

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429711048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A New Local Search in the
Space of Infeasible Solutions
Framework for the Routing of

Vehicles

Mona Hamid

Doctor of Philosophy

The University of Edinburgh

2018

Abstract

Combinatorial optimisation problems (COPs) have been at the origin of the design of

many optimal and heuristic solution frameworks such as branch-and-bound

algorithms, branch-and-cut algorithms, classical local search methods, metaheuristics,

and hyperheuristics.

This thesis proposes a refined generic and parametrised infeasible local search

(GPILS) algorithm for solving COPs and customises it to solve the traveling salesman

problem (TSP), for illustration purposes. In addition, a rule-based heuristic is proposed

to initialise infeasible local search, referred to as the parameterised infeasible heuristic

(PIH), which allows the analyst to have some control over the features of the infeasible

solution he/she might want to start the infeasible search with. A recursive infeasible

neighbourhood search (RINS) as well as a generic patching procedure to search the

infeasible space are also proposed. These procedures are designed in a generic manner,

so they can be adapted to any choice of parameters of the GPILS, where the set of

parameters, in fact for simplicity, refers to set of parameters, components, criteria and

rules.

Furthermore, a hyperheuristic framework is proposed for optimizing the parameters of

GPILS referred to as HH-GPILS. Experiments have been run for both sequential (i.e.

simulated annealing, variable neighbourhood search, and tabu search) and parallel

hyperheuristics (i.e., genetic algorithms / GAs) to empirically assess the performance

of the proposed HH-GPILS in solving TSP using instances from the TSPLIB.

Empirical results suggest that HH-GPILS delivers an outstanding performance.

Finally, an offline learning mechanism is proposed as a seeding technique to improve

the performance and speed of the proposed parallel HH-GPILS. The proposed offline

learning mechanism makes use of a knowledge-base to keep track of the best

performing chromosomes and their scores. Empirical results suggest that this learning

mechanism is a promising technique to initialise the GA’s population.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Mona Hamid

Dedicated to my parents and siblings

for their love, endless support

and encouragement

Acknowledgements

First and foremost, I would like to thank my parents for providing this opportunity.

None of this would have been possible without their sacrifice, motivation and

inspiration. Also, I would like to thank my siblings with unfailing support and

continuous encouragement throughout my entire life. This accomplishment would not

have been possible without them.

Importantly, I would like to thank my supervisor Professor Jamal Ouenniche. I would

like to show my gratitude to Professor Ouenniche for sharing his knowledge and

expertise with me during the course of this research. I am grateful to him for his

exceptional support, motivation and assistance with the algorithms and techniques. I

sincerely appreciate his expertise that has greatly assisted my research and his belief

in my work.

I thank all my friends, especially Johanna, Angela, Adriana, Louise, Ben, Elizabeth

and Ja for their intellectual and emotional support. I greatly value their friendship.

They are my extended family, who have aided and encouraged me throughout this

endeavour and made my time here more fun. I want to highlight the tremendous quality

service of Susan Keating and thank her for all the instances in which her assistance

helped me along the way.

Thank you.

Mona Hamid

I

Contents

List of Figures ... IV

List of Tables .. VI

1. Introduction ... 1

 Goal and scope of the research ... 3

 Contributions ... 4

 Thesis structure .. 4

2. Literature Review .. 8

 Mathematical formulation ... 8

 Properties and relaxations .. 11

 Exact methods .. 12

 Heuristic methods .. 14

 Metaheuristics ... 18

 Sequential metaheuristics ... 18

 Parallel metaheuristics... 34

 Hyperheuristic .. 43

 Hyperheuristic Classification .. 43

 Hyperheuristic specifications ... 46

 Local search in the space of infeasible solutions ... 47

 Conclusion .. 49

3. A Generic Parameterised Infeasible Local Search Framework 50

3.1. Initialisation of the bounding scheme and the seed .. 51

3.2. Exploration of the infeasible space ... 58

3.2.1. Repair mechanism ... 58

3.2.2. Number of subtours to break and patch ... 58

3.2.3. Subtours selection criteria ... 59

3.2.4. Number of arcs involved in repair mechanism .. 62

3.2.5. Arcs selection criteria .. 62

II

3.2.6. Performance metric ... 73

3.2.7. Improvement mechanism .. 73

3.3. Infeasible neighbourhood structure .. 74

3.4. Implementation of GPILS .. 74

3.5. Choice of how to explore the primal space ... 76

3.6. DLS versus GPILS... 77

3.7. Empirical results ... 78

3.7.1. Experimental setup .. 79

3.7.2. Experimental results .. 81

3.8. Conclusion .. 99

4. A Sequential Hyperheuristic Framework for GPILS 100

4.1. Problem‐specific decisions for high‐level search mechanisms 101

4.2. Generic decisions for high‐level search mechanisms 106

4.2.1. Simulated annealing as a high‐level search mechanism............................ 106

4.2.2. Generic decisions for SA .. 106

4.2.3. Tabu Search as a high‐level search mechanism ... 109

4.2.4. Generic decisions for TS ... 109

4.2.5. Variable neighbourhood search as a high‐level search mechanism 111

4.2.6. Generic decisions for VNS .. 111

4.3. Hybrid hyperheuristics ... 113

4.4. Hyperheuristics with intensification strategy .. 113

4.5. Empirical investigation ... 119

4.5.1. Experimental setup .. 119

4.5.2. Experimental results .. 122

4.5.3. Sequential HH‐GPILS in comparison with DLS ... 134

4.5.4. Sequential HH‐GPILS in comparison with primal methodologies 136

4.6. Conclusion .. 139

5. A Parallel Hyperheuristic Framework for GPILS ... 140

5.1. Problem‐specific decisions for high‐level search mechanisms 142

5.2. Choice of the high‐level methodology and its implementation decisions 143

5.2.1. Genetic algorithm as a high‐level search mechanism 143

III

5.3. Parallel Hyperheuristic Framework with Offline Learning Mechanism for GPILS

 147

5.3.1. Initialising chromosomes bank (CB) ... 148

5.3.2. Initialising the population using CB ... 148

5.3.3. Score allocation .. 148

5.3.4. Updating chromosomes Base .. 150

5.4. Empirical investigation ... 151

5.4.1. Experimental setup .. 152

5.4.2. Experimental results GA‐based HH‐GPILS ... 153

5.4.3. Parallel HH‐GPILS in comparison with sequential HH‐GPILS 153

5.4.4. Experimental results of the GA‐based HH‐GPILS with offline learning 155

5.5. Conclusion .. 158

6. Conclusion .. 159

6.1. Summary and Conclusion ... 159

6.2. Extensions and Future Work ... 161

6.3. Final remarks .. 162

Appendices ... 163

References ... 184

IV

List of Figures

Figure 1 2-opt move ... 16

Figure 2 3-opt move .. 16

Figure 3 Hyperheuristic specifications .. 46

Figure 4 Hyperheuristic framework ... 47

Figure 5 Flowchart of the GPILS framework .. 52

Figure 6 Subtours distance ... 61

Figure 7 Subtours merging cost matrix .. 63

Figure 8 Nearest merger criterion, merging process .. 67

Figure 9 Nearest merger criterion, final solution ... 68

Figure 10 Saving-based patching, Initialising subtours ... 68

Figure 11 Savings calculation .. 69

Figure 12 Cheapest insertion .. 70

Figure 13 Computational time given , ... 84

Figure 14 GPILS vs DLS given 2 and 1 .. 86

Figure 15 GPILS vs DLS given 3 and 1 .. 86

Figure 16 Performance of GPILS with set , in comparison with 2,1 87

Figure 17 Comparison of subtours_selection_criterion ... 88

Figure 18 Performance of GPILS given sets of , _
and Experiment 3 ... 90

Figure 19 Performance of GPILS given
, _ _ 	_ vs. GPILS given
, _ _ .. 91

Figure 20 Performance of GPILS given _ _ _ _ ... 91

Figure 21 Performance of GPILS given _ _ _ _ 92

Figure 22 Performance and computational time (s) of GPILS given IM set to AP vs
IM set to (PIH,) .. 93

Figure 23 Performance of GPILS given IM set to PIH and (DRC) vs. Experiment 795

Figure 24 Performance of GPILS given IM set to PIH and (NS) vs. Experiment 8 .. 96

V

Figure 25 Performance of GPILS given IM set to PIH and (T2M, reinforced
improvement) vs. IM set to PIH and T2M set to 3-opt .. 96

Figure 26 Performance of GPILS given IM set to PIH and (T2M, reinforced
improvement) vs. IM set to AP and T2M set to 3-opt ... 97

Figure 27 Performance of GPILS given T2M set to 3-opt and IM set to AP vs. IM set
to PIH ... 97

Figure 28 Performance of GPILS with consideration of the primal bound vs. without
consideration of the primal bound.. 98

Figure 29 Performance of GPILS with consideration of the primal bound vs. the primal
bound PM ... 99

Figure 30 vector of parameters of GPILS .. 100

Figure 31 Hybrid of SA and TS ... 116

Figure 32 Hybrid of VNS and TS .. 117

Figure 33 Hybrid of SA, TS, and VNS .. 118

Figure 34 Average and median of all proposed sequential HH-GPILS 135

Figure 35 Sequential HH-GPILS in comparison with DLS 137

Figure 36 Sequential HH-GPILS in comparison with primal methodologies 139

Figure 37 Population of parallel hyperheuristic ... 141

Figure 38 Chromosomes bank ... 142

Figure 39 Parallel HH-GPILS in comaprison with sequential HH-GPILS.............. 155

Figure 40 Roulette- wheel selection ... 170

Figure 41 Stochastic universal selection .. 171

Figure 42 One-point crossover ... 172

Figure 43 Two-point crossover .. 172

Figure 44 Uniform crossover ... 173

Figure 45 Three parents' crossover .. 173

Figure 46 Soubeiga (2003) hyperheuritic classification .. 174

Figure 47 Bai (2005) and Ross (2005) classification ... 175

Figure 48 Hyperheuristic classification of Burke et al. (2010), Bader-El-Den, and Poli
(2007) ... 175

Figure 49 Hyperheuristic’s first dimension.. 176

Figure 50 Hyperheuristics second dimension .. 176

Figure 51 RINS example .. 183

VI

List of Tables

Table 1 Pseudo-code of SA .. 21

Table 2 Pseudo-code of TS .. 27

Table 3 Pseudo-code of VNS ... 32

Table 4 Pseudo-code of GA ... 35

Table 5 Static rates ... 41

Table 6 Adaptive GA ... 41

Table 7 Chakhlevitch and Cowling (2008) hyperheuristics classification................. 44

Table 8 Comparative analysis between B&B and DLS ... 48

Table 9 Pseudo-code of the proposed GPILS framework .. 53

Table 10 Pseudo-code of the proposed GPILS framework for TSP 55

Table 11 Pseudo-code of the parameterised infeasible-based heuristic (PIH) 57

Table 12 Subtours selection criterion ... 60

Table 13 Subtours distance matrix ... 60

Table 14 Subtours merging cost matrix ... 61

Table 15 Pseudo-code of the proposed generic patching procedure 66

Table 16 Nearest merger method ... 67

Table 17 Saving based path patching method .. 69

Table 18 Paths to merge selection criterion ... 71

Table 19 Paths distance matrix .. 71

Table 20 Paths merging cost matrix ... 71

Table 21 Paths to patch selection criterion .. 72

Table 22 Distance-based criterion .. 72

Table 23 Cheapest insertion ... 73

Table 24 Pseudo-code of the RINS function.. 75

Table 25 Comparative analysis between DLS and GPILS .. 77

Table 26 Problem instances ... 79

Table 27 Experimental design .. 84

Table 28 Static rules of modifying EC ... 105

VII

Table 29 Neighbourhood change strategy considering NS1 105

Table 30 Neighbourhood change strategy considering NS2 105

Table 31 Pseudo-code of SA as a high-level methodology 107

Table 32 Pseudo-code of TS as a high-level methodology 110

Table 33 Pseudo-code of VNS as a high-level methodology 112

Table 34 Pseudocode for hybrid of SA, TS, and VNS with restart 115

Table 35 HH-GPILS high-level decisions ... 120

Table 36 Decision rules .. 122

Table 37 Performance of SA-based HH-GPILS .. 123

Table 38 Computation time of SA-based HH-GPILS.. 124

Table 39 Performance of TS-based HH-GPILS .. 125

Table 40 Computaional time of TS-based HH-GPILS .. 126

Table 41 Performance of VNS-based HH-GPILS ... 127

Table 42 Computational time of VNS-based HH-GPILS .. 127

Table 43 Performance of Hybrid of SA and TS ... 128

Table 44 Computational time of Hybrid of SA and TS ... 128

Table 45 Performance of Hybrid of VNS and TS with shaking 129

Table 46 Computational time of Hybrid of VNS and TS with shaking 129

Table 47 Performance of Hybrid of VNS and TS without shaking 131

Table 48 Computational time of Hybrid of VNS and TS without shaking 131

Table 49 Performance of Hybrid of SA and VNS ... 132

Table 50 Computational time of Hybrid of SA and VNS .. 132

Table 51 Performance of Hybrid of SA, VNS and TS ... 133

Table 52 Computational time of Hybrid of SA, VNS and TS 133

Table 53 Sequential HH-GPILS in comparison with primal methodologies 138

Table 54 Pseudo-code of genetic algorithm as a high-level methodology 144

Table 55 GA- based HH-GPILS high-level decisions ... 151

Table 56 Performance of GA-based HH-GPILS ... 154

Table 57 Computational time of GA-based HH-GPILS .. 154

Table 58 Performance of the offline learning .. 156

Table 59 GA-based HH-GPILS with offline learning ... 157

Table 60 Sequential neighbourhood change strategy .. 168

VIII

Table 61 Cyclic neighbourhood change strategy ... 168

Table 62 Pipe neighbourhood change strategy .. 168

Table 63 Skewed neighbourhood change strategy ... 169

Table 64 -means clustering algorithm .. 180

Table 65 Pseudo-code of recursive versus iterative factorial function 181

1

1. Introduction

The area of combinatorial optimisation arises from research in computer science

(Lawler, 1976). The studied combinatorial optimisation problems (COPs) are very

diverse. Several solution methodologies have been proposed to solve these problems;

namely, exact solution approaches and heuristic solution frameworks.

Exact solution approaches (section 2.3) solve COPs to optimality. However, these

approaches are in general computationally intensive and their efficiency depends on

the choice of the bounding schema used to prune nodes in the search tree to avoid

exploring branches with no potential to deliver an optimal solution. Solution methods

within this category can be categorised as branch-and-bound algorithms, cutting plane

algorithms, and their hybrids as branch-and-cut algorithms.

On the other hand, heuristic solution approaches (section 2.4) can, in general, obtain

optimal or near-optimal solutions quicker; e.g. construction heuristics, local search-

based methods and metaheuristics (section 2.5). Although the optimality of the

solutions delivered with heuristics cannot be proved, they can often find a good quality

solution to large problems in a reasonable time. Considering the advantages and

disadvantages of the exact and heuristic solution approaches one can combine ideas

taken from each of these methods and develop a stronger hybrid.

Notice however that heuristic solution approaches are often tailor-made to a specific

problem. Moreover, they might produce good quality solutions for some instances of

the problem, but not all. Thus, one has to either investigate the problem and its

instances structure thoroughly or design a higher-level method to automate the choice

of which heuristic or combination of heuristics and their parameters to use (Burke et

al., 2009). Such high-level methodologies are called hyperheuristics (section 2.6).

Most of the heuristic methods mentioned above start with a feasible solution and only

search in their feasible neighbourhood to find a better solution. One disadvantage of

these methods is that they limit the search to feasible neighbourhood areas. However,

2

there are methods that allow infeasibilities while searching for a better solution. These

methods penalise infeasibilities to force the search toward the feasible

neighbourhoods. One disadvantage of these methods is that they allow for a limited

degree of infeasibility. However, recently Ouenniche and his collaborators (Ouenniche

et al., 2017) proposed a local search method, called dual local search (DLS), which

starts with an infeasible solution and explores its infeasible neighbourhood for a better

neighbour until the search reaches a feasible solution – for more details see section

2.7. DLS integrates the design features of exact methods (branch-and-bound) into

heuristic methods (local search). Since DLS is a parametric method, one can design a

hyperheuristic framework to optimise the choice of its parameters and components.

Thus, we can categorise heuristic solution approaches into search methods that search

in the space of feasible solutions, feasible-infeasible solutions and infeasible solutions.

In the rest of this thesis we shall call these methods feasible methodologies, feasible-

infeasible methodologies and infeasible methodologies. Note that feasible

methodologies are also called primal methodologies, thus we use these terms

interchangeably.

This thesis refines and extends DLS proposed by Ouenniche et al. (2017) and proposes

a generic and parameterised infeasible local search (GPILS). The proposed framework

is generic since it can be used to solve any COP; however, for illustration purposes,

GPILS is customised to solve the travelling salesman problem. Since GPILS is a

parameterised framework, each set of parameters leads to a different GPILS procedure.

Thus, it should be viewed as a collection of GPILS procedures each corresponding to

a different set of parameters, which can be chosen either by the analyst or by an

automated process. We propose a generic hyperheuristic framework to automate the

optimisation of the choice of parameters of GPILS, referred to as HH-GPILS, where

the focus is on metaheuristic-based high-level frameworks. Moreover, an offline

learning mechanism is proposed to speed up HH-GPILS, which reuses the previously

generated set of parameters for the unseen (new) problem instances.

3

 Goal and scope of the research

The aim of this research is to investigate the possibilities of a different avenue to solve

COPs. We explored the infeasible search space by proposing a new generic and

parameterised infeasible space search framework to solve COPs as well as an

automated procedure to optimise the choice of its parameters. The goals of this thesis

may be summarised as follows:

1. Investigate the possibility of heuristically searching the infeasible solution

space and progressing toward the feasible space.

In chapter 3, we propose a new generic and parameterised local search

framework that operates in the space of infeasible solutions and, for illustration

purposes, customise it to solve the travelling salesman problem and discuss its

implementation decisions.

2. Automate and optimise the choice of the parameters of the proposed

framework.

In order to optimise the choice of the parameters of our local search

methodology, we propose a hyperheuristic framework. We experiment with

both sequential high-level mechanisms (chapter 4), namely simulated

annealing, tabu search, variable neighbourhood search as well as new hybrids

of these metaheuristics, and a parallel high-level mechanism (chapter 5),

namely genetic algorithm.

3. Investigate the potential of reusing the automatically generated parameters.

In chapter 5, we propose an offline learning mechanism for the parallel high-

level framework to improve its search strategy. The proposed offline learning

makes use of a knowledge base to keep track of the best performing set of

parameters in the past and reuses them when facing new problem instances.

The novelty of this research lies principally in the search strategy to explore the

infeasible space to find the optimal or near optimal solution, GPILS. To the best of our

knowledge, little research has been done in the exploration of the infeasible space. The

empirical investigation shows that this search strategy has a promising future.

4

 Contributions

Firstly, we proposed a generic parameterised infeasible local search (GPILS) that starts

the search in the infeasible space and continues the search, through the infeasible

space, toward the feasible space with the option of continuing the search in the feasible

space. We explained the rationale behind the design of the proposed GPILS and for

illustration purposes we customised it for solving the TSP.

Furthermore, we automated the choice of the parameters of GPILS using a

hyperheuristic framework, referred to as HH-GPILS. We proposed several sequential

and parallel metaheuristic-based high-level methods to search the parameter space of

the GPILS. Note that the proposed HH-GPILS can be used as high-level framework in

any hyperheuristic that aims to automate the choice of parameters.

Finally, we proposed a new offline learning mechanism to improve the performance

of the HH-GPILS. We developed a knowledge-based system that is used to keep the

best performing sets of parameters and their scores. Furthermore, a reward/penalty

mechanism is proposed to update the score of each set. Note that these scores are used

as criteria for their entrance and survival in the knowledge-base.

 Thesis structure

Chapter 2: Literature Review

This chapter surveys the literature on exact solution approaches and heuristic solution

frameworks to solve the TSP, as well as hyperheuristics.

Chapter 3: Generic Parameterised Infeasible Local Search Framework

In chapter 3, the proposed generic parameterised infeasible local search framework

(GPILS) is presented, and the rationale behind the infeasible search methodology is

discussed. Then, we customised GPILS for the TSP, for illustration purposes. Finally,

the implementation decisions and parameters of GPILS are explained.

Chapter 4: A Sequential Hyperheuristic Framework for GPILS

5

In this chapter, a generic high-level framework to automate the choice of the

parameters of GPILS is presented. Later, the proposed sequential high-level

frameworks, namely simulated annealing, tabu search, variable neighbourhood search

and their hybrid are explained in detail. Moreover, new neighbourhood structures are

proposed to search the parameter space of GPILS. Lastly, we analysed the performance

of the proposed sequential high-level frameworks using the proposed neighbourhood

structures.

Chapter 5: A Parallel Hyperheuristic Framework for GPILS

A parallel high-level framework, namely genetic algorithm (GA), to optimise the

parameters of GPILS is presented in chapter 5. In this framework, the proposed GA

makes use of indirect chromosome representation where each chromosome is encoded

as a vector of parameters of GPILS.

Moreover, an offline learning mechanism is proposed to improve the performance and

speed up the parallel high-level framework for GPILS. The proposed learning

mechanism that makes use of a knowledge-based system, referred to as chromosome

base (CB), to keep track of well-performing chromosomes and their score. A reward-

based mechanism is used to update scores of each chromosome from the CB and

compute the score of the new chromosomes. Later, the CB is updated by replacing a

number of previous chromosomes in the CB with the new chromosomes.

Chapter 6: Conclusion

In this chapter, we presented the concluding remarks.

Appendices

Appendix A: Tour construction heuristics

Several primal Tour construction heuristics, such as nearest neighbour procedure;

Clarke and Wright savings procedures; insertion procedures; Christofides heuristic;

nearest merger procedures; path merging procedures, are explained in more detail.

6

Appendix B: Cooling strategies

Some of the cooling schedules proposed for the simulated annealing are presented,

such as Aarts and Van Laarhoven (1985, 1987), Lundy and Mees (1986), Huang et al.

(1986), Triki et al. (2005), Dowsland (1993) and Azizi and Zolfaghari (2004).

Appendix C: Acceptance function

Several of the existing acceptance functions used in simulated annealing are presented,

namely, Aarts and Van Laarhoven (1985a, 1987), Lundy and Mees (1986), Huang et

al. (1986), Triki et al. (2005), Dowsland (1993) and Azizi and Zolfaghari (2004).

Appendix D: Neighbourhood change strategies

In this appendix, the classification of the neighbourhood change strategies by Hansen

et al. (2016) are presented. They classified neighbourhood change strategies into

sequential, cyclic, pipe, and skewed neighbourhood change strategy.

Appendix E: GA’s selection mechanisms

In this section, the GA’s selection mechanisms are presented, namely ordinal selection,

proportional selection, ranking selection, steady-state selection.

Appendix F: Crossover techniques

Several crossover techniques have been used in the GA’s search, some of these

techniques, such as simple or one-point crossover, multi-point crossover, uniform

crossover and three parents’ crossover, are presented in this appendix.

Appendix G: Hyperheuristics classification and categories

Several hyperheuristic classifications and categories have been proposed such as

Soubeiga (2003), Bai (2005) and Ross (2005), Bader-El-Den and Poli (2007),

Chakhlevitch and Cowling (2008), Burke et al. (2009, 2010, and 2013). These

classifications are presented in this section.

Appendix H: Learning mechanisms

Several learning mechanism have been proposed such as choice function (Cowling et

al., 2001; Chen et al., 2016), reinforcement learning (Nareyek, 2003; Ozcan et al.,

7

2010; Chen et al., 2016), learning classifier system (Holland and Reitman, 1978; Ross

et al., 2002; Marín-Blázquez and Schulenburg, 2007) and case-based reasoning

(Petrovic and Qu, 2002, Burke et al. 2002, 2004, 2006). These learning mechanisms

are presented in this section.

Appendix I: -Means clustering

In this thesis, we used -Means clustering method (Jain, 2010) to exploit the structure

of TSP instances. In this section, we explained this procedure in more details.

Appendix J: RINS function

Exploring the infeasible space by the proposed GPILS given a set of parameters

requires exploring a single or several combinations of the set. Thus, to implement an

efficient and generic code, we proposed a recursive design for the infeasible

neighbourhood search, referred to as recursive infeasible neighbourhood search

function (RINS), see Chapter 3. In this appendix, in addition to details of RINS, a

summary of recursive function is presented.

8

2. Literature Review

In this chapter, the relevant scientific literature will be provided, particularly

mathematical formulations of the TSP, their properties and relaxations, descriptions of

the methodologies and state-of-the-art techniques used in this study are presented

 Mathematical formulation

TSP is the prototype problem in combinatorial optimisation, introduced in 1930

(Applegate et al. 1998). Because of its applications in different fields such as vehicle

routing and scheduling, computer wiring, job sequencing, drilling of circuit boards,

and order picking in warehouses, many solution methodologies have been proposed to

solve TSP.

In graph theory, TSP is defined on a complete weighted graph, say , where

 is set of vertices or nodes and is set of arcs. The vertices represent the cities and

the arcs represent the links between pairs of cities. Let be a binary decision variable

which is equal to one if arc , is in the optimal solution (i.e., included in the optimal

TSP route) and zero otherwise; and be a non-negative distance matrix. TSP

is symmetric if for all , , and asymmetric if for some or all , ,	 .

Several formulations have been proposed for the TSP. These formulations can be

classified as conventional formulations (Dantzig, Fulkerson and Johnson; 1954),

sequential formulations (Miller, Tucker and Zemlin; 1960), time-staged formulations

(Vajda, 1961; Fox, Gavish and Graves, 1980), and flow-based formulations (Gavish

and Graves, 1978; Finke, Claus and Gunn, 1984; Lucena, 1986; Wong, 1980; Claus,

1984; Langevin, 1988; Loulou, 1988). All these formulations are assignment problem

(AP) relaxation-based with different subtour breaking constraints. The difference

between conventional and sequential formulations lie in the nature of their subtour

breaking constraints. On the other hand, time staged formulations introduce a time

9

stage, say , and ensure that when a node is visited at stage , it is left at stage 1.

As to flow-based formulations, as the name suggests, flow constraints are used to

prevent the formation of subtours. Hereafter, we shall present the above mentioned

formulations, but first we present the general TSP formulation of as follows:

 min∑ ∑ 1

Subject to:

 ∑ 1, ∈ 2

 ∑ 1, ∈ 3

Subtour elimination constraints 4

 0	 	1 , , ∈ 5

where (1) is the objective function which minimises the total cost of the TSP tour; (2)

and (3) are the degree constraints; (4) is the subtour elimination constraints and (5) is

the binary constraints. Hereafter we shall present common subtour elimination

constraints proposed in the literature.

The most cited mathematical formulation of TSP in the literature is the conventional

formulation by Dantzig et al. (1954). They proposed the following subtour elimination

constraints for the TSP:

 ∑ ∑ ∈∈ | | 1, ∀ ⊂ , 2 | | 2. 6

These constraints can be stated differently as connectivity constraints:

∑ ∑ ∈∈ 1, ∀ ⊂ , ∅ 7

Note that this TSP formulation consists of 1 binary variables, 2 degree

constraints and 2 2 2 subtour elimination constraints. Thus, for a problem with

6 nodes, there are 30 binary variables and in total 62 constraints. An alternative is the

sequential formulation of Miller, Tucker and Zimlin (1960), which reduces number of

subtour breaking constraints by introducing extra decision variables that represent

the sequence in which city is visited, and introduced the following constraints known

as the MTZ subtour breaking constraints:

10

1 2, ∀ , ∈ 2, … , ; 8

1 1, ∀ 9

Later, Desrochers and Laporte (1991) strenghend MTZ constraints by adding an extra

term

1 3 2, , ∈ 2,… , ; 10

On the other hand, time-stage formulations introduce binary decision variables ,

which are equal to one if arc , is travelled at stage and zero otherwise, and the

following constraints:

	∑ ∑ ∑ , 11

∑ ∑ ∑ ∑ 1, 2,… , 12

∑ ∑ 0, ∀ , ∈ , 13

0	 	1 , , , 1, … , 14

0			∀ , 0		∀ 1, 0		∀ 1, 15

where constraint (11) ensures that there is n arc in the solutionconstraint (12) ensures

when a node is visited at stage , it is left at stage 1, (13) ensures variable is

linked to , (14) is a binary constraint and (15) forces exit and entrance at node 1

only at stage one and stage , respectively. Note that variable is not necessary in

this formulation, however, it is used for consistency.

Another formulation is the basic (single-commodity) flow-based formulation proposed

by Gavish and Graves (1978). They introduced a flow variable which denotes the

flow on arc (,)

∑ ∑ 1, 				 2, … , 16

1 ,					 , 1, … , 17

0,				 , 1, … , 18

11

where (16) states that the total flow entering any node minus the total flow leaving the

same node is equal to its demand (where the demand of one unit represents a visit to

the node), (17) states that there is a positive flow on arc (,) if and only if it is used

by the salesman and (18) states non-negativity requirements. For a survey and

comparison of the aforementioned TSP formulations, refer to Orman and Williams

(2006).

 Properties and relaxations

TSP has two main properties. The first property is the connectivity of the tour, which

means there is always a path between any pair of vertices and the second is the degree

of every vertex in the TSP which is two, meaning that for any arc that enters the vertex

there should be another arc leaving that vertex. The assignment problem and 1-tree

possess one but not both properties of the TSP (Christofides, 1975). The assignment

problem (AP) holds the second property but not necessarily the first one. On the other

hand, 1-tree holds the first property and not necessarily the second one. Since 1-tree

and AP relaxation are much easier to solve than the TSP, they can be used as

relaxations of the TSP and the cost of their (typically infeasible) solutions could be

used to initialise the dual bound, which in a minimisation context represent the lower

bound, and such infeasible solutions could be improved/repaired either by exact

solution methods or by heuristic solution methods.

AP has been the first relaxation of TSP, which is obtained by objective function (1)

and constraints (2, 3, and 5). Eastman (1958), Little et al. (1963), Shapiro (1966),

Bellmore and Malone (1971), Smith et al. (1977), Balas and Christofides (1981), and

Miller and Pekny (1991) were among researchers that used AP-relaxation to solve TSP

within branch-and-bound methods. On the other hand, 1-tree is a minimum spanning

tree (MST) with an extra minimum arc at node one (Christofides, 1975; Held and Karp,

1970, 1971). A 1-tree mathematical formulation proposed by Held and Karp (1970,

1971) minimises (l) under the following constraints:

∑ ∑ ∈∈ , 19

12

∑ ∈ ∑ ∈ 2, 20

∑ ∑ ∈∈ | | 1, ∀ ⊂ 1 , ∅ 21

0	 	1 , , ∈ 22

where (19) ensures that 1-tree has edges, (20) ensures that vertex one has degree

two, (21) ensures that no cycle exist in 1-tree except at node 1 and (22) is the binary

constraint. Held and Karp (1970, 1971), Christofides (1970), Smith and Thompson

(1977), Volgenant and Jonker (1982), Gavish and Srikanth (1983) were among the

first to use 1-tree relaxation for solving TSPs.

Other less popular relaxations of the TSP are 2-matching problem relaxation (Bellmore

and Malone, 1971) and shortest n-arc path problem relaxation (Houck et al., 1980). In

this research, we proposed repair mechanisms for solutions of AP-relaxations of the

TSP.

 Exact methods

Exact solution approaches solve COPs to optimality. However, these approaches are

in general computationally intensive and their efficiency depends on the choice of the

bounding schema used to prune nodes in the search tree to avoid exploring branches

with no potential to deliver an optimal solution. Solution methods within this category

can be categorised as branch-and-bound algorithms, cutting plane algorithms, and their

hybrids as branch-and-cut algorithms.

One of the common methods used to solve TSP is the branch-and-bound (B&B)

methodology. B&B is a solution strategy based on the “divide and conquer” principle.

The idea is to partition the feasible region of an integer linear programming problem

(ILP) into more manageable subdivisions and then to further partition the subdivisions,

if necessary. This partitioning process of the solution space is referred to as the

branching process. In order to avoid unnecessary branching, a bounding scheme is

used. The branching process may be viewed as a successively finer and finer

subdivision of the feasible region, where each subset in a given partition represents a

subproblem. The branching process may also be viewed as a tree where the root

13

represents the linear programming (LP) relaxation of the original ILP and each other

node represents a subproblem.

Moreover, a bounding scheme is used to eliminate some nodes in the B&B tree in

order to reduce computational requirements. The bounding scheme should be designed

so that, during the course of the algorithm, a decreasing sequence of upper bounds and

an increasing sequence of lower bounds are produced, and the algorithm stops when

such sequences converge to the same value. In the case of TSP, the lower bound can

be computed by any of its relaxations, such as AP-relaxation. Eastman (1958), Little

et al. (1963), Shapiro (1966), Bellmore and Malone (1971), Smith et al. (1977), Toth

(1980), Balas and Christofides (1981), Miller and Pekny (1991), and Turkensteen et

al. (2006) are some of those researchers that used AP-relaxation to solve TSP with

branch-and-bound methods.

In order to reduce the size of the tree one might use cutting plane methods to diminish

part of the feasible region. These methods were proposed by Ralph Gomory in 1950s

(Gomory, 1958) to solve integer linear programming (ILP) and mixed-integer linear

programming problems (MILP). If a linear constraint is added to an integer linear

programme (ILP) that does not exclude integer feasible points, called a cutting-plane

or cut, then the solution is unchanged. Cutting-planes have the effect of lopping off

part of the feasible set, but no integer points are lost. The main idea of cutting plane

algorithms is adding cuts to an ILP, one at a time, until the solution to the LP relaxation

is integer. Because no integer feasible points have been excluded, the final solution to

the relaxed ILP with added constraints will solve the original ILP. Fleischmann (1988),

Miliotis (1978) and Avella et al. (2017) are amongst those researchers who used

cutting palne methods to solve TSP and other routing problems.

The difference between B&B and cutting plane methods is that, at each stage of the

B&B algorithm, the current feasible region is cut into two smaller regions by the

imposition of two new constraints, whereas at each stage of the cutting-plane

algorithm, the current feasible region is diminished, without being split, by the

imposition of a single new constraint. Splitting (respectively lopping off) is done so

that the optimal solution to the current program must show up as the optimal solution

to one of the two new programs (respectively the new program).

14

Later, to strengthen these methods and minimise their drawbacks, researchers

combined exact methods’ strategies and proposed hybrid exact methods. One of these

hybrids is a combination of B&B and cutting plane methods within a single

framework, called branch and cut (B&C), which uses cuts to reduce the size of the tree

(Crowder and Padberg, 1980; Padberg and Rinaldi, 1991; Fischetti and Toth, 1997;

Fischetti et al, 2003; Applegate et al, 2007).

 Heuristic methods

In a trade-off between time and optimality, one might prefer near-optimal solutions

that use the least possible time. Although heuristic methods cannot prove optimality

of the solution, they can find near-optimal solutions quickly. Furthermore, they are

relatively easier to explain, implement and adapt to different problems. Heuristic

approaches can be categorised into tour construction procedures, tour improvement

procedures and composite algorithms (Laporte, 1992). Tour construction heuristics

add or insert a vertex to a tour, one at a time. While inserting or adding a node, the tour

cannot be improved during the construction procedure. These heuristics can be

categorised as nearest neighbour procedure (Rosenkrantz, Steams and Lewis, 1977);

insertion procedures (Rosenkrantz, Sterns and Lewis, 1977); Clarke and Wright

savings procedures (Clarke and Wright, 1964); minimal spanning tree procedure (Kim,

1975); Christofides heuristic (Christofides, 1976); partitioning procedure (Karp,

1977); nearest merger procedures (Rosenkrantz et al., 1977; Glover et al., 2001); path

merging procedures (Yeo, 1997; Glover et al., 2001); contract or patch algorithm

(Glover et al., 2001); and GENI (Gendreau, Hertz and Laporte, 1992). For more detail

see Appendix A.

Later, one can improve the tour obtained by the tour construction procedure using tour

improvement methods. Tour improvement procedures start with an initial feasible

solution, obtained either by one of the tour construction methods or randomly, and

exploit all its neighbours for a better feasible solution. Local search is one of the tour

improvement procedures which improve the tours by one or more than one

15

neighbourhood moves and a selection strategy. A comparative analysis of tour

construction and local search procedures can be found in Golden et al. (1980).

In this thesis, we only made use of 2-opt (flood, 1956; Croes, 1958), 3-opt (Bock,

1958; Lin, 1965) and Or-opt (Or, 1976) neighbourhood structures. -opt

neighbourhood was first introduced by Lin (1965) for the TSP. -opt involves

removing arcs from the tour and replacing them with new arcs. Two specific cases

of -opt are 2-opt and 3-opt neighbourhood moves which are the most used

neighbourhood structure in the literature. The 2-Opt moves respectively 3-opt, consist

of deleting two arcs, respectively three arcs, and reconnecting the resulting paths, see

Figure 1 and Figure 2. Or-opt (Or, 1976) is a modified version of 3-opt which considers

relocation of a string of 1, 2 or 3 nodes in the tour.

Moreover, one can use partial destruction/construction (D/C) neighbourhood moves to

improve the tour. These moves start with a complete solution and iteratively destruct

a part(s) of the tour and reconstruct it using construction heuristics. Ruin-and-recreate

heuristic (R&R), proposed by Schrimpf et al. (2000), is a more general concept of

destruction/construction moves. R&R ruins parts of the solution and reinsert them

using an insertion procedure. In comparison with other D/C moves, R&R destruction

considers larger areas (e.g. more nodes).

The before mentioned basic local search methods iteratively explore all the search

space for a better solution and stop when the search cannot find a better solution. A

better solution is selected by an acceptance strategy which can either be first

improvement or best improvement. The first improvement acceptance strategy stops

the search at each of the iterations as soon as a better solution is found. On the other

hand, the best improvement acceptance strategy at each of the iterations explores all

neighbourhoods and returns the best solution. Both acceptance strategies find the local

optimum. A comparative analysis of these two acceptance strategies can be found in

Hansen and Mladenović (2006).

The goal of using construction heuristics and tour improvement procedures is finding

a good quality tour. To do so, these procedures search within all possible edges.

However, most of the possible edges do not exist in the optimal tour, especially the

16

long ones. In other words, discarding these edges from the search space will speed up

the search and might improve the heuristic’s performance. Reinelt (1994) proposed

Figure 1 2-opt move

Figure 2 3-opt move

6

7

9

1

3 4 2

10

5

8

a b

Breaking	1 → 6	and	10 → 8		 A 	1 → 8 and 10 → 6

6

7

9

1

3 4 2

10

5

8

a

	1 → 3, 2 → 10 and 9 → 5

6

7

9

1

3 4 2

10

5

8

b

A 	1 → 10, 9 → 2 and 3 → 5

6

7

9

1

3 4 2

10

5

8

c

A 	1 → 10, 9 → 2 and 3 → 5

6

7

9

1

3 4 2

10

5

8

17

variations of these heuristics, by making use of candidate sets in heuristic procedures,

to enhance their performance. A candidate set, say , of an optimisation problem, say

, is a subset of the feasible space of defined to narrow down the search space to

“promising” regions as specified by a set of criteria that exploit the domain knowledge

of the problem. Using candidate set has advantages and disadvantages. The main

advantage of a candidate set is speeding up the search process. On the other hand, the

use of candidate sets could have disadvantages (e.g., the choice of the criteria for

defining a candidate set could result in discarding an optimal solution or the path to an

optimal solution) if not chosen appropriately.

The simplest and most well-known candidate set is	 -Nearest Neighbour (-NN). -

NN was first introduced by Fix and Hodges (1951) in an unpublished US Air Force

School of Aviation Medicine report. The -NN candidate set limits the search for the

nearest neighbour of to the subgraph of G that consists of the nearest neighbours

only, say , , where

, ∈ |	 	 	 	 	 	 	 	 	 .

However, might itself consist of disconnected subgraphs or clusters, depending on

the structure of the original graph (e.g. geometrical properties). Depending on the

choice of the value of the parameter 	 , -NN have consequences, for example,

searching in the -NN subgraph might force the method to stop without delivering a

complete feasible solution, if is small enough to result in disconnected subgraphs or

clusters. On the other hand, searching in the -NN subgraph is more likely to deliver

a better-quality solution than the one delivered by the original construction heuristic

or local search; for example, searching in the -NN subgraph might deliver better

quality solution than the original nearest neighbour heuristic, as it avoids the drawback

of a greedy search that ends up adding long arcs near the end of the construction

process (Reinelt, 1994). Reinelt (1994) proposed using candidate set-based variant of

construction heuristics and tour improvement heuristics. For example, Candidate set-

based variant of insertion heuristics (Reinelt, 1994) expands the current subtour by

inserting a node from the candidate set of nodes in the subtour based on prespecified

criteria, such as arbitrary insertion, nearest insertion, cheapest insertion, and farthest

insertion. In candidate-based variant of improvement procedures (Reinelt, 1994), the

18

only moves considered are the ones where at least one of the edges is already in the

candidate set.

Another drawback of local search method is that the minimum solution found might

not be a good quality solution. In other words, the obtained local minimum solution

can be far from the optimal solution. However, an extension of local search, called

metaheuristics are designed to escape the local optima and look for a better solution.

