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Abstract 

Combinatorial optimisation problems (COPs) have been at the origin of the design of 

many optimal and heuristic solution frameworks such as branch-and-bound 

algorithms, branch-and-cut algorithms, classical local search methods, metaheuristics, 

and hyperheuristics.  

This thesis proposes a refined generic and parametrised infeasible local search 

(GPILS) algorithm for solving COPs and customises it to solve the traveling salesman 

problem (TSP), for illustration purposes. In addition, a rule-based heuristic is proposed 

to initialise infeasible local search, referred to as the parameterised infeasible heuristic 

(PIH), which allows the analyst to have some control over the features of the infeasible 

solution he/she might want to start the infeasible search with. A recursive infeasible 

neighbourhood search (RINS) as well as a generic patching procedure to search the 

infeasible space are also proposed. These procedures are designed in a generic manner, 

so they can be adapted to any choice of parameters of the GPILS, where the set of 

parameters, in fact for simplicity, refers to set of parameters, components, criteria and 

rules. 

Furthermore, a hyperheuristic framework is proposed for optimizing the parameters of 

GPILS referred to as HH-GPILS. Experiments have been run for both sequential (i.e. 

simulated annealing, variable neighbourhood search, and tabu search) and parallel 

hyperheuristics (i.e., genetic algorithms / GAs) to empirically assess the performance 

of the proposed HH-GPILS in solving TSP using instances from the TSPLIB. 

Empirical results suggest that HH-GPILS delivers an outstanding performance. 

Finally, an offline learning mechanism is proposed as a seeding technique to improve 

the performance and speed of the proposed parallel HH-GPILS. The proposed offline 

learning mechanism makes use of a knowledge-base to keep track of the best 

performing chromosomes and their scores. Empirical results suggest that this learning 

mechanism is a promising technique to initialise the GA’s population. 
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1. Introduction  

The area of combinatorial optimisation arises from research in computer science 

(Lawler, 1976). The studied combinatorial optimisation problems (COPs) are very 

diverse. Several solution methodologies have been proposed to solve these problems; 

namely, exact solution approaches and heuristic solution frameworks. 

Exact solution approaches (section 2.3) solve COPs to optimality. However, these 

approaches are in general computationally intensive and their efficiency depends on 

the choice of the bounding schema used to prune nodes in the search tree to avoid 

exploring branches with no potential to deliver an optimal solution. Solution methods 

within this category can be categorised as branch-and-bound algorithms, cutting plane 

algorithms, and their hybrids as branch-and-cut algorithms. 

On the other hand, heuristic solution approaches (section 2.4) can, in general, obtain 

optimal or near-optimal solutions quicker; e.g. construction heuristics, local search-

based methods and metaheuristics (section 2.5). Although the optimality of the 

solutions delivered with heuristics cannot be proved, they can often find a good quality 

solution to large problems in a reasonable time. Considering the advantages and 

disadvantages of the exact and heuristic solution approaches one can combine ideas 

taken from each of these methods and develop a stronger hybrid.  

Notice however that heuristic solution approaches are often tailor-made to a specific 

problem. Moreover, they might produce good quality solutions for some instances of 

the problem, but not all. Thus, one has to either investigate the problem and its 

instances structure thoroughly or design a higher-level method to automate the choice 

of which heuristic or combination of heuristics and their parameters to use (Burke et 

al., 2009). Such high-level methodologies are called hyperheuristics (section 2.6). 

Most of the heuristic methods mentioned above start with a feasible solution and only 

search in their feasible neighbourhood to find a better solution. One disadvantage of 

these methods is that they limit the search to feasible neighbourhood areas. However, 
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there are methods that allow infeasibilities while searching for a better solution. These 

methods penalise infeasibilities to force the search toward the feasible 

neighbourhoods. One disadvantage of these methods is that they allow for a limited 

degree of infeasibility. However, recently Ouenniche and his collaborators (Ouenniche 

et al., 2017) proposed a local search method, called dual local search (DLS), which  

starts with an infeasible solution and explores its infeasible neighbourhood for a better 

neighbour until the search reaches a feasible solution – for more details see section 

2.7. DLS integrates the design features of exact methods (branch-and-bound) into 

heuristic methods (local search). Since DLS is a parametric method, one can design a 

hyperheuristic framework to optimise the choice of its parameters and components.  

Thus, we can categorise heuristic solution approaches into search methods that search 

in the space of feasible solutions, feasible-infeasible solutions and infeasible solutions. 

In the rest of this thesis we shall call these methods feasible methodologies, feasible-

infeasible methodologies and infeasible methodologies. Note that feasible 

methodologies are also called primal methodologies, thus we use these terms 

interchangeably. 

This thesis refines and extends DLS proposed by Ouenniche et al. (2017) and proposes 

a generic and parameterised infeasible local search (GPILS). The proposed framework 

is generic since it can be used to solve any COP; however, for illustration purposes, 

GPILS is customised to solve the travelling salesman problem. Since GPILS is a 

parameterised framework, each set of parameters leads to a different GPILS procedure. 

Thus, it should be viewed as a collection of GPILS procedures each corresponding to 

a different set of parameters, which can be chosen either by the analyst or by an 

automated process. We propose a generic hyperheuristic framework to automate the 

optimisation of the choice of parameters of GPILS, referred to as HH-GPILS, where 

the focus is on metaheuristic-based high-level frameworks. Moreover, an offline 

learning mechanism is proposed to speed up HH-GPILS, which reuses the previously 

generated set of parameters for the unseen (new) problem instances. 
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 Goal and scope of the research 

The aim of this research is to investigate the possibilities of a different avenue to solve 

COPs. We explored the infeasible search space by proposing a new generic and 

parameterised infeasible space search framework to solve COPs as well as an 

automated procedure to optimise the choice of its parameters. The goals of this thesis 

may be summarised as follows: 

1. Investigate the possibility of heuristically searching the infeasible solution 

space and progressing toward the feasible space. 

In chapter 3, we propose a new generic and parameterised local search 

framework that operates in the space of infeasible solutions and, for illustration 

purposes, customise it to solve the travelling salesman problem and discuss its 

implementation decisions.  

2. Automate and optimise the choice of the parameters of the proposed 

framework. 

In order to optimise the choice of the parameters of our local search 

methodology, we propose a hyperheuristic framework. We experiment with 

both sequential high-level mechanisms (chapter 4), namely simulated 

annealing, tabu search, variable neighbourhood search as well as new hybrids 

of these metaheuristics, and a parallel high-level mechanism (chapter 5), 

namely genetic algorithm.  

3. Investigate the potential of reusing the automatically generated parameters. 

In chapter 5, we propose an offline learning mechanism for the parallel high-

level framework to improve its search strategy. The proposed offline learning 

makes use of a knowledge base to keep track of the best performing set of 

parameters in the past and reuses them when facing new problem instances. 

The novelty of this research lies principally in the search strategy to explore the 

infeasible space to find the optimal or near optimal solution, GPILS. To the best of our 

knowledge, little research has been done in the exploration of the infeasible space. The 

empirical investigation shows that this search strategy has a promising future. 
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 Contributions  

Firstly, we proposed a generic parameterised infeasible local search (GPILS) that starts 

the search in the infeasible space and continues the search, through the infeasible 

space, toward the feasible space with the option of continuing the search in the feasible 

space. We explained the rationale behind the design of the proposed GPILS and for 

illustration purposes we customised it for solving the TSP. 

Furthermore, we automated the choice of the parameters of GPILS using a 

hyperheuristic framework, referred to as HH-GPILS. We proposed several sequential 

and parallel metaheuristic-based high-level methods to search the parameter space of 

the GPILS. Note that the proposed HH-GPILS can be used as high-level framework in 

any hyperheuristic that aims to automate the choice of parameters. 

Finally, we proposed a new offline learning mechanism to improve the performance 

of the HH-GPILS. We developed a knowledge-based system that is used to keep the 

best performing sets of parameters and their scores. Furthermore, a reward/penalty 

mechanism is proposed to update the score of each set. Note that these scores are used 

as criteria for their entrance and survival in the knowledge-base. 

 Thesis structure 

Chapter 2: Literature Review 

This chapter surveys the literature on exact solution approaches and heuristic solution 

frameworks to solve the TSP, as well as hyperheuristics.  

Chapter 3: Generic Parameterised Infeasible Local Search Framework 

In chapter 3, the proposed generic parameterised infeasible local search framework 

(GPILS) is presented, and the rationale behind the infeasible search methodology is 

discussed. Then, we customised GPILS for the TSP, for illustration purposes. Finally, 

the implementation decisions and parameters of GPILS are explained. 

Chapter 4: A Sequential Hyperheuristic Framework for GPILS 
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In this chapter, a generic high-level framework to automate the choice of the 

parameters of GPILS is presented. Later, the proposed sequential high-level 

frameworks, namely simulated annealing, tabu search, variable neighbourhood search 

and their hybrid are explained in detail. Moreover, new neighbourhood structures are 

proposed to search the parameter space of GPILS. Lastly, we analysed the performance 

of the proposed sequential high-level frameworks using the proposed neighbourhood 

structures. 

Chapter 5:  A Parallel Hyperheuristic Framework for GPILS 

A parallel high-level framework, namely genetic algorithm (GA), to optimise the 

parameters of GPILS is presented in chapter 5. In this framework, the proposed GA 

makes use of indirect chromosome representation where each chromosome is encoded 

as a vector of parameters of GPILS.  

Moreover, an offline learning mechanism is proposed to improve the performance and 

speed up the parallel high-level framework for GPILS. The proposed learning 

mechanism that makes use of a knowledge-based system, referred to as chromosome 

base (CB), to keep track of well-performing chromosomes and their score. A reward-

based mechanism is used to update scores of each chromosome from the CB and 

compute the score of the new chromosomes. Later, the CB is updated by replacing a 

number of previous chromosomes in the CB with the new chromosomes.  

Chapter 6: Conclusion 

In this chapter, we presented the concluding remarks. 

Appendices  

Appendix A:  Tour construction heuristics 

Several primal Tour construction heuristics, such as nearest neighbour procedure; 

Clarke and Wright savings procedures; insertion procedures; Christofides heuristic; 

nearest merger procedures; path merging procedures, are explained in more detail. 
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Appendix B:  Cooling strategies 

Some of the cooling schedules proposed for the simulated annealing are presented, 

such as Aarts and Van Laarhoven (1985, 1987), Lundy and Mees (1986), Huang et al. 

(1986), Triki et al. (2005), Dowsland (1993) and Azizi and Zolfaghari (2004). 

Appendix C: Acceptance function 

Several of the existing acceptance functions used in simulated annealing are presented, 

namely, Aarts and Van Laarhoven (1985a, 1987), Lundy and Mees (1986), Huang et 

al. (1986), Triki et al. (2005), Dowsland (1993) and Azizi and Zolfaghari (2004). 

Appendix D: Neighbourhood change strategies 

In this appendix, the classification of the neighbourhood change strategies by Hansen 

et al. (2016) are presented. They classified neighbourhood change strategies into 

sequential, cyclic, pipe, and skewed neighbourhood change strategy. 

Appendix E: GA’s selection mechanisms 

In this section, the GA’s selection mechanisms are presented, namely ordinal selection, 

proportional selection, ranking selection, steady-state selection. 

Appendix F: Crossover techniques 

Several crossover techniques have been used in the GA’s search, some of these 

techniques, such as simple or one-point crossover, multi-point crossover, uniform 

crossover and three parents’ crossover, are presented in this appendix. 

Appendix G: Hyperheuristics classification and categories 

Several hyperheuristic classifications and categories have been proposed such as 

Soubeiga (2003), Bai (2005) and Ross (2005), Bader-El-Den and Poli (2007), 

Chakhlevitch and Cowling (2008), Burke et al. (2009, 2010, and 2013). These 

classifications are presented in this section. 

Appendix H: Learning mechanisms 

Several learning mechanism have been proposed such as choice function (Cowling et 

al., 2001; Chen et al., 2016), reinforcement learning (Nareyek, 2003; Ozcan et al., 
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2010; Chen et al., 2016), learning classifier system (Holland and Reitman, 1978; Ross 

et al., 2002; Marín-Blázquez and Schulenburg, 2007) and case-based reasoning 

(Petrovic and Qu, 2002, Burke et al. 2002, 2004, 2006). These learning mechanisms 

are presented in this section. 

Appendix I: -Means clustering 

In this thesis, we used -Means clustering method (Jain, 2010) to exploit the structure 

of TSP instances. In this section, we explained this procedure in more details. 

Appendix J: RINS function 

Exploring the infeasible space by the proposed GPILS given a set of parameters 

requires exploring a single or several combinations of the set. Thus, to implement an 

efficient and generic code, we proposed a recursive design for the infeasible 

neighbourhood search, referred to as recursive infeasible neighbourhood search 

function (RINS), see Chapter 3. In this appendix, in addition to details of RINS, a 

summary of recursive function is presented. 
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2. Literature Review  

In this chapter, the relevant scientific literature will be provided, particularly 

mathematical formulations of the TSP, their properties and relaxations, descriptions of 

the methodologies and state-of-the-art techniques used in this study are presented 

 Mathematical formulation  

TSP is the prototype problem in combinatorial optimisation, introduced in 1930 

(Applegate et al. 1998). Because of its applications in different fields such as vehicle 

routing and scheduling, computer wiring, job sequencing, drilling of circuit boards, 

and order picking in warehouses, many solution methodologies have been proposed to 

solve TSP.  

In graph theory, TSP is defined on a complete weighted graph, say ,  where 

 is set of vertices or nodes and  is set of arcs. The vertices represent the cities and 

the arcs represent the links between pairs of cities. Let  be a binary decision variable 

which is equal to one if arc ,  is in the optimal solution (i.e., included in the optimal 

TSP route) and zero otherwise; and  be a non-negative distance matrix. TSP 

is symmetric if for all , ,  and asymmetric if for some or all , ,	 .  

Several formulations have been proposed for the TSP. These formulations can be 

classified as conventional formulations (Dantzig, Fulkerson and Johnson; 1954), 

sequential formulations (Miller, Tucker and Zemlin; 1960), time-staged formulations 

(Vajda, 1961; Fox, Gavish and Graves, 1980), and flow-based formulations (Gavish 

and Graves, 1978; Finke, Claus and Gunn, 1984; Lucena, 1986; Wong, 1980; Claus, 

1984; Langevin, 1988; Loulou, 1988). All these formulations are assignment problem 

(AP) relaxation-based with different subtour breaking constraints. The difference 

between conventional and sequential formulations lie in the nature of their subtour 

breaking constraints. On the other hand, time staged formulations introduce a time 
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stage, say , and ensure that when a node is visited at stage , it is left at stage 1. 

As to flow-based formulations, as the name suggests, flow constraints are used to 

prevent the formation of subtours. Hereafter, we shall present the above mentioned 

formulations, but first we present the general TSP formulation of as follows: 

  min∑ ∑        1 

Subject to: 

              ∑ 1,  ∈        2 

  ∑ 1,  ∈        3 

Subtour elimination constraints                              4 

  0	 	1 ,  , ∈        5 

where (1) is the objective function which minimises the total cost of the TSP tour; (2) 

and (3) are the degree constraints; (4) is the subtour elimination constraints and (5) is 

the binary constraints. Hereafter we shall present common subtour elimination 

constraints proposed in the literature. 

The most cited mathematical formulation of TSP in the literature is the conventional 

formulation by Dantzig et al. (1954). They proposed the following subtour elimination 

constraints for the TSP:   

  ∑ ∑ ∈∈ | | 1,  ∀ ⊂ , 2 | | 2.                          6 

These constraints can be stated differently as connectivity constraints:  

∑ ∑ ∈∈ 1,  ∀ ⊂ , ∅                  7 

Note that this TSP formulation consists of 1  binary variables, 2  degree 

constraints and 2 2 2 subtour elimination constraints. Thus, for a problem with 

6 nodes, there are 30 binary variables and in total 62 constraints. An alternative is the 

sequential formulation of Miller, Tucker and Zimlin (1960), which reduces number of 

subtour breaking constraints by introducing extra decision variables  that represent 

the sequence in which city  is visited, and introduced the following constraints known 

as the MTZ subtour breaking constraints: 
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1 2, ∀ , ∈ 2, … , ;              8 

1 1, ∀                   9 

Later, Desrochers and Laporte (1991) strenghend  MTZ constraints by adding an extra 

term  

1 3 2, , ∈ 2,… , ;           10 

On the other hand, time-stage formulations introduce binary decision variables  , 

which are equal to one if arc ,  is travelled at stage  and zero otherwise, and the 

following constraints: 

	∑ ∑ ∑ ,         11 

∑ ∑ ∑ ∑ 1,  2,… ,    12 

∑ ∑ 0, ∀ , ∈ ,       13 

0	 	1 ,  , , 1, … ,        14 

0			∀ , 0		∀ 1, 0		∀ 1,     15 

where constraint (11) ensures that there is n arc in the solutionconstraint (12) ensures 

when a node is visited at stage , it is left at stage 1, (13) ensures variable  is 

linked to , (14) is a binary constraint and (15) forces exit and entrance at node 1 

only at stage one and stage , respectively. Note that variable  is not necessary in 

this formulation, however, it is used for consistency. 

Another formulation is the basic (single-commodity) flow-based formulation proposed 

by Gavish and Graves (1978). They introduced a flow variable  which denotes the 

flow on arc ( , ) 

∑ ∑ 1,  				 2, … ,      16  

1 ,					 , 1, … ,       17 

0,				 , 1, … ,        18 
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where (16) states that the total flow entering any node minus the total flow leaving the 

same node is equal to its demand (where the demand of one unit represents a visit to 

the node), (17) states that there is a positive flow on arc ( , ) if and only if it is used 

by the salesman and (18) states non-negativity requirements. For a survey and 

comparison of the aforementioned TSP formulations, refer to Orman and Williams 

(2006). 

 Properties and relaxations 

TSP has two main properties. The first property is the connectivity of the tour, which 

means there is always a path between any pair of vertices and the second is the degree 

of every vertex in the TSP which is two, meaning that for any arc that enters the vertex 

there should be another arc leaving that vertex. The assignment problem and 1-tree 

possess one but not both properties of the TSP (Christofides, 1975). The assignment 

problem (AP) holds the second property but not necessarily the first one. On the other 

hand, 1-tree holds the first property and not necessarily the second one. Since 1-tree 

and AP relaxation are much easier to solve than the TSP, they can be used as 

relaxations of the TSP and the cost of their (typically infeasible) solutions could be 

used to initialise the dual bound, which in a minimisation context represent the lower 

bound, and such infeasible solutions could be improved/repaired either by exact 

solution methods or by heuristic solution methods.  

AP has been the first relaxation of TSP, which is obtained by objective function (1) 

and constraints (2, 3, and 5). Eastman (1958), Little et al. (1963), Shapiro (1966), 

Bellmore and Malone (1971), Smith et al. (1977),  Balas and Christofides  (1981), and 

Miller and Pekny (1991) were among researchers that used AP-relaxation to solve TSP 

within branch-and-bound methods. On the other hand, 1-tree is a minimum spanning 

tree (MST) with an extra minimum arc at node one (Christofides, 1975; Held and Karp, 

1970, 1971). A 1-tree mathematical formulation proposed by Held and Karp (1970, 

1971) minimises (l) under the following constraints:  

∑ ∑ ∈∈ ,                     19       
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∑ ∈ ∑ ∈ 2,            20         

∑ ∑ ∈∈ | | 1,  ∀ ⊂ 1 , ∅      21  

0	 	1 ,  , ∈          22 

where (19) ensures that 1-tree has  edges, (20) ensures that vertex one has degree 

two, (21) ensures that no cycle exist in 1-tree except at node 1 and (22) is the binary 

constraint. Held and Karp (1970, 1971), Christofides (1970), Smith and Thompson 

(1977), Volgenant and Jonker (1982), Gavish and Srikanth (1983) were among the 

first to use 1-tree relaxation for solving TSPs. 

Other less popular relaxations of the TSP are 2-matching problem relaxation (Bellmore 

and Malone, 1971) and shortest n-arc path problem relaxation (Houck et al., 1980). In 

this research, we proposed repair mechanisms for solutions of AP-relaxations of the 

TSP. 

 Exact methods 

Exact solution approaches solve COPs to optimality. However, these approaches are 

in general computationally intensive and their efficiency depends on the choice of the 

bounding schema used to prune nodes in the search tree to avoid exploring branches 

with no potential to deliver an optimal solution. Solution methods within this category 

can be categorised as branch-and-bound algorithms, cutting plane algorithms, and their 

hybrids as branch-and-cut algorithms. 

One of the common methods used to solve TSP is the branch-and-bound (B&B) 

methodology. B&B is a solution strategy based on the “divide and conquer” principle. 

The idea is to partition the feasible region of an integer linear programming problem 

(ILP) into more manageable subdivisions and then to further partition the subdivisions, 

if necessary. This partitioning process of the solution space is referred to as the 

branching process. In order to avoid unnecessary branching, a bounding scheme is 

used. The branching process may be viewed as a successively finer and finer 

subdivision of the feasible region, where each subset in a given partition represents a 

subproblem. The branching process may also be viewed as a tree where the root 
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represents the linear programming (LP) relaxation of the original ILP and each other 

node represents a subproblem.  

Moreover, a bounding scheme is used to eliminate some nodes in the B&B tree in 

order to reduce computational requirements. The bounding scheme should be designed 

so that, during the course of the algorithm, a decreasing sequence of upper bounds and 

an increasing sequence of lower bounds are produced, and the algorithm stops when 

such sequences converge to the same value. In the case of TSP, the lower bound can 

be computed by any of its relaxations, such as AP-relaxation. Eastman (1958), Little 

et al. (1963), Shapiro (1966), Bellmore and Malone (1971), Smith et al. (1977), Toth 

(1980), Balas and Christofides  (1981), Miller and Pekny (1991), and Turkensteen et 

al. (2006) are some of those researchers that used AP-relaxation to solve TSP with 

branch-and-bound methods.  

In order to reduce the size of the tree one might use cutting plane methods to diminish 

part of the feasible region. These methods were proposed by Ralph Gomory  in 1950s 

(Gomory, 1958) to solve integer linear programming (ILP) and mixed-integer linear 

programming problems (MILP).  If a linear constraint is added to an integer linear 

programme (ILP) that does not exclude integer feasible points, called a cutting-plane 

or cut, then the solution is unchanged. Cutting-planes have the effect of lopping off 

part of the feasible set, but no integer points are lost. The main idea of cutting plane 

algorithms is adding cuts to an ILP, one at a time, until the solution to the LP relaxation 

is integer. Because no integer feasible points have been excluded, the final solution to 

the relaxed ILP with added constraints will solve the original ILP. Fleischmann (1988), 

Miliotis (1978) and Avella et al. (2017) are amongst those researchers who used 

cutting palne methods to solve TSP and other routing problems. 

The difference between B&B and cutting plane methods is that, at each stage of the 

B&B algorithm, the current feasible region is cut into two smaller regions by the 

imposition of two new constraints, whereas at each stage of the cutting-plane 

algorithm, the current feasible region is diminished, without being split, by the 

imposition of a single new constraint. Splitting (respectively lopping off) is done so 

that the optimal solution to the current program must show up as the optimal solution 

to one of the two new programs (respectively the new program). 
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Later, to strengthen these methods and minimise their drawbacks, researchers 

combined exact methods’ strategies and proposed hybrid exact methods. One of these 

hybrids is a combination of B&B and cutting plane methods within a single 

framework, called branch and cut (B&C), which uses cuts to reduce the size of the tree 

(Crowder and Padberg, 1980; Padberg and Rinaldi, 1991; Fischetti and Toth, 1997; 

Fischetti et al, 2003; Applegate et al, 2007). 

 Heuristic methods 

In a trade-off between time and optimality, one might prefer near-optimal solutions 

that use the least possible time. Although heuristic methods cannot prove optimality 

of the solution, they can find near-optimal solutions quickly. Furthermore, they are 

relatively easier to explain, implement and adapt to different problems. Heuristic 

approaches can be categorised into tour construction procedures, tour improvement 

procedures and composite algorithms (Laporte, 1992). Tour construction heuristics 

add or insert a vertex to a tour, one at a time. While inserting or adding a node, the tour 

cannot be improved during the construction procedure. These heuristics can be 

categorised as nearest neighbour procedure (Rosenkrantz, Steams and Lewis, 1977); 

insertion procedures (Rosenkrantz, Sterns and Lewis, 1977); Clarke and Wright 

savings procedures (Clarke and Wright, 1964); minimal spanning tree procedure (Kim, 

1975); Christofides heuristic (Christofides, 1976); partitioning procedure (Karp, 

1977); nearest merger procedures (Rosenkrantz et al., 1977; Glover et al., 2001); path 

merging procedures (Yeo, 1997; Glover et al., 2001); contract or patch algorithm 

(Glover et al., 2001); and GENI (Gendreau, Hertz and Laporte, 1992). For more detail 

see Appendix A.  

Later, one can improve the tour obtained by the tour construction procedure using tour 

improvement methods. Tour improvement procedures start with an initial feasible 

solution, obtained either by one of the tour construction methods or randomly, and 

exploit all its neighbours for a better feasible solution. Local search is one of the tour 

improvement procedures which improve the tours by one or more than one 
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neighbourhood moves and a selection strategy. A comparative analysis of tour 

construction and local search procedures can be found in Golden et al. (1980). 

In this thesis, we only made use of 2-opt (flood, 1956; Croes, 1958), 3-opt (Bock, 

1958; Lin, 1965) and Or-opt (Or, 1976) neighbourhood structures. -opt 

neighbourhood was first introduced by Lin (1965) for the TSP. -opt involves 

removing  arcs from the tour and replacing them with  new arcs. Two specific cases 

of -opt are 2-opt and 3-opt neighbourhood moves which are the most used 

neighbourhood structure in the literature. The 2-Opt moves respectively 3-opt, consist 

of deleting two arcs, respectively three arcs, and reconnecting the resulting paths, see 

Figure 1 and Figure 2. Or-opt (Or, 1976) is a modified version of 3-opt which considers 

relocation of a string of 1, 2 or 3 nodes in the tour. 

Moreover, one can use partial destruction/construction (D/C) neighbourhood moves to 

improve the tour. These moves start with a complete solution and iteratively destruct 

a part(s) of the tour and reconstruct it using construction heuristics. Ruin-and-recreate 

heuristic (R&R), proposed by Schrimpf et al. (2000), is a more general concept of 

destruction/construction moves. R&R ruins parts of the solution and reinsert them 

using an insertion procedure. In comparison with other D/C moves, R&R destruction 

considers larger areas (e.g. more nodes).  

The before mentioned basic local search methods iteratively explore all the search 

space for a better solution and stop when the search cannot find a better solution. A 

better solution is selected by an acceptance strategy which can either be first 

improvement or best improvement. The first improvement acceptance strategy stops 

the search at each of the iterations as soon as a better solution is found. On the other 

hand, the best improvement acceptance strategy at each of the iterations explores all 

neighbourhoods and returns the best solution. Both acceptance strategies find the local 

optimum. A comparative analysis of these two acceptance strategies can be found in 

Hansen and Mladenović (2006). 

The goal of using construction heuristics and tour improvement procedures is finding 

a good quality tour. To do so, these procedures search within all possible edges. 

However, most of the possible edges do not exist in the optimal tour, especially the 
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long ones. In other words, discarding these edges from the search space will speed up 

the search and might improve the heuristic’s performance. Reinelt (1994) proposed 

Figure 1 2-opt move 

Figure 2  3-opt move 
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variations of these heuristics, by making use of candidate sets in heuristic procedures, 

to enhance their performance. A candidate set, say , of an optimisation problem, say 

, is a subset of the feasible space of  defined to narrow down the search space to 

“promising” regions as specified by a set of criteria that exploit the domain knowledge 

of the problem. Using candidate set has advantages and disadvantages. The main 

advantage of a candidate set is speeding up the search process. On the other hand, the 

use of candidate sets could have disadvantages (e.g., the choice of the criteria for 

defining a candidate set could result in discarding an optimal solution or the path to an 

optimal solution) if not chosen appropriately.  

The simplest and most well-known candidate set is	 -Nearest Neighbour ( -NN). -

NN was first introduced by Fix and Hodges (1951) in an unpublished US Air Force 

School of Aviation Medicine report. The -NN candidate set limits the search for the 

nearest neighbour of  to the subgraph of G that consists of the  nearest neighbours 

only, say , , where 

, ∈ |	 	 	 	 	 	 	 	 	 . 

However,  might itself consist of disconnected subgraphs or clusters, depending on 

the structure of the original graph  (e.g. geometrical properties). Depending on the 

choice of the value of the parameter 	 , -NN have consequences, for example, 

searching in the -NN subgraph might force the method to stop without delivering a 

complete feasible solution, if  is small enough to result in disconnected subgraphs or 

clusters. On the other hand, searching in the -NN subgraph is more likely to deliver 

a better-quality solution than the one delivered by the original construction heuristic 

or local search; for example, searching in the -NN subgraph might deliver better 

quality solution than the original nearest neighbour heuristic, as it avoids the drawback 

of a greedy search that ends up adding long arcs near the end of the construction 

process (Reinelt, 1994). Reinelt (1994) proposed using candidate set-based variant of 

construction heuristics and tour improvement heuristics. For example, Candidate set-

based variant of insertion heuristics (Reinelt, 1994) expands the current subtour  by 

inserting a node from the candidate set of nodes in the subtour based on prespecified 

criteria, such as arbitrary insertion, nearest insertion, cheapest insertion, and farthest 

insertion. In candidate-based variant of improvement procedures (Reinelt, 1994), the 
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only moves considered are the ones where at least one of the edges is already in the 

candidate set. 

Another drawback of local search method is that the minimum solution found might 

not be a good quality solution. In other words, the obtained local minimum solution 

can be far from the optimal solution. However, an extension of local search, called 

metaheuristics are designed to escape the local optima and look for a better solution.  

 Metaheuristics 

A metaheuristic provides guidance mechanisms or strategies for searching the solution 

space effectively and often avoid remaining stuck in local optima when encountered 

(Sörensen and Glover, 2013). An effective and successful metaheuristic search 

strategy balances exploitation (intensification) of the search around the best solution 

found so far and exploration (diversification) of the search space. The most common 

classification of metaheuristics is sequential (single-point or trajectory) metaheuristics 

and parallel (population-based or evolutionary) metaheuristics. The first category, 

sequential metaheuristics, are more exploration-based whereas the second category, 

parallel metaheuristic, are more exploration based. Sequential metaheuristic start with 

a single solution and attempt to improve it by searching its neighbourhood. In other 

words, they exploit the promising search areas that might lead to a good quality 

solution. On the other hand, parallel metaheuristics such as genetic algorithms start the 

search with a set of solutions and attempt to find better solutions by iteratively 

combining them in the hope that they keep the best features of the older solutions, 

while diversifying the search towards new areas that has not been explored before. In 

the next subsections an overview of these metaheuristics is presented. 

 Sequential metaheuristics 

As it was mentioned earlier, sequential (single-point) metaheuristics, such as, 

simulated annealing (Kirkpatrick et al., 1983), tabu search (Fred Glover, 1986, 1989, 

1990) and variable neighbourhood search (Mladenović and Hansen, 1997), start with 

a single solution, using a sequential search strategy, search its neighbourhood for a 
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better solution. The implementation of these metaheuristics involves several decisions 

to be made, which we classified them into problem-specific decisions and generic 

decisions. Problem-specific decisions are related to the nature of the problem and 

require a deep knowledge of the problem. In contrast, generic decisions can be taken 

without such knowledge since they are specific to the chosen metaheuristic and not the 

problem. First, we present problem-specific decisions since they are common for all 

sequential metaheuristics. Then, the aforementioned sequential metaheuristics and 

their generic decisions are explained in more details. 

I. Problem-specific decisions 

The decisions common to the implementation of SA, TS and VNS are (1) choice of 

the solution space; (2) choice of the form of the objective function; (3) choice of initial 

solution; and (4) choice of the neighbourhood structure or type of moves to use. These 

decisions are similar across the single-point metaheuristics.  

(1) Choice of the solution space 

 In principle, all possible solutions are admissible. However, for computational 

reasons, one might want to reduce the size of the solution space to converge to a good 

solution faster. This strategy might limit the search to a small neighbourhood, which 

might not include the global optima. On the other hand, one might permit infeasible 

solutions (by permitting constraint violations) to increase the search space and the 

possibilities of finding the global optima (Gendreau et al., 1994; Glover, 1977). 

(2) Choice of the form of the objective function 

The value of the objective function is used to discriminate between solutions and to 

decide whether the search should move to a new neighbour or not. The original 

objective function is the objective function of the optimisation problem under 

consideration; e.g. total distance or cost of a feasible solution to the TSP. In addition 

to the original objective function, one might define other types of objective functions, 

such as the surrogate objective function, the auxiliary objective function, and the 

penalised objective function. 

The surrogate objective function (Crainic et al., 1993): Calculating this objective 

function is much faster than the original one since instead of calculating the total cost 
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of the solution, only the cost incurred by the move is calculated, which is correlated to 

the original objective function.  

The auxiliary objective function (Gendreau, 1993):  This objective function 

measures the desired attributes of the solution, instead of calculating the original 

objective function. This objective function is used when the original objective function 

does not provide knowledge and information about the search space. For example, in 

routing problems, when searching the neighbourhood of the current solution faces a 

tie (several new solutions with equal cost), one can introduce an auxiliary function 

including more desirable attributes (such as travel time, customer’s demand, etc.) to 

direct the search. Auxiliary objective functions are also used when one allows for 

infeasibilities but penalises them. 

The penalised objective function (Gendreau et al., 1994; Glover, 1977): This 

objective function adds penalty terms to penalise violations of constraints or features 

of solutions, this is done by relaxing some of the constraints and adding a penalty, for 

each violation, to the objective function. However, one should choose the correct 

penalty. This strategy (i.e. allowing infeasibilities) widens the search space. 

