
Area Virtual Time

Johannes Schneiders

Doctor of Philosophy
Institute for Computing Systems Architecture

School of Informatics

University of Edinburgh

2004

Abstract

A novel synchronisation algorithm is presented for distributed discrete-event simula¬
tion (DDES), called the Area Virtual Time (AVT) algorithm. DDES algorithms can

be characterised by two orthogonal features: the synchronisation policy, which is ei¬
ther conservative or optimistic; and the time-keeping mechanism, based on either Local
Virtual Time (LVT) or Global Virtual Time (GVT). The AVT algorithm is based on a

network of virtual time regions, which permits different parts of the simulation model
to run either one of the time-keeping mechanisms. This is particularly suited to mod¬
els which are less than homogeneous, in which case mapping the models entirely to
either one of the time-keeping schemes would be inefficient. The AVT-algorithm was

first simulated, which yielded promising performance results, which were confirmed
by implementing it on a Beowulf cluster of PCs. The results demonstrated that the
AVT-algorithm progresses the simulation times faster for a greater part of the parame¬

ter space than either the LVT or the GVT schemes, and is less sensitive to variations in
some key model and communication parameters.

Acknowledgements

My thanks go to

D. K. Arvind, my advisor, for his guidance and comments,
my parents and my mother-in-law for their support,

Lennart Beringer, for his help in submitting the thesis,
and last and foremost my wife Thamarai, for sticking it out with me

during the too many years this work took to complete.

I also wish to thank for the loan of the group laptop, which enabled me to finish this
work on a different continent from the one where it started, and for the EPSRC grant

covering my tuition fees.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not
been submitted for any other degree or professional qualification except as specified.

(,Johannes Schneiders)

To Thamarai

Table of Contents

1 Introduction 8

2 Background 13
2.1 Discrete Simulation 14

2.2 Discrete Event Simulation 14

2.3 Parallelism in Simulation 14

2.4 Parallel and Distributed Simulation 15

2.5 Events 15

2.6 Virtual Time 16

2.7 Logical Processes 17
2.8 Classes of Simulation Methods 18

2.8.1 Conservative Protocols 19

2.8.2 Optimistic Protocols 20
2.8.3 Hybrid Protocols 21

2.9 Simulation Policy and Time-keeping Mechanism 21
2.9.1 Global Time-keeping 21
2.9.2 Local Time-keeping 22
2.9.3 Optimistic Synchronisation 22
2.9.4 Conservative Synchronisation 23
2.9.5 Hybrid Synchronisation 23

2.10 Null-message Multiplication 24
2.11 Event Fragmentation 24
2.12 Summary 27

3 Related Work 28

3.1 Conservative Algorithms 28
3.1.1 Deadlock Avoidance 29

5

3.1.2 Deadlock Detection 30

3.1.3 Carrier-null Message Protocol 32
3.2 Optimistic Algorithms 34

3.2.1 Limiting Optimism 36
3.2.2 Adapting the Degree of Optimism 37
3.2.3 Reducing the Cost of Optimism 38
3.2.4 Controlling Memory Consumption 39

3.3 Hybrid Algorithms 41
3.3.1 Unified Framework 41

3.3.2 Local Time Warp 42
3.3.3 Cluster Virtual Time 42

3.3.4 Local Adaptive Protocol 43
3.3.5 Composite ELSA 43

3.4 Summary 45

4 The AVT Synchronisation Algorithm 46
4.1 Area Virtual Time 47

4.2 Description of the AVT Algorithm 50
4.2.1 Definitions 50

4.2.2 The LVT-node 52

4.2.3 The GVT-node 53

4.2.4 The Hybrid-node 62
4.2.5 The AVT-keeper 65

5 AVT-Algorithm - Simulation 67
5.1 The Simulation Environment 67

5.2 Results 69

6 AVT-Algorithm - Implementation 75
6.1 AVTSIM Modelling Interface 77

6.1.1 Entities 77

6.1.2 Communication Between Entities 78

6.1.3 Models 82

6.1.4 Running the Simulation 83
6.2 Example Simulation 84

7 AVT-Algorithm - Evaluation Methodology 86
7.1 Parameters 86

7.2 Result Data 87

7.3 Models 88

7.4 Test Node 90

7.5 Distributed Platform 92

8 Results 93

8.1 Model Echo 93

8.1.1 Results for Parameter Delay 95
8.1.2 Results for Parameter Event Processing Delay 98
8.1.3 Results for Parameter Output Unchanged Probability 100
8.1.4 Summary of Results for Model Echo 102

8.2 Model Test 102

8.2.1 Model Test2,1,2,2 105
8.2.2 Model 77?tf4,1,4,1 109
8.2.3 Model 7^5/4,2,4,2 114
8.2.4 Model 77^4,3,4,4 120

8.3 Summary 125

9 Conclusions 128

A DS-RT 2001: Area Virtual Time 131

Bibliography 140

Chapter 1

Introduction

Simulation provides one with the means to study the properties and dynamic behaviour
of physical systems for which analytical or numerical models do not yet exist or are
infeasible.

There are several reasons why one would like to simulate physical systems: they
change either too quickly or too slowly for our perception; they are still in the planning
stage and therefore unavailable for observation; or it may be too dangerous to exercise
certain aspects of a system in the real world.

Simulation is widely used in many areas of science and engineering as a means to

study and understand complex phenomena. However, simulating complex systems on

a computer can be very time-consuming. Since physical systems usually consist of
many components operating concurrently, one can exploit their inherent parallelism.
The system is divided into smaller parts and the method of distributed computing is
employed to speed up the simulation. The processes replicated onto many processors

cooperate to solve the problem in parallel, each dealing with a part of the problem.
They need to exchange data and synchronise their actions by using some kind of com¬
munication mechanism, such as using message passing.

The area of research which is concerned with issues in distributing a simulation over

many computers is called either parallel or distributed simulation. In order to simulate
a physical system one has to create an accurate description - a simulation model, that
can be executed by a computer. The physical processes of the system under simulation
are represented by logical processes (LP). Changes in state are exchanged between
LPs in the form of messages containing time-stamped data which are termed as events.

8

Chapter 1. Introduction 9

In distributed simulation a collection of logical processes is distributed over a loosely-

coupled multiprocessor system, where processors are connected by a local area net¬

work or a wide area network such as the Internet. Processes run asynchronously in

parallel, usually employing message-passing as the means to transmit data and for
synchronisation. In contrast, parallel simulation is one in which the computation runs

on a tightly-coupled multiprocessor computer, possessing high-speed communication
links or a shared memory, and the processes perform operations on different data in
lock step, while communicating frequently.

In discrete event simulation the occurrence of an event is an instantaneous state-change
at a point in time, whereas in continuous simulation, state changes occur continuously
over time. Time-driven simulation advances time in steps of fixed size, whereas in
event-driven simulation, time is advanced according to the time-stamps of the events

being processed.

This work is situated in the area of Distributed Discrete Event Simulation (DDES).

DDES can run either under a conservative or an optimistic synchronisation policy. The
policy determines the manner in which simulation time is progressed. Conservative
DDES algorithms observe the strict partial ordering in the sequence of evaluation, i.e.
a result at an LP is deemed safe to commit if, and only if, no message with a timestamp
less than the local time will ever arrive at that LP (local causality constraint). This
condition is relaxed in optimistic DDES algorithms, in which events can be processed
at the LPs in advance of their arrival. Errors due to mis-speculation are detected should

they occur, and the algorithm recovers by rolling back in time to a consistent state and
then proceeding with the simulation.

The time-keeping mechanism in DDES is orthogonal to the synchronisation policy.
Time is maintained in one of two ways: each LP maintains a local clock, called the
Local Virtual Time (LVT), based on the time-stamps of incoming events; or, the algo¬
rithm maintains a Global Virtual Time (GVT), which is the minimum time-stamp of
all the incoming events and those in transit. An increment in GVT is notified to all the
LPs, which update their respective local clocks.

Optimistic DDES algorithms such as the Time Warp [JeffersonS85] use a GVT-based
time-keeping mechanism, whereas conservative ones based on the Chandy-Misra-
Bryant algorithms [ChandyM79], [Bryant77] use LVT-based time-keeping schemes.
The Composite ELSA algorithm [ArvindS92] is an exception to this rule, since it inte-

Chapter 1. Introduction 10

grates both the conservative and optimistic synchronisation policies, but uses only an

LVT-based time-keeping mechanism.

The contribution of this thesis is the introduction of the concept of Area Virtual Time
(AVT) as an intermediate in the continuum between LVT and GVT, and a new hybrid
synchronisation algorithm for DDES, called the Area Virtual Time (AVT) algorithm.
The AVT-algorithm integrates the conservative and optimistic synchronisation policies,
as in composite ELSA, and also the LVT and the GVT time-keeping mechanisms.
Previous work has combined time-keeping mechanisms, but has not integrated them
on a per-LP basis. The AVT algorithm is based on a network of virtual time regions,
which is a happy medium between the Local Virtual Time (LVT) and the Global Virtual
Time (GVT). The AVT algorithm permits different parts of the simulation model to run
either under the LVT or the GVT time-keeping mechanism. This is particularly suited
to models which are less than homogeneous. In those cases, mapping the models

entirely to either one of the time-keeping schemes would not be efficient.

Figure 1.1 shows the classification of the simulation algorithms based on synchronisa¬
tion policy and time-keeping mechanism.

We conduct the evaluation of the AVT-algorithm in two steps:

• Simulation of the AVT-algorithm to yield preliminary results.

• The verification of the simulation results together with extensions by means of a
test implementation on an actual distributed computing platform.

For the first step, the behaviour of the AVT-algorithm was modelled and embedded into
a sequential event-driven simulator, which models a distributed system consisting of

processors connected by a network. The second step was conducted by implementing
the AVT-algorithm on a distributed computer. The test implementation provides a

general-purpose simulator targeted at the simulation of asynchronous systems. It was

implemented on a Beowulf cluster of AMD Athlon processor-based Linux computers.

Instead of a number of case-studies to evaluate our approach, we created generic con¬

figurable example models, which capture the essence of the behaviour of LPs and the
model topology. The AVT-algorithm has been evaluated using these parameterised
models which contain cyclic and acyclic sub-models. The parameters determine the

topology of the models, i.e. the number of LPs, number of communication connections
between LPs, and size of the cyclic and acyclic area, and the behaviour of the models,

Chapter 1. Introduction 11

LVT GVT

li
CD
>

^ Chandy-Misra-Bryant
C
o

Virtual Time Algorithm
o

o
Q_

E

o

CD

Composite EL.SA

Figure 1.1: Simulation algorithms in relation to methods of synchronisation and time¬

keeping

i.e. computation times and communication patterns.

As an exhaustive search of the parameter space would be too time consuming, we

performed a semi-exhaustive one, selecting representative model configurations and
spreading a sample grid of parameter sets for communication times and patterns over

the search space, which resulted in a large number of data points.

For each data point we measured the performance of the AVT-algorithm in terms of
simulation progress relative to the run-time and compared this to the performance of
both the LVT and the GVT time-keeping mechanisms.

Our results show in detail the influence of the parameter values on the performance
of the AVT-algorithm, as well as the LVT and the GVT time-keeping mechanism.
They demonstrate that the AVT-algorithm progresses the simulation times faster for
a greater proportion (around 70%) of the parameter space than either the LVT or the
GVT schemes, and that it is less sensitive to variations in some key model and com¬

munication parameters.

Chapter 1. Introduction 12

The thesis is organised as follows:

The next chapter, Chapter 2, introduces and explains important concepts in parallel and
distributed simulation.

Chapter 3 gives an overview of related work in the field of distributed discrete event

simulation.

A detailed description of the simulated and the implemented version of the AVT-

algorithm follows in Chapter 4.

We continue in Chapter 5 with the simulation of the AVT algorithm and associated
results.

Chapter 6 contains details of the test implementation, including the simulator mod¬
elling interface.

The models and parameters used in the evaluation of the AVT-algorithm are described
in Chapter 7.

In Chapter 8 we present the results obtained using the test implementation and the
models from the previous chapter.

Finally we interpret the results with conclusions in Chapter 9.

Chapter 2

Background

This chapter introduces and defines important concepts in distributed simulation and
elucidates the rationale for developing the Area Virtual Time algorithm.

As in any distributed computing, distributed discrete event simulation decomposes the

system spatially and executes those parts on different physical processors. Synchro¬
nisation protocols guarantee that events are processed in the correct order, i.e. they
enforce the event-causality constraint: the future must not influence the past.

In order to simulate a physical system, one needs to create a sufficiently accurate de¬

scription - a simulation model. Entities, often called physical processes, in the physical
system are represented by logical processes (LP). Changes in state, termed as events,

are propagated by event-messages, which are marked with their time of occurrence
called the time-stamp. A simulation model can be represented as a directed graph, in
which the nodes and the arcs correspond to LPs and communication channels, respec¬

tively.

In a distributed simulation, system state and events are physically distributed, which

poses the problem of synchronisation. Various solutions to this problem, i.e. differ¬
ent distributed simulation algorithms, have been developed. Two classes of simulation
algorithms have evolved: conservative and optimistic. Conservative algorithms pre¬

serve causality by processing only those events which cannot cause a causal violation,
i.e. events which cannot be intercepted by other earlier events. The observation that
such a system spends much time waiting for synchronisation led to the development of

optimistic simulation algorithms. These algorithms allow processing of events which
might result in a causal violation but store enough information that enables them to re-

13

Chapter 2. Background 14

cover should one occur, i.e. they "roll back" in time until a consistent state is reached.
These systems increase processor utilisation, although not all of it contributes towards

advancing the simulation time. Hybrid simulation algorithms, which integrate both
conservative and optimistic simulation paradigms, have also been developed.

2.1 Discrete Simulation

Simulation models are usually specifications of physical systems or parts thereof. A
simulation emulates the occurrence of events in time and the induced changes in the
state of the original physical system.

State-changes in real-world systems often occur continuously over time, which is re¬

flected in continuous simulation. However, changes of state in digital computers are

discrete. Every continuous simulation model can be transformed into a discrete one by

considering both the start and the end of a change. Thus discrete simulation may be
used to simulate continuous real-world systems.

2.2 Discrete Event Simulation

Two ways of progressing time in discrete simulation have evolved. In time-driven sim¬
ulation, time is advanced in steps of fixed size. In contrast, in event-driven simulation
time is advanced according to the events being processed. Once the event with the
earliest time-stamp has been processed, time can be advanced to the time-stamp of the
next earliest event. Thus discrete event simulation (DES) advances time as much as

possible when processing each event. This proves to be more efficient than discrete
time-driven simulation, especially in cases of events being irregularly dispersed over

time.

2.3 Parallelism in Simulation

Spatial Parallelism Since physical systems often consist ofmany components which
could be independent of each other, there usually is a certain amount of inherent

parallelism in such a system. This can be exploited by preserving the parallelism

Chapter 2. Background 15

while modelling the system. Events which occur in different components at the
same time can be executed in parallel.

Temporal Parallelism It is possible to process events which occur at different times
in parallel without violating causality if they do not depend on each other. This
is obvious for events which occur at different locations. But it is also possible
to process events in parallel which occur at the same component in sequence.

This is worthwhile for events whose processing time is higher than their average
inter-arrival time at the processor.

Other Kinds of Parallelism There are other kinds of parallelism in simulation which
can be exploited: the same simulation with different sets of parameters or inputs,
can be run on several computers at the same time; or a sequential simulator could
be parallelised at a sub-routine level.
In this work we are only concerned with spatial and temporal parallelism.

2.4 Parallel and Distributed Simulation

In parallel simulation the computation runs on a tightly-coupled multiprocessor com¬
puter, possessing high-speed communication links or a shared memory, and the pro¬

cesses perform identical operations on different data, while using strict synchronisation

among the parallel processes and communicating frequently. In distributed simulation,
a collection of logical processes is distributed over a loosely-coupled multiprocessor

system, where processors are connected by a local area network or a wide area net¬

work such as the Internet. Processes run asynchronously in parallel, usually employ¬

ing message-passing to transmit data and as a means for synchronisation, in order to
avoid causal violations. Distributed simulation is a form of distributed computing, with
the essential difference being the explicit notion of time. All state changes occur at a
certain virtual time which is valid throughout the distributed computation.

2.5 Events

An event is a change of state at a certain time and place. More precisely, if one imposes
a space-time grid on a distributed physical system, then one can associate with every

Chapter 2. Background 16

event in the system, a well-defined point in the space-time coordinate system. An event

is the occurrence of a state change at a point in the space-time coordinate system, as

shown in Figure 2.1.

An eventA causes another event B, if the occurrence of B is an immediate consequence

of the occurrence ofA and A has a smaller time-coordinate than B, i.e. they adhere to

the causality constraint: the future cannot influence the past. In Figure 2.1, event 1
causes events 3 and 4, event 3 causes event 5, and so on.

0 10 20 30 40 50 60 70 80 90
Virtual Time

o Event a—o Event causing event

Figure 2.1: Events, Virtual Time, and Logical Processes

2.6 Virtual Time

When simulating the behaviour of a physical system, one uses virtual time to model

temporal dependencies (causality) and the progress of time which is independent of the
real-world time. One may wish to simulate a longer time period in a shorter real-world
time period, e.g. when computing the daily weather forecast or a long term climate
model it is not useful to have the forecast after the event. Likewise, to enable very

short-timed processes to be visible, we can simulate time more slowly than the passing
of real-world time, such as the explosion in the cylinder of a car engine. However, if
our task is to simulate parts of a real-world system which should cooperate with already

physically realised parts of this system, then the real-world time is a hard lower bound
on virtual time. The virtual time of simulated events which are not visible to the world

may differ from real-time, but the virtual time of events which are propagated from the
simulation to the outside world must match real-world time precisely.

While real-world time is the same everywhere in the universe and progresses uniformly

Chapter 2. Background 17

(disregarding Einstein's Theory of Relativity for the purpose of this comparison), vir¬
tual time need not be advanced uniformly and not even synchronously in a distributed

system, as long as no violation of causality can occur. In synchronous simulation, time
is advanced in steps of fixed width and managed centrally so that on every processor the
virtual time is the same. In asynchronous simulation every logical process stores and

updates its own local virtual time (LVT) according to received and processed events

independently from the other logical processes. In asynchronous approaches such as

Time Warp [JeffersonS85], time is not advanced uniformly but clock values still need
to be collected in one location to compute a global value called the global virtual time
(GVT).

GVT is defined as the minimum of the virtual times of all the local clocks and the

time-stamps of all the event-messages in transit.

GVT

0 10 20 30 40 50 60 70 80 90
Virtual Time

o Processed Event o Unprocessed Event \ j Future Event

Figure 2.2: Local Virtual Time and Global Virtual Time

Figure 2.2 illustrates the relationship between the LVT and the GVT. As there are no

event-messages in transit when the GVT is being computed, the GVT is therefore the
minimum of the local clocks. LP^'s local virtual time is unknown since there is no next

event pending. In this special case LVT is assumed to be infinite. The resulting GVT
is the minimum of all LVTs, i.e. LVT\ in this example.

2.7 Logical Processes

The system under simulation is viewed as a collection of physical processes. These
can be represented by logical processes (LP) in the simulation model. A set of LPs

Chapter 2. Background 18

cooperate, each of them simulating a part, in space and time, of the simulation model.
The LPs communicate with each other by means of a mechanism which is used to

synchronise activities, and to receive and propagate events. Each LP maintains a lo¬
cal simulation time clock, which indicates the time-stamp of the most recent event

processed, some local state, and a list of time-stamped events that have not yet been
processed. The incoming events are processed in time-stamp order. Local state may be

updated, and events generated as a result are propagated to the appropriate LPs. The
time-stamp of an event generated by an LP must be greater than or equal to the LP's
simulation time clock when the event was processed.

2.8 Classes of Simulation Methods

There are two basic approaches to guarantee causality in simulation algorithms: the
conservative, and the speculative or optimistic. Conservative simulation prevents vio¬
lation of causality by processing and propagating only safe events. These are events
which cannot ever cause a violation of causality because there are no unprocessed
events on which they depend.

In optimistic algorithms the speculative processing and propagation of uncertain events
is permitted and information is stored, which allows the incorrect simulation steps to
be undone (rolled back) should causality violation occur. The simulation then resumes

at the rolled back state using the corrected information. Output to the real world must

not be committed before it is certain that it can never be rolled back.

The possible advantages of optimistic methods over conservative ones is that while a

conservative process, waiting for an event, does not utilise all the available computing
resources, an optimistic process may use these resources to speculate on future events

and, if the speculation is successful, gain an advantage over the conservative one. How¬
ever, if the speculation fails then incorrectly guessed events have been propagated and
the subsequent rollback generates additional load and can slow the simulation down
instead of speeding it up. Whether an optimistic or conservative algorithm yields bet¬
ter results depends on the simulation model and the nature of the input data. To address
this problem, simulation algorithms which incorporate both approaches have been de¬

veloped.