 Metaheuristics

A metaheuristic provides guidance mechanisms or strategies for searching the solution

space effectively and often avoid remaining stuck in local optima when encountered

(Sörensen and Glover, 2013). An effective and successful metaheuristic search

strategy balances exploitation (intensification) of the search around the best solution

found so far and exploration (diversification) of the search space. The most common

classification of metaheuristics is sequential (single-point or trajectory) metaheuristics

and parallel (population-based or evolutionary) metaheuristics. The first category,

sequential metaheuristics, are more exploration-based whereas the second category,

parallel metaheuristic, are more exploration based. Sequential metaheuristic start with

a single solution and attempt to improve it by searching its neighbourhood. In other

words, they exploit the promising search areas that might lead to a good quality

solution. On the other hand, parallel metaheuristics such as genetic algorithms start the

search with a set of solutions and attempt to find better solutions by iteratively

combining them in the hope that they keep the best features of the older solutions,

while diversifying the search towards new areas that has not been explored before. In

the next subsections an overview of these metaheuristics is presented.

 Sequential metaheuristics

As it was mentioned earlier, sequential (single-point) metaheuristics, such as,

simulated annealing (Kirkpatrick et al., 1983), tabu search (Fred Glover, 1986, 1989,

1990) and variable neighbourhood search (Mladenović and Hansen, 1997), start with

a single solution, using a sequential search strategy, search its neighbourhood for a

19

better solution. The implementation of these metaheuristics involves several decisions

to be made, which we classified them into problem-specific decisions and generic

decisions. Problem-specific decisions are related to the nature of the problem and

require a deep knowledge of the problem. In contrast, generic decisions can be taken

without such knowledge since they are specific to the chosen metaheuristic and not the

problem. First, we present problem-specific decisions since they are common for all

sequential metaheuristics. Then, the aforementioned sequential metaheuristics and

their generic decisions are explained in more details.

I. Problem-specific decisions

The decisions common to the implementation of SA, TS and VNS are (1) choice of

the solution space; (2) choice of the form of the objective function; (3) choice of initial

solution; and (4) choice of the neighbourhood structure or type of moves to use. These

decisions are similar across the single-point metaheuristics.

(1) Choice of the solution space

 In principle, all possible solutions are admissible. However, for computational

reasons, one might want to reduce the size of the solution space to converge to a good

solution faster. This strategy might limit the search to a small neighbourhood, which

might not include the global optima. On the other hand, one might permit infeasible

solutions (by permitting constraint violations) to increase the search space and the

possibilities of finding the global optima (Gendreau et al., 1994; Glover, 1977).

(2) Choice of the form of the objective function

The value of the objective function is used to discriminate between solutions and to

decide whether the search should move to a new neighbour or not. The original

objective function is the objective function of the optimisation problem under

consideration; e.g. total distance or cost of a feasible solution to the TSP. In addition

to the original objective function, one might define other types of objective functions,

such as the surrogate objective function, the auxiliary objective function, and the

penalised objective function.

The surrogate objective function (Crainic et al., 1993): Calculating this objective

function is much faster than the original one since instead of calculating the total cost

20

of the solution, only the cost incurred by the move is calculated, which is correlated to

the original objective function.

The auxiliary objective function (Gendreau, 1993): This objective function

measures the desired attributes of the solution, instead of calculating the original

objective function. This objective function is used when the original objective function

does not provide knowledge and information about the search space. For example, in

routing problems, when searching the neighbourhood of the current solution faces a

tie (several new solutions with equal cost), one can introduce an auxiliary function

including more desirable attributes (such as travel time, customer’s demand, etc.) to

direct the search. Auxiliary objective functions are also used when one allows for

infeasibilities but penalises them.

The penalised objective function (Gendreau et al., 1994; Glover, 1977): This

objective function adds penalty terms to penalise violations of constraints or features

of solutions, this is done by relaxing some of the constraints and adding a penalty, for

each violation, to the objective function. However, one should choose the correct

penalty. This strategy (i.e. allowing infeasibilities) widens the search space.

(3) Choice of the initial solution

The initial solution can be generated by either a random procedure or a simple

heuristic. Starting with a random solution might not lead to the optimal solution or a

slow convergence to a good solution. On the other hand, starting with a good solution,

e.g. obtained by a construction heuristic, might lead to quick convergence, although

the search might get stuck in a local optimum.

(4) Choice of the neighbourhood structure or type of moves to use

In designing metaheuristics, neighbourhoods are defined to move from a solution in

the search space to another. Designing neighbourhood structures depends on the

characteristics of the solution space and the type of moves used to move from a

solution to its neighbour. For example, to solve TSP using metaheuristic, one can use

either one or all the following moves: -opt, or-opt, node exchange, node relocation,

string exchange, etc. (flood, 1956; Croes, 1958; Bock, 1958; Lin, 1965; Or, 1976). A

small neighbourhood structure is preferable since it typically converges toward a good

quality solution much quicker, however, it might not lead to a good quality solution.

21

For instance, a 2-opt move (e.g. -opt when	 2) is much faster than a 3-opt move

(e.g. -opt when	 3), however, 3-opt produces better quality solutions than 2-opt.

II. Simulated annealing and its generic decisions

Simulated annealing (SA) is a search procedure based on the annealing process of

materials in metallurgy and the underlying thermodynamic laws introduced in the early

1980s. The initial design of SA has been proposed by Kirkpatrick et al. (1983). Its

main search strategy consists of avoiding remaining stuck in a local optimum by

temporarily accepting worse solutions with some probability, where this probability

decreases as the search progresses.

Initialisation Step

Choose a heuristic to initiate the initial solution, say , and set to the total distance of the TSP

tour ;

Initialise the best solution found so far, by setting ∗ and ∗ ;

Choose an initial temperature 0 and set the current temperature ;

Set the temperature change counter 1;

Iterative Step

REPEAT until stopping condition = true

Choose the number of neighbours to visit at the current temperature , ;

Set the repetition counter 0;

REPEAT until stopping condition = true // e.g.,

Generate randomly a neighbour of the current seed and compute ;

Compute the change in the objective function value: ;

IF 0 OR 0,1 	 	THEN {

Update the current seed solution , ; that is, set , and ;

IF ∗ THEN

Update the best solution found so far ∗, ∗ ; that is, set ∗ and ∗ ;

}

Increment the repetition counter by 1; that is, set 1;

END REPEAT;

Increment the temperature change counter by 1; that is, set 1;

Reduce the temperature according to the temperature reduction function ; that is, set ;

END REPEAT

Table 1 Pseudo-code of SA

22

The basic SA starts the search with a random (initial) temperature, , increases the

temperature until a prespecified threshold, then cools slowly until it reaches a frozen

state or final temperature,	 . This process requires a cooling schedule that will be

explained in the next section. In each SA state or epoch, where each state of SA is

distinguished by temperature	 , several neighbours of the current solution are visited,

and the current solution is updated considering a transition mechanism. The pseudo-

code the SA algorithm is outlined in Table 1.

Since it was first introduced, several implementations of SA have been proposed

(Lundy, 1985; Johnson et al., 1989, Connolly, 1990, 1992; Cordeau et al., 1997,2001;

Koulamas et al., 1994; Ho and Haugland, 2004; Geng et al., 2011; etc.). In general, an

implementation of SA requires a number of generic decisions to be made, namely an

annealing schedule and an acceptance function (AF). Hereafter, we shall discuss these

implementation decisions in more detail.

(1) The annealing schedule

The annealing schedule controls the temperature in SA algorithm, which involves

several parameter choices:

 Initial and final temperature

 Number of neighbours to visit at each temperature

 Temperature change strategy and the form of the temperature change function

 Stopping criterion or freezing state

These parameters could be either static or dynamic. When a parameter is constant or

fixed throughout the algorithm, from the start to the end, it is a static parameter, and if

it is not constant or fixed, meaning that the parameter is changing to adapt to the

algorithm, it is a dynamic parameter (Aarts et al., 2014). In implementing the optimal

annealing schedule for SA algorithm, one should specify the best choice for these

parameters. Many annealing schedules have been proposed which will be summarised

in the next section.

Initial and final temperature

The initial temperature,	 , should be high enough so that all new neighbours are

accepted (Kirkpatrick et al., 1983). Kirkpatrick et al. (1983) proposed starting the

23

search with a random initial temperature and heating the system by doubling the

temperature until the percentage transitions in that epoch are less than . When this

percentage is achieved, cooling the system starts. The cooling process continues until

the temperature reaches the final temperature,	 , which it is zero or close to zero.

When the temperature is zero, no uphill moves will be accepted.

Lundy (1985) proposed setting to the upper bound of the highest objective function

value or proportional to 1 , 10 1 and setting the final

temperature to . Later, Lundy and Mees (1986) used the same idea to

initialise	 ; however, they proposed setting the upper bound for TSP to the sum of

longest edge leaving each city. They also proposed freezing the system when

1
log , where is a predefined small probability.

On the other hand, Johnson et al. (1989) considered ̅⁄ , where ̅ denotes

the average increase in the objective function values, computed with uphill moves

only, obtained during prespecified number of trials/transitions of the annealing process

with the fraction of accepted uphill transitions equal to . Later, Connolly (1990,

1992) proposed an approach to avoid choosing an initial value of	 . They proposed

setting the initial temperature 	 10⁄ , where and

denoting the minimum value and the maximum value of the objective function over a

number of trial runs, for a range of fixed temperature; and setting the freezing

temperature to the maximum value of the objective function over the trial runs,	 .

Parthasarathy and Rajendran (1997b) defined as the relative percentage change in

the objective function value; i.e., .	 In addition, they chose to

accept solutions with lower quality by 50% relative to the initial solution, with an

acceptance probability equal to 90%. Implicitly, they assume that the maximum

relative percentage difference in cost between neighbours is 50% and compute

accordingly:

⟺ 0.9 ⟺ 475. 23

24

Correspondingly, they fixed the final temperature to a value computed based on the

initial temperature, prespecified cooling ratio, say , and the prespecified number of

epochs, say .

 24

The number of neighbours to visit at each temperature

The number of neighbours to visit, , at each epoch is typically set to a fixed

prespecified value, which may depend on the solution space or neighbourhoods (Ogbu,

1990) However, the best choice for this value should consider the temperature change

strategy, the form of the temperature change function and the value(s) of its

parameter(s) and the choice of the stopping criteria. Moreover, one might use feedback

from the annealing process, such as the ratio of acceptance or the minimum number of

accepted moves to choose the value of	 .

The temperature change strategy

The performance of SA algorithm is highly dependent on the temperature change

strategy. A fast cooling strategy might speed up the process, but it might also lead to

local optima far from the global one. On the other hand, a slow cooling strategy might

lead to an optimal or near optimal solution in a very long time. Thus, when designing

an optimal cooling schedule, one should make a trade-off between the quality and CPU

time.

In addition, a temperature change strategy could be constant (fixed temperature), non-

adaptive or adaptive. Non-adaptive temperature change strategies are systematically

decrease based on a cooling function. By contrast, adaptive strategies decrease, based

on a cooling function, and increase the temperature, based on a heating function, as

required and based on prespecified conditions. In this section an overview of these

temperature change strategies is presented.

The first proposed temperature change strategy consists of two steps: first melting and

then cooling the system. Kirkpatrick et al. (1983, 1984) proposed starting the schedule

with a random initial temperature and heating the system, by doubling the temperature,

until the percentage accepted moves reach the prespecified threshold. Then, the

25

cooling process starts using a temperature reduction function	 . This schedule is

called the Geometric Schedule (18), which is one of the most popular cooling strategies

. ⟺ . ; 0 ≺ ≺ 1 25

where is the cooling ratio. If the total number of epochs,	 , is prespecified as well

as and , then the cooling ratio can be computed as follows:

. 26

Typically, most of the authors are making use of this cooling strategy by fixing (

1 to values in range between 0.8 and 0.99. For more detail on other popular cooling

strategies see Appendix B. As for comparative analysis among different cooling

strategies refer to Mirkin et al. (1993), Steinhöfel et al (1998) and Nourani and

Anderson (1998). Park and Kim (1998) proposed a systematic procedure to choose the

appropriate values for the parameters of SA. Their procedure chooses the parameter

values of the cooling schedule.

(2) Stopping criteria

The basic SA stops when the system freezes that is when the temperature reaches

freezing point or final temperature, which is normally equal to zero (Kirkpatrick et al.,

1983). However, SA might take longer to stop. Later, several stopping criteria other

than the ‘freezing’ state of the system were proposed (Salhi, 2017), such as the number

of iterations or temperatures or epochs reaches a prespecified number, computational

time exceeds a prespecified time limit, the maximum number of temperature changes

without improvement of the current seed is reached, the best objective function value

found so far is not updated for a prespecified number of iterations, etc.

(3) Acceptance Function

Since SA is not a greedy algorithm, it accepts a neighbour of the current solution as a

new seed if it is either an improving one or a non-improving one but satisfies a second

criterion called the acceptance criterion.

Kirkpatrick et al. (1983) used Metropolis criterion to accept new neighbours with a

probability. This acceptance probability function (APF), which is dependent on the

quality of the new neighbour and the current temperature of the system, is as follows:

26

,
																			 0

1																																					 0
 27

where indicates the energy change of the move and is calculated as

. Similarly, Connolly (1990) proposed the following acceptance function (AF)

where is the Boltzmann’s constant.

,
																			 0

1																																					 0
 28

When is equal to one, AF would be equivalent to Kirkpatrick et al. (1983) proposed

APF.

On the other hand, Johnson et al. (1989) proposed a linear AF, equation (22), instead

of the exponential function. This function is faster, and as they mentioned in their

paper, it has a significant difference in quality with the exponential function.

, 1 29

For more detail, on other popular acceptance functions, see Appendix C.

III. Tabu search and its generic decisions

Tabu search (TS) is a memory-based metaheuristic, introduced by Fred Glover (1986,

1989, 1990), which explores the neighbourhood search space strategically and guides

the local search out of local optima and towards global optimality. In other words,

making use of an adaptive memory and responsive exploration in TS (Glover and

Laguna, 1997) could lead the search to a new neighbourhood by reducing the

likelihood of cycling or remaining stuck in a local optimum. The Pseudo-code of the

basic TS presented in Table 2, is based on best improvement local search and a short-

term memory. Several implementations have been proposed for the TS metaheuristic

(Glover, 1986, 1989, 1990; Hertz and de Werra, 1987; Glover and Laguna, 1997;

Taillard, 1990, 1991; Cordeau et al., 1997, 2001; He et al., 2005; Archetti et al., 2006;

etc.). However, implementation of TS metaheuristic requires several generic decisions

to be made; namely tabu moves, memory, search strategies, transition mechanism,

aspiration criteria and stopping criteria. Hereafter, we shall discuss these

implementation decisions in more detail.

27

Initialisation Step

Choose a heuristic to initiate the initial solution, say , and set to the total distance of the TSP

tour ;

Specify the aspiration level function and initialise its value;

Choose the tabu list () size and initialise to the empty set ∅;

Set iteration counter to 0;

Iterative Step

REPEAT until stopping condition = true

Find a neighbour, say , of the current TSP tour

IF is not tabu THEN

Update the current seed solution , ; that is, set , and ;

ELSE

IF is tabu but the aspiration criterion overrides its tabu status; e.g., is better than the best

neighbour found so far THEN

Update the current seed solution , ;

ELSE

Find the best non-tabu neighbour – rather than an improving one – in the neighbourhood of the

current neighbour and update the current seed solution , ;

Update the tabu list ;

IF ∗ THEN update the best solution found so far ∗, ∗ ; i.e. set ∗ and ∗ ;

Increment iteration counter by 1; that is, set 1;

END REPEAT

Table 2 Pseudo-code of TS

(1) Tabu moves

Tabu moves are defined as forbidden moves, to prevent cycling (tabu restrictions).

Some advantages of stating some moves as tabu are to avoid being stuck in local

optima and to widen the exploration space by forcing the search to explore new

neighbourhood areas. Although these new neighbourhood areas might not include the

global optimum, they may lead the search to it. On the other hand, these areas might

lead the search far away from the global optimum.

Commonly used tabus involve keeping track of the most recent moves leading to the

current solution and preventing the reversal of these moves to stop cycling back to

previous local optima or solutions, while other tabus only keep key characteristics of

solutions or moves (Gendreau and Potvin, 2014).

28

The most regularly used tabu list is a circular list with fixed length (Glover 1986; Hertz

& de Werra 1987) which forbids cycling back to the most recent moves for several

iterations. Tabu tenure is the number of iterations a move is forbidden. In standard TS,

tabu tenure is fixed, although one might define a dynamic procedure to change the tabu

tenure throughout TS (Glover 1989, 1990; Skorin-Kapov 1990; Taillard 1990, 1991).

(2) Memory

The use of memory in TS is for keeping the search history to guide the neighbourhood

search. The general TS framework makes use of three types of memories; commonly

referred to as short-term memory, intermediate-term memory, and long-term memory.

Each type of memory could be used in a different configuration of the neighbourhood

search. For example, one might be used to restrict, while the other might be used to

widen the neighbourhood search.

A tabu search with the first type of memory, short-term memory component, is a

constrained greedy search process that seeks to make the best move to satisfy certain

constraints embedded in the tabu restrictions designed to prevent cycling. These tabu

restrictions do not operate in an isolated manner but are counterbalanced by the

application of aspiration criterion. The intermediate-term memory component is used

in an intensification process that drives the search into regions with features that were

historically, during the search process, found to be good. Finally, the third and last

type, the long-term memory component, is used in a diversification process that drives

the search into new regions that contrast with those examined so far.

For computational reasons, most TS implementations make use of the short-term

memory component only. The core of TS is embedded in its short-term memory

component, and many of the strategic considerations underlying this process reappear,

amplified in degree but not greatly changed in kind, in the intermediate-term memory

component (intensification process) and the long-term memory component

(diversification process).

Furthermore, memory could be either explicit or attributive. Explicit memories record

the full solutions, typically local optimums, whereas attributive memories, the most

commonly used, only keep track of the key characteristics of the changes that lead to

current solutions. The memory used in TS records either the most recent or the most

29

frequent solutions or attributes. The first memory structure is called recency-based

memory, which keeps track of the most recent solutions (Glover 1986, 1989, 1990;

Hertz and de Werra 1987; Friden et al. 1989; Skorin-Kapov 1990; Taillard 1990, 1991;

Montané and Galvão 2006; Ho and Haugland 2004; Archetti et al. 2006). The second

is called frequency-based memory that tracks the moves and the number of iterations

they occurred.

These memory structures could be integrated, for example, a recency-based short-term

memory could be combined with frequency-based long-term (or intermediate-term)

memory both /either to diversify and/or to intensify the search (Cordeau et al. 1997,

2001; Montané and Galvão, 2006).

(3) Search strategies

The most important part of the tabu search is its search strategy. Tabu search uses

intensification and diversification strategies to guide the search away from the local

optima and towards the global optimum. The key to implementing a good TS is in

balancing these two strategies.

Intensification strategy

Intensification strategies search the promising neighbourhood areas more thoroughly.

These promising neighbourhood areas are those of the local optima. Intensification

strategies make use of intermediate-term memory, such as a recency-based memory

structure recording the complete local optimums or recording the number of

consecutive iterations where various solution elements were present in the local

optimums.

A typical intensification approach is restating the search from the best-known solution

by fixing several attractive components using intermediate-term recency-based

memory. Another approach is restating the search from the best-known solution and

intensifying the search for a better solution by applying a simple local search with a

different neighbourhood structure for several iterations (Renaud et al., 1996; Ho and

Haugland, 2004). A third approach is a continuous intensification that uses a type of

intermediate or long-term frequency-based memory. In this approach, it is more

30

attractive to insert components with a greater weight related to their frequencies

(Montané & Galvão, 2006).

Diversification strategy

Diversification strategies force the search into unexplored regions of the search space.

Although using short-term memory in basic TS enforces diversification to some extent,

it could be based on other types of long-term memory, such as frequency-based

memory recording the number of iterations (from the beginning) where various

solution elements have been present in the current solution.

A simple way to diversify the search is by restarting the search with a new solution

generated randomly or by a heuristic. Another approach is to use long-term frequency-

based memory. In this approach, the search starts from a new solution obtained by

introducing a number of elements with the lowest frequency. An alternative frequency-

based approach is called continuous diversification, where a frequency-based penalty

is added to the objective function (Cordeau et al. 1997, 2001). This approach penalises

the most frequent elements. Another continuous diversification is inserting

components with lower frequency based on some weight related to their frequencies

(Montané & Galvão, 2006).

Most of the implemented TS methods only search in primal search space, i.e. only

feasible solutions are allowed. Since primal search space limits the possibilities, it can

lead to a local optimum and not the global optimum. One way of overcoming this

problem is to allow infeasibilities by constraint relaxation, which will widen the search

space. Constraint relaxation removes a constraint from the problem and adds penalty

terms for each constraint violation to the objective function (Gendreau et al. 1994;

Cordeau et al. 1997, 2001).

(4) Aspiration criteria

As previously mentioned, tabus are used to prevent cycling back to previous moves

since they may lead to a better solution. Aspiration criterion (AC) defines a mechanism

to cancel tabu status if the criterion is satisfied. The simplest and most common form

of the aspiration criteria is that if the solution found by a tabu move is better than the

best-known solution throughout the search, the tabu status of that move will be

31

cancelled and the move will be accepted since, obviously, this new solution has not

been visited yet. In TS methods that allow infeasibility, the aspiration criteria could be

allowing a better feasible solution than the current best-known solution.

(5) Transition mechanism

The transition mechanism in TS can be best described as a constrained steepest

descent, where the adjective “constrained” refers to the tabu restrictions. In other

words, a transition is accepted only with consideration of the tabu restrictions and the

acceptance criterion.

(6) Stopping criteria

Theoretically, the search continues until the global optimum is found. Since the best

solution is not known or assumed to be unknown, one should decide on when the

search stops. Several stopping criteria can be used such as when the maximum number

of iterations is reached, the maximum number of iterations without improvement of

the current seed is reached, the computational time exceeds a pre-specified time limit,

the best objective function value found so far is not updated for a pre-specified number

of iterations, the objective function value reaches a threshold, etc.

As for the comparative analysis between TS and other metaheuristics, several

comparative analysis has been done, however their comparative analysis is uncertain,

to some extent. Sinclair (1993), Paulli (1993), Battiti and Tecchiolli (1994), Chiang

and Chiang (1998), Arostegui et al. (2006) and Hussin and Stützle (2014) made such

comparison between SA and TS for QAP, their results implies that TS outperforms

SA. On the other hand, Paulli (1993) implied that when considering the same

computational time SA performs better than TS. Later, Hussin and Stützle (2014)

suggested that the performance of TS and SA, and whether one is better than the other

is dependent on the problem size.

IV. Variable neighbourhood search and its generic decisions

Variable neighbourhood search (VNS) algorithms, proposed by Mladenović

and Hansen (1997), is an extension of classical local search algorithms where

attempts are made to avoid being trapped in a local optimum by systematically

changing neighbourhood structures during a local search process. The Pseudo-

code of VNS is shown in Table 3.

32

Initialisation Step

Choose a heuristic to initiate the initial solution, say , and set to the total distance of the

TSP tour ;

Initialise the best solution found so far, say ∗, ∗ , by setting ∗ and ∗ ;

Choose a set of neighbourhood structures to use and specify the order according to which they will

be used, say ; 1, … , ;

Choose the local search method to use in exploring neighbourhoods;

Initialise neighbourhood structure counter to 1;

Iterative Step

REPEAT until stopping condition = true

Randomly generate a neighbour, say 	 , of the current neighbour according to the -th

neighbourhood structure;

Explore the -th neighbourhood of using the chosen local search method and update

accordingly;

IF this local optimum concerning the -th neighbourhood is better than the current seed

THEN

Update the current seed solution , ; that is, set , and ;

IF ∗ THEN {

update the best solution found so far ∗, ∗ ;

Reset neighbourhood structure counter to 1;

}

ELSE Increment neighbourhood structure counter by 1;

END REPEAT

Table 3 Pseudo-code of VNS

VNS is based on three facts (Hansen et al., 2016):

 A local optimum obtained from a one neighbourhood structure could not

necessarily be obtained by another neighbourhood structure.

 The local optimum of one neighbourhood structure is not necessarily the global

optimum, but the global optimum is the local optimum of all neighbourhood

structures,

 For many problems, local optima of several neighbourhood structures are close

to each other.

Several VNS metaheuristics have been proposed (Mladenović and Hansen, 1997;

Burke et al., 2001; Hansen and Mladenović, 1999, 2003; etc.). However, they all

33

require generic decisions to be made such as the choice of transition mechanism,

shaking procedures and stopping criteria, which will be explained in more detail in this

section.

(1) Transition mechanism

 The transition mechanism is specified through the choices of answers to questions

such as: How is a specific neighbourhood of the current seed solution searched? What

criteria are used for updating the current seed solution? What criteria are used for

changing neighbourhoods? In which order are the neighbourhoods searched?

We shall answer these questions hereafter.

 How is a specific neighbourhood of the current seed solution searched?

Improvement procedures used in VNS could be either random or by using any local

search-based procedure or metaheuristic, such as local search, simulated annealing,

tabu search, etc. Additionally, one might search the whole neighbourhood or a

proportion of it.

 What criteria are used for updating the current seed solution?

In the neighbourhood exploration step, either the first improvement or the best

improvement search strategy could be used. The first improvement strategy

accepts the first move causing an improvement, while the best improvement

strategy accepts the move with the best improvement among all improving

solutions. Additionally, when updating the solution, one might allow solution

deterioration, meaning that uphill moves might be accepted with a ratio or

probability.

 What criteria are used for changing neighbourhoods?

Several criteria can be used to change the neighbourhood structures. One might

change the neighbourhood structure whenever an improvement occurred or

change the neighbourhood structure regardless of the occurrence of

improvement. Hansen et al. (2016) classified neighbourhood change strategies

as sequential neighbourhood change strategy, cyclic neighbourhood change

strategy, pipe neighbourhood change strategy and skewed neighbourhood

change strategy; see Appendix D for more detail.

34

(2) In which order to search the neighbourhoods?

The order in which the neighbourhood structures are searched can be random or

according to a specific order, in which case the ordering criteria should be

specified. The specific order of changing the neighbourhood structure could be

chosen based on the designer knowledge or by using a trial run. In addition, it

could be static or dynamic (and may be changed by using a learning mechanism

or not).

(3) Shaking procedure

Shaking procedure is used to lead the search out of a trap. Typical and simple shaking

procedure is random perturbation of the current solution considering the

	neighbourhood structure. One might consider either diversifying the search by

random jump from the current solution or intensifying the search by a small change in

the current solution.

(4) Stopping criteria

The typical stopping Criteria for VNS is stopping the search when no further

improvement is possible by all the neighbourhood structures, the maximum CPU time

or the maximum number of iterations without improvement.

As for comparative analysis between VNS and other local search methods and

metaheuristics, a comparison between two variants of VNS and LS for TSP made by

Burke et al. (2001) implied that VNS outperforms LS in most problem instances. Later,

Hansen and Mladenovic (2003) compared basic VNS, GA and two variants of ant

colony methods on scheduling problem. Their results indicated that VNS outperforms

others.

 Parallel metaheuristics

Parallel (population-based) metaheuristics, such as GAs, start the solution with an

initial population and attempt to find a better population by iteratively evolving them.

Genetic algorithm was first introduced by John Holland in the early 1970s (Holland,

1975). GA is inspired from the biological process of natural selection and genetic

inheritance that preserves a population of individuals or chromosomes and evolves the

population using bio-inspired operators, searching for better or best individuals

35

(Goldberg, 1989; Holland, 1989; Holland, 1975). Some of these bio-inspired operators

are selection, evaluation, reproduction and replacement operators.

Initialisation Step

Choose an initial population of M individuals/tours, in the admissible parameter space evaluate the

fitness of each individual, ;

Initialise the best solution, say ∗, ∗ , among the initial population

Set iteration counter to 0;

Set Best-Found-At-iteration to 0;

Set immigration counter to 0;

Iterative Step

REPEAT until stopping condition = true

IF crossover condition(s) hold THEN {

Select a subset of individuals from the current generation as parents for reproduction;

Perform a crossover operation on parents to generate children;

}

IF mutation condition(s) hold THEN {

Select a subset of individuals from the current generation as parents for reproduction;

Perform a mutation operation on parents to generate children;

}

IF immigration condition(s) hold THEN {

 perform an immigration operation to generate children;

Increment immigration counter by 1; that is, set 	 	 1;

}

Evaluate the fitness of each child and update the best solution found so far, if necessary;

IF ∗ THEN {

update the best vector of parameters found so far; that is, set ∗ and ∗ ;

Best-Found-At-iteration	 ;

}

Replace a subset of parents in the current population by a subset of the current children to produce

a new generation;

Increment iteration counter by 1; that is, set 1;

END REPEAT

Table 4 Pseudo-code of GA

The main elements of GA are as follows:

 A population consists a set of chromosomes or individuals.

36

 The fitness function is a measure to evaluate the quality of each chromosome.

Genetic operators are bio-inspired operators, namely selection, evaluation,

reproduction, replacement operators.

 Termination criterion is used to stop the reproduction process.

A basic GA starts with an initial population and through an iterative process modifies

the current population using bio-inspired operators to create a new population, called

generation, with a purpose of improving the overall average quality, see Table 4. In

each iteration, GA selects a subset of the current population, called parents, to

reproduce new individuals, called children or offspring. These new individuals replace

a subset of the current population to create a new generation, which is used in the next

iteration. This iterative reproduction continues until a stopping condition is satisfied

that normally happens when the population converges. Designating a GA requires

making two sets of decisions; namely problem-specific decisions and generic

decisions. These decisions will be explained hereafter.

I. Problem-specific decisions for GA

The genetic algorithm consists of a population of individuals or chromosomes. Thus,

the first step in constructing a GA is to define the genetic representation, also called

an encoding scheme, to map feasible solutions of an optimisation problem to

chromosomes or strings.

Each chromosome’s lifecycle in the population has three phases, namely, birth, life

and death. Transformation of each chromosome into each phase and its survival

throughout the iterative process mainly depends on its performance or fitness value.

After a chromosome’s birth, it might be chosen for mating and breeding based on a

probability, which is mostly based on its fitness value but not necessarily. The higher

the fitness value, the probability of being chosen for mating will be higher. After

breeding, the offspring should replace a chromosome in the population, meaning that

a chromosome has reached its last phase of existence, death. The most commonly used

criterion to choose the chromosome to end its life cycle is choosing the one with the

lowest fitness value. Considering the aforementioned decisions, these two decisions,

namely the genetic representation of chromosomes and the fitness measure, are

problem-specific decisions for GA which will be described in the next section.

37

(1) Choice of the genetic representation or encoding scheme of chromosomes

A chromosome is a string of genes that keeps the genetic information. Each gene has

its position in the chromosome and can have any value from a specific set of

alternatives, called alleles. The common representation of chromosomes is binary

encoding. When a binary alphabet is not a natural coding for a problem, one may

consider an alternative coding with a variety of data structures. Choosing an

appropriate encoding is dependent on the type of problem under consideration

(McCall, 2005). It is crucial to use an appropriate encoding scheme that adequately

describes problem-specific characteristics since it significantly affects all the

subsequent steps in the GA such as the form of the reproduction mechanism.

Most of the proposed GAs use fixed length chromosomes for easier implementation

of GA operators, although using variable chromosomes can be a better representation

for some problems.

(2) Choice of the fitness measure

To imitate the natural law of survival of the fittest, a fitness function needs to be

specified to discriminate between chromosomes based on their performance. A variety

of fitness measures can be used to evaluate the chromosomes performance. One may

use the value of the objective function associated with each chromosome, which might

be considered a naïve fitness measure.

Choosing a naïve fitness measure may lead the GA to either converge toward a poor

performing chromosome or have a hard time converging toward any solution. A

scenario for the first situation, converging to a poor performing chromosome, could

occur at the start of the process when most of the chromosomes are weak, and only a

few of them are outstanding. In this case, a naïve fitness measure will possibly lead to

a rapid takeover by the outstanding ones and a premature convergence to a weak

generation. For the second situation, difficulty in converging, consider the scenario

when the population converges to a set of chromosomes with similar fitness values, in

this case, it will be hard to discriminate between chromosomes and converge.

To overcome these problems, one may use (1) a scaling procedure that uses a linear

transformation of the objective function value to limit the competition early on, but to

stimulate it later; or (2) a ranking procedure that ignores the objective function values.

38

Furthermore, a variety of functions could be used to discriminate between solutions,

such as the original objective function of the optimisation problem under

consideration, an auxiliary function or penalised objective function (similar to the

choice of the form of the objective functions for the sequential metaheuristics).

II. Generic decisions for GA

As mentioned earlier, generic decisions are concerned with the parameters of the

algorithm itself. Generic decisions for GA are (1) population size and selection of the

initial population, (2) selection mechanism, (3) reproduction mechanism, (4) genetic

operators’ rates, (5) replacement mechanism and (6) stopping criteria. These decisions

are presented hereafter.

(1) Population size and selection of the initial population

As it is shown in Table 4, the first problem-specific decision is related to the population

that has a great influence on the GA’s performance and speed. GA starts with an initial

population of size	 . There have been many studies on the optimal population size

such as Goldberg (1989), Alander (1992) and Roeva et al. (2013). A small population

might not provide enough room for different parent combinations to take place

effectively and might result in the generation of solutions that bear close structural

resemblance. This loss of diversity in the population affects the breadth of the search;

that could increase the risk of seriously under-covering the solution space. On the other

hand, a large population size could result in a disproportionate increase in the

execution time of the algorithm without a substantial improvement in the quality of

the solutions generated and the diminishing efficiency of the GA. Thus, when choosing

the population size, one should make a trade-off between efficiency and effectiveness.

Another decision related to the population is the criterion to initialise the population.

This criterion greatly affects the performance and speed of the GA algorithm. A

common population initialisation is a random generation (Katayamaet al., 2000; Qu

and Sun 1999). Additionally, the initial population can be supplied by a heuristic (Liao,

2009; Ray et al.; 2007; Kaur and Murugappan, 2008), using a gene bank (Wei et al.

2007), and a sorted population (Yugay et al., 2008), etc. An analysis of their

performance is done by Paul et al. (2015) and Shanmugam et al. (2013). They found

that “seeding” the population with a high-quality solution can help the GA find better

39

solutions rather more quickly than it can from a random start. However, there is a

possible disadvantage in that the chance of premature convergence may be increased.

(2) Selection mechanism

Selection operators can be used throughout a chromosomes life cycle; namely,

breeding, life and death. GA iteratively selects a group of chromosomes of the current

generation for mating and another group for mutation. In addition, selection operators

select a chromosome to be replaced by the new offspring, meaning that the chosen

chromosome’s life cycle has ended. One can use a single selection mechanism

throughout the GA’s process or a different selection mechanism for each stage of the

chromosome’s life cycle.

Most common selection mechanisms are related to a chromosome’s fitness. A simple

way of choosing parents to be paired in each generation is based on random or biased

random sampling from the population; for example, parents may all be selected

randomly, randomly on a fitness basis, or some parents may be selected randomly

while others are selected on a fitness basis. A typical selection criterion gives a higher

priority to fitter individuals since this leads to a faster convergence of the GA.

However, if parents are selected randomly, this will give an equal probability of

selection to each individual in the population. The most commonly used selection

mechanisms are ordinal selection, proportional selection, ranking selection and steady-

state selection (Baker, 1987; Goldberg, 1989; Mühlenbein and Schlierkamp-Voosen,

1993). For more detail, see Appendix E.

(3) Reproduction mechanism

A pair of chromosomes from the selected group (parents) reproduce new offsprings.

The crossover operator is designed to exchange some genes from the parents’

chromosomes in a structured yet randomised manner, hoping that offsprings inherit

the good genes and perform better than their parents had. This operator exchanges

information between individuals of the population and passes on the collected

information to the next generation.

The issue with crossover operator is that in some cases some or all chromosomes

become similar. In other words, all genes in chromosomes will be the same. To

40

overcome this issue, mutation operator randomly changes or modifies the genes in

chromosomes to diversify the population. These operators are explained hereafter.

Crossover operator

This operator recombines a pair of chromosomes to create new offspring, preferably

different from the parents. Many of the proposed crossover operators are problem-

specific and mostly depend on the problem representation. The problem independent

crossover operators are simple or one-point crossovers, multi-point crossovers,

uniform crossovers and three-parent crossovers (Syswerda, 1989; Spears and De Jong,

1995; Sivanandam and Deepa, 2007). For more details, see Appendix F.

Mutation operator

Mutation operator is designed to diversify the search occasionally and lead the search

out of local optima. This operator introduces new information to the population by

randomly changing a gene or multiple genes of a chromosome.

(4) Genetic operators’ rates

GA’s crossover and mutation rates have a significant influence on GA’s performance.

Crossover rate () specifies the rate which the crossover operator is applied to create

offspring. By controlling this rate, one can control the rate new individuals are created

from one generation to the next. In other words, GA with a high crossover rate

increases the diversity of the population by creating more offspring in each generation,

conversely, GA with a lower rate has less diversity by creating fewer offspring but

keeps the population information for the next generation.

On the other hand, mutation rate () specifies the probability as to which mutation

operator is applied to modify a chromosome. As mentioned previously, a mutation

operator is designed to diversify the population, whereas a mutation rate defines the

rate of diversification. A high mutation rate increases the diversification level and

helps guiding the search out the local optima. However, a high mutation rate could

also cause the loss of information and lead to a random search.

Most GA implementations have assumed that the probability or rate of using a

particular operator is fixed at the outset and remains the same throughout; e.g., a

41

mutation is applied with a low probability while crossover is applied with a high

probability, the most common settings are shown in Table 5.

Author

De Jong (1975) 0.6 0.001 60

Grefenstette (1986) 0.95 0.001 30

Table 5 Static rates

However, to prevent the GA from premature convergence, one might make use of a

procedure where the GA’s parameters change during the process, some of these

procedures are reviewed in the study by Daridi et al. (2004).

Author Dependence

Schaffer and Morishima (1987) Performance of the produced offspring

Fogarty (1989) Time

Hesser and Männer (1991) Population size and chromosome’s length

Srinivas and Patnaik (1994) Fitness value

Bäck and Schütz (1996) Time, chromosome’s length and maximum
number of generations

Daridi et al. (2004) chromosome’s length and life time

Table 6 Adaptive GA

Adaptive GAs (AGA) do not require prespecified parameter value since these

parameters are determined by the GA, see Table 6. Moreover, self-adaptation could

improve the GAs performance significantly (Bäck, 1996; Daridi et al., 2004).

(5) Replacement mechanism

New offsprings should be introduced into the population by replacing an existing

chromosome. In other words, the new generation is created by replacing a chromosome

from the previous generation with a new offspring hoping that the new generation’s

quality, on average, is better than the previous one. In the replacement mechanism, a

selection criterion is used to delete a chromosome from a previous generation and end

its life cycle. A default criterion could be random selection of chromosomes to be

deleted. The most common selection criterion used in replacement (Smith and Vavak

1999, Mumford 2004) are outlined as follows:

Delete oldest or worst: based on this criterion the oldest or worst chromosome is

selected to be deleted from the generation.

42

Delete parents: since the parents’ genes have been passed on to their offsprings, one

might choose to delete the parents. However, in some cases this replacement

mechanism could lead to loss of information about the order of genes.

Delete-all: this selection criterion selects all chromosomes from the previous

generation to end their life cycle and replaces them with new offspring. Since the

parents’ genes have been passed on to their children, the information they had will not

be lost, however, if only a subset of the previous generation had been selected for

mating, the genes of chromosomes that were not in the mating pool will be lost. On

the other hand, this selection criterion is parameter-free and easy to implement.

Steady-state: as it was mentioned before, this selection mechanism selects a subset of

chromosomes to reproduce and a subset to be replaced with new offspring, where both

subsets’ size is equal and a parameter that should be specified. In addition, one should

specify the two selection criteria, one for mating selection criterion and the other is for

the replacement criterion.

Replacement-with-no-duplicates: based on this criterion, whichever selection

mechanism is used, the criterion should also check the new offspring is not a repetition

of an existing chromosome.

Moreover, there is no guarantee that the best member of a population will survive from

one generation to the next, except for deleting the worst chromosome. To overcome

this issue, one may use the elitism strategy. In the elitism strategy, GA is not permitted

to delete the best member of the current population.

(6) Stopping criteria

Several stopping criteria can be used in genetic algorithms, such as a predetermined

number of iterations or generations is reached; the computational time exceeds a

predetermined time limit; the best objective function value found so far is not updated

for a predetermined number of generations; a measure of the population diversity falls

below a pre-specified threshold, etc. (Safe et al., 2004; Aytug and Koehler, 1996).

43

 Hyperheuristic

Although tailor-made methods can produce good solutions within a reasonable time,

they are usually limited to a particular type of problem. Since real world problems are

likely to change over time, heuristics or metaheuristics might produce poor solutions

or none at all. Moreover, some heuristics can deliver good solutions at certain but not

all points. In other words, they might produce good quality solutions for some

instances, but not all, of a specific problem. Thus, one can use a higher-level

methodology to select or generate heuristics to solve COPs (Chakhlevitch and

Cowling, 2008; Burke et al., 2010). These methodologies are call Hyperheuristics.