(3) Choice of the initial solution 

The initial solution can be generated by either a random procedure or a simple 

heuristic. Starting with a random solution might not lead to the optimal solution or a 

slow convergence to a good solution. On the other hand, starting with a good solution, 

e.g. obtained by a construction heuristic, might lead to quick convergence, although 

the search might get stuck in a local optimum. 

(4) Choice of the neighbourhood structure or type of moves to use 

In designing metaheuristics, neighbourhoods are defined to move from a solution in 

the search space to another. Designing neighbourhood structures depends on the 

characteristics of the solution space and the type of moves used to move from a 

solution to its neighbour. For example, to solve TSP using metaheuristic, one can use 

either one or all the following moves: -opt, or-opt, node exchange, node relocation, 

string exchange, etc. (flood, 1956; Croes, 1958; Bock, 1958; Lin, 1965; Or, 1976). A 

small neighbourhood structure is preferable since it typically converges toward a good 

quality solution much quicker, however, it might not lead to a good quality solution. 
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For instance, a 2-opt move (e.g. -opt when	 2) is much faster than a 3-opt move 

(e.g. -opt when	 3), however, 3-opt produces better quality solutions than 2-opt. 

II. Simulated annealing and its generic decisions 

Simulated annealing (SA) is a search procedure based on the annealing process of 

materials in metallurgy and the underlying thermodynamic laws introduced in the early 

1980s. The initial design of SA has been proposed by Kirkpatrick et al. (1983). Its 

main search strategy consists of avoiding remaining stuck in a local optimum by 

temporarily accepting worse solutions with some probability, where this probability 

decreases as the search progresses.  

Initialisation Step  

Choose a heuristic to initiate the initial solution, say , and set  to the total distance of the TSP 

tour ; 

Initialise the best solution found so far, by setting ∗  and ∗ ; 

Choose an initial temperature 0 and set the current temperature ; 

Set the temperature change counter 1; 

Iterative Step 

REPEAT until stopping condition = true 

Choose the number of neighbours to visit at the current temperature , ; 

Set the repetition counter 0; 

REPEAT until stopping condition = true // e.g.,  

Generate randomly a neighbour  of the current seed  and compute ; 

Compute the change  in the objective function value:  ;  

IF  0 OR 0,1 	 	THEN { 

Update the current seed solution , ; that is, set , and ; 

IF ∗  THEN  

Update the best solution found so far ∗, ∗ ; that is, set ∗  and ∗ ; 

} 

Increment the repetition counter by 1; that is, set 1; 

END REPEAT; 

Increment the temperature change counter by 1; that is, set 1; 

Reduce the temperature  according to the temperature reduction function ; that is, set ; 

END REPEAT 

Table 1 Pseudo-code of SA 
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The basic SA starts the search with a random (initial) temperature, , increases the 

temperature until a prespecified threshold, then cools slowly  until it reaches a frozen 

state or final temperature,	 . This process requires a cooling schedule that will be 

explained in the next section. In each SA state or epoch, where each state of SA is 

distinguished by temperature	 , several neighbours of the current solution are visited, 

and the current solution is updated considering a transition mechanism. The pseudo-

code the SA algorithm is outlined in Table 1. 

Since it was first introduced, several implementations of SA have been proposed 

(Lundy, 1985; Johnson et al., 1989, Connolly, 1990, 1992; Cordeau et al., 1997,2001;  

Koulamas et al., 1994; Ho and Haugland, 2004; Geng et al., 2011; etc.). In general, an 

implementation of SA requires a number of generic decisions to be made, namely an 

annealing schedule and an acceptance function (AF). Hereafter, we shall discuss these 

implementation decisions in more detail. 

(1) The annealing schedule 

The annealing schedule controls the temperature in SA algorithm, which involves 

several parameter choices: 

 Initial and final temperature 

 Number of neighbours to visit at each temperature  

 Temperature change strategy and the form of the temperature change function  

 Stopping criterion or freezing state 

These parameters could be either static or dynamic. When a parameter is constant or 

fixed throughout the algorithm, from the start to the end, it is a static parameter, and if 

it is not constant or fixed, meaning that the parameter is changing to adapt to the 

algorithm, it is a dynamic parameter (Aarts et al., 2014). In implementing the optimal 

annealing schedule for SA algorithm, one should specify the best choice for these 

parameters. Many annealing schedules have been proposed which will be summarised 

in the next section.  

Initial and final temperature 

The initial temperature,	 , should be high enough so that all new neighbours are 

accepted (Kirkpatrick et al., 1983). Kirkpatrick et al. (1983) proposed starting the 
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search with a random initial temperature and heating the system by doubling the 

temperature until the percentage transitions in that epoch are less than . When this 

percentage is achieved, cooling the system starts. The cooling process continues until 

the temperature reaches the final temperature,	 , which it is zero or close to zero. 

When the temperature is zero, no uphill moves will be accepted. 

Lundy (1985) proposed setting  to the upper bound of the highest objective function 

value or proportional to 1  , 10 1  and setting the final 

temperature to . Later, Lundy and Mees (1986) used the same idea to 

initialise	 ; however, they proposed setting the upper bound for TSP to the sum of 

longest edge leaving each city. They also proposed freezing the system when 

1
log , where  is a predefined small probability. 

On the other hand, Johnson et al. (1989) considered ̅⁄ , where ̅ denotes 

the average increase in the objective function values, computed with uphill moves 

only, obtained during prespecified number of trials/transitions of the annealing process 

with the fraction of accepted uphill transitions equal to . Later, Connolly (1990, 

1992) proposed an approach to avoid choosing an initial value of	 . They proposed 

setting the initial temperature 	 10⁄ , where  and  

denoting the minimum value and the maximum value of the objective function over a 

number of trial runs, for a range of fixed temperature; and setting the freezing 

temperature to the maximum value of the objective function over the trial runs,	 . 

Parthasarathy and Rajendran (1997b) defined  as the relative percentage change in 

the objective function value; i.e.,  .	  In addition, they chose to 

accept solutions with lower quality by 50% relative to the initial solution, with an 

acceptance probability  equal to 90%. Implicitly, they assume that the maximum 

relative percentage difference in cost between neighbours is 50% and compute  

accordingly: 


⟺ 0.9 ⟺ 475.     23       
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Correspondingly, they fixed the final temperature to a value computed based on the 

initial temperature, prespecified cooling ratio, say , and the prespecified number of 

epochs, say . 

       24       

The number of neighbours to visit at each temperature  

The number of neighbours to visit, , at each epoch is typically set to a fixed 

prespecified value, which may depend on the solution space or neighbourhoods (Ogbu, 

1990) However, the best choice for this value should consider the temperature change 

strategy, the form of the temperature change function and the value(s) of its 

parameter(s) and the choice of the stopping criteria. Moreover, one might use feedback 

from the annealing process, such as the ratio of acceptance or the minimum number of 

accepted moves to choose the value of	 . 

The temperature change strategy 

The performance of SA algorithm is highly dependent on the temperature change 

strategy. A fast cooling strategy might speed up the process, but it might also lead to 

local optima far from the global one. On the other hand, a slow cooling strategy might 

lead to an optimal or near optimal solution in a very long time. Thus, when designing 

an optimal cooling schedule, one should make a trade-off between the quality and CPU 

time.  

In addition, a temperature change strategy could be constant (fixed temperature), non-

adaptive or adaptive. Non-adaptive temperature change strategies are systematically 

decrease based on a cooling function. By contrast, adaptive strategies decrease, based 

on a cooling function, and increase the temperature, based on a heating function, as 

required and based on prespecified conditions. In this section an overview of these 

temperature change strategies is presented. 

The first proposed temperature change strategy consists of two steps: first melting and 

then cooling the system. Kirkpatrick et al. (1983, 1984) proposed starting the schedule 

with a random initial temperature and heating the system, by doubling the temperature, 

until the percentage accepted moves reach the prespecified threshold. Then, the 
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cooling process starts using a temperature reduction function	 . This schedule is 

called the Geometric Schedule (18), which is one of the most popular cooling strategies 

. ⟺ . ; 0 ≺ ≺ 1    25 

where  is the cooling ratio. If the total number of epochs,	 , is prespecified as well 

as  and , then the cooling ratio  can be computed as follows: 

.        26 

Typically, most of the authors are making use of this cooling strategy by fixing  (

1  to values in range between 0.8 and 0.99. For more detail on other popular cooling 

strategies see Appendix B. As for comparative analysis among different cooling 

strategies refer to Mirkin et al. (1993), Steinhöfel et al (1998) and Nourani and 

Anderson (1998). Park and Kim (1998) proposed a systematic procedure to choose the 

appropriate values for the parameters of SA. Their procedure chooses the parameter 

values of the cooling schedule. 

(2) Stopping criteria 

The basic SA stops when the system freezes that is when the temperature reaches 

freezing point or final temperature, which is normally equal to zero (Kirkpatrick et al., 

1983). However, SA might take longer to stop. Later, several stopping criteria other 

than the ‘freezing’ state of the system were proposed (Salhi, 2017), such as the number 

of iterations or temperatures or epochs reaches a prespecified number, computational 

time exceeds a prespecified time limit, the maximum number of temperature changes 

without improvement of the current seed is reached, the best objective function value 

found so far is not updated for a prespecified number of iterations, etc.  

(3) Acceptance Function  

Since SA is not a greedy algorithm, it accepts a neighbour of the current solution as a 

new seed if it is either an improving one or a non-improving one but satisfies a second 

criterion called the acceptance criterion.  

Kirkpatrick et al. (1983) used Metropolis criterion to accept new neighbours with a 

probability. This acceptance probability function (APF), which is dependent on the 

quality of the new neighbour and the current temperature of the system, is as follows: 
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,  
																			 0

1																																					 0
               27 

where  indicates the energy change of the move and is calculated as 

. Similarly, Connolly (1990) proposed the following acceptance function (AF) 

where  is the Boltzmann’s constant.  

, 
																			 0

1																																					 0
    28 

When  is equal to one, AF would be equivalent to Kirkpatrick et al. (1983) proposed 

APF. 

On the other hand, Johnson et al. (1989) proposed a linear AF, equation (22), instead 

of the exponential function. This function is faster, and as they mentioned in their 

paper, it has a significant difference in quality with the exponential function. 

, 1        29 

For more detail, on other popular acceptance functions, see Appendix C. 

III. Tabu search and its generic decisions 

Tabu search (TS) is a memory-based metaheuristic, introduced by Fred Glover (1986, 

1989, 1990), which explores the neighbourhood search space strategically and guides 

the local search out of local optima and towards global optimality. In other words, 

making use of an adaptive memory and responsive exploration in TS (Glover and 

Laguna, 1997) could lead the search to a new neighbourhood by reducing the 

likelihood of cycling or remaining stuck in a local optimum. The Pseudo-code of the 

basic TS presented in Table 2, is based on best improvement local search and a short-

term memory. Several implementations have been proposed for the TS metaheuristic 

(Glover, 1986, 1989, 1990; Hertz and de Werra, 1987; Glover and Laguna, 1997; 

Taillard, 1990, 1991; Cordeau et al., 1997, 2001; He et al., 2005; Archetti et al., 2006; 

etc.). However, implementation of TS metaheuristic requires several generic decisions 

to be made; namely tabu moves, memory, search strategies, transition mechanism, 

aspiration criteria and stopping criteria. Hereafter, we shall discuss these 

implementation decisions in more detail. 
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Initialisation Step  

Choose a heuristic to initiate the initial solution, say , and set  to the total distance of the TSP 

tour ; 

Specify the aspiration level function and initialise its value; 

Choose the tabu list ( ) size and initialise  to the empty set ∅; 

Set iteration counter  to 0; 

Iterative Step 

REPEAT until stopping condition = true 

Find a neighbour, say , of   the current TSP tour  

IF  is not tabu THEN 

Update the current seed solution , ; that is, set , and ; 

ELSE 

IF  is tabu but the aspiration criterion overrides its tabu status; e.g.,  is better than the best 

neighbour found so far THEN 

Update the current seed solution , ; 

ELSE  

Find the best non-tabu neighbour – rather than an improving one – in the neighbourhood of the 

current neighbour  and update the current seed solution , ; 

Update the tabu list ; 

IF ∗ THEN update the best solution found so far ∗, ∗ ; i.e. set ∗  and ∗ ; 

Increment iteration counter by 1; that is, set 1; 

END REPEAT 

Table 2 Pseudo-code of TS 

(1) Tabu moves 

Tabu moves are defined as forbidden moves, to prevent cycling (tabu restrictions). 

Some advantages of stating some moves as tabu are to avoid being stuck in local 

optima and to widen the exploration space by forcing the search to explore new 

neighbourhood areas. Although these new neighbourhood areas might not include the 

global optimum, they may lead the search to it. On the other hand, these areas might 

lead the search far away from the global optimum.  

Commonly used tabus involve keeping track of the most recent moves leading to the 

current solution and preventing the reversal of these moves to stop cycling back to 

previous local optima or solutions, while other tabus only keep key characteristics of 

solutions or moves (Gendreau and Potvin, 2014).  
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The most regularly used tabu list is a circular list with fixed length (Glover 1986; Hertz 

& de Werra 1987) which forbids cycling back to the most recent moves for several 

iterations. Tabu tenure is the number of iterations a move is forbidden. In standard TS, 

tabu tenure is fixed, although one might define a dynamic procedure to change the tabu 

tenure throughout TS (Glover 1989, 1990; Skorin-Kapov 1990; Taillard 1990, 1991). 

(2) Memory  

The use of memory in TS is for keeping the search history to guide the neighbourhood 

search. The general TS framework makes use of three types of memories; commonly 

referred to as short-term memory, intermediate-term memory, and long-term memory. 

Each type of memory could be used in a different configuration of the neighbourhood 

search. For example, one might be used to restrict, while the other might be used to 

widen the neighbourhood search. 

A tabu search with the first type of memory, short-term memory component, is a 

constrained greedy search process that seeks to make the best move to satisfy certain 

constraints embedded in the tabu restrictions designed to prevent cycling. These tabu 

restrictions do not operate in an isolated manner but are counterbalanced by the 

application of aspiration criterion. The intermediate-term memory component is used 

in an intensification process that drives the search into regions with features that were 

historically, during the search process, found to be good. Finally, the third and last 

type, the long-term memory component, is used in a diversification process that drives 

the search into new regions that contrast with those examined so far.  

For computational reasons, most TS implementations make use of the short-term 

memory component only. The core of TS is embedded in its short-term memory 

component, and many of the strategic considerations underlying this process reappear, 

amplified in degree but not greatly changed in kind, in the intermediate-term memory 

component (intensification process) and the long-term memory component 

(diversification process). 

Furthermore, memory could be either explicit or attributive. Explicit memories record 

the full solutions, typically local optimums, whereas attributive memories, the most 

commonly used, only keep track of the key characteristics of the changes that lead to 

current solutions. The memory used in TS records either the most recent or the most 
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frequent solutions or attributes. The first memory structure is called recency-based 

memory, which keeps track of the most recent solutions (Glover 1986, 1989, 1990; 

Hertz and de Werra 1987; Friden et al. 1989; Skorin-Kapov 1990; Taillard 1990, 1991; 

Montané and Galvão 2006; Ho and Haugland 2004; Archetti et al. 2006). The second 

is called frequency-based memory that tracks the moves and the number of iterations 

they occurred.  

These memory structures could be integrated, for example, a recency-based short-term 

memory could be combined with frequency-based long-term (or intermediate-term) 

memory both /either to diversify and/or to intensify the search (Cordeau et al. 1997, 

2001; Montané and Galvão, 2006). 

(3) Search strategies  

The most important part of the tabu search is its search strategy. Tabu search uses 

intensification and diversification strategies to guide the search away from the local 

optima and towards the global optimum. The key to implementing a good TS is in 

balancing these two strategies. 

Intensification strategy 

Intensification strategies search the promising neighbourhood areas more thoroughly. 

These promising neighbourhood areas are those of the local optima. Intensification 

strategies make use of intermediate-term memory, such as a recency-based memory 

structure recording the complete local optimums or recording the number of 

consecutive iterations where various solution elements were present in the local 

optimums. 

A typical intensification approach is restating the search from the best-known solution 

by fixing several attractive components using intermediate-term recency-based 

memory. Another approach is restating the search from the best-known solution and 

intensifying the search for a better solution by applying a simple local search with a 

different neighbourhood structure for several iterations (Renaud et al., 1996; Ho and 

Haugland, 2004). A third approach is a continuous intensification that uses a type of 

intermediate or long-term frequency-based memory. In this approach, it is more 
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attractive to insert components with a greater weight related to their frequencies 

(Montané & Galvão, 2006).  

Diversification strategy 

Diversification strategies force the search into unexplored regions of the search space. 

Although using short-term memory in basic TS enforces diversification to some extent, 

it could be based on other types of long-term memory, such as frequency-based 

memory recording the number of iterations (from the beginning) where various 

solution elements have been present in the current solution.   

A simple way to diversify the search is by restarting the search with a new solution 

generated randomly or by a heuristic. Another approach is to use long-term frequency-

based memory. In this approach, the search starts from a new solution obtained by 

introducing a number of elements with the lowest frequency. An alternative frequency-

based approach is called continuous diversification, where a frequency-based penalty 

is added to the objective function (Cordeau et al. 1997, 2001). This approach penalises 

the most frequent elements. Another continuous diversification is inserting 

components with lower frequency based on some weight related to their frequencies 

(Montané & Galvão, 2006).  

Most of the implemented TS methods only search in primal search space, i.e. only 

feasible solutions are allowed. Since primal search space limits the possibilities, it can 

lead to a local optimum and not the global optimum. One way of overcoming this 

problem is to allow infeasibilities by constraint relaxation, which will widen the search 

space. Constraint relaxation removes a constraint from the problem and adds penalty 

terms for each constraint violation to the objective function (Gendreau et al. 1994; 

Cordeau et al. 1997, 2001).  

(4) Aspiration criteria 

As previously mentioned, tabus are used to prevent cycling back to previous moves 

since they may lead to a better solution. Aspiration criterion (AC) defines a mechanism 

to cancel tabu status if the criterion is satisfied. The simplest and most common form 

of the aspiration criteria is that if the solution found by a tabu move is better than the 

best-known solution throughout the search, the tabu status of that move will be 
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cancelled and the move will be accepted since, obviously, this new solution has not 

been visited yet. In TS methods that allow infeasibility, the aspiration criteria could be 

allowing a better feasible solution than the current best-known solution. 

(5) Transition mechanism 

The transition mechanism in TS can be best described as a constrained steepest 

descent, where the adjective “constrained” refers to the tabu restrictions. In other 

words, a transition is accepted only with consideration of the tabu restrictions and the 

acceptance criterion. 

(6) Stopping criteria 

Theoretically, the search continues until the global optimum is found. Since the best 

solution is not known or assumed to be unknown, one should decide on when the 

search stops. Several stopping criteria can be used such as when the maximum number 

of iterations is reached, the maximum number of iterations without improvement of 

the current seed is reached, the computational time exceeds a pre-specified time limit, 

the best objective function value found so far is not updated for a pre-specified number 

of iterations, the objective function value reaches a threshold, etc.  

As for the comparative analysis between TS and other metaheuristics, several 

comparative analysis has been done, however their comparative analysis is uncertain, 

to some extent.  Sinclair (1993), Paulli (1993), Battiti and Tecchiolli (1994), Chiang 

and Chiang (1998), Arostegui et al. (2006) and Hussin and Stützle (2014) made such 

comparison between SA and TS for QAP, their results implies that TS outperforms 

SA. On the other hand, Paulli (1993) implied that when considering the same 

computational time SA performs better than TS. Later, Hussin and Stützle (2014) 

suggested that the performance of TS and SA, and whether one is better than the other 

is dependent on the problem size. 

IV. Variable neighbourhood search and its generic decisions 

Variable neighbourhood search (VNS) algorithms, proposed by Mladenović 

and Hansen (1997), is an extension of classical local search algorithms where 

attempts are made to avoid being trapped in a local optimum by systematically 

changing neighbourhood structures during a local search process. The Pseudo-

code of VNS is shown in Table 3.  
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Initialisation Step  

Choose a heuristic to initiate the initial solution, say , and set  to the total distance of the 

TSP tour ; 

Initialise the best solution found so far, say ∗, ∗ , by setting ∗  and ∗ ; 

Choose a set of neighbourhood structures to use and specify the order according to which they will 

be used, say ; 1, … , ; 

Choose the local search method to use in exploring neighbourhoods; 

Initialise neighbourhood structure counter  to 1; 

Iterative Step 

REPEAT until stopping condition = true 

Randomly generate a neighbour, say 	 , of the current neighbour  according to the -th 

neighbourhood structure; 

Explore the -th neighbourhood of  using the chosen local search method and update  

accordingly; 

IF this local optimum concerning the -th neighbourhood  is better than the current seed  

THEN 

Update the current seed solution , ; that is, set , and ; 

IF ∗ THEN { 

update the best solution found so far ∗, ∗ ;  

Reset neighbourhood structure counter  to 1;  

} 

ELSE   Increment neighbourhood structure counter  by 1; 

END REPEAT 

Table 3 Pseudo-code of VNS 

VNS is based on three facts (Hansen et al., 2016): 

 A local optimum obtained from a one neighbourhood structure could not 

necessarily be obtained by another neighbourhood structure. 

 The local optimum of one neighbourhood structure is not necessarily the global 

optimum, but the global optimum is the local optimum of all neighbourhood 

structures, 

 For many problems, local optima of several neighbourhood structures are close 

to each other. 

Several VNS metaheuristics have been proposed (Mladenović and Hansen, 1997; 

Burke et al., 2001; Hansen and Mladenović, 1999, 2003; etc.). However, they all 
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require generic decisions to be made such as the choice of transition mechanism, 

shaking procedures and stopping criteria, which will be explained in more detail in this 

section. 

(1) Transition mechanism  

 The transition mechanism is specified through the choices of answers to questions 

such as: How is a specific neighbourhood of the current seed solution searched? What 

criteria are used for updating the current seed solution? What criteria are used for 

changing neighbourhoods? In which order are the neighbourhoods searched? 

We shall answer these questions hereafter. 

 How is a specific neighbourhood of the current seed solution searched? 

Improvement procedures used in VNS could be either random or by using any local 

search-based procedure or metaheuristic, such as local search, simulated annealing, 

tabu search, etc. Additionally, one might search the whole neighbourhood or a 

proportion of it. 

 What criteria are used for updating the current seed solution? 

In the neighbourhood exploration step, either the first improvement or the best 

improvement search strategy could be used. The first improvement strategy 

accepts the first move causing an improvement, while the best improvement 

strategy accepts the move with the best improvement among all improving 

solutions. Additionally, when updating the solution, one might allow solution 

deterioration, meaning that uphill moves might be accepted with a ratio or 

probability. 

 What criteria are used for changing neighbourhoods? 

Several criteria can be used to change the neighbourhood structures. One might 

change the neighbourhood structure whenever an improvement occurred or 

change the neighbourhood structure regardless of the occurrence of 

improvement. Hansen et al. (2016) classified neighbourhood change strategies 

as sequential neighbourhood change strategy, cyclic neighbourhood change 

strategy, pipe neighbourhood change strategy and skewed neighbourhood 

change strategy; see Appendix D for more detail. 
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(2) In which order to search the neighbourhoods?  

The order in which the neighbourhood structures are searched can be random or 

according to a specific order, in which case the ordering criteria should be 

specified. The specific order of changing the neighbourhood structure could be 

chosen based on the designer knowledge or by using a trial run. In addition, it 

could be static or dynamic (and may be changed by using a learning mechanism 

or not). 

(3) Shaking procedure 

Shaking procedure is used to lead the search out of a trap. Typical and simple shaking 

procedure is random perturbation of the current solution considering the 

	neighbourhood structure. One might consider either diversifying the search by 

random jump from the current solution or intensifying the search by a small change in 

the current solution. 

(4) Stopping criteria 

The typical stopping Criteria for VNS is stopping the search when no further 

improvement is possible by all the neighbourhood structures, the maximum CPU time 

or the maximum number of iterations without improvement. 

As for comparative analysis between VNS and other local search methods and 

metaheuristics, a comparison between two variants of VNS and LS for TSP made by 

Burke et al. (2001) implied that VNS outperforms LS in most problem instances. Later, 

Hansen and Mladenovic (2003) compared basic VNS, GA and two variants of ant 

colony methods on scheduling problem. Their results indicated that VNS outperforms 

others. 

 Parallel metaheuristics  

Parallel (population-based) metaheuristics, such as GAs, start the solution with an 

initial population and attempt to find a better population by iteratively evolving them. 

Genetic algorithm was first introduced by John Holland in the early 1970s (Holland, 

1975). GA is inspired from the biological process of natural selection and genetic 

inheritance that preserves a population of individuals or chromosomes and evolves the 

population using bio-inspired operators, searching for better or best individuals 
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(Goldberg, 1989; Holland, 1989; Holland, 1975). Some of these bio-inspired operators 

are selection, evaluation, reproduction and replacement operators.  

Initialisation Step  

Choose an initial population of M individuals/tours, in the admissible parameter space  evaluate the 

fitness of each individual, ;  

Initialise the best solution, say ∗, ∗ , among the initial population 

Set iteration counter  to 0; 

Set Best-Found-At-iteration to 0; 

Set immigration counter  to 0; 

Iterative Step 

REPEAT until stopping condition = true 

IF crossover condition(s) hold THEN { 

Select a subset of individuals from the current generation as parents for reproduction;  

Perform a crossover operation on parents to generate children;  

} 

IF mutation condition(s) hold THEN { 

Select a subset of individuals from the current generation as parents for reproduction;  

Perform a mutation operation on parents to generate children;  

} 

IF immigration condition(s) hold THEN { 

 perform an immigration operation to generate children;  

Increment immigration counter by 1; that is, set 	 	 1; 

} 

Evaluate the fitness of each child and update the best solution found so far, if necessary; 

IF ∗ THEN { 

update the best vector of parameters found so far; that is, set ∗  and ∗ ; 

Best-Found-At-iteration	 ; 

} 

Replace a subset of parents in the current population by a subset of the current children to produce 

a new generation;  

Increment iteration counter by 1; that is, set 1; 

END REPEAT 

Table 4 Pseudo-code of GA 

The main elements of GA are as follows:  

 A population consists a set of chromosomes or individuals.  
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 The fitness function is a measure to evaluate the quality of each chromosome. 

Genetic operators are bio-inspired operators, namely selection, evaluation, 

reproduction, replacement operators. 

 Termination criterion is used to stop the reproduction process. 

A basic GA starts with an initial population and through an iterative process modifies 

the current population using bio-inspired operators to create a new population, called 

generation, with a purpose of improving the overall average quality, see Table 4. In 

each iteration, GA selects a subset of the current population, called parents, to 

reproduce new individuals, called children or offspring. These new individuals replace 

a subset of the current population to create a new generation, which is used in the next 

iteration. This iterative reproduction continues until a stopping condition is satisfied 

that normally happens when the population converges. Designating a GA requires 

making two sets of decisions; namely problem-specific decisions and generic 

decisions. These decisions will be explained hereafter. 

I. Problem-specific decisions for GA 

The genetic algorithm consists of a population of individuals or chromosomes. Thus, 

the first step in constructing a GA is to define the genetic representation, also called 

an encoding scheme, to map feasible solutions of an optimisation problem to 

chromosomes or strings. 

Each chromosome’s lifecycle in the population has three phases, namely, birth, life 

and death. Transformation of each chromosome into each phase and its survival 

throughout the iterative process mainly depends on its performance or fitness value. 

After a chromosome’s birth, it might be chosen for mating and breeding based on a 

probability, which is mostly based on its fitness value but not necessarily. The higher 

the fitness value, the probability of being chosen for mating will be higher.  After 

breeding, the offspring should replace a chromosome in the population, meaning that 

a chromosome has reached its last phase of existence, death. The most commonly used 

criterion to choose the chromosome to end its life cycle is choosing the one with the 

lowest fitness value. Considering the aforementioned decisions, these two decisions, 

namely the genetic representation of chromosomes and the fitness measure, are 

problem-specific decisions for GA which will be described in the next section. 
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(1) Choice of the genetic representation or encoding scheme of chromosomes 

A chromosome is a string of genes that keeps the genetic information. Each gene has 

its position in the chromosome and can have any value from a specific set of 

alternatives, called alleles. The common representation of chromosomes is binary 

encoding. When a binary alphabet is not a natural coding for a problem, one may 

consider an alternative coding with a variety of data structures. Choosing an 

appropriate encoding is dependent on the type of problem under consideration 

(McCall, 2005). It is crucial to use an appropriate encoding scheme that adequately 

describes problem-specific characteristics since it significantly affects all the 

subsequent steps in the GA such as the form of the reproduction mechanism. 

Most of the proposed GAs use fixed length chromosomes for easier implementation 

of GA operators, although using variable chromosomes can be a better representation 

for some problems.  

(2) Choice of the fitness measure  

To imitate the natural law of survival of the fittest, a fitness function needs to be 

specified to discriminate between chromosomes based on their performance. A variety 

of fitness measures can be used to evaluate the chromosomes performance. One may 

use the value of the objective function associated with each chromosome, which might 

be considered a naïve fitness measure.  

Choosing a naïve fitness measure may lead the GA to either converge toward a poor 

performing chromosome or have a hard time converging toward any solution. A 

scenario for the first situation, converging to a poor performing chromosome, could 

occur at the start of the process when most of the chromosomes are weak, and only a 

few of them are outstanding. In this case, a naïve fitness measure will possibly lead to 

a rapid takeover by the outstanding ones and a premature convergence to a weak 

generation. For the second situation, difficulty in converging, consider the scenario 

when the population converges to a set of chromosomes with similar fitness values, in 

this case, it will be hard to discriminate between chromosomes and converge. 

To overcome these problems, one may use (1) a scaling procedure that uses a linear 

transformation of the objective function value to limit the competition early on, but to 

stimulate it later; or (2) a ranking procedure that ignores the objective function values. 
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Furthermore, a variety of functions could be used to discriminate between solutions, 

such as the original objective function of the optimisation problem under 

consideration, an auxiliary function or penalised objective function (similar to the 

choice of the form of the objective functions for the sequential metaheuristics). 

II. Generic decisions for GA 

As mentioned earlier, generic decisions are concerned with the parameters of the 

algorithm itself. Generic decisions for GA are (1) population size and selection of the 

initial population, (2) selection mechanism, (3) reproduction mechanism, (4) genetic 

operators’ rates, (5) replacement mechanism and (6) stopping criteria. These decisions 

are presented hereafter. 

(1) Population size and selection of the initial population 

As it is shown in Table 4, the first problem-specific decision is related to the population 

that has a great influence on the GA’s performance and speed. GA starts with an initial 

population of size	 . There have been many studies on the optimal population size 

such as Goldberg (1989), Alander (1992) and Roeva et al. (2013). A small population 

might not provide enough room for different parent combinations to take place 

effectively and might result in the generation of solutions that bear close structural 

resemblance. This loss of diversity in the population affects the breadth of the search; 

that could increase the risk of seriously under-covering the solution space. On the other 

hand, a large population size could result in a disproportionate increase in the 

execution time of the algorithm without a substantial improvement in the quality of 

the solutions generated and the diminishing efficiency of the GA. Thus, when choosing 

the population size, one should make a trade-off between efficiency and effectiveness.  

Another decision related to the population is the criterion to initialise the population. 

This criterion greatly affects the performance and speed of the GA algorithm. A 

common population initialisation is a random generation (Katayamaet al., 2000; Qu 

and Sun 1999). Additionally, the initial population can be supplied by a heuristic (Liao, 

2009; Ray et al.; 2007; Kaur and Murugappan, 2008), using a gene bank (Wei et al. 

2007), and a sorted population (Yugay et al., 2008), etc. An analysis of their 

performance is done by Paul et al. (2015) and Shanmugam et al. (2013). They found 

that “seeding” the population with a high-quality solution can help the GA find better 
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solutions rather more quickly than it can from a random start. However, there is a 

possible disadvantage in that the chance of premature convergence may be increased. 

(2) Selection mechanism 

Selection operators can be used throughout a chromosomes life cycle; namely, 

breeding, life and death. GA iteratively selects a group of chromosomes of the current 

generation for mating and another group for mutation. In addition, selection operators 

select a chromosome to be replaced by the new offspring, meaning that the chosen 

chromosome’s life cycle has ended. One can use a single selection mechanism 

throughout the GA’s process or a different selection mechanism for each stage of the 

chromosome’s life cycle.  

Most common selection mechanisms are related to a chromosome’s fitness. A simple 

way of choosing parents to be paired in each generation is based on random or biased 

random sampling from the population; for example, parents may all be selected 

randomly, randomly on a fitness basis, or some parents may be selected randomly 

while others are selected on a fitness basis. A typical selection criterion gives a higher 

priority to fitter individuals since this leads to a faster convergence of the GA. 

However, if parents are selected randomly, this will give an equal probability of 

selection to each individual in the population. The most commonly used selection 

mechanisms are ordinal selection, proportional selection, ranking selection and steady-

state selection (Baker, 1987; Goldberg, 1989; Mühlenbein and Schlierkamp-Voosen, 

1993). For more detail, see Appendix E. 

(3) Reproduction mechanism 

A pair of chromosomes from the selected group (parents) reproduce new offsprings. 

The crossover operator is designed to exchange some genes from the parents’ 

chromosomes in a structured yet randomised manner, hoping that offsprings inherit 

the good genes and perform better than their parents had. This operator exchanges 

information between individuals of the population and passes on the collected 

information to the next generation.  

The issue with crossover operator is that in some cases some or all chromosomes 

become similar. In other words, all genes in chromosomes will be the same. To 
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overcome this issue, mutation operator randomly changes or modifies the genes in 

chromosomes to diversify the population. These operators are explained hereafter. 

Crossover operator  

This operator recombines a pair of chromosomes to create new offspring, preferably 

different from the parents. Many of the proposed crossover operators are problem-

specific and mostly depend on the problem representation. The problem independent 

crossover operators are simple or one-point crossovers, multi-point crossovers, 

uniform crossovers and three-parent crossovers (Syswerda, 1989; Spears and De Jong, 

1995; Sivanandam and Deepa, 2007). For more details, see Appendix F. 

