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Abstract 
Glioblastoma (GBM) remains an incurable tumour fraught with a high probability of 

death. One of the key characteristic of GBM is the development of local immunosuppression 

that promotes immune evasion and lays a solid foundation for the tumour to progress. Break-
throughs in our understanding in cancer biology have shown that GBM have evolved unique 

mechanisms that influence infiltrating macrophages, a key immune cell type, to facilitate tu-

mour progression. Macrophages have been identified in many studies to promote angiogen-
esis, extra cellular matrix reorganisation, establishment of local immunosuppression and tu-

mour growth. Thus, there is great need to improve the clinical development of immunothera-
peutics that can address tumour-specific immune responses. Herein, we tested the capability 

of solidly supported Gold and Palladium nanoparticles as biorthogonal catalytic converters 
of prodrugs in a zebrafish U87 glioblastoma xenograft model. Intriguingly, we report that the 

implantation of Palladium and Gold bead into the zebrafish brain causes a potent anti-tumour 
responses that leads to U87 cell clearance, fragmentation and increased macrophage num-

ber. Further investigation revealed that Gold and Palladium beads did not cause aberrant 

necrosis when implanted in the zebrafish brain and that macrophages played a key role in 
mediating the associated anti-tumour response of Palladium and Gold bead implantation. 

The role of macrophages was investigated further using Next Generation RNA sequencing of 
macrophages isolated from Palladium bead implanted zebrafish. RNA sequencing results re-

vealed differentially expressed genes in Palladium bead implanted zebrafish with 389 genes 
upregulated and 361 genes downregulated. Enrichment analysis of these genes showed sig-

nificant enrichment of oxidation-reduction processes as a result of Palladium bead implanta-

tion. In addition, confirmatory RT-qPCR highlighted two key TLR signalling inflammatory 
genes, Cxcl8b.1 and TNF-𝑎	, to be overexpressed in macrophages of Palladium and Gold 

bead implanted zebrafish. Since Cxcl8b.1 is a potent attractant of neutrophils, we studied the 

dynamics of macrophages and neutrophil number in the zebrafish brain. Indeed, we detected 
an accumulation of neutrophils upon gold bead transplantation. Thus, we analysed the role 

of Cxcl8b.1 and TNF-𝑎	in	the	initiation of the  anti-tumour effect. This was achieved by com-

bining CRISPR-Cas9 knock out and genetic overexpression transgenesis techniques of 
Cxcl8b.1 and TNF-𝑎. The results here conclude that TNF-𝑎 were not key genetic mediators 

of the associated bead induced anti-tumour phenotype. Finally, this study opens new ave-

nues for the development of novel cancer immunotherapeutics. RNA sequencing results 
showed high number of other candidate genes that exploit the intrinsic capabilities of transi-

tions metals to initiate an anti-tumour response.  
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Lay Abstract 
Glioblastoma is an incurable brain tumour fraught with a high probability of death. 

One of the key properties of glioblastoma is the ability to avoid the immune system and thus 

allowing it to grow. Breakthroughs in our understanding in cancer biology have shown that 
glioblastoma have evolved unique traits that interact with the immune system. These interac-

tions influence macrophages, a key immune cell type, to help the tumour growth. Macro-

phages have been identified in many studies to enter the site of the tumour to promote blood 
vessel development, reorganisation of surrounding tissue and immune system avoidance. 

Therefore, there is great need to improve the clinical development of treatments that can 
address these interactions between the tumour and the immune system. We do so by using 

a widely use animal model, the zebrafish. The zebrafish has many advantages and one of 
them is its optical transparency. This allows us to look into the brain of the zebrafish with a 

microscope to directly observe the interaction of immune cells and tumour cells. We have 
previously used this model to study immune interactions between macrophages and human 

brain tumours that were transplanted into zebrafish brains. To extend our previous study, we 

investigate the ability of solidly supported Palladium and Gold nanoparticles to stimulate mac-
rophages to kill brain tumours. To do so, Gold and Palladium beads were carefully implanted 

into the zebrafish brain and any anti-tumour responses were studied closely. The implantation 
of Gold and Palladium beads led to the clearance and break down of tumour cells. In addition, 

Gold and Palladium stimulated increased macrophage number in the zebrafish brain. Gold 
and Palladium did not cause direct cell death of these tumour cells, but induced an anti-

tumour response in macrophages. Genetic studies of these macrophages showed changes 

in the expression of many genes related to the oxidation-reduction processes. In addition, 
two key immune system activating genes, Cxcl8b.1 and TNF-𝑎	,	were confirmed to be over-

expressed in Palladium and Gold bead implanted zebrafish. Cxcl8b.1 and TNF-𝑎 are im-
portant genes that can influence how the immune system respond; Cxcl8b.1 is an important 

activator of neutrophil number, another key immune cell type. Therefore, we investigated the 

dynamics of how these genes can affect macrophages and neutrophil number to regulate 
anti-tumour effects in the zebrafish brain. In order to do so, we altered genetic expression of 

Cxcl8b.1 and TNF-𝑎	in the zebrafish brain, either by increasing or decreasing the expression 

of each gene. Our results conclude that TNF-𝑎 and Cxcl8b.1 were not key genetic effectors 

of the associated bead induced anti-tumour responses. Finally, this study here opens new 
avenues for the development of new anti-cancer drugs that exploit the innate properties of 

transitions metals to interact with the immune system. 
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1. Introduction 
1.1. The role of tumour associated macrophages and their impact on 

the tumour microenvironment in Glioblastomas  

1.1.1. Glioblastomas and its origins 

The advent of genomics within the last decade has accelerated the integration of 

phenotypic and genomic parameters to classify tumours of the central nervous system (CNS) 

(Louis et al., 2014 , Louis et al., 2016). Molecular insights into CNS tumours have led to the 

refinement of diagnostic categories that expanded the 2007 World Health Organisation (WHO) 

classification of tumours of the CNS (Louis et al., 2014, Louis et al., 2016). Gliomas are the 

most common malignant primary brain tumours (Gusyatiner and Hegi, 2018). Accurate clas-

sification of gliomas has significant implication for the patient in addition to having important 

ramifications in the interpretation of clinical and scientific experiments encompassing tu-

mours of the CNS (Louis et al., 2016). Today, the combination of diagnostic molecular testing 

Figure 1.Gliomas are classified based on histological and genetic features. 
Gliomas are classified based on morphology genotype such as IDH status, presence or absence of 1p/19q co-

deletion, ATRX loss and TP53 mutations. Glioma diagnosis consist of a histopathological name followed by a 
genetic feature (Diffuse astrocytoma, IDH-mutant). Tumour lacking a molecular diagnosis is termed NOS.  

 

Image taken from Louis et al., 2016 
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and histological analysis is fundamental in the clinical classification of CNS tumour and guides 

the use of therapies (Summarised in Figure 1) (Louis et al., 2016).  

Glioma defines a heterogenous group of CNS cancers that are anatomically similar 

to each other but are diverse in the context of morphology and molecular biology (Crocetti et 

al., 2012, Ho et al., 2014). Glioma is a complex disease that presents a multitude of histo-

pathological features and resembles various neural cell types (Lu et al., 2019). High grade 

gliomas can display a high degree of heterogeneity between tumours and within cells of the 

same tumour (Alcantara Llaguno and Parada, 2016, Jiang and Uhrbom, 2012). Gliomas were 

thought to originate from glial cells due to the high proportion of expression of glial specific 

GFAP protein (Jones et al., 1981). However, histopathological classification have identified 

morphological resemblance of gliomas, such as astrocytomas, oligodendrogliomas, oligo-

astrocytomas and glioblastomas, to glial tissue. Gliomas can show morphological character-

istics similar to astrocytes and express astrocytic lineage markers such as GFAP and APO-E 

(Rousseau et al., 2006). Gliomas of astrocytic lineage are termed Astrocytomas (Rousseau et 

al., 2006). In contrast, Oligodendroglioma have morphological characteristics that resemble 

oligodendrocyte progenitor cells (OPC) and often express OPC markers that include Olig2, 

NG2 and PDGFR𝑎 (Rousseau et al., 2006, Zong et al., 2012). Gliomas with mixed cellular or 

anaplastic features have also been identified and these tumours are classified as oligoastro-

cytomas and glioblastomas (Zong et al., 2012).  

The cellular origins of gliomas are widely debated, however, studies have shown that 

glioma can originate from multiple cells. Neural stem cells and glial progenitors have been 

early contender as the cell origins of gliomas (Zong et al., 2012, Pollard et al., 2009). The 

inactivation of tumour suppressor (Nf1, p53 and Pten) in nestin expressing neural progenitor 

niches have been shown to induce high grade astrocytoma formation and premature death 

in mice (Alcantara Llaguno et al., 2009, Zhu et al., 2005). Likewise, the inactivation or deletion 

of tumour suppressors in oligodendrocyte precursor cells promotes the transformation from 

a quiescent to a malignant state (Galvao et al., 2014). Furthermore, astrocytes have been 
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shown to dedifferentiate into multipotent progenitors that malignantly transformation into As-

trocytomas (Bachoo et al., 2002). There is a growing body of evidence to show that gliomas 

are maintained by a subpopulation of cancer cells displaying stem cell like characteristics; 

long term self-renewal and differentiation capabilities (Pollard et al., 2009, Hemmati et al., 

2003, Fleurence et al., 2019). These glioma cancer stem-like cells are generally not completely 

removed during surgery and are resistant to chemotherapy and radiotherapy; leading to the 

regeneration and recurrence of the GBMs (Fleurence et al., 2019). Altogether, gliomas can 

develop from many difference cell types and thus contributes to the complexity of glioma 

biology.  

Gliomas are clinically classified under the 2016 World’s Health Organisation classifi-

cation of tumour of the central nervous system from grade I to IV. It classifies gliomas based 

on morphology, histology grade, genotype such as IDH status and the presence or absence 

of 1p/19q co-deletion (Back et al., 2018). The less aggressive diffuse astrocytomas and oli-

godendrogliomas are designated as Grade II (Louis et al., 2016). Glioblastomas multiforme 

(GBM), the most aggressive form of gliomas, are classed under grade IV, the highest in se-

verity (Back et al., 2018, Louis et al., 2016). The most effective treatment includes maximal 

tumour resection followed by radiotherapy and temozolomide chemotherapy (Weller et al., 

2014). GBM remains an incurable tumour with a low survival rate of 14.4% at 3 years 

(Gramatzki et al., 2016). GBMs are histologically and genetically heterogenous (Pollard et al., 

2009). Transcriptomic and genomic analysis of GBM have identified distinct molecular sub-

types of GBMs and can be classified further. Four expression subtypes of GBMs have been 

reported, proneural, neural, classical and mesenchymal, each with unique genetic markers 

that indicate the cell of origin and distinct clinical outcomes (Verhaak et al., 2010). Oligoden-

drocytic signatures have been identified in the proneural subtype. The proneural subtype of 

GBM are predominantly secondary gliomas and occur at a younger age (Verhaak et al., 2010). 

Hallmark characteristics include PDGFRA abnormalities and IDH1 mutations (Verhaak et al., 

2010). IDH1 mutations have been inversely correlated with GBM grading affecting 71% in 

grade II, 64% in grade III and 6% in primary glioblastomas (Labussiere et al., 2010, Back et 
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al., 2018). The Increase of PDGFRA expression in proneural subtypes are due to increased 

PDGFRA mutation and PDGFRA gene amplification (Verhaak et al., 2010). The PDGFRA gene 

is selectively expressed in OPC and is critical in stimulating the proliferation and migration of 

OPCs (Zong et al., 2012). The classical subtype is characterised by astrocytic gene signatures 

and epidermal growth factor receptor (EGFR) amplification, mutations and EGFRvIII intragenic 

deletions. EGFRvIII intragenic deletions of the epidermal growth factor (EGF) receptor leads 

to an in frame deletion and consequently results in the constitutively active kinase domain of 

the receptor (Zadeh et al., 2013, Li et al., 2009). EGFRvIII enhances cell proliferation, tumour 

growth and invasiveness in GBMs (Li et al., 2009). In contrast, neural subtypes are associated 

with gene of both astrocytes and oligodendrocytes but the strongest association are of gene 

associated with neurones (Verhaak et al., 2010). Neural markers such as NEFL and GABAA1 

are identifiers of the neural subtype of GBMs (Verhaak et al., 2010). Finally, macrophage 

markers such as CD68 and TNF are identified to be highly expressed in the mesenchymal 

subtype (Verhaak et al., 2010). In addition, the mesenchymal subtype had been correlated 

with genes associated with inflammation and has been linked to increased overall fraction of 

necrosis in tumours (Verhaak et al., 2010). The mesenchymal subtype of GBMs have been 

associated with high immune cell infiltration (microglia and macrophages) which has been 

shown to contribute to tumour progression (Prionisti et al., 2019, Gajewski et al., 2013, Noy 

and Pollard, 2014). Therefore, the tumour microenvironment constitutes malignant and non-

malignant cells, including immune and stromal cells, that provides tumour promoting func-

tions (Noy and Pollard, 2014, Balkwill et al., 2012). The complex network of signals between 

immune cells and GBMs establishes a tumour supporting environment that facilitates the 

transition to malignancy (Hambardzumyan et al., 2016, Noy and Pollard, 2014).  
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1.1.2. The innate and adaptive immune system, a brief overview 

Vertebrates have evolved a highly complex immune system to recognise many com-

ponents of foreign organism and elicit an immediate defence. The immune system consists 

of two distinct levels, the adaptive and innate immune system. The cells of the innate and 

adaptive immune systems are distinct (macrophages, dendritic cells, neutrophils and natural 

killer (NK) cells are considered innate immune cells, and lymphocytes are considered adaptive 

immune cells) but are not isolated from each other (Renshaw and Trede, 2012, Janeway and 

Medzhitov, 2002, Riera Romo et al., 2016). Significant crosstalk exists between the innate 

and adaptive immune system and is vital for the proper recognition and the proper immune 

response to an invading pathogen, bacterial or cancerous cell (Renshaw and Trede, 2012, 

Janeway and Medzhitov, 2002, Riera Romo et al., 2016).  

The innate immune system is the first line of defence against invading pathogens or 

tissue injury. The mechanism of pathogen recognition by the innate immune system is exten-

sively studied. The recognition of conserved features of microbial pathogens by the innate 

immune system are mediated through pattern recognition receptors, such as toll like recep-

tors (TLRs), C-type lectin receptors (CLRs) and nucleotide-binding oligomerization domain 

(NOD) (Li et al., 2017, Iwasaki and Medzhitov, 2015). These receptors recognise pathogen-

associated molecular patterns (PAMPs) such as bacterial (LPS, flagellin), fungal cell-wall com-

ponent and viral nucleic acids (Beutler, 2009, Iwasaki and Medzhitov, 2015). In addition to 

recognising structural features, the innate immune system is also capable of detecting path-

ogens through changes in tissue homeostasis (Iwasaki and Medzhitov, 2015, Chovatiya and 

Medzhitov, 2014). Alterations in tissue homeostasis such as protein folding, level of reactive 

oxygen species (ROS) and nutrient availability are sensed by sensors such as ATF4, NRF2, 

and CHREBP respectively, which engages a stress response to restore homeostasis (Chova-

tiya and Medzhitov, 2014). Macrophages have been defined as key sensory cells that monitor 

and control tissue homeostasis under stress, infection and also during tissue development 

and normal tissue states (Chovatiya and Medzhitov, 2014, Casano and Peri, 2015, Mosser 
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and Edwards, 2008). The advantages of this recognition system negates the requirement of 

a whole host of specific receptors against a diverse range of toxins, allergens, bacterial struc-

tures or virulent factors. The recognition of multicellular parasitic infections are detected by 

changes in tissue homeostasis as parasites lack structurally invariant targets that are detect-

able by pathogen recognition receptors (Iwasaki and Medzhitov, 2015). The innate immune 

system is also capable of discriminating self from non-self through inhibitory receptors. NK 

cells contain an immunoreceptor tyrosine-based inhibitory motif that detects major histocom-

patibility complex class I (MHC class I) molecules in order to avoid targeting healthy cells 

(Raulet, 2006). Indeed, normal cells from mice deficient in MHC class I were susceptible to 

NK cells (Raulet, 2006). Viral infection and cellular stress reduces the surface expression of 

MHC class I which rapidly flags these cells to be killed by NK cells (Iwasaki and Medzhitov, 

2015).  

 The detection of a pathogen by the innate immune system initiates a signalling cas-

cade that generates a phagocytic inflammatory responses. Neutrophils are one of the first 

responders of the immune system and migrate into tissue in response to injury or infection 

(Kim and Luster, 2015). Neutrophils are an important cell type of the innate immune system. 

Neutrophils develop in the bone marrow and form the majority, 50% – 75%, of circulating 

peripheral blood leukocytes (Kienle and Lammermann, 2016, Kim and Luster, 2015). They 

patrol the body and migrate into the brain or any tissue in response to an insult (Kienle and 

Lammermann, 2016, Kim and Luster, 2015). Neutrophils are potent innate immune cells that 

contain cytotoxic granules enriched with antimicrobial molecules such as cationic peptides, 

proteases and myeloperoxidase (MPO) (Rosales et al., 2016). One unique aspect that sepa-

rates neutrophils from other innate immune cells is their ability to release neutrophil extracel-

lular traps (NETs) (Brinkmann and Zychlinsky, 2012, Rosales et al., 2016). NETs are composed 

of decondensed chromatin material as well as cytoplasmic protein released into the extracel-

lular space (Garley et al., 2016, Brinkmann and Zychlinsky, 2012). These NETs binds micro-

organism to prevent their spread and releases a high local concentration of cytotoxic factors 

such as MPO and neutrophil elastase (Rosales et al., 2016, Garley et al., 2016, Berger-Achituv 
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et al., 2013). MPO has been shown to kill melanoma cells and inhibit tumour progression 

(Odajima et al., 1996). Patients deficient in MPO have increased predisposition to cancer 

(Lanza et al., 1988). In addition, the uptake of neutrophil elastase, a serine protease expressed 

in neutrophil primary granules by breast cancer cells, promotes specific lysis by cytotoxic T-

lymphocytes (Mittendorf et al., 2012). Neutrophil release of NETs activates dendritic cells and 

primes T cells and marks a key step towards the activation of the adaptive immune system 

(Berger-Achituv et al., 2013, Brinkmann and Zychlinsky, 2012).  

Microglia, the resident macrophage of the brain, are derived from primitive macro-

phages that invade and differentiate in the brain during development (Ginhoux et al., 2010). 

Microglia and macrophages, are cells of the mononuclear phagocytic system derived from 

the bone marrow and are myeloid in origin (Simard and Rivest, 2004, Nayak et al., 2014, 

Pollard, 2009). Microglia and macrophages are phagocytic cells of the innate immune system 

and have key roles in the development and immune related functions against pathogens and 

injuries in the brain (Casano and Peri, 2015, Nayak et al., 2014, Greter and Merad, 2013, 

Pollard, 2009). The differentiation of microglia from primitive macrophages is regulated by 

various transcription factors such as PU.1, Irf8, TGF-β and colony stimulating factor (CSF)-

1R in the brain (Walton et al., 2000, Shiau et al., 2015, Lavin et al., 2014, Butovsky et al., 2014, 

Elmore et al., 2014). PU.1 is an essential transcription factor that regulates adult myelopoiesis 

and is expressed in macrophages, neutrophils, B cell, T cells and microglia (Olson et al., 1995, 

Walton et al., 2000, Nayak et al., 2014, McKercher et al., 1996, Pang et al., 2018). PU.1 has 

been identified as a key regulator of myeloid differentiation that promote lineage specific gene 

expression (Pang et al., 2018). Consequently, mice deficient in PU.1 expression are devoid of 

macrophage and microglia (Anderson et al., 1998). Likewise, the genetic knockout of TGF-β 

and pharmacological inhibition CSF-1R expression in mice abolishes microglia expression in 

the CNS (Butovsky et al., 2014, Elmore et al., 2014). In contrast, Interferon regulatory factor 

8 (irf8) is a key factor in early stage myelopoiesis of the immature zebrafish immune system 

during development (Shiau et al., 2015). Knock out of irf8 in the zebrafish leads to the char-
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acteristic development of a macrophage null background up to around seven days post fer-

tilization (Shiau et al., 2015). In addition, irf8-/- mutant mice have a reduction in the number 

of parenchymal microglia in the midbrain (Kierdorf et al., 2013).  

Although microglia and macrophages share a common lineage, these cell types can 

be functional distinct from one another. Studies have shown that infiltrating macrophages are 

capable of performing indispensable roles not provided by resident macrophages (Shechter 

et al., 2009, London et al., 2011). In one study, infiltrating monocyte derived macrophages 

was responsible for the neuroprotective secretion of anti-inflammatory cytokine, il-10, in a 

spinal cord injury mice model (Shechter et al., 2009). Therefore, the distinction between resi-

dent microglia and peripheral macrophages in the CNS will allow investigators to further in-

vestigate the differential role of microglia and macrophages functional contribution CNS dis-

eases. However, the shared lineage between differentiated microglia and macrophages of 

monocyte lineage means that these two cell types share many genetic markers such as Iba1, 

CD68, F4/80, PU.1 and mpeg1 (Brochhausen et al., 2017, Hendrickx et al., 2017, Ohsawa et 

al., 2004, Hsu et al., 2004, Ellett et al., 2011). In efforts to discriminate between microglia and 

macrophages researchers have identified key genetic markers that allowed separate identifi-

cation of these two closely related cell type in the CNS. Traditional approaches to differentiate 

microglia from invading macrophages relied on the use of CD45 antibody where resident mi-

croglia were CD45Lo and macrophages CD45Hi (Badie and Schartner, 2000). However new 

markers have been recently identified, the microglia specific protein 199 (TMEM119) was dis-

covered through comparative transcriptomic studies (Satoh et al., 2016) and was recently 

demonstrated to selectively label microglia (Kaiser and Feng, 2019). In addition, the P2 pu-

rinergic receptor (P2Y12) was also demonstrated to be a microglia specific marker in mice 

and zebrafish (Zhu et al., 2017, Butovsky et al., 2014, Sieger et al., 2012). Together these 

markers expanded the repertoire of biological tools to allow effective identification of micro-

glia from infiltrating macrophages in order to study CNS diseases. 

The maturation of dendritic cells and macrophages into antigen presenting cells re-

cruits the adaptive immune system and provides an important link between the innate and 
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adaptive immunity (Li et al., 2017, Renshaw and Trede, 2012). Antigen presenting cells are 

important modulators of immunity that are capable of phagocytosis (Mantegazza et al., 2013, 

Broeke et al., 2013). Peptides derived from phagocytosis and subsequent cytosolic proteol-

ysis of pathogens associate intracellularly with either MHC class I or MHC class II molecules 

and are translocated to the plasma membrane (Mantegazza et al., 2013, Broeke et al., 2013). 

Peptide antigens are unique to each pathogen and the presentation of these peptides asso-

ciated with MHC molecules activate the adaptive immune system (Mantegazza et al., 2013, 

Broeke et al., 2013). These MHC-peptide complexes are recognise by T and B lymphocytes 

from the adaptive immune system (Hato and Dagher, 2015, Gajewski et al., 2013). The acti-

vation of T and B lymphocytes initiate cytotoxic activity and antibody production respectively, 

which specifically target the pathogen (Hato and Dagher, 2015, Gajewski et al., 2013). Unlike 

pattern recognition receptors of the innate immune system, antigen receptors on the adaptive 

immune system recognize individual classes of pathogens based on specific protein antigen 

presentation (Broeke et al., 2013). Therefore, the adaptive immune system is more versed in 

pathogen recognition than the innate immune system. The adaptive immune system is esti-

mated to recognise 107 or more antigens versus the 103 molecular patterns in the innate 

immune system (Janeway and Medzhitov, 2002, Hato and Dagher, 2015). Together, the innate 

and adaptive immune systems trigger an immune response that adapts to acquire long term 

immune memory against the pathogen for future rapid response.  

Tumours have evolved mechanisms that circumvent immune surveillance. These 

mechanisms exploit the ability of the innate immune system to influence the adaptive immune 

system in order to promote tumour progression. Substantial evidence has been provided in 

support of the view that the defence and immune functions are suppressed in gliomas (Biswas 

et al., 2013, Li and Graeber, 2012, Markovic et al., 2009). In particular, microglia and macro-

phages have been identified to play a key role in establishing an immunosuppressive milieu 

in cancer and will be the focus for this study.  
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1.1.3. The environment regulates the functional plasticity of microglia and 

macrophages 

The functions of microglia are highly plastic and are stimulus dependent (Casano and 

Peri, 2015). A myriad of microglia functions have been identified in the brain that include 

phagocytosis of apoptotic neurons, synaptic refinement of neurones, vesicle patterning, in-

flammation and wound healing (For review see (Casano and Peri, 2015). Microglia are highly 

motile and are actively scanning their environment by extending and retracting their ramified 

processes without translocating the main cell body (Nimmerjahn et al., 2005). Microglia base-

line surveillance of the parenchyma is regulated by a two pore domain potassium channel 

called THIK-1 (Madry et al., 2018) while the convergence of microglia processes toward a 

damaged area are regulated by purinoreceptors of the P2Y12 receptor highly expressed on 

microglia (Haynes et al., 2006). Microglia transition from the surveillance state to the activated 

state in response to stimuli such as inflammation or disease. The activation of microglia initi-

ates a phenotypic change in addition to a change in its morphology (Nimmerjahn et al., 2005). 

Under the activated state, microglia attain an ameboid shape, are highly motile in their entirety 

and become morphologically indistinguishable from other macrophages (Prionisti et al., 

2019). The functional plasticity and rapid response to external stimuli make microglia a highly 

versatile cell type that has the ability to adapt to its environment.  

Microglia and macrophages are dynamic cell types that respond to cytokines re-

leased in their environment. The local microenvironment has an instructive role in directing 

the differentiation pathway primitive macrophages take, which ultimately shapes their func-

tion (Casano and Peri, 2015). Lavin et al. demonstrated that the transplantation of adult bone 

marrow derived macrophages into the lung, spleen and liver modified the chromatin land-

scape towards that of tissue-resident macrophages (Lavin et al., 2014). In addition, TGF-β 

was shown to regulate microglia differentiation and was required for the in vitro development 

of the microglia molecular signature characteristic of adult microglia. (Lavin et al., 2014, 

Butovsky et al., 2014). This plasticity is maintained in tissue macrophages to a certain extent, 

as differentiated resident macrophages can be influenced by the tissue microenvironment to 
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adapt their functions. The cytokines produced in the macrophage local environment can give 

rise to macrophages of distinct physiologies. Macrophages can respond to endogenous stim-

uli produced by immune cells of both the innate and adaptive immune system by altering their 

phenotype to facilitate anti-microbial activity, tissue repair or anti-inflammatory activities 

(Mosser and Edwards, 2008, Qian and Pollard, 2010, Rougeot et al., 2019). Figure 2 summa-

rises how different endogenous cytokines produced by cells of the innate and adaptive im-

mune system can shape macrophage phenotype. Interferon (IFN)-𝛾 and tumour-necrosis fac-

tor (TNF) produced by T helper 1 (TH1) cells, NK cells and antigen presenting cells (APC) 

polarises macrophages to secrete pro-inflammatory cytokines (Mosser and Edwards, 2008). 

The expression of Interleukin (IL)-4 by TH2 cells or by granulocyte promotes the development 

Figure 2. Endogenous cytokines produced by cells of the innate and adaptive 

immune system can shape macrophage phenotype. 
Interferon (IFN)-𝛾	and tumour-necrosis factor (TNF) produced by T helper 1 (TH1) cells, Natural Killer (NK) cells and 

antigen presenting cells (APC) polarises macrophages to secretes pro-inflammatory cytokine that enhances 

microbicidal and tumoricidal capacity. The expression Interleukin (IL)-4 by TH2 or by granulocyte promotes the 

development of the wound healing macrophage require for tissue repair. While IL-10 release by regulatory T-cells 

from the adaptive immunity promotes polarisation towards regulatory macrophages to suppress immune response. 

Regulatory macrophages can also be expressed by other stimuli including immune complexes, prostaglandins, 

GPCR ligands, gluococorticoids and apototic cells.  

 

Moser and Edwards, 2008 

Moser and Edwards, 2008 
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of the wound healing macrophage involved in tissue repair (Loke et al., 2007, Gordon and 

Martinez, 2010). While IL-10 release by regulatory T-cells from the adaptive immunity pro-

motes polarisation towards regulatory macrophages to suppress immune response (Mosser 

and Edwards, 2008). The interaction between antigen specific T lymphocytes and microglia 

promotes wound healing functions of resident microglia following insult. The activation of 

microglia by IFN gamma facilitates glutamate clearance and contributes to a neuroprotective 

effect (Shaked et al., 2005). In addition, neurones have also be shown to secrete factors that 

regulated microglia activation. The secretion of CD22 and CD200 by neurones acted as an 

inhibitor of microglia proinflammatory cytokine TNF-𝑎 production and facilitate the mainte-

nance of an anti-inflammatory expression profile in microglia (Mott et al., 2004, Lyons et al., 

2009).  

These studies suggest that the local environment is critical in influencing the func-

tional identity of macrophages and result in a diverse range of macrophage subpopulation. 

Therefore, the microenvironment has a significant impact in modulating microglia and mac-

rophage function that can drive the polarisation of microglia/macrophage towards a pro or 

anti-tumoural phenotype. 

 

1.1.4. The tumour promoting functions of Tumour Associated Macrophages 

(TAMs) 

GBMs have evolved mechanisms that exploit the intrinsic functional plasticity of mac-

rophages to facilitate tumour growth (Hambardzumyan et al., 2016, Prionisti et al., 2019). The 

link between inflammation and GBM is well established. GBMs, like many other tumours, have 

evolved complex ecological mechanisms that promote the malignancy of tumours. The tu-

mour microenvironment is a convoluted web of interacting biological signals between differ-

ent cell populations that serves to enhance and promote the survival of tumours (Markovic et 

al., 2009, Wu et al., 2010, Li and Graeber, 2012). Innate immune cells are highly represented 

in the tumour microenvironment and macrophages are the most abundant cell type (Coniglio 

et al., 2012, Zhai et al., 2011, Markovic et al., 2009).. In particular, microglia and macrophages, 



 

Page 13 
 

have been identified to contribute to GBM progression leading to tumour growth, tissue in-

vasion and chemotherapeutic resistance (Prionisti et al., 2019, Hambardzumyan et al., 2016, 

Jacobs et al., 2012, Coniglio et al., 2012, Zhai et al., 2011, Hamilton et al., 2016). In the dis-

eased CNS the compromised blood brain barrier leads to the infiltration of peripheral macro-

phages. Microglia and macrophages can contribute up to 50% of non-neoplastic cells (Ham-

bardzumyan et al., 2016). In agreement, a further study using genetical modified mice showed 

that infiltrating monocytes/macrophages constitutes 85% total TAM while microglia ac-

counted for the remaining 15% (Chen et al., 2017). The authors revealed that the genetic 

expression patterns between infiltrating monocytes/macrophages and resident microglia 

were unique when compared with each other thus highlighting a difference in functions (Chen 

et al., 2017). Furthermore, the authors concluded that there was a continuous transformation 

of infiltrating monocytes to mature macrophages and microglia-like cells in the tumour micro-

environment (Chen et al., 2017). The level of infiltration by macrophages and microglia in 

GBMs have been positively correlated with poorer prognosis (Bingle et al., 2002, Li and Grae-

ber, 2012). Under the influence cytokines such as CSF1, IL-4, IL-13 and IL-10, infiltrating 

monocytes can differentiated into tropic/developmental macrophages that downregulate tu-

moricidal activity (Noy and Pollard, 2014, Quail and Joyce, 2017, van Dalen et al., 2018). 

Therefore, microglia and macrophages in glioma have been described to resemble regulatory 

macrophages and wound healing macrophages possessing both anti-inflammatory activity 

and tissue repair capabilities (Mosser and Edwards, 2008).  

The infiltration of macrophages and microglia in tumours, known as tumour associ-

ated macrophages (TAMs), modifies the tumour microenvironment to facilitate immune sys-

tem avoidance and promote tumour progression. TAMs are capable of remodelling the tu-

mour microenvironment to release inhibitory mechanisms that otherwise would lead to an 

anti-tumour phenotype (Noy and Pollard, 2014). TAMs have been shown to regulate tumour 

angiogenesis, invasion, metastasis, extracellular matrix reorganisation and suppression of in-

flammatory responses (Qian and Pollard, 2010, Zhang et al., 2016). The transition from benign 

growth towards a malignant cancer are marked by a plethora of cytokines that hijack the 
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intrinsic capabilities of macrophages to influence the local tumour microenvironment (Li and 

Graeber, 2012, Reichel et al., 2019, Qian and Pollard, 2010). Therefore the tumour promoting 

role of macrophages and microglia are supported by crosstalk with the oncogenic microen-

vironment. Substantial evidence has been provided in support of the view that the defence 

and immune functions of macrophages and microglia are suppressed in gliomas (Li and Grae-

ber, 2012). The recruitment of macrophages and microglia into the tumour microenvironment 

are mediated by chemoattractant such as CC chemokine ligand 2 (CCL2) and soluble colony-

stimulating factor (sCSF-1) (Conti and Rollins, 2004, Noy and Pollard, 2014). These chemoat-

tracts are identified to be highly expressed in tumours including GBMs (Conti and Rollins, 

2004, Noy and Pollard, 2014). In addition, TGF-β, an immunosuppressive cytokine, is over-

expressed in tumours and plays an important role in the maintenance of an immunosuppres-

sive milieu in the tumour microenvironment (Zhang et al., 2016). The expression of TGF-β 

exploits capabilities of the innate immune system to influence the adaptive immune response 

by inhibiting antigen presentation thereby inhibiting the activation and differentiation of cyto-

toxic T-cells. (Flavell et al., 2010, Li and Graeber, 2012). Once in the local tumour microenvi-

ronment, TAMs secrete proangiogenic factor such as matrix metalloproteinase (MMP)-9 and 

vascular endothelial growth factor (VEGF) that promotes angiogenesis, tumour progression 

and metastasis (Chen et al., 2014, Kim et al., 2018). In addition, TAMs produce immunosup-

pressive factors like interleukin (IL)-10 and IL-13 that inhibit macrophage activation, T-cell 

proliferation and reduces the production of proinflammatory cytokine IL-12 (Zhang et al., 

2016). TAMs also produce epidermal growth factor (EGF) that increases tumour invasion by 

activating receptors on GBM (Coniglio et al., 2012). These TAMs are maintained by the glio-

mas through the secretion of glioma derived CSF-1 and IFN-𝛾 a well-known chemoattractant 

of microglia and promoter of microglia proliferation (Coniglio et al., 2012, Pyonteck et al., 

2013). Indeed, it was shown that the depletion of microglia by CSF-1 inhibition altered mac-

rophage polarisation and increased the survival of a mouse proneural GBM model (Pyonteck 

et al., 2013). In addition, we also previously showed that microglia and macrophages form 

intimate interactions with GBM cells and these interactions are critical for GBM cell survival 
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in the zebrafish brain in vivo (Hamilton et al., 2016). The interactions between microglia/mac-

rophages and glioma cells can alter microglia phenotype. In vitro co-cultures of microglia and 

glioma cells showed that microglia lose their phagocytic activity when in contact with C6 

glioma cells (Voisin et al., 2010). Therefore, the close association of microglia and tumour 

cells suggests a symbiotic relationship that promotes tumour progression.  

While many studies support for the tumour promoting role of macrophage in tumours, 

studies have shown that macrophages retain tumoricidal capabilities and that repolarisation 

of TAMs can be achieved towards an anti-tumour phenotype. The delivery of IL-12 containing 

microspheres into the tumour microenvironment led to proinflammatory cytokine production 

of Tnf-𝑎, IL-15 and IL-18 and reduction in tumour promoting cytokines IL-10, MCP-1 and 

TGF-β (Watkins et al., 2007). Furthermore, toll like receptor (TLR) activation have been exten-

sively documented to polarise TAMs towards pro-inflammatory tumoural phenotype through 

the upregulation of IL-6, IL-12, Tnf-𝑎 and iNOS secretion and enhancement of antigen uptake 

and T-cell priming (van Dalen et al., 2018, Vidyarthi et al., 2018, Banerjee et al., 2015, Yang 

et al., 2015, Rodell et al., 2018b). These studies highlights the potential of immunotherapeu-

tics to repolarise TAM as a strategy to cancer treatment. 

 

1.2. Nanoparticles in the treatment of Glioblastomas 

The current standard treatment for GBM is surgery followed by adjuvant radiotherapy 

or chemotherapy. Even with multimodal treatment, modern medicine is still ineffective in in-

creasing the median survival of 15 months in GBMs (Stupp et al., 2017). The anti-tumour 

properties of radiotherapy are still widely debated (Reviewed in Vatner and Formenti, 2015). 

Radiotherapy of tumours have been shown to actively recruit myeloid derived cells, especially 

TAMs, into the tumour microenvironment through CSF-1R activation (Vatner and Formenti, 

2015). The recruitment of TAMs persists for years after radiotherapy and are detrimental to 

the patient (Vatner and Formenti, 2015). The anti-tumour effects of recruited macrophages 

are subverted and are polarised towards a tumour promoting phenotype (Vatner and For-
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menti, 2015). In addition, radiotherapy can repolarise existing macrophages towards the tu-

mour promoting, anti-inflammatory, phenotype (Vatner and Formenti, 2015). Chemotherapeu-

tic resistance to Temozolomide (TMZ), the first line of treatment against GBM, is commonly 

reported due to intrinsic or acquired resistance of the tumour to the drug (Yi et al., 2019). 

Thus a more effective treatment option is long overdue.  

One of the major challenge facing cancer therapy is the difficulty of homogeneous 

delivery of intravenous chemotherapeutics throughout the solid tumour mass. The high inter-

stitial pressures contribute to the suboptimal diffusion of drugs from blood circulation which 

prevents intratumor penetration (Stohrer et al., 2000). The problem is exacerbated by the 

clearance of intravenous drugs by the liver and kidneys which can lead to fatal organ toxicity 

(Hoop et al., 2018). Inadequate intratumoural delivery of chemotherapeutic agents cannot be 

solved by increasing systemic dose. In addition, conventional chemotherapy lacks target 

specificity and nontarget tissue distribution. Thus the use of nanoparticles as carriers of 

chemotherapeutic drugs have been explored as a more effective drug delivery system. The 

medical applications of nanoparticles as a therapeutic agent in the treatment of cancer is not 

a novel approach. Nanoparticles are defined as small particles (1000<nm diameter) com-

prised of metals or polymers or any other materials that usually contain a hydrophobic region 

that can trap a hydrophobic drug (Reichel et al., 2019). Nanoparticles have been tested as 

combination therapies to induce cellular death through thermal ablation or oxidative stress 

(Phillips et al., 2014). Nanoparticles have been used to improve the efficiency of thermal ab-

lation methods that includes radiofrequency, microwave, cryoablation and high intensity fo-

cused ultrasound (Manthe et al., 2010). In addition, nanoparticle-based drugs can be multi-

functional, possessing both therapeutic and theranostic (diagnostic imaging probe) proper-

ties (Phillips et al., 2014). A wide range of radiotherapeutic nanoparticles have been studied 

to deliver ionising radiotherapy to the tumour in combination with imaging platforms like mag-

netic resonance imaging (MRI), positron emission tomography (PET) and X-ray computed to-

mography (CT) (Phillips et al., 2014).   
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Nanoparticles have also found new applications in the emerging field of bioorthogo-

nal catalytic reactions in cancer therapy (Adam et al., 2018). By design, bioorthogonal reac-

tions occur in a living organism without interfering with biological functions (Adam et al., 

2018). Solidly supported Palladium and Gold nanoparticles have been recently demonstrated 

to catalyse bioorthogonal reactions that generate active agents from inactivated precursors 

(Adam et al., 2018, Perez-Lopez et al., 2017). The chemical inactivation of compounds can 

dramatically reduce the bioactivity of the resulting derivative while maintaining catalytic chem-

istry with Palladium (Weiss et al., 2014b, Adam et al., 2018), Gold (Perez-Lopez et al., 2017, 

Tonga et al., 2015), Copper (Clavadetscher et al., 2016) or Ruthenium (Tonga et al., 2015). 

