4; the horizontal dashed line is MWL. 
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Figs. 5.16: Comparisons of the horizontal velocity under the crest of regular 

waves between the predictions made by linear theory and the results measured by 

Ply. 

The 1024 sample wave gauge records are Fourier transformed to produce wave 

amplitude spectra. The output of this process is an amplitude and phase at each 

of a series of discrete frequencies separated by 1/25.6 Hz. Each one represents 

the energy contained within the frequency range of 1/25.6 centred on f=j/25.6. 

The phases are calculated for the start of the record and measured from zero at 'a 

long wave crest. 

Linear theory provides a good fitting to measured horizontal velocities of the 

regular wave case, if the second harmonics of long waves is included. 

5.3.2 Comparisons with the Wheeler Stretching Method 

The Wheeler stretching is one of the well-known and established stretching 

methods (Wheeler 1969). The main numerical technique is to stretch the vertical 

co-ordinate from the mean water level to the free surface. The purpose is to equal 

the calculated velocities from linear theory at the mean water level to that from 

the Wheeler stretching method at the free surface. The frequency range for 

regular waves to sum up Fourier components is from j=16 to j=50. Also the 

frequency range for two-component waves to sum up Fourier components is from 

j=16 to j=100. The comparisons of the horizontal velocity under the crest of 

regular waves between the measurements and the Wheeler stretching predictions 

applied to the waves (e5t8 and e6t4) are shown in figs. 5.17. 
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Fig. 5.17(a): A measured by Ply; the solid curve calculated from the Wheeler 

stretching method for the case of e5t8; the horizontal dashed line is MWL. 
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Fig. 5.17(b): A measured by Ply; the solid curve calculated from the Wheeler 

stretching method for the case of e6t4; the horizontal dashed line is MWL. 
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Figs. 5.17: Comparisons of the horizontal -  velocity under the crest of regular 

waves between the predictions made by the Wheeler stretching method and the 

results measured by PIV. 

5.3.3 Comparisons with the Chakrabarti Stretching Method 

In fact the Chakrabarti stretching method does not stretch the vertical co-ordinate 

(Chakrabarti 1971). The Chakrabarti stretching method defines the water depth 

replaced by the distance from the bed to the free surface. Therefore small 

kinematics are expected under the long wave crest. 

The frequency range for regular waves to sum up Fourier components is from j=16 

to j=50. The frequency range for two-component waves to sum up Fourier 

components is also from j=16 to j=100. The comparisons of the horizontal velocity 

under the crest of regular waves between the PIV measurements and the Chakrabarti 

stretching predictions applied to the waves (eStS and e6t4) are shown in figs. 5.18. 
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Fig. 5.18(a): A measured by Ply; the solid curve calculated from the Chakrabarti 

stretching method for the case of e5t8; the horizontal dashed line is MWL. 
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Fig. 5.18(b): A measured by PlY; the solid curves calculated from the Chakrabarti 

stretching method for the case of e6t4; the horizontal dashed line is MWL. 

Figs. 5.18: Comparisons of the horizontal velocity under the crest of regular 

waves between the predictions made by the Chakrabarti stretching method and 

the results measured by PIV. 

Both the Wheeler and Chakrabarti stretching theories tend to underpredict 

measured velocities. In the cases there is a consistent underprediction of the 

velocities range from 16% at -0.20m to 17% at the level of mean water under the 

long wave crest. - 

5.3.4 Comparisons with the Superposition Stretching Method 

Superposition stretching method defines the distance of each Fourier component 

from the bed to the elevation of that component. That is to stretch the vertical co-

ordinate with respect to Fourier components. 
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The frequency range for regular waves to sum up Fourier components is from 

j=16 to j=50. Also the frequency range for two-component waves to sum up 

Fourier components is from j=16 to j=100. The comparisons of the horizontal 

velocity under the crest of regular waves between the PlY measurements and the 

superposition stretching predictions applied to the waves (e5t8 and e6t4) are 

shown in figs. 5.19. 
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Fig. 5.19(a): A measured by PlY; the solid curve calculated from the 

superposition stretching method for the case of e5t8; the horizontal dashed line 

is MWL. 
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Fig. 5.19(b): A measured by PIV; the solid curve calculated from the 

superposition stretching method for the case of e6t4; the horizontal dashed line 

is MWL. 

Figs. 5.19: Comparisons of the horizontal velocity under the crest of regular 

waves between the predictions made by the superposition stretching method and 

the results measured by PIV. 

5.3.5 Comparisons with the Time-Stepping Technique 

The numerical scheme of a two-dimensional numerical wave tank is modeled on 

the basis of the boundary integral method and developed by She, Easson and - 

Greated (1992). The programme is mounted on a parallel computing machine, 

AMT DAP-602. The simulation of waves in this numerical tank is generated by 

a hinged wavemaker at one end and absorbed by a 'damper' at the other end. The 

inputs for the simulation programme are the number of points for the fluid 

boundaries, wavemaker frequency, wavemaker amplitude and the dimensions of 

the tank. The initial conditions are the starting time, x and y positions of the 
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points, velocity potential and stream function of the fluid boundaries. The 

wavemaker frequency is of the same as the simulated frequency of waves. Also 

wave height is a function of wavemaker amplitude with respect to any specific 

wave frequency. Therefore, a calibration is required for this function. Figure 5.20 

shows the sketch of the numerical wave tank. Figure 5.21 shows the calibration 

between wave height and wavemaker amplitude at f 24=0.94 Hz. The comparison 

of wave elevation along long wave phases between the measurements and the 

time-stepping prediction applied to the case of regular waves e5t8 is shown in fig. 