Chapter 2. Background 19

2.8.1 Conservative Protocols

Conservative simulation protocols date back to the work by Chandy and Misra

[ChandyM79], and Bryant [Bryant81], Causality is preserved in the following way:

Event messages are marked with the time of their creation - the time-stamp. Logical

processes (LP) may only process events with a time-stamp not greater than their local
virtual time (LVT). LVT is the time for which the LP has been guaranteed not to re¬

ceive event messages with a time-stamp less than LVT, i.e. messages from the local
past. Once an event has been processed, LVT is advanced to the minimum time for
which it is sure that no event message with a time-stamp less than the new LVT can

arrive. To guarantee the correctness of this algorithm, all events must be processed and
all messages must be sent and delivered in chronological order. The requirement to

process events in time-stamp order is called the local causality constraint. If all LPs
adhere to this constraint, then the execution of the simulation model on a parallel com¬

puter produces exactly the same result as on a sequential one. In addition, conservative

protocols require a static communication topology. Otherwise, an LP cannot determine
when it is safe to advance LVT or to process an event.

Deadlocks can occur if a set of processes wait for each other in a closed cycle. These
deadlocks are avoided by sending null-messages to all the successors, whenever the

processing of an event did not produce a new event-message. A null-message is not

related to the simulation model. It is an artifact of the algorithm, and is sent for the

purpose of synchronisation and consists only of a time-stamp. It informs the receiver
that no event with time-stamp smaller than that of the null-message will be sent by
the sender. If a null-message is received, then the local virtual time of the receiver
can possibly be increased, thus breaking the deadlock. If an LP's LVT is t, and it can

guarantee that it will not send a message with a time-stamp less than t +1, regardless
of what messages it may receive, the LP has a lookahead of I, e.g. the sender can look
ahead into the future at least for a period of time which is equal to the service time
for the event. Thus it may set the time-stamp of the null-message to LVT, plus the
lookahead. This scheme only works if at least one LP in each closed cycle can look
ahead into the near future by some non-zero amount.

In practice, however, conservative protocols tend to create an overwhelming amount

of null-messages, because logical processes can only look ahead into the very near

future. In closed cycles this happens frequently because a logical process basically

Chapter 2. Background 20

waits for itself. So, instead of going through several cycles of null-messaging, each of
which advances LVT only by a small amount, it could have sent just one null-message

covering the entire safe time period. Some approaches for alleviating this problem are

described in Chapter 3.

2.8.2 Optimistic Protocols

The first optimistic protocol - Time Warp - was described by Jefferson and Sowrizal
[JeffersonS85]. The basic idea behind Time Warp, as with all other optimistic pro¬

tocols, is to allow the violation of causality. Should a causal violation occur, i.e. an

event arrives with a time-stamp in the local past (straggler), the effects of all events
that have been processed, between the local clock value before the straggler arrived
and the time-stamp of the straggler, have to be undone. Time Warp performs a roll¬
back in time to the most recent saved state which is consistent with the time-stamp of
the event and restarts the simulation from there on. The propagation of incorrect mes¬
sages is undone by sending anti-messages. When an anti-message arrives at a process,
the corresponding positive message in the input queue, which was received previously,
is removed (annihilated). Should the positive message have been processed, then the

receiving process has to perform a rollback as well. This can lead to rollback chains
or even recursive rollback, if the rollback chain spans a cycle of logical processes. In
contrast to Chandy-Misra-Bryant type protocols, event messages in Time Warp need
not be received in order. It may therefore happen that an anti-message is received be¬
fore the corresponding positive message. Anti-messages are then saved to annihilate
the positive messages when they do arrive.

In order to determine when it would be safe to discard a saved state a global virtual
time (GVT) is required. GVT is defined as the minimum of all local clock values and
the virtual receive times of all messages in transit. It is guaranteed that no event with a

time-stamp smaller than the global virtual time will ever be rolled back. Although op¬

timistic protocols can exploit greater degrees of parallelism and avoid the performance
pitfalls of Chandy-Misra-Bryant type protocols, namely blocking and safe-to-process
determination, they introduce new ones: GVT calculation and rollback cascades.

Several approaches have been taken to reduce the cost introduced by rollback, some of
which are described in Chapter 3.

Chapter 2. Background 21

2.8.3 Hybrid Protocols

Depending on the properties of the simulation model, either conservative or optimistic
protocols may perform better. For heterogeneous simulation models it might even be
the case that parts of the models are better run in a conservative mode, while other

parts run faster using an optimistic strategy.

Hybrid protocols incorporate concepts from both classes of simulation algorithms, i.e.
they try to combine the best of both worlds. Composite ELSA [ArvindS92] is one

such protocol. It is essentially a Chandy-Misra-Bryant type protocol enhanced with
the ability to calculate optimistically and with explicit lookahead information stored
in event-messages. The optimism can be adjusted independently for calculating and

propagating events. This is described in more detail in Chapter 3.

2.9 Simulation Policy and Time-keeping Mechanism

Optimistic and conservative synchronisation policies are typically used in conjunction
with GVT, and LVT with null-messages, as the time-keeping mechanism, respectively.
Composite ELSA is an exception to this rule, since it is optimistic but uses LVT as

the time-keeping mechanism. In principle, the time-keeping mechanism (GVT/LVT)
is independent of the synchronisation policy (conservative/optimistic) of a simulation,

resulting in four possible classes of simulation algorithms depicted earlier in Chapter 1,

Figure 1.1.

In the following sections, the pros and cons of each synchronisation policy and time¬
keeping mechanism are described.

2.9.1 Global Time-keeping

Simulation methods using global synchronisation via global virtual time (GVT) as¬

sume implicitly that all components in a simulation are connected. This may be an

unnecessarily general assumption as models exist where not all components are con¬

nected to each other. They support models with dynamic structure but suffer from
problems due to scalability as the time-keeping is centralised, and from overhead due
to GVT-calculation and its propagation for the synchronisation of processes. Poor esti-

Chapter 2. Background 22

mates for GVT increase the memory overhead, since old state information is preserved
for longer than necessary. Imbalanced computation, i.e. some LPs progressing far
ahead of others, can lead to long rollbacks and large memory utilisation.

2.9.2 Local Time-keeping

Simulation algorithms using local virtual time (LVT) and direct temporal synchro¬
nisation between LPs require a mechanism for deadlock prevention or detection. A
common approach for deadlock prevention is the use of null-messages. Null-message
protocols suffer from amultiplication of communication for the following two reasons.

Firstly, null-messages need to be sent to all successors of an LP even if they do not

require the result the LP just produced. This leads to a potentially large increase in

messages solely for synchronisation purposes. In the worst case, i.e. a fully-connected

topology, each LP is required to send a null-message to every other LP after processing
an event.

Secondly, event fragmentation occurs in cycles of LPs. LVT-based algorithms (unless

they use a technique such as carrier-null-messages, as described in Chapter 3) split up
the intervals of time between the arrival of events, into small chunks the size of the

smallest lookahead in the cycle, and move these chunks around the cycle. This leads
to a great increase in the number of (potentially unnecessary) messages sent. Event

fragmentation is described in more detail in Section 2.11.

Since LPs require knowledge about which other ones to expect synchronisation mes¬

sages from, LVT-based schemes do not support applications with dynamic structure,
i.e. number of LPs and communication peers for an LP may change, in a straightfor¬
ward way. To simulate such models, all LPs which can potentially communicate need
to be synchronised. If one does this by employing a method similar to null-messages,
then the amount of additional connections and synchronisation along them can be over¬

whelming.

2.9.3 Optimistic Synchronisation

The optimistic approach is prone to memory overhead due to state saving, and pro¬

cessing overhead as the algorithm is more complex than a conservative one. With

Chapter 2. Background 23

increasing simulation size, the risk of cascading rollbacks increases which can cause

the simulation to become unstable, i.e. LPs get far ahead in time relative to others

only to have their results rolled back and this process repeats, and use an excessive
amount of memory for saving state. The optimistic synchronisation policy may also
incur the overhead of completing non-preemptable speculative event computations, i.e.
ones that have been started just before the arrival of an event that invalidates them, but
must run to completion because they cannot be interrupted, which in turn depends on

the actual implementation of the simulator.

On the other hand, optimistic methods have the potential to exploit maximum paral¬
lelism and are not sensitive to lookahead.

2.9.4 Conservative Synchronisation

Conservative methods perform poorly when the application exhibits poor lookahead.
Since no computation takes place if no committed input data is available, LPs may

spend considerable time waiting for results from other LPs. Conservative methods
generally require less memory than optimistic ones, since they do not need to save

speculated states.

2.9.5 Hybrid Synchronisation

Hybrid algorithms such as Composite ELSA, which are based on Chandy-Misra-Bryant

type (conservative, LVT) protocols, incorporate optimistic and conservative methods
to address the issues related to the synchronisation policy, i.e. certain models or parts
thereof may be better run in a conservative or optimistic fashion. However, these hy¬
brid ones still suffer from the problems of algorithms employing an LVT-based time¬

keeping mechanism:

• Large number of synchronisation messages (null-messages)

• Event fragmentation in cycles

We will consider next each of these two problems in more detail, and compare the
LVT, and the GVT time-keeping schemes.

Chapter 2. Background

2.10 Null-message Multiplication

24

In order to synchronise m predecessor LPs with n successor ones, an LVT-based time¬

keeping scheme requires n ■ m connections, and as many messages for every time-

step (LHS in Figure 2.3). This number is independent of the amount of actual event-
messages required between the LPs. Note that it may be necessary to send these time¬

keeping messages (null-messages) although the LPs in question do not exchange any

event-messages. If, however, all these LPs do indeed exchange simulation data, then

null-messages do not need to be sent and this time-keeping mechanism does not intro¬
duce any additional message overhead.

In contrast, a GVT based scheme only requires as many event-carrying connections
and event-messages between LPs as are actually used for the exchange of data. For

temporal synchronisation, only n + m connections are required (RHS in Figure 2.3).
The total number of connections (and messages for each time-step, assuming GVT
is updated for every event processed) is n + m + d, where d is the number of data
connections required, and d G {0,1,... ,n • m). The trade-off in terms of the number of
connections required for data exchange and synchronisation between local and global

time-keeping is depicted in Figure 2.4.

2.11 Event Fragmentation

LPs connected in a cycle are prone to event-fragmentation when an LVT time-keeping
scheme is employed. The amount of fragmentation, depends on the relationship be¬
tween the inter-arrival time between events and the delay (or lookahead) for executing
an event in an LP. Consider the simulation model consisting of two LPs connected in
a cycle as shown in the left side of Figure 2.5.

Chapter 2. Background 25

nm+n+m

nm
cn
c
o
■4—»

O
0
c
c
o
O

0
jCt

E
0

0
O

n+m

nm-n-m nm

Number of Connections for Event-message Transmission

Figure 2.4: Trade-off between local and global time-keeping

Figure 2.5: Cyclic model with local (left) and global time-keeping (right)

If the virtual time in both the LPs were 100, and the next unprocessed event in both
LPs had a time-stamp of 200, then LVT time-keeping would result in null-messages
with time-stamps: 101, 102, 103,..., 200, being sent by both LPs. Only after all these

null-messages have been sent and the simulation time has advanced to 200, can the

pending events with time-stamp 200 be processed (Top of Figure 2.6).

In cycles of LPs run using an LVT time-keeping algorithm, event fragmentation causes

the following number ofmessages to be sent to advance simulation time by an amount

Chapter 2. Background 26

equal to the time interval between the arrival of two subsequent events:

I
x m
o

where I = interval between two successive events, 8 = delay of LP, m = number of
connections between LPs in the cycle.

A GVT-based scheme requires 2n messages per interval to be sent for computing and
distributing GVT, in addition to the m messages required to send the events (m = num¬

ber connections between LPs in the cycle) which results in a total number ofmessages
of

2n + m

This potential advantage of a GVT-based method only exists if the event sent to LP\
does not change the LP's output, i.e. the event does not cause the creation of a new

event and the optimism proves to be successful. Otherwise the GVT based meth¬
ods suffer from the same amount of event fragmentation as LVT-based ones, and the

messages sent for GVT computation are wasted. The number of messages sent for

Event Message Synchronisation Message

Figure 2.6: Messages required for local (top) and global time-keeping (bottom)

Chapter 2. Background 27

advancing virtual time by one inter-arrival-time is then

— • m + 2n.
o

Also, the optimistic computation of events could cause additional overhead.

2.12 Summary

In summary, we make the following observations regarding the influence of the syn¬

chronisation policy and time-keeping mechanism on the performance of DDES.

Simulation algorithms employing a conservative synchronisation policy, generally have
lower run-time overheads, but their performance is dependent on the lookahead, i.e.
the time into the future that a value is known to hold, if they use a LVT time-keeping
mechanism. Optimistic algorithms which use either LVT or GVT time-keeping mech¬
anisms, can potentially infuse more concurrency at run-time by relaxing the strict or¬

dering of evaluation, but at a price: the overheads of completion of non-preemptable
speculative event computations, saving and restoring of states, as well as cancelling
erroneous event-messages can attenuate this gain.

The influence of the time-keeping mechanism on the performance of DDES is as fol¬
lows: a GVT-based time-keeping mechanism coupled with an optimistic synchronisa¬
tion policy (assuming good predictability) is better suited for cyclic graphs. On the
other hand, LVT time-keeping mechanisms are unable to exploit predictability due to
event fragmentation. The amount of fragmentation depends on the relationship be¬
tween the inter-arrival time for events and their execution time in an LP. In acyclic

graphs, event fragmentation does not hamper LVT time-keeping mechanisms and they
are better suited due to their lower communication overheads.

Based on these observations, a hybrid algorithm was created, which integrates both

time-keeping methods, in order to combine the advantages of both, without incurring
too many of the disadvantages of either. This new synchronisation algorithm for DDES
is based on the concept of Area Virtual Time (AVT) as an intermediate in the contin¬
uum between LVT and GVT. It is called the AVT-algorithm and is described in detail
in Chapter 4. The next chapter, Chapter 3, gives an overview of related work in DDES
concerned with the problems described in this chapter.

Chapter 3

Related Work

Conservative synchronisation algorithms for distributed simulation date back to the

ground-breaking work of Chandy, Misra [ChandyM79], and Bryant [Bryant77] in the
late 1970s. In the mid-1980s, Jefferson introduced Time Warp [JeffersonS85], an op¬

timistic distributed simulation algorithm. These and associated works are described in
some detail next.

3.1 Conservative Algorithms

Conservative simulation protocols preserve the local causality constraint in the follow¬
ing way.

Event messages are marked with a time-stamp denoting the time of their creation.
Logical processes (LP) may only process events with a time-stamp equal to their local
virtual time (LVT). LVT is the time for which the LP has been guaranteed not to receive
event messages with a time-stamp less than the LVT, i.e. messages from the local past.

An LP possesses a list of events which have been received, but not yet processed. The
event with the smallest time-stamp is selected for processing. If the time-stamp of this
event is equal to the LVT, then it is processed by the LP, or else the LP blocks. Once
an event has been processed, it is removed from the event list and the LVT is advanced
to the minimum time for which it is certain that no event-message with a time-stamp
less than the new LVT can ever arrive. Events generated as a result of processing are

propagated to other LPs.

28

Chapter 3. Related Work 29

In order to guarantee the correctness of this algorithm, all events must be processed and
all messages must be sent and delivered in chronological order. This implies that the

timestamp of the last event-message received on a connection from a predecessor LP
is a lower bound on the time-stamp of any subsequent message on that connection. In
order to determine when it is safe to process an event, conservative protocols require a

static communication topology, i.e. it is fixed as to which LPs send messages to which
others.

While this algorithm guarantees that the local causality constraint is not violated, it is
susceptible to deadlock. A set of processes may wait for each other in a closed cycle
because there are no event-messages with time-stamps which are less than or equal to
the LVT in the simulator for any LP in the cycle.

3.1.1 Deadlock Avoidance

In the original work of Chandy and Misra [ChandyM79], and Bryant [Bryant77], dead¬
locks were prevented through the use of null-messages.

A null-message informs the receiver that no event-message with time-stamp smaller
than that of the null-message will be sent by the sender. It consists only of a time-

stamp and is not related to the simulation model, but sent solely for the purpose of

synchronisation. LPs send null-messages to each successor LP whenever the process¬

ing of an event did not produce a new event-message to that LP.

If a null-message providing additional information is received, then the local virtual
time of the receiver can possibly be increased, which may lead to some events now

being safe to process and thus breaking the deadlock.

A null-message is processed by an LP in a way similar to an event-message. The differ¬
ences are that the local state is not changed and no new event-messages are generated
or sent. However, processing of a null-message can advance the LVT, because LVT is
the minimum of all time-stamps received at all inputs. If the LVT increases due to the

receipt of the null-message, then the LP in turn sends out further null-messages to all
the successor LPs.

The time-stamp of these null-messages can be determined by using the LVT and the
information from the simulation model. The LVT is the lower bound on the time-stamp
of any future incoming messages. Information from the simulation model provides the

Chapter 3. Related Work 30

minimum time to service an event, the lookahead. The LP may set the time-stamp
of the null-messages to LVT plus the lookahead, since it will never produce an event
with a time-stamp less than that value. The receivers of the null-messages are enabled
to re-compute their LVT and send null-messages based on this information to their
neighbours, and so on.

This scheme only works if at least one LP in each closed cycle can look ahead into the
near future by some amount greater than zero. It has been shown that the null-message
algorithm prevents deadlock if the above condition is met [ChandyM79],

In practice, however, this protocol tends to create an excessive amount of null-messages
as described in Sections 2.10 and 2.11.

3.1.2 Deadlock Detection

Alternatives to the use of null-messages are algorithms that allow deadlocks to occur,

but are able to detect and to break them. For deadlock detection, any general distributed
termination or deadlock detection algorithm can be used. Once deadlock is detected,
it can be broken by employing the following methods:

• Processing the event with the lowest time-stamp in the simulation.

• Computing a lower bound on the safe virtual time (SVT) and using it to deter¬
mine the set of events that are safe to process. The safe time can be computed
by each LP as a lower bound on the time-stamp of event-messages that it might
later receive from predecessor LPs as the minimum of

- the lowest event time-stamp plus the lookahead in an active LP,

- the LVT plus lookahead in a blocked LP,

- and the time-stamps of all messages in transit.

A method to detect and correct deadlock using the first approach is described in
[Misra86]. A prerequisite for this deadlock detection scheme, is that all connections
are first-in, first-out. It makes use of a marker message which circulates through the
simulation on a precomputed cyclic path encompassing all connections between LPs
(to create such a path connections may be added). LPs are coloured white to denote
that they have been visited by the marker since having last sent or received a message,

or black otherwise. The marker message comprises of a counter of white LPs visited

Chapter 3. Related Work 31

since the last black one, the minimum time-stamp of event-messages received at the
white LPs, and the identification of the white LP containing the minimum time-stamp.
All LPs are coloured black initially. When an LP either receives or sends an event-

message it sets its colour to black. When an LP receives the marker, the action taken
depends on its colour:

Black Once the LP becomes idle, it colours itself white, resets the counter in the

marker, sets the marker's minimum of time-stamps and LP identification to its
own, and then transmits it along the precomputed path.

White The marker's counter is incremented by one, the minimum of time-stamps is

updated, and, if it changed, the identification is set to that of the LP. An LP can

identify deadlock if the counter in the marker reaches the number of connections.
If no deadlock is detected, then the marker is propagated along its path.

In order to break the deadlock, the LP identified in the marker as containing the min¬
imum of the time-stamps of received event-messages, can be activated to process its
first event and thus to progress the simulation.

A conservative algorithm that implements the second method, i.e. computing SVT, is
described in [ChandyM81]. It runs in alternate phases:

Parallel phase: The simulation runs until it deadlocks. This is detected by a controller

employing a distributed deadlock detection algorithm described in [MisraC82],
Other distributed deadlock detection schemes not employing a central controller
could be used as well, e.g. as described in [ChandyMH83],

Phase interface: The controller initiates the SVT computation in all LPs, allowing
some LPs to advance the LVT and recover from the deadlock. Each LP,- computes
the time-stamp, (Uij), of the next event-message output along any edge,
assuming no further input is received. The minimum of all Uij is already a
usable lower bound on the time-stamp of the next event-message in the system.

However, this is improved on by taking into account the dependency along paths
formed by the connections between LPs and the lookahead at each LP.
In order to find the best possible lower bound, (Wiy), on the time-stamp of the
next message to be transmitted along any communication connection (i,j), the
LPs cooperate in computing the Wij in a distributed manner. The computation
at each LP consists of n cycles (n = number of LPs), where in the k?h cycle LP,

computes wfp and sends it to LPj, for every outgoing connection (i,j), and

Chapter 3. Related Work 32

receives along every incoming connection (h,i), which is used to compute

wj}+1) in the (k + l)th cycle.
Initially wf-p is set to U,j. W-p1'' is computed as the time-stamp of an event-
message if one is pending to be sent to LPj, or as

W^+l) = mox(tij,min(Uij,minh{W^ })),
where ttj is the time-stamp of the previous message, otherwise.
After n iterations the computation is complete and W,y = W-p. LPi can be certain
that it will not receive any event-message with a time-stamp less than W/,;- on

input connection (h,i), and that it will not send an event-message with time-
stamp less than W,y on output connection (i, j). LPi updates its local clock, sends
a signal to the controller, and then enters the next parallel phase.