Chemotherapeutic agents such as Fluorouracil (5-FU), Vorinostat, doxorubicin and SN-38 

(active metabolite of irinotecan) can be synthesised from inactive precursors through 

bioorthogonal organometallic catalysis with Gold and Palladium nanoparticles (Adam et al., 

2018, Perez-Lopez et al., 2017). The highly selective reactions of these implantable devices 

confer spatiotemporal control of chemotherapeutic drug delivery, in addition to increasing the 

potency of drugs at the tumour site. It also has the potential to reduce side effects, since 

systemic circulating inactivated precursor, when chemically inactivated, would have dramat-

ically reduced bioactivity. A 44 fold reduction in cytotoxicity was achieved with SN-38 pre-

cursors on human colon rectal cancer cell line HCT116 and human glioblastoma cell lines 

U87 and U251 in vitro (Adam et al., 2018). Adam et al., demonstrated that Palladium mediated 

bioorthogonal catalytic release of SN-38 result in a dose dependent inhibition on HCT116, 

U87 and U251, cell viability (Adam et al., 2018). One study combined the magnetic properties 

of iron and bioorthogonal properties of Palladium to deliver chemotherapeutic 5-FU to a pre-

defined area in tumour xenografts using magnetism (Hoop et al., 2018). Nanorobotic Palla-

dium mediated bioorthogonal organometallic (BOOM) reactions result in a significant reduc-

tion in breast cancer cell growth in vitro and in vivo (Hoop et al., 2018). This technology pre-

sents a novel therapeutic approach combining nanorobotics and BOOM activation of pro-

drugs as a minimally invasive alternative to conventional chemotherapy. 
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1.2.1. Nanoparticle uptake polarises macrophages 

Recent evidence suggests that the uptake of nanoparticles is capable of polarising 

macrophages towards an anti-tumour phenotype. Nanoparticles, either implanted or system-

ically administered, readily accumulated within both TAMs and macrophages (Bastus et al., 

2009a, Reichel et al., 2019). The accumulation of nanoparticles in macrophages present the 

opportunity to enhance drug delivery to macrophages. Nanoparticles have also been used to 

enhance cancer immunotherapy (Rodell et al., 2018a, Huang et al., 2016, Wang et al., 2019). 

Drug loaded nanoparticles have been demonstrated to mediate synchronous biodistribution 

of drugs. The separate cell targeted delivery of chemotherapeutic agent and TAM repolarising 

agent was achieved using twin-like core-shell nanoparticles to cancer cells and TAMs respec-

tively (Wang et al., 2019). The co-delivery strategy exhibited anti-tumour efficacy on TAMs 

and tumours leading to decreased tumour size in vivo (Wang et al., 2019). A recent study 

demonstrated the utility of drug loaded nanoparticles. R848, a TLR7/8 agonist, was loaded 

onto β-cyclodextrin nanoparticles which accumulated in macrophages and consequently led 

to the biodistribution of R848 in macrophages (Rodell et al., 2018a). Nanoparticles have ex-

tensive clinical application in immunotherapeutic drug delivery that targets TAMs (Rodell et 

al., 2018a, Huang et al., 2016, Penn et al., 2018, Binnemars-Postma et al., 2017) 

The response of macrophage to nanoparticles is dependent on particle size, compo-

sition, dose, route of entry and surface properties (Reviewed in Reichel et al., 2019). These 

variables can modulate the efficacy of nanoparticle delivery and activity in macrophages. 

However, material composition and surface properties of nanoparticles are the most signifi-

cant determinant of macrophage polarisation. The exposure of nanoparticles to endogenous 

serum in an in vivo system results in the formation of what is known as a protein ‘corona’ on 

the surface (Kharazian et al., 2016). Endogenous proteins compete with one another to bind 

the surface of the nanoparticle leading to opsonization and subsequent endocytosis or phag-

ocytosis by macrophages (Ge et al., 2015). The most common method of blocking nonspe-

cific binding of proteins to nanoparticles surfaces is to graft nanomaterials with linear chains 
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of poly(ethyleneglycol) (PEG) in a process known as PEGylation (Walkey et al., 2012). PEGyla-

tion of Gold nanoparticles blocks macrophage uptake and macrophage polarisation (Walkey 

et al., 2012). Thus the protein corona has significant implications in altering the bio-identity of 

nanoparticles (Cedervall et al., 2007, Ge et al., 2015, Kharazian et al., 2016, Walkey et al., 

2012). The surface composition of nanoparticles can be artificially manipulated to modulate 

macrophage uptake of nanoparticles. One study showed that by changing the surface stabi-

lizer of nanoparticles to either citrate or polyethylene imine from PEG, an increase in macro-

phage internalisation of nanoparticles was achieved (Zazo et al., 2017). As these nanoparti-

cles are not recognised as inert by macrophages, the uptake of these nanoparticle can initiate 

intracellular responses that lead to macrophage polarisation (Reichel et al., 2019). 

 

1.2.2. Harnessing the therapeutic potential of nanoparticle polarised macro-

phages and microglia in glioblastoma  

Silica, Gold, Palladium and Iron oxide nanoparticles have all been described to po-

larise macrophages towards the pro-inflammatory phenotype (Reichel et al., 2019, Leso and 

Iavicoli, 2018). The inhibition of macrophage uptake of nanoparticles by either PEGylation, 

increasing surface ionization, adding inert polymers on the surface or blocking macrophage 

endocytosis has a significant effect in reducing macrophage polarisation capabilities 

(Cedervall et al., 2007, Reichel et al., 2019, Walkey et al., 2012). Thus the intracellular transport 

of nanoparticles by macrophages is essential in initiating macrophage polarisation pathways. 

The uptake of nanoparticles by macrophages is mediated by cytoskeleton dependent path-

ways (Kusaka et al., 2014). The treatment of bone marrow derived macrophages (BMDM) with 

Cyto D, an inhibitor of actin polymerization, dramatically inhibited the internalization of Silica 

nanoparticles (Kusaka et al., 2014).  

The biological effects of nanoparticles on macrophage cytokine expression have 

been extensively investigated (Mukherjee et al., 2005, Hutter et al., 2010, Walkey et al., 2012, 

Niikura et al., 2013, Kusaka et al., 2014, Zanganeh et al., 2016, Alarifi et al., 2017, Leso and 

Iavicoli, 2018). Silica nanoparticles have been shown to activate capase-1 activity which 
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cleaves immature pro-IL-1β into mature IL-1β and leading to increased IL-1β secretion (Ku-

saka et al., 2014). In addition, increased ROS generation and increased IL-6, TNF-𝑎 and iNOS 

expression have been described in silica internalised macrophages. Likewise, Palladium na-

noparticles polarise macrophages and lead to increased TNF-𝑎, IL-6 and IL-8 expression 

(Schmidt and Goebeler, 2015, Leso and Iavicoli, 2018). However, significant ROS generation 

is considered as one of the key mechanisms responsible for the cytotoxic effect of metallic 

nanoparticles like Palladium (Leso and Iavicoli, 2018). Metallic nanoparticles such as Cobalt, 

Titanium and Palladium increase ROS generation in macrophages (Reichel et al., 2019, Alarifi 

et al., 2017). In addition, in one study, the treatment of Palladium nanoparticles on human 

skin malignant melanoma (A375) cells led to excessive production of ROS resulting in oxida-

tive stress induced apoptosis, DNA damage and cell cycle arrest (Alarifi et al., 2017). There-

fore, metallic nanoparticles like Palladium may have the potential to be used as a combination 

therapy that targets both TAMs and cancer cells. The effects of Gold nanoparticles on TAMs 

have also been previously investigated. Increased IL-1β, TNF-𝑎, IL-6, iNOS secretion have all 

been described in macrophages treated with gold nanoparticles, driving a shift in macro-

phage polarisation towards the anti-tumorigenic phenotype (Bastus et al., 2009a, Reichel et 

al., 2019). Gold nanoparticles have been shown to be effective vaccine adjuvants that en-

hance macrophage inflammatory cytokine production including IL-12 and granulocyte mac-

rophage colony stimulating factor (GM-CSF) (Hutter et al., 2010). In addition, Gold nanopar-

ticles have been reported to possess anti-angiogenic properties by selectively inhibiting VEGF 

induced proliferation of endothelial cells which can have major implications in inhibiting tu-

mour growth (Mukherjee et al., 2005). In contrast to Silica, Gold and Palladium, Iron oxide 

nanoparticles are currently used clinically as iron replacement therapies in the form of Fer-

umoxytol (Reichel et al., 2019, Toth et al., 2017). They also have imaging applications in con-

trast-enhanced magnetic resonance imaging and have been used as drug carriers in preclin-

ical and clinical setting (Zanganeh et al., 2016, Toth et al., 2017). Ferumoxytol nanoparticles 

have been shown to attract macrophages and enhance ROS production leading to adeno-

carcinoma cells cytotoxicity in vitro (Zanganeh et al., 2016). Iron oxide nanoparticles polarise 
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macrophages towards the pro-inflammatory phenotype, causing an increase in TNF-𝑎 and a 

decrease in IL-10 expression (Zanganeh et al., 2016, Kodali et al., 2013). The treatment with 

Ferumoxytol polarises infiltrating and existing TAMs towards the pro inflammatory phenotype 

(Zanganeh et al., 2016). In vivo, proinflammatory polarisation of macrophages by iron oxide 

nanoparticles inhibits mammary tumour growth (Zanganeh et al., 2016). The effects were con-

served to nanoparticle material composition, as alteration of surface chemistry had no effect 

on the inhibitory effect of macrophage on mammary tumour growth (Zanganeh et al., 2016). 

In addition, Iron oxide nanoparticles have a much greater impact on basal transcription in 

macrophages than silica nanoparticles (Kodali et al., 2013). Kodali et al. compared the effects 

of silica and iron oxide nanoparticles on macrophage polarisation. A total of 1029 genes and 

67 genes were differentially expressed in macrophages treated with iron oxide nanoparticles 

and silica nanoparticles respectively (Kodali et al., 2013). Kodali et al also report that iron 

oxide treated macrophages elicit a greater inhibition on IL-10 secretion than in silica nano-

particle treated macrophages (Kodali et al., 2013). Altogether, nanoparticles have significant 

benefits in improving existing cancer treatment by inducing tumour-suppressive macrophage 

polarisation within tumours. In particular, Gold and Palladium have been identified to polarise 

macrophages through activation of toll like receptor (tlr)-4 signalling (Bastus et al., 2009a, 

Rachmawati et al., 2013). However, the effects of Gold and Palladium repolarisation of TAMs 

in GBMs remain to be investigated. Significant knowledge gaps exist in regards to Gold and 

Palladium nanoparticle effects on TAM in GBMs. 
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1.3. Toll Like Receptor Family 

1.3.1. Toll Like Receptor family signaling and its effects on macrophage polar-

isation 

Toll Like Receptors (TLRs) are pattern recognition receptors that recognize pathogen 

associated molecular patterns derived from microbial pathogens, including viruses, bacteria, 

fungi and damage associated molecular patterns such as ATP and double stranded DNA 

(dsDNA) (Brajer-Luftmann et al., 2019). TLR activation is the consequence of pathogenic in-

fection or cellular stress that leads to a cascade of signalling events that promote inflamma-

tion, macrophage polarization and priming of the adaptive immune system (Brajer-Luftmann 

et al., 2019, Barton and Kagan, 2009). The expression of TLRs on macrophages plays a cen-

tral role in host immunity against pathogens (Barton and Kagan, 2009). To date, eleven mem-

bers of the TLR family have been identified. tlr1, tlr2, tlr4, tlr5, tlr6, and tlr11 are expressed on 

the cell surface and tlr3, tlr7 tlr8 and tlr9 are localised to the endosomal and lysosomal com-

partments (Figure 3) (Barton and Kagan, 2009, Mandreka, 2009). Each member of the TLR 

family recognises a specific ligand that triggers TLR signalling cascades leading to TNF-𝑎, IL-

8 and IL-1β secretion in macrophages (Bastus et al., 2009a). In mammals, TLR are responsi-

ble for recognising lipopolysaccharide (LPS) from gram-negative bacteria (tlr4) and flagellin 

protein (tlr5) (Kawai and Akira, 2010). While tlr3,tl7 and tlr9 recognise dsRNA, pharmacological 

compounds (Imiquimod and Resiquimod) and unmethylated CpG DNA motifs, respectively 

(Kawai and Akira, 2010). Ligand binding to TLR on the extracellular domain leads to the di-

merization of TLRs which recruit and activate cytosolic adaptor proteins such as MyD88, 

TRIF, TRAM. MyD88 is a key protein in the TLR signal transduction pathways that recruits IL-

1 receptor associated kinase 4 (IRAK-4) to activate MAP kinases and nuclear factor (NF)-ⲕB. 

Additional modes of activation include the activation of TRAF6 by RIP1 and MyD88 independ-

ent TRIF and TRAF3 mediated activation of NF-ⲕB (Mandreka, 2009). Individual TLRs selec-

tively recruit distinct adaptor proteins that mediate signal transduction to tailor the response 

to the infecting pathogen (Summarised in Figure 3).  
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Although TLRs are important for their protective properties against infection, inappropriate 

TLR activation contributes to acute and chronic inflammation that promote the development 

of systemic autoimmune disease. Mutations in genes encoding for negative regulators of TLR 

signalling have been linked to the development of autoimmune diseases such as autoimmune 

glomerular nephritis and Crohn’s disease (Cario, 2010). Mice deficient in TANK protein, an 

inhibitor of TBK1 and IKKE  kinases, develop fatal glomerulonephritist as a result of excess 

inflammatory response (Kawagoe et al., 2009). Macrophages isolated from TANK-/- mutant 

mice have elevated NF-ⲕB activation, IL-6 and TNF production as a result of TLR overactiva-

tion (Kawagoe et al., 2009). In addition, genetic polymorphism of genes encoding TLRs or 

downstream signalling, have been identified as increasing the predisposition to sepsis in hu-

mans as a result of impaired inflammatory response to bacterial infections (Cook et al., 2004). 

The best characterized TLR polymorphism is an amino acid substitution from aspartic acid to 

glycine at position 299 (D299G) in TLR4 which has been linked to increased Gram-negative 

infections (Cook et al., 2004). Polymorphism have also been identified in the TLR2 and IRAK4 

that enhances the susceptibility to tuberculosis and infection from gram positive bacteria 

streptococcus pneumoniae (Cook et al., 2004). These studies demonstrate that the TLR sig-

nalling cascade plays a key role in the induction of inflammatory genes that has significant 

systemic consequence on the inflammatory response of immune cells.   

The TLR family is conserved from mammals to insects, however, TLR signal trans-

duction in fish exhibit notable differences than those in mammals (Li et al., 2017, Jault et al., 

2004). A total of 20 putative TLR variants have been identified in fish of which ten are orthologs 

of human TLR family and two are fish specific TLRs (tlr21 and tlr22) (Jault et al., 2004). Gene 

duplication events during evolution led to the development of isoforms of tlr-4 (tlr4ba/tlr4bb), 

tlr5 (tlr5a/tlr5b) and tlr8 (tlr8a/tlr8b) (Li et al., 2017). Both isoforms of tlr5a and tlr5b have been 

shown to respond to mycobacterial infection similarly in mammals but zebrafish tlr4 does not 

respond to LPS stimulation unlike its mammalian counterpart (Li et al., 2017). The knockdown 

of tlr4a, tlr4b and MyD88 did not alter the zebrafish response to LPS which suggests a differ-

ential mechanism of LPS activation in zebrafish and an unidentified role of tlr4 in zebrafish 
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(Jault et al., 2004, Li et al., 2017). Although homologs of tlr6 are absent from fish, it was 

reported that tlr14 in fish may be a functional substitute for tlr6 in mammals (Hwang et al., 

2011). In addition, tlr18 in zebrafish is the homolog of human tlr1 (Meijer et al., 2004). These 

studies highlight the interspecies diversification of TLR family proteins but also indicate a high 

Figure 3. Toll Like Receptor (TLR) Signalling 
To date, eleven members of the TLR family have been identified. tlr1, tlr2, tlr4, tlr5, tlr6, and tlr11 are expressed on the 

cell surface and tlr3, tlr7 tlr8 and tlr9 are localised to the endosomal and lysosomal compartments. TLR are responsible 

for recognising lipopolysaccharide (LPS) from gram-negative bacteria (tlr4) and flagellin protein (tlr5). While tlr3,tl7 and 

tlr9 recognise dsRNA, pharmacological compounds (Imiquimod and Resiquimod) and unmethylated CpG DNA motifs 

respectively. Ligand binding to TLR on the extracellular domain leads to the dimerization of TLRs which recruits and 

activate cytosolic adaptor proteins such as MyD88, TRIF, TRAM. MyD88 is a key protein in the TLR signal transduction 

pathways that recruits IL-1 receptor associated kinase 4 (IRAK-4) to activate MAP kinases and nuclear factor (NF)-ⲕB. 

Additional modes of activation include the activation of TRAF6 by RIP1 and MyD88 independent TRIF and TRAF3 

mediated activation of NF-ⲕB. Individual TLRs selectively recruit distinct adaptor proteins that mediates signal 

transduction to tailor the response to the infecting pathogen. 

Image adapted from (Mandreka, 2009)  
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conservation of TLR function between mammals and teleost. Nearly all TLRs described in 

mammals have been identified as orthologs or as TLRs with similar functions in fish.  

 

1.3.2. Toll Like Receptors family signaling; a target for Gold and Palladium na-

noparticles? 

The internalization of Gold and Palladium nanoparticles induced a pro-inflammatory 

response in macrophages which was reminiscent of the typical pattern of TLR mediated 

mechanisms; increased tnf-𝑎. il-6, il1-β and il-8 secretion. This strongly suggests that Gold 

and Palladium nanoparticles activate TLR signaling. Indeed, in one study, peptide conjugated 

Gold nanoparticles were identified to mediate its effects through tlr4 signaling in vivo (Bastus 

et al., 2009a). The knockout of tlr4 activity in mice abolished peptide conjugated gold nano-

particle mediated activation of macrophages (Bastus et al., 2009a). Studies have shown that 

metallic compounds like nickel and cobalt ions activate tlr4 by directly interacting with con-

served histidine residue exposed at the dimerization interface of opposing tlr4 monomers 

(Schmidt and Goebeler, 2015). These interactions trigger the formation of tetrameric tlr4 and 

md2 complexes that initiate downstream NF-ⲕB activation and tnf-𝑎, il-8 and il-6 secretion in 

macrophages (Schmidt and Goebeler, 2015). Monoclonal anti-tlr4 antibody inhibition of tlr4 

activity impaired cobalt mediate increase in pro-inflammatory il-8 expression (Lawrence et al., 

2016). Since Palladium metal is a close neighbor of cobalt and nickel in the periodic table, it 

also has been demonstrated to interact with tlr4. The stimulatory capacity of Palladium to 

activate tlr4 was confirmed in vitro in one study (Rachmawati et al., 2013). Palladium induced 

the secretion of il-8 in tlr4/md2 transfected HEK293 cell line and not in wild type, non-trans-

fected HEK293 cells (Rachmawati et al., 2013). Overall, there is strong evidence in support of 

the view that Gold and Palladium induce macrophage polarization via tlr4 activation.  
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1.4. Zebrafish model system  

1.4.1. Advantages of the zebrafish model system. 

The zebrafish represents a powerful model system for investigating cellular and mo-

lecular events in vivo. The utility of the zebrafish model for live imaging innate immune cells 

and investigating intimate interactions between host and pathogens has been extensively 

reviewed (Meijer et al., 2014, Harvie and Huttenlocher, 2015). The zebrafish model represents 

a viable alternative to mammalian models as they are easier and less expensive to house and 

care for. The genetic amenability and large sample size of the zebrafish model system makes 

it advantageous to study cancer through forward and reverse genetic approaches (Mione and 

Trede, 2010, White et al., 2013). The zebrafish larvae are optically transparent and develop 

externally which allows the use of in vivo live image techniques to track the consequences of 

genetic manipulation or chemical treatment (Garcia et al., 2016). By combining the ad-

vantages of optical transparency and the large availability of genetic tools, the zebrafish 

model system has the potential to significantly extend our understanding of the inflammatory 

response associated with infectious diseases.  

A key issue with any translational model, such as zebrafish, is identifying which bio-

logical interactions are conserved when compared to humans. Humans and zebrafish share 

many anatomical and physiological features due to a shared evolutionary ancestor (Garcia et 

al., 2016). In the brain, the neurotransmitter structure and systems such as GABA, serotonin, 

noradrenaline, histamine and acetylcholine in the zebrafish brain are well conserved and share 

many features with humans (Schmidt et al., 2013). In addition, many of the broad structures 

of the human brain have homologous structures identified in the zebrafish brain; cerebellum, 

telencephalon, diencephalon and spinal cord (Schmidt et al., 2013, Garcia et al., 2016). At the 

biochemical and genetic level, the zebrafish share 70% of human genes and at least one 

zebrafish orthologue has been identified in 82% of human disease related genes (Howe et al., 

2013). However, due to a genome duplication event during the evolution of the zebrafish, 

15% of the human genes have several additional orthologs (Howe et al., 2013).  
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1.4.2. Development of zebrafish immune system 

 

Temporal-spatial resolved fate mapping analysis revealed that the development of 

zebrafish immune system occurred in successive waves originating from anatomically distinct 

locations (Xu et al., 2012, Bertrand et al., 2007). During zebrafish development, the first wave 

of haematopoiesis initiates at 11 hours post fertilisation (hpf) from the posterior lateral meso-

derm and the rostral blood island (Gore et al., 2018). Cells from the posterior lateral mesoderm 

contribute to embryonic erythrocytes vital for the survival of the embryo (Xu et al., 2012). In 

contrast, cells from the rostral blood island give rise to myeloid cells that differentiates into 

early innate immune cells such as macrophages and neutrophils (Xu et al., 2015). The second 

definitive wave originating from the ventral wall of dorsal aorta at 26-28 hpf produces hema-

topoietic stem cells capable of differentiating into all mature erythroid and myeloid lineage 

cells in the larvae and adult zebrafish (Xu et al., 2015, Xu et al., 2012). Finally a third or inter-

mediate wave at 30 hpf originating from the posterior blood island give rise to hematopoietic 

stem and progenitor cells responsible for myeloid and erythroid cells (Xu et al., 2015, Bertrand 

et al., 2007). In line with zebrafish haematopoiesis, the development of embryonic microglia 

was observed to originate from the rostral blood island whereas mature adult microglia orig-

inated from the ventral dorsal wall of aorta (Xu et al., 2015, Ferrero et al., 2018). Xu et al., 

showed that primitive microglia formation was PU.1 dependent and runx1 independent while 

mature adult microglia were runx1 dependent. The maturation of hematopoietic stem and 

progenitor cells seeds the caudal hematopoietic tissue (CHT), thymus and kidney marrow 

(Gore et al., 2018). The CHT serves as a source of embryonic macrophages, neutrophils and 

monocytes while the kidney, as in mammalian counterparts, provides a niche for hematopoietic 

stem and progenitor cells (Gore et al., 2018). Finally, the thymus serve to generate mature 

lymphoid T cells during adulthood (Langenau et al., 2004, Gore et al., 2018). The development 

of zebrafish immunity is unique in the sense that the innate and adaptive immune system are 

temporally separated. The zebrafish larvae only survives with the innate immune system up 

to 4 to 6 weeks post fertilisation (Novoa and Figueras, 2012). At 4 to 6 weeks post fertilisation, 
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the adaptive immune system becomes mature where lymphocytes become functional (Novoa 

and Figueras, 2012, Lieschke and Currie, 2007, Davidson and Zon, 2004). Intriguingly, a re-

cent study challenged the biphasic nature of the innate and adaptive immune system. Tian et 

al., indicated that the first wave of haematopoiesis may also give rise to a larval population of 

T cells (Tian et al., 2017). The function of these early T cell population was unknown but was 

speculated to play an immune-repressive function (Tian et al., 2017). Nonetheless, it is still 

widely accepted that the adaptive immune system does not become functional until approx-

imate 4 weeks post fertilisation (Novoa and Figueras, 2012, Lieschke and Currie, 2007, 

Davidson and Zon, 2004). Therefore, the temporal separation makes it advantageous to study 

vertebrate innate immune responses in vivo independently from the adaptive immune re-

sponse (Hamilton et al., 2016, Tsarouchas et al., 2018, Li et al., 2017, Novoa and Figueras, 

2012, Renshaw et al., 2007).  
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1.4.3. The zebrafish as an established model system to study cancer biology 

The zebrafish has been proven to be an excellent tool in advancing our understanding 

of cancer biology. Zebrafish have been used in many studies to recapitulate tumours to in-

vestigate cellular and molecular signals governing tumorigenesis (Jung et al., 2013, Chia et 

al., 2018, Mayrhofer et al., 2017, Ju et al., 2014). The earliest application of zebrafish as tu-

mour models were developed using a range of carcinogenic compounds. Fish treated with 

N-methyl-N'-nitro-M-nitrosoguanidine (MNNG) develop a variety of mesenchymal neoplasms 

(Spitsbergen et al., 2000b). While other studies have also used 7,12-dimethylbenz(a)anthra-

cene (DMBA) and ethylnitrosourea (ENU) to induce tumour formation in zebrafish (Spitsbergen 

et al., 2000a, Beckwith et al., 2000). Many of the oncogenes and tumour suppressor genes 

found in mice and humans are conserved in fish, these include myc, ras, notch family mem-

bers, p53, mdm2, pten and bcl-2 (Gutierrez et al., 2011, Langenau et al., 2003, den Hertog, 

2016, Langheinrich et al., 2002, Schreiber-Agus et al., 1993, Berghmans et al., 2005). Con-

servation of these genes are crucial for the translational application of key findings from 

zebrafish to humans.  

The genetic amenability of zebrafish allows the generation of transgenic tumour-bear-

ing fish that serves as a platform for drug and genetic screens. Earlier transgenic models of 

T cell acute lymphoblastic leukaemia were generated by expressing mouse c-myc under the 

control of zebrafish Rag2 promoter and have been extensively used to model lymphoblastic 

leukemia (Langenau et al., 2003, Langenau et al., 2005, Gutierrez et al., 2011, Borga et al., 

2019). Transgene overexpression of Akt1 and HRASV12 signalling have also been used to in-

duced glioma formation in zebrafish (Jung et al., 2013, Mayrhofer et al., 2017). Moreover, the 

overexpression of these oncogenes led to the development of brain tumours resembling gli-

omas (Jung et al., 2013, Mayrhofer et al., 2017).  

The zebrafish is also frequently used in xenotransplantation assays (Eden et al., 2015, 

Welker et al., 2016). The combination of xenotransplantation, in vivo imaging and ability of the 

fish to absorb chemical compound from the water make the zebrafish model an ideal platform 

to conduct drug screens (Eden et al., 2015, Welker et al., 2016). We have previously shown 
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in an orthotopic transplantation GBM zebrafish model that microglia and macrophages per-

formed pro-tumoural activities (Hamilton et al., 2016). The ablation of tumour promoting mi-

croglia/macrophage by genetic and pharmacological means inhibited tumour growth 

(Hamilton et al., 2016). Other studies have shown that implanted mouse brain tumours cells 

were viable in zebrafish and that transplanted cells developed into tumours that recapitulate 

the histology of parent tumour (Eden et al., 2015). Eden et al., demonstrated the utility of the 

zebrafish model for pre-clinical drug testing as tumours in zebrafish responded to chemo-

therapeutic agents (Eden et al., 2015). Furthermore, zebrafish larvae xenotransplantation as-

says were observed to constitute highly sensitive differential therapy responses to different 

chemotherapeutic agents (Fior et al., 2017). This highlighted the significance of cancer xeno-

transplantation zebrafish models as a pre-clinical chemosensitive profiler to access drug tox-

icity for precision medicine (Fior et al., 2017). More recent advancement in xenotransplanta-

tion methodology included the utility of genetically immunocompromised zebrafish (Yan et 

al., 2019). The generation of prkdc (protein kinase DNA-activated catalytic polypeptide and 

il2rga (interleukin-2 receptor gamma a) mutant zebrafish, lacking T, B and NK cells, extended 

the capabilities of zebrafish xenotransplantation models into adult zebrafish without the need 

of dexamethasone treatment (Yan et al., 2019). Taken together, the zebrafish model system 

have significant advantages as a model organism to investigate cancer biology in vivo.   
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1.4.4. Inducible transgenic expression of transgenes in zebrafish 

The Tol2 transgenesis method has been applied in many studies to generate trans-

genic zebrafish that express fluorescent proteins in specific tissue and organs (Ellett et al., 

2011, Ballim et al., 2019). In addition, the Tol2 system has been shown to mediate reliable 

genetic expression of transgenes under a variety of regulatory elements. Heat shock promot-

ers (hsp70l) have been used to temporally and spatially control gene expression (Venero 

Galanternik et al., 2016, Shoji and Sato-Maeda, 2008). One of the advantages of the zebrafish 

model is the zebrafish’s ability to readily absorb compounds through the water (Garcia et al., 

2016). This allows the utility of chemical-inducible techniques to temporally control gene ex-

pression. Unlike conventional promoters, chemical inducible expression allows temporal con-

trol of genes, where early expression during development causes fatal or severely dysmorphic 

effects and, as a result, precludes the possible role of the gene of interest at later stages 

(Watanabe et al., 2007). The mifepristone inducible LexPR system is a hormone-response 

transcriptional activator that confers accurate spatiotemporal control of transgene expression 

(Emelyanov and Parinov, 2008). This system utilises a hybrid transcription factor (LexPR) en-

gineered by fusion of the DNA binding domain of the bacterial LexA repressor, a truncated 

ligand-binding domain of the human progesterone receptor, and the activation domain of the 

human NF- κB/p65 protein (Emelyanov and Parinov, 2008). The hybrid transcription factor 

(LexPR) is activated when bound to mifepristone and induces genetic expression of a gene 

of interest placed under the control of a synthetic operator-promoter sequence (LexOP) 

(Emelyanov and Parinov, 2008). This system has been shown to conditionally control the ex-

pression of oncogenic kras(V12) in zebrafish (Nguyen et al., 2016, Emelyanov and Parinov, 

2008). The versatility in inducible transgene expression systems extends the available trans-

genic tool kit to allow the study of gene function at various stages of development.  

  



 

Page 32 
 

1.4.5. CRISPR/Cas9 mediated mutagenesis  

The advent of clustered regularly interspaced short palindromic repeats (CRISPR)  

and CRISPR associated protein (Cas)9 genome modification has now made it easy to rou-

tinely and efficiently generate stable mutant organisms. The precise modification of specific 

genetic sites is a standard approach to study gene function and generate stable mutants (Wu 

et al., 2019, Ma et al., 2014). The ability to precisely alter gene function has significant thera-

peutic applications in nanomedicines to control cancers and treat genetic diseases such as 

cystic fibrosis (Jiang et al., 2019, Wu et al., 2015).  

The CRISPR/Cas9 system originates from the immune system of prokaryotes under 

infection. A fragment of the infecting phage is taken up and integrated into the CRISPR motif 

that is transcribed into CRISPR RNA (crRNA) and trans-activating crRNA (tracRNA) (Wu et al., 

2019, Ma et al., 2014). crRNA and tracRNA interact to form a crRNA/tracRNA duplex that 

directs the Cas9 protein to the matching sequence of the invading phage to introduce double 

strand breaks (Wu et al., 2019, Ma et al., 2014). Researchers exploit this system by introduc-

ing custom crRNA and tracrRNA and fusing them into a single guide RNA (sgRNA) in order to 

direct the Cas9 to a specific sequence in the genome (Wu et al., 2019, Ma et al., 2014). The 

custom sgRNA should contain a 20 nucleotide long sequence that is homologous to the tar-

get site followed by a protospacer adjacent motif (PAM) sequence (Wu et al., 2019). The PAM 

site is required for target site recognition. These engineered nucleases direct double strand 

breaks at the targeted genome locus which activates error prone nonhomologous end joining 

(NHEJ) or homology directed repair (HDR) (Ma et al., 2014, Wu et al., 2019). Error prone NHEJ 

induces frame shift mutations due to insertions-deletions (Indel) at the target site (Wu et al., 

2019). These short frame shift indels in the exonic sequences introduce premature stop co-

dons that are recognised and degraded by the nonsense mediated mRNA decay mechanisms 

or are translated into truncated non-functional proteins (Hu and Ng, 2012). In contrast, precise 
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gene knock-in can be achieved by co-injecting with single-strand oligodeoxynucleotides or 

double strand DNA as a donor for HDR (Wu et al., 2019) (Figure 4). 

The CRISPR/Cas9 system is versatile as multiple modifications can be introduced by 

providing multiple sgRNA, making it possible to simultaneous modify multiple genes in the 

Figure 4. Mechanisms of the CRISPR-Cas9 targeting system. 
The fusion of crRNA and tracrRNA into a single guide RNA (sgRNA) directs the Cas9 to a specific target sequence 

in the genome. These engineered nucleases direct double strand breaks three base pairs from protospacer adjacent 
motif (PAM) sequence. Double strand breaks at the targeted genome locus activates DNA repair machinery that 

facilitates error prone nonhomologous end joining (NHEJ) or homology directed repair (HDR). Error prone NHEJ 

induces frame shift mutations due to insertions or deletions (indel) at the target site. While on the other hand, precise 

gene knock-in can be achieved by co-injecting with single-strand oligodeoxynucleotides or double strand DNA (Wu 

et al. 2019) 

 

Image adapted from (Wu et al. 2019) 
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organism. Up to five genes have been modified simultaneously using the CRISPR/Cas9 sys-

tem in mice with an efficiency of 75% (Zhou et al., 2014). The high efficiency of CRISPR/Cas9 

system represents a rapid genome editing technique that allowed for the rapid establishment 

of clinical relevant disease model in zebrafish through the generation of transient loss of func-

tion animals (Crispants) (Naert and Vleminckx, 2018, Trubiroha et al., 2018). The generation 

of crispants forgoes the requirement of time-consuming genetic screening methodologies in 

order to generate stable transgenic mutant lines. However, one major limitation that limits 

CRISPR/Cas9 clinical application is off target effects. Mismatches in the sgRNA sequences 

may guide the Cas9 complex to sites of similar sequences and introduce off target mutations 

(Fu et al., 2013). Off target sites were identified to harbour up to five base pair mismatches 

that induced mutations comparable to those of intended target (Fu et al., 2013). Nonetheless, 

due to its simplicity, low cost, and high efficiency, the CRISPR/Cas9 system is widely used 

in many organisms to create loss of function alleles to study gene function in bacteria, ro-

dents, zebrafish and human cells (Wu et al., 2015, Ma et al., 2014, Zhou et al., 2014, Tsa-

rouchas et al., 2018).  
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1.5. Statement of Aims 

The aim of my PhD was to test the capability of Pd and Au for targeted drug delivery 

in a GBM model in the zebrafish using Gold and Palladium nanoparticles solidly supported 

on a polystyrene matrix (beads). We used a human glioblastoma (U87) xenotransplantation 

zebrafish model, previously established (Hamilton et al., 2016), as a platform to develop 

bioorthogonal chemotherapeutic drug screening assay. 

Over the course to the experiment, the aim of my PhD shifted to investigate the anti-

tumour properties initiated by Palladium and Gold bead implantation. This included investi-

gating the mechanisms involved in anti-tumour effects of Palladium and Gold and identifying 

genetic candidates that induced macrophage polarisation. To achieve these goals, the fol-

lowing aims were addressed: 

 

1. To develop a bioorthogonal chemotherapeutic drug screen platform in the zebrafish brain 

using Palladium and Gold nanoparticles solidly supported on a polystyrene matrix 

(beads). 

• To achieve this aim, the catalytic activity of Palladium and Gold bead will be 

evaluated in the zebrafish brain. 
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2. To investigate the associated anti-tumour effects of Palladium and Gold bead implanta-

tion.  

• To achieve this aim, the effects of Palladium and Gold bead implantation on 

U87 cell survival, U87 cell fragmentation and macrophage number were eval-

uated. In order to investigate if macrophage function contributed to the anti-

tumour effects, bead induced anti-tumour activity was investigated in a mac-

rophage null zebrafish. We also investigated the effects on necrosis using 

propidium iodide staining in the zebrafish brain. 

 

3. To identify the intracellular signalling mediators of Palladium and Gold bead induced anti-

tumour effects in macrophages. 

 

• To achieve this aim, we isolated macrophages from Palladium bead im-

planted, U87 xenografted and Bead null zebrafish and conducted next gen-

eration RNA sequencing.  
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4. To investigate if TLR signalling play a key role in mediating the anti-tumour effects of 

Palladium and Gold bead implanted zebrafish. 

 

• To achieve this aim we conducted in vivo experiments to establish if the phar-

macological inhibition of TLR signalling would promote U87 cell survival.  

 

5. To investigate the role of tnf-𝑎 and cxcl8b.1 in mediating the anti-tumour responses of 

macrophages and neutrophils in the zebrafish brain. 

 

• The role of tnf-𝑎 and cxcl8b.1 in mediating anti-tumour responses of macro-

phages will be investigate using CRISPR/Cas9 crispants and Tol2 mediated 

overexpression transgenesis assays.  
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2. Material and Methods 
2.1. U87-nls-mKate2 cell culture 

2.1.1. Cell Culture Reagents 

Reagent Name Composition and Final Concentration 

DMEM (ThermoFisher Scientific, 

Loughborough, UK) 
 

Dulbecco’s modified Eagle’s medium 
(DMEM) containing 1% L-glutamine 10% 
(v/v) fetal calf serum. 

Penicillin/Streptomycin (ThermoFisher Scien-
tific, Loughborough, UK) 
 

100 mg/ml penicillin and 100 mg/ml strepto-
mycin 

Fetal Calf Serum (ThermoFisher Scientific, 
Loughborough, UK) 

Fetal Calf Serum 

1X Phosphate Buffer Saline (Sigma Aldrich, 
Dorset, UK) 

137 mM NaCl, 2.7 mM KCl, 10 mM 
Na2HPO4, 1.8 mM KH2PO4, pH 7.4. 

EDTA (ThermoFisher Scientific, Loughbor-
ough, UK)  

0.5 M EDTA (ThermoFisher Scientific, 
Loughborough, UK) 
suspended in 1X PBS 

Accutase (ThermoFisher Scientific, 
Loughborough, UK) 

1X Accutase in Dulbecco’s PBS containing 
0.5 mM EDTA and 3 mg/L Phenol Red 

Polybrene (ThermoFisher Scientific, 

Loughborough, UK) 

10 mg/ml polybrene 

 

2.1.2. U87 cell culture 

Human U87MG glioblastoma cells were kindly provided by Prof Tobias Pukrop (Uni-

versity Hospital Regensburg, Germany). U87 cells originated from the American Type Culture 

Collection (Manassas ,VA, USA) and were cultured in DMEM containing 1% L-glutamine, 1% 

(v/v) Penicillin/Streptomycin supplemented with 10% (v/v) fetal calf serum (FCS). U87 cells 

were incubated at the standard conditions of 100% humidity, 95% air and 5% CO2.  
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2.1.3. Thawing of cells from liquid nitrogen storage 

U87 cells were thawed at 37°C using a water bath after being removed from liquid 

nitrogen. The cells were mixed with 8 ml DMEM containing 1% L-glutamine, 1% (v/v) Penicil-

lin/Streptomycin supplemented with 10% (v/v) FCS and centrifuged at 200 g for 3 minutes. 