5.22. The free surface horizontal velocity along a long wave period calculated by 

the time-stepping method for the case of regular waves e5t8 is shown in fig. 5.23. 

Figure 5.24 shows the comparison of horizontal velocity under the long wave 

crest between the measurements and the time-stepping prediction applied to the 

case of regular waves e5t8. 

me make 

Fig. 5.20: Sketch of the numerical water tank for the time-stepping technique. 
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Fig. 5.21: Monochromatic long wave heights as a function of the paddle 

amplitude at the frequency f 24=0.94 Hz. 
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Fig. 5.22: Wave record comparison (A measured by gauges; o calculated from 

time-stepping technique for the case of e5t8; the horizontal dashed line is MWL). 
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Fig. 5.23: The horizontal free surface velocity distribution along a long wave 

period (o calculated from the time-stepping technique for the case of e5t8; the 

horizontal dashed line is MWL). 
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Fig. 5.24: Comparison of the horizontal velocity under the crest of regular waves 

between the time-stepping prediction and the PIV results (A measured by PIV; the 

solid curve calculated from time-stepping technique for the case of e5t8; the 

horizontal dashed line is MWL). 
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5.3.6 Comparisons Between Theories 

The comparison comprises PIV measurements, linear theory, the Wheeler, 

Chakrabarti and superposition stretching methods for the cases of regular waves 

and two-component waves. The frequency range for regular waves to sum up. 

Fourier components is from j=16 to j=50 and the frequency range for two-

component waves to sum up Fourier components is from j=16 to j100 when 

linear theory, the Wheeler, Chakrabarti and superposition stretching methods are 

applied. Figures 5.25 give the comparisons of horizontal velocity under the long 

wave crest for the regular wave case e5t8 and the two-component wave case e6t4 

among the various predictions and the PlY measurements. 
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Fig. 5.25(a) The comparisons of the horizontal velocity under the crest of regular 

waves for the case of e5t8 (regular waves) among the PIV measurement, linear 

theory, the Wheeler, Chakrabarti, superposition stretching and the time-stepping 

predictions (the horizontal dashed line is MWL). 
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Fig. 5.25(b) The comparisons of the horizontal velocity under the crest of regular 

waves for the case of e6t4 (two-component waves) among the PIV measurement, 

linear theory, the Wheeler, Chakrabarti and superposition stretching predictions 

(the horizontal dashed line is MWL). 

Figs. 5.25: Comparisons of the PIV measurements, linear theory and the various 

stretching predictions for both cases of long waves and short waves riding on 

long waves, e5t8 and e6t4, including the time-stepping technique for the case of 

regular waves e5t8. 

The summary and conclusion of the kinematics comparisons are given in Chapter 

7. 
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Chapter 6 

FURTHER WORK 

This chapter contains two sections as extensions of the previous chapters. In 

Chapter 3 the numerical solution of solitary waves has been presented based on 

Green's theorem and tailored quadrature weights and abscissas, courtesy of W A 

B Evans, for solving the integral equation Eqn. (3.42) which is shown in Chapter 

3. The first section will discuss the stability of solitary waves based on soft-mode 

(x-axis) and normal-mode (y-axis) perturbation of free surface and velocity 

potential. The second section will discuss a new numerical scheme for internal 

solitary waves based on a generalised Stokes' formula and Green's theorem. The 

work of these both sections has not appeared in any published paper, although 

some similar works have been done before, Osborne and Burch (1980). Therefore 

it is worth writing down the detailed derivations. 
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6.1 The Stability of Solitary Waves 

This section attempts to discuss the normal-mode instability of solitary waves. In 

other words, the main purpose is to investigate the stability of two-dimensional 

solitary waves with respect to three-dimensional infinitesimal perturbation. 

It is well known that a periodic wave train (Stokes' waves) is unstable with respect 

to modulated perturbation (Longuet-Higgins 1978 a, b). It is also well proven that the 

instability of a finite-amplitude periodic wave train will appear, both in deep water 

and shallow water, under certain circumstances, McLean (1982 a, b). But on the other 

hand, the stability of solitary waves has not been so explicit like the stability of 

Stokes' waves. Tanaka (1986) first based on the exact solution of solitary waves of 

permanent forms and gave the soft-mode stability of solitary waves in the solitary 

wave travelling direction. Furthermore, the normal-mode perturbation provides a 

periodic form within the y axis. 

The motion of solitary waves is on an inviscid, irrotational and incompressible 

fluid. $. (x, y, z, t) and z = i (x, y, t) satisfy Laplace's equation and two boundary 

conditions, dynamic and kinematic. 