The algorithm has the property, that in every parallel phase at least one event will be
processed which causes at least one event-message to be generated and propagated
before the next deadlock; however, it is hoped that many LPs can be activated in each

parallel phase.

3.1.3 Carrier-null Message Protocol

The carrier null-message protocol addresses the inefficiency of using an LVT time¬

keeping mechanism for models with cycles. In closed cycles it happens frequently that
a logical process is basically waiting for itself. Instead of going through several cycles
of null-messaging, each of which advances LVT only by a small amount, it could send

just one null-message covering the entire safe time period. The carrier-null message

protocol [WoodT94] implements this idea by adding route and lookahead information
to null-messages.

The route information keeps a record of the path a null-message took through the LPs,
and the lookahead information contains a lower bound on the earliest time-stamp of
any event-message which can subsequently be received by any of the LPs visited.

The cyclic areas in the simulation model (termed strongly connected components in

[WoodT94]) are precomputed as sets consisting of LPs which are cyclically dependent
with the property that LPs from different sets are not. (A previous carrier-null scheme
[CaiT90], detects cycles dynamically when a carrier-null returns to an LP which it had

Chapter 3. Related Work 33

visited before. This scheme is unable to reduce the number of null-messages when

encountering some nested cycles [WoodT94].) The inputs to an LPj are divided into

cyclic ones, i.e. the inputs from other LPj within the same cyclic area, and non-cyclic
ones, i.e. those from all other LPs. Each cyclic area can be safely simulated up to the
minimum of the time-stamps in event-messages received on its non-cyclic inputs.

In an extension to an ordinary null-message, which consists only of a time-stamp t, a

carrier-null message is of the form (t,ct, price), where ct (creation time) is the creating
LP's LVT; r (route) is a list of the LPs the message has visited; and ncc (non-cyclic
ceiling) is the minimum nc-ceiling of the LPs it has visited, where the nc-ceiling of
each LP is the minimum time-stamp of all its non-cyclic inputs.

In order to process carrier-nulls, each LP has a list of those LPs in its cyclic area

and it also stores the time-stamp of the latest event-message sent to any other LP in its

cyclic area. As the topology of the simulation model is determined before run-time, the
cyclic outputs of the LPs are marked to denote that they should transmit carrier-null-
messages instead of ordinary null-messages. The normal creation and transmission of
null-messages is extended for cyclic outputs in the following way:

1. If an LPi has received no carrier-null since the last activation, then carrier-nulls,

(t = LVT,ct = LVT,r = {/},
ncc = minimum time-stamp of LP,'s non-cyclic inputs),
are created and sent.

2. If an LPi receives a carrier-null (t,ct, pnee), then if ct is less than the time-stamp
of the latest event-message sent by the LP, then the carrier-null is discarded and
new ones are created and sent as in case 1; else updated carrier-nulls are sent as

{t' = t,ct' = ct,/ = r U {/},
ncc' = min{ncc, minimum time-stamp of LP, 's non-cyclic inputs}).

3. A carrier hit occurs, if an LP receives a carrier-null whose route encompasses

exactly all those LPs in its cyclic area. The ncc is then a lower bound on the

time-stamp of any event-message that can be received subsequently at any cyclic
input of the LP. The carrier-null is discarded, new ones are created and sent as in
case 1, and the LVT is updated to:

LVT = min{ncc,minimum time-stamp of the LP's non-cyclic inputs}.

The advantage of this approach is that when a carrier hit occurs, the LP can potentially

Chapter 3. Related Work 34

increase the LVT by a large amount since no event-message with a time-stamp less
than or equal to the carrier-null's ncc can arrive at a cyclic input of the LP, thus greatly
reducing the number of null-messages. However, this comes at a cost, as the length of
the carrier routes (and with it the size of the carrier-null messages) increases directly
with the number of LPs in a cyclic area.

3.2 Optimistic Algorithms

TimeWarp was the first optimistic protocol. It introduced fundamental concepts widely
used in the class of optimistic synchronisation algorithms. The basic idea behind Time
Warp is to allow the violation of causality, but with the ability to detect and then re¬

cover from such a violation. If a causal violation occurs, i.e. an event-message arrives
with a time-stamp in the local past (straggler), the effects of all events that have been

processed between the local clock value before the straggler arrived and the time-stamp
of the straggler have to be undone. Time Warp performs a rollback in time, restoring
the most recent saved state consistent with the time-stamp of the event, and restarts
simulation from there on. The transmission of messages is undone by sending anti-

messages. When one arrives at a process, a previously received corresponding positive
message found in the input queue is removed (annihilated) and, if the positive message

has already been processed, the receiving process has to perform a rollback, possibly
producing additional anti-messages. In contrast to Chandy-Misra-Bryant protocols,
event messages in Time Warp need not be received in order. It is possible that an

anti-message is received before the corresponding positive message. Anti-messages
are then saved to annihilate the positive message when that is received. To determine
when it is safe to discard a saved state and to commit I/O operations, one needs to com¬

pute a lower bound on the time-stamp of future messages that may still be received.
This lower bound, called the global virtual time (GVT), is defined as the minimum
of all local clock values and the time-stamps of all event-messages in transit. It is
guaranteed that no event with time-stamp smaller than GVT will ever be rolled back.

GVT computations are essentially the same as the SVT computations used in conser¬

vative algorithms to break deadlock. This is because rollbacks are caused by causal
violations which the use of SVT computation prevents.

The actual frequency of GVT computation depends on a trade-off: high frequency

Chapter 3. Related Work 35

results in lower memory consumption, due to more frequent fossil collection, but it in¬
creases the processor time and network bandwidth needed, which can slow simulation

progress.

A GVT computation algorithm employing a central GVT-manager is described in
[Samadi85]. The algorithm triggers GVT computation through a central GVT man¬

ager which sends a GVT-start message to all LPs to initiate GVT computation. To

keep track of event-messages in transit, every event-message is acknowledged. An LP
reacts to a request for GVT-computation by sending the minimum of all time-stamps of
unacknowledged messages in the LP's output queue and the LP's local GVT estimate,
to the GVT-manager. The GVT-manager performs a min-reduction, and, once all LPs
have replied, broadcasts the result to all the LPs.

Another algorithm, [Bellenot90], reduces the communication complexity by using two

binary trees, which needs 0(log(N)) time, where N is the number of LPs, and sends
less than 4N messages per GVT estimation. The binary trees are connected by their
leaves, which together encompass all the LPs, and are embedded in the simulation

graph as the communication structure for GVT computation. The first root LP sends
GVT-start to its neighbours, which propagate it until it reaches the second root LP.
When the second root LP receives GVT-start from both neighbour LPs, it replies

by sending its GVT estimate. These LPs in turn propagate the minimum of their
GVT-estimate, and the minimum of the GVT-estimates received, until this process

reaches the first root LP. The resulting GVT-estimate at the first root is then propa¬

gated throughout the GVT communication structure.

Distributed GVT estimation algorithms which are independent of any particular com¬
munication topology or a global controller have also been developed. In [Mattern93]
a distributed snapshot algorithm is used to approximate GVT which does not require
channels to be FIFO or messages to be acknowledged. Two colours are used to indicate
whether an LP has taken its local snapshot and whether a message was sent before or

after this, allowing the algorithm to detect if a message would make the snapshot in¬
consistent, and to catch messages which are in transit at the receiving LP. To determine
when the snapshot is complete, i.e. when all in-transit messages have been caught, a
distributed termination detection scheme is employed. GVT approximation is realised
by making two cuts and to ensure that no messages cross both cuts, i.e. by taking fur¬
ther cuts until the first and the last cut conform to the condition. Then the minimum of

the time-stamps of all messages which cross the last cut can be determined from the

Chapter 3. Related Work 36

messages which were sent between the two cuts.

Although Time Warp avoids the performance pitfalls of conservative protocols, namely
blocking and safe-to-process determination, it introduces new ones: GVT calculation
as well as rollback cascades and excessive memory utilisation due to overly optimistic
execution, i.e. some LPs advancing too far ahead of others.

Several approaches have been taken to reduce the cost introduced by rollback. Some
limit the degree of optimism to address these problems, and some even adapt the degree
of optimism in response to the behaviour of the simulation. Others specifically target
the memory utilisation problem either by saving state less frequently, incrementally, or
not at all, by instead employing reverse computation to implement rollback.

3.2.1 Limiting Optimism

3.2.1.1 Moving Time Window

The Moving Time Window (MTW) protocol [SokolBW88] restricts the amount of

optimism by defining a time window as a temporal interval [GVT, GVT + w], where
w is the user-specified global window size. Only events having a time-stamp within
this interval are eligible for processing. When GVT is computed, the time window is
moved forward, and later events may move into the window. The rationale for MTW
is that events in the near future are less likely to be rolled back than events further into
the future. Adjusting the parameter, w, is a trade-off between the better exploitation
of parallelism and greater synchronisation cost, i.e. rollbacks, for large and small
windows, respectively. When an LP runs out of eligible events, it may initiate window
movement. If the number of LPs with eligible events drops below a polling threshold,
then the initiating LP polls all other LPs to report the time of their earliest event in
order to determine GVT. If all the LPs have progressed their virtual time beyond the
old GVT, then the window is moved forward to the new GVT.

3.2.1.2 Local Optimism

The approach in [DickensR90], although allowing optimistic simulation progress, de¬
lays the sending of event-messages until it is guaranteed that the send will not be later
rolled back, i.e., until GVT advances to the event's time-stamp. Therefore, a rollback

Chapter 3. Related Work 37

can only be local to an LP, which prevents cascaded rollbacks and also eliminates the
need for anti-messages.

3.2.1.3 Breathing Time Buckets

The Breathing Time Bucket protocol [Steinman91] is an optimistic protocol that has a

conservative message transmission policy. As in [DickensR90] this restricts potential
rollback to be local to an LP. All events are sorted into time buckets such that each

bucket contains only events which are causally independent. The size of the bucket is
chosen to contain the maximum number of causally-independent events, i.e. events that
can be executed concurrently. The local event horizon is the minimum time-stamp of

any event that is generated as a result of processing the events within the time bucket.
The global event horizon is defined to be the minimum of all local event horizons.
Events are executed optimistically but only event-messages with a time-stamp smaller
than the global event horizon are propagated, since they will not affect the current time
bucket. To determine when the last event in a bucket has been processed, and the

event-messages generated can be distributed, the LPs must signal that their LVT has

progressed past their local event-horizon. When all LPs have done this, they can be
requested to send their event-messages and a new bucket is computed. It is hoped that
a sufficiently large number of events is processed in each bucket in order for Breathing
Time Bucket to run efficiently.

3.2.2 Adapting the Degree of Optimism

3.2.2.1 Probabilistic Distributed Simulation Protocol

The probabilistic distributed simulation protocol [FerschaC94] adapts how far into the
future optimistic execution is permitted, based on observation of event inter-arrival
times in the past. If the time-stamp of an event lies in the interval [s,m], it allows
the simulation to progress up to the expected time-stamp of the next event t(0), s <

t{0) < u. t{0) is an estimate based on the inter-arrival times, O = (c?i,c?2>-• • ,dn),
observed during a time window by an LP. Further optimistic progress is controlled by
the confidence in the estimate, i.e. the probability that an LP is allowed to progress

further, depends on the confidence. The arrival pattern observed in O is used to adapt

Chapter 3. Related Work 38

the LPs behaviour dynamically to the best tradeoff between conservative and optimistic

synchronisation.

3.2.2.2 Elastic Time Algorithm

Elastic Time [SrinivasanR98] is a near-perfect state information protocol. These are

characterised by the use of near-perfect state information to compute the error poten¬

tial and the use of this to control optimism adaptively. The term elastic time is derived
from the interpretation of the error potential as an elastic force that sometimes either
restricts or releases the progress of an LP in virtual time. The Elastic Time Algorithm
uses temporal information (logical clock, unreceived message time, and next event

time) to compute the error potential. This is then used to control optimism by introduc¬

ing delays which are proportional to the error potential between event-computations.
The delays are asynchronous and may be different for each LP; and, the optimism is

adapted after each event-computation.

3.2.3 Reducing the Cost of Optimism

3.2.3.1 Lazy Cancellation

In contrast to the behaviour of the original Time Warp which sends anti-messages im¬

mediately upon receiving an event-message with a time-stamp in the local past, lazy
cancellation delays sending anti-messages until it is certain that the recomputation after
the rollback yields an event different from the previously-propagated one (sometimes

wrong computations produce correct results) [Gafni88], This scheme avoids unneces¬

sary cancellation of correct event-messages, but incurs the cost of additional memory
overhead for the deferred anti-messages and of delaying the annihilation of actually
wrong event-messages which may be used in further incorrect computations at other
LPs.

3.2.3.2 Lazy Re-evaluation

Lazy re-evaluation delays discarding saved states during a rollback until it is proven

that they are incorrect [West88], If the recomputation after the rollback reaches a state
that matches a saved one and the input events are the same as before in that state,

Chapter 3. Related Work 39

then the LP can progress to the time before the rollback occurred. This mechanism
prevents the recomputation of correct states, but causes additional memory and book¬

keeping overhead for copies of the input queue in every state, which is needed to verify
that the saved and the current input queue are equal and the LP can progress without
re-evaluation.

3.2.4 Controlling Memory Consumption

3.2.4.1 Message Sendback

In order to recover from memory overflow, due to optimistic execution, Time Warp

employs the message sendback mechanism [Jefferson85], If an LP runs out of mem¬
ory to store an incoming event-message, space is recovered by returning one or more

unprocessed event-messages, possibly including the one that just arrived, back to their

respective sender(s). These are caused to roll back to the respective state they were

in before they sent the returned event-message. Event-messages with the latest time-
stamps are chosen to be returned over ones with earlier ones, as the former are more

likely to contain incorrect information, and any rollback caused by their return is likely
to be shorter in virtual time.

3.2.4.2 Cancelback

The cancelback scheme [Jefferson90] is the first optimal memory management pro¬

tocol. A memory management scheme is considered to be storage optimal if it has
the same order of storage requirement as the sequential DES. The cancelback scheme
allows memory to be freed in any LP which need not be the one that ran out of mem¬

ory. Whether the overflow was caused by an incoming event-message, the need to save

a new state, or the creation of a new event-message, the memory for the object with
the latest time-stamp globally is reclaimed, irrespective of either its type or which LP
stores it. Whereas cancelback allows Time Warp to run with a limited memory size of
the same order as the sequential DES, in distributed systems it introduces overhead to
collect the information required to determine which object to free globally. However,
this cost is reduced in shared memory systems.

Chapter 3. Related Work 40

3.2.4.3 Artificial Rollback

Artificial rollback is a memory management scheme [LinP91], which invokes the roll¬
back procedure to reclaim memory. This is permitted as rollback does not affect the op¬

erational correctness of Time Warp. Artificial rollback is similar to cancelback in that
the cancellation of an incoming event-message is equivalent to an artificial rollback
of the event-message's sender. The cancellation of a saved state or an output event-

message in an LP is equivalent to an artificial rollback of that LP. The implementation
of artificial rollback is simpler than cancelback because the rollback mechanism is al¬

ready available. An artificial rollback is performed when the amount of free memory is
too small to satisfy the requirement in an LP. In the shared memory implementation in
[LinP91], the issues of which LP to roll back and how far are governed by a processor

scheduling that guarantees a certain amount of free memory and rolls back events with
the latest time-stamp. However, in a distributed memory setting, to select the LP to

roll back may be more complicated. A lower bound for the earliest time to roll back to
is given by GVT.

3.2.4.4 Infrequent State Saving

State saving can be performed infrequently, i.e. periodically at every ith event-

computation rather than at each one, to reduce the state saving overhead [LinL89],
Two situations can arise when an LP is rolled back: the state to which the LP is rolled

back has either been saved, which results in a normal state restoration, or it has not.

To reconstruct the state in the latter case, the LP starts with the most recent saved state

prior to the rollback time and then re-executes until the required state is restored. The
cost of this re-execution is lower than that of normal event-computation since only the
LP's local state is modified and no event-messages are generated or sent. Periodic state

saving reduces the memory requirement for state saving at the expense of increasing
the state restoration time.

3.2.4.5 Incremental State Saving

Incremental State Saving [BauerSK91] saves only the change in order to return to the

previous state for an event-computation. When a rollback occurs, the state to which
the LP is rolled back, is reconstructed by applying in reverse sequence the saved state

Chapter 3. Related Work 41

increments to the current state before the rollback. The advantage of this technique is
the low memory usage and reduced state saving overhead if the differences to be saved
in each event-computation are small. However, large rollback distances will result in
increased computation time to restore the state from the increments.

3.2.4.6 Reverse Computation

An alternative to state saving and restoring, is the use of reverse computation tech¬
niques to implement rollback [CarothersPF99], An event computation is rolled back
by executing the inverse computation, e.g., to undo incrementing a state variable, the
variable is decremented. This technique avoids state saving and the memory utilisation
overhead associated with rollback. However, it requires code to be available to undo
every possible computation performed by the simulation. In [CarothersPF99] a reverse

compiler is described that automatically generates inverse computations. Destructive

operations, such as assignment or modulo computation, can be reversed by restoring a

previously-saved value. In this case reverse computation degenerates to state-saving.
However, even if the individual steps of a computation are not efficiently reversible,
the computation may be reversible at a higher level, e.g. a swap operation implemented

by three assignments, which can be exploited to increase efficiency. The computation
time required to roll back is equal to the computation time for progressing, i.e. reverse

computation trades off speed for memory utilisation.

3.3 Hybrid Algorithms

Algorithms which integrate or combine conservative and optimistic synchronisation
policies and/or LVT and GVT time-keeping mechanisms are termed hybrid algorithms.
Some examples of these and their relationship to the AVT-algorithm are described next.

3.3.1 Unified Framework

The unified framework for conservative and optimistic DES, called ADAPT [JhaB94],
is based on the idea of arbitrary combinations of a global control mechanism (GCM),
which is based either on null-messages or GVT (or even both), and a local control
mechanism (LCM) which can be either conservative or optimistic. Each LP can be

Chapter 3. Related Work 42

configured individually to use either LCM and may switch dynamically between them,
and the GCM is used over the entire system. Unlike the AVT-algorithm, there is no

notion of multiple areas of virtual time, i.e. areas with different GCMs.

3.3.2 Local Time Warp

Local Time Warp [RajaeiAT93] hierarchically combines a conservative time window
(CTW) algorithm with Time Warp. The simulation model is divided into clusters of
LPs. At the LP level, TimeWarp is used locally in each cluster in order to exploit paral¬
lelism, and at the cluster level, CTW is used to control cascade rollbacks. Each cluster

has its own cluster virtual time (CVT), i.e. a "local GVT", and one designated input
and output gateway process in addition to the LPs of the cluster. The LPs of a clus¬
ter progress the simulation in the same way as in Time Warp where GVT is replaced

by CVT. All event-messages to LPs outside a cluster are sent via its output gateway
and the input gateway of the receiving LP's cluster. Output gateways do not send any

event-messages until CVT becomes greater than or equal to their time-stamps, i.e. un¬
til they are safe from rollback. The gateway processes of the clusters are controlled
by a modified CTW algorithm which ensures that no event-message ever arrives at an

input gateway with a time-stamp less than the time of that gateway. Input gateways
deliver only those event-messages to LPs whose time-stamp is within the conservative
time window.

Unlike the Local Time Warp algorithm, the AVT-based approach does not have desig¬
nated input/output nodes per cluster, and an LVT-based protocol is used between AVT
region, which can operate either conservatively or optimistically.

3.3.3 Cluster Virtual Time

Unlike the Local Time Warp algorithm, Clustered Time Warp (CTW) [AvrilT95] uses
Time Warp to synchronise between clusters of LPs, where each cluster is allocated to
a processor and runs a sequential simulation algorithm. CTW is a special case because
it takes advantage of the fact that the LPs in a cluster share the same address space.

In contrast, the AVT-algorithm makes no assumptions about how LPs are allocated to
processors and uses an LVT-based protocol between AVT region.

Chapter 3. Related Work 43

3.3.4 Local Adaptive Protocol

The Local Adaptive Protocol [HamnesT94] allows the degree of optimism to be ad¬

justed on a per-LP and per-channel basis and uses an LVT time-keeping mechanism. In
order to optimise performance, a real-time blocking window (RTBW) is computed for
each input connection of an LP as a function of the last and next message's time-stamp,
the inter-arrival time, the average rate of increase of virtual time, and multiplied by an

adaptation factor. This factor is periodically adjusted to maximise the rate progress in
virtual time. If the factor is zero, then RTBW is zero and unlimited optimism is used,
while if the factor is infinite, the local adaptive protocol synchronises conservatively.

