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Abstract

Abstract

The principal repeating subunit of chromatin is the nucleosome, which consists of a

histone octamer complex, around which the DNA fibre coils. Adjacent nucleosomes

are separated by short regions of linker DNA, within which a specialised Tinker'

histone protein may bind to further compact the DNA. Chromatin organisation in

Saccharomyces cerevisiae differs from that found in more complex organisms,

primarily due to its relatively compact genome, which is made up of about 6000

genes. In yeast the average nucleosome repeat length is only 165bp compared to the

180-200bp linker length seen in higher eukaiyotes. Therefore, the majority of the

yeast genome does not have sufficient linker length between nucleosomes to enable

the binding of Tinker' histones and only areas with increased repeat length will be

able to bind these specialised proteins.

The FLOl gene locus includes a potentially gene-free 6kb upstream region that is

mediated by SWI/SNF and Tupl-Ssn6. These complexes modulate nucleosome

binding by altering the histone-DNA interactions and are pivotal to FLOl gene

regulation (Fleming and Pennings, 2001). Interestingly, the nucleosome array in this

region is most regularly spaced when the Tuplp co-repressor is present with an

average nucleosome spacing of 180bp. Thus, it constitutes a region of chromatin in

the yeast genome that could accommodate linker histones and / or the Tuplp

repressor complex, leading to an area of higher-order chromatin compaction.

The causal relationship between Hholp (yeast Tinker' histone) and Tuplp-Ssn6p

binding was investigated in wildtype, AHHOl, ASNF2, ASSN6 and ATUP1 mutant
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Abstract

cells by chromatin immunoprecipitation in the FLOl upstream region. The 3D

proximity of the two Tuplp peaks was investigated using chromatin conformation

capture analyses, which showed that the Tuplp sites are closely aligned, except in

ASNF2 strains. The change in the conformation of DNA may be influenced by

changes in the acetylation of the core histones and / or a chromatin structure which

alters the fluidity of the chromatin fibre.
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Chapter 1

Chapter 1

Introduction

The term 'chromatin" was first coined by W.Flemming (-1880), for "that substance in

the cell nucleus which is readily stained" (reviewed by Paweletz, N., 2001). Despite the

the discovery of nucleic acids by Miescher (1871), followed shortly by the discovery of

histones in 1884 (Kossel), its composition remained unknown for many decades until the

breakthrough came in 1953 when Watson and Crick proposed the structure of the DNA

double-helix. The discovery of the nucleosome structure, nevertheless, took a further 20

years to eludidate, starting in 1967 when histones were first fractionated by E.W. Johns

(reviewed by Olins and Olins, 2003).

1.1 Chromatin

Chromatin is the term used to describe protein-packaged DNA in a eukaryote nucleus.

The fundamental structural unit of condensed chromatin is the nucleosome (Oudet et al.,

1975). DNA is wrapped onto a histone octamer and can have an additional linker histone

molecule associated with it, at its ends (reviewed by van Holde, 1988). Adjacent

nucleosome complexes are connected by a length of linker DNA. This has been referred

to as the beads-on-a-string conformation, or lOnm fibre, which was first visualised under

low-ionic strength (Figure 1.1) by Olins and Olins (1974). The nucleosome crystal
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structures were determined to 7.0A by T. Richmond et al (1984) and subsequently to 2.8

A by K. Luger et al (1997) (Figure 1.2).

The lOnm fibre is considered the first level of chromatin condensation (Figure 1.3). This

relatively open form of chromatin can be increasingly compacted to form higher order

chromatin structures. In the presence of low concentration monovalent ions, nucleosomal

arrays appear in a zigzag conformation (Finch and Klug, 1976). Optical laser tweezer

experiments suggest a model, where DNA folds in an irregular zigzag pattern with the

linker DNA on the inside, forming a 30nm fibre (Dorigo et al., 2004). This model is also

supported by a recent study where a tetranucleosome structure was mapped to 9A and a

nucleosome and its associated linker DNA were mapped to 1.9 A (Schalch et al., 2005).

This indicated that the tetramer adopts a zigzag architecture, with two nucleosomes and

three segments of linker DNA passing between them (Woodcock, 2005).

At any one time, chromatin in the nucleus can take on two principal forms, either

extended euchromatin or extensively condensed heterochromatin (Farkas et al., 2000).

Centromeres and telomeres are constitutively in the inactive heterochromatic state

(Gilbert and Allan, 2000), while euchromatin is associated with transcriptionally active

sequences. Euchromatin is more dynamic and can undergo dramatic changes in

compaction.

Yeast chromatin was thought to exist in an constitutively open conformation as 40% of

its genome is thought to be active at any one time. However, condensed chromosomes
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have been visualised in yeast (Vas et al., 2007), and in vivo work by Gasser and

colleagues (Bystricky et al., 2004) which examined non-repetitive chromatin domains,

suggested that yeast interphase chromatin exists in a compact higher-order conformation

with a persistence length of 170-220 nm. This is equivalent to 7-10 nucleosomes per 11

nm within a 30 nm structure. This suggested that compact chromatin structures, such as

the 30 nm fibre, occur at transcriptionally competent chromatin in living yeast cells. The

authors postulated that this structure could form by default but could possibly be

stabilised by a linker histone in yeast.
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a be

Figure 1.1 Electron micrographs of chromatin. A)Low ionic-strength chromatin: the

'beads on a string'. Size marker: 30 nm. b) Isolated mononucleosomes derived from

nuclease-digested chromatin. Size marker: 10 nm. c) Chromatin spread at a moderate

ionic strength to maintain the 30-nm higher-order fibre. Size marker: 50 nm. From Olins

and Olins, 2003.
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Figure 1.2: Nucleosome core particle: Ribbon traces for the 146-bp DNA

phosphodiester backbones (brown and turquoise) and eight histone protein main chains

(blue: H3; green: H4; yellow: H2A; red: H2B. From Luger et al., 1997.
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short region of
DNA double helix

"bends on a string'
form of chromatin L.

30 nm chromatin
fiber of packed
nudeosomes

section of
chromosome in
extended form

condensed section
of chromosome

entire

mitotic
chromosome

NET RESULT: EACH ONA MOLECULE HAS BEEN
PACKAGED INTO A MITOTIC CHROMOSOME THAT

IS 10.000 FOLD SHORTER THAN ITS EXTENDED LENGTH

Figure 1.3. Chromatin folding.

This model illustrates the several levels of packaging of DNA which are postulated to

give rise to the highly condensed mitotic chromosome. (Reproduced from Alberts et al).
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Figure 1.4 Binding of the globular domain of HI to the nucleosome core.

Histone HI binds to DNA at the terminal helical turn of the nucleosomal DNA, at a

position close to the pseudo-dyad axis. Taken from Ramakrishnan et al., 1993.
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1.2 Histones

The histones are a family of basic proteins involved in organising the DNA in the nuclei

of eukaryotic cells. There are 5 major classes of histones, the core histones H2A, H2B,

H3, and H4 and the linker histone HI (reviewed in Wolffe, 1999). The histone octamer

consists of two molecules of each of the core histones. Two molecules of histones H3 and

H4 associate as a tetramer, to which two H2A-H2B heterodimers bind (Figure 1.2).

Histone HI binds to DNA at the terminal helical turn of the nucleosomal DNA, at a

position close to the pseudo-dyad axis (Figure 1.4) (Zhou et al., 1998; reviewed by

Kornberg and Lorch, 1999).

Not all eukaryotic cells utilise histones for packaging their DNA. Dinoflagellates utilise

small basic proteins to package their DNA (Vernet et al., 1990), while in most

mammalian species, the DNA in spermatozoa is compacted by basic proteins known as

protamines (Poccia, 1986) These arginine-rich proteins bind to DNA with high affinity

(Ausio et al., 1984), causing maximal compaction of the genome (reviewed in Eirin-

Lopez et al., 2006). Evidence exists that vertebrate protamines have evolved from histone

HI (Lewis et al., 2003). This change occurred rapidly when a frame-shift mutation

appeared in a spermatozoa-specific histone HI gene. It converted a lysine-rich HI to

arginine-rich protamine. In addition, a putative Drosophila protamine-like protein similar

to histone H5, has also been identified in screens of transcripts expressed in the male

germ line (Russell and Kaiser, 1996), supporting the theory that protamines were derived

from linker histones.
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1.2.1 The Core Histones

Core histones are highly conserved between species ranging from yeast to human (De

Lange et al., 1969). These small basic proteins contain high molar percentages of lysine

and arginine (van Holde, 1988). In the histone octamer these residues lie on a ramp

forming a left-handed protein superhelix matching that of the DNA in the core particle

(Klug et al., 1980). The [H3-H4]2 tetramer lies at the centre of this superhelix, with an

H2A-H2B dimer at either end of the path. Therefore, the nucleosome has evolved an

optimal electrostatic charge alignment to facilitate DNA binding.

The core histones all assume a similar structure with a basic N-terminal tail, a globular

domain organised as a histone fold, and a C-terminal tail. The central histone-fold

domains of the core histones possess a high level of structural homology. The domain is

formed through the interaction of three a-helices connected by two loops. The interaction

of two histone folds generates a handshake motif between two different histone proteins,

forming a hetero-dimer between H3 and H4, and also between H2A and H2B. It is the

histone fold domains of the four core histones that mediate histone-histone and histone-

DNA interactions (Luger et al., 1997).

The unstructured amino termini of the histones, consisting of 15-30 residues, are referred

to as the histone tails. The N-terminal tail regions of H3 and H2B have random coil

segments that pass between the DNA gyres, while the N-terminal domain of H2A passes

over the DNA along a minor groove. The amino acid base interaction within this groove

may be important in modulating the nucleosomal association with particular DNA
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sequences (Luger et al., 1997). The H4 N-terminal tails appear to form divergent

structures, though this might be a limitation of the crystallisation techniques used to

visualise the histones.

The histone tails are subjected to various post-translational modifications (Figure 1.5;

Grunstein, 1997), including methylation of lysine or arginine, phosphorylation of serine

or threonine, acetylation of lysine, ubiquitination of lysine, sumoylation of lysine, ADP-

ribosylation, biotinylation, glycosylation and carbonylation (reviewed in Margueron et

al., 2005). These may modulate chromatin structure and serve as signals for interactions

with other proteins (Strahl and Allis, 2000), e.g. mitotic chromosome condensation is

influenced by histone modification as H3S10 phosphorylation is needed for this to occur.

In the interest of this study, only acetylation will be discussed in greater detail.
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Reproduced from Zhang and Reinberg, 2001

Figure 1.5 Post-translational modifications on core histone tails. Arginine/Lysine

methylation is indicated in red; Lysine acetylation is indicated in purple; serine

phosphorylation is indicated in blue; lysine ubiquitination is indicated in orange.
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1.3 Histone Acetylation

Lysine acetylation in the nucleosome plays a fundamental role in chromatin regulation

(Figure 1.6; reviewed by Kurdistani and Grunstein, 2003). Acetylation can modulate

histone deposition, transcription and DNA repair through the recruitment of proteins that

bind acetyl lysine i.e. those with a bromodomain. Hyper-acetylation of the histone tail

may also decrease the histone-DNA interactions (Hong et al., 1993), and cause DNA to

be more accessible to transcription factors.

A direct correlation between histone acetylation status and gene activity has been

demonstrated (Hebbes et al., 1988). The acetylation of the lysine residues of the core

histone tails is associated with actively transcribing DNA. This may be caused by a more

open chromatin structure, allowing transcription factors to access the regulatory regions

of genes. Conversely, deacetylation can result in less accessibility for transcription

factors due to a more compact chromatin structure. The enzymes that modulate the

histone acetylation are known as histone acetyltransferases (HATs) and histone

deacetylases (HDACs).

The histone acetyl transferase (HAT) domain acetylates lysines (reviewed in Roth et al.,

2001). HAT domains, which contain a central acetyl co-enzyme A binding site, are found

in large complexes. An example is the Gcn5 HAT which is found in SAGA (reviewed in

Marmorstein, 2001), and which is able to acetylate H3 and H2B in vivo. Sequential

acetylation of a subset of lysines in histones H3 and H4 by Gcn5 HAT leads to the

recruitment of bromodomain-containing transcription factors. This domain preferentially

14
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recognises the acetylated lysine residues on N-terminal histone tails (Zeng and Zhou,

2002; Agalioti et al., 2002). An example is the acetylation of H4K8 which causes TFIID

to be recmited (Robert et al, 2004).

Although yeast contains on average 13 acetylated lysines per nucleosome, hinting at its

very active genome (Waterborg, 2000), deacetylation is equally important in gene

regulation. Lysine acetylation is reversed by histone deacetylases (HDACs) eg. Sir2p

(Armstrong et al., 2002), Hdalp and Rpd3p (Kurdistani et al., 2002). HDAC activity has

been shown to mediate gene silencing (Hassig et al., 1997; Kadosh and Struhl, 1998).

Moreover, hypoacetylation of a coding region can cause inhibition of transcription

(Kristjuhan et al., 2002). Conversely, RPD3/HDA1 disruptions lead to increased

acetylation at both the promoter and coding region of the PH05 acid phosphatase gene,

leading to its activation (Vogelauer et al., 2000). Similarly, in rpd3 mutants, the

acetylation of either H3 or H4 amino termini on genes which are normally repressed by

Rpd3p, is sufficient for gene activation (Sabet et al., 2004).
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Reproduced from Biochemistry 5th edition by Stryer et al.

Figure 1.6 Mechanism of acetylation of the lysine residues on core histone tails.

Histone acetyltransferases (HATs) transfer an acetyl group from acetyl coA to the

positively charged ammonium group on specific lysine residues on the amino-tail of

histone H3 or H4, generating an uncharged amide group, which has less affinity for

DNA.
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1.4 Histone variants

In addition to histone modifications, core and linker histones can be substituted by

variants (Figure 1.7), which alter the nucleosome structure or chromatin architecture

(Reviewed in Sarma and Reinberg, 2005). Variant histones assemble at specific sites,

mediated by specific chromatin complexes (reviewed in Henikoff et al., 2004), allowing

particular gene regions to associate with alternative proteins involved in gene regulation

(Malik and Henikoff, 2003).

The H3 variant: centromeric protein A (CENP-A) occurs in mammalian centromeres

(Palmer et al., 1991), and is essential for centromere structure and function. It occurs in

concert with H2A, H2B and H4 in centromeric nucleosomes (Reviewed by Ahmad and

Henikoff, 2005). The N-terminal tail of CENP-A is different from canonical H3, and

allows alternative histone modifications to occur, necessary for centromeric function.

Another significant histone H3 variant, H3.3 is present at actively transcribing genes in

Drosophila and accounts for approximately 25% of the total H3 present in a cell

(McKittrick et al., 2005).

Histone H2A also has many variants. For instance, H2A.Z modifies the accessible

surface area of the nucleosome (Suto et al., 2000) and regulates silencing of a subset of

genes. In yeast, the Swrlp complex is needed for the exchange of H2A-H2B for H2A.Z-

H2B (Meneghini et al., 2003). Steric hindrance prevents H2A.Z and H2A co-existing on

the same nucleosome (Suto et al., 2000). Variant H2A.X has a C-terminal extension

whose phosphorylation state is important for DNA repair by non-homologous end-joining
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(Rogakou et al., 1998). Notably, H2A.X is the major H2A variant in S. cerevisiae. It is

phosphorylated after the formation of double strand breaks and facilitates the stable

accumulation of repair proteins at damaged foci (Tsukuda et al., 2005). The macro-H2A

variant, which has a C-terminal 2kDa non-histone fold addition, is substituted in the

inactive X-chromosome in female mammals (Okamoto et al., 2004). Therefore, H2A

variants are pivotal in such diverse events as gene silencing, DNA repair and

chromosome segregation.
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Figure 1.7 Histone variants have diverse functions. Deposition of specific histone

variants occur during specific cellular processes and have varying functions. Lysine

methylation is denoted by the red flags, while serine phosphorylation is denoted by the

green circles.
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1.5 Linker Histones

Linker histones are the last component to be added in nucleosome assembly. They do not

possess a histone-fold domain and are unrelated to core histones. They are less conserved

when compared to core histones, and tissue-specific subtypes of HI are present in many

organisms. An example is the chicken erythrocyte-specific linker histone, H5, the object

ofmany chromatin studies, which is related to Hlo, the terminal differentiation variant.

Trypsin studies (reviewed by Bohm and Crane-Robinson, 1984) revealed that HI has a

tripartite structure, consisting of a central globular core and lysine rich N- and C-terminal

domains (tails). The globular domain is made up of 3 a-helices terminating in a 3-

stranded P-sheet (Ramakrishnan et al., 1993). The globular domain appears to bind to one

DNA strand as it enters or exits the nucleosome, as well as to the DNA near the dyad axis

of symmetry of the nucleosome (Zhou et al., 1998). These two proposed DNA-binding

sites are required for the appearance of a chromatosome stop (with micrococcal nuclease

digestion), which may indicate a requirement for correct positioning of the linker histone

on the nucleosome (Goytisolo et al., 1996). The highly basic linker histone tails interact

with DNA between nucleosomes and partially neutralise negative charges on linker DNA

(Clark and Kimura, 1990). The C-terminal domain has been shown to facilitate high

affinity binding to chromatin fibres in vivo (Hendzel et al., 2004). Furthermore, the C-

terminal domain has also been found to mediate linker histone binding to nucleosomal

arrays in vitro (Lu and Hansen, 2004).
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Not all histones in the HI family exhibit a tripartite structure. The ciliated protozoan

Tetrahymena HI lacks the central globular domain (Wu et al., 1986), while the yeast

Saccharomyces cerevisiae HI, contains two globular domains separated by a lysine-rich

linker region (Ushinksy et al., 1997).

Linker histones exhibit a binding preference for supercoiled, rather than relaxed DNA, as

well as for AT-rich regions (Wolffe and Brown, 1987). It is generally accepted that HI

binds less tightly than other histones to DNA in chromatin (Wu et al., 1986) and can

readily exchange for other HI proteins in vivo (Thomas and Rees, 1983). Exchange of

histone HI is rapid in both condensed and decondensed chromatin and occurs throughout

the cell cycle (Lever et al., 2000). This facet of HI binding is thought to be an important

step in modulating transcription (Shen and Gorovsky, 1996). Lever and colleagues (Lever

et al., 2000) have shown that Hl-GFP is exchanged continuously within chromatin

regions, with an average residence time of several minutes in both euchromatin and

heterochromatin. Similarly, Misteli and colleagues (Misteli et al., 2000) have shown

using Hl-GFP, that linker histones bind dynamically to chromatin in a human cell line.

After hyperacetylation of core histones, the residence time of Hl-GFP is reduced. This

suggests a higher rate of exchange upon core histone modification, as a result of weaker

binding. The dynamic nature of HI binding is an essential feature of linker histones in

relation to their function as regulators of chromatin remodelling and chromatin structure

in vivo.
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1.5.1 Linker Histone modifications

The major post-translational modification of histone HI involves cdc2 kinase catalysed

phosphorylation, targeted to serine (Ser) and threonine (Thr) residues on the N- and C-

terminal domains (Spencer and Davie, 1999). In human cells, phosphorylation patterns

differ according to the particular stage of the cell cycle, with the highest levels occurring

during M-phase, when additional phosphorylation events take place at Thr residues.

Furthermore, specific Ser/Thr kinases seem to be responsible for phosphorylation at

different stages of the cell cycle (Sarg et al., 2006).

The dynamic mobility ofHI is partly mediated by cyclin/cdk phosphorylation (Contreras

et ah, 2003). The C-terminal domain of HI is able to bind to the hinge domain of HPla,

an important modulator of chromatin function. CDK2 regulates the binding of these

proteins by phosphorylation, which causes the proteins to disassociate (Hale et al., 2006).

Phosphorylation of HI might therefore destabilise chromatin interactions, thereby

relaxing chromatin.

The mechanism by which HI phosphorylation affects transcription was investigated

using Tetrahymena (Dou and Gorovsky, 2000). Tetrahymena strains with HI mutations

that mimick the charge of the phosphorylated region, without mimicking structure or

hydrophillicity of the phosphorylated residues, were created. A charge patch, which

interacts with DNA, is formed by residues dispersed throughout the HI molecule, (Dou

and Gorovsky, 2002). Phosphorylation of HI acts by changing the overall charge of a

small domain. This directly weakens the interaction of the basic tails of HI with DNA,
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thereby destabilising the chromatin fibre (Hill et al., 1991). This transient chromatin

decondensation allows DNA binding factors to bind (Thomas, 1999). These proteins may

control DNA packaging and/or functional activities (Roth and Allis, 1992).

Phosphorylation is cell-cycle dependent, with the highest level of phosphorylation

occurring at metaphase during mitosis, which is when the chromosomes are most

condensed. This has led to the argument that a causal relationship exists between HI

phosphorylation and chromatin compaction (Bradbury et al., 1974; Bradbury, 1992).

There are currently two opposing models explaining the role of HI phosphorylation in

chromatin condensation (Figure 1.8). In the model proposed by Bradbury and colleagues

(Bradbury, 1992), non-phosphorylated HI is present in decondensed chromatin during

interphase and is loosely bound to DNA through interactions involving amino- and

carboxy-terminal tails, as well as the central globular domains. Upon phosphorylation of

the HI tails, the HI-DNA interactions are proposed to weaken, making way for HI-HI

interactions, which enable the formation of higher-order chromatin structures.

In the Roth and Allis model of 1992, the negative charge from linker DNA phosphates is

shielded in condensed chromatin by the positively charged, non-phosphorylated tails of

HI. Phosphorylation of the HI tails increases the negative charge in the HI molecule,

thereby weakening HI-DNA interactions and causing a repulsion of adjacent fibres and

subsequent decondensation of chromatin. This affirms the idea that chromatin folding in

vitro is largely electrostatic in nature and is governed by repulsion between DNA regions

that are reduced upon H1 binding. This decondensation might enable other proteins (e.g.
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HMG proteins), involved in higher order DNA condensation, to interact with the DNA

fibre, thereby facilitating mitotic chromatin condensation.

Interphase phosphorylation of histone HI is correlated with the transcriptionally active

states of chromatin (Roth and Allis, 1992; Lee and Archer, 1998). Several studies have

shown an involvement of linker histone phosphorylation in gene transcriptional activation

(reviewed in Spencer and Davie, 1999). HI phosphorylation is essential for rapid gene

activation of the mouse mammary tumour virus (MMTV) long terminal repeat promoter

by the glucocorticoid receptor in response to hormone binding (Lee and Archer, 1998). In

the absence of glucocorticoid, the MMTV promoter is incorporated into six regularly

positioned nucleosomes (Richard-Foy and Hager, 1987). This closed chromatin structure

prevents the binding of activators to the promoter, thus inhibiting transcription (Archer et

al., 1992). Glucocorticoid exposure rapidly disrupts the local chromatin structure,

recruiting transcription factors and inducing activation of the gene (Lee and Archer,

1994). Phosphorylation of the HI tails is a prerequisite for the partial HI loss and

nucleosome disruption at this promoter. The promoter is silenced by the

dephosphorylation of histone HI.
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Figure 1.8 Models for the involvement of HI phosphorylation in chromatin
condensation, a) Bradbury model, 1974. Dephosphorylated HI has a stronger interaction
with DNA than with other His, favouring decondensation of chromatin. Once

phosphorylated, Hi becomes less tightly bound to DNA, and favours HI-HI interactions
instead. Interactions between HI molecules cause chromatin condensation, b) Roth/Allis

model, 1992. Positive charge of the lysine rich tails of HI enables chromatin
condensation. Phosphorylation causes an increased negative charge of the HI tails, and

repulsion of the chromatin fibres, resulting in decondensation. Adapted from Roth and

Allis, 1992.
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H1 phosphorylation was shown to regulate specific gene expression in vivo by mimicking

the partial removal ofHI (Dou et al., 1999); Dou and Gorovsky, 2000). Phosphorylation

ofmacronuclear HI in Tetrahymena is nevertheless not essential for viability (Mizzen et

al., 1999). However, HI phosphorylation was found to occur in response to starvation in

Tetrahymena thermophila, thereby regulating the expression of specific genes (Dou et al.,

2005).

A lesser characterised modification of HI is ubiquitination. TAFn250 not only has

acetyltransferase activity, but also has histone-ubiquitination activity (Pham and Sauer,

2000). Drosophila TAFn250 can mediate the mono-ubiquitination of histone HI in vitro.

Since TAFn250 is recruited to promoters, ubiquitination of histone HI in eukaryotes may

regulate chromosomal gene activity in a promoter specific manner (Wu and Grunstein,

2000).

1.5.2 Linker histone functions

Linker histones in various organisms function in very diverse ways (reviewed in Harvey

and Downs, 2004). Histone HI has long been thought to be a general repressor that

ensured a strong and stable repression of tissue-specific genes (Weintraub, 1985). This

was based on the premise that gene expression may be dominated by the higher-order

structure of chromatin and that HI was involved in the formation and maintenance of

these structures. However, linker histones have been shown to contribute a large variety

of functions.
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In eukaryotes, transcriptional repression correlates, in general, with chromatin

condensation. This can either be domain-wide or local, encompassing, in the latter case,

just a few nucleosomes (Travers, 1999). For instance, histone HI selectively represses the

transcription of 5S rRNA genes (O'Neill et al., 1995; Nightingale and Wolffe, 1995).

During transcriptional repression, linker histones may also prevent access of transcription

factors and chromatin remodelling complexes to DNA (Strahl and Allis, 2000). They

have been found to specifically repress core histone acetylation, in vitro, possibly by

hindering histone acetyltransferase binding (Herrera et al., 2000).

A variety of structural roles have been attributed to linker histones, including locking the

two DNA turns within a nucleosome, setting the inter-nucleosome spacing, and

facilitation of folding of the lOnm nucleosome-containing fibre into higher order

structures (Garrard, 1991; Zlatanova and Van Holde, 1992). Linker histones play a

critical role in maintaining the structure of the 30nm fibre (Thoma et al., 1979; Allan et

al., 1981). It has also been suggested that linker histones play a role in levels of

chromatin structure beyond that found in the 30nm fibre (Weintraub, 1985). The globular

domain ofHI and either the HI or H3 tails are needed to stabilise the 3-D arrangement of

nucleosomes (Zlatanova et al., 1998). Linker histones have also been found to inhibit the

mobility of positioned nucleosomes (Pennings et al., 1994). However, the presence ofHI

in a cell is not sufficient to condense the genome, in order for mitosis to occur (Ohsumi et

al., 1993).
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Transcription factors that share structural features with histones or HMG proteins are able

to replace HI. HNF3, which contains a winged-helix motif similar to that found in

histone HI, can replace HI in the chromatin of the mouse serum albumen enhancer

(Cirillo et al., 1998). Competition has also been shown to exist between HI and HMGN

proteins for chromatin sites (Catez et al., 2002).

In yeast, linker histones seem to play a role in transcriptional regulation on a subset of

genes rather than being responsible for global gene regulation (Hellauer et al., 2001) as

predicted by their abundance and biochemical properties. Early work on Saccharomyces

chromatin, involving sea-urchin HI under the influence of an inducible GAL1 promoter,

showed that transcriptional levels were affected on a global scale (Linder and Thoma,

1994) when HI was over-expressed. However, this study was performed under the

assumption that yeast did not possess a linker histone, and therefore adding too much H1

from another species, probably caused improper compaction of the genome, thereby

affecting global transcription levels.

In stark contrast to core histones, linker histones are not necessary for viability in many

systems (reviewed in Ausio, 2000). Unicellular eukaryotes generated with non-

expressing linker histones are viable and show very few phenotypic changes e.g.

Tetrahymena (Shen and Gorovsky, 1996), Saccharomyces cerevisiae (Patterton et al.,

1998), Aspergillus nidulans (Ramon et al., 2000) and Neurospora crassa (Folco et al.,

2003). These strains were still able to undergo mitosis, transcribe essential genes and

replicate their genomes successfully.
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Tetrahymena lacking linker histones show no difference in vegetative growth, general

transcription, protein synthesis and global nucleosome repeat length, but do show a small

increase in nuclear volume size and less efficient meiosis (Shen et al., 1995; Shen and

Gorovsky, 1996; Karrer and VanNuland, 1999; Karrer and VanNuland, 2002).

HI-depleted Ascobolus immersus show no differences in methylation-associated gene

silencing, meiosis, germination or growth (Barra et al., 2000). The authors did, however,

notice a decrease in longevity, though this was probably due to mis-regulation of a subset

of genes that happened to include longevity genes. A. nidulans with a deletion in one Hl-

encoding gene show no changes in gross nuclear morphology, growth, sexual

reproduction, bulk nucleosomal repeat lengths or UV and DMSO resistance (Ramon et

al., 2000). Neurospora crassa linker histone, hHl, deletion shows no defects in

morphology, DNA methylation, mutagen sensitivity, DNA repair, fertility, chromosome

pairing or chromosome segregation (Folco et al., 2003). However, expression of pyruvate

decarboxylase gene expression was affected.

1.5.3 Linker histone variants

Linker histone levels can be important in development in multicellular animals and

plants. In most multicellular organisms, a variety ofHI variants occur. The structures of

these vary greatly during early stages in development concomitant with zygotic gene

activation, and specific variants are therefore associated with functional changes.

Redundancy might occur as in mice the deletion of single HI subtypes causes no

detectable phenotype (Fan et al., 2001), whereas mice lacking three HI subtypes (Hlc,
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Hid and Hie) are not viable and die by mid-gestation with a variety of phenotypic

abnormalities, as well as a shortening of the spacing between nucleosomes (Fan et al.,

2003).

When these subtypes were deleted in mouse embryonic stem cells, dramatic changes in

chromatin structure occurred (Fan et al., 2005). The most marked change was a decrease

in nucleosome repeat length from -189 bp to -174 bp. This was accompanied by

differences in the levels of two key histone modifications in the linker histone-depleted

nuclei: 4-fold reduction in H4K12 acetylation and a 2-fold reduction in H3K12

trimethylation. The reduced H4K12 acetylation and reduced nucleosome repeat length

helps to compensate for HI loss by increasing the neutralisation of DNA negative

charges, thereby creating more compact chromatin. Microarray analyses showed only a

small subset of differentially expressed genes. Interestingly, these genes were either

imprinted or expressed on the X chromosome and their promoters contained CpG islands

that were sensitive to DNA methylation. Therefore, linker histone variant depletion,

though not altering the global DNA methylation pattern, does affect the DNA

methylation pattern of specific loci, thereby altering their gene expression.

Further studies suggested that the preferential arrangement of linker histone subtypes on

the chromatin fibre could play a role in contorting the fibre into a higher-order structure

that altered gene expression (Alami et al., 2003). In Caenorabditis elegans, a single HI

variant (Hl.l), is essential for silencing genes important for the proliferation and

differentiation of the hermaphrodite germ-line (Jedrusik and Schulze, 2003).
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Interestingly, this variant is able to produce telomeric position-effect variegation when

placed in S. cerevisiae, which suggests a relationship between germ-line and telomeric

silencing.

In early Xenopus embryos maternally expressed histone B4 is the only linker histone

found in eggs and is replaced by somatic histone HI subtypes after the midblastula

transition, when zygotic gene activation occurs (reviewed in Wolffe et al., 1997). Linker

histone B4 has been shown to allow chromatin remodelling to occur at specific loci,

whereas somatic histone HI prevents linker DNA from being accessed by chromatin

remodelling factors at these regions (Saeki et al., 2005).

It has been shown that human linker histones affect SWI-SNF ATP dependent

remodelling (discussed in 1.8.2) in vitro (Hill and Imbalzano, 2000; Ramachandran et al.,

2003).Histone Hlb cooperates with MSX1 for transcription and myogenesis in embryonic

eukaryotic cells. MSX1, a member of the Msx homeoprotein family of transcription

factors, is responsible for differentiation of skeletal muscle in embryogenesis (Lee et al.,

2004). A role for linker histones in DNA double-strand break repair responses was also

found in rodents (Konishi et al., 2003). Here it was found that HI.2 was released into the

cytosol, along with other linker histone variants, as a response to high doses of UV

radiation, which caused cytochrome c to be released from mitochondria and ultimately

caused cells to apoptose. Linker histones might therefore signal the state of genome

integrity to cytosolic factors capable of inducing apoptosis.
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Linker histones also have a role in replication. A lack ofHI in Xenopus embryos causes a

lack of origin specificity, whereas an addition of HI to Xenopus egg extract reduces the

frequency of initiation events (Lu et al., 1998). The findings that linker histones are

implicated in ageing (Barra et al., 2000) and DNA repair (Downs et al., 2003) further

suggest an important function in maintaining genomic integrity.

1.5.4 Linker histone in yeast

The existence of a linker histone in yeast had been controversial, as no histone HI had

been isolated from yeast; and it was considered unnecessary, as a large component of the

yeast genome is transcriptionally active, compared to higher eukaryotes (Davie et al.,

1981). Early work by Linder and Thoma (1994), where sea urchin histone HI was

expressed in S. cerevisiae, showed that when this histone was bound to DNA,

transcription, growth and viability were affected. This suggested that hypercondensation

in yeast was undesirable, and that yeast HI interacted with DNA in a different way. Since

yeast possesses on average shorter nucleosomal spacing, 165bp compared to 200bp in

higher eukaryotes, it was possible that an open chromatin structure was favoured, and

that there was no requirement for neutralization of the linker DNA charge. However,

partial purification of yeast chromatin showed the existence of a 30nm fibre higher order

structure, suggesting that a protein fulfilling the role of a linker histone was present in

yeast (Lowary and Widom, 1989; Bash and Lohr, 2001).

Yeast HI was first detected by immunological techniques using anti-mouse HI

antibodies (Smith et al 1984; Srebreva et al., 1987). The complete sequencing of the
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yeast genome in 1996 (Goffeau et al., 1996) ultimately revealed an open reading frame

encoding a candidate HI, which was different to the normal tripartite HI, but had

homology to the globular domain of known His in other organisms (Landsman, 1996;

Ushinsky et al., 1997). There is only one copy of this gene in the yeast genome

(Ushinsky et al., 1997), which was designated HHOl, after histone H one.