Mutation operator 

Mutation operator is designed to diversify the search occasionally and lead the search 

out of local optima. This operator introduces new information to the population by 

randomly changing a gene or multiple genes of a chromosome.  

(4) Genetic operators’ rates 

GA’s crossover and mutation rates have a significant influence on GA’s performance. 

Crossover rate ( ) specifies the rate which the crossover operator is applied to create 

offspring. By controlling this rate, one can control the rate new individuals are created 

from one generation to the next. In other words, GA with a high crossover rate 

increases the diversity of the population by creating more offspring in each generation, 

conversely, GA with a lower rate has less diversity by creating fewer offspring but 

keeps the population information for the next generation.  

On the other hand, mutation rate ( ) specifies the probability as to which mutation 

operator is applied to modify a chromosome. As mentioned previously, a mutation 

operator is designed to diversify the population, whereas a mutation rate defines the 

rate of diversification. A high mutation rate increases the diversification level and 

helps guiding the search out the local optima. However, a high mutation rate could 

also cause the loss of information and lead to a random search. 

Most GA implementations have assumed that the probability or rate of using a 

particular operator is fixed at the outset and remains the same throughout; e.g., a 
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mutation is applied with a low probability while crossover is applied with a high 

probability, the most common settings are shown in Table 5. 

Author    

De Jong (1975) 0.6 0.001 60 

Grefenstette (1986) 0.95 0.001 30 

Table 5 Static rates 

However, to prevent the GA from premature convergence, one might make use of a 

procedure where the GA’s parameters change during the process, some of these 

procedures are reviewed in the study by Daridi et al. (2004).  

Author Dependence 

Schaffer and Morishima (1987) Performance of the produced offspring 

Fogarty (1989) Time 

Hesser and Männer (1991) Population size and chromosome’s length 

Srinivas and Patnaik (1994) Fitness value  

Bäck and Schütz (1996) Time, chromosome’s length and maximum 
number of generations 

Daridi et al. (2004) chromosome’s length and life time 

Table 6 Adaptive GA 

Adaptive GAs (AGA) do not require prespecified parameter value since these 

parameters are determined by the GA, see Table 6. Moreover, self-adaptation could 

improve the GAs performance significantly (Bäck, 1996; Daridi et al., 2004). 

(5) Replacement mechanism 

New offsprings should be introduced into the population by replacing an existing 

chromosome. In other words, the new generation is created by replacing a chromosome 

from the previous generation with a new offspring hoping that the new generation’s 

quality, on average, is better than the previous one. In the replacement mechanism, a 

selection criterion is used to delete a chromosome from a previous generation and end 

its life cycle. A default criterion could be random selection of chromosomes to be 

deleted. The most common selection criterion used in replacement (Smith and Vavak 

1999, Mumford 2004) are outlined as follows: 

Delete oldest or worst: based on this criterion the oldest or worst chromosome is 

selected to be deleted from the generation.  
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Delete parents: since the parents’ genes have been passed on to their offsprings, one 

might choose to delete the parents. However, in some cases this replacement 

mechanism could lead to loss of information about the order of genes. 

Delete-all: this selection criterion selects all chromosomes from the previous 

generation to end their life cycle and replaces them with new offspring. Since the 

parents’ genes have been passed on to their children, the information they had will not 

be lost, however, if only a subset of the previous generation had been selected for 

mating, the genes of chromosomes that were not in the mating pool will be lost. On 

the other hand, this selection criterion is parameter-free and easy to implement. 

Steady-state: as it was mentioned before, this selection mechanism selects a subset of 

chromosomes to reproduce and a subset to be replaced with new offspring, where both 

subsets’ size is equal and a parameter that should be specified. In addition, one should 

specify the two selection criteria, one for mating selection criterion and the other is for 

the replacement criterion. 

Replacement-with-no-duplicates: based on this criterion, whichever selection 

mechanism is used, the criterion should also check the new offspring is not a repetition 

of an existing chromosome. 

Moreover, there is no guarantee that the best member of a population will survive from 

one generation to the next, except for deleting the worst chromosome. To overcome 

this issue, one may use the elitism strategy. In the elitism strategy, GA is not permitted 

to delete the best member of the current population. 

(6) Stopping criteria 

Several stopping criteria can be used in genetic algorithms, such as a predetermined 

number of iterations or generations is reached; the computational time exceeds a 

predetermined time limit; the best objective function value found so far is not updated 

for a predetermined number of generations; a measure of the population diversity falls 

below a pre-specified threshold, etc. (Safe et al., 2004; Aytug and Koehler, 1996). 
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 Hyperheuristic  

Although tailor-made methods can produce good solutions within a reasonable time, 

they are usually limited to a particular type of problem. Since real world problems are 

likely to change over time, heuristics or metaheuristics might produce poor solutions 

or none at all. Moreover, some heuristics can deliver good solutions at certain but not 

all points. In other words, they might produce good quality solutions for some 

instances, but not all, of a specific problem. Thus, one can use a higher-level 

methodology to select or generate heuristics to solve COPs (Chakhlevitch and 

Cowling, 2008; Burke et al., 2010). These methodologies are call Hyperheuristics. 

Fisher and Thompson (1963) birthed the idea behind hyperheuristics in the 1960s. In 

1997, Denzinger et al. used the term ‘hyper’ in their technical report. They designed a 

method that combines several artificial intelligence algorithms resulting in an 

automated theorem prover. In 2000, Cowling et al. used the term ‘hyperheuristic’, and 

later Cowling et al. (2000, 2002a, b, c) developed the ideas behind hyperheuristic and 

applied it to scheduling problems. 

At first, the term hyperheuristic (HH) was used to describe “heuristics to choose 

heuristics” (Cowling et al., 2000). Chakhlevitch and Cowling (2008) defined 

hyperheuristics as high-level heuristics that manage a set of low-level heuristics to find 

or design a good solution method for a COP by only making use of limited problem-

specific information. On the other hand, Burke et al. (2010) defined hyperheuristics as 

automated methodologies for selecting or generating heuristics to solve hard 

computational search problems. Later, Burke et al. (2013) defined hyperheuristics as 

search methods or learning mechanisms for selecting or generating heuristics for 

COPs.  

 Hyperheuristic Classification 

One of the hyperheuristic classifications by Chakhlevitch and Cowling (2008) 

classified hyperheuristics into four categories, namely hyperheuristics based on the 

random selection, greedy and peckish hyperheuristics, metaheuristic-based 
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hyperheuristics and hyperheuristics employing learning mechanisms to manage low-

level heuristics, see Table 7. A summary of each category is as follows: 

Table 7 Chakhlevitch and Cowling (2008) hyperheuristics classification 

I. Random Selection 

This type of hyperheuristic is based on the random choice of low-level heuristic. Given 

a set of low-level heuristics, a random LLH is applied to the problem, although it might 

not produce a better solution. This search strategy is fast and straightforward, but it 

does not guarantee a better solution (Chen et al., 2016). However, modifications of 

random search and hybridizing it with other techniques, such as more advanced move 

acceptance techniques, could lead to better performance. 

II. Greedy and Peckish 

 Greedy based hyperheuristics, in each stage of the search, select locally optimum LLH 

with the hope of finding the global optima. Peckish search strategies are a modification 

of greedy search strategy, which in each stage chooses LLH from a candidate list of 

the best neighbours of current LLH. These search strategies are time consuming and 

do not guarantee to find the best solution.  
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III. Metaheuristic-based hyperheuristic 

In metaheuristic-based hyperheuristic, a metaheuristic is used as a high-level search 

strategy that guides the search away from local optima and efficiently selects the best 

or close to the best LLH. Variants of metaheuristic-based hyperheuristics has been 

proposed; such as hyperheuristics based on genetic algorithms (Fang et al.,1994; Hart 

et al., 1998, 1999; Cowling et al., 2002; Han et al., 2002; etc.), simulated algorithm 

(Bai and Kendall, 2003; Storer et al., 1995; Soubeiga, 2003) , tabu search (Storer et 

al., 1995; Burke et al., 2004, 2005; Burke and Soubeiga, 2003; etc.) and variable 

neighbourhood search (Qu and Burke, 2005; Chen et al., 2016). 

GA-based hyperheuristic operate similar to traditional GA, although they have some 

differences. Traditional GA’s search space is the problem space; however, GA-based 

hyperheuristic’s search space is a set of LLH. In traditional GA, a chromosome 

represents a solution to the problem. On the contrary, GA-based hyperheuristic makes 

use of indirect presentation of chromosomes. A GA with the indirect encoding of the 

chromosome, instead of representing the solution itself, represents how the solution is 

solved; for example, a chromosome could represent a sequence of LLHs or parameters 

of a single LLH. GA-based hyperheuristic evolves these chromosomes to find better 

chromosomes. 

Hyperheuristics based on SA, TS and VNS have similar search strategy as the 

traditional SA and TS. SA and TS based hyperheuristic s search the neighbourhood of 

current LLH and decide whether to accept or reject the new neighbour. On the other 

hand, VNS-based hyperheuristics use a set of neighbourhood structures to search the 

LLH search space.  

IV. Hyperheuristics with Learning Mechanisms 

As it is mentioned before, a learning mechanism is used to gather historical data, about 

the search space and hyperheuristic’s performance, to select a promising LLH. 

Examples of learning mechanisms are choice function, reinforcement learning, 

learning classifier system and case-based reasoning.  

Several other classification and categories are proposed such as Soubeiga (2003), Bai 

(2005) and Ross (2005), Bader-El-Den and Poli (2007), Burke et al. (2010, and 2013). 

For more detail on these classifications and categories see Appendix G.  
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 Hyperheuristic specifications  

The goal of designing a hyperheuristic method is finding an optimal or near optimal 

(sequence of) low-level heuristic(s) or component(s), depending on the nature of the 

hyperheuristic and its search space. As it is shown in the general hyperheuristics 

framework, hyperheuristics makes use of a search strategy to search the 

neighbourhood of the current LLH for a better neighbour, which could be using a 

learning mechanism or not, and decides whether to accept or reject the neighbour based 

on acceptance criterion. Thus, we can categorise the hyperheuristic specifications into 

HH nature, search space nature, HH search strategy, acceptance criteria and learning 

mechanisms, see Figure 3. 

 

Figure 3 Hyperheuristic specifications 

Since any combination of the HH nature, search space nature, HH search strategy, 

acceptance criteria and learning would lead to an HH category where each can have 

different performance, upsides and downsides. Thus, one can make use of several 

components to implement a better HH to overcome a single category’s limitation and 

design a general framework for hyperheuristics, see Figure 4. Note that, the 

implementation decisions of hyperheuristic are the choice of the hyperheuristic 

specifications. 
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Figure 4 Hyperheuristic framework 

 Local search in the space of infeasible solutions 

Up to this point in time, most of the published literature is on local search methods in 

the feasible space, whether classical local search, metaheuristics or hyperheuristics, 

with few exceptions searching in the feasible-infeasible solution space. The first search 

methods start and explore the search within the feasible space, without allowing the 

search to leave the feasible space. Similarly, the second search methods start the search 

from within the feasible space, however, they allow the search to temporarily leave the 

feasible space. On the other hand, one can search start from and explore the infeasible 

space, each time reducing infeasibility, and progress towards the feasible space. This 

method was first proposed, called DLS, by Ouenniche and his collaborators 

(Ouenniche et al., 2017) to solve the TSP by exploring its infeasible space. 
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As compared to primal local search-based heuristics’ designs, whether classical local 

search or metaheuristics, Ouenniche et al. (2017) integrated design features of optimal 

algorithms. DLS starts the search with an infeasible solution (e.g., the solution of a 

relaxation of the problem under consideration) and progresses towards a feasible 

solution by using new neighbourhood structures to repair the intermediate infeasible 

solutions. Moreover, to prevent exploring search areas with no potential of good 

solutions they used a bounding scheme. Ouenniche et al. (2017) also made a 

conceptual comparison between DLS and B&B, see Table 8. For more details, refer to 

Ouenniche et al. (2017). 

B&B DLS 

Break one sub-tour at a time Break two or more sub-tours at a time 

Examine all possible ways of excluding or 
including one edge at a time of one sub-tour 

Examine all possible ways of breaking two or more 
sub-tours (e.g., breaking one or more edges in each 
sub-tour) and connecting them 

At each level of the B&B tree – except level 0, 
exclude (resp., include) one edge of one of the 
sub-tours and keep all the remaining edges 
free except those fixed at higher levels of the 
tree, if any 

Exclude two (or more edges), one (or more edges) 
from each sub-tour, and include in the next solution 
all the remaining edges in the sub-tours 

At each node of the tree, a re-optimization 
process is invoked, which could lead to a new 
infeasible or feasible solution 

At each node of the tree, a ‘‘restricted’’ 
optimization process is invoked, which could lead 
to a new infeasible or feasible solution, but with 
potentially more similarity to the solution of the 
parent node as compared to B&B. To diversity in 
terms of structure of partial solutions and explore 
more nodes as done in B&B, we use a second type 
of moves similar in spirit to branch exchange 
improvement 

A new branch would not necessarily lead to a 
reduction in the number of sub-tours 

Each infeasible neighbourhood move 
systematically reduces the number of sub-tours by 
one or more 

Break one sub-tour at a time Break two or more sub-tours at a time 

Table 8 Comparative analysis between B&B and DLS 

This thesis refines and extends Ouenniche et al (2017) proposed infeasible search 

framework. We propose a generic and parameterized local search in the space of 

feasible space (GPILS) as a refinement of the DLS framework proposed by Ouenniche 

et al (2017), where we customise GPILS to solve the TSP. 
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 Conclusion 

In this chapter, the most common and relevant mathematical formulations, properties 

and relaxations of the TSP, descriptions of the solution methodologies and state-of-

the-art techniques are presented. We classified the heuristic solution approaches into 

three categories; namely, feasible (primal), infeasible-infeasible and infeasible 

methodologies. Most research have been done in the first two categories, however, to 

the best of our knowledge there is still not much work done in the third category, i.e. 

infeasible methodologies. 

In the rest of this thesis we shall contribute to the methodologies in the infeasible 

search space by refining and enhancing the work done by Ouenniche et al (2017). We 

shall propose an enhanced framework for local search in the infeasible space and 

automation of the choice of its parameters using a hyperheuristic framework. We also 

investigated the reusability of the proposed methodology for unseen (new) problem 

instances. 
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3. A Generic Parameterised 
Infeasible Local Search 
Framework 

So far, most of the published literature on local search methods, whether classical local 

search, metaheuristics or hyperheuristics, starts with a feasible solution and only 

searches in the feasible solution space to find a better solution. Note however that there 

are few exceptions where the search can move into the infeasible space, but it is forced 

to move back to the feasible space. On the other hand, one can start from and explore 

the infeasible space, each time reducing infeasibility, and progress towards the feasible 

space. Ouenniche and his collaborators (Ouenniche et al., 2017) were the firsts to 

propose such methods, called dual local search (DLS), to solve the TSP by exploring 

its infeasible space. DLS is a local search framework designed to solve COPs so that 

the search starts within the space of infeasible solutions and progresses towards the 

space of feasible solutions. Once the infeasible search lands in the feasible space, one 

could choose to either end the search or continue exploring the feasible space. When 

the option of choosing to explore the primal space is chosen, the design becomes an 

infeasible-feasible local search. Note, however, that one could explore the primal space 

using either a primal methodology or a feasible-infeasible methodology.  

The contribution of this chapter is to investigate the possibility of starting from an 

initial infeasible solution and progress toward the feasible space by searching the 

infeasible solution space. Therefore, in this chapter, we shall extend and refine DLS 

proposed by Ouenniche et al. (2007) and propose a generic parameterised infeasible 

local search algorithm referred to as GPILS and discuss the rationale behind it. The 

proposed framework is stated to accommodate any COP. For illustration purposes, we 

shall provide a customised version for the TSP. Then, we shall discuss implementation 
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decisions and the empirical analysis. Later, we shall present the conclusion and final 

remarks of this chapter. 

The rationale behind the design of a generic parameterised infeasible local search 

(GPILS) is to integrate the design features of optimal algorithms (e.g., branch-and-

bound) into local search. To be more specific, the features of GPILS borrowed from 

optimal methodologies include starting with an infeasible solution, making use of a 

bounding scheme to prevent exploring search areas with no potential for good 

solutions and using infeasible neighbourhood search structures that exploit exact 

methods features such as branching rules.  

In this chapter, we divide the moves of such infeasible neighbourhood search 

structures into two categories; namely, Type I moves and Type II moves, where Type 

I moves define a partial “repair” mechanism for infeasible solutions, and Type II 

moves define a local improvement mechanism of components of infeasible solutions. 

In analogy with optimal solution methodologies; e.g., branch-and-bound, we make use 

of Type II moves to avoid under-exploring the search tree, or equivalently to allow 

exploring search tree branches that would be unexplored otherwise. The flowchart of 

the proposed GPILS framework is provided in Figure 5, and a detailed generic pseudo-

code suitable for any given COP is provided afterwards in Table 9.  

The proposed infeasible search framework could be adapted to solve any 

combinatorial optimisation problem. In the following subsections, a customised 

version is provided for solving the TSP; see Table 10 for a detailed generic pseudo-

code customised for solving the TSP. Notice that unlike DLS, within our GPILS, we 

make use of a recursive function to explore the infeasible neighbourhood. The 

rationale behind this choice is discussed in the next section. Hereafter, we shall discuss 

the implementation decisions of the proposed infeasible search framework. 

3.1. Initialisation of the bounding scheme and the seed 

As it was mentioned previously, the infeasible local search starts the search with an 

infeasible solution and progress towards the primal solution using a new 
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neighbourhood structure, while pruning the nonpromising search areas considering 

abounding scheme. The bounding scheme consists of a primal bound and a dual bound.  

 

Figure 5 Flowchart of the GPILS framework 

In order to initialise the primal (upper) bound, one has to choose a primal method, say 

, to use for obtaining a primal solution or a feasible tour, say , to the TSP and use 

it to initialise the primal bound ( ); i.e., set  to the objective function value or 

total distance of . In this thesis, the choice of the method to devise a primal solution 

for initialising the primal bound is represented by the categorical variable , where 

a default category could involve using a randomised procedure, some categories could 

correspond each to a different construction heuristic for the TSP (e.g., nearest 

neighbour procedure, Clarke and Wright savings procedures, insertion procedures, 

nearest merger procedure), and other categories could correspond to any combination 

of a construction heuristic and a primal local search method for its improvement (e.g., 

construct a TSP tour using the nearest neighbour procedure and improve it using 

simulated annealing). 

 

Compute initial infeasible 
solution and initialise dual bound 

and seed 

COP and GPILS 
implementation 

decisions 

Start 

Feasible 
solution 

Compute initial primal solution 
and initialise primal bound 

Explore, with Type I and Type II 
moves, the infeasible 
neighbourhood of current seed for 
a better neighbour while pruning 
non-promising ones 

Current seed is 
infeasible? 

Update current seed and 
bounding scheme, if 

necessary. 

Yes No 

Explore feasible 
space? 

No 

Explore feasible or feasible - 
infeasible space for better 

solution, if any. 

Yes 

Stop 



53 

 

Input 
An instance of the COP under consideration. 

Output 
Feasible or primal solution to the COP under consideration. 

Implementation Decisions 
// Choose how to Initialise the bounding scheme and the seed 
Choose a primal method, say , to use for obtaining a primal solution, say , to the COP under 
consideration; 
Choose a infeasible method, say , to use for obtaining a infeasible solution, say ,  to the COP 
under consideration; 
// Choose how to explore the infeasible space 
Choose the repair mechanism, or equivalently the Type I moves ( 1 ), to use in exploring the 
infeasible space of COP as well as the performance metric to be used for assessing infeasible 
neighbours ( ); 
Choose the local improvement mechanism, or equivalently the Type II moves ( 2 ), to use in 
improving components of the infeasible neighbours generated by Type I moves; 
Choose the design of the infeasible neighbourhood search structure to use in exploring the infeasible 
space of COP (infeasible_neighbourhood_structure). One of two alternatives could be chosen. The 
first option is to use Type I moves to explore the infeasible space and select the best neighbour, then 
Type II moves are used to improve the best neighbour locally – we refer to this design as improve 
the best neighbour (IBN) design. The second option is to immediately use Type II moves to improve 
every neighbour obtained with Type I moves – we refer to this design as improve all neighbours 
(IAN) design. 
// Choose whether to explore the primal space and how 
Choose whether to explore the primal space or not (explore_primal_space). When the option of 
exploring the primal space is chosen; i.e., explore_primal_space = 1, one has to choose the primal 
neighbourhood structure to use (primal_neighbourhood_structure), the improvement mechanism 
(primal_improvement_mechanism) as well as the performance metric to be used for assessing primal 
neighbours ( ). 

Initialisation Step 
// Initialise the bounding scheme and the seed 
Use  to initialise the primal bound ( ); i.e., set  to the value of the objective function of the 
COP under consideration evaluated at , say ; 
use  to initialise the dual bound ( ) and the seed, say ; i.e., set  to the objective function 
value of , say , and set the seed  to ; 

Iterative Step 
WHILE current seed is an infeasible solution to COP DO { 

Explore the infeasible neighbourhood – as specified by Type I moves, Type II moves and 
infeasible neighbourhood search structure – of the current seed  for a better neighbour, 
while pruning non-promising infeasible neighbours, and update the current seed; 
Update the bounding scheme , , if necessary; 

} 
IF explore_primal_space = 1 THEN  

Use a primal or a feasible-infeasible local search framework to explore the primal space for a 
better solution, if any, according to the choices made through primal_neighbourhood_structure, 
infeasible_neighbourhood_structure, primal_improvement_mechanism, and PMetric; 

Table 9 Pseudo-code of the proposed GPILS framework 
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Input 

Instance of the TSP; i.e., the distance or cost matrix, say . 

Output 

Feasible or primal solution to the TSP. 

Initialisation Step 

// Initialise the bounding scheme and the seed – section 2.1 for more details  

Choose a primal method, say , to use for obtaining a primal solution, say , to the TSP and use it 

to initialise the primal bound ( ); i.e., set  to the total cost of the TSP tour , say ; 

Choose a infeasible method, say , to use for obtaining a infeasible solution, say , to the TSP and 

use it to initialise the dual bound ( ) and the seed, say ; i.e., set the seed  to , and set 

 to the total cost of , say ; 

// Choose how to explore the infeasible space – section 2.2 for more details and implementation 

decisions 

Choose whether or not to exploit domain knowledge to enhance the efficiency and/or the 

effectiveness of the search (exploit_domain_knowledge).  

IF exploit_domain_knowledge is set to 1, THEN the following repair and local improvement 

mechanisms, or equivalently Type I and Type II moves, should be candidate set-based, where a 

candidate set, say , refers to a subset of the set of possibilities to perform Type I and Type II moves 

defined so as to narrow down the search space to “promising” regions as specified by a set of criteria 

that exploit the domain knowledge of the TSP instance under consideration; 

Choose the repair mechanism, or equivalently the Type I moves ( 1 (.)), to use in exploring the 

infeasible space of the TSP as well as the performance metric to be used for assessing infeasible 

neighbours ( ): 

1 (breaking_method(.), patching_method(.), ), 

where Type I moves consist of two main operations; namely, a breaking operation: 

breaking_method ( , subtours_selection_criterion, , arcs_to_break_selection_criterion), 

moreover, a patching operation: 
_ , _ _ , 	 _ _ _ _ , 	  

_ _ _ _ , _ , _  ,		 , 	 , 

_ _ _ , _ _ _ ,  
_ _   

in sum, one has to choose the initial parameters of these functions – see section 2.2 for more details; 

Choose the local improvement mechanism, or equivalently the Type II moves ( 2 ), to use in 

improving components of the infeasible neighbours generated by Type I moves; 

Choose the design of the infeasible neighbourhood structure to use in exploring the infeasible space 

of the TSP (INS). One of two alternatives could be chosen. The first option is to use Type I moves to 

explore the infeasible space and select the best neighbour, then Type II moves are used to improve 

the best neighbour locally – we refer to this design as improve best neighbour (IBN) design. The 
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second option is to immediately use Type II moves to improve every neighbour obtained with Type 

I moves, we refer to this design as improve all neighbours (IAN) design. 

// Choose whether to explore the primal space and how 

Choose whether to explore the primal space or not (explore_primal_space). When the option of 

exploring the primal space is chosen; i.e., explore_primal_space = 1, one has to choose the primal 

neighbourhood structure to use (PNS), the improvement mechanism 

(primal_improvement_mechanism) as well as the performance metric to be used for assessing primal 

neighbours ( ). 

Initialise iteration counter, say , to 1;  

Initialise the number of subtours to break and merge at iteration , say , to ; 

Initialise the number of edges to break in each subtour  at iteration , say , to  ; 

Iterative Step 

WHILE current seed is an infeasible solution to the TSP DO { 

// Explore the infeasible neighbourhood – as specified by Type I moves, Type II moves and  

// infeasible  neighbourhood structure – of the current seed  for a better neighbour, while  

// pruning non-promising infeasible neighbours 

Choose the set, say , of subtours of the current seed, , to break and patch at a time, where 

the specific set of subtours  is chosen based on subtours_selection_criterion; 

Choose the set of candidate edges to break, say , for each subtour  to be used at iteration , 

1,… , , based on arcs_to_break_selection_criterion and initialise the array of indexes of 

edges to break in each subtour to the empty set; i.e., set ∅ for 1,… , ; 

Initialise subtour index counter  to 1, edge index counter ℓ to 1, and loop ℓ initialiser ℓ  to 1; 

// Call the recursive infeasible neighbourhood search function to search for the best neighbour of  

// ,  say ∗ – see Table 24 for a detailed pseudo-code 

∗ = RINS	 , , , , , , ℓ, ℓ , , , 1 . , 2 , ,	 

∗ , _ ; 

// Improve the current infeasible solution ∗ locally using Type II moves, if required 

IF INS = IBN  THEN   ∗ = PerformTypeIIMove 2 , ∗ ; 

Increment iteration counter  by 1; that is, set 1; 

Update the current seed,	 ; i.e., set ∗ ; 

Update the bounding scheme , , if necessary; 

} 

IF explore_primal_space = 1 THEN  

Use a primal or a feasible-infeasible local search framework to explore the primal space for a better 

solution, if any, according to the choices made through PNS, INS, 

primal_improvement_mechanism, and PMetric; 

Table 10 Pseudo-code of the proposed GPILS framework for TSP 
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As to initialising the dual bound and the seed, one has to choose a infeasible space-

based method, say , to use for obtaining a infeasible solution, say , to the TSP and 

use it to initialise the dual bound ( ) and the seed, say ; i.e., set  to the 

objective function value or total distance of , say , and set the seed  to . 

An infeasible solution  to the TSP instance under consideration is a set of 

subtours	 , 1, … , , where  denote the  subtour at iteration 	and  

denote the number of subtours in the infeasible solution. Note that , … ,  cover 

all TSP nodes.  

The initial infeasible solution  could be obtained in different ways. In this thesis, the 

choice of the method to generate the initial infeasible solution is represented by a 

categorical variable	 , where a default category could involve using a randomised 

procedure, some categories could correspond each to a different relaxation of a TSP 

formulation (e.g., AP-based relaxation of the TSP), and other categories could 

correspond to some rule-based heuristics or clustering methods, see Appendix H, to 

allow for exploiting the structure of a TSP instance (e.g., -means).  

With respect to rule-based heuristics, we propose a parameterised infeasible heuristic 

which we call  where the parameters are the number of subtours , the sizes of 

subtours | |, 1, … , ,  a decision rule  for assigning nodes to subtours or 

clusters, unless the nodes are chosen randomly, a heuristic for constructing a tour  

that visits each node in cluster  once and only once, and an option for locally 

improving the subtours, see Table 11for the pseudo-code of ; ; ,

1, … , ; ;| |, 1, … , ; ; ; ; .  

To conclude this section, we would like to point out that  only requires slight 

modifications to generate a good quality infeasible solution for other routing problems. 

For example, through the decision rule for assigning nodes to subtour/cluster or a 

decision rule for constructing a tour one could address additional constraint such as 

capacity or time windows constraints. In future research, we intend to apply this 

method to other routing problems. 
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Choose whether to determine the clusters one by one or all at once. This decision is represented by 

a binary variable , where 0 refers to the first option and, 1 refers to the second 

option; 

IF 0 THEN { 

Choose the number of subtours  in the infeasible solution; 

Choose the sizes | |, 1, … ,  of subtours in the infeasible solution; 

Choose a decision rule  for assigning nodes to subtour or cluster , 1, … , . This 

decision is represented by a categorical variable , where a default category could involve 

using a randomised procedure (i.e., nodes are arbitrarily assigned to clusters) and other categories 

could correspond each to a different criterion (e.g., nearest neighbour, farthest neighbour);} 

ELSE { 

Choose a decision rule for assigning nodes all at once to subtours or clusters. This decision is 

represented by a categorical variable , where each category corresponds to a different 

clustering method). Depending on the choice of the clustering method, one might have to specify 

the number of subtours  in the infeasible solution or leave it to the clustering method; } 

Choose a decision rule  for constructing a tour  that visits each node in cluster  once and 

only once. This decision is represented by a categorical variable , where a default category could 

involve using a randomised procedure (i.e., random tour) and the remaining categories could 

correspond each to a construction heuristic; 

Choose whether to improve the subtours of the infeasible solution locally or not. This decision is 

represented by a binary variable	 . If this option is on; that is, 1, then the improvement 

mechanism  and the underlying neighbourhood structure  should be specified, where  is 

a categorical variable representing the different options for the improvement mechanism (e.g., 

classical local search algorithms, metaheuristics), and  is a categorical variable representing the 

different options for the neighbourhood structure (e.g., 2-opt, 3-opt). 

IF 0 THEN { //Determine clusters 

FOR 1	 	  DO { 

Amongst the nodes not yet assigned to any cluster, assign | | nodes to cluster  according 

to the decision rule specified by ;}} 

ELSE Then Determine clusters and their number, if necessary, according to the decision rule 

specified by ;  

FOR 1	 	  DO // Construct and eventually improve subtours {  

Construct a tour  that visits each node in cluster  once and only once according to the decision 

rule specified by ; 

IF 1  THEN Improve subtour  according to the improvement mechanism and the 

neighbourhood structure specified by  and , respectively; }} 

Table 11 Pseudo-code of the parameterised infeasible-based heuristic (PIH) 
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3.2. Exploration of the infeasible space 

Exploration of the infeasible space requires several decisions to be made. First, one 

must choose the repair mechanism, or equivalently the Type I moves, to use in 

exploring the infeasible space of the TSP as well as the performance metric to be used 

for assessing infeasible neighbours. Second, one must choose the local improvement 

mechanism of components of the infeasible neighbours generated by Type I moves, or 

equivalently the Type II moves. Third, one must choose the design of the infeasible 

neighbourhood structure to use in exploring the infeasible space of the TSP. These 

decisions are discussed hereafter. 

3.2.1. Repair mechanism 

A variety of repair mechanisms could be designed for use at this stage. We propose a 

generic and parameterised repair mechanism that involves two basic operations: (a) 

breaking a number of subtours and (b) patching the broken subtours to form a single 

larger subtour. The implementation of this repair mechanism of an infeasible solution 

requires a number of decisions to be made; namely:  

 Specification of the number of subtours to break and patch at a time, say ;  

 Specification of a selection criterion according to which subtours to break and 

patch at a time is chosen;  

 Specification of the number of arcs to break in each subtour, as part of the break 

and patch or repair mechanism, say , 	 1, … , ;  

 Specification of the selection criteria according to which the arcs to break and 

those to add, as part of the break and patch operations, are chosen;  

 Specification of a metric to use for measuring the performance of the break and 

patch or repair operation. 

The decisions above are discussed hereafter. 

3.2.2. Number of subtours to break and patch 

The specification of the number of subtours to break and patch at each iteration, say , 

is represented by a numerical variable and takes on integer values ranging from 2 to 
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the current number of subtours in the current infeasible solution, . In our empirical 

investigation, we considered several values for , see section 3.7. Note however that, 

from a computational perspective, a trade-off should be made between choosing 

relatively high values or relatively low values for parameter	 . Choosing high values 

for parameter  would require a relatively small number of iterations to converge but 

would require exploring a relatively large number of possibilities for breaking  

subtours and patching them. However, choosing relatively low values for parameter	  

would require a relatively large number of iterations to converge but would require 

exploring a relatively small number of possibilities for breaking  subtours and 

merging them. In our preliminary empirical investigation, we observed that, for most 

TSP instances, the initial infeasible solution obtained by solving an AP-based 

relaxation consists of a relatively large number of subtours of small cardinality (e.g., 

2 and 3). In this case, a strategy that seems to deliver very good solutions consists of 

choosing a relatively large number of these small cardinality subtours at the beginning 

of the infeasible search process and decrease such number as the search progresses. In 

sum, in this case, a dynamic scheme for the choice of  seems to be a compromise 

between quality of the solution and the computational requirement. The above-

mentioned observations should be exploited when a single instance of GPILS is 

implemented; that is, the analyst specifies all parameters of GPILS. In our empirical 

investigation, the parameters of GPILS were optimised using a metaheuristic.  

3.2.3. Subtours selection criteria 

The specification of the selection criteria according to which subtours to break and 

patch at a time is chosen is represented by the categorical variable 

subtours_selection_criterion. In our empirical investigation, we considered a 

relatively large number of categories including several “pure” categories where a 

“pure” category refers to one that makes use of a single criterion, shown in Table 12. 

Along with these categories a variety of hybrids where more than one criterion defines 

a category and are used sequentially to select subsets of subtours (e.g., first select  

largest subtours, then the remaining  subtours are selected according to the 

closest subtour length criterion) can be considered. 



60 

 

As is shown in Table 12, the subtour selection criterion could be categorised as cost-

based (shortest or longest), cardinality-based (smallest or longest), distance-based 

(closest or farthest) and merging cost-based criteria (cheapest or most expensive). 

