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Abstract

This thesis is about automated reasoning in quantified modaland temporal log-

ics, with an application to formal methods. Quantified modaland temporal logics

are extensions of classical first-order logic in which the notion of truth is extended to

take into account its necessity or equivalently, in the temporal setting, its persistence

through time.

Due to their high complexity, these logics are less widely known and studied than

their propositional counterparts. Moreover, little so faris known about their mechanis-

ability and usefulness for formal methods.

The relevant contributions of this thesis are threefold: firstly, we devise a sound

and complete set of sequent calculi for quantified modal logics; secondly, we extend

the approach to the quantified temporal logic of linear, discrete time and develop a

framework for doing automated reasoning via Proof Planningin it; thirdly, we show

a set of experimental results obtained by applying the framework to the problem of

Feature Interactions in telecommunication systems.

These results indicate that(a) the problem can be concisely and effectively mod-

eled in the aforementioned logic,(b) proof planning actually captures common struc-

tures in the related proofs, and(c) the approach is viable also from the point of view

of efficiency.
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Chapter 1

Introduction

Modal Logics are extensions of classical logic, in which oneor more modal operators

are introduced, and in which the notion of truth is much richer and more subtle. The

subtleties of modal truth have made these logics, along the years, a fascinating subject,

since their invention by Aristotle.

More recently, especially after Hintikka and Kripke’s ideaof a “possible worlds”

semantics, put forward in the early 60’s, modal logics have also become a subject of

applied research, especially in the field of formal verification. In fact, it has quickly

become clear that a family of particularly expressive modallogics, called Temporal

Logics, could capture the behaviour of a number of complex, artificial systems (cir-

cuits, protocols, programs) the safety of which had to be verified.

However, while propositional modal and temporal logics have been widely stud-

ied, quantifiedmodal and temporal logics have been quite neglected, mainlyfor two

reasons: first, because the expressivity of propositional modal and temporal logics has

so far been more or less enough to fulfil the requirements posed by practical applica-

tions; second, because quantification introduces a lot of complexity, actually far more

complexity in the case of temporal logics. These two factorshave limited the study of

quantified modal and temporal logics, at least with respect to their propositional coun-

terparts. This is clearly reflected in the common assumptionthat “modal logic” mainly

1



2 Chapter 1. Introduction

stands for “propositional modal logic” in the community lingo.

In this thesis we investigate quantified modal and temporal logics, both from the

theoretician’s and the practitioner’s point of view; we tryto give a hint onwhythey are

sometimes needed, as opposed to propositional modal and temporal logics, andhow

they can be practically employed to solve problems for whichpropositional modal and

temporal logics are not enough any longer.

In particular, we first give a systematic proof-theoretic presentation of a wide set of

quantified modal logics, and, under some simplifying assumptions, show that this pre-

sentation retains some good properties from the point of view of automated reasoning.

We then move on to quantified temporal logics, focusing our attention upon one

of the most used and well-known ones: First-Order Linear-Time Temporal Logic

(FOLTL for short). We show that the theoretical framework devised for quantified

modal logics can be, to some extent, extended toFOLTL , and that this new frame-

work can be used as the starting point for building an automated reasoning system,

based upon the Proof Planning paradigm.

Proof planning is an approach to automated theorem proving which reduces proof

search by raising it to a meta-level. Whereas in classical theorem proving one explores

step-by-step a search space of inference rules applied “backwards” to a goal formula,

in proof planning the search is conducted with A.I.-style planning operators (methods)

which describe common patterns of reasoning in the object logic via meta-logical pre-

and post-conditions. Methods represent proof steps largerand “more intelligent” than

a single inference, and they are applied tometa-level goals, which are meta-logical

representations of (possibly multiple) goals in the objectlogic.

Lastly, we show that, on a selected case-study, automated reasoning inFOLTL via

Proof Planning leads to significant new results; it especially overcomes the traditional

limitations of finitary proof systems (e.g., model checking), allowing for infinite-state

systems to be validated.

As a whole, this thesis represents an attempt at introducingquantified modal and
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temporal logics into the toolbox of the automated reason community.

1.1 Original contributions

The main original contributions of this thesis are three:

1. Sequent calculi for Quantified Modal Logics.We devise a new framework, rep-

resented by a family of Gentzen-style sequent calculi for quantified modal logics

which enjoy some theoretically and practically relevant properties. In particular,

any quantified modal logic whose Kripke frame enjoys properties which can be

finitarily axiomatised in first-order logic with equality are captured by the frame-

work. The calculi are proved to bemodular, uniform, normalising, soundand

completefor each logic. Most of this material also appears in [CS02b].

2. Proof Planning forFOLTL . We devise a set of proof planning methods tailored

for FOLTL and customised for the case-study presented, with a rather large

degree of generality. These methods effectively capture the common structure

encountered inFOLTL proofs, and embed intelligent macro-steps of inference,

modelled upon those a human mathematician would perform.

3. Formal Methods.The case-study,Feature Interactionsin telecommunications

systems, is modelled inFOLTL via an intuitive and clear set of formulae, and

it is shown that the proof planning approach solves a set of associated formal

verification problems, without making any simplifying assumption of finiteness

over the domain.

Item 1 can be seen as an extension of Basin, Matthews and Viganò’s work on

quantified modal logics ([BMV96, BMV97a, BMV98, Vig00]); Item 2 is, as far as we

know, the first attempt at applying the proof planning paradigm toFOLTL and formal

methods; while Item 3, although in our opinion not yet maturefor the Formal Meth-
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ods community, is an interesting, successful practical application of the framework

devised. An initial result in that direction has been published in [CS02a].

Other relevant original contributions of this thesis are:

• A standard method of proving soundness and completeness of sequent calculi

for modal and temporal logics, based upon the paradigm of labelled deduction

and two-sorted first-order logic.

• The development of a practical, hands-on integration between the proof planner

λCLAM and an object-level theorem prover — a step that is required if one needs

to ensure that proof plans actually correspond to proofs andtherefore represent

sound derivations. Surprisingly, as far as we know it is the first time inλCLAM’s

long history that this is done. The integration scheme can bereused for any

object logic and set of planning methods whatsoever.

• A rigorous although informal method of modelling complex systems inFOLTL ,

such as a network of telephone users.

1.2 Structure of the thesis

The thesis is organised as follows:

• Chapter 2 is a survey of relevant literature, including theoretical and practical

work on various kinds of modal and temporal logics, proof planning and formal

methods;

• Chapter 3 shows the theoretical framework which is used as the basis for auto-

mated reasoning in quantified modal and temporal logics;

• Chapters 4 and 5 describe how to build a proof planning environment for the

logics tackled by the framework of the previous Chapter, by coupling the proof
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plannerλCLAM with an object-level theorem prover devised by ourselves accord-

ing to some rigorous guidelines;

• Chapter 6 describes the way we have modelled our case-study in FOLTL , how

we have defined the properties we were interested in checking, and the set of

proof planning methods devised to solve the associated problems;

• Chapter 7 presents experimental results and discusses themin comparison with

some highly relevant related work;

• and lastly Chapter 8 draws conclusions and outlines future work.

Appendices A and B contain some material which would have made the thesis

slightly heavier to read. In particular an interactive session with FTL, our object-level

theorem prover, is reported, and a proof of its correctness is shown, meaning that a

precise correspondence between proofs (in the sequent calculi sense) and proofs (in

the theorem proving sense) is established.





Chapter 2

Literature survey

This Chapter reviews a range of background material that is related to this thesis. Sec-

tions 2.1 and 2.2 survey modal and temporal logics from a rather theoretical point

of view — in the latter Section, formal methods and the verification problem are

also sketched, together with the characteristics ofFOLTL ; Section 2.3 provides an

overview of automated reasoning techniques and systems developed for temporal log-

ics; Section 2.4 reviews proof planning, and finally in Section 2.5 a brief history of the

problem of Feature Interactions in telecommunication systems is given.

2.1 Modal logics and labelled deduction

It would be pretentious to give here a complete account of modal logics (the most com-

prehensive reference for modal logics today, in general, isprobably [CH95], whereas,

for a more first-order oriented reference, see [FM98]), so wefirst give a broad outline

of its history, the problems which arose and the ways they were solved, and then focus

on quantified modal logics with respect to the so-calledsemantics of possible worlds.

The history of modal logics traditionally begins with Aristotle and his work about

the “way” (Latin modus, whence the namemodal) in which a propositionP can be

true or false (necessarily or possibly, with various shadesin between). Modal logics

have then been further developed in the second half of the twentieth century and their

7



8 Chapter 2. Literature survey

axiomatisations studied widely, mostly for purely academical purposes.

Round the mid-50s, in particular, a proliferation of informal interpretations and

attempts at axiomatising them had made the field quite obscure, both in meaning and

notation. It was widely recognised that modal logics extendclassical logic with two

operators,2 and3; the informal reading of2, in particular, varied from “necessarily”

to “it is believed” to “it is known” to “it is morally acceptable that”. Under different

informal reading, different sets of axioms could be accepted; for example, tradition-

ally the (set of) axiom(s)2p⊃ p stands for “what is necessarily true, is true”; in a

different context, e.g., when2 is interpreted as “mandatory”, its meaning is less clear

and is possibly not enforced by some reasonable models — it isdifficult to believe that

whatever is mandatory is true.

In this confusion of roles and lack of a unifying perspective, Hintikka and Kripke’s

idea of a “possible worlds” semantics expressed via a graph ([Hin62, Kri63]) rep-

resented a huge step ahead and boosted the relevance of modallogics to Computer

Science.

The informal interpretation of the possible worlds semantics is that there exists a

set of possible worlds, alternative to the one chosen as reference, in each of which the

truth value of objects can be different; in this context,2 and3 stand for, in turn, “true

in all possible worlds” and “true in at least one possible world”. This interpretation

has a clear intuitive reflection in the very concepts of necessity and possibility: what

is necessarily true is true in all possible worlds, and what is possibly true is true in at

least one possible world; and besides that, it also gives an account of what different

set of modal axioms mean: for example, if2p⊃ p holds, then “whatever is true at

all possible worlds is true at this very world”, where our world is one of the possible

worlds.

This remark serves as a basis for a further conceptual advancement, that of a gen-

eralisation of the notion of possible worlds into that ofaccessibleworlds. It could be

the case that each possible world has “access” to only a limited fraction of the total



2.1. Modal logics and labelled deduction 9

possible worlds; in such a context,2p⊃ p, asserted at an arbitrary worldw0, means

that “whatever is true at all worlds accessible fromw0 is true atw0 itself”. Since the

choice ofw0 is arbitrary, the axiom states that each world is accessiblefrom itself.

We now have a semantics based upon a set and a binary relation on it — that is, a

graph. Previously obscure sets of axioms had now an immediate correspondence with

the structure of the underlying graph, calledframe. For instance,2p⊃ p corresponds

to a reflexive relation and, with a slight abuse of language, areflexive frame.

The first systematic presentation of these correspondences, due to van Benthem

([van84]), gave rise to the notion of characterisation of a class of frames by means

of modal axioms and/or first-order properties. In other words, a class of frames (say,

all reflexive frames) was shown to make all instances of a modal axiom (2p⊃ p in

this example) true, and conversely, all instances of the axiom were shown to be true

in reflexive frames. A class of frames corresponded then to a condition on the frame

relationR (calledaccessibilityrelation), in this case:∀x.xRx; and, at the same time, it

could be characterised by a modal axiom.

But it was also discovered that the correspondence is not always this sharp. It

could be the case, for instance, that it is impossible to characterise a class of frames via

a modal axiom, but the properties of the class itself are expressible in first-order logic.

Conversely, it may happen that a certain class of frames enjoys a property thatcannot

be described in first-order logic. The latter case is particularly interesting to us, mainly

when it comes to classes of frames in which every “chain” of worlds is finite. By a

compactness argument, such property cannot be expressed infirst-order logic, but still,

the class of frames may have a finite modal axiomatisation. See Section 4.1 for a more

detailed discussion.

It is possible to reflect the semantics of possible worlds (orKripke semantics) in

the syntax of the modal language we adopt if we use the so-called Labelled Deduc-

tion. The basic idea in labelled deduction is that of using terms of a special language

(labels) to add information to a formula. Although used for a long time in logics, the
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systematisation of labels (and the birth of the termlabelled deduction) is due to Gab-

bay ([Gab96]). The main conceptual advancement is that the main unit of information,

rather than the formula, like in ordinary, non-labelled logics, is thelabelled formula: a

formula with some “additional” information attached.

In the most general setting, a label can denote any kind whatsoever of information

one might want to attach to a formula in order to ease its management; in modal log-

ics, it is straightforward to use labels to denote possible worlds. This idea, explored

quite thoroughly by Basin, Matthews and Viganò (see [BMV97b, BMV96, BMV97a,

BMV98] and, of course, the book [Vig00]), has the main advantage of generating proof

systems (mostly, natural deduction systems and sequent calculi) which are really easy

to read and modular with respect to a large family of modal andtemporal logics. That

is why we decided to adopt labelled deduction, together withthe intuition that this

presentation would ease mechanisation, which hopefully this very work witnesses.

Switching to quantified modal logics, it turns out that the situation is not much

harder, if we make some simplifying assumptions. [FM98] is agood survey of quanti-

fied modal logics and the problems they pose, from a rather abstract and philosophical

point of view; its main merit for the computer scientist is perhaps that of systematising

the different possibilities offered by quantification in modal logics. In particular, free

quantification in modal logics can give rise to references toobjects that do not exist

in some worlds, therefore making uncertain the very meaningof quantification. The

concept ofdenotationof a term is deeply analysed, together with another important

issue, that offlexibility of terms, that is, the possibility that the denotation of a term

(this time, in the classical logic sense) changes through time. Lastly, a further relevant

point is that of the variability of the domain of quantification, that is, whether we shall

assume that the domain is fixed (constant domains) or that it changes when we move

from one world to another (increasing or decreasing domains).

In [BMV98], sound and complete proof systems are given for a large class of modal

logics with rigid (i.e., non flexible) designators; in thoselogics, the only truth values
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which depend on worlds are those of predicates. Notwithstanding this restriction, the

logics remain quite powerful. In [CS02b] (but see, of course, Chapter 3), that class of

logics is further extended, although under the restrictionof constant domains.

2.2 Temporal logics and formal methods

Temporal logics are extensions of classical (propositional or first-order) logics, incor-

porating a model of the flow of time, either as metric constraints or via a suitable

semantics. In the latter case, the employed semantics is extended with respect to the

classical one in order to take into account the way truth propagates through time, and

as well the way time itself is modelled (e.g., discrete versus continuous, linear versus

branching etc.).

As well, temporal logics can be seen asparticularly strongmodal logics1: the

flow of time is a frame, in the sense of Kripke, whose properties make it isomorphic

to structures one is more used to see as trees (branching time) or total orders (linear

time). One more complication is that the frame can be required to be discrete, and

in this case, by the Compactness Theorem, its properties arenot even expressible in

first-order logic — but see Chapter 4 for a fuller account.

The interested reader is referred to [Gor93]; perhaps the most interesting result

cited there, from the point of view of the link between modal and temporal logics, is

that, semantically speaking, the propositional modal logicsS4, S4.14, S4.3 andS4.3.1

correspond in turn to the temporal logics of dense/discretetrees and of dense/discrete

linear time. While this holds for the propositional fragments of the logics, we have no

news about similar relationships for the quantified versions, although it is quite likely

that something like this holds2.

1by the termstronghere we simply mean “big”: insofar as alogic is a set of well-formed formulae
true under some interpretation, a logicL is stronger than a logicL′ if and only if |L| > |L′|. The more
axioms are added to a logic (or, equivalently, the more structured its frame is), the bigger this logic is.

2personal communication with Rajeev P. Goré; see also [DS02].
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2.2.1 The verification problem

The reason for the huge interest raised by temporal logics incomputer science and

artificial intelligence in the past thirty years probably lies in their expressivity and

intuitiveness. Temporal logics allow us to model both the behaviour and the require-

ment of any dynamic system whatsoever, wheredynamichere has the usual meaning

of “changing through time”; and it is clear that such a wide definition incorporates

such diverse and important notions as computer programs, mechanical and electrical

devices, agents interacting in a wild environment, etc.

Therefore, by means of temporal logics, one can formally specify both a complex

system and the properties it is required to enforce. The problem of verifying that a

system behaves in the desired way, that is, that its specification meets the requirement,

is nowadays prominent and is usually calledformal verification; the development of

temporal logics and their adaptation has contributed to thecreation of a whole new

community, that offormal methods— techniques which solve the verification problem,

more or less automatically, and offer a substantial improvement over the usual testing

techniques. Needless to say, this community bears strong links with industry, thanks

to the financial and social importance of the verification problem.

2.2.2 History

Historically, it is probably wise to say that temporal logics as we know them today were

initially conceived by Prior ([Pri67]) in order to give an account of tenses via modal

logics; this naturally led to a vision of time embedded in a semantics for a particular

(set of) modal logic(s).

After this pioneering era, temporal logics have been developed mainly in two ways:

on one hand, they have been related to other formalisms such as finite and infinite au-

tomata, graph reachability and grammars. This side of the story, which we are not go-

ing to explore in depth, has led to the development of some very successful techniques
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for the verification of systems, such as model checking ([Cla97]), which enforces sys-

tematic state space exploration via fix-point operators, and automata theory (see, e.g.,

[Var03]), maybe the best approach so far to the verification problem for hardware de-

sign.

On the other hand, researchers have developed tools and algorithms to tackle tem-

poral logics directly. After an initial era of research about properties of terminating

programs, ending up in Hoare’s logic ([Hoa69]) and Lamport’s TLA (Temporal Logic

of Actions, [Lam94]), the attention has gradually shifted to reactive, “never terminat-

ing” systems, such as multi-agent systems, protocols, finite automata, fair transition

systems, down to more practical instances such as operatingsystems, circuits, hybrid

systems and bank transaction management systems.

Amir Pnueli and Zohar Manna have pioneered the use of temporal logics, both

in their theoretical ([MP81]) and practical aspects ([AM85]); other relevant pieces of

work include Gabbay’s ([GHR94], a remarkable general survey about temporal logics)

and Fisher’s idea of executable temporal specification ([Fis97]). Although nowadays

less active, temporal logic programming (i.e., temporal extensions of Prolog) has been

practised for some time (see Section 2.3).

2.2.3 Propositional temporal logics

In practice, the choice of a temporal logic depends on the problem one is trying to

solve; from this point of view, what substantially characterises a temporal logic is, in

order of importance for this work:

1. whether it is point- or interval-based;

2. the connectives: future and/or past;

3. the structure of time (branching or linear, continuous/dense/discrete);

4. whether it is propositional or first-order.
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(see [Eme90] for a thorough classification). It is not our intention to explore all the

combinations and possibilities here, but let us just give some meaningful remarks. First

of all, we restrict to future-time operators and point-based semantics. Although this

may seem a strong assumption, to our knowledge the most successful approaches to

formal methods via temporal logics so far are point-based and make no use of past-time

operators. As well, for all our purposes the past horizon of time is limited, that is, there

actually is a starting point in time, for example, when the system under examination is

started; this means that past-time operators are somehow “easier” to handle, if required.

Over the years, Linear Temporal Logic (LTL) and Computational Tree Logic (CTL

with its variantCTL∗) have a particular place: in both logics time is discrete, but in

LTL time is isomorphic to(N,<); it is probably the most widely used linear-time logic.

CTL, on the other hand, has a branching model of time. Besides thelanguage, the es-

sential difference is that inCTL one can model and investigate properties of single

pathsin the evolution of time; that is, one can ask that a certain properties holds on

some paths (traces, executions of a program or of a protocol,etc.), whereas this is

impossible inLTL. As a matter of fact,LTL is generally considered an approximation

of CTL, and it is usually employed in its place, because it is much less complex. The

problem of testing satisfiability of a formula (which is roughly equivalent to the ver-

ification problem) isEXPTIME-complete forCTL, PSPACE-complete forLTL and

NP-complete forLTL(3), that is, the fragment ofLTL restricted to the operator3

(“eventually”). Notice that we are here referring to the propositional fragments of

these logics, and, as one can see, the complexity is already high.

2.2.4 Quantified temporal logics

If we switch to the first-order variants ofLTL andCTL, usually calledFOLTL and

FOCTL, the situation becomes hard. Quantified temporal logics addthe possibility

of quantifying over a first-order-like domain, whose objects in general depend on time

itself. As one might expect, the main problems arise from theinteraction between time
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and quantification.

It is known that fullFOLTL is not only undecidable, but non-recursively enumer-

able; as far as we know, one of the first attempts at studying itis [AM85], where a

sound and complete proof system is given for a fragment of it,namely that oftimed

formulae; in [MMW94] a complete proof system is given for such a fragment.

After a long period of quiescence,FOLTL has recently received a great deal of

attention, probably both because the time is ripe to exploreit, and the limits ofLTL

have been touched. Therefore, a number of “well-behaved” fragments of it have been

studied. The most remarkable and recent piece of work is probably [HWZ00] (along

with the book [GKWZ03], Chapter 11), to which the reader is addressed. In particular,

one of the biggest and probably the most interesting decidable fragment ofFOLTL

is the so-calledmonodicfragment, in which only one variable can appear under the

scope of any temporal operator. The monodic fragment was proved to be decidable in

the above mentioned paper by Hodkinson, Wolter and Zakharyaschev. It is also worth

reminding the reader of [WZ00a], focused on first-ordermodal logics, showing once

again that temporal logics are modal logics with a particularly strong Kripke semantics.

Other interesting pieces of work come from Pliuškevičius([Pli97, Pli00, Pli01]).

Still, the usefulness of such fragments is in question and isnot clear at the time of

writing, although some practical applications which fit into it have been found (see,

e.g., [AVFY98, WZ00b]). It is anyway true that in the very last years, this branch

of logics has flourished, also thanks to an EPSRC-funded project, led by Mikhail Za-

kharyaschev, officially named “Analysis and mechanisationof decidable first-order

temporal logics”. Started in late 2001, with the objective of analysing the monodic

fragment ofFOLTL , it can probably be summarised so far by the paper [HWZ01].

Personal communication with one of the team members indicates that the search of

interesting case-studies for it is ongoing and is a relevantpart of the project.

As far asFOCTL is concerned, very recently some of its fragments have been

studied (see [HWZ02] for a negative one and [BHWZ02] for a positive one). We are
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not aware of any implementation usingFOCTL, nor of any case-study requiring it.

2.3 Automated reasoning in temporal logics

Unsurprisingly, a number of tools have been developed in theyears for reasoning with

temporal logics. Here is a brief survey of them.

2.3.1 Temporal logic programming

The technique calledtemporal logic programminghas flourished during the 80s and

part of the 90s. The basic idea is to augment Prolog with temporal annotations in

order to make logic programming with time feasible. [OM94] is a wide survey of

the attempts at building a temporal logic programming paradigm. According to it,

temporal logic programming systems are divided into interval-based and point-based:

1. interval-based TLP systems. Tempura([Mos98]) works on discrete Interval

Temporal Logic (ITL). Programs are specified in an imperative-programming

style and the execution consists of reducing the intervals assigned to each op-

eration until no further reduction is possible. Applications of Tempura to hard-

ware design, motion representation and algorithm description are cited.Tokio

([AFMO85]) enforces a discrete, linearITL in a Prolog fashion; its language is

de factoa superset of Prolog.

2. point-based TLP systems.Templog.Proposed by Abadı́ and Manna in the late

80s, Templog ([AM89]) enriches classical Prolog with the temporal operators

2, 3 and©. It implements a linear, discrete-time subset ofFOLTL and exe-

cutes it using the TSLD resolution method. It has been shown that Templog is

an instance of the CLP scheme, and that Templog programs can be translated to

a two-sorted first-order language which can be successfullyattacked by a variant

of SLD. Gabbay’sTemporal Prolog([Gab87]) is seemingly the only TLP system
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which tackles branching time temporal logic, even if it has some restrictions on

the form of the clauses. Hrycej’sTemporal Prolog([Hry88]), on the other hand,

integrates a temporal reasoner built on top of classical Prolog (and employing

Allen’s temporal constraint model) with a constraint solver written in C; inter-

esting results are reported, thus encouraging a hybrid approach, even in the case

of logic programming.Starlog([CK91]) follows similar principles.

A citation apart is for MetateM ([FO92]), which has then evolved into a tool for rea-

soning about agent and concurrent processes, rather than pure temporal logics. Some

successes are cited in this paper, such as an application to database queries. Fisher,

it is worth remarking, also devised the Separated Normal Form for FOLTL formu-

lae, together with Gabbay ([Fis92]), which is at the basis ofsome recent attempts at

mechanisation ofFOLTL (e.g., [DF01]).

The general picture of TLP languages seems discouraging. Groups which have

been working with them have now turned to hybrid or imperative systems. Moreover,

a relevant number of the revised TLP languages already employ forms of search-based

techniques, thus slipping toward the CLP scheme.

2.3.2 Model checking

Model checking is probably the most successful approach to automated reasoning of

the last fifteen years. Since the early times (see, e.g., [CG87]) it has attracted a lot

of industrial interest, and has progressed in a considerable manner. Literature about

it is nowadays so wide that it is impossible to list it; the interested reader could begin

with [BCM+92], in which the notion ofsymbolicmodel checking was introduced,

along with [HV91] in which the contraposition between modelchecking and theorem

proving is outlined and discussed, and then read the book [CGP99].

Model checking consists in exploring the state space generated by a dynamic sys-

tem. Under a suitable formal model and semantics, a dynamic system can be viewed

as an operator mapping the current state to the possible states at the next instant of
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time; this way a cone of reachable states is generated. Usually one wants to ensure

that a set of “bad” states will never be reached by the system (safety), or that a re-

quest will be eventually accomplished no matter when it is issued (liveness); in model

checking, safety corresponds to (non-)inclusion of bad states in the reachability cone,

while liveness corresponds to finding looping trajectorieswhich include requests and

fulfilments.

Usually the system and the property are modelled in different ways, and it has

been argued (e.g., [HV91]) that this is exactly what makes model checking peculiar

and better than theorem proving. Systems are usually modelled by a Kripke-based

semantic structure, which takes into account the shape of the state and the transitions,

whereas the properties are usually modelled byLTL or CTL formulae, in which safety

and liveness can be succinctly and intuitively expressed.

Historically, the main problem affecting model checking isstate space explosion,

namely the impossibility of keeping track of the reachability cone because it becomes

too big. The big improvement as far as this problem is concerned was the invention of

symbolic model checking, in which data structures such as BDDs were employed to

compactly represent sets of states (rather than explicitlyenumerating them). Other ap-

proaches employ Boolean formulae and constraints (mostly expressed via linear arith-

metic). Still, the question of how far model checking approaches can go is quite open,

since every different approach has its drawbacks and outliers (for instance, the class

of Boolean multipliers represent a particularly hard benchmark for BDD-based ap-

proaches).

One more characteristic issue of model checking is that, besides recent advance-

ments, it tackles finite-state space problems. In the most efficient settings, this is sim-

ply due to the necessity of keeping explicit track, althoughsymbolic, of thewholestate

space. The problem has been (recently) tackled mainly in specialised ways, targeted

for the particular “sense” in which infinity creeps in a particular class of systems: a sys-

tem can have unbounded data structures, an arbitrarily large number of components,
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or maybe employ recursion; model checking is being adapted to each single case with

some degree of success, by attaching some deductive or constraint-solving machinery

to the generic algorithm (see, e.g., [Esp97, SUM99]) but, asfar as we know, there is

no general application of model checking to infinite state space systems.

Another approach widely used so far is that of assuming a finite number of elements

in the domain of quantification of a system, thus approximating the infinite-state space

problem to a finite one; in this case ordinary model checking works fine and has led

to a number of results. But this idea has two drawbacks: first,it only gives negative

results, that is, it can onlyfind bugs, since we may safely assume in most cases that

a bug in a finite approximation will be such in the infinite setting as well. But if the

model checker cannot find any bugs, this tells us little aboutthe real system. Second,

since approximations need grounding, i.e., expansion of every term into all possible

ground instances, this approach suffers heavily from combinatorial explosion, there-

fore becoming impracticable as soon as the domain grows.

Among the most recent, popular and well-established model checkers it is worth

mentioning SPIN ([Hol97a]), SMV ([BCM+92]), NuSMV ([CCGR99]) and UPPAAL

([BLL +96]).

2.3.3 STeP

STeP is perhaps the most extensive attempt at formalising and systematising automated

reasoning in quantified temporal logics so far. Led by Zohar Manna since the early 90s,

the STeP team ([MBB+95]) has an impressive series of publications and academic

successes; so far, the system has been the basis for more thanthirty PhD theses and a

number of informal works3.

Its core is represented by an ML routine effectively combining decision proce-

dures for decidable theories intervening in automated verification of properties of pro-

grams, hybrid, real-time and reactive systems (see [BBC+96, MS98]). Its use has also

3personal communication with Zohar Manna.
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spawned some interesting theoretical tools for the field, such asverification diagrams

([MS99]) — a first-order annotated variant of labelled transition graphs, plus semantic

information on transitions.

STeP was born as, and still is, a hybrid system, the main idea attached to it being

that of exploiting diverse forms of reasoning, both deductive (verification conditions),

model-based (model checking) and algorithmic (decision procedures). The input for-

malism isSPL(Simple Programming Language), a Turing-complete language in which

one can imperatively specify the behaviour of a program or a set of concurrent pro-

cesses; the relative speed of processes is abstracted away,so that they can be thought

as effectively running in parallel. Sharing of variables and message passing is also

allowed.

The most interesting idea in STeP probably lies in the verification conditions and

the invariants strengthening machinery. STeP implements asmall set of sequent-style

deduction rules, tailored for the different kinds of properties required by the user (who

can also direct the search thanks to an interactive interface). Based upon Manna and

Pnueli’s classification of temporal properties (see [MP91]), this set enforces a sound

and relatively complete proof system for most safety and liveness properties, which are

thus reduced to a set of first-order conditions obtained via the semantics ofSPL(which

is quantifier-free first-order logic). In order to aid the proof machinery, whenever in-

duction is required (that is always, except for toy problems), an automatic mechanism

for invariants strengthening is employed, which can generate inductive assertions im-

plying the initial query.

STeP is, so far, one of the few systems which can effectively tackleFOLTL , al-

though not in full; there are indeed classes of problems outside the scope of STeP, but

(according to Manna himself, and it is not difficult to endorse this remark) at some

point one has to specialise his framework, in order to get tangible results. STeP en-

joys a remarkable degree of automation; for instance it has amechanism for automatic

generation of invariants during an inductive proof.
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Manna and his group’s achievements are summarised ([MP92, MP95]). A third

book is in preparation.

2.3.4 Tableau-based systems

By the termtableau-based systems, we will refer throughout this Subsection to systems

which enforce (semi-)automated reasoning inFOLTL in various application fields,

such as planning, via syntactic-based methods, that is, methods which do not enforce

the structure of the system being examined, but rather writeit as a set of formulae in a

temporal logic and then perform deduction on them.

One interesting line of research is that of encoding planning problems intoFOLTL .

Especially the works of Bacchus and Kabanza ([BK00]) and Cerrito and Cialdea Mayer

([ML02]) show that significant improvements can be obtained, with respect to well-

known planning systems, if control information is encoded in FOLTL and then used to

prune the search. The main advantage of using such a high-level language, apparently,

is that it is expressive and compact, and it represents an easy way to encode domain-

specific knowledge (a recurring problem in the planning community). Both works

do not really try to automateFOLTL but use ground versions of it to specialise the

approach, but the result is well worth remarking, especially if one thinks that literally

a lot of specialised approaches for planning exist, including Boolean satisfiability and

graph reachability.