3.3.5 Composite ELSA

Composite ELSA (Edinburgh Logic SimulAtor) integrates the concepts of conserva¬
tive and optimistic control [ArvindS92], It is an LVT-based, conservative protocol
enhanced with the ability to calculate optimistically and with explicit lookahead in¬
formation stored in event-messages. The optimism can be adjusted independently for

calculating (Degree ofOptimism) and propagating (Degree ofRisk) events.

The Composite ELSA protocol is related to Chandy-Misra-Bryant protocols in that

Composite ELSA does require a static communication topology and has no centralised
control like a GVT mechanism. Instead LVT is calculated locally in each LP and
simulation time is advanced based on received event-messages only.

10 20
I I

30
I

Virtual Time <£> (§> <3> ►

Event 1: [10..20] Event 2: [20..30] Event 3: [30..50]

Interval of validity
for event 1

Interval of validity
for event 2

Figure 3.1: Chains of validity intervals in Composite ELSA

While deadlocks in other LVT-based protocols are avoided by sending null-messages,
Composite ELSA uses a different mechanism for providing and exploiting lookahead.

Chapter 3. Related Work 44

Every event-message is not only time-stamped with its creation time but also with
its interval of validity which provides lookahead information. Event-messages are

tuples consisting of four fields, of the form (v,tslart,tenci,Ac): where v is the value, tstart
and tend are start- and end-times for which it is valid, and the Degree of Confidence,

(Ac 6 {certain, guess}), which denotes whether the value is certain or guessed.

It is guaranteed that the next event will occur exactly at the end of that interval of

validity (Figure 3.1). Because of these chains of event validity intervals, LPs can

always determine LVT exactly. If the validity interval of a value ends, a new adjacent
event has to be sent even if the value did not change. This corresponds to sending a

null-message in other LVT-based protocols. By requiring that each LP in a simulation
has a non-zero time increment, Composite ELSA adheres to the deadlock avoidance

property of Chandy-Misra-Bryant protocols.

Since only those "null-messages" are sent which are absolutely necessary, due to the
lookahead information encoded in the event-messages, Composite ELSA avoids much
of the overhead of null-messaging protocols. However in cycles, still a great number
of event-messages must be sent around the cycle to advance time, if the lookahead in
a cycle is small (event fragmentation).

Optimism is handled by allowing LPs to compute values ahead of LVT under the re¬

striction that it must be possible to undo erroneous computations. For this purpose

Composite ELSA stores not yet committed values similar to Time Warp or other opti¬
mistic protocols. Unlike Time Warp, which uses GVT to commit calculations eventu¬

ally, Composite ELSA uses LVT.

In Composite ELSA, the amount of optimism for every LP can be adjusted individu¬

ally. Every LP in Composite ELSA possesses a parameter called the Degree of Op¬
timism (0 < A0 < o°), which defines how far in advance of a safe state a node may

evaluate; and the Degree ofRisk (0 < Ar < Aa) defines how far in advance of a safe
state possibly erroneous results may be propagated. An LP, with Aa = Ar = 0, is con¬

servative; while an LP, with A0 > 0 and Ar = 0, is locally optimistic by confining
rollbacks to the local process; and an LP, with Aa>Ar> 0, is globally optimistic (also
called risky), and can cause rollbacks across a number of nodes.

This supports the execution of simulation models which are inhomogeneous in that
some parts of the model require a conservative and others require an optimistic syn¬

chronisation policy, which would lead to substantial performance loss under either

Chapter 3. Related Work 45

purely conservative or optimistic protocols.

3.4 Summary

Figure 3.2 gives an overview of the algorithms described in this chapter, sorted into

categories according to synchronisation policy and time-keeping mechanism.

Figure 3.2: Simulation algorithms in relation to methods of synchronisation and time¬

keeping

Chapter 4

The AVT Synchronisation Algorithm

The following observations are made regarding the influence of the synchronisation
policy on the performance of Distributed Discrete Event Simulation (DDES). Conser¬
vative algorithms, irrespective of the time-keeping mechanisms used, generally have
lower run-time overheads, but their performance is dependent on the lookahead, i.e.,
the time into the future that a value is known to hold, which is a property of the sim¬
ulation model. Optimistic algorithms, which use either Local Virtual Time (LVT) or
Global Virtual Time (GVT) time-keeping mechanisms, can potentially infuse more

concurrency at run-time by relaxing the strict ordering of evaluation, but at a price:
the overheads due to completion of non-preemptable tasks and the saving of states can
attenuate this gain.

The influence of the time-keeping mechanism on the performance of DDES is as fol¬
lows: In cyclic graphs the LVT time-keeping mechanism is unable to exploit pre¬

dictability due to event fragmentation (Section 2.11). The amount of fragmentation
depends on the relationship between the inter-arrival time for the events and their ex¬
ecution time in an LP. In acyclic graphs, event fragmentation does not hamper LVT

time-keeping mechanisms and they are better suited due to their lower communica¬
tion overheads. On the other hand, the GVT time-keeping mechanism coupled with
an optimistic synchronisation policy (assuming good predictability) is better suited for
cyclic graphs, as it is less prone to event fragmentation.

We aim to integrate both time-keeping methods with the view of combining the ad¬

vantages of both, without incurring much of the disadvantages of either. By extending
an LVT-based algorithm with a GVT for only a part of the simulation model, we hope

46

Chapter 4. The AVT Synchronisation Algorithm 47

to take advantage of the better lookahead properties of GVT-based algorithms, while
avoiding most of the associated overhead.

The model will be divided into a patchwork of areas each employing either LVT or

GVT, alongside each other. The areas in which GVT is computed will be restricted
to those where the benefits will be the greatest. This "local GVT" is named the area

virtual time (AVT).

We propose a novel algorithm for DDES called the Area Virtual Time Algorithm which

supports both conservative and optimistic synchronisation policies, and is based on a

combination of LVT and GVT time-keeping mechanisms. This is a happy medium
between the extremes of either each LP maintaining its LVT, or calculating the GVT
over all the LPs in the simulation model.

Our hypothesis is that such a hybrid protocol will execute non-homogeneous simula¬
tion models more efficiently, while still being capable of running homogeneous models
just as efficiently as either the LVT or the GVT time-keeping mechanism.

4.1 Area Virtual Time

In the AVT algorithm, a set of LPs is mapped to a Virtual Time Area (VT-area), which
gives rise to a network of VT-areas. The choice of mapping a particular set of LPs to a

VT-area is determined by the topology of the simulation graph, i.e. by areas in which
the synchronisation overhead using LVT is greater than the overhead induced by AVT
(see Sections 2.10 and 2.11, Page 24).

Area virtual time is defined in a manner similar to GVT [Jefferson85]:

AVTi = minj=i^N-k=o^M{LOVTj,tek},
where VTAi is the virtual time area i, N is the number of LPs in VTA,-, LPj is inside
VTAi, LOVTj (Local Optimistic Virtual Time) is the time up to when LPj has specu¬

lated, M is the number of event-messages in-transit in VTAi, and tek is the time-stamp
of the event-message in-transit between LPs in VTAi.

LPs will update their AVT estimate each time their local LOVT is updated, i.e. they
will send their LOVT to the AVT-keeper, i.e. the process computing the AVT. The

AVT-keeper in turn will notify all LPs in the VT-area, whenever the AVT can be pro¬

gressed. The AVT-algorithm can progress on LVT alone, if lookahead is available.

Chapter 4. The AVT Synchronisation Algorithm 48

The overhead for GVT estimation in this case is reduced to the AVT-messages sent

by the LPs to the AVT-keeper. Only if the AVT improves on an LP's LVT, does the
AVT-keeper propagate it to the LP.

The simulation model is interpreted as a directed graph, in which the nodes and the
arcs correspond to LPs and communication channels, respectively. Each cyclic area

of the simulation graph is assigned to a Virtual Time Area (VT-area), in which a GVT

time-keeping scheme is used. The AVT algorithm can be applied to LPs which can be
configured to use any combination of the modes of synchronisation and time-keeping
mentioned in Section 2.9.

Figure 4.1: Simulation graph

The LPs that do not belong to a cyclic area are termed as LVT nodes, each one of which
uses LVT as its time-keeping mechanism and can either use a conservative synchro¬
nisation policy (corresponding to a Chandy-Misra-Bryant node), or an optimistic one

(corresponding to an optimistic ELSA node). Example: LP4 in Figure 4.1. An LVT
node becomes active when all its inputs contain events that allow virtual time to be

progressed.

Chapter 4. The AVT Synchronisation Algorithm 49

Two special cases of LVT nodes are the input nodes and the output nodes. Input nodes
(e.g. LP1 in Figure 4.1) are LPs that generate input from outside of the simulation
model, e.g. from an input file, and have only outputs. Conversely, output nodes (e.g.
LP5 in Figure 4.1) are used to communicate results from the simulation to the outside
world, e.g. a file or the screen, and as such possess only inputs.

In the current instantiation of the algorithm, an LVT node is conservative, although
this is not a fundamental restriction: any LVT node could range from conservative,
to limited or unlimited locally or globally optimistic - similar to nodes in Composite
ELSA, as described in Section 3.3.5.

Any LP that belongs to a VT-area and receives input exclusively from within the area

is called a GVT node (e.g. LP3 in Figure 4.1). GVT nodes use an optimistic synchro¬
nisation policy and a GVT time-keeping mechanism. A GVT node becomes active
and computes a new event if at least one of its inputs contains an event that allows
virtual time to be progressed. In the current instantiation of the algorithm, output to
LPs outside the VT-area is only sent after it has been committed, i.e. to LPs within the
VT-area, a GVT node employs globally optimistic (or risky) strategy, while for LPs
outside the VT-area it uses a conservative strategy, i.e. it is only locally optimistic.

LPs which receive inputs from both outside and inside the VT-area, are called hybrid
nodes (e.g. LP2, in Figure 4.1). They interface the LVT time-keeping mechanism
outside a VT-area to the GVT mechanism inside. Hybrid nodes employ a GVT time¬

keeping mechanism and a semi-optimistic synchronisation scheme. The optimism is
effectively limited by the look-ahead in the event-messages from outwith the VT-area.

Hybrid nodes become active and generate new events, when all inputs from outside
the VT-area contain events that allow virtual time to be progressed. They may then

compute optimistically, but uncommitted results are propagated only within the VT-
area (cf. GVT node). Outside the VT-area only committed events are ever transmitted;
for LPs outside the VT-area, hybrid nodes are locally optimistic, whereas to those
inside the VT-area, hybrid nodes use a globally optimistic (or risky) send strategy.

Hybrid and GVT nodes send their LOVT to the AVT-keeper after every event com¬

putation. The AVT-keeper computes the minimum of all the respective LOVTs in the
VT-area, and, if the new minimum is greater than the old, then the updated AVT is
broadcast to all members of the VT-area whose LCVT (Local Committed Virtual Time
- the time up to when an LP has progressed based on committed input) is less than

Chapter 4. The AVT Synchronisation Algorithm 50

the AVT. The member LPs then send all committed pending output events (or a null-
message) to LPs outside the VT-area.

The VT-areas never emit an uncommitted event-message, i.e. when viewed from be¬

yond, a VT-area behaves as if it were a conservative LVT node, albeit a conglomerate
one. To restrict propagation of uncommitted events to the respective VT-area is a de¬
sign choice, and not a requirement: GVT and hybrid nodes in the VT-areas could
send optimistic results to LPs outside of the VT-area. However, a globally optimistic
strategy would allow the effect of relatively local rollbacks, confined to a VT-area, to

propagate to the remainder of the simulation.

The format of the event-messages are similar to those used by Composite ELSA, i.e.,
a time interval defines the period for which a value is guaranteed to hold. The AVT al¬

gorithm's event-messages have an additional time-stamp to denote the time until when
the value is presumed to hold optimistically.

Two slightly different instantiations of the AVT algorithm, are described in this chap¬
ter: The first one was used to obtain the simulated performance results in Chapter 5,
which assumes the virtual time delay to be fixed for each computation of an event in
an LP, and that the current virtual time is not an input parameter to the computation of
a new event. The second one, which is geared towards actual implementation, drops
these requirements, and allows dynamically changing delays and virtual time to be
an input parameter for event computation. Changeable delays result in a reduction of
lookahead and the time for which an event holds must be computed differently. In the

description of the AVT algorithm in the next section both versions have been included.

4.2 Description of the AVT Algorithm

4.2.1 Definitions

LCVT: Local Committed Virtual Time - the time up to when an LP has progressed
based on committed input.

LOVT: Local Optimistic Virtual Time - the time up to when an LP has speculated
based on its input

Event-Message is of the form: (tstart, ten(i, topt, data), where:

Chapter 4. The AVT Synchronisation Algorithm 51

tstart is the start-time of an event

tend is the time until when the event is committed to hold

topt is the time until when an event is presumed to hold based on the input

data is the value of the event.

Event-messages can be either: committed, i.e., tstart < tend, and tenci = topl\ un¬

committed, i.e., tstart — tend> and tend < t0pt\ or partially committed, i.e., tstart <
tend topt •

AVT: Area Virtual Time is defined as the minimum LOVT of the members of the

VT-area and the minimum (tstart) of all the messages in transit in the VT-area.

AVT-Message is used to communicate between the LPs and the AVT-keeper, and is
of the form (LCVT, AVT) and defined as:

LCVT - the sending LP's LCVT, or empty when sent by the AVT-keeper

AVT - the sending LP's LOVT, or the updated AVT sent by the AVT-keeper

Delay (5) - the virtual execution time of an LP.

min{tg"d} - denotes the minimum tend of all inputs to an LP

™inLVT{C,d} - denotes the minimum tend of all inputs to an LP from predecessors
outside the VT-area.

minAVT{tg"d} - denotes the minimum tend of all inputs to an LP from predecessors
inside the VT-area.

Predecessor (Successor) of an LP, A, is any other LP from which A receives its input
(to which A sends its output).

Graphic Symbols: The height of a box corresponds to the interval between tstart and

tend (or topt)-

I I Committed part of event-message

L i Uncommitted part of event-message
I 0 | Null-message

! 1 AVT-message

I = I Input equal to previously received
I * I Input different from previously received/guessed

Discarded state

start

^end
t nnt

Chapter 4. The AVT Synchronisation Algorithm 52

Input Input Queue Event-message sent after state change

Output

LP before state change LP after state change
State change with event-computation

State change without event-computation

4.2.2 TheLVT-node

The LVT nodes synchronise conservatively. The node is ready to progress its vir¬
tual time once all the end-times of the input events are greater than its LCVT, i.e.,

min{ca > lcvt.

4.2.2.1 LVT-node Computing

Once an event has been computed, an LVT-node sends the following event-message

[change event to event-message throughout] to its successors (Figure 4.2):

Simulated version:

(tstart = LCVT + 8, tend = min{tlennd} + 8, topt = tend, f(input)) (4.1)

Implemented version:

(tstart = LCVT + 8, tend = max{ts,art + 1,»»>/+ 1},
topt = tend, data = f(input))

(4.2)

Its LCVT is advanced to the maximum of the values: min{tlennd} and tstart, of the event-
message which was sent:

LCVT max{tstart,min{tl£ld}} (4.3)

Any state prior to the LCVT is discarded.

Chapter 4. The AVT Synchronisation Algorithm 53

Figure 4.2: LVT-node in conservative mode

4.2.2.2 LVT-node Processing Null-messages

If the input to an LVT-node consists of events which either have the same value as the

previously received one or are null-messages, then an LVT-node does not compute a

new output event and sends the following null-message to all successors (Figure 4.3):

(tstart = LCVl + 1, ten(j = min{tend} + 1, t0pt — tend> null) (4.4)

Its LCVT is advanced in the following manner:

LCVT := min{Cd} (4.5)

Any state prior to the LCVT is discarded.

Figure 4.3: LVT-node in conservative mode

4.2.3 The GVT-node

A multitude of cases exist that determine a GVT-node's behaviour. These are listed

and the resulting behaviour is described in detail in this section.

Chapter 4. The AVT Synchronisation Algorithm 54

A GVT-node is ready to progress if at least one of its input-queues contains an un¬

processed event, i.e. min{tl"pt} > LOVT. If committed inputs exist in all of the input
queues, i.e. > LCVT, a GVT node computes conservatively, whereas opti¬
mistically, otherwise.

4.2.3.1 GVT-node Computing on Committed Input

When progressing conservatively (Figure 4.4), the following event-message is sent to
the node's successors within the VT-area:

Simulated Version:

(tstart = LCVT + 8, tend = min{t'e'lnd} + 5, top, = min{t'0npt} + 8, /{input)) (4.6)

And, the following event-message is sent to successors outside the VT-area.

Simulated Version:

(tstart = LCVT + 8, tend = min{t"hd} + V =W, f{input)) (4.8)

Implemented Version:

[ts,art = LCVT+ 8, tend = iiuix{tslarl + \,min{t'e"d} + 1}, t„p, = tend, f[input)) (4.9)

LCVT is advanced as follows:

Implemented Version:

[tstart = LCVT + 8, tend = max{ts,ar, + l,fflm{(^} + 1},
top, = max{tend,min{toP,} + 1}, /[input))

(4.7)

LCVT := max{tstart,min{tlennd}} (4.10)

and, any state prior to the LCVT is discarded. Finally, an AVT-message, [LCVT, LOVT),
is sent to the AVT-keeper.

Chapter 4. The AVT Synchronisation Algorithm 55

/ VT-Area / VT-Area

Figure 4.4: Computing conservatively in a GVT-node

4.2.3.2 GVT-node Computing on Uncommitted Input

When progressing optimistically (Figure 4.5), the following event-message is sent to
the node's successors within the VT-area:

Simulated Version:

{tstart = LCVT + 5, tend = min{tTnd} + 8> lopt = min{tl0npt} + 8, f{input)) (4.11)

Implemented Version:

(tstart = LCVT + 8, tend — tnux{ts,ar, + 1 . mill {t(,n(j } + 1}, ^
topt = max{tend,>riin{topl} + 1}, /{input))

No event-message is sent to successors outside the VT-area, and the LOVT is pro¬

gressed as follows:
LOVT :=mcuc{tstart,min{tl0npt}}, (4.13)

and, an AVT-message, {LCVT,LOVT), is sent to the AVT-keeper.

4.2.3.3 Rollback and Conservative Re-evaluation in a GVT-node

A rollback is caused should the input be different from the one received previously.
The LOVT is reset to the value, tstart, of the "offending" event. If committed input is

Chapter 4. The AVT Synchronisation Algorithm 56

LOVT

LCVT

' VT-Area
I

Figure 4.5: Computing optimistically in a GVT-node

available at the time of the rollback, then the GVT-node progresses conservatively as

described in this section; it progresses optimistically otherwise (see Section 4.2.3.4).
The output event for LOVT is recomputed, and the result compared to the previous one
which was based on speculated value.

The following two cases arise:

1. The recomputed result remains unchanged (Figure 4.6), then no event-message
is sent to successors inside the VT-area. The following event-message is sent to
the successors outside the VT-area, if min{t"lnd) > LCVT:

Simulated Version:

{tstart = LCVT + 5, tend = min{tlennd} + 8, top[= tend, f(input)) (4.14)

Implemented Version:

(t.start = LCVT + 8. tend = "uix{tSUlr, + 1 ,min{C)ul) + 1},
topi = tend, .f(input))

LCVT and LOVT are progressed in the following manner:

LCVT := max{LCVT + 8,ffli«{^}}, ^
LOVT := max{tstart, rnin{t"lpt} },

and, an AVT-message, (LCVT,LOVT), is sent to the AVT-keeper and all the
states before the LCVT are discarded.

Chapter 4. The AVT Synchronisation Algorithm 57

/ VT-Area / VT-Area

Figure 4.6: Rollback without change in output and conservative progress in a GVT-node

2. Should the result differ from the one propagated (Figure 4.7), then the correct
result is sent to the GVT-node's successors within the VT-area, in the following
event-message:

Simulated Version:

{tstart = LCVT+8, tend = min{tlennd} + 8, topl = min{t'0npl}+ 8, f(input)) (4.17)

Implemented Version:

('start = LCVT + 8, tend = max{tstart,min{tle"lul}} + 1, ^ t
'opt - mwc{teitd,min{t'"pl} + 1}, f(input))

The following event-message is sent to the successors outside the VT-area:

Simulated Version:

(tstart = LCVT + 8, tend = "MCJ + 5' V = Cnd, f(input)) (4.19)

Implemented Version:

('start = LCVT + 8, tend = max{tstar,,min{t'j;id}}+ 1, 2Q)
'opt =W, f(hip"'))

Chapter 4. The AVT Synchronisation Algorithm 58

The LCVT and LOVT are advanced as follows:

LCVT := max{LCVT + §,min{t™d}},
LOVT := max{tstclrt,min{t'0np,} }

Any state before LCVT is now discarded and an AVT-message, {LCVT,LOVT),
is sent to the AVT-keeper.