Fisher and Thompson (1963) birthed the idea behind hyperheuristics in the 1960s. In

1997, Denzinger et al. used the term ‘hyper’ in their technical report. They designed a

method that combines several artificial intelligence algorithms resulting in an

automated theorem prover. In 2000, Cowling et al. used the term ‘hyperheuristic’, and

later Cowling et al. (2000, 2002a, b, c) developed the ideas behind hyperheuristic and

applied it to scheduling problems.

At first, the term hyperheuristic (HH) was used to describe “heuristics to choose

heuristics” (Cowling et al., 2000). Chakhlevitch and Cowling (2008) defined

hyperheuristics as high-level heuristics that manage a set of low-level heuristics to find

or design a good solution method for a COP by only making use of limited problem-

specific information. On the other hand, Burke et al. (2010) defined hyperheuristics as

automated methodologies for selecting or generating heuristics to solve hard

computational search problems. Later, Burke et al. (2013) defined hyperheuristics as

search methods or learning mechanisms for selecting or generating heuristics for

COPs.

 Hyperheuristic Classification

One of the hyperheuristic classifications by Chakhlevitch and Cowling (2008)

classified hyperheuristics into four categories, namely hyperheuristics based on the

random selection, greedy and peckish hyperheuristics, metaheuristic-based

44

hyperheuristics and hyperheuristics employing learning mechanisms to manage low-

level heuristics, see Table 7. A summary of each category is as follows:

Table 7 Chakhlevitch and Cowling (2008) hyperheuristics classification

I. Random Selection

This type of hyperheuristic is based on the random choice of low-level heuristic. Given

a set of low-level heuristics, a random LLH is applied to the problem, although it might

not produce a better solution. This search strategy is fast and straightforward, but it

does not guarantee a better solution (Chen et al., 2016). However, modifications of

random search and hybridizing it with other techniques, such as more advanced move

acceptance techniques, could lead to better performance.

II. Greedy and Peckish

 Greedy based hyperheuristics, in each stage of the search, select locally optimum LLH

with the hope of finding the global optima. Peckish search strategies are a modification

of greedy search strategy, which in each stage chooses LLH from a candidate list of

the best neighbours of current LLH. These search strategies are time consuming and

do not guarantee to find the best solution.

H
yp

er
he

ur
is

ti
cs

Random
Selection

Pure Random

Random Descent

Unbiased Random Process

Monte Carlo

Random With Deterministic
Acceptance

Greedy And
Peckish

Accept Only Improving LLH

Allow Non-improving LLH

Metaheuristic-
based

Genetic Algorithm

Simulated Annealing

Tabu Search

Variable Neighborhood Search

With Learning
Mechanisms

Reinforcement Learning

Learning Classifier System

Case Based Reasoning

Choice Function

45

III. Metaheuristic-based hyperheuristic

In metaheuristic-based hyperheuristic, a metaheuristic is used as a high-level search

strategy that guides the search away from local optima and efficiently selects the best

or close to the best LLH. Variants of metaheuristic-based hyperheuristics has been

proposed; such as hyperheuristics based on genetic algorithms (Fang et al.,1994; Hart

et al., 1998, 1999; Cowling et al., 2002; Han et al., 2002; etc.), simulated algorithm

(Bai and Kendall, 2003; Storer et al., 1995; Soubeiga, 2003) , tabu search (Storer et

al., 1995; Burke et al., 2004, 2005; Burke and Soubeiga, 2003; etc.) and variable

neighbourhood search (Qu and Burke, 2005; Chen et al., 2016).

GA-based hyperheuristic operate similar to traditional GA, although they have some

differences. Traditional GA’s search space is the problem space; however, GA-based

hyperheuristic’s search space is a set of LLH. In traditional GA, a chromosome

represents a solution to the problem. On the contrary, GA-based hyperheuristic makes

use of indirect presentation of chromosomes. A GA with the indirect encoding of the

chromosome, instead of representing the solution itself, represents how the solution is

solved; for example, a chromosome could represent a sequence of LLHs or parameters

of a single LLH. GA-based hyperheuristic evolves these chromosomes to find better

chromosomes.

Hyperheuristics based on SA, TS and VNS have similar search strategy as the

traditional SA and TS. SA and TS based hyperheuristic s search the neighbourhood of

current LLH and decide whether to accept or reject the new neighbour. On the other

hand, VNS-based hyperheuristics use a set of neighbourhood structures to search the

LLH search space.

IV. Hyperheuristics with Learning Mechanisms

As it is mentioned before, a learning mechanism is used to gather historical data, about

the search space and hyperheuristic’s performance, to select a promising LLH.

Examples of learning mechanisms are choice function, reinforcement learning,

learning classifier system and case-based reasoning.

Several other classification and categories are proposed such as Soubeiga (2003), Bai

(2005) and Ross (2005), Bader-El-Den and Poli (2007), Burke et al. (2010, and 2013).

For more detail on these classifications and categories see Appendix G.

46

 Hyperheuristic specifications

The goal of designing a hyperheuristic method is finding an optimal or near optimal

(sequence of) low-level heuristic(s) or component(s), depending on the nature of the

hyperheuristic and its search space. As it is shown in the general hyperheuristics

framework, hyperheuristics makes use of a search strategy to search the

neighbourhood of the current LLH for a better neighbour, which could be using a

learning mechanism or not, and decides whether to accept or reject the neighbour based

on acceptance criterion. Thus, we can categorise the hyperheuristic specifications into

HH nature, search space nature, HH search strategy, acceptance criteria and learning

mechanisms, see Figure 3.

Figure 3 Hyperheuristic specifications

Since any combination of the HH nature, search space nature, HH search strategy,

acceptance criteria and learning would lead to an HH category where each can have

different performance, upsides and downsides. Thus, one can make use of several

components to implement a better HH to overcome a single category’s limitation and

design a general framework for hyperheuristics, see Figure 4. Note that, the

implementation decisions of hyperheuristic are the choice of the hyperheuristic

specifications.

HH Nature

Heuristic
Generation

Heuristic
Selection

Search Space
Nature

Constructive
LLH

Perturbative
LLH

HH Search
Strategy

Random
Selection

Greedy and
Peckish

Metaheuristic
-based

Acceptance
criteria

All

Only
Improvement

Probabilistic
Improvement

Learning

With
Learning

•Online
•Offline

Without
Learning

47

Figure 4 Hyperheuristic framework

 Local search in the space of infeasible solutions

Up to this point in time, most of the published literature is on local search methods in

the feasible space, whether classical local search, metaheuristics or hyperheuristics,

with few exceptions searching in the feasible-infeasible solution space. The first search

methods start and explore the search within the feasible space, without allowing the

search to leave the feasible space. Similarly, the second search methods start the search

from within the feasible space, however, they allow the search to temporarily leave the

feasible space. On the other hand, one can search start from and explore the infeasible

space, each time reducing infeasibility, and progress towards the feasible space. This

method was first proposed, called DLS, by Ouenniche and his collaborators

(Ouenniche et al., 2017) to solve the TSP by exploring its infeasible space.

Problem related information

Domain Barrier

Search Space
Heuristic

Generation

• Constructive
• Perturbative

Heuristic
Selection

• Constructive
• Perturbative

Selection

Perform Acceptance?

Termination?

Implementation
Decisions

Start

Stop

Yes

Yes

No

No

48

As compared to primal local search-based heuristics’ designs, whether classical local

search or metaheuristics, Ouenniche et al. (2017) integrated design features of optimal

algorithms. DLS starts the search with an infeasible solution (e.g., the solution of a

relaxation of the problem under consideration) and progresses towards a feasible

solution by using new neighbourhood structures to repair the intermediate infeasible

solutions. Moreover, to prevent exploring search areas with no potential of good

solutions they used a bounding scheme. Ouenniche et al. (2017) also made a

conceptual comparison between DLS and B&B, see Table 8. For more details, refer to

Ouenniche et al. (2017).

B&B DLS

Break one sub-tour at a time Break two or more sub-tours at a time

Examine all possible ways of excluding or
including one edge at a time of one sub-tour

Examine all possible ways of breaking two or more
sub-tours (e.g., breaking one or more edges in each
sub-tour) and connecting them

At each level of the B&B tree – except level 0,
exclude (resp., include) one edge of one of the
sub-tours and keep all the remaining edges
free except those fixed at higher levels of the
tree, if any

Exclude two (or more edges), one (or more edges)
from each sub-tour, and include in the next solution
all the remaining edges in the sub-tours

At each node of the tree, a re-optimization
process is invoked, which could lead to a new
infeasible or feasible solution

At each node of the tree, a ‘‘restricted’’
optimization process is invoked, which could lead
to a new infeasible or feasible solution, but with
potentially more similarity to the solution of the
parent node as compared to B&B. To diversity in
terms of structure of partial solutions and explore
more nodes as done in B&B, we use a second type
of moves similar in spirit to branch exchange
improvement

A new branch would not necessarily lead to a
reduction in the number of sub-tours

Each infeasible neighbourhood move
systematically reduces the number of sub-tours by
one or more

Break one sub-tour at a time Break two or more sub-tours at a time

Table 8 Comparative analysis between B&B and DLS

This thesis refines and extends Ouenniche et al (2017) proposed infeasible search

framework. We propose a generic and parameterized local search in the space of

feasible space (GPILS) as a refinement of the DLS framework proposed by Ouenniche

et al (2017), where we customise GPILS to solve the TSP.

49

 Conclusion

In this chapter, the most common and relevant mathematical formulations, properties

and relaxations of the TSP, descriptions of the solution methodologies and state-of-

the-art techniques are presented. We classified the heuristic solution approaches into

three categories; namely, feasible (primal), infeasible-infeasible and infeasible

methodologies. Most research have been done in the first two categories, however, to

the best of our knowledge there is still not much work done in the third category, i.e.

infeasible methodologies.

In the rest of this thesis we shall contribute to the methodologies in the infeasible

search space by refining and enhancing the work done by Ouenniche et al (2017). We

shall propose an enhanced framework for local search in the infeasible space and

automation of the choice of its parameters using a hyperheuristic framework. We also

investigated the reusability of the proposed methodology for unseen (new) problem

instances.

50

3. A Generic Parameterised
Infeasible Local Search
Framework

So far, most of the published literature on local search methods, whether classical local

search, metaheuristics or hyperheuristics, starts with a feasible solution and only

searches in the feasible solution space to find a better solution. Note however that there

are few exceptions where the search can move into the infeasible space, but it is forced

to move back to the feasible space. On the other hand, one can start from and explore

the infeasible space, each time reducing infeasibility, and progress towards the feasible

space. Ouenniche and his collaborators (Ouenniche et al., 2017) were the firsts to

propose such methods, called dual local search (DLS), to solve the TSP by exploring

its infeasible space. DLS is a local search framework designed to solve COPs so that

the search starts within the space of infeasible solutions and progresses towards the

space of feasible solutions. Once the infeasible search lands in the feasible space, one

could choose to either end the search or continue exploring the feasible space. When

the option of choosing to explore the primal space is chosen, the design becomes an

infeasible-feasible local search. Note, however, that one could explore the primal space

using either a primal methodology or a feasible-infeasible methodology.

The contribution of this chapter is to investigate the possibility of starting from an

initial infeasible solution and progress toward the feasible space by searching the

infeasible solution space. Therefore, in this chapter, we shall extend and refine DLS

proposed by Ouenniche et al. (2007) and propose a generic parameterised infeasible

local search algorithm referred to as GPILS and discuss the rationale behind it. The

proposed framework is stated to accommodate any COP. For illustration purposes, we

shall provide a customised version for the TSP. Then, we shall discuss implementation

51

decisions and the empirical analysis. Later, we shall present the conclusion and final

remarks of this chapter.

The rationale behind the design of a generic parameterised infeasible local search

(GPILS) is to integrate the design features of optimal algorithms (e.g., branch-and-

bound) into local search. To be more specific, the features of GPILS borrowed from

optimal methodologies include starting with an infeasible solution, making use of a

bounding scheme to prevent exploring search areas with no potential for good

solutions and using infeasible neighbourhood search structures that exploit exact

methods features such as branching rules.

In this chapter, we divide the moves of such infeasible neighbourhood search

structures into two categories; namely, Type I moves and Type II moves, where Type

I moves define a partial “repair” mechanism for infeasible solutions, and Type II

moves define a local improvement mechanism of components of infeasible solutions.

In analogy with optimal solution methodologies; e.g., branch-and-bound, we make use

of Type II moves to avoid under-exploring the search tree, or equivalently to allow

exploring search tree branches that would be unexplored otherwise. The flowchart of

the proposed GPILS framework is provided in Figure 5, and a detailed generic pseudo-

code suitable for any given COP is provided afterwards in Table 9.

The proposed infeasible search framework could be adapted to solve any

combinatorial optimisation problem. In the following subsections, a customised

version is provided for solving the TSP; see Table 10 for a detailed generic pseudo-

code customised for solving the TSP. Notice that unlike DLS, within our GPILS, we

make use of a recursive function to explore the infeasible neighbourhood. The

rationale behind this choice is discussed in the next section. Hereafter, we shall discuss

the implementation decisions of the proposed infeasible search framework.

3.1. Initialisation of the bounding scheme and the seed

As it was mentioned previously, the infeasible local search starts the search with an

infeasible solution and progress towards the primal solution using a new

52

neighbourhood structure, while pruning the nonpromising search areas considering

abounding scheme. The bounding scheme consists of a primal bound and a dual bound.

Figure 5 Flowchart of the GPILS framework

In order to initialise the primal (upper) bound, one has to choose a primal method, say

, to use for obtaining a primal solution or a feasible tour, say , to the TSP and use

it to initialise the primal bound (); i.e., set to the objective function value or

total distance of . In this thesis, the choice of the method to devise a primal solution

for initialising the primal bound is represented by the categorical variable , where

a default category could involve using a randomised procedure, some categories could

correspond each to a different construction heuristic for the TSP (e.g., nearest

neighbour procedure, Clarke and Wright savings procedures, insertion procedures,

nearest merger procedure), and other categories could correspond to any combination

of a construction heuristic and a primal local search method for its improvement (e.g.,

construct a TSP tour using the nearest neighbour procedure and improve it using

simulated annealing).

Compute initial infeasible
solution and initialise dual bound

and seed

COP and GPILS
implementation

decisions

Start

Feasible
solution

Compute initial primal solution
and initialise primal bound

Explore, with Type I and Type II
moves, the infeasible
neighbourhood of current seed for
a better neighbour while pruning
non-promising ones

Current seed is
infeasible?

Update current seed and
bounding scheme, if

necessary.

Yes No

Explore feasible
space?

No

Explore feasible or feasible -
infeasible space for better

solution, if any.

Yes

Stop

53

Input
An instance of the COP under consideration.

Output
Feasible or primal solution to the COP under consideration.

Implementation Decisions
// Choose how to Initialise the bounding scheme and the seed
Choose a primal method, say , to use for obtaining a primal solution, say , to the COP under
consideration;
Choose a infeasible method, say , to use for obtaining a infeasible solution, say , to the COP
under consideration;
// Choose how to explore the infeasible space
Choose the repair mechanism, or equivalently the Type I moves (1), to use in exploring the
infeasible space of COP as well as the performance metric to be used for assessing infeasible
neighbours ();
Choose the local improvement mechanism, or equivalently the Type II moves (2), to use in
improving components of the infeasible neighbours generated by Type I moves;
Choose the design of the infeasible neighbourhood search structure to use in exploring the infeasible
space of COP (infeasible_neighbourhood_structure). One of two alternatives could be chosen. The
first option is to use Type I moves to explore the infeasible space and select the best neighbour, then
Type II moves are used to improve the best neighbour locally – we refer to this design as improve
the best neighbour (IBN) design. The second option is to immediately use Type II moves to improve
every neighbour obtained with Type I moves – we refer to this design as improve all neighbours
(IAN) design.
// Choose whether to explore the primal space and how
Choose whether to explore the primal space or not (explore_primal_space). When the option of
exploring the primal space is chosen; i.e., explore_primal_space = 1, one has to choose the primal
neighbourhood structure to use (primal_neighbourhood_structure), the improvement mechanism
(primal_improvement_mechanism) as well as the performance metric to be used for assessing primal
neighbours ().

Initialisation Step
// Initialise the bounding scheme and the seed
Use to initialise the primal bound (); i.e., set to the value of the objective function of the
COP under consideration evaluated at , say ;
use to initialise the dual bound () and the seed, say ; i.e., set to the objective function
value of , say , and set the seed to ;

Iterative Step
WHILE current seed is an infeasible solution to COP DO {

Explore the infeasible neighbourhood – as specified by Type I moves, Type II moves and
infeasible neighbourhood search structure – of the current seed for a better neighbour,
while pruning non-promising infeasible neighbours, and update the current seed;
Update the bounding scheme , , if necessary;

}
IF explore_primal_space = 1 THEN

Use a primal or a feasible-infeasible local search framework to explore the primal space for a
better solution, if any, according to the choices made through primal_neighbourhood_structure,
infeasible_neighbourhood_structure, primal_improvement_mechanism, and PMetric;

Table 9 Pseudo-code of the proposed GPILS framework

54

Input

Instance of the TSP; i.e., the distance or cost matrix, say .

Output

Feasible or primal solution to the TSP.

Initialisation Step

// Initialise the bounding scheme and the seed – section 2.1 for more details

Choose a primal method, say , to use for obtaining a primal solution, say , to the TSP and use it

to initialise the primal bound (); i.e., set to the total cost of the TSP tour , say ;

Choose a infeasible method, say , to use for obtaining a infeasible solution, say , to the TSP and

use it to initialise the dual bound () and the seed, say ; i.e., set the seed to , and set

 to the total cost of , say ;

// Choose how to explore the infeasible space – section 2.2 for more details and implementation

decisions

Choose whether or not to exploit domain knowledge to enhance the efficiency and/or the

effectiveness of the search (exploit_domain_knowledge).

IF exploit_domain_knowledge is set to 1, THEN the following repair and local improvement

mechanisms, or equivalently Type I and Type II moves, should be candidate set-based, where a

candidate set, say , refers to a subset of the set of possibilities to perform Type I and Type II moves

defined so as to narrow down the search space to “promising” regions as specified by a set of criteria

that exploit the domain knowledge of the TSP instance under consideration;

Choose the repair mechanism, or equivalently the Type I moves (1 (.)), to use in exploring the

infeasible space of the TSP as well as the performance metric to be used for assessing infeasible

neighbours ():

1 (breaking_method(.), patching_method(.),),

where Type I moves consist of two main operations; namely, a breaking operation:

breaking_method (, subtours_selection_criterion, , arcs_to_break_selection_criterion),

moreover, a patching operation:
_ , _ _ , 	 _ _ _ _ , 	

_ _ _ _ , _ , _ ,		 , 	 ,

_ _ _ , _ _ _ ,
_ _

in sum, one has to choose the initial parameters of these functions – see section 2.2 for more details;

Choose the local improvement mechanism, or equivalently the Type II moves (2), to use in

improving components of the infeasible neighbours generated by Type I moves;

Choose the design of the infeasible neighbourhood structure to use in exploring the infeasible space

of the TSP (INS). One of two alternatives could be chosen. The first option is to use Type I moves to

explore the infeasible space and select the best neighbour, then Type II moves are used to improve

the best neighbour locally – we refer to this design as improve best neighbour (IBN) design. The

55

second option is to immediately use Type II moves to improve every neighbour obtained with Type

I moves, we refer to this design as improve all neighbours (IAN) design.

// Choose whether to explore the primal space and how

Choose whether to explore the primal space or not (explore_primal_space). When the option of

exploring the primal space is chosen; i.e., explore_primal_space = 1, one has to choose the primal

neighbourhood structure to use (PNS), the improvement mechanism

(primal_improvement_mechanism) as well as the performance metric to be used for assessing primal

neighbours ().

Initialise iteration counter, say , to 1;

Initialise the number of subtours to break and merge at iteration , say , to ;

Initialise the number of edges to break in each subtour at iteration , say , to ;

Iterative Step

WHILE current seed is an infeasible solution to the TSP DO {

// Explore the infeasible neighbourhood – as specified by Type I moves, Type II moves and

// infeasible neighbourhood structure – of the current seed for a better neighbour, while

// pruning non-promising infeasible neighbours

Choose the set, say , of subtours of the current seed, , to break and patch at a time, where

the specific set of subtours is chosen based on subtours_selection_criterion;

Choose the set of candidate edges to break, say , for each subtour to be used at iteration ,

1,… , , based on arcs_to_break_selection_criterion and initialise the array of indexes of

edges to break in each subtour to the empty set; i.e., set ∅ for 1,… , ;

Initialise subtour index counter to 1, edge index counter ℓ to 1, and loop ℓ initialiser ℓ to 1;

// Call the recursive infeasible neighbourhood search function to search for the best neighbour of

// , say ∗ – see Table 24 for a detailed pseudo-code

∗ = RINS	 , , , , , , ℓ, ℓ , , , 1 . , 2 , ,	

∗ , _ ;

// Improve the current infeasible solution ∗ locally using Type II moves, if required

IF INS = IBN THEN ∗ = PerformTypeIIMove 2 , ∗ ;

Increment iteration counter by 1; that is, set 1;

Update the current seed,	 ; i.e., set ∗ ;

Update the bounding scheme , , if necessary;

}

IF explore_primal_space = 1 THEN

Use a primal or a feasible-infeasible local search framework to explore the primal space for a better

solution, if any, according to the choices made through PNS, INS,

primal_improvement_mechanism, and PMetric;

Table 10 Pseudo-code of the proposed GPILS framework for TSP

56

As to initialising the dual bound and the seed, one has to choose a infeasible space-

based method, say , to use for obtaining a infeasible solution, say , to the TSP and

use it to initialise the dual bound () and the seed, say ; i.e., set to the

objective function value or total distance of , say , and set the seed to .

An infeasible solution to the TSP instance under consideration is a set of

subtours	 , 1, … , , where denote the subtour at iteration 	and

denote the number of subtours in the infeasible solution. Note that , … , cover

all TSP nodes.

The initial infeasible solution could be obtained in different ways. In this thesis, the

choice of the method to generate the initial infeasible solution is represented by a

categorical variable	 , where a default category could involve using a randomised

procedure, some categories could correspond each to a different relaxation of a TSP

formulation (e.g., AP-based relaxation of the TSP), and other categories could

correspond to some rule-based heuristics or clustering methods, see Appendix H, to

allow for exploiting the structure of a TSP instance (e.g., -means).

With respect to rule-based heuristics, we propose a parameterised infeasible heuristic

which we call where the parameters are the number of subtours , the sizes of

subtours | |, 1, … , , a decision rule for assigning nodes to subtours or

clusters, unless the nodes are chosen randomly, a heuristic for constructing a tour

that visits each node in cluster once and only once, and an option for locally

improving the subtours, see Table 11for the pseudo-code of ; ; ,

1, … , ; ;| |, 1, … , ; ; ; ; .

To conclude this section, we would like to point out that only requires slight

modifications to generate a good quality infeasible solution for other routing problems.

For example, through the decision rule for assigning nodes to subtour/cluster or a

decision rule for constructing a tour one could address additional constraint such as

capacity or time windows constraints. In future research, we intend to apply this

method to other routing problems.

57

Choose whether to determine the clusters one by one or all at once. This decision is represented by

a binary variable , where 0 refers to the first option and, 1 refers to the second

option;

IF 0 THEN {

Choose the number of subtours in the infeasible solution;

Choose the sizes | |, 1, … , of subtours in the infeasible solution;

Choose a decision rule for assigning nodes to subtour or cluster , 1, … , . This

decision is represented by a categorical variable , where a default category could involve

using a randomised procedure (i.e., nodes are arbitrarily assigned to clusters) and other categories

could correspond each to a different criterion (e.g., nearest neighbour, farthest neighbour);}

ELSE {

Choose a decision rule for assigning nodes all at once to subtours or clusters. This decision is

represented by a categorical variable , where each category corresponds to a different

clustering method). Depending on the choice of the clustering method, one might have to specify

the number of subtours in the infeasible solution or leave it to the clustering method; }

Choose a decision rule for constructing a tour that visits each node in cluster once and

only once. This decision is represented by a categorical variable , where a default category could

involve using a randomised procedure (i.e., random tour) and the remaining categories could

correspond each to a construction heuristic;

Choose whether to improve the subtours of the infeasible solution locally or not. This decision is

represented by a binary variable	 . If this option is on; that is, 1, then the improvement

mechanism and the underlying neighbourhood structure should be specified, where is

a categorical variable representing the different options for the improvement mechanism (e.g.,

classical local search algorithms, metaheuristics), and is a categorical variable representing the

different options for the neighbourhood structure (e.g., 2-opt, 3-opt).

IF 0 THEN { //Determine clusters

FOR 1	 	 DO {

Amongst the nodes not yet assigned to any cluster, assign | | nodes to cluster according

to the decision rule specified by ;}}

ELSE Then Determine clusters and their number, if necessary, according to the decision rule

specified by ;

FOR 1	 	 DO // Construct and eventually improve subtours {

Construct a tour that visits each node in cluster once and only once according to the decision

rule specified by ;

IF 1 THEN Improve subtour according to the improvement mechanism and the

neighbourhood structure specified by and , respectively; }}

Table 11 Pseudo-code of the parameterised infeasible-based heuristic (PIH)

58

3.2. Exploration of the infeasible space

Exploration of the infeasible space requires several decisions to be made. First, one

must choose the repair mechanism, or equivalently the Type I moves, to use in

exploring the infeasible space of the TSP as well as the performance metric to be used

for assessing infeasible neighbours. Second, one must choose the local improvement

mechanism of components of the infeasible neighbours generated by Type I moves, or

equivalently the Type II moves. Third, one must choose the design of the infeasible

neighbourhood structure to use in exploring the infeasible space of the TSP. These

decisions are discussed hereafter.

3.2.1. Repair mechanism

A variety of repair mechanisms could be designed for use at this stage. We propose a

generic and parameterised repair mechanism that involves two basic operations: (a)

breaking a number of subtours and (b) patching the broken subtours to form a single

larger subtour. The implementation of this repair mechanism of an infeasible solution

requires a number of decisions to be made; namely:

 Specification of the number of subtours to break and patch at a time, say ;

 Specification of a selection criterion according to which subtours to break and

patch at a time is chosen;

 Specification of the number of arcs to break in each subtour, as part of the break

and patch or repair mechanism, say , 	 1, … , ;

 Specification of the selection criteria according to which the arcs to break and

those to add, as part of the break and patch operations, are chosen;

 Specification of a metric to use for measuring the performance of the break and

patch or repair operation.

The decisions above are discussed hereafter.

3.2.2. Number of subtours to break and patch

The specification of the number of subtours to break and patch at each iteration, say ,

is represented by a numerical variable and takes on integer values ranging from 2 to

59

the current number of subtours in the current infeasible solution, . In our empirical

investigation, we considered several values for , see section 3.7. Note however that,

from a computational perspective, a trade-off should be made between choosing

relatively high values or relatively low values for parameter	 . Choosing high values

for parameter would require a relatively small number of iterations to converge but

would require exploring a relatively large number of possibilities for breaking

subtours and patching them. However, choosing relatively low values for parameter	

would require a relatively large number of iterations to converge but would require

exploring a relatively small number of possibilities for breaking subtours and

merging them. In our preliminary empirical investigation, we observed that, for most

TSP instances, the initial infeasible solution obtained by solving an AP-based

relaxation consists of a relatively large number of subtours of small cardinality (e.g.,

2 and 3). In this case, a strategy that seems to deliver very good solutions consists of

choosing a relatively large number of these small cardinality subtours at the beginning

of the infeasible search process and decrease such number as the search progresses. In

sum, in this case, a dynamic scheme for the choice of seems to be a compromise

between quality of the solution and the computational requirement. The above-

mentioned observations should be exploited when a single instance of GPILS is

implemented; that is, the analyst specifies all parameters of GPILS. In our empirical

investigation, the parameters of GPILS were optimised using a metaheuristic.

3.2.3. Subtours selection criteria

The specification of the selection criteria according to which subtours to break and

patch at a time is chosen is represented by the categorical variable

subtours_selection_criterion. In our empirical investigation, we considered a

relatively large number of categories including several “pure” categories where a

“pure” category refers to one that makes use of a single criterion, shown in Table 12.

Along with these categories a variety of hybrids where more than one criterion defines

a category and are used sequentially to select subsets of subtours (e.g., first select

largest subtours, then the remaining subtours are selected according to the

closest subtour length criterion) can be considered.

60

As is shown in Table 12, the subtour selection criterion could be categorised as cost-

based (shortest or longest), cardinality-based (smallest or longest), distance-based

(closest or farthest) and merging cost-based criteria (cheapest or most expensive).

Cost-based criteria require calculating the subtour cost, which could include travel

cost, fuel cost, loading and unloading cost, etc. In the case of STSP, the subtours cost

is the sum of travelled arc’s weight. The cardinality-based criteria are based on the

number of nodes in the subtour. The distance-based criteria (closest and farthest

subtours) require calculating the distance between the subtours. Subtours distance

matrix 	 is used for distance-based criteria. In order to calculate one has to

compute the minimum distance between all pairs of subtours	 , 	 ℓ , where a subtour

∈ ̅ is specified by its cardinality | | and its sequence of nodes	 1 , 	 … , 	 | | ,

see pseudocode in Table 13 and example in Figure 6.

Paths to merge Selection Criteria Description

Arbitrary Random choice of paths

Cardinality-Based Based on number of nodes in the subtour

Cost-Based Based on travel cost/length of the subtours

Distance-Based Based on the distance between the subtours

Merging Cost-Based Based on the cost of merging each pair of subtours

Table 12 Subtours selection criterion

Input

; ̅: Subset of components or subtours of the infeasible solution ̅ ; 1, … , :

Output

: Subtours distance matrix	

Iterative Step

FOR all pairs of subtours , 	 ℓ , compute the minimum distance between subtour and subtour

 as follows:

, 	 ℓ 	 1 , ℓ 1 , … , 1 , ℓ | | 1 , … , | |

1 , ℓ 1 , … , | | 1 , | | 1 ;

Table 13 Subtours distance matrix

61

Figure 6 Subtours distance

Input

; ̅: Subset of components or subtours of the seed ̅ ; 1, … , :

Output

: Subtours merging cost matrix,	

Initialisation Step

Initiate subtours merging cost matrix , ∞;

Iterative Step

FOR each pair of subtours	 , 	 , compute the minimum merging cost of subtour and as

follows:

_ _ , 1 , ℓ 1 ;

_ _ 1 , 1 , ℓ 1 _ _ 	;

_ _ 2 , 1 , ℓ 1 _ _ 	;

IF (_ _ 1 _ _ 2 & 	 _ _ 1

,) THEN

	 , _ _ 1;

Else IF (_ _ 1 _ _ 2 & 	 _ _ 2

,) THEN

	 , _ _ 2;

Table 14 Subtours merging cost matrix

6

7

9

1

3

4 2 10

5
8

Subtours:
: 1 → 3 → 4 → 1
: 2 → 10 → 2
: 8 → 5 → 8
: 6 → 7 → 9 → 6

, 	
	 1,8 , … , 1,5 , … , 4,8 , … 4,5
1,8

6

7

9

1

3

4 2 10

5
8

, ℓ

a b

62

Furthermore, merging cost-based criterion is based on the cost of merging a pair of

subtours. For this criteria subtours merging cost matrix is computed as shown in

Table 14 and Figure 7.

3.2.4. Number of arcs involved in repair mechanism

The specification of the number of arcs to break in each subtour, as part of the break

and patch or repair mechanism, say | |, 	 1, … , , is represented by a

numerical variable and takes on integer values ranging from 1 to the cardinality of

subtour , | |, when no constraints are imposed on the arcs to break; however, this

upper bound could be lower / tighter when such constraints are imposed by previous

decisions such as arcs_to_break_selection_criterion and

arcs_to_add_selection_criterion. In our empirical investigation, we considered

several values for , see section on empirical results.

Note that a trade-off should be made between choosing relatively high values for

parameters 	 1, … , and low values. In fact, high values would result in a

relatively high-level of solution perturbation and would lead to a relatively large

number of possibilities for connecting the broken subtours as well as a relatively large

number of objective function evaluations, whereas low values would result in

relatively stable solution structures and keep the computational requirements relatively

low. These observations should be exploited when GPILS is implemented and the

analyst specifies its parameters. In our empirical investigation, the parameters of

GPILS were optimised using metaheuristic. However, to keep the computational

requirements reasonable, we set the upper bound on .

3.2.5. Arcs selection criteria

The specification of selection criteria according to which the arcs to break and those

to add, as part of the break and patch operations, are chosen is represented by two

categorical variables; namely, arcs_to_break_selection_criterion and

arcs_to_add_selection_criterion, respectively. A default selection criterion could be

defined whereby no limitation is imposed on the choice of the arcs to break. In this

case, the number of possible arcs to break and those to add is ∑ . Alternatively,

63

one can consider several categories for arcs_to_break_selection_criterion and

arcs_to_add_selection_criterion using the concept of candidate sets, say , to limit

the number of combinations with a prespecified cardinality, say . To be more

specific, the number of possible arcs to break and those to add will be reduced

to	∑ .

Figure 7 Subtours merging cost matrix

Note that more than one candidate sets could be used as categories, where these

candidate sets or categories could be defined using a single criterion or multiple

criteria. For example, one could define three candidate sets based on arc weight (e.g.,

travel cost, travel distance, travel time) as a single criterion along with two thresholds

for arc weights chosen to reflect, for example, small, medium and large weights. A

candidate set could be not to involve any previously added edges throughout the whole

solution process or for a prespecified number of iterations. Alternatively, one could

exploit the distribution of weights of arcs between pairs of nodes to setup the categories

_ _ 4,1 5,8 ;

6

7

9

1

3

4 2 10

5
8

_ _ 2 4,5
8,1 _ _ 	;

6

7

9

1

3

4 2 10

5
8

	

	

	

_ _ 1 4,8
5,1 _ _ 	;

6

7

9

1

3

4 2 10

5
8

64

or candidate sets. In our empirical investigation, we used -NN and considered several

values for , see section 3.7.

As to the definition of the categories of arcs_to_add_selection_criterion, several

categories could be defined; for example, a default category would not put any

restriction on the possible set of arcs to use in connecting the broken subtours, a second

third category would not involve any previously broken edges throughout the whole

solution process; and a third category would not involve any broken edges throughout

a prespecified number of iterations. Alternatively, one could use weight information

to limit the number of possibilities of connecting the broken subtours. Once again

hybrids, where more than one criterion defines a category, could be used. The implicit

choice of the subset of arcs from which to select those to add for repairing a solution

requires the selection of a patching method according to which arcs will be added to

connect the broken subtours. Note that specific choices of

arcs_to_break_selection_criterion and arcs_to_add_selection_criterion could

influence one another and therefore would need to be consistent. For example, if the

criterion or criteria chosen for the selection of arcs to break are less (respectively,

more) restrictive than those for the selection of arcs to add, one might face a situation

where the repair operations cannot be performed. In sum, the moves in the parameter

space of GPILS should be chosen to avoid these inconsistencies, as will be discussed

later.

In this study, we propose a generic parameterised patching procedure, see Table 15 for

pseudo-code. Inputs to this procedure are summarised as follows:

TSP instance distance matrix ; a set of paths to patch with cardinality # ;

the type of design of the patching operation, as specified by

type_of_patching_operation, which depends on whether the chosen design is intended

to expand the initial path or the initial subtour, where type_of_patching_operation = 0

refers to a design where the patching procedure patches all paths, a subset of paths at

a time, to form a larger path , then connects the head and tail of the largest path 	to

form a subtour, whereas type_of_patching_operation = 1 refers to a design where the

patching procedure starts by merging a subset of paths to form a subtour , then inserts

the remaining paths into . In this thesis, we only investigated the second option, e.g.

65

type_of_patching_operation = 1, thus, we only present the related details for this

option.

When expanding the initial subtour, one could for example choose amongst several

options such as insert a path into the subtour being expanded by breaking an edge in

, break a path into subpaths and insert the subpaths into the subtour being expanded

at different places, and decision rule-based choice between insert and break and insert.

The criterion according to which paths to merge are selected is referred to as

paths_to_merge_selection_criterion and the criterion according to which paths to

patch are selected as specified by paths_to_patch_selection_criterion; the measure of

the performance criterion to optimise when performing the patching operation is called

patching_operation_performance_criterion, and the type of implementation of the

patching operation, as specified by type_of_implementation, where

type_of_implementation = 0 refers to sequentially patching paths, whereas

type_of_implementation = 1 refers to patching paths in parallel; the number of paths

to merge or patch at a time to obtain an initial subtour or path to be expanded;

and the number of paths to patch at a time in expanding the initial subtour or

path. We propose merging_criterion that specifies how the chosen paths will be

merged to construct a subtour, which could be either saving-based criterion or nearest

merger criterion. The idea behind the merging_criterion is borrowed from basic

construction heuristics, however, instead of nodes, we make use of paths.

Consequently, they have differences; such as the construction of subtours and

saving/merging calculations, where only the tail and head of the path is considered.

The proposed Nearest merger criterion starts with subtours with a single-path and

keeps merging pairs of subtours in an optimal manner until a single subtour is obtained,

see Table 16. As for the proposed saving -based criterion, a merging cost matrix

is computed, see Table 17, where only the tail and head of the paths are considered in

calculation of merging cost of each pair of paths	 , . In addition, the merging

considered is without crossover, see Figure 11.

Note that the subtour 	 , , … , , obtained by the generic

patching procedure, is a sequence of paths	 , and their direction	 , where

66

takes either values of	 1, 1 . If 1	then is not reversed in the subtour, ;

otherwise, is reversed in the subtour, . In addition, choice of should be less

or equal to 	| | , obviously if 	 | | , all paths will be merged

and	 0.

patching_method (C, type_of_patching_operation, paths_to_merge_selection_criterion,

paths_to_patch_selection_criterion, merging_criterion, patching_Criterion, , ,

patching_operation_performance_criterion, type_of_implementation) {

Initialisation Step

Select the paths to merge or patch according to paths_to_merge_selection_criterion or

paths_to_patch_selection_criterion and its measure;

IF type_of_patching_operation = 1 THEN Merge the 	 paths into a subtour according to

the type of merging operation, the measure of the merging criterion, and the type of

implementation chosen;

ELSE Patch the 	 paths into a larger path according to the type of patching operation, the

measure of the patching criterion, and the type of implementation chosen;

Update accordingly;

Iterative Step

WHILE ∅ DO {

Select paths in according to the selection criterion and expand the current subtour or

path according to the type of patching operation, the path patching criterion and its measure,

and the type of implementation chosen;

Update the set of paths yet to be patched; i.e., delete the paths selected above from ;

}

IF type_of_patching_operation = 0 THEN Connect the head and tail of the current path to form a

subtour;

}

Table 15 Pseudo-code of the proposed generic patching procedure

The proposed saving-based criterion, Table 17, starts with the smallest path, , as the

center and initialises subtours as an optimal return from any other path to ; then

merges a pair of subtours, at a time, with maximum saving until all subtours are

merged.

67

Input:

; ; and : A set of paths to patch

Output:

A single subtour / tour, , , … , , see Figure 9

Initialisation steps

Create | | number of subtours with one path,	 , , see Figure 8 (a)

Initialise subtours distance matrix , 	 .

Iterative steps

Repeat until all subtours are merged

Find the two closest subtours , 	 , see Figure 6

Merge them in the best possible way, without crossover (Figure 8, c), and reverse paths if

necessary (Figure 8, d), and update SD.

End Repeat

Table 16 Nearest merger method

Figure 8 Nearest merger criterion, merging process

1
4

5

8

2 10

6

9

1
4

5

8

2 10

6

9

c) → → 5,6 9,8 5,8 9,6
d) → → 5,9 6,8 5,8 9,6

: →
: →
: →
: →

1
4 2 10

6

9 5

8

1
4

5

8

2 10

6

9

68

Figure 9 Nearest merger criterion, final solution

Figure 10 Saving-based patching, Initialising subtours

1
,

1
,
1

,
1
,
1

1
4

5
8

2 1

6

9

1
4

5
8

6

9

2 10

a

1
4

5
8

6

9

2 10

b
, Cost → Cost → Cost →

1,10 2,8 c 1,8

1
4

5
8

6

9

2 10

c

1
4

5
8

6

9

2 10

d
, 5,10 2,6 c 5,6

1
,

1
,
1

,
1

,
1

69

Input

; ;

Output
A single subtour / tour,
Initialisation steps

Choose the path with smallest cardinality.

For each remaining path {

Construct a subtour consisting and	 , , , , without crossover and reverse

path if necessary (1), see Figure 10;

For each pair of subtours , calculate the least savings obtained by patching them, see Figure

11, and sort the savings in a non-increasing order;}

Iterative steps

Repeat until all subtours are patched

Patch the two subtours with the maximum savings;

IF all the subtours are patched Then stop;

Else update the savings list and go to step 1;

End Repeat

Table 17 Saving based path patching method

Figure 11 Savings calculation

1

3

4

5
8

2 10

6

7

9

 . 10 → 2
. 1 → 3 → 4
. 8 → 5

1
4

5
8

2 10

6

9

: → →
: → →
: → →

1
4

5
8

6

9

2 10

c

70

The proposed insertion_criterion defines how to insert the chosen paths in the subtour

in the best possible location, which is based on the cheapest insertion cost of paths in

the subtour, Figure 12.