Felty ([FT97]) proposed in 1997 a sound and complete mixed natural deduction

/ sequent calculus for propositionalLTL, which is of little interest to our topic, but

still the interactive fashion contained in her experimental results showed the linear

temporal logic was a viable tool, at least for the formalisation of complex problems.

In particular, she devised a method for translating in a reasonable mannerLTL proofs

into natural (English) language. Also in the Prosper project (see [HK99]) quite a lot of

effort has been dedicated to this translation.
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2.4 Proof planning

Proof planning is an approach to automated theorem proving originally designed to re-

duce proof search by raising it to a meta-level [Bun88, BvHS91]. Whereas in classical

theorem proving one explores step-by-step a search space ofinference rules applied

“backwards” to a goal formula, in proof planning the search is conducted withmeth-

ods, A.I.-style planning operators which describe common patterns of reasoning in

the object logic via meta-logical pre- and post-conditions. Methods can and should

represent proof steps larger and “more intelligent” than a single inference, and they

are applied tometa-level goals, which are meta-logical representations of (possibly

multiple) goals in the object logic.

Proof planning systems use methods to build an abstract proof tree, orproof plan,

which can then be used to find an object level proof, e.g. by running tactics corre-

sponding to methods. There need not be a guarantee that any corresponding object

level proofs can be found or even exist.

Meta-level goals and the meta-logical formulae in method conditions can express

both legal and heuristic statements about proof goals. Legal statements are about the

form of the object goals, e.g. when a methodcould be applied. Heuristic statements

help guide the proof search, e.g. saying when a methodshouldbe applied. Methods

and meta-level goals are usually designed by system authorsor users, and typically ori-

ented toward a specific domain where a set of heuristics is known, e.g. summing series

[Wal94]. In [Bun91] a methodology for good method design is described, proposing

evaluation criteria such as generality and parsimony.

The intended advantage of proof planning is that the planning search space is sig-

nificantly smaller than the original object level search space. Conversely, the plan

space is likely to be incomplete. Both these things depend entirely on the particular

method set. Another aim of proof planning is provide declarative, as opposed to pro-

cedural, specifications of methods which can be reasonedaboutmechanically, not just

executed. This facilitates the automatic learning and adaptation of proof methods.
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2.4.1 CLAM: Advance Planning

The first proof planning system wasCLAM [BvHS91]. It built upon thetacticbased ap-

proach to theorem proving, where common patterns of inference rules are captured in

tactics, a small program which automates the search for a proof fragment by applying

rules according to the given pattern. InCLAM, a method is considered to be specifica-

tion of a tactic, providing conditions for its application and the effects it has on the

goal. A given tactic may have multiple methods, corresponding to its use in different

situations.

The CLAM system was designed to work in conjunction with a tactic-based theo-

rem prover, specifically theOystersystem, an implementation of Martin-Löf’s Type

Theory. It constructs a proof plan which is used to guideOysterto a proof, by replac-

ing methods with their corresponding tactics [BvHHS90]. Hence planning is done in

advance of proving.

CLAM method conditions are written in a declarative style, i.e. as meta-logical state-

ments. However, in practice it is possible to write procedural style conditions in Prolog,

andCLAM method designers often do this to e.g. improve their efficiency or implement

complex strategies.

2.4.2 λCLAM: proof planning in a higher-order framework

λCLAM [RSG98] is the successor to theCLAM system. LikeCLAM, λCLAM is an advance

planning system, producing plans to be converted into tactics. UnlikeCLAM, which

was born withOysteras the object-level theorem prover, there was no specific under-

lying tactic-based theorem prover forλCLAM, until FTL was built. Actually, the proof

checking mechanism developed during the application of proof planning to the Fea-

ture Interaction problem represents the first attempt at getting proofs out of proof plans

obtained via the proof plannerλCLAM.

Method conditions are now written inλ-Prolog [NM86] a higher-order version of
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Prolog. Having a higher-order meta-logic has allowed a muchmore concise, natural

and declarative expression of methods.

Another significant aspect ofλCLAM is the use ofmethodicalsto ‘join together’

methods to specify larger ones, in much the same way that tactics are formed using

tacticals. This is extremely useful when describing large and complex strategies —

a common problem inCLAM. It also allows a more declarative specification of such

strategies. A semantics for these method expressions, based on continuations, is being

investigated at the time of writing (see, e.g., [Ric02]).

2.4.3 ΩMEGA

The ΩMEGA system is another proof planning implementation [Ker98], but differs

from the CLAM family in a number of important aspects. Most importantly, it does

not differentiate between methods, tactics and inference rules: everything is a method.

When a method is applied, further planning is carried out to construct a proof that an

object level proof exists. This process bottoms out with theapplication of methods cor-

responding to inference rules. Hence the proof plan is a hierarchy, both in the normal

‘proof tree’ sense, and in that some methods can be expanded to another proof plan.

The architecture allows planning and proving to be interleaved, rather than planning

being done in advance. This letsΩMEGA to recover after forming faulty plans which

have no corresponding proof.

Another important difference fromCLAM is the system’s division of preconditions

into declarative and procedural aspects, as well method slots for posting constraints,

and the use of constraint reasoning [Mel96].

2.5 Feature Interactions in telecommunication systems

As hopefully already conveyed by this very Chapter,FOLTL is not a very widely

spread language for formalising and mechanically solving problems. On one hand, it
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is far too complex to be tackled by the vast majority of existing tools (in many cases, it

has to be remarked, tools are specialised on less expressivelanguages); on the other, it

seems that the community is so far quite happy with the results obtained by working,

at most, in propositional temporal logics.

The ideal case-study for usingFOLTL should have at least the following charac-

teristics: (i) it should require first-order temporal logic, rather thanLTL, in order to

be fully formalised and analysed;(ii) it should be relevant from the academic and/or

the industrial point of view. Possibly, it also should have aclear and intuitive mean-

ing, in order to maintain a fairly simple global view of the problem, and to ease the

presentation.

The problem of Feature Interactions in Telecommunication System (FIs) fulfils

these requirements. FIs is a prominent problem in early-stage formal methods. By

this term we denote informally the application of mathematical validation techniques

to the high-level design of a service of any kind. The advantage of early-stage formal

methods principally lies in spotting and correcting bugs inthe specification of a service

beforea single line of code is actually deployed.

Mainly studied, so far, in telecommunication systems, the problem arises when two

or morefeatures, services additional to a basic, standard service, have a conflict and

misbehave. A paradigmatic example, deeply analysed in [Fel01] and mechanically

verified in [CS02a] (see also Chapter 7), happens when a user of a large land phone

service subscribes both to an anonymous calls rejection service and to a forwarding

service. Obviously, whenever an anonymous call arrives andthe callee is busy, the

system has a conflict: should the anonymous call be rejected or forwarded?

The scenario is made quite complex by the fact that there are arbitrarily many users

in the world, each one enjoying the so-called Basic Call Service, and that any of them

may subscribe to any number of different features. Each feature alters the behaviour

of a user, and complicates the interaction among users.

So far a number of approaches have tackled the FI problem withvarious degrees of
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success, as documented in the Feature Interaction Workshopseries. A remarkable sur-

vey is now available in [CKMRM02], in which the research so far is divided into three

broad areas: service/software engineering, formal methods and on-line techniques.

Service engineeringdeals with the creation of services, that is, their specification

in a semi-formal way, for instance via natural language, their development and deploy-

ment; the paper focuses on software engineering, that is, onthe early stages of service

engineering, identifying two major approaches (focused techniques and process mod-

els) and concluding that the results available in literature, though promising, are still

quite rough; in particular, it is stated that there are, rather surprisingly, still too few

papers coming from the industrial world in order to assess the applicability of software

engineering to avoid feature interactions.

On-line techniquesare aimed at detecting and resolving feature interaction incom-

plex, run-time environments, at the very time they happen. There is an obvious advan-

tage in this, namely that of working in a real-life environment rather than on a (possibly

abstract) model of the telecommunications system. Nevertheless, the authors’ conclu-

sion is that the difficulties arising in on-line feature detection are still hard; so hard, in

fact, that most resolution methods boil down to the termination of the call originating

the interaction — an indeed effective but user-annoying solution. More complex algo-

rithms can become too expensive. Moreover, on-line techniques often critically depend

on the network and its characteristics, so that change in thenetwork architecture led

to a forced redesign of the methods. Again, no relevant industrial-strength study is

available at the time of writing.

Focusing onformal methodsfor Feature Interactions, which is also one of the ob-

jectives of this thesis, their application is restrained tothe off-line detection of interac-

tions via an abstract model of the system; this makes the technique independent of the

actual implementation. Formal methods also force designers to think carefully about

the characteristics of the service, and of the distance between what is conceived and

what is actually meant by the specification; often the two things match poorly, since
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abstract models imply the use of a formal (logical) language.

In general, in formal methods applied to FI, a model of the Basic Call Service and

of the features is given, and then a requirement is expressedand checked against the

model. More precisely, the authors split the approaches into three subcategories (we

reproduce some of the references therein):

1. modelling of properties of the features and detection of interactions via unsat-

isfiability or inconsistency in terms of a logic. Such approaches make use of

the so-calledTemporal Logic of Actions([Lam94]), LTL and first-order logic

([BJK94, JMN+01, FN00]);

2. behavioural modelling via automata or transition systems and detection via spe-

cific properties such as deadlocks and nondeterminism (Finite State Machines

and Automata, State Transition Diagrams and Constraint Programming) (e.g.,

[Blo97, AABdR00]);

3. modelling of both behaviour and properties via formal languages (LTL, CTL,

TLA, Message Sequence Charts and evenµ-calculus) (e.g., [CM01]).

The problem is generally stated as follows: let the notion ofa featureF1 satis-

fying a propertyφ1, denotedF1 |= φ1, be known, and also thatF2 |= φ2 for another

feature/property pair; when the two features are somehow combined, denotedF1⊕F2,

doesF1⊕ F2 |= φ1∧ φ2 hold? In most cases the question is translated in a suitable

language and then a general-purpose automated reasoning tool (model checker, the-

orem prover, constraint solver) is used; but in nearly all cases, state-space explosion

happens, and very few approaches can perform full state-space exploration, the other

resorting to approximations (and leading thus to incomplete frameworks).

It is worth reminding that so far very few approaches have been given which tackle

the problem in full, that is, making no approximation whatsoever on the number of

entities in the world (in this case, users in the network); even in the most successful

cases, potential sources of infinity are bounded or assumed small, and then finitary
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techniques are applied. The notable exceptions are [FN00],where full first-order tem-

poral logic is used for the formalisation, but then replacedby a grounded approxima-

tion4, and [CM02a], where abstraction is used to show that, in a particular case, the

approximated result holds for any number of users.

2.6 Chapter overview

In this Chapter we have surveyed the literature we consider relevant to this thesis. After

a brief history of modal and temporal logics, we have introduced labelled deduction,

and we have outlined how it has been successfully used in dealing with such logics.

We have then introduced the verification problem and variousmethods employed to do

automated reasoning in temporal logics; one can see the firstpoint as the main drive

for the second.

We have then outlined the paradigm of Proof Planning and how it can to improve

the situation in automated reasoning in general, by definingan abstract search space in

which macro-steps of intelligent (but potentially unsound) reasoning, called methods,

are used to build proof plans, later on refined to proofs and then checked.

Lastly we have introduced the case-study we will be examining later on, Feature

Interactions in telecommunication systems. With a few remarkable exceptions, the

problem has so far been tackled by means of finitary approximations.

4Amy Felty was also going to study the problem without approximation, according to a personal
communication received in 2001, but we have no relevant newsyet.



Chapter 3

Sequent calculi for quantified modal

logics

In this Chapter we aim to give a systematic presentation of Quantified Modal Logics

(QMLs): uniform, intuitive, clear and complete for a class of QMLs as large as possi-

ble. For this we devise a family of labelled sequent calculi for QMLs (limited to con-

stant domains and rigid designators) which captures all logics whose frame properties

can be expressed as a finite set of first-order sentences, withno restriction whatsoever

on their shape, and possibly employing equality.

Notwithstanding this generality, our sequent calculi retain some remarkable prop-

erties:

Modularity All calculi consist of a fixed base calculus for the weakest QML QK ,

plus one sequent rule for each first-order sentence expressing a property of the

frame. This, together with the use of labels, makes the presentation clear and

intuitive. In case the property of the frame requires equality, a few additional

rules are added and modularity is retained;

Uniformity Each added rule is clearly related to the property it models,e.g., there

is a rule for reflexivity, one for transitivity, etc. This avoids the need for rules

29
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obscurely enforcing frame properties, as is usually the case in unlabelled presen-

tations;

Normalisation All calculi are normalising, in that the rules which model frame prop-

erties can be used just at the top of the proof tree without loss of completeness,

therefore simplifying the presentation and potentially aiding automated deduc-

tion;

Soundness / completenessAll calculi are proved sound and complete with respect to

their classes of frames; the proof of soundness and completeness is uniform, in

that it is parametrised over the frame axioms.

With respect to this very Chapter, is it worth making some further remarks about

related work. It is indeed not the first time that a labelled presentation of a wide

spectrum of QMLs is given; the most remarkable piece of work so far is due to Viganò

([Vig00]), who has given labelled Natural Deduction systems and sequent calculi for

a wide set of QMLs. His systems are sound, complete and normalising for all QMLs

whose frame properties can be axiomatised by first-order Horn clauses without equality

(the so-calledrelational theories).

Here we extend Viganò’s work by giving sound, complete and normalising se-

quent calculi for all first-order axiomatise QMLs, with no restriction on the shape of

frame axioms and possibly employing equality between worlds; moreover, we employ

a different way of proving soundness and completeness of such systems. It is worth

remarking that Viganò’s choice of restricting to relational theories is dictated exactly

by the necessity of keeping a normalisation property to his systems (see his Theorem

4.3.7 and subsequent discussion in [Vig00]); our systems retain soundness, complete-

ness and normalisation for a much wider set of QMLs. For example, no normalising

system forQS4.3 is given in [Vig00], whereas our systemCQS4.3 is sound and com-

plete exactly forQS4.3, and retains the normalisation property discussed in Subsection

3.2.4.
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The choice of labelled deduction is motivated by at least three reasons:(i) the ex-

plicit use of labels makes the presentation much more intuitive, in that it generates

uniform sequent systems,(ii) it helps to keep reasoning about the properties of the

frame separate from reasoning about logical formulae, thuspotentially aiding auto-

mated deduction,(iii) in the quantified case, in which we are interested, it gives rise to

systems which can be inherently more powerful than unlabelled ones: see for instance

[Ghi91], in which several unlabelled QMLs are proved incomplete with respect to their

Kripke semantics.

From now on we will indicateKripke-soundness and completeness just by the terms

soundnessandcompleteness.

The Chapter is structured as follows: in Section 3.1 some preliminaries are given

about the language of our logics, proof theory and QMLs; in Section 3.2 our sequent

calculi are defined, and their benefits,in primis their normalisation property, are dis-

cussed; and lastly, in Section 3.3 their soundness and completeness are stated and

proved.

3.1 Preliminaries

In this Section we outline(i) the syntax of the language we will be using throughout

the paper,(ii) the semantics of the logics generated by such language,(iii) a broad

classification of QMLs,(iv) the basics of sequents and sequent calculi.

3.1.1 Syntax of the language

The syntax we present is standard in labelled deduction (see, e.g., [Gab96]). LetV ,

F , P , V ′ andF ′ be nonempty pairwise disjoint sets; then

Definition 1 (Formulae) Logical terms(lt ), logical atoms(la), logical formulae(lf ),

labels(lab), constraints(cst) and labelled formulae(labf) are defined according to the

following grammar:
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lt ::= x ||| f (lt1, . . . , ltn) where x∈ V , f ∈ F ,n≥ 0

la ::= p(lt1, . . . , ltm) where p∈ P ,m≥ 0

lf ::= la ||| ¬lf ||| lf⊃ lf ||| ∀x.lf ||| 2lf where x∈ V

lab ::= 0 ||| t ||| g(lab1, . . . , labl ) where t∈ V ′,0,g∈ F ′, l ≥ 0

cst ::= lab≺ lab ||| lab .
= lab

labf ::= lf @ lab

Labelled formulae and constraints are collectively calledformulaeand their set is

denoted byforms.

Other connectives such as∧, ∨, ↔, ∃ and 3 are defined from the above ones

in the usual way, e.g.,∃ is ¬∀¬, 3 is ¬2¬ and so on. Also, a standard notion of

free variablesof a formula is assumed, and formulae with no free variables are called

sentences. Lastly, we will employ a standard notion of sub-formulae ofa formula and

of a set of formulae.

Examples of logical formulae are:∀x.3∃y.r(x,y), 2p(a) and2(p1∧p2)↔ (2p1∧

2p2), wherep, r, p1, p2 ∈ P , a∈ F andx,y∈ V ; examples of constraints areτ1 ≺ τ2

andτ .
= τ′ whereτ,τ′,τ1,τ2 are labels; examples of labelled formulae arep(a) @ 0,

p1∧ p2 @ τ and∀x.p(x)⊃ p(a) @ τ′. The @ operator is intended to bind less tightly

than any other operator; the last example, for instance, means∀x.p(x)⊃ p(a) holds at

the world denoted byτ′.

3.1.2 Semantics and validity

We present a semantics which is largely based upon that givenin [AM90]. See also,

e.g., [CG92].

Definition 2 (Structure) We call astructurea tupleM = 〈W ,R,D , I〉 where:

• the set of possible worldsW is a nonempty set, containing at least a distin-

guished element usually denoted by the symbol0;
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• theaccessibility relationR⊆W ×W is a binary relation overW ;

• thedomain of quantificationD is a nonempty set disjoint fromW ;

• the interpretationI maps each world w∈ W and predicate symbol p∈ P to

a predicate I(w, p) over D , and each function symbol f∈ F to a D -valued

function I( f ).

(notice that we include the interpretationI in the structure. Although slightly non stan-

dard, this makes the presentation easier to read). As is usual in modal logics, we will

say that a structure has a property if and only ifR in the structure has the property;

for example, we will say that a structure is reflexive if and only if the associatedR is

reflexive, and so on. Note that, due to this semantics, the logics we consider have con-

stant domains (i.e., the domain of quantificationD is the same in all possible worlds)

and rigid designators (i.e., the only “dynamic” objects arepredicates).

Some more definitions:〈W ,R,D 〉 is theframeon which the structureM is based.

An assignmentα is a function mapping variable symbols inV to values inD . The

assignmentα[d/x] assignsd ∈ D to x, leaving all the other symbols as inα. The

denotationof a logical terms in the structureM w.r.t. α, written sM ,α, is recur-

sively defined as follows: ifs is v ∈ V , thensM ,α = α(v); if s is f (s1, . . . ,sn), then

sM ,α = I( f )(sM ,α
1 , . . . ,sM ,α

n ).

To give a semantics to labels and constraints, we first introduce a further interpreta-

tion Il mapping≺ to R,
.
= to the equality relation, 0 to the distinguished element inW

and function symbols inF ′ toW -valued functions; then we introduce a further assign-

mentαl mapping variable symbols inV ′ to elements ofW . The denotation of labels is

analogous to that of logical terms (de facto, labels are terms of the labelling language):

if τ is t ∈ V ′, thenτIl ,αl = αl(t); if τ is g(τ1, . . . ,τn), thenτIl ,αl = Il (g)(τIl ,αl
1 , . . . ,τIl ,αl

n ).

To ease the notation, we refer to elements ofW with the letterw possibly decorated,

and intend thatw,wi ,w′, . . . are the objects denoted by labelsτ,τi,τ′, . . . That is, for

example,w = τIl ,αl .
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Definition 3 (Truth in a structure) A formula ϕ is true in a structureM under the

assignmentα, writtenM ,α |= ϕ, if and only if:

M ,α |= τ1≺ τ2 iff (w1,w2) ∈R

M ,α |= τ1
.
= τ2 iff w1 = w2

M ,α |= p(s1, . . . ,sn) @ τ iff (sM ,α
1 , . . . ,sM ,α

n ) ∈ I(w, p)

M ,α |= ¬ϕ @ τ iff not M ,α |= ϕ @ τ

M ,α |= ϕ⊃ ψ @ τ iff if M ,α |= ϕ @ τ then M ,α |= ψ @ τ

M ,α |= ∀x.ϕ @ τ iff for all d ∈ D , M ,α[d/x] |= ϕ @ τ

M ,α |= 2ϕ @ τ iff for all w ∈W and t∈ F ′, if αl (t) = w then

if M ,α |= τ≺ t then M ,α |= ϕ @ t

If a formulaϕ is true inM under any assignmentα, we say that the structureM is

amodelfor ϕ, and thatϕ is true in the structure (model)M , writtenM |= ϕ. Note that

truth of a sentence is independent of the assignment.

If a formulaϕ is true in all structures based on a frameF, we say it isvalid on the

frameF, writtenF |= ϕ. Lastly, if it is valid on all frames belonging to a class of frames

C, we say it isvalid on the class of frames Cand write|=C ϕ. In particular, when a

modal logicQL is known to correspond to a class of frames, we write|=QL ϕ. So, for

instance,|=QS4 ϕ means thatϕ is valid on the class of transitive, reflexive frames, and

so on.

3.1.3 Quantified modal logics

We will refer to QMLs with constant domains and rigid designators simply as QMLs

or “logics” and will denote them asQK , QT and so on. A thorough classification of

their names, properties and characteristic axioms can be found, e.g., in [CH95]. In the

same book one can see that QMLs are usually organised in a hierarchy, in whichQK

is the weakest one (Table 1 in [CH95]).

A relevant subset of them is characterised by classes of frames enjoying a set of

properties which are expressible as a finite set of first-order sentences, possibly involv-
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ing equivalence; Table 3.1 lists some of these properties, along with their correspond-

ing names and first-order sentences1. Note that these sentences are naturally expressed

in our language of labels.

We will call such logicsFO-axiomatisableand indicate them generically asQL ; we

will say that the sentences which express their frame propertiesaxiomatisethem, and

denote the set of those sentences asFrmAx(QL). If any of the sentences inFrmAx(QL)

contains the symbol
.
=, we will sayQL is a QML with equality, otherwise when nec-

essary we will specifywithout equality.

3.1.4 Sequent calculi and provability

We give now some basic definitions, uniform with [TS96], Subsection 3.1. From now

on, letΓ and∆ be finite multisets of formulae; when referring to the elements ofΓ and

∆ we will use the Greek letters{γ1, . . . ,γl}, l ≥ 0 and∆ = {δ1, . . . ,δm},m≥ 0, with the

assumption that they areplaceholdersfor formula, rather than formulae.

Then asequentis an expressionΓ −→ ∆. Theγis are calledantecedentsand are

intended conjunctively, while theδis are calledconsequentsand are intended disjunc-

tively; the sequent symbol can be read as a logical implication. Definition 3 and follow-

ing are therefore straightforwardly extended to sequents:for any possible instantiation

of theγs andδs,M ,α |= Γ−→ ∆ if and only if M ,α |= γ1∧ . . .∧ γl ⊃ δ1∨ . . .∨δm.

Let n≥ 0; then asequent ruleρ is a pair (set of sequents, sequent), written

Γ1−→ ∆1 · · · Γn−→ ∆n

Γ−→ ∆
ρ

where theΓi −→ ∆i ’s are calledpremisesandΓ−→ ∆ is theconclusionof the rule. In

displaying a sequent rule, generally, we highlight one formula in the conclusion (the

main formula), and one or more formulae in each premise (theactiveformulae). The

intuition is that the active formulae are introduced in the premises by manipulating the

1sentences and names of the properties are uniform with [Gol92], Chapter 1, except for the strong
versions of weak density, directedness and connectedness,which are obtained by simply removing the
antecedents of the implications, and atomicity, defined, e.g., in [van84].
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Property (name) Corresponding sentence

Seriality (D) ∀t∃t ′.t ≺ t ′

Reflexivity (T) ∀t.t ≺ t

Irreflexivity ∀t.¬ t ≺ t

Symmetry (5) ∀t0t1.t0≺ t1⊃ t1≺ t0

Asymmetry ∀t0t1.t0≺ t1⊃¬ t1≺ t0

Antisymmetry ∀t0t1.(t0≺ t1∧ t1≺ t0)⊃ t0
.
= t1

Transitivity (4) ∀t0t1t2.(t0≺ t1∧ t1≺ t2)⊃ t0≺ t2

Weak density ∀t0t1.t0≺ t1⊃ ∃t ′.t0≺ t ′∧ t ′ ≺ t1

Strong density ∀t0t1∃t ′.t0≺ t ′∧ t ′ ≺ t1

Weak directedness (2) ∀t0t1t2.(t0≺ t1∧ t0≺ t2)⊃ ∃t ′.t1≺ t ′∧ t2≺ t ′

Strong directedness ∀t1t2∃t ′.t1≺ t ′∧ t2≺ t ′

Weak connectedness (3)∀t0t1t2.(t0≺ t1∧ t0≺ t2)⊃ (t1≺ t2∨ t1
.
= t2∨ t2≺ t1)

Strong connectedness ∀t1t2.t1≺ t2∨ t1
.
= t2∨ t2≺ t1

Atomicity ∀t1∃t ′.t1≺ t ′∧∀t2.t ′ ≺ t2⊃ t ′
.
= t2

Table 3.1: properties of the accessibility relation as first-order sentences.

main formula via the sequent rule. We will use the termframe rulesfor rules whose

active formulae are constraints, andclosing rulesfor rules which have no premises.

All other rules will be calledlogical.

A sequent calculusis a set of sequent rules. Recall that, since theγs andδs are

placeholders for formulae, a sequent rule is really aschema, instantiated every time it

appears in a derivation; an instance of a rule is then called an inference. For a more

formal treatment of this concept, see, e.g., [Kan63] or the seminal [Gen35].

Assume a standard definition oftree (see, e.g., Subsection 2.2 of [Gal86]) and let

C be a sequent calculus; then aC -derivationof Γ −→ ∆ is a tree in which every node
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Ni is labelled with a pair〈ρi,Γi −→ ∆i〉, whereρi ∈ C , and hasn children, wheren is

the number of premises ofρi . The root node is labelled byΓ−→ ∆ and the leaves have

no labelling rule. Slightly abusing the language, we will say thatNi is labelled byρi ,

by Γi −→ ∆i , or by a formulaφi , if φi is main inρi .

A branchof a derivation is a tuple of nodes(N1, . . . ,Nk) such that(i) N1 is the root

of the derivation,(ii) Ni+1 is a child ofNi for all i = 1, . . . ,Nk−1 and(iii) Nk is a leaf of

the derivation. Aclosedbranch is a branch in whichNk is labelled by a closing rule.

A closedC -derivation of a sequentΓ −→ ∆ (also called aC -proof of Γ −→ ∆) is a

C -derivation ofΓ−→ ∆ and whose branches are all closed.

Definition 4 (Provability) If Γ−→ ∆ has aC -proof, we write

`C Γ−→ ∆

and say thatΓ−→ ∆ is provablein C (it is C -provable), or thatΓ−→ ∆ is a theorem

of C (it is a C -theorem).

Two proofs will be calledsimilar if and only if they prove the same sequent. Proof

trees will be displayed, as is customary in Computer Science, with the root at the

bottom, labelled by the sequent we want to prove — proof treesdevelop upward.

3.2 Sequent calculi for QMLs

In this Section we introduce and developCQK , a sequent calculus forQK ; then a

general procedure for strengtheningCQK is outlined: first to QMLs without equality

and then to all QMLs. A short discussion follows.

3.2.1 CQK : a sequent calculus for QK

Assume from now on a standard definition ofsubstitutionof a variable in an expression

E (formula, multi-set of formulae, sequent) as presented in [DV01], denotedE[s/x]
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wheres is a logical term or a label andx is, in turn, inV or in V ′; then

Definition 5 (CQK ) Let A∈ forms, τ,τ′ be labels,ϕ,ψ logical formulae and c a logical

term; moreover, let a∈ V and t′ ∈ V ′; thenCQK , a sequent calculus forQK , is visible

in Table 3.2.

Closing rule

Γ,A−→ A,∆ ax

Logical rules

Γ−→ ϕ @ τ,∆
Γ,¬ϕ @ τ−→ ∆ l¬

Γ,ϕ @ τ−→ ∆
Γ−→¬ϕ @ τ,∆ r¬

Γ,ψ @ τ−→ ∆ Γ−→ ϕ @ τ,∆
Γ,ϕ⊃ ψ @ τ−→ ∆ l⊃

Γ,ϕ @ τ−→ ψ @ τ,∆
Γ−→ ϕ⊃ ψ @ τ,∆ r⊃

Γ,∀x.ϕ @ τ,ϕ[c/x] @ τ−→ ∆
Γ,∀x.ϕ @ τ−→ ∆ l∀

Γ−→ ϕ[a/x] @ τ,∆
Γ−→ ∀x.ϕ @ τ,∆ r∀

Γ,2ϕ @ τ,ϕ @ τ′ −→ ∆ Γ,2ϕ @ τ−→ τ≺ τ′,∆
Γ,2ϕ @ τ−→ ∆ l2

Γ,τ≺ t ′ −→ ϕ @ t ′,∆
Γ−→2ϕ @ τ,∆ r2

Table 3.2: the calculus CQK for QK . A∈ forms, τ,τ′ are labels, ϕ,ψ logical formulae

and c a logical term. a∈ V and t ′ ∈ V ′ cannot appear free in the conclusion of r∀ and

r2.

CQK is a variant of Gentzen’s sequent calculusLK for classical logic ([Gen35]),

except that

1. it is presented with no structural rules, but with a generalised closing rule and

duplication of the main formula inl∀ and l2 (by analogy, for instance, with

systemG in [Gal86], Definition 5.4.1);

2. it has two rulesr2 andl2 for the2 operator, intuitively reflecting its semantics;
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3. it is restricted to a minimal subset of operators (¬,⊃, ∀ and2), with the assump-

tion that rules for derived operators, such as∃ and3, can be used here and there.

They are obtained straightforwardly by composing rules inCQK ; for instance,l3

is obtained by considering the top and bottom sequents of thefollowing deriva-

tion:

Γ,τ≺ t ′,ϕ @ t ′ −→ ∆
Γ,τ≺ t ′ −→¬ϕ @ t ′,∆

r¬

Γ−→ 2¬ϕ @ τ,∆ r2

Γ,¬2¬ϕ @ τ−→ ∆ l¬

Γ,3ϕ @ τ−→ ∆ (definition of3)

It is possible to prove inCQK a number of characteristic axioms ofQK ; as an

example, in Figure 3.1 we sketch theCQK -proof ofModal Modus Ponens, and in Figure

3.2 theCQK -proof of theConverse Barcan Formula, characteristic of quantified modal

logics with constant domains2. Also, theRule of Necessitationis naturally enforced:

for any logical formulaϕ and labelτ, if `CQK ϕ @ τ then`CQK 2ϕ @ τ. This can be

easily shown by structural induction.