' VT-Area / VT-Area

LCVT
LOVT |

LOVT

Figure 4.7: Rollback with change in output and conservative progress in a GVT-node

4.2.3.4 Rollback and Optimistic Re-evaluation in a GVT-node

When rollback occurs, the LOVT is reset to tstart of the "offending" event. The output

event for LOVT is recomputed, and the result compared to the previously one based
on speculated value.

The following two cases arise:

1. If the recomputed result is unchanged (Figure 4.8), then no event-message is sent
to successors, and the LOVT is progressed as follows:

LOVT := max{tstart,min{tl0npt}} (4.22)

and, an AVT-message, {LCVT,LOVT), is sent to the AVT-keeper.

2. If the result is different from the one propagated (Figure 4.9), then the correct
one is sent to the GVT-node's successors in the VT-area, in the following event-

message:

Chapter 4. The AVT Synchronisation Algorithm 59

LOVT

/ VT-Area ! VT-Area

Figure 4.8: Rollback without change in output and optimistic progress in a GVT-node

Simulated Version:

{tstart = LOVT + 8, tend = tstart, V = min{tl/pt) + 5, /(input)) (4.23)

Implemented Version:
(tstart = LOVT + 8. tend = tstart >

^
t0p, = max{te„d,min{t)/pl}} + 1, /(input))

The LOVT is incremented as shown below:

LOVT := max{tstart,min{t'0npt}} (4.25)

and, an AVT-message, (LCVT,LOVT), is sent to the AVT-keeper.

4.2.3.5 Roll-forward in a GVT-node

Roll-forward was only introduced in the implemented version as an optimisation of the
AVT algorithm and the following cases were considered.

4.2.3.6 Roll-forward in a GVT-node with Committed Input

When rolling forward conservatively, the GVT-node does not compute a new result
and sends a null-message to its successors outside the VT-area, if rnin{tl/nd} > t°/d
(Figure 4.10):

Chapter 4. The AVT Synchronisation Algorithm 60

/ VT-Area / VT-Area

Figure 4.9: Rollback with change in output and optimistic progress in a GVT-node

Implemented Version:

(tsian =max{LCVT,t^}, tend = max{tslar,,™in{t'"nd}} + 1, tnp, =tend, null) (4.26)

Irrespective of whether the null-message is sent, LCVT is advanced as shown:

LCVT := max{tstart,min{t'e"ld}} (4.27)

and any state prior to the LCVT is discarded.

/ VT-Area / VT-Area

Figure 4.10: Rolling forward conservatively in a GVT-node

Chapter 4. The AVT Synchronisation Algorithm 61

4.2.3.7 Roll-forward in a GVT-node without Committed Input

When rolling forward optimistically, neither a new result is computed nor is an event-

message sent to successors. LOVT is progressed thus:

LOVT := (4.28)

and, an AVT-message, (LCVT,LOVT), is sent to the AVT-keeper.

/ VT-Area] VT-Area

Figure 4.11: Rolling forward optimistically in a GVT-node

4.2.3.8 Progressing Virtual Time Based on AVT in a GVT-node

A GVT-node progresses its LCVT based on the AVT when the following conditions
hold: the GVT-node has received an AVT-message, (0, AVT), from the AVT-keeper and
the updated AVT is greater than the minimum end-time of all the committed inputs,
i.e., AVT > min{tlennd).
Simulated Version (Figure 4.12): The following event-message is sent to all its succes¬

sors outside the VT-area:

(tstart = LCVT + 8, tend = AVT + 8,topt = tend,f(input)) (4.29)

Implemented Version (Figure 4.13): All output events, based on input events whose

Chapter 4. The AVT Synchronisation Algorithm 62

LCVT
LOVT

/ VT-Area / VT-Area

Figure 4.12: GVT-node progressing based on AVT (simulated)

tstart < AVT, are sent to its successors outside the VT-area:

('W =LCVT + $, t\md=t2slnrl, t\np, =tKnil, f(input))
s,„n ~f \en<f> %nrt = ^stnrl > *2opt ^2,,,,^, f(htpUt)) (4 30)

Oaw, = to-Ur '/v,.„rf = max{W(„,„,AVr} + 1, //v^, = f(input))

LCVT is advanced as follows:

LCVT :=max{^art,AVr} (4.31)

and all the states before the LCVT are discarded.

4.2.4 The Hybrid-node

Hybrid nodes appear as GVT/optimistic nodes to those inside the VT-area, and as

LVT/conservative nodes to those outside. When the committed inputs from outwith
the VT-area are available, the hybrid node guesses the values for the other inputs from
within the VT-area, evaluates the function based on all the inputs (both guessed and
committed), and fires optimistically, but only to its neighbours within the VT-area.

The behaviour of hybrid-node is similar to that of the GVT-node, and only the cases

which differ are described. The main difference is that a hybrid node will never spec¬
ulate on events it is waiting to receive from outside the VT-area.

Chapter 4. The AVT Synchronisation Algorithm 63

Figure 4.13: GVT-node progressing based on AVT (implemented)

A hybrid node is ready to speculate if all the input-queues to the LVT part of the

hybrid-node contain events, and the minimum end-time of the LVT-inputs is greater
than the minimum optimistic-end-time of the AVT-inputs, i.e.

minLVT{t'ennd} > minAVT{t'ennd} A minLVT{t'ennd} > LOVT (4.32)

and, the LP assumes that the previous values for the AVT-inputs hold and fires opti¬
mistically.

4.2.4.1 Hybrid-node Speculating Based on Committed Input

If all inputs to the hybrid node contain unprocessed, committed events, then the fol¬
lowing event-message is generated, stored in the LPs output-queue, and sent to the
LP's successors in the VT-area (Figure 4.14):

Simulated Version:

(htart = LCVT + 8, tend =™fi}+ V = minLVT{Cnd) + /(input)) (4.33)

Implemented Version:

(tstart = LCVT + 8, tend = max{tslan,tnin{t'^d}} + 1,
top, = max{tendlmin{Cp,} + 1}, f(input))

Chapter 4. The AVT Synchronisation Algorithm 64

The LOVT is advanced as follows:

LOVT = max{tstclrt,min{tl0npt}} (4.35)

/ VT-Area / VT-Area

Figure 4.14: Speculation on committed input in a hybrid-node

4.2.4.2 Hybrid-node Speculating Based on Uncommitted Input

If the input-queues to the hybrid-node do not all contain unprocessed, committed
events, then the following event-message is generated and sent to the LP's successors

in the VT-area (Figure 4.14):

Simulated Version:

(tstart = LOVT + 5, tend = tstart, topt = min{t'0npt} + 8, f{input)) (4.36)

Implemented Version:

{tstan = max{LOVT + 8 ,min{t™nd}}, tend = tslar,, ^
topt = »iax{tet,djnin{t))'pl} + 1}. f(input))

The LOVT is advanced in the following manner:

LOVT = max{tstart,min{tl"p[}} (4.38)

Chapter 4. The AVT Synchronisation Algorithm 65

/ VT-Area / VT-Area

Figure 4.15: Speculation on uncommitted input in a hybrid-node

4.2.5 The AVT-keeper

The AVT-keeper computes the AVT as the minimum of all the estimates received by
the GVT- and hybrid-nodes in the VT-area, and the minimum, committed time-stamp
of any event-message in transit within the VT-area. To keep track of event-messages
in transit, special information is attached to event-messages and AVT-messages (Sec¬
tion 4.2.5.1 below).

If AVT can be advanced, then the AVT-keeper sends the updated AVT to all the nodes
in the VT-area. On receipt of the AVT update, the nodes commit all events up to this

point in time and send pending events to neighbours outwith the VT-area as described
in Section 4.2.3.8. The nodes then bring forward their LCVT to the AVT, and discard
all state information before the AVT.

4.2.5.1 Send and Receive Notices

Send and receive notices are attached to event- and AVT-messages to keep track of
messages in transit. They are of the form, (type,ID,tstart,count), where:

type is an element of {Sent,Received}, denoting whether an event-message has been
sent and is in transit, or whether it has been received at its destination, respec¬

tively.

ID is the unique identifier of the sender of the event-message.

tstart is the start-time of the event

count is the number of events with ID and tstart which are sent or received.

Chapter 4. The AVT Synchronisation Algorithm 66

4.2.5.2 Operation

Every event-message, (tstart, tencj, topt, data), sent from an LP A to an LP B inside
a VT-area is annotated with a send notice, (Sent, A, tstart, 1). When the event-

message is sent, the AVT-message sent at that time is annotated with a send notice

(Sent, A, tstart, N), where N is the number of LPs the event-message has been sent to.

When an LP receives an event-message annotated with a send notice, (Sent, A, tstart > 1).
it stores the send notice and attaches to the next AVT-message the receive notice
(Received, A, tstart, 1). More than one receive notice can be attached to an AVT-
message.

When the AVT-keeper receives an AVT-message,

((LCVT,LOVT)(Sent, A, tstart, N)),

(where N is the number of event-messages, as described previously) from an LP within
its assigned VT-area, the received LCVT, LOVT, as well as the send notice are stored
and the AVT is re-computed as the minimum of the received LOVTs of all the LPs in
the VT-area and tstart of all send notices stored.

When the AVT-keeper receives an AVT-message,

((LCVT,LOVT)(Received, A, tstarti !)•••))

then the received LCVT and LOVT are stored. The count entry of every send notice,

(Sent, A, tstart, N), for which a corresponding receive notice had been attached, is
decremented by one. Any send notice whose count reaches 0 is removed. AVT is re¬

computed as the minimum of the received LOVTs of all the LPs in the VT-area, and
tstart of all remaining send notices which are stored. If the new AVT is greater than the
previous one, then the AVT-keeper notifies all the LPs in the VT-area whose LCVT is
less than the AVT.

The AVT-algorithm was first simulated in order to understand better its behaviour and
performance in practice, and the results are presented next.

Chapter 5

AVT-Algorithm - Simulation

The simulation results described in this chapter were presented at the conference Dis¬
tributed Simulation and Real-time Applications (DS-RT 2001) held in August 2001 in
Cincinnati, Ohio [ArvindS2001]. The full text of the paper published in the proceed¬
ings of the conference is included in Appendix A.

5.1 The Simulation Environment

The behaviour of the AVT-algorithm was modelled in C++ and simulated in a se¬

quential event-driven simulator (also written in C++). The simulator also models a

distributed system consisting of processors connected by a network. All significant

operations in the distributed system, such as computing results and sending event-

messages, are assigned costs.

The network model assumes a fixed cost and a minimum fixed delay for each mes¬

sage. The bandwidth of the network determines the number of messages that can be
transmitted concurrently over the network at any time. Messages are delayed until the
network bandwidth becomes available. Thus the network model takes congestion into
account but not the relative sizes of messages, or the effects of thrashing.

We distinguish between two notions of virtual time: the virtual time according to the
AVT-algorithm is called virtual time, and the virtual time according to the simulated
distributed system on which the AVT-algorithm executes is referred to as the simulated
real time.

67

Chapter 5. AVT-Algorithm - Simulation 68

The simulation was run under many different parameter sets, including:

Number of Processors The number of virtual processors used to run the simulation.

Communication Bandwidth This determines the number of messages the network
can transmit at any time. Bandwidth can be set to unlimited, in which case every

message is delayed by a fixed amount of simulated real time.

Message Delay The amount of simulated real time required to send an event-message
or an AVT-message from one processor to another.

Event Processing Delay The amount of simulated real time needed to compute a re¬

sult in an LP.

AVT Processing Delay The amount of simulated real time needed to process an AVT

computation in the AVT-manager.

Amount of simulated real time The number of units of simulated real time for which

the distributed system is simulated for each parameter set.

Mode One parameter from the set {LVT, AVT, GVT} is selected. In LVT-mode, every
LP behaves as an LVT-node. In GVT-mode, all LPs except input-nodes behave
as a GVT-node and are members of one global VT-area. In AVT-mode, all LPs
in the acyclic area of the simulation model behave as LVT-nodes, and the LPs
in the cyclic area are members of a VT-area encompassing the cyclic area and
behave as GVT- or hybrid-nodes, respectively.

Input Interval The amount of virtual time between the arrival of any two input events
to the model.

Delay The virtual time between receiving an event in an LP and producing an output
event in this LP.

Output Change Probability A value between 0 and 1 which gives the probability
that the output of an LP changes if one of the inputs changes. If the probability
for an output change after one input change is P, then the resulting probability
for a change in output given that N inputs have changed, is 1 — (1 — P)N.

Chapter 5. AVT-Algorithm - Simulation 69

5.2 Results

The benchmark model under simulation contains cyclic (2 LPs) and acyclic parts (3
LPs), and one LP generating input to the model (Figure 5.1).

VT Area

Figure 5.1: Benchmark model graph

The model was run under all the different combinations of the following parameters:

Number of Processors {1, 2, 5}. In the two-processor case, the cyclic part was

mapped to one processor and the acyclic part to the other. The input node was

always allocated to processor 1.

Communication Bandwidth 1

Message Delay {1,3, 10, 32, 100} units of simulated real time

Event Processing Delay 100 units of simulated real time

AVT Processing Delay 0 units of simulated real time

Amount of Simulated Real Time 10000 units

Mode {LVT, AVT, GVT}

Input Interval 100 units of virtual time.

Delay {1, 3, 10, 32, 100} units of virtual time.

Output Change Probability {0%, 25%, 50%, 75%, 100%}

The performance was measured in terms of progress of virtual time per unit of simu¬
lated real time. The graph in Figure 5.2 compares the progress in virtual time for the
three time-keeping schemes (y-axis), while changing the simulation parameters along
four dimensions: Delay, Message Delay, Number ofProcessors, and Output Change

Probability (Change Prob. in the figure).

Chapter 5. AVT-Algorithm - Simulation

Figure 5.2: Progress of Virtual Time for 10000 units of Simulated Real Time

Chapter 5. AVT-Algorithm - Simulation 71

Whereas the graph in Figure 5.2, at first glance, displays an overwhelming amount of
information, it also allows one to compare patterns over the entire data set. Consider
the lefthand column of graphs (Change Prob. = 100%) which on comparison of the
three sets for 1, 2, 5 processors shows the speedup attained by using additional pro¬
cessors. In the third set of this column (5 processors) one can see that, as the Message

Delay increases, the performance degrades; however, this effect does not occur in the
middle set (2 processors) as the communication is mostly local to each processor. Fi¬

nally, each graph allows the comparison of LVT, AVT, and GVT performances for a
range of Virtual Delay values. Comparing sets and columns with matching parameters
across the whole graph, results in an overview of the behaviour of the AVT algorithm.
Details of Figure 5.2 are shown in the graphs in Figures 5.3-5.6.

As the value of the Delay is incremented, the progress of the virtual time improves,
and in the extreme, to a spike, when the Delay is the same as the Input Interval. In this
case the existing look-ahead reaches up to the arrival of the next event, resulting in no

event fragmentation.

We also observe that in the case of mapping to two processors, the performance of the
AVT-algorithm is more stable over changes in the parameters, compared to the GVT

time-keeping scheme, which is hit by network delays. We note that the LVT time¬

keeping mechanism only performs well in the cases of good look-ahead, i.e. large
Delay. In the mapping to five processors, it is evident that the AVT algorithm degrades
more gracefully with increases in network delays.

The AVT-algorithm maintains this superiority over the other two time-keeping mecha¬
nisms for different Output Change Probability values.

Figure 5.3 details the influence of the Delay on the three different time-keeping schemes.
While LVT performance rises in proportion to the Delay, AVT and GVT performances
are independent, except for large values of Delay. AVT outperforms GVT and also
LVT, except for Delay =100.

Figure 5.4 shows that as the Message Delay increases, the performance decreases,
however, the AVT-algorithm's performance remains higher compared to the other two

time-keeping mechanisms, as it reduces the number of messages required for synchro¬
nisation.

The speedup of the three time-keeping mechanisms is depicted in Figure 5.5. As the
Output Change Probability is zero, only the LP connected to the input (IN) performs

Chapter 5. AVT-Algorithm - Simulation 72

«r

110000 ~
oj 9000 —
E, 8000 -

| 7000 -
if 6000 -

| 5000 ™
> 4000 -
~ 3000 ~

<8 2000 -

o 1000 -
fa

1 3 10 32 100
Delay [time units]

— LVT

— AVT

— GVT

Figure 5.3: Detail of Figure 5.2: Progress for Delay = 1,3, 10, 32, 100; Message

Delay = 1; Number of Processors = 2; Output Change Probability = 75%

= 10000 -[

jjj 9000 —
£ 8000 -

| 7000 -
F 6000 -

| 5000 -
> 4000 -
» 3000 -

<8 2000 -

o 1000 -
fa

1 3 10 32 100
Message Delay [time units]

~ LVT

— AVT

— GVT

Figure 5.4: Detail of Figure 5.2: Progress for Delay = 32; Message Delay =1,3, 10,

32, 100; Number of Processors = 5; Output Change Probability = 0%

event-computations. Due to the null-message overhead, LVT performance increases
only slightly when more processors are used. The GVT time-keeping mechanism can¬

not attain any speedup as it needlessly uses global time in the acyclic part of the simu¬
lation model. The AVT-algorithm sends fewer synchronisation messages which results
in the best performance of the three time-keeping mechanisms.

Figure 5.6 shows that as the Output Change Probability decreases, the performance of
all three time-keeping mechanisms increases. However, due to the AVT-algorithm's

Chapter 5. AVT-Algorithm - Simulation 73

c10000 -]3

jlj 9000 ~
£ 8000 -

| 7000 -
6000 -

| 5000 -
> 4000 -
~ 3000

8 2000
k-

o 1000
^ 0

1 2 5
Number of Processors

LVT

— AVT

— GVT

Figure 5.5: Detail of Figure 5.2: Progress for Delay = 10; Message Delay = 10;
Number of Processors =1,2,5; Output Change Probability = 0%

lower messaging overhead, it outperforms the LVT and GVT time-keeping mecha¬
nisms.

W

110000
0 9000

Jj 8000
V 7000

p 6000
15 5000

| 4000
> 3000

Z, 2000
<2 1000

1 o
k.

Output Change Probability

— LVT

— AVT

— GVT

Figure 5.6: Detail of Figure 5.2: Progress for Delay = 32; Message Delay = 32;
Number of Processors = 2; Output Change Probability = 0%, 25%, 50%, 75%, 100%

The results demonstrate that the AVT-algorithm performs better or just as well as

the other two mechanisms for a simulation model containing a mixture of cyclic and

acyclic parts.

However, there is a caveat: the simulation of the AVT-algorithm does not take into

Chapter 5. AVT-Algorithm - Simulation 74

account the computational overheads of computing AVT and state-saving and rollback.
The rationale for this omission is the assumption that computation is cheap and fast,
and communication slow and expensive by comparison. The evaluation of the AVT-

algorithm employing an actual implementation, addresses this topic (Chapter 7).

The results show the efficacy of the AVT-algorithm and the next chapter describes its
actual implementation on a real distributed system.

Chapter 6

AVT-Algorithm - Implementation

The AVT-algorithm has been implemented in C++ as a simulation-specific library of
parameterised classes. The simulation library with the AVT-algorithm at its heart was
named AVTSIM for Area Virtual Time Simulator. Distributed computing for AVTSIM
was supported through the use of the MPI (Message Passing Interface) communica¬
tion library [http://www.lam-mpi.org/]. This combination of computing language and
communication library was chosen for portability reasons: at the time of the inception
of this work this was the most widely available platform. Only a small subset of the
MPI message transmission functionality was used: the asynchronous MPI primitives
MPIJprobe and MPI_Send, and synchronous MPI_Recv.

AVTSIM can be compiled using the GNU C++ compiler g++ on Linux, Solaris, and
MicrosoftWindows, the Sun C-compiler on Solaris (without library support), and Mi¬
crosoft Visual C++ on Windows (without MPI-support).

Simulation models are written in C++ with the support of the AVTSIM library. An

object-oriented language was chosen as it provides the most natural way of describing
real-world entities, as state is encapsulated in objects and method invocation is similar
to message passing.

Simulation models in AVTSIM are described in terms of LPs, inputs, and outputs,

implemented by the classes Entity, InPort, and OutPort, respectively. Entities may

possess an arbitrary number of inputs and outputs and while fan-out from outputs is

permitted, fan-in to inputs is not. Entities react when they perceive a change in one

or more input values, whereas an event-message carrying the same value seen before
is not considered to be an event. When an LP reacts at virtual time t it may generate

75

Chapter 6. AVT-Algorithm - Implementation 76

events, that may be presented after different delays for different outputs. Or, an LP

may not generate any output for the activation at virtual time t.