The supernatant was removed and cells resuspended in 10 ml DMEM medium and seeded 

into 25 cm2 cell culture flasks. 

 

2.1.4. Freezing of U87 cells into liquid nitrogen 

U87 cells cultured on cell culture flasks were lifted using 2 ml 1X Accutase solution 

and incubated at 37°C for 5 minutes. Cells were dissociated by agitation and 8 ml DMEM 

medium was added. The cell suspension was centrifuged at 200 g for 3 minutes. The super-

natant was removed and U87 cells were resuspended in 3 ml FCS containing 10% dimethyl 

sulfoxide (DMSO). Cell suspension with FCS was aliquoted in 1 ml volumes into screw top 

1.8 ml Nunc CryoTubeTM vials (Sigma Aldrich, Dorset, UK). The tubes were frozen in polysty-

rene boxes at -80°C and then transferred to liquid nitrogen storage at -150°C. 

 

2.1.5. Lentiviral transduction of human glioblastoma cell lines 

U87MG glioblastoma cells (4.5 x 105) cell were seeded into a 60 mm dish in a final 

volume of 5 ml DMEM for four hours at standard conditions of 100% humidity and 5% CO2
 

at 37°C in DMEM containing 1% L-glutamine, 1% (v/v) Penicillin/Steptomycin supplemented 

with 10% (v/v) fetal calf serum. In order to increase transduction efficiency, the cells were 

incubated in 5 mM polybrene for 10 minutes. The Lv-cppt-IRES-NLS-mKate2-opre viral vec-

tor was generated by Pam Brown (shared university research facilities (SuRF), the University 

of Edinburgh, UK). A SV40 nuclear localizing signal sequence coding for Pro-Lys-Lys-Lys-

Arg-Lys-Val was cloned into the N-terminus of the protein leading to the nuclear transport of 

the fused nls-mKate2 fluorescent protein monomer (Kalderon et al., 1984). A multiplicity of 

infection (MOI) of ten viral vectors to infection targets was added to the existing media for a 

period of 48 hours. The transformed cells were then washed with 5 ml 1X PBS and lifted using 

1 ml 2.5 mM EDTA-PBS at 37°C and washed twice in 10 ml DMEM; cells were centrifuged 
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for 3 minutes at 200 g between washes. The resulting cell pellet was re-suspended in 10 ml 

DMEM and a 1:5 split of the transduced U87 cell population (U87-nls-mKate2) was plated 

into a T75 cell culture flask. 

 

2.1.6. Routine culture of U87-nls-mKate2 human glioblastoma cell line for 

xenografts 

  U87-nls-mKate2 cells were initially cultured at standard conditions of 100% humidity 

and 5% CO2 at 37°C in DMEM. The cultured U87-nls-mKate2 were then incubated at 34°C 

for a 2 week equilibration period. One of the limiting factor in xenotransplantation was the 

temperature. Zebrafish were routinely maintained at 28°C which differed by nine degrees from 

that of standard cell culture temperature for U87 cells (37°C). As a compromise solution, to 

optimize the temperature for U87 cell proliferation and zebrafish survival, an incubation tem-

perature of 34°C was chosen. Thus all cell culture procedures following the 2 weeks equili-

bration period was conducted at 34°C to allow habituation of the cells at the same tempera-

ture as the zebrafish (34°C). The cells were passaged when approximately 80% confluent. 

First, the cells were washed once with 10 ml 1X PBS and incubated in 2 ml 1X Accutase. 

Cells were dissociated by agitation and the Accutase inactivated by adding 8 ml DMEM me-

dium. Cells were pelleted at 200 g for 3 minutes and passaged into a 75 cm2 cell cultured 

flask at a 1:10 ratio with 20 ml DMEM medium.  

 

2.1.7. U87-nls-mKate cell preparation for xenografts 

 Cells were harvested on the same day as xenograft experiments. U87-nls-mKate2 

cells were washed with 10 ml 1X PBS followed by an 8 minute incubation in 2 ml 2.5 mM 

EDTA-PBS. DMEM (8 ml) was added to the cell suspension and centrifuged for 3 minutes at 

200 g. Cell pellet was washed in 10 ml DMEM and centrifuged for 3 minutes at 200 g. The 

resulting cellular pellet was supplemented with 1:10 (v/v) phenol red and immediately used 

for xenografting experiments.  
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2.1.8. U87-nls-mKate2 cell preparation for fluorescent activated cell sorting 

(FACS) 

U87-nls-mKate2 cells cultured in T75 flasks were dissociated from the surface of the 

flask using 2 ml Accutase after a 10 ml 1X PBS wash. The cell suspension was spun down at 

200 g for 3 minutes then resuspended in 2% FCS/DMEM medium at a density of 7.5 million 

cells/ml. All procedures were conducted at room temp.  

 

2.2. Zebrafish Husbandry and In-vivo experiments 

2.2.1. Zebrafish Husbandry 

 Zebrafish were housed in a purposed built zebrafish facility in the Queen’s Medical 

Research Institute (QMRI, the University of Edinburgh, UK) maintained by the University of 

Edinburgh Biological Resources. All adult zebrafish were kept at 28°C on a 14 hours light/10 

hours dark photoperiod. All zebrafish embryos were obtained through pair mating conducted 

in the facility. Animal experimentation was approved by the home office (PPL P5042DEFB) in 

accordance with the Animals (Scientific Procedure) Act 1986. Zebrafish embryos were treated 

with 140 µM 1-phenyl 2-thiourea (PTU) in E3 embryo media (6.4 mM KCl, 0.22 mM NaCl, 0.33 

mM CaCl2 2H2O, 0.33 mM MgSO4 7H2O) continuously to inhibit pigmentation. Zebrafish em-

bryo were house in no more than 50 embryos in 50 ml E3 in 9 cm2 petri dishes. During exper-

imentation, zebrafish embryos were housed individually in 12 well plates in 1 ml E3 containing 

140 µM PTU. 

 

2.2.2. Transgenic Zebrafish Lines 

Tg(mpeg1:EGFP) zebrafish were generated by cloning the 1.86 kb mpeg upstream 

sequence in front of EGFP. Tol2 mRNA and the tol2-flanked Tg(mpeg1:EGFP) construct were 

co-injected into the AB wildtype zebrafish embryos at the single cell stage. Germ line trans-

mission of the transgene was screened for by outcrossing to the AB strain. The mpeg1 pro-

moter, a macrophage lineage promoter sequence, expressed EGFP fluorescent protein in 

macrophages and microglia. Tg(mpeg1:eGFP) zebrafish were used to visualise macrophages 
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in vivo and have been used to study a diverse range of macrophage related processes (Ellett 

et al., 2011, Rougeot et al., 2019).  

 Tg(mpeg1:EGFP:mpeg1:Kal4/UAS:nls-E2-Crimson) were generated by co injecting 

Tol2 mRNA and the tol2-flanked Tg(mpeg1:Kal4/UAS:nls-E2-Crimson) construct into 

mpeg1:eGFP embryo at the single cell stage. mpeg1:Kal4/UAS:nls-E2-Crimson construct 

contained the mpeg1 promoter in addition to Kal4/UAS transcriptional activator system and 

a zebrafish nuclear localisation signal fused to the N-terminal of E2-Crimson. Double 

transgene germ line transmission was confirmed by outcrossing to the AB strain. The mpeg1 

promoter drove the expression of cytoplasmic EGFP and nuclear E2-Crimson in macro-

phages. 

 Tg(mpo:EGFP), may also be known as Tg(mpx:GFP) was generated by BAC 

transgenesis (Renshaw et al., 2006). EGFP with an SV40 polyadenylation site (Clontexh, Palo 

Alto, CA) was inserted at the mpo ATG start site. The myeloperoxidase (MPO) enzyme is a 

neutrophil specific granule protein. Thus the mpo promoter was used to drive EGFP in neu-

trophils. 

 

2.2.3. Zebrafish screening of fluorescent proteins  

 All zebrafish larvae between 3 to 5 days post fertilization (dpf) used for the experi-

ments were first screened for the expression of transgene using a Leica MZ16FA optical flu-

orescence microscope (Leica, Houston, USA). Zebrafish larvae were anaesthetised in 2.5mM 

tricaine in E3 medium and screened for the highest level of expression of the fluorescent 

protein of interest. Zebrafish expressing the highest level of fluorescence intensity in the brain 

were selected for further experimentation. 

 

2.2.4. Zebrafish Larvae imaging 

 Time lapse and still images were acquired using an Andor spinning disk confocal 

microscope (Oxford Instruments, Belfast) with a 20X/NA 0.75 Olympus air objective lens . The 

zebrafish were anaesthetised with 2.5 mM tricaine in E3 medium, immobilized in 1.5% low 
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melting point agarose in E3 medium on a 35 mm glass bottom MatTex petri dish (MatTek, 

Ashland, USA), and submerged in E3 medium containing 2.5 mM tricaine. Green (GFP), 

mCherry and E2-Crimson fluorescent proteins were excited using 488 nm, 561 nm and 561 

nm wavelength lasers respectively . The emission spectrums were reflected through a Sem-

rock quad multi-band filter (IDEX Health and Science, LLC, Rochester, USA) depending on 

the excitation wavelength. Laser exposure and intensity was calibrated for each experiment 

to obtain best possible image resolution at the same time minimising exposure of the samples 

to the laser. The filtered emitted spectrum was detected using a TuCam multi wavelength 

imaging camera (Oxford Instruments, Belfast, UK) with image gain set at 50 for all acquisi-

tions. Acquired Z stacks were set accordingly to encompass all regions of interest within the 

zebrafish brain. 

 

2.2.5. Palladium, Gold and Naked bead preparation 

Palladium, Gold and Naked beads were kindly provided by collaborators (Unciti-

Broceta’s Lab, Edinburgh Cancer Research Centre, IGMM). Solidly supported Gold (Perez-

Lopez et al., 2017) and Palladium (Weiss et al., 2014a) nanoparticles were prepared within a 

polystyrene matrix of 75 microns in diameter. Palladium (5 nm) and Gold (30nm) nanoparticles 

were uniformly distributed across the polystyrene matrix. Non-functionalised resin (Naked 

bead) were untreated and represented the precursors used for Palladium and Gold bead syn-

thesis. 

 

2.2.6. Zebrafish xenografts and bead implantation 

mpeg1:EGFP and mpo:EGFP zebrafish (3 days post fertilised (dpf)) were anaesthetised with 

2.5 mM tricaine and immobilised in 1.5% low melting point agarose in E3 medium. The frontal-

dorsal section of the zebrafish head was carefully exposed from the agarose (Figure 5, A1-

A2). Cell suspension (10 µl) were loaded into borosilicate glass capillary needles (1 mm O.D 

x 0.78 mm I.D.; Harvard Aparatus) using a microloader tip and the ends broken using a micro 
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forceps to expose a sharp tip. The left optic tectum of the zebrafish larvae (3 dpf) were xen-

ografted with U87-nls-mKate2 cells (n = 40-100) using a Femtojet micro-injector (Eppendorf, 

Hamburg, Germany) (Figure 5, B1 - B4). After cell transplantation, the zebrafish larvae were 

liberated from the agarose and maintained in E3 medium containing 140 µM PTU at 34 °C for 

a period of 24 hours before bead implantation.  

 

Figure 5. Schematic diagram of zebrafish U87-nls-mKate2 xenograft and bead implan-

tation. 
(A1) Zebrafish larvae (3-4 dpf) anaesthetised in 2.5 mM tricaine were immobilised in 1.5% low melting point agarose in E3 

medium and submerged in E3 medium.  

(A2) The frontal dorsal section of the zebrafish brain was exposed from the agarose allowing access to the brain.  

(B1-B4) U87-nls-mKate2 human glioblastoma cell lines were loaded into borosilicate glass capillaries and the ends broken 

to expose a sharp tip. The needle was inserted into the left optic tectum of the zebrafish brain (3 dpf) and U87-nls-mKate2 

cells were xenografted into the brain using a Femtojet micro-injector. A 24 hour recovery period followed xenografting prior 
to bead implantation.  

(C1) Zebrafish larvae (4 dpf) were remounted in 1.5% low melting point agarose in E3 and submerged in E3 medium . 

(C2) The dorsal frontal section of the head was exposed. A small incision was then made on the medial dorsal frontal section 

of the zebrafish head, between both optic tectums, using an ophthalmic scalpel mounted on a micro-manipulator.  

(C3 and C4) Using a borosilicate glass capillary with negative pressure palladium/gold/naked beads were manipulated into 

position above the incision and were inserted into the zebrafish brain (4 dpf). The negative pressure was released and the 

glass capillary was extracted.  

(D) Zebrafish larvae were xenografted with U87-nls-mKate2 cells at 3 dpf. Bead implantation procedure occurred at 4 dpf. 

At 0 days post bead transplantation (dpt), U87 xenografted zebrafish were utilised for experiments.   
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 On the day of bead implantation, 4 dpf mpeg1:EGFP or mpo:EGFP zebrafish larvae 

were  anaesthetised in 2.5 mM tricaine in E3 medium and immobilised in 1.5% low melting 

point agarose in E3 medium. The frontal dorsal section of the zebrafish head was exposed 

from the agarose to facilitate bead implantation (Figure 5, C1-C4). A small incision was made 

on the medial dorsal frontal section of the zebrafish head, between both optic tectums, using 

an ophthalmic scalpel (PFM medical, Germany) mounted on a micro-manipulator as shown 

in Figure 5, C2. Following incision, the gold/naked/palladium bead was carefully moved into 

position above the incision site and the bead was surgically placed between both hemi-

spheres of the optic tectum (Figure 5, C3 - C4). To replicate an implantation injury, a Naked 

bead was implanted and immediately removed. A negative pressure was created between 

the bead and the needle using tubing connected to 10 ml Eccentric luer slip tip syringe (BD 

Plastipak, Franklin Lakes, USA) to allow for careful manipulation of bead. After bead implan-

tation, the zebrafish larvae (4 dpf/0 dpt) were liberated from the agarose and remounted in 

1.5% low melting point agarose in E3 for imaging. 

 

2.2.7. Zebrafish Gold bead in-vivo catalytic assays 

To investigate the chemical capabilities of gold as a catalyst to mediate prodrug ac-

tivation, we studied gold bead’s catalytic properties to convert nonfluorescent precursor into 

fluorescent Rhodamine in-vivo. The lipophilic properties of prodye precursor allowed diffusion 

of the reagent in the media via ingestion or absorption via the skin and distributed systemically 

(Perez-Lopez et al., 2017). Under physiological conditions the prodye precursor is catalytically 

Figure 6. Pulse treatment of Au bead implanted zebrafish with 20 µM Pro-dye 
Pulse treatment of Au bead implanted zebrafish occurred from 0 days post transplantation (dpt) to 1 dpt at an age of 3 days 

post fertilisation (dpf) to 4 dpf. Prodye (20 µM) was added to the E3 medium with 1% DMSO. In between pulse treatment, the 

zebrafish was washed in E3 and incubated in fresh E3 containing 140 µM PTU without prodye or DMSO. Pulse treatment of 

the zebrafish with 20 µM prodye resumed from 3 dpt to 4 dpt or 6 dpf to 7 dpf.  
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converted by the gold bead into fluorescent Rhodamine which was visible under excitation 

by 488 nm wavelength laser (Perez-Lopez et al., 2017). This study was the first time that 

biorthogonal organometallic reaction was tested locally in an in-vivo system in the zebrafish 

brain. Nonfluorescent prodye (10 mM) suspended in DMSO was kindly provided by Unciti-

Broceta lab (Cancer Research UK Edinburgh Center, Edinburgh, UK). Wild type (WIK) 

zebrafish embryos (3 dpf) were each implanted with a Gold coated resin bead (Au beads). 

The experiment comprised four groups: (1) Wild type zebrafish implanted with Au beads and 

continuously treated with 20 µM prodye in 1% DMSO (3 dpf – 7 dpf) (2) Zebrafish implanted 

with Au beads pulsed with 20 µM prodye in 1% DMSO. Pulse treatment of Au bead implanted 

zebrafish occurred from 0 days post transplantation (dpt) to 1 dpt and at 3 dpt to 4 dpt (Figure 

6). Zebrafish embryos were wash with E3 containing 140 µM PTU in between pulse treat-

ments. (3) A negative control where zebrafish without gold beads were pulsed with 20 µM 

prodye in 1% DMSO from 0 days post transplantation (dpt) to 1 dpt and at 3 dpt to 4 dpt 

(Figure 6). (4) A background control where zebrafish transplanted with Au beads and were not 

treated with prodye. Zebrafish were imaged at 1 day post transplant (dpt), 3 dpt and 4 dpt 

and analysed using Imaris (Bitplane, Zurich, Switzerland) and p values calculated using two 

tailed unpaired student t-test. 

 

2.2.8.  Zebrafish Propidium Iodide assays 

Wild type (WIK) zebrafish (3 dpf) were incubated with 1 mg/ml Propidium iodide (BD 

Biosciences, Wokingham Berkshire, UK) and 1% DMSO in E3 medium containing 140 uM 

PTU at 34°C 20 minutes before imaging. There were three conditions for this assay: (1) WIK 

zebrafish without bead (2) WIK zebrafish implanted with Naked bead (3) WIK zebrafish with 

Gold bead. Zebrafish were imaged at 0 dpt, 1 dpt and 3 dpt using the spinning disk confocal 

microscope excited using the 488 nm laser. Zebrafish larvae were incubated in 1 mg/ml Pro-

pidium iodide for the duration of the experiment.  
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2.2.9. IRAK-4-IN-1 inhibitor treatment 

For qPCR studies, a total of 200 mpeg1:EGFP embryos (4 dpf) were treated with 10 

µM IRAK4-IN-1 inhibitor (MedChemExpress LLC, New Jersey, USA) and 1% DMSO in E3 

medium containing 140 uM PTU for a period of 24 hours in a 9 cm2 petri dish incubated at 

34°C. At 5 dpf, the zebrafish were anesthetised with 2.5 mM tricaine in E3 medium and 

washed in 50 ml 4°C E3 media containing 140 uM PTU and 2.5 mM tricaine. Anesthetised 

embryos were then incubated in 50 ml 4°C E3 media containing 140 uM PTU and 2.5 mM 

tricaine on ice in preparation for macrophage isolation protocol (See section 2.3.1 for details) 

mpeg1:EGFP zebrafish (4 dpf) were treated with 1 ml 10 µM IRAK4-IN-1 inhibitor and 

1% DMSO in E3 medium containing 140 uM PTU individually house in 12 well plates for the 

duration of the experiment. On the day of imaging, mpeg1:EGFP embryos were anesthetised 

with 2.5 mM tricaine and immobilised in low melting point agarose onto a Matek glass bottom 

petri dish. Post imaging, zebrafish embryos were liberated from agarose and incubated in 1 

ml 10 µM IRAK4-IN-1 inhibitor and 1% DMSO in E3 medium containing 140 uM PTU individ-

ually house in 12 well plates until required.  

 

2.3. Isolation of zebrafish macrophage for RNA sequencing 

2.3.1. Zebrafish macrophage isolation 

 The zebrafish macrophage was isolated using protocols previously developed in the 

Sieger laboratory (Mazzolini et al., 2018). Briefly, mpeg1:EGFP zebrafish larvae (5 dpf) were 

anaesthetised in 2.5mM tricaine in E3 medium prior to being transferred into cold E3 medium 

and maintained at 4°C. For each macrophage isolation protocol, about 200 zebrafish larval 

heads were isolated. The larvae heads were transected above the yolk-sac using surgical 

micro-scissors and transferred into a glass homogeniser filled with 1 ml Media A (15 mM 

Hepes, 25 mM D-Glucose in 1X HBSS). The larvae heads were homogenised and strained 

through a 40 µM cell strainer. The homogenized tissue were distributed into two 1.5 ml mi-

crotubes and centrifuged at 300 g for 10 minutes at 4°C. The supernatant was removed and 

the cells were resuspended in 1 ml ice chilled 22% density gradient medium gently overlaid 
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by 0.5 mL of ice chilled 1X DPBS. The tubes were spun at 950 g, with slow acceleration and 

without brake, for 30 min at 4°C. After the spin the supernatant was removed and the cells 

were resuspended in 1 ml 2% normal goat serum (NGS) in media A. The cell suspension was 

spun again at 300 g for 10 minutes at 4°C. The final cell pellet was resuspended in 1 ml 2% 

NGS in Media A and the macrophage were isolated by flow cytometry (Section 2.3.2 ). 

 

2.3.2. Flow cytometry sample acquisition  

 Fluorescent Activated Cell Sorting (FACS) was facilitated by in-house service pro-

vided by Shared University Resource Facility (SURF, QMRI). Macrophage samples were ac-

quired using FACS AriaII (BD Biosciences, Oxford, UK) with the temperature maintained at 

4°C throughout the sort. U87-nls-mKate2 glioblastoma cells were acquired using FACS Fu-

sion at room temperature (BD Biosciences, Oxford, UK). Robust and replicable cell sort was 

first achieved by calibrating and setting gating parameters using unstained wild type (WIK) 

Figure 7. Fluorescence Activated Cell Sorting (FACS) of mpeg1:EGFP positive 

macrophages 
(A1-A6) FACS calibration of FACS AriaII (BD Biosciences, Oxford, UK) using homogenized wild type unlabeled 

zebrafish brain tissue. (A2) Cell doublets were first gated against by plotting the height of the forward scatter (FSC-

H) against the area of the forward scatter (FSC-A). (A3) Further refinement of cell singlets was achieved by gating 

for proportionate cells along the axis of height of the side scatter (SSC-H) vs the area of the side scatter (SSC-

A).(A4) Cell debris were gated against and macrophage cell population gate for. (A5) Live and dead cells were 

identified by adding 3 µM DAPI (Thermofisher Scientific, Loughborough) counter stain into the cell suspension. (A6) 

Final gating parameter denoting boundary of GFP positive cells. Note unstained cell population is outside this 

boundary.  

(A7) mpeg1:GFP expressing macrophages are sorted for using calibrated FACS parameter based on wild type 
unlabeled zebrafish brain tissue.  
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zebrafish brain tissue (Figure 7A) and unstained U87 glioblastomas cell. The following method 

being described follows the workflow of a typical fluorescent activate cell sort for 

mpeg1:EGFP positive zebrafish. However, FACS for U87 glioblastomas cells followed identi-

cal gating strategies with the difference in the final gate which gated using the excita-

tion/emission spectrum of 588/633 nm for mKate2 fluorophore. Two strategies was employed 

to gate against cell doublets. First, cell doublets were first gated against by plotting the height 

of the forward scatter (FSC-H) against the area of the forward scatter (FSC-A). Cell doublets 

will double the FSC-A values thus FSC-H/FSC-A values would be disproportionate (Figure 

7A2). Further refinement of cell singlets were achieved by plotting the height of the side scatter 

(SSC-H) against the area of the side scatter (SSC-A) (Figure 7A3). Again, cell doublets will 

double the area of SSC-A and will have greater SSC-A values than SSC-H. Generally, cellular 

debris is considered to be forward scatter (FSC) low thus gate was drawn around cells with 

higher FSC (Figure 7A4). Live and dead cells were identified by adding 3 µM DAPI (Ther-

mofisher Scientific, Loughborough) counter stain into the cell suspension (Figure 75). Using 

the gated unstained sample as a guide (Figure 7A6), final gating parameters were defined to 

specifically select for GFP expressing macrophages (Figure 7A7). 

 

2.3.3. RNA Extraction of fluorescent activated cell sorted macrophage 

 RNA extraction was achieved using a commercially available RNeasy Mini Kit (Qi-

agen, Manchester, UK). The protocol was performed following the manufacture’s instructions 

with optimization for the processing of less than 100,000 cells. Briefly, sorted macrophage 

cells were lysed by adding 75 µl buffer RLT and the resulting lysate was pipetted directly into 

a QIAshredder spin column and centrifuged for 2 minutes at 9000 g. The flowthrough was 

transferred to a gDNA Eliminator spin column and centrifuged for 30 seconds at 9000 g. Next, 

70% ethanol was added to the flowthrough and the sample was transferred to an RNeasy 

MinElute spin column. Several wash steps followed using supplied buffer RW1 and RPE and 

freshly made 80% ethanol; the samples were centrifuged at 9000 g for 1 minute between 
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each wash. RNA content was finally eluted by adding 14 µl RNase free water to the centre of 

the spin column membrane. The resulting total RNA content was stored at -80 °C in prepa-

ration for RNA amplification for sequencing or First Strand cDNA synthesis. 

 

2.4. RNA preparation and quantitative reverse transcription PCR 

2.4.1. First Strand cDNA Synthesis of RNA Isolated from Macrophage 

 The SuperScript III First-Strand Synthesis system (ThermoFisher Scientific, Waltham) 

was used to synthesis first strand cDNA from isolated total RNA before RT-qPCR. In order to 

ensure replicability in all RT-qPCR reactions, the amount of starting total RNA material in first 

strand synthesis reactions was set at 0.5 µg. cDNA synthesis was performed in the first step 

using total RNA primed with 1 µl Oligo(dT) mixed with 1 µl 10 mM dNTP at 65°C for five 

minutes. cDNA synthesis mix containing 1 µl 10X RT buffer, 4 µl 25 mM MgCl2, 2 µl 0.1 M 

DTT, 1 µl 40 U/µl RNaseOUT and 1 µl 200 U/µl SuperScript III reverse transcriptase was added 

to each reaction and incubated for 50 minutes at 50°C. The reaction was terminated after the 

50 minutes period by incubating at 85°C for five minutes. RNA template from the cDNA:RNA 

hybrid molecule was digested with RNase H after first strand synthesis by adding 1 µl of 

RNase H to each reaction and incubated at 37°C for 20 minutes. The resulting cDNA product 

was stored at -20°C ready for use in qRT-PCR analysis. 

Table 1 quantitative RT-PCR Primers Table  

 Primer name Primer Sequence 5’ - 3’ 

1 Arg-1 Forward TCCGTTCTCCAAAGGACAGC 

2 Arg1-Reverse GACTCGTCGTTGGGAAGGTT 

3 IFN-y Forward CACATGATGGGCTTTGCCTG 

4 IFN-y Reverse GATTCGCAGGAAGATGGGGT 

5 il4/13b Forward CTGTTGGTACTTACATTGGTCCCC 

6 il4/13b-Reverse AGTGTCCTGTCTCATATATGTCAGGT 

7 il4/13a Forward GCACTGTATTCGTCTCGGGTTTTA 

8 il4/13a Reverse TTTTCCCCAGATCTACAAGGAAGA 

9 Beta Actin Forward CACTGAGGCTCCCCTGAATCCC 
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2.4.2. Quantitative RT- PCR 

 Quantitative RT-PCR was achieved using SsoAdvanced universal SYBR Green su-

permix (Biorad, Watford) and quantified using Roche Lightcycler 96 system Roche Diagnos-

tics, West Sussex, UK). Each 20 µl reaction contained 10 µl SsoAdvance universal SYBR 

Green supermix, 250 nM of each forward and reverse primers (Table 1) and 1 µl of cDNA 

template from the first strand synthesis reactions of the RNA product. Due to the nature high 

sensitivity of qPCR kit, variations in cycle threshold (CT) values can arise from differences in 

loading, extraction, mRNA-quality and reverse transcriptase efficiency. To control for such 

variations two technical replicates were loaded onto the plate for each gene of interest and 

the resulting pair of CT values averaged. A total of three biological replicates were used to 

analyse each gene on interest. Samples loaded on qPCR plates were analysed using a Roche 

Lightcycler 96 system (Roche Diagnostics, West Sussex, UK) running the thermal cycling 

protocol described in Table 2. Melting curve analysis followed the amplification phase and 

was important in assessing if the qPCR assay had produced single specific product. Melt-

Curve analysis was conducted by increasing the temperature from 65-95°C at 0.5°C incre-

ments every 2 seconds in between steps. Assays producing multiple or non specific products 

were excluded in analysis. 

Table 2 qPCR Thermal cycling protocol 

Step Thermal cycler settings Description 

1 Polymerase Activation and DNA Denatur-
ation 

95°C - 3 mins 

10 Beta Actin Reverse CGTACAGAGAGAGCACAGCCTGG 

11 Cxcl8b.1 Forward GCCAATGAGGGTGAAGCTCTA 

12 Cxcl8b.1 Reverse AATCACCCACGTCTCGGTAG 

13 TNF-a Forward ACCCAGGGCAATCAACAAGA 

14 TNF-a Reverse CAAGCCACCTGAAGAAAAGGC 

15 IL1-b Forward GGCATGCGGGCAATATGAAG 

16 IL1-b Reverse TGTAGCTCATTGCAAGCGGA 



 

Page 52 
 

Step Thermal cycler settings Description 

2 3 Step Amplification for 45 cycles 95°C - 10 secs 
56°C - 20 secs 
72°C - 20 secs 

3 Melting-Curve Analysis 65-95°C at 0.5°C increments 
every 2 seconds 

4 Cooling 40°C - 10 secs 

 

 

 In order to quantify fold change in gene expression the delta-delta CT method was 

used. This delta-delta CT formula, 2-ΔΔCT, is well describe and widely used in qPCR analysis 

(Livak and Schmittgen, 2001). Of note, the delta-delta CT method normalises each gene of 

interest to a housekeeping gene, beta actin (bactin1), to calculate relative fold change. Bac-

tin1 gene was chosen as the house keeping gene as it was shown to be stably expressed in 

zebrafish development and most stably expressed following chemical treatment (McCurley 

and Callard, 2008). ΔCT is equal to the cycle threshold of the gene of interest minus the cycle 

threshold of the housekeeping gene, and ΔΔCT is equal to the difference between the ΔCT 

values of treated sample and untreated sample.  

 

2.5. RNA Preparation for RNA Sequencing  

2.5.1. RNA quality assessment and RNA amplification 

 RNA Quality assessment was performed by Dr. Pamela Brown (shared university re-

search facility SuRF, The University of Edinburgh) using a LabChip GX24 Nucleic Acid Ana-

lyzer (PerkinElmer, Seer Green, UK). LabChip GX24 Nuclei Acid Analyzer utilized a combina-

tion of microfluidic chips, voltage induced size separation in gel filled channels and laser in-

duced fluorescence detection of RNA of different molecular weight to determine RNA integrity 

number (RIN) of RNA samples (Schroeder et al., 2006). In addition, LabChip GX24 was also 

capable of quantifying separated RNA product by laser induced fluorescence where the 

amount of measured fluorescence correlated with the amount of RNA of a give size. LabChip 
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GX24 allowed reproducible RNA quality and quantity analysis using a small volume (2 µl) of 

final RNA product. A RIN score of 7 or greater is considered high quality. A RIN score of less 

than 7 indicated poor RNA quality and RNA degradation thus any RNA product with a RIN 

score of less than 7 were discarded from all experiments.    

RNA amplification was conducted using the commercially available OvationⓇ RNA-

seq System V2 (Nugen, California). A dedicated sterilised pre-amplification and amplification 

area was assigned prior to starting the protocol to minimise risk of cross contamination. RNA 

amplification was performed following manufacture protocol (OvationⓇ RNA-seq System V2, 

Nugen). The seven key steps are as follows: 

 

Pre amplification :  A. First Strand cDNA synthesis 

   B. Second Strand cDNA synthesis 

   C. Purification of cDNA 

 

Amplification:  D. Single Primer Isothermal Amplification 

E. Purification of SPIA cDNA (QIAGEN MinElute Reaction Cleanup 

Kit) 

   F. Nano Drop cDNA Yield 

 

Table 3 Thermal cycler programs for RNA amplification 

Program Thermal cycler 
settings 

  

1 Primer Annealing 65°C - 2 mins, hold at 4°C 

2 First Strand Syn-
thesis 

4°C - 1 min, 25°C - 10 mins, 42°C - 10 
mins, 70°C - 15 mins, hold at 4°C 

3 Second Strand 
synthesis 

4°C - 1 min, 25°C - 10 mins, 50°C - 30 
mins, 80°C - 10 mins, hold at 4°C 

4 SPIA Amplification 4°C - 1 min, 47°C - 60 mins,  80 °C - 20 
mins, hold at 4°C 
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 During the first strand cDNA synthesis, 5 µl of RNA sample was added to 2 µl of first 

strand primer mix to allow annealing of primers in a thermal cycler programmed to run pro-

gram 1 (Table 3). Once primer annealing was complete first strand cDNA synthesis was initi-

ated by mixing 2.5 µl first strand buffer mix with 0.5 µl first strand enzyme mix in each reaction. 

Samples were then placed in a thermal cycler programmed to run program 2 (Table 3). After 

which the samples were removed from the thermal cycler, spun to collect condensation and 

placed on ice before proceeding with second strand cDNA synthesis. 

  Second strand cDNA synthesis was initiated by adding 9.7 µl second strand buffer 

mix and 0.3 µl second strand enzyme mix into each reaction tube. The tubes were placed 

back into the thermal cycler programmed to run Program 3 (Table 3). 

 Purification of cDNA was achieved using paramagnetic bead based chemistry to re-

moved contaminants. At room temperature, 32 µl of the Agencourt purification bead (Beck-

man Coulter, CA, USA) suspension, supplied with the Ovation RNA-Seq System V2, was 

added to each reaction and mixed well by pipetting. The tubes were then transferred to a 

magnetic stand and left to stand for 5 minutes to completely clear the solution of the beads. 

The exposure of the DNA to polyethylene glycol in the solution causes the negatively charged 

DNA to bind with the carboxyl groups on the surface of the paramagnetic beads (DeAngelis 

et al., 1995). These beads were immobilised by the magnetic field of the magnetic stand al-

lowing purification of cDNA product (DeAngelis et al., 1995). Keeping the tubes on the mag-

net, 45 µl of the binding buffer was removed and discarded. 70% Ethanol (200 µl) was added 

and allowed to stand for 30 seconds. The wash was repeated two more times before air 

drying the beads on the magnet for 15 to 20 minutes to allow all ethanol to evaporate. When 

all ethanol has been removed, cDNA was amplified by single primer isothermal amplification 

(SPIA) protocols.         

  The amplification of double strand cDNA bound to the dried beads began by the 

addition of SPIA master mix consisting of 20 µl SPIA buffer mix, 10 µl SPIA primer mix and 
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10 µl SPIA enzyme mix. The samples were then placed in tubes in a thermal cycler pro-

grammed to run program 4 (Table 3). The tubes were then transferred to the post-amplifica-

tion workspace back onto the magnet and left to stand for 5 minutes to completely clear the 

solution of the beads. The clear supernatant containing the SPIA cDNA was transferred to a 

fresh tube and purified using QIAGEN MinElute Reaction Cleanup Kit (Qiagen). Briefly, the 

entire volume (40 µl) of the SPIA reaction was added to 300 µl of buffer ERC and mixed by 

pipetting. The sample/buffer mix was added into a MiniElute spin column and centrifuged for 

1 minute at maximum speed in a microcentrifuge. The flow through was discarded and 750 

µl Buffer PE was added and centrifuge at 10,000 g Care was taken to ensure all residual 

Buffer PE was completely removed. The DNA was eluted with 22 µl room temperature Buffer 

EB and centrifuged for 1 minute at 10,000 g. The concentration of the purified SPIA cDNA 

sample was measured using a Nanodrop (NanoDrop One, ThermoFisher Scientific) and 

stored at -20°C until required. 

 

2.5.2.  RNA sequencing and analysis of amplified cDNA product 

 RNA sequencing and differential analysis was performed by Edinburgh Genomics 

(Edinburgh, UK). Nine samples were sent for analysis and are shown in Table 4. Quality con-

trol of cDNA samples was performed prior to cDNA library generation. 

 

Table 4 Table of samples and associated conditions 

Number Sample Name Condition 

1 Pdbead1D0305  Pd bead + U87 

2 PdBead3D1705  Pd bead + U87 

3 PdBead4D2405  Pd bead + U87 

4 Control2D0305  No Bead 

5 Control5D2405  No Bead 

6 Control6D1005  No Bead 

7 Control9D2806  No Bead 
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Number Sample Name Condition 

8 U877D0706  No bead + U87 

9 U878D2806  No bead + U87 

 

 DNA library of each cDNA samples were prepared using TruSeq DNA Nano gel free 

library before sequencing. Sequencing reads data generation was performed using HiSeq 

4000 75PE system (Illumina). All reads were trimmed using Cutadapt (Martin, 2011) based on 

a quality threshold of 30 and for TruSeq adaptor sequences (AGATCGGAAGAGC). The reads 

were aligned to the Danio Rerio reference genome (GRCz10, annotation version 84) from 

Ensmble using STAR (Spliced Transcripts Alignment to a Reference) (Dobin et al., 2013). Read 

counts were mapped to exon features that were grouped by gene_id in the zebrafish refer-

ence genome using featureCounts (Liao et al., 2014) program. The number of read counts 

were preprocessed by removing genes with near zero counts. The data was then normalised 

to the library depth to avoid artefacts of RNA sequencing to give the counts per million value 

(CPM) for each gene. A principal component analysis was performed to identify patterns as 

a result of experimental factors before differential analysis. Differential analysis was per-

formed using edgeR package comparing the three conditions with each other to give log fold 

changes. Once a list of differentially expressed genes for each condition were collated, an 

enrichment analysis was performed to highlight differentially regulated biological process as-

sociated with each condition.  

 

2.6. Nucleic acid techniques 

2.6.1. REDTaq ReadyMix PCR  

 Each 20 µl PCR reaction contained 10 µl REDTaq ReadyMix PCR mix (Sigma, Ger-

many),  200 nM forward, 200 nM reverse primers, 0.4 µl of template DNA and PCR grade 

water up to a final volume of 20 µl. The PCR reactions were transferred to a BioRad T100 

thermal cycler running a three step protocol (Table 5). 
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Table 5 PCR program conditions for routine PCR 

 Temperature Duration 

Initial Denaturation 94 °C 2 minutes 

Denaturation 94 °C 30 seconds 

Annealing Primer dependant  30 seconds 

Extension 72 °C 1 minute/kb 

Number of cycles  35  

Final Extension 72 °C 7 minutes  

Hold  4 °C ∞ 
 

 

2.6.2. Agarose gel electrophoresis 

 PCR products were loaded into horizontal 2% w/v agarose 1X TAE gels containing 

1X SYBR™ Safe. Samples were electrophoresed in 1X TAE at 130 V for 25 minutes. DNA 

fragment sizes were determined using either a 100 bp ladder (Invitrogen, Paisley UK) or a 1 

kb ladder (Invitrogen, Paisley UK) and visualised using a UV transiluminator (UVITECH, Cam-

bridge). 

 

2.7. Multisite GatewayⓇ Cloning system 

2.7.1. Generation of pDONR™ clones by BP recombination 

 pDONR™ entry clones for Cxcl8b.1 (ENSDART00000166280.4) and Tnf-ɑ 

(ENSDART00000025847.9) were created by generating PCR products of the gene of interests 

with flanking attB1 and attB2 sequences using primers listed in Table 6. attB1/attB2 flanked 

PCR products were purified using the QIAquick PCR Purification Kit following manufacturers 

guidelines (Qiagen, Manchester UK) and confirmed by gel electrophoresis . 