HHOl encodes a protein 258 amino acids in length with a predicted molecular weight of

-28 kDa. Hholp differs structurally from canonical His in that it has two globular

domains of about 80 residues, with a basic amino-terminal extension and a basic, lysine-

rich linker region (38 residues), which connects the two globular domains (Figure 1.9;

Figure 1.10) (Landsman, 1996). The linker region shows homology to the C-terminal

tails of other histones, since it contains 12 lysines, 10 alanines and four prolines out of 42

residues. The first globular domain forms a winged-helix domain in 10 mM sodium

phosphate pH 7, while the second globular domain was largely unstructured under these

conditions (Ono et al., 2003; Ali et al., 2004). The second globular domain is able to

form a winged-helix fold at high concentrations of large tetrahedral anions, such as

phosphate, sulphate and perchlorate (Ali et al., 2004). This might mimic the charge-

screening effects of DNA phosphate groups, suggesting the possibility that the molecule

folds only on contact with DNA. The second globular domain is also able to bind to DNA

and 4-way junction DNA but, unlike the canonical linker histone globular domains, it

does not produce a chromatosome stop (Ali and Thomas, 2004).
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Canonical H1
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• ca. 100 res.
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• Lys/Ala/Pro-rich

Yeast Hho1 p

• Lys/Ala/Pro-rich

Figure 1.9 Comparison of the putative yeast HI with the canonical HI.
Domain organisation. The two homologous domains (GI and Gil) ofHhol p, which are

also homologous to the central globular domain (G) of a typical HI, are connected by a

basic linker, which shows some similarity to the much longer carboxy-terminal basic
domain (C) ofHI. Both HI and Hholp have a basic amino-terminal domain (N).

Reproduced from Thomas, 2000.
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Chicken H5

Fig. 1.10. Energy scaffolds for query sequences through the structure of chicken
H1/H5. The alpha-carbon backbone of the protein is depicted as a curving "worm".
Core segments of H5 are shown in blue, while the intervening loop regions are

shown in yellow. Pairwise residue interaction energies between core residues are

indicated by the thickness and coloring of the rods connecting alpha carbon positions
on the protein backbone. Thick, magenta-colored cylinders indicate the most

favourable interactions; thick, cyan-colored cylinders indicate the least favourable
interactions. Residue numbering corresponds to the numbering in the multiple

sequence alignment. Scaffolds were generated using the graphics program GRASP.

Left, chicken H5; Middle, yeast HI box 1; Right, yeast HI box 2. Reproduced from
Baxevanis and Landsman, 1998.
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Using Hholp-GFP fusion proteins, Hholp has been shown to localize in the nucleus in

close proximity to DNA (Ushinsky et al., 1997). Recombinant Hholp displayed

electrophoretic and chromatographic properties similar to that of the linker histones and

forms a stable ternary complex with a reconstituted dinucleosome core in vitro with

molar rHholp: core histone ratios of up to 1 (Patterton et al., 1998). Deletion of the

HHOl gene has little effect on telomeric silencing, basal transcriptional repression, or

gene activation at a distance and does not affect nucleosome repeat length (Patterton et

al, 1998; Escher and Schaffner, 1997). Indeed, although biochemical studies confirm its

role as a linker histone in yeast, it is not clear whether the protein functions globally as a

true HI, or whether it performs the role of HI on a particular subset of genes in yeast.

This view was supported by a microarray analysis of the S. cerevisiae genome, which

demonstrated that in the absence ofHHOl, only 27 genes had their expression altered by

a factor of two or more (Hellauer et al., 2001). The affected genes had reduced

expression in the absence of HHOl, suggesting that yeast linker histone acts as an

activator of transcription rather than a repressor. Hholp was found to preferentially bind

to rDNA sequences in vivo (Freidkin and Katcoff, 2001; Downs et al., 2003). These

studies also found that the stoichiometry of Hholp to nucleosomes was less than that

found in mammals: 1:37 in the Katcoff study and 1:4 in the Downs study, although the

fact that Hholp has two globular domains could mean that one Hholp molecule could

fulfill the role of two canonical His.

Recent studies have implicated HHOl in a DNA repair role. This is restricted to RAD52-

mediated repair which involves repair by homologous recombination (Downs et al.,
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2003). Moreover, the absence of Hholp decreases the lifespan of yeast, an effect also

reported for A. immersus (Ausio, 2000). It might therefore be possible that Hholp binds

to regions of the genome which are prone to double-strand DNA breaks, or indeed binds

in order to maintain genome integrity.

Since linker histones have been found to inhibit SWI/SNF in human cells (Horn et al.,

2002), it will be interesting to see whether Hholp affects the functions of ATP-dependent

chromatin remodeling in yeast.

1.6 The "Histone Code"

The "histone code" was proposed in 2001 by Jenuwein and Allis and in a separate review

by Turner (2000). This hypothesis proposes that co-ordinated histone modifications or

combinations of histone modifications have specific impacts on transcriptional regulation

(Figure 1.11). Modification of one residue can influence that of another, even when on

different histones (Turner, 2002). Histone modifications occur in a particular order

(reviewed by Imhof, 2003), and particular combinations of histone modifications result in

different phenotypic outcomes by recruiting specific transcriptional regulators (Strahl and

Allis, 2000). These mediate the functionality of the genome in response to upstream

signaling pathways (reviewed by Fischle et al., 2003) e.g. both acetylation and H3K4

methylation are associated with actively transcribing genes, though acetylation occurs at

the beginning of genes, while methylation can occur throughout actively transcribing

genes (Pokholok et al., 2005).
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Histone modifications existing on a genome-wide scale are also thought to reduce non¬

specific binding of silencing proteins (reviewed by van Leeuwen and Gottschling, 2002).

This prevents these proteins from being titrated from their normal locations, thereby

ensuring the stability at silent chromatin domains. In addition to providing activation and

repression signals, certain histone "codes" are also able to mediate the multiple activities

involved in DNA repair i.e. the phosphorylation of H2A.X (reviewed by Thiriet and

Hayes, 2005).

1.7 Nucleosome Dynamics

It had been thought that nucleosomes were stationary, stagnant objects that were unable

to move along the DNA (reviewed by Romberg and Lorch, 1991). However, it has

subsequently been demonstrated in vitro that nucleosomes are positioned in dynamic

equilibrium along the DNA (Pennings et al., 1991; Meersseman et al., 1992). Work

performed at gene promoters has also shown that nucleosomes are dynamic and that this

can enable transcription factors to bind and therefore activate or repress genes. Chromatin

remodellers exist that are able to move nucleosomes along the DNA (reviewed in Luger

and Hansen, 2005) from the positions at which they are deposited very early in the

chromatin assembly process, shortly after passage of the replication machinery (Lucchini

et al., 2001). Furthermore, histone acetylation is a very dynamic process that is closely

connected to nucleosome remodeling (Reviewed by Gregory and Horz, 1998).
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Figure 1.11 The histone code. Single histone modifications or combinations thereof

encode varying cellular processes.
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1.8 Chromatin remodelling

Nucleosomes can sequester regulatory elements and compete with transcription factors

for occupancy (Cairns, 2005). Since the positioning of nucleosomes is dynamic,

nucleosomes can be repositioned at particular genes to cause repression or allow

activation of genes. Chromatin remodellers are responsible for accelerating transcription

factor binding to genomic DNA (Karpova et al., 2004).

A nucleosome-free region flanked on both sides by a positioned nucleosome has been

found approximately 200bp from the start codon at some RNA polymerase II-mediated

promoters (Yuan et al., 2005). These nucleosome-free areas coincide with transcription

factor binding motifs, suggesting that nucleosome positioning is important for

transcription factor access on a global scale. Low nucleosome density is a common

feature at promoter regions; moreover, these regions have DNA sequences that do not

favour nucleosome formation. This ensures that transcription factors bind preferentially

to promoters and are not sequestered to non-relevant sites. In yeast cells at the HIS3-

PET56 gene, the promoter region is nucleosome-poor in vivo, as a direct result of its

DNA sequence (Sekinger et al., 2005). In vitro, this region associates poorly with

histones. These recent findings are consistent with the early observations that nuclease

hypersensitive sites occur at the PH05 promoter under repressive conditions (Aimer and

Horz, 1986) and further work by this group which demonstrated that the chromatin

structure of promoters is altered depending on the activity of the gene (Pavlovic and

Horz, 1988).
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The many protein factors that allow or limit accessibility of chromatin to transcription

factors are highly conserved in eukaryotes (reviewed in Tsukiyama, 2002). There are two

main classes: the first comprises those enzymes that covalently modify histones and the

second comprises those that use the energy of ATP-hydrolysis to change the position or

structure of nucleosomes (Figure 1.12; ATP-dependent remodelling factors).

There are a variety of chromatin remodeling mechanisms: firstly, nucleosome sliding,

where the nucleosome position on the DNA changes. Secondly, remodeling where the

DNA becomes more accessible, but histones remain bound. Thirdly, complete

dissociation of DNA from the associated histones and fourthly, the replacement of

histones with a histone variant (Mohrmann et al, 2004).

The complete removal of nucleosomes is exemplified by the PH05 promoter. Core

histones at this promoter are first hyperacetylated and then lost completely from the

PH05 promoter (Boeger et al., 2003). Core histone and subsequent nucleosome loss

from the promoter, takes place via the transient dissociation of all histones (Boeger et al.,

2004). Recent genome-wide studies in yeast suggest that nucleosome removal from

promoter regions may occur generally in all cells (Bernstein et al., 2004; Lee et al.,

2004), and the extent of nucleosome loss can be correlated with the number of binding

sites for transcriptional activators occurring at the promoter. Disassembly of histones and

nucleosomes has been found to be associated with the H3-H4 chaperone, Asflp (Adkins

et al., 2004).
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1.8.1 Nucleosome mobility

The nucleosome is rendered stable by clusters of weak interactions comprising hydrogen

bonds and salt links which are formed as the DNA double helix winds around the

nucleosome core particle (Luger and Richmond, 1998). Histone octamers have, however,

been shown to display non-catalysed movement along the DNA, in cis, at physiological

temperatures and low ionic strengths (Pennings et al., 1991; Meersseman et al., 1992).

This is referred to as nucleosome mobility or sliding. Here all nucleosomal bonds are

broken and reformed, although only a few histone-DNA contacts are able to be broken at

any given time (Widom, 1999).

Chromatin remodeling enzymes can catalyse nucleosome mobility by coupling the

disruption of histone DNA contacts to ATP-hydrolysis (Figure 1.12 - reviewed in Becker,

2002 and Cosgrove et al., 2004). This imparts a dynamic nature to the nucleosomes,

which enables them to slide over substantial distances in vitro (reviewed by Owen-

Hughes, 2002).

An additional mechanism of nucleosome mobility is proposed in the loop

propagation/recapture model, where DNA at the leading edge of the nucleosome comes

off first. Distortion or thermal twisting of this DNA (Li et al., 2005), such as bending it

into a tight loop, will lead to the formation of equivalent non-identical histone-DNA

interactions, which rapidly loops from the nucleosome (Schiessel et al., 2001). This

distortion then moves until it emerges on the other side, thereby translocating the DNA

relative to the nucleosome and the size of the DNA loop. The associated proteins are able
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to interact with neighbouring DNA, as the DNA loop reforms around a histone octamer

(Brower-Toland et al., 2005). The superhelical torsion is caused in an ATP-dependent

manner (Havas et al., 2000). This suggests that remodelling may cause rotation of DNA

at the nucleosomal entry/exit sites causing over or under-winding and/or bulging on the

octamer surface. However, removing torsional strain alone is not the main reason for

remodeling, since Becker and colleagues (Becker and Langst, 2001) have shown that the

presence of nicks in the nucleosomal DNA does not prevent sliding i.e. ISWI-dependent

nucleosome mobility is facilitated by the introduction of specific DNA nicks at the site of

the ISWI-nucleosome interaction. A further example of the loop recapture model is ACF,

which is made up of two Acflp and two ISWI molecules, which are capable of binding 4

DNA molecules at any given time (Strohner et al., 2005). Acflp binds symmetrically to

the DNA entry site, causing increased nucleosome accessibility.

The alternative model for nucleosome mobility is the twist diffusion model, where DNA

is rotated around its axis as it screws over the surface of the nucleosome (Widom, J.,

2001). Thermal energy fluctuations are sufficient to twist the DNA helix at the edge of

nucleosomes, which replaces histone-DNA interactions by interactions with neighbouring

DNA base pairs.

All ATP-dependent chromatin remodelling factors are multi-subunit complexes that

contain an ATPase subunit (reviewed by Cairns, 2005). Four different classes occur -

CHD, INO80, ISWI and SWI/SNF (reviewed in Tsukiyama, 2002).
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Mi-2, a member of the CHD family in higher eukaryotes, forms large complexes that

contain HDAC subunits in vivo (Zhang et al., 1998). These complexes also contain

methylated DNA-binding proteins in mammalian cells and Xenopus laevis eggs,

indicating an involvement in transcriptional repression that can be mediated by DNA

methylation in higher eukaryotes (Zhang et al., 1999).

The Ino80 complex contains actin and three actin-related proteins (Galarneau et al.,

2000). Recruitment of Ino80 is negatively affected in cells which are unable to

phosphorylate histone H2A. Furthermore, Ino80-mediated chromatin remodeling seems

to be confined to regions affected by double-strand DNA breaks, where it appears to

facilitate DNA repair (van Attikum et al., 2004), and seems to require the binding of the

Swrl complex, which exchanges Htz 1 for FI2A (Downs et al., 2004).

The ISWI complex is required for the formation of nuclease-insensitive chromatin

structures at the promoter regions of genes not involved in meiosis, and has therefore

been implicated in repression (reviewed by Varga-Weisz, 2001). ISWI is able to move

nucleosomes bi-directionally and independently of DNA sequence, in vitro (Langst and

Becker, 2001). It also has a role in replication, as evidence shows that ACF-ISWI is

required for replication through highly condensed regions of chromosomes in mammalian

cells (Collins et al., 2002).

SWI/SNF will be described in greater detail.
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standard nucleosomes

chromatin
remodeling
complex

altered positioning remodeled nucleosomes

Reproduced from Molecular Biology of the Cell 3rd edition by Alberts et al.

Figure 1.12 ATP-dependent chromatin remodeling enzymes alter nucleosome

position. Chromatin remodelling complexes use the energy of ATP to facilitate the

movement of DNA. This either leads to the nucleosomes altering their position and

moving along the DNA or allowing previously protected DNA access to transcription

factors.
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1.8.2 Yeast SWI/SNF

Subunits of SWI/SNF were identified using genetic screens looking for mating-type

switching factors and those enabling sucrose to be used as a carbon source. The genes

that were isolated during these screens were called SWI or switching (Stern et al., 1984)

and SNF or sucrose non-fermenting (Neigeborn and Carlson, 1984). Biochemical

evidence has shown that a 1.15 megaDalton complex containing Swil/Adr6, Swi2/Snf2,

Swi3, Snf5 and Snf6, can be isolated from yeast (Kwon et al., 1994; Cairns et al., 1994;

Smith et al., 2003).

Apart from many putative histone binding motifs, SWI/SNF remodelling complexes

contain a number of DNA-binding domains. Bromodomains within the catalytic units of

SWI/SNF have been found to anchor these complexes to hyperacetylated nucleosomes on

promoters (Hassan et al., 2002) and are important for the role of SWI/SNF in remodelling

nucleosomes (Hassan, et al., 2007). Besides being recruited by hyperacetylated

promoters, H3K56 acetylation has also been found to play an important role in recruiting

SWI/SNF (Xu et al., 2005). This modification is interesting in that it is located in the

globular domain of H3, rather than at its histone tail. K56 acetylation is enriched

preferentially at certain active genes, such as those encoding for histones. Recent

evidence suggests that targeted histone acetylation by the SAGA complex predisposes

promoter nucleosomes for displacement SWI/SNF complex (Chandy et al., 2006).

Moreover, at the RNR3 gene, TFIID and RNA polymerase are required for SWI/SNF to

be recruited to the promoter, suggesting that the general transcription machinery mediates

the interaction of SWI/SNF with promoters.
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The N-terminal domains of Snf5p and Swilp make contact with gene activators, and the

deletion of these N-terminal domains prevents activator binding (Prochasson et al.,

2003). SWI/SNF may be responsible for removing or rearranging the H2A/H2B dimer or

altering the binding of the histone octamer (Cote et al., 1994; Lorch et al., 1998), though

the removal of the histone octamer is not essential for SWI/SNF to act (Boyer et al.,

2000). Recently it has been shown that SWI/SNF remodelling occurs as a result of DNA

being peeled from the edge of the nucleosome, effectively translocating the nucleosome

along 50bp of the DNA strand. (Kassabov et al., 2003). This may result in the exposure

of DNA on the nucleosomal surface (Becker and Horz, 2002), the sliding of nucleosomes

to new positions (Meersseman et al., 1992), and the loss of nucleosomes from highly

active genes (Boeger et al., 2003; Narliker et al., 2002; Reinke and Horz, 2003).

Therefore SWI/SNF seems to play a strong role in destabilising nucleosomes.

SWI/SNF helps activate certain inducible genes e.g. the SUC2 gene promoter adopts an

open chromatin structure (Hirschhorn et al., 1992) with the aid of SWI/SNF binding at

both the SUC2 TAT and UAS regions (Wu and Winston, 1997). In a DNA microarray,

SWI/SNF mutant cells grown in rich media show more genes with increased gene

expression, while reduced gene expression levels are seen in cells grown in minimal

media. This shows that SWI/SNF is needed for inducible gene expression, and that

SWI/SNF can activate and repress genes (Sudarsanam et al., 2000). A further example of

this occurs at the HTA1-HTB1 locus, where a component of the SWI/SNF complex is

present at the promoter and involved in the negative regulation of the promoter. A direct

interaction occurs between three SWI/SNF components and two locus-specific
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repressors, which recruit SWI/SNF to the promoter. SWI/SNF might therefore cause a

repressive chromatin structure by targeting regulatory proteins (Dimova et al., 1999).

There are two possible mechanisms that might enable SWI/SNF to activate and repress

genes. Firstly, SWI/SNF might affect nucleosome positioning, which will either increase

or decrease the chance of transcription factors binding to promoters, thereby affecting

transcription, or secondly, the SWI/SNF complex might always increase the accessibility

of chromatin DNA and either activators or repressors might gain access to DNA,

depending on the promoter (reviewed by Tsukiyama, 2002; Wade and Wolffe, 1999).

Apart from a local effect on specific genes (Kim and Clark, 2002), the SWI/SNF complex

also functions globally in the regulation of chromatin structure, for example, SWI/SNF

dependence is particularly evident during mitosis (Krebs et al., 2000). Similarly, in a

Gcn5 (catalytic subunit of histone acetyltransferase) mutant background, all genes

display a SWI/SNF dependence (Sudarsanam et al., 1999; Biggar and Crabtree, 1999).

These direct effects on chromatin indicate that either SWI/SNF has a role on higher-order

chromatin structure (Horn et al., 2002) or it has a highly catalytic action on nucleosomal

arrays (Logie and Peterson, 1999). The latter effect has been shown in S. cerevisiae. Here

SWI/SNF controls the chromatin structure of the SER3 promoter, whose repression is

directly controlled by the Snf2 component of SWI/SNF (Martens and Winston, 2002).

Though SWI/SNF affects promoters to a greater degree, remodeling of the extended

upstream region (Fleming and Pennings, 2001) or the entire gene (Kim and Clark, 2002)
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has been seen in vivo i.e. a remodeled chromatin structure extends far beyond the

promoter ofFLOl or HIS3. In the latter case, SWI/SNF is recruited to the HIS3 promoter

by Gcn4, which therefore stimulates the mobilisation of nucleosomes over the gene (Kim

et al., 2006).

The RSC group of chromatin remodellers (remodels structure of chromatin) is also a

member of the SWI/SNF class, though it differs from SWI2/SNF2 in that its Sthl

catalytic subunit is essential for viability (Laurent et al., 1993). Both RSC and Sthl are

DNA translocases (Saha et al., 2002), which are able to twist and remodel nucleosomes.

The RSC complex contains eight of the fifteen bromodomains in yeast, suggesting that

acetyl-lysine recognition is important for RSC. Rsc4 interacts with H3 K14 (Kasten et al.,

2004). Mutations in RSC lead to altered gene expression, especially in those genes

involved in ribosomal function (Angus-Hill, 2001). Furthermore, the localization of RSC

changes when the cell is exposed to various stresses (Damelin et al., 2002).

The functional diversity of SWI/SNF complexes allows distinct biological roles to be

fulfilled in the context of chromatin. These include an involvement in the expression,

maintenance and duplication of the genome (Mohrmann and Verrijzer, 2005). When

SWI/-SNF is targeted to the nuclear infrastructure of particular genes, it facilitates

activation or repression of genes by interacting with other proteins (Wade and Wolffe,

1999).
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1.9 Transcriptional Co-Activator Complexes

The central components of RNA polymerase transcriptional machinery are the same in

bacteria and eukaryotic cells (reviewed by Kornberg, 2005). In eukaryotes, gene-specific

activator proteins stimulate transcription by recruiting general transcription factors to

promoters (Ptashne and Gann, 1997). The mediator complex has been identified as a

requirement for activator-dependent stimulation of RNA polymerase II (RNA pol II)

transcription (Kelleher et al., 1990; Flanagan et al., 1991) by means of its Srb4p subunit,

without which transcription will not be initiated (Takagi and Kornberg, 2006). Here

mediator functions as a bridge between regulatory proteins and the basal RNA pol II

transcriptional machinery. This takes place in eukaryotic species ranging from yeast to

humans.

The yeast mediator complex (reviewed by Bjorklund and Gustafsson, 2005) has 21

subunits which occur both in the free form as well as in a holoenzyme with RNA pol II

(Kim et al., 1994). Mediator adopts an elongated conformation in the presence of RNA

pol II, forming a head, middle and tail region. Direct contacts occur between RNA pol II

and the mediator head and middle region. The C-terminal domain (CTD) in RNA pol II is

important for mediator function (Myers and Kornberg, 2000). The CTD is made up of

Tyr-Ser-Pro-Thr-Ser-Pro-Ser repeats and truncations of these in yeast cause problems

with gene activation in vivo (Scafe et al., 1990). RNA pol II movement through the

transcriptional cell cycle is regulated by CTD phosphorylation. In the unphosphorylated

form of the CTD, the initiation complex is bound to the promoter. Upon phosphorylation,

active elongation takes place (Cadena and Dahmus, 1987; Payne et al., 1989; O'Brien et
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al., 1994). The mediator complex directly binds the unphosphorylated CTD (Myers et al.,

1998). Mediator is unable to bind hyperphosphorylated RNA pol II and is found to

dissociate when transcriptional elongation begins (Svejstrup et al., 1997).

Separate recruitment of mediator and the general transcriptional machinery has been

demonstrated at the HO promoter (Cosma et al., 2001). Inactivation of cdkl kinase leads

to activation of HO. The Swi5 transcription factor is translocated from the cytoplasm

which stimulates chromatin remodelling at the HO promoter. Remodelling allows the

transcriptional activator SBF (Swi4-6 cell-cycle box factor) to bind. Mediator is recruited

but no recruitment of RNA pol II or general transcription factors (GTF) takes place.

Activation of the HO promoter only takes place in the G1 phase of the cell cycle when

Cdkl is activated by binding to the G1 cyclins (Bhoite et al., 2001). After recruitment to

the promoter, mediator might form a scaffold at the promoter, which allows a functional

transcription complex to assemble, thereby allowing multiple rounds of transcription to

take place.

1.9.1 Mediator in transcriptional repression

Mediator is a co-activator complex but can also function in regulated transcriptional

repression. The Tupl-Ssn6 co-repressor complex does not bind directly to DNA, but

rather is recruited by DNA -binding proteins to target specific promoters. Tuplp recruits

mediator that contains a Srb8-11 module by direct interactions with the SrblO subunit

(Zaman et al., 2001). Genes encoding the components for Srb 8-11 were identified in

genetic screens for Tup 1-mediated repression (Lee et al., 2000). Repressors might
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therefore recruit mediator to promoters in a form in which interactions with repressive

Srb 8-11 module becomes stabilized (Mo et al., 2004).

1.10 Co-repressor complexes

Though chromatin remodelling factors have been shown to remodel nucleosomes in order

to allow access to DNA-binding proteins (Cote et al., 1994), the nucleosomal arrays also

makes use of co-regulators in order to mediate gene activity. These co-regulator proteins

recruit multi-protein subunits that associate with the chromatin structure, thereby

modulating transcription (reviewed by Burke and Baniahmad, 2000).

Co-repressors are responsible for gene silencing and actively repress transcription but do

not bind DNA directly. They are recruited by transcription factors bound to regulatory

regions of target genes, and either aid gene silencing or inhibit gene activators. Co-

repressors bind to a wide range of targets, though specific interactions by certain co-

repressors with silencers can in turn recruit repressive protein complexes, thus increasing

the complexity of the silencing. Examples of these include the yeast Sir proteins,

heterochromatin-forming Polycomb proteins, NuRD complex, and the Tup 1-related

transcriptional repressors. In the interest of this study, Tuplp repression will be discussed

in greatest detail.

1.10.1 HDAC Co-repressor function

HDAC 1 and 2 exist as core components of the SIN3 and Mi-2/NuRD complexes, which

both function as deacetylases in eukaryotes (Knoepfler and Eisenman, 1999). Mi-2 is in
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addition a chromatin remodeller. The ability of the NuRD complex to remodel

nucleosomes aids the deacetylation process by making the DNA more accessible to the

HDACs (Tong et al., 1998).

1.10.2 Tupl-Ssn6 Co-repressor Complex

Active repression of genes occurs when a gene is repressed even though the activators are

present in the cell. Eukaryotic cells can actively repress genes in several connected ways:

Firstly, they may modulate the local histone acetylation state; secondly, they may build

up special chromatin structures; thirdly, they may interfere with activators and fourthly,

they may interfere with the transcriptional machinery. Tuplp has been implicated in each

of these modes of action.

Tuplp belongs to the evolutionarily conserved Tupl/GROUCHO (Figure 1.13) protein

family, and is made up of WD repeats which are comprised of a 44-60 amino acid

sequence containing a GH di-peptide 11-24 residues from the N-terminus and a WD

dipeptide at the C-terminus.

The WD repeat motif adopts a B-propeller fold (reviewed by Smith et al., 1999). This

symmetrical structure creates a stable platform for forming multi-protein complexes and

allowing simultaneous interactions between multiple proteins, though the mechanisms of

repression are likely to vary between genes. Crystallography of the C-terminal domain

shows a 43 kDa fragment containing seven copies ofWD motifs (Figure 1.14; Sprague et

al., 2000). Interestingly, this portion of the protein can partially substitute for full-length

53



Chapter 1

Tuplp and is able to cause partial repression, though the first WD motif is most important

for oligomerisation and binding to Ssn6 (Zhang et al., 2002). The Tupl-Ssn6 complex is

composed of four Tuplp molecules and one Ssn6p molecule and adopts an elongated

conformation (Varanasi et al., 1996). In most cases Ssn6p associates with a DNA-

binding molecule and might therefore play the role of an adapter molecule (Tzamarias

and Struhl, 1995). A specific region of the Ssn6p TPR (tetratricopeptide repeat) domain

associates directly with Tuplp (Gounalaki, et al., 2000). Distinct TPR motifs of Ssn6p

are required for the repression of certain pathway-specific genes. The Tupl-Ssn6

complex is a very efficient repressor complex (>1000 fold for some genes) which acts on

3% of S. cerevisiae genes (Smith and Johnson, 2000). Deletion of either gene is not lethal

but the phenotypes include flocculation, loss of mating in a strains, poor sporulation and

loss of some aspects of glucose repression. These phenotypes are caused by improper

expression of certain genes affected by Tuplp or Ssn6p repression (Keleher et al., 1992).

Tupl-Ssn6 itself has no DNA-binding capabilities but rather represses genes by

interaction with specific DNA binding proteins (Keleher et al., 1992).
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1 74 198 342 706

SSN6 binding Q-rich (97-118, 181-198) 7 WD repeats TUP1

CO<J>oCDOIs-CO00

Q-rich (89-184, 449-470) 7 WD repeats LEUNIG

1 21 126 383 719

Q-rich SP-rich 6 WD repeats GROUCHO

B

TPR repeats (n=10)

967

SSN6

Figure 1.13 Structural domains of GROUCHO/TUP1 family of transcriptional

repressors and SSN6. (A) shows a schematic comparison of domains from TUP1

homologues. Numbers correspond to amino acids. The Q-rich domain corresponds to a

glutamine-rich region and SP-domain correspond to regions rich in serine and proline.

(B) shows a schematic of the domains present in the SSN6 co-repressor protein. TPR

corresponds to tetratricopeptide repeats, which are 34 amino acid repeats. TPR1 to TPR3

are associated with Tuplp binding (Gounalaki et al., 2000).
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Reproduced from Smith et al., 1999.

Figure 1.14. The WD repeat of the Gb subunit of a heterotrimeric G-protein seen

from the top and side. The a-carbon backbone is shown in grey, while the red and

yellow ribbons shown the N- and C-termini respectively. Each blade (blue) is made up of

four anti-parallel B-sheets, combining to form a propeller structure.
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For repression to occur, a sequence-specific DNA binding protein that recognizes a

sequence in the promoter region of the target gene recruits the Tupl-Ssn6 complex

(Treitel et al., 1995; Tzamarias and Struhl, 1994). Examples of these proteins are Miglp

(glucose repression), Crtlp (DNA damage) and Roxlp (hypoxia). At the HO gene

promoter Tupl-Ssn6 is recruited by al- a2 proteins (Mathias et al., 2004).

Tupl-Ssn6 repression can be divided into three classes (Figure 1.15): firstly, it can

repress by the direct interference with a gene activator. In the case of the GAL4 gene, the

UAS is occupied by the activator but Tupl-Ssn6 is able to repress the gene (Redd et al.,

1997). The contact with Tupl-Ssn6 affects the ability of the activator to allow

transcription, by inhibiting TATA-binding protein from associating with DNA (Kuras

and Struhl, 1999).

Secondly, it can repress genes by altering the local chromatin structure around the genes

it regulates. An example of this is that positioned nucleosomes are found upstream of

both a2 and FLOl promoters (Shimizu et al., 1991; Fleming and Pennings, 2001). The

SWI/SNF complex has been proposed to antagonise Tupl-Ssn6 by controlling

remodeling activity (Gavin and Simpson, 1997). Interestingly, ISW2 is required for

nucleosome positioning to occur at the Tup 1-repressed RNR3 locus (Zhang and Reese,

2004i). Deletion of ISW2, HDA1 or mediator subunit genes lead to enhanced transcription

of RNR3 and HUGI (Zhang and Reese, 2004), suggesting that Tuplp utilizes multiple

redundant mechanisms to repress transcription.
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Figure 1.15 Model of step-wise Tupl-Ssn6 repression.

A) Tupl is recruited to the active promoter by a sequence-specific repressor.

B) The corepressor interacts with Mediator complex prohibiting transcription.

C) Tupl-Ssn6 recruits HDACs

D) Histones are deacetylated, chromatin is compacted, genes are repressed.
Taken from Malave and Dent, 2006.
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Tuplp interacts with H3 and H4 tails in vivo (Edmondson et al., 1996) and deletion of

these can partially relieve Tupl-Ssn6 repression (Edmondson et al., 1998). Tupl-Ssn6

has been found to interact with multiple histone deacetylases in vivo (Davie et al., 2003),

including Rpd3p, Hos2p and Hoslp, which are class I HDACs. Interactions have also

been seen with the class II HDAC, Hdalp. A disruption in either Tuplp or Hdalp at the

stress-response promoter, ENA1, induces hyperacetylation of H3/H2B (Wu et al., 2001).

Alternate repressive structures might therefore be created on different classes of

repressed genes. Stable decreases in histone acetylation levels may be directed by the

Tupl-Ssn6 complex (Bone and Roth, 2001), as a decrease in acetylation of H3 co-

localises with Tuplp (Davie et al., 2002). Histone tail mutations and histone deacetylase

mutations may prevent Tupl from associating with target loci. The Tupl-Ssn6 repressor

complex might therefore alter histone modification states to allow its own histone

interactions to occur, which maintain a stable repressive state.

Thirdly, Tupl-Ssn6 may interact with the general transcription machinery. In this case,

Tupl-Ssn6 binds at the promoter region and when it comes into contact with the

transcription machinery, it prevents the transcription machinery from moving along the

DNA backbone, causing a modest amount of repression. This was discovered using a

non-nucleosomal template where Tupl-Ssn6 activity was seen on naked DNA in vitro

(Redd et al., 1997). Tuplp has also been seen to compete with an activator (Med 6p) for

binding to a subunit of RNA polymerase II (Srb7), which further facilitates repression

(Gromoller and Lehming, 2000). As discussed before, Tuplp may in addition interfere

with Mediator function.
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Tupl-Ssn6 repression can be lifted relatively quickly in response to the relevant cellular

signals. For example, some genes required to repair DNA damage are repressed by Tupl-

Ssn6. Upon DNA damage, Crtlp is hyperphosphorylated and is then unable to remain

bound to DNA (Huang et al., 1998, Li and Reese, 2001). Thus, the DNA-damage signal

causes Crtlp and Tupl-Ssn6 to be released from the RNR promoters. This de-repression

leads to co-activator recruitment and the RNR gene activation. Crtlp therefore plays a

crucial role in the switch between repression and activation. Crtlp has two repression

domains and a region required for gene activation (Zhang and Reese, 2005). The N-

terminal domain ofCrtlp is the major repression domain which is dependent on HDACs

and Tup-Ssn6, while the C-terminal repression domain is independent of HDACs and

Tupl-Ssn6. TFIID and SWI/SNF are found to bind to distinct but overlapping regions of

the C-terminal domain, and might therefore have dual repressor/activator functions. A

similar case is presented at the SUC2 gene where Snfl kinase phosphorylates Miglp, and

so abolishes its interaction with Tupl-Ssn6 (Papamichos-Chronakis et al., 2004).