Cost-based criteria require calculating the subtour cost, which could include travel 

cost, fuel cost, loading and unloading cost, etc. In the case of STSP, the subtours cost 

is the sum of travelled arc’s weight. The cardinality-based criteria are based on the 

number of nodes in the subtour. The distance-based criteria (closest and farthest 

subtours) require calculating the distance between the subtours. Subtours distance 

matrix 	  is used for distance-based criteria. In order to calculate  one has to 

compute the minimum distance between all pairs of subtours	 , 	 ℓ , where a subtour 

∈ ̅ is specified by its cardinality | | and its sequence of nodes	 1 , 	 … , 	 | | , 

see pseudocode in Table 13 and example in Figure 6.  

Paths to merge Selection Criteria Description 

Arbitrary  Random choice of paths 

Cardinality-Based Based on number of nodes in the subtour  

Cost-Based Based on travel cost/length of the subtours 

Distance-Based Based on the distance between the subtours 

Merging Cost-Based Based on the cost of merging each pair of subtours 

Table 12 Subtours selection criterion 

Input 

; ̅: Subset of components or subtours of the infeasible solution ̅ ; 1, … , :  

Output 

: Subtours distance matrix	  

Iterative Step 

FOR all pairs of subtours , 	 ℓ , compute the minimum distance between subtour  and subtour 

 as follows: 

, 	 ℓ 	 1 , ℓ 1 , … , 1 , ℓ | | 1 , … , | |

1 , ℓ 1 , … , | | 1 , | | 1 ; 

Table 13 Subtours distance matrix 

 



61 

 

 

Figure 6 Subtours distance 

 

Input 

; ̅: Subset of components or subtours of the seed ̅ ; 1, … , :  

Output 

: Subtours merging cost matrix,	  

Initialisation Step 

Initiate subtours merging cost matrix , ∞; 

Iterative Step 

FOR each pair of subtours	 , 	 , compute the minimum merging cost of subtour  and  as 

follows: 

_ _ , 1 , ℓ 1  ; 

_ _ 1 , 1 , ℓ 1 _ _ 	;  

_ _ 2 , 1 , ℓ 1 _ _ 	; 

IF ( _ _ 1 _ _ 2  & 	 _ _ 1

, ) THEN 

	 ,   _ _ 1; 

Else IF ( _ _ 1 _ _ 2  & 	 _ _ 2

, ) THEN 

	 ,   _ _ 2; 

Table 14 Subtours merging cost matrix 
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Furthermore, merging cost-based criterion is based on the cost of merging a pair of 

subtours. For this criteria subtours merging cost matrix  is computed as shown in 

Table 14 and Figure 7. 

3.2.4. Number of arcs involved in repair mechanism 

The specification of the number of arcs to break in each subtour, as part of the break 

and patch or repair mechanism, say | |, 	 1, … , , is represented by a 

numerical variable and takes on integer values ranging from 1 to the cardinality of 

subtour , | |, when no constraints are imposed on the arcs to break; however, this 

upper bound could be lower / tighter when such constraints are imposed by previous 

decisions such as arcs_to_break_selection_criterion and 

arcs_to_add_selection_criterion. In our empirical investigation, we considered 

several values for  , see section on empirical results.  

Note that a trade-off should be made between choosing relatively high values for 

parameters 	 1, … ,  and low values. In fact, high  values would result in a 

relatively high-level of solution perturbation and would lead to a relatively large 

number of possibilities for connecting the broken subtours as well as a relatively large 

number of objective function evaluations, whereas low  values would result in 

relatively stable solution structures and keep the computational requirements relatively 

low. These observations should be exploited when GPILS is implemented and the 

analyst specifies its parameters. In our empirical investigation, the parameters of 

GPILS were optimised using metaheuristic. However, to keep the computational 

requirements reasonable, we set the upper bound on . 

3.2.5. Arcs selection criteria 

The specification of selection criteria according to which the arcs to break and those 

to add, as part of the break and patch operations, are chosen is represented by two 

categorical variables; namely, arcs_to_break_selection_criterion and 

arcs_to_add_selection_criterion, respectively. A default selection criterion could be 

defined whereby no limitation is imposed on the choice of the arcs to break. In this 

case, the number of possible arcs to break and those to add is ∑ . Alternatively, 
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one can consider several categories for arcs_to_break_selection_criterion and 

arcs_to_add_selection_criterion using the concept of candidate sets, say , to limit 

the number of combinations with a prespecified cardinality, say . To be more 

specific, the number of possible arcs to break and those to add will be reduced 

to	∑ . 

Figure 7 Subtours merging cost matrix 

Note that more than one candidate sets could be used as categories, where these 

candidate sets or categories could be defined using a single criterion or multiple 

criteria. For example, one could define three candidate sets based on arc weight (e.g., 

travel cost, travel distance, travel time) as a single criterion along with two thresholds 

for arc weights chosen to reflect, for example, small, medium and large weights. A 

candidate set could be not to involve any previously added edges throughout the whole 

solution process or for a prespecified number of iterations. Alternatively, one could 

exploit the distribution of weights of arcs between pairs of nodes to setup the categories 
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or candidate sets. In our empirical investigation, we used -NN and considered several 

values for , see section 3.7. 

As to the definition of the categories of arcs_to_add_selection_criterion, several 

categories could be defined; for example, a default category would not put any 

restriction on the possible set of arcs to use in connecting the broken subtours, a second 

third category would not involve any previously broken edges throughout the whole 

solution process; and a third category would not involve any broken edges throughout 

a prespecified number of iterations. Alternatively, one could use weight information 

to limit the number of possibilities of connecting the broken subtours. Once again 

hybrids, where more than one criterion defines a category, could be used. The implicit 

choice of the subset of arcs from which to select those to add for repairing a solution 

requires the selection of a patching method according to which arcs will be added to 

connect the broken subtours. Note that specific choices of 

arcs_to_break_selection_criterion and arcs_to_add_selection_criterion could 

influence one another and therefore would need to be consistent. For example, if the 

criterion or criteria chosen for the selection of arcs to break are less (respectively, 

more) restrictive than those for the selection of arcs to add, one might face a situation 

where the repair operations cannot be performed. In sum, the moves in the parameter 

space of GPILS should be chosen to avoid these inconsistencies, as will be discussed 

later.  

In this study, we propose a generic parameterised patching procedure, see Table 15 for 

pseudo-code. Inputs to this procedure are summarised as follows:  

TSP instance distance matrix ; a set of paths  to patch with cardinality # ; 

the type of design of the patching operation, as specified by 

type_of_patching_operation, which depends on whether the chosen design is intended 

to expand the initial path or the initial subtour, where type_of_patching_operation = 0 

refers to a design where the patching procedure patches all paths, a subset of paths at 

a time, to form a larger path , then connects the head and tail of the largest path 	to 

form a subtour, whereas  type_of_patching_operation = 1 refers to a design where the 

patching procedure starts by merging a subset of paths to form a subtour , then inserts 

the remaining paths into . In this thesis, we only investigated the second option, e.g. 
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type_of_patching_operation = 1, thus, we only present the related details for this 

option.  

When expanding the initial subtour, one could for example choose amongst several 

options such as insert a path into the subtour  being expanded by breaking an edge in 

, break a path into subpaths and insert the subpaths into the subtour  being expanded 

at different places, and decision rule-based choice between insert and break and insert. 

The criterion according to which paths to merge are selected is referred to as 

paths_to_merge_selection_criterion and the criterion according to which paths to 

patch are selected as specified by paths_to_patch_selection_criterion; the measure of 

the performance criterion to optimise when performing the patching operation is called 

patching_operation_performance_criterion, and the type of implementation of the 

patching operation, as specified by type_of_implementation, where 

type_of_implementation = 0 refers to sequentially patching paths, whereas 

type_of_implementation = 1 refers to patching paths in parallel; the number of paths 

to merge or patch at a time  to obtain an initial subtour or path to be expanded; 

and the number of paths to patch at a time  in expanding the initial subtour or 

path. We propose merging_criterion that specifies how the chosen paths will be 

merged to construct a subtour, which could be either saving-based criterion or nearest 

merger criterion. The idea behind the merging_criterion is borrowed from basic 

construction heuristics, however, instead of nodes, we make use of paths. 

Consequently, they have differences; such as the construction of subtours and 

saving/merging calculations, where only the tail and head of the path is considered. 

The proposed Nearest merger criterion starts with subtours with a single-path and 

keeps merging pairs of subtours in an optimal manner until a single subtour is obtained, 

see Table 16. As for the proposed saving -based criterion, a merging cost matrix  

is computed, see Table 17, where only the tail and head of the paths are considered in 

calculation of merging cost of each pair of paths	 , . In addition, the merging 

considered is without crossover, see Figure 11. 

Note that the subtour 	 , , … , , obtained by the generic 

patching procedure, is a sequence of paths	 , and their direction	 , where   
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takes either values of	 1, 1 . If 1	then  is not reversed in the subtour, ; 

otherwise, is reversed in the subtour, . In addition, choice of  should be less 

or equal to 	| | , obviously if 	 | | , all paths will be merged 

and	 0.  

patching_method (C, type_of_patching_operation, paths_to_merge_selection_criterion, 

paths_to_patch_selection_criterion, merging_criterion, patching_Criterion, , , 

patching_operation_performance_criterion, type_of_implementation) {  

Initialisation Step 

Select the  paths to merge or patch according to paths_to_merge_selection_criterion or 

paths_to_patch_selection_criterion and its measure; 

IF type_of_patching_operation = 1 THEN   Merge the 	  paths into a subtour  according to 

the type of merging operation, the measure of the merging criterion, and the type of 

implementation chosen;  

ELSE  Patch the 	 paths into a larger path  according to the type of patching operation, the 

measure of the patching criterion, and the type of implementation chosen;  

Update  accordingly; 

Iterative Step 

WHILE ∅ DO { 

Select  paths in  according to the selection criterion and expand the current subtour  or 

path  according to the type of patching operation, the path patching criterion and its measure, 

and the type of implementation chosen; 

Update the set of paths yet to be patched; i.e., delete the  paths selected above from ;  

} 

IF type_of_patching_operation = 0 THEN Connect the head and tail of the current path to form a 

subtour;  

} 

Table 15 Pseudo-code of the proposed generic patching procedure 

The proposed saving-based criterion, Table 17, starts with the smallest path, , as the 

center and initialises subtours as an optimal return from any other path to ; then 

merges a pair of subtours, at a time, with maximum saving until all subtours are 

merged. 
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Input:  

; ; and  : A set of paths to patch  

Output:  

A single subtour / tour, , , … , ,  see Figure 9 

Initialisation steps 

Create | | number of subtours with one path,	 , , see Figure 8 (a)  

Initialise subtours distance matrix , 	 . 

Iterative steps 

Repeat until all subtours are merged 

Find the two closest subtours , 	 , see Figure 6 

Merge them in the best possible way, without crossover (Figure 8,  c), and reverse paths if 

necessary (Figure 8, d), and update SD. 

End Repeat 

Table 16 Nearest merger method 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Nearest merger criterion, merging process 
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Figure 9 Nearest merger criterion, final solution  

 

Figure 10 Saving-based patching, Initialising subtours 

 

 

 

 

1
,

1
,
1

,
1
,
1

 

1
4

5
8

2 1

6

9

1 
4 

5 
8 

6 

9 

2 10 

a 

1 
4 

5 
8 

6 

9 

2 10 

b 
, Cost → Cost → Cost →

1,10 2,8 c 1,8  

1 
4 

5 
8 

6 

9 

2 10 

c 

1 
4 

5 
8 

6 

9 

2 10 

d 
, 5,10 2,6 c 5,6  

1
,

1
,
1

,
1

,
1

 



69 

 

Input 

;  ;    

Output 
A single subtour / tour,  
Initialisation steps 

Choose the path  with smallest cardinality. 

For each remaining path  { 

Construct a subtour consisting  and	 , , , , without crossover and reverse 

path  if necessary ( 1), see Figure 10; 

For each pair of subtours ,  calculate the least savings obtained by patching them, see Figure 

11, and sort the savings in a non-increasing order;} 

Iterative steps 

Repeat until all subtours are patched 

Patch the two subtours with the maximum savings; 

IF all the subtours are patched Then stop; 

Else update the savings list and go to step 1; 

End Repeat  

Table 17 Saving based path patching method 

Figure 11 Savings calculation 
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The proposed insertion_criterion defines how to insert the chosen paths in the subtour 

in the best possible location, which is based on the cheapest insertion cost of paths in 

the subtour, Figure 12. 

Figure 12 Cheapest insertion 

The 	 _ _ _ _ , Table 18, can be categorised as 

cardinality-based criterion (largest or smallest), cost-based criterion (longest or 

shortest), distance-based criterion (closest or farthest) and merger cost-based criterion 

(cheapest or expensive). The default category could be arbitrary. Note that, the 

distance-based criterion makes use of paths distance matrix, , which is obtained by 

the algorithm in Table 19, where the distance between each pair of paths , 	 ℓ  is 

the minimum distance between all nodes in path	  and all the nodes in path ℓ.   
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Paths to merge Selection Criterion Description  

Arbitrary  Random choice of paths 

Cardinality-Based Based on number of nodes in the path 

Cost-Based Based on travel cost, length of the path 

Distance-Based Based on the distance between the paths 

Merging Cost-Based Based on the cost of merging each pair of paths 

Table 18 Paths to merge selection criterion 

Input 

;  : A set of paths to patch with cardinality | | 

Output 

, 	 ℓ : Paths distance matrix	 

Initialisation Step 

Initiate paths distance matrix , 	 ℓ ∞;  

Iterative Step 

For each pair of paths , 	 ℓ  compute the minimum distance between path  and path ℓ as 

follows: 

, 	 ℓ

	 1 , ℓ 1 , 1 , ℓ # ℓ , # , ℓ 1 , # , ℓ # ℓ ;} 

Table 19 Paths distance matrix 

Input:  

;		   

Output:  

, : Merging cost matrix	 

Initialisation Step 

Initiate , ∞;  

Iterative Step 

FOR each pair of paths , 	  compute their merging cost where a path ∈  is specified by its 

cardinality #  and its sequence of nodes 1 , 	 … , 	 # , as follows: 

_ → → # , 1 # , 1 	; 

_ → → # , # 1 , 1 ; 

IF ( _ → → _ → → ) THEN 

,  _ → → ; 

Else  

,  _ → → ; 

Table 20 Paths merging cost matrix 
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As for the proposed merging cost-based criterion, a merging cost matrix  is 

computed, see Table 20, where only the tail and head of the paths are considered in 

calculation of merging cost of each pair of paths	 , . In addition, the merging 

considered is without crossover, see Figure 8 (c). 

In the iterative step, we categorised paths_to_patch_selection_criterion  

 into cardinality-based criterion (largest or smallest), cost-based criterion (longest or 

shortest), distance-based criterion (closest or farthest) and insertion cost-based 

criterion (cheapest or expensive), see Table 21. 

The proposed cardinality-based and the cost-based criterion is similar to the ones for 

paths_to_merge_selection_criterion. However, the proposed distance-based criterion 

is based on the distance between the paths in the subtour and the remaining paths not 

in the subtour, , Table 22. On the other hand, the proposed insertion cost-based 

criterion is based on the cost of inserting the paths not in the subtour in the subtour, 

without crossover, see Table 23. 

Paths to Patch Selection Criterion Description  
Arbitrary  Random choice of paths 
Cardinality-Based Based on number of nodes in the path 
Cost-Based Based on travel cost, length of the path 

Distance-Based 
Based on the distance between the remaining 
paths and the subtour 

Insertion Cost-Based 
Based on the cost of inserting each of the 
remaining paths in the subtour 

Table 21 Paths to patch selection criterion 

Input:  

;		   

Output:  

, : Path to subtour distance matrix	 

Initialisation Step 

Initiate	 , ∞;  

Iterative Step 

For each path	  not in the subtour compute the minimum distance between each path  and all the 

paths,  ,in the subtour  as follows: 

min , 	 ℓ 			 1, … , | | ; //Where  consists of | | number of paths 

Table 22 Distance-based criterion 
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Input:  

;		   

Output:  

	 , : Path cheapest insertion cost into subtour matrix	 

Initialisation Step 

Initiate	 , ∞;  

Iterative Step 

For each path	  not in the subtour calculate the cheapest insertion cost of  between each pair of 

paths in the subtour , ,  without crossover and reverse paths if necessary, see Figure 12. 

Table 23 Cheapest insertion 

3.2.6. Performance metric 

The specification of the performance metric to be used for assessing infeasible 

neighbours or equivalently the metric to use for comparing the performance of the 

break and patch or repair operations is represented by a categorical variable; namely, 

IMetric. Several categories could be considered to reflect different aspects of the repair 

mechanism and its “quality”. For example, one could consider the cost of the solution 

after repair to compare different repair operations, in our empirical investigation; we 

considered this metric as the default choice. Alternatively, one could consider the 

number of arcs, that cross-over, which is to be minimised. Also, one could define 

categories that are concerned with optimizing more than one metric; for example, one 

could minimise both the cost of the solution after repair and the number of arcs in the 

solution that crossover. 

3.2.7. Improvement mechanism 

With respect to the local improvement mechanism of components of the infeasible 

neighbours generated by Type I moves, or equivalently the Type II moves, this 

decision is represented by a categorical variable T2M. A variety of categories could be 

defined; e.g., 2-opt, 3-opt and combinations of these moves. These moves are 

implemented by means of an improvement mechanism represented by a categorical 

variable component_improvement_mechanism. The categories of this variable would 

correspond to different local search methods including metaheuristics. As to the 

performance metric to be used for assessing different components, this choice is made 
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through a categorical variable component_performance_metric. The default category 

would be the commonly used metric; namely, the cost or total distance of the 

component. Other categories could be defined by the analyst to consider additional 

features of a component or to take account of soft or hard constraints not explicitly 

considered in the problem formulation. Besides, one has to decide how often to call 

upon the local improvement mechanism of components of the infeasible neighbours 

generated by Type I moves; namely, improvement at each iteration, deterministic static 

and stochastic.  

3.3. Infeasible neighbourhood structure 

Finally, we have to choose the design of the infeasible-based neighbourhood structure 

(INS) to use in exploring the infeasible space of the TSP. One of two alternatives could 

be chosen. The first option is to use Type I moves to explore the infeasible space and 

select the best neighbour, then Type II moves are used to improve the best neighbour 

locally – we refer to this design as improving best neighbour (IBN) design. The second 

option is to immediately use Type II moves to improve every neighbour obtained with 

Type I moves – we refer to this design as improve all neighbours (IAN) design. 

3.4. Implementation of GPILS 

The implementation of the proposed GPILS could prove rather tricky without a proper 

algorithm to carry the steps required for exploring the infeasible space for any 

specification of the parameters of the search. Note that, by set of parameters we mean 

set of parameters, criteria, components and rules but for simplicity this set is referred 

to as set of parameters. In fact, exploring the infeasible space for a given choice of the 

parameters of the search, say , , requires exploring all, or sometimes most, 

combinations of  arcs in  subtours which in turn requires a minimum of  embedded 

FOR loops. Obviously, the number of embedded FOR loops required from one run or 

experiment to another is different and requires a different code. In order to make the 

code generic;  
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RINS

, , , , , , ℓ, ℓ , , , 1 , 2 , , ∗, ∗ , _  { 

// If  edges to break were identified in all subtours , then implement the type I move;  

// else, identify the edges to break in the remaining subtours to break 

IF ( ) {  

// Break and patch the subtours to merge using type I move to obtain a single subtour  

PerformTypeIMove , , 	 , , 	 , _ ; 

// Improve the current infeasible solution locally using Type II moves, if required 

IF INS = IAN THEN   	  = PerformTypeIIMove 2 , ; 

// Update the best neighbour and its cost, if necessary 

IF (  is better than ∗  and within the bounds) THEN { ∗ ;   
∗ ; }} 

ELSE { 

// Identify the edges to break in subtour  for which such edges are yet to be specified. Note  

// that the FOR-loop condition | | ℓ  is chosen so that any repetition of combinations 

// of edges is avoided 

FOR ℓ 	 	| | ℓ  { 

// Consider the th edge in candidate set  of edges to break in subtour  

Set  ℓ ;  

ℓ ℓ 1; // Increment edge index counter ℓ to loop through all remaining edges in subtour  

IF (ℓ )  THEN   ℓ 1; // Set the loop ℓ initialiser ℓ  to  1 

ELSE { 

// Increment subtour index counter  to loop through all remaining subtours or embedded  

// FOR loops 

1;  

ℓ 1; // Reset edge index counter ℓ to 1 

ℓ 1; // Reset loop ℓ initialiser of edge index  in subtour  to 1  } 

RINS , , , , , , ℓ, ℓ , , , 1 , 2 , , ∗, ∗ , 

_ ; 

ℓ ℓ 1; // Decrease edge index counter ℓ to go back to the previous FOR loop 

IF (ℓ 0) { 

1; // Decrease subtour index counter  to go back to the previous FOR loop 

ℓ ; // Reset edge index counter ℓ to go back to the previous FOR loop 

} 

}}}} 

Table 24 Pseudo-code of the RINS function 
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i.e., could be run with any specification of the search parameters, we propose a 

recursive infeasible neighbourhood search function (RINS), Appendix I. For a detailed 

pseudo-code see Table 24. 

3.5. Choice of how to explore the primal space 

Exploring the primal space is optional in our design of GPILS. When the option of 

exploring the primal space is chosen, one has to choose the primal neighbourhood 

structure to use, the improvement mechanism as well as the performance metric to be 

used for assessing primal neighbours. The choice of whether to explore the primal 

space or not is represented by a categorical variable explore_primal_space. This 

variable is set to 0 when this option is turned off, 1 when exploring the primal space is 

considered using a primal improvement mechanism, and 2 when exploring the feasible 

space while allowing for infeasibilities; that is, using a feasible-infeasible mechanism. 

When this option is on, one could choose from a variety of primal neighbourhood 

structures as specified by a categorical variable primal_neighbourhood_structure, 

where categories would correspond to 2-opt moves, 3-opt moves, or combinations of 

these basic moves. The improvement mechanism is represented by a categorical 

variable primal_improvement_mechanism, where the categories would relate to 

different local search methods including metaheuristics. 

As to the performance metric to be used for assessing primal neighbours, this choice 

is made through a categorical variable PMetric. The default category would be the 

commonly used metric; namely, the cost of the primal solution. Other categories could 

be defined by the analyst to consider additional features of a primal solution; e.g., the 

minimum pollution, total travel time and etc. Note that through the choice of the primal 

performance metric one could address in an infeasible fashion additional constraint 

such as time windows constraints. The proposed GPILS is by design a parameterised 

solution framework. In the next section, we propose a hyperheuristic framework for 

its implementation. The aim of this hyperheuristic framework is to optimise the choice 

of the parameters of GPILS by exploring the corresponding parameter space using a 

local search framework. 
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3.6. DLS versus GPILS 

Conceptually, the proposed GPILS and DLS developed by Ouenniche et al. (2017) are 

similar, although their implementation is different. We refined and enhanced their 

design and pushed it forward to the settings that has not been considered by DLS. A 

summary of the comparative analysis between DLS and GPILS is shown in Table 25. 

The refinements are as follows: 

Initialisation of the lower bound and the seed:  as compared to DLS, where only AP-

relaxation is considered to initialise the bound and the seed, GPILS also considers PIH. 

Parameters and 
operations 

DLS GPILS 

Initialisation of the upper 
bound 

Nearest merger Construction heuristics 

Initialisation of the dual 
bound and the seed 

AP 
_ 

AP 
PIH, see Table 11 

Number of subtours to 
break and patch 

2,3 2,… ,  

Subtours selection 
criteria 

Farthest/ nearest distance between 
subtours; cheapest cost of merger 

of subtours 
See Table 12 

Number of arcs involved 
in repair mechanism 1, 2,1  1, . . , | | 

Arcs selection criteria All combinations; 
_ 

All	combinations; 

-NN 

Patching operation All combinations 
Generic patching procedure; 

see Table 15 

Infeasible 
neighbourhood structure 

IBN IBN 

Improvement mechanism 

Local search; 
2-opt, 3-opt and US moves; 

Improvement at each iteration, 
deterministic and stochastic; 

_ 

Local search; 
 

2-opt, 3-opt; 
Improvement at each; 

 
Reinforcement 

Implementation  Static implementation 
Generic implementation; 

see Table 24 

Exploring the primal 
space None None 

Table 25 Comparative analysis between DLS and GPILS 
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Number of subtours  and arcs  involved in repair mechanism:  in comparison with 

DLS, GPILS can consider wider range of values. However, for computational time we 

considered upper bound for both, i.e. 2,… ,5 and 1,… ,5.  

Subtours selection criteria: GPILS considers wider range of criterion, see Table 12. 

Arcs selection criteria: DLS is a greedy method where it considers all combination of 

breaking arc in each subtour. On the other hand, GPILS considers a restricted selection 

criterion where the arcs to break are chosen amongst candidate sets obtained by -NN. 

Patching operation: yet again, DLS uses a greedy method where it considers all 

combinations of patching the broken subtours. As for GPILS, a generic patching 

procedure is used to patch the broken subtours, for more detail see Table 15. 

Improvement mechanism: both DLS and GPILS consider local search as an 

improvement mechanism to locally improve the intermediate infeasible solutions. As 

for T2M, DLS considered 2-opt, 3-opt and US moves. However, because the US move 

is computationally inefficient, it is not considered in GPILS. Regarding how often the 

local improvement mechanism is been called DLS considered improvement at each 

iteration, deterministic static and stochastic, however, only improvement at each 

iteration is used in GPILS since it was the best performing option. 

Implementation: DLS is static implementation design, meaning that for any 

combination of ,  the number of embedded FOR loops required from one run or 

experiment to another is different and requires a different code. On the other hand, 

GPILS is a generic design that could run with any combination of , . 

3.7. Empirical results 

In this section, we shall compare the proposed GPILS under different settings. In order 

to see the performance of GPILS under different settings for different instances, we 

made a step by step experiment. In the first step of the experiment, we chose the value 

of the parameters similar to DLS, so we could compare GPILS with DLS. Note that 

the GPILS is conceptually like DLS, however, their implementation is different. Thus, 

the difference in quality of the solution is expected. The aim of this experiment is to 
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empirically demonstrate that GPILS performs better than DLS on both quality of the 

solution delivered and computational time. In the next steps of the experiments, we 

push forward the analysis by considering further setups that has not been considered 

by DLS which our framework allows for. To do so, in each step of the experiment, we 

fixed all the parameters except one or two and we summarised the performance of 

GPILS. For more details of this experiment refer to Table 27. 

3.7.1. Experimental setup 

All methods are implemented in C# and tested on a Windows 7 Enterprise with 2.26 

GHz Core i5 processor and 16 GB of RAM. The AP-based relaxation is solved using 

CPLEX 12.5. The empirical results are based on problem instances from TSPLIB. The 

problem instances are presented in Table 26. 
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Table 26 Problem instances 

For the choice of the parameters of GPILS in this empirical investigation, we 

experimented with the following parameters: 

Parameters of the bounding scheme 

 PM: Arbitrary insertion; nearest insertion; farthest insertion; cheapest insertion; 

Clarke and Wright; nearest merger  

  IM : {AP, PIH } 

 Parameters of PIH 

• : 	1, … , 	20  

• 1  

• : -means ( ) 

• DRC: Construction heuristic similar to PM 

• Imp:{0, 1}  
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• IM: Classic local search 

• NS: 2-opt; 3-opt;  

Parameters of Type I move 

 Breaking operation 

• s: 2,… , 	5 

• _ _ : Random; shortest/ largest subtours; smallest/ 

largest subtours; closest/ farthest subtours; cheapest/ most expensive cost of 

merging pair of subtours 

• : 1, 	 … , 	5	 (if | | then | | 1) 

• _ _ _ _ : -NN ( 1,… ,10) 

 Patching operation 

• type_of_patching_operation = 1 

• Initialisation step 

• :	1, … ,  

• _ _ _ _ : Largest / smallest; longest/ 

shortest; closest/ farthest; cheapest/expensive merging cost 

• _ : Saving-based path merging (SPM); nearest 

path merger (NPM) 

• _ _ 0 

• Iterative patching 

• 	: 0,1  

• _ _ _ _ : Largest / smallest; longest/ 

shortest; closest/ farthest; 

• _ : Cheapest Insertion 

• _ _ 0 

• _ _ _ : Cost of the subtour 

Parameters of Type II move 

 T2M: 2-opt; 3-opt; 

 _ _ : Local search 

 _ _ : Cost or total distance of the component 
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Note that, we also experimented ‘reinforced improvement’. In other words, after 

improving the degree of infeasibility of the chosen T2M, we improved the solution 

using a different T2M, again. 

Other parameters of GPILS 

 : Cost or total distance of the component 

 INS: IBN 

Parameters of the primal space exploration 

 _ _ 0 

In order to understand the effect of different sets of parameters of GPILS, we 

experimented with GPILS given several sets of parameters. Note, however, that for 

space constraints, we only present a number of these sets.  

3.7.2. Experimental results 

In this section, we shall compare the proposed GPILS under different settings. In order 

to see the performance of GPILS under different settings for different instances, we 

made a step by step experiment. For more details of this experiment refer to Table 27. 

In the first experiment, we chose the value of the parameters similar to DLS, to some 

extent, so we could compare GPILS with DLS. Thus, we set the parameters of the first 

experiment as follows: 

Parameters of the bounding scheme 

 PM:∞;  

 IM: AP 

 Parameters of PIH: since IM is set to AP, these parameters are not required 

Parameters of Type I move 

 Breaking operation 

• s: 2, 3 

• _ _ : farthest distance between subtours 

• : 1, 	2	  

• _ _ _ _ : -NN ( 1,… ,10) 
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 Patching operation 

• Initialisation step 

• :	  

• _ _ _ _ : since  is set to , this 

parameter is not required  

• _ : nearest merger 

• Iterative patching: since  is set to , this parameter is not required  

Parameters of Type II move 

 T2M: 2-opt; 3-opt; 

The rest of the parameters are set to the values mentioned before. As for the ‘reinforced 

improvement’, it is not used in the first experiment. Note that before comparing GPILS 

with DLS, we experiment with _ _ _ _ ; namely, -NN 

with  ranging from one to ten, in order to reduce the computational time. Later, in 

the next experiments, we fixed the value all the parameters except for one or two of 

them, so we could see the quality of GPILS under different settings for different 

instances with different structures.  

Not that the conclusions made in this section could be different, even opposite, for 

different settings of parameters. Hereafter we shall present these experiments in more 

detail as well as their result. Bear in mind that the statistics presented in this section 

are the average percentage increase over the optimal solution (i.e.	
	 	

	
100% ). Moreover, in the following figures each bar 

represent different values for the specified parameter(s) in each experiment and 

positive values means that the GPILS given new settings perform better than the 

previous experiment, unless otherwise is noted. 

I. Experiment 1: K-NN 

The proposed GPILS is a parameterised neighbourhood structure, which allow us to 

intensify and diversify the search, depending on the chosen parameters and structure 

of the problem, while controlling the rate of convergence of the process toward the 

feasible solution.  
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Table 27 Experimental design 

As it was mentioned earlier in this chapter, GPILS start with an initial infeasible 

solution, i.e. number of subtours, and progress towards the primal space by iteratively 

breaking a number of subtours, given , , and patching them, until it lands in the 

feasible solution. In other words, low values for  and high values for  will lead to 

more diverse search and slower convergence rate, on the other hand, high values for  

and low values for  will lead to less diverse search and faster convergence rate. A 

small illustrative example is shown in Figure 13.  

Figure 13 Computational time given ,  

Moreover, an initial infeasible solution with large number of subtours could also lead 

to higher diversity and lower convergence of the search. Thus, one should make a 

trade-off between diversity and convergence rate – see experiment 7. 
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Although, GPILS conceptually is similar to DLS, their implementation is different. 

Hereafter, we shall compare them empirically. As it was mentioned earlier, DLS 

developed by Ouenniche et al. (2017) required several parameters. Thus, in order 

to compare DLS with GPILS, we only considered the following parameters: 

1. The choice of  subtours to merge: farthest distance between subtours, since it 

was best performing criteria. 

2. The choice of number of subtours ( ) to break and number of edges ( ) to break 

in each subtour: 2; 1, 1  and 3; 1, 1,2,3  

3. The choice of type II move: 3-opt.  

US move is not considered since it is computationally inefficient, although 

overall, it was the best criteria. On the other hand, 2-opt leads to good quality 

solution in much shorter time, not as good as 3-opt. 

4. The choice of local improvement scheme: improvement in each iteration, since 

it was best performing criteria. 

The comparison between GPILS and DLS is shown in Figure 14 and Figure 15. Each 

bar in these figures represent GPILS given the parameters in experiment 1 and  in 

range between one and 10. Note that positive values means that GPILS outperforms 

DLS and the average shows the difference between average  between 

DLS and GPILS, i.e. 	  , where the 

average overall instances is shown as . 3  and 4  for both 

experiments (2,1) and (3,1), respectively, outperforms DLS by %0.96 and %1.34, 

respectively. As you can see time increase when  increases, except for some cases, 

which could be because of structure of the problem instance. Thus, one has to make a 

trade-off between solution quality and computational time. Moreover, 1 or more 

specifically  for both experiments, i.e. (2,1) and (3,1), outperforms DLS by 0.63 

and 0.91, respectively. Consequently, in trade-off between solution quality and 

computational time, we fix  in next experiments. 

II. Experiment 2: ,  

In the second experiment, we present the effect of different values for  s and , shown 

by s,  and compared with  and  equal to 2,1 . This comparison is presented in 
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Figure 16, where each bar presents the comparison between each set of values of s,  

and with s and  equal to 2,1 ; i.e. s, 2,1 .  