All simulated time in AVTSIM is measured in virtual time units (VTU) which are not

a fixed representation of any real world time unit, e.g. seconds. The meaning of VTUs
depends on the application and is determined by the programmer of the simulation
model. Virtual time is represented in AVTSIM by default by a 64-bit integer. However,
the module defining the data type for virtual time can be exchanged for any other data
type or class that supports the set of operations and relations required by AVTSIM.

The implementation of the AVT-algorithm serves two purposes:

• the evaluation of the AVT-algorithm under real-world conditions while retaining
the ability to simulate itself

• providing a general-purpose distributed simulator targeted at the simulation of
asynchronous systems.

For the intended use as a general-purpose simulator, two simplifying assumptions
made when simulating the AVT-algorithm (Chapter 5), were dropped. The delay of
the event generation in an LP is no longer assumed to be fixed, i.e. an LP may present

output after variable, or input dependent delays for each activation, and may present

output after different delays for different outputs during one activation. In the simu¬
lated version the results computed in an LP were only dependent on the inputs to the
LP. Whereas, in the implementation, the value of result-events may depend on the vir¬
tual time at which they were computed, i.e. the virtual time of the activation is consid¬
ered an input parameter for the event computation. This means that a re-computation
of an output must be scheduled whenever the new activation time differs from the ac¬

tivation time of the previous speculative evaluation, even if the inputs do not show any

differences between those two points in virtual time.

AVTSIM has been tested by executing the test models (Section 7.3) under many dif¬
ferent parameter sets. The output traces of the simulation-runs in LVT-mode on a

uniprocessor were saved, and compared to about 5 million values from output traces
of subsequent multiprocessor executions in AVT- and in GVT-mode.

A more detailed description of AVTSIM, models, entities, inputs, and outputs is pro¬

vided next, along with an example of a complete small simulation at the end of this
chapter.

Chapter 6. AVT-Algorithm - Implementation 77

6.1 AVTSIM Modelling Interface

To use the simulator one has to include a C++ header file containing all the required
definitions of AVTSIM. This ensures that global objects of the simulator are instanti¬
ated and all required classes and functions of the simulator are available to the user's
code.

6.1.1 Entities

All LPs (called entities) must be derived from the base class Entity and must imple¬
ment the virtual function evaluate (). Entities can have an arbitrary number of in¬

puts and outputs which are implemented by the parameterised template classes InPort
and OutPort, respectively (see Section 6.1.2).

The entity's function evaluate () is called each time at least one input value to an

LP (an object of class Entity) changes. The entity is then considered busy until the
time-stamp, tstart, of the last output within the current call of evaluate () sent, i.e.
the entity's virtual time after evaluate () is at least tstart• All value-changes that
occur at inputs during the time the entity is busy are either:

• perceived at the virtual time at the end of evaluate (),

• or, lost and only the last value-change during the busy-period is recognised, if
more than one value-change occurs on an input while the entity is busy.

Whether any of the two conditions above should be considered to be an error, can be
set individually for every input (see Summary of the InPort Class Interface in Sec¬
tion 6.1.2).

An entity which only possesses output-ports is called an input-entity, since it generates
external input to the simulation, e.g. from a file. An input-entity's evaluate ()
method is never called speculatively.

An entity which only possesses input-ports is called an output-entity. Its evaluate
() method is called whenever any one of its input-ports change value (just like for
"normal" entities). However, in contrast to normal entities, the evaluate () method
of output-entities is never called speculatively.

Chapter 6. AVT-Algorithm - Implementation 78

Summary of the Entity Class Interface

Entity (const char* name) is used to construct an entity. The optional pa¬
rameter name determines the name of the entity printed in error and warning

messages, and debugging output. If the optional parameter is not set, then the
name of the entity is the string representation of the entity's unique ID.

int id () Returns the unique ID of the entity.

const char * name () Returns a pointer to the name of the entity.

virtual void evaluate () This method must be overridden by sub-classes
of entity. The evaluate () method of an entity is called whenever there is a

change in the values of the entity's input ports. The evaluate () method must

terminate, otherwise control is not passed back to the simulator's scheduler and
no other entity in the simulator can ever become active.

int now () Returns the current virtual time of the entity.

void wait (int time) The entity waits for time virtual time units. During this
time it is considered busy and is unable to react to changes in its inputs.

6.1.2 Communication Between Entities

The inputs and outputs to an entity are implemented as the parameterised template
classes InPort<Type> and OutPort<Type>, with the transmitted data type Type as

the parameter. This allows for type-checking of connections between inputs and out¬

puts by the C++ compiler. Values of Type are transmitted between different physical

processors, therefore pointers, or structures containing pointers, must not be used as

the communication data-type, as pointers valid on one machine may not be pointing to
valid data on a remote one.

Fan-in to inputs is not allowed, but outputs may have an arbitrary number of fan-out
connections to inputs of the same communication data type.

In AVTSIM, an LP (an entity) will not react until presented with an input which is
different from that previously perceived, i.e. an event is a value-change, and not the
arrival of an event-message. To reflect this we introduce a pair of communication

Chapter 6. AVT-Algorithm - Implementation 79

primitives modelled, called present and perceive, which is modelled on the pair send
and receive.

From within evaluate (), the input values for the current virtual time can be obtained

by calling the input's perceive () function. The user's implementation of evaluate
() will then perform its computation and propagate results on the entity's outputs using
present (...). Only one output-value may be presented on each output for every
evaluation. Sometimes it may be necessary to mark two identical values presented at
an output at consecutive times as separate events. For this purpose a variant of present
called trigger (...) is implemented.

Inputs and outputs are connected using the connect (...) primitive.

Summary of the InPort Class Interface

InPort <Type> (parent, initValue, mode, name) is the constructor

for an InPort where:

Type is the transmitted data type.

Entity * parent is a pointer to the parent-entity, i.e. the entity the input
belongs to.

const Type & initValue is an optional parameter giving the default
value perceived at the input at the beginning of the simulation, before any

event-message has been received. If the init-value is not set, AVTSIM sets

it to 0, or whatever 0 represents in the communication data type.

const InPortMode mode is an optional parameter with a value of either
one of DisallowEventsWhenBusy, AllowSingleEventWhileBusy, or

AllowMultipleEventsWhileBusy, describing how AVTSIM should han¬
dle value-changes occurring at this input during the time an entity is busy.

DisallowEventsWhenBusy Do not allow any value-change to occur

while the entity is busy. Print an error message and terminate the sim¬
ulation if this condition is violated.

AllowSingleEventWhileBusy Allow one value change to occur

while the entity is busy. This permits reaction to the value change af¬
ter the busy period, i.e. the value-change is not lost, but the reaction is

Chapter 6. AVT-Algorithm - Implementation 80

delayed. An error message is printed and the simulation is terminated,
if the above condition is violated.

AllowMultipleEventsWhileBusy Allow any number of value
changes during the time an entity is busy. This may lead to some

value-changes never to be perceived and to be lost.

The default is DisallowEventsWhenBusy.

const char * name is an optional parameter giving the name of the input
printed in error and warning messages, and debugging output. The default
is the string representation of the input's unique ID.

const Portld portld () Returns the unique ID of the input.

const char * name () Returns a pointer to the name of the input.

void connect (OutPort <Type> * outPort) Connects an input with an

output of the same transmitted data type Type. If the input is already connected
to another output, AVTSIM prints an error message and aborts the simulation.

bool triggered () Returns true, if the value perceived at the input has been

produced using trigger (...), instead of present (...).

Type & perceive () Returns the current value perceived at the input.

Type &. perceivePrev () Returns the value perceived at the input at the virtual
time of the previous call of evaluate ().

void preserve () Sometimes it may be necessary to delay reacting to one par¬

ticular input value while reacting to changes in other input values. To prevent the
simulator from assuming that an input value-change has been processed when
evaluated finishes, preserved can be used. It marks the value-change as

unperceived in order to force AVTSIM to call evaluate () again.

void consume () On occasion an entity may not want to produce any output dur¬
ing a call of evaluate (), e.g. if the entity is waiting for another value-change at

a different input before it can progress. In such cases consume () can be used, to
tell AVTSIM not to activate this entity again on the value-change just perceived.

Chapter 6. AVT-Algorithm - Implementation 81

Summary of the OutPort Class Interface

OutPort (Entity * parent, const char * name) Constructs an out¬

put. parent is a pointer to the parent-entity. The optional parameter name

determines the name of the entity printed in error and warning messages, and

debugging output. The default is the string representation of the output's unique
ID.

void connect (InPort <Type> * otherPort) Connects an output with
an input of the same transmitted data type Type. If the input is already connected
to another output, AVTSIM prints an error message and aborts the simulation.

void presentAfterDelay (value, delay) presents a value at the output

after a delay.

const Type & value is the value to be presented, and

const VirtualTime delay is the delay in virtual time units between the
virtual time evaluate () has been called and the time when the output-

value is available.

void presentAfterDelayValidFor (value, delay, valid)

provides the same functionality as presentAfterDelay (...). Additionally the

parameter

const VirtualTime valid guarantees that the value will not change for
valid VTUs after it has been presented.

void presentAtTime (value, time) presents a value at the output at a spec¬
ified virtual time.

const VirtualTime time is the virtual time when the value is presented.
Note that time must be greater than the virtual time for which evaluate ()
has been called with the exception of input- and output-entities.

void presentAtTimeValidFor (value, time, valid) is the same as

presentAtTime (...) except for the additional parameter

const VirtualTime valid) which denotes that the value is guaranteed not to

change for valid VTUs after it has been presented.

void trigger. ..(...) For each of the present. ..(...) functions above, a

Chapter 6. AVT-Algorithm - Implementation 82

trigger. function is available which performs the same operation ex¬

cept that every output generated is marked as a new event regardless of whether
it constitutes a value-change or not (cf. Section 6.1.2).

const Type & currentValue () returns the current output-value, i.e. it re¬
turns the value presented previously before any of the present...(...) or

trigger. ..(...) functions have been called; otherwise, the value which has

been just presented in a present...(...) or trigger...(...) function.

6.1.3 Models

A model is a collection of entities together with a few initialisation routines. Models
must be derived from the base class Model. The initialisation part of the model is
responsible for assigning entities to processors, for creating VT-areas and allocating
the VT-area managers (implemented by class VTArea) to processors, and for assigning
entities to VT-areas. The base class Model already provides all necessary initialisation
for LVT and GVT-mode simulation.

By default, entities are allocated to processors in the following manner: Let E be the
number of entities, P the number of processors, I the index of the current processor,
initialised to 1.

1. Allocate N = E DIV P many entities on processor I.

2. Increment / by 1; decrement E by N, P by 1.

3. If P > 0 then 1.; else END.

LVT-mode simulations do not require any special initialisation. By default, GVT-mode
simulations are initialised by creating a VT-area manager, allocating it on the first

processor, and assigning all entities to the VT-area except for input- and output-entities.

For AVT-mode simulations the programmer must redefine Model's class member func¬
tion init (), since automatic determination and creation of VT-areas is not supported
in the implementation.

The model class supports this by supplying the following member functions:

allocateEntityOnProcessor (entity, processorld) instructsAVT-
SIM to allocate entity on the processor with index processorld, where

Chapter 6. AVT-Algorithm - Implementation 83

Entity * entity is a pointer to the entity and

int processorld the zero-based index of the processor.

allocateVTAreaOnProcessor (vtArea, processorld) allocates the VT-

area manager vtArea on processor processorld, where

VTArea * vtArea is a pointer to an object of class VTArea and

int processorld is as for allocateVTAreaOnProcessor (...)

addEntityToVTArea (entity, vtArea) makes entity amember of vtArea,
where

Entity * entity is a pointer to an instance of Entity and

VTArea * vtArea is a pointer to a VT-area manager object.

6.1.4 Running the Simulation

AVTSIM provides a global object called simulator of class Simulator to provide
an interface to all the high level functions of AVTSIM, such as setting the simulation
mode, logging, and running a simulation.

Summary of the Interface of the Class Simulator

simulationMode (SimulationMode simulationMode) One of LVTMode,

AVTMode, GVTMode, setting the mode of the simulation.

distributedMode (bool on) If the parameter on is set to true, the simula¬
tion is distributed to several processors. If on is false AVTSIM simulates a

distributed simulation using its built in processor and network model.

nnmberOfProcessors (int numberOfProcessors) Sets the number of

processors to use for the simulation. Note that this number must not be greater

than the number of physically available processors, or else AVTSIM will print
an error message and abort the simulation.

verboseMode (bool on) Switches verbose output of the simulator on (on =

true) or off. Each entity will print the virtual time, the state of its in-ports,

Chapter 6. AVT-Algorithm - Implementation 84

the resulting state of the out-ports and values and triggers transmitted, and the

resulting final state for each step of the simulation.

run () Runs the simulator indefinitely. The simulator will terminate if, and only
if, the simulation model will terminate, i.e. virtual time reaches the maximum

virtual time.

run (Model* model) As in run (), however model is used instead of the de¬

fault model (the collection of all entities defined).

runForRealTime (int time) Runs the simulator for time jas and then ends
the simulation.

runForRealTime (int time. Model * model) As in runForRealTime

(time), but uses the model instead of the default.

6.2 Example Simulation

A small example, a latch built from two XOR gates, of a complete AVTSIM simulation
is presented next.

// Simple Simulation Example: Latch

#include "Simulator.h"

// Logic XOR Gate with two inputs - class definition
class XORGate : public Entity
{

public:
InPort <bool> inl;
InPort <bool> in2;
OutPort <bool> out;

// Constructor/destructor
XORGate () // Need to initialise

: inl (this), in2 (this), out (this) // in/out-ports with the
{ } // entity's address

~XORGate () { }

// Redefinition of evaluate ()
// Outputs result after 10 virtual time units
void evaluate ()

Chapter 6. AVT-Algorithm - Implementation 85

out.presentAfterDelay (inl .perceive () <> in.2 .perceive (), 10);

} ;

int main (int argc, char *argv[])
{
Input input1;
Input input2;
XORGate xorGatel

XORGate xorGate2

Output outputs-
Output output2;

("XORl'
("XOR21

/ Two input-entities (class
/ definition not shown)
/ Two XOR gates (instantiations of
/ class XORGate above)
/ Two output-entities (class
/ definition not shown)

inputl.out.connect (& xorGatel.ini);
input2.out.connect (& xorGate2.in2);
xorGatel.in2.connect (& xorGate2.out)
xorGate2.inl.connect (& xorGatel.out)
xorGatel.out.connect (& outputl.in);
xorGate2.out.connect (& output2.in);

// Connect inputs and
// outputs to build a

// latch

simulator.distributedMode (true);
simulator.numberOfProcessors (2);
simulator.runForRealTime (1000000) ;

// Run distributed
//on two processors
// for 1 second

Chapter 7

AVT-Algorithm - Evaluation

Methodology

Generic parameterised models were developed, alongside simulation models derived
from literature based on artificial workloads, to investigate the performance of the
AVT-algorithm. They were run under different combinations of the parameters to sub¬

stantially cover the parameter space. This approach was favoured over case studies as

it would exercise the AVT-algorithm in an unbiased manner.

The models were implemented and linked into a test application called AVTSIMTest,
which reads configuration files containing parameter sets, executes the AVT algorithm
for them, and writes the result sets to a file.

7.1 Parameters

The AVT-algorithm was exercised by simulation models over a range of parameters
that included:

Model The name of the model to use with the other parameters. The name must refer
to one of the models linked to AVTSIMTest.

Number of Processors The number of processors to be used to run the simulation.
This number may be less than the number of available processors of the dis¬
tributed machine.

86

Chapter 7. AVT-Algorithm - Evaluation Methodology 87

Execution Time The real-world time given in ps for which the simulation should be
run.

Simulation Mode selected from the set {LVT, AVT, GVT}.

Degree of Optimism The amount of virtual time an LP is permitted to speculate into
the future. Degree of Optimism G {1,...,°°}.

Event Processing Delay The amount of real time given in ps required to compute an

output event based on input events.

Output Unchanged Probability A value between 0 and 1 (0% and 100%) which
gives the probability of the output of an LP remaining unchanged given that
one of the inputs has changed. This is a metric which reflects the stability of an
LP's output.

Input Interval The amount of virtual time between the arrival of two input events to
the model.

Delay The virtual time between receiving an event in an LP and producing an output

event.

Parameters are read from configuration files that contain one parameter set per line.
The files containing all combinations of parameters over the ranges, were generated

using a tool called MakeConfiguration which was developed for this purpose.

7.2 Result Data

The following result data were collected by AVTSIM for each set of parameters tested
and written to the result file. The execution and the simulation time results were used

for the performance evaluation, whereas the other collected values served as sanity
checks.

Execution Time Time elapsed for running parameter set (in seconds).

Number of Events Computed Total number of output events generated based on in¬
put events, i.e. the number of times evaluate () was called.

Number of Rollbacks Total count of rollbacks performed due to unsuccessful specu¬
lation.

Chapter 7. AVT-Algorithm - Evaluation Methodology 88

Processor Idle Time Total processor idle time (in ps) of all utilised processors. A
breakdown of idle time for each processor is also available.

Number of Messages Sent Total number of messages (event- and AVT-messages)
sent locally to each processor and over the network.

Number of Remote Messages Sent Number of messages sent over the network.

Message Transmission Time Sum of the transmission times of all messages (in /xs).
Transmission time is measured from the instant the message is accepted by AVT-
SIM's network layer until it is received by counterpart on the remote processor.

Simulation Time Average virtual time of all LPs at the end of the simulation. A
breakdown of virtual time at the end of simulation for each LP is also available.

7.3 Models

The evaluation of the AVT-algorithm concentrated on models that contained both,

cyclic and acyclic areas, since these were the target application for the AVT-algorithm.
The simulation models for the evaluation are composed of parameterisable test nodes
(Section 7.4), which simulated workload and computing of output events based on

input events.

We chose one model, "Echo", from the literature ([SrinivasanR98]) because of its doc¬
umented behaviour of poor performance under optimistic synchronisation policies and
which was expected to exhibit poor performance under a conservative synchronisation
policy, due to the lack of lookahead. It consists of an input-LP, two LPs connected in a

cycle, and a third LP receiving input from both the former LPs (Figure 7.1).

Figure 7.1: Model Echo topology

Chapter 7. AVT-Algorithm - Evaluation Methodology 89

Model Test consists of an acyclic and a cyclic area, with the size of each area being
given by a parameter. The number of input connections to every LP (TestNode) in
each of the areas can be set by a parameter. The four parameters of Model Test are:

Number of Nodes in Cyclic Part: an integer Nc > 0.

Number of Connections per Node in Cyclic Part: an integer Cq G {1,..., Nq — 1 }•

Number of Nodes in Acyclic Part: an integer Na > 0.

Number of Connections per Node in Acyclic Part: an integer Ca G {1, • • •, Nc}.

The parameterised model Test consists of one input-node, Nc nodes in the cyclic part,

Na nodes in the acyclic area, and one output-node. The nodes are entered into an array,

starting with the input-node, followed by the nodes in the cyclic area, then the acyclic
area, and finally the output node. The array indices of the LPs are as follows:

Input node 0
Nodes in cyclic area 1...Nc
Nodes in acyclic area Nc + 1... Nc +Na

Output node Nc+Na + 1

For all LP/, i e {1...7Vc}, the LPs in the cyclic area, LP/'s output is connected to

LP'(i+j)modNc's input, Ij, for all j 6 {1. ..Cc}, i.e. if the LPs have only one input then
they are connected to form a circle; if the LPs have Nc — 1 inputs, then the graph rep¬

resenting the cyclic area is completely connected. The first node of the cyclic section
has an additional input which is connected to the input-node.

All the inputs Ij, j G {1. ..Ca — 1} of LPs, LP,-, (where i G {Nc + 1 ■ ..Nc+Na}) of the
acyclic area, are connected to the output of LP,_y. All inputs, 7q, of LPs, LP/, of the
acyclic area are connected to LP/_/vc's output, i.e. the LPs in the acyclic area possessing
N inputs are connected to the N — 1 previous LPs in the array. The remaining input is
used to connect the first, second,..., N'^ LP in the acyclic area to the first, second,...,
iVcth LP of the cyclic area, respectively (see examples in Figure 7.2).

The model Test is implemented by the class ModelTest, a subclass of Model. A new

instance ofModelTest is created by the constructor:

ModelTest (int numCyclicNodes,
int numCyclicConnections,
int numAcyclicNodes,
int numAcyclicConnections)

Chapter 7. AVT-Algorithm - Evaluation Methodology 90

An equivalent model toModelEcho is created by the call ModelTest (2, 1, 1, 2).
Some additional examples are given in Figure 7.2.