= q:i,11 = 	 (EQ 6.1) 

where ((1, ij) and (, fi) correspond, respectively, to the unperturbed, i.e. per-

manent, solitary wave and the infinitesimal perturbations of short waves 

f << ii). So the first order perturbation equations are given: 

v2  = O,O<z<T 	 (EQ 6.2) 

=-- 	-i4 —(cIt +cI fi at 	 (EQ6.3) =fi xx 	zz 	x xz 	z
I  zz)  

131 



	

= —xx--iiA— 	 = 	 (EQ6.4) 

In Eqn. (6.3) and (6.4), the higher order terms (such as 	and 	ff) have 

been ignored. 

Differentiating Eqn. (3.41), which is in Chapter 3, with respect to 

zo  = 1 + ff (x0 ) and using cI = 	one obtains 

00 

- J ((1+11I(x) 2) (F2 _21 (x))) 1/2  

-00 

( 	i(X)(X0) 	 2+i(x)+(x0) 	dx 
( ff 	(x_x) 2 + (2+(x)  +(x0))2J2 	

(EQ6.5) 

By the same way, differentiating Eqn. (3.41) with respect to x 0  and using 

= —W one obtains 
z 	x 

z 
00 

((X — XO) - ( i(x) — (x0))T1'(x0) 	(XX)+(2+(x) +f(X0))fl'(X0 

	

(x_x) 2 + ( ff (X0)) 2 	(x_xo) 2 + (2+(x) +(xo))2 )2m 
(EQ 6.6) 

Higher-order derivatives,(Dxz  and4)zzl  are obtained by a straightforward appli-

cation of the chain rule from Eqns. (6.5) and (6.6). 

Once the permanent form of solitary waves is given, see Chapter 3, the deriva-

tives of c1  with respect to x and z, i.e. (Dxz  and I, can be obtained 

through the same set of abscissas and weights, which has been used in Chapter 

3, for the above integral equations. The perturbation forms of f and are given: 

—icyt+:qy * 

	

= e 	1 (x) 	 (EQ6.7) 
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—icyt+z 
4, = e 	

qy4,* (x, z) (EQ 6.8) 

Substitution of Eqns. (6.7) and (6.8) into Eqns. (6.2), (6.3) and (6.4) gives 

* 	* 
	2 (1)

*  4, +4, - q 	= 0 	 (EQ 6.9) xx 	zz 

icfll * (x) 

=cI (x) + i4 (x, z) 

(i)i) )*() 	* 
- 4, (x, z) 	 (EQ 6.10) 

* 
ia4, (X, Z) 

=11 * (x)ii)4,*(x,z) 
xx 

+4)4,; (x, z) + ( CI) I) + C1 (i) ) 1 * (x) 	 (EQ 6.11) 

	

x xz 	z zz 

A numerical solution for Eqns. (6.9), (6.10) and (6.11) remains open. 

6.2 Internal Solitary Waves 

This section discusses the phenomenon of waves along the interface between two 

fluids. Both fluids have comparable densities. Of course, the density of the lower 

fluid is larger than that of the upper fluid. In this case, the velocity and dynamic 

pressure of the upper fluid along the interface can not be ignored. Usually such 

waves are called 'internal waves'. 

Internal waves propagate beneath the sea surface in a medium whose density 

varies as a function of depth; the density stratification is determined by solar 

heating from above and by the local salinity content of the water. Osborne and 
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Burch (1980) provided some useful experimental evidence from their sea-going 

measurements in the Andaman Sea: (i) the internal solitary waves are long in the 

sense that their wavelengths (1-3 km) are much greater than average thermocline 

depth (240 m). (ii) The solitons occur on rather short time scales of five to ten 

minutes. Thus a high sampling rate is needed for both temperature and velocity 

measurements. (iii) Packets of solitons occurred almost every 12 hours during the 

measurement programme. Each packet consisted on the average of about six to 

eight waves, generally rank-ordered by amplitude, with the largest leading the 

rest. Also new technology, remote-sensing from satellite photographs, provides 

graphic evidence of their crest lengths, which range up to 150 km, because 

internal waves modulate amplitudes of surface waves. 

Interest and work on long internal wave motions have been stimulated and 

achieved in recent years on both theoretical and experimental approaches. The 

theoretical progress has discovered the inverse scattering transform solutions to 

several nonlinear wave equations, e.g. KdV equations, which are applicable in 

describing long internal wave motions in various environments. Experimental 

progress has been made both in the laboratory and in the field. 

6.2.1 Governing Equations 

In this scheme, the internal solitary wave with two fluids of densities p 1  and p2  

(p 1  > p2 ) is considered from a co-ordinate (X-Y) moving with this wave, y 1 (x) is 

the elevation of the internal solitary wave profile and y2(x) is the elevation of the 

free surface solitary wave profile according to this co-ordinate. Therefore the 

water in the outskirts of the solitary wave moves with a velocity, -C 7 , where C is 

the solitary wave velocity observed from a fixed co-ordinate. As usual, il l  (x) is 

the internal solitary wave elevation above the undisturbed lower fluid level h 1  
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and 112  (x) is the elevation above the undisturbed upper fluid level H=h 1 4-h 2 . That 

means Tli  (x) = y 1  (x) —h 1  and 11 2 (X) = y 2 (x) —H. 