ψ @ t ′ −→ ψ @ t ′
ax

ϕ @ t ′ −→ ϕ @ t ′
ax

ϕ @ t ′,ϕ⊃ ψ @ t ′ −→ ψ @ t ′
l⊃

0≺ t ′ −→ 0≺ t ′
ax

0≺ t ′,ϕ @ t ′,2(ϕ⊃ ψ) @ 0−→ ψ @ t ′
l2

0≺ t ′ −→ 0≺ t ′
ax

0≺ t ′,2ϕ @ 0,2(ϕ⊃ ψ) @ 0−→ ψ @ t ′
l2

2ϕ @ 0,2(ϕ⊃ ψ) @ 0−→2ψ @ 0
r2

2ϕ∧2(ϕ⊃ ψ) @ 0−→2ψ @ 0
l∧

−→2ϕ∧2(ϕ⊃ ψ)⊃2ψ @ 0
r⊃

Figure 3.1: a CQK -proof of Modal Modus Ponens.

2all proof sketches, although some unessential formulae maybe omitted here and there for the sake
of conciseness, are completely rigorous. Especially, we will leave out the copy of the main formula in
the premises of rulesl∀ andl2, when they are not necessary.
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p(a) @ t ′ −→ p(a)@t ′
ax

∀x.p(x) @ t ′ −→ p(a)@t ′
l∀

0≺ t ′ −→ 0≺ t ′
ax

0≺ t ′,2∀x.p(x) @ 0−→ p(a)@t ′
l2

2∀x.p(x) @ 0−→2p(a)@0
r2

2∀x.p(x) @ 0−→∀x.2p(x)@0
r∀

−→2∀x.p(x)⊃ ∀x.2p(x)@0
r⊃

Figure 3.2: a CQK -proof of the Converse Barcan Formula.

3.2.2 Sequent calculi for QMLs without equality

Assume standard notions ofprenex normal formand Skolemizationof a first-order

formula (see, e.g., [Sho70]); then we introduce the following procedure which builds

a sequent rule out of a first-order sentence:

Definition 6 (Strengthening) Letφ be a first-order sentence in the language of labels

not containing the equality symbol; then thestrengthening procedure, yielding sequent

rule Str(φ), is defined as follows:

1. convertφ into prenex normal form and skolemize; call the new sentenceφS;

2. add toF ′ the Skolem function(s) introduced at the previous step;

3. build a 2LK-derivation ofΓ,φS−→ ∆ (see Table 3.5 in Subsection 3.3.1) in

which every sequent labelling a leaf contains only constraints, Γ or ∆; when

using rule l∀∗θ, avoid copying the main formula into the premise;

4. finally, letΓ−→ ∆ be the conclusion ofStr(φ), and let the leaves of the deriva-

tion obtained at the previous step be its premises.

Note that rules obtained by the strengthening procedure areframe rules. This is

appropriate, since they express properties of the accessibility relation and, in turn, of

the frame. As already noted, when displayed in sequent calculi, rules are schemes; we

will denote the placeholders by the letterτ, possibly decorated, meaning any label.
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As an example of the strengthening procedure, consider a sentence not involving

equality in Table 3.1, for instance 2; in order to obtainStr(2), first build its prenex

normal form and skolemize:

2S = ∀t0t1t2.(t0≺ t1∧ t0≺ t2)⊃ (t1≺ cv(t0, t1, t2)∧ t2≺ cv(t0, t1, t2))

Let thenF ′ = {cv}; now “unfold” 2S as shown in Figure 3.3; finally, buildStr(2)

by takingΓ −→ ∆ as the conclusion, and the leaves of the proof tree in Figure 3.3 as

the premises.

Γ−→ τ0 ≺ τ1,∆ Γ−→ τ0 ≺ τ2,∆
Γ,−→ τ0 ≺ τ1∧ τ0 ≺ τ2,∆

r∧∗
Γ,τ1 ≺ cv(τ0,τ1,τ2),τ2 ≺ cv(τ0,τ1,τ2)−→ ∆

Γ,τ1 ≺ cv(τ0,τ1,τ2)∧ τ2≺ cv(τ0,τ1,τ2)−→ ∆ l∧∗

Γ,(τ0 ≺ τ1∧ τ0 ≺ τ2)⊃ τ1 ≺ cv(τ0,τ1,τ2)∧ τ2 ≺ cv(τ0,τ1,τ2)−→ ∆ l⊃∗

Γ,∀t0t1t2.(t0 ≺ t1∧ t0≺ t2)⊃ t1 ≺ cv(t0,t1,t2)∧ t2≺ cv(t0,t1,t2)−→ ∆
l∀∗θl∀∗θl∀∗θ

Figure 3.3: application of Step 3 of the strengthening procedure to the sentence 2S.

The leaves of this derivation are the premises of rule Str(2), called wdir and visible in

Table 3.4.

Note that there is no restriction on the shape ofφ, except that it must not contain the

equality symbol so far. Skolemization at Step 1 is carried onin a completely standard

way.

A central issue is that

Proposition 7 (Termination of strengthening) The strengthening procedure is ter-

minating.

Proof:

It suffices to show that every step of the procedure is terminating. Obviously, the

only non-trivially terminating step is Step 3: for this, note that every application of a

2LK rule toφS reduces the number of connectives in it (provided that copying the main

formula inl∀∗θ is forbidden), eventually leading to a set of sequents whichcontain only

constraints.
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•

The restriction on the use of duplicate formulae in rulel∀∗θ at Step 3 of the proce-

dure is necessary in order to guarantee termination of the strengthening procedure.

For any QML without equalityQL , let Str(QL) be the sequent calculus obtained

by strengthening the sentences inFrmAx(QL), that isStr(QL) = {ρ | ρ = Str(φ),φ ∈

FrmAx(QL)}. Then a sequent calculus forQL can be built by takingCQK ∪Str(QL).

This calculus ismodular, in that it is obtained by adding to the (unchanged) ba-

sic calculusCQK a set of new rules, anduniform, in that (as Definition 6 suggests)

each sequent rule inStr(QL) is clearly and intuitively related to a first-order sentence

enforcing a property of the frame.

Moreover, by Proposition 7 and the fact thatFrmAx(QL) is finite, we have that

calculi obtained this way arefinitary, in that they have a finite number of rules, and

each rule has a finite number of premises.

As a simple example, in Figure 3.4 we sketch the proof of axiom2p⊃ 22p @ 0,

characteristic of transitive frames, inCQK ∪{trans}. Ruletrans = Str(4) is visible in

Table 3.4.

p@t2 −→ p@t2
ax

0≺ t1−→ 0≺ t1
ax

t1≺ t2−→ t1 ≺ t2
ax 0≺ t2−→ 0≺ t2

ax

0≺ t1,t1 ≺ t2 −→ 0≺ t2
trans

0≺ t1,t1 ≺ t2,2p@0−→ p@t2
l2

0≺ t1,2p@0−→ 2p@t1
r2

2p@0−→22p@0
r2

−→2p⊃22p@0
r⊃

Figure 3.4: a proof of axiom 2p⊃22p @ 0, characterising transitive frames, in CQK ∪

{trans}.

3.2.3 Sequent calculi for QMLs with equality

The equality symbol between labels is already present in oursyntax (Definition 1) and

it has a semantics (Definition 3). Let alabelled logical atombe a labelled formula in
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which the logical formula is a logical atom; then

Definition 8 (C
.
=
QK ) Let τ,τ′ be labels and t∈ V ′; then C

.
=
QK , a sequent calculus for

QK augmented for equality between labels, is the union ofCQK (recall Table 3.2) and

the rules visible in Table 3.3.

Frame rules

Γ−→ τ .
= τ,∆

refl .
=

Γ[τ′/t],τ .
= τ′ −→ ∆[τ′/t]

Γ[τ/t],τ .
= τ′ −→ ∆[τ/t]

sub .
=

Table 3.3: rules for equality. C
.
=
QK is the union of these rules and CQK . τ,τ′ are labels

and t ∈ V ′. In rule sub .
=, the occurrences of τ replaced by τ′ are in labelled logical

atoms or constraints only.

Rules in Table 3.3 enforce basic properties of
.
=, for instance that assumingτ .

= τ′,

a labelτ can be uniformly substituted withτ′3. Note that rulesub .
= is included in the set

of frame rules although it can have active logical atoms; we choose to do this because

both refl .
= andsub .

= deal with the symbol of equality, which is defined only between

labels.

Definition 6 carries on straightforwardly for all QMLs (justremove the words “not

containing the equality symbol” from it). The same is true for Proposition 7. For

any QML QL , now possibly with equality, a sequent calculus forQL can be built by

takingC
.
=
QK ∪Str(QL). All properties defined and proved in the previous Subsection

still hold: all calculi obtained as described above are modular, uniform and finitary.

As a non-trivial example, in Figure 3.5 we sketch the proof ofaxiom 32p⊃

23p @ 0, characteristic of the logic of reflexive, weakly directed frames, inC
.
=
QK ∪

3the restriction to labelled logical atoms and constraints is dictated by the completeness argument
and will be clarified in Section 3.3.
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{refl,wconn}. Rulesrefl = Str(T) andwconn = Str(3) are visible in Table 3.4. This

proof is possible, as we expect, since the property of weak connectedness is strictly

stronger than that of weak directedness. Note the use of
.
=.

3.2.4 The entailment rule: normalisation

Lastly, we introduce a rule which takes into account all frame rules seen so far. Let

FrmRl(QL) be the union ofStr(QL) and the rules in Table 3.3; then

Definition 9 (CQL and the entailment rule) For any logicQL , let

CQL = C
.
=
QK ∪ entQL

whereentQL (entailment) is the following rule:

Γ−→ ∆
entQL

with `FrmRl(QL) Γ−→ ∆.

According to the above Definition, in eachCQL -proof, ruleentQL represents a sub-

proof in which only rules inFrmRl(QL) are used. The calculiCQL , with respect to

the calculiC
.
=
QK ∪Str(QL), have a restriction on the use of frame rules; sinceentQL

is a closing rule, it cannot be followed higher up in the tree by the application of any

logical rule. In other words,

Proposition 10 (Normalisation) LetQL be any FO-axiomatizable logic; then for ev-

eryC
.
=
QK ∪Str(QL)-proof there is a similarCQL -proof that isnormal, in the sense that

no logical rules are ever used above a frame rule.

Proof: Trivial, from the facts that(i) no frame rules appear in anyCQL , and that(ii)

entQL is a closing rule.
•

Again, all calculi CQL retain the properties defined and proved in the previous

Subsections: they are still modular, uniform and finitary.
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p @ t1−→ p @ t1
ax t1≺ t1−→ t1≺ t1

ax

−→ t1≺ t1 refl

2p @ t1−→ p @ t1
l2

t1≺ t1−→ t1≺ t1
ax

−→ t1≺ t1 refl

2p @ t1−→3p @ t1
r3

t1
.
= t2,2p @ t1−→3p @ t2

sub .
=

Branch 3

p @ t1−→ p @ t1
ax t1≺ t1−→ t1≺ t1

ax

−→ t1≺ t1 refl

t2≺ t1,2p @ t1−→ p @ t1
l2 t2≺ t1−→ t2≺ t1

ax

t2≺ t1,2p @ t1−→3p @ t2
r3

Branch 2

p @ t2−→ p @ t2
ax

t1≺ t2−→ t1≺ t2
ax

t1≺ t2,2p @ t1−→ p @ t2
l2

t2≺ t2−→ t2≺ t2
ax

t2≺ t2 refl

t1≺ t2,2p @ t1−→3p @ t2
r3

Branch 1

0≺ t1−→ 0≺ t1
ax

0≺ t2−→ 0≺ t2
ax

1 2 3
0≺ t1,0≺ t2,2p @ t1−→3p @ t2

wconn

0≺ t1,2p @ t1−→23p @ 0
r2

32p @ 0−→ 23p @ 0 l3

−→32p⊃ 23p @ 0
r⊃

Bottom of the tree

Figure 3.5: a proof of axiom 32p⊃ 23p @ 0, characteristic of reflexive, weakly di-

rected frames, in C
.
=
QK ∪{refl,wconn}. The bottom subtree is at the root of the proof;

the three subtrees above correspond to placeholders 1 , 2 and 3 . Notice that this

proof is not normal.
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3.2.5 Discussion

The methodology outlined earlier on allows us to build sequent calculi for any FO-

axiomatizable QML (with or without equality). As an extended example, Table 3.4

shows the rules obtained by application of the strengthening procedure to sentences in

Table 3.1. We have given them mnemonic names, such asrefl = Str(T), and so on. As

usual, labels in the rules of Table 3.4 are really placeholders.

Besides adding to the elegance of the presentation, modularity and uniformity are

useful for the implementation of these logics. Such an implementation would indeed

benefit from not having to be redone from scratch each time a new, stronger logic is

needed; modularity could be reflected in modularity of the automated machinery.

Moreover, the property of normalisation reduces the searchspace during proof

search in anyCQL . In principle, ruleentQL can be replaced by any reasoning method

whatsoever for the first-order theory ofFrmAx(QL), seen as a black box; in particular,

any efficient machinery for equivalence reasoning can be employed. Normal proofs

here can be seen as a generalised version ofregularproofs in sequent calculi for logics

with equality, an issue addressed, e.g., in [DV01].

Lastly, we show two more non-trivial examples. First, we recast the (non-normal)

proof in Figure 3.5 inCQS4.3; the result is visible in Figure 3.6, where, still, we indicate

explicitly the use of frame rules, instead of using ruleentQS4.3, for the sake of clarity;

note however that, as expected, no logical rules are used above any frame rule, i.e., this

proof is normal.

Second, in Figure 3.7 we show that McKinsey’s axiom,23p⊃32p, characteristic

of atomic frames, is provable inCQS4.1, a calculus for logicQS4.1 for which

FrmRl(QS4.1) = {refl .
=, sub .

=, refl, trans,atom}

(see, e.g., [van84]). As we expect, this proof is also normal.
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Γ,τ≺ wit(τ)−→ ∆
Γ−→ ∆

ser

Γ,τ≺ τ−→ ∆
Γ−→ ∆ refl

Γ−→ τ≺ τ,∆
Γ−→ ∆ irr

Γ−→ τ0 ≺ τ1,∆ Γ,τ1 ≺ τ0 −→ ∆
Γ−→ ∆

symm

Γ−→ τ0 ≺ τ1,∆ Γ−→ τ1≺ τ0,∆
Γ−→ ∆

asymm

Γ−→ τ0 ≺ τ1,∆ Γ−→ τ1 ≺ τ0,∆ Γ,τ0
.
= τ1 −→ ∆

Γ−→ ∆ antisymm

Γ−→ τ0 ≺ τ1,∆ Γ−→ τ1≺ τ2,∆ Γ,τ0 ≺ τ2 −→ ∆
Γ−→ ∆ trans

Γ−→ τ0 ≺ τ1,∆ Γ,τ0 ≺ hb(τ0,τ1),hb(τ0,τ1)≺ τ1 −→ ∆
Γ−→ ∆ wdens

Γ,τ0 ≺ hb(τ0,τ1),hb(τ0,τ1)≺ τ1 −→ ∆
Γ−→ ∆ sdens

Γ−→ τ0≺ τ1,∆ Γ−→ τ0 ≺ τ2,∆ Γ,τ1 ≺ cv(τ0,τ1,τ2),τ2 ≺ cv(τ0,τ1,τ2)−→ ∆
Γ−→ ∆ wdir

Γ,τ1 ≺ cv(τ0,τ1,τ2),τ2 ≺ cv(τ0,τ1,τ2)−→ ∆
Γ−→ ∆ sdir

Γ−→ τ0 ≺ τ1,∆ Γ−→ τ0 ≺ τ2,∆ Γ,τ1 ≺ τ2 −→ ∆ Γ,τ1
.
= τ2 −→ ∆ Γ,τ2 ≺ τ1 −→ ∆

Γ−→ ∆
wconn

Γ,τ1 ≺ τ2 −→ ∆ Γ,τ1
.
= τ2−→ ∆ Γ,τ2 ≺ τ1 −→ ∆

Γ−→ ∆
sconn

Γ,τ1 ≺ la(τ1), la(τ1)
.
= τ2 −→ ∆ Γ,τ1 ≺ la(τ1)−→ la(τ1)≺ τ2,∆

Γ−→ ∆ atom

Table 3.4: frame rules obtained from sentences in Table 3.1 via the strengthening pro-

cedure. wit (the “witness” world), hb (the world “halfway between”), cv (the “convergent”

world) and la (the “last” world) are Skolem functions, purposefully added to F ′ by the

strengthening procedure.

3.3 Soundness and completeness

Recall Definitions 3 and 4, and letQL be any FO-axiomatizable QML (with or without

equality); in this Section we prove thatCQL is sound and complete for eachQL , that
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t1≺ t1−→ t1≺ t1
ax

−→ t1≺ t1 refl

t1
.
= t2−→ t1≺ t2

sub .
=

Branch 3

0≺ t1 −→ 0≺ t1
ax

0≺ t2 −→ 0≺ t2
ax

t1 ≺ t2 −→ t1 ≺ t2
ax

3 t2 ≺ t1 −→ t2 ≺ t1
ax

0≺ t1,0≺ t2 −→ t2 ≺ t1,t1 ≺ t2
wconn

Branch 2

t1≺ t1−→ t1≺ t1
ax

−→ t1≺ t1 refl

Branch 1

p @ t2−→ p @ t2
ax

t2≺ t2−→ t2≺ t2
ax

−→ t2≺ t2 refl

p @ t2−→3p @ t2
r3

p @ t1−→ p @ t1
ax

2
0≺t1,
0≺t2 p @ t1 −→3p @ t2,t1 ≺ t2

r3

0≺ t1,0≺ t2, p @ t1,2p @ t1 −→3p @ t2
l2 1

0≺ t1,0≺ t2,2p @ t1−→3p @ t2
l2

0≺ t1,2p @ t1 −→ 23p @ 0
r2

32p @ 0−→23p @ 0 l3

−→32p⊃23p @ 0
r⊃

Bottom of the tree

Figure 3.6: a proof of axiom 32p⊃ 23p @ 0, characteristic of reflexive, weakly di-

rected frames, in CQS4.3 — but frame rules are explicitly indicated. The bottom subtree

is at the root of the proof; the subtrees above correspond to placeholders 1 and 2 .

Notice the difference with the proof in Figure 3.5, in which logical rules are used above

rule wconn; this proof is actually normal.

is, whatever isCQL -provable isQL -valid and vice-versa:
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p @ t2−→ p @ t2
ax

t1
.
= t2, p @ t1−→ p @ t2

sub .
=

la(0)
.
= t1, la(0)

.
= t2, p @ t1−→ p @ t2

sub .
=

Branch 3

0≺ la(0)−→ 0≺ la(0)
ax

0≺ la(0)−→ 0≺ la(0)
ax

−→ 0≺ la(0)
atom

Branch 2

0≺ la(0)−→ 0≺ la(0)
ax

0≺ la(0)−→ 0≺ la(0)
ax

−→ 0≺ la(0)
atom

Branch 1

3 la(0)≺ t1−→ la(0)≺ t1
ax

la(0)≺ t1, la(0)
.
= t1, p @ t2−→ p @ t1

atom
la(0)≺ t2−→ la(0)≺ t2

ax

la(0)≺ t1, la(0)≺ t2, p @ t2−→ p @ t1
atom

la(0)≺ t1,3p @ la(0)−→ p @ t1
l3

2

la(0)≺ t1,23p @ 0−→ p @ t1
l2

23p @ 0−→2p @ la(0)
r2

1

23p @ 0−→32p @ 0
r3

−→23p⊃32p @ 0
r⊃

Bottom of the tree

Figure 3.7: a proof of McKinsey’s axiom, 23p⊃ 32p @ 0, characteristic of atomic

frames, in CQS4.1. Notice that this proof is normal, as expected. The bottom subtree is

at the root of the proof; the subtrees above correspond to placeholders 1 , 2 and 3 .

`CQL Γ−→ ∆ iff |=QL Γ−→ ∆.
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3.3.1 Two-sorted first-order logic with equality

We now sketch two-sorted first-order logic with equality on one sort (which we call

2FOL) and an associated sequent calculus. This machinery is needed for the proof of

soundness and completeness. The following presentation israther informal; the reader

can check the details in [Gal86] and [DV01], which are the main sources of inspiration.

The vocabulary of 2FOL has three setsV ′, F ′ andP ′ of variable, function and

predicate symbols, plus two symbols,ι and θ, calledsort symbols; ι is the sort of

individuals andθ is the sort of worlds. To each function and predicate symbol is

associated ann-uple in {ι,θ}n (the rank of the symbol — see [Gal86], Subsection

5.2.1). Informally: the rank of a symbol associates a sort (or type) of each argument

of the function or predicate associated with the symbol; forfunction symbols, it also

states the type of the function itself. By default,=θ∈ P
′ with rank(θ,θ). =θ denotes

equivalence among elements of sortθ.

The language of 2FOL is built out of terms and atoms into formulae by means of

¬,⊃ and∀, analogously to what happens in first-order logic, but respecting the rank of

each symbol.

A structureof 2FOL is a pairM ′ = 〈D ′, I ′〉 in whichD ′ =W ′∪C ′ whereW ′ and

C ′ are disjoint and are calledsorts. Every term of 2FOL is associated via its rank to

exactly one sort; we indicate this fact with the notationt :θ (if t denotes an element in

W ′) or t : ι (if t denotes an element inC ′).

The interpretation I′ maps function and predicate symbols to functions and pred-

icates overD ′, respecting the rank of each symbol; in particular, it maps=θ to the

equality relation overW ′. An assignmentin 2FOL is a functionα′ mapping variable

symbols inV ′ to elements of either sort, depending on their rank. Given the standard

notion of denotation of terms, truth of a 2FOL formula inM ′ underα′ is the usual one

for many-sorted first-order logics.

Definition 11 (CQK ) Let A,B range over formulae, c1,c2,s, t terms and a1,a2 vari-
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ables of2FOL; then2LK, a sequent calculus for2FOL, is visible in Table 3.5.

Closing rules

Γ,A−→ A,∆ ax∗

Rules for equality

Γ−→ τ =θ τ,∆ re∗
Γ[t :θ/x],s=θ t −→ ∆[t :θ/x]
Γ[s:θ/x],s=θ t −→ ∆[s:θ/x]

sub∗

Logical rules

Γ−→ A,∆
Γ,¬A−→ ∆ l¬∗

Γ,A−→ ∆
Γ−→¬A,∆ r¬∗

Γ,B−→ ∆ Γ−→ A,∆
Γ,A⊃ B−→ ∆ l⊃∗

Γ,A−→ B,∆
Γ−→ A⊃ B,∆ r⊃∗

Γ,∀x: ι.A,A[c1 : ι/x]−→ ∆
Γ,∀x: ι.A−→ ∆ l∀∗ι

Γ−→ A[a1 : ι/x],∆
Γ−→ ∀x: ι.A,∆ r∀∗ι

Γ,∀x:θ.A,A[c2 :θ/x]−→ ∆
Γ,∀x:θ.A−→ ∆

l∀∗θ
Γ−→ A[a2 :θ/x],∆

Γ−→ ∀x:θ.A,∆
r∀∗θ

Table 3.5: the calculus 2LK for 2FOL. A,B are formulae, c1,c2,s, t terms and a1,a2

variables of 2FOL; a1 and a2 cannot appear free in the conclusion of r∀∗ι and r∀∗θ. In

rule sub∗, the occurrences of s: θ replaced by t : θ are in atomic formulae only, as in

[DV01].

2LK is a specialisation for two sorts of the calculusG= for many-sorted languages

with equality presented, e.g., in [Gal86], Definition 10.5.1, where equality is admitted

on one sort only, namely the sortθ; the presentation is also simplified with respect to

Gallier’s according to [DV01, Kan63]. 2LK consists of an axiomatic rule, rules for

equality, rules for¬ and⊃, and two pairs of rules for∀, denotedr∀∗ι , r∀
∗
θ, l∀

∗
ι , l∀

∗
θ,

in place of the usual ones for untyped quantifiers. We denote all 2LK-rules with a
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superscript∗.

We have that

Theorem 12 2LK is sound and complete for2FOL (Lemma 10.5.1, Theorem 10.5.1

in [Gal86]; Section 1 of [DV01]).

3.3.2 Embedding QMLs into 2FOL

Now we define a translation which maps formulae and first-order sentences to terms

and formulae of 2FOL:

Definition 13 Let the operator[[·]] be defined as in Figure 3.8 (recall Definition 1).

[[·]] maps symbols ofQL to primed symbols of 2FOL, logical atoms to 2FOL

atoms with one more argument (the label), and leaves other formulae as they stand,

recursively, except that it respects the type of the quantifiers in∀-formulae (which

is alwaysι) and it unfolds2 operators in a way that is intuitively related to their

semantics. As an example,

[[∀x.2p(x)⊃ p(x) @ 0]] = ∀x′ : ι.∀t ′ :θ.0′ ≺′ t ′⊃ p′(x′, t ′)⊃ p′(x′,0′).

In the following, we drop the “prime” in order to ease the notation. The above

example becomes

[[∀x.2p(x)⊃ p(x) @ 0]] = ∀x: ι.∀t :θ. 0≺ t⊃ p(x, t)⊃ p(x,0).

[[·]] is also straightforwardly extended to sequent rules:

Γ1−→ ∆1 · · · Γn−→ ∆n

Γ−→ ∆
ρ [[·]]

;

[[Γ1−→ ∆1]] · · · [[Γn−→ ∆n]]

[[Γ−→ ∆]]
[[ρ]]

As it can be seen,[[·]] preserves the number of premises of a sequent rule; therefore,

it extends also to derivations: the 2FOL-translation of a derivation is a derivation in

which all sequent rules are 2FOL-translations of sequent rules ofCQL . The same goes

for proofs.
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[[x]], with x∈ V = x′ : ι ∈ V ′

[[ f (s1, . . . ,sn)]], with f ∈ F = f ′([[s1]], . . . , [[sn]]) with f ′ ∈ F ′

[[p]], with p∈ P = p′ ∈ P ′

[[0]] = 0′ ∈ F ′

[[≺]] = ≺′∈ P ′

[[
.
=]] = =θ∈ P

′

[[t]], with t ∈ V ′ = t ′ :θ ∈ V ′

[[g]], with g∈ F ′ = g′ ∈ F ′

[[τ1≺ τ2]] = [[τ1]]≺′ [[τ2]]

[[p(s1, . . . ,sn) @ τ]] = p′([[s1]], . . . , [[sn]], [[τ]])

[[¬ϕ @ τ]] = ¬[[ϕ @ τ]]

[[ϕ⊃ ψ @ τ]] = [[ϕ @ τ]]⊃ [[ψ @ τ]]

[[∀x.ϕ @ τ]] = ∀x: ι. [[ϕ @ τ]]

[[2ϕ @ τ]] = ∀t :θ. [[τ≺ t]] ⊃ [[ϕ @ t]]

[[Γ]] = {[[γ]] | γ ∈ Γ}

[[Γ−→ ∆]] = [[Γ]]−→ [[∆]]

[[φ]], φ a first-order sentence = φ

Figure 3.8: the definition of [[·]], a 2FOL-translation mapping formulae, sequents and

first-order sentences to formulae and sequents of 2FOL. Translations of first-order

sentences φ include the rank of bound variables, which is invariably θ.

3.3.3 Soundness and completeness

For anyQL , let FrmAxS(QL) be the set of first-order sentences obtained by skolemiz-

ing and converting in prenex normal form the sentences inFrmAx(QL). Let also, as

usual,Γ and∆ be finite multisets offorms, with the restriction that the labels appear-
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ing in Γ∪∆ must not contain any Skolem functions. In order to show soundness and

completeness ofCQL for QL , we prove that the following statements are equivalent:

1. Γ−→ ∆ is a theorem ofCQL ,

2. [[Γ∪FrmAxS(QL)−→ ∆]] is a theorem of 2LK,

3. [[Γ∪FrmAx(QL)−→ ∆]] is valid in 2FOL,

4. Γ−→ ∆ is valid in QL .

Figure 3.9 graphically depicts the situation.

`CQL Γ−→ ∆ 1 ⇐⇒ 4 |=QL Γ−→ ∆

m m

`2LK [[Γ∪FrmAxS(QL)−→ ∆]] 2 ⇐⇒ 3 |=2FOL [[Γ∪FrmAx(QL)−→ ∆]]

Figure 3.9: a schematic representation of the proof of correctness. Instead of proving

that 1 implies 4 (soundness) and that 4 implies 1 (completeness), we prove that 1, 2, 3

and 4 are equivalent.

We proceed by first proving equivalence 1-2 (Proposition 14), then equivalence 2-3

(Proposition 25), and lastly equivalence 3-4 (Proposition26).

Proposition 14 (Equivalence 1-2)Items 1 and 2 are equivalent, that is

`CQL Γ−→ ∆ iff `2LK [[Γ∪FrmAxS(QL)−→ ∆]].

Proof: We show that everyCQL -proof can be 2FOL-translated, and that every 2LK-

proof of a 2FOL-translated sequent is similar to a 2LK-proof that actuallyis the 2FOL-

translation of aCQL -proof.
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1 implies 2: in order to show that everyCQL -proof can be 2FOL-translated, we

show that every rule inCQL can be 2FOL-translated. Recall Tables 3.2, 3.3 and 3.5;

by case analysis,

• closing rule:straightforwardly,[[ax]] = ax∗.

• logical rules: as well,[[r¬]] = r¬∗, [[l¬]] = l¬∗, [[r⊃]] = r⊃∗ and[[l⊃]] = l⊃∗.

For example:

Γ,ϕ @ τ−→ ψ @ τ,∆
Γ−→ ϕ⊃ ψ @ τ,∆ r⊃ [[·]]

;

[[Γ]], [[ϕ @ τ]]−→ [[ψ @ τ]], [[∆]]

[[Γ]]−→ [[ϕ @ τ]]⊃ [[ψ @ τ]], [[∆]]
r⊃∗

Moreover,[[r∀]] = r∀∗ι and[[l∀]] = l∀∗ι . For example:

Γ−→ ϕ[a/x] @ τ,∆
Γ−→∀x.ϕ @ τ,∆ r∀ [[·]]

;

[[Γ]]−→ [[ϕ[a/x] @ τ]], [[∆]]

[[Γ]]−→∀x: ι.[[ϕ @ τ]], [[∆]]
r∀ι

Lastly,[[r2]] is the composition ofr∀∗θ andr⊃∗, whereas[[l2]] is the composition

of l∀∗θ andl⊃∗. For example:

Γ,τ≺ t ′ −→ ϕ @ t ′,∆
Γ−→ 2ϕ @ τ,∆ r2 [[·]]

;

[[Γ]], [[τ≺ t ′]]−→ [[ϕ @ t ′]], [[∆]]

[[Γ]]−→ [[τ≺ t ′]]⊃ [[ϕ @ t ′]], [[∆]]
r⊃∗

[[Γ]]−→ ∀t :θ.[[τ≺ t]]⊃ [[ϕ @ t]], [[∆]]
r∀∗θ

• frame rules: again,[[refl .
=]] = re∗, [[sub .

=]] = sub∗ and, by Definition 6, frame

rules obtained by the strengthening procedure are finite compositions of 2LK

rules.

This completes the proof of implication 1-2.

2 implies 1: this case is more complicated. From now on, let[[forms]] denote the

image offorms under[[·]], that is[[forms]] = {ψ | ψ = [[ϕ]],ϕ∈ forms}; moreover, let

any 2FOL-formula which is the translation of a formulaϕ ∈ forms be denoted as[[ϕ]];

lastly, let us assume thatΠ is a 2LK-proof of [[Γ∪FrmAxS(QL)−→ ∆]], for some logic

QL andΓ,∆ multisets offorms.
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We want to show that there is a 2LK-proofΠ′, similar toΠ, which is the translation

of aCQL -proof of Γ−→ ∆. In order to do that, we first establish a sufficient condition

for a 2LK-proof to be the translation of aCQL -proof, and then we show that, for every

Π, there is a similarΠ′ which enjoys the condition.