Figure 14 GPILS vs DLS given 2 and 1 

 

Figure 15 GPILS vs DLS given 3 and 1 
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Figure 16 Performance of GPILS with set ,  in comparison with 2,1  

Note that, positive values mean that when s is set to two and  is set to one, the GPILS 

produces worse solutions than GPILS given other sets.  

Overall, on average the best performing sets of values for s and  are (3,5) and (4,4) 

and the worst performing sets are (3,2) and (5,4). However, as it is shown in this figure 

the performance of each set is different for different instances, which is because of the 

structure of the problem.  

III. Experiment 3: _ _   

In the third experiment, we investigate different criterion for 	

_ _  while fixing s and  to 3 and 5, respectively. Figure 

17 shows the comparison between the farthest distance between subtours and other 
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criteria for the choice of subtours to be involved in the repair mechanism, where 

positive values mean GPILS under new settings perform better than the previous ones. 

Figure 17 Comparison of subtours_selection_criterion 

Overall, on average the best performing sets of values for are longest and shortest, on 

the other hand, the worst performing sets are closest and cheapest merging criteria 

however. Moreover, as it is shown in this figure the performance of each choice is 

different for different instances. Henceforward, the choice of 

subtours_selection_criterion is set to the longest subtours. 
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IV. Experiment 4: , _  

In this step of the experiment, we shall investigate different  and 

 for the initial paths patching and compare GPILS under new settings 

the previous one, see Figure 18. Yet again, positive values mean GPILS under new 

settings perform better than the previous ones. Figure 18 shows the comparison 

between performance of GPILS given pervious setting and the current one, where the 

current set is similar to the previous one except for  and _ . 

Note that in the previous setting  is set to  and _  is set to 

nearest path merging. Thus, we also experimented with  is set to  and 

_  is set to saving-based path merging, in order to compare their 

perfomance. 

Overall, GPILS given the previous set of parameters given 

, _  to |P|, _ _ 	_ , 

9, _ _  and 6, _ _ 	_  perform 

better by %0.31 and %0.24, %0.17, respectively.  Yet again, different values for 

 and _  perform different for different instances.  

Figure 19 shows the comparison between the performance of GPILS given the current 

set and either of the two criteria of the _ ; namely, savings-based 

path merging and nearest path merger, where positive values mean that the nearest 

path merger performs better than savings-based path merging criteria. This comparison 

shows that overall, on average, the savings-based path merging procedure performs 

better than the nearest path merger procedure, and however, comparing the two criteria 

instance by instance, one can see the difference in performance of these criteria for 

different problem instances. Although, |P|, _ _ 	_ , on 

average, performs better than other values of  and _ . 

However, we fix  and _ 	  to 6 and saving-based path 

merging, since we would like to see the performance of other parameters of the 

patching operation. 
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Figure 18 Performance of GPILS given sets of , _  and Experiment 3 

V. Experiment 5: _ _ _ _   

In the initial patching, the choice of paths to merge could also affect the performance 

of GPILS. Thus, in this experiment, we investigate different criteria 

for	 _ _ _ _ . Figure 20 shows the comparison between 

GPILS the previous setting and the new one, where in the new set of parameters the 

only difference is the _ _ _ _ . Overall, when 

_ _ _ _  is set to cheapest paths merging cost, GPILS 

performs better. Thus, in the next experiments, we shall fix this criterion to the 

cheapest paths merging cost.  
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Figure 19 Performance of GPILS given , _ _ 	_  vs. GPILS given 

, _ _  

 

Figure 20 Performance of GPILS given _ _ _ _  
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VI. Experiment 6: _ _ _ _   

In this step, we experiment the choice of paths involved in the iterative path patching; 

namely _ _ _ _ . In general, smallest paths to patch 

performs better than the other criteria. 

Figure 21 Performance of GPILS given _ _ _ _  

As it can be seen in Figure 21, GPILS given different criterion for 

_ _ _ _  performs differently on different problem 

instances, which could be because of their structure. 

VII. Experiment 7: PIH vs AP 

As it was mentioned earlier, an initial seed, i.e. infeasible solution, with large number 

of subtours lead to higher diversity and lower convergence of the search, e.g. AP-

relaxation of TSP. On the other hand, initializing the seed with smaller number of 

subtours could lead to lower diversity and quicker convergence. In this section, we 

experiment with initialising the initial seed using either AP or PIH. Note that we used 

| |, _  for , g_c , since they were best 

performing values given the parameters set under consideration. Figure 22 shows the 

computational time(s) of GPILS given previous set and the new one (right) and 

comparison between performance of GPILS given before mentioned set versus the 
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new set (left), where in the new set initialisation of the seed and the bound is set to   

PIH and number of initial subtours  is set to a range between 3 and 20. 

Figure 22 Performance and computational time (s) of GPILS given IM set to AP vs IM set to 
(PIH, ) 

Note that each bar in the figure on the left presents performance of GPILS given 

previous set versus the new set where IM is set to PIH and 3,… ,20  and each 

bar on the right shows the computational time of each experiment. In the figure on the 

left, positive values mean that initialising the seed given PIH and  performs better 

than initialising the seed with AP-relaxation. Moreover, other parameters of the PIH 

namely DRC, Imp and NS are set to savings heuristic, off and 3-opt, respectively.  
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In terms of quality of the solution, as it can be seen in the figure overall, with these 

settings, GPILS given the previous set where IM is set to AP performs better than the 

new set. In terms of computational time, in general, for small problem instances GPILS 

given IM set to AP performs faster than GPILS given IM set to PIH, on the other hand, 

for larger problems GPILS given IM set to PIH performs faster than AP. As for , 

we cannot make a general conclusion since for different instances the performance is 

different. 

However, since we would like to experiment with other parameters of PIH, in the next 

experiments IM is set to PIH. As for , we set it to three, since on average, given 

the current set, it performs better than other values of . 

VIII. Experiment 8: PIH-DRC 

In order to investigate the performance of DRC, i.e. decision rule to construct the initial 

subtours, in the current set we only change the DRC and compare the performance of 

GPILS with the current set without any local improvement, see Figure 23, to isolate 

the effect of changing DRC without any interference of other factors. As it can be seen 

in the figure, different DRC rules perform differently for different problems. However, 

overall the farthest insertion heuristic performs better than the others. Thus, in the next 

experiment, we set DRC to farthest insertion heuristic. 

IX. Experiment 9: PIH - NS  

In this section, we investigate the performance of GPILS under the previous setting 

with different improvement mechanism to locally improving the initial seed obtained 

by PIH. Thus, in the new setting,  is set to on, IMP is set to local search and NS is 

set to either 2-opt or 3-opt. Later, their performance is compared to the previous setting 

where the initial seed obtained by PIH has not been locally improved, see Figure 24. 

Note that positive values mean that GPILS performs better when the initial seed, 

obtained by PIH, is improved locally. Overall, on average given the current set, when 

 is set to off, GPILS performs better.  
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Figure 23 Performance of GPILS given IM set to PIH and (DRC) vs. Experiment 7 

X. Experiment 10: T2M and reinforced improvement 

With respect to locally improving the intermediate infeasible solution, we shall 

experiment with T2M and reinforced improvement. To do so, a comparison is made 

between GPILS given settings, in experiment 7 and 9, and previous setting with 

different local improvement mechanism for the different intermediate infeasible 

solutions, see Figure 25  and Figure 26. Figure 26 shows this comparison when the 

seed is initialised by AP given the previous setting in experiment 7 and Figure 25 

shows this comparison when the seed is initialised by PIH given the previous setting 

in experiment 9.  

As it can be seen from Figure 25 and Figure 26, when the seed is initialised by PIH, 

GPILS with the combination of T2M set to 2-opt and reinforced improvement set to 

3-opt, on average, performs better than the other settings, on the other hand, when the 

seed is initialised by AP, overall GPILS with T2M set to 3-opt performs better. Figure 

27 shows the comparison between GPILS in experiments 7 and 9 with T2M set to 3-

opt. As it can be seen GPILS performs differently when the seed is initialised either 

by AP or PIH. However, in the next experiment we shall fix IM to AP and T2M to 3-

opt since GPILS given this set performs better. 
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Figure 24 Performance of GPILS given IM set to PIH and (NS) vs. Experiment 8 

 

Figure 25 Performance of GPILS given IM set to PIH and (T2M, reinforced improvement) vs. IM set 
to PIH and T2M set to 3-opt 
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Figure 26 Performance of GPILS given IM set to PIH and (T2M, reinforced improvement) vs. IM set 
to AP and T2M set to 3-opt 

Figure 27 Performance of GPILS given T2M set to 3-opt and IM set to AP vs. IM set to PIH 

XI. Experiment 11: PM  

In the previous experiments, the bounding scheme, namely the primal bound, was not 

considered. However, in this experiment we shall consider the bounding scheme, 
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meaning that we exclude neighbour outside the bounds, see Figure 28. Note that the 

PM method is set to different construction heuristic and improved by 3-opt local 

search. Surprisingly, GPILS given the current set without the bounding scheme 

preforms better, note however that it could be different given different settings. 

Moreover, given current settings with consideration of different settings of PM, 

performance of GPILS is quite similar, thus we only present the comparison between 

performance of given the previous setting and the current settings with consideration 

of different settings of PM in Figure 28. 

Figure 28 Performance of GPILS with consideration of the primal bound vs. without consideration of 
the primal bound 

We also compare the performance of GPILS given the current set with consideration 

of the primal bound versus the performance of each of the primal bound, see Figure 

29. As it can be seen, GPILS can generate better quality solutions than the primal 

bound. 
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Figure 29 Performance of GPILS with consideration of the primal bound vs. the primal bound PM 

3.8. Conclusion 

In this chapter we investigated possibility of searching in the infeasible solutions space 

by a local search-based framework. We refined and enhanced the DLS proposed by 

Ouenniche et al. (2017) by developing a generic and parameterised infeasible-based 

local search (GPILS) and pushed it forward to the settings that has not been considered 

by DLS. The empirical comparison between the proposed GPILS and DLS showed 

that proposed GPILS can produce better quality solutions much faster. Moreover, a 

step by step experiment was designed to test several parameters of the GPILS. The 

experimental design showed that GPILS given different sets of parameters performs 

differently on different problem instances, which is the case for most primal heuristic 

solution approaches, thus, there is a need to automate the choice of the parameters of 

GPILS in order to find the best settings for each problem instance.  

The next chapters investigate the case where a hyperheuristic is used to automate and 

optimise the choice of parameters of GPILS. We also test whether the generated sets 

of parameters by the proposed hyperheuristic framework can be reused on new and 

unseen problem instances. 
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4. A Sequential 
Hyperheuristic 
Framework for GPILS 

In the previous chapter, we developed a local search-based framework that explores 

the infeasible search space and progresses toward the feasible space, by reducing the 

infeasibility, until it reaches a feasible solution. Later, we made a step by step 

experiment with GPILS given different sets of parameters; where, in the experimental 

design, each set of parameters was like the previous set except for one or two of the 

parameters in each set. The analysis showed that since the proposed GPILS given 

different set of parameters could lead to a different solution to different problem 

instances, the choice of parameters of GPILS could be automated, instead of being 

chosen by the analyst. 

The aim of this chapter is to automate and optimise the choice of the parameters of 

said framework, consequently, to find the best possible set of parameters for the given 

problem instance. Thus, we propose a hyperheuristic to optimise parameters of the 

GPILS. As it was mentioned in section 2.6, hyperheuristic is high-level mechanism 

that searches in the space of low-level heuristics or components. In this thesis, the 

hyperheuristic searches in the space of the parameters of GPILS, see Figure 30, rather 

than the space of solutions specific TSP instances.  

 

 

Figure 30 vector of parameters of GPILS 

The high-level methodology for searching the parameter space of GPILS could be 

either a sequential methodology or a parallel one. The contribution of this chapter is 

developing sequential high-level methodologies to automate and optimise the choice 
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of parameters of GPILS. To be more specific, we have chosen sequential high-level 

mechanisms such as SA, TS, and VNS as well as hybrids of these metaheuristics. As 

for the parallel high-level methodology, we shall develop genetic-based hyperheuristic 

in the next chapter. 

The before mentioned sequential high-level mechanisms start the search with a single 

set of parameters and search its neighbourhood, in attempt to improve the current set, 

using a guidance mechanism or search strategy. Implementing these mechanisms 

require several implementation decisions to be made. Hereafter, we shall discuss the 

implementation decisions of these metaheuristics for searching the parameter space of 

GPILS. As the design of these metaheuristics is generic, their implementation for 

optimising the parameters of GPILS requires a number of  decisions to be made. We 

divide implementation decisions into problem-specific decisions which are common 

to all metaheuristics and generic decisions which are specific to each metaheuristic.  

4.1. Problem-specific decisions for high-level search 

mechanisms 

The decisions common to the implementation of SA, TS, VNS, and our hybrid are as 

follows: (1) choice of the parameters’ space; (2) choice of the form of the objective 

function; (3) choice of the initial set of parameters of GPILS; and (4) choice of the 

neighbourhood structure or type of moves to use. These decisions are similar across 

all these metaheuristics. Hereafter, we shall summarise how these decisions are made 

for searching the parameter space of GPILS. 

Choice of the parameters’ space: In principle, all possible vectors of parameters are 

admissible, an example of a vector of parameters is shown in Figure 30. However, for 

computational reasons, one might want to reduce the size of the parameter space by 

imposing bounds on the possible values that some parameters might take or fix the 

values of some parameters, if considered appropriate. In our experiments, we fixed the 

values of a number of parameters and for the rest of the parameters we imposed upper 

bounds on them to keep the computational requirements reasonable.  
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Choice of the form of the objective function: A variety of functions could be used to 

discriminate between solutions. In our implementation, we considered the original 

objective function; namely, the total distance or cost of a solution to the TSP whether 

infeasible or feasible (primal). 

Choice of the initial set of parameters of GPILS: The initial set of parameters of GPILS 

could either be set by the analyst or be automated. One could automate the choice of 

an initial set of parameters using a “smart” sequential or parallel random search 

procedure and select the best vector	 ; that is, the vector leading to the shortest 

TSP tour. However, for some large problem instances, this option could prove time 

consuming. One can randomly generate the initial set of parameters, say	 , 

while respecting the admissible range of parameters’ values, if required. This is a 

sensible choice when a metaheuristic is used for searching the parameter space. 

Moreover, other could make use of several decision rules such as setting up a 

parameter to its minimum value, its maximum value, its median, or simply a default 

value. We propose to automate the choice of  by  

1. Randomly generating a number of vectors of parameters, evaluating them, and 

setting  to the best vector of parameters,  

2. Using a greedy algorithm such as a random descent local search with the 

number of iterations being the stopping criterion and set to a low number, and 

setting  to the local optimum delivered by random descent, or  

3. Running SA for one or several epochs and setting  to the best vector 

of parameters amongst those explored, 

where the choice of the best set of parameter is based on the value of the objective 

function of GPILS  given the set of the parameters. In our empirical analysis, we 

experimented with the first automation process. 

Choice of the neighbourhood structure or type of moves to use: A variety of 

neighbourhood structures could be designed for guiding the search in the parameter 

space of GPILS. In this thesis, we propose a generic move  designed as a function of 

several parameters along with decision rules which could be formalised as follows: 

, , 	 , ; ;      30 
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, 	 , , 	 ,       31 

where  denote the size of the vector of parameters ,  denote the number 

of entries to change in  amongst the  entries,  is a generic parameterised 

decision rule with parameters ,  and ,  is a categorical variable that 

specifies how to choose the  entries to modify or change,  is a categorical 

variable that specifies the type of change to make to each entry requiring one, and  

is a categorical variable that specifies how to choose the amount by which the value of 

each of the  entries to modify will change. The generic parameterised decision rule 

, 	 ,  is itself a function whose output is , 	 , , where  is a vector 

of  entries that specifies which  entries to modify or change,  is a vector of  

entries that specifies the type of change to each entry requiring one, and  is a vector 

of  entries that specifies the amount by which the value of each of the  entries to 

modify will change; to be more specific,  

1 if entry i is to be changed
0 Otherwise																											

     32 

1 if entry i value is to be increased
1 if entry i value is to decreased

0 Otherwise                                   
	 	 	 	 33	

and 

 if entry i is to be changed
0	Otherwise                         

	 	 	 	 34	

where  is an admissible value within the range of parameter  values. In sum, the 

proposed generic move is a collection of moves. Thus, for any choice of the 

vector	 , 	 , , up to  different types of neighbourhood structures could be 

used to search the parameter space of GPILS. The implementation of the proposed 

generic move  requires a number of decisions to be made; namely, how to choose 

the  entries to modify; how to choose the type of modification; and how to choose 

the amount of modification. Any of these decisions could be made randomly, using a 

static decision rule, or using a dynamic decision rule. Hereafter, we shall discuss some 

of the decision options available. 
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How to choose the  entries to modify, or equivalently how to choose 	 ? The 

proposed modifications are as follows: one could choose the  entries to change 

randomly – we shall refer to this option as the default option (option 0). On the other 

hand, one could make use of a static rule to choose the  entries to modify. A range 

of fifteen static rules are proposed, see Table 28.  Finally, one could make use of a 

dynamic rule to choose the  entries to modify. Once again, a range of dynamic rules 

could be designed. For example, one could make use of dynamic rules based on 

learning, where parameters are modified based on the learning experience accumulated 

so far and implemented, for example, using the roulette wheel concept, see Appendix 

E. 

How to choose the type of modification to apply, or equivalently how to choose	 ? 

The proposed actions are as follows: one could keep the value of a parameter unaltered 

(action 1), choose to increase it (action 2), or choose to decrease it (action 3). For each 

of the  entries to modify, one could randomly choose amongst these three actions. 

Note that we refer to this random choice as the default option (option 0).  

In our investigation, the choice of  and the static rules used to modify the  entries, 

EC, were defined by a range using options 1, 2, 3 and 4 – see Table 28. In other words, 

the proposed neighbourhood structure is defined so that only the entries within the 

permitted range are considered for modification. We proposed two sets of move 

collections. The first set, called	NS1, is a collection of moves that changes only a single 

range of parameters required for a procedure of GPILS at a time, see Table 29. 

However, the second set, called	NS2, is a collection of moves that changes a range of 

parameters, see Table 29, meaning that the considered type of modification consists of 

changing the parameters using either one or two options, see Table 30. After defining 

which parameters to change, say  using either NS1 or NS2, these parameters 

are changed randomly. In other words, the choice of  is option 0 and the choice of 

 is also option 0. 

Another decision rule for changing parameters of the GPILS could involve random 

choice of the entries to modify and random change in the admissible values to assign. 

In other words, choosing option 0 for 	 , 	  and 	 , where the value of  is 

predefined by the user. 
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Option Description of Type of modification 

0 Random modification 

1 Only bounding scheme 

2 Only breaking procedure of type I move 

3 Only patching procedure of type I move 

4 Only type II move 

5 Only type I move 

6 Only choice of INS 

7 Only metrics 

8 Only infeasible search decisions 

9 Modify only primal search decisions 

10 Only binary decisions such as  

11 Categorical decisions such as , , , , 2 , , 
, , and  

12 Only integer variables such as  and  

13 Both binary and categorical decisions 

14 Both binary decisions and integer variables 

15 Both categorical decisions and integer variables 

Table 28 Static rules of modifying EC 

OptionI= 1; 

IF ( ) { 

IF (OptionI < 4)   OptionI ++; 

ELSE OptionI =1; 

	, 	 	0, 	0 ; 
} 

Table 29 Neighbourhood change strategy considering NS1 

OptionI = Option; 

OptionII = OptionI; 

IF ( ) { 
OptionII ++; 

IF (OptionII == OptionI OR OptionII > 4) {                               
OptionI++; 

OptionII = OptionI;     
} 

, 	, 	 	0, 	0 ;} 

Table 30 Neighbourhood change strategy considering NS2 
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4.2. Generic decisions for high-level search mechanisms 

As it was mentioned earlier generic decision are dependent on the structure of the high-

level search mechanisms. A summary of each high-level search mechanism and their 

generic decisions are explained hereafter. 

4.2.1. Simulated annealing as a high-level search mechanism 

Simulated annealing (SA) is a search procedure based on the annealing process of 

materials in metallurgy and the underlying thermodynamic laws. Its main search 

strategy consists of avoiding remaining stuck in a local optimum by temporarily 

accepting worse solutions with some probability that decreases as the search 

progresses, for more details refer to section 2.5.1.II. The pseudo-code of the SA 

algorithm customised to our application is outlined in Table 31. 

The implementation of this generic SA algorithm for optimising the parameters of 

GPILS requires a number of generic decisions to be made which are summarised in 

the next section. 

4.2.2. Generic decisions for SA 

Choice of the initial and final temperature: The initial temperature could be chosen by 

the analyst or using an automated process. In our implementation, we opted for an 

automated process, where a trial run of the annealing process is performed and the 

information gathered is exploited in choosing the initial temperature. To be more 

specific, we computed the initial temperature as follows (Connolly, 1992): 

2⁄ , where  and  denote the minimum value and the 

maximum value of the changes in the objective function over the trial runs, 

respectively. Note that, the trial run used to compute the initial temperature is the same 

as the one used to initialise . The final temperature   to a small number close 

to zero, 0.1. 

Choice of the cooling schedule: The cooling schedule involves several parameters’ 

choices; namely, the number of neighbours to visit at each temperature, say , the 
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temperature change strategy, the form of the temperature change function  and its 

parameter(s). 

Initialisation Step  

Choose an initial set of parameters of GPILS, , in the admissible parameter space  and 

compute the corresponding objective function value ; that is, the total distance of the 

TSP tour  constructed by GPILS using the set of parameters ; 

Initialise the best solution found so far, say ∗, ∗, ∗ , by setting ∗ , ∗

 and ∗ ; 

Choose an initial temperature 0 and set the current temperature ; 

Set the temperature change counter 1; 

Iterative Step 

REPEAT until stopping condition = true 

Choose the number of neighbours to visit at the current temperature , ; 

Set the repetition counter 0; 

REPEAT until stopping condition = true // e.g.,  

Generate randomly a neighbour  of the current seed  and call GPILS to 

evaluate ; that is, to compute a primal TSP tour  and its total distance  or 

; 

Compute the change  in the objective function value:  ;  

IF  0 OR 0,1 ,  THEN { 

Update the current seed solution , , ; that is, set , 

, and ; 

IF ∗  THEN { 

Update the best solution found so far ∗, ∗, ∗ ; that is, set ∗ , 

∗  and ∗ ;} 

} 

Increment the repetition counter by 1; that is, set 1; 

END REPEAT; 

Increment the temperature change counter by 1; that is, set 1; 

Reduce the temperature  according to the temperature reduction function ; that is, set 

; 

END REPEAT 

Table 31 Pseudo-code of SA as a high-level methodology 

In our implementation, we experimented with static value of . As to the temperature 

change strategy, we experimented with cooling only. With respect to the form of the 

temperature change function, we proposed a modification of the geometric 
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temperature reduction function suggested by Kirkpatrick et al. (1983). At the 

beginning of simulated annealing search, we start with the initial temperature and heat 

the system by doubling the temperature after each epoch until the epoch counter is less 

than three or a better solution is found or  
	 	 	

  is less than 

0.6. Afterwards, cooling the system starts using , cooling schedule 

proposed by Kirkpatrick et al. (1983). However, if for a number of iterations, say , if 

a better neighbour has not been found the temperature is reset to the temperature where 

the best solution is found and the cooling ratio  is set to , until an improvement 

occurs. Whenever an improvement occurs, i.e. a better solution is found the cooling 

ratio is reset to . The empirical investigation showed that the appropriate cooling ratio 

 is to 0.90  and  is0.8 , as for the number of iterations , it depends on the 

neighbourhood structure used. In other words,  is set to the size of set of collection 

of moves used in each neighbourhood structure. For example, if 1 is used to search, 

the neighbourhood,  is equal to four. 

Choice of the transition mechanism: The transition mechanism is specified through 

the choices of answers to the following questions: (1) how to search the neighbourhood 

of the current seed solution - randomly or using a suitable method, sequentially or in 

parallel? and (2) what criteria to use for updating the current seed solution, the first or 

best improving neighbour? With respect to the first question, we generate randomly 

and independently  neighbours of the same seed solution or several different seed 

solutions depending on whether the seed solution has been updated or not during 

epoch 	 ; in sum, each time a neighbour is accepted, the search continues in the 

neighbourhood of the new seed solution. As to the second question, we experimented 

with both the first improving neighbour. In addition, we searched the neighbourhood 

of the current seed solution sequentially when adopting the first improving neighbour 

strategy for updating the seed. 

Choice of the acceptance function ( ): Since SA is not a greedy algorithm, it accepts 

a neighbour or solution as a new seed because either it is an improving one, or it is a 

non-improving one but satisfies a second criterion, which could be either deterministic 

(e.g., Dueck and Scheuer, 1990; Moscato and Fontanari, 1990) or stochastic (e.g., 

Kirkpatrick et al., 1983; Johnson et al., 1989; Brandimarte et al., 1987). In our 
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implementation, we experimented with the linear AF proposed by Johnson et al. 

(1989).  

Choice of the stopping criteria: Several stopping criteria can be used such as the 

‘freezing’ state of the system is reached, a prespecified minimum value of the 

temperature parameter is reached, the number of iterations or temperatures or epochs 

reaches a prespecified number, computational time exceeds a prespecified time limit, 

the maximum number of temperature changes without improvement of the current 

seed is reached, the best objective function value found so far is not updated for a 

prespecified number of iterations, etc. In our implementation, we experimented with 

several stopping criteria and opted for both freezing’ state of the system is reached and 

the maximum number of temperature changes without improvement of the current 

seed is reached. When either of these criteria occurs, the search for the best neighbour 

stops. 

4.2.3. Tabu Search as a high-level search mechanism 

Tabu search (TS) algorithms, first proposed by Glover (1986, 1989, 1990), are search 

procedures that use attribute-based memory structures to constrain and free the search 

process as needed along with aspiration criteria to override restrictions whenever 

appropriate. TS main search strategy to avoid remaining stuck in a local optimum is to 

forbid recent moves for a short while to reduce the likelihood of cycling, using a tabu 

list or memory, for more details see section 2.5.1.III. The pseudo-code of the short-

term memory component-based design of TS algorithms customised to our application 

is outlined in Table 32. This generic TS algorithm should be customised to our search 

in the parameter space of GPILS. In the next section, the generic decisions for TS are 

described. 

4.2.4. Generic decisions for TS 

Choice of the transition mechanism: In our implementation, the transition mechanism 

is best described as a constrained steepest descent, where the adjective “constrained” 

refers to the tabu restrictions. 
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Choice of the tabu list structure, the way to update it, and its size: Concerning the 

structure of the tabu list, it is decision variables-oriented in that it is designed to include 

information on the vector of parameters recently explored. As to the updating of the 

tabu list, we used a first-in-first-out (FIFO) rule. Finally, concerning the size, we 

experimented with static size for tabu list. 

Initialisation Step  

Choose an initial set of parameters of GPILS, , in the admissible parameter space  and 

compute the corresponding objective function value ; that is, the total distance of the 

TSP tour  constructed by GPILS using the set of parameters ; 

Initialise the best solution found so far, say ∗, ∗, ∗ , by setting ∗ , ∗

 and ∗ ; 

Specify the aspiration level function and initialise its value; 

Choose the tabu list ( ) size and initialise  to the empty set ∅; 

Set iteration counter  to 0; 

Iterative Step 

REPEAT until stopping condition = true 

Find a move  in the set of applicable moves, say , so as to optimise the total 

distance, say , of the TSP tour, say , constructed by GPILS using the set of parameters  

over the neighbourhood of the current solution, say ; 

IF  or  is not tabu THEN 

Update the current seed solution , , ; that is, set , , 

and ; 

ELSE  

IF  or  is tabu but the aspiration criterion overrides its tabu status; 

e.g.,  is better than the best vector of parameters found so far THEN 

Update the current seed solution , , ; 

ELSE  

Find the best non-tabu move  or neighbour  – rather than an 

improving one – in the neighbourhood of the current vector of parameters  and update 

the current seed solution , , ; 

Update the tabu list ; 

IF ∗ THEN update the best solution found so far ∗, ∗, ∗ ; that is, set 

∗ , ∗  and ∗ ; 

Increment iteration counter by 1; that is, set 1; 

END REPEAT 

Table 32 Pseudo-code of TS as a high-level methodology 



111 

 

Choice of the aspiration criteria: Regarding aspiration criteria, we opted for the 

standard one; namely, the best objective function value achieved for all previous 

moves. 

Choice of the stopping criteria: Several stopping criteria can be used such as the 

maximum number of iterations is reached, the maximum number of iterations without 

improvement of the current seed is reached, the computational time exceeds a 

prespecified time limit, the best objective function value found so far is not updated 

for a prespecified number of iterations. In our implementation, we experimented with 

several stopping criteria and opted for the maximum number of iterations without 

improvement of the current seed is reached. 

4.2.5. Variable neighbourhood search as a high-level search 

mechanism 

Variable neighbourhood search (VNS) algorithms, first proposed by Mladenovic and 

Hansen (1997), are extensions of classical local search algorithms where attempts are 

made to avoid getting trapped in a local optimum by systematically changing 

neighbourhood structures during a local search process, for more details see section 

2.5.1.IV. The pseudo-code of VNS customised to our application is outlined in Table 

33. 

This generic VNS algorithm should be customised to our search in the parameter space 

of GPILS. We divide implementation decisions into problem-specific decisions and 

generic decisions.  

4.2.6. Generic decisions for VNS 

What neighbourhood structures to use & how many of them? Any number of 

neighbourhood structures and a variety of them could be used to guide the search in 

the parameter space of GPILS. However, using neighbourhood structures with 

different complexity, starting from simplest to more complex, is preferable. Moreover, 

one can start the search with neighbourhood structures used to intensify the search and 

continue with neighbourhood structures used to diversify the search. 
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Initialisation Step  

Choose an initial set of parameters of GPILS, , in the admissible parameter space  and 

compute the corresponding objective function value ; that is, the total distance of the 

TSP tour  constructed by GPILS using the set of parameters ; 

Initialise the best solution found so far, say ∗, ∗, ∗ , by setting ∗ , ∗

 and ∗ ; 

Choose a set of neighbourhood structures to use and specify the order according to which they will 

be used, say ; 1, … , ; 

Choose the local search method to use in exploring neighbourhoods; 

Initialise neighbourhood structure counter  to 1; 

Iterative Step 

REPEAT until stopping condition = true 

Randomly generate a neighbour, say	 , of the current vector of parameters or seed  

according to the -th neighbourhood structure; 

Explore the -th neighbourhood of  using the chosen local search method and update 

 accordingly; 

IF this local optimum concerning the -th neighbourhood  is better than the current seed 

 THEN 

Update the current seed solution , , ; that is, set , , 

and ; 

IF ∗ THEN Update the best solution found so far ∗, ∗, ∗ ; that is, set 

∗ , ∗  and ∗ ; 

Reset neighbourhood structure counter  to 1;  

ELSE   Increment neighbourhood structure counter  by 1; 

END REPEAT 

Table 33 Pseudo-code of VNS as a high-level methodology 

Choice of the transition mechanism to use: The transition mechanism is specified 

through the choices of answers to the following questions:  

(1) How to search a specific neighbourhood of the current seed solution?  

In our implementation, we used random descent local search to search a 

proportion of the neighbourhood of the current seed. 

(2) What criteria to use for updating the current seed solution?  

Concerning criteria to update the current seed, we experimented with best-

improving neighbour amongst equal or improving neighbours. 

(3) What criteria to use for changing neighbourhoods?  
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Concerning changing the neighbourhood structure, we experimented with 

_ _  strategy. 

(4) In which order to search the neighbourhoods?  

The neighbourhood structures are ordered based on their complexity, 

intensification and diversification level, in non-decreasing order. 

Choice of the Stopping Criteria: Our choice is similar to the one made above for TS. 

4.3. Hybrid hyperheuristics 

Each of the before mentioned sequential high-level mechanisms makes use of different 

intensification and diversification strategies, hence, one can hybridise them to create a 

better balance between these strategies. As it was mentioned in the previous section, 

the implementation of the proposed HH-GPILS framework for the TSP requires two 

types of decisions, namely problem-specific and generic. One might propose a hybrid 

high-level framework by combining their generic decisions. We proposed several 

hybrid hyperheuristics; namely hybrid of SA and TS, see Figure 31; hybrid of VNS 

and TS, see Figure 32; and a hybrid of SA, VNS, and TS, see Figure 33. For the first 

two hybrids, we incorporated a tabu list (TL) into SA and VNS, with the same 

specification of the one used in TS. Furthermore, we used aspiration criteria used in 

TS. In other words, if the new neighbour  is Tabu but it satisfies the aspiration 

criteria, its tabu status will be overwritten. As for the third hybrid, in addition to the 

TL and the AC, we incorporated the neighbourhood change strategy of the VNS. 