A 	
B 

undisturbed upper level 
CE 	C 	 h2 	 y2 (x) 

undisturbed 	-------F 

C 	
hi 	 Y1 	

- C 

x 	 de 

I 	1(x) 
I 	 I 

H 	 G 

Fig. 6.1: Sketch of the internal solitary wave observed from the co-ordinate 

moving with the wave. 

Either free surface solitary waves or internal solitary waves need their own 

Stokes' formula in order to build up a relationship between the phase velocity of 

waves and the decay coefficient .t, which characterizes the profile of solitary 

waves. In Chapter 3, Stokes' formula for free solitary waves has been introduced. 

This formula can also be derived from the linear dispersion relation. Let g = h = 

1 and k = ij.i, then 
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C 	
tan = 	

l.t i.e. F2 	
ifl = tat 

(EQ 6.12) 

That means, it is reasonable to derive the dispersion relation for the generalized 

Stokes' formula by the same way along the interface between the two fluids. 

6.2.1.1 Generalized Stokes' Formula 

One dynamic boundary condition and two kinematic boundary conditions are 

imposed on the interface of the two fluids. 

1 2 
p 1 ( 	+(VI 1 ) 2 +g) = p2( 	-i- 

1 
 (V 2) 2 +g) at  = 11 	(EQ6.13) 

-Nil   a11 	1a 
-+— —+-- - - - 

	

- =0 	 (EQ6.14) 

an 	211 	211 	2 

	

-- = 0 	 (EQ6.15) 

If the three boundary conditions are linearized by linear theory, then Eqns. (6.13), 

(6.14) and (6.15) become the following three equations. 

2  P, (- +gr) = p2 ( -  + gi) at y = 0 	 (EQ6.16) 

11 	acI1 

	

=5 	
(EQ6.17) 

112 

	

- 	
(EQ6.18) 

Since 	and 1 2  satisfy Laplace's equation and tend to zero as y — — h 1 , y -4 h2f  

respectively, the elementary solution takes the form 

i(kx - wt) 

	

ii = Ae 	 (EQ6.19) 

	

= Biei_cot) coshk(h 1  +y) 	 (EQ6.20) 
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i(kx - au) 

	

= B 2e 	coshk(h 2 —y) 	 (EQ6.21) 

Therefore the dispersion relation is given by 

2 	_____ _ 

	

0) = gk 	 (EQ6.22) 
1 p 1 	p2 

_ 

tanhkh + tanhkh2j 

Let k = ig and g = 1, then the generalized Stokes' formula is obtained, see Eqn. 

(6.23). 

C 
= 	= 	p1—p2 	

(EQ6.23) 
( p

1 	p2 '  

tan 	+ tanp.h2) 

6.2.1.2 Green's Theorem (Curtesy of W A B Evans) 

Here it is necessary to recall Green's theorem applied in Chapter 3. Two potential 

flows are for the two different densities of these two fluids and that pressure is 

continuous across the interface DEF which is a streamline when a steady-state 

profile is observed with respect to a co-ordinate moving with a specific speed. 

The velocity potentials and stream functions of the two fluids obey two-

dimensional Laplace's equations in both fluid domains. Accordingly, by Green's 

theorem applied to the stream function gives 

W(r0) = f('P(r)V (G(r,r0)) —G(r,r0)V'P) 9 d 	 (EQ6.24) 

where r0  i.e. (x0, yo)  is a point within either fluid domain ABCFED or FEDGH 

and G(r, r0) is a chosen Green's function of the two-dimensional Laplace's 

Equation defined subject to the addition of an arbitrary harmonic function within 

the domain (complementary function). Equation (6.25) is a good choice for 

G(r,r0) according to experience. 
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G(r,r0) = 11(irrol\ 
2t 	I  - r01J 	

(EQ 6.25) 

where F0=(x0, -yo) is the image of r0  in the canal bed (line GH). This form of the 

Green's function evidently vanishes at all points along the canal bed GH. Apply 

Green's theorem to the lower fluid domain DEFGH which is equated by Eqn. 

(6.26). Equation (6.27) is derived from Eqn. (6.26) and the derivation is similar 

to the technique shown in Chapter 3. 

'P (x, y 1  (x0) -) = 0 = 	dA • ('P (r) V G (r, r0) - G (r, r0) V 'I') 	(EQ 6.26) 
DEIGH

00  

	

Ch i  + j (l+yl(x2)1/2iv1(x,yl())ihl(x0) 	(y 1  (x) —y1(x0)) 	
= 0 

(x — x) 
2

+ (y(x) +y(x 0)) )47t 
00 

(EQ 6.27) 

as the integral equation from the denser fluid domain. Note it depends on the 

unknown velocity modulus lvii, in the lower fluid along the interface streamline. 

For the normal solitary wave, lvii would be given by Bernoulli's equation for a 

free surface and the above would then constitute the integral equation for the 

normal solitary wave profile. 

Then perform the same process for the upper fluid domain ABCFED. 

'P (x, y 1  (x0) +) = 0 = 	dA • ('P (r) V G (r, r0) - G (r, r0) V 'I') 	(EQ 6.28) 
AB&ED 

Bernoulli's equation applies on the free surface. 