There is conflicting evidence as to whether Tuplp itself spreads along the region it

represses e.g. like SIR proteins, since ChIP analyses at the STE6 gene showed a high

density of Tuplp over the whole locus (Ducker and Simpson, 2000). However, other

studies showed Tuplp localisation is limited to the a2 binding site (Wu et al., 2001).
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1.11 Aims

Yeast flocculation is a calcium-dependent aggregation of yeast cells caused by the

expression of flocculation (FLO) genes. FLOl, the dominant flocculating gene, is

regulated by the Tupl-Ssn6 co-repressor complex (Treitel and Carlson, 1995). Past work

by Fleming and Pennings (2001) demonstrated that antagonistic remodelling by the

SWI/SNF and Tupl-Ssn6 chromatin remodelling factors rearranges nucleosomal arrays

up to 5Kb from the FLOl transcription start site, thereby modulating FLOl promoter

activity. When the nucleosome positions in this upstream domain were mapped (Fleming

and Pennings, 2001), it was noted that regions of the 32-nucleosome array showed a

nucleosomal spacing of 180bp, compared to the 160bp spacing generally seen in yeast.

Therefore, the yeast linker histone, Hholp may be able to bind in these regions of

increased linker length.

The aim of this study therefore, was to investigate the hypothesis that a dynamic

relationship exists between chromatin remodelling and co-repressor complexes and

Hholp in a long-range chromatin domain at the FLOl upstream locus, localising various

proteins involved in FLOl regulation in a variety of mutant strains. Earlier work had

demonstrated regions of increased nucleosomal spacing, suggesting a possible role for the

yeast linker histone. Linker histones have been shown to have an inhibitory effect on

SWI/SNF binding (Horn et al., 2002) while Tuplp is known to interact with H3/H4 tails

as well as HDACs. Therefore, this work focuses on the possible interplay between Hholp

and Tuplp, and their influence on gene activation, specifically with regard to their effects

(if any) on histone acetylation.
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Chapter 2

Materials and Methods

Most of the general molecular biology protocols and standard solutions were derived

from Current Protocols in Molecular Biology (edited by Ausubel et al., 2004).

2.1 Reagents and Stock Solutions

All solutions were made using deionised water (Elgar option 4Y). Chemicals were from

BDH (AnalaR grade) unless otherwise mentioned.

Agarose Gel Loading Buffer at 5X concentration consisted of 0.208% orange G (Sigma),

12.5% Ficoll-400 (Amersham), and lOOmM EDTA.

Bead beater lysis buffer contained 50 mM Hepes-KOH, pH 7.5, 140 mM NaCl, 1 mM

EDTA, 1% Triton X-100 and 0.1% sodium deoxycholate (Sigma).

Buffered Phenol was prepared as follows: 250g of solid phenol (Fluka) were dissolved in

127ml of 2M Tris-HCl pH 7.5, and the phases left to settle. The aqueous phase was

removed and discarded. To the organic phase, 55ml 2M Tris-HCl pH8, 13.75ml m-cresol,

550pl (3-mercaptoethanol and 275mg 8-hydroxyquinoline were added. The solution was

mixed well and left to settle. The phenol layer was retained, aliquoted, and stored at -

20°C.
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ChIP Elution buffer contained 50 mM Tris/HCl pH 8.0, lOmM EDTA and 1% SDS.

CHIP gel loading buffer 5X consisted of 15% Ficoll-400 and 0.05% bromophenol blue.

ChIP Wash buffer 1 consisted of 50 mM Hepes-KOH, pH 7.5, 500 mM NaCl, 1 mM

EDTA, 1% Triton X-100 and 0.1% sodium deoxycholate.

ChIP Wash buffer 2 consisted of 10 mM Tris/HCl pH 8.0, 0.25 M NaCl, 0.5% Triton X-

100, 0.5% sodium deoxycholate and 1 mM EDTA.

Chloroform:Isoamyl alcohol (IAA) consisted of chloroform and iso-amyl alcohol (IAA)

mixed at a ratio of 24:1.

Diethyl pyrocarbonate (DEPC)-water was prepared by diluting diethyl pyrocarbonate

(Sigma) to 0.1% in distilled water, followed by incubation at 37°C for 1 hour/room

temperature (RT) overnight. The solution was then autoclaved to deactivate the DEPC.

Dithiothreitol (DTT) was prepared by dissolving solid dithiothreitol to 1M in distilled

water, and was stored at 4°C.

Ethylene diamine-tetraacetic acid (EDTA) (disodium salt) was dissolved in distilled

water and adjusted to pH 8.0 with NaOH. The volume was adjusted to give a final

concentration of 0.5M.
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Ethidium bromide stock solution was prepared by dissolving ethidium bromide to

lOmg/ml in distilled water, and stored at RT in a light-proof bottle.

MOPS solution was prepared as a 10X solution by dissolving 20.93g MOPS and 2.05g

sodium acetate in DEPC-water. 25ml of 0.1M DEPC-EDTA pH 8 was added. The

volume was adjusted to 250ml, to give final concentrations of 0.4M MOPS, 0.1M sodium

acetate, 0.01M EDTA.

Phenol:Chloroform:IAA consisted of a 25:24:1 ratio of buffered phenol, chloroform, and

iso-amyl alcohol.

Phosphate buffered saline (PBS) contained 140 mM NaCl, 2.5mM KC1, 8.1 mM

Na2HP04 and 1.5mM KH2P04, pH 7.5.

RNaseA (Sigma) was dissolved in water to lmg/ml and boiled for 30 minutes to an hour

to inactivate DNase. Aliquots were stored at -20°C.

Salmon sperm DNA (Sigma) at 2, or lOmg/ml in TE (pH 8) was dissolved by stirring

slowly overnight at 4°C. Aliquots were stored at -20°C, and denatured before use by

boiling for 5 minutes.
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SDS sample buffer at 2X concentration contained 25ml 4X Tris-Cl/SDS pH6.8 (0.5M

Tris-Cl pH6.8, 0.4% SDS), 20ml glycerol, 4g SDS, lmg bromo-phenol-blue and 55ml

water. This was stored at 4°C, and 20pl P-mercaptoethanol was added per ml prior to use.

SDS electrophoresis buffer was prepared as a 5X stock by dissolving 15. lg Tris, 72g

glycine and 5g SDS in 11 ofwater.

Sodium acetate was dissolved in water, and the pH adjusted to 5.2 with glacial acetic

acid. The volume was adjusted to give a final concentration of 3M.

Sodium dodecyl-sulphate (SDS) stock was prepared at 10% (w/v) in distilled water.

SSC was prepared as a 20X stock by dissolving 175g (3 moles) NaCl, and 88g (0.3

moles) tri-sodium citrate in 11 of distilled water.

TBE (Tris-borate-EDTA) buffer for agarose gel electrophoresis was prepared as a 10X

stock by dissolving 108g Tris (0.89 moles) and 55g (0.89 moles) boric acid in 960ml

distilled water, and adding 40ml of 0.5M EDTA pH8.

TBS-T buffer comprises 20mM Tris-Cl pH7.5, 150mM NaCl and 0.05% [v/v] Tween 20.

Transfer Buffer (TB) comprises 25mM Tris, 192mM glycine, and 20% methanol. SDS

was added to 0.1% after mixing, to prevent bubbles.
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Tris(hydroxymethyl)aminomethane (Tris)-HCl) was dissolved in distilled water and

adjusted to the appropriate pH with concentrated HC1. The volume was adjusted to give a

final concentration of 1M.

Tris/EDTA (TE) buffer is lOmM Tris-HCl pH 8, ImM EDTA pH8.
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2.2 Culture and Manipulation ofSaccharomyces cerevisiae

All phenotypic characterisations were performed using the W303 background strain

which was HHO1 -Myc tagged (kind gift from Dr J Downs, Cambridge University) and

its corresponding knockout strains, unless indicated otherwise.

2.2.1 Yeast strains, media and growth conditions

S. cerevisiae strains that were used in this study were derived from W303 [MATa, leu 2-

3, 112ura 3-1, trp 1-1, his 2-11, 15 ade 2-1, can 1-100, GALSUC1 malO; Rothstein,

,1983], Yeast media were made as described previously (Adams et ah, 1998). All media

were made using distilled water, and were autoclaved at 151b/in2 for 15 minutes prior to

addition of supplements. The rich medium (YPD) contained 1% (w/v) Bacto-yeast

extract, 2% (w/v) Bacto-peptone (Difco) and 2% (w/v) glucose. For plates, 2% (w/v)

Bacto-agar was added before autoclaving. Where geneticin selection was used, geneticin

G418 (250pg/pl) was added to plates prior to pouring. Yeast cultures were incubated at

30°C in plate incubators or with agitation in an orbital shakers. In the case of ASNF2-

selection, recombinants were checked for growth on YP raffinose, containing 2%

raffinose and 1 pg/ml antimycin A.

Where glycerol stocks were needed, lml of a saturated culture was added to an equal

volume of sterile glycerol solution (65% glycerol, 0.1M MgSC>4, and 0.025M Tris.HCl

pFI8), mixed well by vortexing and stored at -70°C.
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2.2.2 Construction of knockout strains

DNA for transformations was amplified from the kanMX plasmid (Wach et al, 1994),

which enables transformants to be selected using geneticin (G418) resistance as a

selection marker. Yeast cells were transformed with a DNA fragment amplified by PCR

and spread onto YPD plates containing 250 pg/ml geneticin G418.

2.2.3 High Efficiency Transformation of Saccharomyces cerevisiae

Yeast were transformed by the lithium acetate/single-stranded carrier DNA/polyethylene

glycol (LiAc/ss-DNA/PEG) protocol (Gietz et al, 1995). Briefly, the cell density of an

overnight culture was determined by counting cells using a haemocytometer. An

appropriate volume was used to inoculate 50ml of fresh media to a density of 5 x 106

cells/ml. This culture was shaken at 200rpm at 30°C until a density of 2 x 107 cells/ml had

been reached. Yeast cells were harvested by centrifugation at 5000 rpm for 5 minutes at

room temperature, washed in sterile water and re-centrifuged as before. They were

resuspended in 1ml of lOOmM lithium acetate, then harvested in a microcentrifuge and

resuspended in 400pl of lOOmM lithium acetate. This was divided into 50pl aliquots of

cells and the lithium acetate was removed. The following was carefully layered over the

cells in a eppendorf tube (to prevent the cells from being damaged by the hugh

concentration of lithium acetate): 240pl 50% polyethylene glycol, 36pl 1M lithium

acetate, 50pl 2mg/ml denatured salmon sperm DNA and the appropriate DNA in a

volume of 36j.il sterile water. The solution was vortexed for 1 minute to mix the cells and

transformation ingredients, incubated at 30°C for 30 minutes, and then heat shocked 30

minutes at 42°C. Cells were gently harvested after a spin at 6000 rpm for 1 minute, and
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resuspended in 20ml YPD. Out-growth was allowed at 30°C for 2-3 hours, with shaking

at lOOrpm. Cells were harvested by centrifugation at 5000 rpm for 5 minutes at room

temperature, washed in sterile water and recentrifuged as before. Cells were resuspended

in 1ml sterile water. Appropriate volumes were spread onto selection plates, and

incubated at 30°C.

2.3 Cloning and Manipulation ofDNA

2.3.1 Polymerase Chain Reaction (PCR)

For amplification of DNA fragments to be used for cloning or as probes, PCR reactions

were normally performed in a volume of 50pl as follows: 10-500ng template DNA; IX

Vent polymerase buffer (Promega); 1.5mM MgS04; 0.2mM deoxy-nucleotide

triphosphates (dNTPs); two primers at 0.5pM; 1U Vent polymerase (Promega). In some

instances Taq polymerase (Promega) was used. In this case, IX Taq buffer was used, and

1,5mM MgCl2 was substituted for 1.5mM MgSC>4. A standard PCR program comprised 5

minutes at 95°C, followed by 30 cycles of: denaturation at 95°C for 1 minute; annealing

at an appropriate temperature for 1 minute; extension at 72°C for 60 seconds

(approximately 1 minute per kilobase of DNA to be amplified), followed by a final

elongation at 72°C for 10 minutes to ensure complete extension of the fragments.

Reaction products were separated in an agarose gel and purified as described.

In the case of Chromatin Immunoprecipitation, the PCR program was adjusted (see

2.8.1.3) on account of the small PCR fragments that needed to be amplified. Titanium
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Taq (Clontech) and its corresponding buffer was used to allow the reaction to undergo a

hot-start and a higher yield.

2.3.2 Phenol/Chloroform Extraction and Ethanol Precipitation

Phenol/chloroform/IAA was added to an equal volume of aqueous DNA solution and

mixed well by vortexing for 30-60s. The aqueous and solvent phases were separated by

microcentrifugation at 13000 rpm for 2-10 minutes. The aqueous phase was removed to a

clean tube, and the extraction was repeated until the interphase was clear. An additional

extraction was performed with an equal volume of chloroform/IAA to remove the

residual phenol from the sample.

DNA was precipitated at -20°C for 30 minutes, to 16 hours by 1/10 volume 3M sodium

acetate (pH 5.2) or 4M LiCl, and 2.5 volumes 100% ethanol. DNA was collected by

centrifugation at 13000 rpm for 10 minutes. The pellet was washed in 0.5ml of 70%

ethanol (at -20°C) to remove any residual salt. The DNA pellet was air-dried and

resuspended in an appropriate volume of sterile water.

2.3.3 Agarose Gel Electrophoresis

DNA fragments were separated according to size by agarose gel electrophoresis.

Depending on the size of fragments to be resolved, gels between 1 and 1.5% agarose

were used. DNA samples were loaded in IX agarose gel loading buffer. Gels were run in

IX TBE, at 80 to 110 volts for an appropriate time. Gels were then stained in 3pg/ml
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ethidium bromide solution for 10 minutes, to visualize DNA. De-staining was achieved

by washing twice for 10 minutes in distilled water. Images of stained gels were obtained

by scanning in a Fujifilm FLA-2000 in fluorescent mode.

2.3.4 Gel Extraction

DNA fragments were resolved on an agarose gel and stained with ethidium bromide. The

band of interest excised with a razor blade. The DNA was eluted using Perfectprep Gel

Cleanup kit (Eppendorf) and eluted in 30 pi sterile water. For chromatin conformation

capture experiments, QIAEX II Gel Extraction Kit (QIAGEN) was used instead.

2.3.5 DNA Concentration

DNA concentration was determined spectrophotometrically by measuring the absorbance

of dilutions at 260nm, and using the conversion:

1 A260 absorbance unit = 50pg DNA/ml.

2.3.6 Restriction Enzyme Digestion

DNA was digested with restriction enzymes as specified by the relevant manufacturer.

Digestion products were resolved by agarose gel electrophoresis. Generally, restriction

enzyme digestions were carried out in 100 pi as follows.

DNA

10X Buffer
_Fl
lOpl

Restriction Enzyme 1 U/pg DNA
Water up to lOOpl
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2.3.7 DNA Ligation

Ligation reactions were carried out overnight at 16°C in 50pl. DNA was incubated in the

presence of 400U T4 DNA ligase and buffer containing ATP (NEB).

2.3.7 DNA Sequencing

DNA sequencing was performed using the comfort read sequencing service from MWG-

Biotech. Samples of plasmid (>5pg) or fragment DNA (20ng/100bp) were air-dried and

sent to the company to be processed.

2.4 Radio-labelling of DNA fragments

2.4.1 Marker DNA

300ng of lkb ladder (Promega) was labelled on the 5'-end by incubating with IX

polynucleotide kinase buffer, 5U polynucleotide kinase (NEB) and 4 picomoles of [y-

32P]ATP at 37°C for 1 hour. The enzyme was deactivated by heating to 68°C for 20

minutes. Unincorporated label was removed by passing the sample through a

MicroSpin™ G-25 Column (Amersham Biosciences).

2.4.2 Probe DNA

DNA fragments to be used as probes were labelled by random priming. l-2pg of DNA in

a volume of 9pl was combined with 5pg hexanucleotide mix (in a volume of 5pl) in a

volume of 14pl, boiled for 5 minutes to denature the DNA and then put on ice. The

following was then added: IX Klenow polymerase buffer (2.5pl) ; 0.5mM 3dNTP's (-
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dCTP); 12.5U Klenow polymerase (NEB; lpl); and 8 picomoles [a-32P]dCTP (5pl_. The

reaction was allowed to proceed for four hours at RT, and was then stopped by adding

lpl 0.5M EDTA. 75pl of TE were added, and the sample passed through a MicroSpin™

G-25 Column (Amersham Biosciences) to remove unincorporated label. The probe was

denatured before use by boiling for 5 minutes. The denatured probed was immediately

added to a hybridisation bottle containing a prepared nitocellulose membrane.

2,5 Preparations from S. cerevisiae

2.5.1 Genomic DNA

Yeast from a 10ml overnight culture were harvested at 5000rpm for 5 minutes and

washed in 0.5ml sterile water. Cells were resuspended in 200pl of breaking buffer (2%

Triton X-100, 1% SDS, lOOmM NaCl, lOmM Tris.HCl pH8, ImM EDTA pH8). 200pl

glass beads and 200pl phenol/chloroform/IAA were added, and the cells lysed by

vortexing for 1 minute. Samples were cooled on ice before another minute of vortexing.

200pl of TE buffer was added, and the sample briefly vortexed again before

microcentrifugation at 13000 rpm for 10 minutes. 1ml of ethanol was added to the

aqueous phase to precipitate the DNA. DNA was harvested by microcentrifugation as

before, and resuspended in 400pl of TE buffer and 30pl of RNaseA (lmg/ml). This was

incubated at 37°C for 30 minutes. DNA was precipitated at RT with lOpl of 4M

ammonium acetate and 1ml ethanol. DNA was harvested by microcentrifugation and

resuspended in TE. This DNA was further purified by repeated phenol/chloroform/IAA
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extractions, and ethanol precipitated again once the interface was clean. This procedure

yields approximately 20pg ofDNA.

2.5.2 Total RNA

For preparation and manipulation of RNA, all glass and plasticware was soaked for 20

minutes in 3% hydrogen peroxide, and then rinsed with DEPC-water. Solutions were

either DEPC treated themselves, or made using DEPC-water. Phenol was adjusted to pH

4 and equilibrated with AE buffer.

10ml yeast cultures were grown to 4 x 107 cells/ml in YPD. Cells were then harvested by

centrifugation at 5000rpm for 5 minutes. Cells were resuspended in 400pl AE buffer

(50mM sodium acetate pH5.3, lOmM EDTA pH8) and transferred to a 1.5pl Eppendorf

tube. 40pl 10% SDS was added and the sample vortexed. 440pl of AE equilibrated

buffered phenol (pH 4) was added, and the mixture vortexed for 60s before heating at

65°C for 5 minutes. Tubes were then transferred to dry ice for 15 minutes to precipitate

protein and DNA. Care had to be taken during this process to ensure that the protein-

DNA mixture was not completely frozen, as this caused reduced yields of RNA. Phases

were separated by microcentrifugation at 13000rpm for 15 minutes. The aqueous phase

was re-extracted with phenol (pH 4)/chloroform/IAA and ethanol precipitated. Pellets

were resuspended in 50pl DEPC-water, and stored at -70°C. This method was adapted

from Schmitt et ai, 1990.
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Anecdotal evidence suggests that the pH of the phenol is irrelevant in this preparation

with RNA being extracted at both pH 4 and pH 7, however, in our hands the RNA was

contaminated with DNA, when phenol pH7 was used.

2.5.3 RNA Concentration

RNA concentration was determined spectrophotometrically by measuring the absorbance

of dilutions at 260nm, and using the conversion:

1 A260 absorbance unit = 40pg RNA/ml

2.5.4 Nuclei

One litre yeast cultures were grown to 2 x 107 cells/ml. Cells were harvested by

centrifugation at 4000rpm for 5 minutes at 4°C. The weight of the cell pellet was

determined and designated as 1 volume (lg = 1ml). Cells were washed in 3 volumes of

water and then harvested in a JAM rotor in a Beckman centrifuge, at 5000rpm for 5

minutes at 4°C. The supernatant was decanted and cells resuspended in 1 volume

zymolyase buffer (50mM Tris-Cl pH7.5, lOmM MgC^, 1M sorbitol, 14mM P-

mercaptoethanol) containing 30mM DTT. The suspension was incubated at RT for 15

minutes to break disulphide bonds, and then cells harvested at 5000rpm for 5 minutes at

4°C. Cells were resuspended in 3 volumes zymolyase buffer containing ImM DTT.

lOOmg of yeast lytic enzyme were added per 5g of cells. Cells were incubated for 30min-

1 hour at 30°C with gentle agitation to form spheroplasts. Spheroplast formation was

mintored by periodically checking the cells under the microscope. Spheroplasts were

harvested by centrifuging as before, and washed 3 times in 2 volumes ice-cold zymolyase
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buffer containing ImM DTT. All subsequent steps were performed at 4°C. Spheroplasts

were lysed by stirring gently for 20 minutes in 15 volumes ficoll buffer (18% Ficoll-400,

lOmM Tris-HCl pH7.5, 20mM KC1, 5mM MgCl2, ImM EDTA, 3mM DTT, ImM

PMSF). The suspension was centrifuged at 5000 rpm for 5 minutes to pellet cell debris

and unlysed spheroplasts. This step was repeated once more, and the supernatant

removed and centrifuged at in a JA20 rotor at 13000rpm for 20 minutes. The pellet

volume (~2g) was estimated and resuspended in an equal volume of storage buffer

(20mM Tris-HCl pH7.5, O.lmM EDTA pH8, 10% glycerol, lOOmM KC1, ImM DTT,

ImM PMSF, 14mM P-mercaptoethanol). Aliquots were stored at -70°C.

2.5.5 Spheroplast preparation for direct MNase analysis

Spheroplasts were produced by following a protocol developed by Kent and Mellor

(1995). Briefly, 100ml yeast cultures were grown to mid-log phase (2 x 107 cells/ml) and

their cell count was determined using a haemocytometer. The cells were harvested, and

the pellets were washed in sterile water, resuspended in 950pl Yeast Lytic Enzyme

Buffer [lOmg/ml Yeast Lytic Enzyme, 20 000 units/g (ICN), 1M sorbitol, 5mM B-

mercaptoethanol], and incubated for 15min at room temperature with gentle shaking, to

allow spheroplast formation. The spheroplasts were harvested at 5000rpm at 4°C and

resuspended in. 1M sorbitol. This wash step was repeated. The sphaeroplasts were

resuspended in 1.2ml spheroplast digestion buffer [1M sorbitol, 50mM NaCl, lOmM

Tris-Cl pH 7.5, 5mM MgCl2, ImM B-mercaptoethanol, and 0.075% Triton], Spheroplasts

were stored at -70°C.
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2.6 DNA Analysis

2.6.1 Southern Blotting

Prior to Southern blotting (Southern, 1975), DNA fragments resulting from a restriction

digest of approximately lOpg genomic DNA were separated in an agarose gel. 50 counts

of radiolabelled lkb marker were also included on the gel. DNA was denatured in-situ by

washing for 2 x 20 minutes in 1.5M NaCl, 0.5M NaOH. The gel was neutralized for 2 x

25 minutes in ImM ammonium acetate, 20mM NaOH. DNA was transferred overnight to

nitrocellulose membrane (Zeta-Probe GT, BIO-RAD), by upward capillary transfer in

20X SSC.

The membrane was washed in 2X SSC and air-dried for 20 minutes. The DNA was

immobilized by baking on a vacuum dryer at 80°C for 1 hour. The membrane was then

incubated at 65°C in pre-hybridization buffer (3X SSC, lOmM EDTA pH8, 0.2% PVP,

0.2% Ficoll-400, 0.2% BSA, 0.1% SDS, O.lmg/ml denatured salmon sperm DNA,

0.5mg/ml heparin), for 2-3 hours in a rotating oven. The denatured probe was added to

25ml of hybridization buffer (pre-hybridization buffer supplemented with 2.25g of

dextran sulphate) at 65°C. Hybridization was performed overnight at 65°C. The

membrane was washed at 65°C for 4 x 15 minutes in 2X SSC/0.1% SDS, and for 2 x 20

minutes in 0.1X SSC/0.1% SDS. Finally, the membrane was rinsed in 2X SSC at RT, and

exposed to a phosphorescent screen (Fuji).
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2.7 RNA Analysis

2.7.1 Agarose Gel Electrophoresis

RNA fragments were size separated in a denaturing gel containing 1.5% agarose, IX

MOPS and 7.2% formaldehyde. 10-20pg samples of RNA were prepared in 15pl of

MMF solution (500pl formamide, 162pl 40% formaldehyde, lOOpl 10X MOPS).

Ethidium bromide was added to a final concentration of O.lmg/ml, and samples were

heated at 60°C for 15 minutes. Samples were loaded in IX loading buffer (ImM EDTA,

0.25% bromo-phenol-blue, 0.25% xylene-cycol, 50% glycerol), and gels were run in IX

MOPS. Images of stained gels were obtained by scanning in a Fujifilm FLA-2000 in

fluorescent mode.

2.7.2 Northern Blotting

Prior to Northern blotting, RNA was separated in a denaturing agarose gel. Gels were

washed for 2 x 20 minutes in DEPC-water to remove formaldehyde. RNA was then

transferred to nitrocellulose membrane, and hybridized to a cDNA probe as for a

Southern blot.
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2.8 Chromatin Analysis

2.8.1 Chromatin Immunoprecipitation (ChIP)

The chromatin immunoprecipitation protocol was adapted from Hecht et al (1999).

2.8.1.1 Growth, in vivo crosslinking, harvest and lysis of yeast cells

Two falcon tubes, each containing 20 ml YPD, were inoculated with an appropriate

amount of overnight culture of the strain of interest, and grown to the desired cell density

(~3 x 107 cells/ml). A 550pl amount of 37% formaldehyde (final concentration 1% ) was

added to each tube in order to crosslink protein-DNA complexes. The tubes were

incubated for 15 minutes at room temperature, with occasional mixing on a rotating

platform, to allow the crosslinking reaction to take place. The reaction was quenched with

the addition of 1ml 2.5M glycine (final concentration 125mM) and incubated for 5

minutes at room temperature, again on the rotating platform. The cells were harvested by

centrifugation at 3000 rpm at 4°C for 5 minutes. The supernatant was discarded and the

cell pellets were resuspended in 10ml ice-cold PBS and pelleted again. This step was

repeated. The supernatant was discarded and 250 pi ice-cold bead beater lysis buffer and

10 pi protease inhibitor mix for yeast and fungi (Sigma) was used to resuspend the pellet,

by pipetting up and down several times. The cell suspension was transferred to a 1.5 ml

screw-cap eppendorf tube. An equal volume of silica beads was added to the cell

suspension. The tubes were subjected to bead-beating at 4°C for 30s-1 minute in order to

lyse the cells. The eppendorf tube was punctured top and bottom using a red-hot 0.6 mm

(25G) needle. The tube was placed on top of another and centrifuged at 13000 rpm for 5
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seconds. This allowed the crude cell lysate to be captured in the bottom eppendorf tube.

The cell lysate was placed on ice. The chromatin was sheared by sonication with 3 pulses

of 10 seconds each with a 20 second rest interval while cooling samples on ice. The

optimal sonication time was determined by doing a sonication time course. The lysates

were then centrifuged at 13000 rpm for 20 minutes at 4°C. The supernatant was

transferred to a fresh eppendorf tube. An aliquot (20 pi) of this crude cellular extract was

set aside as INPUT material and stored at 4°C until further processing.

2.8.1.2 Immunoprecipitation and DNA Isolation

A 200 pi aliquot of whole cell extract (WCE) was transferred to a fresh eppendorf tube

and an empirically determined amount of antibody (2.5-10 pi and 30pl of the

corresponding protein sepharose suspension was added. The samples were incubated on a

nutator for 2 hrs - overnight at 4°C and then centrifuged for 5 seconds at 1000 rpm at 4°C.

The supernatant was discarded. One ml of bead-beater lysis buffer was added to the

protein sepharose beads and incubated for 5 minutes on a nutator and then centrifuged to

pellet the beads. This step was repeated. ChIP wash buffer 1 (1ml) was added to the

beads and incubated for 5 minutes at 4°C on a nutator and the the beads were then

centrifuged to pellet the beads. ChIP Wash buffer 2 (1ml) was added to the beads and

incubated for 5 minutes at 4°C on a nutator. The beads were then centrifuged and the

supernatant was discarded. ChIP Elution buffer (60 pi) was used to resuspend the beads

and they were then incubated at 65°C for 10 minutes. The beads were centrifuged for 2

minutes at 13000 rpm and the supernatant was transferred to a fresh eppendorf tube. This

was designated the PRECIPITATE. A 20 pi amount of precipitate and 10 pi of the input
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samples were transferred to a fresh eppendorf tube and 100 pi TE/1%SDS was added.

The tubes were incubated at 65°C in a waterbath overnight to reverse the DNA-protein

crosslinks and the remainder of the precipitate and input samples were retained at 4 °C for

later analyses.

The next day samples were removed from the waterbath and allowed to cool. TE (120

pi), 2 pg glycogen and 100 pg proteinase K was added the tubes and incubated at 37°C

for 1 hour. LiCl (25 pi) and 250 pi Phenol/ Chloroform solution was added to the

samples. The tubes were vortexed vigorously for 10 seconds. The aqueous and organic

phases were then separated by centrifugation for 5 minutes at 13000 rpm. The upper

(aqueous) layer was transferred to a fresh tube and 750 pi absolute ethanol was added.

The tube was mixed carefully and the nucleic acid was pelleted by centrifugation at

13000 rpm for 20 minutes. The supernatant was discarded and the pellet was washed with

500 pi 70% ethanol. This was repeated. The 70% ethanol was discarded and the pellet

was allowed to air-dry for 15 minutes. The DNA from INPUT samples was resuspended

in 50 pi TE and DNA from the PRECIPITATE sample was resuspended in 70 pi TE.

2.8.1.3 Polymerase Chain Reaction for Chromatin Immunoprecipitation

PCR reactions were carried out in 25 pi volumes with 25 pmol of each primer, 0.2 mM

dNTPs and 0.25 units Titanium Taq Polymerase (Clontech) and IX PCR buffer. DNA

was amplified on a Biometra PCR machine using the following program: 2 min initial

denaturation at 96°C, followed by an 26-35 cycles with 30 seconds at 96°C, 30 seconds at

54°C, 60 seconds at 72°C and a final extension step of 2 minutes at 72°C.
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2.8.1.4 Polyacrylamide Gel Electrophoresis

DNA fragments were separated according to size by polyacrylamide gel electrophoresis.

Gels contained 6% polyacrylamide and were run in IX TBE. DNA samples were loaded

in IX ChIP gel loading buffer. Gels were run in IX TBE, at 100 volts for 45 minutes.

Gels were then stained in 3pg/ml ethidium bromide solution for 10 minutes, to visualize

DNA. De-staining was achieved by washing twice for 10 minutes in distilled water.

Images of stained gels were obtained by scanning in a Fujifdm FLA-2000 in fluorescent

mode. Bands were then quantitated using the AIDA software.

2.8.2 Chromosome Conformation Capture (3C)

The chromosome conformation capture assay was performed using the technique

developed by Kleckner and colleagues (2002). Briefly, purified nuclei (~1 X 108) in 50pl

were crosslinked with 1% formaldehyde for 2 minutes at room temperature. The reaction

was quenched by the addition of glycine to 0.125M. SDS was added to a final

concentration of 0.1% and the reaction was incubated at 37°C for 10 minutes in order to

remove any non-crosslinked proteins from the DNA. To sequester SDS and allow

subsequent restriction digestion, Triton X-100 was added to a final concentration of 1%.

The DNA was digested with a restriction enzyme at 37°C in a final volume of 500 pi.

The restriction enzyme was inactivated by the addition of 1.6% SDS and incubation at

65°C for 20 minutes. Triton X-100 was added to 1% and DNA was ligated overnight at

16°C using T4 ligase. The crosslinks were reversed by overnight incubation at 65°C in

the presence of 5pg/ml proteinase K. Finally the DNA is cleaned by running the

decrosslinked solution through a PCR purification column (QIAGEN) and eluted in 30 pi
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TE. Two sets of control DNA were produced by (i) eliminating the formaldehyde

crosslinking step in one set, and (ii) eliminating both formaldehyde cross-linking and

ligation in another set. The DNA was subjected to PCR amplification and the products

were run on 6% polyacrylamide gel, stained in 0.75 pg/ml ethidium bromide and

quantified using the AIDA software.

2.8.3 Digestion of Nuclei and Spheroplasts with Micrococcal Nuclease (MNase)

Nuclei or spheroplasts were washed 3 times in 1ml of micrococcal nuclease digestion

buffer (1M sorbitol, 15mM Tris-HCl pH8, ImM MgCl2, 50mM NaCl, 0.5mM PMSF)

and harvested by microcentrifugation at llOOOrpm for 2 minutes. Nuclei were

resuspended in 400pl digestion buffer and pre-incubated for 2 minutes at 37°C. 1-3U of

micrococcal nuclease was added, and the reaction initiated by addition of 5pi CaCE

(lOOmM). Digestion proceeded at 37°C. A 90pl aliquot was removed to lOpl of

termination solution (250mM EDTA pH8, 5% SDS, 50mM Tris-Cl pH8) at 30 seconds, 1

minute, 2 minutes and 4 minutes.

For spheroplast digestions, 100U MNase (Worthingtons) was added to 1.2ml spheroplasts

resuspended in spheroplast digestion buffer and the reaction was incubated at 37°C. At

30 seconds, 1 minute, 2 minutes and 4 minutes, 200 pi aliquots were removed and added

to fresh eppendorf tubes containing 20pl termination solution.