4.4. Hyperheuristics with intensification strategy 

As it was mentioned in section 0, intensification strategies are used to search the 

promising areas around local optima. One approach is to restart the search from a 

(perturbed) local optima and improve it using different neighbourhood structures, for 

several iterations, looking for a better neighbour.  
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Initialisation Step  

Choose an initial set of parameters of GPILS, , in the admissible parameter space  and 

compute the corresponding objective function value ; that is, the total distance of the 

TSP tour  constructed by GPILS using the set of parameters ; 

Initialise the best solution found so far, say ∗, ∗, 	 ∗ , by setting ∗ , ∗

 and ∗ ; 

Choose an initial temperature 0 and set the current temperature ; 

Adjust the temperature change counter 1; 

Specify the aspiration level function and initialise its value; 

Choose the tabu list ( ) size and initialise  to the empty set ∅; 

Choose a set of neighbourhood structures to use and specify the order according to which they will 

be employed, say ; 1, … , ; 

Initialise neighbourhood structure counter  to 1; 

Initialise the restart counter  to 0; 

Iterative Step 

REPEAT until stopping condition = true 

Randomly generate a neighbour, say 	 , of the current vector of parameters or seed 

 according to the -th neighbourhood structure, at the current temperature , ; 

Set the repetition counter 0; 

REPEAT until stopping condition = true // e.g.,  

Generate randomly a neighbour  of the current seed  and call GPILS to evaluate 

; that is, to compute a primal TSP tour  and its total distance  or ; 

 is tabu THEN 

IF  is tabu but the aspiration criterion overrides its tabu status THEN 

Update the current seed solution , , 	 ; 

ELSE Find the best non-tabu move  or neighbour  – rather than an 

improving one – in the neighbourhood of the current vector of parameters  and 

update the current seed solution , , 	 ; 

Update the tabu list ; 

Compute the change  in the objective function value:  ;  

IF  0 OR 0,1 ,  THEN{ 

Update the current seed solution , , 	 ; that is, set , , 

and ; 

IF ∗  THEN{ 

IF ∗ THEN{ 

Update the best solution found so far ∗, ∗, 	 ∗ ; that is, set ∗ , 

∗  and ∗ ; 
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Set , 

Set ∗  and 0.9;} 

Reset neighbourhood structure counter  to 1; }} 

Increment the repetition counter by 1; that is, set 1; 

END REPEAT; 

Increment the temperature change counter by 1; that is, set 1; 

Increment neighbourhood structure counter  by 1; 

IF  THEN{  

Reset neighbourhood structure counter  to 1; 

IF  THEN{  

Restart the search with the best solution found so far; that is set   ∗, 

∗, and ∗; 

Reset the temperature  to ∗; 

Increment restart counter  by 1; 

Set ;} 

ELSE    Return the best solution found so far ∗, ∗, 	 ∗ ; 

 ELSE   Reduce the temperature  according to the temperature reduction function:	 ; 

END REPEAT 

Table 34 Pseudocode for hybrid of SA, TS, and VNS with restart 

Thus, to exploit the promising areas in the neighbourhood of the current local optima, 

we used an intensification strategy for all the proposed sequential HH-GPILS where it 

restarts the search with the best solution found so far, after several iterations with no 

improvements, see Table 34. Note however that the neighbourhood structure used 

allows the search to explore new paths in the search space. Therefore, the 

intensification is likely to reach new local optimum. Moreover, we added new stopping 

criterion to the previous stopping criteria chosen for each of the sequential based HH-

GPILS, namely stopping the search when no better solution is found for a number of 

restarts, say . 
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Figure 31 Hybrid of SA and TS 
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Figure 32 Hybrid of VNS and TS 
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Figure 33 Hybrid of SA, TS, and VNS 
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4.5. Empirical investigation  

This section presents a comparative analysis of the proposed sequential 

hyperheuristics, which automate the choice of parameters of GPILS. We investigate 

the performance of the proposed methods by following three stages. First, we show 

the empirical results of each method separately and later we compare their 

performance. Second, we compare the proposed HH-GPILS with the DLS developed 

by Ouenniche et al. (2017), which has some similarities (i.e. the infeasible nature of 

the search) with our proposed method. This comparison proves that using a 

hyperheuristic to automate the set of parameters could lead to better performing 

heuristics in comparison to the tailor-made ones. Finally, we show a comparison 

between the best three sequential HH-GPILS and the relevant benchmark. This 

comparison showed that HH-GPILS is a promising design. 

4.5.1. Experimental setup 

In this chapter, we experimented with sequential methodologies, namely SA, TA, VNS 

and their hybrids. We divided the implementation decisions of these hyperheuristics 

to problem-specific and generic decisions, as it was explained throughout this chapter. 

These decisions are shown in Table 35. The choice of each of these decisions is 

specified hereafter. 

For the choice of the parameters space of GPILS in this empirical investigation, we 

reduced the size of the admissible vector of parameters to keep the computational 

requirements reasonable. Note that this limitation of search space might reduce the 

quality of the solution obtained. In our empirical investigation, we imposed bounds on 

some of the parameters, while fixing the values of other parameters. Parameters of 

HH-GPILS are as follows: 

Parameters of the bounding scheme 

 PM: Nearest neighbour; arbitrary insertion; nearest insertion; farthest insertion; 

cheapest insertion; Clarke and Wright; nearest merger  

 IM: {AP, PIH } 

 Parameters of PIH 
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Type of 

Decisions 
Decision High-Level Methodology 

Problem-

specific 

Parameters’ space SA/ VNS / TS 

Initial set of parameters of GPILS SA/ VNS / TS 

Neighbourhood structure or type of moves to use SA/ VNS / TS 

Optimisation function SA/ VNS / TS 

Generic 

Initial temperature SA 

Cooling schedule SA 

Transition mechanism SA/ VNS / TS 

Acceptance function (AF) SA 

Tabu list structure TS 

Aspiration criteria (AC)  TS 

Neighbourhood structures to use and how many 

of them  
VNS 

Stopping criteria SA/ VNS / TS 

Table 35 HH-GPILS high-level decisions 

• : 	1, … , 	 3  

• 1  

• : -means ( ) 

• DRC: Construction heuristic similar to PM 

• Imp:{0, 1}  

• IM: Classic local search 

• NS: 2-opt; 3-opt; Or-opt 

Parameters of Type I move 

 Breaking operation 

• s: 1,… , 	5 

• _ _ : Random; shortest/ largest subtours; smallest/ 

largest subtours; closest/ farthest subtours; cheapest/ most expensive cost of 

merging pair of subtours 

• r: 1, 	 … , 	5	 (if | | then r | | 1) 

• _ _ _ _ : -NN ( 5; if  then 

2) 

 Patching operation 
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• type_of_patching_operation=1 

• Initialisation step 

• :	1, … ,  

• _ _ _ _ : Largest / smallest; 

longest/ shortest; closest/ farthest; cheapest/expensive merging cost 

• _ : Saving procedure; nearest merger 

• _ _ 0 

• Iterative patching 

• 	: 0,1  

• _ _ _ _ : Largest / smallest; longest/ 

shortest; closest/ farthest; 

• _ : Cheapest Insertion 

• _ _ 0 

• _ _ _ : Cost of the subtour 

Parameters of Type II move 

 T2M: 2-opt; 3-opt; ; Or-opt 

 _ _ : Local search 

 _ _ : Cost or total distance of the component 

Note that, we also used ‘reinforced improvement’ with some probability (0.7). In other 

words, after improving the infeasible component by the chosen T2M, we improved the 

infeasible component using a different T2M, again. 

Other parameters of GPILS 

 : Cost or total distance of the component 

 INS: IBN 

Parameters of the primal space exploration 

 _ _ 0 

For the choice of the neighbourhood structures, we experimented with NS1 and NS2 

to search the parameter space of GPILS. As for the decision rules, we experimented 

with several decision rules, see Table 36.  
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 Option 

  or/and  

 option 0 

 option 0 

Table 36 Decision rules 

The rest of the decisions presented in Table 35 are explained in the previous sections, 

however, their parameters are as follows. 

 Number of trial runs: 20 

 40 

 0.9, 0.8 

 0.1 

 | | 15 

 3 

In order to understand the effect of initialising the infeasible solution using either AP 

or PIH, first, for all proposed HH-GPILS methods, we experimented with fixing	  

to either AP or PIH. The empirical results show that initialising the infeasible solution 

with PIH has higher quality than initialising with AP. Furthermore, for the proposed 

SA and TS based HH-GPILS, we experimented with NS1 and NS2 separately and for 

the VNS-based HH-GPILS we experimented with both NS1 and NS2, one after the 

other. In general, 2 perform better than	 1, since has higher level of diversity.  

4.5.2. Experimental results 

The statistics presented in this section are the performance of the hyperheuristic 

calculated as average percentage increase over the optimal solution (i.e. 

	 	

	
100%) and also the computational time (in seconds) for a 

number of runs (i.e. in this investigation 5 runs). Note that is measured as the 

performance of the proposed HH is measured as average percentage increase over the 

optimal solution. In Table 37-40 and 43-44, the first column shows the instances 

solved, the rest of the columns are divided into three sets showing the results for three 

experiments. For the first experiment, we fixed IM to AP, for the second experiment 

we fixed IM to PIH, and for the third we did not fix IM. In each set of experiments, 
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the first column shows the results where only NS1 neighbourhood structure is used in 

HH-GPILS and the second column shows the results where only NS2 neighbourhood 

structure is used. In Tables 41-42 and 45 to 52, each of the columns show the results 

of the following experiments: 

1. First experiment: parameter IM is fixed to AP; 

2. Second experiment: parameter IM is fixed to AP; 

3. Third experiment: parameter IM is not fixed. 

In these three experiments, NS1 and NS2 neighbourhood structures are used, one after 

another. Hereafter, we shall discuss the performance of the proposed hyperheuristics.  

The results obtained by SA-based HH-GPILS are shown in Table 37 and 38, reporting 

its performance and computational time, respectively. From these statistics, one can 

conclude: 

Instance 
	  	  	 ,  

NS1 NS2 NS1 NS2 NS1 NS2 
eil51 0.00% 0.05% 0.09% 0.00% 0.19% 0.00% 
eil76 0.22% 0.04% 1.08% 0.45% 1.12% 0.59% 
pr76 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

kroA100 0.00% 0.00% 0.07% 0.00% 0.01% 0.00% 
kroB100 0.00% 0.00% 0.07% 0.00% 0.15% 0.00% 
kroC100 0.00% 0.00% 0.10% 0.02% 0.18% 0.02% 
kroD100 0.00% 0.00% 0.12% 0.06% 0.23% 0.00% 
kroE100 0.00% 0.00% 0.04% 0.00% 0.00% 0.00% 
eil101 0.79% 0.73% 1.14% 0.70% 1.30% 0.99% 
pr107 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
pr124 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 
ch130 0.15% 0.18% 1.06% 0.32% 0.54% 0.36% 
pr136 0.04% 0.03% 0.03% 0.00% 0.01% 0.00% 
pr144 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
ch150 0.35% 0.25% 0.73% 0.52% 0.95% 0.58% 

kroA150 0.17% 0.14% 0.58% 0.45% 0.66% 0.40% 
kroB150 0.04% 0.02% 0.35% 0.14% 0.24% 0.20% 

pr152 0.00% 0.00% 0.07% 0.00% 0.11% 0.04% 
kroA200 0.51% 0.68% 0.80% 0.59% 0.74% 0.71% 
kroB200 0.59% 0.46% 1.49% 0.92% 1.30% 0.60% 

Average 0.14% 0.13% 0.39% 0.21% 0.39% 0.22% 

Median 0.00% 0.01% 0.10% 0.01% 0.18% 0.01% 
Std 0.23% 0.22% 0.47% 0.28% 0.45% 0.30% 

Table 37 Performance of SA-based HH-GPILS 
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Instance 
	  	  	 ,  

NS1 NS2 NS1 NS2 NS1 NS2 
eil51 184 50 57 110 50 326 
eil76 250 143 119 240 57 538 
pr76 243 104 76 169 52 434 

kroA100 409 293 117 353 148 696 
kroB100 407 336 101 282 134 688 
kroC100 533 294 252 338 159 593 
kroD100 438 390 382 329 203 834 
kroE100 372 367 153 382 179 602 
eil101 458 453 285 646 177 617 
pr107 680 536 229 498 435 452 
pr124 512 591 395 568 223 763 
ch130 613 1359 438 833 379 1641 
pr136 816 1318 326 721 674 825 
pr144 733 1104 372 901 360 1551 
ch150 878 1360 440 1097 426 2084 

kroA150 1255 1167 395 963 503 1777 
kroB150 1371 1174 581 785 672 1977 

pr152 904 641 729 757 720 1473 
kroA200 1230 1330 878 1368 1721 1391 
kroB200 1013 1211 537 1055 1848 2702 

Table 38 Computation time of SA-based HH-GPILS 

 Only considering PIH to initialise the infeasible solution (fixing IM to PIH) 

one can obtain better quality solutions; 

 Furthermore, using NS2 neighbourhood structure to search the infeasible space 

has a better performance than NS1 neighbourhood structure in terms of quality 

of the solution, although it is more time consuming than NS1; 

 Overall, SA-based HH-GPILS using NS2 neighbourhood structure and 

parameter IM fixed to PIH is performing better than the others, with average 

0.3%, median 0.1% and standard deviation 0.22%; 

 As for the computational time, fixing parameter IM to AP seems to be seems 

to be more efficient. The reason is that the parameters of PIH are not 

considered in the parameters search space. 

Table 39 and 40 report TS-based HH-GPILS performance and computational time, 

respectively. From these experiments following conclusions can be drawn: 

 Fixing IM to PIH has better performance than the others. In other words, 

initialising the infeasible solution using PIH could lead to better results; 
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 Using NS2 neighbourhood structure provides a better solution in comparison 

to NS1 neighbourhood structure, however in terms of computational time NS1 

is more efficient; 

 Overall, TS-based HH-GPILS with NS2 neighbourhood structure and 

parameter IM fixed to PIH has better performance than the others, with average 

0.13%, median 0.0% and standard deviation %0.22; 

 Searching the parameters space of the GPDLS using NS1 neighbourhood 

structure leads to good quality solutions much faster than NS2 and combination 

of NS1 and NS2; 

 Furthermore, TS-based HH-GPILS with NS1 neighbourhood structure and 

parameter 	set to ,  produces good quality solutions in faster than 

the other settings. 

Instance 
	  	  	 ,  

NS1 NS2 NS1 NS2 NS1 NS2 
eil51 0.23% 0.00% 0.23% 0.19% 0.00% 0.09% 
eil76 0.33% 0.45% 1.08% 0.63% 0.37% 0.48% 
pr76 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
kroA100 0.00% 0.00% 0.07% 0.06% 0.00% 0.02% 
kroB100 0.00% 0.00% 0.09% 0.05% 0.00% 0.00% 
kroC100 0.00% 0.00% 0.09% 0.02% 0.04% 0.02% 
kroD100 0.17% 0.00% 0.36% 0.09% 0.08% 0.13% 
kroE100 0.00% 0.00% 0.12% 0.00% 0.00% 0.00% 
eil101 0.86% 0.83% 1.05% 1.18% 0.92% 1.02% 
pr107 0.01% 0.00% 0.05% 0.00% 0.00% 0.00% 
pr124 0.02% 0.00% 0.02% 0.00% 0.00% 0.00% 
ch130 0.40% 0.20% 1.10% 0.54% 0.54% 0.55% 
pr136 0.09% 0.04% 0.25% 0.00% 0.01% 0.04% 
pr144 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
ch150 0.52% 0.34% 0.65% 0.62% 0.56% 0.64% 
kroA150 0.52% 0.16% 0.72% 0.59% 0.48% 0.35% 
kroB150 0.02% 0.02% 0.28% 0.31% 0.24% 0.13% 
pr152 0.00% 0.00% 0.11% 0.11% 0.07% 0.04% 
kroA200 0.55% 0.42% 0.78% 0.76% 0.69% 0.73% 
kroB200 0.87% 0.20% 1.10% 1.27% 0.77% 1.07% 
Average 0.23% 0.13% 0.41% 0.32% 0.24% 0.27% 
Median 0.05% 0.00% 0.24% 0.10% 0.06% 0.07% 
Std 0.29% 0.22% 0.41% 0.39% 0.30% 0.35% 

Table 39 Performance of TS-based HH-GPILS 

From the proposed VNS-based HH-GPILS, shown in Table 41 and 42, one can 

conclude: 
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 Overall, VNS-based HH-GPILS with parameter IM fixed to PIH is performing 

better than the others, with average 0.16%, median 0.01% and standard 

deviation %0.25; 

 As for computational time setting IM to PIH is the most time-consuming 

option. 

The results of the experiments for the proposed hybrid of SA and TS based HH-GPILS 

are shown in Table 43 and 44. From these experiments, one can conclude: 

 Overall using neighbourhood structure NS1 is not sufficient, although 

computationally it is more efficient than; 

 Fixing  to  and using only NS2 neighbourhood structure is performing 

better, with average 0.187%, median 0.086% and standard deviation %0.25. 

 On the other hand, fixing  to  and using only NS1 neighbourhood 

structure produces good quality solutions much faster than the other 

experiments. 

Instance 
	  	  	 ,  

NS1 NS2 NS1 NS2 NS1 NS2 
eil51 53 88 35 88 50 114 
eil76 271 206 84 206 38 190 
pr76 83 87 71 87 48 126 

kroA100 129 198 145 198 71 353 
kroB100 180 251 117 251 70 312 
kroC100 231 278 105 278 77 431 
kroD100 131 356 94 356 49 286 
kroE100 110 205 129 205 84 283 
eil101 256 259 218 259 102 551 
pr107 206 450 167 450 89 412 
pr124 427 447 381 447 102 467 
ch130 563 900 371 900 190 824 
pr136 305 598 158 598 202 696 
pr144 313 870 371 870 247 796 
ch150 904 932 536 932 231 788 

kroA150 768 875 422 875 449 724 
kroB150 928 1089 533 678 351 1235 

pr152 875 668 294 668 252 1007 
kroA200 990 1715 1078 1715 456 2521 
kroB200 1238 1043 788 1043 686 2486 

Table 40 Computaional time of TS-based HH-GPILS 
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Instance 	  	  
	

,  
eil51 0.05% 0.00% 0.00% 
eil76 0.34% 0.48% 0.56% 
pr76 0.00% 0.00% 0.00% 
kroA100 0.00% 0.00% 0.02% 
kroB100 0.00% 0.00% 0.03% 
kroC100 0.00% 0.00% 0.04% 
kroD100 0.00% 0.09% 0.05% 
kroE100 0.00% 0.00% 0.00% 
eil101 0.92% 0.92% 0.60% 
pr107 0.00% 0.00% 0.03% 
pr124 0.00% 0.00% 0.00% 
ch130 0.30% 0.40% 0.32% 
pr136 0.02% 0.00% 0.03% 
pr144 0.00% 0.00% 0.00% 
ch150 0.42% 0.55% 0.56% 
kroA150 0.24% 0.46% 0.29% 
kroB150 0.02% 0.21% 0.11% 
pr152 0.00% 0.09% 0.00% 
kroA200 0.63% 0.70% 0.56% 
kroB200 0.24% 0.84% 0.67% 
Average 0.16% 0.24% 0.19% 
Median 0.01% 0.05% 0.04% 
Std 0.25% 0.31% 0.25% 

Table 41 Performance of VNS-based HH-GPILS 

 

Instance 	  	  
	

,  
eil51 184 383 83 
eil76 508 195 253 
pr76 243 135 180 
kroA100 409 548 353 
kroB100 407 405 172 
kroC100 533 558 437 
kroD100 438 461 492 
kroE100 372 559 318 
eil101 458 530 985 
pr107 680 663 302 
pr124 512 600 863 
ch130 613 1146 942 
pr136 816 818 1019 
pr144 733 863 864 
ch150 878 1168 1516 
kroA150 1255 936 1608 
kroB150 1336 1116 1484 
pr152 904 747 1210 
kroA200 2058 1795 1561 
kroB200 2039 1850 1856 

Table 42 Computational time of VNS-based HH-GPILS 

 

 



128 

 

Instance 
	  	  	 ,  

NS1 NS2 NS1 NS2 NS1 NS2 
eil51 0.24% 0.24% 0.42% 0.05% 0.42% 0.24% 
eil76 0.93% 0.41% 0.89% 0.74% 1.12% 0.22% 
pr76 0.14% 0.00% 0.00% 0.00% 0.00% 0.00% 

kroA100 0.02% 0.00% 0.10% 0.02% 0.01% 0.00% 
kroB100 0.09% 0.00% 0.15% 0.00% 0.36% 0.00% 
kroC100 0.22% 0.00% 0.23% 0.02% 0.20% 0.02% 
kroD100 0.22% 0.09% 0.25% 0.13% 0.16% 0.03% 
kroE100 0.01% 0.00% 0.04% 0.00% 0.19% 0.00% 
eil101 1.37% 0.95% 1.81% 0.86% 1.59% 1.15% 
pr107 0.04% 0.00% 0.06% 0.03% 0.07% 0.03% 
pr124 0.05% 0.02% 0.05% 0.00% 0.02% 0.00% 
ch130 0.60% 0.19% 0.96% 0.63% 1.02% 0.48% 
pr136 0.45% 0.08% 0.06% 0.04% 0.10% 0.02% 
pr144 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
ch150 0.54% 0.48% 1.04% 0.55% 1.05% 0.63% 

kroA150 0.64% 0.16% 0.75% 0.57% 0.42% 0.39% 
kroB150 0.10% 0.10% 0.24% 0.07% 0.21% 0.09% 

pr152 0.04% 0.00% 0.22% 0.00% 0.20% 0.07% 
kroA200 1.06% 0.50% 1.50% 0.62% 0.58% 0.75% 
kroB200 1.08% 0.53% 1.20% 1.15% 0.93% 0.84% 
Average 0.39% 0.19% 0.50% 0.28% 0.43% 0.25% 
Median 0.22% 0.09% 0.23% 0.05% 0.21% 0.05% 

Std 0.41% 0.25% 0.54% 0.36% 0.45% 0.34% 

Table 43 Performance of Hybrid of SA and TS 

 

Instance 
	  	  	 ,  

NS1 NS2 NS1 NS2 NS1 NS2 
eil51 30 32 142 142 57 30 
eil76 45 73 384 384 54 105 
pr76 37 57 191 191 100 110 

kroA100 53 223 294 294 240 125 
kroB100 40 170 392 392 82 231 
kroC100 49 258 397 397 109 349 
kroD100 90 314 460 460 134 516 
kroE100 32 276 303 303 110 157 
eil101 78 169 356 356 86 369 
pr107 100 254 673 673 134 714 
pr124 89 719 489 489 130 261 
ch130 503 852 569 655 228 750 
pr136 378 398 620 620 205 856 
pr144 320 1077 940 940 176 383 
ch150 190 693 1005 1136 442 924 

kroA150 253 932 998 741 560 606 
kroB150 724 748 977 874 971 266 

pr152 251 304 991 893 351 422 
kroA200 727 1565 1953 2548 1041 1603 
kroB200 445 1107 1535 3284 638 1724 

Table 44 Computational time of Hybrid of SA and TS 
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Instance 	  	  
	

,  
eil51 0.00% 0.00% 0.05% 
eil76 0.22% 0.37% 0.59% 
pr76 0.00% 0.00% 0.00% 

kroA100 0.00% 0.00% 0.00% 
kroB100 0.00% 0.00% 0.00% 
kroC100 0.00% 0.04% 0.00% 
kroD100 0.00% 0.08% 0.00% 
kroE100 0.00% 0.00% 0.00% 
eil101 0.79% 0.92% 0.57% 
pr107 0.00% 0.00% 0.00% 
pr124 0.00% 0.00% 0.00% 
ch130 0.15% 0.54% 0.44% 
pr136 0.04% 0.01% 0.00% 
pr144 0.00% 0.00% 0.00% 
ch150 0.35% 0.56% 0.47% 

kroA150 0.17% 0.48% 0.40% 
kroB150 0.04% 0.24% 0.25% 

pr152 0.00% 0.07% 0.04% 
kroA200 0.51% 0.69% 0.67% 
kroB200 0.36% 0.77% 0.46% 
Average 0.13% 0.24% 0.20% 
Median 0.00% 0.06% 0.02% 

Std 0.21% 0.30% 0.24% 

Table 45 Performance of Hybrid of VNS and TS with shaking 

 

Instance 	  	  
	

,  
eil51 184 383 83 
eil76 508 195 253 
pr76 243 135 180 

kroA100 409 548 353 
kroB100 407 405 172 
kroC100 533 558 437 
kroD100 438 461 492 
kroE100 372 559 318 
eil101 458 530 985 
pr107 680 663 302 
pr124 512 600 863 
ch130 613 1146 942 
pr136 816 818 1019 
pr144 733 863 864 
ch150 878 1168 1516 

kroA150 1255 936 1608 
kroB150 1336 1116 1484 

pr152 904 747 1210 
kroA200 2058 1795 1561 
kroB200 2039 1850 1856 

Table 46 Computational time of Hybrid of VNS and TS with shaking 

As for the hybrid of VNS and TS based HH-GPILS, we experimented with the effect 

of shaking procedure where the current solution is perturbed by randomly changing 
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two random parameters of the set, see Table 45 and 46. Moreover, we experimented 

with the hybrid of VNS and TS without the shaking procedure, see Table 47 and 48. 

From the obtained results the following conclusions can be drawn: 

 This HH-GPILS method with fixed  to  is performing better, in terms 

of quality of the solutions, in both experiments, with (average 0.13%, median 

0.0% and standard deviation 0.21%) or without shaking procedure (average 

0.153% and median 0.012% and standard deviation 0.21%); 

 However, the hybrid of VNS and TS with shaking procedure has better 

performance in terms of quality of the solutions than the one without shaking. 

 As for computational time, the hybrid without shaking is performing much 

better than the hybrid with shaking; 

 In general, the hybrid of VNS and TS without shaking procedure and with fixed 

 to  is computationally more efficient. 

Results of the hybrid SA and VNS based HH-GPILS is shown in Table 49 and 50. 

From the results, one can conclude: 

 Fixing IM to PIH results in better performance, in terms of both quality of the 

solution and computational time, in comparison with the others, with average 

0.18%, median 0.01% and standard deviation 0.28%. 

Table 51 and 52 show the results for the hybrid of SA, VNS and TS based HH-GPILS. 

From this table one can conclude: 

 By fixing IM to PIH, this hyperheuristic obtains better results, with an average 

of 0.18%, median 0.03% and standard deviation %0.26. 

 On the other hand, fixing IM to AP, this hybrid is more efficient in terms of 

computational time. 
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Instance 	  	  
	

,  
eil51 0.00% 0.09% 0.09% 
eil76 0.48% 0.89% 0.78% 
pr76 0.00% 0.00% 0.00% 

kroA100 0.00% 0.04% 0.02% 
kroB100 0.00% 0.05% 0.03% 
kroC100 0.00% 0.10% 0.08% 
kroD100 0.01% 0.03% 0.03% 
kroE100 0.00% 0.00% 0.00% 
eil101 0.60% 1.02% 1.08% 
pr107 0.01% 0.02% 0.03% 
pr124 0.00% 0.00% 0.00% 
ch130 0.30% 0.78% 0.71% 
pr136 0.05% 0.14% 0.04% 
pr144 0.00% 0.00% 0.00% 
ch150 0.42% 0.93% 0.42% 

kroA150 0.15% 0.48% 0.38% 
kroB150 0.06% 0.20% 0.17% 

pr152 0.00% 0.07% 0.04% 
kroA200 0.60% 0.95% 0.73% 
kroB200 0.36% 1.13% 1.30% 
Average 0.15% 0.35% 0.30% 
Median 0.01% 0.10% 0.06% 

Std 0.21% 0.41% 0.39% 

Table 47 Performance of Hybrid of VNS and TS without shaking 

 

Instance 	  	  
	

,  
eil51 130 146 19 
eil76 178 102 58 
pr76 67 97 67 

kroA100 202 244 160 
kroB100 219 329 172 
kroC100 134 517 234 
kroD100 246 311 243 
kroE100 199 312 212 
eil101 309 550 166 
pr107 267 570 302 
pr124 323 620 417 
ch130 651 788 463 
pr136 270 598 621 
pr144 394 764 385 
ch150 616 772 345 

kroA150 480 929 330 
kroB150 583 753 504 

pr152 524 357 461 
kroA200 888 2643 773 
kroB200 1112 2455 1394 

Table 48 Computational time of Hybrid of VNS and TS without shaking 
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Instance 	  	  
	

,  
eil51 0.14% 0.00% 0.09% 
eil76 0.22% 0.67% 0.30% 
pr76 0.00% 0.00% 0.00% 

kroA100 0.00% 0.00% 0.00% 
kroB100 0.00% 0.00% 0.00% 
kroC100 0.00% 0.04% 0.04% 
kroD100 0.00% 0.17% 0.00% 
kroE100 0.00% 0.00% 0.00% 
eil101 0.95% 1.18% 0.95% 
pr107 0.00% 0.00% 0.00% 
pr124 0.00% 0.00% 0.00% 
ch130 0.33% 0.52% 0.27% 
pr136 0.04% 0.03% 0.00% 
pr144 0.00% 0.00% 0.00% 
ch150 0.36% 0.47% 0.49% 

kroA150 0.23% 0.29% 0.32% 
kroB150 0.02% 0.22% 0.08% 

pr152 0.00% 0.07% 0.04% 
kroA200 0.61% 0.55% 0.62% 
kroB200 0.78% 1.21% 0.62% 
Average 0.18% 0.27% 0.19% 
Median 0.01% 0.06% 0.04% 

Std 0.28% 0.37% 0.27% 

Table 49 Performance of Hybrid of SA and VNS 

 

Instance 	  	  
	

,  
eil51 28 122 66 
eil76 138 229 249 
pr76 248 132 155 

kroA100 336 325 370 
kroB100 496 548 213 
kroC100 267 419 261 
kroD100 632 458 292 
kroE100 489 347 219 
eil101 530 341 409 
pr107 431 595 561 
pr124 586 582 615 
ch130 742 730 714 
pr136 895 649 589 
pr144 822 745 915 
ch150 932 734 989 

kroA150 1103 1450 1119 
kroB150 1038 996 1075 

pr152 644 1241 1097 
kroA200 1336 2761 2217 
kroB200 1780 1745 1731 

Table 50 Computational time of Hybrid of SA and VNS 
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Instance 	  	  
	

,  
eil51 0.14% 0.09% 0.09% 
eil76 0.52% 0.67% 0.26% 
pr76 0.00% 0.00% 0.00% 

kroA100 0.00% 0.00% 0.00% 
kroB100 0.00% 0.00% 0.00% 
kroC100 0.00% 0.14% 0.04% 
kroD100 0.01% 0.08% 0.11% 
kroE100 0.00% 0.00% 0.00% 
eil101 0.95% 0.89% 1.18% 
pr107 0.00% 0.00% 0.00% 
pr124 0.00% 0.00% 0.00% 
ch130 0.23% 0.48% 0.48% 
pr136 0.07% 0.06% 0.02% 
pr144 0.00% 0.00% 0.00% 
ch150 0.38% 0.79% 0.56% 

kroA150 0.44% 0.48% 0.39% 
kroB150 0.05% 0.19% 0.15% 

pr152 0.00% 0.07% 0.09% 
kroA200 0.53% 0.95% 0.84% 
kroB200 0.34% 1.05% 0.77% 
Average 0.18% 0.30% 0.25% 
Median 0.03% 0.09% 0.09% 

Std 0.26% 0.36% 0.34% 

Table 51 Performance of Hybrid of SA, VNS and TS 

 

Instance 	  	  
	

,  
eil51 85 31 27 
eil76 296 61 110 
pr76 167 65 185 

kroA100 253 78 223 
kroB100 333 86 262 
kroC100 249 98 379 
kroD100 265 102 197 
kroE100 285 114 177 
eil101 404 167 307 
pr107 370 173 562 
pr124 478 182 569 
ch130 606 203 1469 
pr136 453 217 440 
pr144 607 269 448 
ch150 614 344 373 

kroA150 822 355 935 
kroB150 941 401 764 

pr152 720 637 551 
kroA200 1407 999 1521 
kroB200 2022 753 1160 

Table 52 Computational time of Hybrid of SA, VNS and TS 
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The average and median of all proposed sequential HH-GPILS are shown in Figure 

34. To conclude, from this figure and the analysis above the following conclusions can 

be drawn: 

 Overall, sequential hyperheuristics provide good quality solutions, on average 

less than 0.5% increase over the optimal. 

 Amongst the proposed hyperheuristics, SA-based HH-GPILS has the best 

performance, with a minimum overall average of 0.128% ( ) and a 

maximum overall average of 0.392% ( ). 

 In general, by fixing IM to PIH one can improve the quality of the HH-GPILS. 

 Overall, neighbourhood structure NS2, in comparison with NS1, provides 

better quality solutions. The reason is that the diversification level of NS2 is 

higher than the diversification level of NS1. Thus, NS1 gets stuck in local 

optima more often. However, SA-based HH-GPILS, using NS1 and IM fixed 

to PIH, provides good quality solutions, with an average of 0.143% and a 

median of 0.0%. The reason is that the SA’s acceptance function allows 

temporary acceptance of deteriorating solutions based on a probability that 

depends on the temperature. 

 The best nine of the proposed HH-GPILS are the ones with fixed IM to PIH, 

and as for neighbourhood structures they all, except the fourth one SA-based 

HH-GPILS using 1,  are using neighbourhood structures 2 

or	 1, 2 . 

 However, in terms of computational time, in general, setting IM to AP and 

using NS1 is more efficient. 

4.5.3. Sequential HH-GPILS in comparison with DLS 

In this section, we shall compare the proposed HH-GPILS with DLS developed by 

Ouenniche et al. (2017). In order to compare DLS with HH-GPILS, we classified all 

the results of to Ouenniche et al. (2017) in three categories depending on the choice of 

parameters  and 	 : 	2, 1, 1 , 	2, 2, 1  and 

	3, 1, 1	 	 1 . In each category, we only chose the minimum average 

increase over optimal amongst all. Figure 35 shows the average increase over optimal 

solution for the above mentioned DLS categories by Ouenniche et al. (2017), which is 
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shown by green bars, and all the proposed sequential HH-GPILS are shown by blue 

bars.  

 

Figure 34 Average and median of all proposed sequential HH-GPILS 
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Recall that the set of parameters used by GPILS is not restricted as was the case with 

Ouenniche et al. (2017). From this figure, the following conclusions can be drawn: 

 Overall, sequential HH-GPILS is performing better in comparison with DLS. 

 DLS with parameters 	2, 1, 1  is producing better solutions in 

comparison with parameters 	2, 2, 1  and	 	3, 1,

1	 	 1 . However, this observation does not mean that lower value of  

and  perform better. The preliminary results showed that, depending on the 

instance of the TSP, higher values could lead to better solutions. 

In general, using a hyperheuristic methods to automate the choice of parameters of the 

GPILS could lead to better solutions than tailor-made methods such as DLS. 