1 v2(rsa)12 = C2 -2g(y 2 (x) —H) 	 (EQ6.29) 

Furthermore Bernoulli's equation can be used for describing the interfacial 

boundary condition, since the interface is assumed as a streamline. 

Potential flow implies that the streamline constant, P + pI v I 2  + pgy is constant 
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throughout each fluid i.e. has same value on each streamline. Also the term P is 

continuous along the internal surface. In the lower fluid, along the internal 

streamline, Bernoulli's equation is 

P+ . p1v1 2 +p1gy  = p1c2+p1ghi+p2gh2 	 (EQ6.30) 

Let Pi='  the density of the lower fluid, and P is the pressure along the interface. 

v 1 : the local velocity of the lower fluid on the interface. 

h 1 : the depth of the lower fluid. 

In the upper fluid, along the internal streamline, Bernoulli's equation is 

+ 2 ivi + p2gy = p2C2 + p2g(h 1  + h2 ) 	 (EQ 6.31) 

P2: the density of the upper fluid. 

v2 : the local velocity of the upper fluid on the interface. 

h2 : the depth of the upper fluid. 

Thus from Eqns. (6.30) and (6.31) a relation between lv i i and  1v21  can be built 

along the interface streamline viz. 

P, (C2 - iv112 - 2g (y 1  (x) - h1)) = p2  (C2 - 1v212 - 2g (y 1  (x) - h 1 )) 	 (EQ6.32) 

which implies only one of the interface velocity functions need be found to 

determine the other (assume the lower fluid profile is known). Green's theorem, 

Eqn. (6.28), gives another integral equation Eqn. (6.33) in the upper fluid. 
CO 

J (('+Y'2 
(X)  2) (C-2g(y 2 (x) —H))) 

1/21n 1(x—x0 ) 2 + (y 2  (x) —y 1  (x0)) 2\ 

00 
(x—x0 ) 2 + (y 2 (x) +y1(x0))2J4 

 dx 

 
- 

MM 



00 

/2 	 (y1  (x) -y1(x0))2\ dx 
— f (1 +y'1(x)2) 

1 1v2 (x,y i  (x))l
In ( (x_xo)2+(yi(x)+yi(xo))2J4 

=(6.33) 
-00 

 

Furthermore by considering a point just below the free surface for the upper 

fluid domain, another integral equation Eqn. (6.35) is derived from Eqn. (6.34) 

in the upper fluid. 

1P (x, y2  (x0) -) = —Ch2 = 
	

dA • (W (r) V G (r, r0) - G (r, r0) V 'F) (EQ 6.34) 
ABCFED 

'I' (XI  y2 (x0)-) = —Ch2= 

(x-x 0)2+ (y2  (x) - y1 (x0))2' 
((l + Y2 (x)  ) (C - 2g (y 2  (x) - H))) 1/2k ((x - x

0 ) 2  + (y2  (x) + y 1  (x0) ) 2J4 

00 

2 1/2 	 ((x-x 0)2+ (y2  (x) -y(x0))2'\ 	
(EQ6.35) _j(1+y , 1(x) ) 	1v2 (x,y i  (x))lln l.(x_x0)2+ 

(Y2 (X) +y1 (x0))2J47t 

Equations (6.27), (6.32) and (6.33), together with the relation Eqn. (6.35) that 

essentially gives lv ii in terms of 1v2 1 or vice-versa, constitute three coupled inte-

gral equations for the three unknown functions viz. y 1 (x), y2(x) and either lv i i or 

I v2 . These equations are satisfied at any x0 value along either the internal sur-

face or the free surface. 

6.2.1.3 Constrained Flat-Topped Internal Solitary Waves 

A simple case of internal waves is the problem with the top-constrained (still) 

surface i.e. ABC is horizontal. In this case, when applying Green's theorem to 

the upper fluid, it is clearly advantageous to use a Green's function that vanishes 

on ABC i.e. r 0  is now taken as a reflection of r 0  in this top line. 

Equations (6.30), (6.31) and hence (6.32) will still be valid. Note: y 1 (x) is 

replaced by (H-y 1 (x)) in Eqn. (6.33). 
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Ch2+ 

(_
(x—x 0 ) 2 4- (y 1  (x) —y 1 (x0)) 2  

J(1 + y ' 1  (x)
2 )112 1v2  (XI y i  (x) 	

(x—x0 ) 2 + ( 2H—y 1  (x) - y1  (xQ)) 2 J °  -00 

In this case the relevant integral equations are Eqns. (6.27) and (6.36) supple-

mented by the relation Eqn. (6.32). Note that it is necessary to parameterise the 

two functions y 1 (x) and either IV I I or 1v211 see Eqns. (6.37) and (6.38). 

NL 
ii (x) 

= m=l 
	 (EQ 6.37) 

NL 

lv i  (x)12 = C2  + E be m 	 (EQ 6.38) 

Here q (x) , v 1  (x) and v 1  (x) are the internal wave profile and the lower and 

upper fluid velocity along the internal wave profile. Further computer 

programming can solve the coefficients am  and  bm  

y + 
C 

undisturbed lower level 

h 	L).. x 	 C 

h1 	
C 

Y(X) 

Fig. 6.2: Sketch of the constrained flat-topped internal solitary wave observed 

from the co-ordinate moving with the wave. 
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Chapter 7 

CONCLUSION 

The main purpose of this thesis is to consider the modulation and kinematics of 

short waves riding on solitary waves and long waves as outlined in Chapter 1. 