Protein was digested by 5pl of 20mg/ml proteinase K at 50°C for 45 minutes. DNA was

extracted with phenol/chloroform/IAA, and residual phenol removed with
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chloroform/IAA. After ethanol precipitation the samples were resuspended in 90pl

lmg/ml RNaseA and incubated at 37°C for 45 minutes. DNA was extracted from the

RNaseA, and precipitated as above. DNA pellets were resuspended in 20pl TE and

loaded onto a 1% agarose gel in 1 X TBE, and electrophoresed for lhr at 120V. The gels

were stained in 3pg/ml ethidium bromide for 20 minutes and destained in water for 20

minutes. The DNA was visualised using a phosphorimager.

2.9 Protein Analysis

2.9.1 Protein Extraction from Yeast Cells

Total crude protein was extracted from cells as previously described (Methods in Yeast

Genetics, 1997). Briefly, an overnight culture of yeast cells (10ml; ODeoo 0.7) was

pelleted by centrifugation in a benchtop centrifuge (13000 x g, 25°C, lmin). The cells

were washed in water and resuspended in 100 pi sample application buffer (0.06 M Tris-

C1 (pH 6.8), 10% (v/v) glycerol, 2% (w/v) SDS, 5% (v/v) 2-mercaptoethanol, 0.0025%

(w/v) bromophenol blue). The samples were heated at 95°C for 5 minutes, cooled to room

temperature, and loaded onto a 15% SDS-PAGE gel.

2.9.2 Protein co-immunoprecipitations

For co-immunoprecipitations 200pl whole cell extract was added to 2.5pl Flag antibody

(Sigma) and 30pl protein sepharose A beads (Pharmacia) and rotated for 2 hours at 4C.

The protein was recovered with 1 Opl SDS sample loading buffer.
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2.9.3 Western blots

Gels were electrophoresed at 150 V for 90 min in IX SDS-PAGE buffer. Following

electrophoresis, gels were stained with Coomassie Blue stain solution for 1 h (0.25%

(w/v) Coomassie Brilliant Blue in methanol), and destained overnight in destain solution

(7% acetic acid, 25% ethanol). Unstained protein was transferred using a Mini Trans-

Blot Electrophoretic Transfer Cell (Bio-Rad Laboratories, Hercules, CA, USA) following

the manufacturer's instructions. Briefly, after electrophoresis, the gel was equilibrated in

transfer buffer (25 mM Tris, 192 mM glycine, 20 % (v/v) methanol, pH 8.3) for 20

minutes, before being assembled in the transfer cell. The protein was transferred to a 0.45

pm Trans-Blot Transfer Medium nitrocellulose membrane (Bio-Rad), at 100V, 350 mA

over 2 hours. The membrane was treated with blocking solution (0.1 % [v/v] Tween 20,

10 % [w/v] dry milk powder in PBS) for two hours at room temperature, followed by

three washes with 0.1 % [v/v] Tween, lx TBS ( 20 mM Tris-Cl (pH 7.6), 137 mM NaCl).

Thereafter, the nitrocellulose membrane was incubated with primary antibody (1:1000)

overnight at 4°C. After washing 6 times in 0.1 % Tween, lx TBS, a second incubation

with phosphatase-labelled secondary antibody (1:20000; Sigma), was performed over 2

hours at room temperature. The membrane was washed 6 times in 0.1 % Tween, lx TBS

and antibody-labelled proteins were visualised with LumiPhos WB (Pierce, Rockford,

Illinois, USA). Briefly, 5 ml LumiPhos was incubated with the nitrocellulose membrane

for three minutes. The membrane was wrapped in Saran Wrap and exposed to Kodak

Scientific Film X-OMAT AR (Eastman Kodak Company, Rochester, New York, USA).

The x-ray film was developed using a Konica SRX-101A X-ray processor (Konica

Corporation, Tokyo, Japan).
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Chapter 3

Generation and Characterisation of

Mutant Yeast Strains

3.1 Introduction

The FLOl gene is the predominant member of the FLO group of genes encoding

lectin-like proteins (Teunissen et al., 1995). Flolp promotes cell adhesion by causing

flocculation (Miki et al., 1982), a phenomenon whereby yeast cells aggregate in

clumps and drop out of solution in a liquid medium.

The FLOl gene locus comprises of an upstream regulatory region over 7kb long.

This region is relatively gene-free and is found to be under the influence of the Tupl-

Ssn6 co-repressor complex, which has been shown to bind in discrete foci (Tsukihashi

and Pennings, in preparation). Nucleosomal mapping over a 32 nucleosome array in

this region in various yeast mutants (Fleming and Pennings, 2001) demonstrated that

antagonistic remodelling by Tupl-Ssn6 and SWI/SNF formed the background for

FLOl gene regulation.

Interestingly, the nucleosomal spacing over the upstream region shows an average

nucleosomal spacing of 180bp, which is significantly longer than the average

nulceosomal spacing of 165bp in yeast. The nucleosomal array is at its most regular in

the presence of the Tupl-Ssn6 co-repressor, which might be indicative of a form of

higher-order folding. Because the increased nucleosomal spacing leaves sufficient
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linker DNA between nucleosomes, we speculated that Hholp might be a possible

factor involved in the chromatin organisation of the upstream region or even the

regulation of the FLOl gene.

At the promoter of the SUC2 gene in yeast, Tuplp is evenly distributed over four

nucleosomes and has been shown to de redistributed upon derepression of the gene,

possibly as a result of role-reversal from repressor to activator complex (Boukaba et

al., 2004). Furthermore, Tupl-Ssn6 is continuously associated with the promoters it

represses, whether in the active or repressed state (Papamichos-Chronakis et al.,

2002). Therefore the mechanism by which Tupl-Ssn6 repression is alleviated is not

its removal; instead an activator complex alters the chromatin environment in such a

way, that the Tupl-Ssn6 co-repressor complex is no longer able to perform its

repressive functions. The protein that recruits Tupl-Ssn6 to the FLOl promoter is

unknown.

The aim therefore was to localise various candidate proteins involved in the regulation

of the FLOl gene in various mutant strains. Previous work had been performed in a

By447 (Mata) strain where Tuplp had been Flag-tagged, but Tuplp and Ssn6p

antibodies had since become available. In order to investigate the localisation of

specific proteins at the FLOl upstream region, the W303 yeast strain with a Myc-

tagged-Hhol protein was selected as the parental strain, as no Hholp antibodies are

available commercially and previous attempts to raise an Hholp antibody generated a

non-specific antibody (Coert and Patterton, unpublished data). Further attempts to tag

the protein at the C-terminal end, with both Flag and HA tags, though successful,

were either not detectable via western blot (HA-plasmid) or produced non-specific
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binding, in the case of the Flag-tag (refer to appendix II). The Myc-tagged Hholp

W303 strain is a kind gift from Dr J. Downs (Downs et al., 2003). This strain was

used as the background strain from which ASNF2, ASSN6 and ATUP1 were

constructed, and was tested for its specificity to the Myc antibody by western blot

(Appendix II). The AHHOl mutant strain was a kind gift from Dr H.G. Patterton

(Patterton et al., 1998).

3.2 Methodology used in this Chapter

Gene deletion strains were generated using PCR-mediated gene disruptions (Baudin et

al, 1993). This allows the replacement of a gene at its normal chromosomal location

with a mutant allele of that gene or a selectable marker gene, produced in vitro, such

that the only difference between the initial and final strain is that particular allele. A

series of plasmids and strains have been created in order to facilitate this technique

(Brachmann et al., 1998). The plasmids contain common yeast selectable marker

genes cloned into a conserved site. These selectable marker genes could code for

auxotrophic marker genes which have been deleted from the yeast genome, as well as

antibiotics like geneticin (G418). The technique is based on the premise that

homologous recombination in yeast is very efficient with DNA fragments, and that

only 40bp of homology is required for efficient recombination. The selectable marker

gene is amplified by PCR with 40+ bp of homologous sequence on either side. This is

achieved by designing primers to the selectable marker which have 40bp of sequence

homologous to the gene to be disrupted, flanking the primer sequence of the

selectable marker (Figure 3.1). The gene disruption fragment is then transformed into

the original strain and the strain with the disrupted gene is selected for by growth on

the appropriate media.
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ATG KANMX4 TAA

i
ATG KANMX4

><
ATG MMMKOTMIilMtfMMi

I
A) Unsuccessful deletion: ORF till present

B) Successful deletion: KanMX4 module replaces yeast ORF

ATG KANMX4 TAA

Figure 3.1 Strategy for PCR-mediated gene disruption in yeast resulting in
chromosomal integration by homologous recombination.
A fragment for transformation is produced by amplifying the kanMX integration

fragment with 40bp of homology to the each end of the gene to be disrupted. After
transformation into the yeast cell, the flanking ends are recognised by the yeast

genome and might lead to homologous recombination. If successful the ORF will be

disrupted by the integration of the kanMX fragment into the yeast genome. If

unsuccessful, the yeast ORF will still be present. Adapted from the Saccharomyces
Genome Database.

TAA

TAA
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3.3 Generation and Analysis of the Knockout strains

In order to further investigate the interaction between the FLOl upstream region and

the co-repressor/co-activator system, TUP1, SSN6 and SNF2 were deleted in the

following way:

Ethidium Bromide gel stains had not been kept and therefore could not be

included. Preliminary PCR tests should have been performed to verify that the

genes had been deleted.

3.3.1 Generation and Analysis of ATUP1

The ATUP1 deletion strain was generated using primers homologous to the

kanamycin kanMX gene (Wach et al., 1994) containing flanking regions homologous

to the TUP1 gene. These were designed to replace the TUP1 gene from the ATG to

downstream of the stop codons by PCR-mediated disruption, with a geneticin

selectable marker. The kanamycin gene was amplified from plasmid kanMX with

primers TuplkanMX_l and TuplkanMX_2. The disruption fragment was

transformed into yeast strain JD397 (W303-////O/-Myc), and following growth at

30°C for 2-7 days on YPD plates supplemented with 200pg/ml geneticin, positive

clones were selected. A flocculation test was performed to test for the ability for the

strain to flocculate. Flocculation is dependent upon Ca 2+ ions and can therefore be

distinguished from other cellular processes which may cause clump formation, by

resuspending cell pellets in 250mM EDTA. Therefore, after allowing cells to

flocculate after overnight growth, EDTA was added to ensure that they could be

dispersed when calcium ions were chelated. The ATUP1 strain was a good flocculator

(Figure 3.5). Cells were generally found in small clumps in liquid media and cultures
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took approximately two days to reach saturation, due to fermentation of the

flocculating clumps and possible contact inhibition.

Genomic DNA (lOpg) was prepared from a saturated culture of wildtype cells, as well

as from the putative ATUP1 strain. The DNA was then subjected to an overnight

restriction enzyme digestion with 1U Ncol (NEB)/pg DNA at 37°C. The reaction was

stopped by incubating the digest at 65°C to denature the remaining enzyme, before

subjecting it to a phenol/chloroform wash and ethanol precipitation. The DNA was

dissolved in 20pl of sterile water. The digested DNA was electrophoresed on a 1%

agarose gel (IX TBE) gel for 2.5 hours using a radiolabelled lkb ladder as a size

marker.

A Southern blot (see materials and methods) was performed on genomic DNA

digests, and hybridised with a probe which confirmed complete deletion of the TUPI.

The probe DNA had previously been amplified by PCR from genomic DNA

(Invitrogen), using oligonucleotides TuplkanSBl and TuplkanSB2. This reaction

yielded a PCR fragment of 347 bp. Ncol cuts 500bp into the kanMX insert and again

at 2000bp downstream of the TUP1 gene (Figure 3.2). A band 3045bp in length is

expected in the ATUP1 mutant strain.
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Ncol (500bp)

—!KanMX 1545bp

TUP1 2142bp
Probe

Ncol
<t§
JL

2000 ■>r

M ATUP1 WT

1,5Kb

£
3045bp

Figure 3. 2 Strategy and Southern blot of TUP1 knockout.
The TUP1 gene in its entirety including the start and stop codons was disrupted. The disruption

fragment was amplified by PCR from plasmid kanMX using primers TuplkanA and TuplkanB. A

probe amplified from primers TuplkanSBl and TuplkanSB2 was used to visualise bands indicating
the differences in restriction fragment sizes. The yellow box denotes the probe. The orange boxes
denote the 40bp of homology which enables homologous recombination. M denotes the lkb ladder
used as a marker. The blot shows a band of 3045bp in the ATUPI lane confirming that TUPI has been

successfully deleted.
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3.3.2 Generation and Analysis of ASSN6

The SSN6 strain was generated by PCR-mediated disruption, by replacing the SSN6

gene with a geneticin selectable marker from the ATG and downstream of the stop

codons. The kanamycin gene was PCR amplified from plasmid kanMX with primers

Ssn6knAand Ssn6knB, containing flanking sequences homologous to the SSN6 gene.

The disruption fragment was transformed onto yeast strain JD397, and following

growth at 30°C for 2-7 days supplemented with 200pg/ml geneticin, positive clones

were selected on YPD plates. A flocculation test was performed to verify the strain's

ability to flocculate.

The ASSN6 mutant strain displayed a very strong flocculation phenotype. In all

experiments the ssn6 mutant strain produced a "round ball of cells" which was unable

to break up. This meant that the cells in the middle of the "ball" were less well-

aerated and subsequently the culture always took upwards of two days to reach

saturation, compared to overnight incubation for wildtype cells. The clumps were,

however, able to disperse in the presence of 250mM EDTA, which is able to chelate

the Ca+ ions responsible for flocculation. A composite picture of all flocculating

strains is seen in Figure 3.5). The ASSN6 mutant strain is seen to drop completely out

of solution; however, the ATUP1 strain which also flocculates does not have such a

strong flocculating phenotype.

Genomic DNA (lOpg) was prepared from saturated cultures of wildtype and putative

ASSN6 mutant cells and digested with Dral (NEB; lU/pg DNA) overnight at 37°C.

After denaturing the remaining enzyme at 65°C, the digested DNA was cleaned using
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phenol/chloroform extraction and ethanol precipitation, before being dissolved in 20pl

sterile water. The DNA was electrophoresed as before and visualised using an

ethidium bromide stain. A radiolabeled lkb ladder was run alongside the digested

DNA as a size marker. After a denaturing step, the DNA was transferred to a

nitocellulose membrane by overnight Southern blot in 20X SSC.

The oligonucleotides Ssn6kanSBl and Ssn6kanSB2 yielded a 521bp DNA fragment

which was used as a radiolabeled probe for hybridisation to the nitrocellulose

membrane overnight at 65°C. The excess probe was removed in a washing step and

the membrane was exposed to a phosphorescent screen overnight.

The blot shows a band of 1836bp in the ASSN6 lane confirming that SSN6 has been

successfully deleted, while the wildtype shows a band of 4191bp (Figure 4). The

fragments are produced as a result ofDral cutting the wildtype strain 461 bp upstream

of the SSN6 gene and again 75 lbp downstream of the SSN6 gene, while in the ASSN6

mutant strain the kanMX insert is cut 54lbp from the start.
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Figure 3. 3 Strategy and Southern blot ofSSN6 knockout.
The SSN6 gene in its entirety including the start and stop codons was disrupted. The

disruption fragment was amplified by PCR from plasmid kanMX using primers
Ssn6knA and Ssn6knB. A probe amplified from primers Ssn6kanSBl and
Ssn6kanSB2 was used to visualise bands indicating the differences in restriction

fragment sizes. The yellow box denotes the probe. The orange boxes denote the 40bp
of homology which enables homologous recombination. M denotes the 1 kb ladder
used as a marker. The blot shows a band of 1836bp in the ASSN6 lane confirming that
SSN6 has been successfully deleted.
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3.3.3 Generation and Analysis of ASNF2

The SNF2 strain was generated by PCR-mediated disruption, by replacing the SNF2

gene with a geneticin selectable marker from the ATG to downstream of the stop

codons. The kanamycin gene was PCR amplified from plasmid kanMX with primers

Snf2kanMXback and Snf2kanMXforward, containing flanking sequences

homologous to the SNF2 gene. The disruption fragment was transformed onto yeast

strain JD397, and following growth at 30°C for 2-7 days on YPD plates supplemented

with 200pg/ml geneticin, positive clones were selected. A southern blot was

performed on genomic DNA digested with Dral, and probed using probe

Snf2KanMXSB (148bp) which confirmed the complete deletion of the SNF2 gene.

As expected, the ASNF2 mutant strain did not display a flocculation phenotype

(Figure 3.5) but was extremely slow growing in liquid culture. Cultures took

approximately three days to reach saturation (compared to overnight for wildtype

cultures) and could only tolerate speeds of no more than 110 rpm in the orbital shaker.
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Figure 3. 4 Strategy and Southern blot of SNF2 knockout.
The SNF2 gene in its entirety including the start and stop codons was disrupted. The

disruption fragment was amplified by PCR from plasmid kanMX using primers
Snf2knA and Snf2knB. A probe amplified from primers Snf2kanMXback and
Snf2kanMXforward was used to visualise bands indicating the differences in
restriction fragment sizes. The yellow box denotes the probe. The orange boxes
denote the 40bp of homology which enables homologous recombination. M denotes
the 1 kb ladder used as a marker. The blot shows a band of 3045bp in the ASNF2 lane

confirming that SNF2 has been successfully deleted.
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AHHOl WT ASSN6 ASNF2 ATUPl

Figure 3.5 Flocculation assay. Yeast strains were inoculated into 5ml YPD and

allowed to grow till saturated. 1ml of inoculum of each strain was pipetted into a one

16-well plate well and allowed to settle for one hour. The plates were then scanned

using a UMAX Powerlook 1000. It is evident that ASSN6 has a severe flocculation

phenotype, while ATUPl has a weaker flocculation phenotype. The wells in the top

row were treated with 250 mM EDTA, while the bottom row was allowed to settle.
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As a further confirmation of a successful SNF2 deletion, the positive clones were

streaked onto raffmose plates, supplemented with antimycin A, an electron transport

inhibitor. The SNF2 mutation abolishes the cell's primary ATPase activity and also

disrupts the integrity of the SWI/SNF complex (Peterson et al., 1994). The SUC2

gene encodes invertase which enables the cell to use raffmose and sucrose as a carbon

source. The activation of SUC2 is dependent on SWI/SNF remodelling at the SUC2

promoter (Hirschhorn et al., 1992). SNF2 mutants are therefore unable to utilise either

sucrose or raffinose as they are unable to remodel the SUC2 promoter (Santisteban et

al., 1997). The ability for cells to grow on raffinose is a sensitive assay for invertase

activity, as raffinose is a poorer substrate for invertase than sucrose (Neigeborn and

Carlson, 1984). Putative mutants were therefore spotted onto plates containing

raffmose, supplemented with antimycin A. This prevents the mitochondria from

functioning, which in turn forces the cell to switch to fermentative growth. If the cell

is unable to utilize its carbon source, it will therefore be unable to grow. The putative

ASNF2 colonies were therefore restreaked onto YEP plates supplemented with 2%

raffinose and 1 pg of antimycin A/ml.

The raffinose sensitivity experiment showed that colony 1 and 2 were positive ASNF2

transformants, while colony 13 was a false positive. Both wild type and colony 13

grew on the raffinose plates, though the colonies were smaller in size than on glucose

plates.

Mutant 1 produced colonies of equal size on solid medium, while mutant 2 produced

unevenly sized colonies. Mutant 1 was therefore selected for further analyses.

99



Chapter 3

Figure 3.6 Raffinose sensitivity assay. The sensitivity of the putative ASNF2

mutant was tested by restreaking those colonies that had successfully grown on

kanamycin plates, onto YEP-raffinose plates supplemented with 1 fig of antimycin

/ml. Colonies one and two were therefore confirmed as successful transformants.
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3.3.4 Northern blot analyses of Mutant strains

The ATUP1 and ASSN6 mutants displayed a flocculation phenotype. Northern blots

were therefore performed on all strains used in the study in order to determine the

activation status of the FLOl gene.

In Figure 3.7 ACT1 probe hybridisation was used as a loading control. It is evident

that the FLOl gene is derepressed in the ASSN6 and ATUP1 strains (Figure 3.8).

Interestingly, the gene is also partially derepressed in the wildtype strain. However,

this partial derepression is not easily visible with the naked eye in terms of

flocculation, as is evident in Figure 3.5. Unfortunately this northern blot was not

repeated and we can therefore not confirm if this result is real or if the partial

depression seen is due to the wildtype strain being contaminated with a flocculating

strain.

In order to ensure that repression or derepression of the FLOl gene was not caused by

intergenic transcription of any upstream sequences (Martens et al., 2004), probes were

generated against five 1Kb upstream regions. No mRNA transcripts were detected,

however, these experiments did not include a positive control on each blot, and so no

definitive observation can be made by these experiments, since the signal might have

been washed off during the stringent wash conditions. If the wildtype strain does

indeed have a slight flocculation phenotype then one might expect that the chromatin

over the FLOl upstream region might be in an already remodelled state. As a control,

a chromatin IP (with Tuplp antibodies) on the 6Kb FLOl upstream region in

wildtupe cells will be performed. The chromatin IP should recreate results generated

by Tsukihashi and Pennings (manuscript in preparation).
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0-1Kb upstream of FLOl

l-2Kb upstream of FLOl

2-3Kb upstream of FLOl

3-4Kb upstream of FLOl

4-5Kb upstream of FLOl

FLOl

ACT1

AHHOI

Figure 3.7 Northern blot analysis on the mutant strains.
RNA generated from all the strains used in this study were subjected to northern blot

anlysis. The RNA was probed with FLOl to detect mRNA from the FLOl gene, and
ACT1 to detect the ACTI gene which was used as a loading control. The RNA was

also probed with 1Kb probes across the 5Kb FLOl upstream region, in order to detect
mRNA transcripts being transcribed in this region. None were detected.
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AHH01 WT ASSN6

Strain

ASNF2 ATUP1

Figure 3.8 Upregulation of the FLOl gene in mutant strains.
Bands from the FLOl and ACT1 expression were quantitated. FLOI expression is

plotted after being normalised to ACT1. WT shows slight upregulation which was not

confirmed by a second northern blot. ASSN6 and ATUP1 show upregulaton ofFLOl.

103



Chapter 3

3.4 Summary

The results from the Southern blots show that SNF2, SSN6 and TUPl have been

successfully knocked out in their respective strains. This is confirmed by additional

phenotypic evidence.
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Chapter 4

Chromatin Immunoprecipitation over
the FLOlupstream domain

4.1 Introduction

Regulation of the FLOl gene is mediated by an antagonistic relationship between a chromatin

remodelling complex and a chromatin co-repressor, SWI/SNF and Tupl-Ssn6, which are able

to rearrange the nucleosomes in the 32-nucleosome array (Figure 4.1) across the FLOl

upstream domain (Fleming and Pennings, 2001). This may regulate access of certain DNA

binding proteins to the DNA and either activate or repress the gene.

The presence of Tupl-Ssn6 at the promoter causes FLOl to be repressed (Fleming and

Pennings, 2001). Tupl-Ssn6 binds to deacetylated histone H3 and H4 tails but not to

acetylated histones (Edmondson et al, 1996). In general, repression by Tupl-Ssn6 is

associated with reduced acetylation of histone H3 and H4 at promoters in vivo (Bone and

Roth, 2001). Active promoters, on the other hand, are found in the context of acetylated

histone H3/H4. Therefore repression ofFLOl by Tupl-Ssn6 may be modulated by changes in

histone acetylation.

Intriguingly, the 32-nucleosome array in the FLOl upstream domain contain regions of

increased nucleosomal spacing of approximately 180bp, rather than the normal 160bp spacing

(Fleming and Pennings, 2001; Figure 4.1). We reasoned that it would be interesting to see

whether this increased nucleosomal spacing can incorporate a yeast linker histone as it is

more similar to the linker length seen in higher eukaryotes.
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Our first aim was therefore to determine the localisation of Tuplp across the FLOl upstream

region up to 6Kb upstream from the transcription start site, in various yeast strains, including

those where SSN6 and SNF2 have been deleted. This might show how the binding pattern

alters as the gene is repressed or expressed.

Secondly we aimed to localise Hholp across the domain in order to elucidate whether it binds

in areas of increased nucleosomal spacing, and how it is related to the chromatin remodelling

complex and chromatin co-repressor mediating the regulation of the FLOl gene.

Finally, we aimed to determine the H4 acetylation pattern to firstly, investigate the possibility

that the acetylation pattern changes in association with the activity of the gene, and secondly,

whether the absence of the co-repressor complex or co-activator (remodelling) complex

influences the acetylation pattern over the domain.
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Tup1 -Ssn6 effects on nucleosomo array.
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Reproduced from Fleming and Pennings, 2001.

Figure 4.1 Nucleosome positioning at the FLOl upstream region in an array of
mutant strains. Indirect end-labelling gels were scanned and intensity plots linearised
to determine where the nucleosomes (oval discs - black/white/grey) were positioned

(A) over a 6Kb region upstream of the FLOl gene. This was repeated with snf2 and
ssn6 strains (B). Increased linker lengths on the DNA (black line) are visible.
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4.2 Methodology used in this chapter

Chromatin immunoprecipitation is a technique used to determine whether a given

protein is localised to a specific DNA sequence in vivo (Hecht and Grunstein, 1999;

Figure 4.2). Briefly, chromatin-associated proteins are crosslinked to DNA by

formaldehyde in vivo. The chromatin is isolated from the cells and then sheared to an

appropriate fragment size of 500-1000bp (Figure 4.3). The fragmented chromatin is

subsequently incubated with an antibody specific to the protein of interest, and then

selectively pelleted with Sepharose beads binding to the antibody in order to retrieve the

protein bound DNA complex. The crosslinks are then reversed to release the DNA,

which is further purified. Finally, PCR amplification of specific DNA sequences is

performed to see whether they were co-precipitated with the antibody (Figure 4.2).

Chromatin immunoprecipitation is a very sensitive technique and considerable

optimisation had to be undertaken before the procedure could be reliably performed.

Sonication was optimised by performing a 0-50s timecourse (Figure 4.3). Antibody-

binding of the immunoprecipitation procedure was performed at 4°C overnight. The

sepharose bead retrieval also needed to be optimised. Initially the beads were washed 4

times in Lysis buffer, however this was too stringent. Instead we opted for washing the

beads twice in Lysis buffer and then once in 500mM NaCl (ChIP Wash Buffer 1) and

once in 250mM NaCl (ChIP Wash Buffer 2). For most experiments protein Sepharose

A was employed, which uses protein A with very high affinity to IgG molecules,

however for goat antibodies (Santa Cruz), protein Sepharose G was used instead.

The amount of input DNA had to be optimised in order to assure that the PCR was in

the logarithmic scale and was not saturated. Input DNA was therefore diluted in a 5-fold

dilution series and amplified by PCR with a primer set (Figure 4.4A). ChIP primers
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were all designed to have a Tm of 56-58°C and were between 20-22bp long. Finally, a

PCR was performed on input DNA to determine the optimal cycle number in order to

ensure that the PCR was in the logarithmic stage of the reaction. A PCR reaction

timecourse was therefore performed with cycle numbers ranging from 0-40 cycles

(Figure 4.4 B). 33 cycles were determined to be the cycle optima for subsequent

experiments (Figure 4.4 C).

For the experiments presented, two separate yeast cultures were inoculated and grown

for each strain and processed in parallel, to yield duplicate datasets. The graphs shown

group experiments performed in parallel. All PCR fragments in this chapter were run on

6% polyacrylamide gels in IX TBE, stained in Ethidium Bromide and destained under

fixed conditions, and visualised on a phosphorimager (Fuji FLA-2000 ) under the

fluorescent setting.

The intensity of each band was determined as follows: For the precipitate signal, a

rectangle was drawn around the bands in the 2D Mode using Aida 2.0 Software

(Raytek). An equally-sized rectangle was drawn in an empty gel area adjacent to the

band. The blank signal was subtracted from the precipitate signal. The same was done

for the input signal. The precipitate was then divided by the input for each band and

plotted on a graph. The graph shows the average between two separate experiments.

The chromatin immunoprecipitation methodology used in this study yields semi¬

quantitative results. Since a real-time PCR machine was not available at the start of this

study, the above methodology was chosen in order to add to an existing dataset which

had been performed by Tsukihashi and Pennings (manuscript in preparation), and which
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had used the semi-quantitative method. Additional controls (not repeated in this study)

such as radioactive PCR quantitation and the use of the RNR2/STE6 genes as an

internal reference, had further established the conditions subsequently used in this

study, along with gels showing single band amplification with a dynamic intensity range

(not shown).

In order to make the results more robust, more replicates of the chromatin

immunoprecipitations should be performed. In addition, more PCR probes could be

incorporated in the experiments, especially over areas which have sparse representation

in the ChIP experiments.

Finally, repeating the whole dataset with Real-time PCR would make the technique

quantitative.
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Figure taken from Molecular Biology of the Cell. Alberts et al.

Figure 4.2 Chromatin immunoprecipitation protocol.
Protein (blue) is crosslinked to a DNA sequence of interest (red) using a crosslinking

agent, such as formaldehyde. DNA is sheared by sonication yielding a desired fragment

length. The protein-DNA complex is immunoprecipitated from the whole cell extract

using an antibody specific to the protein of interest, by means of Sepharose beads (not

pictured). The DNA-protein complex is decrosslinked and the fragment of interest that
was previously bound to protein is amplified by PCR using primers specific to the DNA

sequence.
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Figure 4.3 Sonication timecourse.
Crosslinked yeast chromatin was sheared by sonication in a timecourse ranging from 0-
50s. DNA was purified and electrophoresed on a 1% agarose gel.
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INPUT DNA PCR
1:25 1:125 1:625

B

Number of cycles

10 20 25 30 35 40

Cycle number optima

Figure 4.4 Chromatin immunoprecipitation control experiments.
In A, input DNA is diluted and then amplified over 30 cycles to determine the optimal
DNA concentration (1:125). In B, PCR reactions of input DNA at a ratio of 1:125 is
amplified for increasing amounts of cycles ranging from 10-40 cycles to determine the
optimal number of cycles. 33 cycles were optimal, visible in the adjacent graph C.
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Figure 4.5 Localisation of chromatin immunoprecipitaton PCR fragments.

Primers, of uniform length and Tm were designed across a 6Kb domain upstream of the
FLOl gene. These were used to amplify DNA prepared by chromatin

immunoprecipitation.
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4.3 Results

4.3.1 Localisation of Tuplp over the FLOl upstream region

The relative distribution of Tuplp over the promoter and extended upstream region of

the FLOl gene was determined using the chromatin immunoprecipitation (ChIP) assay,

an in vivo technique that combines antibody detection with PCR-based mapping, which

has been used for mapping chromatin-associated proteins and histone modifications

along the DNA sequence (Hecht and Grunstein, 1999).

To detect Tuplp, an antibody generated against the N-terminal of the Tuplp protein

(Santa Cruz Biotechnology) was used to probe the FLOl upstream region in four

strains, in order to determine the differences in Tuplp localisation. In three of these

strains, the coding regions of specific DNA packaging or chromatin remodelling genes

(SSN6, HHOl, SNF2), had been replaced with the kanMX coding region as a selective

marker.

Tuplp localisation has been studied by other groups at the STE6, STE2, RNR2, SUC2

promoters (Ducker and Simpson, 2000; Davie et a!., 2002; Boukaba et ai, 2004). These

studies showed that Tuplp was localised at the promoter regions of these genes. Here,

the localisation of Tuplp was analysed over a 6Kb chromatin region upstream of the

FLOl coding sequence. The diagram in Figure 4.5 indicates the DNA fragments that

were amplified from either input chromatin or the immunoprecipitated fraction, using

12 sets of primers under conditions of semi-quantitative amplification (Figure 4.5).

115



2

1

1

1

1

1

0

0

0

0.

0

Chapter 4

Tup1 p deposition over the FL01 upstream region

Distance from FL01 ATG

Figure 4.6 Tuplp deposition over the FLOl upstream region.
ChIP experiments were performed in duplicate using the Tuplp antibody, and the

average of the ratio of precipitate DNA/input DNA was plotted. WT-black diamond;

AHHOl-grey square; AS7VF2-black square; 2\>SSyV<5-black circle.
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.The results (Figure 4.6; 4.9) show that in the WT strain, W303 HHOlv.Myc, Tuplp is

highly concentrated between -226bp and -1726bp, a finding which was also

demonstrated by Tsukihashi and Pennings (unpublished data) in the BY4733a strain

with a FLAG-His epitope tag. In addition, a sharper area of Tuplp binding is seen

further upstream between -5366bp and -6000bp. However, to solidify this observation,

it would be useful to probe this area with more primer sets in order to localise Tuplp

more exactly.

To test the contribution ofHholp (Figure 4.6; 4.10) to the localisation of the Tupl-Ssn6

complex, the ChIP assay was repeated on an HHOl deletion mutant. However, this

strain did not show any significant peaks in Tuplp localisation.

In the ASNF2 strain (Figure 4.6; 4.11), Tuplp is localised in a broad region from -

1726bp and -4943bp, though Tuplp localisation can also be seen to a lesser extent

between -226bp and -979bp. This result suggests interplay between Tupl-Ssn6 and

SWI/SNF, which correlates with the findings of Fleming and Pennings, which found

that Tupl-Ssn6 and SWI/SNF work in antagonistic manner at the FLOl upstream locus.

In the ASSN6 strain (Figure 4.6; 4.12), Tuplp localisation between the -226bp and -

1726bp locus is completely absent. This dependence ofTuplp on the presence of Ssn6p

suggests that at this locus, Tuplp is recruited as a complex with Ssn6p, confirming

observations at the RNR2 and STE6 genes (Davie et al., 2002). Tuplp localisation at the

site distal to the promoter remains intact, however Tuplp localisation at this site, occurs

over a broader region i.e. -4943bp to -6000bp. This suggests that Tuplp is recruited by a

factor other than Ssn6p at this site.
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4.3.2 Localisation ofHholp over the FLOl upstream region

Published papers show varied reports of the stoichiometry of linker histones in yeast

(Freidkin and Katcoff, 2001; Downs et al., 2004), with values ranging from 1 linker

histone per 37 nucleosomes in the former, to 1 linker histone per 4 nucleosomes in the

latter. The authors of Downs et al suggested that the reason for Freidkin and Katcoff

estimating such a low stoichiometry of linker histone to nucleosomes was that they did

not measure the abundance of core histones and could therefore have underestimated the

ratio of Hholp to nucleosomes. In any case, it suggests that the 1:1 ratio of linker

histone to nucleosomes seen in higher eukaryotes does not exist in yeast. This could

imply that linker histone binding occurs at specific regions in the genome, and might

therefore have a specific function in yeast. Indeed, work by Downs and colleagues

(Downs et al., 2003) implied a specialised function for Hholp in homologous

recombination. It is worth noting that the yeast linker histone consists of two globular

domains instead of one, which also might explain the decreased stoichiometry of linker

histones to nucleosomes in yeast.