Figure 12 Cheapest insertion

The 	 _ _ _ _ , Table 18, can be categorised as

cardinality-based criterion (largest or smallest), cost-based criterion (longest or

shortest), distance-based criterion (closest or farthest) and merger cost-based criterion

(cheapest or expensive). The default category could be arbitrary. Note that, the

distance-based criterion makes use of paths distance matrix, , which is obtained by

the algorithm in Table 19, where the distance between each pair of paths , 	 ℓ is

the minimum distance between all nodes in path	 and all the nodes in path ℓ.

: → → → →

1
,

1
,
1

,
1
,
1

1
4

5 8

2 10

6

9

22

20

12

9 21

17

25

27

Insert 	 12 → ⋯ → 9 between ,

1
4

5 8

2 10

6

9

22

20

12

9 21

17

25

27

1
4

5 8

2 10

6

9

22

20

12

9 21

17

25

27

1
4

5 8

2 10

6

9

22

20

12

9 21

17

25

27

→ → 4,12 9,2 4,2 → → 4,9 12,2 4,2

71

Paths to merge Selection Criterion Description

Arbitrary Random choice of paths

Cardinality-Based Based on number of nodes in the path

Cost-Based Based on travel cost, length of the path

Distance-Based Based on the distance between the paths

Merging Cost-Based Based on the cost of merging each pair of paths

Table 18 Paths to merge selection criterion

Input

; : A set of paths to patch with cardinality | |

Output

, 	 ℓ : Paths distance matrix	

Initialisation Step

Initiate paths distance matrix , 	 ℓ ∞;

Iterative Step

For each pair of paths , 	 ℓ compute the minimum distance between path and path ℓ as

follows:

, 	 ℓ

	 1 , ℓ 1 , 1 , ℓ # ℓ , # , ℓ 1 , # , ℓ # ℓ ;}

Table 19 Paths distance matrix

Input:

;		

Output:

, : Merging cost matrix	

Initialisation Step

Initiate , ∞;

Iterative Step

FOR each pair of paths , 	 compute their merging cost where a path ∈ is specified by its

cardinality # and its sequence of nodes 1 , 	 … , 	 # , as follows:

_ → → # , 1 # , 1 	;

_ → → # , # 1 , 1 ;

IF (_ → → _ → →) THEN

, _ → → ;

Else

, _ → → ;

Table 20 Paths merging cost matrix

72

As for the proposed merging cost-based criterion, a merging cost matrix is

computed, see Table 20, where only the tail and head of the paths are considered in

calculation of merging cost of each pair of paths	 , . In addition, the merging

considered is without crossover, see Figure 8 (c).

In the iterative step, we categorised paths_to_patch_selection_criterion

 into cardinality-based criterion (largest or smallest), cost-based criterion (longest or

shortest), distance-based criterion (closest or farthest) and insertion cost-based

criterion (cheapest or expensive), see Table 21.

The proposed cardinality-based and the cost-based criterion is similar to the ones for

paths_to_merge_selection_criterion. However, the proposed distance-based criterion

is based on the distance between the paths in the subtour and the remaining paths not

in the subtour, , Table 22. On the other hand, the proposed insertion cost-based

criterion is based on the cost of inserting the paths not in the subtour in the subtour,

without crossover, see Table 23.

Paths to Patch Selection Criterion Description
Arbitrary Random choice of paths
Cardinality-Based Based on number of nodes in the path
Cost-Based Based on travel cost, length of the path

Distance-Based
Based on the distance between the remaining
paths and the subtour

Insertion Cost-Based
Based on the cost of inserting each of the
remaining paths in the subtour

Table 21 Paths to patch selection criterion

Input:

;		

Output:

, : Path to subtour distance matrix	

Initialisation Step

Initiate	 , ∞;

Iterative Step

For each path	 not in the subtour compute the minimum distance between each path and all the

paths, ,in the subtour as follows:

min , 	 ℓ 			 1, … , | | ; //Where consists of | | number of paths

Table 22 Distance-based criterion

73

Input:

;		

Output:

	 , : Path cheapest insertion cost into subtour matrix	

Initialisation Step

Initiate	 , ∞;

Iterative Step

For each path	 not in the subtour calculate the cheapest insertion cost of between each pair of

paths in the subtour , , without crossover and reverse paths if necessary, see Figure 12.

Table 23 Cheapest insertion

3.2.6. Performance metric

The specification of the performance metric to be used for assessing infeasible

neighbours or equivalently the metric to use for comparing the performance of the

break and patch or repair operations is represented by a categorical variable; namely,

IMetric. Several categories could be considered to reflect different aspects of the repair

mechanism and its “quality”. For example, one could consider the cost of the solution

after repair to compare different repair operations, in our empirical investigation; we

considered this metric as the default choice. Alternatively, one could consider the

number of arcs, that cross-over, which is to be minimised. Also, one could define

categories that are concerned with optimizing more than one metric; for example, one

could minimise both the cost of the solution after repair and the number of arcs in the

solution that crossover.

3.2.7. Improvement mechanism

With respect to the local improvement mechanism of components of the infeasible

neighbours generated by Type I moves, or equivalently the Type II moves, this

decision is represented by a categorical variable T2M. A variety of categories could be

defined; e.g., 2-opt, 3-opt and combinations of these moves. These moves are

implemented by means of an improvement mechanism represented by a categorical

variable component_improvement_mechanism. The categories of this variable would

correspond to different local search methods including metaheuristics. As to the

performance metric to be used for assessing different components, this choice is made

74

through a categorical variable component_performance_metric. The default category

would be the commonly used metric; namely, the cost or total distance of the

component. Other categories could be defined by the analyst to consider additional

features of a component or to take account of soft or hard constraints not explicitly

considered in the problem formulation. Besides, one has to decide how often to call

upon the local improvement mechanism of components of the infeasible neighbours

generated by Type I moves; namely, improvement at each iteration, deterministic static

and stochastic.

3.3. Infeasible neighbourhood structure

Finally, we have to choose the design of the infeasible-based neighbourhood structure

(INS) to use in exploring the infeasible space of the TSP. One of two alternatives could

be chosen. The first option is to use Type I moves to explore the infeasible space and

select the best neighbour, then Type II moves are used to improve the best neighbour

locally – we refer to this design as improving best neighbour (IBN) design. The second

option is to immediately use Type II moves to improve every neighbour obtained with

Type I moves – we refer to this design as improve all neighbours (IAN) design.

3.4. Implementation of GPILS

The implementation of the proposed GPILS could prove rather tricky without a proper

algorithm to carry the steps required for exploring the infeasible space for any

specification of the parameters of the search. Note that, by set of parameters we mean

set of parameters, criteria, components and rules but for simplicity this set is referred

to as set of parameters. In fact, exploring the infeasible space for a given choice of the

parameters of the search, say , , requires exploring all, or sometimes most,

combinations of arcs in subtours which in turn requires a minimum of embedded

FOR loops. Obviously, the number of embedded FOR loops required from one run or

experiment to another is different and requires a different code. In order to make the

code generic;

75

RINS

, , , , , , ℓ, ℓ , , , 1 , 2 , , ∗, ∗ , _ {

// If edges to break were identified in all subtours , then implement the type I move;

// else, identify the edges to break in the remaining subtours to break

IF () {

// Break and patch the subtours to merge using type I move to obtain a single subtour

PerformTypeIMove , , 	 , , 	 , _ ;

// Improve the current infeasible solution locally using Type II moves, if required

IF INS = IAN THEN 	 = PerformTypeIIMove 2 , ;

// Update the best neighbour and its cost, if necessary

IF (is better than ∗ and within the bounds) THEN { ∗ ;
∗ ; }}

ELSE {

// Identify the edges to break in subtour for which such edges are yet to be specified. Note

// that the FOR-loop condition | | ℓ is chosen so that any repetition of combinations

// of edges is avoided

FOR ℓ 	 	| | ℓ {

// Consider the th edge in candidate set of edges to break in subtour

Set ℓ ;

ℓ ℓ 1; // Increment edge index counter ℓ to loop through all remaining edges in subtour

IF (ℓ) THEN ℓ 1; // Set the loop ℓ initialiser ℓ to 1

ELSE {

// Increment subtour index counter to loop through all remaining subtours or embedded

// FOR loops

1;

ℓ 1; // Reset edge index counter ℓ to 1

ℓ 1; // Reset loop ℓ initialiser of edge index in subtour to 1 }

RINS , , , , , , ℓ, ℓ , , , 1 , 2 , , ∗, ∗ ,

_ ;

ℓ ℓ 1; // Decrease edge index counter ℓ to go back to the previous FOR loop

IF (ℓ 0) {

1; // Decrease subtour index counter to go back to the previous FOR loop

ℓ ; // Reset edge index counter ℓ to go back to the previous FOR loop

}

}}}}

Table 24 Pseudo-code of the RINS function

76

i.e., could be run with any specification of the search parameters, we propose a

recursive infeasible neighbourhood search function (RINS), Appendix I. For a detailed

pseudo-code see Table 24.

3.5. Choice of how to explore the primal space

Exploring the primal space is optional in our design of GPILS. When the option of

exploring the primal space is chosen, one has to choose the primal neighbourhood

structure to use, the improvement mechanism as well as the performance metric to be

used for assessing primal neighbours. The choice of whether to explore the primal

space or not is represented by a categorical variable explore_primal_space. This

variable is set to 0 when this option is turned off, 1 when exploring the primal space is

considered using a primal improvement mechanism, and 2 when exploring the feasible

space while allowing for infeasibilities; that is, using a feasible-infeasible mechanism.

When this option is on, one could choose from a variety of primal neighbourhood

structures as specified by a categorical variable primal_neighbourhood_structure,

where categories would correspond to 2-opt moves, 3-opt moves, or combinations of

these basic moves. The improvement mechanism is represented by a categorical

variable primal_improvement_mechanism, where the categories would relate to

different local search methods including metaheuristics.

As to the performance metric to be used for assessing primal neighbours, this choice

is made through a categorical variable PMetric. The default category would be the

commonly used metric; namely, the cost of the primal solution. Other categories could

be defined by the analyst to consider additional features of a primal solution; e.g., the

minimum pollution, total travel time and etc. Note that through the choice of the primal

performance metric one could address in an infeasible fashion additional constraint

such as time windows constraints. The proposed GPILS is by design a parameterised

solution framework. In the next section, we propose a hyperheuristic framework for

its implementation. The aim of this hyperheuristic framework is to optimise the choice

of the parameters of GPILS by exploring the corresponding parameter space using a

local search framework.

77

3.6. DLS versus GPILS

Conceptually, the proposed GPILS and DLS developed by Ouenniche et al. (2017) are

similar, although their implementation is different. We refined and enhanced their

design and pushed it forward to the settings that has not been considered by DLS. A

summary of the comparative analysis between DLS and GPILS is shown in Table 25.

The refinements are as follows:

Initialisation of the lower bound and the seed: as compared to DLS, where only AP-

relaxation is considered to initialise the bound and the seed, GPILS also considers PIH.

Parameters and
operations

DLS GPILS

Initialisation of the upper
bound

Nearest merger Construction heuristics

Initialisation of the dual
bound and the seed

AP
_

AP
PIH, see Table 11

Number of subtours to
break and patch

2,3 2,… ,

Subtours selection
criteria

Farthest/ nearest distance between
subtours; cheapest cost of merger

of subtours
See Table 12

Number of arcs involved
in repair mechanism 1, 2,1 1, . . , | |

Arcs selection criteria All combinations;
_

All	combinations;

-NN

Patching operation All combinations
Generic patching procedure;

see Table 15

Infeasible
neighbourhood structure

IBN IBN

Improvement mechanism

Local search;
2-opt, 3-opt and US moves;

Improvement at each iteration,
deterministic and stochastic;

_

Local search;

2-opt, 3-opt;
Improvement at each;

Reinforcement

Implementation Static implementation
Generic implementation;

see Table 24

Exploring the primal
space None None

Table 25 Comparative analysis between DLS and GPILS

78

Number of subtours and arcs involved in repair mechanism: in comparison with

DLS, GPILS can consider wider range of values. However, for computational time we

considered upper bound for both, i.e. 2,… ,5 and 1,… ,5.

Subtours selection criteria: GPILS considers wider range of criterion, see Table 12.

Arcs selection criteria: DLS is a greedy method where it considers all combination of

breaking arc in each subtour. On the other hand, GPILS considers a restricted selection

criterion where the arcs to break are chosen amongst candidate sets obtained by -NN.

Patching operation: yet again, DLS uses a greedy method where it considers all

combinations of patching the broken subtours. As for GPILS, a generic patching

procedure is used to patch the broken subtours, for more detail see Table 15.

Improvement mechanism: both DLS and GPILS consider local search as an

improvement mechanism to locally improve the intermediate infeasible solutions. As

for T2M, DLS considered 2-opt, 3-opt and US moves. However, because the US move

is computationally inefficient, it is not considered in GPILS. Regarding how often the

local improvement mechanism is been called DLS considered improvement at each

iteration, deterministic static and stochastic, however, only improvement at each

iteration is used in GPILS since it was the best performing option.

Implementation: DLS is static implementation design, meaning that for any

combination of , the number of embedded FOR loops required from one run or

experiment to another is different and requires a different code. On the other hand,

GPILS is a generic design that could run with any combination of , .

3.7. Empirical results

In this section, we shall compare the proposed GPILS under different settings. In order

to see the performance of GPILS under different settings for different instances, we

made a step by step experiment. In the first step of the experiment, we chose the value

of the parameters similar to DLS, so we could compare GPILS with DLS. Note that

the GPILS is conceptually like DLS, however, their implementation is different. Thus,

the difference in quality of the solution is expected. The aim of this experiment is to

79

empirically demonstrate that GPILS performs better than DLS on both quality of the

solution delivered and computational time. In the next steps of the experiments, we

push forward the analysis by considering further setups that has not been considered

by DLS which our framework allows for. To do so, in each step of the experiment, we

fixed all the parameters except one or two and we summarised the performance of

GPILS. For more details of this experiment refer to Table 27.

3.7.1. Experimental setup

All methods are implemented in C# and tested on a Windows 7 Enterprise with 2.26

GHz Core i5 processor and 16 GB of RAM. The AP-based relaxation is solved using

CPLEX 12.5. The empirical results are based on problem instances from TSPLIB. The

problem instances are presented in Table 26.

N
od

es

51

76

76

10
0

10
0

10
0

10
0

10
0

10
1

10
7

12
4

13
0

13
6

14
4

15
0

15
0

15
0

15
2

20
0

20
0

N
am

e

ei
l5

1

ei
l7

6

pr
76

kr
oA

10
0

kr
oB

10
0

kr
oC

10
0

kr
oD

10
0

kr
oE

10
0

ei
l1

01

pr
10

7

pr
12

4

ch
13

0

pr
13

6

pr
14

4

ch
15

0

kr
oA

15
0

kr
oB

15
0

pr
15

2

kr
oA

20
0

kr
oB

20
0

Table 26 Problem instances

For the choice of the parameters of GPILS in this empirical investigation, we

experimented with the following parameters:

Parameters of the bounding scheme

 PM: Arbitrary insertion; nearest insertion; farthest insertion; cheapest insertion;

Clarke and Wright; nearest merger

 IM : {AP, PIH }

 Parameters of PIH

• : 	1, … , 	20

• 1

• : -means ()

• DRC: Construction heuristic similar to PM

• Imp:{0, 1}

80

• IM: Classic local search

• NS: 2-opt; 3-opt;

Parameters of Type I move

 Breaking operation

• s: 2,… , 	5

• _ _ : Random; shortest/ largest subtours; smallest/

largest subtours; closest/ farthest subtours; cheapest/ most expensive cost of

merging pair of subtours

• : 1, 	 … , 	5	 (if | | then | | 1)

• _ _ _ _ : -NN (1,… ,10)

 Patching operation

• type_of_patching_operation = 1

• Initialisation step

• :	1, … ,

• _ _ _ _ : Largest / smallest; longest/

shortest; closest/ farthest; cheapest/expensive merging cost

• _ : Saving-based path merging (SPM); nearest

path merger (NPM)

• _ _ 0

• Iterative patching

• 	: 0,1

• _ _ _ _ : Largest / smallest; longest/

shortest; closest/ farthest;

• _ : Cheapest Insertion

• _ _ 0

• _ _ _ : Cost of the subtour

Parameters of Type II move

 T2M: 2-opt; 3-opt;

 _ _ : Local search

 _ _ : Cost or total distance of the component

81

Note that, we also experimented ‘reinforced improvement’. In other words, after

improving the degree of infeasibility of the chosen T2M, we improved the solution

using a different T2M, again.

Other parameters of GPILS

 : Cost or total distance of the component

 INS: IBN

Parameters of the primal space exploration

 _ _ 0

In order to understand the effect of different sets of parameters of GPILS, we

experimented with GPILS given several sets of parameters. Note, however, that for

space constraints, we only present a number of these sets.

3.7.2. Experimental results

In this section, we shall compare the proposed GPILS under different settings. In order

to see the performance of GPILS under different settings for different instances, we

made a step by step experiment. For more details of this experiment refer to Table 27.

In the first experiment, we chose the value of the parameters similar to DLS, to some

extent, so we could compare GPILS with DLS. Thus, we set the parameters of the first

experiment as follows:

Parameters of the bounding scheme

 PM:∞;

 IM: AP

 Parameters of PIH: since IM is set to AP, these parameters are not required

Parameters of Type I move

 Breaking operation

• s: 2, 3

• _ _ : farthest distance between subtours

• : 1, 	2	

• _ _ _ _ : -NN (1,… ,10)

82

 Patching operation

• Initialisation step

• :	

• _ _ _ _ : since is set to , this

parameter is not required

• _ : nearest merger

• Iterative patching: since is set to , this parameter is not required

Parameters of Type II move

 T2M: 2-opt; 3-opt;

The rest of the parameters are set to the values mentioned before. As for the ‘reinforced

improvement’, it is not used in the first experiment. Note that before comparing GPILS

with DLS, we experiment with _ _ _ _ ; namely, -NN

with ranging from one to ten, in order to reduce the computational time. Later, in

the next experiments, we fixed the value all the parameters except for one or two of

them, so we could see the quality of GPILS under different settings for different

instances with different structures.

Not that the conclusions made in this section could be different, even opposite, for

different settings of parameters. Hereafter we shall present these experiments in more

detail as well as their result. Bear in mind that the statistics presented in this section

are the average percentage increase over the optimal solution (i.e.	
	 	

	
100%). Moreover, in the following figures each bar

represent different values for the specified parameter(s) in each experiment and

positive values means that the GPILS given new settings perform better than the

previous experiment, unless otherwise is noted.

I. Experiment 1: K-NN

The proposed GPILS is a parameterised neighbourhood structure, which allow us to

intensify and diversify the search, depending on the chosen parameters and structure

of the problem, while controlling the rate of convergence of the process toward the

feasible solution.

83

E
xp

er
im

en
t

P
M

IM

D
R

C

Im
p

s

_
_

_
_

_
_

_
_

_
_

_

_
_

_
_

T
2M

R
ei

nf
or

ce
m

en
t

1:
 K

-N
N

_ A
P _ _ _ _ 2,
3

fa
rt

he
st

1,
 2

,…
,

_

N
PM

0 _

3-
op

t

_

2:

s,
r

_ A
P _ _ _ _

2,
 …

 ,5

fa
rt

he
st

1,
 …

 ,5

_

N
PM

0 _

3-
op

t

_

3:

_	
_

_ A
P _ _ _ _ 3

S
ee

 T
ab

le

5 P
 _

N
PM

0 _

3-
op

t

_

4:

,
_

_ A
P _ _ _ _ 3

lo
ng

es
t

5

1,
…
,1
0

ne
ar

es
t

N
PM

-S
PM

1

ne
ar

es
t

3-
op

t

_

5:
_

_
	

_
_

_ A
P _ _ _ _ 3

lo
ng

es
t

5 6

S
ee

 T
ab

le

S
P

M

1

ne
ar

es
t

3-
op

t

_

6:
_

_
	

_
_ _ A
P _ _ _ _ 3

lo
ng

es
t

5 6

ch
ea

pe
st

S
P

M

1

S
ee

 T
ab

le

3-
op

t

_

7:
 P

IH
 v

s
A

P

_

P
IH

2:
2:

20

C
&

W
 S

av
in

gs

1

3-
op

t

3

lo
ng

es
t

5 P

ch
ea

pe
st

S
P

M

_ _

3-
op

t

_

84

8
P

IH
-D

R
C

_

P
IH

3

D
R

C

0 _ 3

lo
ng

es
t

5 P

ch
ea

pe
st

S
P

M

_ _

3-
op

t

_

9:
 P

IH
-N

S

_

P
IH

3

F
ar

th
es

t i
ns

er
ti

on

1 N
S 3

lo
ng

es
t

5 P

ch
ea

pe
st

S
P

M

_ _

3-
op

t

_

10
:

T
2M

 &

re
in

fo
rc

em
en

t

_

P
IH

3

F
ar

th
es

t i
ns

er
ti

on

0 _ 3

lo
ng

es
t

5 P

ch
ea

pe
st

S
P

M

_ _

T
2M

re
in

fo
rc

em
en

t

11
:P

M

P
M

P
IH

3

F
ar

th
es

t i
ns

er
ti

on

0 _ 3

lo
ng

es
t

5 P

ch
ea

pe
st

S
P

M

_ _

3-
op

t

_

Table 27 Experimental design

As it was mentioned earlier in this chapter, GPILS start with an initial infeasible

solution, i.e. number of subtours, and progress towards the primal space by iteratively

breaking a number of subtours, given , , and patching them, until it lands in the

feasible solution. In other words, low values for and high values for will lead to

more diverse search and slower convergence rate, on the other hand, high values for

and low values for will lead to less diverse search and faster convergence rate. A

small illustrative example is shown in Figure 13.

Figure 13 Computational time given ,

Moreover, an initial infeasible solution with large number of subtours could also lead

to higher diversity and lower convergence of the search. Thus, one should make a

trade-off between diversity and convergence rate – see experiment 7.

(2,1) (3,1) (2,2)

eil51 0.59 1.23 28.7

pr76 0.87 1.70 128.2

0

20

40

60

80

100

120

Ti
m
e
(s
)

85

Although, GPILS conceptually is similar to DLS, their implementation is different.

Hereafter, we shall compare them empirically. As it was mentioned earlier, DLS

developed by Ouenniche et al. (2017) required several parameters. Thus, in order

to compare DLS with GPILS, we only considered the following parameters:

1. The choice of subtours to merge: farthest distance between subtours, since it

was best performing criteria.

2. The choice of number of subtours () to break and number of edges () to break

in each subtour: 2; 1, 1 and 3; 1, 1,2,3

3. The choice of type II move: 3-opt.

US move is not considered since it is computationally inefficient, although

overall, it was the best criteria. On the other hand, 2-opt leads to good quality

solution in much shorter time, not as good as 3-opt.

4. The choice of local improvement scheme: improvement in each iteration, since

it was best performing criteria.

The comparison between GPILS and DLS is shown in Figure 14 and Figure 15. Each

bar in these figures represent GPILS given the parameters in experiment 1 and in

range between one and 10. Note that positive values means that GPILS outperforms

DLS and the average shows the difference between average between

DLS and GPILS, i.e. 	 , where the

average overall instances is shown as . 3 and 4 for both

experiments (2,1) and (3,1), respectively, outperforms DLS by %0.96 and %1.34,

respectively. As you can see time increase when increases, except for some cases,

which could be because of structure of the problem instance. Thus, one has to make a

trade-off between solution quality and computational time. Moreover, 1 or more

specifically for both experiments, i.e. (2,1) and (3,1), outperforms DLS by 0.63

and 0.91, respectively. Consequently, in trade-off between solution quality and

computational time, we fix in next experiments.

II. Experiment 2: ,

In the second experiment, we present the effect of different values for s and , shown

by s, and compared with and equal to 2,1 . This comparison is presented in

86

Figure 16, where each bar presents the comparison between each set of values of s,

and with s and equal to 2,1 ; i.e. s, 2,1 .

Figure 14 GPILS vs DLS given 2 and 1

Figure 15 GPILS vs DLS given 3 and 1

-6 -1 4

eil51
eil76
pr76

kroA100
kroB100
kroC100
kroD100
kroE100

eil101
pr107
pr124
pr136
pr144

kroA150
kroB150

pr152
kroA200
kroB200

performance

Difference in performance

k=10 k=9 k=8 k=7 k=6

k=5 k=4 k=3 k=2 k=1

-21 -16 -11 -6 -1

eil51
eil76
pr76

kroA100
kroB100
kroC100
kroD100
kroE100

eil101
pr107
pr124
pr136
pr144

kroA150
kroB150

pr152
kroA200
kroB200

Time (s)

k=10 k=9 k=8 k=7 k=6

k=5 k=4 k=3 k=2 k=1

-4.6 -2.6 -0.6 1.4 3.4

eil51
eil76
pr76

kroA100
kroB100
kroC100
kroD100
kroE100

eil101
pr107
pr124
pr136
pr144

kroA150
kroB150

pr152
kroA200
kroB200

performance

Difference in performance

k=10 k=9 k=8 k=7 k=6

k=5 k=4 k=3 k=2 k=1

-55 -35 -15

eil51
eil76
pr76

kroA100
kroB100
kroC100
kroD100
kroE100

eil101
pr107
pr124
pr136
pr144

kroA150
kroB150

pr152
kroA200
kroB200

Time (s)

k=10 k=9 k=8 k=7 k=6

k=5 k=4 k=3 k=2 k=1

87

Figure 16 Performance of GPILS with set , in comparison with 2,1

Note that, positive values mean that when s is set to two and is set to one, the GPILS

produces worse solutions than GPILS given other sets.

Overall, on average the best performing sets of values for s and are (3,5) and (4,4)

and the worst performing sets are (3,2) and (5,4). However, as it is shown in this figure

the performance of each set is different for different instances, which is because of the

structure of the problem.

III. Experiment 3: _ _

In the third experiment, we investigate different criterion for 	

_ _ while fixing s and to 3 and 5, respectively. Figure

17 shows the comparison between the farthest distance between subtours and other

‐6.5 ‐4.5 ‐2.5 ‐0.5 1.5 3.5

eil51

eil76

pr76

kroA100

kroB100

kroC100

kroD100

kroE100

eil101

pr107

pr124

ch130

pr136

pr144

ch150

kroA150

kroB150

pr152

kroA200

kroB200

Difference in performance

(5,5)

(5,4)

(5,3)

(5,2)

(5,1)

(4,5)

(4,4)

(4,3)

(4,2)

(4,1)

(3,5)

(3,4)

(3,3)

(3,2)

(3,1)

(2,5)

(2,4)

(2,3)

(2,2)

88

criteria for the choice of subtours to be involved in the repair mechanism, where

positive values mean GPILS under new settings perform better than the previous ones.

Figure 17 Comparison of subtours_selection_criterion

Overall, on average the best performing sets of values for are longest and shortest, on

the other hand, the worst performing sets are closest and cheapest merging criteria

however. Moreover, as it is shown in this figure the performance of each choice is

different for different instances. Henceforward, the choice of

subtours_selection_criterion is set to the longest subtours.

‐8 ‐6 ‐4 ‐2 0 2 4 6

eil51

eil76

pr76

kroA100

kroB100

kroC100

kroD100

kroE100

eil101

pr107

pr124

ch130

pr136

pr144

ch150

kroA150

kroB150

pr152

kroA200

kroB200

Random

Expensive Merging

Cheapest Merging

Smallest

Largest

Shortest

Longest

Closest

89

IV. Experiment 4: , _

In this step of the experiment, we shall investigate different and

 for the initial paths patching and compare GPILS under new settings

the previous one, see Figure 18. Yet again, positive values mean GPILS under new

settings perform better than the previous ones. Figure 18 shows the comparison

between performance of GPILS given pervious setting and the current one, where the

current set is similar to the previous one except for and _ .

Note that in the previous setting is set to and _ is set to

nearest path merging. Thus, we also experimented with is set to and

_ is set to saving-based path merging, in order to compare their

perfomance.

Overall, GPILS given the previous set of parameters given

, _ to |P|, _ _ 	_ ,

9, _ _ and 6, _ _ 	_ perform

better by %0.31 and %0.24, %0.17, respectively. Yet again, different values for

 and _ perform different for different instances.

Figure 19 shows the comparison between the performance of GPILS given the current

set and either of the two criteria of the _ ; namely, savings-based

path merging and nearest path merger, where positive values mean that the nearest

path merger performs better than savings-based path merging criteria. This comparison

shows that overall, on average, the savings-based path merging procedure performs

better than the nearest path merger procedure, and however, comparing the two criteria

instance by instance, one can see the difference in performance of these criteria for

different problem instances. Although, |P|, _ _ 	_ , on

average, performs better than other values of and _ .

However, we fix and _ 	 to 6 and saving-based path

merging, since we would like to see the performance of other parameters of the

patching operation.

90

Figure 18 Performance of GPILS given sets of , _ and Experiment 3

V. Experiment 5: _ _ _ _

In the initial patching, the choice of paths to merge could also affect the performance

of GPILS. Thus, in this experiment, we investigate different criteria

for	 _ _ _ _ . Figure 20 shows the comparison between

GPILS the previous setting and the new one, where in the new set of parameters the

only difference is the _ _ _ _ . Overall, when

_ _ _ _ is set to cheapest paths merging cost, GPILS

performs better. Thus, in the next experiments, we shall fix this criterion to the

cheapest paths merging cost.

‐3.5 ‐1.5 0.5 2.5 4.5

eil51

eil76

pr76

kroA100

kroB100

kroC100

kroD100

kroE100

eil101

pr107

pr124

ch130

pr136

pr144

ch150

kroA150

kroB150

pr152

kroA200

kroB200

10, Saving‐based

9, Saving‐based

8, Saving‐based

7, Saving‐based

6, Saving‐based

5, Saving‐based

4, Saving‐based

3, Saving‐based

2, Saving‐based2

All, Saving‐based

10,Nearest_Path_Merging

9,Nearest_Path_Merging

8,Nearest_Path_Merging

7,Nearest_Path_Merging

6,Nearest_Path_Merging

5,Nearest_Path_Merging

4,Nearest_Path_Merging

3,Nearest_Path_Merging

2,Nearest_Path_Merging

91

Figure 19 Performance of GPILS given , _ _ 	_ vs. GPILS given

, _ _

Figure 20 Performance of GPILS given _ _ _ _

‐4.5 0.5 5.5 10.5

eil51
eil76
pr76

kroA100
kroB100
kroC100
kroD100
kroE100
eil101
pr107
pr124
ch130
pr136
pr144
ch150

kroA150
kroB150
pr152

kroA200
kroB200

RandomPaths

ExpensiveMergingPaths

CheapestMergingPaths

FarthestPaths

SmallestPaths

ShortestPaths

LongestPaths

LargestPaths

‐4.6 ‐3.6 ‐2.6 ‐1.6 ‐0.6 0.4 1.4 2.4 3.4

eil51

eil76

pr76

kroA100

kroB100

kroC100

kroD100

kroE100

eil101

pr107

pr124

ch130

pr136

pr144

ch150

kroA150

kroB150

pr152

kroA200

kroB200

10

9

8

7

6

5

4

3

2

All

92

VI. Experiment 6: _ _ _ _

In this step, we experiment the choice of paths involved in the iterative path patching;

namely _ _ _ _ . In general, smallest paths to patch

performs better than the other criteria.

Figure 21 Performance of GPILS given _ _ _ _

As it can be seen in Figure 21, GPILS given different criterion for

_ _ _ _ performs differently on different problem

instances, which could be because of their structure.

VII. Experiment 7: PIH vs AP

As it was mentioned earlier, an initial seed, i.e. infeasible solution, with large number

of subtours lead to higher diversity and lower convergence of the search, e.g. AP-

relaxation of TSP. On the other hand, initializing the seed with smaller number of

subtours could lead to lower diversity and quicker convergence. In this section, we

experiment with initialising the initial seed using either AP or PIH. Note that we used

| |, _ for , g_c , since they were best

performing values given the parameters set under consideration. Figure 22 shows the

computational time(s) of GPILS given previous set and the new one (right) and

comparison between performance of GPILS given before mentioned set versus the

‐4.5 ‐2.5 ‐0.5 1.5

eil51
eil76
pr76

kroA100
kroB100
kroC100
kroD100
kroE100
eil101
pr107
pr124
ch130
pr136
pr144
ch150

kroA150
kroB150
pr152

kroA200
kroB200

RandomPaths

ExpensiveInsertionPaths

CheapestInsertionPaths

FarthestPaths

SmallestPaths

ShortestPaths

LongestPaths

LargestPaths

93

new set (left), where in the new set initialisation of the seed and the bound is set to

PIH and number of initial subtours is set to a range between 3 and 20.

Figure 22 Performance and computational time (s) of GPILS given IM set to AP vs IM set to
(PIH,)

Note that each bar in the figure on the left presents performance of GPILS given

previous set versus the new set where IM is set to PIH and 3,… ,20 and each

bar on the right shows the computational time of each experiment. In the figure on the

left, positive values mean that initialising the seed given PIH and performs better

than initialising the seed with AP-relaxation. Moreover, other parameters of the PIH

namely DRC, Imp and NS are set to savings heuristic, off and 3-opt, respectively.

‐9.5 ‐4.5 0.5

eil51

eil76

pr76

kroA100

kroB100

kroC100

kroD100

kroE100

eil101

pr107

pr124

ch130

pr136

pr144

ch150

kroA150

kroB150

pr152

kroA200

kroB200

PIH,20

PIH,19

PIH,18

PIH,17

PIH,16

PIH,15

PIH,14

PIH,13

PIH,12

PIH,11

PIH,10

PIH,9

PIH,8

PIH,7

PIH,6

PIH,5

PIH,4

PIH,3

0 10

eil51

eil76

pr76

kroA100

kroB100

kroC100

kroD100

kroE100

eil101

pr107

pr124

ch130

pr136

pr144

ch150

kroA150

kroB150

pr152

kroA200

kroB200

AP

PIH,20

PIH,19

PIH,18

PIH,17

PIH,16

PIH,15

PIH,14

PIH,13

PIH,12

PIH,11

PIH,10

PIH,9

PIH,8

PIH,7

PIH,6

PIH,5

PIH,4

PIH,3

94

In terms of quality of the solution, as it can be seen in the figure overall, with these

settings, GPILS given the previous set where IM is set to AP performs better than the

new set. In terms of computational time, in general, for small problem instances GPILS

given IM set to AP performs faster than GPILS given IM set to PIH, on the other hand,

for larger problems GPILS given IM set to PIH performs faster than AP. As for ,

we cannot make a general conclusion since for different instances the performance is

different.

However, since we would like to experiment with other parameters of PIH, in the next

experiments IM is set to PIH. As for , we set it to three, since on average, given

the current set, it performs better than other values of .

VIII. Experiment 8: PIH-DRC

In order to investigate the performance of DRC, i.e. decision rule to construct the initial

subtours, in the current set we only change the DRC and compare the performance of

GPILS with the current set without any local improvement, see Figure 23, to isolate

the effect of changing DRC without any interference of other factors. As it can be seen

in the figure, different DRC rules perform differently for different problems. However,

overall the farthest insertion heuristic performs better than the others. Thus, in the next

experiment, we set DRC to farthest insertion heuristic.

IX. Experiment 9: PIH - NS

In this section, we investigate the performance of GPILS under the previous setting

with different improvement mechanism to locally improving the initial seed obtained

by PIH. Thus, in the new setting, is set to on, IMP is set to local search and NS is

set to either 2-opt or 3-opt. Later, their performance is compared to the previous setting

where the initial seed obtained by PIH has not been locally improved, see Figure 24.

Note that positive values mean that GPILS performs better when the initial seed,

obtained by PIH, is improved locally. Overall, on average given the current set, when

 is set to off, GPILS performs better.

95

Figure 23 Performance of GPILS given IM set to PIH and (DRC) vs. Experiment 7

X. Experiment 10: T2M and reinforced improvement

With respect to locally improving the intermediate infeasible solution, we shall

experiment with T2M and reinforced improvement. To do so, a comparison is made

between GPILS given settings, in experiment 7 and 9, and previous setting with

different local improvement mechanism for the different intermediate infeasible

solutions, see Figure 25 and Figure 26. Figure 26 shows this comparison when the

seed is initialised by AP given the previous setting in experiment 7 and Figure 25

shows this comparison when the seed is initialised by PIH given the previous setting

in experiment 9.

As it can be seen from Figure 25 and Figure 26, when the seed is initialised by PIH,

GPILS with the combination of T2M set to 2-opt and reinforced improvement set to

3-opt, on average, performs better than the other settings, on the other hand, when the

seed is initialised by AP, overall GPILS with T2M set to 3-opt performs better. Figure

27 shows the comparison between GPILS in experiments 7 and 9 with T2M set to 3-

opt. As it can be seen GPILS performs differently when the seed is initialised either

by AP or PIH. However, in the next experiment we shall fix IM to AP and T2M to 3-

opt since GPILS given this set performs better.

‐6 ‐1 4

eil51
eil76
pr76

kroA100
kroB100
kroC100
kroD100
kroE100
eil101
pr107
pr124
ch130
pr136
pr144
ch150

kroA150
kroB150
pr152

kroA200
kroB200

CheapestInsertion

ArbitraryInsertion

FarthestInsertion

ClosestInsertion

NearestNeighbor

96

Figure 24 Performance of GPILS given IM set to PIH and (NS) vs. Experiment 8

Figure 25 Performance of GPILS given IM set to PIH and (T2M, reinforced improvement) vs. IM set
to PIH and T2M set to 3-opt

‐3 ‐1 1 3 5 7

eil51
eil76
pr76

kroA100
kroB100
kroC100
kroD100
kroE100
eil101
pr107
pr124
ch130
pr136
pr144
ch150

kroA150
kroB150
pr152

kroA200
kroB200

3opt

2opt

‐6.5 ‐4.5 ‐2.5 ‐0.5 1.5 3.5

eil51
eil76
pr76

kroA100
kroB100
kroC100
kroD100
kroE100
eil101
pr107
pr124
ch130
pr136
pr144
ch150

kroA150
kroB150
pr152

kroA200
kroB200

3opt 2opt

2opt 3opt

2opt

97

Figure 26 Performance of GPILS given IM set to PIH and (T2M, reinforced improvement) vs. IM set
to AP and T2M set to 3-opt

Figure 27 Performance of GPILS given T2M set to 3-opt and IM set to AP vs. IM set to PIH

XI. Experiment 11: PM

In the previous experiments, the bounding scheme, namely the primal bound, was not

considered. However, in this experiment we shall consider the bounding scheme,

‐8.2 ‐6.2 ‐4.2 ‐2.2 ‐0.2 1.8 3.8

eil51
eil76
pr76

kroA100
kroB100
kroC100
kroD100
kroE100
eil101
pr107
pr124
ch130
pr136
pr144
ch150

kroA150
kroB150
pr152

kroA200
kroB200

‐3 ‐1 1 3 5 7

eil51
eil76
pr76

kroA100
kroB100
kroC100
kroD100
kroE100
eil101
pr107
pr124
ch130
pr136
pr144
ch150

kroA150
kroB150
pr152

kroA200
kroB200

3opt 2opt

2opt 3opt

2opt

98

meaning that we exclude neighbour outside the bounds, see Figure 28. Note that the

PM method is set to different construction heuristic and improved by 3-opt local

search. Surprisingly, GPILS given the current set without the bounding scheme

preforms better, note however that it could be different given different settings.

Moreover, given current settings with consideration of different settings of PM,

performance of GPILS is quite similar, thus we only present the comparison between

performance of given the previous setting and the current settings with consideration

of different settings of PM in Figure 28.

Figure 28 Performance of GPILS with consideration of the primal bound vs. without consideration of
the primal bound

We also compare the performance of GPILS given the current set with consideration

of the primal bound versus the performance of each of the primal bound, see Figure

29. As it can be seen, GPILS can generate better quality solutions than the primal

bound.

‐3 ‐1 1 3 5

eil51
eil76
pr76

kroA100
kroB100
kroC100
kroD100
kroE100
eil101
pr107
pr124
ch130
pr136
pr144
ch150

kroA150
kroB150
pr152

kroA200
kroB200

99

Figure 29 Performance of GPILS with consideration of the primal bound vs. the primal bound PM

3.8. Conclusion

In this chapter we investigated possibility of searching in the infeasible solutions space

by a local search-based framework. We refined and enhanced the DLS proposed by

Ouenniche et al. (2017) by developing a generic and parameterised infeasible-based

local search (GPILS) and pushed it forward to the settings that has not been considered

by DLS. The empirical comparison between the proposed GPILS and DLS showed

that proposed GPILS can produce better quality solutions much faster. Moreover, a

step by step experiment was designed to test several parameters of the GPILS. The

experimental design showed that GPILS given different sets of parameters performs

differently on different problem instances, which is the case for most primal heuristic

solution approaches, thus, there is a need to automate the choice of the parameters of

GPILS in order to find the best settings for each problem instance.

The next chapters investigate the case where a hyperheuristic is used to automate and

optimise the choice of parameters of GPILS. We also test whether the generated sets

of parameters by the proposed hyperheuristic framework can be reused on new and

unseen problem instances.