A subsetof Π is a subset of the nodes ofΠ; let N ∈Π be labelled by[[ϕ]]; then

Definition 15 A trail of N, Tr(N), is a subset ofΠ for which the following properties

hold:

1. Tr(N) is a tree and N is the root node;

2. let Ni ∈Tr(N); let Nj , j = 1. . . ,n be its children, each one labelled by[[ϕ j ]]; then

every[[ϕ j ]] is active in Ni ;

3. no node ofTr(N) is labelled by a duplicate∀-formula introduced in the premises

by a l∀∗θ rule.

Tr(N) is said tobelongto Π, which is said to be itsparent.

Informally speaking, the trail ofN is the subset ofΠ by which [[ϕ]] is “completely

unfolded”.

Let (N1, . . . ,Nk) be a branch ofΠ; then apathin Π is a tuple of nodes(Nn, . . . ,Nm)

such that 1≤ n≤m≤ k, and itslength, len(Nn, . . . ,Nm), is the number of nodes be-

tweenNn andNm. Thesparsityof a trailTr(N) in Π is defined as∑ len(N′, . . . ,N′′) for

all N′,N′′ ∈Π such thatN′′ is a child ofN′ in Tr(N). Intuitively, the sparsity of a trail

indicates how “far away” from each other the nodes ofTr(N) are in its parent. If the

sparsity is 0, the trail is calledcompact. Informally speaking, a compact trail is also a

proper subtree of its parent.

Definition 16 (Compactness of a proof)A 2LK-proof Π will be called compactif

and only if:

1. for every node N∈Π labelled by[[ϕ]], Tr(N) belongs toΠ and is compact;
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2. the union of all such trails isΠ.

Informally, a compact proof is the union of a finite set of compact trails, each one

labelled by a 2FOL-formula [[ϕ]]. We are now ready to prove that the property of

compactness is sufficient for a 2FOL-proof to be the translation of aCQL -proof:

Lemma 17 If Π is compact, then there is aCQL -proofΘ such that[[Θ]] = Π.

Proof: Immediate from Definition 15 and the proof of implication 1-2: every transla-

tion of aCQL -rule ρ is the compact trail of a nodeN in a 2LK-proof, labelled by[[ρ]].

•

Thanks to this Lemma, in order to prove implication 2-1, it suffices to show that

for everyΠ there is a similar, compactΠ′. To carry on, we first need two useful results

from Proof Theory:

Lemma 18 (Inversion Lemma for2LK) For all ρ ∈ 2LK except ax∗ and re∗, if the

conclusion ofρ is 2LK-provable, so are all the premises.

Proof: By induction on the depth of a proof, that is, on the length of the longest

branch in the proof. See Proposition 3.5.4 in [TS96] for the details. The Proposition

also trivially extends to rulesub∗.
•

Given the notions ofadjacencyandpermutabilityof sequent rules in 2LK, adapted

from Definition 5.3.1 in [TS96],

Lemma 19 (Permutation Lemma for2LK) Let ρ,ρ′ ∈ 2LK. Thenρ is always per-

mutable belowρ′, except whenρ = l∀∗ι andρ′ = r∀∗ι , or whenρ = l∀∗θ andρ′ = r∀∗θ.

The new proof is similar to the original one.

Proof: As in Lemma 5.3.10 in [TS96], specialised for two sorts and nostructural

rules. The definition of permutability obviously takes intoaccount the fact that no rule

is permutable where it is not applicable, i.e., that ruleα can be permuted below ruleβ

only if the main formula inα is not active inβ and vice-versa.



58 Chapter 3. Sequent calculi for quantified modal logics

•

Now we proceed by case analysis on the shape of[[Γ∪FrmAxS(QL)−→ ∆]], con-

sidering in turn three sub-cases, and showing that in each (more and more complex)

sub-case, there isΠ′ which is similar toΠ and compact.

Sub-case (I)Let the set of sub-formulae ofΓ∪∆ contain no2-formulae and let

FrmAxS(QL) be empty. By structural induction on the shape of the sub-formulae of

[[Γ]] and[[∆]], it is clear that every nodeN ∈ Π is labelled by a 2LK-rule displayed in

Table 3.5,except r∀∗θ andl∀∗θ.

But, each of these rules is the translation of a singleCQL -rule (recall the proof of

implication 1-2); therefore, by Definition 15, every node inΠ is a single, compact trail.

ThenΠ is compact by Definition 16, and obviously similar to itself.

Sub-case (II)Suppose now that there is at least a nodeN ∈ Π labelled by a2-

formula. We first state a corollary of Lemma 19:

Corollary 20 An application of rule r⊃∗ or l⊃∗ can be permuted below or above any

other rule, preserving similarity.

Let us call a2-trail the trail of a nodeN labelled by the translation of a2-formula;

then

Theorem 21 (Existence and compactness of2-trails) Let N∈ Π be labelled by the

translation of a2-formula; then there is a2LK-proofΠ′ similar to Π such that:

1. Tr(N) belongs toΠ′,

2. Tr(N) is compact.

Proof: (1): by contradiction. Consider nodeN: by the conclusion ofr∀∗θ we know that

`2LK Γ−→ ∀t :θ.[[τ≺ t]]⊃ [[ϕ @ t]],∆.
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Now if (1) is false, then by Definition 15, there can be no proofΠ′ in which a nodeN′

aboveN is labelled byr⊃∗, and its main formula is active inN. This means that

6`2LK Γ−→ [[τ≺ a]]⊃ [[ϕ @ a]],∆

wherea does not appear free in the former sequent. But this contradicts Lemma 18,

whenρ = r∀∗θ. An analogous argument holds on the left.(2): by Corollary 20, the child

of N in Tr(N) can be permuted inΠ so that the sparsity ofTr(N) eventually becomes

0, that is,Tr(N) is compact.

•

Let thenΠ′ be such a proof: by this very Theorem, all2-trails in Π belong toΠ′,

and they are all compact. Moreover, as it can be easily checked, Π′ does not contain

any new nodes labelled by2-formulae; and, since by the same inductive argument of

Sub-case I, the only nodes inΠ′ not falling in the previous Sub-case are exactly those

in all 2-trails, all nodes inΠ′ belong to a compact trail. By Definition 16 then,Π′ is

compact, and it is similar toΠ by this Theorem again.

As an example, letΠ be the following 2LK-proof of theorem[[2(p∨¬p) @ 0]] (all

bound variables have sortθ — we omit it for the sake of conciseness):

[[Γ′]],0≺ t ′, p(t ′)−→ p(t ′), [[∆′]] ax∗

[[Γ′]],0≺ t ′ −→ p(t ′),¬p(t ′), [[∆′]] r¬∗

[[Γ′]],0≺ t ′ −→ p(t ′)∨¬p(t ′), [[∆′]] r∨∗

[[Γ′]]−→ 0≺ t ′⊃ p(t ′)∨¬p(t ′), [[∆′]] r⊃∗

.... subproof #1
[[Γ]]−→ 0≺ t ′⊃ p(t ′)∨¬p(t ′), [[∆]]

[[Γ]]−→ ∀t.0≺ t⊃ p(t)∨¬p(t), [[∆]]
r∀∗θ

Assume, without loss of generality, that subproof #1 is compact, and letΠ′ be the

following proof:
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[[Γ′]],0≺ t ′, p′(t ′)−→ p′(t ′), [[∆′]] ax∗

[[Γ′]],0≺ t ′ −→ p′(t ′),¬p′(t ′), [[∆′]] r¬∗

[[Γ′]],0≺ t ′ −→ p′(t ′)∨¬p′(t ′), [[∆′]] r∨∗

.... subproof #1
[[Γ]],0≺ t ′ −→ p′(t ′)∨¬p′(t ′), [[∆]]

[[Γ]]−→ 0≺ t ′⊃ p′(t ′)∨¬p′(t ′), [[∆]]
r⊃∗

[[Γ]]−→ ∀t.0≺ t⊃ p′(t)∨¬p′(t), [[∆]]
r∀∗θ

It turns out thatΠ′ = [[Θ]], whereΘ is the followingCQL -proof:

Γ′,0≺ t ′, p @ t ′ −→ p @ t ′,∆′
ax

Γ′,0≺ t ′ −→ p @ t ′,¬p @ t ′,∆′
r¬

Γ′,0≺ t ′ −→ p∨¬p @ t ′,∆′
r∨

.... subproof #1
Γ,0≺ t ′ −→ p∨¬p @ t ′,∆

Γ−→ 2(p∨¬p) @ 0,∆
r2

and thatΠ′ is similar toΠ′ and compact, as we expect from Theorem 21.

Sub-case (III)Suppose, lastly, that there isN ∈ Π labelled byφS∈ FrmAxS(QL).

Another immediate corollary of Lemma 19 is that

Corollary 22 An application of rule l∀∗θ, l¬∗, r¬∗, l⊃∗, r⊃∗ can be permutedabove

any other rule, preserving similarity.

Let us call aframe trailTr(N), whereN is labelled by the translation ofφS; then

Theorem 23 (Existence and compactness of frame trails)Let N∈Π be labelled by

the translation of a frame axiomφS; then there is a2LK-proof Π′ similar to Π such

that:

1. Tr(N) belongs toΠ′,

2. Tr(N) is compact.

Proof: (1): by the same argument of Theorem 21 and repeated applicationof Lemma

18. (2): by the same argument of Theorem 21: by Corollary 22, and by the fact that

by Definition 6,φS has the shape∀x.P(x), whereP(x) is quantifier-free and appears on

the left of a sequent.
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•

Let thenΠ′ be such a proof: by this very Corollary, all frame trails inΠ belong

to Π′, and they are all compact. Moreover, again,Π′ does not contain any new nodes

labelled by frame axioms.

However here, differently from the previous Sub-case, the use of thel∀∗θ rule can

spawn nodes which do not belong to any trail; in fact, by the same inductive argument

of Sub-cases I and II, this is the only case of nodes inΠ′ not falling in the previous

Sub-cases. So it remains to prove that there is a further 2LK-proof, call it Π′′, similar

to Π andΠ′, in which such nodes belong to a compact trail.

As an example of “bad” behaviour, consider Figure 3.10, illustrating a proof in-

volving the axiom of symmetry (indicated as 5 to ease the notation — recall Table

3.1). The problem arises from the very shape of frame axioms,which can have, in

general, two or more outer universal quantifiers.

....
[[Γ]],5,t1≺ t0−→ [[∆]]

....
[[Γ]],5−→ t0≺ t ′1,t0≺ t1, [[∆]]

....
[[Γ]],5,t ′1≺ t0 −→ t0≺ t1, [[∆]]

[[Γ]],5, t0≺ t ′1⊃ t ′1≺ t0 −→ t0≺ t1, [[∆]]
l⊃∗

[[Γ]],5, ∀t1.t0≺ t1⊃ t1 ≺ t0 −→ t0 ≺ t1, [[∆]]
l∀∗θ

[[Γ]],5,∀t1.t0 ≺ t1⊃ t1≺ t0,t0≺ t1⊃ t1 ≺ t0 −→ [[∆]]
l⊃∗

[[Γ]],5,∀t1.t0≺ t1⊃ t1≺ t0−→ [[∆]]
l∀∗θ

[[Γ]],5−→ [[∆]]
l∀∗θ

....

Figure 3.10: an example of “bad” frame trail: an application of rule l∀∗θ, boxed in the

Figure, generates a duplicate ∀-formula which is not the translation of any formula in

forms and spawns nodes not belonging to any trail. Bad nodes are boxed, as well as

their main formulae.

Let N′ ∈ Π be labelled by a duplicate formulaψ. It must be the case thatψ was

generated by al∀∗θ labelling a node in a frame trail; call the frame axiom at the root

of the trailφS. Now sinceφS is in prenex normal form, it must be the case thatφS =
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∀x1 . . .xn.ψ, and that there is a copy ofφS in the sequent labellingN′. This is evident

in Figure 3.10, at the node labelled by the boxedl∀∗θ.

Let thenN1, . . . ,Nn be n new nodes inserted just belowN′, such that(a) N1 is

labelled byφS andl∀∗θ, (b) for all Ni , i = 1, . . . ,n, Ni is labelled by∀xi . . .xn.ψ andl∀∗θ.

Let, lastly,N′ be labelled by the active formula inNn. This way we obtain a new proof

Π′′ similar to Π′ which contains a trailTr(N1) labelled byφS including the old bad

nodes.

Figure 3.11 shows the effect of this operation on the exampleof Figure 3.10.

....
[[Γ]],5,t1≺ t0−→ [[∆]]

....
[[Γ]],5−→ t0≺ t ′1,t0 ≺ t1, [[∆]]

....
[[Γ]],5,t ′1≺ t0−→ t0 ≺ t1, [[∆]]

[[Γ]],5, t0≺ t ′1⊃ t ′1 ≺ t0 −→ t0≺ t1, [[∆]]
l⊃∗

[[Γ]],5, ∀t1.t0 ≺ t1⊃ t1≺ t0 −→ t0≺ t1, [[∆]]
l∀∗θ

[[Γ]], 5 −→ t0≺ t1, [[∆]]
l∀∗θ

[[Γ]],5,∀t1.t0≺ t1⊃ t1≺ t0,t0 ≺ t1⊃ t1≺ t0−→ [[∆]]
l⊃∗

[[Γ]],5,∀t1.t0≺ t1⊃ t1 ≺ t0−→ [[∆]]
l∀∗θ

[[Γ]],5−→ [[∆]]
l∀∗θ

....

Figure 3.11: the example of Figure 3.10, “cured”: a new node has been inserted in the

proof, making the old bad nodes part of a new frame trail.

By repeated application of this method, all nodes not falling in the above cases can

be revamped into nodes belonging to frame trails; more formally, there isΠ′′ similar

to Π which meets Definition 16 and is therefore compact.

In order to carry the proof of implication 2-1 to the end, one last simple result is

needed:

Lemma 24 A ruleρ whose active formulae are atomic can be permuted above untilit

is at the top of the proof tree.

Proof: By the definition of permutability (Definition 5.3.1 in [TS96]), a rule ρ is

permutable above a ruleρ′ only if none of the active formulae ofρ is main in ρ′.
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But the only rule in which the main formulae are atomic isax∗ which is closing, and

therefore is at the top of the proof tree.
•

By applying this result repeatedly to all compact frame trails in Π′, we get a final

2LK-proof in which all frame trails either appear at the top of the proof tree or have

frame trails above them. By Definition 9, such a proof is the translation of aCQL -proof.

This also holds for the frame rulesub .
=, and it is precisely the reason for the re-

striction on its application (recall Table 3.5).

This completes the proof of implication 2-1 and therefore ofProposition 14.

As a final example, letΠ be the following 2LK-proof in which the axiom of sym-

metry 5 (recall Table 3.1) has been employed:

[[Γ′′′]], t1≺ t0−→ [[∆′′′]] ax∗

.... subproof #4
[[Γ′′]], t1≺ t0−→ [[∆′′]]

[[Γ′′′]]−→ t0≺ t1, [[∆′′′]]
ax∗

.... subproof #5
[[Γ′′]]−→ t0≺ t1, [[∆′′]]

[[Γ′′]], t0≺ t1⊃ t1≺ t0−→ [[∆′′]] l⊃∗

.... subproof #3
[[Γ′]], t0≺ t1⊃ t1≺ t0−→ [[∆′]]

[[Γ′]],∀t1.t0≺ t1⊃ t1≺ t0−→ [[∆′]]
l∀∗θ

.... subproof #2
[[Γ]],∀t1.t0≺ t1⊃ t1≺ t0−→ [[∆]]

[[Γ]],∀t0t1.t0≺ t1⊃ t1≺ t0−→ [[∆]]
l∀∗θ

.... subproof #1

Let Π′ be the following proof:

[[Γ′′′]], t1≺ t0−→ [[∆′′′]] ax∗
[[Γ′′′]]−→ t0≺ t1, [[∆′′′]]

ax∗

[[Γ′′′]], t0≺ t1⊃ t1≺ t0−→ [[∆′′′]] l⊃∗

[[Γ′′′]],∀t1.t0≺ t1⊃ t1≺ t0−→ [[∆′′′]]
l∀∗θ

[[Γ′′′]],∀t0t1.t0≺ t1⊃ t1≺ t0−→ [[∆′′′]]
l∀∗θ

.... subproof #4/#5

.... subproof #3

.... subproof #2

.... subproof #1

It turns out thatΠ′ = [[Θ]], whereΘ is the followingCQK -proof:



64 Chapter 3. Sequent calculi for quantified modal logics

Γ′′′, t1≺ t0−→ ∆′′′
ax

Γ′′′ −→ t0≺ t1,∆′′′
ax

Γ′′′ −→ ∆′′′
symm

.... subproof #4/#5

.... subproof #3

.... subproof #2

.... subproof #1

and thatΠ′ is similar toΠ, it is compact, and the only displayed frame rule appears at

the top of the tree, as we expect from Theorem 23 and Corollary24.

•

Proposition 25 (Equivalence 2-3)Items 2 and 3 are equivalent, that is

`2LK [[Γ∪FrmAxS(QL)−→ ∆]] iff |=2FOL [[Γ∪FrmAx(QL)−→ ∆]].

Proof: Since [[forms]]∪ FrmAxS(QL) is a strict subset of the formulae of 2FOL,

this equivalence follows from Theorem 12, with the remark that the 2FOL theory of

FrmAxS(QL) is a conservative extension of that ofFrmAx(QL) (see, e.g., [Sho70], p.

55).
•

Proposition 26 (Equivalence 3-4)Items 3 and 4 are equivalent, that is

|=2FOL [[Γ∪FrmAx(QL)−→ ∆]] iff |=QL Γ−→ ∆.

Proof: Since[[·]] extends to sequents straightforwardly, it suffices to provethe Propo-

sition for single formulae. The Proposition is proved by showing that, given a model

in QL for ϕ ∈ forms, there is a corresponding model for[[ϕ]] in 2FOL, and vice-versa.

Let M = 〈W ,R,D , I〉 andα be a structure and an assignment ofQL , and letM ′ =

〈D ′, I ′〉 andα′ be a structure and an assignment of 2FOL such that:

1. D ′ =W ∪D ,

2. I ′ interprets≺′ asRand
.
= as=θ,
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3. for any predicate symbolp∈ P ,

(sM ,α
1 , . . . ,sM ,α

n ) ∈ I(w, p) iff (sM ′,α′
1 , . . . ,sM ′,α′

n ,τM ′,α′) ∈ I ′(p′)

4. α′(v: ι) = d′ ∈ D ′ iff α(v) = d ∈ D ,

5. α′(t :θ) = w′ ∈ D ′ iff α(t) = w∈W .

It turns out thatM ,α |= ϕ iff M ′,α′ |= [[ϕ]]. This is proved by structural induction.

Base cases:

• logical atoms:M ,α |= p(s1, . . . ,sn) @ τ if and only if (sM ,α
1 , . . . ,sM ,α

n ) ∈

I(w, p) if and only if (sM ′,α′
1 , . . . ,sM ′,α′

n ,τM ′,α′) ∈ I ′(p′) if and only if M ′,α′ |=

p′([[s1]], . . . , [[sn]], [[τ]]) that isM ′,α′ |= [[p(s1, . . . ,sn) @ τ]].

• ≺-constraints:M ,α |= τ1≺ τ2 if and only if (w1,w2) ∈R if and only if M ′,α′ |=

[[τ1]]≺′ [[τ2]] that isM ′,α′ |= [[τ1≺ τ2]].

•
.
=-constraints:M ,α |= τ1

.
= τ2 if and only if w1 = w2 if and only if M ′,α′ |=

[[τ1]] =θ [[τ2]] that isM ′,α′ |= [[τ1
.
= τ2]].

Step cases: assume thatM ,α |= ϕ@τ if and only if M ′,α′ |= [[ϕ@τ]], andM ,α |=

ψ@τ if and only if M ′,α′ |= [[ψ@τ]]. Then

• negation:M ,α |= ¬ϕ @ τ if and only if not M ,α |= ϕ @ τ if and only if not

M ′,α′ |= [[ϕ @ τ]] that isM ′,α′ |= [[¬ϕ @ τ]].

• implication:M ,α |= ϕ⊃ψ @τ if and only if notM ,α |= ϕ @τ or M ,α |= ψ @τ

if and only if notM ′,α′ |= [[ϕ @ τ]] or M ′,α′ |= [[ψ @ τ]] that isM ′,α′ |= [[ϕ⊃

ψ @ τ]].

• quantification:M ,α |= ∀x.ϕ@τ if and only if for all d ∈ D it is the case that

M ,α[d/x] |= ϕ@τ if and only if M ′,(α[d/x])′ |= [[ϕ@τ]] if and only if M ′,α′[d/x] |=

[[ϕ@τ]] if and only if M ′,α′ |= ∀x.[[ϕ@τ]] if and only if M ′,α′ |= [[∀x.ϕ@τ]].



66 Chapter 3. Sequent calculi for quantified modal logics

• necessitation (2): it reduces to the previous cases for quantification and impli-

cation, since the domain of quantification of 2FOL includesW .

As far as frame properties are concerned, sentences inFrmAx(QL) enforce exactly

those properties of≺ which are needed by the accessibility relationR in order to make

the modelM a model ofQL (recall Definition 2 and subsequent discussion). Since≺

is interpreted asR, this completes the proof of Proposition 26.
•

Propositions 14, 25 and 26 together lead to

Theorem 27 (Soundness and completeness)CQL is sound and complete for any FO-

axiomatizable logicQL .

3.3.4 Discussion

As it stands, the strengthening procedure (see Definition 6)might seem to hinder com-

pleteness, because of the forbidden duplication of∀-formulae when using rulel∀∗θ.

In general, aLK-like sequent calculus with no weakening and contraction rules, as is

2LK, will be incomplete if duplication is disallowed. The simplest example of a first-

order theorem which cannot be proved if duplication is restricted is∃x.∀y.p(x)⊃ p(y),

for any unary predicatep in the signature. Intuitively incompleteness arises from the

impossibility of matching terms introduced by generative and non-generative rules.

But this doubt is actually void.In primis, notice that the strengthening procedure

does not aim toprovea formula, but rather to “unfold” it, in the sense given by the

procedure itself. By Proposition 7, the procedure terminates, but also notice that it is

deterministic, up to placeholders renaming and the order ofthe premises of the sequent

rule obtained.

In secundis, the procedure acts onSkolemised sentencesplaced on the left-hand

side of a sequent, rather than on generic formulae; therefore, no complex interplay

between terms introduced by generative and non-generativerules can happen at all,
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sinceno generative rulesare ever used. The only quantifier rule that can be ever used

in the procedure is exactlyl∀∗θ.

In tertiis, as is shown in the example of Figures 3.10 and 3.11, every time the

completeness argument requires a multiple use of rulel∀∗θ in the proof of a 2FOL-

theorem, there is a similar 2LK-proof in which multiple uses of the appropriate sequent

rule, obtained via strengthening, appears. Intuitively, whenever a universal quantifier

needs be used more than once in a 2LK-proof, the appropriatesequent rulecan be used

multiple times in the correspondingCQL -proof.

3.4 Chapter overview

In this Chapter we have devised a family of labelled sequent calculi for QMLs with

constant domains and rigid designators, whose frame properties can be axiomatised in

first-order logic with equality. We have proved that these calculi are sound, complete,

modular, uniform and normalising.

We could say that the first two properties are important to thetheoretician, estab-

lishing what can and cannot be proved in the calculi; the third and fourth matter to

the modal logician, giving a way to build new sequent calculithanks to some simple

guidelines; and the fifth is crucial to the practitioners, that is, to those who want to

do automated reasoning in QMLs. Normalisability means thatlogical and frame rea-

soning will never be intertwined in any proof, or, better, that for any proof in which

this happens, there exists a similar one in which it does not.Therefore, in principle,

any external machinery can be used as a black box to perform the task of checking

entailment.

The work exposed in this Chapter extends and generalises Basin, Matthews and

Viganò’s work of the late 90s.





Chapter 4

A framework for automated reasoning

in QMLs and FOLTL

In this Chapter we build upon the theoretical work expoundedin Chapter 3 and develop

a formal framework for automated reasoning in QMLs and First-Order Linear-Time

Temporal Logic (from now on,FOLTL ).

Our framework consists of:

1. a labelled sequent calculus forFOLTL , calledCFOLTL , obtained by extending

our language with some new symbols andCQS4.3 with a set of new sequent rules;

2. an interactive, tactic-based theorem prover for QMLs andFOLTL , calledFTL,

in whichCFOLTL is implemented;

3. aλProlog module which acts as a “bridge” between the proof plannerλCLAM and

FTL, in the spirit of Proof Planning.

The next three sections expand the above items, in turn, withthe exception that

Section 4.2 does not describeFTL in detail — that is left to Chapter 5 — but, rather, how

the paradigm of tactic-based theorem proving has been adapted toCQL andCFOLTL .

69
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4.1 Extending CQL to FOLTL

In Chapter 3 we have defined a family of labelled sequent calculi for FO-axiomatizable

QMLs; we have also proved a number of properties of the calculi. Here we extend the

approach toFOLTL .

FOLTL is a very strong quantified modal logic, in the sense that it isa quantified

modal logic whose frame is isomorphic to the natural numbers. Its propositional frag-

ment, usually calledLTL, is obtained by adding to the propositional modal logic of

linear, discrete frames, calledS4.3.1, two modal operators, called “next” and “until”

(see [DS02] —2 and3 can then be defined in terms of “next” and “until”); so, a

sensible way to extendCQL to FOLTL could be to axiomatize in first-order logic the

properties of such a frame and then to employ the strengthening procedure to get an-

other member of theCQL family. Adding two modal operators would be no problem,

since it would suffice to mimic their semantic definitions, exactly as it has been done

for 2 and3.

Unfortunately, this is impossible. The class of frames characterising the logic

S4.3.1 is exactly the set of frames isomorphic to the natural numbers; using the Com-

pactness Theorem, it can be shown that no finite set of first-order sentences can ax-

iomatize such a class of frames. This holdsa fortiori for LTL and for their quantified

counterparts,QS4.3.1 andFOLTL .

In fact, it is possible to characteriseS4.3.1 modally, by adding the so calledDum-

mett axiomto the axioms forS4.3, that is,T,4 and 3; the Dummett axiom,

2(2(p⊃ 2p)⊃ p)⊃ (32p⊃ 2p),

forces reflexive, transitive and weakly-connected frames,characteristic ofS4.3, to as-

sume the shape of a set ofballoons; a balloon is a finite chain of single, reflexive worlds

at whose end lies a cluster of worlds, all accessible to one another — in graph theory

words, a clique. Also, it can be shown that whatever is valid in S4.3.1 is valid on the
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frame〈N,≤〉 whereN is the set of natural numbers and≤ is the standard less-than-or-

equal relation over the naturals (see [Gor93]).

But, similarly, the Dummett axiom is not expressible in first-order logic at all; so

there is no way of applying here the general procedure outlined in Chapter 3, even in a

hypothetical propositional case. In a sense, this is reassuring, since it has been proved

thatFOLTL is not only undecidable (it is stronger than first-order logic), but also that

it is non recursively enumerable, therefore there can existno finitary sequent calculus

for it ([HWZ00]). If the strengthening procedure were actually applicable toFOLTL ,

we would be contradicting that result.

So, the problem arises here of how to build a labelled sequentcalculus for a quan-

tified modal logic characterised by a linear, discrete frame, isomorphic to the setN —

which cannot be done by means of the strengthening proceduredefined in Chapter 3.

Substantially, two types of strengthening are required:(i) we have to strengthen

thesyntaxandsemanticsof our language, to take into account the higher complexity

of the frame and the new modal operators for “next” and “until”; and (ii) we also have

to buildnew sequent rulesto be added to a suitable member of theCQL family, to give

an account of how the new symbols (predicates, functions, modal operators) behave.

We tackle these issues in the following Subsections.

4.1.1 Strengthening the syntax and semantics

One first, very basic observation is that, since we work in Labelled Deduction, we

can work out Item(i) above just by enriching ourlanguage, since in this framework

semantical properties of the frame can be expressed in the language itself — this is

precisely one of the pillars of Labelled Deduction.

In our setting, properties of the frame are expressed bylabels, constraintsand

frame rules, and our starting point is therefore that of enriching the labelling language.

One reasonable way appears that of somehow “building” the natural numbers into the

language by means of a Peano-style successor function and byviewing the accessibility
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relation as the standard≤ relation overN. This can be easily accomplished by adding

to F ′ a new function symbol,σ, interpreted as the unary functionsuccessor-of, and by

interpreting the accessibility relation≺ exactly as≤.

Moreover, we introduce some new modal operators: the unary operator© (“next”)

and the binary operators2∗ (“bounded always”),U (“until”) and W (“weak until”).

The intuitive meaning of these operators, according to the standard interpretation of

LTL, is:

• ©p @ τ holds if and only ifp @ σ(τ) holds, that is, if and only ifp holds at the

instant immediately after the instant denoted byτ; and

• 2
τ′p @ τ holds if and only if there is an instantτ′ in the future ofτ such thatp

holds fromτ to τ′.

• pU q @ τ holds if and only if there is an instant in the future ofτ at whichq

holds, andp holds in the meantime;

• pW q @ τ holds if and only if2p @ τ holds, orpU q @ τ holds. This operator

extendsU allowing for the “persisting” conditionp to possibly hold forever,

with q never happening.

Recall Section 3.1.1; to take these additions into account,it suffices to replace

Definition 1 with the following:

Definition 28 (FOLTL formulae) Like Definition 1, except:

lab ::= 0 ||| t ||| σ(lab) where t∈ V ′,0,σ ∈ F ′

lf ::= la ||| ¬lf ||| lf⊃ lf ||| ∀x.lf ||| 2lf

||| © lf ||| 2
lablf ||| lf U lf ||| lf W lf where x∈ V

Now recall Subsection 3.1.2; the semantics is reshaped as follows:

Definition 29 (FOLTL structure) We call aFOLTL structurea structure
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M = 〈N,≤,D , I〉

whereN and≤ denote the set of natural numbers and the standard less-than-or-equal

binary relation; moreover, Il maps
.
= to the standard equality relation overN andσ ∈

F ′ to the standard Peano successor function. All the rest is unchanged w.r.t. Definition

2 and subsequent ones in Subsection 3.1.2.

Note that this new definition remarkably reflects the notion of a standard model

in [AM90]. A standard model is precisely what is needed in that paper to take into

account the semantics ofFOLTL (therein calledFirst-Order Temporal Logic).

Lastly, recall Subsection 3.1.2 again; the new notion oftruth in a structureis ob-

tained like this:

Definition 30 (Truth in a FOLTL structure) A formulaϕ is true in aFOLTL struc-

tureM under the assignmentα, writtenM ,α |= ϕ, if and only if:

M ,α |= τn
.
= τm iff n = m

M ,α |= τn≤ τm iff n≤m

M ,α |= τn < τm iff n < m

M ,α |=©ϕ @ τi iff M ,α |= ϕ @ σ(τi)

M ,α |= 2
τnϕ @ τi iff for all m ∈N,

(M ,α |= τi ≤ τm andM ,α |= τm≤ τn) implies

M ,α |= ϕ @ τm

M ,α |= ϕUψ @ τi iff there is n∈N such that

M ,α |= τi ≤ τn andM ,α |= ψ @ τn and

M ,α |= 2
τnϕ @ τi

M ,α |= ϕW ψ @ τi iff M ,α |= 2ϕ @ τi or

M ,α |= ϕUψ @ τi

All the rest is unchanged w.r.t. Definition 3 and subsequent ones in Subsection 3.1.2.
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Note that we have replaced the symbol≺, so far used to indicate the accessibility

relation, with the usual symbol≤. Note also that we now usemandn to denote worlds,

as they can be safely identified with natural numbers —τn andτm indicate thelabels

which denoten andm.