Fleming and Pennings (2001) demonstrated that the average nucleosomal spacing over

the FLOl upstream region was increased from approximately 165bp (average for yeast)

to 180bp. This region of increased linker length might therefore be better able to

accommodate a yeast linker histone. No suitable antibodies to native or tagged Hholp

(both commercial or generated in the Patterton and Pennings laboratories) were found.

We therefore performed ChIP analysis of strains in a W303 background where Hholp

had been Myc-tagged. This strain was a kind gift from Dr J Downs at Cambridge

University,

118



Chapter 4

Hholp deposition over the FL01 upstream region
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Figure 4.7 Hholp deposition over the FLOl upstream region.

ChIP experiments were performed in duplicate using the Tuplp antibody, and the

average of the ratio of precipitate DNA/input DNA was plotted. WT-black diamond;
z/£7VF2-black square; JSSTVd-black circle; ATUP/-black triangle. Nucleosome

positioning plots lie below.
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and was used as a background strain for a number of subsequent gene deletions. A Myc-

antibody (Upstate) was used for chromatin immunoprecipitation experiments for

Hholp. The caveats associated with using this strain are discussed in Appendix II.

In wildtype strains (Figure 4.7; 4.9), Hholp deposition occurs between -226bp and -

979bp upstream of the FLOl gene.

In the ASNF2 strain (Figure 4.7; 4.11), the Hholp peaks seen in the wildtype strain

disappear, suggesting that Hholp is mostly absent in a ASNF2 mutant strain. Hholp

was completely absent in the ASSN6 mutant strain (Figure 4.7; Figure 4.12) but this

could be due to the active state of the FLOl gene. Nucleosomes may be disrupted at the

promoter, allowing transcription factors to bind, which subsequently switch on the

FLOl gene, and thus causes flocculation.

However, the most dramatic change in Hholp deposition occurs in the ATUP1 strain

(Figure 4.7; 4.13), where the Hholp peak seen in the wildtype strain, makes way for a

broad peak of Hholp between -1489bp to -3421bp upstream of the FLOl gene.

The hypothesis that Hholp would bind in areas of increased nucleosomal spacing was

tested by aligning the ChIP graphs with the nucleosomal spacing determined by

Fleming and Pennings (Figure 4.7), though this would not be conclusive, especially

since their study did not include AHHOl and ATUP1 strains. However, the correlation

between increased nucleosomal spacing and Hholp deposition was not convincing. In

the wildtype strain the area of Hholp localisation (-226bp to -979bp) overlaps loosely

with a region of increased nucleosomal spacing (0 to -1400bp). However, the
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nucleosomal spacing over this area is similar in the ASNF2 strain and Hholp deposition

is not visible in this strain. In addition, Hholp is not deposited in an area of increased

nucleosomal spacing between -500bp and -1800bp in the ASSN6 strain (although this

might be due to DNAse I hypersensitivity, Tsukihashi and Pennings). These results do

not support the hypothesis that Hholp binds in areas of increased nucleosomal spacing

over the FLOl upstream region.

4.3.3 Histone H4 lysine acetylation over the FLOl upstream region

Acetylation of promoters plays an important role in the activity of genes. HDAC and

HAT recruitment to promoters is associated with repression or activation of genes,

respectively. The PH05 promoter is heavily acetylated when the gene is in the active

state (Svaren and Horz, 1997; Vogelauer et al., 2000). Moreover, acetylation of the

repressed ADH2 promoter allows the TATA-box to become destabilised, allowing the

recruitment of transcriptional activators (Verdone et al., 2002).

Work by Boukaba et al (2004) at the SUC2 promoter, a gene whose activity is also

modulated by the Tupl-Ssn6 co-repressor complex, shows that an increase in

acetylation occurs when the gene is derepressed. Tupl-Ssn6 is associated with low

levels of histone acetylation (Bone and Roth, 2001) and has been shown to interact with

HDACs (Davie et al, 2003).
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H4-ac deposition across the FL01 upstream region

Figure 4.8 H4-ac deposition over the FLOl upstream region.
ChIP experiments were performed in duplicate using the Tuplp antibody, and the

average of the ratio of precipitate DNA/input DNA was plotted. WT-black diamond;

AHHOl-grey square; ^ISM^-black square; 4SiSM>-black circle; ATUP1 -black triangle.
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We therefore hypothesised that in wildtype strains, the histone tails associating with

Tupl-Ssn6 would be hypoacetylated. Chromatin immunoprecipitation was therefore

performed over the FLOl upstream locus with a pan acetyl-H4 antibody (Upstate;

lysines 5, 8, 12 and 16) in order to determine the H4-acetylation pattern over the region.

In wildtype strains acetylated H4 (Figure 4.8; 4.9) was localised between -1726 and -

4245 . In addition, high levels of acetylated H4 were found at -226bp and -6000bp,

though the high result was restricted to a single point, in both these cases. In order to

verify this result, it would be useful to incorporate more primer pairs close to these

regions, and perform more replicates.

Similar patterns of acetylation were seen in the AHHOl, ASNF2 and ASSN6 strains

(Figures 4.8; 4.10; 4.11; 4.12), though in this case acetylated H4 was localised from -

1489 to -3421.

The ATUP1 strain (Figure 4.8; 4.13) shows a markedly altered pattern of acetylated H4

localisation compared to the other strains, with acetylated H4 localised between -4943

and-6000.

Previous figures shown grouped the data according to antigen. The following figures

group the same data per experiment and show the localisation of different markers

within the same strain. These graphs used the same input chromatin and all reactions

were done in parallel, bearing in mind that relative intensities are partly determined by

antibody affinity.
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Tuplp, Hholp and H4-ac deposition in W303 over FL01 upstream region

Distance from FL01 ATG

Figure 4.9 Localisation of Hholp,Tuplp and H4-ac inW303 at the FLOl

upstream domain. Crosslinked chromatin fragments from wildtype (W303) were

immunoprecipitated with antibodies to Tup 1 (grey), Myc (Hhol - white) and acetyl H4

(black) and the DNA content was analysed by PCR. Amplified fragments were gel

separated and visualised with ethidium bromide on a phosphorimager. The graph shows
an average of two independent experiments.
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Tuplp and H4-ac deposition over FL01 upstream region in AHH01
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Figure 4.10 Localisation of Tuplp and acetyl-H4 in AHHOl at the FLOl

upstream domain. The analysis was the same as in Figure 4.9, except here the ChIP

experiments were carried out on a AHHOl strain immunoprecipitated with Tuplp

(grey) and acetyl H4 (black).
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Figure 4.11 Localisation of Hholp,Tuplp and acetyl-H4 in ASNF2 at the FLOl

upstream domain. The analysis was the same as in Figure 4.9, except here the ChIP

experiments were carried out on a ASNF2 strain immunoprecipitated with Tuplp (grey),

Myc (Hholp- white) and acetyl-H4 (black).

Tuplp, Hholp and H4-ac deposition in ASNF2 over the FLOl upstream region
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Tuplp, Hholp and H4-ac deposition in ASSN6 over the FL01 upstream region
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Figure 4.12 Localisation of Hholp, Tuplp and acetyl-H4 in ASSN6 at the FLOl

upstream domain. The analysis was the same as in Figure 4.9, except here the ChIP

experiments were carried out on a ASSN6 strain immunoprecipitated withTuplp (grey),

Myc (Hholp- white) and acetyl H4 (black)
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Hholp and H4-ac deposition in ATUP1 over FL01 upstream region

Figure 4.13 Localisation of Hholp and H4-ac in ATUP1 at the FLOl upstream
domain. The analysis was the same as in Figure 4.9, except here the ChIP experiments
were carried out on a ATUP1 strain immunoprecipitated with Myc (Hhol- white) and

acetyl-H4 (black).
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4.4 Summary

The localisation of Tuplp over the FLOl upstream region in wildtype cells was

determined by replicating the experiments of Tsukihashi and Pennings (unpublished).

These showed that Tuplp deposition is highly concentrated between -226bp and -

1726bp and also further upstream between -5366bp and -6000bp. In the ASNF2 strain,

Tuplp is localised in a broad region from -1726bp and -4943bp, though Tuplp

localisation can also be seen to a lesser extent between -226bp and -979bp, suggesting

an interplay between Tupl-Ssn6 and SWI/SNF.

The ATUP1 strain displayed markedly altered Hholp and acetylated H4 binding

patterns compared to wildtype.

The Hholp deposition results do not seem to support the hypothesis that Hholp binds in

areas of increased nucleosomal spacing over the FLOl upstream region.

WT AHHOl ASNF2 ASSN6 ATUP1

Tuplp

antibody

-226—>--1726

-5366—>-6000

Not significant. -1726—>-4943 -4943—>-6000 Not tested

Hholp-Myc

antibody

-226—>-979 Not tested Not significant Not significant -1489—>-3421

H4-acetyl

antibody

-226

-6000

-1726—>-4245

-1489—>-3421 -1489—>-3421 -1489—>-3421 -4943—>-6000
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Chapter 5

Chromosomal Conformational Analyses

5.1 Introduction

The complexity of the tertiary arrangement of chromatin extends beyond the 30nm

fibre, since DNA arranged in this conformation attains the ability to organise itself

into active and inactive regions i.e. euchromatin and heterochromatin, and is highly

dynamic (Heun et al., 2001).

Chromosomes are known to occupy specific territories within the nucleus (Cremer et

al., 2000) and in some cases euchromatic regions are seen to extend out from the body

of the chromosome in defined loops containing active genes. These loops are found to

extend towards regions of the nucleus which contain RNA polymerase II (Osborne et

al., 2004). This suggests that the nucleus operates efficiently by confining RNA

polymerase to specific regions in order to prevent improper transcription, for instance

to prevent constitutively inactive genes from being switched on. The latter is further

ensured by the binding of proteins that confer an inactive conformation, which

prevents activators from binding.

Chromosome looping allows distal genes, separated by tens of kilobases (in higher

eukaryotes) to colocalise to discrete foci (Osborne et al, 2004). Active genes are

therefore shepherded into these foci when the need arises for them to be switched on,

and conversely transcription is switched off when they leave these foci. Active genes

are therefore shuttled to pre-assembled transcription sites, rather than transcription

complexes being assembled every time a gene needs to be activated (Osborne et al.,
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2004). In this way several active genes may occupy the same transcription factory

(Jackson et al., 1998), which might enable the nucleus to co-ordinate the timing of the

activation of distal genes involved in the same pathway. The migration of genes to

these nuclear subcompartments might therefore play an important role in gene

expression. The higher order chromatin structure, as well as histone modifications

may affect the binding capacity of a particular site, thereby affecting its residence

time in the transcription factory.

Chromosomal looping also adds a level of control over transcriptional elements in

gene clusters separated by large distances, by bringing them into close proximity

(Tolhuis et al., 2002). In the human beta globin gene locus, the chromosome

conformation enables the locus control region to interact with one gene of the cluster

and its flanking hypersensitive sites at a time, and in so doing forms an active

chromatin hub. In this case, chromosomal looping enables distal regulatory regions of

select genes to come into juxtaposition to control expression. The locus control

region's proximity to the gene is imperative for proper functioning of the active

chromatin hub (Patrinos et al., 2004). Interestingly, the gene is still active when the

promoter is deleted and the locus control region is intact and proximal to the gene,

however, when additional specific hypersensitive sites in the locus control region are

introduced, the active control hub is no longer maintained. The locus control region

therefore adopts a specific conformation and in so doing ensures the activity of the

beta globin gene, by forming multiple interactions with the gene.
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In yeast, a further role for chromosome looping was proposed after studies performed

on the Saccharomyces cerevisiae FMP27 and SEN! genes (O'Sullivan et al., 2004).

The average size of yeast genes is 1.6 kb, and at 7887 and 6696, respectively, these

genes are relatively long. RNA polymerase II is localised at both the promoters and

terminators of these genes, perhaps as a result of the transcriptional elongation (Figure

5.1). The chromosome is seen to loop, thereby juxtaposing the initiator and

terminator, possibly defining the start and end sites of the transcription unit in this

fashion. Gene loops might therefore play an important role during the early phases of

transcriptional activation.

5.2 Rationale

The FLOl upstream regulatory region is under the influence of the Tupl/Ssn6 co¬

mpressor complex. Interestingly, Tuplp deposition is enriched at two sites, and the

aim therefore, was to determine if these sites were proximal in vivo. This could be of

functional relevance to FLOl regulation and/or its chromatin environment. Tuplp has

been reported to associate with longer stretches of chromatin in some instances, and

has been shown to form folded chromatin structures (Ducker and Simpson, 2000).
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Figure 5.1 Model of a Transcription Gene Loop.

Promoter and terminator sequences are in close proximity at the yeast SEN1 gene

locus. The numbers depict oligonucleotide primers (1-6), and the green arrows depict
Eco RI restriction enzyme cut sites (R.E.). RNA polymerase (light blue oval) draws
the promoter and terminator into close proximity. Following crosslinking, digestion
and ligation, the DNA is decrosslinked and amplified. A possible PCR fragment

resulting from an amplification event with Primer 1 and 5 is shown. Adapted from
O'Sullivan et al., 2004.
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5.3 Methodology used in this chapter:

Chromosome Conformation Capture Analysis (or 3C Analysis) is a technique used for

determining the spatial arrangement of one part of a chromosome in relation to

another (Figure 5.2). The technique was developed by Kleckner and colleagues

(2002), and initially was used on chromosome III in yeast to show that its telomeric

ends are in proximity. Chromosome III is the shortest yeast chromosome and can

circularise as a ring structure (Dekker et al., 2002) and has also been found to be

proximal to chromosome VI, as determined by Gasser and colleagues (Bystricky et

al., 2005) using high resolution microscopy. This study showed that the nucleus is an

ordered structure and that rather than moving freely in solution, the chromosomal

telomeric ends are tethered to the nuclear membrane, and that certain chromosomes

showed a preferential proximity to others.

The 3C Analysis technique (Figure 5.2 generates a population average of

juxtaposition between any two genomic loci, thus providing information on their

relative proximity in the nucleus (Dekker et al., 2002). Formaldehyde is used to fix

cells, which forms DNA-protein and protein-protein cross-links between regions of

the genome in proximity (Figure 5.2). Subsequent restriction enzyme digestion and

intra-molecular ligation produces novel junctions between restriction fragments in

proximity in the nucleus. Novel ligation products can be detected by PGR. The 3C

assay can also be used to reveal proximity between active genes and distal genomic

elements (Tolhuis et al., 2002).
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During interpretation of 3C data, it is important to understand that not all pairs of

restriction fragments that provide a positive result, by generating a positive PCR

product, are necessarily engaged in a functional interaction in the nucleus. Distal

fragments can be cross-linked by formaldehyde simply because they are occasionally

near each other in the nucleus, therefore fixation conditions are critical in the 3C

assay since increased fixation leads to greater probability of cross-linking resulting in

the detection of chromatin fragments that may be in relative proximity in the nucleus

but not necessarily engaged in a specific intermolecular interaction with implied

function.

In our experiments, the yeast nuclei or cell culture is crosslinked for 2 minutes. The

reaction is quenched with glycine and SDS is added to sequester the uncrosslinked

protein. The DNA is digested with a suitable enzyme, in this case Bell. The nuclei are

diluted 25X (determined empirically - see Figure 5.3), to prevent random,

intermolecular interactions, followed by DNA ligation overnight. Ligation covalently

joins DNA fragments that are crosslinked in the same complex (intramolecular

ligation). These ligations reflect crosslinking between otherwise separate restriction

fragments which are tethered into close proximity by protein-DNA interactions. The

nuclei are then decrosslinked overnight at 65°C to reverse the protein-DNA

crosslinks, and the DNA cleaned. The ligated DNA is then subjected to PCR with

appropriate oligonucleotide primers and electrophoresed on a polyacrylamide gel,

which is stained in Ethidium Bromide, visualised by phosphorimaging and quantitated

using AIDA 2.1 software (Raytek). As is expected, a vast array of possible ligation

products could form, yielding an assortment of PCR products (Figure 5.4). It is

therefore essential that the necessary controls are performed.
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5.4 Control experiments

As a positive control, and also to confirm that the technique was reproducible in my

hands, we analysed the SEN1 gene, which formed a loop structure in a previously

published study (O'Sullivan et al., 2004; Ansari and Hampsey, 2006). This gene has

an extensive open reading frame, with 6.7 kb between the promoter and terminator

region. The latter were found to be held in close spatial proximity by a protein-DNA

complex at the proposed gene loop (Figure 5.1). In order to test that the PCR

fragments only formed under experimental conditions, we included two further

reaction conditions with all yeast strains used in this study. These strains were

wildtype W303::Myc (Lane 1, 6 & 11), AHHOl (Lanes 2, 7 & 12), ASNF2 (Lanes 3,

8 &13), ASSN6 (Lanes 4, 9 & 14) and ATUP1 (Lanes 5, 10 & 15). Under the first

condition, the chromatin was not subjected to either restriction enzyme digestion or

intramolecular ligation, while in the second, ligation was omitted, but restriction

enzyme digestion proceeded as normal. These controls were necessary to confirm that

the DNA fragments produced by PCR could only be amplified in the experiments

where the DNA in the initial experiments had been both restriction enzyme digested

and ligated, and were therefore not produced by an experimental artefact.
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Bell
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formaldehyde-induced crosslink

Intramolecular

ligation

detect ligation products by PCR

primers reverse crosslinks

Figure 5.2 An overview of the 3C technique. Fixation with formaldehyde is followed
by Bel 1 digestion and intra-molecular ligation. Cross-links are reversed and novel
ligation products are detected by PCR (adapted from Dekker et al., 2002).
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Primers Primers

Bcl1 and Bcl2 SEN1 and SEN3

M .1:10 1:15 1:25

■w«.

1:15 1:25

FL01 upstream SEN1

Figure 5.3 Determination of nuclei dilution factors.
The 3C technique was performed by diluting the nuclei 1:10, 1:15 and 1:25 before

ligation in order to determine the optimal dilution factor. By carrying out the

technique to completion with all the dilutions and then amplifying the resultant DNA
with primers Bell and Bcl2, as well as primers SEN1 and SEN3, the optimal nuclei
dilution factor of 1:25 was determined. DNA was electrophoresed on a IX TBE/1%

agarose gel, stained using ethidium bromide and visualised using a phosphorimager in
the fluorescent mode.
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Primer 1 ^ Primer 2 IJ
I. I

Chromosome
conformation in vivo

^ = Restriction enzyme cut sites I
y = Ligation site

t

Primer 3

Crosslinking/Ligation followed by
Decrosslinking/PCR

*

BSEE

I

Primer 3 Primer 4

Primer 2 Primer 1

1 1JJ
] i
Primer 4

Primer 1 Primer 3 Primer 1 Primer 4

Figure 5.4 Many possibilities of ligation products and PCR fragments.
DNA is denoted by the coloured ribbons. Protein is denoted by the grey discs. The

green arrows depict restriction enzyme cut sites. For any given ligation there are a

host of ligation events and subsequent PCR products. Control experiments are

therefore essential.
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Figure 5.5 3C Analyses at the SEN1 gene locus using EcoRl

In order to determine whether the restriction enzyme digested DNA ligated with

fragments in close proximity, 3C Analysis was performed on the SEN1 gene locus.
The DNA is depicted by the ribbon and the nucleosomes are depicted by spools (not
drawn to scale). The scissors depict restriction enzyme cut sites and the arrows depict

oligonucleotide primer sets. In our case, PCR was performed between primers 1 and 2
and also between primers 1 and 5. Reproduced from O'Sullivan et al., 2004.
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In the control experiment at the SEN] locus, Eco R1 is used to digest the crosslinked

DNA (Figure 5.5). In Figure 5.6 lanes 1-5 show the undigested and unligated control,

while lanes 6-10 show the digested/unligated control. Lanes 11-15 show the PCR

products from a complete experiment where both restriction enzyme digestion and

ligation have taken place. The PCR reactions performed on the DNA produced from

the control experiments (Lanes 1-10) yielded no fragments in all strains, which

confirmed that the bands produced in lanes 11-15 could only produced where both

restriction digestion and ligation had proceeded.

The absence of PCR product with primers SEN1 and SEN4 (Figure 5.6B) in all

strains indicated that these nonadjacent Bel 1 fragments did not ligate and

consequently were not in close spatial proximity. By contrast, primers SEN1 and

SEN5 (Figure 5.6A) produced products indicative of intramolecular ligation. These

data replicate the findings of the previous studies and show that the promoter and

terminator regions are in close spatial proximity and that the 3C technique is working

in our hands. The oligonucleotide primer sequences were the same as in the

O'Sullivan paper, however, in later experiments looking at the FLOl locus, new

SEN1 primers were designed as Bel 1, rather than EcoRI was used. This was

necessary because the FLOl upstream domain has only two, inconveniently situated

EcoRI sites (Figure 5.7A), while the Bel 1 sites are more suitable. The new SEN1

primers were designed approximately 250bp from the cut site. This generated a PCR

fragment of 500bp.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+ + + + -t- + + + + +
DIGESTION

LIGATION + + + + +

500bp A
Primers SEN1/SEN5

500bp ►
B
Primers SEN1/SEN4

Figure 5.6 Chromosome conformation capture at the SEN1 locus.

Lanes 1-10 show the negative control lanes which contain either undigested/unligated

or digested/unligated samples. Lanes 11-15 show the PCR products digested/ligated

samples. Row A shows the PCR products of primers SEN1 and SEN5, while Row B

shows the PCR products of SEN1 and SEN4. Lane 12 shows a few non-specific

bands. These strains were wildtype W303::Myc (Lane 1, 6 & 11), AHHOl (Lanes 2, 7

& 12), ASNF2 (Lanes 3, 8 &13), ASSN6 (Lanes 4, 9 & 14) and ATUP1 (Lanes 5, 10 &

15).
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-4316bp FLO 1
-4468bp -3522bp -2825bp

1 I
-1759bp

1
515bp, I ' +3522bp^

1 1 1 I 1 1 1 1
-4Kb -3Kb -2Kb -1Kb 0 +1Kb +2Kb +3Kb

B

Bel 1 do'

Figure 5.7 3C Analyses at the FLOl gene locus using Bell

A shows the restriction enzyme cut sites at the FLOl locus. Bell sites are depicted by

the green arrows, while EcoR I sites are shown by red arrows. In order to determine

whether the restriction enzyme digested DNA ligated with fragments in close

proximity, 3C Analysis was performed on the FLOl gene locus (B). The DNA is

depicted by the blue line (not drawn to scale). The scissors depict restriction enzyme

cut sites (Bel 1) and the arrows depict oligonucleotide primer sets. In our case PCR

was performed between primers Bel 1 1 and 12 and also between primers Bell

upstream and Bel 1 downstream. The inset shows that a ligation event (red dotted

line) between two fragments.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DIGESTION + + + + + + + + + +

LIGATION M - - - - - + + + + + + + + + + M + + + + +

A 500bp—►
Primers Bcll_l/2
(either side of peaks)

B 500bp —►
Primers Flol up/downstream
(-4468 to +3362)

C 500bp —
SEN1 locus

^ V V3 V V V7 ^
^^ 4? <!N
^ V V

4? <lN
^ V V Vs

Figure 5.8 Chromosome conformation capture at the FLOl locus.

These strains were wildtype W303::Myc (Lane 1, 6 & 11), AHH01 (Lanes 2,1 &

12), ASNF2 (Lanes 3, 8 &13), ASSN6 (Lanes 4, 9 & 14) andATUP1 (Lanes 5, 10 &

15). Row A shows the PCR products of Primer Bell i and Bcll_2. These are two

separate experiments. Positive signals occur in lanes 11, 12, 14 and 15. A non-specific

band is present in ASNF2. Row B shows the PCR products of Primer Bell upstream

and Bell downstream. Row C shows the PCR product at the SEN1 locus. The 500bp

marker band is denoted by the black arrow.
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5.5 Chromosome conformation at the FLOl upstream locus

The hypothesis that the FLOl upstream region exists as a gene loop structure can be

investigated by means of chromosome conformation capture. 3C analysis was carried

out on a region of DNA surrounding the FLOl gene in wildtype W303::Myc,

AHHOl, ASNF2, ASSN6 and ATUP1 yeast strains (Figure 5.7B). These strains were

wildtype W303::Myc Lane 1, 6 & 11), AHHOl (Lanes 2,7 & 12), ASNF2 (Lanes 3, 8

&13), ASSN6 (Lanes 4, 9 & 14) and ATUP1 (Lanes 5, 10 & 15). Control experiments

were included so as to ensure that a positive result occurred as a result of both

restriction enzyme digestion and ligation ofDNA fragments.

In Figure 5.8 lanes 1-5 show the undigested, unligated control, while lanes 6-10 show

the restriction enzyme digested/unligated controls. Lanes 11-15 show the PCR

products of DNA produced by the full 3C procedure, which have been amplified by

oligonucleotides specifically designed for these experiments. Oligonucleotides were

designed 250bp up-or downstream of a Bell restriction enzyme cut site.

Lanes 1-10 all gave negative results suggesting that a positive result could only occur

in cases where both restriction enzyme digestion and ligation had taken place. The

absence of PCR product with primers Bel 1 upstream and Bel 1 downstream in all

strains indicated that these nonadjacent Bell fragments did not ligate and

consequently were not in close spatial proximity.
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By contrast, primers Bel 11 and Bel 12 produced a DNA fragment of 500bp

indicative of intramolecular ligation (Figure 5.8). This fragment was produced in all

strains apart from in the ASNF2 strain (Lane 13 - A). This experiment was repeated to

show that the result was reproducible. These data provide evidence that the two

Tuplp-bound domains are in close spatial proximity in the wildtype strain, suggesting

that a loop structure between the lkb and 5kb Tupl-Ssn6 localised regions in the

FLOl upstream domain exists under wildtype conditions, however the loop structure

also occurs in AHHOl, ASSN6 and ATUP1. This suggests that Tuplp is not

responsible for tethering the chromatin in such a way, as to form the loop.

The results in Figure 5.8, are encouraging, however, primers Bel_1 11 and Bcl_l

12, in addition to producing the expected PCR fragment size, also produced

additional non-specific bands, which were present in lanes 11-15. The experiment

was repeated, but non-specific bands were seen there too. In order to verify the data, it

is therefore necessary to sequence all PCR fragments, and also repeat the 3C

experiment with another restriction enzyme. The latter would allow one to rule out the

possibility that a Bel 1 restriction cut site is being obscured by formaldehyde

crosslinking.
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The failure for the ASNF2 chromatin to produce a loop seems to suggest a different

chromosome conformation and might occur as a by-product of the changes in the

nucleosome positioning, which alters the accessibility of the DNA to DNA-binding

proteins. As seen in the chromatin immunoprecipitation experiments (Chapter 4), the

acetylation pattern as well as the Tuplp pattern in this strain differs from that seen in

wildtype DNA. In the ASNF2 strain, the acetyl H4 in the region between lkb and 5kb

in the wildtype strain, is replaced withTuplp. This suggests that the deposition of

Tuplp in a region which is flexible under wildtype conditions, causes the chromatin

to revert to a less flexible state, which prevents a loop from forming. In addition, the

nucleosome positioning in the ASNF2 strain appears to be altered in this region

(Fleming and Pennings, 2002), suggesting that an altered nucleosome positioning

could also affect the flexibility of chromatin. As a means of testing this hypothesis,

we could repeat the 3C analyses in a TUP1/SNF2 double knockout strain to

investigate the possibility that Tuplp-binding is responsible for the loss of flexibility

in the FLOl upstream region. This would also further investigate the interplay

between Tuplp and Snf2p suggested by Fleming and Pennings (2002).
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5.6 Summary

The aim of this chapter was to determine whether two Tuplp-bound domains were in

close spatial proximity, using the chromosome conformation capture technique

(Dekker et al., 2002).

Our initial experiments reproduced data from a previous report in order to confirm

that this procedure could work in our hands. We found that at the SEN1 gene locus,

the promoter and terminator sequences were in close spatial proximity (Figure 5.6),

which confirmed the work by O'Sullivan et al (2004). In this paper, they attributed

the conformation to the action ofRNA pol II.

In our own experiments at the FLOl gene locus, we found that the areas of Tuplp

localisation in the wildtype strain (at lkb and 5kb upstream of FLOl), were in close

proximity (Figure 5.8) in all strains except the ASNF2 strain (Figure 5.8 - lane 13).

This may occur due to the altered Tuplp binding pattern found in this yeast strain.

However, these results need to be verified due to the occurrence of non-specific

bands, the identity of which needs to be determined. Moreover, the identity of the

bands corresponding to the expected product sizes for Primer Bel 1_1 and Bel12

need to be confirmed by sequencing.
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Chapter 6

General Discussion

6.1 Introduction

The FLOl gene is an example of a gene controlled by its chromatin environment.

Chromatin remodelling events are observed far upstream from its promoter sequence

(Fleming and Pennings, 2001) in an extended gene-free region of 6Kb where a 30-

nucleosome array was mapped (Figure 4.1). Apart from remodelling in the upstream

region, additional remodelling events occur at the proximal promoter sequence. The

chromatin remodelling over the extended FLOl upstream region, has been attributed

to the SWI/SNF co-activator and Tupl-Ssn6 co-repressor complexes, which function

antagonistically.

Tuplp is known to interact with deacetylated histone H3/H4 tails (Edmondson et al.,

1996), whereas promoter sequences are associated with acetylated histone H3/H4 tails

(Bone and Roth, 2001). Therefore FLOl gene activity may be influenced by the

acetylation state of the promoter, which we hypothesized would be connected with the

presence and location ofTuplp.

A number of mutants for Tupl-Ssn6 and SWI/SNF components were analysed in the

Fleming and Pennings (2001) study and some of these showed an increase of 20bp in

DNA linker length at various locations in the 32-nucleosome array (Figure 4.1). This

increase may have been caused by the actions of chromatin remodellers altering the

chromatin structure. The increased linker length might allow transcription factors to
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bind, but it might also enable linker histones to bind in these regions. Yeast linker

histone contains two globular domains, rather than just the one seen in higher

eukaryotes (Landsman, 1996), which might in part account for the decreased

stoichiometry of linker histone to nucleosome seen in yeast (Freidkin and Katcoff,

2001; Downs et al., 2004). Yeast linker histones, nevertheless, do not bind to every

nucleosome, and therefore we hypothesized that Hholp would bind in regions of

increased nucleosomal spacing.

6.2 Does Hholp bind in regions of increased nucleosomal spacing?

Linker histones are thought to compact the chromatin and prevent spurious binding of

transcription factors, by competition for their binding sites (Kermekchiev et al.,

1997). They also have an important role to play in the activation state of genes, as was

shown by Bhattacharjee et al (2001).

In the wildtype strain Hholp was localised between -226bp and -979. This binding

pattern was not seen in any of the other strains examined. In the ASSN6 and ATUP1

strains, where the FLOl gene is active, Hholp is removed from the proximal

promoter site, perhaps as a result of the promoter occupancy associated with gene

activity. This is consistent with findings at the MMTV promoter which demonstrated

that linker histones are not present at active promoters in that system (Bresnick et al.,

1992).

It is surprising that Hholp was not localised in the inactive FLOl upstream region in

ASNF2. In humans, linker histones have been implicated in the modulation and

inhibition of SWI/SNF-induced chromatin remodelling (Hill and Imbalzano, 2000;
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Ramachandran et al., 2003). Therefore, one might have expected an increase in

Hholp deposition in ASNF2. Conversely, the presence of SWI/SNF in the absence of

Hholp might have a greater effect on chromatin remodelling, and this could be

investigated by evaluating the nucleosome positioning array over the FLOl upstream

region in AHHOl. However, this experiment remains to be completed. It is worth

noting that the FLOl gene is not switched on by HHOl depletion.

Finally, in ATUP1, Hholp deposition is altered greatly. Unfortunately, the

nucleosome positioning array over the region of interest has yet to be determined.

However, one may speculate that at the FLOl gene, Tupl-Ssn6 might alter the

chromatin into a more repressive structure. This process could be aided by the binding

of Hholp, which further compacts the DNA into a less flexible state, which in so

doing, it might block the binding of transcriptional activators.

The initial aim was to compare the Hholp deposition pattern with existing data

generated by Fleming and Pennings (2001), which had shown that regions of

nucleosome repeat-length of 180bp existed in the FLOl upstream region. However,

the results could not be correlated, partly due to the ChIP probes not overlapping the

regions of increased DNA linker length. In order to test this hypothesis more

stringently, ChIP primer pairs could be designed to specifically amplify regions of

increased linker length.

The absence of Hholp at the inactive promoter of the ASNF2 strain, with the same

nucleosomal spacing as wildtype, is at face value, not consistent with the possibility

that Hholp might bind opportunistically in regions of increased nucleosomal spacing
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(180bp linker length). This needs to be tested more fully, for example in ASNF1

ATUP1 double mutants, as the possibility emerging from this study is that the

locations ofHholp, Tuplp and Snf2p may be interdependent.

6.3 Is Tuplp deposition altered?

Tuplp and Ssn6p both have an array of DNA-specific binding partners, and therefore,

the complexes could function in different ways, depending on the proximity of certain

proteins. Three mechanisms have been proposed for how Tupl-Ssn6 interacts with

chromatin. Firstly, Tupl-Ssn6 is thought to alter the chromatin structure into a

repressive state; secondly, it is thought to inhibit RNA polymerase from initiating

transcription; and thirdly, it is thought to block transcriptional activators (Smith and

Johnson, 2000). Tupl-Ssn6 repression may also differ at specific genes (Tzamarias

and Struhl, 1995). Alternatively, because Tuplp is known to associate with HDACs

(Watson et al., 2000), it may change the acetylation patterns in the vicinity of where it

is bound.