 

Table 6 Primer list for GatewayⓇ cloning system  
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 Primer Primer Sequence 5’ - 3’ 

1 Cxcl8b.1 attB1 Forward GGGGACAAGTTTGTACAAAAAA-
GCAGGCTTCATGATGAAGTTGAGCGTTTCAGC 

2 Cxcl8b.1 attB2 Reverse GGGGACCACTTTGTACAAGAAA-
GCTGGGTTTTAATTCGTGGTCATTATTGTT-
GAAAATGTTGTTGT 

3 Tnf-ɑ attB1 Forward GGGGACAAGTTTGTACAAAAAA-
GCAGGCTTCATGAAGCTTGAGAGTCGGG 

4 Tnf-a attB2 Reverse GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAG-
CAATGTACAGATGTGTTGG 

   
 

 The attB flanked PCR products were cloned into the pDONR™ 221 vector, by BP 

reaction, to generate TNF-a and Cxcl8b.1 entry clones for Multisite GatewayⓇ Cloning. In 

each 10 µl BP recombination reaction, 50 femtomoles (fmoles) of each attB flanked PCR 

product and pDONR™ 221 vector, 1 µl BP Clonase™ II enzyme and TE buffer, pH 8.0 to a total 

volume of 10 µl was incubated at 25°C for 1 hour. The reaction was terminated by addition of 

0.5 µl proteinase K solution and incubated for 10 minutes at 37°C. Final BP reaction product 

was used immediately and transformed into One ShotⓇ TOP10 Competent E. coli cells. 

 

2.7.2. Generation of pDEST™ expression clones by LR recombination 

 The Multisite GatewayⓇ Cloning system was used to generate the final pDEST™ ex-

pression vector required for over-expression assays. LR recombination reactions were per-

formed according to the manufacturer’s instructions. For each reaction, 10 fmoles of five 

prime entry, middle entry and three prime entry vectors was mixed with 20 fmoles of pDEST™ 

Cry:ECFP destination vector with TE buffer (pH 8.0) to a final volume of 8 µl, LR Clonase™ (2 

ul) was added to the reaction, mixed by vortex and incubated overnight at 25°C. The reaction 

was terminated by adding 1 µl of Proteinase K solution and incubated at 37°C for 10 minutes. 

LR reaction product was used immediately and transformed into DH5𝑎 Competent E.coli 

cells.  



 

Page 59 
 

 

2.7.3. Transformation of One ShotⓇ TOP10 and DH5α Competent E. coli cells 

pDONRTM entry clones and pDestTM expression clones were amplified by transform-

ing BP reaction products into One ShotⓇ TOP10 (ThermoFisher Scientific, Loughbrough UK) 

and DH5𝑎 Competent E. coli cells (ThermoFisher Scientific, Loughbrough UK) respectively. 

The whole reaction volume (10 µl) from previous BP reaction was incubated with 50 µl One 

ShotⓇ TOP10 Competent cells on ice for 30 minutes. While on the other hand, 1 µl LR reac-

tion product was incubated with DH5α competent E. coli cells for 30 minutes on ice. Cells 

were then transformed by heatshock at 42°C for 45 seconds and returned to ice for 1 minute. 

Lysogeny broth (LB) broth, 250 µl, was added to each vial of cells and placed in a shaking 

incubator at 37°C for 1 hour. The transformed cells were plated and evenly spread on LB-

agarose plates containing 50 µg/ml Kanamycin for BP reactions and 50 µg/ml Ampicillin for 

LR reactions. Two volume of transformed cells were plated, 200 µl and 50 µl, in order to 

ensure even distribution of bacterial colonies. Agarose plates were incubated overnight at 

37°C. 

 

2.7.4. Isolation of plasmid DNA using QIAprep Spin Miniprep Kit 

 A single bacterial colony was used to inoculate 5 ml of LB-broth containing 50 µg/ml 

Kanamycin or Ampicillin; the choice of antibiotic was dependent on the selection marker of 

the plasmid DNA target being isolated. The inoculated LB-broth medium was incubated over-

night at 37°C with orbital shaking at 250 rpm. The plasmid DNA from the bacterial culture-

swere isolated using the QIAprep Spin Miniprep Kit (Qiagen, Manchester, UK) according to 

the manufacturers instructions. Plasmid DNA was eluted in 50 µl of elution buffer and quan-

tified by nanodrop. Isolated plasmid DNA was sent for sequencing and stored at -20°C until 

required.  
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2.7.5. Plasmid DNA Sequencing 

 DNA sequencing was conducted using a Sanger Sequencing service provided by the 

commercial company Source Bioscience (Source BioScience, Nottingham UK). Plasmid DNA 

was aliquoted into 5 µl volume at a concentration of 100 ng/µl. M13 forward (5’ GTAAAAC-

GACGGCCAG 3’) and reverse (5’ CAGGAAACAGCTATGAC 3’) primers included in the ser-

vice were used in all sequencing reactions. Sequence reads were analysed using Snapgene 

software (GSL Biotech LLC, Chicago USA). 

 

2.8. Image Analysis 

2.8.1. U87-nls-mKate2 automated cell counting  

 Automated U87-nls-mKate2 cells counts were analysed using custom integration of 

MatLab (MathsWorks, Cambridge, version 2018b) scripts into Imaris (Bitplane, Oxford, ver-

sion 9.2.1). Cell counting scripts used Imaris Bitplane’s proprietary automated cell counting 

packages that exports data into MatLab for processing. The integration of custom MatLab 

scripts allows for batch processing of image data thus speeding up image processing, elimi-

nating unconscious biases and facilitates reproducibility. A custom ‘quality’ threshold was set 

for each experimental group to control for variability in image acquisition parameters and 

fluorophore expression patterns. This same ‘quality’ threshold was applied on all imaged 

samples from the same experimental group for batch processing in cell counting.  

 

2.8.2. Macrophage sum of intensity 

 The macrophage sum of intensity is defined as the sum of all pixel intensity values 

defined in a specific region of interest. Macrophage sum of intensity was used as a read out 

for the level of macrophage responses to a specific experimental stimuli. Custom MatLab 

scripts were coded to evaluate macrophage sum of intensity. The script integrates MatLab’s 

proprietary surfacing tool to define a region of interest based on mpeg1 promoter driven fluor-

ophore expression (Ellett et al., 2011). The mpeg1 promoter is a macrophage lineage specific 

marker that labels macrophages and macrophage in the zebrafish (Ellett et al., 2011). The tool 
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incorporates surface detail smoothing and background subtraction in order to achieve a re-

gion of interests that best reflects the borders of macrophage labelling. Custom upper inten-

sity threshold was set for each experimental group to control for variability in image acquisi-

tion parameters and fluorophore expression patterns. The upper intensity threshold was set 

to achieve maximum surfacing of fluorophore signal. The surfaced images were filtered by 

the ‘number of triangles’ to remove surface noise. This same upper intensity threshold and 

‘number of triangle’ filter was applied to all imaged samples from the same experimental 

group for batch processing to evaluate macrophage sum of intensity. 

  

 

2.9. CRISPR-mediated genome editing of TNF-α and Cxcl8b.1 in 
zebrafish 

2.9.1. CRISPR-mediated genome mutagenesis 

 All CRISPR guide RNA (gRNA) were designed using Snapgene (GSL Biotech LLC, 

Chicago USA), a commercially available software. Trans-activating CRISPR RNA (tracrRNA) 

and CrRNA for Tnf-𝑎 BSL1 (target sequence: 5’ ACAAAATAAATGCCATCATC 3’), Tnf-𝑎 

MWO1 (target sequence: 5’ GCTCCTGCGTGCAGATTGAG 3’), Cxcl8b.1 Alu1 (target se-

quence: 5’ GACCATTCACCGAGCAGCTG 3’), Cxcl8b.1 Rsa1 (target sequence: 5’ ATTCC-

TAAACGACAAGTACT 3’), Cxcl8b.1 Bsl1 (target sequence: 5’ GTCTCAATCCTACCGAGACG 

3’) and scrambled (target sequence: 5′-CCTCTTACCTCAGTTACAATTTATA-3′) were ob-

tained from Merck KGaA (Darmstadt, Germany,). Knock out of TNF-ɑ expression was 

achieved using an injection mix containing a mixture of 1 µl tracrRNA, 1 µl phenol red, 1 µl 

Cas9 protein ,1 µl Tnf-ɑ MWO1 gRNA and 1 µl Tnf-𝑎 BSL1 gRNA (Table 7). The partial knock-

out of Cxcl8b.1 and knock out of Tnf-ɑ expression was achieved by injecting a mix containing 

a 1ul tracrRNA, 1 µl phenol red, 1 µl Cas9 protein ,1 µl Cxcl8b.1 Alu1 gRNA, 1 µl Tnf-ɑ MWO1 

gRNA and1 µl Tnf-𝑎 BSL1 gRNA (Table 7).  

Table 7 General Reagents for Crispr-Cas9 injections 
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Reagent Composition/Final Concentration 

tracrRNA SygRNA Cas9 Synthetic tracrRNA 250 ng/µl  

Phenol Red phenolsulfonphthalein 5.6 µM 

Cas9 Cas9 Nuclease, S.pyrogenes 6.66 µM 

Tnf-ɑ Bsl1 gRNA SpCas9 crRNA HPLC 20 µM gRNA 

Tnf-ɑ Mwo1 gRNA SpCas9 crRNA HPLC 20 µM gRNA 

Cxcl8b.1 Alu1 gRNA SpCas9 crRNA HPLC 20 µM gRNA  

Cxcl8b.1 Rsa1 gRNA SpCas9 crRNA HPLC 20 µM gRNA  

Cxcl8b.1 Bsl1 gRNA SpCas9 crRNA HPLC 20 µM gRNA  

Scrambled gRNA SpCas9 crRNA HPLC 20 µM gRNA  
 

2.9.2. Isolation of genomic DNA from zebrafish tissue 

 Genomic DNA from zebrafish tissue was isolated using the NaOH method. This pro-

tocol was modified from the HotSHOT method used previously in murine models (D Meeker 

et al., 2007). Live zebrafish were euthanised by 15.3 mM Tricaine overdose post imaging at 

the end of each experiment. The genomic DNA of zebrafish tissue was isolated from the U87 

human glioblastoma cells by transecting above the yolk-sac using surgical micro-scissors. 

Zebrafish heads containing U87 human glioblastoma cells were removed and genomic DNA 

was isolated from the remaining zebrafish tissue. Individual zebrafish main body tissue were 

heated to 95°C in 100 µl of 50 mM NaOH for ten minutes. A volume of 10 µl of 1 M TRIS pH 

8.0 was added to each tissue digest, vortexed to mix and cooled to 4°C. The resulting ge-

nomic DNA extract was used immediately for PCR reaction. 

 

2.9.3. Restriction fragment length polymorphism (RFLP) analysis 

 The efficiency of CRISPR induced mutagenesis was accessed by restriction fragment 

length polymorphism analysis (Tsarouchas et al., 2018). To accomplish this, CRISPR gRNAs 

were specifically designed to introduce mutations to a restriction site in the exon. Introduction 

of a mutation at the restriction site abolishes restriction enzyme activity and thus causes frag-

ment length polymorphism identified as a band shift in horizontal gel electrophoresis. Each 
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CRISPR gRNA is paired with a specific pair of primers to amplify a region of the genome with 

a restriction enzyme site of interest (Table 8). 

Table 8 Crispant Verification Primer Pairs 

 Primer Pair Exon Tar-
get 

Primer Sequence 5’ - 3’ Enzyme 

1 Tnf-ɑ Bsl1 For-
ward 

Exon 4 ACCAGGCCTTTTCTTCAGGT  Bsl1 

2 Tnf-ɑ Bsl1 Re-
verse 

Exon 4 AGCGGATTGCACTGAAAAGT  Bsl1 

3 Tnf-ɑ Mwo1 For-
ward 

Exon 4 CATCAGCTGCACGTCTGAAC  Mwo1 

4 Tnf-ɑ Mwo1 Re-
verse 

Exon 4 TGCCCAGTCTGTCTCCTTCT  Mwo1 

5 Cxcl8b.1 Alu1 
Forward 

Exon 4 ACCAGCACAGACAACAACAACA Alu1 

6 Cxcl8b.1 Alu1 
Forward 

Exon 4 AGGTCAGGTAAAGTCACAGTGA Alu1 

7 Cxcl8b.1 Bsl1 
Forward 

Exon 3 TTTTCAACAGCGCCACACTT Bsl1 

8 Cxcl8b.1 Bsl1 Re-
verse 

Exon 3 TGTTGTGAGGAGGGAAGTGT Bsl1 

9 Cxcl8b.1 Rsa1 
Forward 

Exon 2 TGCTTCTGATCTGCACGACTG Rsa1 

10 Cxcl8b.1 Rsa1 
Reverse 

Exon 2 TTCTGCAGTGTGATCCAGCA Rsa1 

 

 Each PCR reaction contained 10 µl REDTaq ReadyMix PCR mix (Sigma, Dorset, UK), 

200 nM final concentration of each forward and reverse primers, 0.4 µl of template DNA iso-

lated for tissue digest and PCR grade water up to a final volume of 20 µl. The PCR mix was 

transferred to a thermal cycler running a three step protocol previous described in Table 5. 

 The resulting PCR product was digested by the respective paired restriction enzyme 

(Table 8). Restriction enzyme, 3.3 units, was directly added to the PCR product and was 

incubated at the enzyme’s incubation temperature for a period of two hours; Rsa1 (37°C), 

Bsl1 (55°C) and Mwo1 (60°C) Horizontal gel electrophoresis was conducted on digested PCR 

product on 2% agarose-1X TAE gel visualized using 1X SYBR safe (Thermo Fisher, UK) DNA 

gel stain 
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2.10. Genetic overexpression of TNF-α and Cxcl8b.1 in zebrafish    

2.10.1. Zebrafish Genetic Transgenesis 

 Zebrafish embryo microinjections were conducted at the one cell stage in order to 

maximise transgenesis efficiency. The overexpression of Cxcl8b.1 was achieved by injecting 

a solution containing a final concentration of 40 ng/µl pDest_mpeg:Cxcl8b.1 plasmid, 100 

mM KCl, 200 ng/µl Tol2 transposase and 2.5 µM Fast Green FCF Dye in a final volume of 10 

µl. Similarly, the overexpression of TNF-a was achieved by injecting a solution containing a 

final concentration of 40 ng/µl pDest_mpeg:TNF-a plasmid, 100 mM KCl, 200 ng/µl Tol2 

transposase and 2.5 µM Fast Green FCF Dye in a final volume of 10 µl. The co-expression of 

both mpeg:TNF-a and mpeg-Cxcl8b.1 was achieved by injecting a solution containing 40 

ng/µl pDest_mpeg:TNF-a plasmid, 40 ng/µl pDest_mpeg:Cxcl8b.1 plasmid, 100 mM KCl, 200 

ng/µl Tol2 transposase and 2.5 µM Fast Green FCF Dye in a final volume of 10 µl. All overex-

pression assays were conducted in GFP labelled macrophages in the transgenic 

mpeg1:EGFP zebrafish. 

 

2.10.1. Zebrafish tissue homogenisation and RNA extraction 

 The zebrafish tissue was isolated using adapted protocols developed in the lab pre-

viously described (Mazzolini et al., 2018). Zebrafish larvae were euthanised with 15.3 mM 

Tricaine prior to being transferred into cold embryo medium at 4°C. For each sample group 

of transgenic zebrafish, 100 zebrafish larvae were used. Whole larvae were transferred into a 

glass homogeniser filled with 1 ml Media A (15 mM Hepes, 25 mM D-Glucose in 1X HBSS). 

The larvae were homogenised using a glass homogeniser and distributed into two 1.5ml mi-

crotubes and centrifuged at 300 g for 10 minutes at 4°C. The supernatant was removed and 

the cell pellet from both tubes were pooled into a single 1.5 ml microtube with 1 ml media A. 

Homogenized tissue was centrifuged at 300 g for 10 minutes at 4°C and the resulting pellet 

was used for RNA extraction. RNA extraction was achieved using the RNeasy Mini Kit (Qi-

agen, Manchester UK) following the manufacturer’s instructions. Zebrafish tissue was lysed 
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by adding 350 µl buffer RLT and homogenised by pipetting directly into a QIAshredder spin 

column (Qiagen, Manchester UK. Genomic DNA was removed from the lysate by passing 

through a gDNA Eliminator spin column, leaving only total RNA content. Next, 350µl 70% 

ethanol was added to the flowthrough and the sample was transferred to an RNeasy MinElute 

spin column. The sample was washed with 700 µl buffer RW1 followed by 500 µl buffer RPE 

and finally 500 µl 80% ethanol. Samples were centrifuged at 9000 g for 1 minute in between 

each wash steps. RNA content was finally eluted by adding 14 µl RNase free water to the 

centre of the spin column membrane, allowed to sit for 1 minute and centrifuged at 9000 g 

for 1 minute. Isolated total RNA content was quantified using nanodrop and 1 µg RNA for 

each sample was used immediately for First Strand cDNA synthesis, described in section 

2.4.1, in preparation for Reverse Transcription PCR (RT PCR).  

 

2.10.2. Reverse transcription polymerase chain reaction (RT-PCR) 

 RT PCR of DNA fragments is a powerful yet straight forward technique to qualitatively 

evaluate mRNA expression levels in genetic overexpression assays. Total RNA content was 

isolated from whole embryos using method described in section 2.10.1. RNA was extracted 

from mpeg1:EGFP zebrafish injected with pDestTM_mpeg1:tnf-𝑎,	mpeg1:EGFP zebrafish in-

jected with pDestTM_mpeg1:cxcl8b.1 and from wild type (WIK) zebrafish. First strand cDNA 

synthesis was performed on extracted RNA and RedTaq PCR method (Section 2.6.1) was 

performed with an amended number of PCR cycles set at 28 cycles. RedTaq PCR was per-

formed using forward and reverse primers for tnf-a, cxcl8b.1, β-actin and GFP listed in Table 

9 on each RNA sample. RT-PCR was visualized by agarose gel electrophoresis (Section 

2.6.2). 

 

Table 9. RT-PCR Primer list 

Primer name Primer Sequence 5’ - 3’ 

Beta Actin Forward CACTGAGGCTCCCCTGAATCCC 

Beta Actin Reverse CGTACAGAGAGAGCACAGCCTGG 

Cxcl8b.1 Forward GCCAATGAGGGTGAAGCTCTA 
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Primer name Primer Sequence 5’ - 3’ 

Cxcl8b.1 Reverse AATCACCCACGTCTCGGTAG 

TNF-a Forward ACCCAGGGCAATCAACAAGA 

TNF-a Reverse CAAGCCACCTGAAGAAAAGGC 

GFP Forward ACGTAAACGGCCACAAGTTC 
 

GFP Reverse ACCATGTGATCGCGCTTCTC 
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3. Results 
3.1. Biorthogonal catalytic uncaging of inactive caged compounds in 

the zebrafish brain 

3.1.1. Caged drug, POB-Vorinostat, trials reveal palladium mediated anti tu-

mour effects in zebrafish 

One of the major challenge facing cancer therapy is the difficulty of homogeneous 

delivery of intravenous chemotherapeutics throughout the solid tumour mass. The high inter-

stitial pressures contribute to the suboptimal diffusion of drugs from blood circulation which 

prevents intratumor penetration (Stohrer et al., 2000). This problem is exacerbated by the 

clearance of intravenous drugs by the liver and kidneys which can lead to fatal organ toxicity 

(Hoop et al., 2018). Thus a more effective drug delivery system is required. Herein, we ex-

plored the capabilities of solidly supported Gold (Perez-Lopez et al., 2017) and Palladium 

(Adam et al., 2018) nanoparticles to mediate local delivery of chemotherapeutic agent, Vori-

nostat, in zebrafish. In conjunction with in-vivo live imaging technologies, the efficacy of a 

newly designed drug delivery system to deliver chemotherapeutic Vorinostat into the 

zebrafish brain was studied. Vorinostat has been previously shown to be a potent chemo-

therapeutic in-vitro and was released upon biorthogonal catalytic reaction with Palladium 

beads leading to uncaging of inactive caged drug POB-Vorinostat (Figure S1) into its active 

form. The benefits of a biorthogonal catalytic drug delivery system allowed for site specific 

drug delivery that has the potential to significantly increase drug potency. Thus, in order to 

investigate the viability of biorthogonal catalytic drug delivery system in an in vivo setting, we 

utilised the zebrafish animal model to develop a Palladium bead in vivo assay. mpeg1:EGFP, 

macrophage labelled, zebrafish were xenografted with U87-mCherry cells at 3 days post fer-

tilisation (dpf) and Palladium beads implanted into the brain at 4 dpf. These zebrafish were 

subsequently treated with either 100 µM inactive caged drug POB-Vorinostat in 1% DMSO 

or 1% DMSO for control.  
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Figure 8. Palladium mediated anti-tumour effects observed in all palladium im-

planted zebrafish samples 
(A-D) Human derived U87-mCherry (White) were xenografted into macrophage labelled (Green), 3 days post fertilized 

(dpf), mpeg1:EGFP zebrafish. Xenografted zebrafish were implanted with Palladium bead at 4 dpf (0 dpt). Palladium 

bead implanted zebrafish were treated with 1% DMSO in E3 medium or 100 µM POB-Vorinostat in E3 containing 

1% DMSO. Images from left to right are in chronological order showing 0 and 3 day post bead transplantation (dpt).  
(A) U87-mCherry cells engrafted in the brain of the zebrafish. An increase in glioma cell mass was observed when 

comparing 0 dpt and 3 dpt. (B-D) The implantation of Palladium bead elicits a potent anti-tumour effect leading to 

a strong inhibition of U87-mCherry cell proliferation in all zebrafish samples. The implantation of Palladium bead in 

all zebrafish samples lead to a decrease in glioma cell mass in the zebrafish brain. All Images were captured using 

an Andor spinning disk confocal microscope with a 20X/NA 0.75 objective. Scale bars are set at 20 um  

(E) U87-mCherry cell numbers are expressed as a ratio calculated by the number of cells at 1 or 3 day post 

transplantation (dpt) divided by the number of cells at 0 dpt. mpeg1:EGFP zebrafish xenografted with U87-mCherry 

(No bead) showed an increase in U87-mCherry cell number by 1.3 fold at 3 dpt. A potent anti tumour effect was 

observed in all zebrafish implanted with palladium bead. A significant, p < 0.0001, decrease in U87 cell number by 

90% was recorded by 3 dpt. 

(F) Brightfield image is representative of the orientation and imaging field of the fluorescent images shown in images 

A-D. 

One way ANOVA statistical analysis and Tukey’s multiple comparisons test were conducted to calulate p values. p 
values were indicated where statistically significant (p < 0.05). Error bar indicated standard error.  

 

p < 0.0001 
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In the absence of the Palladium bead we observed the engraftment and proliferation 

of U87-mCherry cells in the brain. Although no cellular division was directly observed, U87-

mCherry cell numbers increased by 1.3 folds by 3 days post bead transplantation (dpt). In 

addition, an increase in glioma mass was observed when comparing 0 dpt and 3 dpt (Figure 

8A,E). In contrast, the implantation of Palladium bead into the brain of U87-mCherry trans-

planted mpeg1:EGFP zebrafish induced a strong inhibition of U87-mCherry cell proliferation. 

The impairment of U87-mCherry cells ability to engraft in the zebrafish brain was observed 

(Figure 8). The implantation of Palladium bead alone, in the absence of Vorinostat, resulted in 

a significant decrease in U87-mCherry cell count by 90% (p < 0.0001) at 3 dpt (Figure 8B, E). 

In addition, a decrease in glioma cell mass was observed in the zebrafish brain (Figure 8B, E). 

The same anti-tumour effect was replicated in all zebrafish samples implanted with the palla-

dium bead including zebrafish treated with 1% DMSO and 100 µM Vorinostat (Figure 8C-E). 

Furthermore, the implantation of Palladium bead in the mpeg1:EGFP zebrafish initi-

ated a macrophage response that made distinguishing individual macrophages from one an-

other difficult. Thus, a robust and reliable method was required to evaluate macrophage num-

ber as a result of Palladium bead implantation. Therefore, a correlative study was conducted 

to correlate the sum of intensity with the number of macrophages in the zebrafish brain. The 

sum of intensity was defined as the sum of pixel values of EGFP signals within the define 

sampling area. It was hypothesised that macrophage number would correlate with the sum 

of mpeg1:EGFP signal intensity values. To do so, double transgenic mpeg1:EGFP and 

mpeg1:nls-Crimson, nuclear labelled macrophages, zebrafish were implanted with Palladium 

beads and the effect on macrophage number and mpeg1:EGFP were evaluated  

A positive correlation between the number of macrophage within the zebrafish brain 

and mpeg1:EGFP sum of intensity was demonstrated. A positive correlation coefficient (r) of 

0.561 with a reported p value of 0.0016 was recorded when evaluating the number of 

mpeg1:nls-Crimson nuclear labelling and sum of intensity of mpeg1:EGFP signals. Thus the 

increase in mpeg1:EGFP intensity values positively correlated with an increase in the number 
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of macrophages. Evaluating the sum of mpeg1:EGFP intensity facilitated rapid and reliable 

quantification of macrophage number in the mpeg1:EGFP zebrafish brain.  

 

This initial study highlighted a novel mechanism that initiated anti-tumour responses 

as a result of Palladium bead exposure. The implantation of Palladium bead altered the 

zebrafish brain’s physiological condition and led to U87-mCherry cell clearance. However, 

there were several questions that were raised as a result of this study. Was Palladium metal 

the effector of the associated anti-tumour responses or were these the effects of a reaction 

with the polystyrene matrix (bead) upon which the Palladium metal was bound to? How were 
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Figure 9. mpeg1:EGFP sum of intensity shows strong correlation with macro-

phage cell count. 
Double transgenic tg(mpeg1:EGFP:mpeg1:Kal4/UAS:nls-Crimson), zebrafish were implanted with Palladium beads 

and the effect on macrophage number and mpeg1:EGFP signal intensities were evaluated. A positive correlation 

between the number of macrophage within the zebrafish brain and macrophage sum of intensity was demonstrated. 
A positive correlation coefficient (r) of 0.561 with a reported p value of 0.0016 was recorded when correlating the 

number of mpeg1:Kal4/UAS:nls-Crimson nuclear labelling and sum of intensity of mpeg1:EGFP signals. Images 

were captured using an Andor spinning disk confocal microscope with a 20X/NA 0.75 objective. 
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U87-mCherry cells being cleared? We hypothesised that Palladium bead implantation initi-

ated an anti-tumour response in the zebrafish brain. To test this, we confirmed Palladium 

bead mediated anti-tumour efficacy and compared the antitumor effect to an injury model. 
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3.1.2. Palladium bead implantation recruits macrophages which initiates U87-

mCherry cell clearance and engulfment.  

To associate the anti-tumour phenotype directly to Palladium bead implantation, the 

anti-tumour effect of Palladium bead implantation was compared to an injury model. To rep-

licate an implantation injury, Naked beads were implanted into the brain and immediately 

removed. This study aimed to test the hypothesis that Palladium bead implantation initiated 

an anti-tumour response in the zebrafish brain.  

 The implantation of Palladium bead initiated a potent anti-tumour phenotype in the 

zebrafish brain. Implantation of Palladium bead into mpeg1:EGFP zebrafish led to a signifi-

cant decrease in U87-mCherry cell count by 73.4% at 3 dpt (Figure 10A-B). However, a pro-

portion of the anti-tumour phenotype, could be attributed to the bead injury during implanta-

tion procedure. The injury model resulted in a significant decrease of 28.5%(p < 0.0001) in 

U87-mCherry cell count at 3 dpt when compared to no bead controls. This indicated that the 

injury caused by the bead implantation procedure contributed to a proportion of the anti-

tumour responses (Figure 10C-D). However, when comparing Palladium bead implanted 

(73.4% )and injured (28.5%) zebrafish, Palladium bead implantation led to a significantly (p < 

0.0001) potent antitumor effect by 3 dpt (Figure 10). Intriguingly, a significant increase in mac-

rophage number was observed in Palladium bead implanted zebrafish when compared to 

injured and bead null zebrafish. A four fold (p < 0.0001) increase in macrophage number in 

Palladium bead implanted zebrafish was observed by 3 dpt. In contrast, a two fold increase 

in macrophage number was observed in injured and bead null zebrafish. The increase in mac-

rophage number coincided with high level of U87-mCherry cellular fragmentation in macro-

phages (Figure 10A, Pd Bead, Red arrows). U87-mCherry fragments were defined by pockets 

of mCherry fluorescent signal originating from mCherry cytoplasmic labelling encompassed 

by macrophage GFP signals (Figure 10A, Pd Bead, Red arrows). These fragmented signals 

originated from within macrophage when analysed closely in 3D using Imaris. It was highly 

unlikely that these fragments (4 to 10 µm) were live U87-mCherry cells as they  
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were atypical in size when compared to live U87-mCherry cells (20 to 30 µm). Thus, these 

fragments were most likely products of engulfed U87-mCherry cells by macrophages. Quan-

tification of these fragments indicated that they were significantly (p < 0.0001) increased only 

in Palladium bead implanted zebrafish at 1 dpt and 3 dpt (Figure 10D). In addition, an increase 

in macrophage intensity as a result of Palladium bead implantation in the brain was detected 

(Figure 10C). A significant (p < 0.0001) increase by 4.2 fold in macrophage signal intensity 

was recorded when comparing Palladium bead implanted zebrafish to the injured and the 

bead null zebrafish conditions (Figure 10C). This increase in macrophage intensity levels was 

sustained for the duration of the experiment and thus may indicate that Palladium bead im-

plantation recruited macrophages.  

In conclusion, this study confirmed Palladium bead mediated anti-tumour phenotype 

in the zebrafish. The implantation of Palladium bead led to the recruitment of macrophages 

Figure 10. Palladium bead implantation initiates U87-mCherry cell clearance and 

fragmentation. 
(A-C) Human derived Lv-cppt-IRES-mCherry-opre transformed U87-mCherry cells (White) were xenografted into 

macrophage labelled (Green), 3 days post fertilized (dpf), mpeg1:EGFP zebrafish. Xenografted zebrafish were 

implanted with Palladium bead or injured with Naked beads at 4 dpf or 0 dpt. Images from left to right are in 

chronological order showing 0 and 3 day post bead transplantation (dpt). (A’’-C’’) The red box denotes the boundary 

for the higher magnification region of interest shown in the images on the far right column. (A) U87-mCherry cells 

engrafted in the brain of the zebrafish. An increase in glioma cell mass was observed when comparing 0 dpt and 3 

dpt. (B) The implantation of Palladium bead recruited macrophages, initiated U87-mCherry cell clearance and 

fragmentation of U87-mCherry cells (B’’, Red Arrows). U87-mCherry fragments were defined by pockets of mCherry 

fluorescent signal, originating from U87-mCherry cytoplasmic labelling, encompass by macrophage GFP signals (B’’, 
Red Arrows). (C) The injury caused by the bead implantation procedure contributed to a proportion of the anti-tumour 

responses. U87-mCherry cells survived in the brain but did not proliferate. Images were captured using an Andor 

spinning disk confocal microscope with a 20X/NA 0.75 objective. Scale bars set at 50 µm 

(D) U87-mCherry cell numbers are expressed as a ratio calculated by the number of cells at 1 or 3 day post 

transplantation (dpt) divided by the number of cells at 0 dpt. Injured zebrafish resulted in a significant (p < 0.0001) 

decrease of 28.5% in U87-mCherry cell count by 3 dpt when compared to no bead controls. However, implantation 

of Palladium bead led to the greatest decrease (p<0.0001) in U87-mCherry cell count of 80% by 3 dpt. 

(E) A significant (p < 0.0001) increase by 4.2 fold in macrophage signal intensity was recorded when comparing 

Palladium bead implanted zebrafish to injured and bead null zebrafish conditions.  

(F) High level of U87-mCherry cellular fragmentation in macrophages (Red arrows) was observed. Quantification of 

these fragments indicated that they were significantly (p < 0.0001) increased only in Palladium bead implanted 

zebrafish at 1 dpt  
and 3 dpt. 

One way ANOVA statistical analysis and Tukey’s multiple comparisons test were conducted to calulate p values. p 

values were indicated where statistically significant (p < 0.05). Error bar indicated standard error.  
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in the vicinity of the bead in addition to U87-mCherry cell clearance. The recruitment of these 

macrophages led to the engulfment of U87-mCherry cells, recorded in our study as an in-

crease in U87-mCherry cellular fragmentation. This implies that macrophages played a key 

role in mediating the observed anti-tumour phenotype. Thus we hypothesized that macro-

phages are key mediators of the Palladium bead induced anti-tumour phenotype. 
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3.1.3. irf8-/- zebrafish reveals a possible role of macrophages in mediating Pal-

ladium bead induced anti-tumour phenotype. 

In order to test the hypothesis that macrophages are key mediators of the Palladium 

bead induced anti-tumour phenotype, the same Palladium bead and injury experiments were 

repeated in the Interferon regulator factor 8 mutant (irf8-/-) zebrafish. Interferon regulatory fac-

tor 8 (irf8) is an important regulatory factor for the development of macrophage in mammals 

and teleosts (Shiau et al., 2015). irf8 is a key factor in early stage myelopoiesis of the immature 

zebrafish immune system during development (Shiau et al., 2015). Knock out of irf8 in the 

zebrafish leads to the characteristic development of a macrophage null background up to 

around seven days post fertilization (Shiau et al., 2015). However, it is important to note that 

elevated neutrophils levels have also been reported in the irf8-/- mutant line (Shiau et al., 2015). 

Nonetheless, the irf8-/- zebrafish is an ideal candidate to facilitate the study of macrophage’s 

contribution to Palladium induced anti-tumour activity.  

 The xenograft of U87-mCherry cells into irf8-/- zebrafish highlighted a strong impact 

of macrophages on tumour progression. We have previously reported that microglia, the 

brain’s resident macrophages, and macrophages play an important role in promoting U87 

cell growth and that the ablation of macrophage leads to tumour regression (Hamilton et al., 

2016). Survival of U87-mCherry cells was significantly reduced in a microglia/macrophage 

null background irf8-/- zebrafish (Hamilton et al., 2016). Indeed, when analysing U87-mCherry 

cell count in irf8-/- bead null zebrafish versus mpeg1:EGFP bead null zebrafish, an impairment 

of 31.5% in U87-mCherry tumour progression was observed, p < 0.001(Figure 11E). Macro-

phage function was critical for U87 cell to engraft. Thus, this inherent disability of U87-

mCherry cells to survive in the irf8-/- zebrafish would have affected all xenografted irf8-/- 

zebrafish (Figure 11D). Even so, a trend (p = 0.109) indicated that the Palladium mediated 

anti-tumour phenotype was attenuated in the irf8-/- zebrafish (Figure 11E). No significant dif-

ference was observed in U87-mCherry cell count of irf8-/- zebrafish of all three conditions, No 

Bead Controls, Palladium bead implanted and Injury controls (Figure 11D). In contrast the  
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Figure 11. irf8-/- zebrafish reveal a possible role for macrophages in mediating 

Palladium bead induced anti-tumour phenotype. 
Human derived U87-mCherry cells (White) were xenografted into 3 dpf irf8-/- zebrafish. At 4 dpf, irf8-/- U87-mCherry 

xenografted zebrafish were injured and Palladium beads were implanted. Images from left to right are in 

chronological order showing 0 and 3 day post bead transplantation (dpt).  

(A-C) The xenograft of U87-mCherry cells in irf8-/- zebrafish highlighted a strong impact of macrophage on tumour 

progression. (D) No significance difference was observed in U87-mCherry cell count of irf8-/- zebrafish of all three 

conditions. (E) An impairment of 31.5% in U87-mCherry tumour progression was observed in irf8-/- bead null 

zebrafish versus mpeg1:EGFP bead null zebrafish. A trend (p = 0.109) indicated that the Palladium mediated anti-
tumour phenotype was attenuated in the irf8-/- zebrafish. Images were captured using an Andor spinning disk 

confocal microscope with a 20X/NA 0.75 objective. Scale bars set at 20 µm. Error bars indicated standard error. 
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implantation of Palladium bead in wild type background (mpeg1:EGFP zebrafish), led to a 

significant decrease (p<0.0001) in U87-mCherry cell count by 73.4%  at 3 dpt (Figure 10D, 

Figure 11E). A 73.4% decrease in U87-mCherry cell count was detected for Palladium bead 

implanted mpeg1:EGFP zebrafish versus the 35.1% in Palladium bead implanted irf8-/- 

zebrafish (Figure 11E). This indicated that the anti-tumour effect of Palladium bead was at-

tenuated in the macrophage null background irf8-/- zebrafish. Thus implying that macrophage 

function was required in order to elicit the anti-tumour effect of Palladium bead implantation. 

However these results were not statically significant (p = 0.109). Therefore, this study only 

indicate a trend to support microglia/macrophage role in Palladium bead induced anti-tumour 

phenotype. 

 The aforementioned studies have shown Palladium beads as potent anti-tumour ef-

fectors. In addition, Palladium beads were seen to initiate an immune response that recruited 

macrophages to the brain. There was strong evidence to suggest that the recruitment of these 

macrophages coincided with increased U87-mCherry cell engulfment, fragmentation and 

clearance (Figure 10). In addition, a trend indicated that macrophage function was required 

in order to elicit the anti-tumour effects of Palladium bead implantation. Therefore, we spec-

ulated that Palladium bead implantation initiated an indirect effect on U87 cells mediated by 

macrophages to elicit an anti-tumour effect. Thus, we hypothesised that macrophages con-

tributed to Palladium mediated anti-tumour responses.  
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3.1.4. Implantation of Palladium beads in the zebrafish brain did not cause ab-

errant necrosis in surrounding tissue. 

To address if U87 cell death were the direct or indirect consequences of Palladium 

implantation, the necrotic effects of Palladium and Naked bead implantation in the surround-

ing tissue were investigated. Naked beads served as a ‘foreign body’ control to study the 

immune and anti-tumour response of the polystyrene bead independent of Palladium metal. 

Toxic consequences of Palladium bead implantation would have had significant effect on 

surrounding tissue necrosis detectable using in-vivo Propidium Iodide (PI) staining techniques 

(See section 2.2.8 for details). This study aimed to strengthen the argument that the anti-

tumour effects mediated by Palladium bead implantation were initiated by in direct conse-

quences mediated by macrophages. Propidium iodide is a membrane-impermeant nucleic 

acid stain that does not permeate live cells. The binding of propidium iodide to nucleic acids 

enhances fluorescence by 20 to 30 folds and thus has been widely used to stain necrotic 

cells (Sawai and Domae, 2011, Unal Cevik and Dalkara, 2003). Propidium iodide was applied 

to the zebrafish media solution of Palladium, Naked and Injured mpo:EGFP zebrafish (4 dpf) 

and imaged at 0, 1 and 3 days post bead transplantation (dpt).  

The implantation of Palladium and Naked beads resulted in an increase in propidium 

iodide labelling when compared to injured zebrafish (Figure 12) Propidium iodide staining for 

bead implanted zebrafish at 0 dpt were observed to localize at the site of incision and vicinity 

of the beads (Figure 12A, Red Cicles). A three fold (p = 0.0012) increase in the number of 

propidium iodide labelled nuclei was recorded for Palladium bead implantation. While a two 

fold (p = 0.0665) increase in propidium iodide labelled nuclei was recorded for Naked bead  

implantation at 0 dpt (Figure 12C). The results here indicated that the trauma associated with 

the bead implantation procedure caused cellular necrosis of surrounding tissue. This was not 

surprising when considering a large incision was made during the procedure. It was also im-

portant to take into account the tissue damage caused by the bead implantation due to its 

large size, 75 µM, relative to the size of the zebrafish brain. These injury events would  
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Figure 12. Implantation of Palladium and Naked beads did not initiate aberrant 

necrosis in the zebrafish brain. 
(A) Images from rows top to bottom, mpo:EGFP zebrafish, 4 days post fertilized (dpf), were implanted with 

Palladium and Naked beads. Red circles in the images denote the boundary of the implanted beads. Injured 

zebrafish underwent the same bead implantation procedure where a naked bead was inserted but was removed 

immediately. Zebrafish were treated with 1 µg/ml propidium iodide in embryo media throughout the experiment. 