One further note is necessary. Our definition ofU is slightly stronger than the usual

one. We require that, ifpU q holds,p must holdalsoat the future instant in whichq

holds, whereas this is usually not required. This choice is motivated by the shape of

the system we will be trying to model as a case-study, and willbe clarified in Chapter

6, Section 6.3.1.

4.1.2 Building a CQL for FOLTL

Now that our language is rich enough to expressFOLTL formulae, we have to find a

suitableCQL for strengthening. We first make two simple observations:

1. the propositional modal logic of linear, discrete frames, S4.3.1, is obtained by

adding the Dummett axiom toS4.3; as well,

2. it seems reasonable to believe that the relationship between S4.3.1 and LTL

somehow carries on betweenQS4.3.1 andFOLTL , that is, thatQS4.3.1 is the

restriction ofFOLTL to the operator21;

In view of this we chooseCQS4.3, our sound and complete calculus forQS4.3, as

the basis for a labelled sequent calculus forFOLTL , that we will indicate asCFOLTL .

Of course, it is not incidental that≺, in QS4.3, is reflexive, transitive and weakly

connected, which is something any partial order such as≤must enjoy.

We therefore extendCQS4.3 with two kinds of new rules:(i) rules which model the

behaviour of the modal operators©, 2
∗ andU , both on the left and on the right of

sequents, and(ii) rules which model the behaviour of≤ andσ.

1this belief is corroborated by a personal communication with Rajeev Goré.
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Rules of type(i) are shown in Table 4.1, while rules of type(ii) (that is, frame rules)

appear in Table 4.2.

Logical rules

Γ,ϕ @ σ(τ)−→ ∆
Γ,©ϕ @ τ−→ ∆ l©

Γ−→ ϕ @ σ(τ),∆
Γ−→©ϕ @ τ,∆ r©

Γ,2τnϕ @ τ,ϕ @ τc−→ ∆ Γ,2τnϕ @ τ−→ τ≤ τc,∆ Γ,2τnϕ @ τ−→ τc < τn,∆
Γ,2τnϕ @ τ−→ ∆ l2∗

Γ,τ≤ τd,τd < τn−→ ϕ @ τd,∆
Γ−→2

τnϕ @ τ,∆ r2∗

Γ,τ≤ τa,ψ @ τa,2
τaϕ @ τ−→ ∆

Γ,ϕUψ @ τ−→ ∆ lU

Γ−→ τ≤ τb,ϕUψ @ τ,∆ Γ−→ ψ @ τb,ϕUψ @ τ,∆ Γ−→2
τbϕ @ τ,ϕUψ @ τ,∆

Γ−→ ϕUψ @ τ,∆ rU

Table 4.1: rules for modal operators introduced in FOLTL . τa,τd ∈ V
′ cannot appear

free in the conclusion of lU and r2∗.

Here it seems reasonable to provide, in rules2
∗ andrU , a duplicate main formula

in the premises for completeness reasons, as it happens, forinstance, for rulesl∀ and

r∃. In general, it is likely that any classical logic based sequent calculus needs dupli-

cation of formulae in order to retain completeness, either in the form of structural rules

(weakening and contraction) or as duplicate premises in non-generative rules involving

existential quantifiers on the right or universal quantifiers on the left. This is the case

for CQL and, consequently, forCFOLTL .

Once again, it is worth recalling thatCFOLTL cannot be complete forFOLTL ; but

nothing prevents us from trying to retain completeness for the largest possible fragment

of FOLTL we are interested in, that is, for the problem we are trying tosolve.

Completeness also is the main reason why we have introduced the operator2∗.

Recall that, according to its semantics,U consists of an outer existential quantifier and

an inner universal quantifier over time instants; by using2
∗, we somehow separate the
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existential part ofU from the universal one. This is very useful, as we have noticed

during some earlier work (see [CS02a]), whenU -formulae appear as assumptions on

the left of a sequent. In that case, when rulelU is employed, it generates a2∗-formula

on the left which, thanks to the duplicated formula in rulel2∗, can be reused many

times. In that paper we actually face the problem: if2
∗-formula duplication were not

allowed, it would be impossible to carry on some of the proofspresented therein.

Frame rules

Γ−→ σ(τ) .
= 0,∆

not0

Γ,σ(τ′)≤ τ′′ −→ ∆
Γ,τ′ < τ′′ −→ ∆ l <

Γ−→ σ(τ′)≤ τ′′,∆
Γ−→ τ′ < τ′′,∆

r <

Γ−→ ϕ @ 0,∆ Γ,ϕ @ t −→ ϕ @ σ(t),∆
Γ−→ 2ϕ @ τ,∆ ind

Table 4.2: frame rules for FOLTL . t ∈ V ′ cannot appear free in the conclusion of ind.

On the other hand, Table 4.2 gives rules for some basic properties of 0,σ and≤,

plus a simple time-induction rule.

Soundness and completeness

Rules added toCQS4.3 to get toCFOLTL , that is, rules in Tables 4.1 and 4.2, can be

proved sound via a simple semantic argument — in fact, they simply reflect the se-

mantics of the associated operators, predicates and functions.

As far as completeness is concerned, we are not in the position, so far, to make any

formal claim about it; what we can say is that:

1. it is possible to prove the Dummett axiom inCFOLTL (see [CS01], where the

proof is carried out in a close relative of this calculus, therein calledT L ind).

This suggests thatCFOLTL could be complete for (propositional!)S4.3.1; since
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the proof makes use of the induction rule, the hypothesis is much weaker in the

case ofQS4.3.1;

2. an interesting open question: isCFOLTL complete and/or terminating for propo-

sitionalLTL?

3. another interesting question: isCFOLTL complete for the monodic fragment of

FOLTL ?

4. in [CS02a], a simplified version of this machinery, namelywithout theσ func-

tion and the© operator, was used to manage the first successful experimentin

Feature Interactions. Thanks to the introduction of2
∗, it is probably possible to

work out a completeness proof forCFOLTL with respect to the©-free fragment

of FOLTL — the newly introduced rules do not seem to invalidate any of the

assumptions made for the proof of Section 3.3. Anyway, this is future work.

4.2 Tactic-based theorem proving in CQL and CFOLTL

Having set up a theoretical framework for reasoning about QMLs andFOLTL , and

aiming to do automated reasoning via Proof Planning inCQL andCFOLTL , the first step

has been to build a theorem prover which implements the calculus — theobject-level

theorem prover. We describe here how tactic-based theorem proving has been adapted

to our case.

Let us callgoal a pair (proof, sequent); then atactic is a predicate over goals.

Operationally, tactics are “steps” from a goal to another: we have a goal, we want to

reduce it to a simpler one (that could be a set of simpler subgoals), and a tactic does

exactly that. The hope is that, eventually, all subgoals will be trivially true; assuming

the soundness of tactics, that means the link between the initial goal and its proof has

been established.

FTL usesbasic tacticsto enforce sequent rules (one rule, one tactic) andcompound
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tacticsto enforce repeated, conditional and exhaustive application of tactics (both basic

and compound). The following Subsections explain how the mechanism works. The

reader interested in other applications of tactic-based theorem proving might want to

have a look at [Fel93].

4.2.1 Basic tactics

FTL usesbasic tacticsto enforce sequent rules: one rule, one basic tactic. The standard

embedding of a rule in a basic tactic happens through a straightforward definition:

<tactic>

<position>

<input-goal>

<output-goal> :-

<preconditions>,

<effects>.

The idea is that a basic tactic, applied to theinput-goal, produces theoutput-goal,

provided that thepreconditionsabout the input-goal are met; theeffectsare applied to

compute the output-goal. The integer parameterpositionspecifies the main formula,

when more than a candidate is found.

Usually, the preconditions specify what the shape of the input-goal has to be in

order for the basic tactic (rule) to be applicable, that is, whether the sequent in the

output-goal contains a candidate main formula for this rule; the effects remove the

main formula from the premises, if it is the case, and print some information about the

operations performed by the basic tactic. But this is just the simplest case.

Without going into detail, here is the definition2 of the basic tactic embedding rule

l¬:

tlnot
2the representation given here is slightly simplified with respect to the actual implementation.
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Pos

((lnot Pos P) proves (Gamma --> Delta))

(P proves (Gamma’ --> ((Phi at Tau)::Delta))) :-

member Pos (not Phi at Tau) Gamma,

delete Pos Gamma Gamma’.

(As is customary in logic programming, sets are implementedvia lists; in the example

above, and in all subsequent ones, we denote the sequent symbol by --> and set union

by ::.) As it can be seen, basic tactictlnot links the two goals (l¬(Pos,P), Γ −→

∆) and (P, Γ′ −→ {ϕ @ τ}∪∆) provided that formula¬ϕ @ τ is actually member

numberPosof Γ (precondition), and, if so, builds the antecedent of the premise,Γ′, by

removing the formula fromΓ (effect).

Note that rulel¬ is here used as aproof constructor: it takes a positionPosand a

proofP as input and outputs a new proofl¬(Pos,P). The idea is that if there is a proof

P of the sequent in the input-goal (e.g., the premise of the rule), and the tactic assumes

so, a proofl¬(Pos,P) of the sequent in the output-goal (the conclusion of the rule) can

be built. Therefore, the tactictlnot really acts as a wrapper for the rule: it defines the

rule and states the side conditions under which it can be applied.

A more interesting case occurs when the rule wrapped by a basic tactic has two or

more premises. Here is the definition of the basic tactic embedding ruler∧:
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trand

Pos

((rand Pos P1 P2) proves (Gamma --> Delta))

(and_goal (P1 proves (Gamma --> ((Phi at Tau)::Delta’)))

(P2 proves (Gamma --> ((Psi at Tau)::Delta’)))) :-

F = (Phi and Psi at Tau),

member Pos (Phi and Psi at Tau) Delta,

delete Pos Delta Delta’.

Here we use thegoal constructorand goal to build a multiple goal: to solve it

means to solve both argument goals. Ruler∧ acts here as a constructor taking as

inputs an integer andtwoproofs: it builds a proofr ∧ (Pos,P1,P2) of the sequent in the

output-goal if there are two proofsP1 andP2 which prove the sequents in the premises

in turn.

With the aid of some simple recursion machinery, tactics canbe employed to build

a full proof of a sequent; the mechanism sketched above showsthat a proof is actually

a higher-orderλProlog term, representing a tree — the proof-tree of the conclusion of

a sequent rule. Tactics embedding closing rules (e.g.,ax) provide the bottom of the

recursion: their output-goal is just an ad-hoc constant,true goal.

λProlog is a declarative programming language and thereforethis approach works

either way, but usuallybackward reasoningis employed, that is:

1. start with a goal(P,−→ ϕ @ 0) as input-goal, whereϕ is the logical formula to

be proved andP is an uninstantiated metavariable;

2. if the input-goal is actuallytrue goal, stop; otherwise,

3. apply a suitable tactic to the input-goal and, for each output-goal generated, go

back to Item 2.

This is exactly what happens inFTL: in the interactive mode, the user supplies the

appropriate tactic at each step, until all subgoals aretrue goals. The result of the
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computation, if it terminates successfully, is a higher-orderλProlog term representing

the proof of the sequent in the original input-goal. This term is a faithful representation

of the proof tree; as an example, here is the term output byFTL applied to the triviality

∀x.p(x)⊃ (p(a)∧ p(b)):

(rimp 1

(rand 1

(lall 1 (ax 1 1))

(lall 1 (ax 1 1))

)

)

Compare it with the corresponding proof tree:

p(a)−→ p(a)
ax

∀x.p(x)−→ p(a)
l∀

p(b)−→ p(b)
ax

∀x.p(x)−→ p(b)
l∀

∀x.p(x)−→ p(a)∧ p(b)
r∧

−→ ∀x.p(x)⊃ p(a)∧ p(b)
r⊃

Of course, in general there is no guarantee that such a term exists; but it can be

shown that a tactic-based theorem prover implemented respecting the guidelines given

in [Fel93] — andFTL is heavily based on Felty’s work — iscorrect, in the sense that

for every theoremϕ and proofP proving it, there are higher-orderλProlog termsP and

Phi such that theλProlog goalP proves Phi is derivable from theλProlog program

implementing the prover, and vice versa. See Appendix B for such a proof specialised

for FTL, and refer once again to [Fel93] for a thorough explanation.

4.2.2 Compound tactics

As well as basic tactics, compound tactics link two goals, but they also bear some

operational content. They are independent from the object logic as they enforce, among

other things, repeated, conditional and exhaustive application of tactics.
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The main differences to basic tactics are that(i) besides the input- and output-goal,

they usually have one or more additional arguments (the tactics to be manipulated);

(ii) the goals are usually specified in a completely generic way, since their shape is in

many cases not knowna priori; and (iii) there are no preconditions and effects, but

rather an operational specification of how they behave. The operational content is the

body of the clause defining the tactic:

<tactic>

<tactic1> ... <tacticN>

<input-goal>

<output-goal> :-

<operational content>.

Thanks to standard recursion techniques, a compound tacticcan enforce any op-

eration on tactics (proofs), preserving soundness. As an example, compound tactics

then tac andorelse tac enforce sequential and conditional application of two tac-

tics:

then_tac

Tac1 Tac2

InGoal

OutGoal :-

Tac1 InGoal MidGoal, Tac2 MidGoal OutGoal.

orelse_tac

Tac1 Tac2

InGoal

OutGoal :-

Tac1 InGoal OutGoal; Tac2 InGoal OutGoal.

then tac simply applies the first tacticTac1 to the input-goalInGoal and gets

a middle-goalMidGoal, then applies the second tacticTac2 to the middle-goal and
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obtains the output-goalOutGoal. Both tactics must succeed in order forthen tac

to succeed. Note that, using the standardλProlog unification mechanism, the actual

shape of the goals is neglected — they appear as generic metavariablesInGoal and

OutGoal.

Similarly, orelse tac appliesTac1 andTac2 in a disjunctive fashion: ifTac1

fails, Tac2 is attempted.

The argument tactics of a compound tactic do not have to be basic tactics — they

can be compound as well. This allows the construction of “higher-level” compound

tactics such asrepeat tac:

repeat_tac

Tac

InGoal

OutGoal :-

orelse_tac

(then_tac Tac (repeat_tac Tac))

fail_tac

InGoal OutGoal.

repeat tac acts as follows: it appliesTac to the input-goal (then tac Tac ...)

and then recursively calls itself (repeat tac Tac). This has the effect of keeping on

applyingTac to the new goal obtained at each step, untiltrue goal is obtained. In

case the repeated application ofTac does not yieldtrue goal, the first argument of

the outerorelse tac tactic fails, giving way to its second argumentfail tac, which

always fails. In other words, this tactic eagerly applies a tacticTac until the input-goal

is solved.

A number of other compound tactics can be defined; again, refer to [Fel93] for a

thorough list.

A final remark is worthwhile, about the use ofλProlog, and in general about a

higher-order programming language, rather than simple Prolog. Besides other reasons
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which do not concern the tactics mechanism directly (and which will be outlined in

Chapter 5), we can observe here two advantages we get:

1. firstly, quantification over predicates lets a metavariable be used in place of a

predicate name, followed by its arguments:

Tac1 InGoal MidGoal, ...

This allows a freer use of the clauses in the program: metavariableTac1 in the

example may range over all tactics, which are defined by program clauses;

2. secondarily,λProlog is astrongly typedlanguage, i.e., all terms must have been

assigned a type in the signature of the program or, alternatively, it must be possi-

ble for the compiler to dynamically deduce their type; therefore, it is possible to

use different types for a term by giving a partial specification of their arguments.

For instance, tacticthen tac is declared like this:

type then_tac (goal -> goal -> o) ->

(goal -> goal -> o) ->

goal -> goal -> o.

(o is the predefined type for Boolean values, i.e.,trueor false, and is the standard

target type for predicates). It takes two tactics, each one of type (goal -> goal

-> o), as arguments and outputs a tactic (its target type isgoal -> goal ->

o). Now, the type ofthen tac is not that of a tactic, which would begoal ->

goal -> o alone, but the type of term

then_tac Tac1 Tac2
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is — it is the λ-application of a term of the type indicated above to two terms

of typegoal -> goal -> o. Therefore we can freely employ it inside another

tactic as a tactic argument, as is the case ofrepeat tac, visible above.

4.3 Proof Planning and FTL

Notwithstanding its modular construction,CFOLTL has too many rules, and probably in

any standard proof the branching factor would be high. This makes the situation quite

hard to manage for any automated theorem prover, even takinginto account backward,

goal-directed reasoning, the use of metavariables and so on. On the other hand, recent

results about the complexity ofFOLTL make this fact unsurprising, and convey the

idea that some highly abstract form of reasoning is necessary.

This is why we turn our attention to Proof Planning. The idea in Proof Planning is

that an object-level theorem prover is guided by a high levelspecification of a proof (a

proof plan) generated by the proof planner.

But we face a non trivial problem here: there must be some soundness-preserving

form of translationbetween the proof planner, which outputs proof plans as trees of

methods and sequents, and the object-level theorem prover,which must build a proof

out of it — and a proof is usually much more complicated than a proof plan.

Although sometimes neglected in the Proof Planning literature, this is a crucial

step: to finally have aproof of the original theorem is the only argument that can

be used to support soundness of the methods employed by the planner, and of the

instantiations of the methods that actually appear in the proof plan. On the other hand,

a correct translation of the proof plan is the only chance forthe object-level theorem

prover to actually obtain a proof, assuming, as we have said above, that the problem is

too complex for it to be solved automatically.

Such a “bridge” is actually a pair ofλProlog modules. One of them implements

FOLTL as an object logic inλCLAM; the other takes care of the actual translation to
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and froFTL’s object logic. Here we give a sketch of the interaction betweenFTL and

λCLAM, which happens through the bridge.

Normally, the bridge would be used to translate a proof plan and a sequent in

λCLAM’s internal syntax into a proof and a sequent inFTL’s internal syntax; but, since

λCLAM’s internal syntax is quite hard to read and write, we have opted for a more

flexible bridge, capable of operating both ways. We write thesequent to be proved in

FTL, translate the sequent toλCLAM, and, once and ifλCLAM returns a proof plan for

it, we translate theλCLAM sequent and the proof plan back into anFTL sequent and a

tactic.

This tactic, which is usually quite complicated but not as detailed as the proof we

aim at obtaining, is then applied to theFTL sequent, and, if everything goes well, a

proof of the sequent is obtained. Once this is done,FTL is invoked to check that the

proof actually proves the sequent.

Figure 4.1 graphically sketches the situation.

input sequent yes/no

FTL

tacticinput sequent

lclam sequent proof plan

lambda−CLAM

bridge

proof check

tactic application;

Figure 4.1: a broad representation of the interaction between λCLAM and FTL.

The sequence of operations goes as follows:

1. an input sequent, i.e., a theorem to be proved, is written in the input language

of FTL, which is a quite plainλProlog coding ofFOLTL — in the original spirit
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of the project, we want to be able to retain the expressiveness of such a logic,

therefore it must be possible to express our problems in a straightforward way;

2. the input sequent is translated by the bridge module intoλCLAM’s internal syntax.

First every term and atomic formula in the language ofFTL is wrapped by a

metapredicate which outputs a term in the syntax ofλCLAM; then the logical and

modal operators are translated into their equivalents inλCLAM;

3. λCLAM’s proof plan engine is called, and hopefully a proof plan forthe translation

of the input sequent is returned;

4. the proof plan is translated into a tactic and passed toFTL, which finally

5. applies the tactic to the input sequent and checks that theresulting proof does

prove it.

There is only one item which deserves more explanations, andit is Item 4. In

Proof Planning, every method has an associated (basic) tactic; in λCLAM, methods are

declared like this:

atomic <theory-name> <method-name>

<input-goal>

<preconditions>

<effects>

<output-goal>

<tactic>.

The declaration of a method bears some resemblance with thatof a tactic — and

this is not surprising, since they both encapsulate an operator that can be applied in a

tree-like structure: tactics build proof trees and methodsbuild proof plans. An unin-

teresting difference is that a method is here declared in an abstract way, that is, there is

a predicateatomic which states thatmethod-nameis the name of a method belonging
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to the theorytheory-name. This is, of course, an implementation choice ofλCLAM and

is not characteristic of Proof Planning in general.

The added value of a method with respect to a tactic is that a method enforces an

informal, incomplete and even in some cases unsound step of human-like reasoning;

therefore it must have an associated (set of) tactic(s), representing its translation in the

object logic, which is completely formal.

Thanks to this precise association, inbridge.mod the translation of a proof plan

into a tactic may happen using a fewλProlog clauses. The structure of a proof plan is

recursively examined and, at each node, the information on which method was applied

is extracted; in parallel, a tree of tactics is built, in which each node is in turn labelled

with the tactic associated with the method found in the proofplan.

Both methods and tactics, in our implementation, bear information about which is

the main formula at each node, so that the information may be simply passed from

methods to tactics.

Although tricky here and there, the actual implementation of the proof checking

mechanism, roughly corresponding to the “proofcheck” block in Figure 4.1, is defined

by a simpleλProlog clause:

proofcheck ProofPlan Query :-

translate_plan ProofPlan Tactic,

translate_formula Query Phi,

checkFTL Tactic Proof Phi’,

print "Plan proofchecked!".

The predicatecheckFTL takes a tactic, a formula and an uninstantiated proof ob-

ject as input, and tries to execute the tactic on the formula,step by step building the

corresponding proof, which is finally output.

One last point is worth being remarked: inλProlog tactics acting as tactic con-

structors can be easily built using the abstraction mechanism. In an earlier example
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(see [CS02a]) we have devised a case-split method for a classof FOLTL formulae

representing an example of Feature Interactions (see Chapter 7). In that case, the case-

split method opened three branches. The method definition looked like this:

atomic fi casesplit

<input-goal>

true

true

<output-goal>

(T1\ T2\ T3\ (function_of T1 T2 T3)).

Herefunction of indicates the complex tactic which realised the method in full

CFOLTL detail; at three particular locations in the proof tree, three tactics had to be at-

tached, resulting from the further development of the proofplan, and therefore coming

out of the translation of further methods. Thanks toλ-abstraction, the<tactic> slot

can be filled by what really is afunctionof three tactics, or better, atactic constructor

(T1\T2\ T3\(function of T1 T2 T3)), whose purpose is that of building the proof

tree in the correct way.

4.4 Chapter overview

In this Chapter we have given a recipe for a sequent calculus for FOLTL which is,

hopefully, ready to be used in our framework. At the price of giving up complete-

ness, we have extendedCQS4.3.1 keeping in mind its good characteristics. In particular,

we hope, in most situations, to be able to use the entailment rule in CFOLTL as well,

although this will not be always true.

Then we have outlined how tactic-based theorem proving works, and we have

shown that the approach can be easily adapted for all QMLs described in Chapter

3, and forFOLTL as well.
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Lastly we have outlined how we have coupled the proof plannerλCLAM and the

object-level theorem proverFTL, in order to build a proof planning system forFOLTL .



Chapter 5

A tactic-based theorem prover for CQL

In this Chapter we describeFTL, the quantified modal / temporal logic theorem prover

we have developed. Although it has been conceived since the beginning as an object-

level theorem prover to be coupled withλCLAM, it turns out that it stands on its own as

an interactive prover for the logics which are the subject ofthe previous Chapters, as

well. Under this respect, it can be seen as a similar machinery to that implemented in

Isabelle in [Vig00].

The choice of reimplementing such a machinery from scratch,rather that using

Isabelle or some other well-established framework, was originally motivated at least

by the following issues:

1. we wanted to have a prover which would have been easy to integrate with our

proof plannerλCLAM;

2. as well, we wanted to have full control over the machinery,down to the finest

possible degree;

3. lastly, we wanted to use a higher-order programming language, in order to reuse

all the knowledge acquired during the years in whichλCLAM had been developed

by the Mathematical Reasoning Group at the University of Edinburgh.

Although results in automated TP obtained usingFTL were shown in some early

91
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publications ([CS00, CS01]),FTL isnotconceived as an automated theorem prover — it

contains no machinery for proof search (besides a simple exhaustive tactic applicator)

and is completely unusable for automated theorem proving when we want to prove any

slightly-more-than-trivial theorems.

One wants to employ proof planning mostly on complex, undecidable (or worse)

domains and logics, in order to take advantage of its abstraction capabilities; therefore

it would have anyway been no point trying to makeFTL more and more automatic.

Most of the effort has been concentrated since the beginningon the proof planning

strategies, that is to say, on the upper level, rather than onthe capabilities ofFTL. All

we neededFTL to provide was: soundness ofλCLAM’s methods, that is, proof checking.

Automation was not required.

Having said that,FTL is written inλProlog and works fine as a stand-alone interac-

tive prover forFOLTL , as well as for all other calculi inCQL . The properties ofCQL ,

which extend toCFOLTL to a certain extent, have been heavily exploited while design-

ing FTL — in particular, the property of modularity has enabled us tobuild a separate

λProlog module to take care of frame reasoning. Again, this isan outcome of Labelled

Deduction and fits well with its spirit.

This Chapter describesFTL. Tactic-based theorem proving and its application to our

problem was already described in Chapter 4; in what follows,after a short introduction

to λProlog and its peculiarities with respect to ordinary logicprogramming languages

(Section 5.1), we give a high-level account ofFTL’s design, showing how it fits with

CQL (Section 5.2), then moving on to some details about the actual implementation

(Section 5.3).

Moreover, Appendix A shows an interactive session inFTL, in order to give an idea

of how it works in practice; and Appendix B gives a proof of itscorrectness. The term

correctnesshere has the meaning explained in the previous Chapter — it obviously

does not meanFTL aims at being complete and/or terminating for any logic whatsoever.
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5.1 A quick introduction to λProlog

In the subsequent Sections, we will refer to some basic concepts of the higher-order

logic programming languageλProlog, without going into detail (the interested reader

should refer, e.g., to [Mil93, NM98] and [Mil98]). Nevertheless, a quick introduction

is needed.

As a start,λProlog can be thought of as ordinary Prolog, but:

1. all terms aretyped;

2. the language of clauses is extended, admittingλ-abstraction andλ-application;

3. the language of goals is extended, allowing foruniversalandimplicationalgoals;

4. programs can be split amongmodules, each module consisting of a set of type

declarations (thesignatureof the program) and a set of clauses (itsbody).

The typing system

The λProlog typing system isstrongandpolymorphic, that is,(i) all constants must

have a unique type, and for all variables, a unique type must be inferable at compile-

time; and(ii) both new types and type constructors can be declared, and type declara-

tions can contain logical variables. An immediate example is that of lists:

kind person type.

kind list type -> type.

type average_age (list person) -> integer.

type head (list A) -> A.

Here we have declared a type (person), a unary type constructor (list) and two

functions, one operating on lists of persons and returning an integer number, and one
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operating on lists of anything and returning an object of thesame type of those con-

tained in the list. Notice that theλProlog keywordtype is overloaded, being used both

in the definition of types and type constructors, and in the declaration of the types of

predicates.

Predicates inλProlog haveo as target type (the last type of a type specification,

that is, the type of the function itself).o can be thought as the type of Boolean truth or

falsehood at the object level.

Abstraction and application

λProlog allows metavariables to range over functions and predicates and, in the spirit

of λ-calculus, allows forλ-abstraction and application. The notation is(x\ f) for

λx. f and(f x) for f (x).

Operationally, it uses a higher-order unification algorithm to perform unification

of higher-order terms. Although higher-order unification is well-known to be non-

terminating (see, e.g., [Hue75]), undecidable problems arise quite seldom.

A typical example (modelled upon [Mil98], and actually usedin FTL) is that of

applying a predicate to each element of a list:

type map (A -> B -> o) -> (list A) -> (list B) -> o.

map _ nil nil.

map P [H|Tail] [H’|Tail’] :- P H H’, map P Tail Tail’.

Considermap’s type specification. It is a predicate (its target type iso) linking a

predicate of type(A -> B -> o) (a binary predicate, whose arguments have typeA

andB) and two lists, typed accordingly with the types of the argument predicate ((list

A) and(list B)). Notice the use of the logical variableP, ranging over predicates.

The effect ofmap is that, given a predicate and a list of arguments for it, it generates

a new list in which every element is obtained via the argumentpredicate. For example,

let double a predicate linking an integer and its double:
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type double int -> int -> o.

double N M :- M is N * 2.

Then the goal?- map double [1,2,3] L. produces the answer

L = [2,4,6]

This predicate — just an example of smart higher-order logicprogramming — is

very useful to extend an algorithm to a whole list, without rewriting any new code.

Goals

Universal goals are solved by adding a new constant to the signature of the program,

and then trying to solve a new goal in which the universally quantified variable has been

replaced by this constant — a system which resembles universal rules and their side

conditions in classical logic. The notation is?- pi x\ (P x) for the goal represented

by∀x.P(x). The newly-introduced constant cannot be unified with any variable already

appearing in the signature.

Implicational goals are solved by adding to the program clauses the antecedents of

the implication, and then trying to solve the consequent. The notation is?- p => q

for the goal represented byp⊃ q.

Notice that universal goals augment the signature of a program, whereas implica-

tional goals augment its body. Recalling the assert/retract mechanism in Prolog, the

use of implicational goals can be seen as a better logically founded mechanism for

asserting clauses in the program’s database1.

Modules

Lastly, perhaps the most interesting concept in working with λProlog is that of mod-

ules, and ofaccumulationversusimportingof λProlog modules.

1there is no clause retraction mechanism inλProlog, which can sometimes cause trouble.
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An accumulated module is just textually included into another one, much like what

happens in the C language with the preprocessor directive#include or in ordinary

Prolog. The signatures and clauses of the two modules are merged (modulo multiple

inconsistent definitions) and all goals can be indifferently solved using one module or

the other’s clauses.

On the other hand, the relation between a module (let us call it “father”) which

imports another module (the “child”) is a little more complicated. The two signatures

are merged as it happens during accumulation, but the clauses of the child are made

dynamically available to the father, meaning that they act as antecedents in an impli-

cational goal. As an example, consider these two module declarations (the example

comes, once again, from [Mil98]):

module modA.

type p o.

p.

module modB

import modA.

type q o.

p :- q.

In this case, the goal?- p. is trivially derivable from within modulemodA (the

child), but not from within modulemodB (the father). When the query forp is at-

tempted, the clausep :- q is found and augmented with the only clause of the child,

yielding clausep :- (p => q). The subgoalp => q is generated, the factp. is

added to the father’s clauses and?- q. is attempted with no result. Notice that, had

modA been accumulated intomodB, the query would have been immediately solved

thanks to the factp. in modA.

The big advantage of usingλProlog modules is that the resulting code can take

advantage of them and be remarkably modular. By modularity here, we mean that
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changes affecting a module should not affect the rest of the code, with beneficial effects

on bug detection.