Tuplp has been localised at the promoters of a number of genes studied: STE6, STE2,

RNR2, SNF2 promoters (Ducker and Simpson, 2000; Davie et al., 2002; Boukaba et

al., 2004). Two alternate modes of Tupl-Ssn6 binding have been proposed. Tupl-

Ssn6 is thought to either continuously polymerise along the chromatin fibre (Ducker

and Simpson, 2000) or localise at distinct foci (Wu et a!., 2001). To test these

hypotheses, we mapped the 6Kb FLOl upstream sequence for Tuplp, using the

chromatin immunoprecipitation technique in the wildtype strain and various mutant

strains.
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In the wildtype Tuplp was localised at two foci i.e. -226 to -1726 and -5366 to -6000.

At face value, it appears that Tuplp does not polymerise across the chromatin but

rather binds at discrete foci. However our results are not definitive. Tupl-Ssn6 may

polymerise across the chromatin but our crosslinking might not allow us to see this as

Tuplp lies too far away from the chromatin. Nevertheless, more extensive

crosslinking with DMA did not confirm this in wildtype strains (Tsukihashi and

Pennings, in preparation).

In ASSN6 the Tupl deposition at the binding site proximal to the FLOl start site

disappears. Possibly it is displaced by activator complexes, since the gene is active in

this strain, while another explanation is that Ssn6p is required to recruit Tuplp.

Interestingly, though still being localised at two foci, the Tuplp localisation differs

greatly in the ASNF2 strain i.e. -226 to -979 and -1726 to -4943. This hints at the

antagonistic relationship existing between Tupl-Ssn6 and SWI/SNF (Fleming and

Pennings, 2001), whereby SWI/SNF may antagonize Tupl-Ssn6 by controlling

chromatin remodelling activity (Gavin and Simpson, 1997). The altered Tuplp

deposition pattern may be a by-product of the absence of SWI/SNF chromatin

remodelling over this region, disrupting this balance.

6.4 Is Tupl-Ssn6 binding influenced by changes in acetylation?

Tupl-Ssn6 has been found to be associated with Hdalp deacetylase activity at the

ENA1 and STE6 promoters (Wu et al., 2001; Davie et al., 2002). We observed a

Tupl-Ssn6 dependent H4 deacetylation across the FLOl upstream region. In the

wildtype strain, H4 acetylation is seen from -1726bp to -4245bp upstream of the
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FLOl start site, and also at sharp peaks at -226bp and at -6000bp. Tuplp is known to

interact with deacetylated histone tails, and in correlation with this, acetylation seems

to taper close to regions where Tuplp is present, and then increase where Tuplp is

absent.

The acetylation state of the FLOl upstream region was similar in AHHOl, ASNF2,

and ASSN6 mutants which showed H4 acetylation from -1489bp to -3421 bp.

H4 acetylation pattern are greatly altered in ATUP1 i.e. -4943 to -6000. Upon

activation of the FLOl gene, the histone tails at the promoter sequence are acetylated

and might therefore lose their affinity for Tupl-Ssn6. This correlates with work

performed on the PH05 promoter, which demonstrated that the promoter is heavily

acetylated when the gene is active (Svaren and Horz, 1997; Vogelauer et al., 2000). It

is surprising to note that the altered acetylation pattern extends up to 6Kb from the

promoter sequence. This, however, is consistent with the result of Fleming and

Pennings (2001), which showed that SWI/SNF could remodel nucleosomes up to 5Kb

upstream in ASSN6.

6.5 Do the two Tuplp peaks interact with each other?

Chromosome looping allows distal genes to colocalise in discrete foci (Osborne et al.,

2004), and also controls transcriptional elements separated by large distances, by

bringing them into close proximity (Tolhuis et al., 2002). This is evident at the human

beta globin gene locus, where chromatin looping brings about a distinct conformation

that allows the gene to be active (Patrinos et al., 2004). At certain yeast genes e.g.
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SEN 1, the initiator and terminator sequences are brought into proximity by RNA

polymerase II (O' Sullivan et al., 2004), possibly defining a transcriptional unit.

In the wildtype strain, Tuplp is localised in two distinct regions. We hypothesized

that if Tuplp was not continuously "polymerised" across the region, then perhaps

these two peaks might be proximal, to allow the chromatin to take on a long-range

repressive higher order structure.

Chromatin conformation capture was performed on wildtype, AHHOl, ASNF2,

ASSN6 and ATUP1. The results suggest that the chromosome adopts a looped

structure in all strains except in the ASNF2 mutant. However, we can not attribute the

chromosomal looping to the Tuplp peaks as looping takes place in ASSN6 which does

not exhibit any Tuplp binding at the proximal binding site. Chromosomal looping

also takes place in ATUP1, therefore the looping must be caused by some hitherto

unknown protein, or as a consequence of the acetylation pattern over the region, or

may instead require the absence ofTuplp across the intervening upstream region.

No 3C positive signal was obtained for the ASNF2 mutant using primer Bcll_l and

Bel 1_2. Unique to the ASNF2 mutant, Tuplp invades the -2000bp to -4000bp

upstream region. It is tempting to conclude that the Tupl-Ssn6 repressive structure is

preventing the chromosome from looping. The ASNF2 mutant might also adopt a

different chromosome conformation due to changes in the nucleosomal positioning

array, which is most regular in this mutant (Fleming and Pennings, 2001).
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Histone acetylation levels are known to modulate ATP-dependent nucleosome

positioning (Krajewski, 2002). Changes in the acetylation status of histones are

known to influence the folding of the nucleosomal fibre (reviewed by Eberharter et

ai, 2005), suggesting that the inability of the ASNF2 mutant to loop occurs as a

function of its acetylation state, it Tuplp deposition status and the nucleosome array

profile.

6.6 Future work

6.6.1 Chromatin immunoprecipitation

I would scan the FLOl upstream region for total histone H4, so as to infer the histone

H4 baseline. It would also be interesting to compare the H4 acetylation levels seen in

our study, with an acetyl H3 antibody, to elucidate whether all core histones are

affected in the same way, as these acetylation pattern reflect to different extents the

activated and poised states.

The number of replicates for experiments would be increased, primer pairs would be

redesigned to cover the areas which were not probed in our experiments, and

quantitative methods (real-time PCR) would be added to further substantiate our

results.

6.6.2 Chromatin conformation capture

My current hypothesis is that the FLOl upstream region loops as a function of its H4

acetylation state and its Tuplp deposition profile. Firstly, I would verify my findings

with quantitative PCR. Secondly, I would repeat the experiment using another

156



Chapter 6

restriction enzyme to ensure that the experiment can be replicated with another

enzyme. The experiment will also need to be repeated, so that the PCR fragments can

be subcloned into a p-GEMT-easy vector and sequenced, so as to verify that the PCR

fragment is made up of the correct ligation event. The dependence of looping on the

Tuplp deposition profde would be assessed in ASNF1 ATUP1 double mutants

6.6.3 Indirect end-labelling and nucleosome positioning

Throughout this study, it was clear that it was necessary to perform nucleosome

positioning assays on ATUP1 and AHHOl strains as well as ASNF1 ATUP1 mutants.

This work has been started (Appendix III). This might link the changes in protein

binding demonstrated in the chromatin immunoprecipitation studies to nucleosome

linker length.

6.7 Conclusions

I have investigated the chromatin environment of a long-range DNA domain

extending over 6Kb upstream upstream of the FLOl gene in yeast. This gene is under

the influence of antagonistic relationship between the Tupl-Ssn6 co-repressor

complex and the SWI/SNF co-activator complex (Fleming and Pennings, 2001). This

relationship seems to be acted out at the level of histone acetylation, a dynamic

histone modification that allows for a quick switch between the active and inactive

states and also may influence the flexibility of the chromatin fibre, either indirectly or

directly.
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Appendix I

Oligonucleotide primers

3C Analyses:

Bell 1 1 5' -ATG GTC GTT TAA GGC CTG AAG A -3'

Bell 1 2 5' -AAC ATA AGG TGA GCA ACG TCT -3'

Bell upstream 5' -GTC ACA TTC AAC AAT GGA ATC T- 3'

Bell downstream 5' -TAC ATG GGT GCA ATT CCT TGT G- 3'

SEN1 5' -CCA ACA ACT CAA GAA ACA GCT C- 3'

SEN2 5' -GCA TCT TCA ATC AAA TCT CTC CA -3'

SEN3 5' -AGC GCG GAT GAA GAT TAC AA -3'

SEN4 5' -AAA TTT AAT AAT GCT GTG ACT AA -3'

SEN5 5' - GCT TCA TCT ATA ATG ACC GTA -3'
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Knockout Primers:

Ssn6knA 5' -GCA GCA GTT CCT CAG CAG CCA CTC GAC CCA

TTA ACA CAA TCA GCT GAA GCT TCG TAC GC -3'

Ssn6knB 5 '-AAC AGA AGC TGC TTT GGT AGC TTC TTC AGC

AGG ACT AGC TGC ATA GGC CAC TAG TGG ATC TG -3'

TuplkanMXA '5 -AGC AGG GGA AGA AAG AAA TCA GCT TTC CAT

CCA AAC CAA TCA GCT GAA GCT TCG TAC GC -3'

TuplkanMXB 5' -GCC GGA TTT CTT ATC CCA AAA CAG GAC ACC

ACG ATC TTT GGC ATA GGC CAC TAG TGG ATC TG-3'

Snf2kanMXback 5' -ATG AAC ATA CCA CAG CGT CAA TTT AGC AAC

GAA GAG GTC CAG CTG AAG CTT CGT ACG C-3'

Snf2kanMXforward 5'CTA TAC ACT CGC TTC TGT CAT GCT CGA GTC

CGC TTC ATC TGG CAT AGG CCA CTA GTG GATCTG3'
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Southern blot Primers for testing Knockout Strains

Snf2_For 5'-GGC TAT TCT GAG TGA ACA TAA GG-3'

Snf2_Rev 5'-CGA AAG TCG TGA AAA TAG CAG-3'

TuplKanSB 1 5'-TTA CAT TAT CGC TAC CGA CGG-3'

Tup 1KanSB2 5'-TGG TTT GGA TGG AAA GCT GA-3'

Ssn6KanSB 1 5'-GCT TAA TAC GGA ACC AGA GTC A-3'

Ssn6KanSB2 5' -CCA CAACAT AAT GAA TGA ATT G -3'
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Northern blot primers for probes checking FLOl upstream region expression

NB1000_1: 5'-ACG TAA TTG GTA ACG ATG AGG G-3'

NB1000 2: 5'-GAG CTT ACA TCA ACG AGC AAG A-3'

NB2000J: 5'-GTG TAT TGT CTG CAA CAT CTG A-3'

NB2000 2: 5'-TCG CGT ATT ATG CTA GGT TGT G-3'

NB3000 1: 5'-ATG CTG TAT GAT GTT GAG CGG-3'

NB3000 2: 5'-CAA TTC ACC TCG GTG CAT TA-3'

NB4000 1: 5'-GAA TGG TTC GTT CAA GAG TCC A-3'

NB4000 2: 5'-AAA CCA GGT ATG GCC TAG AGT T-3'

NB5000_1: 5'-TGG TTC TCG GCT TCT TGT TCT-3'

NB5000 2: 5'-GAT ACT GAA GAC ATT TCA TTC G-3'

Additional probes used in chapter 3:

FLOlPr Full-length FLOl gene, isolated from plasmid YY10 after Eco RV digest

ACTPr PCR amplified, contains ACT1 ORF sequences between +411 and +1422
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Chromatin immunoprecipitation oligonucleotide primers

YTl/IPFLOlA 5'-TCTCTGGTAAAGAGCTCTGC-3'

YT2/IPFL01B 5'-GGATGTTCTGTTTACTGGTG-3'

YT3/IPFL02A 5'-CAGAGGTATTGTGGAACCTTC-3

YT4/IPFL02B 5 '-GCCGTTAATGCTGATTGTTG-3'

YT5/IPFL03A 5'-AGCTTTTGGCTTCCAGTATG-3'

YT6/IPFL03B 5'-AATGAGCAGAGGAAGGCTAG-3

YT7/IPFL04A 5'-GGTAAGTCTCATTACCTAAAC-3

YT8/IPFL04B 5'-CTAGTCGAATGTTCTCTTGC-3'

YT9/IPFL05A 5'-CTCGCTAATCGTTAGTGGGA-3'

YT10/IPFLO5B 5'-ACAGGATCGGGGAAAGATAC-3

YT11/IPFL06A 5'-CTAAGAAGAGCCACTAAAC-3'

YT12/IPFL06B 5'-GTAGAGGATGTTCCTACAAG-3'

YT13/IPFL07A 5ATTTGCCTTCATGACCCAC-3'

YT14/IPFL07B 5'-AGCGGAATTGTTGCAAGAGG-3'

YT15/IPFL08A 5'-CTATGTAACGTTCACTCTTAC-3'

YT16/IPFL08B 5'-CTAAACCAGGTATGGCCTAG-3'
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YT17/IPFL09A

YT18/IPFL09B

FL09.1A

FL09.1B

FL09.2A

FL09.2B

YT19/IPFLO1OA

YT20/IPFLO1 OB

5 '-GTAACACAAAGCTCCACTGG-3'

5 '-TTTTTGGTGGGCAGAAGTGC-3'

5'-ATCAAAACTCATTAGCTTCGG-3'

5ATCGCTGGGAATGAGCAATA

5-TTCAGTCCCACATGATTCACCT-3'

5'-TCTCCTCATCATGGTTTCACCA-3'

5AAACAGAAAGGCCGTTACAG-3'

5'-TCGTTTCATCTCTTTGACTG-3'
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Construction of /f//07-Tagged strains

AII.l HHOl-Flag tag construction

A 1446bp region, incorporating the Candida-URA3 gene flanked by Flag-His tags,

and 40bp of the C-terminal end of the HHOl gene on each side, was amplified from

pSP-C-Flag-Ca-Ura (Pennings et al., in preparation) with Vent polymerase (NEB) and

template mismatched primers, to introduce HHOl homologous sites at the fragment

ends (Figure AIL 1).

The Candida albicans URA 3 gene can be used as a selectable marker in

Saccharomyces cerevisiae. It encodes for uracil and cells containing this marker are

therefore able to grow in synthetic complete media which does not contain uracil. The

recovered PCR fragment was transformed into the wildtype strain, FY2, using the

Lithium acetate transformation method (Schiestl et al., 1995). Yeast cells are able to

recognise the incoming fragment by its homology to the genome, and are able to

insert the new sequence by homologous recombination. The original fragment

contains two Flag-His6 sequences, but since these are also homologous; they can

recombine to leave only one Flag-His6 sequence followed by a stop codon. The

recombination of the Flag-His6 tag into the 3' end of the HHOl in the recovered

uracil phototrophs was confirmed in two clones by polymerase chain reaction (Figure

AII.2). Following growth on uracil, the colonies were replica-plated onto 5-flouro-

orotic acid plates (5-FOA), so as to remove the URA3 moiety by counterselection, due

to toxicity of 5-FOA metabolite. This strain was denoted y/f/ZCV-Flag.
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HH01

Integration

URA selection

HH01 | FLAG URA3 |FLAG~|

5-FOA Selection

HHOI FLAG

Figure AII.l Cloning strategy for attaching the Flag-tag to HHOl.
The Candida URA3 gene, flanked by the dual Flag-His6 tag and regions of HHOl

homologous to the C-terminal end of the gene are transformed into wildtype cells.
The transformants are retrieved by URA selection. URA3 is lost by 5-FOA counter-

selection.
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PCR 1

M -ve 21 37

PCR 2

M 21 37

500 562bp

|jg Ig | -

250bp

Figure AII.2 PCR screening strategy for selecting positive clones.
Two PCR tests were performed on genomic DNA extracted from clones, in order to
detect whether the HHOl-Flag fragment had been incorporated into the HHOl gene.
The expected fragment sizes are indicated by arrows.
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Figure AII.3 Western blot for detecting the HHOl-FIag.
Lanel contains the protein size marker (M), Lane 2 contains the immunoprecipitated

Tupl-Flag (20pl). The Tupl band is visible at 80kDa. Lane 3 contains 1 Opl HHOl-

Flag immunoprecipitate, while Lane 4 contains 20pl of HHOl-Flag

immunoprecipitate. Bands recognised by the Flag antibody appear around 33kDa.
Lane 5 contains 20pl wildtype whole cell extract immunoprecipitate. The bands at 55
and 25 kDA correspond to light and heavy chains of IgG.
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1
M

50 KDa ■

2 3 4
W303-WT HA-HHOl p25-HHOl-HA
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HHOl-Myc HHOl-Myc HHOl-Myc IP W303-WT
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15"
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/
21-

a \
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Figure AII.4 Western blot for detecting the HHOl in tagged strains.
In A: Lanel contains the protein size marker (M), Lane 2 contains the wildtype w303
negative control (20pl). Lane 3 contains 20pl HHOl-HA (commercial) whole cell
extract, while Lane 4 contain 20pl of p25-///70/-ILA (Freidkin and Katcoff, 2001)
whole cell extract. Bands recognised by the HA antibody appear around 50kDa.In B:
Lane 5 contains the protein size marker (however the marker had not been drawn on
the X-ray film prior to developing therefore part C of this figure has been included to
show the marker.) Lane 6 contains lOpl HHOl-Myc whole cell extract. Lane 7
contains 20pl of HHOl-Myc (Downs et al., 2003) whole cell extract and Lane 8
contains HHOl-Myc immunoprecipitate. Lane 9 contains the WT-W303 whole cell
extract negative control. In C: Lane 10 contains the protein size marker (KDa),
determined by overlaying the X-ray onto the western blot with a prestained broad
range marker (BIORAD), and Lane 11 and 12 contain 60pl and 70pl ofHHOl-Myc
respectively. The HHOl-Myc is found around 66KDa. The bands around 37 KDa
were also seen in Downs et al, 2003 but the authors did not comment on their
presence.
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28 kDa

I

O = Myc Tag

= Globular Domain

Figure AII.5. Schematic ofMyc-tagged Hholp.

The 33kDa Myc tag is made up of 13 Myc tags attached to the 28kDa Hholp. The

protein runs as 66kDa protein due to the increased electrophoretic mobility of

histones. Hholp is made up of two globular domains separated by a basic linker

region.
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Unfortunately this strain could not be used in subsequent studies as the western blot

showed two additional bands, both larger than Hholp. (Figure AII.3). The western

blot was repeated numerous times with various antibody concentrations, to rule out

the possibility that these bands were non-specific, however the bands appeared in all

subsequent western blots. The fact that the bands are larger than 33kDa suggests that

these are not breakdown products of the protein of interest, however, they could be

phosphorylated forms of the linker histone. This could be tested by cutting out the

bands and sequencing them, or subjecting them to mass spectroscopy.

A previous study with HHOH2HA tagged plasmid transformed into yeast (p25-

HHOl-FIA; Freidkin and Katcoff, 2001), showed that Western blots with an HA

antibody only proved successful when the histones were isolated from nuclei.

However, this C-terminally tagged-ffi/07 plasmid when transformed into FY2 did

not produce any bands in a western blot (Figure AII.4; Lane 4). When the procedure

was repeated on a commercial N-terminally HA tagged HHOl (Open Biosystems;

Figure AII.4 Lane 3), the western blot was successful, and the Hholp was detected.

However, it could not be detected in ChIP experiments (not shown).

Finally, after the publication of a paper by Downs et al (2003) where a HHOl-Myc

W303 strain was used in chromatin immunoprecipitation experiments, I requested the

strain from the authors and all subsequent experiments were performed on this strain.

This strain was designated wildtype. Western blot experiments demonstrated that the

Myc-tag was visible in both whole cell extract (Figure AII.4; Lane 6, 7, 11 and 12), as

well as in immunoprecipitated samples (Figure AII.4; Lane 8).
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The Myc-tag comprises 13 Myc tags, each 10 amino acids long (Figure AII.5).

Therefore, the Myc tag used in this study is actually larger than the Hholp itself.

Previous groups have found that the second globular domain can fold in 250nM

sodium phosphate. It is not certain whether the addition of a Myc-tag to Hholp will

allow the second globular domain to fold correctly, since the tag is larger than the

actual protein. However, the binding mechanism of Hholp on yeast chromatin is also

uncertain, and it is therefore not clear whether the binding ability of Hholp-Myc is

altered when compared to the wildtype protein.

The presence of the Myc tag on Hholp might not necessarily affect the function of

Hholp in the nucleus at all; however, other possibilities need to be discussed.

Firstly,the presence of the Myc tag might cause the chromatin fibre to have

irregularities where the linker histone is bound, secondly, inappropriate binding of

Hholp might cause altered gene expression. This could be tested by performing

microarray experiments on wildtype and HHOl-myc strains, as a way of testing

whether gene expression is altered when the Myc tag is present. A third possibility, is

that the Myc tag does alter the folding of the protein, but the second globular domain

might not have a significant role, and therefore the altered protein folding does not

impact the gene expression in the nucleus.

The paper from which the Hhol-Myc strain was derived states that the Hhol-Myc

strain has no visible defects in phenotype compared to a wildtype W303 strain

(Downs et al., 2003). However, it is important to note that their experiments focussed

on recombination effects and did not look at flocculation. It remains a possibility that

if the folding of the second globular domain was altered when the Myc tag is present,
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the subsequent function ofHholp could be altered. For example, the addition of a tag

the same size as the protein could form a "bulge" wherever Hholp is incorporated,

and this might alter the folding of the chromatin. Hholp has not been directly

implicated in any functions other than in homologous recombination to date. It is

important, therefore to bear in mind that though using this tag has provided a useful

tool for visualising the deposition of the protein by chromatin immunoprecipitation,

the results might be skewed by the incorporation of a large tag. It is worth noting that

early work on Hholp using an even larger GFP tag at the C-terminal end did not

report any changes in protein folding or function (Ushinsky et al., 1997). Neither did

work on human H1 tagged with GFP at the C-terminal end demonstrate any changes

in the dynamics of the protein (Misteli et al., 2000).

The findings in this thesis are therefore based on the premise that the HHOl-Myc

tagged strain does not have an improperly-folded protein compared to wildtype and

the function ofHholp is not altered in this strain.
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MNase digests: nuclei vs spheroplasts

Micrococcal nuclease (MNase) test digests were performed on W303 nuclei, which

had been prepared by differential centrifugation (Ausubel et al., 2004) and as a

comparison, also on W303 spheroplasts prepared according to Kent and Mellor

(1995). This was deemed necessary because the differential centrifugation technique

is inefficient and the yield of nuclei is very low. I had initially hoped to perform

DNase I digests, but time constraints intervened.

The spheroplast preparation was performed as prescribed by Kent and Mellor (1995).
o

Briefly, yeast cells (1 XI0 ) were harvested and then allowed to sheroplast in a

sorbitol solution containing yeast lytic enzyme for 2.5 minutes. The cells are then

washed before being transferred to MNase I digestion buffer which contains a

detergent which makes the cells permeable to the MNase I. Initially, we used Triton

X-100, which is very similar to the Nonidet NP-40. However, we found that the

MNase I (lU/ml) digests (refer to materials and methods) were not very efficient, and

after consulting the corresponding author of the paper we decided to used Nonidet

NP-40 after all (which is no longer manufactured).

Subsequent investigations showed that Triton X-100 and Nonidet NP-40 are very

similar molecules which differ in the number of polycarbon chains they possess.

Triton X-100 has approximately ten polycarbon chains, while Nonidet NP-40 has

about 8 polycarbon chains. This might enable to Nonidet NP-40 to have a slight
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advantage over Triton X-100 in disrupting the yeast membrane. However, in other

techniques, Nonidet NP-40 and Triton X-100 can be used interchangeably.

Both nuclei and spheroplasts were digested with lU/ml MNase (Worthingtons) over a

timecourse of 0 to 4 minutes. After digestion the material was treated with proteinase

K and RNAse A, and ethanol precipitated. The DNA was resuspended in 20pl TE and

electrophoresed on a 1% agarose gel (IX TAE) at 100V for 3 hours. The DNA was

visualised by staining the gel in ethidium bromide and photographing the gel on a

phosphorimager in the fluorescent mode.

Figure AIII.l shows that nuclei and spheroplasts (A and B) both digest well with

MNase 1, however spheroplasts that are made permeable with Triton X-100 (C) as a

detergent, digest less well than those made permeable with Nonidet NP-40,

suggesting that Nonidet NP-40 is more efficient at permeabilising the cell membrane

in yeast. Figure AIII.2 demonstrates an MNase digestion timecourse on spheroplasts

produced from wildtype, ASNF2, ASSN6, and ATUP1,.

The MNase digests were conducted as part of a pilot study which was designed to

investigate the nucleosome positioning and DNase 1 hypersensitivity in the yeast

strains produced during this study. Unfortunately, due to time constraints, this work

could not be completed.
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MNase digest time

A B C

Figure AIII.l MNase digestion on nuclei and spheroplasts.

Wildtype W303 nuclei (A) were digested with lU/ml MNase over 0.5, 1, 2 and 4
minutes at 37°C. Digestion A shows nuclei digested with MNase, while Digestion B
shows a spheroplast digestion using Nonidet NP-40 as a detergent. Digestion C shows
a spheroplast digestion using Triton X-100 as a detergent. Digestions A and B show
similar digestion patterns, while digestion C shows a large proportion of undigested
material.
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MNase digestion time

ASNF2 ASSN6 ATUP1Wildtype W303

Figure AIII.2 MNase digestion on spheroplasts.

Spheroplasts prepared with Nonidet NP-40 (as a detergent) were digested with lU/ml
MNase over 0, 0.5, 1, 2 and 4 minutes at 37°C. Digests were carried out over a 0 -
4min timecourse on wildtype, ASNF2, ASSN6 and ATUP1. DNA was purified by

phenol extraction and ethanol precipitation and dissolved in TE, before being loaded
and electrophoresed on a 1% agarose gel in IX TAE.

176



References

References

Adkins, N. L., Watts, M., Georgel, P.T. (2004). "To the 30-nm chromatin fiber and

beyond." Biochim Biophys Acta. 1677(1-3): 12-23.

Agalioti, T., Chen, G., Thanos, D. (2002). "Deciphering the transcriptional histone

acetylation code for a human gene." Cell 111(3): 381-92.

Alami, R., Fan, Y., Pack, S., Sonbuchner, T.M., Besse, A., Lin, Q., Greally, J,M.,

Skoultchi, A.I., Bouhassira, E.E. (2003). "Mammalian linker-histone subtypes

differentially affect gene expression in vivo." Proc Natl Acad Sci U S A 100(10):
5920-5.

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. Molecular

Biology of the Cell. c2002. New York and London: Garland Science

Ali, T., Thomas, J.O. (2004). "Distinct properties of the two putative "globular
domains" of the yeast linker histone, Hholp." J Mol Biol. 337(5): 1123-35.

Ali, T., Coles, P., Stevens, T.J., Stott, K., Thomas, J.O. (2004). "Two homologous
domains of similar structure but different stability in the yeast linker histone, Hholp."
J Mol Biol. 338(1): 139-48.

Allan, J., Cowling, G.J., Harborne, N., Cattini, P., Craigie, R., Gould, H. (1981).

"Regulation of the higher-order structure of chromatin by histones HI and H5." J Cell
Biol. 90(2): 279-88.

Aimer, A., W. Horz (1986). "Nuclease hypersensitive regions with adjacent

positioned nucleosomes mark the gene boundaries of the PH05/PH03 locus in yeast."
Embo J 5(10): 2681-7.

Angus-Hill, M. L., Schlichter, A., Roberts, D., Erdjument-Bromage, H., Tempst, P.,
Cairns, B.R. (2001). "A Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the

177



References

chromatin remodeler RSC in gene expression and cell cycle control." Mol Cell 7(4):
741-51.

Archer, T. K., Lefebvre, P., Wolford, R.G., Hager, G.L. (1992). "Transcription factor

loading on the MMTV promoter: a bimodal mechanism for promoter activation."
Science 255(5051): 1573-6.

Armstrong, C.M., Kaeberlein, M., Imai, S.I., Guarente, L. (2002). "Mutations in

Saccharomyces cerevisiae gene SIR2 can have differential effects on in vivo silencing

phenotypes and in vitro histone deacetylation activity." Mol Biol Cell. 13(4): 1427-38.

Ausio, J. (2000). "Are linker histones (histone HI) dispensable for survival?"

Bioessays. 22(10): 873-7.

Ausio, J., Greulich, K. O., Haas, E., Wachtel, E. (1984). "Characterization of the
fluorescence of the protamine thynnine and studies of binding to double-stranded
DNA." Biopolymers 23(11 Pt 2): 2559-71.

Ausubel, F.M. (2002). "Short protocols in molecular biology : a compendium of
methods from Current protocols in molecular biology". Brooklyn, NY : Greene Pub.
Associates ; New York, NY : Wiley.

Baetz, K. K., Krogan, N. J., Emili, A., Greenblatt, J., Hieter P. (2004). "The ctfl3-
30/CTF13 genomic haploinsufficiency modifier screen identifies the yeast chromatin

remodeling complex RSC, which is required for the establishment of sister chromatid
cohesion." Mol Cell Biol 24(3): 1232-44.

Barra, J. L., Rhounim, L., Rossignol, J.L, Faugeron, G. (2000). "Histone HI is

dispensable for methylation-associated gene silencing in Ascobolus immersus and
essential for long life span." Mol Cell Biol. 20(1): 61-9.

Bash, R., Lohr, D. (2001). "Yeast chromatin structure and regulation of GAL gene

expression." Prog Nucleic Acid Res Mol Biol. 65: 197-259.

178



References

Baudin, A., Ozier-Kalogeropoulos, O. , Denoucl, A., Lacroute, F., Cullin, C. (1993).
"A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae."
Nucleic Acids Res 21(14): 3329-30.

Baxevanis, A.D., Landsman, D. (1998). "Homology model building of Hholp

supports its role as a yeast histone HI protein." In Silico Biol. (1):5-11.

Becker, P. B. (2002). "Nucleosome sliding: facts and fiction." EMBO J. 21(18): 4749-
53.

Bedalov, A., Hirao, M., Posakony, J., Nelson, M., Simon, J.A. (2003). "NAD+-

dependent deacetylase Hstlp controls biosynthesis and cellular NAD+ levels in

Saccharomyces cerevisiae." Mol Cell Biol 23(19): 7044-54.

Bernstein, B. E., Liu, C. L., Humphrey, E.L, Perlstein, E.O., Schreiber, S.L. (2004).
"Global nucleosome occupancy in yeast." Genome Biol 5(9): R62.

Bhattacharjee, R.N., Banks, G.C., Trotter, K.W., Lee, H.L., Archer, T.K. (2001)
"Histone HI phosphorylation by Cdk2 selectively modulates mouse mammary tumor

virus transcription through chromatin remodeling." Mol Cell Biol. 21( 16):5417-25.

Bhoite, L. T., Yu, Y., Stillman, D.J. (2001). "The Swi5 activator recruits the Mediator

complex to the HO promoter without RNA polymerase II." Genes Dev 15(18): 2457-
69.

Biggar, S. R., G. R. Crabtree (1999). "Continuous and widespread roles for the Swi-
Snf complex in transcription." Embo J 18(8): 2254-64.

Bjorklund, S., C. M. Gustafsson (2005). "The yeast Mediator complex and its

regulation." Trends Biochem Sci 30(5): 240-4.

Boeger, H., Griesenbeck, J., Strattan, J.S., Romberg, R.D. (2003). "Nucleosomes
unfold completely at a transcriptionally active promoter." Mol Cell 11(6): 1587-98.

179



References

Boeger, H., J. Griesenbeck, Strattan, J.S., Romberg, R.D. (2004). "Removal of

promoter nucleosomes by disassembly rather than sliding in vivo." Mol Cell 14(5):
667-73.

Bohm, L., Crane-Robinson, C. (1984). "Proteases as structural probes for chromatin:
the domain structure of histones." Biosci. Rep. 4: 365-86.

Bomblies, K., Dagenais, N., Weigel, D. (1999). "Redundant enhancers mediate

transcriptional repression ofAGAMOUS by APETALA2." Dev Biol 216(1): 260-4.

Bone, J. R., Roth, S.Y. (2001). "Recruitment of the yeast Tuplp-Ssn6p repressor is
associated with localized decreases in histone acetylation." J Biol Chem 276(3): 1 SOS-
IS.

Boukaba, A., Georgieva, E. I. Myers, F.A., Thome, A.W., Lopez-Rodas, G., Crane-

Robinson, C., Franco, L. (2004). "A short-range gradient of histone H3 acetylation
and Tuplp redistribution at the promoter of the Saccharomyces cerevisiae SUC2

gene." J Biol Chem 279(9): 7678-84.

Boyer, L. A., Logie, C. Bonte, E., Becker, P.B., Wade, P.A., Wolffe, A.P., Wu, C.,

Imbalzano, A.N., Peterson, C.L. (2000). "Functional delineation of three groups of the

ATP-dependent family of chromatin remodeling enzymes." J Biol Chem 275(25):
18864-70.

Brachmann, C. B., Davies, A. Cost, G,J„ Caputo, E., Li, J., Hieter, P., Boeke, J.D.

(1998). "Designer deletion strains derived from Saccharomyces cerevisiae S288C: a

useful set of strains and plasmids for PCR-mediated gene dismption and other

applications." Yeast 14(2): 115-32.

Bradbury, E. M., Inglis, R.J., Matthews, H.R. (1974). "Control of cell division by very

lysine rich histone (Fl) phosphorylation." Nature. 247(439): 257-61.

Bradbury, E. M. (1992). "Reversible histone modifications and the chromosome cell

cycle." Bioessays. 14(1): 9-16.