Images from left to right, time lapse imaging indicated that high level of propidium iodide necrotic cell labelling 

occurred during the early stages of the experiment immediately after Palladium and Naked bead implantation at 



 

Page 81 
 

cause the loss of membrane integrity and cellular necrosis which were detected through pro-

pidium iodide labelling. The recovery and clearance of propidium iodide nuclei cells was evi-

dent by 1 dpt in all bead implanted zebrafish (Figure 12A). Albeit, Palladium bead implanted 

zebrafish showed slower recovery to injury control levels when compared to Naked bead 

implanted zebrafish (Figure 12D). Nonetheless, a 60% decrease in propidium iodide labelled 

cells was observed by 1 dpt for Palladium bead implanted zebrafish. In addition, by 3 dpt, the 

decrease of propidium iodide labelling to injury control levels was recorded for all bead im-

planted zebrafish (Figure 12B). This indicated the clearance of necrotic cells and the recovery 

from the initial bead implantation procedure. 

 
In conclusion, Palladium and Naked bead implantation did not cause aberrant cellular 

necrosis. Although, cellular necrosis was recorded in the surrounding tissue, these necrotic 

cell bodies were a direct consequence of the injury caused by the bead implantation proce-

dure and not a reaction to the Palladium bead. Time lapse imaging indicated that the clear-

ance of necrotic cell bodies was evident by 3 dpt for Palladium and Naked bead implanted 

zebrafish. In addition, despite the zebrafish being in constant incubation in 1 µg/ml Propidium 

iodide, no significant development of additional necrotic cell bodies was detected. Thus these 

results support our conclusion that bead implantation does not cause aberrant cellular ne-

crosis. Therefore the anti-tumour effects observed were not a direct reaction to Palladium 

0 day post transplantation (dpt). A clearance of propidium iodide labelling was evident by 3 dpt for all bead 

implanted zebrafish. All Images were captured using an Andor spinning disk confocal microscope with a 20X/NA 

0.75 objective. Scale bars set at 50µm. 

(B) Palladium and Naked bead implantation induced an increase in the number of propidium iodide labelling at 0 

dpt when compared to injured controls. Clearance of propidium iodide labelling occurred within 24 hours. 
Although, Palladium showed slower recovery. Propidium iodide labeling returned to injury control levels by 3 dpt 

indicating clearance of necrotic cells and recovery from initial bead implantation procedure.  

(C) Palladium (p = 0.0012) showed significantly higher number of propidium iodide labelled cells at 0 dpt. 

Although not statically significant (p = 0.0665), a trend inidicates that the implatation of Naked bead increased 

propidium iodide cell labelling at 0 dpt. 

(D) Palladium bead implanted zebrafish show significantly slower recovery from bead implantation procedure. 

Elevated propidium iodidie labelling was recorded at 1 dpt for Gold and Palladium implanted zebrafish when 

compared to both injury controls and naked bead implanted zebrafish.  

One way ANOVA statistical analysis and Tukey’s multiple comparisons test were conducted to calulate p values. 

p values were indicated where statistically significant (p < 0.05). Error bar indicated standard error.  
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metal on the polystyrene beads. These results in turn strengthens support for the hypothesis 

that macrophages contributed to Palladium bead mediated anti-tumour phenotype in the 

zebrafish brain. 
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3.2. RNA sequencing of macrophages isolated from palladium im-
planted zebrafish showed significant differentially expressed 
genes. 

Macrophages have been well established to play a pivotal role in glioma formation in 

cancer biology (Graeber et al., 2002, Coniglio et al., 2012, Hamilton et al., 2016) (van Dalen et 

al., 2018, Prionisti et al., 2019). Macrophages infiltrate gliomas to promote tumour progres-

sion and can account for 30% of the glioma mass (Graeber et al., 2002, Coniglio et al., 2012, 

Li and Graeber, 2012). Infiltration of tumour associated macrophages also act to establish an 

immunosuppressive microenvironment that facilitates immune system avoidance of cancer 

cells (van Dalen et al., 2018). However, studies have shown that the polarisation of tumour 

associated macrophages from a pro-tumour to an anti-tumour phenotype can also occur as 

a result of the biological interactions with nanoparticles (Reichel et al., 2019). Consequently, 

tumour associated macrophages represent an attractive clinical target for immunotherapeutic 

strategies. Thus the discovery that Palladium bead implantation recruited macrophages and 

induced a potent anti-tumour phenotype may have profound contribution to our understand-

ing of cancer biology. Therefore, to understand the genetic mechanisms underlying the as-

sociated anti-tumour responses in macrophages, RNA sequencing with next-generation se-

quencing was employed. It was hypothesised that Palladium bead implantation would polar-

ise macrophages towards an anti-tumour genetic expression profile. The following differen-

tially analysis was facilitated by Edinburgh Genomics. 
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3.2.1. Isolation of macrophages from mpeg1:EGFP zebrafish via Fluorescence 

Activated Cell Sorting (FACS). 

Macrophages were isolated from mpeg1:EGFP transgenic zebrafish using Fluores-

cent Activated Cell Sorting techniques (FACS) (See section 2.3.2 for details). Macrophage 

were sorting for by gating for EGFP positive cells. It is important to note that the macrophages 

were isolated from approximately 200 individual embryonic brain tissue for each experiment. 

Zebrafish larvae were transected at the yolk sac and the heads isolated from the body. The 

heads were homogenised and macrophages isolated from the homogenised tissue. The total 

number of individual embryonic brain tissue used for each experimental group was 200 mul-

tiplied by the number of biological replicates, n (Figure 13A) Macrophages were isolated from 

three experimental groups: 1) mpeg1:EGFP zebrafish, 2) mpeg1:EGFP, U87-mCherry xeno-

grafted zebrafish, 3) mpeg1:EGFP, U87-mCherry xenografted, Palladium bead implanted 

zebrafish (Figure 13A, See also Table 4). Comparisons were made between each of the ex-

perimental groups to understand the underlying transcriptomic changes that Palladium beads 

induced. An average of 29,000 mpeg1:EGFP positive cells were sorted for each biological 

replicate. RNA was extracted from the sorted cells yielding a range of between 0.126 ng/µl to 

0.830 ng/µl of total RNA product. RNA quality assessment was conducted for each sample 

with RNA Integrity Numbers (RIN) ranging between 8.3 and 10. The results here validated the 

macrophage isolation protocols and RNA extraction techniques used to isolate macrophage 

total RNA from homogenised zebrafish brain tissue. Each of the nine RNA sample was am-

plified using OvationⓇ RNA-seq System and sent to Edinburgh genomics. Further quality 

controls were conducted by Edinburgh Genomics to confirm high quality cDNA post amplifi-

cation before DNA library preparation. DNA library preparation was conducted by Edinburgh 

Genomics using TruSeq DNA Nano gel free library prior to sequencing. 
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Figure 13. Fluorescence Activated Cell Sorting (FACS) of macrophages from 

the zebrafish brain. 
(A) Macrophage, GFP positive cells, were isolated from homogenised brain tissues from three experimental 

groups: (A1) mpeg1:EGFP zebrafish. (A2) mpeg1:EGFP, U87-mCherry xenografted zebrafish. (A3) 

mpeg1:EGFP, U87-mCherry xenografted, Palladium bead implanted zebrafish. An average of 29,000 

mpeg1:EGFP positive cells were sorted for each biological replicate. FACS was facilitated by in-house service 

provided by Shared University Resource Facility (SURF, QMRI) using FACS AriaII (BD Biosciences, Oxford, UK). 

The n number represents the number of biological replicates conducted for each experiment. Total number of 

larvae is n multipled by 200. 
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3.2.2. Principal component analysis of expression data reveal observable pat-

ters with respect to experimental factors. 

Principal component analysis was conducted in order to study the level of structure 

in the data. Principal component analysis is a statistical tool that can be used to explore high-

dimensional data (Ringner, 2008). Key to principal component analysis is reducing the dimen-

sionality of the data without changing recorded variations in the data set (Ringner, 2008). This 

allowed visualization of complex data set, like those of large gene expression data sets, to 

identify clusters of highly similar data sets. PCA was applied to explore large data sets where 

thousands of variables had been measured. It allowed the visualization of samples to detect 

dominant patterns of gene expression of the expression data sets; Palladium versus Bead 

null versus U87 xenografted. 

Initial Principal Component Analysis (PCA) revealed two distinct clusters of data sets 

and an outlier as shown in Figure 14A. The PCA plot of the first two principal components 

showed the clustering of RNA seq dataset from Palladium bead implanted zebrafish and clus-

tering of control (mpeg1:EGFP, Palladium bead null and U87-mCherry null) with bead null 

U87 xenografted zebrafish. However, on further analysis of PCA plots of principal component 

2 (PC2) and principal component 3 (PC3), only datasets from Palladium bead implanted 

zebrafish remained as a cluster (Figure 14B). Controls and bead null U87 xenografted 

zebrafish only clustered along the PC2 axis but were dispersed along the PC3 axis. This in-

dicated that Palladium bead datasets were more related to one other than U87 and Control 

data sets were. These were early confirmatory signs that Palladium bead implantation initiated 

a change in genetic expression in macrophages before differential analysis was conducted. 

In addition, the PCA plots clearly identified an outlier that showed that the genetic expression 

data of Control6D1005 was far more different than any of the other samples were to each 

other (Figure 14A-B, Red Square). Further statistical investigation also concluded that Con-

trol6D1005 was an outlier as illustrated in a heatmap and hierarchal clustering dendrogram 

(Figure 14C). Outliers at this level have significant impact on differential analysis and may 



 

Page 87 
 

mask underlying differentially expressed genes. Indeed when looking back at the experi-

mental notes, it was discovered that a fungal infection of the zebrafish housing had taken 

hold. A fungal infection of the embryo media in the zebrafish housing can have significant 

impact on zebrafish health and consequently alterations in immune responses. Alterations in 

immune responses would contribute to the genetic drift of macrophages in Control6D1005 

from all other samples. Therefore, the sample was removed from the analysis. Filtering and 

normalization was re-performed and new PCA plots was generated (Figure 15). 

The revised PCA biplot (Figure 15A-B) showed the clustering of RNA seq dataset 

from Palladium bead implanted zebrafish in both plots (PC1 vs PC2 and PC2 vs PC3). This 

once again reinforces the similarity in expression data from Palladium bead implanted 

zebrafish and thus differential analysis could be conducted with high confidence of identifying 

differentially expressed genes. The removal of the outlier revealed underlying variations in 

expression datasets for both U87 and Control zebrafish (Figure 15A-B). PCA plots of the first 

two principal components showed that Control and U87 dataset no longer clustered together 

and were dissimilar from each other; an attribute that could be related to the date of experi-

ment and genetic variability between clutches (Figure 15A). PCA plots of PC2 and PC3 only 

reinforced differences in expression datasets for Control and U87 as evident by a wide shot-

gun dispersal pattern of data sets (Figure 15B). Heatmap and hierarchical dendrogram sup-

ported observations from revised PCA plots showing clustering of datasets from Palladium 

bead implanted zebrafish (Figure 15C). Datasets from control and U87 zebrafish were shown 

to form a secondary cluster but similarities between Palladium bead implanted zebrafish were 

greater than similarities between U87 and Control datasets (Figure 15C). No discernible dif-

ferences was evident to distinguish RNA expression dataset between U87 and Controls (Fig-

ure 15C) reflected by hierarchal structure of dendrogram. 

The clustering of Palladium bead datasets in the principal component analysis indi-

cated high probability of differentially expressed genes when comparing between groups. 

PCA analysis indicated early evidence that there may be no differences between Control and 

U87 dataset. The identification of outlier Control6D1005 in our dataset proved to be the most 
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useful application of pre-processing techniques in this study. Inclusion of Control6D1005 into 

differential analysis would have skewed the results and likely masked differential expressed 

genes. Thus, the exclusion of the dataset allows meaningful data to be extrapolated from 

differential analysis.  
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Figure 14. Principal component analysis (PCA) biplot, heatmap and hierar-

chical clustering dendrogram of expression data reveal outlier and patterns 

with respect to experimental conditions. 
(A) PCA plots of the first two principal components (PC1 vs PC2) showed clustering of RNA seq dataset from 

Palladium bead implanted U87-mCherry xenografted mpeg1:EGFP zebrafish (Green, PdBead) and clustering 

of mpeg1:EGFP, Palladium bead null, U87-mCherry null controls (Red, Control) with bead null U87-mCherry 

xenografted mpeg1:EGFP zebrafish (Blue, U87). Prominent outlier, Control6D1005 (Red Square), sits outside 

the two clusters. 

(B) PCA plots of principal component 2 and principal component 3 showed clustering of expression data sets 

from Palladium bead implanted samples (Green, PdBead). Datasets from Controls (Red, Control) and U87 (Red, 
U87) clustered along the PC2 axis but were dispersed along the PC3 axis. With one exception, Control6D1005 

was plotted outside Control and U87 cluster and dispersed along the PC2 axis. Control6D1005 was an outlier 

when compared to dataset of Control and U87. In addition, PCA plot indicated that variations in genetic 

expression was as a result of experimental conditions and not due to variations in biological replicates 

conducted on different dates. Dates are reflected as D0305 where 0305 represents the third of May. 

(C) Heat map and heirarchical clustering of dendrogram reinforces observations from PCA plots. The darker the 

colour the greater the difference in gene expression data. Control6D1005 showed highest variability in gene 

expression represented by the height of the dendrogram branch. Palladium bead implanted samples clustered 

together and showed strong similarities in genetic expression data. A secondary cluster formed showing 

similarites between Controls and U87 expression data sets.  
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Figure 15. Revised Principal Component Analysis, heatmap and hierarchical 

clustering dendrogram of expression patterns with respect to experimental 

conditions. 
(A) PCA plots of the first two principal components (PC1 vs PC2), without outlier Control6D1005, showed 

clustering of RNA seq datasets from Palladium bead implanted U87-mCherry xenografted mpeg1:EGFP 

zebrafish (Green, PdBead). PCA plots of dataset from Palladium bead null, U87-mCherry null controls 

mpeg1:EGFP zebrafish (Red, Control) and bead null, U87-mCherry xenografted mpeg1:EGFP zebrafish (Blue, 

U87) were dispersed along the PC2 axis showing little similarity.  

(B) PCA plots of principal component 2 and principal component 3 again showing clustering of expression 

data from Palladium bead implanted samples (Green, PdBead). The PCA plot indicated that variations in 

genetic expression was as a result of experimental conditions and not due to variations in biological replicates 

conducted on different dates. Dates were reflected as D0305 where 0305 represents the third of May. 
(C) Heat map and heirarchical clustering of dendrogram reinforced observations from PCA plots. The darker 

the colour the greater the difference in gene expression data. Palladium bead implanted samples clustered 

together and showed strong similarities in genetic expression data. A secondary cluster formed showing 

similarites between Controls and U87 expression data sets.  
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3.2.3. Differential analysis of RNA seq expression data reveal differentially ex-

pressed genes in Palladium bead implanted zebrafish. 

To investigate if Palladium bead implantation induced alterations is genetic expres-

sion in macrophages, differential analysis of RNA seq expression data was conducted. Dif-

ferential analysis, when filtered by a minimum fold change of 2 and a maximum False Discov-

ery Rate of 0.05, revealed many genes to be significantly differentially expressed. The False 

Discover Rate (FDR) is a unit of measure used to evaluate the statistical significance (p values) 

of a differentially expressed gene corrected to the number of times the t-test was conducted. 

FDR is a better representation of significance than p values as it corrects for sample depth 

and decreased the probability of false positive or negatives. In total 750 genes were differen-

tially expressed in Palladium bead implanted zebrafish when compared to controls; 389 

genes upregulated vs 361 genes downregulated (Figure 16A). In contrast, 1014 genes were 

differentially expressed in Palladium bead implanted zebrafish when compared to U87; 524 

genes upregulated vs 490 genes downregulated (Figure 16C). No significant differentially ex-

pressed genes were detected when comparing U87 and Control indicating that expression 

datasets of Control and U87 were very similar; an attribute previously predicted in PCA anal-

ysis (Figure 16B). 
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Contrast Name Genes upregulated Genes downregulated 

A) Condition: PdBead vs Control 389 361 

B) Condition: U87 vs Control 0 0 

C) Condition: U87 vs PdBead 524 490 

Figure 16. Differential expressed genes for each contrast according to a thresh-

old of a minimum fold change of 2 and a maximum false discovery rate of 0.05. 
Volcano Plots illustrating log(2) fold change vs -log(10) false discover rate. The horizontal dashed line represented 

the specified FDR thresehold significance value set at 0.05, vertical dotted lines represented the specified fold 

change threshold of 2 in both the positive and negative directions. Points passing through the thresholds were 

coloured in red. The table of statistics shows the numbers of differentially expressed genes for each contrast 

according to aforementioned thresholds. 

 



 

Page 93 
 

3.2.4. Gene ontology enrichment analysis of differentially expressed genes in 

Palladium bead implanted versus Control zebrafish macrophages reveal 

shift in macrophage inflammatory polarisation.  

To gain further insight into the functional consequences of the differentially expressed 

genes, gene ontology (GO) enrichment analysis was conducted. GO enrichment analysis is a 

genome wide statically tool that is useful to investigate if the differentially expressed genes 

were associated with certain biological process or molecular pathways. GO enrichment anal-

ysis compares the frequency of individually annotated differentially expressed genes against 

the zebrafish genome in order to identify enriched functional pathway that may explain the 

mechanisms leading to the anti-tumour phenotype in Palladium bead implanted zebrafish. 

GO enrichment analysis of differentially expressed genes indicated greatest enrich-

ment of pathways associated with oxidation-reduction process when comparing expression 

data of Palladium bead implanted zebrafish with Controls. Figure 17A illustrates a pie chart 

of all differentially expressed genes with a FDR of less than 0.05. The pie chart was catego-

rised by the proportion of genes differentially expressed in each gene ontology category. As 

evident from Figure 17A, 42% of the genes that were differentially expressed were associated 

with the oxidation reduction process. Further investigation revealed differential expression in 

23% of the 634 genes in the oxidation-reduction process (FDR = 0.039). In general, a greater 

proportion of these genes were upregulated than down regulated. Several key genes associ-

ated with cell redox homeostasis like homxa1, txn and nos1 were upregulated in Palladium 

bead implanted zebrafish (Figure 17B). The enrichment of oxidation-reduction processes in 

macrophages can alter macrophage activation profile and response to external stimuli as a 

result of Palladium bead implantation (Brune et al., 2013). However, redox signal regulation, 

despite contributing to a large proportion of the enriched pathways, would most likely be part 

of a larger network of signalling systems initiating the anti-tumour response. As expected, 

enrichment of pathways that responded to metals were up regulated (FDR = 0.0399). In par-

ticular, a three fold increase in genetic expression of the HSP70 family were recorded, hsp 

70.1, hsp70.2, hsp70.3 and hsp70l. The HSP70 family of heat shock proteins are vital molec-

ular chaperones that are critical in protein homeostasis (Evans et al., 2005, Murphy, 2013). In 
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addition, a 1.4 fold increase in expression of atp7a was recorded. atp7a is an important pro-

tein in the regulation of mitochondrial redox balance (Bhattacharjee et al., 2016). When com-

bined, these proteins serve as a buffer for cells to tolerate environmental stresses, hypoxia 

and, most importantly, heavy metal exposure. An enrichment in protein transport pathways 

was also recorded in the macrophages of Palladium bead implanted zebrafish. An upregula-

tion of 25% of 189 protein transport genes analysed was recorded. Enrichment of these 

genes made up 15% of the overall enrichment profile (Figure 17A). Upregulation of genes 

linked to protein transport described an increase in a whole host of generalised intracellular 

function ranging from cellular differentiation (vps11, ap2a1) to endocytosis (ap1b1,snx9b) and 

endosomal transport (snx1a). A large majority of the upregulated genes were genes predicted 

to form part of the clarthrin complex involved in vesicular transport of intracellular proteins. In 

addition, the upregulation of pro-inflammatory genes cxcl8b.1(4.5 fold) and tnf-𝑎 (3 fold) and 

downregulation of anti-inflammatory gene il-4 (1.4 fold) were recorded. tnf-𝑎 is a key cell sig-

nalling cytokine that is involved in systemic inflammation and responsible for acute phase 

reactions (Ciebiera et al., 2018). tnf-𝑎 had been described as an antineoplastic and antiangi-

ogenic agent that can stimulate immune cells to kill cancer cells (Ciebiera et al., 2018). While 

on the other hand, cxcl8b.1 is an orthologue of il-8 in humans and is a potent attractant of 

neutrophils (Manfroi et al., 2017). Thus, the increase in cxcl8b.1 expression may indicate the 

recruitment of neutrophils by macrophages. The combination of decreased il-4 and increase 

tnf-𝑎 and cxcl8b.1 signalling would suggest a pro-inflammatory phenotype of macrophages 

in Palladium bead implanted zebrafish. Altogether, these signalling molecules would initiate 

a potent acute phase inflammatory response of macrophages and perhaps neutrophils in the 

brain of the zebrafish. The evidence presented here provides early evidence that a stress 

induced inflammatory polarisation of macrophages occurs in Palladium bead implanted 

zebrafish.  
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Heatmap and hierarchal dendrogram of the top 50 differentially expressed genes in 

Palladium bead versus Control illustrates clustering of genes described in oxidation-reduction 

process and metal ion sensing/responses (Figure 18). This again highlights a strong relation-

ship between the two processes. In addition, hierarchal dendrogram classification of genes 

like eno1a and txn, genes associated in oxidative-reduction process, showed similarities with 

genes of unknown or predicted functions. For example, the genetic expression of 

ch211−241c24.3 and zgc:198419 were identified to be upregulated in Palladium bead 

zebrafish (Figure 18). Genetic functions of these genes were poorly documented. 

ch211−241c24.3 had no documented function while zgc:198419 was only predicted to se-

quester iron ion; Iron is a by-product of the uncoupling of oxygen atoms from iron during 

Figure 17. Gene ontology enrichment analysis of differentially expressed genes 

of isolated macrophages from Palladium bead implanted zebrafish versus con-

trol.  
(A) Pie chart illustration of all differentially expressed genes with a FDR of less than 0.05. The pie chart is 

categorised by the proportion of genes differentially expressed in each gene ontology category expressed as a 

percentage. 

(B) Heatmap of the top 20 upregulated and top 20 downregulated genes in the oxidation-reduction process. 

Expression values are indicatedas log(10) fold change where a logFC of 1 represents no change in genetic 

expression.  
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oxidation processes (ZFIN, 2013). Multiple instances of significantly differentially expressed 

genes with undocumented functions showed strong relationship with either oxidative-reduc-

tion (Figure 18, Blue Text) or metal sensing (Figure 18, Red Text). This study, may for the first 

time, highlight a function for these undocumented genes in either of the described processes. 

Together, the genes associated with oxidative-reduction and metal response processes 

made up to 11 out of the top 50 differential expressed genes. This was strong evidence that 

these genes contributed to a significant proportion of the genetic expression profile that 

shaped macrophage inflammatory responses in Palladium bead implanted zebrafish.  

Figure 18. Heatmap and hierarchal dendrogram of top 50 differentially 

expressed genes in Palladium bead implanted versus Control zebrafish. 
Genes described in oxidation-reduction process (blue text) and metal ion sensing/responses (red text) 

made up 11 out of top 50 differentially expressed genes. Values in heatmap were expressed as log fold 

change (logFC).  
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3.2.5. Differential expressed genes in macrophages isolated from Palladium 

bead implanted and U87 xenografted zebrafish revealed an inflammatory 

anti-tumour phenotype.  

Further analysis of macrophage expression data comparing Palladium bead im-

planted zebrafish with bead null U87 xenografted zebrafish depicts an anti-tumour inflamma-

tory profile in Palladium bead implanted zebrafish. Heatmap of the top 50 differentially ex-

pressed genes identified pro-tumoural inflammatory genes, sema4D, sox7 and apoc1 to be 

significantly expressed in U87 xenografted zebrafish and downregulated in Palladium bead 

implanted zebrafish (Figure 19). Both sema4D and sox7 are reported to be proangiogenic 

factors that promotes high-grade gliomas (Zhang et al., 2012, Sierra et al., 2008, Kim et al., 

2018). A three fold increase in sema4D and four folds increase in sox7 expression was rec-

orded in U87 xenografted zebrafish. Expression of sema4D and sox7 had both been linked 

to tumour associated macrophages (TAMs). TAMs were identified to be the main producers 

of sema4D in the tumour microenvironment and had been identified as novel immunothera-

peutic target for cancer (Sierra et al., 2008, Wu et al., 2016). In addition, increased sox7 ex-

pression had been implicated to increase TAM recruitment and metastasis. Thus the down 

regulation of these protumoural genes in Palladium bead implanted zebrafish would have 

significant impact on tumour progression.  

Differential analysis of Palladium bead versus U87 also indicated an increase in ex-

pression of genes associated with oxidative-reduction, stress tolerance, metal exposure and 

inflammation. The results here corroborate previous observations made in differential analysis 

of Palladium bead implanted versus Control zebrafish. The upregulation of hsp70l, hsp70.2 

and hsp 70.3 proteins from HSP70 family were identified in the top 50 differentially expressed 

genes when comparing Palladium versus U87 zebrafish. In addition, evidence for oxidative 

stress was reported as moxd1, porb, aoc2 and ahnak, genes in the oxidative-reduction pro-

cess, were all reported to be in the top 50 differentially expressed genes. An upregulation of 

ten folds for cxcl8b.1 was recorded (FDR<0.0001) however, no significant differential expres-

sion of tnf-𝑎 (FDR = 0.305) or il4 (FDR = 0.0950) was detected.  



 

Page 98 
 

To gain further insight into the functional consequences of the differentially expressed 

genes in Palladium bead implanted versus U87 xenografted zebrafish, gene ontology enrich-

ment analysis was conducted. Gene ontology enrichment analysis of oxidation-reduction pro-

cess indicated an up regulation of the 28% of the 634 associated genes in Palladium bead 

implanted zebrafish. However it was not statistically significant with a reported FDR value of 

0.0964. The greatest enrichment of pathways was associated with calcium ion transmem-

brane transport, accounting for 30% of the statistically significant enriched pathways where 

FDR < 0.05 (Figure 20). ARF protein signal transduction was the second most enriched path-

ways accounting for 11% of the significantly differential expressed genes. (Figure 20). The 

pie chart diagram in Figure 20 lists all the enriched pathways categorised proportionately by 

the number of significantly differentially expressed genes in each gene ontology category. 

In conclusion, the combination of expression data from two distinct differential anal-

ysis (Palladium versus Control, Palladium versus U87) revealed different aspects of the ge-

netic expression profile of macrophages exposed to Palladium beads. Macrophage exposure 

to external environmental stressors like Palladium metal stimulates an enrichment of path-

ways that increased its ability to tolerate stress. This was evident by the upregulation of 

HSP70 family proteins critical in protein homeostasis, stress tolerance and metal responses 

(Murphy, 2013) in addition to the enrichment of oxidative-reductive pathways that were char-

acteristic of macrophages under cellular stress. This study also presented new evidence to 

indicate the possible involvement of neutrophils as increase cxcl8b.1 was detected. This, 

combined with the upregulation of classical inflammatory cytokine tnf-𝑎, and the downregu-

lation of anti-inflammatory cytokine, il-4, depicted a pro-inflammatory profile of macrophage. 

Altogether, RNA sequencing data revealed a complex web of interconnected network of sig-

nalling systems that led to the polarisation of macrophage genetic profile towards a proin-

flammatory anti-tumour phenotype.  
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Figure 19. Heatmap and hierarchal dendrogram of top 50 differentially ex-

pressed genes in Palladium bead implanted versus U87 Xenografted zebrafish. 
Expression data comparing Palladium bead implanted zebrafish with bead null U87 xenografted zebrafish 

depicts an anti-tumour inflammatory profile in Palladium bead implanted zebrafish. Pro-tumoural inflammatory 

genes, sema4D, sox7 and apoc1 are significantly expressed in U87 xenografted zebrafish and downregulated 

in Palladium bead implanted zebrafish Genes associated with oxidation-reduction process, moxd1, porb, aoc2 

and ahnak were all significantly expressd. The upregulation of hsp70l, hsp70.2 and hsp 70.3 proteins from 

HSP70 family were also identified in Palladium bead implanted zebrafish. Values in heatmap were expressed 

as log fold change (logFC). 
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Figure 20. Gene ontology enrichment analysis of differentially expressed 

genes of isolated macrophages from Palladium bead implanted versus U87 

xenografted zebrafish. 
Pie chart diagram lists all significantly (FDR < 0.05) enriched pathways categorised proportionately by the 

number of significantly differentially expressed genes in each gene ontology category. Enrichment of 

pathways associated to calcium ion transmembrane transport accounted to 30% of the statistically 

significant enriched pathways. ADP-ribosylation factors (ARF) signal transduction was the second most 

enriched pathways accounting for 11% of the significantly differential expressed genes. Gene ontology 

enrichment analysis of oxidation-reduction process indicated an up regulation of the 28% of the 634 

associated genes in Palladium bead implanted zebrafish. However it was not statistically significant with a 

reported FDR value of 0.0964. 
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3.3. Palladium and gold bead mediated anti-tumoral responses of mac-
rophages 

3.3.1. Gold triggered biorthogonal catalytic uncaging of fluorescent Rhoda-

mine 

The inherent anti-tumour effect of Palladium bead implantation made the Palladium 

bead incompatible for the development of biorthogonal catalytic chemotherapeutic assays in 

the zebrafish brain. Thus we explored the capability of another metal, Gold, as replacement 

for Palladium for the development of a robust biorthogonal catalytic drug delivery system. 

Gold has received enormous attention in recent years. Gold base products are safe to handle 

and has clinical applications in the treatment of rheumatoid arthritis (Pope et al., 2002). How-

ever, in chemistry, Gold is known for its catalytic properties and is able to mediate catalytic 

oxidative reactions at or below ambient temperature (Corma and Garcia, 2008, Stratakis and 

Figure 21. Gold bead catalyses prodye conversion to locally release fluorescent 

Rhodamine in the zebrafish brain. 
(A) Images from left to right showed GFP emission spectrum excited by 488 nm wavelenth laser and corresponding 

bright field images with white arrow indicating Gold bead. Images from top to bottom showed zebrafish embryos 

treated with 20 µM prodye precuror and 1% DMSO. The incubation of 20 µM prodye precursor for 24 hours resulted 

in a strong green fluorescent signal observable only in the gold bead implanted zebrafish larvae. All Images were 
captured using an Andor spinning disk confocal microscope with a 20X/NA 0.75 objective. Scale bars set at 100 

µm. Error bar indicated standard error. 

(B) Zebrafish treated with 20 µM Prodye precursor (n = 5) resulted in a significant increase in fluorescent intensity 

when compared to 1% DMSO (n = 3) treated zebrafish. Intensity values for each fish were expressed as a sum of 

intensity values of GFP signal. 

Images adapted from Perez-Lopez et al., 2017.  

 

A. B. 
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Garcia, 2012). These properties has made Gold an attractive target in the development of 

nanotherapeutics (Takale et al., 2014, Yeo et al., 2018). 

To investigate the chemical capabilities of gold as a catalyst to mediate prodrug ac-

tivation, we studied Gold beads’ catalytic properties to convert a nonfluorescent precursor 

into fluorescent Rhodamine in-vivo. We obtained Gold nanoparticles coated polystyrene 

beads and tested its catalytic properties and biocompatibility in the zebrafish. Gold beads 

were implanted into the brain of the wild type (WIK) zebrafish larvae and were treated with 

either 20 µM prodye precursor or 1% DMSO and imaged after 24 hours. The lipophilic prop-

erties of prodye precursor allows diffusion of the reagent in the media via ingestion or ab-

sorption via the skin and distribution systemically (Perez-Lopez et al., 2017). Under physio-

logical conditions the prodye precursor is catalytically converted by the gold bead into fluo-

rescent Rhodamine which is visible under excitation by 488 nm wavelength laser (Perez-

Lopez et al., 2017). This study was the first time biorthogonal organometallic reaction was 

tested locally in an in-vivo system in the zebrafish brain with Gold beads (Figure 21) (Perez-

Lopez et al., 2017). 

 The incubation of 20 µM prodye precursor for 24 hours resulted in a strong green 

fluorescent signal observable only in the Gold bead implanted zebrafish larvae (Figure 21A). 

An increase of approximately 4 fold in mean fluorescent intensity was observed in Gold bead 

implanted zebrafish (Figure 21B). The effect was statically significant, p < 0.0001, when com-

pared to DMSO controls (Figure 21B). This study confirms the local generation of Rhodamine 

and the compatibility of Gold beads as an in-vivo catalyst to convert prodrugs in 24 hours. 

To extend this study, we further investigate the sustained functionality of the Gold beads in 

vivo. Ultimately, we tested the durability of the Gold beads to mediate the sustained release 

of fluorescent Rhodamine in an in vivo zebrafish system over three additional days. 

 Zebrafish larvae were implanted with Gold beads and were either persistently or pulse 

treated with prodye. Pulse treatment of Au bead implanted zebrafish occurred from 0 days 

post transplantation (dpt) to 1 dpt and 3 dpt to 4 dpt. A negative bead null control was also 
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included to understand if the release of fluorescent Rhodamine was mediated by Gold catal-

ysis (Figure 6). The sustained treatment of Zebrafish larvae with precursor maintained a per-

sistent generation of fluorescent Rhodamine in the brain localized in the vicinity of the Gold 

bead (Figure 22A, Group A). This was reflected by a high level of detectable fluorescence for 

Figure 22. Gold bead mediated sustained released of fluorescent Rhodamine in the 

zebrafish brain.  
Gold beads were implanted into wild type (WIK) zebrafish and were persistently treated with 20 µM prodye Rhodamine 

precursor containing 1% DMSO (Group A) or were pulse treated from 0 to 1 day post transplantation (dpt) and 3 to 4 
dpt (Group B). Bead null wild type (WIK) zebrafish werepPulse treatment with 20 µM prodye Rhodamine cotaining 1% 

DMSO from 0 to 1 day post transplantation (dpt) and 3 to 4 dpt(Group C). The fluorescent intensity were relative to 

the sum of intensity of GFP signal of Gold bead implanted wild type (WIK) zebrafish treated with 1% DMSO. All Images 

were captured using an Andor spinning disk confocal microscope with a 20X/NA 0.75 objective. Scale bars set at 20 

µm. Error bars indicated standard error. Images from left to right are in chronological order showing a time-course 

study of the release of fluorescent Rhodamine over 4 days post bead transplantation (dpt). 

(A) Group A, sustained treatment with 20 µM prodye precursor maintained the persistent generation of fluorescent 

Rhodamine in the brain localized in the vicinity of the bead. Group B, pulse treatment with prodye precursor for 24 

hours resulted in the generation of fluorescent Rhodamine which decayed over 48 hours. Second pulse treatment, 

following a 48 hour recovery phase, restored fluorescent intensity of the Gold bead. Group C, the absence of Gold 

bead led to no detectable fluorescence. Thus Gold beads were required for the generation of fluorescent Rhodamine.  

(B) The decay in fluorescent intensity, after initial pulse treatment of 20 µM Precursor Rhodamine, led to a significant 

decrease (p = 0.0449) in fluorescent intensity from 4.73 ± 0.964 to 2.91 ± 0.745. Second pulse treatment, following a 

48 hour recovery phase, restored fluorescent intensity of the Gold bead from 2.91 ± 0.745 to 5.20 ± 0.839. One way 

ANOVA statistical analysis and Tukey’s multiple comparisons test were conducted to calulate p values. p values were 

indicated where statistically significant (p < 0.05). Error bar indicated standard error.  
  

Images adapted from Perez-Lopez et al., 2017 
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the duration of the study relative to negative controls (Figure 22B). However, initial pulse treat-

ment of prodye precursor for 24 hours resulted in the initial generation of fluorescent Rhoda-

mine which decayed over time. The decay in fluorescent intensity led to a significant decrease 

(p = 0.0449) in fluorescent intensity from 4.73 ± 0.964 to 2.91 ± 0.745 (Figure 22A, Group B). 

The decrease in fluorescence intensity was most likely due to the metabolic clearance or 

diffusion into surrounding tissues of fluorescent Rhodamine in the zebrafish brain. More im-

portantly, a second pulse treatment,  following a 48 hour recovery phase, restored fluorescent 

intensity of the Gold bead to 5.19 ± 0.839 (Figure 22A, Group B). In addition, it was confirmed 

that the increase in fluorescent signal was dependent on the presence of the Gold bead. In 

the absence of the Gold bead no fluorescent signal was detected (Figure 22A, Group C).  

 This study highlighted the chemical capability of Gold as a biorthogonal catalyst to 

locally deliver caged compounds in the brain in vivo. In addition, Gold mediated catalytic 

reaction was sustainable over longer periods up to three days for this study, and may last 

even longer. This highlighted the Gold bead resin’s durability in vivo and may have future 

applications in a chronic drug delivery systems. However, the biocompatibility of these Gold 

beads for in vivo applications remained in question. It was still unknown at this point if Gold 

bead implantation would elicit an immune or anti-tumour response in zebrafish previously 

observed in Palladium trials. The associated anti-tumour responses would make xenograft 

based caged drug trials, as attempted in Palladium studies, unfeasible. However, Gold had 

been proven to be biocompatible in humans and had wide applications in medical technolo-

gies ranging from dental implants to treatment of arthritis (Yeo et al., 2018). Thus, we hypoth-

esised that Gold beads did not stimulate an anti-tumour response in the zebrafish brain. We 

aimed to do so by implanting Gold beads into the brains of mpeg1:EGFP, U87-nls-mKate2 

xenografted, zebrafish and studied any associated anti-tumour and macrophage responses. 
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3.3.2. Palladium and Gold beads mediated anti-tumoral responses in 

mpeg1:EGFP zebrafish 

 To investigate the anti-tumour effects of Gold bead implantation, we compared the 

anti-tumour effects of Gold bead implantation to Palladium and Naked beads. These beads 

were implanted into U87-nls-mKate2 xenografted mpeg1:EGFP zebrafish. Naked beads 

serves as a ‘foreign body’ control to study the immune and anti-tumour response of the pol-

ystyrene bead independent of Gold or Palladium metal. These beads were implanted into the 

zebrafish at 4 dpf and imaged at 0 day post bead transplantation (dpt),1 dpt and 3 dpt (See 

section 2.2.6).  

E. 

F. 
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Figure 23. Macrophage anti-tumour responses is stimulated by palladium and gold 

bead implantation leading to decreased U87-nls-mKate2 cell counts. 
(A-D) Human derived Lv-cppt-IRES-nls-mKate2-opre transformed U87-nls-mKate2 cells (White) were xenografted 

into macrophage labelled (Green) mpeg1:EGFP zebrafish (3 dpf). Xenografted zebrafish were implanted with 

Palladium bead transplantation at 4 dpf or 0 dpt. Images from left to right are in chronological order showing 0 and 

3 day post bead transplantation (dpt) of palladium bead into the zebrafish brain. Images from top to bottom showing: 

(A-D) The implantation of naked beads inhibited the increase in U87-nls-mKate2 cell number observed in bead null 

control zebrafish. The implantation of Gold and Palladium beads resulted in a decrease in glioma cell mass by 3 dpt. 

Brightfield images on the bottom right corner of each A’-D’ images and are representative of the orientation and 

imaging field of the fluorescent images. All Images were captured using an Andor spinning disk confocal microscope 

with a 20X/NA 0.75 objective. Scale bars set at 20 um.  