Here it shall be noted that only the time-independent modulation is considered. 

The evolution of short waves riding on time-dependent non-uniform velocity 

fields (solitary waves and long regular waves) is beyond the study of the thesis. 

Through a conformal mapping, the co-ordinates of the non-uniform velocity 

fields can be described by velocity potential and stream function. Also the free 

surfaces of these non-uniform velocity fields are streamlines when the fields are 

time-independent with respect to the co-ordinates moving with the celerity of the 

non-uniform velocity fields. This chapter consists of two sections: Section 7.1 is 

a summary of the numerical and experimental results obtained by applying 

various wave models and experimental measurements, whereas Section 7.2 

recommends future potential research areas. 
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7.1 Summary 

In regard to the non-uniform velocity fields, solitary waves and Stokes' waves are 

chosen as the two main non-uniform velocity fields for the following reasons: 

solitary waves and Stokes' waves are the most accurately defined waves available 

and the most-often-studied in the past; their theoretical study and numerical 

models are well established. Besides, solitary waves and Stokes' waves 

(monochromatic long waves) represent shallow water waves and deep water 

waves respectively well. 

Kinematic comparisons between waves are presented in Section 5.3. For both 

cases of regular waves and two-component waves(one train of short waves and 

one train of long waves), the kinematics under the crests of the long waves are 

measured by the PlY technique. 

Another research aim of this thesis is to perform a relative assessment on the 

accuracy of various stretching methods in predicting wave kinematics of short 

waves riding long waves. This assessment has been shown in Section 5.3 in 

which, the measured velocity profiles for both cases, e5t8 and e6t4, are under the 

crest of long waves. All the stretching methods for wave kinematics prediction 

use the wave amplitude spectra (time series of FFT) as their inputs. It should be 

noted that none of the stretching approximations has any real physical definition; 

they are all empirical adjustments to linear theory. 

143 



7.1.1 The Modulation of Short Waves 

7.1.1.1 The Modulation of Short Waves Riding on a Long Solitary Wave 

The numerical modulation of short waves riding on solitary waves has been 

discussed in Chapter 3. The modulation consists of wavenumber, frequency and 

amplitude modulation obtained from the conservations of wave action and phase. 

Due to the linearization of short waves riding on the free surface of a long solitary 

wave, the modulation solution is artificially constrained by the parameter co when 

Co < 0.60, see Eqn. (3.45), but the physical limitation of the solution for co is not 

clear. That is to say, short waves riding on long solitary waves with large 

amplitude is beyond this study. The main results are: 

• Along the free surface of the solitary wave, from the 'outskirts' to the 

crest, the short wavelength is decreasing, and the short wave amplitude and 

frequency are increasing. The maximum values for the modulated short 

wavenumber, frequency and amplitude always occur at the crest of solitary waves. 

• On the crest of the solitary wave, the short wavelength becomes 

significantly smaller, and the amplitude and frequency become larger, as the 

amplitudes of the solitary waves increase. 

The short wavenumber, frequency and amplitude have been confirmed to be 

strongly modulated by long solitary waves. 

7.1.1.2 The Modulation of Short Waves Riding on Long Regular Waves 

The time-series wave records of long regular waves and two-component waves 

have been measured. The elevation differences between the records of long 

regular waves and two-component waves are used for deriving the experimental 
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modulated short wave frequency. Meanwhile, the spectra of the time series of 

long monochromatic waves and two-component waves have been calculated. 

The results of the modulation of short waves riding on long waves have been 

shown in Section 5.2 and lead to the following conclusions: 

• The frequency modulation of short waves riding on long waves is a 

function of the long wave phase for different long wave steepnesses. 

• In the empirical modulation of short wave frequency, the minimum 

modulated short wave frequency appears on the trough of long waves and the 

maximum modulated short wave frequency occurs somewhere near the crest of 

long waves (in the preceding trough side). The maximum/minimum modulated 

short wave frequency always occurs at the crest/trough of the long wave from the 

theoretical perspective. 

• By increasing the long wave steepness, the modulated short wave 

frequency- which is normalized by the value of the modulated frequency at the 

long wave trough- increases proportionally at the crest of the long wave. 

• The comparison between the numerical and experimental modulation of 

short waves riding on long regular waves is coherent: the short frequency 

modulation increases along with increasing the long wave steepnesses. 

7.1.2 Wave Kinematics 

Wave kinematics predicted by linear theory, the various stretching methods (the 

Wheeler, Chakrabarti and superposition stretching methods) and the time-stepping 

technique are compared. The predictions by linear theory and these stretching 

methods are sensitive to the cut-off frequency for the spectra. The choice of cut- 
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off frequency, according to the amplitude of wave spectra (both in minimum 

amplitude and upper limit frequency range used), is important and has been 

emphasized by Sutherland (1992). The choice of frequency range, in particular 

whether to include higher order harmonics or not, is of great importance. The 

kinematic results are strongly related to the use of frequency ranges. 