180



References

Bresnick, E.H., Bustin, M., Marsaud, V.„ Richard-Foy, H., Hager, G.L. (1992). "The

transcriptionally-active MMTV promoter is depleted of histone HI." Nucleic Acids
Res. 20(2):273-8.

Brower-Toland, B., Wacker, D. A. Fulbright, R.M., Lis, J.T, Kraus, W.L, Wang,

M.D.(2005). "Specific contributions of histone tails and their acetylation to the
mechanical stability of nucleosomes." J Mol Biol 346(1): 135-46.

Burke, D., Dawson, D., Stearns, T. (2000). "Methods in Yeast Genetics 2000: A Cold

Spring Harbor Laboratory Course Manual". CSHL Press.

Burke, L. J., Baniahmad, A. (2000). "Co-repressors 2000." Faseb J 14(13): 1876-88.

Bystricky, K., Heun, P., Gehlen, L., Langowski, J., Gasser, S.M.(2004). "Long-range

compaction and flexibility of interphase chromatin in budding yeast analyzed by high-
resolution imaging techniques." Proc Natl Acad Sci USA. 101(47): 16495-500.

Bystricky, K., Laroche, T.van Houwe, G., Blaszczyk, M., Gasser, S.M. (2005).
"Chromosome looping in yeast: telomere pairing and coordinated movement reflect

anchoring efficiency and territorial organization." J Cell Biol 168(3): 375-87.

Cadena, D. L., Dahmus, M.E. (1987). "Messenger RNA synthesis in mammalian cells
is catalyzed by the phosphorylated form of RNA polymerase II." J Biol Chem

262(26): 12468-74.

Cairns, B. R. (2005). "Chromatin remodeling complexes: strength in diversity,

precision through specialization." Curr Opin Genet Dev 15(2): 185-90.

Cairns, B. R., Kim, Y.J. Sayre, M.H., Laurent, B.C., Romberg, R.D. (1994). "A
multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and
SNF6 gene products isolated from yeast." Proc Natl Acad Sci U S A 91(5): 1950-4.

Catez, F., Brown, D.T., Misteli, T., Bustin M. (2002). "Competition between histone
HI and HMGN proteins for chromatin binding sites." EMBO Rep. 3(8): 760-6.

181



References

Chandy, M., Gutierrez, J.L., Prochasson, P., Workman, J.L. (2006). "SWI/SNF displaces

SAGA-acetylated nucleosomes." Eukaryot Cell. 5( 10): 1738-47.

Chen, G., Fernandez, J. Mische, S., Courey, A.J. (1999). "A functional interaction
between the histone deacetylase Rpd3 and the compressor groucho in Drosophila

development." Genes Dev 13(17): 2218-30.

Chen, G., Nguyen, P. H., Courey, A.J. (1998). "A role for Groucho tetramerization in

transcriptional repression." Mol Cell Biol 18(12): 7259-68.

Cirillo, L. A., McPherson, C.E., Bossard, P., Stevens, K., Cherian, S., Shim, E.Y.,

Clark, K.L., Burley, S.K., Zaret, K.S. (1998). "Binding of the winged-helix

transcription factor HNF3 to a linker histone site on the nucleosome." EMBO J. 17(1):
244-54.

Clark, D. J., Kimura, T. (1990). "Electrostatic mechanism of chromatin folding." J
Mol Biol. 211: 883-96.

Collins, N., Poot, R. A., Kukimoto, I., Garcia-Jimenez, C., Dellaire, G., Varga-Weisz,
P.D. (2002). "An ACF1-ISWI chromatin-remodeling complex is required for DNA

replication through heterochromatin." Nat Genet 32(4): 627-32.

Conner, J., Liu Z. (2000). "LEUNIG, a putative transcriptional corepressor that

regulates AGAMOUS expression during flower development." Proc Natl Acad Sci U
S A 97(23): 12902-7.

Contreras, A., Hale, T.K., Stenoien, D.L., Rosen, J.M., Mancini, M.A., Herrera, R.E.

(2003). "The dynamic mobility of histone HI is regulated by cyclin/CDK
phosphorylation." Mol Cell Biol. 23(23): 8626-36.

Cosgrove, M. S., Boeke, J.D., Wolberger, C. (2004). "Regulated nucleosome mobility
and the histone code." Nat Struct Mol Biol. 11(11): 1037-43.

182



References

Cosma, M. P., Panizza, S., Nasmyth, K. (2001). "Cdkl triggers association of RNA

polymerase to cell cycle promoters only after recruitment of the mediator by SBF."
Mol Cell 7(6): 1213-20.

Cote, J., Quinn, J., Workman, J.L., Peterson, C.L. (1994). "Stimulation of GAL4

derivative binding to nucleosomal DNA by the yeast SWI/SNF complex." Science

265(5168): 53-60.

Courey, A. J., Jia, S. (2001). "Transcriptional repression: the long and the short of it."
Genes Dev 15(21): 2786-96.

Cremer, T., Kreth, G., Koester, H., Fink, R.H., Fleintzmann, R., Cremer, M., Solovei,

I., Zink, D., Cremer, C. (2000). "Chromosome territories, interchromatin domain

compartment, and nuclear matrix: an integrated view of the functional nuclear
architecture." Crit Rev Eukaryot Gene Expr 10(2): 179-212.

Damelin, M., I. Simon, Moy, T.I., Wilson, B., Komili, S., Tempst, P., Roth, F.P.,

Young, R.A., Cairns, B.R., Silver, P.A. (2002). "The genome-wide localization of

Rsc9, a component of the RSC chromatin-remodeling complex, changes in response

to stress." Mol Cell 9(3): 563-73.

Davie, J. K., Edmondson, D. G., Coco, C.B., Dent, S.Y. (2003). "Tupl-Ssn6 interacts
with multiple class I histone deacetylases in vivo." J Biol Chem 278(50): 50158-62.

Davie, J. K., Trumbly, R.J. Dent, S.Y.(2002). "Histone-dependent association of

Tupl-Ssn6 with repressed genes in vivo." Mol Cell Biol 22(3): 693-703.

Davie, J. R., Saunders, C.A., Walsh, J.M., Weber, S.C. (1981). "Histone

modifications in the yeast S. Cerevisiae." Nucleic Acids Res. 9(13): 3205-16.

Davie, J. R., Chadee, D.N. (1998). "Regulation and regulatory parameters of histone
modifications." J Cell Biochem Suppl. 30-31: 203-13.

183



References

De Lange, R. J., Farnborough, D.M., Smith, E.L., Bonner, J. (1969). "Calf and pea

histone IV: the complete amino acid sequence of calf thymus thistone IV; presence of

N-acetlylysine." J Biol Chem. 244(319-34).

Dekker, J., Rippe, K., Dekker, M., Kleckner, N. (2002). "Capturing chromosome
conformation." Science 295(5558): 1306-11.

Dirnova, D., Nackerdien, Z. Furgeson, S., Eguchi, S., Osley, M.A. (1999). "A role for

transcriptional repressors in targeting the yeast Swi/Snf complex." Mol Cell 4(1): 75-
83.

Dorigo, B., Schalch, T., Kulangara, A., Duda, S., Schroeder, R.R., Richmond, T.J.

(2004). "Nucleosome arrays reveal the two-start organization of the chromatin fiber."
Science 360(5701): 1571-3.

Dou, Y., Gorovsky, M.A. (2000). "Phosphorylation of linker histone HI regulates

gene expression in vivo by creating a charge patch." Mol Cell. 6(2): 225-31.

Dou, Y., Gorovsky, M.A. (2002). "Regulation of transcription by HI phosphorylation
in Tetrahymena is position independent and requires clustered sites." Proc Natl Acad
SciUSA. 99(9): 1161-70.

Dou, Y., Mizzen, C. A., Abrams, M., Allis, C.D., Gorovsky, M.A. (1999).

"Phosphorylation of linker histone HI regulates gene expression in vivo by

mimicking HI removal." Mol Cell 4(4): 641-7.

Dou, Y., Song, X., Liu, Y., Gorovsky, M.A. (2005). "The HI phosphorylation state

regulates expression of CDC2 and other genes in response to starvation in

Tetrahymena thermophila." Mol Cell Biol 25(10): 3914-22.

Downs, J. A., Kosmidou, E., Morgan, A., Jackson, S.P. (2003). "Suppression of

homologous recombination by the Saccharomyces cerevisiae linker histone." Mol
Cell. 11(6): 1685-92.

184



References

Ducker, C. E., Simpson, R. T. (2000). "The organized chromatin domain of the

repressed yeast a cell-specific gene STE6 contains two molecules of the compressor

Tuplp per nucleosome." Embo J 19(3): 400-9.

Dunleavy, E., Pidoux, A., Allshire, R. (2005). "Centromeric chromatin makes its
mark." Trends Biochem Sci. 30(4): 172-5.

Eberharter, A., Ferreira, R., Becker, P. (2005). "Dynamic chromatin: concerted
nucleosome remodelling and acetylation." Biol Chem. 386(8):745-51.

Ebbert, R., Birkmann, A., Schuller, H.J. (1999). "The product of the SNF2/SWI2

paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of
various yeast structural genes is part of a high-molecular-weight protein complex."
Mol Microbiol 32(4): 741-51.

Edmondson, D. G., Smith, M. M., Roth, S.Y. (1996). "Repression domain of the yeast

global repressor Tupl interacts directly with histones H3 and H4." Genes Dev 10(10):
1247-59.

Edmondson, D. G., Zhang, W. Watson, A., Xu, W., Bone, J.R., Yu, Y., Stillman, D.,

Roth, S.Y. (1998). "In vivo functions of histone acetylation/deacetylation in Tuplp

repression and Gcn5p activation." Cold Spring Harb Symp Quant Biol 63: 459-68.

Eirin-Lopez, J. M., Frehlick, L.J., Ausio, J. (1996). "Protamines, in the footsteps of
linker histone evolution." J Biol Chem 281(1): 1-4.

Ekwall, K. (2004). "The roles of histone modifications and small RNA in centromere

function." Chromosome Res. 12(6): 535-42.

Elfring, L. K., Deuring, R., McCallum, C.M., Peterson, C.L., Tanrkun, J.W. (1994).
"Identification and characterization ofDrosophila relatives of the yeast transcriptional
activator SNF2/SWI2." Mol Cell Biol 14(4): 2225-34.

185



References

Escher, D., Schaffner, W. (1997). "Gene activation at a distance and telomeric

silencing are not affected by yeast histone HI." Mol Gen Genet. 256(4): 456-54.

Fan, H. Y., Trotter, K. W. Archer, T.K., Kingston, R.E. (2005). "Swapping function
of two chromatin remodeling complexes." Mol Cell 17(6): 805-15.

Fan, Y., Nikitina, T., Morin-Kensicki, E.M., Zhao, J., Magnuson, T.R., Woodcock,

C.L., Skoultchi, A.I. (2003). "HI linker histones are essential for mouse development
and affect nucleosome spacing in vivo." Mol Cell Biol. 23(13): 4559-72.

Fan, Y., Nikitina, T., Zhao, J., Fleury T.J., Bhattacharyya, R., Bouhassira, E.E., Stein,

A., Woodcock, C.L., Skoultchi, A.I. (2005). "Histone HI depletion in mammals alters

global chromatin structure but causes specific changes in gene regulation." Cell

123(7): 1199-212.

Fan, Y., Sirotkin, A., Russell, R.G., Ayala, J., Skoultchi, A.I. (2001). "Individual
somatic H1 subtypes are dispensable for mouse development even in mice lacking the

H1(0) replacement subtype." Mol Cell Biol 21(23): 7933-43.

Farkas, G., Feibovitch, B.A., Elgin, S.C. (2000). "Chromatin organization and

transcriptional control of gene expression in Drosophila." Gene 253(2): 117-36.

Finch, J. T., Klug, A. (1976). "Solenoidal model for superstructure in chromatin."
Proc Natl Acad Sci USA. 73(6): 1897-901.

Fischle, W., Wang, Y., Allis, C.D. (2003). "Histone and chromatin cross-talk." Curr

Opin Cell Biol 15(2): 172-83.

Flanagan, P. M., Kelleher, R.J. 3rd, Sayre, M.H., Tschochner, H., Kornberg, R.D.

(1991). "A mediator required for activation of RNA polymerase II transcription in
vitro." Nature 350(6317): 436-8.

Flaus, A., Owen-Hughes, T. (2003). "Dynamic properties of nucleosomes during
thermal and ATP-driven mobilization." Mol Cell Biol 23(21): 7767-79.

186



References

Fleming, A. B., Pennings, S. (2001). "Antagonistic remodelling by Swi-Snf and

Tupl-Ssn6 of an extensive chromatin region forms the background for FLOl gene

regulation." Embo J 20(18): 5219-31.

Flemming, W. (1882). "Zellsubstanz, Kern und Zelltheilung." F.C.W. Vogel, Leipzig,
1882.

Flores-Saaib, R. D., Courey, A. J. (2000). "Analysis of Groucho-histone interactions

suggests mechanistic similarities between Groucho- and Tup 1-mediated repression."
Nucleic Acids Res 28(21): 4189-96.

Folco, H. D., Freitag, M., Ramon, A., Temporini, E.D., Alvarez, M.E., Garcia, I.,

Scazzocchio, C., Selker, E.U., Rosa, A.L. (2003). "Histone HI Is required for proper

regulation of pyruvate decarboxylase gene expression in Neurospora crassa."

Eukaryot Cell. 2(2): 341-50.

Franks, R. G., Wang, C. Levin, J.Z., Liu, Z. (2002). "SEUSS, a member of a novel

family of plant regulatory proteins, represses floral homeotic gene expression with
LEUNIG." Development 129(1): 253-63.

Freidkin, I., Katcoff, D.J. (2001). "Specific distribution of the Saccharomyces
cerevisiae linker histone homolog HHOlp in the chromatin." Nucleic Acids Res.

29(19): 4043-51.

Galarneau, L., Nourani, A. Boudreault, A.A., Zhang Y, Heliot, L., Allard, S., Savard,

J., Lane, W.S., Stillman, D.J., Cote, J. (2000). "Multiple links between the NuA4

histone acetyltransferase complex and epigenetic control of transcription." Mol Cell

5(6): 927-37.

Garrard, W. T. (1991). "Histone HI and the conformation of transcriptionally active
chromatin." Bioessays. 13(2): 87-8.

187



References

Gavin, I. M., Simpson, R.T. (1997). "Interplay of yeast global transcriptional

regulators Ssn6p-Tuplp and Swi-Snf and their effect on chromatin structure." Embo J

16(20): 6263-71.

Gietz, R. D., Schiestl, R. H., Willems, A.R., Woods, R.A. (1995). "Studies on the
transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure." Yeast

11(4): 355-60.

Gilbert, N., Allan, J. (2001). "Distinctive higher-order chromatin structure at

mammalian centromeres." Proc Natl Acad Sci USA. 98(21): 11949-54.

Glowczewski, L., Waterborg, J.H., Berman, J.G. (2004). "Yeast chromatin assembly

complex 1 protein excludes nonacetylatable forms of histone H4 from chromatin and
the nucleus." Mol Cell Biol. 24(23): 10180-92.

Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H.,

Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M., Louis, E.J., Mewes, H.W.,
Murakami. Y., Philippsen, P., Tettelin, H., Oliver, S.G. (1996). "Life with 6000

genes." Science. 274(5287): 563-7.

Goldmark, J. P., Fazzio, T. G., Estep, P.W., Church, G.M., Tsukiyama, T. (2000).
"The Isw2 chromatin remodeling complex represses early meiotic genes upon

recruitment by Ume6p." Cell 103(3): 423-33.

Goodrich, J., Puangsomlee, P., Martin, M., Long, D., Meyerowitz, E.M., Coupland,
G. (1997). "A Polycomb-group gene regulates homeotic gene expression in

Arabidopsis." Nature 386(6620): 44-51.

Gounalaki, N., Tzamarias, D., Vlassi, M. "Identification of residues in the TPR

domain of Ssn6 responsible for interaction with the Tupl protein." FEBS Lett 473(1):
37-41.

188



References

Goytisolo, F. A., Gerchman, S.E., Yu, X., Rees, C., Graziano, V., Ramakrishnan, V.,

Thomas, J.O. (1996). "Identification of two DNA binding sited on the globular
domain of histone H5." EMBO J. 15: 3421-29.

Gregory, P. D., Schmid, A., Zavari, M., Lui, L., Berger, S.L., Horz, W. (1998).
"Absence of Gcn5 HAT activity defines a novel state in the opening of chromatin at

the PH05 promoter in yeast." Mol Cell 1(4): 495-505.

Gromoller, A., Lehming, N. (2000). "Srb7p is a physical and physiological target of

Tuplp." Embo J 19(24): 6845-52.

Grunstein, M. (1997). "Histone acetylation in chromatin structure and transcription."
Nature 389(6649): 349-52.

Guarente, L. (2000). "Sir2 links chromatin silencing, metabolism, and aging." Genes
Dev. 14: 1021-26.

Hale, T. K., Contreras, A., Morrison, A.J., Herrera, R.E. (2006). "Phosphorylation of
the linker histone HI by CDK regulates its binding to HP 1 alpha." Mol Cell 22(5):
693-9.

Harvey, A. C., Downs, J.A. (2004). "What functions do linker histones provide?" Mol
Microbiol. 53(5): 771-5.

Hassan, A. H., Prochasson, P., Neely, KE„ Galasinski, S.C., Chandy, M., Carrozza,

M.J., Workman, J.L. (2002). "Function and selectivity of bromodomains in anchoring

chromatin-modifying complexes to promoter nucleosomes." Cell 111(3): 369-79.

Hassan, A.H., Awad, S., Al-Natour, Z., Othman, S., Mustafa, F., Rizvi, T.A. (2007).

"Selective recognition of acetylated histones by bromodomains in transcriptional co-
activators. " 402(1): 125-33.

189



References

Hassig, C. A., Fleischer, T. C., Billin, A.N., Schreiber, S.L., Ayer, D.E. (1997).
"Histone deacetylase activity is required for full transcriptional repression by
mSin3A." Cell 89(3): 341-7.

Havas, K., Flaus, A., Phelan, M., Kingston, R., Wade, P.A., Lilley, D.M., Owen-

Hughes, T. (2000). "Generation of superhelical torsion by ATP-dependent chromatin

remodeling activities." Cell 103(7): 1133-42.

Hebbes, T. R., Thorne, A.W., Crane-Robinson, C. (1988). "A direct link between core

histone acetylation and transcriptionally active chromatin." Embo J 7(5): 1395-402.

Hecht, A., Grunstein, M. (1999). "Mapping DNA interaction sites of chromosomal

proteins using immunoprecipitation and polymerase chain reaction." Methods

Enzymol 304: 399-414.

Hecht, A., Strahl-Bolsinger, S., Grunstein, M. (1999). "Mapping DNA interaction
sites of chromosomal proteins. Crosslinking studies in yeast." Methods Mol Biol 119:
469-79.

Hellauer, K., Sirard, E., Turcotte, B. (2001). "Decreased expression of specific genes

in yeast cells lacking histone HI." J Biol Chem. 276(17): 13587-92.

Hendzel, M. J., Lever, M.A., Crawford, E., Th'ng, J.P. (2004). "The C-terminal
domain is the primary determinant of histone HI binding to chromatin in vivo." J Biol
Chem. 279(19): 20028-34.

Henikoff, S., Furuyama, T., Ahmad, K. (2004). "Histone variants, nucleosome

assembly and epigenetic inheritance." Trends Genet. 20(7): 320-6.

Henikoff, S., Ahmad, K. (2005). "Assembly of variant histones into chromatin." Annu
Rev Cell Dev Biol. 21:133-53.

Herrera, J. E., West, K. L., Schiltz, R.L., Nakatani, Y., Bustin M. (2000). "Histone HI

is a specific repressor of core histone acetylation in chromatin." Mol Cell Biol 20(2):
523-9.

190



References

Heun, P., Laroche, T., Shimada, K., Furrer, P., Gasser, S.M. (2001). "Chromosome

dynamics in the yeast interphase nucleus." Science 294(5549): 2181-6.

Hill, C. S., Rimmer, J.M., Green, B.N., Finch, J.T., Thomas, J.O. (1991). "Histone-
DNA interactions and their modulation by phosphorylation of -Ser-Pro-X-Lys/Arg-
motifs." EMBO J. 10(7): 1939-48.

Hill, D. A., Imbalzano, A.N. (2000). "Human SWI/SNF nucleosome remodeling

activity is partially inhibited by linker histone HI." Biochemistry. 39(38): 11649-56.

Hinnen, A., Hicks, J. B., Fink, G.R. (1978). "Transformation of yeast." Proc Natl
Acad Sci U S A 75(4): 1929-33.

Hirschhorn, J. N., Brown, S. A., Clark, C.D., Winston, F. (1992). "Evidence that

SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure."
Genes Dev 6(12A): 2288-98.

Horn, P. J., Carruthers, L.M., Logie, C., Hill, D.A., Solomon, M.J., Wade, P.A.,

Imbalzano, A.N., Hansen, J.C., Peterson, C.L. (2002). "Phosphorylation of linker
histones regulates ATP-dependent chromatin remodeling enzymes." Nat Struct Biol.

9(4): 263-7.

Huang, J., Hsu, J. M., Laurent, B.C. (2004). "The RSC nucleosome-remodeling

complex is required for Cohesin's association with chromosome arms." Mol Cell

13(5): 739-50.

Huang, M., Zhou, Z., Elledge, S.J. (1998). "The DNA replication and damage

checkpoint pathways induce transcription by inhibition of the Crtl repressor." Cell

94(5): 595-605.

Hughes, T. R., Marton, M. J., Jones, A.R., Roberts, C.J., Stoughton, R., Armour,

C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D., Kidd, M.J., King, A.M., Meyer,

M.R., Slade, D., Lum, P.Y., Stepaniants. S.B., Shoemake, D.D., Gachotte, D.,

191



References

Chakraburtty, K., Simon, J., Bard, M., Friend, S.H. (2000). "Functional discovery via
a compendium of expression profiles." Cell 102(1): 109-26.

Imhof, A. (2003). "Histone modifications: an assembly line for active chromatin?"
CurrBiol 13(1): R22-4.

Ito, T., Bulger, M., Pazin, M.J., Kobayashi, R., Kadonaga, J.T. (1997). "ACF, an

ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor." Cell

90(1): 145-55.

Jackson. D.A., Iborra, F.J., Manders, E.M., Cook, P.R. (1998). "Numbers and

organization ofRNA polymerases, nascent transcripts, and transcription units in HeLa
nuclei." Mol Biol Cell. 9(6): 1523-36.

Jedrusik, M. A., Schulze, E. (2003). "Telomeric position effect variegation in

Saccharomyces cerevisiae by Caenorhabditis elegans linker histones suggests a

mechanistic connection between germ line and telomeric silencing." Mol Cell Biol.

23(10): 3681-91.

Jenuwein, T., Allis, C.D. (2001). "Translating the histone code." Science 293(5532):
1074-80.

Jimenez, G., Guichet, A., Ephrussi, A., Casanova, J. (2000). "Relief of gene

repression by torso RTK signaling: role of capicua in Drosophila terminal and
dorsoventral patterning." Genes Dev 14(2): 224-31.

Jimenez, G., Paroush, Z., Ish-Horowicz, D. (1997). "Groucho acts as a compressor for
a subset of negative regulators, including Hairy and Engrailed." Genes Dev 11(22):
3072-82.

Kadosh, D., Struhl, K. (1998). "Targeted recruitment of the Sin3-Rpd3 histone

deacetylase complex generates a highly localized domain of repressed chromatin in
vivo." Mol Cell Biol 18(9): 5121-7.

192



References

Karpova, T. S., Chen, T. Y., Sprague, B.L., McNally, J.G. (2004). "Dynamic
interactions of a transcription factor with DNA are accelerated by a chromatin
remodeller." EMBO Rep 5(11): 1064-70.

Karrer, K. M., VanNuland, T.A. (1999). "Nucleosome positioning is independent of
histone HI in vivo." J Biol Chem. 274(46): 33020-4.

Karrer, K. M., VanNuland, T.A. (2002). "Methylation of adenine in the nuclear DNA
of Tetrahymena is internucleosomal and independent of histone HI." Nucleic Acids
Res. 30(6): 1364-70.

Kassabov, S. R., Zhang, B., Persinger, J., Bartholomew, B. (2003). "SWI/SNF

unwraps, slides, and rewraps the nucleosome." Mol Cell 11(2): 391-403.

Kasten, M., Szerlong, H.,Erdjument-Bromage, H., Tempst, P., Werner, M., Cairns,
B.R. (2004). "Tandem bromodomains in the chromatin remodeler RSC recognize

acetylated histone H3 Lysl4." Embo J 23(6): 1348-59.

Keleher, C. A., Redd, M. J., Schultz, J., Carlson, M., Johnson, A.D. (1992). "Ssn6-

Tupl is a general repressor of transcription in yeast." Cell 68(4): 709-19.

Kelleher, R. J., 3rd, Flanagan, P. M., Romberg, R.D. (1990). "A novel mediator
between activator proteins and the RNA polymerase II transcription apparatus." Cell

61(7): 1209-15.

Kent, N. A., Mellor, J. (1995). "Chromatin structure snap-shots: rapid nuclease

digestion of chromatin in yeast." Nucleic Acids Res 23(18): 3786-7.

Kermekchiev, M., Workman, J. L., Pikaard, C.S. (1997). "Nucleosome binding by the

polymerase I transactivator upstream binding factor displaces linker histone HI." Mol
Cell Biol 17(10): 5833-42.

Khorasanizadeh, S. (2004). "The nucleosome: from genomic organization to genomic

regulation." Cell. 116(2): 259-72.

193



References

Kim, Y., Clark, D. J. (2002). "SWI/SNF-dependent long-range remodeling of yeast
HIS3 chromatin." Proc Natl Acad Sci U S A 99(24): 15381-6.

Kim, Y., McLaughlin, N., Lindstrom, K., Tsukiyama, T., Clark, D.J. (2006).
"Activation of Saccharomyces cerevisiae HIS3 results in Gcn4p-dependent,

SWI/SNF-dependent mobilization of nucleosomes over the entire gene." Mol Cell
Biol. 26(22):8607-22.

Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M.H., Romberg, R.D. (1994). "A

multiprotein mediator of transcriptional activation and its interaction with the C-
terminal repeat domain ofRNA polymerase II." Cell 77(4): 599-608.

Klug, A., Rhodes, D., Smith, J., Finch, J.T., Thomas, J.O. (1980). "A low resolution
structure for the histone core of the nucleosome." Nature 287(5782): 509-16.

Knoepfler, P. S., Eisenman, R. N. (1999). "Sin meets NuRD and other tails of

repression." Cell 99(5): 447-50.

Konishi, A., Shimizu, S., Hirota, J., Takao, T., Fan, Y., Matsuoka, Y., Zhang, L.,

Yoneda, Y., Fujii, Y., Skoultchi, A.I., Tsujimoto, Y. (2003). "Involvement of histone
HI.2 in apoptosis induced by DNA double-strand breaks." Cell 114(6): 673-88.

Romberg, R., D., Lorch, Y. (1999). "Twenty-five years of the nuclesome,
fundamental particle of the eukaryote chromosome." Cell 98: 285-294.

Romberg, R. D. (2005). "Mediator and the mechanism of transcriptional activation."
Trends Biochem Sci 30(5): 235-9.

Romberg, R. D., Lorch Y. (1991). "Irresistible force meets immovable object:

transcription and the nucleosome." Cell 67(5): 833-6.

Kossel, A. (1911). "Ueber die chemische Beschaffenheit des Zellkerns." Munchen

Med. Wochenschrift. 58: 65-69.

194



References

Krakewski, W.A. (2002). "Histone acetylation status and DNA sequence modulate

ATP-dependent nucleosome repositioning." J Biol Chem. 277(17): 14509-13.

Krebs, J. E., Fry, C. J., Samuels, M.L., Peterson, C.L. (2000). "Global role for

chromatin remodeling enzymes in mitotic gene expression." Cell 102(5): 587-98.

Kristjuhan, A., Walker, J., Suka, N., Grunstein, M., Roberts, D., Cairns, B.R.,

Svejstrup, J.Q. (2002). "Transcriptional inhibition of genes with severe histone h3

hypoacetylation in the coding region." Mol Cell. 10(4): 925-33.

Kuras, L., Struhl, K. (1999). "Binding of TBP to promoters in vivo is stimulated by
activators and requires Pol II holoenzyme." Nature 399(6736): 609-13.

Kurdistani, S. K., Grunstein, M. (2003). "Histone acetylation and deacetylation in

yeast." Nat Rev Mol Cell Biol. 4(4): 276-84.

Kwon, H., Imbalzano, A. N., Khavari, P.A., Kingston, R.E., Green, M.R. (1994).
"Nucleosome disruption and enhancement of activator binding by a human SW1/SNF

complex." Nature 370(6489): 477-81.

Landsman, D. (1996). "Histone HI in Saccharomyces cerevisiae: a double mystery

solved?" Trends Biochem Sci. 21(8): 287-8.

Langst, G., Becker, P.B. (2001). "ISWI induces nucleosome sliding on nicked DNA."
Mol Cell 8(5): 1085-92.

Langst, G., Becker, P.B. (2001). "Nucleosome mobilization and positioning by ISWI-

containing chromatin-remodeling factors." J Cell Sci 114(Pt 14): 2561-8.

Laurent, B. C., Treich, I., Carlson, M. (1993). "The yeast SNF2/SWI2 protein has

DNA-stimulated ATPase activity required for transcriptional activation." Genes Dev

7(4): 583-91.

195



References

Lee, H., Habas, R., Abate-Shen, C. (2004). "MSX1 cooperates with histone Hlb for
inhibition of transcription and myogenesis." Science. 304(5677): 1675-8.

Lee, H. L., Archer, T.K. (1994). "Nucleosome-mediated disruption of transcription
factor-chromatin initiation complexes at the mouse mammary tumor virus long
terminal repeat in vivo." Mol Cell Biol. 14(1): 32-41.

Lee, H. L., Archer, T.K. (1998). "Prolonged glucocorticoid exposure

dephosphorylates histone HI and inactivates the MMTV promoter." EMBO J. 17(5):
1454-66.

Lee, M., Chatterjee, S., Struhl, K. (2000). "Genetic analysis of the role of Pol II

holoenzyme components in repression by the Cyc8-Tupl corepressor in yeast."
Genetics 155(4): 1535-42.

Lever, M. A., Th'ng, J.P., Sun, X., Hendzel, M.J. (2000). "Rapid exchange of histone
Hl.l on chromatin in living human cells." Nature 408(6814): 873-6.

Lewis, J. D., Song, Y., de Jong, M.E., Bagha, S.M., Ausio, J. (2003). "A walk though
vertebrate and invertebrate protamines." Chromosoma 111(8): 473-82.

Li, B., Reese, J.C. (2001). "Ssn6-Tupl regulates RNR3 by positioning nucleosomes
and affecting the chromatin structure at the upstream repression sequence." J Biol
Chem 276(36): 33788-97.

Li, G., Levitus, M., Bustamante, C., Widom, J. (2005). "Rapid spontaneous

accessibility of nucleosomal DNA." Nat Struct Mol Biol 12(1): 46-53.

Linder, C., Thoma, F. (1994). "Histone HI expressed in Saccharomyces cerevisiae
binds to chromatin and affects survival, growth, transcription, and plasmid stability
but does not change nucleosomal spacing." Mol Cell Biol. 14(4): 2822-35.

Liu, R., Liu, H., Chen, X., Kirby, M., Brown, P.O., Zhao, K. (2001). "Regulation of
CSF1 promoter by the SWI/SNF-like BAF complex." Cell 106(3): 309-18.

196



References

Liu, Z., Meyerowitz, E. M. (1995). "LEUNIG regulates AGAMOUS expression in

Arabidopsis flowers." Development 121(4): 975-91.

Logie, C., Peterson, C.L. (1999). "Purification and biochemical properties of yeast
SWI/SNF complex." Methods Enzymol 304: 726-41.

Lorch, Y., Cairns, B. R., Zhang, M., Romberg, R.D. (1998). "Activated RSC-
nucleosome complex and persistently altered form of the nucleosome." Cell 94(1):
29-34.

Lowary, P. T., Widom, J. (1989). "Higher-order structure of Saccharomyces
cerevisiae chromatin." Proc Natl Acad Sci USA 86(21): 8266-70.

Lu, X., Hansen, J.C. (2004). "Identification of specific functional subdomains within
the linker histone H10 C-terminal domain." J Biol Chem. 279(108701-7).

Lu, Z. H., Sittman, D.B., Romanowsk,i P., Leno, G.H. (1998). "Histone HI reduces
the frequency of initiation in Xenopus egg extract by limiting the assembly of

prereplication complexes on sperm chromatin." Mol Biol Cell. 9(5): 1163-77.

Lucchini, R., Wellinger, R. E., Sogo, J.M. (2001). "Nucleosome positioning at the

replication fork." Embo J 20(24): 7294-302.

Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., Richmond, T.J. (1997).

"Crystal stmcture of the nucleosome core particle at 2.8 A resolution." Nature

389(6648): 251-60.

Luger, K., Richmond, T.J. (1998). "DNA binding within the nucleosome core." Curr

Opin Struct Biol. 8(1): 33-40.

Luger, K. (2002). "The tail does not always wag the dog." Nat Genet. 32(2): 221-2.

Luger, K., Hansen, J.C. (2005). "Nucleosome and chromatin fiber dynamics." Curr

Opin Struct Biol. 15(2): 188-96.

197



References

Main, E. R., Stott, K., Jackson, S.E., Regan, L. (2005). "Local and long-range stability
in tandemly arrayed tetratricopeptide repeats." Proc Natl Acad Sci U S A 102(16):
5721-6.

Malave, T.M., Dent, S.Y.R. (2006). "Transcriptional repression by Tupl-Ssn6."
Biochem. Cell Biol. 84: 437-443.

Malik, H. S., Henikoff, S. (2003). "Phylogenomics of the nucleosome." Nat Struct
Biol. 10(11): 882-91.