4.5.4. Sequential HH-GPILS in comparison with primal 

methodologies 

In this section a comparison between the best three sequential HH-GPILS and the 

relevant benchmark is presented. Table 53 and Figure 36 illustrate the results. In Table 

53, the first column shows the instances of the TSP and the rest of the columns show 

the percentage increase over the optimal solution of each method. The best three 

sequential HH-GPILS are:  

1. SA -based HH-GPILS (using NS2 and  fixed to  ) is shown in the 

second column as SA HH-GPILS; 

2. Hybrid of VNS and TS HH-GPILS (with shaking and  fixed to  ) is 

shown in the third column as VNS-TS HH-GPILS;  

3. TS-based HH-GPILS (using NS2 and  fixed to  ) is shown in the fourth 

column as TS HH-GPILS;  

and the benchmark methods are as follows: 

1. Metaheuristic for randomized priority search (Meta-RaPS) proposed by DePuy 

et al. (2005) is shown in the fifth column; 

2. Adaptive TS (ATS) proposed by Suwannarongsri and Puangdownreong (2012) 

is shown in the sixth column; 
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3. Parallel Adaptive TS (PATS) approach proposed by He et al. (2005) is shown 

in the seventh column; 

4. Adaptive SA with greedy search (ASA-GS) proposed by Geng et al. (2011) is 

shown in the eighth column; 

5. Generalised chromosome GA (GCGA) proposed by Yang et al. (2008) is 

shown in the ninth column. 

 

Figure 35 Sequential HH-GPILS in comparison with DLS 
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ch130 0.19 0.15 0.20   2.44 0.18  
ch150 0.48 0.35 0.34  1.30 2.58 0.16  
eil51 0.24 0.00 0.00  2.85 1.12 0.67 0.94 
eil76 0.41 0.22 0.45  0.40 2.71 1.18 2.42 
eil101 0.95 0.79 0.83   2.71 1.83 2.70 
kroA100 0.00 0.00 0.00 0.00 1.14 0.37 0.01 1.23 
kroA150 0.16 0.17 0.16    0.05 2.92 
kroA200 0.50 0.51 0.42 1.07  2.62 0.23 1.85 
kroB100 0.00 0.00 0.00 0.25 1.93 1.78 0.00 1.81 
kroB150 0.10 0.04 0.02    0.18 2.11 
kroB200 0.53 0.36 0.20 1.26   0.25 4.04 
kroC100 0.00 0.00 0.00 0.00  1.37 0.00 1.33 
kroD100 0.09 0.00 0.00 0.00  4.72 0.03 2.42 
kroE100 0.00 0.00 0.00 0.17   0.20 1.41 
pr76 0.00 0.00 0.00  2.14    
pr107 0.00 0.00 0.00 0.00  0.35 0.00 1.37 
pr124 0.02 0.00 0.00 0.00  0.77 0.00 0.19 
pr136 0.08 0.04 0.04 0.39  1.05 0.31 2.82 
pr144 0.00 0.00 0.00    0.01 0.04 
pr152 0.00 0.00 0.00 0.00   0.01 1.22 

Table 53 Sequential HH-GPILS in comparison with primal methodologies 
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Figure 36 Sequential HH-GPILS in comparison with primal methodologies 

In Figure 36, the vertical axis shows the average percentage increase over the optimal 

and the horizontal axis shows TSP instances. Each line in the figure represents the 

quality of a sequential HH-GPILS, above mentioned, and the markers show each of 

the benchmarks. Overall, the proposed sequential HH-GPILS outperforms the 

benchmark, with some few exceptions. ASA-GS is performing better for instances 

ch150, kroa150 and kroa200, however, on average the proposed sequential HH-GPILS 

are performing better than ASA-GS. 

4.6. Conclusion 

Sequential hyperheuristics are smart techniques that select the best set of parameters 

for GPILS, each using a different search strategy and neighbourhood structures. 

Overall, they all provide good quality solutions, on average less than 0.5% increase 

over the optimal and deliver the optimal solution in 55% of experiments conducted. In 

comparison with the benchmark, DLS, the proposed HH-GPILS has a better 

performance because of its adaptability. 

However, the neighbourhood structure and the bounds of the set of parameters has a 

significant influence on the quality of the solution. A neighbourhood structure which 

provides the right level of intensification and diversification could lead to the best path 

across the search space and lead to the global optimal solution.  

As for the bounds of the parameters, in this study, we mostly concentrated on the 

initialisation of the infeasible solution. In general, initialising the infeasible solution 

using the PIH provides better quality solutions than AP, however using the AP to 

initialise the infeasible solution is computaionalyy more efficient.  

Finally, the proposed GPILS can be categorised as constructive-perturbative because 

of its infeasible nature and the use of Type II move to improve the infeasible 

components. Its performance is clearly enhanced when implemented within a 

hyperheuristic framework. 
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5. A Parallel 
Hyperheuristic 
Framework for GPILS 

In the previous chapter we developed sequential hyperheuristics to automate and 

optimise the choice of the set of parameters of GPILS. These hyperheuristics start with 

single set of parameters and search its neighbourhood for a better set. On the other 

hand, one can start with a population of sets of parameters. In this chapter, we propose 

a parallel or population-based hyperheuristic for optimising the set of parameters of 

GPILS. 

As it was mentioned in section 2.5.2, traditional parallel algorithms, such as genetic 

algorithm (GA) and memetic algorithm (MA), start with a population of individuals 

(chromosomes), representing the solution to the problem under consideration, and 

evolves them to create new population hoping that these individuals have better 

performance while inheriting their parents’ features.  

Furthermore, the quality of the initial population can have a significant influence on 

the performance of the GA and its convergence speed. In other words, starting with a 

good-quality population can speed up the search, although, it might prematurely 

converge to a local optimum. Initialising the population using seeding techniques can 

generate high-quality chromosomes can improve the quality, and can speed up, the 

GA’s search for the best solution. Although, these techniques might increase the 

chance of immature convergence. There are several seeding techniques to initialise the 

population such as initialising the population using a heuristic (Yang, 1997; Liao, 

2009; Ray et al.; 2007; Kaur and Murugappan, 2008), using a gene bank (Wei et al. 

2007), sorted population (Yugay et al., 2008), etc. based on the analysis done by Paul 

et al. (2015) and Shanmugam et al. (2013).  
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In this chapter, we propose a population-based framework, namely GA-based 

hyperheuristic that makes use of indirect presentation of chromosomes where each 

chromosome represents a set of parameters of GPILS, see Figure 37. The proposed 

population-based hyperheuristic evolves these chromosomes to find better 

chromosomes. Note that, to the best of our knowledge, no previous attempt has been 

made to optimise the parameters of a heuristic using a hyperheuristic framework. 

 

 

 

 

Figure 37 Population of parallel hyperheuristic 

Later, we proposed an offline learning mechanism for GA-based HH-GPILS, with aim 

of reusing the set of parameters on unseen (new) problem instances after such set of 

parameters has evolved on a given set of training problem instances. The proposed 

offline learning mechanism makes use of a knowledge-based system that keeps track 

of good performing chromosomes, i.e. set of parameters of the GPILS. The 

knowledge-based system is refered to as chromosomes bank (CB) that keeps several 

good performing chromosomes along with their scores, see Figure 38. When solving 

a new TSP instance, all or a set of these chromosomes are used to initialise the 

population of the GA. Note that the score of the set of chromosomes used to initialise 

the GA is updated based on their performance. When GA converges to the final 

population or stops the search before the convergence occurs, all or a number of the 

best performing chromosomes of the final generation will replace a set of existing 

chromosomes in the CB. 

In summary, the contributions of this chapter are developing a population-based 

hyperheuristic to automate and optimise the choice of parameters of GPILS and 

proposing an offline learning mechanism for GA-based HH-GPILS. Hereafter, we 

shall discuss the implementation decisions of the population-based methods. We 

divided these implementation decisions to problem-specific and generic decisions. 

Problem specific decisions are common decisions in the implementation of 

 

 

 

⋮ 



142 

 

population-based methods. However, generic decisions are dependent on the choice of 

the high-level methodology. Afterwards, the details of the proposed offline learning 

are explained. Later, the empirical investigation and finally conclusions are presented. 

 

 

 

 

Figure 38 Chromosomes bank 

5.1. Problem-specific decisions for high-level search 

mechanisms 

These decisions are common amongst population-based methods but dependent on the 

problem under consideration. In the concept of HH-GPILS, these decisions are related 

to the GPILS. Problem-specific to the implementation of population-based 

hyperheuristics is (1) choice of the parameters’ space; (2) choice of the genetic 

representation or encoding scheme of chromosomes; and (3) choice of the fitness 

measure. We shall discuss these decisions in the next section 

Choice of the parameters’ space:  The choice of the parameters’ space is similar to the 

choice of the parameters’ space used for sequential hyperheuristics. 

Genetic representation or encoding scheme of chromosomes: Since chromosomes are 

a string of genes representing its genetic information, in our population-based 

hyperheuristics; a chromosome is represented as a vector (string) of parameters of 

GPILS.  

Fitness measure: The choice of fitness measure is similar to the choice of the form of 

the optimisation function used for sequential hyperheuristics. 

 
1 

 
2 

  

⋮ 
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5.2. Choice of the high-level methodology and its 

implementation decisions 

As it was mentioned in the previous chapter, the high-level methodology for searching 

the parameter space of GPILS could either be a sequential methodology or a parallel 

one. In this chapter, we opt for experimenting with parallel (population-based) 

methodologies. To be more specific, we have chosen Genetic Algorithm (GA) as a 

high-level methodology. Since the problem-specific decisions are discussed earlier, in 

the next section, we shall discuss generic implementation decisions of the proposed 

metaheuristics for searching the parameter space of GPILS.  

5.2.1. Genetic algorithm as a high-level search mechanism 

Genetic algorithms (GAs) are population-based metaheuristics that start the search 

with an initial population and evolves those using bio-inspired operators to generate 

offsprings hoping that the new generation inherits the parent’s good genes and be 

better than their parents. The customised pseudo-code of the GA as high-level 

methodology algorithm is outlined in Table 54. 

As it was mentioned in earlier, designing a GA requires two sets of decisions, namely 

problem-specific decisions and generic decisions. Since in this study GA is used as a 

high-level methodology to search the heuristic space the problem-specific decisions 

should be modified. However, the generic decisions for GA-based hyperheuristic 

could be similar to the operators in traditional GA, note that some or all of them need 

slight modifications. Thus, we customised the GA problem-specific and generic 

decisions to our search in the search space of GPILS. 

Generic decisions are concerned with the parameters of the algorithm itself. The 

generic decisions are choice of (1) population size and selection of initial population; 

(2) parents’ selection and replacement mechanism; (3) reproduction mechanism; (4) 

immigration operator; (5) genetic operators’ rates and (6) stopping criteria. We shall 

discuss these decisions in the next section. 

Population size and selection of initial population: Since the choice of population size 

 has a great influence on GA’s efficiency and effectiveness, one should make a trade-



144 

 

off when choosing the population size. In order to initialise the population, one can 

choose to randomly generate  chromosomes, however one might initialise the 

population based on historical knowledge about the TSP instance and/or GPILS 

performance (e.g. offline learning or using a trial run). In our empirical investigation, 

we have experimented with random seeding. 

Initialisation Step  

Choose an initial population of M individuals of GPILS, , in the admissible parameter space 

 evaluate the fitness of each individual, ; that is, the total distance of the TSP tour 

constructed by GPILS using the set of parameters of individual ; 

Initialise the best solution found so far, say ∗, ∗ , by setting ∗  and ∗

; 

Set iteration counter  to 0; 

Set Best-Found-At-iteration to 0; 

Set immigration counter  to 0; 

Iterative Step 

REPEAT until stopping condition = true 

IF crossover condition(s) hold THEN { 

Select a subset of individuals from the current generation as parents for reproduction;  

Perform a crossover operation on parents to generate children; } 

IF mutation condition(s) hold THEN { 

Select a subset of individuals from the current generation as parents for reproduction;  

Perform a mutation operation on parents to generate children; } 

IF immigration condition(s) hold THEN { 

Perform an immigration operation to generate children;  

Increment immigration counter by 1; that is, set 	 	 1;} 

Evaluate the fitness of each child and update the best solution found so far, if necessary; 

IF ∗ THEN { 

update the best vector of parameters found so far; that is, set ∗  and ∗

; 

Best-Found-At-iteration	 ;} 

Replace a subset of parents in the current population by a subset of the current children to produce 

a new generation;  

Increment iteration counter by 1; that is, set 1; 

END REPEAT 

Table 54 Pseudo-code of genetic algorithm as a high-level methodology 



145 

 

Parents’ selection and replacement mechanism: GA iteratively selects some 

chromosomes, from the current generation, for mating and combines them to generate 

new offsprings; these new offsprings replace a number of chromosomes, from the 

current generation, to produce a new generation. In our empirical investigation, we 

used steady-state selection mechanism where two subsets with equal sizes are chosen, 

the first subset for mating and the second to be deleted. In order to choose parents for 

the mating pool, we experimented with tournament selection ( 2). On the other 

hand, to select chromosomes to be replaced we experimented with deleting the worst 

individual from the current generation, with consideration of replacement-with-no-

duplicates. 

Reproduction mechanism: Reproduction mechanism consists of two operators. The 

first operator, crossover, combines the parents by swapping some alleles to produce 

offsprings. The second operator, mutation, diversifies the chromosome by randomly 

introducing new features into the chromosomes. In our implementation for the 

crossover operation, we experimented with uniform crossover (Syswerda, 1989; 

Spears and De Jong, 1995). In uniform crossover mechanism, parents’ alleles are 

randomly swapped with probability	  ( 0.5). Using this crossover mechanism 

produces new offsprings, while these new offsprings are inheriting the parents’ genes 

and information with higher level of diversification in comparison with one-point and 

two-point crossovers’ mechanisms.  

As for the mutation operator, we experimented with random mutation of 

chromosomes, where a number of alleles are changed randomly. The choice of alleles 

to change is made using the mutation rate. 

Genetic operators’ rates: The rates of the genetic operators control the evolution of 

the current population. Crossover and mutation rates specify the rate each of these 

operations is used. The first, crossover rate, indicate how many offsprings are 

introduced into the population by combining their parents whereas the second, 

mutation rate, indicates the rate where new information is entered in the population.  

Immigration operator: Immigration operator introduces new individuals to replace a 

proportion of existing individuals, typically the worst individuals. This operator is used 

to add a level of diversification to the GA. An effective immigration operator allows 
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the GA to explore different regions of the search space. In our empirical investigation, 

we randomly generated a number of new individuals ( 2). These new 

individuals are used to replace  number of worst performing individuals in the 

current generation. The empirical investigation showed that the appropriate condition 

for immigration to only when either of the following conditions occur:  

1. If the population converges and immigration has not occurred for four 

iterations. 

The reason for this condition is that to avoid premature convergence. 

Moreover, the occurrence of immigration has been restricted to a number of 

iterations to prevent the unnecessary random search.  

2. If no immigration has occurred but the iteration counter  reached the 

maximum number of evolutions and the percentage population convergence is 

greater than predefined percentage.  

The reason is that assuming the initial population did not lead to the optimal 

solution and the search got stuck in the local optima; we use immigration 

operator to get out of the local optima. However, immigration might not be 

necessary, if this was not the case. 

3. If a better solution has not been found for some iterations and immigration has 

not been occurred for four iterations. 

When this condition happens, one might say, again, that the search got stuck in 

the local optima and immigration operator could be used get out of it. 

As it was mentioned, the occurrence of the immigration operator should be restricted 

to avoid the unnecessary random search. Thus, we limited immigration occurrence for 

a number of iterations. Also, immigration operator can be used for maximum three 

times. 

Stopping criteria: Several stopping criteria can be utilized in the GA-based high-level 

mechanisms such as predetermined number of evolutions or generations was reached, 

maximum number of iteration since the last best individual was found, maximum 

number of iteration since the last best individual was found, the highest number of 

immigrations has occurred, measure of the population diversity fell below a 
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prespecified threshold. We experimented with several stopping criteria, the 

appropriate stopping criteria were the first three criteria, when either of these criteria 

occurs the GA’s search for better individual stops. 

5.3. Parallel Hyperheuristic Framework with Offline 

Learning Mechanism for GPILS 

As it was mentioned in the previous section, GA starts with an initial population. The 

quality of the initial population has a significant influence on the performance of the 

GA and its convergence speed. In other words, starting with a high-quality population 

can speed up the search. However, GA might converge prematurely to a local 

optimum. Seeding techniques that generate high-quality chromosomes can improve 

the quality, and can speed up, the GA’s search for the best solution. Although, these 

techniques might increase the chance of immature convergence. There are several 

seeding techniques to initialise the population such as initialising the population using 

a heuristic (Yang, 1997; Liao, 2009; Ray et al.; 2007; Kaur and Murugappan, 2008), 

using a gene bank (Wei et al. 2007), sorted population (Yugay et al., 2008), etc. based 

on the analysis done by Paul et al. (2015) and Shanmugam et al. (2013).  

In this section, we proposed an offline learning mechanism for GA-based HH-GPILS, 

which makes use of a knowledge-based system keeping track of good performing 

chromosomes that is set of parameters of the GPILS. The knowledge base system is 

refered to as chromosomes bank (CB) that keeps several good performing 

chromosomes along with their scores. When solving a new TSP instance, all or a set 

of these chromosomes are used to initialise the population of the GA. Note that the 

score of the set of chromosomes used to initialise the GA will be updated based on 

their performance. When GA converges to the final population or stops the search 

before the convergence occurs, all or a number of the best performing chromosomes 

of the final generation will replace a set of existing chromosomes in the CB. 
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Hereafter, the details of the proposed offline learning is explained; namely, the 

initialisation of the CB for the first time, using CB to initialise the population in GA-

based HH-GPILS, CB’s score allocation and updating CB. 

5.3.1. Initialising chromosomes bank (CB) 

The proposed knowledge-based system, referred to as chromosomes bank (CB), keeps 

track of good performing chromosomes in order to reuse and adapt them to new 

(unseen) problem instances. Before using the CB one has to initialise the CB. In order 

to initialise the CB, we run GA-based HH-GPILS, for several times, to solve a number 

of TSP problems in the training set. In this step, the GA starts with a random initial 

population. All the chromosomes in the last generations, of all trial runs, are sorted in 

a non-decreasing order, and the best performing chromosomes of the last generations 

are saved in the CB, with a score equal to one. 

5.3.2. Initialising the population using CB 

Assuming the best set of chromosomes found so far will overall perform well for the 

unseen problems, when facing a new TSP problem to solve, a number of chromosomes 

from the CB are retrieved using a selection mechanism to initialise the population. The 

number of chromosomes to retrieve from the CB could be equal to the size the initial 

population of GA-HH, say	 . As for the selection mechanisms, one might use one of 

the traditional selection mechanisms used in GA; namely random selection, 

tournament selection or roulette wheel, see Appendix E. However, another might use 

seeding techniques such as sorted population. Note that random selection mechanism 

does not depend on the chromosome’s fitness or score. Conversely, the rest of the 

selection mechanisms do. In other words, one might use chromosome’s score as the 

selection criterion; another might use their fitness which is obtained by performing 

GPILS for each chromosome. In our investigation, we used sorted population as 

selection mechanism and fitness as a selection criterion. 

5.3.3. Score allocation 

We proposed a reward-based mechanism similar to reinforcement learning (RL) where 

feedback is provided, regarding reward and penalty, based on the overall 
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chromosome’s performance. RL is an online learning mechanism that rewards an 

improving low-level heuristic (LLH) by increasing its score; otherwise, it will penalise 

the LLH by decreasing its score, see Appendix I. However, since our learning 

mechanism is offline, we proposed a different reward mechanism, where the 

performance of each chromosome in the CB and all the new chromosomes are 

calculated and their reward or penalty is allocated based on their performance. 

Performance of a chromosome in the , say 	 , is defined as the percentage 

increase of each	  over the worst performing chromosome in the CB, say	 : 

100     35 

where  is calculated as the average fitness of chromosome  

performed to solve the new problem. In order to decide whether a chromosome is 

rewarded or penalised, first the average performance, say , of all chromosomes  

is calculated, then the weight of each  is defined as the increase or decrease from 

 as follows: 

      36 

Chromosome  is rewarded if its weight is non-negative; otherwise, it is penalised. 

Thus, the score of each chromosome  is updated, by the proposed reward and 

penalty schemes, as follows: 

Reward scheme: 

					 	 0 37 

Penalty scheme: 

| |				 	 0 38 

As for new chromosomes ( ), their performance and, consecutively, their weight is 

computed similar to the chromosomes in the CB. In other words, their performance is 

defined as the percentage increase over the worst performing chromosome from the 

CB ( ) and their weight is defined as the increase from	 , average performance 

of chromosomes from CB. 
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100    39 

	      40 

Since their weight is always positive, their score is updated using the aforementioned 

reward scheme. 

5.3.4. Updating chromosomes Base 

The CB needs to be updated after solving a new problem. In other words, the score of 

the existing chromosome should be updated, depending on their performance. 

Moreover, some of the existing chromosomes in the CB should be replaced by the new 

chromosome. The criteria for replacement could be similar to the ones used in GA’s 

replacement mechanism. 

One can choose to simply add all new generation into the CB, without deleting any of 

the previous chromosomes from the CB, thus, expanding the set of chromosomes and 

possibly improving the knowledge of the learning system. However, this decision will 

increase the size of the CB and therefore will increase the retrieval time of 

chromosomes from the CB. Moreover, some of the saved chromosomes might not 

perform well on all new cases, and consequently, reduce the performance of the GA. 

Thus, we proposed replacing a subset of chromosomes in the CB by new ones, 

obtained from the final population of the GA’s search for the optimal or near optimal 

set of chromosomes to solve the new problem at hand.  

In order to update the CB, first, one should decide how many, , and which 

chromosomes should be replaced. In our experiments, we replaced a small percentage, 

say , of the chromosomes in the CB by the new ones. 

	 | |, | |	     41 

where | | is the size of the CB and | | is the number of new chromosomes. In the 

empirical analysis we investigated several values for	 .  

As for the replacement criteria, the chromosomes are first sorted based on their 

performance and only half of the worst performing chromosomes are considered in the 
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replacement process. Later, the chosen set, for the replacement process, is sorted based 

on their score in a non-decreasing order and only the first  chromosomes 

from the sorted list will be removed from the CB. 

After eliminating a number of chromosomes from the CB, a set of new chromosomes 

the same size as the ones removed from CB ( ) will be inserted 

into the CB. All the new chromosomes are sorted based on their score, in a non-

increasing order. From the top of the list,  will be inserted into the CB, without 

duplication. However, if the new chromosome, say , to add is already in the list, 

say , its score will be updated as follows: 

    42 

5.4. Empirical investigation  

As was mentioned before, in this chapter we experimented with GA-based HH-GPILS 

methodology. We divided the implementation decisions of this hyperheuristic to 

problem-specific and generic decisions. These decisions are shown in Table 55.  

Type of 

Decisions 
Decision 

Problem-

specific 

Parameters’ space 

Genetic representation or encoding scheme of chromosomes 

Fitness measure 

Generic 

Population size and selection of initial population 

Reproduction mechanism 

Genetic operators’ rates 

genetic operators’ rates 

Stopping criteria 

Table 55 GA- based HH-GPILS high-level decisions 

We also proposed an offline learning for the GA-based HH-GPILS methodology. The 

chromosomes saved in the proposed CB used in offline learning are used to initialise 

the population of the GA-based HH-GPILS. The empirical investigation shows that 

this learning mechanism can produce solutions with similar quality produced by the 
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GA-based HH-GPILS without learning, however, it reduces the time approximately 

by one third.  

5.4.1. Experimental setup 

For the choice of the parameters space of GPILS and the fitness measure in this 

empirical investigation, is similar to the ones chosen for sequential-based HH-GPILS. 

As for the generic decisions, they are presented in the description of each decision. 

However, their parameters are presented hereafter: 

 Population size  is set to 40; 

 Crossover probability  is set to 0.5;  

 Probability of uniform crossover  is set to 0.5;  

 Tournament size is set to two individuals at a time; 

 Mutation probability  is set to 0.01; 

 Maximum number of evolutions is equal to 50; 

 Maximum number of immigrations is set to three; 

 Maximum number of iterations since the last best individual found is set to 20. 

In order to test the influence of initialising the infeasible solution using either AP or 

PIH for the proposed GA-based HH-GPILS methods, first, we experimented with 

fixing	  to either AP or PIH. Similar to findings of the previous chapter, initialising 

the IM using PIH produces better quality solutions. In general, the empirical results 

shows that this HH-GPILS is performing better than the sequential ones. 

As for the generic decisions of the GA-based HH-GPILS with offline learning, they 

are the set to the values mentioned above, except for the maximum number of 

iterations since the last best individual found. The empirical investigation showed that, 

in trade-off between time and quality, the most appropriate number of iterations is 15. 

As for the configuration of the offline learning, its parameters are as follows. 

 Maximum number of chromosomes in the CB is set to 100. 

 Training instances are eil51 and pr76. 

 Stopping time set to 600 
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5.4.2. Experimental results GA-based HH-GPILS 

The statistics represented are the average percentage increase over the optimal solution 

for a number of runs, in this investigation 5 runs. In Table 56, the first column shows 

the instances solved, as for the rest of the columns, each column shows the results of 

the following experiments: 

1. First experiment: parameter IM is fixed to AP; 

2. Second experiment: parameter IM is fixed to AP; 

3. Third experiment: parameter IM is not fixed. 

Hereafter, we shall discuss the performance of the proposed hyperheuristic.  

Results of GA-based HH-GPILS are shown in Table 56 and 57. From the results, one 

can draw the same conclusions as the previous chapter on the sequential HH-GPILS, 

such as: 

 Overall, GA-based HH-GPILS is performing well and is producing good 

quality solutions, although it is more time consuming than the sequential HH-

GPILS. 

 Fixing IM to PIH results in better performance in comparison with the others, 

with average 0.09%, median 0.0% and standard deviation 0.17%. 

 On the other hand, fixing IM to AP is the worst performing, with average 

0.25%, median 0.03% and standard deviation 0.32%, although it is 

computationally more efficient. 

5.4.3. Parallel HH-GPILS in comparison with sequential HH-

GPILS 

Further, we compared the performance of the GA-based HH-GPILS with the 

performance of a number of the twenty of the best performing sequential HH-GPILS 

in the previous chapter, see Figure 39. To conclude, from this figure the following 

conclusions can be drawn: 

 Overall, the parallel HH-GPILS provides good quality solutions. 

 In general, by fixing IM to PIH one can improve the quality of the HH-GPILS. 
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Instance 	  	  	 ,  

eil51 0.00% 0.00% 0.00% 
eil76 0.11% 0.60% 0.26% 
pr76 0.00% 0.00% 0.00% 

kroA100 0.00% 0.00% 0.00% 
kroB100 0.00% 0.00% 0.00% 
kroC100 0.00% 0.08% 0.02% 
kroD100 0.00% 0.01% 0.15% 
kroE100 0.00% 0.00% 0.00% 
eil101 0.57% 0.92% 0.60% 
pr107 0.00% 0.00% 0.00% 
pr124 0.00% 0.00% 0.00% 
ch130 0.01% 0.65% 0.21% 
pr136 0.00% 0.00% 0.01% 
pr144 0.00% 0.00% 0.00% 
ch150 0.25% 0.54% 0.52% 

kroA150 0.11% 0.36% 0.30% 
kroB150 0.01% 0.22% 0.04% 

pr152 0.00% 0.04% 0.04% 
kroA200 0.52% 0.72% 0.69% 
kroB200 0.14% 0.86% 0.62% 

Average 0.09% 0.25% 0.17% 

Median 0.00% 0.03% 0.03% 
Std 0.17% 0.32% 0.24% 

Table 56 Performance of GA-based HH-GPILS 

 

Instance 	  	  	 ,  

eil51 572 117 130 
eil76 629 353 502 
pr76 743 296 388 

kroA100 939 423 788 
kroB100 811 331 608 
kroC100 1696 410 664 
kroD100 751 674 843 
kroE100 824 437 705 
eil101 867 554 892 
pr107 904 1160 1499 
pr124 1936 860 1072 
ch130 2378 698 983 
pr136 2538 2323 1363 
pr144 2609 1532 981 
ch150 2783 1003 1767 

kroA150 2851 1457 1662 
kroB150 2774 1242 1554 

pr152 2832 1187 1438 
kroA200 3878 3365 2017 
kroB200 3697 3038 3108 

Table 57 Computational time of GA-based HH-GPILS 
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 GA-based HH-GPILS with IM fixed to PIH provides the best quality solutions 

(average 0.09%, median 0.0% and standard deviation 0.17%). 

 

Figure 39 Parallel HH-GPILS in comaprison with sequential HH-GPILS 

5.4.4. Experimental results of the GA-based HH-GPILS with 

offline learning 

Hereafter, we shall discuss the performance of the proposed hyperheuristic. First, we 

experimented the reusability of the chromosomes saved in the CB from old 
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experiences of the GA on previous problems. Table 58 shows the performance of the 

chromosomes saved in the CB for the new problem at hand, before applying the HH-

GPILS. The statistics represented are the average percentage increase, in cost of the 

best performing chromosome in the CB performed on a new problem, over the optimal 

solution for a number of runs, in this investigation of 5 runs. From the presented results 

one can conclude that: 

 The offline learning could produce good quality solutions for new problem 

instances in a shorter time, less than 30 seconds.  

 The saved sets of parameters obtained from earlier investigations could be used 

to address other problem instances (they are usable sets). 

Instance 	  	  	 ,  
eil76 1.26% 2.23% 1.45% 

kroA100 0.01% 0.00% 0.00% 
kroB100 0.00% 0.29% 0.05% 
kroC100 0.00% 0.10% 0.00% 
kroD100 0.22% 0.58% 0.24% 
kroE100 0.00% 0.00% 0.00% 
eil101 1.30% 2.07% 1.53% 
pr107 0.02% 0.00% 0.05% 
pr124 0.03% 0.08% 0.00% 
ch130 0.54% 1.31% 0.93% 
pr136 0.26% 0.09% 0.09% 
pr144 0.00% 0.00% 0.00% 
ch150 0.66% 1.44% 1.19% 

kroA150 0.62% 0.88% 0.99% 
kroB150 0.63% 0.46% 0.20% 

pr152 0.00% 0.46% 0.19% 
kroA200 1.29% 0.93% 1.77% 
kroB200 1.33% 1.03% 1.05% 
Average 0.46% 0.66% 0.54% 

Median 0.24% 0.46% 0.19% 
Std 0.51% 0.69% 0.62% 

Table 58 Performance of the offline learning 

Results of GA-based HH-GPILS with offline learning are shown in Table 59 AND 60. 

From the results, one can conclude: 

 However, GA-based HH-GPILS with offline learning and IM fixed to PIH, 

provides the best quality solutions, average 0.23%, median 0.11% and standard 

deviation 0.29%. 
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 Like the previous chapter initialising the infeasible solution with PIH lead to 

better quality solutions. 

 The use of offline learning to initialise the population could produce good 

quality solutions for new problems in a limited shorter time.  

 Overall, the shown GA-based HH-GPILS with offline learning provides good 

quality solutions faster. 

Instance 	  	  	 ,  
eil76 0.22% 0.67% 0.37% 

kroA100 0.00% 0.00% 0.00% 
kroB100 0.00% 0.05% 0.00% 
kroC100 0.13% 0.02% 0.00% 
kroD100 0.00% 0.05% 0.03% 
kroE100 0.00% 0.00% 0.00% 
eil101 0.73% 1.02% 1.27% 
pr107 0.00% 0.00% 0.01% 
pr124 0.02% 0.00% 0.00% 
ch130 0.46% 0.53% 0.19% 
pr136 0.17% 0.01% 0.02% 
pr144 0.00% 0.00% 0.00% 
ch150 0.36% 0.68% 0.80% 

kroA150 0.41% 0.61% 0.74% 
kroB150 0.09% 0.14% 0.08% 

pr152 0.00% 0.13% 0.04% 
kroA200 0.56% 0.70% 1.08% 
kroB200 0.99% 0.72% 0.78% 
Average 0.23% 0.30% 0.30% 

Median 0.11% 0.09% 0.03% 
Std 0.29% 0.34% 0.42% 

Table 59 GA-based HH-GPILS with offline learning 
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5.5. Conclusion 

Genetic algorithm is an adaptive and robust technique that requires a minimum 

domain-specific knowledge. Genetic algorithm’s main feature is that it starts with an 

initial population and iteratively evolves the population, keeping most of the gathered 

information about the system, and produces a better population. In this chapter, we 

proposed a GA-based hyperheuristic to automate the choice of the parameters of 

GPILS.  

The obtained results in this chapter showed that the proposed population-based HH-

GPILS performs better than the sequential ones, however it is more time consuming, 

see Figure 39. As for the effect of the initialisation of the infeasible solution, the same 

conclusion from the last chapter can be drawn, initialising the infeasible solution using 

the PIH could lead to better solutions than the AP. On the other hand, initialising the 

infeasible solution using the AP computationally more efficient, since the parameters 

of the PIH are not considered in the parameters space. 

Moreover, the initial population has great influence on the performance and/or speed 

of convergence of the GA-based HH-GPILS. Since the set of parameters of the GPILS 

can be reused to be adapted on new problems, one can develop knowledge-based 

system to keep track of the good performing sets, i.e. chromosomes, and allocate a 

score to each set in order to initialise the GA population using a seeding technique. In 

this chapter, we proposed an offline learning that uses a knowledge-based system, 

referred to as CB, to keep track of the best performing chromosomes, i.e. sets of 

parameters of GPILS, and their allocated scores. These scores are updated by reward 

or penalty depending on their performance in comparison with others and used to 

decide whether they will be replaced by new chromosomes or not. The obtained results 

show that this seeding technique could produce good quality initial population which 

lead to obtaining good optimal or near-optimal solutions by the proposed GA-based 

HH-GPILS more quickly.  
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6. Conclusion 

In this section we shall present the summary and conclusions of this study as well as 

future research directions and final remarks. 