(E) U87-nls-mKate2 cell numbers were expressed as a ratio calculated by the number of cells at 1 or 3 dpt divided 

by the number of cells at 0 dpt. Zebrafish only xenografted with U87-nls-mKate2 (No bead) showed an increase in 

U87-nls-mKate2 cell number by 1.3 folds. Zebrafish implanted with Naked beads showed a decrease in U87-nls-

mKate2 cell count by 10%. Whereas, the implantation of Palladium or Gold bead significantly (p = 0.0001) decreased 

U87-nls-mKate2 cell count by 80% at 3 dpt. 

(F) Gold and palladium bead implanted zebrafish showed an 80% decrease in U87-nls-mKate2 cell count at 3 dpt 

when compared to Naked bead implanted zebrafish and no bead zebrafish controls (p<0.0001). Zebrafish without 

any bead showed an increase of 1.3 fold in U87-nls-mKate cell count by 3 dpt showing engraftment and proliferation 

of U87-nls-mKate2 cells. Naked bead showed no significant increase in U87-nls-mKate2 cells and a trend to indicate 
that the U87-nls-mKate2 cells were not proliferating.  

(G) Macrophage intensity are expressed as a ratio calculated by the sum of fluorescent pixel value of macrophage 

mpeg1:GFP labelled cells at 1 or 3 dpt divided by 0 dpt. Gold and Palladium bead implanted zebrafish showed 

highest levels of macrophage intensity values. A six fold increase in macrophage intensity was evident 1 dpt and the 

level of macrophage remains heightened for the duration of the experiment holding at a four fold increase at 3 dpt. 

Zebrafish implanted with naked beads showed an initial spike in macrophage levels by about four folds which 

recovered to bead null control levels at 3 dpt. Zebrafish without any beads showed a gradual developmental increase 

of macrophage levels from 0 to 3 dpt or 4 to 7 dpf. 

(H) Palladium bead implantation into the zebrafish brain results in high toxicity and poor zebrafish survival. Only 33% 

of the zebrafish implanted with palladium bead survive the treatment. Naked bead and Gold bead showed no bead 

associated toxicity as the survival rates are identical to no bead control zebrafish.  

One way ANOVA statistical analysis and Tukey’s multiple comparisons test were conducted to calulate p values. p 

values were indicated where statistically significant (p < 0.05). Error bar indicated standard error.  
 

G. H. 
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As previously reported, bead null control mpeg1:EGFP zebrafish showed a 1.3 fold 

increase in cell number which indicated the engraftment and proliferation of U87-nls-mKate2 

cells in the zebrafish brain (Figure 23A-B). In addition, a developmental increase of macro-

phage intensity levels by 2 fold was observed over the course of the experiment for bead null 

controls (Figure 23G) (Xu et al., 2015). The implantation of naked beads attenuated the in-

crease in U87-nls-mKate2 cell number observed in bead null control zebrafish (Figure 23E-

F). This coincided with an increase in macrophage intensity levels by 4.5 fold (p < 0.0001) at 

1 dpt but recovered to control levels at 3 dpt (Figure 23G). This indicated that the injury and 

introduction of a foreign body in Naked bead implantations did elicit a degree of inhibitory 

effects on U87-nls-mKate2 cell proliferation. Nonetheless, when comparing Naked bead to 

Palladium and Gold bead implanted zebrafish, the inhibitory effect on U87-nls mKate2 sur-

vival and proliferative capability were only minor but was statically significant when compared 

to bead null controls at 3 dpt (p < 0.0001) (Figure 23C-C’,4D-D’). Implantation of both Palla-

dium and Gold bead implanted zebrafish resulted in a significant (p < 0.001) decrease of 80% 

in U87-nls-mKate2 cell count by 3 dpt (Figure 23E-F). In addition, a potent macrophage re-

sponse to Palladium and Gold bead was observed. Both Gold and Palladium bead implanta-

tion increased macrophage intensity values six fold at 1 dpt and the effects persisted up to 

four fold at 3 dpt (Figure 23G). When compared to Naked beads, the implantation of Gold and 

Palladium bead led to significantly elevated macrophage levels in the zebrafish brain for the 

duration of the experiment (Figure 23G). Although, in the context of anti-tumour responses, 

the effects that Gold and Palladium induced were mirrored, the survival rates of Palladium 

bead implanted zebrafish were very different. Palladium bead implantation proved to be very 

toxic to the zebrafish (Figure 23F). Only one third of the zebrafish population implanted with 

Palladium beads survived the study by 3 dpt (Figure 23F). 

In conclusion, Gold bead implantation resulted in the inhibition of U87-nls-mKate2 

cell proliferation and decreased U87-nls-mKate2 cell survival; the effects were similar to Pal-

ladium bead implanted zebrafish. While on the other hand Naked bead implantation inhibited 

the proliferation of U87-nls-mKate2 cells in the zebrafish brain but not the cells capability to 
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survive in the zebrafish brain. The decrease in U87-nls-mKate2 cell proliferation and cell sur-

vival coincided with increased macrophage intensities only at 1 dpt. Macrophage intensities 

returned to basal level by 3 dpt. Macrophage intensities for Palladium and Gold bead im-

planted zebrafish remained elevated at 3 dpt when compared to Bead null and Naked bead 

zebrafish. This implied that Palladium and Gold bead implantation elicited an anti-tumour re-

sponse that was mediated by macrophages in the zebrafish brain. In addition, it was evident 

that Palladium bead implantation into the zebrafish was toxic, an effect not observed in Gold 

bead implantation. This highlighted the biocompatibility of Gold in biological systems. Despite 

this, the anti-cancer phenotype rendered Gold bead incompatible for the development of an 

in vivo biorthogonal catalytic cancer drug screen system in the zebrafish brain. Nevertheless, 

the discovery that Palladium and Gold bead implantation initiated an anti-tumour responses 

in the zebrafish brain, warranted further investigation. Thus further investigation was con-

ducted to elucidate the underlying mechanisms that dictated the anti-tumour milieu estab-

lished by Gold bead implantation. We speculated that Gold bead implantation, similar to Pal-

ladium bead implantation, initiated an indirect effect on U87 cells mediated by macrophages 

to elicit an anti-tumour effect. Thus, we hypothesised that macrophages contributed to Gold 

bead mediated anti-tumour responses.  

 

3.3.3. Implantation of Palladium and Gold beads in the zebrafish brain did not 

cause aberrant necrosis in surrounding tissue.  

To address if U87 cell death were the direct or indirect consequences of Palladium 

and Gold bead implantation, the necrotic effects of Palladium, Gold and Naked bead implan-

tation in the surrounding tissue were investigated. We contrasted the effects of Gold and 

Palladium bead implantation on Propidium iodide staining to understand if Gold bead implan-

tation elicited similar effects as observed previously in Palladium bead implanted zebrafish. 

Propidium iodide was applied to the zebrafish media solution of Palladium, Gold, Naked and 

Injured mpo:EGFP zebrafish (4 dpf) and imaged at 0, 1 and 3 days post bead transplantation 

(dpt).  
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The implantation of Gold resulted in an increase in propidium iodide labelling when 

compared to injured zebrafish (Figure 24.) Similar to Naked and Palladium beads, the implan-

tation of Gold bead led to Propidium iodide staining localizing at the site of incision and vi-

cinity of the beads (Figure 24A, Red Cicles). Gold (p = 0.0004) and Palladium (p = 0.0008)  

bead implantation elicited similar increase (three fold) in the number of propidium iodide la-

belled nuclei. The recovery and clearance of propidium iodide nuclei cells was evident by 1 

dpt in all bead implanted zebrafish (Figure 24A). However, Gold bead implanted zebrafish 

also showed slower recovery to injury control levels when compared to Naked bead im-

planted zebrafish (Figure 24D). The rate at which propidium iodide labelling were being 

cleared in Gold bead implanted zebrafish mirrored that of Palladium bead implanted 

zebrafish. At 1 dpt, both Gold and Palladium bead implanted zebrafish showed a 60% de-

crease in propidium iodide labelled cells while propidium iodide labelling in Naked bead im-

planted zebrafish returned to injury control levels. However, by 3 dpt, propidium iodide label-

ling in Gold and Palladium bead implanted zebrafish returned to injury control levels. A 60% 

decrease in propidium iodide labelled cells was observed by 1 dpt for Gold and Palladium 

bead implanted zebrafish. In addition, by 3 dpt, the decrease of propidium iodide labelling to 

injury control levels was recorded for all bead implanted zebrafish (Figure 24B). This indicated 

the clearance of necrotic cells and the recovery from the initial bead implantation procedure. 
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Figure 24. Implantation of Gold, Palladium and Naked beads did not initiate 

aberrant necrosis in the zebrafish brain. 
(A) Images from rows top to bottom, mpo:EGFP zebrafish, 4 days post fertilized (dpf), were implanted with Gold, 

Palladium and Naked beads. Red circles in the images denote the boundary of the implanted beads. Injured 

zebrafish underwent the same bead implantation procedure where a naked bead was inserted but was removed 

immediately. Zebrafish were treated with 1 µg/ml propidium iodide in embryo media throughout the experiment. 

Images from left to right, time lapse imaging indicated that high level of propidium iodide necrotic cell labelling 

occurred during the early stages of the experiment immediately after Gold, Palladium and Naked bead 
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In conclusion, Gold bead implantation did not cause aberrant cellular necrosis. Both 

Gold and Palladium bead implantation displayed identical levels of propidium labelling over 

3 days of experimentation. We observed the clearance of necrotic cell bodies by 3 dpt for all 

bead implanted zebrafish and no new development of additional necrotic cell bodies were 

detected. Therefore, as in Palladium bead implanted zebrafish, the anti-tumour effects of 

Gold bead implantation were not a direct reaction to solidly supported Gold nanoparticles on 

the bead. These results support the hypothesis that macrophages contributed to Gold bead 

mediated anti-tumour phenotype in the zebrafish brain. 

  

implantation at 0 day post transplantation (dpt). A clearance of propidium iodide labelling was evident by 3 

dpt for all bead implanted zebrafish. All Images were captured using an Andor spinning disk confocal 

microscope with a 20X/NA 0.75 objective. Scale bars set at 50µm. 

(B) Gold, Palladium and Naked bead implantation induced an increase in the number of propidium iodide 
labelling at 0 dpt when compared to injured controls. Clearance of propidium iodide labelling occurred within 

24 hours. Although, Gold and Palladium showed slower recovery. Propidium iodide labeling returned to 

injury control levels by 3 dpt indicating clearance of necrotic cells and recovery from initial bead implantation 

procedure.  

(C) Gold (p = 0.0004) and Palladium (p = 0.0008) showed significantly higher number of propidium iodide 

labelled cells at 0 dpt. Although not statically significant (p = 0.0896), a trend inidicates that the implatation 

of Naked bead increased propidium iodide cell labelling at 0 dpt. 

(D) Gold and Palladium bead implanted zebrafish show significantly slower recovery from bead implantation 

procedure. Elevated propidium iodidie labelling was recorded at 1 dpt for Gold and Palladium implanted 

zebrafish when compared to both injury controls and naked bead implanted zebrafish.  

One way ANOVA statistical analysis and Tukey’s multiple comparisons test were conducted to calulate p 

values. Error bar indicated standard error.  
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3.4. TLR receptor family mediates anti-tumour responses in Gold bead 
implanted zebrafish.  

Macrophages can undergo significant phenotypic changes in response to molecular 

signals from their environment (Biswas et al., 2013). The biological effects of various disas-

sociated nanoparticles on macrophage polarization has been reviewed recently (Reichel et 

al., 2019) and in some cases a strong anti-tumour immunological response was initiated 

(Bastus et al., 2009b, Zanganeh et al., 2016). The degree of macrophage polarization is highly 

dependent on the nanoparticle composition and size (Reichel et al., 2019). In this study, Pal-

ladium and Gold nanoparticles were solidly supported within a polyethylene glycol (PEG)-

grafted low cross linked polystyrene matrix and not dissociated (Perez-Lopez et al., 2017). 

Macrophages were observed to form intimate interactions on the surface of Palladium and 

Gold beads (Figure 23D’). In addition, we showed macrophage numbers increased as a result 

of Palladium and Gold bead implantation (Figure 23G). Thus, there was strong evidence for 

the formation of intimate interactions of macrophages with Gold and Palladium beads. The 

effects of these interactions between macrophages and either Gold or Palladium have been 

previously reported (Bastus et al., 2009a, Reichel et al., 2019, Schmidt and Goebeler, 2015). 

The internalization of Gold nanoparticles by macrophages has been shown to induce a pro-

inflammatory response of macrophages that increased tnf-𝑎, and il-1β secretion (Bastus et 

al., 2009a). The increase in tnf-𝑎, and il-1β secretion was mediated by a pattern recognition 

receptor called tlr-4 (Bastus et al., 2009a). Similarly, Palladium metal had also been shown to 

interact with tlr-4 receptor to initiate proinflammatory gene expression of tnf-𝑎 and il-8 in mice 

(Schmidt and Goebeler, 2015). Thus there was increasing evidence to support for tlr-4 func-

tion in Palladium or Gold bead induced anti-tumour effects of macrophages. In support, we 

recorded increased cxcl8b.1 and tnf-𝑎 expression in RNA sequencing data set of Palladium 

bead implanted.  

Although the TLR protein family is conserved between mammals and teleost fish, it 

is well reported that TLR signalling pathways in the zebrafish differs in feature than those in 

mammals (Li et al., 2017, Jault et al., 2004). Gene duplication events during evolution led to 
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the development of isoforms of tlr-4 (tlr4ba/tlr4bb), tlr5 (tlr5a/tlr5b) and tlr8 (tlr8a/tlr8b) (Li et 

al., 2017). In addition, zebrafish tlr4 does not respond to LPS stimulation unlike it’s mamma-

lian counterpart (Li et al., 2017). Nonetheless, tlr4 signalling mediates only a part of the whole 

TLR family pathway which constitutes a whole host of receptors, tlr1-11 and tlr13, that are 

capable of upregulating tnf-𝑎 and cxcl8b.1 expression. Therefore, a more generalized ap-

proach was taken to elucidate the contribution of TLR family signalling, instead of just tlr4, in 

mediating Palladium/Gold bead induced anti-tumour effects of macrophages. 

RNA sequencing of macrophages isolated from Palladium bead implanted zebrafish 

indeed was an invaluable insight into the underlying mechanisms that mediated the anti-tu-

mour phenotype. By combining evidence from the literature and RNA sequencing data, we 

hypothesis that the TLR receptor family in macrophages play a key role in mediating the ob-

served anti-tumour response in Palladium and Gold bead implanted zebrafish. This hypothe-

sis was formed based on key evidence that indicated an increase in tnf-𝑎 and cxcl8b.1 ex-

pression in macrophages of Palladium bead implanted zebrafish.  

 

3.4.1. RT-qPCR confirms upregulation of cxcl8b.1 and tnf-𝑎 expression in Pal-

ladium and Gold bead implanted zebrafish. 

Reverse transcription quantitative PCR was conducted in order to confirm upregula-

tion of cxcl8b.1 and tnf-𝑎 in Palladium and Gold bead implanted zebrafish compared to Naked 

bead implanted zebrafish. In addition, we investigated the expression of other classically in-

flammatory genes, il-4, tgfβ1-a and il1-β	 . Macrophages were isolated from mpeg1:EGFP, 

U87-nls-mKate2 xenografted zebrafish implanted with Palladium, Gold or Naked beads. The 

relative fold change for each condition was calculated using the delta-delta CT method for 

each gene of interest using beta-actin as the reference gene. Final delta-delta CT fold change 

for each condition was normalised to the expression of each gene of interest in Naked bead 

implanted zebrafish. Zebrafish implanted with Naked beads served as an ideal control as any 

measurable genetic alterations could be attributed to Gold and Palladium nanoparticles sol-

idly supported on the surface of the polystyrene bead.    
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Reverse transcription quantitative PCR confirmed the upregulation of proinflammatory 

cytokines cxcl8b.1 and tnf-𝑎 in Palladium and Gold bead implanted zebrafish. In agreement 

with RNA sequencing expression data set, a 3.5 fold increase in tnf-𝑎 expression was recorded 

in Palladium (p = 0.0003) and Gold (p = 0.0658) bead implanted zebrafish (Figure 25). The 

upregulation of cxcl8b.1 in Palladium and Gold bead implanted zebrafish by six folds (p = 

0.050) and three folds (p = 0.0011) was recorded respectively. No significant difference in 

expression of either tgfβ1-a or il-4 anti-inflammatory cytokines was detected. Intriguingly, a 
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Figure 25. RT-qPCR confirms upregulation of cxcl8b.1, tnf-𝑎 and il-1β expres-
sion in Palladium and Gold bead implanted zebrafish. 
Timeline (Blue arrows) illustrates workflow for qPCR experiment described here. RT-qPCR of each gene of 

interest (tnf-a, cxcl8b.1 il-4, tgfβ1-a and il-1β) were conducted on macrophages isolated from 5 day post 

fertilised, U87-nls-mKate xenografted, mpeg1:EGFP zebrafish implanted with either Palladium, Gold or Naked 

Beads. mpeg1:EGFP zebrafish were xenografted with U87-nls-mKate2 at 3 dpf. Bead implantation procedure 

occurred 24 hours after xenograft at 4 dpf. The relative fold change for each condition was calculated using the 

delta-delta CT method for each gene of interest using beta-actin as the reference gene. Final delta-delta CT fold 

change for Gold and Palladium bead implanted zebrafish were normalised to the expression of each gene of 

interest in Naked beads implanted zebrafish (Dotted horizontal line, Naked Beads). Two-tailed student t-test 
was conducted comparing each gene of interest to Naked bead implanted zebrafish. Macrophage were isolated 

from homogenised brain tissue from 200 embryo (n) for each biological replicates (N). One way ANOVA statistical 

analysis and Tukey’s multiple comparisons test were conducted to calulate p values. p values were indicated 

where statistically significant (p < 0.05). Error bar indicated standard error.  
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significant upregulation of a potent inflammatory cytokine, il-1β, by 2 folds was recorded only 

in Palladium bead implanted zebrafish. Thus altogether, the increase in tnf-𝑎, cxcl8b.1 and il-

1β supports the hypothesis that TLR family signaling play a key role in mediating the observed 

anti-tumour response in Palladium and Gold bead implanted zebrafish.  

 

3.4.2. IRAK-4-IN-1 Pharmacological inhibition of TLR family signalling de-

creases tnf-𝑎 and cxcl8b.1 expression. 

In order to elucidate the level of contribution of TLR family signalling on tnf-𝑎 and 

cxcl8b.1 expression in vivo, pharmacological inhibition of TLR signalling was employed using 

commercially available pharmacological inhibitor IRAK4-IN-1. IRAK4-IN-1 is a selective inhib-

itor of Interleukin-1 receptor associated kinase 4 (IRAK4) with a reported IC50 of 7 nM in-vitro 

and high bioavailability in-vivo (Smith et al., 2017). IRAK4 plays a critical role in mediating TLR 

signal transduction and innate immune responses (Gimenez et al., 2019). Ligand binding to 

TLR on the extracellular domain leads to the dimerization of TLRs which recruits and activate 

cytosolic adaptor proteins such as MyD88 that recruits IL-1 receptor associated kinase 4 

(IRAK-4) to activate MAP kinases and nuclear factor (NF)-ⲕB. Prior to in vivo experiments, we 

first confirmed IRAK4-IN-1 inhibitor efficacy in zebrafish by reverse transcription qPCR. 

Zebrafish embryos were implanted with Palladium beads and either treated with 10 µM 

IRAK4-IN-1 or 1% DMSO. The aim of this experiment was to confirm IRAK4-IN-1 inhibitor 

efficacy in zebrafish thus Palladium bead implantation was sufficient for this study. Reverse 

transcription qPCR of macrophages isolated from Palladium bead implanted zebrafish 

treated with 10 µM IRAK4-IN-1 inhibitor showed significantly downregulated expression of 

tnf-𝑎 , cxcl8b.1 and il-4 compared DMSO treated Palladium bead implanted zebrafish. The 

relative fold change for each gene of interest was normalised to Palladium bead implanted 

DMSO controls. A 70% decrease in tnf-𝑎 (p<0.0001) and cxcl8b.1 (p = 0.0017) expression 

was recorded in IRAK4-IN-1 treated zebrafish. While a 50% (p < 0.0001) decrease in il-4 

expression was recorded. No significant difference in expression of tgfβ1-a or il-1β was rec-
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orded as a result of treatment with 10 µM IRAK4-IN-1 inhibitor. Although no significant de-

crease in il-1β expression levels was recorded, the downregulation of tnf-𝑎 and cxcl8b.1, both 

key downstream genes of TLR activity, confirms the efficacy of IRAK4-IN-1 inhibitor for the 

first time in an in-vivo zebrafish model. It also validated the contribution of TLR signal trans-

duction in Palladium bead implanted zebrafish.  
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Figure 26. IRAK-4-IN-1 pharmacological inhibition of TLR family signalling de-

creases tnf-𝑎, cxcl8b.1 and il-4 expression. 
Timeline (Blue arrows) illustrates workflow for qPCR experiment described here. RT-qPCR of each gene of 

interest (tnf-a, cxcl8b.1 il-4, tgfβ1-a and il-1β) were conducted on macrophages isolated from 5 day post 

fertilised (dpf), Palladium bead implanted, U87-nls-mKate xenografted, mpeg1:EGFP zebrafish treated with 

either 1% DMSO or 10 µM IRAK4-IN-1 inhibitor. mpeg1:EGFP zebrafish were xenografted with U87-nls-

mKate2 at 3 dpf. Bead implantation procedure occurred 24 hours after xenograft at 4 dpf. Zebrafish were 
treated with either 1% DMSO or 10 µM IRAK4-IN-1 for 24 hours between 4 dpf and 5 dpf. The relative fold 

change for each condition was calculated using the delta-delta CT method for each gene of interest using 

beta-actin as the reference gene. Final delta-delta CT fold change for IRAK4-IN-1 treated Palladium bead 

implanted zebrafish were normalised to the expression of each gene of interest in DMSO treated Palladium 

bead implanted zebrafish (Dotted horizontal line, Palladium bead 1% DMSA). Two-tailed student t-test was 

conducted comparing each gene of interest to DMSO treated zebrafish. Macrophage were isolated from 

homogenised brain tissue from 200 embryo (n) for each biological replicates (N). One way ANOVA statistical 

analysis and Tukey’s multiple comparisons test were conducted to calulate p values. p values were indicated 

where statistically significant (p < 0.05). Error bar indicated standard error.  
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3.4.3. Pharmacological inhibition of TLR signalling promotes U87 cell survival 

in Gold bead implanted zebrafish. 

To elucidate if TLR signalling contributed to the overall macrophage mediated anti-

tumour phenotype observed in Palladium and Gold bead implanted zebrafish, the effects of 

TLR inhibition on U87 survival was investigated in vivo. mpeg1:EGFP zebrafish implanted with 

Gold, Palladium and Naked beads were either treated with 1% DMSO or 10 µM IRAK4-IN-1 

inhibitor. The effect on U87-nls-mKate2 survival was assessed for each condition as a meas-

ure for anti-tumour efficacy. We hypothesised that the inhibition of TLR signalling in the anti-

tumour phenotype would promote U87 cell survival in the zebrafish brain. 

First, it was established that IRAK4-IN-1 did not directly affect U87-nls-mKate2 sur-

vival. To do so, bead null U87-nls-mKate2 xenografted zebrafish were treated with 10 µM 

IRAK4-IN-1. The results showed that IRAK4-IN-1(10 µM) had no direct effect on U87-nls-

mKate2 cellular growth. Both DMSO and IRAK4-IN-1 treated, bead null, zebrafish conditions 

indicated identical growth rates up to 3 days post transplantation (dpt) (Figure 27A). An aver-

age increase of 30% in cell number was recorded for both IRAK4-IN-1 treated and DMSO 

bead null zebrafish conditions. Similarly, 10 µM IRAK4-IN-1 treatment of Naked Bead im-

planted zebrafish indicated no significant alterations in U87-nls-mKate2 cellular growth (Fig-

ure 27B) when compared to DMSO treated counterpart. Naked bead implanted led to an 

impairment of U87-nls-mKate2 proliferation but not its ability to survive in the zebrafish brain. 

No significant increase in U87-nls-mKate2 cell number was recorded for both DMSO and 

IRAK4-IN-1 treated Naked bead implanted zebrafish over the course of the experiment (Fig-

ure 27B). The results here highlighted the absence of TLR signalling in Naked bead implanted 

zebrafish. 
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Figure 27. Pharmacological inhibition of IRAK4 promotes U87 cell survival in Gold 

bead implanted zebrafish. 
Timeline (Blue arrows) illustrates workflow for in vivo IRAK4-IN-1 inhibitor experiments described here. mpeg1:EGFP 

zebrafish were xenografted with U87-nls-mKate2 at 3 day post fertilisation (dpf) and implanted with Gold, Palladium 

or Naked Bead at 4 dpf. Bead implanted and U87-nls-mKate2 xenografted zebrafish were treated with either 1% 

DMSO or 10 µM IRAK4-IN-1 for the duration of the experiment from 4 dpf to 7 dpf (0 dpt to 3 dpt). U87-nls-mKate2 

cell numbers were expressed as a ratio calculated by the number of cells at 1 or 3 dpt divided by the number of cells 

at 0 dpt. Two-tailed student t-test was conducted comparing the average cell number for each condition on each 

day. p values were shown for significant results (p<0.05) Standard error was plotted for all error bars in all graphs.  

(A) No effect on U87-nls-mKate2 cell survival was recorded following IRAK4-IN-1 inhibitor treatment. Both DMSO 

and IRAK4-IN-1 treated, bead null, zebrafish conditions indicated identical growth rates up to 3 days post 

transplantation (dpt) 

(B) Naked bead implanted led to an impairment of U87-nls-mKate2 proliferation but not its ability to survive in the 

zebrafish brain. No significant increase in U87-nls-mKate2 cell number was recorded for both DMSO and IRAK4-IN-
1 treated Naked bead implanted zebrafish over the course of the experiment 

(C) Inhbiton of TLR signalling had no significant effect on U87-nls-mKate cell survival. A significant decrease of 60% 

in U87-nls-mKate2 cell count for both DMSO and IRAK4-IN-1 treated conditions was evident by 3 dpt. 

(D) IRAK4-IN-1 treatment in Gold bead implanted zebrafish promoted the survival of U87-nls-mKate2 (p = 0.012). A 

40% increase in U87-nls-mKate2 cell count was recorded in IRAK4-IN-1 treated zebrafish when compared to DMSO 

treated counterpart. 
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Intriguingly, no significant effect on U87-nls-mKate cell survival was evident in IRAK4-

IN-1 treated Palladium bead implanted zebrafish. Similar to results described previously, the 

implantation of Palladium bead led to a significant decrease in U87-nls-Kate2 cell count (Fig-

ure 27C). A significant decrease in U87-nls-mKate2 cell count for both DMSO and IRAK4-IN-

1 treated conditions was evident by 3 dpt (Figure 27C). A decrease of 60% in U87-nls-mKate2 

cell count was evident by 3 dpt for both DMSO and IRAK4-IN-1 treated conditions (Figure 

27C). It is important to note that the implantation of Palladium bead in addition to IRAK4-IN-

1 drug treatment was extremely detrimental to zebrafish survival. The implantation of Palla-

dium bead led to a 33% survival rate compared to 98% in Gold bead implanted zebrafish 

(Figure 23H). The additional treatment with IRAK4-IN-1 inhibitor led to poor survival rates 

(results not shown) of Palladium bead implanted zebrafish below that of 33% threshold. This 

was evident by the low n number (n = 6) illustrated in Figure 27C. Thus this may rationalise 

the results where IRAK4-IN-1 treatment in Palladium bead implanted zebrafish had no effect 

in promoting U87-nls-mKate2 cell survival.  

In contrast, IRAK4-IN-1 treatment in Gold bead implanted zebrafish promoted the 

survival of U87-nls-mKate2 (p = 0.012). A 40% increase in U87-nls-mKate2 cell count was 

recorded when compared to DMSO treated Gold implanted zebrafish (Figure 27D). However, 

the treatment with IRAK4-IN-1 in Gold bead implanted zebrafish only elicited a partial recov-

ery of U87-nls-mKate2 cell number. U87-nls-mKate2 cell count in IRAK4-IN-1 treated Gold 

bead implanted zebrafish at 3 dpt (0.603 ± 0.0938) was at a level half that of bead null im-

planted zebrafish (1.50 ± 0.0775). Despite this, the rescue of U87-nls-mKate2 survival in Gold 

bead implanted zebrafish (0.603 ± 0.0938) was comparable to cell ratios recorded in Naked 

Bead (0.781 ± 0.197) implanted zebrafish at 3 dpt. Thus this indicated that there may be 

additional signalling pathways, outside of TLR family, that form part of the anti-tumour phe-

notype.  

In conclusion, TLR signalling did indeed contribute to macrophage mediated anti-

tumour phenotype. The results here indicated that TLR signalling consisted part of the regu-

latory mechanisms that contributed to a proportion of the anti-tumour phenotype only in Gold 
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bead implanted zebrafish. A partial recovery of U87-nls-mKate2 cell number in IRAK4-IN-1 

treated Gold bead implanted zebrafish was recorded. This highlighted additional unknown 

mechanisms, outside TLR signalling, that may have contributed to Naked bead mediated im-

pairment of U87-nls-mKate2 cell proliferation. Nonetheless, TLR receptor family in macro-

phages play a key role in mediating the observed anti-tumour responses in Gold bead im-

planted zebrafish. 
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3.5. Investigating the role of tnf-𝑎 and cxcl8b.1 in the anti-tumour re-
sponses of macrophages and neutrophils using CRIPSR-Cas9 and 
genetic transgenesis overexpression strategies. 

In conjunction with the NC3Rs (National Centre for the Replacement, Refinement and 

Reduction of Animals in Research), further refinement of future experiments were conducted 

due to the innate toxicity of Palladium bead implantation. Gold bead implantation was now 

well established to initiate an anti-tumour response. Results from RT-qPCR studies had 

demonstrated that Gold bead implantation, like Palladium bead, stimulated increased tnf-𝑎 

and cxcl8b.1 expression. In addition, it was confirmed that TLR signalling in Gold bead im-

planted zebrafish, not in Palladium bead implanted zebrafish, significantly contributed to 

macrophage mediated anti-tumour responses. However, one key benefit that separated Gold 

bead from Palladium bead was lower bead toxicity. The survival rates for Gold bead implanted 

zebrafish was significant higher than Palladium bead implanted zebrafish; 98% vs 33%. In 

fact, survival rates in Gold bead implanted zebrafish were comparable to that of Naked bead 

implanted and bead null zebrafish (Figure 23H). Therefore, the refinement of future experi-

ments excluded Palladium bead implantation in order to reduce animal numbers and to refine 

the care of animals to keep suffering to a minimum. 

The results thus far concluded that TLR family signalling was an important signal 

transduction pathway that mediated Gold bead induced anti-tumour phenotype in macro-

phages. However, the exact genetic effector of TLR family activation had not been identified. 

Based on key evidence from the literature and from previous RT-qPCR results, it was well 

established that TLR signalling regulated the expression of pro-inflammatory cytokines tnf-a 

and cxcl8b.1. The upregulation of cxcl8b.1 is known to be a potent chemoattract for neutro-

phils (Manfroi et al., 2017). It is widely accepted that macrophages regulate site specific re-

cruitment of neutrophil to facilitate the inflammatory response (Kim and Luster, 2015). As a 

result, future experimental design also explored the contribution of neutrophils to Gold in-

duced anti-tumour effects. Thus, we hypothesised that Gold bead implantation recruited neu-

trophils into the zebrafish brain and that the expression of tnf-a and cxcl8b.1 in macrophages 

stimulated an anti-tumour response in macrophages and/or neutrophils in the zebrafish brain. 
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In order to test this, a set of experiments combining CRISPR-cas9 knock out and genetic 

overexpression strategies were employed. These experiments aimed to evaluate the effects 

of tnf-𝑎 and cxcl8b.1 expression in macrophages on the dynamics of anti-tumour responses 

of both macrophages and neutrophils in the zebrafish brain. 

 

3.5.1. Implantation of Gold beads recruit neutrophils into the zebrafish brain. 

In order to test if Gold bead implantation did indeed recruit neutrophils into the brain 

of the zebrafish, mpo:EGFP zebrafish were xenografted with U87-nls-mKate at 3 dpf and 

were implanted with Naked and Gold beads at 4 dpf. Myeloperoxidase (MPO) is a neutrophil 

specific promoter that drives EGFP expression in mpo:EGFP zebrafish. The effects on neu-

trophil recruitment after bead implantation were subsequently studied at 0,1 and 3 dpt.  

Neutrophils are an important cell type of the innate immune system. They rapidly 

migrate to tissue in response to injury or infection and are one of the first responders of the 

immune system (Kim and Luster, 2015). Thus it was unsurprising that the implantation of 

Naked and Gold bead led to the recruitment of neutrophils into the brain. When compared to 

bead null zebrafish, both Naked and Gold bead implanted mpo:EGFP zebrafish showed in-

creased neutrophil infiltration into the brain at 1 and 3 dpt (Figure 28). However, the results 

indicated that Gold bead implanted zebrafish recruited more neutrophils into the brain of the 

zebrafish than Naked bead implanted. At 1 dpt, an average of 13.2 ± 1.27 neutrophils were 

present in Gold bead implanted zebrafish versus an average of 7.00 ± 1.43 neutrophils in 

Naked bead implanted zebrafish (p = 0.0026) (Figure 28D’). Similar to macrophages, neutro-

phils were observed to localized in the vicinity of the beads in Gold implanted zebrafish (Figure 

28C’). However, by 3 dpt neutrophil level in Gold bead implanted zebrafish recovered to the 

same level as Naked bead implanted zebrafish (6.76 ± 0.633 versus 7.17 ±  1.96) (Figure 

28D’’). In addition, neutrophil numbers in the brain of both Gold and Naked bead implanted 

zebrafish remained significantly (p < 0.05) elevated for the duration of the experiment up to 3 

dpt when compared to bead null zebrafish (Figure 28D’’). This indicated that the Naked bead 

itself recruited neutrophils and that recruited neutrophils persisted in the brain for the duration 
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of the experiment. Thus this may indicate two distinct neutrophil recruitment events occurring 

with the first, a reaction to the foreign body (polystyrene bead) and the second, a reaction to 

Gold nanoparticles solidly supported on the beads. These results here conclude that Gold 

bead implantation recruited higher number of neutrophils than Naked bead but only at 1 dpt.  

Establishing that neutrophil infiltrated the brain as a result of Gold bead implantation 

was an important step forward in this study. It confirmed the hypothesis that neutrophils in-

filtrated the brain following Gold bead implantation, hypothesis postulated based on results 

from previous RT-qPCR studies. The increase in Gold bead induced neutrophil recruitment, 

at 1 dpt, coincided with a six folds increase in cxcl8b.1 and three folds increase in tnf-𝑎 ex-

pression in macrophages of Gold bead implanted zebrafish. The timeline of experiments for 

both in-vivo and RT-qPCR studies were aligned as RNA extraction from macrophages of Gold 

bead implanted zebrafish both occurred at 1 dpt. This solidified support for the key role of 

tnf-𝑎 and cxcl8b.1 expression in mediating the anti-tumour response of macrophages and 

neutrophils. The neutrophil study drove a paradigm shift that included both macrophages and 

neutrophils as a contributing factor in mediating Gold bead induced anti-tumour responses. 

Studies have shown that both macrophages and neutrophils had been identified to be im-

portant effector cells of the anti-tumour effect (Fridlender et al., 2009, Reichel et al., 2019). 

Thus it was important to investigate how tnf-a and cxcl8b.1 expression in macrophages in-

fluenced the dynamics of intercellular interactions that regulated the anti-tumour effect of 

these innate immune cells. We hypothesized that cxcl8b.1 and tnf-a expression in macro-

phages were important genetic mediators of Gold bead implantation that facilitated the anti-

tumour effects of macrophages and neutrophils in the zebrafish brain. 
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Figure 28. Gold bead implantation promoted neutrophil infiltration at 1 day post 

transplantation in the zebrafish brain. 
(A-C) The implantation of Gold bead led to increase neutrophil infiltration into the brain at 1 dpt. Both Naked and 

Gold bead showed increased neutrophil recruitment when compared to bead null control zebrafish. Human derived 

Lv-cppt-IRES-nls-mKate2-opre transformed U87-nls-mKate2 cells (not shown) were xenografted into neutrophil 

labelled (Green), 3 days post fertilized (dpf), mpo:EGFP zebrafish. Following a 24 hour recovery phase, xenografted 
zebrafish were implanted with Gold or Naked bead. Images from left to right are in chronological order showing 

0,1 and 3 day post bead transplantation (dpt). Images from top to bottom showing: (A-A’’) U87-nls-mKate2 

xenografted mpo:EGFP zebrafish No bead control, (B-B’’) U87-nls-mKate2 xenografted mpo:EGFP zebrafish 

implanted with Naked bead, (C-C’’) U87-nls-mKate2 xenografted mpo:EGFP zebrafish implanted with Gold bead. 

Red circles in images denotes boundary of Gold or Naked beads in the zebrafish brain. All Images were captured 

using an Andor spinning disk confocal microscope with a 20X/NA 0.75 objective. Scale bars set at 50 um. 
Brightfield image is representative of the orientation and imaging field of the fluorescent images shown in images 

A-C. 

(D-D’’) Gold bead implantation (13.2 ± 1.27 neutrophils) led to a statically significant (p = 0.0026) increase in 

neutrophil infiltration into the brain of the zebrafish at 1 dpt when compared to Naked bead (7.00 ± 1.43 neutrophils). 

By 3 dpt, both Gold (6.76 ± 0.633 neutrophils) and Naked bead (7.17 ± 1.96 neutrophils) implantation had 

significantly elevated number of neutrophils when compared to bead null controls (1.55 ± 0.312 neutrophils). One 

way ANOVA statistical analysis and Tukey’s multiple comparisons test were conducted to calulate p values. p 

values were indicated where statistically significant (p < 0.05). Error bar indicated standard error.  
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3.5.2. CRISPR-Cas9 manipulation of tnf-𝑎 and cxcl8b.1 were specific to genetic 

targets. 

 To investigate the function of tnf-𝑎 and cxcl8b.1 in promoting anti-tumour effects of 

macrophages and neutrophils, tnf-a and cxcl8b.1 were targeted using CRISPR manipulation 

with a gene-specific guideRNA (gRNA). Zebrafish embryo were injected with tnf-a and 

cxcl8b.1 gRNA at the one cell stage in order to introduce mutations at specific restrictions 

sites in the genes. Due to the high efficiency of CRISPR-Cas9 system, transient knock out of 

tnf-a and cxcl8b.1 function was conducted. The tnf-𝑎 gene was targeted using gRNA de-

scribed previously and robustly reduced tnf-𝑎 protein levels in western blots (Tsarouchas et 

al., 2018). Efficient mutation of tnf-𝑎 gene was introduced into zebrafish larvae by co-injecting 

Figure 29. Restriction fragment length polymorphism (RFLP) analysis revealed that 

tnf-𝑎 CRISPR-Cas9 manipulation induced mutations in exon 4. 
RFLP analysis of wild type (WIK) zebrafish embryos (1dpf) co-injected, 24 hours prior, with tnf-𝑎 MwoI gRNA and tnf-

𝑎 BslI gRNA. gRNA injection induced site directed mutagenesis of respective restriction enzyme sites on exon 4. Each 

well represented PCR product from a single embryo.    