Malin, S., Linderson, Y., Almqvist, J., Ernberg, I., Tallone, T., Pettersson, S. (2005).

"DNA-dependent conversion of Oct-1 and Oct-2 into transcriptional repressors by
Groucho/TLE." Nucleic Acids Res 33(14): 4618-25.

Margueron, R., Trojer, P., Reinberg, D. (2005). "The key to development: interpreting
the histone code?" Curr Opin Genet Dev. 15(2): 163-76.

Marmorstein, R., Roth, S.Y. (2001). "Histone acetyltransferases: function, structure,
and catalysis." Curr Opin Genet Dev. 11(2): 155-61.

Marmorstein, R. (2001). "Structure of histone acetyltransferases." J Mol Biol. 311(3):
433-44.

Martens, J. A., Winston, F. (2002). "Evidence that Swi/Snf directly represses

transcription in S. cerevisiae." Genes Dev 16(17): 2231-6.

Mathias, J. R., Hanlon, S. E., O'Flanagan, R.A., Sengupta, A.M., Vershon,

A.K.(2004). "Repression of the yeast HO gene by the MATalpha2 and MATal

homeodomain proteins." Nucleic Acids Res 32(22): 6469-78.

McKittrick, E., Gafken, P. R., Ahmad. K., Henikoff. S. (2004). "Histone H3.3 is

enriched in covalent modifications associated with active chromatin." Proc Natl Acad

Sci US A 101(6): 1525-30.

198



References

Meersseman, G., Pennings, S., Bradbury, E.M. (1992). "Mobile nucleosomes~a

general behavior." EMBO J. 11(8): 2951-9.

Meneghini, M. D., Wu, M., Madhani, H.D. (2003). "Conserved histone variant H2A.Z

protects euchromatin from the ectopic spread of silent heterochromatin." Cell. 112(5):
725-36.

Miescher, F. (1871). "Ueber die chemische Zusammensetzung der Eiterzellen."

Hoppe-Seyler, med. chem. Unters. 4: 441-460.

Miki, B. L., Poon, N. H., James, A.P., Seligy, V.L. (1982). "Possible mechanism for
flocculation interactions governed by gene FLOl in Saccharomyces cerevisiae." J
Bacteriol 150(2): 878-89.

Miki, B. L., Poon, N. H., Seligy, V.N. (1982). "Repression and induction of
flocculation interactions in Saccharomyces cerevisiae." J Bacteriol 150(2): 890-9.

Misteli, T., Gunjan, A., Hock, R., Bustin, M., Brown, D.T. (2000). "Dynamic binding
of histone HI to chromatin in living cells." Nature 408(6814): 877-81.

Mizzen, C. A., Dou, Y., Liu, Y., Cook, R.G., Gorovsky, M.A., Allis, C.D. (1999).
"Identification and mutation of phosphorylation sites in a linker histone.

Phosphorylation of macronuclear HI is not essential for viability in tetrahymena." J
Biol Chem. 274(21): 14533-6.

Mo, X., Kowenz-Leutz, E., Xu, H., Leutz, A. (2004). "Ras induces mediator complex

exchange on C/EBP beta." Mol Cell 13(2): 241-50.

Mohrmann, L., K. Langenberg, et al. (2004). "Differential targeting of two distinct
SWI/SNF-related Drosophila chromatin-remodeling complexes." Mol Cell Biol 24(8):
3077-88.

199



References

Mohrmann, L., Verrijzer, C.P. (2005). "Composition and functional specificity of
SWI2/SNF2 class chromatin remodeling complexes." Biochim Biophys Acta 1681(2-

3): 59-73.

Myers, L.C., Gustafsson, C.M., Bushnell, D.A., Lui, M., Erdjument-Bromage, H.,

Tempst, P., Kornberg, R.D. (1998). "The Med proteins of yeast and their function

through the RNA polymerase II carboxy-terminal domain." Genes Dev 12(1): 45-54.

Myers, L. C., Kornberg, R. D. (2000). "Mediator of transcriptional regulation." Annu
Rev Biochem 69: 729-49.

Neigeborn, L., Carlson, M. (1984). "Genes affecting the regulation of SUC2 gene

expression by glucose repression in Saccharomyces cerevisiae." Genetics 108(4):
845-58.

Nightingale, K., Wolffe, A.P. (1995). "Methylation at CpG sequences does not

influence histone HI binding to a nucleosome including a Xenopus borealis 5 S rRNA

gene." J Biol Chem. 270(9): 4197-200.

O'Brien, T., Hardin, S., Greenleaf, A., Lis, J.T. (1994). "Phosphorylation of RNA

polymerase II C-terminal domain and transcriptional elongation." Nature 370(6484):
75-7.

Ohsumi, K., Katagiri, C., Kishimoto, T. (1993). "Chromosome condensation in

Xenopus mitotic extracts without histone HI." Science. 262(5142): 2033-5.

Okamoto, I., Otte, A.P., Allis, C.D., Reinberg, D., Heard, E. (2004). "Epigenetic

dynamics of imprinted X inactivation during early mouse development." Science

303(5658): 644-9.

Olave, I. A., Reek-Peterson, S. L., Crabtree, G.R. (2002). "Nuclear actin and actin-
related proteins in chromatin remodeling." Annu Rev Biochem 71: 755-81.

200



References

Olins, A. L. O., D. E. (1974). "Spheroid chromatin units (bodies)." Science 183 (122):
330-2.

Olins, D. E., Olins A.L. (2003). "Timeline: Chromatin history: our view from the

bridge." Nat Rev Mol Cell Biol. 4(10): 809-14.

O'Neill, T. E., Meersseman, G., Pennings, S., Bradbury, E.M. (1995). "Deposition of
histone Ell onto reconstituted nucleosome arrays inhibits both initiation and

elongation of transcripts by T7 RNA polymerase." Nucleic Acids Res 23(6): 1075-82.

Ono, K., Kusano, O., Shimotakahara, S., Shimizu, M., Yamazaki, T., Shindo, H.

(2003). "The linker histone homolog Hholp from Saccharomyces cerevisiae

represents a winged helix-turn-helix fold as determined by NMR spectroscopy."
Nucleic Acids Res. 31(24): 7199-207.

Osborne, C. S., Chakalova, L., Brown, K.E., Carter, D., Horton, A., Debrand, E.,

Goyenechea, B., Mitchell, J.A., Lopes, S., Reik, W., Fraser, P. (2004). "Active genes

dynamically colocalize to shared sites of ongoing transcription." Nat Genet 36(10):
1065-71.

O'Sullivan, J.M., Tan-Wong, S.M. Morillon, A., Lee, B., Coles, J., Mellor, J.,

Proudfoot, N.J. (2004). "Gene loops juxtapose promoters and terminators in yeast."
Nat Genet 36(9): 1014-8.

Oudet, P., Gross-Bellard, M., Chambon, P. (1975). "Electron microscopic and
biochemical evidence that chromatin structure is a repeating unit." Cell 4(4): 281-300.

Palmer, D. K., O'Day, K., Trong, H.L., Charbonneau, H., Margolis, R.L. (1991).
"Purification of the centromere-specific protein CENP-A and demonstration that it is
a distinctive histone." Proc Natl Acad Sci USA. 88(9): 3734-8.

Papamichos-Chronakis, M., Gligoris, T., Tzamarias, D. (2004). "The Snfl kinase
controls glucose repression in yeast by modulating interactions between the Migl

repressor and the Cyc8-Tupl co-repressor." EMBO Rep 5(4): 368-72.

201



References

Parkhurst, S. M. (1998). "Groucho: making its Marx as a transcriptional co¬

mpressor." Trends Genet 14(4): 130-2.

Parkinson, G. N., Lee, M. P., Neidle, S.(2002). "Crystal structure of parallel

quadruplexes from human telomeric DNA." Nature 417(6891): 876-80.

Paroush, Z., Finley, R. L. Jr., Kidd, T., Wainwright, S.M., Ingham, P.W., Brent,R.,

Ish-Horowicz, D. (1994). "Groucho is required for Drosophila neurogenesis,

segmentation, and sex determination and interacts directly with hairy-related bHLH

proteins." Cell 79(5): 805-15.

Patrinos, G. P., de Krom, M., de Boer, E., Langeveld, A., Imam, A.M., Strouboulis, J.,
de Laat, W., Grosveld, F.G. (2004). "Multiple interactions between regulatory regions
are required to stabilize an active chromatin hub." Genes Dev 18(12): 1495-509.

Patterton, H. G., Landel, C.C., Landsman, D., Peterson, C.L., Simpson, R.T. (1998).
"The biochemical and phenotypic characterization of Hholp, the putative linker
histone HI of Saccharomyces cerevisiae." J Biol Chem. 273(13): 7268-76.

Pavlovic, B., Horz, W. (1988). "The chromatin structure at the promoter of a

glyceraldehyde phosphate dehydrogenase gene from Saccharomyces cerevisiae
reflects its functional state." Mol Cell Biol 8(12): 5513-20.

Paweletz, N. (2001). "Walther Flemming: pioneer of mitosis research." Nature Rev.
Mol. Cell Biol. 2: 72-75.

Payne, J.M., Laybourn, P.J., Dahmus, M.E. (1989). "The transition of RNA

polymerase II from initiation to elongation is associated with phosphorylation of the

carboxyl-terminal domain of subunit Ha." J Biol Chem 264(33): 19621-9.

Pennings, S., Meersseman, G., Bradbury, E.M. (1991). "Mobility of positioned
nucleosomes on 5 S rDNA." J Mol Biol. 220(1): 101-10.

202



References

Pennings, S., Meersseman, G., Bradbury, E.M. (1994). "Linker histones HI and H5

prevent the mobility of positioned nucleosomes." Proc Natl Acad Sci USA. 91(22):
10275-9.

Peterson, C.L., Dingwall, A., Scott, M.P. (1994). "Five SWI/SNF gene products are

components of a large multisubunit complex required for transcriptional
enhancement." Proc Natl Acad Sci U S A 91(8): 2905-8.

Pham, A. D., Sauer, F. (2000). "Ubiquitin-activating/conjugating activity of

TAFI1250, a mediator of activation of gene expression in Drosophila." Science.

289(5488): 2357-60.

Poccia, D. L. (1986). "Remodelling of nucleoproteins during gametogenesis,
fertilisation and early development." Int. Rev. Cytol. 105: 1-65.

Pokholok, D. K., Harbison, C. T., Levine, S., Cole, M., Hannett, N.M., Lee, T.I., Bell,

G.W., Walker, K., Rolfe, P.A., Herbolsheimer, E., Zeitlinger, J., Lewitter, F., Gifford,

D.K., Young, R.A. (2005). "Genome-wide Map of Nucleosome Acetylation and

Methylation in Yeast." Cell 122(4): 517-27.

Prochasson, P., Neely, K. E., Hassan ,A.H., Li, B., Workman, J.L. (2003). "Targeting

activity is required for SWI/SNF function in vivo and is accomplished through two

partially redundant activator-interaction domains." Mol Cell 12(4): 983-90.

Ptashne, M., Gann, A. (1997). "Transcriptional activation by recruitment." Nature

386(6625): 569-77.

Ramachandran, A., Omar, M., Cheslock, P., Schnitzler, G.R. (2003). "Linker histone
HI modulates nucleosome remodeling by human SWI/SNF." J Biol Chem. 278(49):
48590-601.

Ramakrishnan, V., Fincg, J.T., Graziano, V., Lee, P.L., Sweet, R.M. (1993). "Crystal
structure of the globular domain of histone H5 and its implications for nucleosome

binding." Nature 362: 219-33.

203



References

Ramon, A., Muro-Pastor, M., Scazzocchio, C., Gonzalez, R. (2000). "Deletion of the

unique gene encoding a typical histone HI has no apparent phenotype in Aspergillus
nidulans." Mol. Microbiol. 3(223-233).

Rando, O. J., Chi, T. H., Crabtree, G.R. (2003). "Second messenger control of
chromatin remodeling." Nat Struct Biol 10(2): 81-3.

Redd, M. J., Arnaud, M. B., Johnson, A.D. (1997). "A complex composed of tupl and
ssn6 represses transcription in vitro." J Biol Chem 272(17): 11193-7.

Reinke, H., Horz, W. (2003). "Histones are first hyperacetylated and then lose contact

with the activated PH05 promoter." Mol Cell. 11(6): 1599-607.

Richard-Foy, H., Hager, G.L. (1987). "Sequence-specific positioning of nucleosomes
over the steroid-inducible MMTV promoter." EMBO J. 6(8): 2321-8.

Richmond, T. J., Finch, J.T., Rushton, B., Rhodes, D., Klug, A. (1984). "Structure of
the nucleosome core particle at 7 A resolution." Nature 311(5986): 532-7.

Robert, F., Pokholok, D. K., Hannett, N.M., Rinaldi, N.J., Chandy, M., Rolfe, A.,

Workman, J.L., Gifford, D.K., Young, R.A. (2004). "Global position and recruitment
ofHATs and HDACs in the yeast genome." Mol Cell 16(2): 199-209.

Rogakou, E. P., Pilch, D.R., Orr, A.H., Ivanova, V.S., Bonner, W.M. (1998). "DNA
double-stranded breaks induce histone H2AX phosphorylation on serine 139." J Biol
Chem. 273(10): 5858-68.

Roth, S. Y., Allis, C.D. (1992). "Chromatin condensation: does histone HI

dephosphorylation play a role?" Trends Biochem Sci. 17(3): 93-8.

Roth, S. Y., Denu, J. M., Allis, C.D. (2001). "Histone acetyltransferases." Annu Rev
Biochem 70: 81-120.

204



References

Rothstein, R. J. (1983). "One-step gene disruption in yeast." Methods Enzymol 101:
202-11.

Russell, S. R., Kaiser, K. (1993). "Drosophila melanogaster male germ line-specific

transcripts with autosomal and Y-linked genes." Genetics 134(1): 293-308.

Sabet, N., Volo, S., Yu, C., Madigan, J.P., Morse, R.H. (2004). "Genome-wide

analysis of the relationship between transcriptional regulation by Rpd3p and the
histone H3 and H4 amino termini in budding yeast." Mol Cell Biol. 24(20): 8823-33.

Saeki, H., Ohsumi, K., Aihara, H., Ito, T., Hirose S., Ura, K., Kaneda, Y. (2005).

"Linker histone variants control chromatin dynamics during early embryogenesis."
Proc Natl Acad Sci USA. 102(16): 5697-702.

Saha, A., Wittmeyer, J., Cairns, B.R. 2002). "Chromatin remodeling by RSC involves

ATP-dependent DNA translocation." Genes Dev 16(16): 2120-34.

Santisteban, M. S., Arents, G. Moudrianakis, E.N., Smith, M.M. (1997). "Histone
octamer function in vivo: mutations in the dimer-tetramer interfaces disrupt both gene

activation and repression." Embo J 16(9): 2493-506.

Sarg, B., Helliger, W., Talasz, H., Forg, B., Lindner, H.H. (2006). "Histone HI

phosphorylation occurs site-specifically during interphase and mitosis: identification
of a novel phosphorylation site on histone HI." J Biol Chem 281(10): 6573-80.

Sarma, K., Reinberg, D. (2005). "Histone variants meet their match." Nat Rev Mol
Cell Biol 6(2): 139-49.

Scafe, C., Martin, C., Nonet, M., Podos, S., Okamura, S., Young, R.A. (1990).

"Conditional mutations occur predominantly in highly conserved residues of RNA

polymerase II subunits." Mol Cell Biol 10(3): 1270-5.

205



References

Schafer, G., Smith, E.M., Patterton, H.G. (2005). "The Saccharomyces cerevisiae
linker histone Hholp, with two globular domains, can simultaneously bind to two

four-way junction DNA molecules." Biochemistry 44(50): 16766-75.

Schalch, T., Duda, S., Sargent, D.F., Richmond, T.J. (2005). "X-ray structure of a
tetranucleosome and its implications for the chromatin fibre." Nature 436(7047): 138-

41.

Schiessel, H., Widom, J., Bruinsma, R.F., Gelbart, W.M. (2001). "Polymer reptation
and nucleosome repositioning." Phys Rev Lett 86(19): 4414-7.

Schmitt, M. E., Brown, T.A., Trumpower, B.L. (1990). "A rapid and simple method
for preparation of RNA from Saccharomyces cerevisiae." Nucleic Acids Res 18(10):
3091-2.

Sekinger, E. A., Moqtaderi, Z., Struhl, K. (2005). "Intrinsic histone-DNA interactions
and low nucleosome density are important for preferential accessibility of promoter

regions in yeast." Mol Cell 18(6): 735-48.

Shen, X., Yu, L., Weir, J.W., Gorovsky, M.A. (1995). "Linker histones are not

essential and affect chromatin condensation in vivo." Cell 82(1): 47-56.

Shen, X., Gorovsky, M.A. (1996). "Linker histone HI regulates specific gene

expression but not global transcription in vivo." Cell. 86(3): 475-83.

Shen, X., G. Mizuguchi, Hamiche, A., Wu, C. (2000). "A chromatin remodelling

complex involved in transcription and DNA processing." Nature 406(6795): 541-4.

Shimizu, M., Roth, S. Y., Szent-Gyorgyi, C., Simpson, R.T. (1991). "Nucleosomes
are positioned with base pair precision adjacent to the alpha 2 operator in

Saccharomyces cerevisiae." Embo J 10(10): 3033-41.

206



References

Simpson, R. T. (1978). "Structure of the chromatosome, a chromatin particle

containing 160 base pairs of DNA and all the histones." Biochemistry 17(25): 5524-
31.

Smith, B. J., Harris, M.R, Sigournay, C.M., Mayes, E.L., Bustin, M. (1984). "A

survey of Hlo-and H5-like protein structure and distribution in higher and lower

eukaryotes." Eur J Biochem. 138(2): 309-17.

Smith, C.L., Horowitz-Scherer, R.,Flanagan, J.F., Woodcock, C.L., Peterson, C.L.

(2003). "Structural analysis of the yeast SWI/SNF chromatin remodeling complex."
Nat Struct Biol 10(2): 141-5.

Smith, R. L., Johnson, A. D. (2000). "Turning genes off by Ssn6-Tupl: a conserved

system of transcriptional repression in eukaryotes." Trends Biochem Sci 25(7): 325-
30.

Smith, T. F., C. Gaitatzes, Saxena, K., Neer, E.J. (1999). "The WD repeat: a common

architecture for diverse functions." Trends Biochem Sci 24(5): 181-5.

Smogorzewska, A., de Lange, T. (2004). "Regulation of telomerase by telomeric

proteins." Annu Rev Biochem. 73: 177-208.

Spellman, P. T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B.,

Brown, P.O., Botstein, D., Futcher, B. (1998). "Comprehensive identification of cell

cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray

hybridization." Mol Biol Cell. 9(12): 3273-97.

Spencer, V.A., Davie, J.R. (1999). "Role of covalent modifications of histones in

regulating gene expression." Gene 240(1): 1-12.

Sprague, E R., Redd, M J., Johnson, A.D., Wolberger, C. (2000). "Structure of the C-
terminal domain of Tup 1, a compressor of transcription in yeast." Embo J 19(12):
3016-27.

207



References

Srebreva, L., Zlatanova, J., Miloshev, G., Tsanev, R. (1987). "Immunological
evidence for the existence of Hl-like histone in yeast." Eur J Biochem. 165(2): 449-
54.

Sridhar, V.V., Surendrarao, A., Gonzalez, D., Conlan, R.S., Liu, Z. (2004).

"Transcriptional repression of target genes by LEUNIG and SEUSS, two interacting

regulatory proteins for Arabidopsis flower development." Proc Natl Acad Sci U S A

101(31): 11494-9.

Stern, M., Jensen, R., Herskowitz, I. (1984). "Five SWI genes are required for

expression of the HO gene in yeast." J Mol Biol 178(4): 853-68.

Strahl, B. D., Allis, C.D. (2000). "The language of covalent histone modifications."
Nature 403(6765): 41-5.

Strohner, R., Wachsmuth, M., Dachauer, K., Mazurkiewicz, J., Hochstatter, J., Rippe,

K., Langst, G. (2005). "A 'loop recapture' mechanism for ACF-dependent nucleosome

remodeling." Nat Struct Mol Biol 12(8): 683-90.

Stryer, L., Berg, J.M., Tymoczko, J.L. c2002. Biochemistry. New York: W. H.
Freeman and Co.

Southern, E.M. (1975). "Detection of specific sequences among DNA fragments

separated by gel electrophoresis." J Mol Biol. 98(3):503-17.

Sudarsanam, P., Cao, Y., Wu, L., Laurent, B.C., Winston, F. (1999). "The
nucleosome remodeling complex, Snf/Swi, is required for the maintenance of

transcription in vivo and is partially redundant with the histone acetyltransferase,
Gcn5." Embo J 18(11): 3101-6.

Sudarsanam, P., Iyer, V.R., Brown, P.O., Winston, F. (2000). "Whole-genome

expression analysis of snf/swi mutants of Saccharomyces cerevisiae." Proc Natl Acad
Sci U S A 97(7): 3364-9.

208



References

Suto, R. K., Clarkson, M.J., Tremethick, D.J, Luger, K. (2000). "Crystal structure of a
nucleosome core particle containing the variant histone H2A.Z." Nat Struct Biol.

7(12): 1121-4.

Svaren, J., Horz, W. (1997). "Transcription factors vs nucleosomes: regulation of the
PH05 promoter in yeast." Trends Biochem Sci 22(3): 93-7.

Svejstrup, J. Q., Li, Y., Fellows, J., Gnatt, A., Bjorklund, S., Kornberg, R.D. (1997).
"Evidence for a mediator cycle at the initiation of transcription." Proc Natl Acad Sci
U S A 94(12): 6075-8.

Takagi, Y., Kornberg, R.D. (2006). "Mediator as a general transcription factor." J Biol
Chem 281(1): 80-9.

Teunissen, A.W., Steensma, H.Y. (1995). "Review: the dominant flocculation genes

of Saccharomyces cerevisiae constitute a new subtelomeric gene family." Yeast

11(11): 1001-13.

Thiriet, C., Hayes, J.J. (2005). "Chromatin in need of a fix: phosphorylation ofH2AX
connects chromatin to DNA repair." Mol Cell 18(6): 617-22.

Thoma, F., Koller, T., Klug, A. (1979). "Involvement of histone HI in the

organization of the nucleosome and of the salt-dependent superstructures of
chromatin." J Cell Biol. 83: 403-27.

Thomas, J.O., Rees, C. (1983). "Exchange of histone HI and H5 between chromatin

fragments. A preference of H5 for higher-order structures." Eur J Biochem. 134: 109-
15.

Thomas, J.O. (1999). "Histone HI: location and role." Curr Opin Cell Biol. 11(3):
312-7.

209



References

Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F., de Laat, W. (2002). "Looping and
interaction between hypersensitive sites in the active beta-globin locus." Mol Cell

10(6): 1453-65.

Tong, J. K., Hassig, C.A., Schnitzler, G.R., Kingston, R.E., Schreiber, S.L. (1998).
"Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex."
Nature 395(6705): 917-21.

Tran, H. G., Steger, D. J., Iyer, V.R., Johnson, A.D. (2000). "The chromo domain

protein chdlp from budding yeast is an ATP-dependent chromatin-modifying factor."
Embo J 19(10): 2323-31.

Travers, A. (1999). "The location of the linker histone on the nucleosome." Trends

Biochem Sci. 24(1): 4-7.

Treitel, M. A., Carlson, M. (1995). "Repression by SSN6-TUP1 is directed by MIG1,
a repressor/activator protein." Proc Natl Acad Sci U S A 92(8): 3132-6.

Tsukiyama, T. (2002). "The in vivo functions of ATP-dependent chromatin-

remodelling factors." Nat Rev Mol Cell Biol 3(6): 422-9.

Tsukiyama, T., Palmer, J., Landel, C.C., Shiloach, J., Wu, C. (1999).
"Characterization of the imitation switch subfamily of ATP-dependent chromatin-

remodeling factors in Saccharomyces cerevisiae." Genes Dev 13(6): 686-97.

Tsukuda, T., Fleming, A. B., Nickoloff, J.A., Osley, M.A. (2005). "Chromatin

remodelling at a DNA double-strand break site in Saccharomyces cerevisiae." Nature

438(7066): 379-83.

Turner, B. M. (2000). "Histone acetylation and an epigenetic code." Bioessays 22(9):
836-45.

Turner, B. M. (2002). "Cellular memory and the histone code." Cell 111(3): 285-91.

210



References

Tzamarias, D., Struhl, K. (1994). "Functional dissection of the yeast Cyc8-Tupl

transcriptional co-repressor complex." Nature 369(6483): 758-61.

Tzamarias, D., Struhl, K. (1995). "Distinct TPR motifs of Cyc8 are involved in

recruiting the Cyc8-Tupl corepressor complex to differentially regulated promoters."
Genes Dev 9(7): 821-31.

Ushinsky, S.C., Bussey, H., Ahmed, A.A., Wang, Y., Williams, B.A., Storms, R.K.

(1997). "Histone HI in Saccharomyces cerevisiae." Yeast 13: 151-61.

van Attikum, H., Fritsch, O., Hohn, B., Gasser, S.M. (2004). "Recruitment of the

INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling
with DNA double-strand break repair." Cell 119(6): 777-88.

van Holde, K. E. (1988). Chromatin. New York, Springer-Verlag.

van Leeuwen, F., Gottschling, D.E. (2002). "Genome-wide histone modifications:

gaining specificity by preventing promiscuity." Curr Opin Cell Biol 14(6): 756-62.

Varanasi, U. S., Klis, M., Mikesell, P.B., Trumbly, R.J. (1996). "The Cyc8 (Ssn6)-

Tupl corepressor complex is composed of one Cyc8 and four Tupl subunits." Mol
Cell Biol 16(12): 6707-14.

Varga-Weisz, P. (2001). "ATP-dependent chromatin remodeling factors: nucleosome
shufflers with many missions." Oncogene 20(24): 3076-85.

Varga-Weisz, P. D., Wilm, M., Bonte, E., Dumas, K., Mann, M., Becker, P.B. (1997).

"Chromatin-remodelling factor CHRAC contains the ATPases ISWI and

topoisomerase II." Nature 388(6642): 598-602.

Vas, A.C., Andrews, C.A., Kirkland Matesky, K., Clarke, D.J. (2007). "/« Vivo

Analysis ofChromosome Condensation in Saccharomyces cerevisiae." Mol Biol Cell.

18(2):557-68.

211



References

Verdone, L., Wu, J., van Riper, K., Kacherovsky, N., Vogelauer, M., Young, E.T.,

Grunstein, M., Di Mauro, E., Caserta, M. (2002). "Hyperacetylation of chromatin at

the ADH2 promoter allows Adrl to bind in repressed conditions." Embo J 21(5):
1101-11.

Vernet, G., Sala-Rovira, M., Maeder, M., Jaques, F., Herzog, M. (1990). "Basic
nuclear proteins of the histone-less eukaryote Crypthecodinium (Pyrrhophyta): two
dimensional electrophoresis and DNA-binding properties." Biochim Biophys Acta.
1048: 281-9.

Vicent, G.P., Melia, M.J., Beato, M. (2002). "Asymmetric binding of histone HI
stabilizes MMTV nucleosomes and the interaction of progesterone receptor with the

exposed HRE." J Mol Biol 324(3): 501-17.

Vogelauer, M., Wu, J., Suka, N., Grunstein, M. (2000). "Global histone acetylation
and deacetylation in yeast." Nature 408(6811): 495-8.

Vogelauer, M., L. Rubbi, Lucas, I., Brewer, B.J., Grunstein, M. (2002). "Histone

acetylation regulates the time of replication origin firing." Mol Cell 10(5): 1223-33.

Wach, A., Brachat, A., Pohlmann, R., Philippsen, P. (1994). "New heterologous
modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae."
Yeast 10(13): 1793-808.

Wade, P. A., Wolffe, A.P. (1999). "Transcriptional regulation: Switching circuitry."
CurrBiol 9(6): R221-4.

Wang, A. H., Quigley, G.J., Kolpak, F.J., Crawford, J.L., van Boom, J.H., van der

Marel, G., Rich, A. (1979). "Molecular structure of a left-handed double helical DNA

fragment at atomic resolution." Nature 282(5740): 680-6.

Waterborg, J. H. (2000). "Steady-state levels of histone acetylation in Saccharomyces
cerevisiae." J Biol Chem. 275(17): 13007-11.

212



References

Watson, J.D., Crick, F.H. (1953). "Molecular structure of nucleic acids. A structure

for deoxyribose nucleic acid." Nature 171: 737-738.

Watson, A.D., Edmondson, D.G., Bone, J.R., Mukai, Y., Yu, Y., Du, W., Stillman,

D.J., Roth, S.Y. (2000)."Ssn6-Tupl interacts with class I histone deacetylases

required for repression." Genes Dev. 14(21 ):2737-44.

Weintraub, H. (1985). "Assembly and propagation of repressed and derepressed
chromosomal states." Cell. 42: 705-11.

Widorn, J. (1999). "Equilibrium and dynamic nucleosome stability." Methods Mol
Biol 119: 61-77.

Widom, J. (2001). "Role ofDNA sequence in nucleosome stability and dynamics." Q
Rev Biophys 34(3): 269-324.

Winston, F. and M. Carlson (1992). "Yeast SNF/SWI transcriptional activators and
the SPT/SIN chromatin connection." Trends Genet 8(11): 387-91.

Wolffe, A. (1999). Chromatin: Structure and Function, Academic Press.

Wolffe, A. P., Brown, D.D. (1987). "Differential 5S RNA expression in vitro." Cell
51: 733-40.

Wolffe, A. P., Khochbin, S., Dimitrov, S. (1997). "What do linker histones do in
chromatin?" Bioessays. 19(3): 249-55.

Woodcock, C. L. (2005). "A milestone in the odyssey of higher-order chromatin
structure." Nat Struct Mol Biol 12(8): 639-40.

Wu, J., Grunstein, M. (2000). "25 years after the nucleosome model: chromatin
modifications." Trends Biochem Sci. 25(12): 619-23.

213



References

Wu, J., Carmen, A.A., Kobayashi, R., Suka, N., Grunstein, M. (2001). "HDA2 and
HDA3 are related proteins that interact with and are essential for the activity of the

yeast histone deacetylase HDA1." Proc Natl Acad Sci U S A 98(8): 4391-6.

Wu, J., Suka, N., Carlson, M., Grunstein, M. (2001). "TUP1 utilizes histone H3/H2B-

specific HDA1 deacetylase to repress gene activity in yeast." Mol Cell 7(1): 117-26.

Wu, L., Winston, F. (1997). "Evidence that Snf-Swi controls chromatin structure over

both the TATA and UAS regions of the SUC2 promoter in Saccharomyces
cerevisiae." Nucleic Acids Res 25(21): 4230-4.

Wu, M., Allis, C.D., Richman, R., Cook, R.G., Gorovsky, M.A. (1986). "An

intervening sequence in an unusual histone HI gene of Tetrahymena thermophila."
Trends Biochem. Sci. 25: 619-623.

Xu, F., Zhang, K., Grunstein, M. (2005). "Acetylation in histone H3 globular domain

regulates gene expression in yeast." Cell 121(3):375-85.

Yuan, G. C., Liu, Y. J., Dion, M.F., Slack, M.D., Wu, L.F., Altschuler, S.J., Rando,

O.J. (2005). "Genome-scale identification of nucleosome positions in S. cerevisiae."
Science 309(5734): 626-30.

Zaman, Z., Ansari, A.Z., Koh, S.S., Young, R., Ptashne, M. (2001). "Interaction of a

transcriptional repressor with the RNA polymerase II holoenzyme plays a crucial role
in repression." Proc Natl Acad Sci U S A 98(5): 2550-4.

Zeng, L., Zhou, Z. (2002). "Bromodomain: an acetyl-lysine binding domain." FEBS
Lett 513(1): 124-8.

Zhang, Y., Ng, H.H., Erdjument-Bromage, H., Ternpst, P., Bird, A., Reinberg, D.

(1999). "Analysis of the NuRD subunits reveals a histone deacetylase core complex
and a connection with DNA methylation." Genes Dev 13(15): 1924-35.

214



References

Zhang, Y., Reinberg, D. (2001). "Transcription regulation by histone methylation:

interplay between different covalent modifications of the core histone tails." Genes

Dev 15(18): 2343-60.

Zhang, Y., Sun, Z.W., Iratni, R., Erdjument-Bromage, H., Tempst, P., Hampsey, M.,

Reinberg, D. (1998). "SAP30, a novel protein conserved between human and yeast, is
a component of a histone deacetylase complex." Mol Cell 1(7): 1021-31.

Zhang, Z., Reese, J.C. (2004). "Redundant mechanisms are used by Ssn6-Tupl in

repressing chromosomal gene transcription in Saccharomyces cerevisiae." J Biol
Chem 279(38): 39240-50.

Zhang, Z., Reese, J.C. (2004). "Ssn6-Tupl requires the ISW2 complex to position
nucleosomes in Saccharomyces cerevisiae." Embo J 23(11): 2246-57.

Zhang, Z., Reese, J.C. (2005). "Molecular genetic analysis of the yeast repressor

rfxl/crtl reveals a novel two-step regulatory mechanism." Mol Cell Biol 25(17):
7399-411.

Zhang, Z., Varanasi, U., Trumbly, R.J. (2002). "Functional dissection of the global

repressor Tupl in yeast: dominant role of the C-terminal repression domain."
Genetics 161(3): 957-69.

Zhou, Y. B., Gerchman, S.E., Ramakrishnan, V., Travers, A., Muyldermans, S.

(1998). "Position and orientation of the globular domain of linker histone H5 on the
nucleosome." Nature 395(6700): 402-5.

Zlatanova, J., Van Holde, K. (1992). "Histone HI and transcription: still an enigma?"
J Cell Sci. 103(4): 889-95.

Zlatanova, J., Leuba, S.H., van Holde, K. (1998). "Chromatin fiber structure:

morphology, molecular determinants, structural transitions." Biophys J. 74(5): 2554-
66.

215