7.1.2.1 Kinematics of Monochromatic Long Waves 

The summary on the performance of linear theory, various stretching methods 

and the time-stepping technique for kinematic comparisons of regular waves, as 

shown in Section 5.3, is: 

Linear theory is found to be the best method to determine the velocities under 

the crests of regular waves. The prediction by linear theory is generally very 

accurate and the error is less than 5%. 

The Wheeler and Chakrabarti stretching methods tend to be underpredicted 

under the long wave crest zone. Both stretching methods tend to be of the same 

values of the horizontal velocity at the free surface. The methods underpredict 

the measurements. 

The superposition stretching method performs very similarly to linear theory 

in the case of regular waves, since only one narrow-banded component exists 

significantly. But it is slightly less accurate than linear theory in predicting 

regular wave kinematics. 

The time-stepping technique performs very similarly to linear theory in regular 

wave environments. The only benefit of this scheme is that it is a direct 

simulation of the waves in a wave flume. 
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7.1.2.2 Kinematics of Short Waves Riding on Long Waves 

As presented in Section 5.3, the theories- various stretching theories, including 

linear theory- are compared against measurements of kinematics under short 

waves riding on long waves. The outcome is different from that obtained in the 

regular waves. 

Linear theory proves to be an accurate theory below the mean water level. It is, 

however, unable to model the rapid increases in velocities with elevation above 

the mean water level in the cases of short waves riding on long waves. In such 

cases it tends to significantly overpredict the kinematics above the mean water 

level. Therefore linear theory would not be recommended for this kind of two-

component wave environments. 

The Wheeler and Chakrabarti stretching methods tend to underpredict the 

velocities in the long wave crests of short wave riding on long waves. For both 

the Wheeler and Chakrabarti stretching methods, the tendency of underprediction 

is greatest near the free surface. 

The superposition stretching method tends to slightly underpredict the 

kinematics under the long wave crest for the case of short waves riding on 

long waves. This method provides a best fit to the experimental results 

among the several stretching techniques in the case measured here. It is 

therefore recommended for the case of short waves riding on long waves. 

7.1.2.3 General Assessment of Wave Modelling 

S In the case of two-component waves, the velocity profile predicted by 

linear theory under the crests of the long waves shows large differences in crest 

velocities above the mean water level (MWL). This case of short waves riding on 
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long regular waves is modelled accurately by using the superposition stretching 

method. 

• No one theory performs better than any of the others in all wave 

environments. Linear theory performs best for regular waves and neither the 

Wheeler nor Chakrabarti stretching method is good for the cases of regular 

waves. The superposition stretching method is suitable for the case of short 

waves riding on long waves. Unfortunately, the empirical stretching methods do 

not satisfy Laplace's equation. 

7.2 Suggestions for Future Research 

Beyond the limited results of the thesis, there are several promising researches 

that can be embarked upon. One of the main approaches is based on the fact that 

the waves in the sea are three-dimensional in nature and may be represented by a 

continuous spectrum. Therefore two uni-directional components cannot fully 

represent the sea. As the result, more realistic wave spectra should be employed 

and three-dimensional measurements should be made wherever possible. A 

further set of experiments, which would be of interest, would be a modelling of 

an extreme wave group in a two-dimensional tank. This could be done by using 

a finite number of wave components riding on a non-unform velocity field to 

model a group of the correct form. An alternative approach would be to model an 

equivalent group within a sea-state produced by a spectrum. 

148 



To sum up the above, a realistic theoretical approach would be to adopt the theory 

of the Hamiltonian system and the statistical aspect. This will lead to a 

measurement of the crest velocity under every crest of long waves in irregular short 

waves riding on long waves by using PIV. The results could be used to form a crest 

velocity probability density curve. So there are three steps to explore the approach: 

The Hamiltonian system: wave motion is very complicated, therefore the 

study of random short wave interaction riding on long waves can be considered 

as an infinite-dimensional, nonlinear dynamical system by ignoring viscosity 

with respect to the non-uniform velocity field of long waves. 

The dynamical system and probabilistic method: based on Hamiltonian 

theory, the combination of both dynamical systems and probabilistic methods 

might be helpful in solving particular problems given by nonlinear partial 

differential equations, viewed as infinite-dimensional dynamical systems. 

Kinematics measurements: by applying the Particle Image Velocimetry 

technique, the above mathematical derivations, (I) and (II), can be verified by 

physical experiments. 

On the other hand, the author intends to be involved in the following perspectives 

after completing this thesis: 

• To develop a numerical scheme for the stability of solitary waves. This 

numerical scheme is based on normal-mode perturbations to steady-state solitary 

waves. More detailed derivation has been demonstrated in Chapter 6. 

• To develop a numerical scheme for internal solitary waves from the 

scheme for solitary waves used in this thesis. More detailed discussion has been 

shown in Chapter 6. 
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• To discuss the evolution of weakly nonlinear short waves riding on long 

solitary waves and riding on internal solitary waves. 