(A) The mutation of MwoI restriction site on tnf-𝑎 exon 4 conferred resistance to MwoI restriction endonuclease 

digestion. MwoI restriction digest of PCR product from uninjected zebrafish yielded DNA fragments at 114 bp and 92 

bp. The mutation of MwoI restriction site would yield an expected fragment of 206 bp for tnf-𝑎 MwoI (Black arrow) 

similar to uninjected and undigested control zebrafish.  

(B) The inhibition of restiction endonuclease digestion by BslI on tnf-𝑎 exon 4 was also evident. BslI restriction digest 

of PCR product from uninjected zebrafish yielded DNA fragments of 147 and 60 bp. The mutation of BslI restriction 

site by tnf-𝑎 BslI gRNA resulted in the inhibition of BslI restriciton digest yielding a 207 bp long DNA fragment (Black 

arrow).  

A. 

B. 
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two gRNA directing a double mutation on exon 4 of tnf-𝑎. First we confirmed efficient intro-

duction of CRISPR-Cas9 mediated site directed mutagenesis of tnf-𝑎 gRNA by restriction 

fragment length polymorphism analysis (RFLP)(Figure 29). RFLP analysis was conducted on 

each embryo to confirm CRISPR-Cas9 mediated site directed mutagenesis. The co-injection 

of tnf-𝑎 MwoI gRNA and tnf-𝑎 BslI gRNA resulted in efficient somatic mutation at gRNA target 

sites 24 hours after injection. A resistance to restriction endonuclease digestion by MwoI 

(Figure 29A) and BslI (Figure 29B) was evident in RFLP analysis. Mutation of the MwoI re-

striction site inhibited restriction digest and resulted in a band shift on agarose gel producing 

undigested DNA fragment 206 bp long (Figure 29A). Likewise, the mutation of the BslI re-

striction site inhibited BslI restriction digest also reflected as a band shift during RFLP analy-

sis. Mutation of BslI restriction site produced a single band which indicated undigested DNA 

product 207 bp long (Figure 29B). 

cxcl8b.1 was targeted using gRNA designed specifically for this study. Several itera-

tions of the design process were required in order to achieve knock out of cxcl8b.1, albeit 

only a partial knock out of cxcl8b.1 was finally achieved. In total, three gRNAs were designed 

to target cxcl8b.1 BslI Exon 3, cxcl8b.1 RsaI Exon 2 and cxcl8b.1 AluI Exon 4. RFLP analysis 

was conducted on 1 dpf wild type (WIK) zebrafish injected 24 hours prior with each gRNA. 

cxcl8b.1 BslI gRNA injection failed to introduce any mutations at BslI restrictions sites on 

exon 3 (Figure 30A). No band shift was detected when analysing digested PCR product of 

cxcl8b.1 BslI gRNA injected and uninjected zebrafish (Figure 30A). The complete digestion of 

PCR product indicated an active BslI restriction site on exon 3 in all cells of the zebrafish. 

While on the other hand, cxcl8b.1 RsaI gRNA induced inefficient site directed mutagenesis. 

Complete RsaI digestion of PCR product (197 bp and 41 bp (not visible)) was evident for most 

injected zebrafish except two (Figure 30B). These two zebrafish sample indicated partially 

digested product (Figure 30B, Black arrow) showing very a faint band (238 bp) where mutated 

fragments were expected. However, the inefficient nature of cxcl8b.1 RsaI gRNA induced 

mutagenesis made it not viable for knock out studies. In contrast, RFLP analysis of zebrafish 

injected with cxcl8b.1 AluI gRNA showed more promise. RFLP analysis indicated a band shift 
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towards 181 bp where DNA fragments with mutated AluI restriction sites were expected. 

However, faint bands indicating partially digested DNA fragments at 111 bp and 70 bp were 

also visible. Thus cxcl8b.1 AluI Exon 4 mutations were not conferred efficiently into all cells 

of the zebrafish. Nonetheless, as neutrophils are highly sensitive to cxcl8b.1 cytokine, a partial 

knock out of cxcl8b.1 expression maybe sufficient to elicit a detectable phenotype.  

 
Finally, in order to confirm that site directed mutagenesis by CRISPR-Cas9 was spe-

cifically mediated by each target specific gRNA sequences. Scrambled gRNA sequence and 

Figure 30. Restriction fragment length polymorphism (RFLP) analysis revealed 

partial mutation of cxcl8b.1 AluI restriction site. 
RFLP analysis of 1 dpf wild type (WIK) zebrafish injected, 24 hours prior, with cxcl8b.1 BslI gRNA, cxcl8b.1 RsaI 

gRNA or cxcl8b.1 AluI gRNA. Each well represented PCR product from a single embryo. 

(A) No band shift was detected when analysing digested PCR product of cxcl8b.1 BslI gRNA injected and uninjected 

zebrafish. The complete digestion of PCR product indicated an active BslI restriction site on exon 3 in all cells of the 

zebrafish. Complete BslI digestion of PCR product was expected to yield DNA fragments 158 bp and 55 bp long. 

(B) The injection of cxcl8b.1 RsaI gRNA induced inefficient site directed mutagenesis. Complete RsaI digestion of 

PCR product (197 bp and 41 bp (not visible)) was evident for most injected zebrafish. Two zebrafish sample indicated 

partial ly digested product (Black arrow) showing very a faint band (238 bp) where mutated fragments were expected. 

Thus, most cells in the zebrafish contained a fully function RsaI restriction site on exon 2. 

(C) cxcl8b.1 AluI gRNA injections induced mutations of AluI restriction sites in some cells of the zebrafish. The 

mutation of AluI restriction sites induced a band shift towards 181 bp where DNA fragments with mutated AluI 

restriction sites were expected. However, faint bands indicating partially digested DNA fragments at 111 bp and 70 

bp were also visible. 
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the components required for CRISPR-Cas9 mutagenesis (see section 2.9.1) were injected 

into wild type (WIK) zebrafish. RFLP analysis was conducted on each specific target re-

striction site in order to determine if mutations were conferred; tnf-𝑎 BslI, tnf-𝑎 MwoI and 

Cxcl8b.1 AluI (Figure 31). RFLP analysis indicated a complete digestion of all PCR products 

by each respective restriction enzyme of scrambled gRNA injected zebrafish. Mutations of 

restrictions sites were not conferred by scrambled gRNA or any of the components of 

CRISPR-Cas9 mutagenesis. The digestion of each tnf-𝑎 PCR product by respective BslI and 

MwoI restriction enzyme produced DNA fragments that indicated active, unmutated, re-

striction sites (Figure 31). Likewise, AluI Restriction endonuclease digestion of PCR product 

emcompassing restriction site of cxcl8b.1 AluI Exon 4 produced DNA fragments of 111 bp 

and 70 bp (Figure 31). This indicated an active AluI restriction site. Together, the results im-

plied that the injection of scramble gRNA and components of CRISPR-Cas9 mutagenesis did 

not induce mutations at tnf-𝑎 MwoI Exon 4, tnf-𝑎 BslI Exon 4 or cxcl8b.1 AluI Exon 4 re-

striction sites. Therefore, gRNA directing CRISPR-Cas9 knockouts were indeed specific for 

each genetic target of interest. These experiment were vital in establishing that the CRIPSR-

Cas9 knockout strategies employed were reproducible and specific for tnf-𝑎 and cxcl8b.1. 

Next we tested the hypothesis that tnf-𝑎 and cxcl8b.1 expression in macrophages were im-

portant genetic mediator of Gold bead induced anti-tumour responses of macrophages and 

neutrophils in the zebrafish brain. 
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Figure 31. The injection of scramble gRNA and components of CRISPR-

Cas9 mutagenesis did not induce restriction site mutations.  
Restriction Fragment Length Polymorphism analysis showed complete digestion of all PCR products from 

specifc regions emcompassing CRISPR target restriction sites of zebrafish injected with scramble gRNA. 

(A) PCR was conducted on scramble gRNA injected zebrafish emcompassing restriction sites of tnf-𝑎 BslI 

Exon 4 (left) and tnf-𝑎 MwoI Exon 4 (right). The digestion of each PCR product by respective BslI and MwoI 

restriction enzyme produced DNA fragments that indicated active, unmutated, restriction sites. BslI 

digestion produced DNA fragments of 147 bp and 60 bp. MwoI digestion produced DNA fragments of 114 

bp and 92 bp. The injection of scramble gRNA did not induce mutations at these restriction sites. 

(B) AluI Restriction endonuclease digestion of PCR product emcompassing restriction site of cxcl8b.1 AluI 
Exon 4 produced DNA fragments of 111 bp and 70 bp. This indicated an active AluI restriction site. Thus 

implied that the injection of scramble gRNA also did not induce mutations at AluI restriction sites. 

  

A. 

B. 



 

Page 130 
 

3.5.3. CRISPR knockout of tnf-𝑎 and cxcl8b.1 had no effect on Gold induced 

anti-tumour responses of macrophage and neutrophils. 

The function of tnf-𝑎 and cxcl8b.1 in mediating Gold induced anti-tumour effects were 

investigated using CRISPR knock out solutions as described before. We tested the hypothe-

sis that cxcl8b.1 and tnf-a expression in macrophages were important genetic mediators of 

Gold bead implantation that facilitated the anti-tumour effects in the zebrafish brain. In order 

to do so, mpeg1:EGFP or mpo:EGFP zebrafish were co-injected with tnf-𝑎 BslI, tnf-𝑎 MwoI 

and cxcl8b.1 AluI gRNA in order to knockout tnf-𝑎 and partially knockout cxcl8b.1 expression. 

Injected zebrafish were implanted with either Gold or Naked beads and the effects on U87-

nls-mKate2 survival, macrophage number and neutrophil infiltration were evaluated at 0, 1 

and 3 dpt. RFLP analysis was conducted on all zebrafish larvae at the end of in-vivo experi-

ments to confirm knockout of tnf-𝑎 and cxcl8b.1.  

The consequences of tnf-𝑎 and cxcl8b.1 knockout on macrophage number was an-

alyzed to understand if tnf-𝑎 and cxcl8b.1 played a role in Gold bead induced macrophage 

recruitment. The implantation of Gold and Naked beads in wild type and double knockout 

mpeg1:EGFP zebrafish induced an initial spike in macrophage intensities at 1 dpt. The knock-

out of tnf-𝑎 and cxcl8b.1 in Gold bead implanted zebrafish elicited no detectable effects on 

macrophage intensities when compared to wild type (p= 0.943) (Figure 32H-I). A 12 and 10 

fold increase in macrophage intensities were recorded in, Gold bead implanted, wild type and 

knockout mpeg1:EGFP zebrafish respectively (Figure 32H). Likewise, the implantation of Na-

ked beads also induced a similar spike in macrophage intensities at 1 dpt, although to a lesser 

degree. A 6 folds and 8 fold increase in macrophage intensities of Naked bead implanted wild 

type and knockout zebrafish were recorded respectively (Figure 32H). This initial spike in 

macrophage intensities were attributed to a response to the foreign body and also the clear-

ance of necrotic tissue as a result of the injury caused by the implantation procedure. Clear-

ance of necrotic cell bodies were observed after 1 dpt (see section 3.3.3 for details). At 3 dpt,  
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Figure 32. CRISPR knockout of tnf-𝑎 and cxcl8b.1 had 

no effect on Gold induced anti-tumour responses of 

macrophage. 
(A-E) tnf-𝑎 and cxcl8b.1 expression were knocked out using CRISPR in, 

macrophage labelled (Green), mpeg1:EGFP zebrafish. Human derived Lv-

cppt-IRES-nls-mKate2-opre transformed U87-nls-mKate2 cells (White) 
were xenografted into 3 days post fertilized (dpf) wild type and tnf-

𝑎/cxcl8b.1 double knockout mpeg1:EGFP zebrafish. Zebrafish embyros (4 
dpf) were implanted with Gold or Naked bead and imaged using an Andor spinning disk confocal microscope 

with a 20X/NA 0.75 objective. Scale bars were set at 50 µm. Images from left to right are in chronological 

order showing images from 0 and 3 day post bead transplantation (dpt). (A) The knockout of pro-inflammatory 
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a recovery of macrophage intensities was observed for all zebrafish genetic conditions in-

cluding both Gold and Naked bead implanted zebrafish. However, as previously reported 

(section 3.3.2), the recovery of macrophage intensities to basal levels was not evident in Gold 

bead implanted zebrafish. At 3 dpt, Gold bead implantation in both wild type and double 

knockout conditions stimulated a 2 fold increase in macrophage intensities when compared 

to Naked bead implanted zebrafish and bead null wild type controls (Figure 32H). Thus the 

implantation of Gold beads recruited macrophages and the knockout of tnf-𝑎 and cxcl8b.1 

expression had no effect on Gold bead mediated macrophage recruitment in the zebrafish 

brain.  

To understand if tnf-𝑎 and cxcl8b.1 knock out had a consequence on neutrophil re-

cruitment, Gold and Naked beads were implanted into wild type and double knock out tnf-

a/cxcl8b.1 mutant mpo:EGFP zebrafish. The effects on neutrophil recruitment were closely 

examined. Previously, we showed that the implantation of Gold bead into the brain of wild 

type zebrafish stimulated increased neutrophil recruitment into the brain of the zebrafish at 1 

cytokines tnf-𝑎 and cxcl8b.1 expression in bead null zebrafish had no effect on U87-nls-mKate2 proliferation. 

Tnf-a and cxcl8b.1 expression does not contribute to U87-nls-mKate2 survival. (B) The double knockout of 

mpeg1:EGFP zebrafish had no effect on Gold induced anti-tumour responses. (C) Gold induced anti-tumour 

responses in double knock out were identical to wild type conditions. (D) The double knockout of tnf-𝑎 and 

cxcl8b.1 in naked bead zebrafish had no effect on U87-nls-mKate2 survival. U87-nls-mKate2 survived in the 

brain but did not proliferate. (E) The implantation of Naked bead into wild type zebrafish also had no effect on 

U87-nls-mKate2. U87-nls-mKate2 also survived in the brain but did not proliferate.  

(F) U87-nls-mKate cell numbers were expressed as a ratio calculated by the number of cells at 1 or 3 day post 

transplantation (dpt) divided by the number of cells at 0 dpt.  

(G) At 3 dpt, the implantation of Gold bead elicit a potent anti-tumour effect on both wild type and double knock 

out zebrafish. tnf-𝑎 and cxc8b.1 did not contribute to the anti-tumour phenotype. 

(H) Macophage intensity were expressed as a ratio calculated by the sum of intensity at 1 or 3 day post 

transplantation (dpt) divided by the sum of intensity at 0 dpt. All bead implanted zebrafish elicit a spike in 

macrophage intensities at 1 dpt.  

(I) At 3 dpt, the implantation of Gold bead recruited more macrophages into the brain than Naked bead 

implanted zerbrafish. Knock out of tnf-𝑎 and cxcl8b.1 had no effect on macrophage recruitment into the brain 

of Gold bead implanted zebrafish. 

Brightfield image is representative of the orientation and imaging field of the fluorescent images shown in 

images A-D and A’-D’. 

One way ANOVA statistical analysis and Tukey’s multiple comparisons test were conducted to calulate p 

values. p values were indicated where statistically significant (p < 0.05). Error bar indicated standard error.  

(J) The imaging field emcompassed both optic tectums of the zebrafish brain. The red box of the schematic 

image denotes boundary of the imaging region and represented the orientation of all images from A-E.   
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dpt (see section 3.5.1). In addition, qPCR results showed that Gold bead implantation in-

creased the expression of cxcl8b.1 and tnf-a. Thus we tested the hypothesis that tnf-𝑎 and 

cxcl8b.1 expression mediated Gold bead induced recruitment of neutrophil in the zebrafish 

brain.   

The implantation of Gold bead in double knockout tnf-𝑎/cxcl8b.1 mutant mpo:EGFP 

zebrafish showed a trend indicating attenuated neutrophil recruitment at 1 dpt (Figure 33F). 

However, two tailed students t-test revealed that the attenuation of neutrophil recruitment in 

double knock out mutants mpo:EGFP zebrafish at 1 dpt was statistically insignificant (p = 

0.108) (Figure 33F). At 1 dpt, Gold bead implantation in wild type and double mutant 

mpo:EGFP recruited an average of 13.2 ± 1.27 neutrophils and 10.3 ± 1.10 neutrophils re-

spectively (Figure 33F). Likewise, knockout of tnf-𝑎 and cxcl8b.1 had no effect on neutrophil 

recruitment in Naked bead implanted double mutant mpo:EGFP zebrafish when compared to 

its wild type counterpart (Figure 33G). At 1 dpt, an average of 9.18 ± 1.29 neutrophils and 

7.00 ± 1.43 neutrophils were present in Naked bead implanted double knockout mutant and 

wild type mpo:EGFP zebrafish respectively. Altogether, the knockout of tnf-𝑎 and cxcl8b.1 

expression had no effect on Gold bead induced neutrophil recruitment in the zebrafish brain.  

To investigate if tnf-𝑎 and cxcl8b.1 expression mediated Gold bead induced anti-

tumour phenotype, the consequences of tnf-𝑎 and cxcl8b.1 knockout on U87 survival was 

evaluated. The knock out of tnf-𝑎 and cxcl8b.1 expression had no effect on Gold induced 

anti-tumour responses. No significant difference in U87-nls-mKate cell number was recorded 

when comparing Gold bead implanted double knockout zebrafish and Gold bead implanted 

wild type zebrafish ( p = 0.227) (Figure 32G). The implantation of Gold bead led to a significant 

decrease of U87-nls-mKate2 cell count by an average of 86.9 ± 6.10%( (p < 0.0001) in knock-

out zebrafish and 66.3 ± 4.76%(p = 0.0003) in wild type zebrafish (Figure 32F-G). Likewise, 

when comparing the effects of Naked bead implantation into double knock out mutant 

zebrafish and wild type zebrafish on U87-nls-mKate survival no significant difference was 

recorded (p = 0.990) (Figure 32F-G). Naked bead implantation attenuated the proliferation of 

U87-nls-mKate but not its survival in the zebrafish brain. In addition, we confirmed that the 
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knockout of pro-inflammatory cytokines tnf-𝑎 and cxcl8b.1 expression in bead null zebrafish 

had no effect on U87-nls-mKate2 proliferation. At 3 dpt, U87-nls-mKate2 cell count increased 
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Figure 33. CRISPR knockout of tnf-𝑎 and cxcl8b.1 had no effect on Gold in-

duced neutrophil recruitment in the brain of mpo:EGFP zebrafish. 
(A-E) tnf-𝑎 and cxcl8b.1 expression were knocked out using CRISPR in, neutrophil labelled (Green), mpo:EGFP 

zebrafish. Human derived Lv-cppt-IRES-nls-mKate2-opre transformed U87-nls-mKate2 cells (White) were 

xenografted into 3 days post fertilized (dpf) wild type and tnf-𝑎/cxcl8b.1 double knockout mpo:EGFP zebrafish. 

Xenografted zebrafish embyros (4 dpf) were implanted with Gold or Naked bead and imaged using an Andor 

spinning disk confocal microscope with a 20X/NA 0.75 objective. Scale bars were set at 50 µm. Images from 

left to right are in chronological order showing images from 0 ,1 and 3 day post bead transplantation (dpt).  (A) 

The implantation of Gold bead into double knockout tnf-𝑎/cxcl8b.1 mutant mpo:EGFP zebrafish had no effect 

on neutrophil recruitment. (B) Implantation of Gold bead recruited neutrophils at 1 dpt and returned to basal 
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by 1.4 folds in bead null knockout zebrafish. The growth rates mirrored that of bead null wild 

type control mpeg1:EGFP zebrafish (Figure 32F). Thus, the results here indicated that tnf-𝑎 

and cxcl8b.1 expression did not contribute to mechanisms that promoted U87-nls-mKate2 

survival or Gold induced anti-tumour responses in the zebrafish brain.  

This study demonstrated that CRISPR knockout of tnf-𝑎 and cxcl8b.1 in Gold bead 

implanted zebrafish elicited no detectable phenotypic changes of the associated anti-tumour 

responses when compared to wild type. In support, the knockout of tnf-𝑎 and cxcl8b.1 did 

not alter the responses of either macrophages or neutrophils as a result of Gold bead implan-

tation. Both knockout and wild type zebrafish displayed identical kinetics for macrophages 

and neutrophils recruitment from 0 dpt to 3 dpt when comparing Gold bead implanted tnf-

𝑎/cxcl8b.1 knockout double mutant and Gold bead implanted wild type background. To con-

clude, tnf-𝑎 and cxcl8b.1 were not key mediators of Gold induced anti-tumour responses.  

  

level by 3 dpt. (C) Likewise, knockout of tnf-𝑎 and cxcl8b.1 had no effect on neutrophil recruitment in Naked 

bead implanted double mutant mpo:EGFP zebrafish when compared to (D) wild type counterpart.  
(E) The imaging field emcompassed both optic tectums of the zebrafish brain. The red box of the schematic 

image denotes boundary of the imaging region and represented the orientation of all images from A-D. 

(F) The implantation of Gold bead in double knockout tnf-𝑎/cxcl8b.1 mutant mpo:EGFP zebrafish showed a 

trend to indicated attenuated neutrophil recruitment at 1 dpt. However, two tailed students t-test revealed that 

the attenuation of neutrophil recruitment in double knock out mutants mpo:EGFP zebrafish at 1 dpt was 

statically insignificant (p = 0.108). At 1 dpt, Gold bead implantation in wild type and double mutant mpo:EGFP 

recruited an average of 13.2 ± 1.27 neutrophils and 10.3 ± 1.10 neutrophils respectively  

(G) The double knockout of tnf-𝑎 and cxcl8b.1 had no effect on Naked bead mediated neutrophil recruitment 

in the zebrafish brain. At 1 dpt, an average of 9.18 ± 1.29 neutrophils and 7.00 ± 1.43 neutrophils were present 

in Naked bead implanted double knockout mutant and wild type mpo:EGFP zebrafish respectively (p = 0.264).  
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3.5.4. mpeg1 driven mifepristone-inducible lexPR expression of RFP in macro-

phages showed weak expression of RFP fluorophore. 

In addition to loss of function experiments, gain of function experiments were con-

ducted to further investigate the role of tnf-𝑎 and cxcl8b.1 in mediating the anti-tumour phe-

notype. Ultimately, the overexpression of tnf-𝑎 and cxcl8b.1 attempted to replicate the anti-

tumour effects observed in the brain of Gold implanted zebrafish. Spatiotemporal control of 

the expression of tnf-𝑎 and cxcl8b.1 was attempted using an inducible genetic expression 

system. An inducible system conferred the capability to replicate the conditions of bead im-

plantation at 4 dpf instead of a ‘traditional’ transgenic overexpression of a transgene con-

trolled by a constitutively active cell specific promoter.  

The mifepristone-inducible lexPR system was developed to drive and regulate the 

expression of tnf-𝑎 and cxcl8b.1 in transgenic zebrafish to no avail. The Mifepristone inducible 

LexPR system is a hormone-response transcriptional activator that confers accurate spatio-

temporal control of transgene expression (Emelyanov and Parinov, 2008). In order to demon-

strate the viability of the LexPR system in vivo, transgenic NBT:lexPR:lexOP:GFP zebrafish 

were injected with lexOP:RFP at the one cell stage. The neural beta tubulin (NBT) promoter in 

NBT:lexPR:lexOP:GFP is a neuronal lineage marker that drives the expression of 

lexPR:lexOP:GFP transgene in neurons (Peri and Nusslein-Volhard, 2008). Inducible expres-

sion of RFP and GFP was achieved at 4 dpf by adding 5 µM Mifepristone into the media and 

incubated for 24 hours. Indeed, the activation of lexPR by synthetic steroid, mifepristone ac-

tivated the expression of operator promoter (lexOP) sequence that expressed GFP and RFP 

proteins in neurons (Figure 34A). The co-expression of RFP and GFP was evident in some 
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cells that morphologically resembled neurons, based on axonal expression of RFP and GFP 

proteins. DMSO controls showed no expression of RFP or GFP (Figure 34B) which supported 

the induction capabilities of the mifepristone inducible lexPR system. 

Figure 34. mpeg1 inducible expression of RFP in macrophages showed weak 

expression of RFP protein. 
Inducible expression of RFP was achieved by adding 5 µM Mifepristone into E3 media with 4 dpf zebrafish and 

incubated for 24 hours. All images were obtained using an Andor spinning disk confocal microscope with a 

20X/NA 0.75 objective. Scale bars were set at 50 µm. All zebrafish were at 5 dpf when imaged. 

(A) Transgenic NBT:lexPR:lexOP:GFP zebrafish were injected with lexOP:RFP construct at the one cell stage. 

The activation of lexPR by synthetic steroid, mifepristone, activated the expression of operator promoter (lexOP) 

sequence that expressed GFP and RFP fluorophore in neurons. The co-expression of RFP and GFP was evident 

in cells that morphologically resembled neurons, based on axonal expression of RFP and GFP fluorophore.  

(B) 1% DMSO controls showed no expression of RFP or GFP in NBT:lexPR:lexOP:GFP zebrafish injected with 

lexOP:RFP construct. This supported the induction capabilities of the mifepristone inducible lexPR system. 

(C) Wild type (WIK) zebrafish were co-injected with mpeg1:lexPR:pA and lexOP:RFP constructs. The application 

of 5 µM Mifepristone into the embryo media from 4 dpf to 5 dpf failed to induce reliable expression of RFP 

expression in macrophages. The Mifepristone inducible expression system was not compatible with mpeg1 
promoter.  

(D) Control injections of mpeg1:EGFP plasmid into wild type (WIK) zebrafish stimulated the expression of GFP 

fluorophore in macrophages. Thus, the mpeg1 promoter was cloned into mpeg1:tnf-𝑎 and mpeg1:cxcl8b.1 

plasmids in order to direct tnf-𝑎 and cxcl8b.1 overexpression in macrophages. 
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In order to achieve spatiotemporal control of tnf-𝑎 and cxcl8b.1 expression in mac-

rophages, the lexOP operator was cloned into lexOP:tnf-𝑎 and lexOP:cxcl8b.1 expression 

plasmid. In addition, lexPR coding sequence was cloned into mpeg1:lexPR:pA plasmid under 

the control of macrophage lineage mpeg1 promoter (Ellett et al., 2011). Overexpression of 

tnf-𝑎 and cxcl8b.1 would have been achieved by co-injecting mpeg1:lexPR:pA, lexOP:tnf-𝑎	

and lexOP:cxcl8b.1 transgenes into mpeg1:EGFP or mpo:EGFP zebrafish and the associated 

anti-tumour responses, macrophage and neutrophil activities investigated. In order to study 

the viability of the inducible system under a different promoter (mpeg1) as compared to pre-

vious (NBT), wild type (WIK) zebrafish were co-injected with mpeg1:lexPR:pA and lexOP:RFP 

constructs and the distribution RFP fluorophore analyzed. The application of 5 µM Mifepris-

tone into the embryo media at 4 dpf failed to induce reliable expression of RFP expression in 

macrophages (Figure 34C). Faint and weak expression of RFP signal was visible however it 

was not viable to support robust overexpression studies of tnf-𝑎 and cxcl8b.1. Thus, the Mif-

epristone inducible expression system was not compatible with mpeg1 promoter and a con-

stitutively active overexpression system was utilised instead.  

To achieve the overexpression of tnf-𝑎 and cxcl8b.1 in macrophages of the zebrafish 

brain a constitutively active overexpression system was used under the control of the mpeg1 

promoter. Indeed, control injections of mpeg1:EGFP plasmid into wild type (WIK) zebrafish 

stimulated the expression of GFP fluorophore in macrophages (Figure 34D). Therefore, the 

mpeg1 promoter was cloned into mpeg1:tnf-𝑎 and mpeg1:cxcl8b.1 plasmids in order to di-

rect tnf-𝑎 and cxcl8b.1 overexpression in macrophages. One of the caveats of a constitutively 

active promoter driven transgene expression system was the lack of temporally specificity. 

The overexpression of tnf-𝑎 and cxcl8b.1 occurred at birth and thus did not closely replicate 

the temporal conditions of Gold bead induced tnf-𝑎 and cxcl8b.1 overexpression at 5 dpf. 

Nonetheless, the mpeg1 promoter driven transgene expression system was the most reliable 

option to induce tnf-𝑎 and cxcl8b.1 overexpression within the timeframe of this study.   
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3.5.5. tnf-𝑎 and cxcl8b.1 overexpression had no effect on U87-nls-mKate2 cell 

survival or on macrophage and neutrophil number.  

To evaluate a possible role for tnf-𝑎 and cxcl8b.1 expression in macrophages on the 

anti-tumour phenotype, transgenic mpeg1:EGFP (tg(mpeg1:EGFP)) and mpo:EGFP 

(tg(mpo:EGFP)) zebrafish were co-injected with mpeg1:tnf-𝑎 and mpeg1:cxcl8b.1 plasmids 

and transplanted with U87-nls-mKate2 cell. The effect of tnf-𝑎 and cxcl8b.1 overexpression 

in macrophages on U87-nls-mKate2 survival, macrophage intensity and neutrophil infiltration 

were investigated. Zebrafish embryos (3 dpf) were xenografted with U87-nls-mKate2 cells 

and imaged at 4, 5 and 7 dpf. The timeline mirrors that of in vivo bead implantation experi-

ments in order to recapitulate the same experimental conditions as Gold bead implanted 

zebrafish. This study aimed to test the hypothesis that cxcl8b.1 and tnf-a expression in mac-

rophages were important genetic mediators of Gold bead induced anti-tumour effects of 

macrophages and neutrophils in the zebrafish brain. 

To investigate if tnf-𝑎 and cxcl8b.1 expression led to increased macrophage number, 

the effect on macrophage intensity was characterized in tg(mpeg1:EGFP) zebrafish co-in-

jected with mpeg1:tnf-𝑎 and mpeg1:cxcl8b.1 (Figure 35A-B). The overexpression of tnf-𝑎 and 

cxcl8b.1 significantly (p = 0.0318) increased macrophage intensity by 1.4 fold at 5 dpf when 

compared to wild type (Figure 35F). However, this initial spike in macrophage intensity was 

significantly lower than that in Gold bead implanted zebrafish. The implantation of Gold bead 

at 5 dpf significantly increased macrophage intensity by 13 folds when compared to bead null 

wild type mpeg1:EGFP zebrafish (Figure 32C,H). The spike in macrophage intensity in tnf-𝑎 

and cxcl8b.1 overexpressed mpeg1:EGFP zebrafish returned to basal levels by 7 dpf. How-

ever, there was a trend (p = 0.0600) to indicate that overexpression of tnf-𝑎 and cxcl8b.1 of 

macrophages led to decreased macrophage numbers. Nonetheless, the overexpression of 

tnf-𝑎 and cxcl8b.1 of macrophages in mpeg1:EGFP did not promote increased macrophage 

number in the zebrafish brain. 

To understand if overexpression of tnf-𝑎 and cxcl8b.1 in macrophages promoted the 

recruitment of neutrophils into the zebrafish brain, tg(mpo:EGFP) zebrafish were co-injected 
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with mpeg1:tnf-𝑎 and mpeg1:cxcl8b.1 plasmids (Figure 35C-D). Previous study indicated that 

Gold bead implantation recruited significantly increased number of neutrophils at 1 dpt when 

compared to Naked bead implanted tg(mpo:EGFP) zebrafish (Figure 28). However, the over-

expression of tnf-𝑎 and cxcl8b.1 did not increase the infiltration of neutrophil at all time points 

(4, 5 and 7 dpf). The number of neutrophils in the zebrafish brains in mpeg1:tnf-𝑎 and 

mpeg1:cxcl8b.1 injected tg(mpo:EGFP) zebrafish were statically similar at 5 dpf (p = 0.733) 

and 7 dpf (p = 0.323) (Figure 35G). Thus tnf-𝑎 and cxcl8b1 overexpression in macrophages 

did not increase the recruitment of neutrophils in the zebrafish brain.  

The overexpression of tnf-𝑎 and cxcl8b.1 in macrophages of the zebrafish brain had 

no effect on the survival U87-nls-mKate2 cells. A notable absence of anti-tumoural effect was 

observed in tg(mpeg1:EGFP) and tg(mpo:EGFP) zebrafish co-injected with mpeg1:tnf-𝑎 and 

mpeg1:cxcl8b.1(Figure 35.. Instead, a significant increase by 27 ± 6.93 % (p = 0.0387) in U87-

nls-mKate2 cell number was observed at 4 dpf when compared to wild type background 

(uninjected, tg(mpeg1:EGFP)). However, by 7 dpf, only a trend (p = 0.201) supported the in-

crease in U87-nls-mKate2 cell number (Figure 35. Nonetheless, tnf-𝑎 and cxcl8b.1 overex-

pression in macrophages of mpeg1:EGFP zebrafish did not elicit an anti-tumour phenotype. 

In agreement with previous CRISPR double mutant knockout studies (See section 3.5.3 for 

details), the result implied that tnf-𝑎 and cxcl8b.1 were not critical genetic effectors of anti-

tumour phenotype in the zebrafish brain.   

Due to the lack of effect of tnf-𝑎 and cxcl8b.1 overexpression in macrophages, we 

confirmed the overexpression of tnf-𝑎 and cxcl8b.1 in tg(mpeg1:EGFP) zebrafish by reverse 

transcription polymerase chain reaction (RT-PCR). tg(mpeg1:EGFP) zebrafish were injected 

with either mpeg1:tnf-𝑎 or mpeg1:cxcl8b.1 plasmid constructs to drive overexpression of ei-

ther genes. Total RNA content was isolated from whole embryos and first strand cDNA syn-

thesis was performed on extracted RNA. The expression of β actin gene of injected and wild 

type (WIK) zebrafish was used as the reference gene. β actin, show no differential expression 

which indicated that global genetic expression was similar in all zebrafish samples (Figure 

36). (GFP). The increase in GFP expression, darker bands, was evident in tg(mpeg1:EGFP) 
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zebrafish injected with either mpeg1:tnf-𝑎 or mpeg1:cxcl8b.1 when compared to wild type 

zebrafish (WIK) (Figure 36). Therefore, mpeg promoter activity in zebrafish was capable of 

driving transgene expression. 

The injection of mpeg1:tnf-𝑎  plasmid overexpressed tnf-𝑎 in the zebrafish. PCR prod-

ucts from tg(mpeg1:EGFP) zebrafish injected with mpeg1:tnf-𝑎	formed a slightly darker band 

stain than wild type (WIK) and mpeg1:cxcl8b.1 injected zebrafish (Figure 36, Black Arrow). In 

contrast, RT-PCR did not demonstrate the overexpression of cxcl8b.1 in mpeg1:cxcl8b.1 in-

jected zebrafish. No significant difference in band staining was observed for mpeg1:cxcl8b.1 

injected zebrafish when compared to wild type (WIK) and mpeg1:tnf-𝑎 injected zebrafish (Fig-

ure 36). It was important to note that the isolation of total RNA content was conducted on 

whole embryos and not on isolated macrophages. Thus the dilution of the overexpression 

effect for either tnf-𝑎 or cxcl8b.1 transcripts would occur. Nonetheless, RT-PCR validated the 

overexpression of tnf-𝑎 in mpeg1:tnf-𝑎 injected zebrafish but not for cxcl8b.1 in 

mpeg1:cxcl8b.1 injected zebrafish. 

The injection of mpeg1:tnf-𝑎  and mpeg1:cxcl8b.1 plasmid into tg(mpeg:EGFP) 

zebrafish elicited no detectable phenotypic change that indicated an anti-tumour response of 

macrophages or infiltrating neutrophils. Since only tnf-𝑎 overexpression was confirmed, the 

effects of cxcl8b.1 overexpression remained inconclusive. The overexpression of tnf-𝑎	 in 

macrophages had no effect on U87-nls-mKate2 cell engraftment and proliferation in the 

zebrafish brain. In addition, the macrophage and neutrophil response towards genetic over-

expression of tnf-𝑎 was comparable to wild type conditions. Therefore, tnf-𝑎 expression in 

macrophages was not an important genetic mediator of Gold bead induced anti-tumour re-

sponses of macrophages and neutrophils in the zebrafish brain.   
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Figure 35. tnf-𝑎 and cxcl8b.1 overexpression had no effect on U87-nls-mKate2 

cell survival or on macrophage and neutrophil number.  
mpo:EGFP and mpeg1:EGFP zebrafish were co-injected with mpeg1:tnf-𝑎 and mpeg1:cxcl8b.1 plasmid 

constructs to overexpress tnf-𝑎 and cxcl8b.1 in macrophages. Human derived Lv-cppt-IRES-nls-mKate2-opre 

transformed U87-nls-mKate2 cells (White) were xenografted into 3 days post post fertilized (dpf) wild type and 
tnf-𝑎/cxcl8b.1 overexpressed zebrafish. Xenografted zebrafish embyros were imaged using an Andor spinning 

disk confocal microscope with a 20X/NA 0.75 objective. Scale bars were set at 50 µm. Images from left to right 

are in chronological order showing images from 4 and 7 day dpf. (A) The macrophage responses in wild type 

mpeg1:EGFP zebrafish was comparable to tnf-𝑎 and cxcl8b.1 overexpressed zebrafish. (B) The overexpression 

of tnf-𝑎 and cxcl8b.1 in macrophages did not promote increased macrophage number in the zebrafish brain. (C) 

Low number of neutrophil was present in wild type mpeg1:EGFP zebrafish. (D) tnf-𝑎 and cxcl8b.1 overexpression 

in macrophages had no effect on neutrophil infiltration in the zebrafish brain.  

(E) The overexpression of tnf-𝑎 and cxcl8b.1 in macrophages of the zebrafish brain had no effect on the survival 

of U87-nls-mKate2 cells. 

(F) The overexpression of tnf-𝑎 and cxcl8b.1 significantly (p = 0.0318) increase macrophage intensity by 1.4 folds 

at 5 dpf when compared to wild type. The spike in macrophage intensity in tnf-𝑎 and cxcl8b.1 overexpressed 
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mpeg1:EGFP zebrafish returned to basal levels by 7 dpf. No significant difference (p = 0.0600) in macrophage 

intensities was observed by 7 dpf. 

(G) The number of neutrophils in the zebrafish brains in mpeg1:tnf-𝑎 and mpeg1:cxcl8b.1 injected 

tg(mpo:EGFP) zebrafish were statically similar at 5 dpf (p = 0.733) and 7 dpf (p = 0.323). 

(H) The imaging field emcompassed both optic tectums of the zebrafish brain. The red box of the schematic 

image denotes boundary of the imaging region and represented the orientation of all images from A-D. 

 

 

 
Figure 36. Reverse transcription polymerase chain reaction revealed over-

expression of tnf-𝑎 in mpeg1:tnf-𝑎 injected mpeg1:EGFP zebrafish 
tg(mpeg1:EGFP) zebrafish were injected with either mpeg1:tnf-𝑎 or mpeg1:cxcl8b.1 plasmid constructs to 

drive overexpression of either genes. RT-PCR was conducted on total RNA content isolated from whole 

embryos of wild type (WIK) zebrafish, mpeg1:tnf-𝑎 injected tg(mpeg1:EGFP) zebrafish and mpeg1:cxcl8b.1 

injected tg(mpeg1:EGFP) zebrafish. 

Negative control, β actin, show no differential expression of genes and indicated that global genetic 

expression was similar in all zebrafish samples.  

The increase in GFP expression, darker bands, was evident in tg(mpeg1:EGFP) zebrafish injected with either 

mpeg1:tnf-𝑎 or mpeg1:cxcl8b.1 when compared to wild type.  