In our case, this characteristic actually is what we need. Most quantified modal and

temporal logics, in our framework, share the reasoning machinery and the syntax (see

Chapters 3 and 4); therefore, it seemed an interesting (if viable) idea to keep reasoning

on the frame properties in a separate module, or at least, to exploit λProlog’s modules

mechanism to keep it separate from “logical” reasoning. Thegoal was to minimise

the burden of changes in the system, as different logics weretackled — which was

tantamount to changing the frame properties.

5.1.1 Search, metavariables and Skolem functions

As is customary in Automated Reasoning,FTL implements some standard techniques

to speed up the search and/or to reduce the search space. We give a brief outline of

two of these techniques, since they are not mentioned in the previous Chapters but

the proof of correctness we give below (Appendix B) requiresthem. This also lets us

describe theλProlog search mechanism a little more in detail. All information sketched

below can be found mainly in [Fel93], and is anyway quite standard nowadays in logic

programming.

Search in λProlog

Let 〈Σ,P 〉 be aλProlog signature and set of clauses (program); search is then per-

formed via six primitives:

1. AND A conjunction of goalsG1∧G2 is derivable from〈Σ,P 〉 if and only if both

G1 andG2 are derivable from it;

2. OR A disjunction of goalsG1∨G2 is derivable from〈Σ,P 〉 if and only if either

G1 or G2 is derivable from it;



98 Chapter 5. A tactic-based theorem prover for CQL

3. INSTANCE An existential goal∃x.G (i.e., a standard Prolog-like goal) is deriv-

able from〈Σ,P 〉 if and only if there is someΣ-termt of the same type asx such

thatG[t/x] is derivable from it;

4. GENERIC A universal goal∀x.G is derivable from〈Σ,P 〉 if and only if G[k/x]

is derivable from〈Σ∪{k},P 〉 wherek has the same type asx and isnot in Σ;

5. AUGMENT An implicational goalP⊃G is derivable from〈Σ,P 〉 if and only if

G is derivable from〈Σ,P ∪{P}〉;

6. BACKCHAIN An atomic goalA is derivable from〈Σ,P 〉 if and only if either

A∈ |P |Σ or P⊃ A∈ |P |Σ andP is derivable from〈Σ,P 〉. The set|P |Σ is defined

as the smallest set of clauses such that(i) P ∈ |P |Σ and(ii) if ∀x.D ∈ |P |Σ andt

is aΣ-term of the same type asx, thenD[t/x] ∈ |P |Σ.

Metavariables

A well-known problem in automated reasoning is that of appropriately instantiating

bound variables in non-generative quantifiers, that is, existential quantifiers appearing

with positive polarity or vice-versa (for a precise definition of polarity, especially in

temporal logics, refer, e.g., to [AM90]). In our framework,for instance, every time a

r∃ rule is employed we have to guess a term of the language, having sortι, with which

to substitute the bound variable in the active formula of therule. This case happens as

well with non-generative rules for modal operators such asr3 andl2∗.

Besides sort information, there is no clue on what term to use; since we usually

have Skolem functions in the language ofCQL , and work with the natural numbers

in the case ofCFOLTL , the Herbrand universe is infinite and non-determinism is ex-

treme. Therefore, some smart, soundness-preserving instantiation mechanism must be

enforced.

The choice we adopt, and which is adopted as well inλCLAM, is that of using

metavariablesin non-generative rule applications. In place of the guessed term, a
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λProlog variable is substituted, which is carried on to the very end. (By “the very

end” here we mean a point at which it is actually possible to find an instantiation for

that variable via the higher-order unification mechanism, or something smarter.) This

well-known idea dates back to the late 50s at least, if not to Herbrand, and has been

recently revisited and thoroughly described in [DV01], where proof systems such as

ours are calledfree variable systems, since the idea of metavariables is closely related

to the (first-order) concept of free variable in a formula.

The use of metavariables is particularly appealing and useful in our case, where

frame reasoning is highly separated from logical reasoning(see Section 5.2): twodif-

ferentunification algorithms can in principle be used to perform the final instantiation

of the metavariables appearing in a proof tree — one for the sort θ of possible worlds

(time instants) and one for the sort of everything else,ι — without affecting each other.

As an example, Figure 5.1 shows theCQK -proof of the Converse Barcan Formula

(recall Figure 3.2), in which two metavariables,X of sort ι andT of sort θ, are em-

ployed.

p(X) @ T −→ p(a)@t
ax

∀x.p(x) @ T −→ p(a)@t
l∀

0≺ t −→ 0≺ T
ax

0≺ t,2∀x.p(x) @ 0−→ p(a)@t
l2

2∀x.p(x) @ 0−→ 2p(a)@0
r2

2∀x.p(x) @ 0−→ ∀x.2p(x)@0
r∀

−→ 2∀x.p(x)⊃ ∀x.2p(x)@0
r⊃

Figure 5.1: the CQK -proof of the Converse Barcan Formula (recall Figure 3.2), with the

use of metavariables. We follow the Prolog convention here: metavariables names be-

gin with a capital letter or with an underscore. The proof tree is closed by the unification

{X← a,T← t}.
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Skolem functions

Another big issue is that of, sometimes,restricting the scope of unification, once

metavariables have been introduced in the language. It is the case, dual to the pre-

vious one, of sequent rules involving generative quantifiers such asr∀ andlU : in this

case, the term which substitutes the bound variable in the active formula of the rule

must befresh, that is, it must not appear in the conclusion of the rule itself. This side

condition enforces soundness of the rule itself.

Usually, this proviso is enforced thanks toSkolem functionsrestricting unification.

In λProlog there is a straightforward and logically well motivated way of enforcing

such a proviso: whenever a fresh constant is required, the GENERIC directive is used

at the metalevel to introduce a term which will not unify withany metavariablealready

present in the signature of the program, that is, in the prooftree.

5.2 High-level design

FTL consists of about one thousand lines ofλProlog code, distributed among six mod-

ules; modules are hierarchically conceived, i.e., the basic syntax and operation of the

object language are defined in simple “bottom” modules, which are then accumulated

or imported into “higher” ones which deal with more and more complex functions. The

top module contains the main predicate, that is, the interactive theorem prover itself.

The hierarchical structure ofFTL is depicted in Figure 5.2.

In the Figure, each box represents a module; a solid arrow from box A to box

B indicates that moduleA is included into moduleB, while a dotted arrow denotes

importing in the same way. InλProlog, accumulation and importing propagate through

the hierarchy, meaning that, for instance, modulesyntax is accumulated by all modules

Also, as one can see, only one dotted line appears in Figure 5.2, meaning that the only

case of a module being imported into another is that offrame being imported into

basic tacs.
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syntax lists

compound_tacs

framebasic_tacs

FTL

Figure 5.2: the hierarchy of modules that constitute FTL.

FTL can also (and perhaps more proficiently) be viewed as a set of interplaying sets

of modules — aggregates ofλProlog modules defining specific functionalities or deal-

ing with well-delimited parts of the object logic; since every accumulated module is

textually included into its accumulator, in the end such a view is equivalent to counting

the top modules, that is, modules which are not accumulated into any other module,

but possibly are imported into some other ones.

It is in this respect that we have confined all frame reasoningin a module called

frame. Figure 5.3 offers an architectural view ofFTL (syntax and lists are not repre-

sented for conciseness).

FTL is the overall top module and offers one main functionality:the interactive

theorem prover.frame, on the other hand, accumulates all syntax and basic operations

(compound tactics in modulecompound tacs, among others) and then defines frame

rules and associated tactics, in the end grouped in the entailment rule.

In this respect the modularity ofλProlog reflects the modularity of our sequent

calculiCQL : FTL knows all the bits of syntax needed for frame reasoning (for instance,
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basic_tacs

FTL

compound_tacs

compound_tacs

frame

Figure 5.3: the architecture of FTL. Modules syntax and lists are omitted for the sake of

conciseness.

the Skolem functions introduced by the strengthening procedure) since they are in the

signature, but has no knowledge of frame rules and tactics. If a tactic is modified or

deleted, or a new tactic is added, we only need to change module frame.

Rather than giving the details of the code, it is better here to point the interested

reader to some appropriate references. The TP machinery andinteraction with the user

closely resemble the code found inλProlog literature, for instance in [Fel88, Fel89,

Fel93], and really present nothing new; on the other hand, the implementation of tac-

tics in λProlog, and how proofs are built out of tactics, has already been described in

Section 4.2.

5.3 Implementation

A description of what each module does follows.
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lists

This module contains primitive operations on lists such asmember, nth memberand

delete, plus a very basic higher-order predicatemap, which, given a predicateP and

a list l , generates a listl ′ in which every element is the result of applyingP to the

corresponding element ofl . Also, a couple of printing facilities appear in this module.

syntax

This module defines the sortι and logical formulaeaskinds, plus all the basic (not

frame-related) syntactic elements, more or less exactly asthey can be read off Section

3.1.1. This includes Boolean operators, first-order quantifiers and modal/temporal op-

erators. These objects are viewed as logical formulae constructors, i.e., unary or binary

functions from the set of logical formulae to itself.Labelled formulaeare defined as

anotherkind, having one constructor only — the @ operator. As well, the sort θ and

the kinds of sequents, goals and proofs are defined. Lastly, this module defines the se-

quent constructor-->, joining two lists of formulae, and the goal constructorproves,

building a goal out of a proof and a sequent.

compound tacs

This module contains compound tactics, most of which have already been described in

Subsection 4.2.2, so we will not go into detail. Note that, intheFTL module hierarchy

(recall Figure 5.2), this module appearsbelowmodulebasic tacs, notwithstanding the

name. Although somewhat surprising at the beginning, it is clear that compound tac-

tics, from the point of view of the metalanguage, aremore generalthan basic tactics,

since they can be applied to any object logics whatsoever. Operationally, basic tactics,

which are special to the logicQL implemented by the prover, must rely on compound

tactics to be applied.
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frame

This module contains all that is related to frame reasoning.The signature defines the

symbols 0,≺ and
.
= as constructors for the sortθ; the clauses define frame rules and

the associated tactics, as they are defined in Table 3.4, plusthe substitution algorithm

for the application of rulesub .
=. This algorithm is really a simple recursive term sub-

stitution predicate operating on single formulae. Themap higher-order predicate takes

care, then, of extending it to lists of formulae, when rulesub .
= is applied. Lastly, in

this module the tactictent is defined, corresponding to the entailment ruleent. So

far we have not been highly concerned with it, therefore it isimplemented as a simple

depth-bounded iterative deepening exhaustive application of all rules inFrmRl(QL),

for eachQL ; but, of course, there is no restriction on how this procedure is designed,

as long as it returns a valid unification, if it is the case, when it finds a positive answer

to the entailment problem.

basic tacs

Again, basic tactics and their use have been described somewhere else (see Subsection

4.2.1); besides that, this module defines the only tactic intended for automated reason-

ing in FTL: it enforces an exhaustive, eager application of all tactics taken from a given

list. The list also includes tactictent, whose inner working is hidden thanks to the

fact that this moduleimportsmoduleframe. Any change to that module has no effect

to the code written here.

FTL

This is the top module: it actually defines(i) the predicatetop, which enforces inter-

active theorem proving, presenting the user with a sequent and asking for a tactic, and

(ii) the predicatecheck, which simply checks that a given proof is actually the proofof

a given sequent. This latter one heavily relies ontop: it just uses the proof as a guide

to choose a tactic which is then applied to the sequent. The answer is positive if the
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proof tree is closed.check is, actually, the proof-checking machine which is “seen”

by λCLAM during the proof checking phase.

5.4 Chapter overview

This short Chapter, after a quick introduction to the beautyof the higher-order logic

programming languageλProlog, contains the overview ofFTL, our interactive, tactic-

based theorem prover forFOLTL , which is meant to be the object-level theorem prover

coupled with the proof plannerλCLAM. First a high-level design view has been given,

and then some details about the implementation have been described.





Chapter 6

Proof planning for FOLTL and

Feature Interactions

6.1 Introduction

In Section 4.3 we have outlined the basic ideas which realisethe interaction between

the proof plannerλCLAM and the object-level theorem proverFTL. In this Chapter we

describe how we have specialised Proof Planning forFOLTL and, in particular, for

the case-study of Feature Interactions in telecommunication systems (FIs). All is said

in this Chapter relies on the architecture outlined in the above cited Section.

The Chapter is organised as follows: first, Section 6.2 describes a preliminary ex-

periment which has been published in [CS02a]. The experiment is an interesting initial

attempt at applying Proof Planning to a very restricted subset of FOLTL , modelling

FIs in a rather naı̈ve way. The experiment is based upon Amy Felty’s work ([Fel01]).

The experiment relied on one, very specialised, method; itsgeneralisability was

quite low. Willing then to generalise and extend our result,we have moved to a more

complex framework, consisting of a new, more generalFOLTL model of FIs (Section

6.3) plus a wide set of methods with a high range of applicability (Section 6.4).

Lastly (Section 6.5), we outline the experimental methodology we have followed

107
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in Chapter 7, which is far from trivial.How to carry experiments on,what data to

report on andwhyhas been a major concern while setting up the test set and finding

the solutions. The evaluation methodology follows Francisco Cantu’s papers and Ph.D.

thesis ([CBSB96a, CBSB96b, CO97]).

6.2 Proof Planning for Feature Interactions: a prelimi-

nary result

According to its most general definition, afeatureis a service marketed to the cus-

tomer of a company, usually in addition to a basic service. Inthe past decade at least,

this problem, as experimented in large telephone networks,has received great attention

(see, e.g., [GBGO00]), both from the academical and the industrial world. In this par-

ticular setting, the basic service is represented by the plain telephone switch network

connecting users to one another; features are additional services such as call-waiting

and call-forwarding. Features are specified and implemented without any knowledge

of what other features may be concurrently required by otherusers in the network.

This facilitates modular design but also introduces potential undesired / unwanted be-

haviours when more than one feature is activated.

A well-known example is the interaction arising between Anonymous Call Rejec-

tion (ACR) and Call Forwarding Busy Line (CFBL). Informally, ACR prescribes that

anonymous calls (i.e., calls from a user hiding her number) should be rejected, while

CFBL prescribes that all calls to the subscriber should be forwarded to a third party

if the subscriber is busy. Assume userx subscribes to both features: what happens if

anonymous usery callsx while he is engaged? Shouldy’s call be rejected according to

ACR or forwarded tozaccording to CFBL? The situation is usually repaired by estab-

lishing a priority relation among features, and in this case, ACR would have priority

over CFBL.

The way we have tackled the problem in this preliminary setting has been to closely
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follow the methodology outlined in [FN00]; in particular, we have modelled the sys-

tem in a very similar way, and then we have mimicked the hand-made proof of the

interaction arising between ACR and CFBL as a proof plan. Theplan has then been

automatically verified usingFTL.

We now describe the model and the methodology to obtain the proof plan. In the

following, we will omit labels attached to a formula whenever the label is 0.

• The global behaviour of the telephone system is expressed asa set of invariant

(i.e., wrapped by a2 operator) universally quantified first-order sentences;

• a feature, denoted by the subscripti, is specified via a formula like this:

2∀x ei(x)⊃ [pi(x) U (r i(x)∨di(x))] (6.1)

informally meaning “after the feature isenabled, apersisting condition holds

until the feature isresolved ordischarged”.

• a feature interaction (that is, an undesired behaviour) is found between two fea-

tures 1 and 2 if the previous formulae together imply2∀x¬G(x), whereG(x)

is:

e1(x)∧e2(x)∧ [(p1(x)∧ p2(x)) U (¬p1(x)∧¬p2(x)∧¬d1(x)∧¬d2(x))] (6.2)

informally meaning “enable the features at the same time, let them persist, then

force them to resolve”. The idea is thatG(x) represents the required behaviour,

and2∀x¬G(x) is thedenial of it. If the above implication is valid, then the

required behaviour will never be possible, for any combination of users.

Here is how we have formalised the problem:

(i) ACR is defined by instantiating the schema 6.1 as follows:
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e1(x,y) = hasacr(x)∧¬display(y)∧call req(y,x)

p1(x,y) = call req(y,x)

r1(x,y) = acr announce(x,y)

d1(y) = onhook(y)

informally meaning: if userx has activated ACR and usery is anonymous,y will be

trying to callx until eitherx sends a rejection message ory hangs up.

(ii) CFBL is defined by instantiating the same schema as follows:

e2(x,y,z) = hasc f bl(x)∧¬idle(x)∧

¬∃t. f orwarding(t,x,z)∧call req(y,x)

p2(x,y) = call req(y,x)

r2(x,y,z) = f orwarding(y,x,z)

d2(y) = onhook(y)

informally meaning: if userx has activated CFBL, is not idle and there are no calls to

him being currently forwarded,y will be trying to callx until either the call is forwarded

to z or y hangs up.

(iii) System axioms enforce simple properties of the predicates involved in the defini-

tion of the features, e.g.,

2∀xy¬(onhook(x)∧call req(x,y))

informally meaning: it is impossible to hang up and be tryingto call someone at the

same time.

(iv) Finally, the requirement is obtained by instantiating scheme 6.2 with the above

definitions ofpi ,ei anddi, i = 1,2 (from now on, we omit the explicit reference to the

variablesx for conciseness).

In the end we are trying to prove validity of the formula:
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2∀x [e1⊃ p1 U (r1∨d1)] ∧

2∀x [e2⊃ p2 U (r2∨d2)] ∧

2∀x[SA] ⊃

2∀x¬G (6.3)

whereSAdenotes system axioms. Note that 6.3 involves a quite free mix of unary,

binary and ternary predicates, temporal operators and first-order quantifiers, in such a

way that it does not fall into any known well-behaved fragment of FOLTL , as far as

we know.

According to the hand-made proof, let us supposeG holds and try to derive a

contradiction. By the definitions of2 andU ,

1. if G holds (as an invariant), then we can fix an arbitrary timet0 ≥ 0 at which

bothe1 ande2 hold; also, there is a timetG≥ t0 such thatp1 andp2 hold until

¬p1∧¬p2∧¬d1∧¬d2 holds attG;

2. since both ACR and CFBL hold, they must be enabled att0; also, there are times

tACR, tCFBL≥ t0 such thatp1 andp2 hold until the features are either resolved or

discharged respectively attACRandtCFBL.

The key to the proof is the relative positions oftG, tACRandtCFBL; Figure 6.1 is an

example case in whichtACR< tG andtCFBL > tG.

There are three sub-cases to be considered fortG andtACR(i.e.,tG < tACR, tG > tACR

andtG = tACR) and three fortG andtCFBL, but it turns out that the situation is simpler:

• considerG and ACR: if tG < tACR then both¬p1 andp1 must hold attG, which

leads to a contradiction. Analogously, considerG and CFBL: iftG < tCFBL then

both¬p2 andp2 must hold attG;
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Figure 6.1: a graphical representation of the interaction between ACR and CFBL. In

this case, tACR< tG and tCFBL > tG.

• considerG and ACR again: iftACR< tG then bothp1 andr1∨d1 must hold at

tACR, which leads to a contradiction if the system axioms are taken into account.

Analogously forG and CFBL, in which case a contradiction is derived fromp2

andr2∨d2 at tCFBL w.r.t. the system axioms;

• lastly, consider the remaining case in whichtG = tACR= tCFBL: by propositional

reasoning,r1 and r2 must hold together with the system axioms, which once

again leads to a contradiction.

As already noted in [Fel01], system axioms are not involved in the first two cases,

ruled out by simple propositional considerations. The remaining three cases are solved

by first-order reasoning because no temporal operators are involved in the system ax-

ioms. In order to mimic this neat, intuitive and rigorous (although not formal) way of

reasoning, we set up aλCLAM method calledfi casesplit which simply splits the goal

of proving formula 6.3 into three first-order subgoals (see Figure 6.2).

λCLAM finds the proof plan in about one minute on an Ultra 10 Sun machine without

any backtracking, as we expect. The proof plan is then translated into a (big) tactic

which is fed toFTL, which applies it to the formula and generates the actual proof of

the formula itself.

It is interesting to have a closer look at the process of translation of the proof plan

into anFTL tactic. In particular, the first-order reasoning which happens inλCLAM dur-
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Figure 6.2: the method fi case split applied to the interaction between ACR and CFBL.

The three generated subgoals are closed by first-order reasoning.

ing the exploration of the three subgoals opened byfi casesplit only involves atomic

methods, which embed inference rules ofCFOLTL and are translated directly into basic

tactics.

The case is quite different with the translation of thefi casesplit method itself, cor-

responding to a quite complicated sub-proof tree, visible in Figure 6.3. In particular,

ruleslU are employed once each forG and ACR, introducing time pointstG andtACR;

then, strong connectedness (rulesconn) generates three sub-cases in whichtG < tACR,

tG > tACR andtG = tACR. The first two sub-cases are ruled out respectively by imme-

diate contradiction and using the first sub-case of thefi casesplit method; the third is

brought forward, with the assumption thattG = tACR.

Then, in perfect analogy, rulelU introduces timetCFBL for CFBL and strong con-

nectedness opens three more sub-cases, the first two of whichare respectively closed

by immediate contradiction, and by the second sub-case offi casesplit. We are left

with the assumptionstG = tACR andtG = tCFBL, and this branch is closed by the third

sub-case offi casesplit.
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Figure 6.3: the tactic tree obtained translating the fi case split method. Tac1, Tac2 and

Tac3 are the tactics corresponding to the three sub-cases of the method. Branches

which look open in the Figure are closed by rules l2∗, not shown.

6.2.1 Discussion

As a preliminary result, the experiment just described is encouraging. The spirit be-

hind proof planning is that of capturing the common structure in proofs dealing with a

particular problem, by means of proof plans — exactly as it happens in this example.

Several of the proofs devised for these problems actually share the common structure

seen above; this indicates that FIs are definitely a good benchmark for proof planning.

In fact, on one hand, naı̈ve as it may appear, the framework presented in this Section

will work for any two features whose shapes resemble the schema 6.1 and system

axioms not containing temporal operators. Although this represents a small fragment
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of FOLTL (for one thing, it does not contain the© operator), a relevant part of the

FI community is adopting a similar formalism; see, e.g., [JMN+01, FN00, CM01]. In

short, there is some degree of generality in this technique.

Moreover, the subtree in Figure 6.3 remarkably reflects the structure of the hand-

made proof and formally justifies it; its execution as a tactic proves the original formula

in FTL and ensures soundness of the proof plan. But the more remarkable property is

that it clearly shows a sort of “pattern” in the way theU -formulae are exploited and

searched for contradiction: first use theU in G “against” that inACR; once one branch

only is left, use theU in G once again “against” that inCFBL; if in the end one branch

only remains, try to close it by first order reasoning.

On the other hand, one of the main drawbacks of this experiment is that, although

both the planning and the checking phases are automatic, thetime spent by the user in

order to devise the plan and the tactics related to the methods employed has been very

long. In particular, the tactic associated with methodfi casesplit contains something

like 150 basic tactics, some of them applied to a precise formula in the antecedents or

consequent of a sequent. For example, the uppermost node labelled by rulelU in the

subtree of Figure 6.3 is enforced via tactic(l until tac 3 0 tC) — that is, the user

had to specify not only thatlU was to be used, but also on which antecedent formula

(number 3) and with which label (in the example,tC).

Moreover, theorder in which basic tactics appear in the tactic associated with

fi casesplit is absolutely crucial. One wrong position and the executionwould not go

through any more, preventing the system from proving soundness of the proof plan.

In the end, also for this quite simple example, the user had tomanually build the

tactic associated withfi casesplit step by step, ensuring at each step that labels had

been instantiated correctly and so on.Once the tactic was built, planning and proof

checking ran smoothly and quickly. Seen from this perspective, the advantage in using

proof planning as opposed to good old interactive theorem proving is quite unclear —

we must resort to the degree of generality the method has, as explained earlier on. The
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weak points are that(a) fi casesplit is too specialised to solve this particular problem;

and(b) the method really consists of smaller, simpler macro-steps, such as “expand an

U operator on the right” or “use strong connectedness”, each of which should be re-

alised by a separate method. Enforcing point(b) would make most methodsreusable.

In general, we cannot expect the whole process to be totally automatic; but still, in

order to gain a clear edge over interactive theorem proving,we should be able to show

that

1. the method isreally general to some extent, that is: methods enforce macro-

steps of reasoning which are common, if not ubiquitous, and can be used in

many different places, maybe with small modifications;

2. as a consequence of this, the time the user spends for setting up each single proof

plandiminishesas more and more plans are devised. An analysis of the human

time required to solve the problems, rough as it may be, is necessary.

6.3 Modelling Feature Interactions in FOLTL

In this Section we give an outline of how we have modelled FIs in a more general and

modular way. This time the starting point has been Calder andMiller’s recent and, in

our opinion, most comprehensive work [CM02b]. Their work seems to us to be the

most successful application of formal methods to the problem so far.

In their framework, the phone network is seen as afinite set ofusers, each one

gifted with at least a minimal set of abilities — being able toanswer the phone, to dial

a number, to hang up and so on. This basic set is calledBasic Call Service(BCS).

The environment also takes care of establishing connections among users. Features

are added incrementally to each user. Notice that, in the end, there is little difference

between the properties enforced by the BCS and those enforced by each single feature;

one can see the BCS as a set of very basic features given to the user by default.
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In the cited work, each user is modelled as a finite automaton,whose structure

depends on the feature(s) he/she has subscribed to. Each feature, including the BCS,

corresponds to a (set of)LTL formula(e) describing the properties the automaton asso-

ciated with the feature should ensure; automata are then described by ProMeLa models

and their adherence to the required properties is checked via language inclusion thanks

to the model checker SPIN. SPIN and ProMeLa are well-known tothe formal methods

community (see, e.g., [Hol93, Hol97b]).

For instance, each user with the BCS should be able to hear thebusy tone if she

dials herself; this is expressed inLTL as2(p⊃ (¬rW q)) wherep states that the user

has dialled herself,r that she is back to the idle state, andq that she hears the busy

tone. Note the precision with which this sentence describesthe required property: “if

you dial yourself, then either you will never get back to idle, or, sooner or later, you

will hear the busy tone,meanwhile not being idle”.

As is pointed out in the very same paper, the expressivity of theW operator can and

must be exploited in full here; it would be tempting, for example, to express the above

property as2(p⊃ 3q), something like “it is always the case that the busy tone will

eventually follow the action of dialling yourself”, employing the “eventually” operator

3. Indeed the formula would look simpler and easier to handle,but it would also be

too weak, since(a) it would be true in a scenario in which the user hears the busy tone

later on, not necessarily as a result of this very call;(b) it would be false in a scenario

in which the user failed to progress infinitely often, that is, for some reason the network

took an infinite time to process her call. In fact, using theW operator, we can actually

specifywhat must holdwhile we are waiting for an event to happen, and we can also

be satisfied if the eventnever happens.

6.3.1 The Basic Call Service

The example use ofW seen just above has actually suggested to us the idea of mod-

elling the system via a collection ofW -invariants, that is,W -formulae wrapped by a
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2. The basic intuition is that if they can be used to express a requirement so precisely,

it must be the case that they can express thebehaviourof our system as precisely as

that.

So we model the BCS as follows: each user stays in astate, for instance, his phone

is idle, waiting for a call or waiting to dial a number. Along time, he can stay forever

in this state, or move to another one, provided that, eventually, a transitionhappens,

that is, either he performs an action (for instance, he off hooks, that is, he lifts the

receiver), or the environment changes (say, someone tries to call him). A graphical

representation of what a user can do is visible in Figure 6.4.
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trying(x,y)

busytone(x)

oringing(x,y)

oconnected(x,y)
down(x)
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dial(x,y)

Figure 6.4: A graphical representation of what a user can do.

In the Figure each node represents the fact that a user, sayx, is in a state, say

idle; outgoing edges denote transitions. For instance, anidle user cano f f hookand

be eitherdown(if the network is temporarily out of order) orreadyto dial someone;

alternatively, if someone istrying to call him, he will get to thetringing state, meaning

he hears the ringing tone as the terminating party. States are numbered for conciseness

reasons — see below.

States and actions are actually modelled as first-order predicates, as is visible in

Table 6.1.

The temporal behaviour of the generic user with BCS is then enforced via a set of
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idle(x) userx is idle

ready(x) userx is ready to dial (i.e., he has off-hooked)

trying(x,y) userx has dialled usery and is trying to connect to him

busytone(x) userx hears the busy tone (tried to connect to a busy user)

oringing(x,y) userx is ringing usery

oconnected(x,y) userx is connected to usery, as originator

tringing(x,y) userx is being rung by usery

tconnected(x,y) userx is connected to usery, as terminator

down(x) userx is down (out of order)

o f f hook(x) userx off-hooks

onhook(x) userx on-hooks

dial(x,y) userx dials usery

Table 6.1: States and actions of a user having BCS.

universally-quantified formulae:

1. State correspondence.For each state, a natural number is associated to it:

∀x.2 idle(x)↔ at state(0,x)

∀x.2 ready(x)↔ at state(1,x)

and so on;

2. Mutual exclusion.No user can be in two states simultaneously:

∀n,m,x.2 at state(n,x)∧at state(m,x) ⊃ n = m

3. Progress.For each state, either the user remains in the state forever,or a transi-

tion (either action or environmental change) happens:
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∀x.2 idle(x)⊃ idle(x)W (o f f hook(x)∨∃t.trying(t,x))

∀x.2 ready(x)⊃ ready(x)W (onhook(x)∨∃t.dial(x, t))

and so on;

4. Trigger. For each state and transition, if they happen simultaneously then the

user will be in a new state at the next instant:

∀x.2 idle(x)∧o f f hook(x)⊃ (©ready(x)∨©down(x))

∀x.2 idle(x)∧ trying(y,x)⊃©tringing(y,x)

and so on;

5. Initial state.Every user is initially idle:

∀x.idle(x)

6. System axioms.These are invariants, relating some states to some other ones; in

the BCS only two of them are needed:

∀x.2 (oconnected(x,y)↔ tconnected(y,x))

∀x.2 (oringing(x,y)↔ tringing(y,x))

We have also found useful to define an invariant, to be used in some inductive

proofs. The invariant states that every user is always in at least one state:

∀x.2 idle(x) ∨ ready(x)∨ ∃t.trying(x, t) ∨

∃t.oringing(x, t) ∨ busytone(x) ∨ down(x) ∨

∃t.oconnected(x, t) ∨ ∃t.tringing(t,x) ∨ ∃t.tconnected(t,x)

It is easy to see that this actuallyis an invariant of the system, by induction:
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• Base case.Trivially, by the initial state formula, every user isidle at time 0;

• Step case.Assume userx is in a stateSTATEat timeτ; then by the related

progress formula (the one havingSTATEas the antecedent of the implication)

eitherx will stay in STATEforever, or eventually a transition will happen. If it

is the first case,x will be in STATEatτ+1, QED; if it is the second, then either

the transition happens right now, or it happens at some time in the future. If it

is the first case, by the related trigger formula (the one having STATEand the

required transition in the antecedent of the implication),x will be in a new state

at τ+1, QED; lastly, if it is the second case,x will still be in STATEat τ+1.

A few remarks on this model must be done. The model starts out as an attempt at

modelling a finite state automaton inFOLTL ; but it then goes beyond that in a number

of ways. Firstly, notice how mutual exclusion between states is gracefully handled in

FOLTL via state correspondence and mutual exclusion formulae. There is no limit on

the number of states a model can have; the price to pay is linear in their number (i.e.,

one state correspondence formula per state).

Secondly, the model intuitively enforces some subtle properties of a real phone

network. For example, a user that has been called (theterminator) cannot terminate a

call, whereas the user who has called (theoriginator) can; this is reflected in Figure

6.4: if tconnected(x,y) holds, that is,x has been called byy, then she cannot get back

to idle, unlessy decides to hang up.