• To adopt an empirical approach for short waves riding on solitary waves 

and for short waves riding on directional long waves. 
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Appendix A 

The Conservations 

In this appendix A the derivations are going to show for those equations, which 

are originally related to the conservation theory and are shown in Chapter 3. 

A.1 The Phase Conservation 

The wave-train is assumed to remain 'coherent' which is a definition from optics: 

that is, it can be always described, locally, in terms of a single wave-mode of 

wavenumber k. The frequency relative to the fixed co-ordinates is Co = a + U. k, 
where co satisfies the linear dispersion relation. a is the local frequency as seen 

by an observer moving with the current velocity U. If the variational principle is 

valid, then +V = 0. at 

ak 	- 
--i-V(a+U•k) =0 	 (EQA1) 

(Al) is called the equation of conservation of phase or wave crests. 
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Since the steady state is considered and H0  = U0/C, the time derivative of (Al) 

has to be ignored. It is convenient to consider the conservation theory for one 

wave train with respect to another potential flow, which is constructed by the 

velocity potential and the stream function 4 and 'P, therefore an orthogonal co-

ordinate (s-n) has been defined. 

, s --   c 	 (EQA2) 

s 

	

---[a+kH0 U0] = 0 	 (EQA3) a 

	

- [kH0 U0] = — 
a
a--
a 	

(EQ A4) 

Let (A4) be divided by kH0 U0 , and then 

- _ 	
kH0U0 

iac 
- 	

(EQA5) 
_  

(A6) provides the dispersion relation and substitutes into (B5). 

a2  = Hg1 k 	 (EQA6) 

a Ink +alflHU = - 	1 	aa 
Ts 	 (EQA7) 

as 	 a2 
2 H0U0 

H0g 1  

= Hogj 	
(EQA8) 

aLT0  as 

	

H091 a in Hg 1 k 	 (EQA9) — 

2a U0  as 

la = ---lnHg1  - 	a- Ink 	 (EQ AlO) 

CF 
where RC  C_ 

91 

(l + !_)---l nk 
2R as 	= ---lnHg 1  - -lnH0 U0 	 (EQ All) 



lak 	2 allo 	1 	ag1 
H_ 0s 	2g1(R+) 	

(EQAI2) 

A.2 The Conservation of Wave Action 

The definition for wave action A a E/o is necessary. Wave action conservation 

was first introduced by Whitham (1965). For coherent wave-trains, the function 

0 satisfies a variational principle with respect to variations in amplitude a and 

phase x = k.–ot+& namely 

a® 	a® ____ - = 0 a(Vx) (EQ A13) 

Because of the averaging ® is independent of x  Also, by definition, X, = - 

and VX = k and so the latter equation is 

a® 	a® 
B=– — at (EQ A14) 

The equation ao/aa = 0 yields a nonlinear dispersion relation and the linear 

one is recovered on letting a - 0. In the presence of a slowly-varying mean flow 

U, the latter dispersion relation has the form o = U • k + Q () relating k to co. 

Accordingly, 

M Maw  
B= -- =___ 

a 	a 	=A(U+Cg) (EQ A15) 

where Cg  = aaia, and a result of the form for wave action conservation (B 15) 

is established. 

DA 	- 

at + V. ((U + Cg)A) = 0 	 (EQ A16) 
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For a linear wave, 

A = 	a J2 , Cg  = 	 (EQA17) 

where Iad I is the local amplitude of short waves, g = gcosO, and kd = H0k. 

A.3 Dean's Stream Function 

There are two applications of this method, both described explicitly in the 

original paper (Dean 1965). First, Dean's case A examplifies the solution to the 

problem of a wave of steady, defined surface profile. Secondly, Dean's case B 

provides a solution to the design wave problem. Both solutions proceed in a 

similar way. The stream function is described as an expansion in sinusoidal 

forms. The coefficients for these sinusoidal terms are then derived by reducing 

the errors between the numerical prediction and the values for the boundary 

conditions. Dean's methods (case A and B) have been extended to very high order 

by Chaplin (1980) whose programs are now commercially available as MSTR56. 

Figure A.1 gives the comparison of horizontal velocity profiles under the long 

wave crest for the regular wave case e5t8 with Dean's solution, which is obtained 

from MSTR56, and the PIV measurement. Furthermore, a method by Longuet- 

Higgins and Stewart (1964), who first introduced radiation stresses in water 

waves, is employed for predicting the kinematics of short waves riding on long 

waves, see fig. A.2. 
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Fig. A.1 The comparison of the horizontal velocity under the crest of regular 

waves for the case of eStS (regular waves) between the PlY measurement and 

Dean's solution (the horizontal dashed line is MWL). 
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Fig. A.2 The comparisons of the horizontal velocity under the crest of regular 

waves for the case of e6t4 (two-component waves) between the PlY measurement 

and Longuet-Higgins' solution (the horizontal dashed line is MWL). 
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The solution of MSTR 56 are only based on wave height and period. For the case 

of regular waves, Dean's case A, it gives a good prediction. Longuet-Higgins' 

method considers the kinematics contribution of short waves by the equation of 

radition stress, while short waves riding on long waves, and fig. A.2 shows that 

the prediction of Longuet-Higgins and Stewart (1964) fits the PIV measurement 

very well. 
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