ModelTest (4,1,1, 4) ModelTest (4, 2, 2, 3) ModelTest (4, 3, 3, 2)

Figure 7.2: Model Test topology examples

7.4 Test Node

The TestNode is used to generate an artificial workload for testing AVTSIM. The
TestNode class is derived from AVTSIM's Entity class. It has a configurable number
of inputs and outputs of type integer and can be given an alphanumeric name. For
instance, the call TestNode (2, 1, "Example") creates a TestNode with two inputs,
one output, and with the name "Example". The simulation parameters can set the
time taken by TestNode to generate an event and the probability for each input value
that has changed to result in a change of output value. Thus TestNode is capable of

simulating the essential behaviour of any instance of Entity.

The behaviour of a TestNode is described by its re-definition of Entity's evaluate ()
function:

Chapter 7. AVT-Algorithm - Evaluation Methodology 91

TestNodes with no inputs (first parameter = 0) behave as input-nodes, i.e. they gen¬

erate a value based on the current virtual time, every N virtual time units, where N is

specified in the simulation parameter Input Interval.

TestNodes without outputs (second parameter = 0) can be used to print any events

they receive to standard output or to write them to a file. The default behaviour is to

consume the event and do nothing.

TestNodes with both inputs and outputs, simulate workload and generate a new event

whenever evaluate () is called from AVTSIM. The TestNode waits for Nps in an

empty loop, where N is set in the simulation parameter Event Processing Delay. For
each input value that is different from the previously received value of the same input,
the generated output value is different from the previous output value with the probabil¬
ity of P = 1 — <2, where Q is the simulation parameter Output Unchanged Probability,
which describes the stability of the output value with regard to a change in an input
value.

If any of the changes of input values result in a change of output value, then evaluate ()

generates a value M which is different from the previous value after the (virtual) delay
given in the simulation parameter Delay. The value of M is the current virtual time
plus the value of Delay. If none of the changes of input values result in a change of
output value, then evaluate () propagates the previous output value after the virtual
time given by Delay.

1 • Tmax = timely) + Event Processing Delay

2. FOR each input Ii DO
IF Ii.previousValuei) ^ T.valueQ AND

random(0,1) < 1 — Output Unchanged Probability
THEN newValue := true

3. IFnewValue

THEN O.presentAfterDelay(virtualTime() +Delay, Delay)
ELSE O.presentAfterDelay(0.valueQ, Delay)

4. WHILE timeQ < Tmax DO\ END

Chapter 7. AVT-Algorithm - Evaluation Methodology 92

7.5 Distributed Platform

The simulation algorithms were implemented on a distributed computation platform
- a 16-node Beowulf cluster of 1 GHz AMD Athlon processors running the Linux

operating system, with 40 GB hard disks, and connected by a lOOMBit/s local area
network. The message transmission time (60jUs) was determined, using the UNIX ping
command, as the time to send a 64-byte TCP/IP packet from one processor to another.
AVTSIM was compiled with the GNU gcc (version egcs-2.91.66) C++ compiler and
uses LAM-MPI (version LAM 6.5.2/MPI 2 C++) as the communication system.

Chapter 8

Results

Performance results are presented for the AVT-algorithm executing on a Beowulf clus¬
ter of PCs. Two simulation models are considered. Model Echo is the smallest model

containing cyclic and acyclic parts, and was used to explore one simulation parameter
at a time at a fine grain, against only a few samples for the others. The parameterised
model Test was chosen to investigate the influence of the parameters Delay and Output
Unchanged Probability on the performance of the AVT-algorithm.

8.1 Model Echo

The model Echo catches the essence of our requirement, being the smallest model with
cyclic and acyclic areas, and is shown in Figure 8.1 with the VT-area for execution in
AVT-mode. In the GVT-mode the VT-area encompasses all LPs except LPq and in
LVT-mode no VT-area is allocated.

The parameters which were chosen to change frequently were ones which were most

likely to influence the simulation performance. The Delay parameter is equivalent of
lookahead, and it is therefore important to investigate its influence on the performance
of the LVT time-keeping mechanism. The parameter Output Unchanged Probability
determines the success of optimistic synchronisation. And, the relationship between
Event Processing Delay and the message transfer time of the underlying architecture
is important to understand hardware-dependent performance.

In order to study the influence of these three parameters on the simulation performance,

93

Chapter 8. Results 94

a sweep of about 100 values was performed for each parameter and the results for the
three different simulation modes were compared. Initially, all combinations of the
following parameters were considered to be interesting:

Number of Processors 1, 3. When executing the simulation on three processors, LPq
and LP] (Figure 8.1) were allocated to processor 1, and LP2 and LP3 to processors
2 and 3 respectively.

Execution Time Is

Simulation Mode LVT, AVT, GVT

Event Processing Delay 60, 120, 180, ..., 6000/is. We chose the Event Processing

Delay to be a multiple of the time the hardware needed to transmit a message

(60/js). Choosing a value lower than the message transmission time would make
no sense as it would take less time to compute a value locally than to compute it

remotely and to receive the result.

Output Unchanged Probability 0, 0.01, 0.02, ..., 1. We test the influence of the

Output Unchanged Probability for 101 values on a fine-grained scale between 0
and 1.

Input Interval 100VTU (Virtual Time Unit). The event-inter-arrival time for external
events is kept constant, since the behaviour of the simulation is determined by
the relationship of the Delay to the Input Interval.

Example: the pattern of computation and event-messages is the same for the
combination of Delay = 50 and Input Interval = 100, compared to Delay = 500
and Input Interval = 1000. The difference in the latter case is that all time-stamps
are multiplied by a factor of 10, compared to the former.

Delay 1, 2, ..., 100VTU. For the Delay = 100, samples between 1 and the Input
Interval were taken. Values of Delay greater than the Input Interval were not
a useful choice, because an LP would be busy starting from time t for Delay
VTU and would be ready to process a new event at time t +Delay. A new event

arriving at time t + Input Interval would not be seen by the LP, which would
only recognise the next event at time t + 2 • Input Interval.

Enumerating the entire parameter space and running the simulation for every combina¬
tion of the parameters, would results in a total of 6060000 data points (2 • 3 • 100 • 101 •

100 = 6060000). The required execution time, assuming each parameter set were run

Chapter 8. Results 95

for one second, would be 6060000s ~ 70 days. This would be too time-consuming, so
the investigation focused on one parameter at a time, i.e. one parameter was changed

frequently, while only few (3) samples were taken of the others. Example: To inves¬
tigate the influence of the Delay on the simulator's performance, the simulation run

for model Echo was repeated with Delay e {1,2,..., 100VTU} for all combinations
of Mode € {LVT, AVT, GVT}, Number of Processors 6 {1, 3}, Output Unchanged
Probability G {0,0.5, 1}, and Event Processing Delay G {60, 600, 6000/ts}. This tech¬
nique resulted in 16254 data points (2 • 3 • (3 • 3 • 100 + 3- 3-101+3-3 -100) = 16254),
with a run-time of 16254s « 4.5h for Execution Time = Is, which is tractable.

Figure 8.1: Model Echo with VT-area for AVT-mode

The metric chosen for comparing the performance under the different parameter sets
is relative progress. This is defined as the progress in virtual time relative to the
execution-time, which is the virtual time at end of the simulation, divided by the pro¬

cessor time to perform the simulation, i.e. greater relative progress implies better
performance.

The results are presented as a matrix of graphs, with the columns and rows represent¬

ing the less frequently varying parameters. Represented along the two axes are the

frequently-changing parameter (x-axis) and the relative progress (y-axis).

8.1.1 Results for Parameter Delay

The influence of the Delay on performance was investigated under all combinations of
the parameters listed below. Each parameter set was run for one second of real-time,
and the progress in virtual time was measured and plotted as shown in Figure 8.2.

Number of Processors 1, 3

Chapter 8. Results 96

Execution Time Is

Simulation Mode LVT, AVT, GVT

Event Processing Delay 60, 600, 6000/xs

Output Unchanged Probability 0, 0.5, 1

Input Interval 100VTU

Delay 1, 2,..., 100VTU

These graphs show the effects of the parameter Delay on the AVT-Algorithm's perfor¬
mance for different Output Unchanged Probabilities (left to right) and Event Process¬
ing Delays (top to bottom).

For Output Unchanged Probability = 0 (left-hand column), the performance of all
the modes increases linearly with the Delay. The LVT-mode, which performs neither
AVT/GVT computation, nor sends AVT-messages, outperforms the AVT- and GVT-
modes because optimism always fails due to the instability of the LP's output.

For Output Unchanged Probability = 0.5 (middle column), the AVT- and GVT-mode

performance is less influenced by the Delay than in the previous case. Successful op¬
timism in conjunction with progress based on AVT/GVT leads to good performance
even for low Delay. LVT-mode performance is reduced in comparison to the previ¬
ous column. This is because good predictability of output leads to worse lookahead:
if an LP receives two consecutive event-messages containing the same value, it does
not compute new output based on the second event, because this does not constitute a

change in value. Since no new event is computed, the Delay does not apply and, since
the Delay is a non-fixed parameter given to the simulator in every event-computation,
the LP only has the default minimum lookahead of 1. Correspondingly, a very large
number of null-messages must be sent and progress is slow. Only for very high val¬
ues of Delay (> 90VTU) does the LVT-mode outperforms AVT- and GVT-modes, as

every new event received from the input-LP {LPq in Figure 8.1) results in an event-

computation in LP\ that infuses lookahead into LP\'s computation which is equal to
the Delay .

These effects as described previously, become even more pronounced for Output Un¬
changed Probability = 1 (right-hand column). AVT/GVT performance is almost inde¬
pendent of the Delay as optimism always succeeds, whereas LVT-mode's is very poor,

Chapter 8. Results 97

X-Axis: Delay [VTU]

LVT-Mode

AVT-Mode

GVT-Mode —

Number of Processors 1 3

Figure 8.2: Relative Progress on 1 and 3 processors for Delay = 1,2,..., 100VTU;
Event Processing Delay (EPD) = 60, 600, 6000jus; and Output Unchanged Probability

(OUP) = 0, 0.5, 1. (Scales vary, but the distances between the grid lines along the

y-axis represent the same interval in all the graphs.)

due to the lack of lookahead, except for high values of Delay when good lookahead is
available at LP2.

The parameter Event Processing Delay (top to bottom row) has no specific effect on
any of the simulation modes. As its value was increased, one sees an overall reduc¬
tion in the performance for all the modes due mainly to the higher computational load,

Chapter 8. Results 98

and the difference between LVT and AVT- and GVT-modes is reduced, since a higher

percentage of time is spent in event-computation, and thereby overshadowing the al¬
gorithmic overhead.

The difference in the performance of the AVT- and GVT-modes is not great, due to
the small difference in size between the VT-areas in the two modes. The LVT-mode

performs best for high values of Delay and/or low Output Unchanged Probability, i.e.
when good lookahead is available, and/or optimism is prone to fail.

In general the distributed execution of the algorithm on three processors yields better
performance than the corresponding execution in the same mode on a single processor.

8.1.2 Results for Parameter Event Processing Delay

The influence of the Event Processing Delay on the performance was measured under
all combinations of the following parameters:

Number of Processors 1, 3

Execution Time Is

Simulation Mode LVT, AVT, GVT

Event Processing Delay 60, 120, 180,..., 6000/ts

Output Unchanged Probability 0, 0.5, 1

Input Interval 100VTU

Delay 1, 10, 100VTU

Figure 8.3 illustrates the impact of changes in the Event Processing Delay on the
progress of virtual time. As expected, the progress decreases as Event Processing

Delay increases. In particular there is no visible differentiating effect of the Event

Processing Delay on any of the simulation modes, which reduces its importance for
comparisons between them.

The performance of the LVT-mode in the top right-hand quadrant (Output Unchanged
Probability = 0.5, 1; Delay = 1, 10) is almost invariant to changes in the Event Pro¬

cessing Delay, because of very low lookahead due to low Delay and/or high Output

Unchanged Probability. Most of the progress in these four graphs depend on null-

Chapter 8. Results 99

0 0.5 1 OUP

LVT-Mode

AVT-Mode

GVT-Mode

Number of Processors 1 3

Figure 8.3: Relative Progress on 1 and 3 Processors for Event Processing Delay =

60, 120, 180, ..., 6000/ts; Delay =1,10, 100VTU; and Output Unchanged Probability

(OUP) = 0, 0.5, 1. (Scales vary, but the distances between the grid lines along the

y-axis represent the same interval in all the graphs.)

messages, i.e. very few event-computations are performed and hence Event Processing
Delay has little influence on performance.

Chapter 8. Results 100

8.1.3 Results for Parameter Output Unchanged Probability

The influence of the Output UnchangedProbability on performance was next measured
under all combinations of the following parameters.

Number of Processors 1, 3

Execution Time Is

Simulation Mode LVT, AVT, GVT

Event Processing Delay 60, 600, 6000ps

Output Unchanged Probability 0, 0.01, 0.02,..., 1

Input Interval 100VTU

Delay 1, 10, 100VTU

Figure 8.4 shows that with an increase in the Output Unchanged Probability the per¬

formance of the AVT- and GVT-modes increases, except for Delay = 100 (bottom row)
when the lookahead matched the event inter-arrival time exactly. For the Delay = 1

(top row), progress in LVT-mode is independent of the Output Unchanged Probabil¬
ity since the lookahead is equal to 1, regardless of whether progress is made through
event-computations (Output Unchanged Probability = 0) or null-messages (Output Un¬
changed Probability = 1). For Delay = 10 (middle row), for small values of Output Un¬
changed Probability, performance increased slightly compared to the row above, due to
the slightly better lookahead for event-computations. Both the GVT- and AVT-modes
outperform the LVT-mode for most of the Output Unchanged Probability parameter

range.

The performance of LVT-mode for 3 processors and Delay =100 (bottom row) de¬
creases as the Output Unchanged Probability increases, as the lookahead infused by
event-computations in LP\ (Figure 8.1) is reduced due to increasing Output Unchanged
Probability. On a single processor, LVT performance increases with Output Un¬

changed Probability as event-computation is replaced by null-message processing, ex¬
cept for the case when Event Processing Delay = 60/is, in which initially the effect of
reduced lookahead dominates.

AVT-mode performance decreases for low values of Output Unchanged Probability
(< 0.1) and remains level for greater values of Output Unchanged Probability. GVT-

Chapter 8. Results 101

60 600 6000 EPD [us]

LVT-Mode

AVT-Mode

GVT-Mode

Number of Processors 1 3

Figure 8.4: Relative Progress on 1 and 3 processors for Output Unchanged Probability
= 0, 0.01, 0.02 1; Delay =1,10, 100VTU; and Event Processing Delay (EPD) =

60, 600, 6000/is (Scales vary, but the distances between the grid lines along the y-axis

represent the same interval in all the graphs.)

mode performance drops offmore than AVT-mode performance but recovers for larger
values of Output Unchanged Probability and almost matches AVT performance.

For very low Output Unchanged Probability and good lookahead, AVT-mode pro¬

gresses based on LVT alone. AVT-updates are sent to the AVT-keeper, but either the
LVT in the LPs is greater than any AVT computed and hence an AVT-update is not sent

Chapter 8. Results 102

to any LPs, or any AVT-update is received at the LPs after they have already updated
their LVT beyond the AVT, and so the update has no effect. However, once an AVT-

message arrives at an LP and actually causes an AVT-update, progress can only be
made based on AVT, since there is no more committed input and hence no lookahead
in the cycle. This effect slows down progress for low Output Unchanged Probability,
but diminishes for greater Output Unchanged Probability.

With increases in Event Processing Delay (left to right column), no specific effect can
be observed, but simulation progress is reduced due to the increased computational
load.

8.1.4 Summary of Results for Model Echo

No significant differences between the performance of the AVT- and GVT-modes can

be observed in model "Echo", because the number of LPs in the VT-area in GVT-

mode is not much larger than the those in the VT-area in AVT-mode. Differences were

observed only for large Output Unchanged Probability and large Delay. In the next
section we will study larger models containing larger areas of different time-keeping
mechanisms.

The effect of the Event Processing Delay on the various Simulation Modes was not

significant, and this parameter was not studied further in a fine-grained fashion.

The parameters Output Unchanged Probability and Delay have significant impact on
the performance of LVT-mode performance due to their influence on lookahead: greater
Delay improves lookahead, while higher Output Unchanged Probability reduces it.
The Output Unchanged Probability has important consequences for the performance
of AVT- and GVT-modes as good predictability of an LP's output is a requirement for
the success of optimism, which enables the AVT- and GVT-modes to perform well in
the absence of lookahead. In the next section we concentrate on understanding the
effect of parameters such as Delay and Output Unchanged Probability on the perfor¬
mance of the different time-keeping mechanisms.

8.2 Model Test

Test is a class of simulation models designed to exercise the AVT-algorithm, which

Chapter 8. Results 103

contain amixture of cyclic and acyclic areas. The models were chosen to contain cyclic
and acyclic areas of equal sizes, which situates them in the middle of the continuum
between fully cyclic and fully acyclic simulation models. They are characterised by the
number of LPs in each of the areas and the density of their communication topology,
i.e. the number of connections per LP.

The smallest model in Test consists of two LPs in each area, and increasing to four
in the other models. The communication density ranges from one, to two, and four
connections per LP.

The exploration could be continued in this fashion by doubling the size of model Test
and, for each new model instance, by also investigating varying communication densi¬
ties, starting at 1 and doubling up to the maximum density.

For practical reasons, we did not venture beyond a model size of eight LPs give the
number of available processors (12) available in the distributed platform.

The nomenclature of the models in Test is shown in Table 8.1 below.

Cyclic Part Acyclic Part Total Name

LPs Connections LPs Connections LPs

per LP per LP
2 1 2 2 4 Test2,\,2,2
4 1 4 1 8 7^4,1,4,1
4 2 4 2 8 Test,4,:2,4,:2
4 3 4 4 8 7*5*4,3,4,4

Input and the output LPs have been excluded

Table 8.1: Model Test configurations

The LPs are characterised in terms of the time taken to process an event in the LP
{Delay), and the stability of an LP's output {Output Unchanged Probability, i.e. the
likelihood of the input-event changing the value of the output event.

In order to reduce the number of data points to a manageable level, it was decided to
take 10 samples each for Delay between 0 and 100VTU, and the Output Unchanged
Probability between 0.0 and 1.0, which resulted in a grid of size 10 x 10 on the com¬

bined parameter range.

Chapter 8. Results 104

All instances of the models in Test shown in Table 8.1 were run under all combinations

of the parameters described below:

Number of Processors 1, 2, 4, 8. Each instance of the models in Test was run using
all processors, up to the useful limit for distribution, i.e. the total number of
LP in the model as given in Table 8.1. The LPs were evenly distributed to the

processors, as described in Section 6.1.3.

Execution Time 10s

Simulation Mode LVT, AVT, GVT. In AVT-mode, the cyclic sub-model connected to

the input-LP (marked IN) in Figures 8.5, 8.9, 8.14, and 8.19, is allocated as the
VT-area, whereas in GVT-mode all LPs except the input- and the output-LP use

the GVT time-keeping mechanism.

Event Processing Delay 100, 1000, 10000/xs. The lowest value of Event Processing

Delay was chosen to be of the same order of magnitude as the message delay of
the distributed computer (60/rs), and the other values were one and two orders of
magnitude greater, respectively.

Output Unchanged Probability Ten values between 0 and 1: 0, 0.11, 0.22, 0.33,
0.44, 0.56, 0.67,0.78,0.89, 1.

Input Interval 100 virtual time units (VTU)

Delay Ten integer values between 1 and 100VTU: 1, 12, 23, 34, 45, 56, 67, 78, 89,
100VTU.

The relative progress, i.e. virtual time divided by execution time, has been measured
for each combination of the parameters resulting in 2700 data points (3 • 3 • 3 • 10 • 10 =
2700) being generated in 27000s = 7.5h for model Test2,\,2,2> and 3600 data points
(4 • 3 • 3 • 10 • 10 = 3600) being generated in 36000s = lOh for each model Test^^.

The results are presented in a graph with tuples (Output Unchanged Probability,Delay)

along the x-axis and the relative progress along the y-axis. This results in a graph

consisting of an array of plot-lines. Each individual plot-line shows results for all
values of Delay for one choice of Output Unchanged Probability. In each graph the
results for the three different Simulation Modes have been compared.

While the scales of the graphs may vary, the distances between grid-lines represent
the same numerical interval. The interval between dotted grid-lines is one-tenth of the

Chapter 8. Results 105

interval between solid grid-lines.

8.2.1 Model Test2,\,2.2

Figures 8.6 - 8.8 compare the performance of LVT-, AVT-, and GVT-modes for Event
Processing Delay € {100,1000,10000/ts}. Each figure displays the results obtained
by running on 1,2, and 4 processors.

Figure 8.5: Model Test2,\,2,2

The performance of the LVT-mode increases with the Delay. However, this increase
is influenced by the Output Unchanged Probability, the higher the value, the more

does the performance curve sag, i.e. it has a low incline for low Delay and rises more
steeply with increasing Delay. This is due to the lookahead being dependent on De¬

lay and Output Unchanged Probability: high Delay implies large lookahead and high
Output Unchanged Probability reduces lookahead due to event-computation being re¬

placed by processing of null-message which delivers no lookahead. LVT-mode's good
performance for high Delay and high Output Unchanged Probability is caused by the
input-LP's events sent every 100VTU, which infuses (through event-computation with
Delay = 100VTU) enough lookahead to span the entire cycle.