‐5.5 ‐0.5 4.5

eil51
eil76
pr76

kroA100
kroB100
kroC100
kroD100
kroE100
eil101
pr107
pr124
ch130
pr136
pr144
ch150

kroA150
kroB150
pr152

kroA200
kroB200

Savings Heuristic

Cheapest Insertion

Arbitrary Insertion

Farthest Insertion

Closest Insertion

Nearest Neighbor

100

4. A Sequential
Hyperheuristic
Framework for GPILS

In the previous chapter, we developed a local search-based framework that explores

the infeasible search space and progresses toward the feasible space, by reducing the

infeasibility, until it reaches a feasible solution. Later, we made a step by step

experiment with GPILS given different sets of parameters; where, in the experimental

design, each set of parameters was like the previous set except for one or two of the

parameters in each set. The analysis showed that since the proposed GPILS given

different set of parameters could lead to a different solution to different problem

instances, the choice of parameters of GPILS could be automated, instead of being

chosen by the analyst.

The aim of this chapter is to automate and optimise the choice of the parameters of

said framework, consequently, to find the best possible set of parameters for the given

problem instance. Thus, we propose a hyperheuristic to optimise parameters of the

GPILS. As it was mentioned in section 2.6, hyperheuristic is high-level mechanism

that searches in the space of low-level heuristics or components. In this thesis, the

hyperheuristic searches in the space of the parameters of GPILS, see Figure 30, rather

than the space of solutions specific TSP instances.

Figure 30 vector of parameters of GPILS

The high-level methodology for searching the parameter space of GPILS could be

either a sequential methodology or a parallel one. The contribution of this chapter is

developing sequential high-level methodologies to automate and optimise the choice

Parameters of Bounding Scheme

Primal Bound Dual Bound & seed

Parameters of Repair Mechanism

Breaking Patching

Parameters of
Improvement Mechanism
Type II Reinforced

improvement

101

of parameters of GPILS. To be more specific, we have chosen sequential high-level

mechanisms such as SA, TS, and VNS as well as hybrids of these metaheuristics. As

for the parallel high-level methodology, we shall develop genetic-based hyperheuristic

in the next chapter.

The before mentioned sequential high-level mechanisms start the search with a single

set of parameters and search its neighbourhood, in attempt to improve the current set,

using a guidance mechanism or search strategy. Implementing these mechanisms

require several implementation decisions to be made. Hereafter, we shall discuss the

implementation decisions of these metaheuristics for searching the parameter space of

GPILS. As the design of these metaheuristics is generic, their implementation for

optimising the parameters of GPILS requires a number of decisions to be made. We

divide implementation decisions into problem-specific decisions which are common

to all metaheuristics and generic decisions which are specific to each metaheuristic.

4.1. Problem-specific decisions for high-level search

mechanisms

The decisions common to the implementation of SA, TS, VNS, and our hybrid are as

follows: (1) choice of the parameters’ space; (2) choice of the form of the objective

function; (3) choice of the initial set of parameters of GPILS; and (4) choice of the

neighbourhood structure or type of moves to use. These decisions are similar across

all these metaheuristics. Hereafter, we shall summarise how these decisions are made

for searching the parameter space of GPILS.

Choice of the parameters’ space: In principle, all possible vectors of parameters are

admissible, an example of a vector of parameters is shown in Figure 30. However, for

computational reasons, one might want to reduce the size of the parameter space by

imposing bounds on the possible values that some parameters might take or fix the

values of some parameters, if considered appropriate. In our experiments, we fixed the

values of a number of parameters and for the rest of the parameters we imposed upper

bounds on them to keep the computational requirements reasonable.

102

Choice of the form of the objective function: A variety of functions could be used to

discriminate between solutions. In our implementation, we considered the original

objective function; namely, the total distance or cost of a solution to the TSP whether

infeasible or feasible (primal).

Choice of the initial set of parameters of GPILS: The initial set of parameters of GPILS

could either be set by the analyst or be automated. One could automate the choice of

an initial set of parameters using a “smart” sequential or parallel random search

procedure and select the best vector	 ; that is, the vector leading to the shortest

TSP tour. However, for some large problem instances, this option could prove time

consuming. One can randomly generate the initial set of parameters, say	 ,

while respecting the admissible range of parameters’ values, if required. This is a

sensible choice when a metaheuristic is used for searching the parameter space.

Moreover, other could make use of several decision rules such as setting up a

parameter to its minimum value, its maximum value, its median, or simply a default

value. We propose to automate the choice of by

1. Randomly generating a number of vectors of parameters, evaluating them, and

setting to the best vector of parameters,

2. Using a greedy algorithm such as a random descent local search with the

number of iterations being the stopping criterion and set to a low number, and

setting to the local optimum delivered by random descent, or

3. Running SA for one or several epochs and setting to the best vector

of parameters amongst those explored,

where the choice of the best set of parameter is based on the value of the objective

function of GPILS given the set of the parameters. In our empirical analysis, we

experimented with the first automation process.

Choice of the neighbourhood structure or type of moves to use: A variety of

neighbourhood structures could be designed for guiding the search in the parameter

space of GPILS. In this thesis, we propose a generic move designed as a function of

several parameters along with decision rules which could be formalised as follows:

, , 	 , ; ; 30

103

, 	 , , 	 , 31

where denote the size of the vector of parameters , denote the number

of entries to change in amongst the entries, is a generic parameterised

decision rule with parameters , and , is a categorical variable that

specifies how to choose the entries to modify or change, is a categorical

variable that specifies the type of change to make to each entry requiring one, and

is a categorical variable that specifies how to choose the amount by which the value of

each of the entries to modify will change. The generic parameterised decision rule

, 	 , is itself a function whose output is , 	 , , where is a vector

of entries that specifies which entries to modify or change, is a vector of

entries that specifies the type of change to each entry requiring one, and is a vector

of entries that specifies the amount by which the value of each of the entries to

modify will change; to be more specific,

1 if entry i is to be changed
0 Otherwise																											

 32

1 if entry i value is to be increased
1 if entry i value is to decreased

0 Otherwise
	 	 	 	 33	

and

 if entry i is to be changed
0	Otherwise

	 	 	 	 34	

where is an admissible value within the range of parameter values. In sum, the

proposed generic move is a collection of moves. Thus, for any choice of the

vector	 , 	 , , up to different types of neighbourhood structures could be

used to search the parameter space of GPILS. The implementation of the proposed

generic move requires a number of decisions to be made; namely, how to choose

the entries to modify; how to choose the type of modification; and how to choose

the amount of modification. Any of these decisions could be made randomly, using a

static decision rule, or using a dynamic decision rule. Hereafter, we shall discuss some

of the decision options available.

104

How to choose the entries to modify, or equivalently how to choose 	 ? The

proposed modifications are as follows: one could choose the entries to change

randomly – we shall refer to this option as the default option (option 0). On the other

hand, one could make use of a static rule to choose the entries to modify. A range

of fifteen static rules are proposed, see Table 28. Finally, one could make use of a

dynamic rule to choose the entries to modify. Once again, a range of dynamic rules

could be designed. For example, one could make use of dynamic rules based on

learning, where parameters are modified based on the learning experience accumulated

so far and implemented, for example, using the roulette wheel concept, see Appendix

E.

How to choose the type of modification to apply, or equivalently how to choose	 ?

The proposed actions are as follows: one could keep the value of a parameter unaltered

(action 1), choose to increase it (action 2), or choose to decrease it (action 3). For each

of the entries to modify, one could randomly choose amongst these three actions.

Note that we refer to this random choice as the default option (option 0).

In our investigation, the choice of and the static rules used to modify the entries,

EC, were defined by a range using options 1, 2, 3 and 4 – see Table 28. In other words,

the proposed neighbourhood structure is defined so that only the entries within the

permitted range are considered for modification. We proposed two sets of move

collections. The first set, called	NS1, is a collection of moves that changes only a single

range of parameters required for a procedure of GPILS at a time, see Table 29.

However, the second set, called	NS2, is a collection of moves that changes a range of

parameters, see Table 29, meaning that the considered type of modification consists of

changing the parameters using either one or two options, see Table 30. After defining

which parameters to change, say using either NS1 or NS2, these parameters

are changed randomly. In other words, the choice of is option 0 and the choice of

 is also option 0.

Another decision rule for changing parameters of the GPILS could involve random

choice of the entries to modify and random change in the admissible values to assign.

In other words, choosing option 0 for 	 , 	 and 	 , where the value of is

predefined by the user.

105

Option Description of Type of modification

0 Random modification

1 Only bounding scheme

2 Only breaking procedure of type I move

3 Only patching procedure of type I move

4 Only type II move

5 Only type I move

6 Only choice of INS

7 Only metrics

8 Only infeasible search decisions

9 Modify only primal search decisions

10 Only binary decisions such as

11 Categorical decisions such as , , , , 2 , ,
, , and

12 Only integer variables such as and

13 Both binary and categorical decisions

14 Both binary decisions and integer variables

15 Both categorical decisions and integer variables

Table 28 Static rules of modifying EC

OptionI= 1;

IF () {

IF (OptionI < 4) OptionI ++;

ELSE OptionI =1;

	, 	 	0, 	0 ;
}

Table 29 Neighbourhood change strategy considering NS1

OptionI = Option;

OptionII = OptionI;

IF () {
OptionII ++;

IF (OptionII == OptionI OR OptionII > 4) {
OptionI++;

OptionII = OptionI;
}

, 	, 	 	0, 	0 ;}

Table 30 Neighbourhood change strategy considering NS2

106

4.2. Generic decisions for high-level search mechanisms

As it was mentioned earlier generic decision are dependent on the structure of the high-

level search mechanisms. A summary of each high-level search mechanism and their

generic decisions are explained hereafter.

4.2.1. Simulated annealing as a high-level search mechanism

Simulated annealing (SA) is a search procedure based on the annealing process of

materials in metallurgy and the underlying thermodynamic laws. Its main search

strategy consists of avoiding remaining stuck in a local optimum by temporarily

accepting worse solutions with some probability that decreases as the search

progresses, for more details refer to section 2.5.1.II. The pseudo-code of the SA

algorithm customised to our application is outlined in Table 31.

The implementation of this generic SA algorithm for optimising the parameters of

GPILS requires a number of generic decisions to be made which are summarised in

the next section.

4.2.2. Generic decisions for SA

Choice of the initial and final temperature: The initial temperature could be chosen by

the analyst or using an automated process. In our implementation, we opted for an

automated process, where a trial run of the annealing process is performed and the

information gathered is exploited in choosing the initial temperature. To be more

specific, we computed the initial temperature as follows (Connolly, 1992):

2⁄ , where and denote the minimum value and the

maximum value of the changes in the objective function over the trial runs,

respectively. Note that, the trial run used to compute the initial temperature is the same

as the one used to initialise . The final temperature to a small number close

to zero, 0.1.

Choice of the cooling schedule: The cooling schedule involves several parameters’

choices; namely, the number of neighbours to visit at each temperature, say , the

107

temperature change strategy, the form of the temperature change function and its

parameter(s).

Initialisation Step

Choose an initial set of parameters of GPILS, , in the admissible parameter space and

compute the corresponding objective function value ; that is, the total distance of the

TSP tour constructed by GPILS using the set of parameters ;

Initialise the best solution found so far, say ∗, ∗, ∗ , by setting ∗ , ∗

 and ∗ ;

Choose an initial temperature 0 and set the current temperature ;

Set the temperature change counter 1;

Iterative Step

REPEAT until stopping condition = true

Choose the number of neighbours to visit at the current temperature , ;

Set the repetition counter 0;

REPEAT until stopping condition = true // e.g.,

Generate randomly a neighbour of the current seed and call GPILS to

evaluate ; that is, to compute a primal TSP tour and its total distance or

;

Compute the change in the objective function value: ;

IF 0 OR 0,1 , THEN {

Update the current seed solution , , ; that is, set ,

, and ;

IF ∗ THEN {

Update the best solution found so far ∗, ∗, ∗ ; that is, set ∗ ,

∗ and ∗ ;}

}

Increment the repetition counter by 1; that is, set 1;

END REPEAT;

Increment the temperature change counter by 1; that is, set 1;

Reduce the temperature according to the temperature reduction function ; that is, set

;

END REPEAT

Table 31 Pseudo-code of SA as a high-level methodology

In our implementation, we experimented with static value of . As to the temperature

change strategy, we experimented with cooling only. With respect to the form of the

temperature change function, we proposed a modification of the geometric

108

temperature reduction function suggested by Kirkpatrick et al. (1983). At the

beginning of simulated annealing search, we start with the initial temperature and heat

the system by doubling the temperature after each epoch until the epoch counter is less

than three or a better solution is found or
	 	 	

 is less than

0.6. Afterwards, cooling the system starts using , cooling schedule

proposed by Kirkpatrick et al. (1983). However, if for a number of iterations, say , if

a better neighbour has not been found the temperature is reset to the temperature where

the best solution is found and the cooling ratio is set to , until an improvement

occurs. Whenever an improvement occurs, i.e. a better solution is found the cooling

ratio is reset to . The empirical investigation showed that the appropriate cooling ratio

 is to 0.90 and is0.8 , as for the number of iterations , it depends on the

neighbourhood structure used. In other words, is set to the size of set of collection

of moves used in each neighbourhood structure. For example, if 1 is used to search,

the neighbourhood, is equal to four.

Choice of the transition mechanism: The transition mechanism is specified through

the choices of answers to the following questions: (1) how to search the neighbourhood

of the current seed solution - randomly or using a suitable method, sequentially or in

parallel? and (2) what criteria to use for updating the current seed solution, the first or

best improving neighbour? With respect to the first question, we generate randomly

and independently neighbours of the same seed solution or several different seed

solutions depending on whether the seed solution has been updated or not during

epoch 	 ; in sum, each time a neighbour is accepted, the search continues in the

neighbourhood of the new seed solution. As to the second question, we experimented

with both the first improving neighbour. In addition, we searched the neighbourhood

of the current seed solution sequentially when adopting the first improving neighbour

strategy for updating the seed.

Choice of the acceptance function (): Since SA is not a greedy algorithm, it accepts

a neighbour or solution as a new seed because either it is an improving one, or it is a

non-improving one but satisfies a second criterion, which could be either deterministic

(e.g., Dueck and Scheuer, 1990; Moscato and Fontanari, 1990) or stochastic (e.g.,

Kirkpatrick et al., 1983; Johnson et al., 1989; Brandimarte et al., 1987). In our

109

implementation, we experimented with the linear AF proposed by Johnson et al.

(1989).

Choice of the stopping criteria: Several stopping criteria can be used such as the

‘freezing’ state of the system is reached, a prespecified minimum value of the

temperature parameter is reached, the number of iterations or temperatures or epochs

reaches a prespecified number, computational time exceeds a prespecified time limit,

the maximum number of temperature changes without improvement of the current

seed is reached, the best objective function value found so far is not updated for a

prespecified number of iterations, etc. In our implementation, we experimented with

several stopping criteria and opted for both freezing’ state of the system is reached and

the maximum number of temperature changes without improvement of the current

seed is reached. When either of these criteria occurs, the search for the best neighbour

stops.

4.2.3. Tabu Search as a high-level search mechanism

Tabu search (TS) algorithms, first proposed by Glover (1986, 1989, 1990), are search

procedures that use attribute-based memory structures to constrain and free the search

process as needed along with aspiration criteria to override restrictions whenever

appropriate. TS main search strategy to avoid remaining stuck in a local optimum is to

forbid recent moves for a short while to reduce the likelihood of cycling, using a tabu

list or memory, for more details see section 2.5.1.III. The pseudo-code of the short-

term memory component-based design of TS algorithms customised to our application

is outlined in Table 32. This generic TS algorithm should be customised to our search

in the parameter space of GPILS. In the next section, the generic decisions for TS are

described.

4.2.4. Generic decisions for TS

Choice of the transition mechanism: In our implementation, the transition mechanism

is best described as a constrained steepest descent, where the adjective “constrained”

refers to the tabu restrictions.

110

Choice of the tabu list structure, the way to update it, and its size: Concerning the

structure of the tabu list, it is decision variables-oriented in that it is designed to include

information on the vector of parameters recently explored. As to the updating of the

tabu list, we used a first-in-first-out (FIFO) rule. Finally, concerning the size, we

experimented with static size for tabu list.

Initialisation Step

Choose an initial set of parameters of GPILS, , in the admissible parameter space and

compute the corresponding objective function value ; that is, the total distance of the

TSP tour constructed by GPILS using the set of parameters ;

Initialise the best solution found so far, say ∗, ∗, ∗ , by setting ∗ , ∗

 and ∗ ;

Specify the aspiration level function and initialise its value;

Choose the tabu list () size and initialise to the empty set ∅;

Set iteration counter to 0;

Iterative Step

REPEAT until stopping condition = true

Find a move in the set of applicable moves, say , so as to optimise the total

distance, say , of the TSP tour, say , constructed by GPILS using the set of parameters

over the neighbourhood of the current solution, say ;

IF or is not tabu THEN

Update the current seed solution , , ; that is, set , ,

and ;

ELSE

IF or is tabu but the aspiration criterion overrides its tabu status;

e.g., is better than the best vector of parameters found so far THEN

Update the current seed solution , , ;

ELSE

Find the best non-tabu move or neighbour – rather than an

improving one – in the neighbourhood of the current vector of parameters and update

the current seed solution , , ;

Update the tabu list ;

IF ∗ THEN update the best solution found so far ∗, ∗, ∗ ; that is, set

∗ , ∗ and ∗ ;

Increment iteration counter by 1; that is, set 1;

END REPEAT

Table 32 Pseudo-code of TS as a high-level methodology

111

Choice of the aspiration criteria: Regarding aspiration criteria, we opted for the

standard one; namely, the best objective function value achieved for all previous

moves.

Choice of the stopping criteria: Several stopping criteria can be used such as the

maximum number of iterations is reached, the maximum number of iterations without

improvement of the current seed is reached, the computational time exceeds a

prespecified time limit, the best objective function value found so far is not updated

for a prespecified number of iterations. In our implementation, we experimented with

several stopping criteria and opted for the maximum number of iterations without

improvement of the current seed is reached.

4.2.5. Variable neighbourhood search as a high-level search

mechanism

Variable neighbourhood search (VNS) algorithms, first proposed by Mladenovic and

Hansen (1997), are extensions of classical local search algorithms where attempts are

made to avoid getting trapped in a local optimum by systematically changing

neighbourhood structures during a local search process, for more details see section

2.5.1.IV. The pseudo-code of VNS customised to our application is outlined in Table

33.

This generic VNS algorithm should be customised to our search in the parameter space

of GPILS. We divide implementation decisions into problem-specific decisions and

generic decisions.

4.2.6. Generic decisions for VNS

What neighbourhood structures to use & how many of them? Any number of

neighbourhood structures and a variety of them could be used to guide the search in

the parameter space of GPILS. However, using neighbourhood structures with

different complexity, starting from simplest to more complex, is preferable. Moreover,

one can start the search with neighbourhood structures used to intensify the search and

continue with neighbourhood structures used to diversify the search.

112

Initialisation Step

Choose an initial set of parameters of GPILS, , in the admissible parameter space and

compute the corresponding objective function value ; that is, the total distance of the

TSP tour constructed by GPILS using the set of parameters ;

Initialise the best solution found so far, say ∗, ∗, ∗ , by setting ∗ , ∗

 and ∗ ;

Choose a set of neighbourhood structures to use and specify the order according to which they will

be used, say ; 1, … , ;

Choose the local search method to use in exploring neighbourhoods;

Initialise neighbourhood structure counter to 1;

Iterative Step

REPEAT until stopping condition = true

Randomly generate a neighbour, say	 , of the current vector of parameters or seed

according to the -th neighbourhood structure;

Explore the -th neighbourhood of using the chosen local search method and update

 accordingly;

IF this local optimum concerning the -th neighbourhood is better than the current seed

 THEN

Update the current seed solution , , ; that is, set , ,

and ;

IF ∗ THEN Update the best solution found so far ∗, ∗, ∗ ; that is, set

∗ , ∗ and ∗ ;

Reset neighbourhood structure counter to 1;

ELSE Increment neighbourhood structure counter by 1;

END REPEAT

Table 33 Pseudo-code of VNS as a high-level methodology

Choice of the transition mechanism to use: The transition mechanism is specified

through the choices of answers to the following questions:

(1) How to search a specific neighbourhood of the current seed solution?

In our implementation, we used random descent local search to search a

proportion of the neighbourhood of the current seed.

(2) What criteria to use for updating the current seed solution?

Concerning criteria to update the current seed, we experimented with best-

improving neighbour amongst equal or improving neighbours.

(3) What criteria to use for changing neighbourhoods?

113

Concerning changing the neighbourhood structure, we experimented with

_ _ strategy.

(4) In which order to search the neighbourhoods?

The neighbourhood structures are ordered based on their complexity,

intensification and diversification level, in non-decreasing order.

Choice of the Stopping Criteria: Our choice is similar to the one made above for TS.

4.3. Hybrid hyperheuristics

Each of the before mentioned sequential high-level mechanisms makes use of different

intensification and diversification strategies, hence, one can hybridise them to create a

better balance between these strategies. As it was mentioned in the previous section,

the implementation of the proposed HH-GPILS framework for the TSP requires two

types of decisions, namely problem-specific and generic. One might propose a hybrid

high-level framework by combining their generic decisions. We proposed several

hybrid hyperheuristics; namely hybrid of SA and TS, see Figure 31; hybrid of VNS

and TS, see Figure 32; and a hybrid of SA, VNS, and TS, see Figure 33. For the first

two hybrids, we incorporated a tabu list (TL) into SA and VNS, with the same

specification of the one used in TS. Furthermore, we used aspiration criteria used in

TS. In other words, if the new neighbour is Tabu but it satisfies the aspiration

criteria, its tabu status will be overwritten. As for the third hybrid, in addition to the

TL and the AC, we incorporated the neighbourhood change strategy of the VNS.

4.4. Hyperheuristics with intensification strategy

As it was mentioned in section 0, intensification strategies are used to search the

promising areas around local optima. One approach is to restart the search from a

(perturbed) local optima and improve it using different neighbourhood structures, for

several iterations, looking for a better neighbour.

114

Initialisation Step

Choose an initial set of parameters of GPILS, , in the admissible parameter space and

compute the corresponding objective function value ; that is, the total distance of the

TSP tour constructed by GPILS using the set of parameters ;

Initialise the best solution found so far, say ∗, ∗, 	 ∗ , by setting ∗ , ∗

 and ∗ ;

Choose an initial temperature 0 and set the current temperature ;

Adjust the temperature change counter 1;

Specify the aspiration level function and initialise its value;

Choose the tabu list () size and initialise to the empty set ∅;

Choose a set of neighbourhood structures to use and specify the order according to which they will

be employed, say ; 1, … , ;

Initialise neighbourhood structure counter to 1;

Initialise the restart counter to 0;

Iterative Step

REPEAT until stopping condition = true

Randomly generate a neighbour, say 	 , of the current vector of parameters or seed

 according to the -th neighbourhood structure, at the current temperature , ;

Set the repetition counter 0;

REPEAT until stopping condition = true // e.g.,

Generate randomly a neighbour of the current seed and call GPILS to evaluate

; that is, to compute a primal TSP tour and its total distance or ;

 is tabu THEN

IF is tabu but the aspiration criterion overrides its tabu status THEN

Update the current seed solution , , 	 ;

ELSE Find the best non-tabu move or neighbour – rather than an

improving one – in the neighbourhood of the current vector of parameters and

update the current seed solution , , 	 ;

Update the tabu list ;

Compute the change in the objective function value: ;

IF 0 OR 0,1 , THEN{

Update the current seed solution , , 	 ; that is, set , ,

and ;

IF ∗ THEN{

IF ∗ THEN{

Update the best solution found so far ∗, ∗, 	 ∗ ; that is, set ∗ ,

∗ and ∗ ;

115

Set ,

Set ∗ and 0.9;}

Reset neighbourhood structure counter to 1; }}

Increment the repetition counter by 1; that is, set 1;

END REPEAT;

Increment the temperature change counter by 1; that is, set 1;

Increment neighbourhood structure counter by 1;

IF THEN{

Reset neighbourhood structure counter to 1;

IF THEN{

Restart the search with the best solution found so far; that is set ∗,

∗, and ∗;

Reset the temperature to ∗;

Increment restart counter by 1;

Set ;}

ELSE Return the best solution found so far ∗, ∗, 	 ∗ ;

 ELSE Reduce the temperature according to the temperature reduction function:	 ;

END REPEAT

Table 34 Pseudocode for hybrid of SA, TS, and VNS with restart

Thus, to exploit the promising areas in the neighbourhood of the current local optima,

we used an intensification strategy for all the proposed sequential HH-GPILS where it

restarts the search with the best solution found so far, after several iterations with no

improvements, see Table 34. Note however that the neighbourhood structure used

allows the search to explore new paths in the search space. Therefore, the

intensification is likely to reach new local optimum. Moreover, we added new stopping

criterion to the previous stopping criteria chosen for each of the sequential based HH-

GPILS, namely stopping the search when no better solution is found for a number of

restarts, say .

116

Figure 31 Hybrid of SA and TS

Initialize &

Implementation
Decisions

Start

(Near) optimal
Solution

N

Stop

∗ & ∗

Set 0 &	

Set 1

Yes

Set 0

Compute

 0 or
0,1

,

 &

∗

∗ & ∗

Yes

1

1

No

No

Yes

No

Initialize to the empty set ∅

Set I 1

 is tabu?

Aspiration
criterion satisfied?

Yes

Find the best non-tabu solution
∈

No

Yes

N
Yes

Generate a random neighbor
of ;

117

Figure 32 Hybrid of VNS and TS

Initialize &

Implementation
Decisions

Start

(Near) optimal
Solution

Termination?

No

Stop

∗ & ∗

Yes

Termination?

RDLS , ;

Acceptance

∗

∗
∗

Yes

No

No

Yes

No

Initialize to the empty set ∅

Set I 1

 is tabu?

Aspiration
criterion satisfied?

Yes

Find the best non-tabu solution
in the neighbourhood of the

current solution

No

Ye

No

1

Yes

Generate a random neighbour
of ;

118

Figure 33 Hybrid of SA, TS, and VNS

Initialize &

Implementation
Decisions

Start

(Near) optimal
Solution

Termination?

No

Stop

∗ & ∗

Set 0 &	

Set 1

Yes

Set 0

Generate a random neighbor
∈

Compute

 0 or
0,1

,

∗

∗
∗

Yes

1

1

No

No

Yes

No

Initialize to the empty set ∅

Set I 1

 is tabu?

Yes

Find the best non-tabu solution
∈

No

Ye

No

1

Yes

Aspiration
criterion

119

4.5. Empirical investigation

This section presents a comparative analysis of the proposed sequential

hyperheuristics, which automate the choice of parameters of GPILS. We investigate

the performance of the proposed methods by following three stages. First, we show

the empirical results of each method separately and later we compare their

performance. Second, we compare the proposed HH-GPILS with the DLS developed

by Ouenniche et al. (2017), which has some similarities (i.e. the infeasible nature of

the search) with our proposed method. This comparison proves that using a

hyperheuristic to automate the set of parameters could lead to better performing

heuristics in comparison to the tailor-made ones. Finally, we show a comparison

between the best three sequential HH-GPILS and the relevant benchmark. This

comparison showed that HH-GPILS is a promising design.

4.5.1. Experimental setup

In this chapter, we experimented with sequential methodologies, namely SA, TA, VNS

and their hybrids. We divided the implementation decisions of these hyperheuristics

to problem-specific and generic decisions, as it was explained throughout this chapter.

These decisions are shown in Table 35. The choice of each of these decisions is

specified hereafter.

For the choice of the parameters space of GPILS in this empirical investigation, we

reduced the size of the admissible vector of parameters to keep the computational

requirements reasonable. Note that this limitation of search space might reduce the

quality of the solution obtained. In our empirical investigation, we imposed bounds on

some of the parameters, while fixing the values of other parameters. Parameters of

HH-GPILS are as follows:

Parameters of the bounding scheme

 PM: Nearest neighbour; arbitrary insertion; nearest insertion; farthest insertion;

cheapest insertion; Clarke and Wright; nearest merger

 IM: {AP, PIH }

 Parameters of PIH

120

Type of

Decisions
Decision High-Level Methodology

Problem-

specific

Parameters’ space SA/ VNS / TS

Initial set of parameters of GPILS SA/ VNS / TS

Neighbourhood structure or type of moves to use SA/ VNS / TS

Optimisation function SA/ VNS / TS

Generic

Initial temperature SA

Cooling schedule SA

Transition mechanism SA/ VNS / TS

Acceptance function (AF) SA

Tabu list structure TS

Aspiration criteria (AC) TS

Neighbourhood structures to use and how many

of them
VNS

Stopping criteria SA/ VNS / TS

Table 35 HH-GPILS high-level decisions

• : 	1, … , 	 3

• 1

• : -means ()

• DRC: Construction heuristic similar to PM

• Imp:{0, 1}

• IM: Classic local search

• NS: 2-opt; 3-opt; Or-opt

Parameters of Type I move

 Breaking operation

• s: 1,… , 	5

• _ _ : Random; shortest/ largest subtours; smallest/

largest subtours; closest/ farthest subtours; cheapest/ most expensive cost of

merging pair of subtours

• r: 1, 	 … , 	5	 (if | | then r | | 1)

• _ _ _ _ : -NN (5; if then

2)

 Patching operation

121

• type_of_patching_operation=1

• Initialisation step

• :	1, … ,

• _ _ _ _ : Largest / smallest;

longest/ shortest; closest/ farthest; cheapest/expensive merging cost

• _ : Saving procedure; nearest merger

• _ _ 0

• Iterative patching

• 	: 0,1

• _ _ _ _ : Largest / smallest; longest/

shortest; closest/ farthest;

• _ : Cheapest Insertion

• _ _ 0

• _ _ _ : Cost of the subtour

Parameters of Type II move

 T2M: 2-opt; 3-opt; ; Or-opt

 _ _ : Local search

 _ _ : Cost or total distance of the component

Note that, we also used ‘reinforced improvement’ with some probability (0.7). In other

words, after improving the infeasible component by the chosen T2M, we improved the

infeasible component using a different T2M, again.

Other parameters of GPILS

 : Cost or total distance of the component

 INS: IBN

Parameters of the primal space exploration

 _ _ 0

For the choice of the neighbourhood structures, we experimented with NS1 and NS2

to search the parameter space of GPILS. As for the decision rules, we experimented

with several decision rules, see Table 36.

122

 Option

 or/and

 option 0

 option 0

Table 36 Decision rules

The rest of the decisions presented in Table 35 are explained in the previous sections,

however, their parameters are as follows.

 Number of trial runs: 20

 40

 0.9, 0.8

 0.1

 | | 15

 3

In order to understand the effect of initialising the infeasible solution using either AP

or PIH, first, for all proposed HH-GPILS methods, we experimented with fixing	

to either AP or PIH. The empirical results show that initialising the infeasible solution

with PIH has higher quality than initialising with AP. Furthermore, for the proposed

SA and TS based HH-GPILS, we experimented with NS1 and NS2 separately and for

the VNS-based HH-GPILS we experimented with both NS1 and NS2, one after the

other. In general, 2 perform better than	 1, since has higher level of diversity.

4.5.2. Experimental results

The statistics presented in this section are the performance of the hyperheuristic

calculated as average percentage increase over the optimal solution (i.e.

	 	

	
100%) and also the computational time (in seconds) for a

number of runs (i.e. in this investigation 5 runs). Note that is measured as the

performance of the proposed HH is measured as average percentage increase over the

optimal solution. In Table 37-40 and 43-44, the first column shows the instances

solved, the rest of the columns are divided into three sets showing the results for three

experiments. For the first experiment, we fixed IM to AP, for the second experiment

we fixed IM to PIH, and for the third we did not fix IM. In each set of experiments,

123

the first column shows the results where only NS1 neighbourhood structure is used in

HH-GPILS and the second column shows the results where only NS2 neighbourhood

structure is used. In Tables 41-42 and 45 to 52, each of the columns show the results

of the following experiments:

1. First experiment: parameter IM is fixed to AP;

2. Second experiment: parameter IM is fixed to AP;

3. Third experiment: parameter IM is not fixed.

In these three experiments, NS1 and NS2 neighbourhood structures are used, one after

another. Hereafter, we shall discuss the performance of the proposed hyperheuristics.

The results obtained by SA-based HH-GPILS are shown in Table 37 and 38, reporting

its performance and computational time, respectively. From these statistics, one can

conclude:

Instance
	 	 	 ,

NS1 NS2 NS1 NS2 NS1 NS2
eil51 0.00% 0.05% 0.09% 0.00% 0.19% 0.00%
eil76 0.22% 0.04% 1.08% 0.45% 1.12% 0.59%
pr76 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

kroA100 0.00% 0.00% 0.07% 0.00% 0.01% 0.00%
kroB100 0.00% 0.00% 0.07% 0.00% 0.15% 0.00%
kroC100 0.00% 0.00% 0.10% 0.02% 0.18% 0.02%
kroD100 0.00% 0.00% 0.12% 0.06% 0.23% 0.00%
kroE100 0.00% 0.00% 0.04% 0.00% 0.00% 0.00%
eil101 0.79% 0.73% 1.14% 0.70% 1.30% 0.99%
pr107 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
pr124 0.00% 0.00% 0.00% 0.00% 0.02% 0.00%
ch130 0.15% 0.18% 1.06% 0.32% 0.54% 0.36%
pr136 0.04% 0.03% 0.03% 0.00% 0.01% 0.00%
pr144 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ch150 0.35% 0.25% 0.73% 0.52% 0.95% 0.58%

kroA150 0.17% 0.14% 0.58% 0.45% 0.66% 0.40%
kroB150 0.04% 0.02% 0.35% 0.14% 0.24% 0.20%

pr152 0.00% 0.00% 0.07% 0.00% 0.11% 0.04%
kroA200 0.51% 0.68% 0.80% 0.59% 0.74% 0.71%
kroB200 0.59% 0.46% 1.49% 0.92% 1.30% 0.60%

Average 0.14% 0.13% 0.39% 0.21% 0.39% 0.22%

Median 0.00% 0.01% 0.10% 0.01% 0.18% 0.01%
Std 0.23% 0.22% 0.47% 0.28% 0.45% 0.30%

Table 37 Performance of SA-based HH-GPILS

124

Instance
	 	 	 ,

NS1 NS2 NS1 NS2 NS1 NS2
eil51 184 50 57 110 50 326
eil76 250 143 119 240 57 538
pr76 243 104 76 169 52 434

kroA100 409 293 117 353 148 696
kroB100 407 336 101 282 134 688
kroC100 533 294 252 338 159 593
kroD100 438 390 382 329 203 834
kroE100 372 367 153 382 179 602
eil101 458 453 285 646 177 617
pr107 680 536 229 498 435 452
pr124 512 591 395 568 223 763
ch130 613 1359 438 833 379 1641
pr136 816 1318 326 721 674 825
pr144 733 1104 372 901 360 1551
ch150 878 1360 440 1097 426 2084

kroA150 1255 1167 395 963 503 1777
kroB150 1371 1174 581 785 672 1977

pr152 904 641 729 757 720 1473
kroA200 1230 1330 878 1368 1721 1391
kroB200 1013 1211 537 1055 1848 2702

Table 38 Computation time of SA-based HH-GPILS

 Only considering PIH to initialise the infeasible solution (fixing IM to PIH)

one can obtain better quality solutions;

 Furthermore, using NS2 neighbourhood structure to search the infeasible space

has a better performance than NS1 neighbourhood structure in terms of quality

of the solution, although it is more time consuming than NS1;

 Overall, SA-based HH-GPILS using NS2 neighbourhood structure and

parameter IM fixed to PIH is performing better than the others, with average

0.3%, median 0.1% and standard deviation 0.22%;

 As for the computational time, fixing parameter IM to AP seems to be seems

to be more efficient. The reason is that the parameters of PIH are not

considered in the parameters search space.

Table 39 and 40 report TS-based HH-GPILS performance and computational time,

respectively. From these experiments following conclusions can be drawn:

 Fixing IM to PIH has better performance than the others. In other words,

initialising the infeasible solution using PIH could lead to better results;

125

 Using NS2 neighbourhood structure provides a better solution in comparison

to NS1 neighbourhood structure, however in terms of computational time NS1

is more efficient;

 Overall, TS-based HH-GPILS with NS2 neighbourhood structure and

parameter IM fixed to PIH has better performance than the others, with average

0.13%, median 0.0% and standard deviation %0.22;

 Searching the parameters space of the GPDLS using NS1 neighbourhood

structure leads to good quality solutions much faster than NS2 and combination

of NS1 and NS2;

 Furthermore, TS-based HH-GPILS with NS1 neighbourhood structure and

parameter 	set to , produces good quality solutions in faster than

the other settings.

Instance
	 	 	 ,

NS1 NS2 NS1 NS2 NS1 NS2
eil51 0.23% 0.00% 0.23% 0.19% 0.00% 0.09%
eil76 0.33% 0.45% 1.08% 0.63% 0.37% 0.48%
pr76 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
kroA100 0.00% 0.00% 0.07% 0.06% 0.00% 0.02%
kroB100 0.00% 0.00% 0.09% 0.05% 0.00% 0.00%
kroC100 0.00% 0.00% 0.09% 0.02% 0.04% 0.02%
kroD100 0.17% 0.00% 0.36% 0.09% 0.08% 0.13%
kroE100 0.00% 0.00% 0.12% 0.00% 0.00% 0.00%
eil101 0.86% 0.83% 1.05% 1.18% 0.92% 1.02%
pr107 0.01% 0.00% 0.05% 0.00% 0.00% 0.00%
pr124 0.02% 0.00% 0.02% 0.00% 0.00% 0.00%
ch130 0.40% 0.20% 1.10% 0.54% 0.54% 0.55%
pr136 0.09% 0.04% 0.25% 0.00% 0.01% 0.04%
pr144 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ch150 0.52% 0.34% 0.65% 0.62% 0.56% 0.64%
kroA150 0.52% 0.16% 0.72% 0.59% 0.48% 0.35%
kroB150 0.02% 0.02% 0.28% 0.31% 0.24% 0.13%
pr152 0.00% 0.00% 0.11% 0.11% 0.07% 0.04%
kroA200 0.55% 0.42% 0.78% 0.76% 0.69% 0.73%
kroB200 0.87% 0.20% 1.10% 1.27% 0.77% 1.07%
Average 0.23% 0.13% 0.41% 0.32% 0.24% 0.27%
Median 0.05% 0.00% 0.24% 0.10% 0.06% 0.07%
Std 0.29% 0.22% 0.41% 0.39% 0.30% 0.35%

Table 39 Performance of TS-based HH-GPILS

From the proposed VNS-based HH-GPILS, shown in Table 41 and 42, one can

conclude:

126

 Overall, VNS-based HH-GPILS with parameter IM fixed to PIH is performing

better than the others, with average 0.16%, median 0.01% and standard

deviation %0.25;

 As for computational time setting IM to PIH is the most time-consuming

option.

The results of the experiments for the proposed hybrid of SA and TS based HH-GPILS

are shown in Table 43 and 44. From these experiments, one can conclude:

 Overall using neighbourhood structure NS1 is not sufficient, although

computationally it is more efficient than;

 Fixing to and using only NS2 neighbourhood structure is performing

better, with average 0.187%, median 0.086% and standard deviation %0.25.

 On the other hand, fixing to and using only NS1 neighbourhood

structure produces good quality solutions much faster than the other

experiments.