Consider Figure 6.4 again. This system enjoys a high degree of non-determinism,

represented in the diagram by the facts that:

(a) a state can have more than one outgoing arrow, meaning that more transitions are

allowed from each state; for instance, userx in stateoringing(x,y) can decide to hang

up, getting back to stateidle(x), or can go “spontaneously” to stateoconnected(x,y)

when usery off-hooks.

(b) from a state, given a transition, a user can move to more than one single next state;
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for example, anidle user can off-hook and be eitherdownor ready;

(c) any user can permanently stay in a state, without taking any transitions1;

(d) the diagram is parametric over the users, that is, there is norestriction on what the

xs andys can be.

All these issues are dealt with, we believe, in an elegant an intuitive way by the

progress and trigger formulae; each progress formula states that a user can either re-

main in a state, or a transition can happen at any time; this ishandled via theW

operator. Each trigger formula, on the other hand, tells us what is going to happen

next, if a user is in a state and a transition happens. This is actually why we chose in

the beginning (see Chapter 4), to adopt a form ofU operator which is slightly stronger

that the standard one, requiring that, givenpU q, it is the case that, whenq happens,p

will still be true. Consider for example the transition fromidle to downof userx. Let

us assume that, a certain point in time, the user actually is idle, that is,idle(x) holds.

Thanks to the progress formula

∀x.2 idle(x)⊃ idle(x)W (o f f hook(x)∨∃t.trying(t,x))

it is the case that either(1) x will stay idle forever (which is a perfectly sensible option,

all in all), or he will stayidle for a finite amount of time, until, eventually,(2) either

he will o f f hookor (3) someone will betrying to connect to him.

Assume option(2) becomes true; thanks to the stronger form ofU , the above

formula guarantees that there is an instant in the future at which both idle(x) and

o f f hook(x). If this is true, trigger formula

∀x.2 idle(x)∧o f f hook(x)⊃ (©ready(x)∨©down(x))

guarantees that, at least in one case, at the next statex will be down. Notice that the

use of the stronger form ofU just makes the presentation easier to read: we could as

1this should really be represented by self-loops on each nodeof the diagram, but we omit them for
the sake of readability.
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well have used the usualU , in which case the trigger formulae should have employed

one more© operator, for instance

∀x.2 idle(x)∧©o f f hook(x)⊃ (©ready(x)∨©down(x))

Notice also that this model somehow “links” users with one another, as one would

expect, via predicate sharing. For instance, assumex is idle andy tries to connect to

him; in this case we want him to reach the statetconnected(x,y). This will happen

if there exists a usert such thattrying(t,x) can be proved. This will be provided if

another user, call heru, is actually trying to connect tox: in that case,trying(u,x) will

hold, making the transition true and allowing the right instantiation of variables.

Lastly, notice that in principle there is no restriction, inthis model, on the com-

plexity formulae can have, besides the structure highlighted in the above list. For

instance, we expect a trigger formula to look like∀x.2 (STATE(x)∧TRANS(x)⊃

©NEXT STATE(x)); but whatSTATE(x), TRANS(x) andNEXT STATE(x) are is

left to the necessity of the modeller. Really, we have tried to limit the complexity of

the formulae in order for them to be able to capture the behaviour we were interested

in.

6.3.2 Features: introducing OCS

In Calder and Miller’s work, the fact that a user subscribes to one or more features

actually modifies the graph representing its automaton. Forinstance, subscription to a

“ring back when free” feature is shown to make the associatedautomaton very different

from the BCS one. We believe in our setting features can be made user-dependent

via first-order predicates defining that a user subscribes toone or more features; new

axioms will take care of the invariant properties of those predicates; and augmenting

the graph transitions with the new predicates, or introducing new states defined by the

feature will enforce the new behaviours required by the features themselves.

When adding the capability of a new feature to the automaton,we have tried to
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maintain it as simple as possible. As an example, we have introduced a simple feature,

calledOriginating Call Screening(OCS). According to [CM02b], a user subscribing

to OCS has a predefined list of users, calling whom is prohibited.

A new predicate,ocs(x,y) declares that userx has usery on his screening list. It is

reasonable to state, as a system axiom, that nobody can be on his own’s screening list

([CM02b]):

∀x.2 ¬ocs(x,x)

In order to prevent calling a screened user, the trigger formula determining the tran-

sition from statereadyto statetrying is modified from∀x,y.2 ready(x)∧dial(x,y)⊃

©trying(x,y) to

∀x,y.2 ready(x)∧dial(x,y)∧¬ocs(x,y)⊃©trying(x,y)
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Figure 6.5: A graphical representation of what a user can do, when OCS is enabled.

Figure 6.5 pictures the new situation — notice the change in the transition from

readyto trying. Lastly, the invariant defined for the BCS needs be extended this way:
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∀x.2 idle(x) ∨ ready(x) ∨ busytone(x) ∨ down(x) ∨

∃t.(trying(x, t)∧¬ocs(x, t)) ∨ ∃t.(oringing(x, t)∧¬ocs(x, t))∨

∃t.(oconnected(x, t)∧¬ocs(x, t)) ∨ ∃t.(tringing(t,x)∧¬ocs(t,x))∨

∃t.(tconnected(t,x)∧¬ocs(t,x))

that is, all states reachable “after a dial action has been performed” must be tagged with

a side condition stating that userx can be there provided the user he is calling / ringing

and so on isnoton his screening list. Again, it is easy to prove that this invariant holds

for the automaton pictured in Figure 6.5, that is, under the new set of hypotheses.

6.4 Designing proof plans for Feature Interactions

Much in the spirit of proof planning, in order to devise proofplans for FIs, we have

been driven by:

1. the goal we were trying to reach, that is, theshapeof the property we were trying

to prove;

2. the experience already gathered in the field, that is, the preexisting techniques

devised to solve an analogous problem; this primarily includes model checking,

used in [CM02b] and probably one of the the most successful formal methods

so far.

In the rest of this Section we describe a list of properties wehave tried to verify

for the BCS and BCS plus OCS (results are visible in Chapter 7), and the methods we

have devised for them. The first Subsection reports on some general-purpose methods,

not devised specifically for a property; the remaining Subsections analyse properties

of the BCS, which we have tried to prove in the setting of the BCS automaton (Figure

6.4) and properties of the BCS augmented with OCS.

Each property has an associated number, as in [CM02b], whichwe have possi-

bly decorated witha, b and so on, to denote slight variations of the same property.
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Subsections are ordered by increasing difficulty. Methods are not reported in full, but

described synthetically, sometimes by means of pseudo-code, enclosed in< ... >.

6.4.1 General-purpose methods

Mutual exclusion

One relevant problem which is potentially encountered whenmodelling a system in a

state-based way in a logic is mutual exclusion between states2. The proof system must

somehow be aware that no user can be in two states simultaneously — this fact, by the

way, comes in many crucial points of the proof we have explored.

Since we use first-order predicates to denote that a user is ina state, it would be

tempting to add a quadratic number of system axioms to the BCSspecification, such as,

for instance,∀x.2¬(idle(x)∧ready(x)),∀x.2¬(ready(x)∧down(x)), and so on. This

would soon make the specification unmanageably large, clumsy and hard to maintain,

in the sense that adding a new state would require adding moreaxioms. That is why

we have chosen, in the first place, to number each state, and then to have one single

mutual exclusion axiom.

There arises the necessity, then, of having a method which will detect mutual ex-

clusion when present, and close the related search branch. Such a method is called

detect mutex:

atomic fi detect_mutex

(seqGoal (Hyps >>> _ ))

true

true

trueGoal

< ... tactic ... > :-

< 1. find State1 @ Tau1 in Hyps

2besides intuition, this is confirmed by a personal communication by Muffy Calder.
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2. find State2 @ Tau1 in Hyps

3. find correspondence axioms in Hyps,

4. find mutex axiom in Hyps

>.

As already explained (recall Chapter 4, Section 4.3), a method is declared along

with a theory name (fi), a method name (detect mutex), pre- and post-conditions

(both empty, that istrue in the example), an input and output goal and an associated

tactic. Operational content can be given to the method usingthe classical Prolog-style

:- operator: the application of the method will succeed only ifthe content can be

executed.

Given a sequent in which the antecedents are calledHyps, the above method returns

the goaltrueGoal (that is, it closes the branch) if(a) two different state formulae,(b)

the related correspondence axioms, and(c) the mutual exclusion axiom can be found

among the hypotheses.

The basic schema to build a tactic associated to a method, which has been success-

fully employed in the rest of the work, actually consists of(1) identifying a small set

of hypotheses we are interested in in this branch,(2) “isolating” them, simplifying the

sequent to be proved, then(3) trying to prove it by propositional logic,(4) possibly

restoring all eliminated hypotheses, if this is needed. Propositional reasoning is de-

voted toFTL rather than being taken care of byλCLAM. This increases modularity of

the system and makes it more open, in the sense that in principle any propositional

theorem prover could be used in place ofFTL.

This highly refined interplay betweenλCLAM andFTL can be seen as a sophisticated

way of gaining control over the object-level theorem prover, from the point of view

of the proof planner.λCLAM tells FTL what can beneglectedto prove this particular

branch.

In general, the tactic associated to a method can be somehow seen as a translation

of the operational content of the method into a set ofCFOLTL rules. This logically
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reflects the need of formally justifying the behaviour of theplanner.

As an example, here is how the tactic associated todetect mutex works:

(then_tac (tselect L R [StateName1 at Tau1, StateName2 at Tau1,

Corr1 at zero, Corr2 at zero, Mutex at zero] [])

(then_tac (tisol L R _ _)

(then_tac (repeat_go_tac (pre tlall))

(then_tac (pre tlbox) (pair_tac

(then_tac (pre tlbox) (pair_tac

(then_tac (pre tlbox) (pair_tac

tauto_pl

tent))

tent))

tent))

)))

Tactics are linked in a sequence thanks tothen tac. First tselect andtisol

eliminate from the sequent all that doesnot look like items(a), (b) and (c) above.

What remains must be enough to close this branch; the rest of the tactic therefore

strips away∀s and2s from the hypotheses (tacticstlall,tlbox) and then calls upon

tacticstauto pl andtent on each remaining branch of the proof, in order to close

them respectively by propositional reasoning and entailment.

Using invariants

It has been sometimes necessary, especially in inductive proofs, to use the invariants

described in Section 6.3. A method calleduse invariant takes care of using the

invariant to strengthen the goal, as is usually done in inductive reasoning. The well-

known associated rule states that:

−→ I −→ 2(I⊃©I) −→ 2(I⊃ ϕ)
−→ 2ϕ
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if I can be proved to actually be an invariant (it holds forever from now on), and if it

alwaysimpliesthe propertyϕ we are interested in, then one can prove2(I⊃ ϕ) rather

than the weaker2ϕ. I can be assumed in the hypotheses, provided we know that the

invariant is an invariant.

The method employs a relatedFTL tactic. As it was the case earlier on, this method

too can be seen as a rather smart wrapper for a tactic which, ifleft uncontrolled, would

cause instability in the system (that is, it could potentially cut in a new formula at each

inference step).

6.4.2 CTL-like E-path properties

The system must be able to eventually connect two users, at least under suitable condi-

tions: it must be possible forany two usersto be connected to each other (this will no

longer be true once we add OCS, as one can figure out). Generalising the idea, every

single state must be reachable, under suitable conditions;were it not so, the state could

be neglected, and the related node could be deleted from the graph.

For instance, anidle user whoo f f hooksmust be able to get to thereadystate at

least in one case — that means that no user will always be out ofservice.

Properties such as these requirepath quantifierssuch as those found inCTL /

FOCTLto be expressed; for example, the branching time model typical ofCTLwould

allow one to use theE existential path quantifier and state that there is at least one time

path such that any user will beready. Intuitively speaking, “if everything goes right”,

any idle user whoo f f hooks will eventually beready.

In our setting there is no way to directly express these concepts (actually, this is why

linear-time logics are sometimes seen as approximations ofbranching-time logics);

still, it seems fundamental to be able to prove them, especially for a telephone network:

it is necessary to guarantee that the systemwill work fine, if it is not out of service!

So we adopt a “trick” similar to that of [CM02b]: we look for apath in the graph

of Figure 6.4 leading to the required state.
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• Property 1a (BCS): it is possible for a user to eventually get ready.

∀x.3 ready(x)

• Property 1b (BCS): it is possible for a user to eventually connect to someone.

∀x.3 ∃t.oconnected(x, t)

• Property 1c (BCS): it is possible for a user to eventually be connected to some-

one.

∀x.3 ∃t.tconnected(t,x)

The intuitive idea is to mimicbackward-reachabilityas it happens in model check-

ing. This has been done in a compound method (or methodical) calledexists path,

which operates like this: first recognise what state appearsin the 3-formula in the

goal; then

1. check whether we are already in the initial state, that is,check thatidle(x) can

be proved; if so, stop. Otherwise,

2. find all trigger formulae which trigger the state we are currently in; for each of

them,

3. find a related progress formula; set the state in the antecedent of the progress

formula as the current state, and go back to the beginning.

Property1a, for example, should be proved like this: sinceready(x) is not the

initial state, find what trigger formulae lead toready(the reader can more easily check

the situation on the graph in Figure 6.4). The only candidateis the one stating that if
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we areidle and weo f f hookwe will get to ready. The related progress formula has

idle(x) in the antecedent, so we are done.

Notice that the goal includes a3 operator: “eventually we will be ready”. This

implies proving that there exists a time in the future of 0 at which ready(x) holds; but

this will be easily proved using the transitivity propertyn times, wheren is the number

of states we have “back-traversed” before finding the initial state. The intuitive content

of this method is: the property is true if it is truealong one path:

compound fi exists_path

(complete_meth

(then_meth (repeat_meth mrall)

(then_meth mrdia (pair_meth

(repeat_meth

(orelse_meth prove_init

(orelse_meth find_trigger find_prog)))

ent_meth

)))

)

_

true.

First, all ∀ (repeat meth mrall) and the3 (then meth mrdia) operators are

stripped away. Notice thatmrdia opens two branches, managed by the pairing method

pair meth. On one hand, thesecondbranch is supposedly closed via a method called

ent meth, wrapping the entailment rule, since it represents the constraint that the time

at which the3-formula in the goal was proved is in the future.

On the other hand, the first branch is taken care of by a repeated application of

prove init, find trigger and find prog, which enforce exactly the three steps

outlined above.
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Methodsfind trigger andfind prog neglect all transitions not leading toward

the state we want to reach. This is done via a tactic calledclose tac which arbitrarily

closes a proof branch without any explanation. One can view this tactic as a very

carefully controlled application of the cut rule; for each progress formula, the resulting

proof employs the tacticn−1 times, wheren is the number of possible transitions that

can be taken from the current state (including the self-looptransition implicit in theW

operator); and, for each trigger formula, it is usedm−1 times, wherem is the number

of states a user can get to by taking that transition. In this case, proof planning literally

“directs” the search.

6.4.3 First-order invariants

By a first-order invariant we will denote, at this stage, a first-order formula (that is,

not containing temporal operators) which must be proved to hold at all times. An

example is Property4 of the BCS in [CM02b], stating that “the dialled number is the

same as the number of the connection attempt”. In our model, this is enforced exactly

by a transition formula, and could therefore be proved by a single application of the

axiomatic tactic.

Rather, in order to test reasoning by invariants, we prefer to generalise a little this

property, and try and prove it via the BCS invariant seen in Section 6.3.1:

• Property 4a (BCS): the user we are trying to dial is the same as the user we

have just dialled.

∀x,y.2 (ready(x)∧dial(x,y))⊃©trying(x,y)

• Property 4b (BCS): if I am ringing y and she offhooks, I’ll be next connected to

her.

∀x,y.2 (oringing(x,y)∧o f f hook(y))⊃©oconnected(x,y)
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• Property 4c (BCS): if I am ringing y and she offhooks, she’ll be next connected

to me.

∀x,y.2 (oringing(x,y)∧o f f hook(y))⊃©tconnected(y,x)

(In fact, Property4cneeds the use of a system axiom.) Reasoning by using an invariant

will here work like this: (1) rather than the goal directly, try to prove that the goal

is implied by the invariant;(2) assuming the invariant is an-ary disjunction and it

appears among the hypotheses, open upn branches;(3) in n−1 branches, the proof

will go through thanks to the detection of mutual exclusion (i.e., two state formulae

will be asserted in the hypotheses at the same time), while the remaining branch will

hopefully be closed by propositional reasoning.

The resulting method, calledall paths, looks like this:

compound fi all_paths

(complete_meth

(then_meth use_invariant

(then_meth (repeat_meth mrall)

(then_meth mrbox

(then_meth mrimp

(then_meth (try_meth (repeat_meth mlor))

(orelse_meth detect_mutex foreach_state)

))))))

_

true.

Methoduse invariant (see Section 6.4.1) employs the invariant; immediately

after, the∀ and2 operators are stripped away from the goal, and the implication is

eliminated. Then, methodmlor, wrapping the tactic forl∨, is exhaustively applied to
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open as many branches as there are disjuncts in the invariant. Lastly ((orelse meth

detect mutex foreach state)), each branch is either closed by mutual exclusion

detection or via a method which isolates what are consideredto be the right hypotheses,

and then uses propositional reasoning. The use of system axioms is actually taken care

of by this last method, which gives the compound method a rather high degree of

generality.

6.4.4 Weak-until invariants

The situation becomes much more difficult, as expected, whenthe invariant to be

proved has aW operator in it (recall Section 6.3). Property 2 of BCS in [CM02b]

belongs to this category:

• Property 2 (BCS): if I dial myself, I’ll hear the busy tone before getting back to

idle.

∀x.2 (ready(x)∧dial(x,x))⊃ (¬idle(x)W busytone(x))

Once again, the proving strategy is inspired by model checking, this time byfor-

ward reachability: start from the state specified in the antecedent of the goal (in this

case,ready(x)) and find a trigger telling us what happens if we take the transition spec-

ified in the same place (in this case,dial(x,x)). Open one branch for each transition

found.

Then for each branch, that is, following each possible path forward, check whether

we have reached the state on the right hand side of theW in the goal (in this case,

busytone(x)). If it is the case, stop. Otherwise, find a progress formula and identify

what transitions can be taken from this state; again, open a branch for each possible

transition and, for each one, close the branch by mutual exclusion detection. Then go

back to the beginning.
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compound fi forward_search

(then_meth (repeat_meth mrall)

(then_meth mrbox

(then_meth mrimp

(then_meth mland

(repeat_meth

(then_meth trigger_to_trans

(then_meth (try_meth (repeat_meth mlor))

(then_meth (orelse_meth fulfilled_evt state_to_prog)

(then_meth (try_meth (repeat_meth mlor))

(orelse_meth detect_mutex id_meth

))))))))))

_

true.

The idea is that of keeping the left hand side of theW in the goal satisfied by

mutual exclusion detection, until the right hand side is satisfied because the required

state is reached.

6.4.5 Weak-until invariants (cont’d)

A slightly different kind of invariants, involving aW too, is Property 3:

• Property 3a (BCS): if I am trying to connect to y, I’ll keep on trying until I’ll

hear the busy tone or I’ll be ringing her.

∀x,y.2 trying(x,y)⊃ trying(x,y)W (busytone(x)∨oringing(x,y))

• Property 3b (BCS): if I am ready, I’ll stay ready until I’ll get back to idle or I’ll

be trying to connect to someone.
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∀x,y.2 ready(x)⊃ ready(x)W (idle(x)∨∃t.trying(x, t))

Slightly simpler than Property2, this is proved in a similar way, but trying to iden-

tify a trigger formula corresponding to the required goal. If this is not the case, the

same method seen above (state to prog) is employed to let the system progress.

compound fi forward_progress

(then_meth (repeat_meth mrall)

(then_meth mrbox

(then_meth mrimp

(repeat_meth

(then_meth state_to_prog

(then_meth (try_meth (repeat_meth mlor))

find_trigger

))))))

_

true.

6.4.6 Invariants for OCS

Once we add OCS to the system in the way outlined in Section 6.3.2, we expect in

the first place that the characteristic property of OCS must be provable, stating that the

model of OCS is appropriate. In particular:

• Property 9 (OCS): assuming user x has a user t on his screening list, x may not

be connected to t as originator.

∀x.2 ∃t.(ocs(x, t)⊃¬oconnected(x, t))
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In order to prove Property9, we employ the invariant defined for OCS in Section

6.3.2 and open a search branch for each possible state userx is in; all of them but

one are closed by detection of mutual exclusion, except for one, which goes through

by propositional reasoning — this is reasonable, since the use of the OCS axiom

∀x.2 ¬ocs(x,x) should match with the condition¬ocs(x,x) when dealing with the

transition fromready to trying. The associated method, calledinductive box, is a

slight variant ofuse invariant (see Section 6.4.1).

Moreover, with OCS on, we expect some of the BCS properties tobe still provable,

while some others are not. In particular, we are interested in proving that(a) Property

2 of BCS (see Subsection 6.4.4) is still valid, whereas(b) Property3b (see Subsection

6.4.5) is not.(a) is justified by the fact that no user may have himself on his screening

list (this is a property of OCS reflected in a system axiom), and there is no reason why

he should not hear the busytone if he self-dials;(b) cannot obviously work any longer,

since areadyuser trying to dial a screened user will never betrying to connect to her.

Let us note, by the way, that Property9 in our model somehow represents thenega-

tion of Property1 (“on some path a connection between any two users is possible”);

therefore, the fact that is can be proved can be also seen as a proof of the interaction

arising between it and Property1.

As far as Property2 is concerned, we expect the very same methods employed to

prove its validity with BCS to carry the proof on in this case.

On the other hand, Property3b represents a slightly more complex case. Planning

the property does not go through as expected; in order to detect the interaction then,

we set up a user,alice, and add a system axiom stating that she isnot on anyone’s

screening list:

∀x.2 ¬ocs(x,alice)

Then we try to prove that, under this condition, Property3b specialised for Alice

doeshold:
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∀x,y.2 ready(x)⊃ ready(x)W (idle(x)∨ trying(x,alice))

This should be proved via the very same methodforward progress seen for Prop-

erty 3b. Notice that here the open question ofhow to systematically detect an interac-

tion arises — a discussion about this issue is left to Chapter 8.

6.5 Experimental methodology

When reporting on experiments, or evaluating how successful a technique has been

with respect to its competitors, one should take into account not only how long was for

the tool to (dis)prove correctness of the system, but also how long it took the user to

devise the method.

This is all the more important in our framework, since proof planning tries to iden-

tify and mechanise common shapes in proofs. One would then expect that, once the

idea on how to prove a statement has been formulated and implemented in a set of

methods, subsequent, similar proofs would require less time, if not by the tool, at least

by the user. In other words, there should be reusal of human time, as well as of meth-

ods.

We adopt Francisco Cantu’s ([CO97]) three-fold classification of the tasks the user

has to perform when trying to automate the proof of correctness of a system. Co-

herently we will refer to the user as to theproof engineer, that is, the developer of a

formal proof for systems design and verification. Tasks (andthe required human time)

is divided at three level:user tasks, proof tasksandtool tasks.

User tasks have to do with formalising a problem and usingλCLAM/FTL to solve it:

1. providing formal definitions of the specification of the system, of the required

properties, of the language used;

2. building a set of methods to solve the problem and runningλCLAM to obtain a

proof plan;
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3. executing the plan in order to get a proof of correctness; if the proof does not go

through, revise the formalisation and try again.

In case this process does not work, proof tasks should come into play. These tasks

deal with tuning proof techniques without modifying the tool:

1. alter the methods, its side conditions, its operational content, or its input/output

goals;

2. provide a missing invariant (lemma) or modify an existingone;

3. alter the tactics associated with a method which should have been applied but

failed to, or that was applied in the wrong place;

4. possibly, extend the theory with new operators or rules (this should hardly be the

case).

Finally, the possibility of finding bugs in the code must be considered. If all the

above fails, the proof engineer will probably have to resortto

1. provide new or different tacticals / methodicals, in order to circumvent a defi-

ciency or inefficiency of the planner or prover;

2. find and correct wrong declarative content (i.e., predicates which work in the

theory of λProlog but fail so to do because of the order in which clauses or

predicates are written);

3. change the imported / accumulated modules structure (again, hopefully this will

not happen);

4. circumvent bugs in theλProlog simulator.

In Chapter 7 we will report the human time required by the proof engineer, besides

the timing ofλCLAM/FTL, divided by task level. Although obviously not precise as the

tool timings, these numbers will give an indication on how the method, in its entirety,

works.
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6.6 Chapter overview

This dense Chapter has dealt with the application of proof planning toFOLTL , and in

particular to the case-study of Feature Interactions (FIs)in telecommunication systems.

We have first described a preliminary experiment which was carried out in the early

days of this research.

Aiming then to get a more general, flexible and extensible framework, we have

shown how to concisely and precisely model FIs inFOLTL as a set of formulae defin-

ing the status of a user along time. The Basic Call Service andone feature, Originating

Call Screening, have been introduced.

The Section after contains details of the methods we have devised for the proper-

ties of the system we are interested in. Our methods mimic simple steps of human

reasoning such as “reaching a goal state from the initial state” or “explore all possible

paths from now on, until a goal state is found”.

Lastly, we have outlined the experimental methodology we will be following in the

next Chapter. Its main peculiarity is that, in evaluating the outcome of the experiments,

we will be taking into account the human time required by the proof engineer, as well

as the CPU time required by the machine in order to solve the problem. This will give

a more precise idea of what it is like to tackle FIs via proof planning.
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Experimental results

In this Chapter we show data about the experiments carried out, and comment on

the results obtained, also in comparison with some highly relevant related work. In

Section 7.1 we present the results, first synthetically, then analysing them experiment

by experiment; and in Section 7.2 we compare them with those obtained in [CM02b].

7.1 Test results

Table 7.1 reports the experimental results obtained byλCLAM/FTL in verifying the prop-

erties of models for BCS and BCS+OCS outlined in Chapter 6. Columns report, for

each model and property proved (e.g. BCS and property1a), data about the proof plan

and the proof (depthd, number of nodes #N, CPU Time in seconds), total CPU Time

needed by planning and proof checking in seconds, and human time required to devise

the solution (User, Proof, Tool tasks time and total human time, in man-hours).

Each row represents an experiment; all experiments define that a model (BCS or

BCS+OCS) validates the required property, except for the third-last row, labelled OCS-

3b, which denotes that property3b of the BCS interacts with OCS. The last two rows

show average values and total timings.

All experiments were run on a PC equipped with an AMD K6 200MHzprocessor,

256 MB on board memory and Linux 2.4.7. We employed a special version of the
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λProlog environment Teyjus v1.0-b33, especially patched for the MRG group at the

University of Edinburgh, andλCLAM v4.0.0 (2002). The heap space of theλProlog

compiler / simulator was raised to 512 MB in order to avoid heap overflow.

Proof plan Proof Human time

Property d #N Time d #N Time U P T

BCS+1a 13 15 11 23 31 2 13 2 100 200 302

BCS+1b 19 21 24 66 92 7 31 1 10 1 12

BCS+1c 15 17 15 38 52 3 18 1 1 1 3

BCS+4a 28 44 49 39 322 17 66 4 10 20 34

BCS+4b 28 44 58 39 321 20 78 1 1 2 4

BCS+4c 28 44 58 39 327 20 78 1 1 5 7

BCS+2 17 19 20 48 97 10 30 10 70 100 180

BCS+3a 14 16 11 41 112 14 25 4 10 10 24

BCS+3b 14 16 11 43 111 14 25 1 1 1 3

OCS+2 17 19 21 57 112 13 34 1 1 1 3

OCS+9 32 80 76 41 341 96 172 8 5 20 33

OCS-3b 14 16 11 47 110 20 31 20 10 10 40

Averages 20 29.6 30.4 43.4 169 19.7 3.5 18.3 30.9

Totals 365 236 601 54 220 371 645

Table 7.1: Experimental results. Columns report, for each model and property proved,

data about the proof plan and the proof (depth d, number of Nodes #N, CPU Time

in seconds), total CPU Time needed by planning and proof checking in seconds, and

human time required to devise the solution (User, Proof, Tool tasks time and total human

time, in man-hours).

We now comment on each single experiment, analysing the structure of the plans
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and proofs obtained and the CPU and human time needed.

7.1.1 Properties 1a, 1b, 1c

Let us first consider the three proofs of CTL-like E-path properties. Both the structure

of the plans and proofs are quite similar. In fact, the proof plans resort to finding a path

from idle to the required state, and its depth is perfectly correlatedwith the distance on

the graph. Consider Figure 6.4: to prove Property1a (“eventually on some path every

user getsready”) the proof planner only needs discover that any user can getto ready

from idle in one step. Analogous considerations hold for Property1b (“eventually on

some path every user getsoconnected”, the required state is four steps away) and1c

(“eventually on some path every user getstconnected”, the required state is two steps

away). Timings, depths and numbers of nodes roughly reflect this proportion.

This is a clear quantitative indication thatthe proof plan has captured the common

structure in the three proofs. The structure of the plans and proofs (not displayed) also

corroborate this claim.

By inspection of the proofs, one can also see that they contain one application of

close tac per each transition neglected, as expected (see Subsection6.4.2). These

lemmas are necessary to let the proof carry on to the end and “close” the unwanted

search branches.

As far as timings are concerned, proof planning dominates over proof checking,

as expected, and Property1b is the hardest. Interestingly, the ratio between the depth

and number of nodes of both the plans and the proofs are quite low, meaning that the

plan / proof trees are, in all cases, quite narrow. This meansproof planning is actually

guiding the search in an efficient way. In fact, the proof of Property1b has a depth of

66 nodes, which is, if considered from the point of view of “simple” theorem proving,

remarkable — it would probably be very hard for a general-purpose automatic theorem

prover to find such a deep proof in such a complex logic.

As far as human time is concerned, consider Property1a: it was no great problem
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to invent the proof plans (User time 2 man-hours) but it was quite hard to build the

correct machinery, both in terms of methods (Proof time 100 man-hours) and in terms

of adjusting the system (Tool time 200 man-hours). In fact this was the very first

attempt, and, as expected, took a long time to set up.

The times scale down radically, however, if we proceed on to the other Properties,

as expected, especially becausethe very same set of methods work fine for all three of

them.

7.1.2 Properties 4a, 4b, 4c

Proof plans and proofs of these Properties employ a 9-fold invariant, that is, a disjunc-

tion with 9 disjuncts, which opens up 9 search branches. This“shapes” them so that

they present remarkable similarities in structure. Since neitherλCLAM nor FTL manage

directlyn-ary disjunctions, both the proof plans and the proofs look alittle deeper than

they actually are (8 binary nodes, each one employing rulel∨, must be used). The

remarkable number of nodes of the proofs really comes by 8 similar search branches.

Notice also that these proofs donot include the proof of the invariant itself.

On a smaller scale, there is a pattern in human times which is similar to that one can

see for the previous set of Properties. Tool time appears a little larger (5 man-hours)

for Property4c since it was necessary to code and use a system axiom in that case, in

order to have the proof go through.

7.1.3 Property 2

This problem required a big effort in human terms, as shown inthe Table, since it was

necessary to devise a way of proving an invariant with aW operator in it. In particular,

a number of different methods were required, and it was not atall clear how to translate

the intuitive ideas behind them into tactics. The final numbers about this plan / proof

are slightly deceiving, since two lemmas were required.



7.1. Test results 145

One lemma states that ifpU q holds, then eventuallyp∧q will be true. This is given

by the semantics of the operator itself. This lemma could be proved automatically.