The injection of mpeg1:tnf-𝑎  plasmid overexpressed tnf-𝑎 in the zebrafish. PCR products from 

tg(mpeg1:EGFP) zebrafish injected with mpeg1:tnf-𝑎	formed a slightly darker band stain than wild type (WIK) 

and mpeg1:cxcl8b.1 injected tg(mpeg1:EGFP) zebrafish.  

RT-PCR did not demonstrate the overexpression of cxcl8b.1 in mpeg1:cxcl8b.1 injected zebrafish. No 

significant difference in band staining was observed for mpeg:cxcl8b.1 injected tg(mpeg1:EGFP) zebrafish.  
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4. Discussion 
4.1.1. Palladium metal as a mediator of bioorthogonal drug catalyst in vivo 

 

In this study, we attempted to establish an in vivo bioorthogonal catalytic drug assay in 

order to test the efficacy of a novel drug delivery system that had the potential to contribute 

to the development of novel chemotherapeutics. The idea of utilising nanoparticle mediated 

drug delivery systems is not entirely novel and has been investigated in many studies 

(Sangtani et al., 2017, Wang et al., 2019, Clavadetscher et al., 2016, Tonga et al., 2015). Initial 

medical applications of nanoparticles began as a theranostic (diagnostic imaging) compound 

used on imaging platform such as MRI, PET and CT (Phillips et al., 2014). Nanoparticles have 

evolved into multifunctional nanoparticles that can serve as drug carriers and as a theranostic. 

Here, Palladium nanoparticles, solidly supported within a polystyrene matrix (bead), per-

formed as catalysts that mediated BOOM reactions in the zebrafish brain to convert a pro 

drug (POB-Vorinostat) to its active form (Vorinostat). However, preliminary experiments indi-

cated that Palladium bead implantation initiated a potent anti-tumour effect in the absence of 

the chemotherapeutic agent, Vorinostat. Although this was not the first time Palladium nano-

particles had been described to possess anti-tumour properties (Alarifi et al., 2017, Dahal et 

al., 2015), this study was the first to demonstrate Palladium mediated anti-tumour effects on 

glioblastoma cells in vivo in zebrafish. 

 

4.1.2. Investigating the effects of macrophage polarisation by Palladium beads  

 

The zebrafish model system utilised in this study facilitated the in-depth study of the ef-

fects of nanoparticle mediated macrophage polarisation on U87 glioblastoma cells. We first 

established that macrophage mpeg1:EGFP signal intensity correlated with macrophage num-

ber. This allowed for the rapid and robust evaluation of macrophage number, forgoing tedious 

and time-consuming manual counting of macrophage number. Next, we confirmed that Pal-
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ladium bead implantation initiated a potent anti-tumour effect. The anti-tumour effect re-

cruited macrophages and coincided with the decrease in U87 cell survival and an increase in 

U87 cell fragmentation when compared to the injury model. The anti-tumour effects observed 

in this study was reminiscent of macrophage polarisation described in previous studies (van 

Dalen et al., 2018, Vogel et al., 2014, Zanganeh et al., 2016) as a strong macrophage inflam-

matory response was evident. An increase in macrophage mpeg1:EGFP signal intensity was 

observed in close proximity with Palladium beads. Indeed, macrophage have been shown to 

interact with nanoparticles and these interactions have been shown to promote pro-inflam-

matory responses (Park and Park, 2009, Hutter et al., 2010, Ge et al., 2015, Kusaka et al., 

2014). Metallic nanoparticles have been previously shown to polarise macrophages and pe-

ripheral blood mononuclear cells. One study investigate the effects of titanium nanoparticles 

on alveolar macrophages (Scherbart et al., 2011). Scherbart et al,. showed that titanium na-

noparticles accumulated in macrophages and caused increased extracellular ROS, heme-

oxygenase 1 and tnf-𝑎	expression. While in another study, Palladium nanoparticles were 

demonstrated to enhance Ifn-y release in LPS stimulated peripheral blood mononuclear cells 

(Boscolo et al., 2010). Macrophage internalisation of nanoparticles has been shown to regu-

late release of pro-inflammatory cytokines such a il-1β and tnf-𝑎	(Kusaka et al., 2014, Leso 

and Iavicoli, 2018). However, one key difference that sets this study apart is the fact that 

Palladium nanoparticles were solidly supported upon a polystyrene matrix. As a result, Palla-

dium nanoparticles, in theory, would not be internalised by macrophages. Whether Palladium 

nanoparticles diffused from the bead surface remains speculatory. However, mechanical ma-

nipulation of Palladium bead may dislodge Palladium nanoparticles from the bead surface 

which may accumulate in macrophages. In addition, Palladium nanoparticles may be released 

as Palladium ions. One study concluded that Silver ions leaching from the larger fractions of 

Silver nanoparticles mediates the toxicity of Silver nanoparticles in macrophages (Pratsinis et 

al., 2013). Therefore, it would be interesting to ascertain if macrophage interacted with Palla-

dium nanoparticles on the bead surface or interacted with internalised free Palladium nano-
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particles to initiate macrophage polarisation effects. Nonetheless, there was significant evi-

dence to suggest that the implantation of Palladium bead polarised macrophages to initiate 

an anti-tumour response.  

 

4.1.3. Identifying the contributions of macrophage function in Palladium medi-

ated anti-tumour effects 

 

The tumour supporting role of macrophage function had been described previously (Noy 

and Pollard, 2014, Prionisti et al., 2019, van Dalen et al., 2018, Pyonteck et al., 2013). Conse-

quently, we demonstrate in this study that macrophage function supported U87 cell growth 

in the zebrafish brain. We observed a reduction in U87 cell survival in irf8-/- , macrophage null, 

zebrafish when compared to wild type. The inherent disability of U87 to survive in the irf8-/- 

zebrafish was reflected in all xenografted irf8-/- zebrafish including Palladium bead implanted 

irf8-/- zebrafish. A trend indicated that the survival rate of U87 cells in Palladium bead im-

planted irf8-/- zebrafish were better than that in Palladium bead implanted mpeg1:EGFP 

zebrafish. This implied that macrophage function was important in mediating the anti-tumour 

effects observed in Palladium bead implanted zebrafish. However, due to low n numbers (n 

= 4, p = 0.109), the trend was statically insignificant. Several factors contributed to the low n 

numbers described in Palladium bead implanted irf8-/- zebrafish. First, the implantation of 

Palladium bead was toxic, a 33% survival rate was recorded in Palladium bead implanted 

mpeg1:EGFP zebrafish. Intriguingly, Weiss et al. report that zebrafish larvae developed nor-

mally into the larval stages with no sign of toxicity after Palladium bead implantation (Weiss 

et al., 2014a). The differences may be attributed to the location of bead implantation as the 

authors (Weiss et al., 2014a) performed the implantation into the yolk sac of the zebrafish 

embryo. Secondly, irf8-/- zebrafish have reduced survival rates compared to wildtype (Shiau 

et al., 2015). Thirdly, the absence of macrophage function in irf8-/- zebrafish exacerbated de-

fective clearance of apoptotic cells and eliminated neuroprotective effects of macrophages 

and microglia in the brain following bead implantation procedure (Shiau et al., 2015, Casano 
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and Peri, 2015, Herzog et al., 2019). When combined, these factors had a detrimental impact 

on the survival of Palladium bead implanted irf8-/- zebrafish reflected as low n numbers (Figure 

11). Although the results were statically insignificant, the data support the role of macrophage 

in mediating the anti-tumour effects of Palladium bead implantation.  

 

4.1.4. ROS mediated anti-tumour effects of macrophages 

 

Next generation RNA sequencing offered the opportunity to investigate key mechanisms 

underlying macrophage tumoricidal polarisation in Palladium bead implanted zebrafish. Dif-

ferential analysis of RNA sequencing expression data revealed that the implantation of Palla-

dium bead lead to a stress response of macrophages that increased expression of protein 

associated with stress tolerance (Hsp70l) and increased reactive oxygen species (ROS) gen-

eration. In addition, we also detected the increase in proinflammatory cytokine expression 

(tnf-𝑎, cxcl8b.1) and the decrease in proangiogenic factors (sema4d and sox7) in Palladium 

bead implanted zebrafish. Altogether, Palladium bead implantation lead to the polarisation of 

macrophage genetic profile towards a proinflammatory anti-tumour phenotype. 

In agreement, previous works have demonstrated that metallic nanoparticles such as Ti-

tanium, Iron oxides, Palladium and Zinc dioxide all increased intracellular ROS generation in 

macrophages (Yang et al., 2009, Dahal et al., 2015, Scherbart et al., 2011, Reichel et al., 2019, 

Alarifi et al., 2017). Myeloid cell have been shown to be an important source of ROS in acute 

and chronic inflammation (Bogdan et al., 2000). ROS are a heterogenous group of highly re-

active ions that act as both a signalling molecule and as pro-inflammatory mediators (Mittal 

et al., 2014, Thannickal and Fanburg, 2000). ROS can combine with nitric oxide to form reac-

tive nitrogen species which contributes to the overall pro-inflammatory signalling axis 

(Thannickal and Fanburg, 2000, Mittal et al., 2014). The formation of reactive nitrogen species 

in macrophages have been shown to be a source of highly toxic oxidants capable of micro-

bicidal killing (MacMicking et al., 1995). In addition, ROS secretion has been shown to medi-

ate intracellular signalling pathways that lead to cellular apoptosis (Kamata et al., 2005, Saitoh 
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et al., 1998). In addition, ROS has been shown to induce apoptosis in U87 cells (Recio 

Despaigne et al., 2014 , Wang et al., 2013). However, chronic production of ROS has long 

been hypothesised to be the central driving force leading to inflammatory diseases that con-

tributed to carcinogenesis (Hussain and Harris, 2007, Kawanishi et al., 2017, Canli et al., 

2017). ROS have been shown to induce DNA damage that could increase the mutational load 

leading to genomic instabilities and cancer initiation (Bogdan et al., 2000, Canli et al., 2017). 

ROS have also been shown to inactivate p53 tumour suppressor genes through the introduc-

tion of p53 mutations (Hussain et al., 1994). Therefore, the effects of ROS on cancer have 

been described as both tumour promoting and tumour suppressing depending on the con-

centration and duration of exposure (Galadari et al., 2017). However the relatively short dura-

tion of this study (3 days) likely initiated ROS mediated acute inflammation that promoted the 

apoptosis and cytotoxicity of U87 cells. Nonetheless, it would be interesting to investigate 

the long term chronic consequences of Palladium bead implantation in order to bridge the 

current knowledge gap. Little is known in regards to the consequences of long term immune 

responses associated with Palladium nanotherapeutics. These studies have implications in 

extending our understanding of the chronic effects of nanoparticles in medical technologies.  

 

4.1.5. Differential analysis expression data of U87 versus Control revealed no 

significant differentially expressed genes  

 

Extensive molecular profiling has been conducted to show that TAMs contribute to the 

establishment of an immunosuppressive environment through the secretion of anti-inflamma-

tory cytokines (il-10 and TGF-β ) and the inhibition of pro-inflammatory cytokines (tnf-𝑎, il-12, 

il-1β, NO and Ifn-y ) (Wu et al., 2010, Hussain et al., 2006, Komohara et al., 2008, Rodrigues 

et al., 2010, Li and Graeber, 2012). In addition, glioma associated macrophages have been 

shown to display distinct expression profiles when compared to human controls (Szulzewsky 

et al., 2016). Szulzewsky et al. identified 334 differentially expressed genes in human glio-

blastoma associated microglia/monocytes compared to human controls (Szulzewsky et al., 
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2016). In another study by the same authors, microarray analysis comparing glioma associ-

ated macrophages and control macrophages identified approximately 1000 differentially ex-

pressed genes (Szulzewsky et al., 2015). Therefore, overwhelming evidence exists to describe 

TAM as functionally and molecularly distinct from macrophages in the non-diseased setting. 

Thus, we hypothesised that U87 xenografts would induce genetic expression changes in tu-

mour associated microglia/macrophages. However, differential analysis of RNA seq expres-

sion datasets demonstrated that macrophages isolated from U87 xenografted and Control 

were similar in expression patterns to each other. No significant differentially expressed genes 

were recorded in comparison to controls. The results here contradicted previous studies 

which described TAM as being functionally pro-tumoural and genetically distinct when com-

pared to macrophages in the non-diseased setting (Wu et al., 2010, Hussain et al., 2006, 

Komohara et al., 2008, Rodrigues et al., 2010, Li and Graeber, 2012, Hamilton et al., 2016, 

Noy and Pollard, 2014). The contributing factors that may have led to this result could have 

originated from our macrophage isolation and bulk RNA sequencing strategy. In order to iso-

late macrophages from the zebrafish, the heads of the zebrafish were transacted above the 

yolk sac and the tissue pooled and homogenised. Therefore, isolated macrophage from 

mpeg1:EGFP zebrafish would include a pooled macrophage population encompassing those 

from the telencephalon, olfactory bulb, cerebellum, spinal cord and retina. Tumour associated 

macrophage would represent a subset of the pooled macrophage population. Consequently, 

the total RNA content extracted from the pool population of macrophages would not reflect 

the true population of tumour associated macrophages responsible for the tumour promoting 

functions in U87 xenografted mpeg1:EGFP zebrafish. Differentially expressed genes in TAMs 

would be diluted by RNA content from non TAMs resulting in a differential analysis that would 

be indistinguishable from macrophages in the non-disease setting.  
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4.1.6. Disadvantages of Bulk RNA seq reveals potential application of single 

cell RNA sequencing techniques 

 

The combination of bulk RNA sequencing strategy and the utility of a single genetic 

marker (mpeg1) to isolate macrophages was one of the major pitfalls of this study. Conse-

quently, this led to a lack of genetic sampling resolution required to differentiate infiltrating 

tumour associated macrophages from resident tumour associated microglia. In order to 

achieve high genetic sampling resolution using contemporary approaches, researchers have 

used multi-marker protocols in order to isolate several distinct populations of monocyte/mac-

rophages/microglia from tumours (Poczobutt et al., 2016). However, multi-marker protocols 

can be technically complex. In addition, the number of monocyte populations that could be 

isolated is limited by the number of established markers available for flow cytometry, a factor 

that does not affect scRNA. Therefore, there is significant scope in applying scRNA sequenc-

ing techniques to understand the functional and transcriptional dynamics between tumour 

associated macrophages and microglia in our study.  

The advent of single cell RNA (scRNA) sequencing techniques has exposed unique 

aspects of the cellular and molecular identity of TAMs. In one recent study, single cell profiling 

of human gliomas revealed distinct macrophage ontogeny that highlighted regional difference 

in TAMs activation (Muller et al., 2017). By comparing the single cell RNA expression profile 

of sequenced TAMs to known expression profiles of anatomically defined tumour compart-

ments (Ivy Glioblastoma Atlas Project) the authors were able to infer macrophage localisation 

within the tumour (Muller et al., 2017). scRNA seq confers greater genetic sampling resolution 

and higher fidelity than bulk RNA seq (Marinov et al., 2014). One study contrasting scRNA 

and bulk (cell pooled) RNA seq concluded that the transcriptomes from 30 – 100 cells as-

sessed using scRNA techniques were comparable to those of bulk RNA seq using large 

amount of genetic material (Marinov et al., 2014). Therefore, the advent of scRNA seq allows 

researchers to investigate the extensive transcriptional and ontogenetic diversity that exists 

within macrophage populations in greater depth (Chen et al., 2017, Muller et al., 2017, 
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Bowman et al., 2016). Extensive studies have been conducted to show that infiltrating tumour 

associated macrophages have distinct expression profiles and functions when compared to 

tumour associated microglia (Muller et al., 2017, Chen et al., 2017, Bowman et al., 2016, 

Szulzewsky et al., 2016). Chen et al., established that the majority of TAMs in GBMs were 

bone marrow derived (Chen et al., 2017). While in another study, it was demonstrated that 

blood derived TAMs expressed significantly higher levels of immunosuppressive cytokines il-

10 and TGFβ2 in comparison to microglia (Muller et al., 2017). Therefore, it would be interest-

ing to investigate the level of contribution of distinct populations of polarised tumour associ-

ated macrophages or microglia in mediating the anti-tumour effects in Gold or Palladium bead 

implanted zebrafish. scRNA seq would confer greater transcriptomic fidelity than contempo-

rary methods to identify macrophage genetic signatures associated with anti-tumour efficacy.  

 

4.1.7. Macrophage polarisation by Gold and Palladium beads initiates anti-tu-

mour phenotype. 

 

The anti-tumour effects of Palladium beads excluded the utility of Palladium mediated 

bioorthogonal drug assays of chemotherapeutics in the zebrafish brain. Therefore in order to 

achieve our original aim, which was to develop an in vivo bioorthogonal catalytic drug assay, 

Palladium was replaced with Gold beads. Gold nanoparticles have extensive application in 

biological and medical applications and have been used therapeutically for drug delivery 

(Niikura et al., 2013, Perez-Lopez et al., 2017, Yeo et al., 2018, Naz et al., 2016). We demon-

strated that Gold beads mediated BOOM reactions in vivo in the zebrafish brain and con-

verted precursors into fluorescent Rhodamine. Although Gold beads were biocompatible in 

mediating BOOM reaction in the zebrafish brain, it was immediately evident that Gold bead 

implantation initiated a potent anti-tumour effect that also recruited macrophages; effects 

similar to Palladium bead implanted zebrafish. Intriguingly, several studies have demon-

strated that Gold nanoparticles initiates anti-inflammatory cytokine production in macro-

phages. Taratummarat et al., showed that Gold nanoparticles attenuated supernatant tnf-𝑎, 
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il1-β and enhanced il-10 secretion in bone marrow derived macrophages in vitro cultures 

(Taratummarat et al., 2018). The authors also demonstrated that Gold nanoparticles reduced 

the percentage of pro-inflammatory macrophages and increased the percentage of anti-in-

flammatory macrophages (Taratummarat et al., 2018). Likewise, Gold nanoparticles reduced 

the expression of pro-inflammatory mediators such as prostaglandin E2, il-6 and tnf-𝑎 in 

RAW264.7 macrophages cultures (Ma et al., 2010, Ahn et al., 2017). Consequently the authors 

conclude that Gold nanoparticles resulted in the suppression of NF-kB pathway, a key tran-

scription factor mediating inflammatory response (Ma et al., 2010, Ahn et al., 2017). The no-

tion that Gold was an anti-inflammatory mediator contradicted our study. In contrast, we ob-

served a significant inflammatory response to Gold bead implantation reflected as an increase 

in macrophage number in the zebrafish brain. However, it is important to note that the afore-

mentioned studies (Ma et al., 2010, Ahn et al., 2017, Taratummarat et al., 2018) on Gold na-

noparticles were conducted in vitro and thus would not recapitulate the in vivo conditions 

reflected in Gold bead implanted zebrafish. Nanoparticles exposed to serum proteins have 

been shown to form a protein corona that has a direct effect on the inflammatory state of 

macrophages (Cedervall et al., 2007, Ge et al., 2015, Kharazian et al., 2016). Therefore, we 

speculate that both Gold and Palladium nanoparticles may interact with intracellular proteins 

to create a protein corona that initiated macrophage polarisation. The adhesion of proteins 

from the bloodstream to nanoparticles are often inhibited by modifying the surface with PEG 

to inhibit macrophage uptake (Jokerst et al., 2011, Xie et al., 2007, van Vlerken et al., 2007). 

Functionalisation of proteins or peptides to nanoparticle surface have been shown to induce 

pro-inflammatory properties in macrophages (Bastus et al., 2009a, Bastus et al., 2009b, Chen 

and Gao, 2017). One study compared the inflammatory reactions between PEG and chicken 

ovalbumin conjugated Gold nanoparticles on RAW246.7 macrophage (Chen and Gao, 2017). 

Chen et al., reported that Gold nanoparticles conjugated to ovalbumin increased cytokine 

production of tnf-𝑎, il-6 and il-1β while PEG conjugated Gold nanoparticles significantly at-

tenuated the production of tnf-𝑎 and il-6. Furthermore, Bastus et al., demonstrated that the 



 

Page 154 
 

treatment of macrophages with peptide-conjugated Gold nanoparticles induced pro-inflam-

matory cytokine production in macrophages mediated by TLR-4 activation (Bastus et al., 

2009a). It was interesting to note that although Chen et al. utilised the same in vitro RAW264.7 

macrophage co-cultures described in previously mentioned studies (Ma et al., 2010, Ahn et 

al., 2017), the conjugation of albumin to Gold nanoparticles was pro-inflammatory while un-

conjugated Gold nanoparticles were anti-inflammatory. This further highlighted the significant 

of nanoparticle surface protein corona in mediating the inflammatory response of macro-

phages. In addition, the idea that Gold and Palladium nanoparticles may bind intracellular 

proteins may explain the similarities in pro-inflammatory activation profiles observed between 

Gold and Palladium implanted zebrafish. Gold and Palladium nanoparticles may recruit similar 

protein coronas leading to TLR activation. The protein corona have been shown to modulate 

the functional identity of nanoparticles (Ge et al., 2015, Kharazian et al., 2016). Therefore, 

intracellular protein-nanoparticle surface interactions may play a key role in conferring the 

pro-inflammatory tumoricidal response of macrophages to Palladium and Gold beads in the 

zebrafish brain.  
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4.1.8. TLR family signalling in Palladium and Gold bead implanted zebrafish 

mediates anti-tumour potentiation of macrophages 

 

The activation of TLR signalling is well documented to induced a proinflammatory 

phenotype in macrophages (Beutler, 2009, Cario, 2010, Cook et al., 2004, Hanamsagar et al., 

2012, Kawai and Akira, 2010). In this context, solidly supported Gold and Palladium nanopar-

ticles used in this study may represent a novel transition metal based immunotherapeutic that 

initiates anti-tumour polarisation of TAM. Our findings indicated that the implantation of Gold 

and Palladium beads into the zebrafish brain led to the pro-inflammatory polarisation of mac-

rophages and the upregulation of key downstream mediators of TLR signalling (tnf-𝑎 and 

cxcl8b.1). In addition, we demonstrated that the inhibition of IRAK4, the downstream activator 

of TLR signalling, attenuated Gold bead mediated anti-tumour responses in vivo. Therefore, 

TLR signalling played a key role in mediating the anti-tumour responses of macrophages in 

zebrafish brain. The potential of TLR signalling in mediating anti-tumour polarisation of mac-

rophages has been explored in several studies. In particular, TLR2, TLR7 and TLR8 have 

shown promise as immunotherapeutic targets in cancer (Singh et al., 2014, Feng et al., 2019, 

Rodell et al., 2018a). By exploiting the ability of TLR to recognize PAMP structures, one study 

used specific biomimetic TLR2 agonists (acGM-1.8) to drive polarisation of primary bone mar-

row-derived macrophages (Feng et al., 2019). Feng et al., demonstrated that TLR2 activation 

led to the upregulation of anti-tumoural cytokines (tnf-𝑎, il-12 p70 and IFN-γ) and the down-

regulation of protumoural cytokines (il-10, VEGF-A and tgf-β1) (Feng et al., 2019). Conse-

quently, TLR2 activation mediated polarisation of TAMs and suppressed the growth of tu-

mours in mice in vivo (Feng et al., 2019). Furthermore, TLR7/8 agonist (R848) have been 

shown to elicit TAM polarisation and demonstrated therapeutic efficacy  (Rodell et al., 2018a). 

Drug loaded nanoparticle delivery of TLR7/8 agonist in TAMs led to a reduction in tumour 

growth rates and improved survival in in vivo mice tumour models (Rodell et al., 2018a). In 

addition to TLR2, TLR7 and TLR8, TLR4 have also been demonstrated to potentiate macro-

phage anti-tumour activity in vitro and in vivo (Lin et al., 2011, Lee et al., 2008). These studies 
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highlight the diversity of TLR activation pathways that can occur in order to mediate anti-

tumour potentiation of TAMs. In that respect, Gold nanoparticles have been shown to activate 

TLR3 (Rachmawati et al., 2015) and TLR4 (Bastus et al., 2009a) and suggested to activate 

TLR2 (Ng et al., 2018) while Palladium nanoparticles have been identified to activate TLR4 

(Schmidt and Goebeler, 2015, Rachmawati et al., 2013).  

 The diversification of TAM targeted therapies over the years have grown to include 

immunotherapies that targets pathways that initiates macrophage polarisation. Tumour as-

sociated target therapies have primarily sought to deplete TAM populations, with examples 

including the delivery of small molecules or antibodies that target macrophage infiltration 

(CCR2) or survival (CSF-1R) (Yao et al., 2017, Pyonteck et al., 2013, Cannarile et al., 2017). 

However, harnessing the power of innate immune cells may represent the more effective way 

to treat cancers (Mantovani and Allavena, 2015, Ruffell and Coussens, 2015, Rodell et al., 

2018a, Singh et al., 2014). Our findings highlighted the pivotal role of macrophages in medi-

tating anti-tumour efficacy following macrophage polarisation and thus could be more effica-

cious when combined with chemotherapeutics that specifically targets tumours. Here we pre-

sent a potential novel complementary system that combines the potential of Gold/Palladium 

nanoparticles to polarise macrophage function and to mediate biorthogonal catalytic drug 

delivery. It offers the possibility to not only eliminate macrophage tumour promoting functions 

but at the same time capitalise on the potential to mediate local chemotherapeutic drug de-

livery to maximise therapeutic efficiency. 
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4.1.9. Nanoparticle composition affects macrophage responses in zebrafish 

 

Intriguingly, we observed distinct differences between the effects of Palladium, Gold and 

Naked bead implantation on macrophage polarisation in the zebrafish brain. In line with many 

studies, our assay clearly showed nanoparticle composition to be an important factor that 

regulated macrophage responses (Reichel et al., 2019, Zanganeh et al., 2016, Kharazian et 

al., 2016, Ge et al., 2015, Niikura et al., 2013). The implantation of Palladium and Gold beads 

recruited significantly higher number of macrophages in the brain of the zebrafish when com-

pared to Naked bead implanted zebrafish. Our results showed that Naked bead implantation 

initiated an injury related macrophage response that returned to basal levels. Thus macro-

phage recruitment was dependent on the bioavailability of solidly supported Palladium and 

Gold nanoparticles on the bead surface in the zebrafish brain. The consequences of macro-

phage polarisation towards the pro-inflammatory phenotype by Palladium and Gold beads 

initiated a potent anti-tumour effect leading to U87 cellular clearance and fragmentation. In 

contrast, Naked bead implantation led to the attenuation of U87 cellular proliferation. We 

speculate that U87 cells may have entered a quiescent state in response to environmental 

stressors initiated by the bead implantation procedure. By definition, quiescent cells exist in 

a temporary and reversible state of non-proliferation characterised by the maintenance of G0 

stage of the cell cycle (Cheung and Rando, 2013, Cho et al., 2019). The disruption of tissue 

integrity in the extracellular matrix has been shown to result in the release of stored growth 

factors and damage associated molecular patterns capable of regulating the quiescent state 

of cells (Cho et al., 2019, Mura et al., 2006). Therefore, the Naked bead implantation proce-

dure may contribute to environmental stresses which may drive entry of U87 cells into the 

quiescent state. In line with this, future experiment should consider the extension of experi-

mental duration of U87 xenografted Naked bead implanted zebrafish to investigate if U87 

cells maintain a quiescent state or may be stimulated to exit quiescence. 
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Further evidence demonstrating the differences between macrophage responses of Pal-

ladium, Gold and Naked bead implantation were presented in qPCR analysis. In addition to 

tnf-𝑎 and cxcl8b.1, we detected evidence to suggest increased inflammatory load in Palla-

dium bead implanted zebrafish. The increase in il-1β expression in the macrophages of Pal-

ladium bead implanted zebrafish may have contributed to Palladium toxicity leading to poor 

zebrafish survival. il-1β is a potent pro-inflammatory cytokine and the transcription, synthesis 

and secretion of il-1β is tightly regulated (Garlanda et al., 2013). Increased il-1β expression 

has been associated with inflammatory diseases, including neuropathic pain and type 2 dia-

betes, and has been shown to inhibit spinal cord regeneration (Tsarouchas et al., 2018, 

Anders, 2016, Shao et al., 2015, Donath and Shoelson, 2011). One of the adverse effect of 

an excessive inflammatory response is the recruitment of plasma proteins and leukocytes 

into the extravascular tissues (Medzhitov, 2008). The increase in local protein level alters on-

cotic pressure and thus promotes oedema in the brain leading to local hypoxia and cellular 

death (Medzhitov, 2008). The combination of increased il-1β expression, ROS generation, tnf-

𝑎 and cxcl8b.1 expression can have a detrimental impact on overall survival of Palladium 

bead implanted zebrafish.  

Our findings demonstrated that Gold, Palladium and Naked bead initiated distinct inflam-

matory responses that were detected through in vivo living imaging and qPCR. This study 

highlighted the potential of the zebrafish model system as a platform to investigate the short 

term and potential long term immune consequences of nanoparticle exposure. The zebrafish 

system offers researchers a standardised, reliable and rapid platform to test associated im-

mune responses as a result of nanoparticle exposure.  
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4.1.10. Cxcl8b.1 may not mediate anti-tumour efficacy in macrophages 

 

The establishment of TLR signalling in Gold bead implanted zebrafish led us to investigate 

the functions of tnf-𝑎 and cxcl8b.1 in mediating macrophage and neutrophil contribution to 

the anti-tumour phenotype. Neutrophils are one of the first responders of the immune system 

and migrate into tissue in response to injury or infection (Kim and Luster, 2015). Consequently, 

the implantation of Gold and Naked beads into the brain of the zebrafish were observed to 

recruit neutrophils. Furthermore, the upregulation of cxcl8b.1 is known to be a potent chem-

oattract for neutrophils, and macrophages are widely accepted to regulate site specific re-

cruitment of neutrophil to facilitate the inflammatory response (Manfroi et al., 2017). We 

demonstrated that Gold bead implantation led to significantly increased neutrophil recruit-

ment at 1 dpt which coincided with increased macrophage number and an increase in 

cxcl8b.1 and tnf-alpha expression in macrophages. However, our study was lacking in the 

assessment of inflammatory cytokine expression at 3 dpt. It would have been interesting to 

assess if cxcl8b.1 and tnf-a expression in macrophages was maintained or downregulated at 

3 dpt and should be addressed in future studies. Based on neutrophil dynamics observed in 

Gold bead implantation, we speculate that cxcl8b.1 expression in macrophages may be 

downregulated by 3 dpt as we observed the recovery of neutrophil counts to basal levels by 

3 dpt. Nonetheless, our findings demonstrated that the partial mutation of cxcl8b.1 gene did 

not result in attenuated neutrophil number or anti-tumour response. One of the main reason 

for the lack of phenotype may have originated from the partial mutation of cxcl8b.1 gene. 

Although it is unknown if the partial mutation of cxcl8b.1 gene led to impairment of protein 

function in this study, previous studies have established by western blots that the mutation 

of gene transcripts using CRISPR Cas9 systems have led to the knockout of protein function 

(Zabinyakov et al., 2017, Tsarouchas et al., 2018, Wu et al., 2017, Jafari et al., 2017). We 

speculate that the partial mutation of cxcl8b.1 in this study may not have met the lower ex-

pression threshold necessary to attenuate neutrophil responses in the zebrafish brain and 

may explain the absence of phenotype in this knockout study. Furthermore, we were unable 
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to confirm cxcl8b.1 overexpression in macrophages in mpeg1 promoter driven transgenesis 

assays. This was likely attributed to the dilution of RNA content from non-macrophage cells 

during whole embryo homogenisation Therefore, the function of cxcl8b.1 in mediating anti-

tumour efficacy remains inconclusive in this study.  

 

4.1.11. tnf-𝑎 does not mediate anti-tumour effects in macrophages 

 

Tnf-𝑎 is a key inflammatory cytokine produced by circulating monocytes and tissue 

resident macrophages in response to infection and inflammation (Locksley et al., 2001). Dur-

ing acute inflammation, tnf-𝑎 expression regulates expression of inflammatory genes, apop-

tosis and the recruitment of immune cells (Locksley et al., 2001, Crisafulli et al., 2009, 

Szlosarek et al., 2006). In agreement, our findings demonstrated that tnf-𝑎 upregulation coin-

cided with a significant increase in macrophage response and the emergence of an anti-tu-

mour phenotype as a result of Palladium and Gold bead implantation. The antitumor actions 

of tnf-𝑎 have been extensively studied with the development of TNFerade, a tnf-𝑎 based ge-

netic medicine (Rasmussen et al., 2002, McLoughlin et al., 2005, Kali, 2015, Liu et al., 2004). 

TNFerade is administered as an intratumoural injection in combination with radiotherapy or 

chemotherapy and where radiation is used to induce translation of tnf-𝑎 (Kali, 2015, Senzer 

et al., 2004). TNFerade treatment induces a dose dependent potency leading to necrosis tu-

mour models (Rasmussen et al., 2002). In addition, the local administration of tnf-𝑎 promotes 

the destruction of tumour vasculature leading to tumour necrosis (Daniel and Wilson, 2008). 

The effects of tnf-𝑎 are mediated by multiple mechanisms that affect tumour cells directly and 

indirectly. The binding of tnf-𝑎 to its receptor has been identified to activate cellular apoptosis, 

stimulate T-effector cell activation and promote the polarisation of tumour associated mac-

rophages towards an anti-tumour phenotype (Nie et al., 2013, Lejeune et al., 2006, Qiao et 

al., 2011, Josephs et al., 2018). Furthermore, tnf-𝑎 has been identified to promote neutrophil 

infiltration (Lejeune et al., 2006, Qiao et al., 2011, Zhang et al., 2018). In agreement, the sig-
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nificant upregulation of tnf-𝑎 expression and increased neutrophil number in Gold bead im-

planted zebrafish supported the role of tnf-𝑎 in neutrophil recruitment. However, our results 

indicated that the modulation of tnf-𝑎 function had no effect on either Gold bead induced 

anti-tumour efficacy or on macrophage/neutrophil dynamics. We demonstrated that 

CRISPR/Cas9 knockout of tnf-𝑎 function in Gold bead implanted zebrafish did not promote 

U87 cell survival or impair Gold bead mediated macrophage recruitment. Furthermore, the 

overexpression of tnf-𝑎 activity in macrophages in bead null zebrafish failed to recapitulate 

anti-tumour effects of Gold bead implantation. Our findings indicated that tnf-𝑎 expression 

was not vital for anti-tumour efficacy of macrophages in the zebrafish. However, it was im-

portant to take into account that CRISPR/Cas9 gRNA injections induced a robust reduction 

in tnf-𝑎 levels but not a complete knockdown (Tsarouchas et al., 2018). Therefore, the transi-

ent CRISPR/Cas9 knockdown of tnf-𝑎 did not fully recapitulate the genetic background of a 

stable tnf-𝑎 mutant zebrafish. In addition, overexpression transgenesis of tnf-𝑎 may not have 

reached the required threshold to elicit a detectable phenotype. Thus our study did not con-

clusively exclude the role of tnf-𝑎 expression in mediating anti-tumour polarisation in macro-

phages.  

Although tnf-𝑎 remain an attractive immunotherapeutic target in cancer, several clin-

ical trials have been conducted and failed to prove therapeutic efficacy (Kimura et al., 1987, 

Blick et al., 1987). Current clinical trials indicated that tnf-𝑎 based treatments may have ther-

apeutic potential as an adjuvant in combination with standard chemotherapy (Ouyang et al., 

2018, Li et al., 2012). However, the prolonged exposure of tnf-𝑎 may have significant conse-

quences in promoting tumour progression as prolonged tnf-𝑎 mediated inflammatory re-

sponse was well recognised to promote tumour progression (Cruceriu et al., 2020, Mantovani 

et al., 2008). Therefore, tnf-𝑎 may also be considered a pro-tumorigenic molecule 

(Stathopoulos et al., 2007, Mantovani et al., 2008). Further to the role of tnf-𝑎, it was also 

identified to play a major role in priming regeneration which adds to the diverse repertoire of 

functions (Cruceriu et al., 2020, Nguyen-Chi et al., 2018, Tsarouchas et al., 2018). Conse-
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quently, the contextual expression of tnf-𝑎 both spatially and temporally in the cellular envi-

ronment guides tnf-𝑎 influence and subsequent function in the tumour microenvironment. 

Therefore further experimentation is required to elucidate tnf-𝑎 function in the tumour micro-

environment using genetic tools with greater spatial-temporal fidelity.   
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4.1.12. Final Conclusions 

 

The development of a chemotherapeutic bioorthogonal catalytic drug assay untaken in 

this study uncovered a novel immunotherapeutic application of Gold and Palladium nanopar-

ticles in cancer treatment. Our findings demonstrated the potent efficacy of Gold and Palla-

dium nanoparticles to induce anti-tumour polarisation of macrophages and emphasised the 

implications of TLR signalling in immunotherapy. Despite identifying key downstream TLR 

signalling genes to be upregulated in Gold bead implanted zebrafish, our results concluded 

that tnf-𝑎 was not vital for the induction of macrophage anti-tumour efficacy. It was important 

to note that RNA sequencing data revealed 1014 differentially expressed genes in Palladium 

bead implanted zebrafish therefore highlighting a complex web of intracellular signals that 

initiated the anti-tumour phenotype. Thus tnf-𝑎 signalling may only contribute to a small sub-

set of intracellular signalling that conferred anti-tumour efficacy. Furthermore, our findings 

highlighted the importance for researchers to consider the potential of nanoparticle induced 

polarisation of macrophages in concert with chemotherapeutics to maximise therapeutic ef-

ficacy.  
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5. List of Abberviations 
Abbreviation Full Name 

BOOM Bioorthogonal Organometallic 

CCL2 CC Chemokine Ligand 2 

CLRs C-Type Lectin Receptors 

CNS Central Nervous System 

CSF Colony Stimulating Factor 

CT X-Ray Computed Tomography 

DAMP Damage Associate Molecular Patterns  

EGF Epidermal Growth Factor  

GBM Glioblastoma 

GO Gene Ontology  

IFN Interferon 

il Interleukin 

IL Interleukin 

Irf8 Interferon Regulatory Factor 8 

MMP Matrix Metalloproteinase 

MPO Myeloperoxidase 

MRI Magnetic Resonance Imaging 

NETs Neutrophil Extracellular Traps 

NK Natural Killer 

NOD Nucleotide-Binding Oligomerization Domain 

OPC Oligodendrocyte Progenitor Cells 

PEG Poly(Ethyleneglycol) 

PET Positron Emission Tomography 

sCSF-1 Soluble Colony-Stimulating Factor  

TAMs Tumour Associated Macrophages 

TH1 T Helper 1 

TLRs Toll Like Receptors 

TMZ Temozolomide  

TNF Tumour-Necrosis Factor 

VEGF Vascular Endothelial Growth Factor  

WHO World Health Organisation  
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6. Supplementary Data 
 
6.1. Biorthogonal catalytic release of Vorinostat by Palladium beads in-

hibits U87-mCherry cell growth in vitro. 
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Figure S1. Biorthogonal catalytic release of Vorinostat by Palladium beads inhibits U87-

mCherry cell growth in vitro in a dose dependent manner. 
The incubation of U87-mCherry cells with 1% DMSO and Palladium beads had no effect on U87-mCherry survivial. Caged 

Vorinostat (POB-Vor) in 1% DMSO had no effect on U87-mCherry cell survival at all concentrations. The incubation of POB-Vor 

with 1 mg/ml Palladium beads with promoted the biorthogonal catalytic release of Vorinostat leading to a dose dependent 

inhibiton of U87-mCherry cell viability. As expected, the incubation of Vorinostat alone inhibited U87 cell viability in a dose 

dependent manner.  

 

Unpublished data was kindly provided by the Unciti-Broceta’s Lab (Edinburgh Cancer Center, Edinburgh, UK) with permissions.  

 

Unciti-Broceta’s Lab 
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