6.1. Summary and Conclusion 

In this thesis, an overview of the most common and relevant literature was presented 

and the heuristic solution approaches were classified into three categories; namely, 

feasible (primal), infeasible methodologies, and feasible-infeasible. Most of the 

literature on heuristic solution approaches are in the first two categories, i.e. feasible 

(primal), feasible-infeasible, except the work done by Ouenniche et al (2017). 

Ouenniche et al (2017) made the first attempt to solve the TSP by only exploring its 

infeasible space. This thesis refines and extends Ouenniche et al (2017) proposed 

infeasible search framework. This research started with the aim of investigating the 

potential of exploring the infeasible space for solving COPs to optimality. We first 

proposed a generic and parameterized infeasible local search (GPILS) as a refinement 

of the DLS framework proposed by Ouenniche et al (2017), where we customised 

GPILS to solve the TSP. The proposed GPILS starts with an infeasible solution and 

explores the infeasible space by repairing the current infeasible solution and reducing 

the infeasibilities. The proposed GPILS can be categorised as constructive-

perturbative heuristic framework, constructive because of its infeasible nature and 

perturbative because of the use of Type II move to improve the infeasible components. 

The proposed refinements consists of proposing an alternative and more appropriate 

method to initialise infeasible local search. In addition, a recursive function was 

proposed to allow for the automation of the implementation of infeasible search under 

any set of parameters as compared to the original DLS where there was a need to write 

a different code to accommodate each set of parameters. Furthermore, a generic 

patching procedure was proposed as a generalisation of the one proposed initially by 
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Ouenniche et al (2017). Last, but not least, the enhanced version allows for primal 

search to be performed after the infeasible search, if needed. 

Since the GPILS is a parameterised method, it could be seen as a collection of 

infeasible search methods, where its sets of parameters could be chosen by the analyst 

or an automated procedure. We proposed a hyperheuristic framework to automate and 

optimise the choice of the parameters of the GPILS, referred to as HH-GPILS. We 

experimented with both sequential, namely SA, TS and VNS as well as their hybrids, 

and parallel high-level methodologies, namely GA. 

The study on sequential HH-GPILS showed that a neighbourhood search strategy with 

the right level of intensification and diversification could lead to optimal or near-

optimal solutions. As for the GA-based HH-GPILS, the performance of this 

hyperheuristic was better than the sequential ones. 

We also investigated the influence of the choice of initialising the infeasible solution 

on the performance of the GPILS. The empirical investigation showed that, in general, 

initialising the infeasible solution using the PIH, could lead to better solutions, in 

comparison with initialising with AP-based relaxation of the TSP. 

Furthermore, we investigated the reusability of the sets of parameters, generated 

previously, on new problems. The empirical investigation showed that GPILS given 

previously generated parameters can produce good quality solution for new problem 

instances. Later, we proposed an offline learning that makes use of knowledge-based 

system, referred as chromosomes base (CB), where a chromosome is a set of 

parameters of GPILS. The proposed CB is used to keep track of the best performing 

sets of parameters, used to solve previous TSP problems, and their scores, which are 

dependent on their overall performance. The obtained results showed that this learning 

mechanism used in initialising the population of the GA-based HH-GPILS can 

produce good quality solutions. 

In conclusion, the empirical results show that searching the infeasible space of a COP 

such as the TSP, which are progressively repaired and locally improved, could lead to 

the design of promising heuristics, since the infeasible space is larger than the feasible 

one for any COP. Thus, further efforts should be made to enrich the design features of 
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local search methods operating in the infeasible solution space and reduce the 

computational requirements of GPILS and HH-GPILS, on one hand, and further 

investigations should be made to explore the merit of infeasible search methodologies 

in solving other COPs, on the other hand. 

Potential benefits: this new framework has the potential to renew interest of the 

academic community in the field of local search methods, on one hand, and allow 

practitioners to improve the solution frameworks used to address real life applications 

– especially for online and real time applications where there is a need to repair 

solutions to decision problems as real life settings changes over time. 

6.2. Extensions and Future Work 

In this section we shall present future directions and extensions of the thesis: 

1. Enhancing the proposed GPILS 

In future research, we shall consider lessons learned from experiments 

performed in this study. In this thesis, we focused on demonstrating the 

possibilities of searching in the infeasible space and producing good quality 

solutions. The empirical investigation in chapter 3 proved that GPILS could 

produce good quality solutions in a reasonable time. However, when using 

hyperheuristic to automate its parameters the computational time became 

unattractive, which is the case even for hyperheuristics proposed for primal 

search methods. Besides, we shall focus more on the computational time as 

well as the quality of the solutions produced by GPILS. To do so, we can make 

use of a choice function that includes the execution time of the LLH (Chen et 

al, 2016). 

 

2. Implementing the proposed GPILS for variants of routing problems as well 

as other COPs. 

Since the possibility of heuristically searching in the infeasible space has been 

proven and GPILS has been developed and tested for TSP, the work should not 
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stop there. One can explore the infeasible solution space of other COPs, since 

it is by far larger than the feasible space. 

 

3. Improving the offline learning mechanism for GA-based hyperheuristic. 

Being able to reuse the set of parameters of GPILS one can use more advanced 

offline learning mechanisms followed by online learning mechanisms to 

enhance the hyperheuristics’ performance. For instance, one can intensify the 

search to parameters in the knowledge-based system; another can diversify the 

search to parameters not in the knowledge-based system. 

6.3. Final remarks 

In summary, there are four main contributions of this thesis. Firstly, developing a 

generic and parameterised local search framework that starts and explores the 

infeasible space, until it lands into the feasible space. We demonstrated that this new 

line of research can produce good quality solutions, thus, heuristically searching the 

infeasible space needs the same attention as searching the feasible and feasible-

infeasible space. Secondly, since the proposed framework is parameterised, we 

proposed hyperheuristic framework to automate the choice of its parameters. We 

experimented with both sequential; namely, SA, TS, VNS and their hybrids, and 

parallel based high-level mechanisms. Thirdly, we showed that the reusability of the 

proposed framework on new and unseen problem is promising. Finally, we proposed 

an offline learning mechanism that keeps track of previously generated set of 

parameters and used them to initialise population of the GA-based hyperheuristic 

This new framework has the potential to renew interest of the academic community in 

the field of local search methods, on one hand, and allow practitioners to improve the 

solution frameworks used to address real life applications – especially for online and 

real time applications where there is a need to repair solutions to decision problems as 

real life settings changes over time. 
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Appendices 

Appendix A: Tour construction heuristics 

In this section, we only explain some of the tour construction heuristics; namely 

nearest neighbour construction procedure, insertion procedure, minimal spanning tree 

procedure, nearest merger procedures and path merging procedures.  

The Nearest Neighbour Construction Procedure starts with any node as the beginning 

of a path and keeps augmenting that path with the node closest to the last node added 

to the path until all nodes are included. Finally, the first and the last nodes of the path 

are joined.  

The Clarke and Wright savings procedure starts with any node  along with back-

and-forth routes between node  and any other node in the network. Then, in each 

iteration, two routes are merged into a single route, where the choice of the two routes 

to merge is by the magnitude of the savings that would result from the merging 

operation.  

The insertion procedure starts with any node, say , finds the closest node to , say , 

and forms the subtour → → . Then it keeps augmenting that subtour by performing 

two main steps, namely the selection step and the insertion step, until all nodes are 

included. In arbitrary insertion, the selection step determines in a random fashion 

which node  not already in the subtour should join the subtour next. In nearest 

insertion, the selection step is the minimum distance from any node in the current 

subtour. However, in farthest insertion the selection step is the maximum distance from 

any node in the current subtour. In cheapest insertion, the selection step is the 

minimum insertion cost of the node in the current subtour. The insertion step for all 

insertion procedures determines where in the subtour the selected node  should be 

inserted using as an insertion criterion the minimum insertion cost; i.e., the insertion 

step finds arc ,  that minimises , , ,  and inserts between  and . 
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Christofides’ heuristic (Christofides, 1976) starts with augmenting the set of edges of 

a minimum spanning tree with edges from the solution to the minimum cost perfect 

matching on those odd degree nodes of the tree, which leads to a cycle, and transforms 

the cycle into a hamiltonian cycle by using shortcuts to bypass nodes that appear in the 

eulerian cycle more than once.  

Nearest merger procedures (Rosenkrantz et al., 1977; Glover et al., 2001) starts with 

 number of subtours with cardinality one. Then, in each iteration, two closest subtours 

are merged into a single subtour in an optimal way. This process continues until all 

subtours are merged. 

One of the path merging procedures is recursive path contraction (RPC). RPC starts 

with the AP-based relaxation of the TSP solution as an initial solution, which typically 

consists of a number of subtours. Then it repeats the following contract and patch 

process iteratively; it deletes a most expensive arc in each subtour and contracts the 

obtained paths, updates the cost matrix with the super-nodes and solves the assignment 

problem-based relaxation of the TSP on the current set of super-nodes. This iterative 

process stops when the solution has only one subtour and replaces super-nodes of the 

TSP tour with the corresponding contracted paths.  

Appendix B: Cooling strategies 

In this section, some of the popular cooling strategies are presented, such as Aarts and 

Van Laarhoven (1985, 1987), Lundy and Mees (1986), Huang et al. (1986), Triki et 

al. (2005), Dowsland (1993) and Azizi and Zolfaghari (2004). 

One of the popular cooling strategies is the temperature reduction function is as 

follows: 

1⁄         

Aarts and Van Laarhoven (1985a, 1987) proposed a dynamic rule for . They set 

different values of  at different epochs which is dependent to the standard deviation 

of objective function values of neighbouring solutions visited at epoch ,	 . For a 

small a value  greater than zero,  at epoch  is as computed as follows: 
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Whereas, Lundy and Mees (1986) suggested to set  to a value smaller than 1 , 

where  is an upper bound on ( ∗). 

Huang et al. (1986) incorporated the expected difference in the average cost at two 

consecutive epochs, 1 and , in the cooling schedule. They proposed the following 

temperature reduction function: 

.        

where ∆ where ∆ is the expected difference in the average cost at epoch 

1 and . They suggest using	λ 0.7. 

Later, Triki et al. (2005) proposed a parameter free temperature reduction function that 

considers the difference in the average cost of two consecutive epochs. They suggest 

initialising ∆  to value proportional to	 , estimated by a random walk. 

. 1 ∆
       

In cooling strategy, the search starts at a high temperature allowing most of the high 

hill moves to be accepted and decreases the temperature reducing the probability of 

acceptance of high-hill moves. Higher probability of acceptance of high-hill moves 

increases the chance of moving away from local optima at the beginning of the search, 

and lower probability of acceptance decreases such a chance.  

However, adaptive temperature change strategy, cooling and reheating strategy, start 

with cooling the system, and then the heating is triggered automatically by a 

prespecified factor and cools the system again. In other words, this strategy changes 

the probability of acceptance of high-hill moves throughout the process, continuously.  

Dowsland (1993) proposed a cooling and reheating strategy that cools the system 

according to 1   (Lundy & Mees, 1986) every time a move is accepted, and 

heats according to 1 	the system every time a move is rejected. If	 , 

the system will need to go through  heating iterations to balance one cooling. If the 
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ratio of rejected to accepted moves is greater than 	 , then the system heats up; 

otherwise, the system cools. 

On the other hand, Azizi and Zolfaghari (2004) proposed a cooling and reheating 

schedule where the temperature is controlled by a single function that always maintains 

 above a minimum level  	(e.g. 1). In this schedule, the heating process 

gradually takes place if there is any uphill move but the cooling is sudden with the first 

downhill move.  

   1  ,  0       

where  is a parameter that controls the rate of temperature rise (e.g., 1), and   is 

the number of consecutive uphill moves at iteration , (  0). 


 1				 	 0
 											 	 0
0																	 	 0

       

Appendix C: Acceptance function 

Since, Metropolis criterion, proposed by Kirkpatrick et al. (1983), is dependent on the 

quality of the current neighbour, Parthasarathy and Rajendran (1997b) proposed 

setting θ  which is percentage increase over the original solution. 

This value is dimensionless which one could say θ is independent of the problem 

specifications. 

,  
																			 0

1																																					 0
     

Aforementioned APFs are dependent on temperature and the change in cost, meaning 

higher temperature   and lower change in cost δ results in higher value of APFs; 

conversely, lower temperature   and higher change in cost δ results in lower value of 

APFs. In other words, worst solutions have higher probability of acceptance at the 

beginning of the search; however, with reducing the temperature, probability of 

acceptance of worst solution decreases.  
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Ogbu and Smith (1990) proposed an APF independent of temperature and the change 

in cost that reduces the probability of acceptance geometrically:   

1 	 			 0
1																																					 0

      

where  is reduction factor ( 1  and 1  is the initial . These 

values are predetermined and constant throughout the search. 

Dowsland (1993) proposed using constant	 , ( 0.33), in the exponential function 

to reduce the probability between accepting small and large values of	 . This constant 

is used to flatten the exponential function. 

,  										 0

1																																					 0
     

Dueck and Scheuer (1990) and Moscato and Fontanari (1990) proposed a threshold-

based acceptance function, which is independent of temperature and quality of the 

solution. This acceptance function accepts worst solutions only if the increase in cost 

is less than a threshold. In their method, they used prespecified threshold sequence	

Q , Q , … , Q 	 . 

,
1							 	 ≺
0							 	 ≻        

These acceptance functions could be classified as either deterministic (e.g., Dueck and 

Scheuer, 1990; Moscato and Fontanari, 1990; etc.) or stochastic (e.g., Kirkpatrick et 

al., 1983; Johnson et al., 1989; Brandimarte et al., 1987; etc.).  

The aforementioned acceptance functions could be classified as probabilistic and 

deterministic. Probabilistic acceptance functions are either dependent or independent 

to current temperature or the change in objective function. As for deterministic 

acceptance functions, also called Threshold Accepting Algorithms, they are either 

dependent or independent on the current temperature.  

Appendix D: Neighbourhood change strategies 

Hansen et al. (2016) classified neighbourhood change strategies as follows: 
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a. Sequential neighbourhood change strategy: Given a specific order of 

neighbourhood structures, say , 1, … , , the sequential strategy 

continues the search in the next neighbourhood structure until an 

improvement is achieved, see Table 60. Whenever an improvement occurs, 

the search will be resumed from the first neighbourhood structure.  

_ _ , ,  { 

IF  THEN   

Update the current seed solution	  to the new solution ; that is, set , 

and ; 

 Set 1; 

ELSE Increment  by	1. 

} 

Table 60 Sequential neighbourhood change strategy 

b. Cyclic neighbourhood change strategy: The Cyclic strategy continues the 

search in the next neighbourhood structure whether an improvement is 

achieved or not, see Table 61. 

Cyclic_ _ , ,  { 

IF  THEN  

Update the current seed solution; that is, set x , and ; 

Increment  by	1. 

} 

Table 61 Cyclic neighbourhood change strategy 

c. Pipe neighbourhood change strategy: The search in every neighbourhood 

is continued until no improvement is achieved, see Table 62. 

_ _ , ,  { 

IF  THEN   

Update the current seed solution; that is, set x , and ; 

ELSE Increment  by	1. 

} 

Table 62 Pipe neighbourhood change strategy 

d. Skewed neighbourhood change strategy: A neighbourhood change strategy 

may accept uphill moves with some ratio, see Table 63. If the ratio includes 

the difference between the values of the objective functions, this 



169 

 

neighbourhood change strategy is called Skewed neighbourhood change 

strategy. In this strategy could be integrated with sequential, cyclic or pipe 

neighbourhood change strategy. 

_ _ , ,  { 

IF . ,  THEN  

Update the current seed solution; that is, set x , and ; 

Set 1; 

ELSE Increment  by	1. 

} 

Table 63 Skewed neighbourhood change strategy 

Where ,  is the distance between  and . 

Appendix E: GA’s selection mechanisms 

In this section, the GA’s selection mechanisms are explained; namely ordinal 

selection, proportional selection, ranking selection, steady-state selection. 

Ordinal selection 

According to this selection mechanism, the chance a chromosome is selected to be a 

parent is based on its rank (order) in comparison with others in the current generation. 

The most common ordinal selection mechanisms are tournament selection and 

truncation selection. 

Tournament selection (Goldberg et al. 1989): a number of chromosomes from the 

current population, say , are selected at random. These chromosomes compete and 

the fittest chromosome in the group wins the tournament. In order to choose  

chromosomes,  tournaments are required. 

Truncation selection (Mühlenbein and Schlierkamp-Voosen, 1993): only select a 

fraction of the fittest chromosomes. In this selection mechanism a threshold, say , is 

specified. This threshold indicates the fraction of the population to be selected. 
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Proportional selection 

Proportional selection is a probability-based selection according to fitness value. Two 

commonly used proportional selections are roulette- wheel selection and stochastic 

universal selection (SUS). 

Roulette- wheel selection, see Figure 40, is a probability-based selection according to 

fitness value. Roulette wheel selection method assigns a slot to each chromosome with 

probability	 , where  is proportional to the chromosome’s fitness and is calculated 

by the following formula: 

∑
         

A single chromosome is selected by spinning the roulette wheel, thus, to select a set 

of chromosomes, it should be done multiple times. Furthermore, the roulette wheel 

gives a higher chance of being chosen to chromosomes with higher probability. 

Figure 40 Roulette- wheel selection 

Stochastic universal selection (SUS) (Baker, 1987) is an unbiased variation of the 

roulette wheel that selects a number of needed chromosomes by a single spinning of 

the roulette wheel, see Figure 41. In this selection mechanism, a set of evenly spaced 

markers is placed outside the roulette wheel. The roulette wheel is turned only once. 

Selected chromosomes are the ones that the markers have fallen on their slot. Although 

this selection gives a fair chance to weaker chromosomes to be chosen, if a 

chromosome has a big slot in the wheel, SUS performance declines. 

22%
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Ranking selection 

In proportional selection, if some of the chromosomes have a big slot in the roulette 

wheel, they will have higher chance to be chosen that leads to fast and premature 

convergence. To overcome the beforementioned issue, a rank-based fitness assignment 

(Baker, 1985) has been proposed, giving all chromosomes a chance to be chosen. 

Ranking selection convergence is slower than proportional selection. 

Figure 41 Stochastic universal selection 

In this selection mechanism, chromosomes are sorted based on their fitness, from best 

to worst, and rank them. Then the selection probability, say	 , assigned to each 

chromosome  depends on its rank  and not its actual fitness value. Then a 

proportionate selection according to these probabilities is performed.  

∑
         

Steady-state selection 

Steady-state or genitor selection chooses two chromosomes; the first is for 

reproduction and the second chromosome is to be replaced by the new offspring. The 

choice of the chromosome for reproduction is made by a linear ranking method and 

the selection of the chromosome to be replaced is the worst in the current population. 
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Appendix F: Crossover techniques 

Several crossover techniques have been proposed to combine the parents’ genes to 

generate new offspring such as simple or one-point crossover, multi-point crossover, 

uniform crossover and three parents’ crossover. 

Simple or One-point crossover: this operator is the simplest and the most common 

crossover operator. As it is shown in Figure 42, a crossover point on both 

chromosomes is randomly chosen, and all the alleles after the crossover point are 

exchanged.  

Figure 42 One-point crossover 

Multi-point crossover: another common crossover is multipoint crossover; the two-

point is mostly used amongst them. In the two-point crossover, two crossover points 

are randomly chosen, and the segment between the two are exchanged, see Figure 43. 

Multi-point Crossover follows the same concept as one-point and two-point crossover. 

Figure 43 Two-point crossover 

Uniform Crossover: one-point and two-point crossovers’ contribution to the offsprings 

are only segments of genes. One might argue that this crossover mechanism is not 

exploratory enough. Uniform crossover (Syswerda, 1989; Spears and De Jong, 1995), 

recombines the parents in genes level, diversifying the search while inheriting the 
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parents’ genes and information. In this crossover mechanism, parents’ alleles are 

randomly swapped with probability	 , see Figure 44. 

Figure 44 Uniform crossover 

Figure 45 Three parents' crossover 

Three parents’ crossover (Sivanandam and Deepa, 2007): In this crossover technique, 

three parents are randomly chosen and compared. Each allele of the first parent is 

compared with the allele of the second parent. If both are the same, the allele is taken 

for the offspring; otherwise, the allele from the third parent is taken for the offspring. 

This concept is illustrated in Figure 45.  
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Appendix G: Hyperheuristic classifications and 
categories 

Soubeiga (2003), see Figure 46, first classified hyperheuristics in two categories, 

namely single-heuristic and multiple heuristics. In the former, a single Parameterised 

heuristic is used to solve a problem. A hyperheuristic is developed to find the optimal 

or near optimal set of parameters. However, the latter (multiple heuristics) deal with 

more than one heuristic and assist in the search for the best heuristic or set of heuristics 

to solve the problem. 

 

 

 

 

Figure 46 Soubeiga (2003) hyperheuritic classification 

Soubeiga (2003) further classified the second category, multiple heuristics, based on 

learning, hyperheuristics without learning and hyperheuristics with learning. Learning 

methods gather historical data about the performance of the system and use learning 

mechanisms to improve the performance of the system. In the context of hyperheuristic 

algorithms, learning methods collect knowledge concerning the performance of 

heuristics or components in the HH search space to select the best performing (set of) 

heuristic(s) or component(s) using a learning mechanism. hyperheuristics without 

learning select the next low-level heuristic or neighbourhood structure based on a 

predetermined sequence. On the other hand, hyperheuristics with learning make use of 

a learning mechanism to select the next low-level heuristic or neighbourhood structure. 

In their classification, they divided the learning mechanisms into GA-based 

hyperheuristics and other hyperheuristics with learning.  

In another classification by Bai (2005) and Ross (2005), hyperheuristics are 

categorised as constructive hyperheuristic and perturbative (local search methods) 

hyperheuristic, Figure 47. Constructive Hyperheuristic, given combinatorial problem 

and a set of constructive low-level heuristics, constructs the solution from scratch 

Hyper‐heuristics

Single‐heuristic

Multiple‐Heuristics
With Learning

GA_based HH

None GA_based HH
Without Learning
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incrementally. The hyperheuristic stops when a complete solution is achieved. On the 

other hand, perturbative hyperheuristic, given an initial complete solution and 

perturbative low-level heuristics leads the search to promising neighbourhoods.  

Figure 47 Bai (2005) and Ross (2005) classification 

In another classification mentioned independently by Burke et al. (2010), Bader-El-

Den, and Poli (2007), hyperheuristics were classified into two groups, namely heuristic 

selection and heuristic generation, see Figure 48. Heuristic selection is “heuristic to 

select heuristic”. In this category of hyperheuristics, given a set of low-level heuristics, 

search the heuristic space to find the best solution. On the other hand, heuristic 

generation is a “heuristic to generate heuristic”. Given a set of components or building 

blocks, this hyperheuristic selects the best configuration to produce a new heuristic to 

solve the problem at hand. Furthermore, this newly generated heuristic could be used 

to address other problems (usable heuristic) or it could not (disposable heuristic). 

 

 

 

Figure 48 Hyperheuristic classification of Burke et al. (2010), Bader-El-Den, and Poli (2007) 

Moreover, Burke et al. (2010, and 2013) considered the most fundamental 

classification represented by heuristic selection and heuristic generation and defined 

hyperheuristic as an automated method to select or generate heuristic to solve COPs. 

They classified hyperheuristics based on two dimensions, the first nature of the search 

space and the second source of feedback through learning. The first level of the nature 

of the search space is dependent on whether hyperheuristic is designed to select 

heuristic, amongst given set of heuristics, or generate heuristic, given the set of 

components. Furthermore, the second level makes a distinction between perturbative 

and constructive heuristics, Figure 49.  

Hyper‐heuristics

Heuristic selection

Heuristic generation

Disposable

Usable

Hyper‐heuristics

Constructive

perturbative 
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Figure 49 Hyperheuristic’s first dimension 

The second dimension is learning based, with learning and without learning. Learning 

could be either online or offline, Figure 50. Hyperheuristic with online learning, 

hyperheuristic collects knowledge about the system during the process. However, 

hyperheuristic with offline learning, hyperheuristic collects knowledge about the 

system from a set of training instances, in the form of rules.  

Figure 50 Hyperheuristics second dimension 

Appendix H: Learning mechanisms 

Choice Function (CH) is well-known in multi-criteria decision-making. CH is a 

statistical ranking of alternatives that guide the search for the best choice of alternative 

or set of alternatives based on the provided historical knowledge about their 

performance throughout the time.  

We first explain the idea behind choice function: consider a system with a set of 

alternatives, where each alternative has a set of criterions. The system should choose 

a single or a set of alternatives at time  that lead to its optimal or close to optimal 

performance. Choice function evaluates performance of each alternative  at time  as 

follows: 

∑        

Nature Of Heuristic Search Space

Heuristic selection

Constructive

Perturbative

Heuristic generation

Constructive

Perturbative

Learning

Without Learning

With Learning

Online

Offline



177 

 

where  indicates number of criterions of the alternatives,  indicates criterion  of 

the alternative,	  is the score of  at time  and  is a weight indicating the 

importance of criterion  in the choice function. The system selects alternative  with 

the highest value of , at time 1. 

The main components in designing choice function are weights of the criterion,	 . 

These weights should be chosen correctly. The choice of these weights requires a 

warmup phase.  

In the context of hyperheuristics, the set of alternatives could be low-level heuristics 

or components, which in this section they are referred to as LLH. Moreover, Criteria 

considered for calculation of CF could be the gathered historical data about their recent 

effectiveness or performance; such as the time needed to perform LLH, the last time 

LLH has been called, etc. Selection mechanisms used in exploration could be roulette 

wheel (proportional to 	
∑

), maximum value (highest CF value), rank-based 

selection (ranking LLH based on their performance), etc. (Cowling et al., 2001; Chen 

et al., 2016). Cowling et al. (2000) introduced a choice function to select the next LLH 

to be called. The proposed CF measures the effectiveness LLHs based on the current 

provided historical knowledge about the exploited LLH search space. They considered 

three criterions to update the efficiency of each	 ; namely, information regarding 

recent its effectiveness, recent effectiveness of consecutive pairs of LLH and the time 

since it was last called. They experimented with four different selection mechanisms; 

namely, roulette wheel, maximum value, rank-based selection and  

(consider LLH producing best scores for each criterion and CF). Their results suggest 

that CF- based hyperheuristic, which accept non-improving LLH, is significantly 

better than hyperheuristic without learning. In addition, they observed that 

 selection mechanism performs better than other selection 

mechanisms, and roulette wheel is performing better than the maximum value, rank-

based selection. 

Later, Chen et al. (2016) used a different CF. They updated  by considering 

the following three criteria: performance of  estimated by both fitness change and 

execution time, performance of collaboration of LLHs in pairs (estimated by 
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successively applying pairs of LLH) and the time since was last called. Their 

proposed selection mechanism was % of LLHs with highest rank. 

Reinforcement Learning (RL) is a reward-based mechanism, which provides feedback 

in terms of reward and penalty, based on the system’s performance over time. RL is 

an online learning mechanism that interacts with the environment and gathers 

information, called exploitation process, and uses the gathered information to select 

the next action to take, called exploration process. Since the environment might be 

unknown, a trial and error is needed to gather information and explore the 

environment. In designing an adequate RL, a trade-off should be made between 

exploration and exploitation.  

In the context of hyperheuristic, an improving LLH will be rewarded by increasing its 

weight; otherwise, it will be penalised by decreasing its weight. A Selection 

mechanism is used to select an LLH based on their weight, such as maximum weight 

or roulette wheel (Nareyek, 2003; Ozcan et al., 2010; Chen et al., 2016). Nareyek 

(2003) used RL to select promising heuristics at each decision point. They evaluated 

different variants of selection mechanisms and weight adaptation. They considered 

maximum weight and roulette wheel as selection mechanism, and the following reward 

and penalty schemes to update the weights ( ): 

Reward Schemes: 

 (Additive adaptation):   ← 1 

  (Escalating additive adaptation):  ←  

 (Multiplicative adaptation):   ← 2 

	(Escalating multiplicative adaptation): ←  

 (Power adaptation):    ← : 1
2					 ∶ 1

  

Penalty Schemes: 

 (Subtractive adaptation):   ← 1 

 (Escalating Subtractive adaptation):  ←  
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 (Divisional adaptation):   ← /2 

 (Escalating divisional adaptation):   ← /  

 (Root adaptation):     ←  

Any combination of weight adaptation (reward and penalty scheme) and selection 

mechanism could be used to design a reinforcement mechanism. Their analysis 

suggests that a small reward ( ) in case of an improvement and large penalty ( ) in 

case of deterioration is a good combination of weight adaptation. In addition, a 

selection mechanism based on maximum weight is often a better exploration strategy 

in comparison with selection mechanism based on roulette wheel. 

Learning Classifier System (LCS) is a rule-based machine learning method that 

identifies set (population) of rules, representing knowledge about the environment, 

learns and evolves the population iteratively to make predictions. LCS was first 

reported by Holland and Reitman (1978). Learning Classifier Systems are a 

combination of two components. The first is a discovery component which identifies 

set of rules (if: then conditions), which are not known yet, and the second is a learning 

component that uses the accumulated knowledge about the environment to guide the 

discovery component to improve its performance. The Discovery component is an 

evolutionary algorithm, typically GA, and learning component can be reinforcement 

learning, also known as credit assignment (Holland and Reitman; 1978). Ross et al. 

(2002) proposed a hyperheuristic for Bin-packing problem, which combines a set of 

LLHs. They proposed a learning classifier system that evolves condition-action rules 

to learn which LLH to call in each decision point. See also Ross (2005) and Marín-

Blázquez and Schulenburg (2007). 

 Case-Based Reasoning (CBR) is based on two principles of nature, similar problems 

have similar solutions and it is more likely that future problem might be like the current 

ones (Leake, 1996). Considering these two principles, to solve a new problem (new 

case), instead of starting from scratch, one can retrieve similar experienced problem 

situations (cases) and adapt them to solve the new one in hand. CBR is a knowledge-

based technique that stores experienced cases in a memory (case base) when it faces a 

new case retrieves similar cases, using a similarity measure, and adapts previous 
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experience to the new case. Regardless of failure or success, CBR learns from the new 

experience and revise its general knowledge to exploit previous success and avoid 

future failures. A critical factor in the success of CBR is case representation in the case 

base. A case usually consists of a representation of the problem, its features and 

conditions of retrieval, and the solution (Burke et al., 2002). Burke et al. (2002) 

proposed a hyperheuristic using CBR to solve timetabling problems. The purpose of 

using CBR was to predict the best LLH to address new problems by retrieving old 

cases. See also (Petrovic and Qu, 2002, Burke et al. 2002, 2004, 2006). 

Appendix I: -Means clustering 

-Means is an iterative cluster enhancement technique, see Table 64. This iterative 

procedure starts with an initial set of centroids, usually chosen at random, and 

alternates between two steps; namely assigning nodes to clusters and updating 

centroids (MacKay, 2003). This process continues until the clusters converge, meaning 

that no change in their centroids has been observed. Note that this algorithm is almost 

surely converges after finite number of iterations (Bottou and Bengio, 1995). 

Initialization steps 

Place  centroids , . . . ,  at random locations; 

Iterative steps 

REPEAT until the convergence criterion is met 

FOR each node	  { 

Compute the distance from  to each centroid; 

Sort centroids in decreasing distance from node	 ; 

Assign customer  to the cluster whose centroid is the closest; 
} 
Update centroid coordinates based on the current assignment scheme by computing each centroids’ 

coordinates as the mean of the coordinates of the customers assigned to that cluster; 

Check whether the convergence criterion is met or not; 

END REPEAT 

Table 64 -means clustering algorithm 

This technique is easy to implement and apply on large data sets. It has been used in 

several applications such as signal processing, cluster analysis, feature learning etc. 
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In this thesis, we used this clustering method to exploit the structure of TSP instances, 

e.g. the distribution of nodes being random, clustered or uniform.  

Appendix J: RINS function 

A recursive function iteratively calls itself and shows the output at the end of each 

iteration (Butterfield et al., 2016). It is used when solving a problem requires solving 

a smaller or different version of the same problem. For example, consider the 

calculation of the factorial of a natural number: 

! 1 2 … 1      

For example: 

3! 3 2 1          

4! 4 3!         

5! 5 4!         

Therefore, ! can be rewritten as follows:  

! 1 !         

In other words, for calculating 	 ! , one can simply solve smaller sub-problem, 

( 1 !) and multiply it by	 . Thus, the factorial function can be designed either 

iteratively using FOR loops or recursively using a recursive function, see Table 65. 

This procedure is a common method used in computer programming since it allows 

the programmer to write an efficient and generic code, since one can implement finite 

number of codes for any number of recursion. 

Iterative Recursive 

Factorial ( ) {  
; 

   IF ( 	 	0)  
1; 

   ELSE IF ( 	 ) { 
FOR ( 1; 0; ){ 

; 
} 

} 
return ; 
} 

Factorial ( ) {  
   IF ( 	 	0)  
      return 1;  
   ELSE 
      return Factorial 1 ;  
} 

Table 65 Pseudo-code of recursive versus iterative factorial function 
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As it was mentioned in chapter 3, exploring the infeasible space for a given set of 

parameters requires exploring a single or several combinations of  and	 . One can use 

an iterative design, where for any combination of ,  several FOR loops are 

required. For example, for combinations of 1  arc in 2  subtours, two 

embedded FOR loops are needed; however, for combinations of 2 arc in 3 

subtours, six embedded FOR loops are needed. As a result, the iterative design restricts 

us to limited combinations of ,  as it requires a different code for each 

combination. 

Therefore, to make the code efficient and generic; i.e., any combination of ,  could 

be implemented with the same code, we proposed a recursive function to search the 

infeasible neighbourhood, see Table 24 for a detailed pseudo-code of (RINS). As it 

was mentioned earlier the recursive function iteratively calls itself and shows the 

output at the end of each iterations, see Table 24. An example with 2 and 

2, 1  is illustrated in Figure 51. 
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Figure 51 RINS example 
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