The second lemma is more interesting, and reflects a weaknessin the calculus

CFOLTL . This lemma states an instance of the following: ifp @ t and2p @ t + 1

hold, then it also holds that2p @ t. The statement could be proved by the well-known

inductive definition of2p:

2p
def
= p∧©2p

To treat this case, and similar ones, with an acceptable degree of generality, some

form of modalµ-calculus (that is, fix-point definitions) would be required. We believe

this is an interesting line of future work.

7.1.4 Properties 3a, 3b

Another pair of very similar plans and proofs, proved by the same set of methods. The

first one required some effort on the human side, while the second was proved quite

easily.

7.1.5 OCS and 9, 2, 3b

The invariance of Property2 with OCS on could be proved with little or no modifica-

tion to the methods explained above, when no feature was enabled. As one can see,

the human time required was small. If compared with the figures above, for BCS+2,

the proof is somehow deeper and larger because of the added complexity of OCS.

Validating Property9 with OCS requires the largest effort of the whole benchmark

set. This is due to the use of the OCS invariant, which introduces complexity in each

branch of both the proof plan and the proof. The remarkably high human time was

required in order to find a suitable way of expressing the property itself, and to devise

a suitable invariant.
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Finally, the proof of the only interaction in the benchmark,that is, OCS and Prop-

erty 3b, proved quite complex to be devised, as is witnessed by the human time re-

ported under User time. Actually, there is still no systematic way of determining how

to detect an interaction when there is one, and this single problem needed some 20

man-hours to find out how to discover it.

7.1.6 Averages and totals

Some final considerations about the figures reported in Table7.1. From the “Averages”

row, one can see that:

• the average proof plan is 20 nodes deep and contains about 30 nodes in total

(ratio: 0.66). This suggests that the shape of a proof plan is quite narrow and

deep;

• the average proof is about 43 nodes deep and has 169 nodes in total (ratio: 0.25),

which seems to suggest that there is a lot more “decoration” in a proof than in

a proof plan. This somehow agrees with the idea that the proofplan abstracts

away much more than is allowed in a proof;

• proof planning time dominates over proof checking time by a factor of 3 to 2.

This is sensible as well, since most of the “intelligence” ofthe system lies in the

plan rather than in the proof, although the tactics in the methods can be rather

involved, if not require some degree of automation themselves;

• the whole set of benchmarks can be solved on a rather slow machine in some-

thing more than 10 minutes of CPU time, but the total human time required to set

the machinery up was some 4 man-months full-time, assuming one man-month

full-time is 160 man-hours;

• there is definite dominance of Tool time over Proof time, and of Proof time over

User time, meaning that it is always simpler to invent planning strategies than to



7.2. Comparison with related work 147

realise them, and that it is simpler to realise them than to have your tool actually

execute them!

7.2 Comparison with related work

Calder and Miller’s work (see e.g., [CM00, CM01, CM02b]) is the main source of

inspiration to the experimental test-set presented in thisChapter. It is anyway hard to

quantitatively compare the results obtained by Calder and Miller and ours, since(1)

the machines used are rather different, and(2) there is no indication on the human time

required by Calder and Miller’s approach in their papers.

From a qualitative point of view our approach has, in general, a precise advan-

tage over Calder and Miller’s (and any other model-checking-based approach), since

our proofs use no finitary approximation whatsoever. But it must as well be remarked

that, in [CM02a], the authors extend their approach to an unbounded number of users,

thanks to an abstraction-based technique. Moreover, theirmodel is much more detailed

and realistic than ours, also thanks to the use of a well-established modelling language

such as ProMeLa; lastly, our approach works byproving formulae via sequent cal-

culi, meaning that if a formula is not valid, there is so far little chance of finding a

counterexample to it (a counter-model of the formula), which, in the case of formal

methods, is usually desirable.

As a final remark, notice that in [CM02b] the authors solve theproblem for a

wider set of properties than ours. The restricted set of properties we have considered is

mainly due to the fact that, rather than introducing a fully-fledged, new technique to the

Formal Methods community, we wanted to demonstrate how Proof Planning could be

effectively adapted to a real case-study. From this point ofview, more work is needed

for this approach to be deployed in the community.
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7.3 Chapter overview

This last Chapter presents the experimental results obtained byλCLAM/FTL applied to

FIs. The whole benchmark is solved in less than 10 minutes CPUtime, but it has

required some 4 man-months of human time.

Comparison with related work is encouraging, modulo the smaller level of detail

of our model, but the greater generality of the results we obtain (i.e., no finitary ap-

proximation is used).

Some simple but interesting considerations about the shapeof the plans and proofs

show that proof planning serves here exactly as a guidance for the object-level theorem

prover, as is in its spirit, and that it effectively capturesrecurring patterns in proofs.
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Conclusions

The work behind this thesis was originally funded by EPSRC ina project called

MFOTL (Mechanising First-Order Temporal Logics). In the project proposal, dating

back to 1998, one can read:

The aim of this project is to apply novel techniques from artificial intelli-
gence to the development of apractical theorem-proving system for First-
Order Temporal Logics (FOTL).

[...]

Thus, this project will combine work on temporal and inductive theorem-
proving in order to investigate how a proof-planning approach may be used
to improve first-order temporal theorem-proving.

We claim that the original aim of the project is fulfilled by the results achieved in

this thesis:

1. the sequent calculi developed and exposed in Chapter 3 laythe theoretical basis

to an AR-oriented approach to quantified modal logics (see also [CS02b]);

2. Chapters 4 and 5 extend the approach toFOLTL and describe how a sequent

calculus for this logic can be mechanised in an interactive,tactic-based theorem

prover based upon the higher-order logic programming languageλProlog; the

proof plannerλCLAM is then coupled with the theorem prover in order to fully

realise the proof planning approach toFOLTL (see also [CS00, CS01]);
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3. Chapters 6 and 7 show that the approach as a whole is viable,at least for a

significant case-study which had been tackled mostly in a finitary way so far. An

initial result in this direction was published also in [CS02a].

With respect to the original aim of the project, it must be remarked that this thesis

is slightly biased toward theoretical results. In particular, there is no mention of quan-

tified modal logics in the proposal; but we have felt that such a general approach as

that presented in Chapter 3, which almost came out as a by-product of our study on

temporal logics, deserved a full treatment.

Also, there is less focus uponinductivetheorem proving inFOLTL in this thesis,

than indicated in the project proposal. Although proofs by induction using invariants

are generated during the examination of the case-study, onecannot say that the system

is generating new induction schemes or applying old ones in asmart way.

Nevertheless, we believe that the original contributions of this thesis have advanced

the state-of-the-art in automated reasoning for modal and temporal logics, at least in

the following ways:

• a new, systematic presentation of quantified modal logics has been given, which

generalises and enlarges previous results in the field;

• proof planning has been applied to a logic which had never been tackled by the

paradigm; in doing this, a set of new proof planning methods has been devised;

• the proof plannerλCLAM has actually been coupled with an object-level theorem

prover, so that its proof plans have been validated in the object logic and proved

to represent sound ways of reasoning; as far as we know, this is the first time it

has been done;

• a well-known problem in formal methods, namely that of Feature Interactions

in telecommunication systems, has been explored and solvedto some extent

without any finitary approximation.
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Lastly, it is interesting to remark that the proof obtained by λCLAM/FTL when ap-

plied to the case-study (see Chapter 7) are remarkably deep and large, the deepest

being 66 nodes deep, and the largest consisting of 341 nodes,not taking into account

the proofs of the invariants required, and a few lemmas whichwere necessary. The

proofs were obtained in a reasonable amount of CPU time; and the object logic is not

only undecidable, but non recursively enumerable. These results are remarkable from

the point of view of standard automated theorem proving; still, from the standpoint of

proof planning, they look like a starting point — much more can be achieved.

8.1 Future work

Here are some of the possible lines of future work, or open questions that, in our

opinion, deserve more investigation:

• On quantified modal and temporal logics.The theoretical framework of Chapter

3 could be further extended to non-constant domains, or to more temporal log-

ics (say,FOCTL ); more soundness and completeness proofs could be studied

(for instance: isCFOLTL complete for monodicFOLTL ? and for propositional

LTL?); lifting the limitation that the set of frame axioms must be finite could

lead us to a calculus complete forFOLTL (for instance, adding theω-rule as an

infinite set of frame axioms?);

• On λCLAM andFTL. The system as a whole could be re-engineered in a number

of ways, willing to strengthen it or make it more robust. Among the possible op-

tions: re-implementing it in a more stable framework thanλProlog (say Isabelle,

or some imperative language); making it more open to the interaction with other

object-level theorem provers; improving the presentationof results and the user

interface, in order to make it more user-friendly;

• On Feature Interactions/1.Does the system scale up, e.g., to a more complex
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model, or if we add more features, or if we look for more complex properties

(liveness, response, absence of starvation)?

• On Feature Interactions/2.How to systematically detect an interaction? That

is: can we devise a proof planning schema able to detect interactions in a more

general way that that outlined in Chapter 6? This is, maybe, the most impor-

tant open question regarding the experiments carried on in this thesis, and the

practical applicability of our method at all.

• On proof planning applied toFOLTL . Can the approach used in Chapter 6 to

model users in the problem of FI be applied to more problems informal meth-

ods? And if so, can proof planning be adapted to work in that case?
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An interactive session in FTL

Recall Figure 3.4; what follows is a recorded session in which precisely that proof

tree is generated. Symbols such as<lc-0-1> and 2766 denote, respectively, fresh

constants as introduced by generative rules, and metavariables as introduced by non-

generative rules.

Tactics are denoted by at prepended to an acronym for the associated rule’s name;

for instance,tlbox is the tactic wrapping rulel2. Two modes are possible to apply

a tactic: either we specify one number (two in the case of ruleax) indicating which

is the main formula (e.g.,tax 1 1. applies ruleax to the first antecedent and the

first consequent), or we prepend the keywordpre to the tactic, meaning that the first

formula left-to-right which has the required shape (e.g.,2-formulae forr2 andl2 and

so on) must be used.

Welcome to Teyjus

Copyright (C) 1999 Gopalan Nadathur

Teyjus comes with ABSOLUTELY NO WARRANTY

This is free software, and you are welcome to redistribute it

under certain conditions. Please view the accompanying file

"COPYING" for more information.
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[ftl] ?- name "ax4" Phi, top (Phi at zero).

----- Premises:

----- Conclusions:

(1) box phi imp box (box phi) at zero

***** Tactic? pre trimp.

----- Premises:

(1) box phi at zero

----- Conclusions:

(1) box (box phi) at zero

***** Tactic? pre trbox.

----- Premises:

(1) zero bef <lc-0-1>

(2) box phi at zero

----- Conclusions:

(1) box phi at <lc-0-1>

***** Tactic? pre trbox.

----- Premises:

(1) <lc-0-1> bef <lc-0-2>

(2) zero bef <lc-0-1>

(3) box phi at zero

----- Conclusions:

(1) phi at <lc-0-2>

***** Tactic? pre tlbox.
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----- Premises:

(1) phi at _1740

(2) <lc-0-1> bef <lc-0-2>

(3) zero bef <lc-0-1>

(4) box phi at zero

----- Conclusions:

(1) phi at <lc-0-2>

***** Tactic? tax 1 1.

----- Premises:

(1) <lc-0-1> bef <lc-0-2>

(2) zero bef <lc-0-1>

(3) box phi at zero

----- Conclusions:

(1) zero bef <lc-0-2>

(2) phi at <lc-0-2>

***** Tactic? ttrans.

----- Premises:

(1) <lc-0-1> bef <lc-0-2>

(2) zero bef <lc-0-1>

(3) box phi at zero

----- Conclusions:

(1) _2706 bef _2707

(2) zero bef <lc-0-2>

(3) phi at <lc-0-2>

***** Tactic? tax 2 1.
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----- Premises:

(1) <lc-0-1> bef <lc-0-2>

(2) zero bef <lc-0-1>

(3) box phi at zero

----- Conclusions:

(1) <lc-0-1> bef _2728

(2) zero bef <lc-0-2>

(3) phi at <lc-0-2>

***** Tactic? tax 1 1.

----- Premises:

(1) zero bef <lc-0-2>

(2) <lc-0-1> bef <lc-0-2>

(3) zero bef <lc-0-1>

(4) box phi at zero

----- Conclusions:

(1) zero bef <lc-0-2>

(2) phi at <lc-0-2>

***** Tactic? tax 1 1.

----> Proof found. Formula box phi imp box (box phi) at zero

----> is proved by proof

rimp 1 (

rbox 1 (W1\

rbox 1 (W2\

lbox 3

(ax 1 1)
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(trans (ax 2 1) (ax 1 1) (ax 1 1))

)))

yes





Appendix B

Correctness of the implementation

In this Appendix we give a proof of the correctness of the implementation ofCQL in

FTL. The wordcorrectnesshere means that, for every object logicQL or FOLTL , a

formula has a proof inCQL if and only if a convenient meta-term can be derived inFTL

via the standardλProlog search operations. Needless to say, this fact is not related with

any decidability or completeness argument whatsoever; what it tells us is that there is

a precise correspondence between provable formulae (theorems) andλProlog terms in

FTL, that is, that objects of typeproof obtained by means ofFTL faithfully represent

proofs of theorems inQL .

The proof follows closely the one found in [Fel93], to which the interested reader

is referred to, once again.FTL is carefully written in order to adhere to the design

guidelines found in that paper, so that, modulo bugs in the code, that proof is easily

adapted to our case.

Without loss of generality and for the sake of simplicity, from now on, we carry the

proof on only for a subset of the object logic, namely that required forCQK (it is clear

how to extend it). What we want to do here is to establish a correspondence between

objects of the object-language (goals) and objects of the metalanguage (higher-order

terms). The first step is, then, to establish a mapping between the basic symbols of

the object-language and objects in the metalanguage. Firstof all, the two sorts of our
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language,ι andθ, are defined as types:

kind iota type.

kind theta type.

Then, let us assume the existence of a bijective mappingΦ between symbols in

the sets defined in Subsection 3.1.1 and constants of the metalanguage. Letdom(Φ)

denote the domain ofΦ. Φ maps elements ofP , F and so on to constants of suitable

type iota, theta, lformula and the like. For instance, assuming the existence of

a ternary Skolem functioncv∈ F ′, as is done, e.g., in Subsection 3.2.2,Φ(cv) = cv

where, using theλProlog notation to represent types,cv has typetheta -> theta ->

theta -> theta. Therefore, metaleveltypingof the constants provides therank of

the terms of the object-language1. Φ is actually realised in the signature of the modules

of FTL, for instance

type cv theta -> theta -> theta -> theta.

Let us also assume the existence of a mappingρ from first-order variables to

metavariables of typeiota or theta, their type being derivable at compile-time by

theλProlog interpreter; then, by means ofΦ andρ object-level terms can be encoded

in the meta-logic like this:

〈〈x〉〉 := ρ(x)

〈〈p(s1, . . . ,sm)〉〉 := Φ(p) 〈〈s1〉〉, . . . ,〈〈sm〉〉 wherep∈ dom(Φ)

〈〈A @ τ〉〉 := 〈〈A〉〉 @ 〈〈τ〉〉

〈〈¬A〉〉 := neg 〈〈A〉〉

〈〈A⊃ B〉〉 := 〈〈A〉〉 imp 〈〈B〉〉

〈〈∀x.A〉〉 := all x\ 〈〈A〉〉 whereρ(x) = x

〈〈2A〉〉 := box 〈〈A〉〉

〈〈Γ−→ ∆〉〉 := 〈〈Γ〉〉 --> 〈〈∆〉〉

1this is a slight abuse of language: the rank of a symbol, as defined in Subsection 3.3.1, only concerns
sortsι andθ, whereas here we considereveryobject of the syntax as having a rank, e.g., nullary elements
of P have the rank of propositions, which is neitherι norθ, etc.
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(we use the convention that the encoding of a set of formulae is represented as the list

of the encodings). This encoding satisfies the condition that, for any first-order terms

or formulaeM andN and variablex, 〈〈[N/x]M〉〉=β [〈〈N〉〉/x]〈〈M〉〉.

It is also the case that a meta-term of typeiota, theta, lformula or formula can

be decoded by inverting the above encoding; the decoding of term M is indicated by

||M|| and is defined analogously as the encoding above.

Let now〈Σ,P 〉 represent theλProlog program which implementsFTL, restricted to

CQK ; then

Theorem 31 (Correctness of the implementation)

1. LetΠ be the proof inCQK of a sequentΓ−→ ∆; then there is an objectP of type

proof such thatP proves 〈〈Γ−→ ∆〉〉 is derivable from〈Σ,P 〉;

2. Let the clause

P proves Gamma --> Delta

be derivable from〈Σ,P 〉; then the sequent||Gamma --> Delta|| is derivable

in CQK .

Proof: item 1 follows from this argument: supposeS1, . . . ,Sn,n≥ 0 are the premises

of rule ρ ∈ CQK , andS is its conclusion; letP1, . . ., Pn be variables of typeproof;

finally, let Σ′ andP ′ be the signature and program

Σ′ := Σ∪{type P1 proof., . . . ,type Pn proof.}

P ′ := P ∪{P1 proves 〈〈S1〉〉., . . . ,Pn proves 〈〈Sn〉〉.}

Then there is a termP of typeproof such that the goalP proves 〈〈S〉〉 is derivable

from 〈Σ′,P ′〉. This is shown by induction on the height ofΠ, examining all rules in

CQK and the associated tactics.
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For the base cases (ruleax and a few more),P proves 〈〈S〉〉must be exactly one of

theP1 proves 〈〈Si〉〉., modulo theλProlog higher-order unification algorithm2, there-

fore it is immediately derived by BACKCHAIN.

For the step cases, we just show some significant cases in detail, namely: (i) for

tactictrimp, wrapping ruler⊃, which shows how the proof carries on for rules dealing

with Boolean operators;(ii) for tactictrall, wrapping ruler∀, which shows how the

proof carries on for rules dealing with generative quantifiers, and(iii) for tactictlall,

wrapping rulel∀, which shows how the proof carries on for rules dealing with non-

generative quantifiers, introducing metavariables.

• If the rule is r⊃, then S has the shapeΓ −→ ϕ⊃ ψ@τ,∆. By the induc-

tion hypothesis, the clauseP1 proves 〈〈Γ,ϕ@τ−→ψ@τ,∆〉〉 is derivable from

〈Σ′,P ′〉. Then by BACKCHAIN on the clause for tactictrimp, enforcing rule

r⊃,

trimp Pos

((rimp Pos P) proves (Gamma --> Delta))

(P proves [Phi at Tau|Gamma] --> [Psi at Tau|Delta’]) :-

delete Pos (Phi imp Psi at Tau) Delta Delta’.

P proves 〈〈Γ−→ ϕ⊃ ψ@τ,∆〉〉 is derivable from〈Σ′,P ′〉;

• If the rule isr∀, thenS has the shapeΓ −→ ∀x.ϕ@τ,∆. By the induction hy-

pothesis, the clauseP1 proves 〈〈Γ −→ ϕ[a/x]@τ,∆〉〉 is derivable from〈Σ′ ∪

{type a i.},P ′〉. As already stated, the encoding〈〈〉〉 is such that

〈〈ϕ[a/x]〉〉=β x\(〈〈ϕ〉〉a)

Therefore, the above goal is equivalent to(P a) proves (x\(〈〈ϕ〉〉 a)); by the

GENERIC directive, goalpi a\((P a) proves (x\(〈〈ϕ〉〉 a))) is derivable

2since metavariables introduced in sequents only stand for first-order variables, this is standard first-
order unification.
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from 〈Σ′,P ′〉; now by BACKCHAIN on the clause for tactictrall, enforcing

rule r∀,

trall Pos

((rall Pos P) proves (Gamma --> Delta))

(forall_goal a\ ((P a) proves Gamma --> [(Phi a) at Tau|Delta’])) :-

delete Pos (all Phi at Tau) Delta Delta’.

the goalP proves (all x\〈〈ϕ〉〉) is derivable from〈Σ′,P ′〉; notice the use of

theforall goal goal constructor (in the sense of a proof/sequent pair), which

wraps thepi directive necessary to introduce a fresh term in the derivation. No-

tice also that the proof termP is required here to have the fresh terma as an

argument;

• If the rule is l∀, thenS has the shapeΓ,∀x.ϕ@τ −→ ∆. By the induction hy-

pothesis, the clauseP1 proves 〈〈Γ,ϕ[t/x]@τ−→ ∆〉〉 is derivable from〈Σ,P ′〉;

here the signatureΣ must either contain an explicit statement thatt has the same

type ofx, or be such that this information is derivable at compile-time. By the

same argument of the Item above, the above goal is equivalentto

P proves (x\(〈〈ϕ〉〉 t))

.

By BACKCHAIN on the clause for tactictlall, enforcing rulel∀,

tlall Pos

((lall Pos P) proves (Gamma --> Delta))

(P proves [(Phi C) at Tau|Gamma] --> Delta) :-

member Pos (all Phi at Tau) Gamma.

the goalP proves (all x\〈〈ϕ〉〉) is derivable from〈Σ′,P ′〉 (notice that here no

delete operation is performed, since we want a copy of the main formula to be
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in the premise). The metavariableC in place of the termt is actually carried to the

end of the proof, until either the tree is not closed, and thisclause is backtracked

over, or a unification is performed by a closing rule (see the base case of this

proof).

Item 1 follows from a similar argument, relying on the existence ofλProlog deriva-

tions obtained (only) via the six primitives described in Section 5.1.1. Altogether, they

constitute a sound and complete (with respect to intuitionistic logic) non-deterministic

search procedure for the language ofλProlog higher-order hereditary Harrop formulae

(see Theorem 2.1 in [Fel93]).

Briefly, let P,P1,...,Pn ben+ 1 distinct variables of typeproof; moreover, let

S,S1,...,Sn ben+ 1 distinct variables of typesequent. Let Σ′ be the signatureΣ,

plus the signatures forP, P1,...,Pn, plus a declaration of typei for every variable

appearing free inP, S, S1,. . .,Sn. If the clause(P proves S) is provable from

〈Σ′,P ∪{(P1 proves S1),...,(Pn proves Sn)}〉 then there is a proof of||S|| in

CQK .

The proof is analogous to (1) by induction on the structure ofP.

•
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[Gor93] R. Goré. Cut-free sequent and tableau systems for propositional diodor-

ean modal logics. Technical Report UMCS-93-8-3, University of

Manchester, Computer Science Department, August 1993.

[Hin62] Jaakko Hintikka. Knowledge and Belief. Cornell University Press,

Ithaca, New York, 1962.

[HK99] Alexander Holt and Ewan Klein. A semantically-derived subset of En-

glish for hardware verification. InProc. 37th Annual Meeting of the As-

sociation for Computational Linguistics: Maryland, USA, pages 451–

456. Association for Computational Linguistics, 1999.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.Com-

munications of the ACM, 12(10):576–580, October 1969.



174 Bibliography

[Hol93] G. J. Holzmann. Design and validation of protocols:a tutorial. Com-

puter Networks and ISDN Systems, 25(9):981–1017, April 1993. also

in: Proc. 11th PSTV91, INWG/IFIP, Stockholm, Sweden.

[Hol97a] Gerard J. Holzmann. The Spin model checker.IEEE Transactions on

Software Engineering, 23(5):279–95, May 1997.

[Hol97b] G.J. Holzmann. The model checker spin.IEEE Trans. on Software En-

gineering, 23(5):279–295, May 1997. Special issue on Formal Methods

in Software Practice.

[Hry88] T. Hrycej. Temporal prolog. In Yves Kodratoff, editor, Proceedings of

the 8th European Conference on Artificial Intelligence, pages 296–301,

Munich, FRG, August 1988. Pitman Publishers.

[Hue75] G. P. Huet. Unification in typed lambda calculus. In G. Goos and

J. Hartmanis, editors,λ-Calculus and Computer Science Theory, pages

192–212. Springer-Verlag, Berlin, DE, 1975. Lecture Notesin Com-

puter Science 37.

[HV91] Joseph Y. Halpern and Moshe Y. Vardi. Model checking vs. theorem

proving: A manifesto. In James Allen, Richard Fikes, and Erik Sande-

wall, editors,Proceedings of the 2nd International Conference on Prin-

ciples of Knowledge Representation and Reasoning, pages 325–334,

San Mateo, CA, USA, April 1991. Morgan Kaufmann Publishers.

[HWZ00] I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of

first order temporal logics.Annals of Pure and Applied Logic, 106:85–

134, 2000.

[HWZ01] Ian Hodkinson, Frank Wolter, and Michael Zakharyaschev. Monodic

fragments of first-order temporal logics: 2000–2001 A.D.Lecture

Notes in Computer Science, 2250:1–23, 2001.



Bibliography 175

[HWZ02] Ian Hodkinson, Frank Wolter, and Michael Zakharyaschev. Decidable

and undecidable fragments of first-order branching temporal logics. In

Logic in Computer Science, pages 393–402, Los Alamitos, CA, USA,

July 22–25 2002. IEEE Computer Society.

[JMN+01] Bengt Jonsson, Tiziana Margaria, Gustaf Naeser, Jan Nyström, and

Bernhard Steffen. Incremental requirement specification for evolving

systems.Nordic Journal of Computing, 8(1):65–87, Spring 2001.

[Kan63] S. Kanger. A simplified proof method for elementary logic. In Com-

puter Programming And Formal Systems, Studies in Logic, pages 87–

93. North-Holland Publ. Co., Amsterdam, 1963.

[Ker98] Manfred Kerber. Proof planning: A practical approach to mechanized

reasoning in mathematics. In Wolfgang Bibel and Peter H. Schmitt,

editors,Automated Deduction, a Basis for Application – Handbook of

the German Focus Programme on Automated Deduction, chapter III.4,

pages 77–95. Kluwer Academic Publishers, Dordrecht, The Nether-

lands, 1998.

[Kri63] Saul A. Kripke. Semantical analysis of modal logic.Zeitschrift f̈ur

Mathematische Logik und Grundlagen der Mathematik, 9:67–96, 1963.

[Lam94] Leslie Lamport. The temporal logic of actions.ACM Transactions on

Programming Languages and Systems, 16(3):872–923, May 1994.

[MBB+95] Zohar Manna, Nikolaj Bjørner, Anca Browne, Edward Chang, Michael

Colón, Luca de Alfaro, Harish Devarajan, Arjun Kapur, Jaejin Lee,

Henny Sipma, and Tomás E. Uribe. STeP: The stanford tempo-

ral prover. In Peter D. Mosses, Mogens Nielsen, and Michael I.

Schwartzbach, editors,TAPSOFT ’95: Theory and Practice of Soft-



176 Bibliography

ware Development, volume 915 ofLecture Notes in Computer Science,

pages 793–794. Springer-Verlag, 1995.

[Mel96] E. Melis. Progress in proof planning: Planning limit theorems automat-

ically. Technical Report SR-97-08, University of the Saarland, 1996.

[Mil93] Dale Miller. A proposal for modules in lambda-prolog. In Extensions

of Logic Programming, pages 206–221, 1993.

[Mil98] Dale Miller. λProlog: An introduction to the language and its logic.

Unpublished as yet., 1998.

[ML02] Marta Cialdea Mayer and Carla Limongelli. Linear time logic, condi-

tioned models, and planning with incomplete knowledge.Lecture Notes

in Computer Science, 2381:70–84, 2002.

[MMW94] H. McGuire, Z. Manna, and B. Waldinger. Annotation-based deduction

in temporal logic. In Dov M. Gabbay and Hans Jürgen Ohlbach,editors,

Proceedings of the 1st International Conference on Temporal Logic,

volume 827 ofLNAI, pages 430–444, Berlin, July 1994. Springer.

[Mos98] B. C. Moszkowski. Compositional reasoning using interval temporal

logic and tempura.Lecture Notes in Computer Science, 1536:439–464,

1998.

[MP81] Z. Manna and A. Pnueli. Verification of temporal programs: the tempo-

ral framework. In R. S. Boyer and J. S. Moore, editors,The Correctness

Problem in Computer Science. Academic Press, New York, 1981.

[MP91] Z. Manna and A. Pnueli. Completing the temporal picture (logic).The-

oretical Computer Science, 83(1):97–130, June 1991.

[MP92] Zohar Manna and Amir Pnueli.The Temporal Logic of Reactive and

Concurrent Systems. Springer, New York, 1992.



Bibliography 177

[MP95] Z. Manna and A. Pnueli.Temporal Verification of Reactive Systems:

Safety. Springer-Verlag, New York, 1995.

[MS98] Z. Manna and H. B. Sipma. Deductive verification of hybrid systems

using STeP.Lecture Notes in Computer Science, 1386:305–318, 1998.

[MS99] Z. Manna and H. B. Sipma. Verification of parameterized systems by

dynamic induction on diagrams.Lecture Notes in Computer Science,

1633:25–43, 1999.

[NM86] Gopalan Nadathur and Dale Miller. Higher-order logic programming.

In D. Gabbay, C. Hogger, and A. Robinson, editors,Handbook of Logic

in AI and Logic Programming, Volume 5: Logic Programming. Springer

Verlag, Oxford, 1986.

[NM98] Gopalan Nadathur and Dale Miller. Higher-order logic programming.

In Dov M. Gabbay, C. J. Hogger, and J. A. Robinson, editors,Handbook

of Logics for Artificial Intelligence and Logic Programming, volume 5,

pages 499–590. Clarendon Press, Oxford, England, 1998.

[OM94] M. A. Orgun and W. Ma. An overview of temporal and modallogic

programming.Lecture Notes in Computer Science, 827:445–479, 1994.
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[Pli01] Regimantas Pliuškevičius. Deduction-based decision procedure for a



178 Bibliography

clausal miniscoped fragment of FTL.Lecture Notes in Computer Sci-

ence, 2083:107–120, 2001.

[Pri67] Arthur N Prior. Past, Present and Future. Oxford University Press,

Oxford, 1967.

[Ric02] Julian Richardson. A semantics for proof plans withapplications

to interactive proof planning. Lecture Notes in Computer Science,

2514:337–351, 2002.

[RSG98] J. D. C. Richardson, A. Smaill, and I. Green. System description: proof

planning in higher-order logic with Lambda-Clam. In ClaudeKirchner

and Hélène Kirchner, editors,15th International Conference on Auto-

mated Deduction, volume 1421 ofLecture Notes in Artificial Intelli-

gence, pages 129–133, Lindau, Germany, July 1998.

[Sho70] J.R. Shoenfield.Mathematical logic. Addison-Wesley, 1970.

[SUM99] Henny B. Sipma, Tomás E. Uribe, and Zohar Manna. Deductive model

checking.Formal Methods in System Design: An International Journal,

15(1):49–74, July 1999.

[TS96] A. S. Troelstra and H. Schwichtenberg.Basic Proof Theory, volume 43

of Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-

versity Press, Cambridge, England, 1996.

[van84] Johan van Benthem. Correspondence theory. In D. Gabbay and

F. Guenthner, editors,Handbook of Philosophical Logic, Volume II:

Extensions of Classical Logic, volume 165 ofSynthese Library, chapter

II.4, pages 167–247. D. Reidel Publishing Co., Dordrecht, 1984.

[Var03] Moshe Y. Vardi. Automated verification: Graphs, logic, and automata.

In IJCAI-03, Proceedings of the Eighteenth International Joint Confer-



Bibliography 179

ence on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003,

pages 1603–1606. Morgan Kaufmann, 2003.
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