Instance
	 	 	 ,

NS1 NS2 NS1 NS2 NS1 NS2
eil51 53 88 35 88 50 114
eil76 271 206 84 206 38 190
pr76 83 87 71 87 48 126

kroA100 129 198 145 198 71 353
kroB100 180 251 117 251 70 312
kroC100 231 278 105 278 77 431
kroD100 131 356 94 356 49 286
kroE100 110 205 129 205 84 283
eil101 256 259 218 259 102 551
pr107 206 450 167 450 89 412
pr124 427 447 381 447 102 467
ch130 563 900 371 900 190 824
pr136 305 598 158 598 202 696
pr144 313 870 371 870 247 796
ch150 904 932 536 932 231 788

kroA150 768 875 422 875 449 724
kroB150 928 1089 533 678 351 1235

pr152 875 668 294 668 252 1007
kroA200 990 1715 1078 1715 456 2521
kroB200 1238 1043 788 1043 686 2486

Table 40 Computaional time of TS-based HH-GPILS

127

Instance 	 	
	

,
eil51 0.05% 0.00% 0.00%
eil76 0.34% 0.48% 0.56%
pr76 0.00% 0.00% 0.00%
kroA100 0.00% 0.00% 0.02%
kroB100 0.00% 0.00% 0.03%
kroC100 0.00% 0.00% 0.04%
kroD100 0.00% 0.09% 0.05%
kroE100 0.00% 0.00% 0.00%
eil101 0.92% 0.92% 0.60%
pr107 0.00% 0.00% 0.03%
pr124 0.00% 0.00% 0.00%
ch130 0.30% 0.40% 0.32%
pr136 0.02% 0.00% 0.03%
pr144 0.00% 0.00% 0.00%
ch150 0.42% 0.55% 0.56%
kroA150 0.24% 0.46% 0.29%
kroB150 0.02% 0.21% 0.11%
pr152 0.00% 0.09% 0.00%
kroA200 0.63% 0.70% 0.56%
kroB200 0.24% 0.84% 0.67%
Average 0.16% 0.24% 0.19%
Median 0.01% 0.05% 0.04%
Std 0.25% 0.31% 0.25%

Table 41 Performance of VNS-based HH-GPILS

Instance 	 	
	

,
eil51 184 383 83
eil76 508 195 253
pr76 243 135 180
kroA100 409 548 353
kroB100 407 405 172
kroC100 533 558 437
kroD100 438 461 492
kroE100 372 559 318
eil101 458 530 985
pr107 680 663 302
pr124 512 600 863
ch130 613 1146 942
pr136 816 818 1019
pr144 733 863 864
ch150 878 1168 1516
kroA150 1255 936 1608
kroB150 1336 1116 1484
pr152 904 747 1210
kroA200 2058 1795 1561
kroB200 2039 1850 1856

Table 42 Computational time of VNS-based HH-GPILS

128

Instance
	 	 	 ,

NS1 NS2 NS1 NS2 NS1 NS2
eil51 0.24% 0.24% 0.42% 0.05% 0.42% 0.24%
eil76 0.93% 0.41% 0.89% 0.74% 1.12% 0.22%
pr76 0.14% 0.00% 0.00% 0.00% 0.00% 0.00%

kroA100 0.02% 0.00% 0.10% 0.02% 0.01% 0.00%
kroB100 0.09% 0.00% 0.15% 0.00% 0.36% 0.00%
kroC100 0.22% 0.00% 0.23% 0.02% 0.20% 0.02%
kroD100 0.22% 0.09% 0.25% 0.13% 0.16% 0.03%
kroE100 0.01% 0.00% 0.04% 0.00% 0.19% 0.00%
eil101 1.37% 0.95% 1.81% 0.86% 1.59% 1.15%
pr107 0.04% 0.00% 0.06% 0.03% 0.07% 0.03%
pr124 0.05% 0.02% 0.05% 0.00% 0.02% 0.00%
ch130 0.60% 0.19% 0.96% 0.63% 1.02% 0.48%
pr136 0.45% 0.08% 0.06% 0.04% 0.10% 0.02%
pr144 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ch150 0.54% 0.48% 1.04% 0.55% 1.05% 0.63%

kroA150 0.64% 0.16% 0.75% 0.57% 0.42% 0.39%
kroB150 0.10% 0.10% 0.24% 0.07% 0.21% 0.09%

pr152 0.04% 0.00% 0.22% 0.00% 0.20% 0.07%
kroA200 1.06% 0.50% 1.50% 0.62% 0.58% 0.75%
kroB200 1.08% 0.53% 1.20% 1.15% 0.93% 0.84%
Average 0.39% 0.19% 0.50% 0.28% 0.43% 0.25%
Median 0.22% 0.09% 0.23% 0.05% 0.21% 0.05%

Std 0.41% 0.25% 0.54% 0.36% 0.45% 0.34%

Table 43 Performance of Hybrid of SA and TS

Instance
	 	 	 ,

NS1 NS2 NS1 NS2 NS1 NS2
eil51 30 32 142 142 57 30
eil76 45 73 384 384 54 105
pr76 37 57 191 191 100 110

kroA100 53 223 294 294 240 125
kroB100 40 170 392 392 82 231
kroC100 49 258 397 397 109 349
kroD100 90 314 460 460 134 516
kroE100 32 276 303 303 110 157
eil101 78 169 356 356 86 369
pr107 100 254 673 673 134 714
pr124 89 719 489 489 130 261
ch130 503 852 569 655 228 750
pr136 378 398 620 620 205 856
pr144 320 1077 940 940 176 383
ch150 190 693 1005 1136 442 924

kroA150 253 932 998 741 560 606
kroB150 724 748 977 874 971 266

pr152 251 304 991 893 351 422
kroA200 727 1565 1953 2548 1041 1603
kroB200 445 1107 1535 3284 638 1724

Table 44 Computational time of Hybrid of SA and TS

129

Instance 	 	
	

,
eil51 0.00% 0.00% 0.05%
eil76 0.22% 0.37% 0.59%
pr76 0.00% 0.00% 0.00%

kroA100 0.00% 0.00% 0.00%
kroB100 0.00% 0.00% 0.00%
kroC100 0.00% 0.04% 0.00%
kroD100 0.00% 0.08% 0.00%
kroE100 0.00% 0.00% 0.00%
eil101 0.79% 0.92% 0.57%
pr107 0.00% 0.00% 0.00%
pr124 0.00% 0.00% 0.00%
ch130 0.15% 0.54% 0.44%
pr136 0.04% 0.01% 0.00%
pr144 0.00% 0.00% 0.00%
ch150 0.35% 0.56% 0.47%

kroA150 0.17% 0.48% 0.40%
kroB150 0.04% 0.24% 0.25%

pr152 0.00% 0.07% 0.04%
kroA200 0.51% 0.69% 0.67%
kroB200 0.36% 0.77% 0.46%
Average 0.13% 0.24% 0.20%
Median 0.00% 0.06% 0.02%

Std 0.21% 0.30% 0.24%

Table 45 Performance of Hybrid of VNS and TS with shaking

Instance 	 	
	

,
eil51 184 383 83
eil76 508 195 253
pr76 243 135 180

kroA100 409 548 353
kroB100 407 405 172
kroC100 533 558 437
kroD100 438 461 492
kroE100 372 559 318
eil101 458 530 985
pr107 680 663 302
pr124 512 600 863
ch130 613 1146 942
pr136 816 818 1019
pr144 733 863 864
ch150 878 1168 1516

kroA150 1255 936 1608
kroB150 1336 1116 1484

pr152 904 747 1210
kroA200 2058 1795 1561
kroB200 2039 1850 1856

Table 46 Computational time of Hybrid of VNS and TS with shaking

As for the hybrid of VNS and TS based HH-GPILS, we experimented with the effect

of shaking procedure where the current solution is perturbed by randomly changing

130

two random parameters of the set, see Table 45 and 46. Moreover, we experimented

with the hybrid of VNS and TS without the shaking procedure, see Table 47 and 48.

From the obtained results the following conclusions can be drawn:

 This HH-GPILS method with fixed to is performing better, in terms

of quality of the solutions, in both experiments, with (average 0.13%, median

0.0% and standard deviation 0.21%) or without shaking procedure (average

0.153% and median 0.012% and standard deviation 0.21%);

 However, the hybrid of VNS and TS with shaking procedure has better

performance in terms of quality of the solutions than the one without shaking.

 As for computational time, the hybrid without shaking is performing much

better than the hybrid with shaking;

 In general, the hybrid of VNS and TS without shaking procedure and with fixed

 to is computationally more efficient.

Results of the hybrid SA and VNS based HH-GPILS is shown in Table 49 and 50.

From the results, one can conclude:

 Fixing IM to PIH results in better performance, in terms of both quality of the

solution and computational time, in comparison with the others, with average

0.18%, median 0.01% and standard deviation 0.28%.

Table 51 and 52 show the results for the hybrid of SA, VNS and TS based HH-GPILS.

From this table one can conclude:

 By fixing IM to PIH, this hyperheuristic obtains better results, with an average

of 0.18%, median 0.03% and standard deviation %0.26.

 On the other hand, fixing IM to AP, this hybrid is more efficient in terms of

computational time.

131

Instance 	 	
	

,
eil51 0.00% 0.09% 0.09%
eil76 0.48% 0.89% 0.78%
pr76 0.00% 0.00% 0.00%

kroA100 0.00% 0.04% 0.02%
kroB100 0.00% 0.05% 0.03%
kroC100 0.00% 0.10% 0.08%
kroD100 0.01% 0.03% 0.03%
kroE100 0.00% 0.00% 0.00%
eil101 0.60% 1.02% 1.08%
pr107 0.01% 0.02% 0.03%
pr124 0.00% 0.00% 0.00%
ch130 0.30% 0.78% 0.71%
pr136 0.05% 0.14% 0.04%
pr144 0.00% 0.00% 0.00%
ch150 0.42% 0.93% 0.42%

kroA150 0.15% 0.48% 0.38%
kroB150 0.06% 0.20% 0.17%

pr152 0.00% 0.07% 0.04%
kroA200 0.60% 0.95% 0.73%
kroB200 0.36% 1.13% 1.30%
Average 0.15% 0.35% 0.30%
Median 0.01% 0.10% 0.06%

Std 0.21% 0.41% 0.39%

Table 47 Performance of Hybrid of VNS and TS without shaking

Instance 	 	
	

,
eil51 130 146 19
eil76 178 102 58
pr76 67 97 67

kroA100 202 244 160
kroB100 219 329 172
kroC100 134 517 234
kroD100 246 311 243
kroE100 199 312 212
eil101 309 550 166
pr107 267 570 302
pr124 323 620 417
ch130 651 788 463
pr136 270 598 621
pr144 394 764 385
ch150 616 772 345

kroA150 480 929 330
kroB150 583 753 504

pr152 524 357 461
kroA200 888 2643 773
kroB200 1112 2455 1394

Table 48 Computational time of Hybrid of VNS and TS without shaking

132

Instance 	 	
	

,
eil51 0.14% 0.00% 0.09%
eil76 0.22% 0.67% 0.30%
pr76 0.00% 0.00% 0.00%

kroA100 0.00% 0.00% 0.00%
kroB100 0.00% 0.00% 0.00%
kroC100 0.00% 0.04% 0.04%
kroD100 0.00% 0.17% 0.00%
kroE100 0.00% 0.00% 0.00%
eil101 0.95% 1.18% 0.95%
pr107 0.00% 0.00% 0.00%
pr124 0.00% 0.00% 0.00%
ch130 0.33% 0.52% 0.27%
pr136 0.04% 0.03% 0.00%
pr144 0.00% 0.00% 0.00%
ch150 0.36% 0.47% 0.49%

kroA150 0.23% 0.29% 0.32%
kroB150 0.02% 0.22% 0.08%

pr152 0.00% 0.07% 0.04%
kroA200 0.61% 0.55% 0.62%
kroB200 0.78% 1.21% 0.62%
Average 0.18% 0.27% 0.19%
Median 0.01% 0.06% 0.04%

Std 0.28% 0.37% 0.27%

Table 49 Performance of Hybrid of SA and VNS

Instance 	 	
	

,
eil51 28 122 66
eil76 138 229 249
pr76 248 132 155

kroA100 336 325 370
kroB100 496 548 213
kroC100 267 419 261
kroD100 632 458 292
kroE100 489 347 219
eil101 530 341 409
pr107 431 595 561
pr124 586 582 615
ch130 742 730 714
pr136 895 649 589
pr144 822 745 915
ch150 932 734 989

kroA150 1103 1450 1119
kroB150 1038 996 1075

pr152 644 1241 1097
kroA200 1336 2761 2217
kroB200 1780 1745 1731

Table 50 Computational time of Hybrid of SA and VNS

133

Instance 	 	
	

,
eil51 0.14% 0.09% 0.09%
eil76 0.52% 0.67% 0.26%
pr76 0.00% 0.00% 0.00%

kroA100 0.00% 0.00% 0.00%
kroB100 0.00% 0.00% 0.00%
kroC100 0.00% 0.14% 0.04%
kroD100 0.01% 0.08% 0.11%
kroE100 0.00% 0.00% 0.00%
eil101 0.95% 0.89% 1.18%
pr107 0.00% 0.00% 0.00%
pr124 0.00% 0.00% 0.00%
ch130 0.23% 0.48% 0.48%
pr136 0.07% 0.06% 0.02%
pr144 0.00% 0.00% 0.00%
ch150 0.38% 0.79% 0.56%

kroA150 0.44% 0.48% 0.39%
kroB150 0.05% 0.19% 0.15%

pr152 0.00% 0.07% 0.09%
kroA200 0.53% 0.95% 0.84%
kroB200 0.34% 1.05% 0.77%
Average 0.18% 0.30% 0.25%
Median 0.03% 0.09% 0.09%

Std 0.26% 0.36% 0.34%

Table 51 Performance of Hybrid of SA, VNS and TS

Instance 	 	
	

,
eil51 85 31 27
eil76 296 61 110
pr76 167 65 185

kroA100 253 78 223
kroB100 333 86 262
kroC100 249 98 379
kroD100 265 102 197
kroE100 285 114 177
eil101 404 167 307
pr107 370 173 562
pr124 478 182 569
ch130 606 203 1469
pr136 453 217 440
pr144 607 269 448
ch150 614 344 373

kroA150 822 355 935
kroB150 941 401 764

pr152 720 637 551
kroA200 1407 999 1521
kroB200 2022 753 1160

Table 52 Computational time of Hybrid of SA, VNS and TS

134

The average and median of all proposed sequential HH-GPILS are shown in Figure

34. To conclude, from this figure and the analysis above the following conclusions can

be drawn:

 Overall, sequential hyperheuristics provide good quality solutions, on average

less than 0.5% increase over the optimal.

 Amongst the proposed hyperheuristics, SA-based HH-GPILS has the best

performance, with a minimum overall average of 0.128% () and a

maximum overall average of 0.392% ().

 In general, by fixing IM to PIH one can improve the quality of the HH-GPILS.

 Overall, neighbourhood structure NS2, in comparison with NS1, provides

better quality solutions. The reason is that the diversification level of NS2 is

higher than the diversification level of NS1. Thus, NS1 gets stuck in local

optima more often. However, SA-based HH-GPILS, using NS1 and IM fixed

to PIH, provides good quality solutions, with an average of 0.143% and a

median of 0.0%. The reason is that the SA’s acceptance function allows

temporary acceptance of deteriorating solutions based on a probability that

depends on the temperature.

 The best nine of the proposed HH-GPILS are the ones with fixed IM to PIH,

and as for neighbourhood structures they all, except the fourth one SA-based

HH-GPILS using 1, are using neighbourhood structures 2

or	 1, 2 .

 However, in terms of computational time, in general, setting IM to AP and

using NS1 is more efficient.

4.5.3. Sequential HH-GPILS in comparison with DLS

In this section, we shall compare the proposed HH-GPILS with DLS developed by

Ouenniche et al. (2017). In order to compare DLS with HH-GPILS, we classified all

the results of to Ouenniche et al. (2017) in three categories depending on the choice of

parameters and 	 : 	2, 1, 1 , 	2, 2, 1 and

	3, 1, 1	 	 1 . In each category, we only chose the minimum average

increase over optimal amongst all. Figure 35 shows the average increase over optimal

solution for the above mentioned DLS categories by Ouenniche et al. (2017), which is

135

shown by green bars, and all the proposed sequential HH-GPILS are shown by blue

bars.

Figure 34 Average and median of all proposed sequential HH-GPILS

0.000% 0.100% 0.200% 0.300% 0.400% 0.500%

GA Pc=.5, Pm=.01 IM=PIH

SA NS2 IM=PIH

VNS‐TS‐shaking NS1&2 IM=PIH

TS NS2 IM=PIH

SA NS1 IM=PIH

VNS‐TS NS1&2 IM=PIH

VNS NS1&2 IM=PIH

GA Pc=.5, Pm=.01 IM={AP,PIH}

SA‐TS‐VNS NS1&2 IM=PIH

SA‐VNS NS1&2 IM=PIH

SA‐TS NS2 IM=PIH

SA‐VNS NS1&2 IM={AP,PIH}

VNS NS1&2 IM={AP,PIH}

VNS‐TS‐shaking NS1&2 IM={AP,PIH}

SA NS2 IM=AP

SA NS2 IM={AP,PIH}

TS NS1 IM=PIH

VNS NS1&2 IM=AP

TS NS1 IM={AP,PIH}

VNS‐TS‐shaking NS1&2 IM=AP

SA‐TS NS2 IM={AP,PIH}

SA‐TS‐VNS NS1&2 IM={AP,PIH}

GA Pc=.5, Pm=.01 IM=AP

TS NS2 IM={AP,PIH}

SA‐VNS NS1&2 IM=AP

SA‐TS NS2 IM=AP

VNS‐TS NS1&2 IM={AP,PIH}

SA‐TS‐VNS NS1&2 IM=AP

TS NS2 IM=AP

VNS‐TS NS1&2 IM=AP

SA NS1 IM={AP,PIH}

SA‐TS NS1 IM=PIH

SA NS1 IM=AP

TS NS1 IM=AP

SA‐TS NS1 IM={AP,PIH}

SA‐TS NS1 IM=AP

Median Average

136

Recall that the set of parameters used by GPILS is not restricted as was the case with

Ouenniche et al. (2017). From this figure, the following conclusions can be drawn:

 Overall, sequential HH-GPILS is performing better in comparison with DLS.

 DLS with parameters 	2, 1, 1 is producing better solutions in

comparison with parameters 	2, 2, 1 and	 	3, 1,

1	 	 1 . However, this observation does not mean that lower value of

and perform better. The preliminary results showed that, depending on the

instance of the TSP, higher values could lead to better solutions.

In general, using a hyperheuristic methods to automate the choice of parameters of the

GPILS could lead to better solutions than tailor-made methods such as DLS.

4.5.4. Sequential HH-GPILS in comparison with primal

methodologies

In this section a comparison between the best three sequential HH-GPILS and the

relevant benchmark is presented. Table 53 and Figure 36 illustrate the results. In Table

53, the first column shows the instances of the TSP and the rest of the columns show

the percentage increase over the optimal solution of each method. The best three

sequential HH-GPILS are:

1. SA -based HH-GPILS (using NS2 and fixed to) is shown in the

second column as SA HH-GPILS;

2. Hybrid of VNS and TS HH-GPILS (with shaking and fixed to) is

shown in the third column as VNS-TS HH-GPILS;

3. TS-based HH-GPILS (using NS2 and fixed to) is shown in the fourth

column as TS HH-GPILS;

and the benchmark methods are as follows:

1. Metaheuristic for randomized priority search (Meta-RaPS) proposed by DePuy

et al. (2005) is shown in the fifth column;

2. Adaptive TS (ATS) proposed by Suwannarongsri and Puangdownreong (2012)

is shown in the sixth column;

137

3. Parallel Adaptive TS (PATS) approach proposed by He et al. (2005) is shown

in the seventh column;

4. Adaptive SA with greedy search (ASA-GS) proposed by Geng et al. (2011) is

shown in the eighth column;

5. Generalised chromosome GA (GCGA) proposed by Yang et al. (2008) is

shown in the ninth column.

Figure 35 Sequential HH-GPILS in comparison with DLS

0.0% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6%

SA NS1&2 IM=PIH

VNS‐TS‐shaking NS1&2 IM=PIH

TS NS1&2 IM=PIH

SA NS1 IM=PIH

VNS‐TS NS1&2 IM=PIH

VNS NS1&2 IM=PIH

SA‐TS‐VNS NS1&2 IM=PIH

SA‐VNS NS1&2 IM=PIH

SA‐TS NS1&2 IM=PIH

SA‐VNS NS1&2 IM={AP,PIH}

VNS NS1&2 IM={AP,PIH}

VNS‐TS‐shaking NS1&2 IM={AP,PIH}

SA NS1&2 IM=AP

SA NS1&2 IM={AP,PIH}

TS NS1 IM=PIH

VNS NS1&2 IM=AP

TS NS1 IM={AP,PIH}

VNS‐TS‐shaking NS1&2 IM=AP

SA‐TS NS1&2 IM={AP,PIH}

SA‐TS‐VNS NS1&2 IM={AP,PIH}

TS NS1&2 IM={AP,PIH}

SA‐VNS NS1&2 IM=AP

SA‐TS NS1&2 IM=AP

VNS‐TS NS1&2 IM={AP,PIH}

SA‐TS‐VNS NS1&2 IM=AP

TS NS1&2 IM=AP

DLS s=2 ri=(1,1)

VNS‐TS NS1&2 IM=AP

SA NS1 IM={AP,PIH}

SA‐TS NS1 IM=PIH

SA NS1 IM=AP

TS NS1 IM=AP

SA‐TS NS1 IM={AP,PIH}

SA‐TS NS1 IM=AP

DLS s=3 ri=(1,1,1)

DLS s=2 ri=(2,1)

%increase over optimal

138

Instance

S
A

 H
H

-
G

P
IL

S

V
N

S
-T

S H
H

-
G

P
IL

S

T
S

 H
H

-G
P

IL
S

M
eta-R

aP
S

A
T

S

P
A

T
S

A
SA

-G
S

G
C

G
A

ch130 0.19 0.15 0.20 2.44 0.18
ch150 0.48 0.35 0.34 1.30 2.58 0.16
eil51 0.24 0.00 0.00 2.85 1.12 0.67 0.94
eil76 0.41 0.22 0.45 0.40 2.71 1.18 2.42
eil101 0.95 0.79 0.83 2.71 1.83 2.70
kroA100 0.00 0.00 0.00 0.00 1.14 0.37 0.01 1.23
kroA150 0.16 0.17 0.16 0.05 2.92
kroA200 0.50 0.51 0.42 1.07 2.62 0.23 1.85
kroB100 0.00 0.00 0.00 0.25 1.93 1.78 0.00 1.81
kroB150 0.10 0.04 0.02 0.18 2.11
kroB200 0.53 0.36 0.20 1.26 0.25 4.04
kroC100 0.00 0.00 0.00 0.00 1.37 0.00 1.33
kroD100 0.09 0.00 0.00 0.00 4.72 0.03 2.42
kroE100 0.00 0.00 0.00 0.17 0.20 1.41
pr76 0.00 0.00 0.00 2.14
pr107 0.00 0.00 0.00 0.00 0.35 0.00 1.37
pr124 0.02 0.00 0.00 0.00 0.77 0.00 0.19
pr136 0.08 0.04 0.04 0.39 1.05 0.31 2.82
pr144 0.00 0.00 0.00 0.01 0.04
pr152 0.00 0.00 0.00 0.00 0.01 1.22

Table 53 Sequential HH-GPILS in comparison with primal methodologies

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

%
in
cr
ea
se
 o
ve
r
th
e
o
p
ti
m
al
 s
o
lu
ti
o
n

Instances

SA HH‐GPDLS VNS‐TS HH‐GPDLS TS HH‐GPDLS META‐RAPs

ATS PATS ASA‐GS GCGA

139

Figure 36 Sequential HH-GPILS in comparison with primal methodologies

In Figure 36, the vertical axis shows the average percentage increase over the optimal

and the horizontal axis shows TSP instances. Each line in the figure represents the

quality of a sequential HH-GPILS, above mentioned, and the markers show each of

the benchmarks. Overall, the proposed sequential HH-GPILS outperforms the

benchmark, with some few exceptions. ASA-GS is performing better for instances

ch150, kroa150 and kroa200, however, on average the proposed sequential HH-GPILS

are performing better than ASA-GS.

4.6. Conclusion

Sequential hyperheuristics are smart techniques that select the best set of parameters

for GPILS, each using a different search strategy and neighbourhood structures.

Overall, they all provide good quality solutions, on average less than 0.5% increase

over the optimal and deliver the optimal solution in 55% of experiments conducted. In

comparison with the benchmark, DLS, the proposed HH-GPILS has a better

performance because of its adaptability.

However, the neighbourhood structure and the bounds of the set of parameters has a

significant influence on the quality of the solution. A neighbourhood structure which

provides the right level of intensification and diversification could lead to the best path

across the search space and lead to the global optimal solution.

As for the bounds of the parameters, in this study, we mostly concentrated on the

initialisation of the infeasible solution. In general, initialising the infeasible solution

using the PIH provides better quality solutions than AP, however using the AP to

initialise the infeasible solution is computaionalyy more efficient.

Finally, the proposed GPILS can be categorised as constructive-perturbative because

of its infeasible nature and the use of Type II move to improve the infeasible

components. Its performance is clearly enhanced when implemented within a

hyperheuristic framework.

140

5. A Parallel
Hyperheuristic
Framework for GPILS

In the previous chapter we developed sequential hyperheuristics to automate and

optimise the choice of the set of parameters of GPILS. These hyperheuristics start with

single set of parameters and search its neighbourhood for a better set. On the other

hand, one can start with a population of sets of parameters. In this chapter, we propose

a parallel or population-based hyperheuristic for optimising the set of parameters of

GPILS.

As it was mentioned in section 2.5.2, traditional parallel algorithms, such as genetic

algorithm (GA) and memetic algorithm (MA), start with a population of individuals

(chromosomes), representing the solution to the problem under consideration, and

evolves them to create new population hoping that these individuals have better

performance while inheriting their parents’ features.

Furthermore, the quality of the initial population can have a significant influence on

the performance of the GA and its convergence speed. In other words, starting with a

good-quality population can speed up the search, although, it might prematurely

converge to a local optimum. Initialising the population using seeding techniques can

generate high-quality chromosomes can improve the quality, and can speed up, the

GA’s search for the best solution. Although, these techniques might increase the

chance of immature convergence. There are several seeding techniques to initialise the

population such as initialising the population using a heuristic (Yang, 1997; Liao,

2009; Ray et al.; 2007; Kaur and Murugappan, 2008), using a gene bank (Wei et al.

2007), sorted population (Yugay et al., 2008), etc. based on the analysis done by Paul

et al. (2015) and Shanmugam et al. (2013).

141

In this chapter, we propose a population-based framework, namely GA-based

hyperheuristic that makes use of indirect presentation of chromosomes where each

chromosome represents a set of parameters of GPILS, see Figure 37. The proposed

population-based hyperheuristic evolves these chromosomes to find better

chromosomes. Note that, to the best of our knowledge, no previous attempt has been

made to optimise the parameters of a heuristic using a hyperheuristic framework.

Figure 37 Population of parallel hyperheuristic

Later, we proposed an offline learning mechanism for GA-based HH-GPILS, with aim

of reusing the set of parameters on unseen (new) problem instances after such set of

parameters has evolved on a given set of training problem instances. The proposed

offline learning mechanism makes use of a knowledge-based system that keeps track

of good performing chromosomes, i.e. set of parameters of the GPILS. The

knowledge-based system is refered to as chromosomes bank (CB) that keeps several

good performing chromosomes along with their scores, see Figure 38. When solving

a new TSP instance, all or a set of these chromosomes are used to initialise the

population of the GA. Note that the score of the set of chromosomes used to initialise

the GA is updated based on their performance. When GA converges to the final

population or stops the search before the convergence occurs, all or a number of the

best performing chromosomes of the final generation will replace a set of existing

chromosomes in the CB.

In summary, the contributions of this chapter are developing a population-based

hyperheuristic to automate and optimise the choice of parameters of GPILS and

proposing an offline learning mechanism for GA-based HH-GPILS. Hereafter, we

shall discuss the implementation decisions of the population-based methods. We

divided these implementation decisions to problem-specific and generic decisions.

Problem specific decisions are common decisions in the implementation of

⋮

142

population-based methods. However, generic decisions are dependent on the choice of

the high-level methodology. Afterwards, the details of the proposed offline learning

are explained. Later, the empirical investigation and finally conclusions are presented.

Figure 38 Chromosomes bank

5.1. Problem-specific decisions for high-level search

mechanisms

These decisions are common amongst population-based methods but dependent on the

problem under consideration. In the concept of HH-GPILS, these decisions are related

to the GPILS. Problem-specific to the implementation of population-based

hyperheuristics is (1) choice of the parameters’ space; (2) choice of the genetic

representation or encoding scheme of chromosomes; and (3) choice of the fitness

measure. We shall discuss these decisions in the next section

Choice of the parameters’ space: The choice of the parameters’ space is similar to the

choice of the parameters’ space used for sequential hyperheuristics.

Genetic representation or encoding scheme of chromosomes: Since chromosomes are

a string of genes representing its genetic information, in our population-based

hyperheuristics; a chromosome is represented as a vector (string) of parameters of

GPILS.

Fitness measure: The choice of fitness measure is similar to the choice of the form of

the optimisation function used for sequential hyperheuristics.

1

2

⋮

143

5.2. Choice of the high-level methodology and its

implementation decisions

As it was mentioned in the previous chapter, the high-level methodology for searching

the parameter space of GPILS could either be a sequential methodology or a parallel

one. In this chapter, we opt for experimenting with parallel (population-based)

methodologies. To be more specific, we have chosen Genetic Algorithm (GA) as a

high-level methodology. Since the problem-specific decisions are discussed earlier, in

the next section, we shall discuss generic implementation decisions of the proposed

metaheuristics for searching the parameter space of GPILS.

5.2.1. Genetic algorithm as a high-level search mechanism

Genetic algorithms (GAs) are population-based metaheuristics that start the search

with an initial population and evolves those using bio-inspired operators to generate

offsprings hoping that the new generation inherits the parent’s good genes and be

better than their parents. The customised pseudo-code of the GA as high-level

methodology algorithm is outlined in Table 54.

As it was mentioned in earlier, designing a GA requires two sets of decisions, namely

problem-specific decisions and generic decisions. Since in this study GA is used as a

high-level methodology to search the heuristic space the problem-specific decisions

should be modified. However, the generic decisions for GA-based hyperheuristic

could be similar to the operators in traditional GA, note that some or all of them need

slight modifications. Thus, we customised the GA problem-specific and generic

decisions to our search in the search space of GPILS.

Generic decisions are concerned with the parameters of the algorithm itself. The

generic decisions are choice of (1) population size and selection of initial population;

(2) parents’ selection and replacement mechanism; (3) reproduction mechanism; (4)

immigration operator; (5) genetic operators’ rates and (6) stopping criteria. We shall

discuss these decisions in the next section.

Population size and selection of initial population: Since the choice of population size

 has a great influence on GA’s efficiency and effectiveness, one should make a trade-

144

off when choosing the population size. In order to initialise the population, one can

choose to randomly generate chromosomes, however one might initialise the

population based on historical knowledge about the TSP instance and/or GPILS

performance (e.g. offline learning or using a trial run). In our empirical investigation,

we have experimented with random seeding.

Initialisation Step

Choose an initial population of M individuals of GPILS, , in the admissible parameter space

 evaluate the fitness of each individual, ; that is, the total distance of the TSP tour

constructed by GPILS using the set of parameters of individual ;

Initialise the best solution found so far, say ∗, ∗ , by setting ∗ and ∗

;

Set iteration counter to 0;

Set Best-Found-At-iteration to 0;

Set immigration counter to 0;

Iterative Step

REPEAT until stopping condition = true

IF crossover condition(s) hold THEN {

Select a subset of individuals from the current generation as parents for reproduction;

Perform a crossover operation on parents to generate children; }

IF mutation condition(s) hold THEN {

Select a subset of individuals from the current generation as parents for reproduction;

Perform a mutation operation on parents to generate children; }

IF immigration condition(s) hold THEN {

Perform an immigration operation to generate children;

Increment immigration counter by 1; that is, set 	 	 1;}

Evaluate the fitness of each child and update the best solution found so far, if necessary;

IF ∗ THEN {

update the best vector of parameters found so far; that is, set ∗ and ∗

;

Best-Found-At-iteration	 ;}

Replace a subset of parents in the current population by a subset of the current children to produce

a new generation;

Increment iteration counter by 1; that is, set 1;

END REPEAT

Table 54 Pseudo-code of genetic algorithm as a high-level methodology

145

Parents’ selection and replacement mechanism: GA iteratively selects some

chromosomes, from the current generation, for mating and combines them to generate

new offsprings; these new offsprings replace a number of chromosomes, from the

current generation, to produce a new generation. In our empirical investigation, we

used steady-state selection mechanism where two subsets with equal sizes are chosen,

the first subset for mating and the second to be deleted. In order to choose parents for

the mating pool, we experimented with tournament selection (2). On the other

hand, to select chromosomes to be replaced we experimented with deleting the worst

individual from the current generation, with consideration of replacement-with-no-

duplicates.

Reproduction mechanism: Reproduction mechanism consists of two operators. The

first operator, crossover, combines the parents by swapping some alleles to produce

offsprings. The second operator, mutation, diversifies the chromosome by randomly

introducing new features into the chromosomes. In our implementation for the

crossover operation, we experimented with uniform crossover (Syswerda, 1989;

Spears and De Jong, 1995). In uniform crossover mechanism, parents’ alleles are

randomly swapped with probability	 (0.5). Using this crossover mechanism

produces new offsprings, while these new offsprings are inheriting the parents’ genes

and information with higher level of diversification in comparison with one-point and

two-point crossovers’ mechanisms.

As for the mutation operator, we experimented with random mutation of

chromosomes, where a number of alleles are changed randomly. The choice of alleles

to change is made using the mutation rate.

Genetic operators’ rates: The rates of the genetic operators control the evolution of

the current population. Crossover and mutation rates specify the rate each of these

operations is used. The first, crossover rate, indicate how many offsprings are

introduced into the population by combining their parents whereas the second,

mutation rate, indicates the rate where new information is entered in the population.

Immigration operator: Immigration operator introduces new individuals to replace a

proportion of existing individuals, typically the worst individuals. This operator is used

to add a level of diversification to the GA. An effective immigration operator allows

146

the GA to explore different regions of the search space. In our empirical investigation,

we randomly generated a number of new individuals (2). These new

individuals are used to replace number of worst performing individuals in the

current generation. The empirical investigation showed that the appropriate condition

for immigration to only when either of the following conditions occur:

1. If the population converges and immigration has not occurred for four

iterations.

The reason for this condition is that to avoid premature convergence.

Moreover, the occurrence of immigration has been restricted to a number of

iterations to prevent the unnecessary random search.

2. If no immigration has occurred but the iteration counter reached the

maximum number of evolutions and the percentage population convergence is

greater than predefined percentage.

The reason is that assuming the initial population did not lead to the optimal

solution and the search got stuck in the local optima; we use immigration

operator to get out of the local optima. However, immigration might not be

necessary, if this was not the case.

3. If a better solution has not been found for some iterations and immigration has

not been occurred for four iterations.

When this condition happens, one might say, again, that the search got stuck in

the local optima and immigration operator could be used get out of it.

As it was mentioned, the occurrence of the immigration operator should be restricted

to avoid the unnecessary random search. Thus, we limited immigration occurrence for

a number of iterations. Also, immigration operator can be used for maximum three

times.

Stopping criteria: Several stopping criteria can be utilized in the GA-based high-level

mechanisms such as predetermined number of evolutions or generations was reached,

maximum number of iteration since the last best individual was found, maximum

number of iteration since the last best individual was found, the highest number of

immigrations has occurred, measure of the population diversity fell below a

147

prespecified threshold. We experimented with several stopping criteria, the

appropriate stopping criteria were the first three criteria, when either of these criteria

occurs the GA’s search for better individual stops.

5.3. Parallel Hyperheuristic Framework with Offline

Learning Mechanism for GPILS

As it was mentioned in the previous section, GA starts with an initial population. The

quality of the initial population has a significant influence on the performance of the

GA and its convergence speed. In other words, starting with a high-quality population

can speed up the search. However, GA might converge prematurely to a local

optimum. Seeding techniques that generate high-quality chromosomes can improve

the quality, and can speed up, the GA’s search for the best solution. Although, these

techniques might increase the chance of immature convergence. There are several

seeding techniques to initialise the population such as initialising the population using

a heuristic (Yang, 1997; Liao, 2009; Ray et al.; 2007; Kaur and Murugappan, 2008),

using a gene bank (Wei et al. 2007), sorted population (Yugay et al., 2008), etc. based

on the analysis done by Paul et al. (2015) and Shanmugam et al. (2013).

In this section, we proposed an offline learning mechanism for GA-based HH-GPILS,

which makes use of a knowledge-based system keeping track of good performing

chromosomes that is set of parameters of the GPILS. The knowledge base system is

refered to as chromosomes bank (CB) that keeps several good performing

chromosomes along with their scores. When solving a new TSP instance, all or a set

of these chromosomes are used to initialise the population of the GA. Note that the

score of the set of chromosomes used to initialise the GA will be updated based on

their performance. When GA converges to the final population or stops the search

before the convergence occurs, all or a number of the best performing chromosomes

of the final generation will replace a set of existing chromosomes in the CB.

148

Hereafter, the details of the proposed offline learning is explained; namely, the

initialisation of the CB for the first time, using CB to initialise the population in GA-

based HH-GPILS, CB’s score allocation and updating CB.

5.3.1. Initialising chromosomes bank (CB)

The proposed knowledge-based system, referred to as chromosomes bank (CB), keeps

track of good performing chromosomes in order to reuse and adapt them to new

(unseen) problem instances. Before using the CB one has to initialise the CB. In order

to initialise the CB, we run GA-based HH-GPILS, for several times, to solve a number

of TSP problems in the training set. In this step, the GA starts with a random initial

population. All the chromosomes in the last generations, of all trial runs, are sorted in

a non-decreasing order, and the best performing chromosomes of the last generations

are saved in the CB, with a score equal to one.

5.3.2. Initialising the population using CB

Assuming the best set of chromosomes found so far will overall perform well for the

unseen problems, when facing a new TSP problem to solve, a number of chromosomes

from the CB are retrieved using a selection mechanism to initialise the population. The

number of chromosomes to retrieve from the CB could be equal to the size the initial

population of GA-HH, say	 . As for the selection mechanisms, one might use one of

the traditional selection mechanisms used in GA; namely random selection,

tournament selection or roulette wheel, see Appendix E. However, another might use

seeding techniques such as sorted population. Note that random selection mechanism

does not depend on the chromosome’s fitness or score. Conversely, the rest of the

selection mechanisms do. In other words, one might use chromosome’s score as the

selection criterion; another might use their fitness which is obtained by performing

GPILS for each chromosome. In our investigation, we used sorted population as

selection mechanism and fitness as a selection criterion.

5.3.3. Score allocation

We proposed a reward-based mechanism similar to reinforcement learning (RL) where

feedback is provided, regarding reward and penalty, based on the overall

149

chromosome’s performance. RL is an online learning mechanism that rewards an

improving low-level heuristic (LLH) by increasing its score; otherwise, it will penalise

the LLH by decreasing its score, see Appendix I. However, since our learning

mechanism is offline, we proposed a different reward mechanism, where the

performance of each chromosome in the CB and all the new chromosomes are

calculated and their reward or penalty is allocated based on their performance.

Performance of a chromosome in the , say 	 , is defined as the percentage

increase of each	 over the worst performing chromosome in the CB, say	 :

100 35

where is calculated as the average fitness of chromosome

performed to solve the new problem. In order to decide whether a chromosome is

rewarded or penalised, first the average performance, say , of all chromosomes

is calculated, then the weight of each is defined as the increase or decrease from

 as follows:

 36

Chromosome is rewarded if its weight is non-negative; otherwise, it is penalised.

Thus, the score of each chromosome is updated, by the proposed reward and

penalty schemes, as follows:

Reward scheme:

					 	 0 37

Penalty scheme:

| |				 	 0 38

As for new chromosomes (), their performance and, consecutively, their weight is

computed similar to the chromosomes in the CB. In other words, their performance is

defined as the percentage increase over the worst performing chromosome from the

CB () and their weight is defined as the increase from	 , average performance

of chromosomes from CB.

150

100 39

	 40

Since their weight is always positive, their score is updated using the aforementioned

reward scheme.

5.3.4. Updating chromosomes Base

The CB needs to be updated after solving a new problem. In other words, the score of

the existing chromosome should be updated, depending on their performance.

Moreover, some of the existing chromosomes in the CB should be replaced by the new

chromosome. The criteria for replacement could be similar to the ones used in GA’s

replacement mechanism.

One can choose to simply add all new generation into the CB, without deleting any of

the previous chromosomes from the CB, thus, expanding the set of chromosomes and

possibly improving the knowledge of the learning system. However, this decision will

increase the size of the CB and therefore will increase the retrieval time of

chromosomes from the CB. Moreover, some of the saved chromosomes might not

perform well on all new cases, and consequently, reduce the performance of the GA.

Thus, we proposed replacing a subset of chromosomes in the CB by new ones,

obtained from the final population of the GA’s search for the optimal or near optimal

set of chromosomes to solve the new problem at hand.

In order to update the CB, first, one should decide how many, , and which

chromosomes should be replaced. In our experiments, we replaced a small percentage,

say , of the chromosomes in the CB by the new ones.

	 | |, | |	 41

where | | is the size of the CB and | | is the number of new chromosomes. In the

empirical analysis we investigated several values for	 .

As for the replacement criteria, the chromosomes are first sorted based on their

performance and only half of the worst performing chromosomes are considered in the

151

replacement process. Later, the chosen set, for the replacement process, is sorted based

on their score in a non-decreasing order and only the first chromosomes

from the sorted list will be removed from the CB.

After eliminating a number of chromosomes from the CB, a set of new chromosomes

the same size as the ones removed from CB () will be inserted

into the CB. All the new chromosomes are sorted based on their score, in a non-

increasing order. From the top of the list, will be inserted into the CB, without

duplication. However, if the new chromosome, say , to add is already in the list,

say , its score will be updated as follows:

 42

5.4. Empirical investigation

As was mentioned before, in this chapter we experimented with GA-based HH-GPILS

methodology. We divided the implementation decisions of this hyperheuristic to

problem-specific and generic decisions. These decisions are shown in Table 55.

Type of

Decisions
Decision

Problem-

specific

Parameters’ space

Genetic representation or encoding scheme of chromosomes

Fitness measure

Generic

Population size and selection of initial population

Reproduction mechanism

Genetic operators’ rates

genetic operators’ rates

Stopping criteria

Table 55 GA- based HH-GPILS high-level decisions

We also proposed an offline learning for the GA-based HH-GPILS methodology. The

chromosomes saved in the proposed CB used in offline learning are used to initialise

the population of the GA-based HH-GPILS. The empirical investigation shows that

this learning mechanism can produce solutions with similar quality produced by the

152

GA-based HH-GPILS without learning, however, it reduces the time approximately

by one third.

5.4.1. Experimental setup

For the choice of the parameters space of GPILS and the fitness measure in this

empirical investigation, is similar to the ones chosen for sequential-based HH-GPILS.

As for the generic decisions, they are presented in the description of each decision.

However, their parameters are presented hereafter:

 Population size is set to 40;

 Crossover probability is set to 0.5;

 Probability of uniform crossover is set to 0.5;

 Tournament size is set to two individuals at a time;

 Mutation probability is set to 0.01;

 Maximum number of evolutions is equal to 50;

 Maximum number of immigrations is set to three;

 Maximum number of iterations since the last best individual found is set to 20.

In order to test the influence of initialising the infeasible solution using either AP or

PIH for the proposed GA-based HH-GPILS methods, first, we experimented with

fixing	 to either AP or PIH. Similar to findings of the previous chapter, initialising

the IM using PIH produces better quality solutions. In general, the empirical results

shows that this HH-GPILS is performing better than the sequential ones.

As for the generic decisions of the GA-based HH-GPILS with offline learning, they

are the set to the values mentioned above, except for the maximum number of

iterations since the last best individual found. The empirical investigation showed that,

in trade-off between time and quality, the most appropriate number of iterations is 15.

As for the configuration of the offline learning, its parameters are as follows.

 Maximum number of chromosomes in the CB is set to 100.

 Training instances are eil51 and pr76.

 Stopping time set to 600

153

5.4.2. Experimental results GA-based HH-GPILS

The statistics represented are the average percentage increase over the optimal solution

for a number of runs, in this investigation 5 runs. In Table 56, the first column shows

the instances solved, as for the rest of the columns, each column shows the results of

the following experiments:

1. First experiment: parameter IM is fixed to AP;

2. Second experiment: parameter IM is fixed to AP;

3. Third experiment: parameter IM is not fixed.

Hereafter, we shall discuss the performance of the proposed hyperheuristic.

Results of GA-based HH-GPILS are shown in Table 56 and 57. From the results, one

can draw the same conclusions as the previous chapter on the sequential HH-GPILS,

such as:

 Overall, GA-based HH-GPILS is performing well and is producing good

quality solutions, although it is more time consuming than the sequential HH-

GPILS.

 Fixing IM to PIH results in better performance in comparison with the others,

with average 0.09%, median 0.0% and standard deviation 0.17%.

 On the other hand, fixing IM to AP is the worst performing, with average

0.25%, median 0.03% and standard deviation 0.32%, although it is

computationally more efficient.

5.4.3. Parallel HH-GPILS in comparison with sequential HH-

GPILS

Further, we compared the performance of the GA-based HH-GPILS with the

performance of a number of the twenty of the best performing sequential HH-GPILS

in the previous chapter, see Figure 39. To conclude, from this figure the following

conclusions can be drawn:

 Overall, the parallel HH-GPILS provides good quality solutions.

 In general, by fixing IM to PIH one can improve the quality of the HH-GPILS.

154

Instance 	 	 	 ,

eil51 0.00% 0.00% 0.00%
eil76 0.11% 0.60% 0.26%
pr76 0.00% 0.00% 0.00%

kroA100 0.00% 0.00% 0.00%
kroB100 0.00% 0.00% 0.00%
kroC100 0.00% 0.08% 0.02%
kroD100 0.00% 0.01% 0.15%
kroE100 0.00% 0.00% 0.00%
eil101 0.57% 0.92% 0.60%
pr107 0.00% 0.00% 0.00%
pr124 0.00% 0.00% 0.00%
ch130 0.01% 0.65% 0.21%
pr136 0.00% 0.00% 0.01%
pr144 0.00% 0.00% 0.00%
ch150 0.25% 0.54% 0.52%

kroA150 0.11% 0.36% 0.30%
kroB150 0.01% 0.22% 0.04%

pr152 0.00% 0.04% 0.04%
kroA200 0.52% 0.72% 0.69%
kroB200 0.14% 0.86% 0.62%

Average 0.09% 0.25% 0.17%

Median 0.00% 0.03% 0.03%
Std 0.17% 0.32% 0.24%

Table 56 Performance of GA-based HH-GPILS

Instance 	 	 	 ,

eil51 572 117 130
eil76 629 353 502
pr76 743 296 388

kroA100 939 423 788
kroB100 811 331 608
kroC100 1696 410 664
kroD100 751 674 843
kroE100 824 437 705
eil101 867 554 892
pr107 904 1160 1499
pr124 1936 860 1072
ch130 2378 698 983
pr136 2538 2323 1363
pr144 2609 1532 981
ch150 2783 1003 1767

kroA150 2851 1457 1662
kroB150 2774 1242 1554

pr152 2832 1187 1438
kroA200 3878 3365 2017
kroB200 3697 3038 3108

Table 57 Computational time of GA-based HH-GPILS

155

 GA-based HH-GPILS with IM fixed to PIH provides the best quality solutions

(average 0.09%, median 0.0% and standard deviation 0.17%).

Figure 39 Parallel HH-GPILS in comaprison with sequential HH-GPILS

5.4.4. Experimental results of the GA-based HH-GPILS with

offline learning

Hereafter, we shall discuss the performance of the proposed hyperheuristic. First, we

experimented the reusability of the chromosomes saved in the CB from old

GA Pc=.5, Pm=.01 IM=PIH

SA NS2 IM=PIH

VNS‐TS‐shaking NS1&2 IM=PIH

TS NS2 IM=PIH

SA NS1 IM=PIH

VNS‐TS NS1&2 IM=PIH

VNS NS1&2 IM=PIH

GA Pc=.5, Pm=.01 IM={AP,PIH}

SA‐TS‐VNS NS1&2 IM=PIH

SA‐VNS NS1&2 IM=PIH

SA‐TS NS2 IM=PIH

SA‐VNS NS1&2 IM={AP,PIH}

VNS NS1&2 IM={AP,PIH}

VNS‐TS‐shaking NS1&2 IM={AP,PIH}

SA NS2 IM=AP

SA NS2 IM={AP,PIH}

TS NS1 IM=PIH

VNS NS1&2 IM=AP

TS NS1 IM={AP,PIH}

VNS‐TS‐shaking NS1&2 IM=AP

SA‐TS NS2 IM={AP,PIH}

SA‐TS‐VNS NS1&2 IM={AP,PIH}

GA Pc=.5, Pm=.01 IM=AP

Median Average

156

experiences of the GA on previous problems. Table 58 shows the performance of the

chromosomes saved in the CB for the new problem at hand, before applying the HH-

GPILS. The statistics represented are the average percentage increase, in cost of the

best performing chromosome in the CB performed on a new problem, over the optimal

solution for a number of runs, in this investigation of 5 runs. From the presented results

one can conclude that:

 The offline learning could produce good quality solutions for new problem

instances in a shorter time, less than 30 seconds.

 The saved sets of parameters obtained from earlier investigations could be used

to address other problem instances (they are usable sets).

Instance 	 	 	 ,
eil76 1.26% 2.23% 1.45%

kroA100 0.01% 0.00% 0.00%
kroB100 0.00% 0.29% 0.05%
kroC100 0.00% 0.10% 0.00%
kroD100 0.22% 0.58% 0.24%
kroE100 0.00% 0.00% 0.00%
eil101 1.30% 2.07% 1.53%
pr107 0.02% 0.00% 0.05%
pr124 0.03% 0.08% 0.00%
ch130 0.54% 1.31% 0.93%
pr136 0.26% 0.09% 0.09%
pr144 0.00% 0.00% 0.00%
ch150 0.66% 1.44% 1.19%

kroA150 0.62% 0.88% 0.99%
kroB150 0.63% 0.46% 0.20%

pr152 0.00% 0.46% 0.19%
kroA200 1.29% 0.93% 1.77%
kroB200 1.33% 1.03% 1.05%
Average 0.46% 0.66% 0.54%

Median 0.24% 0.46% 0.19%
Std 0.51% 0.69% 0.62%

Table 58 Performance of the offline learning

Results of GA-based HH-GPILS with offline learning are shown in Table 59 AND 60.

From the results, one can conclude:

 However, GA-based HH-GPILS with offline learning and IM fixed to PIH,

provides the best quality solutions, average 0.23%, median 0.11% and standard

deviation 0.29%.

157

 Like the previous chapter initialising the infeasible solution with PIH lead to

better quality solutions.

 The use of offline learning to initialise the population could produce good

quality solutions for new problems in a limited shorter time.

 Overall, the shown GA-based HH-GPILS with offline learning provides good

quality solutions faster.

Instance 	 	 	 ,
eil76 0.22% 0.67% 0.37%

kroA100 0.00% 0.00% 0.00%
kroB100 0.00% 0.05% 0.00%
kroC100 0.13% 0.02% 0.00%
kroD100 0.00% 0.05% 0.03%
kroE100 0.00% 0.00% 0.00%
eil101 0.73% 1.02% 1.27%
pr107 0.00% 0.00% 0.01%
pr124 0.02% 0.00% 0.00%
ch130 0.46% 0.53% 0.19%
pr136 0.17% 0.01% 0.02%
pr144 0.00% 0.00% 0.00%
ch150 0.36% 0.68% 0.80%

kroA150 0.41% 0.61% 0.74%
kroB150 0.09% 0.14% 0.08%

pr152 0.00% 0.13% 0.04%
kroA200 0.56% 0.70% 1.08%
kroB200 0.99% 0.72% 0.78%
Average 0.23% 0.30% 0.30%

Median 0.11% 0.09% 0.03%
Std 0.29% 0.34% 0.42%

Table 59 GA-based HH-GPILS with offline learning

158

5.5. Conclusion

Genetic algorithm is an adaptive and robust technique that requires a minimum

domain-specific knowledge. Genetic algorithm’s main feature is that it starts with an

initial population and iteratively evolves the population, keeping most of the gathered

information about the system, and produces a better population. In this chapter, we

proposed a GA-based hyperheuristic to automate the choice of the parameters of

GPILS.

The obtained results in this chapter showed that the proposed population-based HH-

GPILS performs better than the sequential ones, however it is more time consuming,

see Figure 39. As for the effect of the initialisation of the infeasible solution, the same

conclusion from the last chapter can be drawn, initialising the infeasible solution using

the PIH could lead to better solutions than the AP. On the other hand, initialising the

infeasible solution using the AP computationally more efficient, since the parameters

of the PIH are not considered in the parameters space.

Moreover, the initial population has great influence on the performance and/or speed

of convergence of the GA-based HH-GPILS. Since the set of parameters of the GPILS

can be reused to be adapted on new problems, one can develop knowledge-based

system to keep track of the good performing sets, i.e. chromosomes, and allocate a

score to each set in order to initialise the GA population using a seeding technique. In

this chapter, we proposed an offline learning that uses a knowledge-based system,

referred to as CB, to keep track of the best performing chromosomes, i.e. sets of

parameters of GPILS, and their allocated scores. These scores are updated by reward

or penalty depending on their performance in comparison with others and used to

decide whether they will be replaced by new chromosomes or not. The obtained results

show that this seeding technique could produce good quality initial population which

lead to obtaining good optimal or near-optimal solutions by the proposed GA-based

HH-GPILS more quickly.

159

6. Conclusion

In this section we shall present the summary and conclusions of this study as well as

future research directions and final remarks.

6.1. Summary and Conclusion

In this thesis, an overview of the most common and relevant literature was presented

and the heuristic solution approaches were classified into three categories; namely,

feasible (primal), infeasible methodologies, and feasible-infeasible. Most of the

literature on heuristic solution approaches are in the first two categories, i.e. feasible

(primal), feasible-infeasible, except the work done by Ouenniche et al (2017).

Ouenniche et al (2017) made the first attempt to solve the TSP by only exploring its

infeasible space. This thesis refines and extends Ouenniche et al (2017) proposed

infeasible search framework. This research started with the aim of investigating the

potential of exploring the infeasible space for solving COPs to optimality. We first

proposed a generic and parameterized infeasible local search (GPILS) as a refinement

of the DLS framework proposed by Ouenniche et al (2017), where we customised

GPILS to solve the TSP. The proposed GPILS starts with an infeasible solution and

explores the infeasible space by repairing the current infeasible solution and reducing

the infeasibilities. The proposed GPILS can be categorised as constructive-

perturbative heuristic framework, constructive because of its infeasible nature and

perturbative because of the use of Type II move to improve the infeasible components.

The proposed refinements consists of proposing an alternative and more appropriate

method to initialise infeasible local search. In addition, a recursive function was

proposed to allow for the automation of the implementation of infeasible search under

any set of parameters as compared to the original DLS where there was a need to write

a different code to accommodate each set of parameters. Furthermore, a generic

patching procedure was proposed as a generalisation of the one proposed initially by

160

Ouenniche et al (2017). Last, but not least, the enhanced version allows for primal

search to be performed after the infeasible search, if needed.

Since the GPILS is a parameterised method, it could be seen as a collection of

infeasible search methods, where its sets of parameters could be chosen by the analyst

or an automated procedure. We proposed a hyperheuristic framework to automate and

optimise the choice of the parameters of the GPILS, referred to as HH-GPILS. We

experimented with both sequential, namely SA, TS and VNS as well as their hybrids,

and parallel high-level methodologies, namely GA.

The study on sequential HH-GPILS showed that a neighbourhood search strategy with

the right level of intensification and diversification could lead to optimal or near-

optimal solutions. As for the GA-based HH-GPILS, the performance of this

hyperheuristic was better than the sequential ones.

We also investigated the influence of the choice of initialising the infeasible solution

on the performance of the GPILS. The empirical investigation showed that, in general,

initialising the infeasible solution using the PIH, could lead to better solutions, in

comparison with initialising with AP-based relaxation of the TSP.

Furthermore, we investigated the reusability of the sets of parameters, generated

previously, on new problems. The empirical investigation showed that GPILS given

previously generated parameters can produce good quality solution for new problem

instances. Later, we proposed an offline learning that makes use of knowledge-based

system, referred as chromosomes base (CB), where a chromosome is a set of

parameters of GPILS. The proposed CB is used to keep track of the best performing

sets of parameters, used to solve previous TSP problems, and their scores, which are

dependent on their overall performance. The obtained results showed that this learning

mechanism used in initialising the population of the GA-based HH-GPILS can

produce good quality solutions.

In conclusion, the empirical results show that searching the infeasible space of a COP

such as the TSP, which are progressively repaired and locally improved, could lead to

the design of promising heuristics, since the infeasible space is larger than the feasible

one for any COP. Thus, further efforts should be made to enrich the design features of

161

local search methods operating in the infeasible solution space and reduce the

computational requirements of GPILS and HH-GPILS, on one hand, and further

investigations should be made to explore the merit of infeasible search methodologies

in solving other COPs, on the other hand.

Potential benefits: this new framework has the potential to renew interest of the

academic community in the field of local search methods, on one hand, and allow

practitioners to improve the solution frameworks used to address real life applications

– especially for online and real time applications where there is a need to repair

solutions to decision problems as real life settings changes over time.

6.2. Extensions and Future Work

In this section we shall present future directions and extensions of the thesis:

1. Enhancing the proposed GPILS

In future research, we shall consider lessons learned from experiments

performed in this study. In this thesis, we focused on demonstrating the

possibilities of searching in the infeasible space and producing good quality

solutions. The empirical investigation in chapter 3 proved that GPILS could

produce good quality solutions in a reasonable time. However, when using

hyperheuristic to automate its parameters the computational time became

unattractive, which is the case even for hyperheuristics proposed for primal

search methods. Besides, we shall focus more on the computational time as

well as the quality of the solutions produced by GPILS. To do so, we can make

use of a choice function that includes the execution time of the LLH (Chen et

al, 2016).

2. Implementing the proposed GPILS for variants of routing problems as well

as other COPs.

Since the possibility of heuristically searching in the infeasible space has been

proven and GPILS has been developed and tested for TSP, the work should not

162

stop there. One can explore the infeasible solution space of other COPs, since

it is by far larger than the feasible space.

3. Improving the offline learning mechanism for GA-based hyperheuristic.

Being able to reuse the set of parameters of GPILS one can use more advanced

offline learning mechanisms followed by online learning mechanisms to

enhance the hyperheuristics’ performance. For instance, one can intensify the

search to parameters in the knowledge-based system; another can diversify the

search to parameters not in the knowledge-based system.

6.3. Final remarks

In summary, there are four main contributions of this thesis. Firstly, developing a

generic and parameterised local search framework that starts and explores the

infeasible space, until it lands into the feasible space. We demonstrated that this new

line of research can produce good quality solutions, thus, heuristically searching the

infeasible space needs the same attention as searching the feasible and feasible-

infeasible space. Secondly, since the proposed framework is parameterised, we

proposed hyperheuristic framework to automate the choice of its parameters. We

experimented with both sequential; namely, SA, TS, VNS and their hybrids, and

parallel based high-level mechanisms. Thirdly, we showed that the reusability of the

proposed framework on new and unseen problem is promising. Finally, we proposed

an offline learning mechanism that keeps track of previously generated set of

parameters and used them to initialise population of the GA-based hyperheuristic

This new framework has the potential to renew interest of the academic community in

the field of local search methods, on one hand, and allow practitioners to improve the

solution frameworks used to address real life applications – especially for online and

real time applications where there is a need to repair solutions to decision problems as

real life settings changes over time.

163

Appendices

Appendix A: Tour construction heuristics

In this section, we only explain some of the tour construction heuristics; namely

nearest neighbour construction procedure, insertion procedure, minimal spanning tree

procedure, nearest merger procedures and path merging procedures.

The Nearest Neighbour Construction Procedure starts with any node as the beginning

of a path and keeps augmenting that path with the node closest to the last node added

to the path until all nodes are included. Finally, the first and the last nodes of the path

are joined.

The Clarke and Wright savings procedure starts with any node along with back-

and-forth routes between node and any other node in the network. Then, in each

iteration, two routes are merged into a single route, where the choice of the two routes

to merge is by the magnitude of the savings that would result from the merging

operation.

The insertion procedure starts with any node, say , finds the closest node to , say ,

and forms the subtour → → . Then it keeps augmenting that subtour by performing

two main steps, namely the selection step and the insertion step, until all nodes are

included. In arbitrary insertion, the selection step determines in a random fashion

which node not already in the subtour should join the subtour next. In nearest

insertion, the selection step is the minimum distance from any node in the current

subtour. However, in farthest insertion the selection step is the maximum distance from

any node in the current subtour. In cheapest insertion, the selection step is the

minimum insertion cost of the node in the current subtour. The insertion step for all

insertion procedures determines where in the subtour the selected node should be

inserted using as an insertion criterion the minimum insertion cost; i.e., the insertion

step finds arc , that minimises , , , and inserts between and .

164

Christofides’ heuristic (Christofides, 1976) starts with augmenting the set of edges of

a minimum spanning tree with edges from the solution to the minimum cost perfect

matching on those odd degree nodes of the tree, which leads to a cycle, and transforms

the cycle into a hamiltonian cycle by using shortcuts to bypass nodes that appear in the

eulerian cycle more than once.

Nearest merger procedures (Rosenkrantz et al., 1977; Glover et al., 2001) starts with

 number of subtours with cardinality one. Then, in each iteration, two closest subtours

are merged into a single subtour in an optimal way. This process continues until all

subtours are merged.

One of the path merging procedures is recursive path contraction (RPC). RPC starts

with the AP-based relaxation of the TSP solution as an initial solution, which typically

consists of a number of subtours. Then it repeats the following contract and patch

process iteratively; it deletes a most expensive arc in each subtour and contracts the

obtained paths, updates the cost matrix with the super-nodes and solves the assignment

problem-based relaxation of the TSP on the current set of super-nodes. This iterative

process stops when the solution has only one subtour and replaces super-nodes of the

TSP tour with the corresponding contracted paths.

Appendix B: Cooling strategies

In this section, some of the popular cooling strategies are presented, such as Aarts and

Van Laarhoven (1985, 1987), Lundy and Mees (1986), Huang et al. (1986), Triki et

al. (2005), Dowsland (1993) and Azizi and Zolfaghari (2004).

One of the popular cooling strategies is the temperature reduction function is as

follows:

1⁄

Aarts and Van Laarhoven (1985a, 1987) proposed a dynamic rule for . They set

different values of at different epochs which is dependent to the standard deviation

of objective function values of neighbouring solutions visited at epoch ,	 . For a

small a value greater than zero, at epoch is as computed as follows:

165

Whereas, Lundy and Mees (1986) suggested to set to a value smaller than 1 ,

where is an upper bound on (∗).

Huang et al. (1986) incorporated the expected difference in the average cost at two

consecutive epochs, 1 and , in the cooling schedule. They proposed the following

temperature reduction function:

.

where ∆ where ∆ is the expected difference in the average cost at epoch

1 and . They suggest using	λ 0.7.

Later, Triki et al. (2005) proposed a parameter free temperature reduction function that

considers the difference in the average cost of two consecutive epochs. They suggest

initialising ∆ to value proportional to	 , estimated by a random walk.

. 1 ∆

In cooling strategy, the search starts at a high temperature allowing most of the high

hill moves to be accepted and decreases the temperature reducing the probability of

acceptance of high-hill moves. Higher probability of acceptance of high-hill moves

increases the chance of moving away from local optima at the beginning of the search,

and lower probability of acceptance decreases such a chance.

However, adaptive temperature change strategy, cooling and reheating strategy, start

with cooling the system, and then the heating is triggered automatically by a

prespecified factor and cools the system again. In other words, this strategy changes

the probability of acceptance of high-hill moves throughout the process, continuously.

Dowsland (1993) proposed a cooling and reheating strategy that cools the system

according to 1 (Lundy & Mees, 1986) every time a move is accepted, and

heats according to 1 	the system every time a move is rejected. If	 ,

the system will need to go through heating iterations to balance one cooling. If the

166

ratio of rejected to accepted moves is greater than 	 , then the system heats up;

otherwise, the system cools.

On the other hand, Azizi and Zolfaghari (2004) proposed a cooling and reheating

schedule where the temperature is controlled by a single function that always maintains

 above a minimum level 	(e.g. 1). In this schedule, the heating process

gradually takes place if there is any uphill move but the cooling is sudden with the first

downhill move.

 1 , 0

where is a parameter that controls the rate of temperature rise (e.g., 1), and is

the number of consecutive uphill moves at iteration , (0).

 1				 	 0
 											 	 0
0																	 	 0

Appendix C: Acceptance function

Since, Metropolis criterion, proposed by Kirkpatrick et al. (1983), is dependent on the

quality of the current neighbour, Parthasarathy and Rajendran (1997b) proposed

setting θ which is percentage increase over the original solution.

This value is dimensionless which one could say θ is independent of the problem

specifications.

,
																			 0

1																																					 0

Aforementioned APFs are dependent on temperature and the change in cost, meaning

higher temperature and lower change in cost δ results in higher value of APFs;

conversely, lower temperature and higher change in cost δ results in lower value of

APFs. In other words, worst solutions have higher probability of acceptance at the

beginning of the search; however, with reducing the temperature, probability of

acceptance of worst solution decreases.

167

Ogbu and Smith (1990) proposed an APF independent of temperature and the change

in cost that reduces the probability of acceptance geometrically:

1 	 			 0
1																																					 0

where is reduction factor (1 and 1 is the initial . These

values are predetermined and constant throughout the search.

Dowsland (1993) proposed using constant	 , (0.33), in the exponential function

to reduce the probability between accepting small and large values of	 . This constant

is used to flatten the exponential function.

, 										 0

1																																					 0

Dueck and Scheuer (1990) and Moscato and Fontanari (1990) proposed a threshold-

based acceptance function, which is independent of temperature and quality of the

solution. This acceptance function accepts worst solutions only if the increase in cost

is less than a threshold. In their method, they used prespecified threshold sequence	

Q , Q , … , Q 	 .

,
1							 	 ≺
0							 	 ≻

These acceptance functions could be classified as either deterministic (e.g., Dueck and

Scheuer, 1990; Moscato and Fontanari, 1990; etc.) or stochastic (e.g., Kirkpatrick et

al., 1983; Johnson et al., 1989; Brandimarte et al., 1987; etc.).

The aforementioned acceptance functions could be classified as probabilistic and

deterministic. Probabilistic acceptance functions are either dependent or independent

to current temperature or the change in objective function. As for deterministic

acceptance functions, also called Threshold Accepting Algorithms, they are either

dependent or independent on the current temperature.

Appendix D: Neighbourhood change strategies

Hansen et al. (2016) classified neighbourhood change strategies as follows:

168

a. Sequential neighbourhood change strategy: Given a specific order of

neighbourhood structures, say , 1, … , , the sequential strategy

continues the search in the next neighbourhood structure until an

improvement is achieved, see Table 60. Whenever an improvement occurs,

the search will be resumed from the first neighbourhood structure.

_ _ , , {

IF THEN

Update the current seed solution	 to the new solution ; that is, set ,

and ;

 Set 1;

ELSE Increment by	1.

}

Table 60 Sequential neighbourhood change strategy

b. Cyclic neighbourhood change strategy: The Cyclic strategy continues the

search in the next neighbourhood structure whether an improvement is

achieved or not, see Table 61.

Cyclic_ _ , , {

IF THEN

Update the current seed solution; that is, set x , and ;

Increment by	1.

}

Table 61 Cyclic neighbourhood change strategy

c. Pipe neighbourhood change strategy: The search in every neighbourhood

is continued until no improvement is achieved, see Table 62.

_ _ , , {

IF THEN

Update the current seed solution; that is, set x , and ;

ELSE Increment by	1.

}

Table 62 Pipe neighbourhood change strategy

d. Skewed neighbourhood change strategy: A neighbourhood change strategy

may accept uphill moves with some ratio, see Table 63. If the ratio includes

the difference between the values of the objective functions, this

169

neighbourhood change strategy is called Skewed neighbourhood change

strategy. In this strategy could be integrated with sequential, cyclic or pipe

neighbourhood change strategy.

_ _ , , {

IF . , THEN

Update the current seed solution; that is, set x , and ;

Set 1;

ELSE Increment by	1.

}

Table 63 Skewed neighbourhood change strategy

Where , is the distance between and .

Appendix E: GA’s selection mechanisms

In this section, the GA’s selection mechanisms are explained; namely ordinal

selection, proportional selection, ranking selection, steady-state selection.

Ordinal selection

According to this selection mechanism, the chance a chromosome is selected to be a

parent is based on its rank (order) in comparison with others in the current generation.

The most common ordinal selection mechanisms are tournament selection and

truncation selection.

Tournament selection (Goldberg et al. 1989): a number of chromosomes from the

current population, say , are selected at random. These chromosomes compete and

the fittest chromosome in the group wins the tournament. In order to choose

chromosomes, tournaments are required.

Truncation selection (Mühlenbein and Schlierkamp-Voosen, 1993): only select a

fraction of the fittest chromosomes. In this selection mechanism a threshold, say , is

specified. This threshold indicates the fraction of the population to be selected.

170

Proportional selection

Proportional selection is a probability-based selection according to fitness value. Two

commonly used proportional selections are roulette- wheel selection and stochastic

universal selection (SUS).

Roulette- wheel selection, see Figure 40, is a probability-based selection according to

fitness value. Roulette wheel selection method assigns a slot to each chromosome with

probability	 , where is proportional to the chromosome’s fitness and is calculated

by the following formula:

∑

A single chromosome is selected by spinning the roulette wheel, thus, to select a set

of chromosomes, it should be done multiple times. Furthermore, the roulette wheel

gives a higher chance of being chosen to chromosomes with higher probability.

Figure 40 Roulette- wheel selection

Stochastic universal selection (SUS) (Baker, 1987) is an unbiased variation of the

roulette wheel that selects a number of needed chromosomes by a single spinning of

the roulette wheel, see Figure 41. In this selection mechanism, a set of evenly spaced

markers is placed outside the roulette wheel. The roulette wheel is turned only once.

Selected chromosomes are the ones that the markers have fallen on their slot. Although

this selection gives a fair chance to weaker chromosomes to be chosen, if a

chromosome has a big slot in the wheel, SUS performance declines.

22%

34%10%

12%

6%

12%

4%

171

Ranking selection

In proportional selection, if some of the chromosomes have a big slot in the roulette

wheel, they will have higher chance to be chosen that leads to fast and premature

convergence. To overcome the beforementioned issue, a rank-based fitness assignment

(Baker, 1985) has been proposed, giving all chromosomes a chance to be chosen.

Ranking selection convergence is slower than proportional selection.

Figure 41 Stochastic universal selection

In this selection mechanism, chromosomes are sorted based on their fitness, from best

to worst, and rank them. Then the selection probability, say	 , assigned to each

chromosome depends on its rank and not its actual fitness value. Then a

proportionate selection according to these probabilities is performed.

∑

Steady-state selection

Steady-state or genitor selection chooses two chromosomes; the first is for

reproduction and the second chromosome is to be replaced by the new offspring. The

choice of the chromosome for reproduction is made by a linear ranking method and

the selection of the chromosome to be replaced is the worst in the current population.

172

Appendix F: Crossover techniques

Several crossover techniques have been proposed to combine the parents’ genes to

generate new offspring such as simple or one-point crossover, multi-point crossover,

uniform crossover and three parents’ crossover.

Simple or One-point crossover: this operator is the simplest and the most common

crossover operator. As it is shown in Figure 42, a crossover point on both

chromosomes is randomly chosen, and all the alleles after the crossover point are

exchanged.

Figure 42 One-point crossover

Multi-point crossover: another common crossover is multipoint crossover; the two-

point is mostly used amongst them. In the two-point crossover, two crossover points

are randomly chosen, and the segment between the two are exchanged, see Figure 43.

Multi-point Crossover follows the same concept as one-point and two-point crossover.

Figure 43 Two-point crossover

Uniform Crossover: one-point and two-point crossovers’ contribution to the offsprings

are only segments of genes. One might argue that this crossover mechanism is not

exploratory enough. Uniform crossover (Syswerda, 1989; Spears and De Jong, 1995),

recombines the parents in genes level, diversifying the search while inheriting the

173

parents’ genes and information. In this crossover mechanism, parents’ alleles are

randomly swapped with probability	 , see Figure 44.

Figure 44 Uniform crossover

Figure 45 Three parents' crossover

Three parents’ crossover (Sivanandam and Deepa, 2007): In this crossover technique,

three parents are randomly chosen and compared. Each allele of the first parent is

compared with the allele of the second parent. If both are the same, the allele is taken

for the offspring; otherwise, the allele from the third parent is taken for the offspring.

This concept is illustrated in Figure 45.

174

Appendix G: Hyperheuristic classifications and
categories

Soubeiga (2003), see Figure 46, first classified hyperheuristics in two categories,

namely single-heuristic and multiple heuristics. In the former, a single Parameterised

heuristic is used to solve a problem. A hyperheuristic is developed to find the optimal

or near optimal set of parameters. However, the latter (multiple heuristics) deal with

more than one heuristic and assist in the search for the best heuristic or set of heuristics

to solve the problem.

Figure 46 Soubeiga (2003) hyperheuritic classification

Soubeiga (2003) further classified the second category, multiple heuristics, based on

learning, hyperheuristics without learning and hyperheuristics with learning. Learning

methods gather historical data about the performance of the system and use learning

mechanisms to improve the performance of the system. In the context of hyperheuristic

algorithms, learning methods collect knowledge concerning the performance of

heuristics or components in the HH search space to select the best performing (set of)

heuristic(s) or component(s) using a learning mechanism. hyperheuristics without

learning select the next low-level heuristic or neighbourhood structure based on a

predetermined sequence. On the other hand, hyperheuristics with learning make use of

a learning mechanism to select the next low-level heuristic or neighbourhood structure.

In their classification, they divided the learning mechanisms into GA-based

hyperheuristics and other hyperheuristics with learning.

In another classification by Bai (2005) and Ross (2005), hyperheuristics are

categorised as constructive hyperheuristic and perturbative (local search methods)

hyperheuristic, Figure 47. Constructive Hyperheuristic, given combinatorial problem

and a set of constructive low-level heuristics, constructs the solution from scratch

Hyper‐heuristics

Single‐heuristic

Multiple‐Heuristics
With Learning

GA_based HH

None GA_based HH
Without Learning

175

incrementally. The hyperheuristic stops when a complete solution is achieved. On the

other hand, perturbative hyperheuristic, given an initial complete solution and

perturbative low-level heuristics leads the search to promising neighbourhoods.

Figure 47 Bai (2005) and Ross (2005) classification

In another classification mentioned independently by Burke et al. (2010), Bader-El-

Den, and Poli (2007), hyperheuristics were classified into two groups, namely heuristic

selection and heuristic generation, see Figure 48. Heuristic selection is “heuristic to

select heuristic”. In this category of hyperheuristics, given a set of low-level heuristics,

search the heuristic space to find the best solution. On the other hand, heuristic

generation is a “heuristic to generate heuristic”. Given a set of components or building

blocks, this hyperheuristic selects the best configuration to produce a new heuristic to

solve the problem at hand. Furthermore, this newly generated heuristic could be used

to address other problems (usable heuristic) or it could not (disposable heuristic).

Figure 48 Hyperheuristic classification of Burke et al. (2010), Bader-El-Den, and Poli (2007)

Moreover, Burke et al. (2010, and 2013) considered the most fundamental

classification represented by heuristic selection and heuristic generation and defined

hyperheuristic as an automated method to select or generate heuristic to solve COPs.

They classified hyperheuristics based on two dimensions, the first nature of the search

space and the second source of feedback through learning. The first level of the nature

of the search space is dependent on whether hyperheuristic is designed to select

heuristic, amongst given set of heuristics, or generate heuristic, given the set of

components. Furthermore, the second level makes a distinction between perturbative

and constructive heuristics, Figure 49.

Hyper‐heuristics

Heuristic selection

Heuristic generation

Disposable

Usable

Hyper‐heuristics

Constructive

perturbative

176

Figure 49 Hyperheuristic’s first dimension

The second dimension is learning based, with learning and without learning. Learning

could be either online or offline, Figure 50. Hyperheuristic with online learning,

hyperheuristic collects knowledge about the system during the process. However,

hyperheuristic with offline learning, hyperheuristic collects knowledge about the

system from a set of training instances, in the form of rules.

Figure 50 Hyperheuristics second dimension

Appendix H: Learning mechanisms

Choice Function (CH) is well-known in multi-criteria decision-making. CH is a

statistical ranking of alternatives that guide the search for the best choice of alternative

or set of alternatives based on the provided historical knowledge about their

performance throughout the time.

We first explain the idea behind choice function: consider a system with a set of

alternatives, where each alternative has a set of criterions. The system should choose

a single or a set of alternatives at time that lead to its optimal or close to optimal

performance. Choice function evaluates performance of each alternative at time as

follows:

∑

Nature Of Heuristic Search Space

Heuristic selection

Constructive

Perturbative

Heuristic generation

Constructive

Perturbative

Learning

Without Learning

With Learning

Online

Offline

177

where indicates number of criterions of the alternatives, indicates criterion of

the alternative,	 is the score of at time and is a weight indicating the

importance of criterion in the choice function. The system selects alternative with

the highest value of , at time 1.

The main components in designing choice function are weights of the criterion,	 .

These weights should be chosen correctly. The choice of these weights requires a

warmup phase.

In the context of hyperheuristics, the set of alternatives could be low-level heuristics

or components, which in this section they are referred to as LLH. Moreover, Criteria

considered for calculation of CF could be the gathered historical data about their recent

effectiveness or performance; such as the time needed to perform LLH, the last time

LLH has been called, etc. Selection mechanisms used in exploration could be roulette

wheel (proportional to 	
∑

), maximum value (highest CF value), rank-based

selection (ranking LLH based on their performance), etc. (Cowling et al., 2001; Chen

et al., 2016). Cowling et al. (2000) introduced a choice function to select the next LLH

to be called. The proposed CF measures the effectiveness LLHs based on the current

provided historical knowledge about the exploited LLH search space. They considered

three criterions to update the efficiency of each	 ; namely, information regarding

recent its effectiveness, recent effectiveness of consecutive pairs of LLH and the time

since it was last called. They experimented with four different selection mechanisms;

namely, roulette wheel, maximum value, rank-based selection and

(consider LLH producing best scores for each criterion and CF). Their results suggest

that CF- based hyperheuristic, which accept non-improving LLH, is significantly

better than hyperheuristic without learning. In addition, they observed that

 selection mechanism performs better than other selection

mechanisms, and roulette wheel is performing better than the maximum value, rank-

based selection.

Later, Chen et al. (2016) used a different CF. They updated by considering

the following three criteria: performance of estimated by both fitness change and

execution time, performance of collaboration of LLHs in pairs (estimated by

178

successively applying pairs of LLH) and the time since was last called. Their

proposed selection mechanism was % of LLHs with highest rank.

Reinforcement Learning (RL) is a reward-based mechanism, which provides feedback

in terms of reward and penalty, based on the system’s performance over time. RL is

an online learning mechanism that interacts with the environment and gathers

information, called exploitation process, and uses the gathered information to select

the next action to take, called exploration process. Since the environment might be

unknown, a trial and error is needed to gather information and explore the

environment. In designing an adequate RL, a trade-off should be made between

exploration and exploitation.

In the context of hyperheuristic, an improving LLH will be rewarded by increasing its

weight; otherwise, it will be penalised by decreasing its weight. A Selection

mechanism is used to select an LLH based on their weight, such as maximum weight

or roulette wheel (Nareyek, 2003; Ozcan et al., 2010; Chen et al., 2016). Nareyek

(2003) used RL to select promising heuristics at each decision point. They evaluated

different variants of selection mechanisms and weight adaptation. They considered

maximum weight and roulette wheel as selection mechanism, and the following reward

and penalty schemes to update the weights ():

Reward Schemes:

 (Additive adaptation): ← 1

 (Escalating additive adaptation): ←

 (Multiplicative adaptation): ← 2

	(Escalating multiplicative adaptation): ←

 (Power adaptation): ← : 1
2					 ∶ 1

Penalty Schemes:

 (Subtractive adaptation): ← 1

 (Escalating Subtractive adaptation): ←

179

 (Divisional adaptation): ← /2

 (Escalating divisional adaptation): ← /

 (Root adaptation): ←

Any combination of weight adaptation (reward and penalty scheme) and selection

mechanism could be used to design a reinforcement mechanism. Their analysis

suggests that a small reward () in case of an improvement and large penalty () in

case of deterioration is a good combination of weight adaptation. In addition, a

selection mechanism based on maximum weight is often a better exploration strategy

in comparison with selection mechanism based on roulette wheel.

Learning Classifier System (LCS) is a rule-based machine learning method that

identifies set (population) of rules, representing knowledge about the environment,

learns and evolves the population iteratively to make predictions. LCS was first

reported by Holland and Reitman (1978). Learning Classifier Systems are a

combination of two components. The first is a discovery component which identifies

set of rules (if: then conditions), which are not known yet, and the second is a learning

component that uses the accumulated knowledge about the environment to guide the

discovery component to improve its performance. The Discovery component is an

evolutionary algorithm, typically GA, and learning component can be reinforcement

learning, also known as credit assignment (Holland and Reitman; 1978). Ross et al.

(2002) proposed a hyperheuristic for Bin-packing problem, which combines a set of

LLHs. They proposed a learning classifier system that evolves condition-action rules

to learn which LLH to call in each decision point. See also Ross (2005) and Marín-

Blázquez and Schulenburg (2007).

 Case-Based Reasoning (CBR) is based on two principles of nature, similar problems

have similar solutions and it is more likely that future problem might be like the current

ones (Leake, 1996). Considering these two principles, to solve a new problem (new

case), instead of starting from scratch, one can retrieve similar experienced problem

situations (cases) and adapt them to solve the new one in hand. CBR is a knowledge-

based technique that stores experienced cases in a memory (case base) when it faces a

new case retrieves similar cases, using a similarity measure, and adapts previous

180

experience to the new case. Regardless of failure or success, CBR learns from the new

experience and revise its general knowledge to exploit previous success and avoid

future failures. A critical factor in the success of CBR is case representation in the case

base. A case usually consists of a representation of the problem, its features and

conditions of retrieval, and the solution (Burke et al., 2002). Burke et al. (2002)

proposed a hyperheuristic using CBR to solve timetabling problems. The purpose of

using CBR was to predict the best LLH to address new problems by retrieving old

cases. See also (Petrovic and Qu, 2002, Burke et al. 2002, 2004, 2006).

Appendix I: -Means clustering

-Means is an iterative cluster enhancement technique, see Table 64. This iterative

procedure starts with an initial set of centroids, usually chosen at random, and

alternates between two steps; namely assigning nodes to clusters and updating

centroids (MacKay, 2003). This process continues until the clusters converge, meaning

that no change in their centroids has been observed. Note that this algorithm is almost

surely converges after finite number of iterations (Bottou and Bengio, 1995).

Initialization steps

Place centroids , . . . , at random locations;

Iterative steps

REPEAT until the convergence criterion is met

FOR each node	 {

Compute the distance from to each centroid;

Sort centroids in decreasing distance from node	 ;

Assign customer to the cluster whose centroid is the closest;
}
Update centroid coordinates based on the current assignment scheme by computing each centroids’

coordinates as the mean of the coordinates of the customers assigned to that cluster;

Check whether the convergence criterion is met or not;

END REPEAT

Table 64 -means clustering algorithm

This technique is easy to implement and apply on large data sets. It has been used in

several applications such as signal processing, cluster analysis, feature learning etc.

181

In this thesis, we used this clustering method to exploit the structure of TSP instances,

e.g. the distribution of nodes being random, clustered or uniform.

Appendix J: RINS function

A recursive function iteratively calls itself and shows the output at the end of each

iteration (Butterfield et al., 2016). It is used when solving a problem requires solving

a smaller or different version of the same problem. For example, consider the

calculation of the factorial of a natural number:

! 1 2 … 1

For example:

3! 3 2 1

4! 4 3!

5! 5 4!

Therefore, ! can be rewritten as follows:

! 1 !

In other words, for calculating 	 ! , one can simply solve smaller sub-problem,

(1 !) and multiply it by	 . Thus, the factorial function can be designed either

iteratively using FOR loops or recursively using a recursive function, see Table 65.

This procedure is a common method used in computer programming since it allows

the programmer to write an efficient and generic code, since one can implement finite

number of codes for any number of recursion.

Iterative Recursive

Factorial () {
;

 IF (0)
1;

 ELSE IF () {
FOR (1; 0;){

;
}

}
return ;
}

Factorial () {
 IF (0)
 return 1;
 ELSE
 return Factorial 1 ;
}

Table 65 Pseudo-code of recursive versus iterative factorial function

182

As it was mentioned in chapter 3, exploring the infeasible space for a given set of

parameters requires exploring a single or several combinations of and	 . One can use

an iterative design, where for any combination of , several FOR loops are

required. For example, for combinations of 1 arc in 2 subtours, two

embedded FOR loops are needed; however, for combinations of 2 arc in 3

subtours, six embedded FOR loops are needed. As a result, the iterative design restricts

us to limited combinations of , as it requires a different code for each

combination.

Therefore, to make the code efficient and generic; i.e., any combination of , could

be implemented with the same code, we proposed a recursive function to search the

infeasible neighbourhood, see Table 24 for a detailed pseudo-code of (RINS). As it

was mentioned earlier the recursive function iteratively calls itself and shows the

output at the end of each iterations, see Table 24. An example with 2 and

2, 1 is illustrated in Figure 51.

183

Figure 51 RINS example

184

References

Aarts, Emile HL, and Peter JM Van Laarhoven. 1985. "Statistical cooling: A general

approach to combinatorial optimization problems." Philips J. Res. 40 (4):193-226.

Alander, Jarmo T. 1992. "On optimal population size of genetic algorithms."

CompEuro'92.'Computer Systems and Software Engineering', Proceedings.

Applegate, David, Robert Bixby, William Cook, and Vasek Chvátal. 1998. "On the

solution of traveling salesman problems."

Applegate, David L, Robert E Bixby, Vasek Chvatal, and William J Cook. 2006. The

traveling salesman problem: a computational study: Princeton University press.

Archetti, Claudia, Maria Grazia Speranza, and Alain Hertz. 2006. "A tabu search

algorithm for the split delivery vehicle routing problem." Transportation science

40 (1):64-73.

Arostegui, Marvin A., Sukran N. Kadipasaoglu, and Basheer M. Khumawala. 2006.

"An empirical comparison of Tabu Search, Simulated Annealing, and Genetic

Algorithms for facilities location problems." International Journal of Production

Economics 103 (2):742-754. doi: https://doi.org/10.1016/j.ijpe.2005.08.010.

Atiqullah, Mir M. 2004. "An efficient simple cooling schedule for simulated

annealing." International Conference on Computational Science and Its

Applications.

Avella, Pasquale, Maurizio Boccia, and Laurence A Wolsey. 2017. "Single-period

cutting planes for inventory routing problems." Transportation Science 52 (3):497-

508.

Aytug, Haldun, and Gary J Koehler. 1996. "Stopping criteria for finite length genetic

algorithms." INFORMS Journal on Computing 8 (2):183-191.

185

Azizi, Nader, and Saeed Zolfaghari. 2004. "Adaptive temperature control for

simulated annealing: a comparative study." Computers & Operations Research 31

(14):2439-2451. doi: http://dx.doi.org/10.1016/S0305-0548(03)00197-7.

Bäck, Thomas. 1992. "The interaction of mutation-rate, selection, and self-adaptation

within a genetic algorithm." Männer and Manderick 1503:85-94.

Bäck, Thomas. 1996. Evolutionary algorithms in theory and practice: evolution

strategies, evolutionary programming, genetic algorithms. Oxford University Press,

NY.

Bäck, Thomas, and Martin Schütz. 1996. "Intelligent mutation rate control in canonical

genetic algorithms." In Foundations of Intelligent Systems: 9th International

Symposium, ISMIS '96 Zakopane, Poland, June 9–13, 1996 Proceedings, edited by

Zbigniew W. Raś and Maciek Michalewicz, 158-167. Berlin, Heidelberg: Springer

Berlin Heidelberg.

Bader-El-Den, Mohamed, and Riccardo Poli. 2007. "Generating SAT local-search

heuristics using a GP hyper-heuristic framework." Artificial evolution.

Bai, Ruibin. 2005. "An investigation of novel approaches for optimising retail shelf

space allocation." University of Nottingham.

Bai, Ruibin, and Graham Kendall. 2005. "An investigation of automated planograms

using a simulated annealing based hyper-heuristic." In Metaheuristics: Progress as

real problem solvers, 87-108. Springer.

Baker, James E. 1987. "Reducing bias and inefficiency in the selection algorithm."

Proceedings of the second international conference on genetic algorithms.

Balas, Egon, and Nicos Christofides. 1981. "A restricted Lagrangean approach to the

traveling salesman problem." Mathematical Programming 21 (1):19-46.

Battiti, R., and G. Tecchiolli. 1994. "Simulated annealing and Tabu search in the long

run: A comparison on QAP tasks." Computers and Mathematics with Applications

28 (6):1-8. doi: 10.1016/0898-1221(94)00147-2.

186

Bellmore, Mandell, and John C Malone. 1971. "Pathology of traveling-salesman

subtour-elimination algorithms." Operations Research 19 (2):278-307.

Bock, F. 1958. "An algorithm for solving traveling-salesman andrelated network

optimization problems." Unpublishedmanuscript associated with talk presented at

the 14th ORSANational Meeting.

Bottou, Leon, and Yoshua Bengio. 1995. "Convergence properties of the k-means

algorithms." Advances in neural information processing systems.

Brandimarte, P, R Conterno, and P Laface. 1987. "FMS production scheduling by

simulated annealing." Proceedings of the third International Conference on

Simulation in Manufacturing.

Burke, E, and E Soubeiga. 2003. "Scheduling nurses using a tabu-search

hyperheuristic." Proceedings of the 1st Multidisciplinary International Conference

on Scheduling: Theory and Applications (MISTA 2003), Nottingham, UK.

Burke, E. K., B. L. MacCarthy, S. Petrovic, and R. Qu. 2003. Knowledge discovery in

a hyper-heuristic for course timetabling using case-based reasoning. In Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics).

Burke, Edmund, Moshe Dror, Sanja Petrovic, and Rong Qu. 2005. "Hybrid graph

heuristics within a hyper-heuristic approach to exam timetabling problems." In The

next wave in computing, optimization, and decision technologies, 79-91. Springer.

Burke, Edmund K, Peter I Cowling, and Ralf Keuthen. 2001. "Effective local and

guided variable neighbourhood search methods for the asymmetric travelling

salesman problem." Workshops on Applications of Evolutionary Computation.

Burke, Edmund K, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela

Ochoa, Ender Özcan, and Rong Qu. 2013. "Hyper-heuristics: A survey of the state

of the art." Journal of the Operational Research Society 64 (12):1695-1724.

Burke, Edmund K, Mathew R Hyde, Graham Kendall, Gabriela Ochoa, Ender Ozcan,

and John R Woodward. 2009. "Exploring hyper-heuristic methodologies with

genetic programming." In Computational intelligence, 177-201. Springer.

187

Burke, Edmund K, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan,

and John R Woodward. 2010. "A classification of hyper-heuristic approaches." In

Handbook of metaheuristics, 449-468. Springer.

Burke, Edmund K, Graham Kendall, Mustafa Mısır, Ender Özcan, EK Burke, G

Kendall, E Özcan, and M Mısır. 2004. "Applications to timetabling." Handbook of

Graph Theory, chapter 5.6.

Burke, Edmund K, Bart L MacCarthy, Sanja Petrovic, and Rong Qu. 2002.

"Knowledge discovery in a hyper-heuristic for course timetabling using case-based

reasoning." International Conference on the Practice and Theory of Automated

Timetabling.

Burke, Edmund K, Sanja Petrovic, and Rong Qu. 2006. "Case-based heuristic selection

for timetabling problems." Journal of Scheduling 9 (2):115-132.

Butterfield, Andrew, Gerard Ekembe Ngondi, and Anne Kerr. 2016. A dictionary of

Computer Science: Oxford University Press.

Chakhlevitch, Konstantin, and Peter Cowling. 2008. "Hyperheuristics: Recent

Developments." In Adaptive and Multilevel Metaheuristics, edited by Carlos Cotta,

Marc Sevaux and Kenneth Sörensen, 3-29. Berlin, Heidelberg: Springer Berlin

Heidelberg.

Chen, Yujie, Philip Mourdjis, Fiona Polack, Peter Cowling, and Stephen Remde. 2016.

"Evaluating hyperheuristics and local search operators for periodic routing

problems." European Conference on Evolutionary Computation in Combinatorial

Optimization.

Chiang, W. C., and C. Chiang. 1998. "Intelligent local search strategies for solving

facility layout problems with the quadratic assignment problem formulation."

European Journal of Operational Research 106 (2-3):457-488. doi: 10.1016/S0377-

2217(97)00285-3.

Christofides, Nicos. 1970. "The shortest Hamiltonian chain of a graph." SIAM Journal

on Applied Mathematics 19 (4):689-696.

188

Christofides, Nicos. 1975a. Graph Theory: An algorithmic approach: New York:

Academic Press Inc.

Christofides, Nicos. 1975b. "Hamiltonian circuits and the travelling salesman

problem." In Combinatorial Programming: Methods and Applications, 149-171.

Springer.

Christofides, Nicos. 1976. Worst-case analysis of a new heuristic for the travelling

salesman problem. Carnegie-Mellon Univ Pittsburgh Pa Management Sciences

Research Group.

Clarke, Geoff, and John W Wright. 1964. "Scheduling of vehicles from a central depot

to a number of delivery points." Operations research 12 (4):568-581.

Connolly, David. 1992. "General purpose simulated annealing." Journal of the

Operational Research Society 43 (5):495-505.

Connolly, David T. 1990. "An improved annealing scheme for the QAP." European

Journal of Operational Research 46 (1):93-100.

Cordeau, Jean-François, Gilbert Laporte, and Anne Mercier. 2001. "A unified tabu

search heuristic for vehicle routing problems with time windows." Journal of the

Operational research society 52 (8):928-936.

Cordeau, Jean‐François, Michel Gendreau, and Gilbert Laporte. 1997. "A tabu search

heuristic for periodic and multi‐depot vehicle routing problems." Networks 30

(2):105-119.

Cowling, Peter, Graham Kendall, and Limin Han. 2002. "An investigation of a

hyperheuristic genetic algorithm applied to a trainer scheduling problem."

Evolutionary Computation, 2002. CEC'02. Proceedings of the 2002 Congress on.

Cowling, Peter, Graham Kendall, and Eric Soubeiga. 2000. "A hyperheuristic

approach to scheduling a sales summit." In Practice and theory of automated

timetabling III, 176-190. Springer.

189

Cowling, Peter, Graham Kendall, and Eric Soubeiga. 2001. "A parameter-free

hyperheuristic for scheduling a sales summit." Proceedings of the 4th metaheuristic

international conference.

Cowling, Peter, Graham Kendall, and Eric Soubeiga. 2002. "Hyperheuristics: A tool

for rapid prototyping in scheduling and optimisation." In Applications of

evolutionary computing, 1-10. Springer.

Crainic, Teodor G., Michel Gendreau, Patrick Soriano, and Michel Toulouse. 1993.

"A tabu search procedure for multicommodity location/allocation with balancing

requirements." Annals of Operations Research 41 (4):359-383. doi:

10.1007/bf02023001.

Croes, Georges A. 1958. "A method for solving traveling-salesman problems."

Operations research 6 (6):791-812.

Crowder, Harlan, and Manfred W Padberg. 1980. "Solving large-scale symmetric

travelling salesman problems to optimality." Management Science 26 (5):495-509.

Cuervo, Daniel Palhazi, Peter Goos, Kenneth Sörensen, and Emely Arráiz. 2014. "An

iterated local search algorithm for the vehicle routing problem with backhauls."

European Journal of Operational Research 237 (2):454-464.

Dantzig, George, Ray Fulkerson, and Selmer Johnson. 1954. "Solution of a large-scale

traveling-salesman problem." Journal of the operations research society of America

2 (4):393-410.

Daridi, F, N Kharma, and J Salik. 2004. "Parameterless genetic algorithms: review and

innovation." IEEE Canadian Review 47:19-23.

De Jong, Kenneth. 1988. "Learning with genetic algorithms: An overview." Machine

learning 3 (2):121-138.

de Lucena Filho, Abilio Pereira. 1986. "Exact solution approaches for the vehicle

routing problem." Ph.D. Thesis, Department of Management Science, Imperial

College of Science and Technology, University of London, Amsterdam

190

Denzinger, Jorg, Marc Fuchs, and Matthias Fuchs. 1997. "High performance ATP

systems by combining several AI methods." Proceedings of the 15th international

joint conference on Artifical intelligence-Volume 1.

DePuy, Gail W, Reinaldo J Moraga, and Gary E Whitehouse. 2005. "Meta-RaPS: a

simple and effective approach for solving the traveling salesman problem."

Transportation Research Part E: Logistics and Transportation Review 41 (2):115-

130.

Dowsland, Kathryn A. 1993. "Some experiments with simulated annealing techniques

for packing problems." European Journal of Operational Research 68 (3):389-399.

Dueck, Gunter, and Tobias Scheuer. 1990. "Threshold accepting: a general purpose

optimization algorithm appearing superior to simulated annealing." Journal of

computational physics 90 (1):161-175.

Eastman, Willard Lawrence. 1958. "Linear programming with pattern constraints: a

thesis." Harvard University.

Finke, Gerd. 1984. "A two-commodity network flow approach to the traveling

salesman problem." Congresses Numeration 41:167-178.

Fischetti, Matteo, Andrea Lodi, and Paolo Toth. 2003. "Solving real-world ATSP

instances by branch-and-cut." In Combinatorial Optimization—Eureka, You

Shrink!, 64-77. Springer.

Fischetti, Matteo, and Paolo Toth. 1997. "A polyhedral approach to the asymmetric

traveling salesman problem." Management Science 43 (11):1520-1536.

Fisher, H., and G.L. Thompson. 1963. "Probabilistic Learning Combinations of Local

Job-Shop Scheduling Rules." Prentice-Hall, Englewood Cliffs:225-251.

Fix, Evelyn, and Joseph L Hodges Jr. 1951. Discriminatory analysis-nonparametric

discrimination: consistency properties. California Univ Berkeley.

Flood, Merrill M. 1956. "The Traveling-Salesman Problem." Operations Research 4

(1):61-75.

191

Fogarty, Terence C. 1989. "An incremental genetic algorithm for real-time

optimisation." Systems, Man and Cybernetics, 1989. Conference Proceedings.,

IEEE International Conference.

Fox, Kenneth R, Bezalel Gavish, and Stephen C Graves. 1980. "An n-constraint

formulation of the (time-dependent) traveling salesman problem." Operations

Research 28 (4):1018-1021.

Friden, Charles, Alain Hertz, and D de Werra. 1989. "Stabulus: A technique for finding

stable sets in large graphs with tabu search." Computing 42 (1):35-44.

Gavish, Bezalel, and Stephen C Graves. 1978. "The travelling salesman problem and

related problems."

Gavish, Bezalel, and K Srikanth. 1983. Efficient branch and bound code for solving

large scale travelling salesman problems to optimality: University of Rochester.

Graduate School of Management.

Gendreau, Michel, Alain Hertz, and Gilbert Laporte. 1992. "New insertion and

postoptimization procedures for the traveling salesman problem." Operations

Research 40 (6):1086-1094.

Gendreau, Michel, Alain Hertz, and Gilbert Laporte. 1994. "A tabu search heuristic

for the vehicle routing problem." Management science 40 (10):1276-1290.

Gendreau, Michel, and Jean-Yves Potvin. 2014. "Tabu Search." In Search

Methodologies: Introductory Tutorials in Optimization and Decision Support

Techniques, edited by Edmund K. Burke and Graham Kendall, 243-263. Boston,

MA: Springer US.

Gendreau, Michel, Patrick Soriano, and Louis Salvail. 1993. "Solving the maximum

clique problem using a tabu search approach." Annals of Operations Research 41

(4):385-403.

Geng, Xiutang, Zhihua Chen, Wei Yang, Deqian Shi, and Kai Zhao. 2011. "Solving

the traveling salesman problem based on an adaptive simulated annealing algorithm

with greedy search." Applied Soft Computing 11 (4):3680-3689.

192

Glover, Fred. 1977. "Heuristics for integer programming using surrogate constraints."

Decision Sciences 8 (1):156-166. doi: 10.1111/j.1540-5915.1977.tb01074.x.

Glover, Fred. 1986. "Future paths for integer programming and links to artificial

intelligence." Computers & operations research 13 (5):533-549.

Glover, Fred. 1989. "Tabu search—part I." ORSA Journal on computing 1 (3):190-

206.

Glover, Fred. 1990. "Tabu search—part II." ORSA Journal on computing 2 (1):4-32.

Glover, Fred. 1992. "New ejection chain and alternating path methods for traveling

salesman problems." In Computer science and operations research, 491-509.

Elsevier.

Glover, Fred. 1996. "Ejection chains, reference structures and alternating path methods

for traveling salesman problems." Discrete Applied Mathematics 65 (1-3):223-253.

Glover, Fred, Gregory Gutin, Anders Yeo, and Alexey Zverovich. 2001. "Construction

heuristics for the asymmetric TSP." European Journal of Operational Research 129

(3):555-568. doi: http://dx.doi.org/10.1016/S0377-2217(99)00468-3.

Glover, Fred, and Manuel Laguna. 1997. "General purpose heuristics for integer

programming—Part I." Journal of Heuristics 2 (4):343-358.

Glover, Fred W, and Gary A Kochenberger. 2006. Handbook of metaheuristics. Vol.

57: Springer Science & Business Media.

Goldberg, DE. 1989. "Genetic algorithms in search, optimization, and machine

learning, addison-wesley, reading, ma, 1989." NN Schraudolph and J 3 (1).

Golden, B., L. Bodin, T. Doyle, and W. Stewart. 1980. "Approximate Traveling

Salesman Algorithms." Operations Research 28 (3):694-711.

Gomory, Ralph E. 1958. "Outline of an algorithm for integer solutions to linear

programs." Bulletin of the American Mathematical society 64 (5):275-278.

Grefenstette, J. J. 1986. "Optimization of control parameters for genetic algorithms."

IEEE Transactions on Systems, Man, and Cybernetics 16 (1):122-128. doi:

10.1109/TSMC.1986.289288.

193

Hansen, Pierre, and Nenad Mladenovic. 2003. A tutorial on variable neighborhood

search: Groupe d'études et de recherche en analyse des décisions, HEC Montréal.

Hansen, Pierre, and Nenad Mladenović. 2006. "First vs. best improvement: an

empirical study." Discrete Applied Mathematics 154 (5):802-817.

Hansen, Pierre, Nenad Mladenović, Raca Todosijević, and Saïd Hanafi. 2016.

"Variable neighborhood search: basics and variants." EURO Journal on

Computational Optimization:1-32.

Hart, Emma, Peter Ross, and Jeremy Nelson. 1998. "Solving a real-world problem

using an evolving heuristically driven schedule builder." Evolutionary

Computation 6 (1):61-80.

Hart, Emma, Peter Ross, and Jeremy AD Nelson. 1999. "Scheduling chicken

catching‐An investigationinto the success of a genetic algorithm on areal‐world

scheduling problem." Annals of Operations Research 92:363-380.

Hartigan, John A, and Manchek A Wong. 1979. "Algorithm AS 136: A k-means

clustering algorithm." Journal of the Royal Statistical Society. Series C (Applied

Statistics) 28 (1):100-108.

He, Yi, Yuhui Qiu, Guangyuan Liu, and Kaiyou Lei. 2005. "A parallel adaptive tabu

search approach for traveling salesman problems." Natural Language Processing

and Knowledge Engineering, 2005. IEEE NLP-KE'05. Proceedings of 2005 IEEE

International Conference.

Held, Michael, and Richard M Karp. 1970. "The traveling-salesman problem and

minimum spanning trees." Operations Research 18 (6):1138-1162.

Held, Michael, and Richard M Karp. 1971. "The traveling-salesman problem and

minimum spanning trees: Part II." Mathematical programming 1 (1):6-25.

Helsgaun, Keld. 2000. "An effective implementation of the Lin–Kernighan traveling

salesman heuristic." European Journal of Operational Research 126 (1):106-130.

Hertz, Alain, and Dominique de Werra. 1987. "Using tabu search techniques for graph

coloring." Computing 39 (4):345-351.

194

Hesser, Jürgen, and Reinhard Männer. 1991. "Towards an optimal mutation

probability for genetic algorithms." Parallel Problem Solving from Nature:23-32.

Ho, Sin C, and Dag Haugland. 2004. "A tabu search heuristic for the vehicle routing

problem with time windows and split deliveries." Computers & Operations

Research 31 (12):1947-1964.

Holland, JH. 1989. Genetic algorithms in search, optimization and machine learning.

Addison-Wesley, Reading, MA.

Holland, John H, and Judith S Reitman. 1978. "Cognitive systems based on adaptive

algorithms." In Pattern-directed inference systems, 313-329. Elsevier.

Holland, John H. 1975. Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence: U

Michigan Press.

Houck, David J 1978. The traveling salesman problem as a constrained shortest path

problem: Theory and computational experience: Ecole polytechnique de Montréal.

Huang, YJ, Hashem Akbari, Haider Taha, and Arthur H Rosenfeld. 1987. "The

potential of vegetation in reducing summer cooling loads in residential buildings."

Journal of climate and Applied Meteorology 26 (9):1103-1116.

Hussin, Mohamed Saifullah , and Thomas Stützle. 2014. "Tabu search vs. simulated

annealing as a function of the size of quadratic assignment problem instances."

Computers & Operations Research 43:286-291. doi:

https://doi.org/10.1016/j.cor.2013.10.007.

Jain, Anil K. 2010. "Data clustering: 50 years beyond K-means." Pattern recognition

letters 31 (8):651-666.

Johnson, David S, Cecilia R Aragon, Lyle A McGeoch, and Catherine Schevon. 1989.

"Optimization by simulated annealing: An experimental evaluation; part I, graph

partitioning." Operations research 37 (6):865-892.

Kanungo, Tapas, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth

Silverman, and Angela Y Wu. 2002. "An efficient k-means clustering algorithm:

195

Analysis and implementation." IEEE transactions on pattern analysis and machine

intelligence 24 (7):881-892.

Karp, Richard M. 1977. "Probabilistic analysis of partitioning algorithms for the

traveling-salesman problem in the plane." Mathematics of operations research 2

(3):209-224.

Katayama, K, H Sakamoto, and H Narihisa. 2000. "The efficiency of hybrid mutation

genetic algorithm for the travelling salesman problem." Mathematical and

Computer Modelling 31 (10-12):197-203.

Katayama, Kengo, Masafumi Tani, and Hiroyuki Narihisa. 2000. "Solving large binary

quadratic programming problems by effective genetic local search algorithm."

Proceedings of the 2nd Annual Conference on Genetic and Evolutionary

Computation.

Kaur, D, and MM Murugappan. 2008. "Performance enhancement in solving traveling

salesman problem using hybrid genetic algorithm." Fuzzy Information Processing

Society, 2008. NAFIPS 2008. Annual Meeting of the North American.

Kim, CE. 1975. A minimal spanning tree and approximate tours for a traveling

salesman: University of Maryland. Computer Science.

Kirkpatrick, Scott. 1984. "Optimization by simulated annealing: Quantitative studies."

Journal of statistical physics 34 (5-6):975-986.

Kirkpatrick, Scott, C Daniel Gelatt, and Mario P Vecchi. 1983. "Optimization by

simmulated annealing." science 220 (4598):671-680.

Koulamas, C., S. R. Antony, and R. Jaen. 1994. "A survey of simulated annealing

applications to operations research problems." Omega 22 (1):41-56. doi:

http://dx.doi.org/10.1016/0305-0483(94)90006-X.

Koulinas, G., L. Kotsikas, and K. Anagnostopoulos. 2014. "A particle swarm

optimization based hyper-heuristic algorithm for the classic resource constrained

project scheduling problem." Information Sciences 277:680-693. doi:

10.1016/j.ins.2014.02.155.

196

Langevin, A. 1988. "Planification de tournées de véhicules."

Laporte, Gilbert. 1992. "The traveling salesman problem: An overview of exact and

approximate algorithms." European Journal of Operational Research 59 (2):231-

247.

LAWLER, EL. 1976. "Combinatorial Optimization: Networks and Matroids." Holt,

Rinehart and Winston.

Leake, David B. 1996. Case-Based Reasoning: Experiences, Lessons and Future

Directions: MIT Press.

Liao, Xiao-Ping. 2009. "An orthogonal genetic algorithm with total flowtime

minimization for the no-wait flow shop problem." Machine Learning and

Cybernetics, 2009 International Conference.

Lin, Shen. 1965. "Computer solutions of the traveling salesman problem." Bell

System Technical Journal 44 (10):2245-2269.

Lin, Shen, and Brian W Kernighan. 1973. "An effective heuristic algorithm for the

traveling-salesman problem." Operations research 21 (2):498-516.

Little, John DC, Katta G Murty, Dura W Sweeney, and Caroline Karel. 1963. "An

algorithm for the traveling salesman problem." Operations research 11 (6):972-

989.

Loulou, R.J. 1988. "On multicommodity flow formulation for the TSP."

Lourenço, Helena R, Olivier C Martin, and Thomas Stutzle. 2003. "Iterated local

search." International series in operations research and management science:321-

354.

Lundy, M. 1985. "Applications of the annealing algorithm to combinatorial problems

in statistics." Biometrika 72 (1):191-198.

Lundy, Miranda, and Alistair Mees. 1986. "Convergence of an annealing algorithm."

Mathematical programming 34 (1):111-124.

MacKay, David JC, and David JC Mac Kay. 2003. Information theory, inference and

learning algorithms: Cambridge university press.

197

Mak, King-Tim, and Andrew J Morton. 1993. "A modified Lin-Kernighan traveling-

salesman heuristic." Operations Research Letters 13 (3):127-132.

Marín-Blázquez, Javier G., and Sonia Schulenburg. 2007. "A Hyper-Heuristic

Framework with XCS: Learning to Create Novel Problem-Solving Algorithms

Constructed from Simpler Algorithmic Ingredients." In Learning Classifier

Systems: International Workshops, IWLCS 2003-2005, Revised Selected Papers,

edited by Tim Kovacs, Xavier Llorà, Keiki Takadama, Pier Luca Lanzi, Wolfgang

Stolzmann and Stewart W. Wilson, 193-218. Berlin, Heidelberg: Springer Berlin

Heidelberg.

McCall, John. 2005. "Genetic algorithms for modelling and optimisation." Journal of

Computational and Applied Mathematics 184 (1):205-222.

Miliotis, P. 1978. "Using cutting planes to solve the symmetric travelling salesman

problem." Mathematical programming 15 (1):177-188.

Miller, C. E., A. W. Tucker, and R. A. Zemlin. 1960. "Integer Programming

Formulation of Traveling Salesman Problems." J. ACM 7 (4):326-329. doi:

10.1145/321043.321046.

MILLER, DONALDL, and JOSEPHF PEKNY. 1991. "Exact solution of large

asymmetric traveling salesman problems." Science 251 (4995):754-761.

Mirkin, Gerri, Kris Vasudevan, Frederick A. Cook, William G. Laidlaw, and William

G. Wilson. 1993. "A comparison of several cooling schedules for simulated

annealing implemented on a residual statics problem." Geophysical Research

Letters 20 (1):77-80. doi: 10.1029/92GL03024.

Mladenović, Nenad, and Pierre Hansen. 1997. "Variable neighborhood search."

Computers & operations research 24 (11):1097-1100.

Montané, Fermín Alfredo Tang, and Roberto Diéguez Galvao. 2006. "A tabu search

algorithm for the vehicle routing problem with simultaneous pick-up and delivery

service." Computers & Operations Research 33 (3):595-619.

Moscato, Pablo, and José F Fontanari. 1990. "Stochastic versus deterministic update

in simulated annealing." Physics Letters A 146 (4):204-208.

198

Mühlenbein, Heinz, and Dirk Schlierkamp-Voosen. 1993. "Predictive models for the

breeder genetic algorithm i. continuous parameter optimization." Evolutionary

computation 1 (1):25-49.

Mumford, Christine L. 2004. "Simple population replacement strategies for a steady-

state multi-objective evolutionary algorithm." Genetic and Evolutionary

Computation Conference.

Nareyek, Alexander. 2003. "Choosing search heuristics by non-stationary

reinforcement learning." In Metaheuristics: Computer decision-making, 523-544.

Springer.

Nourani, Yaghout, and Bjarne Andresen. 1998. "A comparison of simulated annealing

cooling strategies." Journal of Physics A: Mathematical and General 31 (41):8373.

Ogbu, F. A., and D. K. Smith. 1990. "The application of the simulated annealing

algorithm to the solution of the n/m/Cmax flowshop problem." Computers &

Operations Research 17 (3):243-253. doi: http://dx.doi.org/10.1016/0305-

0548(90)90001-N.

Or, I. 1976. "Traveling salesman-type combinatorial problems and their relation to the

logistics of blood banking." PhD thesis (Department of Industrial Engineering and

Management Science, Northwestern University).

Orman, A.J., and H.P. Williams. 2007. "A Survey of Different Integer Programming

Formulations of the Travelling Salesman Problem." Berlin, Heidelberg.

Ouenniche, Jamal, Prasanna K Ramaswamy, and Michel Gendreau. 2017. "A dual

local search framework for combinatorial optimization problems with TSP

application." Journal of the Operational Research Society:1-22.

Özcan, Ender, Mustafa Misir, Gabriela Ochoa, and Edmund K Burke. 2012. "A

Reinforcement Learning: Great-Deluge Hyper-Heuristic for Examination

Timetabling." In Modeling, Analysis, and Applications in Metaheuristic

Computing: Advancements and Trends, 34-55. IGI Global.

199

Padberg, Manfred, and Giovanni Rinaldi. 1987. "Optimization of a 532-city symmetric

traveling salesman problem by branch and cut." Operations Research Letters 6

(1):1-7.

Parthasarathy, S, and Chandrasekharan Rajendran. 1997a. "A simulated annealing

heuristic for scheduling to minimize mean weighted tardiness in a flowshop with

sequence-dependent setup times of jobs-a case study." Production Planning &

Control 8 (5):475-483.

Parthasarathy, Srinivasaraghavan, and Chandrasekharan Rajendran. 1997b. "An

experimental evaluation of heuristics for scheduling in a real-life flowshop with

sequence-dependent setup times of jobs." International journal of production

economics 49 (3):255-263.

Paul, P Victer, N Moganarangan, S Sampath Kumar, R Raju, T Vengattaraman, and P

Dhavachelvan. 2015. "Performance analyses over population seeding techniques of

the permutation-coded genetic algorithm: An empirical study based on traveling

salesman problems." Applied Soft Computing 32:383-402.

Paul, P. V., P. Dhavachelvan, and R. Baskaran. 2013. "A novel population

initialization technique for Genetic Algorithm." 2013 International Conference on

Circuits, Power and Computing Technologies (ICCPCT), 20-21 March 2013.

Paulli, J. 1993. "A computational comparison of simulated annealing and tabu search

applied to the quadratic assignment problem." In Applied Simulated Annealing, 85-

102. Springer.

Petrovic, Sanja, and Rong Qu. 2002. "Case-based reasoning as a heuristic selector in

a hyper-heuristic for course timetabling problems." Proceedings of the Sixth

International Conference on Knowledge-Based Intelligent Information &

Engineering Systems (KES’2002), Crema, Italy 336-340.

Potvin, Jean-Yves, Guy Lapalme, and Jean-Marc Rousseau. 1989. "A generalized k-

opt exchange procedure for the MTSP." INFOR: Information Systems and

Operational Research 27 (4):474-481.

200

Puchinger, Jakob, and Günther R. Raidl. 2005. "Combining Metaheuristics and Exact

Algorithms in Combinatorial Optimization: A Survey and Classification." In

Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired

Approach: First International Work-Conference on the Interplay Between Natural

and Artificial Computation, IWINAC 2005, Las Palmas, Canary Islands, Spain,

June 15-18, 2005, Proceedings, Part II, edited by José Mira and José R. Álvarez,

41-53. Berlin, Heidelberg: Springer Berlin Heidelberg.

Qu, Liangsheng, and Ruixiang Sun. 1999. "A synergetic approach to genetic

algorithms for solving traveling salesman problem." Information Sciences 117

(3):267-283.

Qu, Rong, and Edmund Burke. 2005. "Hybrid variable neighborhood hyperheuristics

for exam timetabling problems." The Sixth Metaheuristics International

Conference 2005, Aug, 2005, Vienna, Austria.

Ray, Shubhra Sankar, Sanghamitra Bandyopadhyay, and Sankar K Pal. 2007. "Genetic

operators for combinatorial optimization in TSP and microarray gene ordering."

Applied intelligence 26 (3):183-195.

Rego, Cesar. 1998. "A subpath ejection method for the vehicle routing problem."

Management Science 44 (10):1447-1459.

Reinelt, Gerhard. 1994. The traveling salesman: computational solutions for TSP

applications: Springer-Verlag.

Renaud, Jacques, Gilbert Laporte, and Fayez F Boctor. 1996. "A tabu search heuristic

for the multi-depot vehicle routing problem." Computers & Operations Research

23 (3):229-235.

Roeva, O., S. Fidanova, and M. Paprzycki. 2013. "Influence of the population size on

the genetic algorithm performance in case of cultivation process modelling." 2013

Federated Conference on Computer Science and Information Systems, 8-11 Sept.

2013.

201

Rosenkrantz, Daniel J, Richard E Stearns, and II Lewis, Philip M. 1977. "An analysis

of several heuristics for the traveling salesman problem." SIAM journal on

computing 6 (3):563-581.

Ross, Hsiao-Lan Fang1and Peter, and Dave Corne. 1994. "A promising hybrid

GA/heuristic approach for open-shop scheduling problems." Proc. 11< sup>

th</sup> European Conference on Artificial Intelligence.

Ross, Peter. 2005. "Hyper-heuristics." In Search methodologies, 529-556. Springer.

Ross, Peter, Sonia Schulenburg, Javier G Marín-Bläzquez, and Emma Hart. 2002.

"Hyper-heuristics: learning to combine simple heuristics in bin-packing problems."

Proceedings of the 4th Annual Conference on Genetic and Evolutionary

Computation.

Russell, Robert A, and Dave Gribbin. 1991. "A multiphase approach to the period

routing problem." Networks 21 (7):747-765.

Safe, Martín, Jessica Carballido, Ignacio Ponzoni, and Nélida Brignole. 2004. "On

stopping criteria for genetic algorithms." Brazilian Symposium on Artificial

Intelligence.

Salhi, Saïd. 2017. Heuristic search: The emerging science of problem solving:

Springer.

Schaffer, J David, and Amy Morishima. 1987. "An adaptive crossover distribution

mechanism for genetic algorithms." Genetic Algorithms and their Applications:

Proceedings of the Second International Conference on Genetic Algorithms.

Schrimpf, Gerhard, Johannes Schneider, Hermann Stamm-Wilbrandt, and Gunter

Dueck. 2000. "Record Breaking Optimization Results Using the Ruin and Recreate

Principle." Journal of Computational Physics 159 (2):139-171. doi:

http://dx.doi.org/10.1006/jcph.1999.6413.

Shanmugam, M, MS Saleem Basha, P Victer Paul, P Dhavachelvan, and R Baskaran.

2013. "Performance assessment over heuristic population seeding techniques of

genetic algorithm: benchmark analyses on traveling salesman problems."

202

International Journal of Applied Engineering Research (IJAER), Research India

Publications 8 (10):1171-1184.

Shapiro, Donald M. 1966. "Algorithms for the solution of the optimal cost and bottle-

neck traveling salesman problems." Washington University, St. Louis (Thesis).

Sinclair, Marius. 1993. "Comparison of the performance of modern heuristics for

combinatorial optimization on real data." Computers & Operations Research 20

(7):687-695. doi: https://doi.org/10.1016/0305-0548(93)90056-O.

Sivanandam, SN, and SN Deepa. 2007. Introduction to genetic algorithms: Springer

Science & Business Media.

Skorin-Kapov, Jadranka. 1990. "Tabu search applied to the quadratic assignment

problem." ORSA Journal on computing 2 (1):33-45.

Smith, Jim, and Frank Vavak. 1999. "Replacement strategies in steady state genetic

algorithms: Static environments." Foundations of genetic algorithms 5:219-233.

Smith, Theunis HC, V Srinivasan, and GL Thompson. 1977. "Computational

performance of three subtour elimination algorithms for solving asymmetric

traveling salesman problems." Annals of Discrete Mathematics 1:495-506.

Smith, Theunis HC, and Gerald Luther Thompson. 1977. "A LIFO implicit

enumeration search algorithm for the symmetric traveling salesman problem using

Held and Karp's 1-tree relaxation." Annals of Discrete Mathematics 1:479-493.

Sörensen, Kenneth, and Fred W Glover. 2013. "Metaheuristics." In Encyclopedia of

operations research and management science, 960-970. Springer.

Soubeiga, Eric. 2003. "Development and application of hyperheuristics to personnel

scheduling." University of Nottingham.

Spears, William M, and Kenneth D De Jong. 1995. On the virtues of parameterized

uniform crossover. NAVAL RESEARCH LAB WASHINGTON DC.

Srinivas, M., and L. M. Patnaik. 1994. "Adaptive probabilities of crossover and

mutation in genetic algorithms." IEEE Transactions on Systems, Man, and

Cybernetics 24 (4):656-667. doi: 10.1109/21.286385.

203

Steinhöfel, Kathleen, A Albrecht, and CK Wong. 1998. "On various cooling schedules

for simulated annealing applied to the job shop problem." International Workshop

on Randomization and Approximation Techniques in Computer Science.

Stützle, Thomas. 1998. "Applying iterated local search to the permutation flow shop

problem." FG Intellektik, TU Darmstadt, Darmstadt, Germany.

Syswerda, Gilbert. 1989. "Uniform crossover in genetic algorithms." Proceedings of

the third international conference on Genetic algorithms.

Taillard, Eric. 1990. "Some efficient heuristic methods for the flow shop sequencing

problem." European journal of Operational research 47 (1):65-74.

Taillard, Éric. 1991. "Robust taboo search for the quadratic assignment problem."

Parallel computing 17 (4-5):443-455.

Triki, Eric, Yann Collette, and Patrick Siarry. 2005. "A theoretical study on the

behavior of simulated annealing leading to a new cooling schedule." European

Journal of Operational Research 166 (1):77-92.

Vajda, S. 1961. "Mathematical programming." Mathematical Proceedings.

Van Laarhoven, Peter JM, and Emile HL Aarts. 1987. "Simulated annealing." In

Simulated Annealing: Theory and Applications, 7-15. Springer.

Volgenant, Ton, and Roy Jonker. 1982. "A branch and bound algorithm for the

symmetric traveling salesman problem based on the 1-tree relaxation." European

Journal of Operational Research 9 (1):83-89.

Wei, Yingzi, Yulan Hu, and Kanfeng Gu. 2007. "Parallel search strategies for TSPs

using a greedy genetic algorithm." Natural Computation, 2007. ICNC 2007. Third

International Conference.

Wong, Richard T. 1980. "Integer programming formulations of the traveling salesman

problem." Proceedings of the IEEE international conference of circuits and

computers.

204

Yang, Jinhui, Chunguo Wu, Heow Pueh Lee, and Yanchun Liang. 2008. "Solving

traveling salesman problems using generalized chromosome genetic algorithm."

Progress in Natural Science 18 (7):887-892.

Yeo, A. 1997. "Large exponential neighbourhoods for the TSP." preprint, Dept of

Maths and CS, Odense University, Odense, Denmark.

Yugay, Olga, Insoo Kim, Beomjune Kim, and Franz IS Ko. 2008. "Hybrid genetic

algorithm for solving traveling salesman problem with sorted population."

Convergence and Hybrid Information Technology, 2008. ICCIT'08. Third

International Conference.

	cover sheet
	Mona_Hamid_PhD_Thesis