AVT- and GVT-mode performance is similar to LVT-mode for low Output Unchanged
Probability, i.e. it is dependent on lookahead. This is because the output of the LPs
is very unpredictable, i.e. optimism fails, and the AVT-algorithm progresses based on

LVT alone, since the AVT computed by the AVT-keeper does not exceed the LVT at

each LP, and is therefore never propagated to any of them. The overhead of both send¬

ing AVT-messages to the AVT-keeper, and computing the AVT, reduces performance
compared to LVT-mode.

As the Output Unchanged Probability increases, optimism succeeds more often and

Chapter 8. Results 106

0" CO CO O ^ CO CD O ^ CO CO O ^ CO CO O
o"o"^T- T-"-r-~TC\J CvTOJ ^co co"co"~~

1- 1^ o
^"CO CD O

^NOi-^tNOr-'tSOT-Tj-NOT-'tNO
^ CO CO O iCCOCDI O QQ CO CO O qCO CO O 0-OOUD °

rr\ ls^ iv T— n. rr\ rr\ * nr\ rr\ rri * i—i r~» ^ T_
w -^t^r^-^.ir>cDcoTT.cor--r^T^.r--cocoTT.coc»a>^.o

cm cm cm co co co rt m" tfr lo lo cd co co is- - - —
c\j co to co

h- co
ro¬

coco of ■

co

o ^

o o
i- o

■ ^- o ^ o. , — . ■ o
q co co o ^"co co o ^co co o

0~ CD ^ T- t-~ T-"^ cm cm~ cm" -

o 1- t- 1- cm cm cm
t- cm

5NO
co - - -

coco ~^-^}-Tt-^Lococo -coh-r^ -.r^coco -

co co co lo to co co co h- h- co
co -3- lo

i -» *

f co-cocoo^
TfNOT-^NOT-tNOr-^NOr-^NOi-^NO
co co o ro-co co o N-co 0o qo co co o Qj-co cqo 0-co co o

rr\ rr\ 1 rr\ k. n. ' K m r-r\ 1 rft rTN rr* ' ^ i

co

.(0 0)0)^.000
00 CO (J) i- O O

CO 1-1-

. . _ . . _ . . _ . . _ . . _ . . _ . . _ -M- o
o"c0 co o ^co co o eg co co o cr) co co o ^rco co o ^-co co o ^co co o qq-co co o ^"co co o O~co co o
o"o"^!- 1-"t-'^cm cm"cvt^co co co""1"^ MrMrt~-lo co~cO "'"-cokCO co^-co a>o> T~-o o"o T".

o 1-1-1- cm cm cm co co co ^ uo lo co co co h- h- h- co co 00 o) i- o o o
i-CMco^tiocor^co i- t- o

X-Axis: Output Unchanged Probability, Delay [%, VTU]

LVT-Mode AVT-Mode GVT-Mode

Figure 8.6: Model Test2,\,2,2'< Relative Progress versus Output Unchanged Probability
and Delay on 1, 2, 4 Processors with Event Processing Delay = 100/xs

AVT can improve on the LVT of each LP. This results in the AVT-mode performance
that is increasingly more stable regarding Delay, i.e. more independent of lookahead,
for increasing values of Output Unchanged Probability, which is reflected by almost
horizontal plot lines for high Output Unchanged Probability.

When comparing the AVT- and the GVT-mode, the former outperforms the latter as it
has lower AVT propagation and computation cost.

Chapter 8. Results 107

LVT-Mode AVT-Mode GVT-Mode

Figure 8.7: Model Test2,\,2,2 Relative Progress versus Output Unchanged Probability
and Delay on 1, 2, 4 Processors with Event Processing Delay = 1000/rs

Apart from an overall reduction in simulation progress, the Event Processing Delay
influences the difference in the maximum performance of LVT (Delay = 100) com¬
pared to AVT. This is smaller for higher Event Processing Delay because algorithmic
overheads of the GVT time-keeping are dwarfed by the computation requirements for
event-processing (Figure 8.8).

Overall, AVT-mode performs best in around two-thirds (66%) of parameter sets on 2

Chapter 8. Results 108

10

8

6

4

2 +

i 11 111 i ii r in i i r i itt rrrn i i i i 111 i 11 i r rrn ri 1111 11

o-C0 CD O T
O" o" t

O

'tNOi-^NOT-TtNOT-^NOrTtNOT-^NO
OCOO ^ CO CO^ O (vj CO CD O CO CD_O CO CO_ O ^ C0_ CO_ O

-^■NOr-Tj-NOr-^NO
* qq vj v»-» v-/ vj S4-^ w (q iv vy u ^ v; vu w qq" CO CD O qj" CO CD O q" CO CD O

1 CVJ CVJ C\J ^ CO CO" CO" *"> M" Tf "<t" "r~- ID CO" CO" ■*"- CD KK "r~- h- CO oo" "r~- CO O) ctT^ o o" o"
C\J CVJ CNJ

CVJ
CO CO CO

CO
M- M-

M-
LQ Lf) CO

LO
cd co r^

CD
Is- CO

r^.
CO CO O) •

CO

rTfNOT— vl"NO'
CO CD O pT CO CD O ,

r- T-" r-"^ CVJ C\f C\j" '
T- -T- T- CVJ CVJ CVJ

T- CVJ
CO CO CO

CO

)i-^NOI-^NOT-^NOI-"^NOI-T)-NOI-^NO
)co"CO(DO^rCO(DO(D"COCDON"COCOOCQCOCD005COCDO"

CO CO" CO" 'r~-^ Tfr" M""^ ID CO" CD" T_- CO Is-" h-T^ Is- CO" CO"^ CO CT)" O)" T".
ID in CD

ID

1-^J-NO
W -«

. - . - -N CO 00 -CO 0)0)^.0 0 0 .

CO CD h- h- Is- CO CO CO CJ) T- o o o
CO Is- CO

^rr^.o-r-^rr^OT-^rr-o-T-^j-r^oT-^-r^o^-'srr^OT-^tr^OT-'^-f^.OT-^-r^o
CO CO O CO O CD O ^jTCO CD O JQ CO CD O CD O qqD CO O QjCO CD O Q CO CO o
T-" T-"^ CVJ CVJ" cvj"^ CO co" CO"^ M" M"" M*"^ LD CD" co"^ CD h-" Is-" 'r~- Is- CO" CO T~ CO CD ctT^ o o" o" "r"-
T- 1- i- CVJ CM CVJ CO CO CO M- "3" Tf ID LD CD CO CO h- 1^ h- CO CO CO CD r- O O O
T-cvjco^LDcor^oo t- T- o

X-Axis: Output Unchanged Probability, Delay [%, VTU]

LVT-Mode AVT-Mode GVT-Mode

Figure 8.8: Model Test2,\,2,2 Relative Progress versus Output Unchanged Probability
and Delay on 1, 2, 4 Processors with Event Processing Delay = lOOOO/rs

processors and 71% on 4 processors.

Chapter 8. Results 109

8.2.2 Model Testrt,\^,\

The three modes were compared as before for model Test414^, a model with 1 connec¬
tion per LP, for Event Processing Delay of 100/rs (Figure 8.10), 1000/ts (Figure 8.11),
and lOOOOjLis (Figure 8.12). Each figure displays the results obtained by running the
simulation on 1, 2, 4, and 8 processors. As before displayed along the x-axis are

tuples: (Output Unchanged Probability, Delay), with the relative progress along the
other axis.

Figure 8.9: Model 7^4444 topology

The results for model Test^\^\ are similar to the performance results for model
Test2,\,2,2- the performance of the LVT-mode increases with the Delay. This, however,
is influenced by the Output Unchanged Probability: the higher the value, the more per¬

formance is reduced for low Delay. For low Output Unchanged Probability, AYT- and
GVT-mode performance depends on lookahead, and as the Output Unchanged Prob¬
ability increases, AVT-mode performance becomes more stable regarding Delay. As
in Section 8.2.1, the Event Processing Delay's, effect is a reduction of the simulation

progress.

Overall, the AVT-mode performs best in 63% of parameter sets on 2, 65% on 4, and
74% on 8 processors.

Figure 8.13 summarises the speedup of LVT-, AVT-, and GVT-mode for 2, 4, and 8

Chapter 8. Results 110

200
180

160
140

120

100
80

60

t NOr-tNO'
CO CD o o CO c

3 N o 1- 5 M
CO CD O O CO1""OCOCDOOCOCDOOCDCDOOCOCOOOCOCOOOCOCDOOC^CDOOCOCOOOCOCD<

o o o t-_ o o. t-o o. o r-_ o o_ o o o o i- o_ o_ p. o o o i- o o o T- o o o ■
o" o" o o" t-" t-" t-" t-" cm" cm" cm" cm" co" co" co" co" ^t" xf 3-" co" cd" co" co" K rC iC |C co" co co" co" cd" cd" cd" cj>" o" o" o" o~r-T-r-T-WWCMWCOCOCOCO^^^^lOiniOlOCOCOCOCONSNSCOCOCOCOOOOO

200

180

160

IrtNOrTfNOrTfNOr^NOr-^NOrtNOT-tNQ
lOCOCOOOCOCOOOCOCOOOCOCOOOCOCOOOCOCOOOCOCOO
^ CO CO 0_ T- CD CD T-_ CO CO CO T-_ CO CD © T- o O.P T-_ © © O. T- o_ o_ 0_ T-_
\ CO CO CO CO TT Tf" Tf Tf co" cd" cd" cd" Is-" Is-" Is-" Is-" co" co" co" co" CT>" CT>" CT>" O)" o" o" o" o"
ICOCOCOCO^^^^IOIOIOIOCDCOCOCDNNNNOOCOCOCOOOOO

200

■

3T-^r^OT-^;r-.OT-Ttrs-OT-Tjrs-OT-'trs-OT-Ttr--OT-^:is-o->-^j-rs-OT-Ttr-.o
50COCDOOCOCDOOCOCDOOCOCDOOCOCDOOCOCDOOCOCDOOCOCDOOCOCDO

P p p O. O O, T-_ <D O O T-_ O O 0_ T- <p O O, T- O O CO T- O CO O T- CD 0_ 0_ T~ CD CO_ CO_ T- CO O, O T-_
o" o" d o" r-" T-" t-" -r-' cm" <m" cm" cm" co" co" co" co" "*t" Tf" rf" cd" cd" cd" cd" Is-" Is-" h-" Is- co" co" cd" co" o>" cd" cd" <d" o" o" o" o"

T-T-T-T-CMCMWCMCOCOCOCO^M-'T^LnmmmCDCDCDCDNNNNCOCOCOCOOOOO

t- r-. o .

O CO CD O O
o o o

200

180
160

140
120

100

^NO'-^NOr^NO'-^NOrTtNOT-^NOr-'tNOT-'tSOrtNOT-'tNO
COCDOOCOCDOOCOCDOOCOCDOOCOCDOOCOCDOOCOCDOOCOCDOOCOCDOOCOCOO
CO Or OOOr O CO T- © 0_ T-_ CO CD r- cp CD CD T-_ O Cp 0_ r- cp cp cp r-_ o_ p. CD_ T-_ O O v-_
o" O o" T-" T-" T-" ■»-" cm" cm" cm" cm" co" co" co" co" Tf cd" cd" cd" cd" r-." Is-" Is-" Is-" co" co" co" co" cd" cd" cd" cd" o" o" o" o"

rrT-rCMCMCMCMCOCOCOCO^^TfM-lfiiniOincDCOQCDNNNNCOCOCOcOOOOO

X-Axis: Output Unchanged Probability, Delay [%, VTU]

LVT-Mode AVT-Mode GVT-Mode

Figure 8.10: Model Test^, 1,4,1 Relative Progress versus Output Unchanged Probability
and Delay on 1, 2, 4, 8 Processors with Event Processing Delay = 100/xs

Chapter 8. Results 111

100

80

60

40

So 8 o $!
o_ r-:o o <
t-" t-" c\T cm" i
1- 1- CM CM <

o C$
o o

CO o o
O T- o
of Of 0~
CO CO o

TT N O
CO CO o
O O T-

o" o" o"
o o o

o

CL

100

80

60

40

20

^ ^ --1 -*
OOr-T--»-r-CNC\JC\JC\lCOCOCOCOTi-TtTfTl-cOCOCOCONr^Nh-OOOOCOCO

t-i-i-i-CMWCgC\JCOCOCOCO^'«t^^ir)lOlOU)COCOCOCONNNN

-. CO <_
_ © O y-m

O) O) O) O) i
00 00 CO CO I

100

3: ^ o f- 3-
_ .. _ _ _ C0 CO O O CO CO
O O P T-^ o P. p T-_ o_ o o
o" CO O 0~ T-" T-" T-" T-" of CM CM CM CO C0~ CO CO co" co" co co" K r-" h-" h-" oo" co" CO" 00" of of of of o" o" o" o"

i-r-T-T-WC\lC\JCMCOCOCOC04^^^mmi/)l/)CDCOCOCONNNNCOCOCOCOOOOO

h- O T- O
,WW«WW«^WW^^COCOOOCOCOO

O P O T- O O O T- O O. CO T- O O p. T- O C>_ 0_ ^r- p O O T- O, O O T-_
- cm" c\T cm" cm" co" co" co" co" -t" Tf tt" co" co" co" co" Is-" h-" r-" Is-" oo" oo" co" co" of of of of o" o" o" o"
-CMCMCMCMconcoco^tr^^inmmiococococoNNNNoocooocooooo

i-^r-.OT-Ttr^oi-^rr^OT-^r^oT-^r^OT-Tj-rN.oi-'tNOT-Ttr-.o
ococooococooococooococooococooococooococooococoo
O 0_ P t-_ o O. O t- O O O T- o O O T- o O O T- o O O -T- o OOt- o o o
o" o" O o" T-" T-"

X-Axis: Output Unchanged Probability, Delay [%, VTU]

LVT-Mode AVT-Mode GVT-Mode

Figure 8.11: Model Test^ 1,4,1 Relative Progress versus Output Unchanged Probability
and Delay on 1, 2, 4, 8 Processors with Event Processing Delay = 1000/xs

Chapter 8. Results 112

t f m ii

r tNOr Tf so
ococooococoo
O O o o_ o_ 0_ T-__
O O O O T-" T-" T-" T-"

(DOoSUo
OOOT-OOOT-

C\jCNJC\lCvJQQCY)C0'^'^'^'«ttDCDCD(DNNNNC0C00DC0a)0)0)01OOOO(SjOJCMCsJCOCOCOCO^-^t^^LOmiOlOCDCOCD — - - - ■(ONNNNCOCOCDCOOOOO

T—

8 S
O 8

O
O O

o_
CO
o_ 0

0
0 8

O" O" O O" ^z ^z ^z CM
CM

^NO^^NO^^NOT-^NOT-tNOr-^NOi-tNOT-^l
COCOOOCOCOOOCOCOOOCOCOOOCOCOOOCOCOOOCOCOOOCOCO'
OOf-OOOi-OOOi-OOOi-OOOi-OOOT-OOOi-OOO

^NOrtNO'-tNOrtNOr-tNOt-tNOi-JNOT-TtNOr^NO
COCOOOCOCOOOCOCOOOCOCOOOCOCOOOCOCOOOCOCOOOCOCPOOCOCOO
OOi-OOO-^OOOI-OOO-^OOO-^-OOOT-OOO-^OOOT-OOOT-

OOOOT-T-i-T-OJ(\J^CJCOgnC5^^^^CD(DCDCDNNNNCOCOCOCX)OTO)0)010000T-T-i-T-WOJ(\JCMCOCOCOCO^^^^lOiOlOm(D(D(D(ONNNNCOCOCOCOOOOO

i-^r^OT-Tti^oT-Ti-i^ot-"^r-.OT-Trr-OT-Ti-r^OT-'*rr^o
OCOCOOOCO<OOOCOCOOOCOCOOOCOCOOOCOCOOOCO<PO<
OOOT-OOOT-OOOT-OOOT-OOOT-OOOT-OOO

8888

X-Axis: Output Unchanged Probability, Delay [%, VTU]

LVT-Mode AVT-Mode GVT-Mode

Figure 8.12: Model Test^ 1,4,1 Relative Progress versus Output Unchanged Probability
and Delay on 1, 2, 4, 8 Processors with Event Processing Delay = 10000/xs

Chapter 8. Results 113

i i

T-Ttf^.oT-Ttr^o^^tr^OT-Ttr^oT-^-h-o^-Tfr^o^-^-r^OT-Tth~o-r-^tr^OT-Ttr^
OCOCOOOCOCDOOCOCOOOCOCDOQCOCOOOCOCDOOCOCOOOCOCDOOCOCOOOCOCD
o o o t- O o o cq o cq r- cq cq cq r-_ o o_ t- cq cq cq ^ cq cq cq t- cq cq cq t- cq cq o_ t-_ o_ cq o
o" o" O o" T-" C\J~ CsT C\f C\f CO CO" CO" CO "*t "*t Tf CD CD CD CD~ h-~ h-" |C 00 Co" CO CO CT>" O)" ctT O) o" o" q" oT-T-^^WWC\JWCOCOC3w4^^^iOinmiOCD(D(D(ONNSSCOCOODCOOOOO

T- 't N O r- Tt N
O CO CD O O CO CD _

o o o i- o o o_ ▼-
o" o" o o" t-" t-" i " eg eg' eg eg" co" co" co" co"

egegegegcocococo

r^OT-^tr^OT-Ttf^-oi-^tr^OT-Ttr^
CDOOCOCDOOCOCDOOCOCDOOCOCD
Ot-OOOT-OOOT-OOOT-OOO

'<tTt'5t'<tcococDCDr--h-r^h-cococococr)cn>CT>cbQQOO^^^t^lOiOmiO(D(D(D(DNNNNOOa)COCOOOOO

i-Tj-r^oi-^r^OT-^r^OT-Tti^oi-Tfh-OT-Ttr^oT-Ti-f^
_ _ _ .. _ _ _ .. _ _ OCOCDOOCOCDOOCOCDOOCOCDOOCOCDOOCOCDOOCOCD

0_ CD O T-_ O cq CD T-_ O O O ■»- O CD O •»- O O O T- o o O I- O O O -r- O C>_ O T-_ o CD CD T- o o o
o" o" o o" i-~ t-" r-" t-" eg" eg" eg" eg" co" co" co" co" cd" cd" cd" cd" h-" h-" isT |C oo" co" co" co" ct>" ct>" cd" a>" o" o" o" o

i-^-i-i-CMCMMCMCOCOCOCO^^'t^iDlOlOmCOCDCDCONNNNCOCOCOCOOOOO

X-Axis: Output Unchanged Probability, Delay [%, VTU]

LVT-Mode

AVT-Mode

GVT-Mode — ~

Number of Processors 12 4 8

Figure 8.13: Model Test^^^y. speedup relative to the best case on uniprocessor for 2,
4, and 8 processors and Event Processing Delay = 100, 1000, 10000/us

Chapter 8. Results 114

processors compared to the best performance on a single processor. The results for all
the processors are displayed in a single graph, with colour-coded plot-lines. LVT-mode
is represented by shades of blue, ranging from dark blue for a single processor to cyan

for eight processors. Similarly, the AVT- and GVT-modes are represented by shades
of red and green colours, respectively.

The graphs show that AVT-mode results in the best speedup except for low Output Un¬
changed Probability or very high Delay. The reasons lie in the differences in perfor¬
mance between the LVT- and AVT- and GVT-modes described previously. Speedup de¬
creases notably with an increase in Output Unchanged Probability especially for Event
Processing Delay = 1000/xs and Event Processing Delay = 10000/xs. This is caused by
the high stability of the LP's output which results in very few event-computations and
reduces the amount of parallelism that can be exploited. Any remaining speedup is
an effect of distributing the computations performed by the synchronisation and time¬

keeping algorithm.

In the next two sections (8.2.3, 8.2.4) we compare the performance formodel Test^1,4,1
under all the above parameter sets with that of its "sister" models which have greater

communication densities, i.e. instead of 1, they have 2 (model 7^4,2,4,2), and 4 (model
TestisAA) connections per LP.

8.2.3 Model Test42A.2

Figures 8.15-8.17 show the performance of LVT, AVT, and GVT-mode for the model
Test4gA,2-> a model with 2 connections per LP, for Event Processing Delay of 100,
1000, and 10000/xs. Each figure displays the results obtained running the simulation
on 1,2, and 4 processors from top to bottom. The x-axis is a two dimensional axis
showing Output Unchanged Probability and Delay, the y-axis shows relative progress.

LVT-mode performance is similar to model Test^ \ a, 1 for low Output Unchanged Prob¬
ability, i.e. progress increases with the Delay, however, in contrast to model Tesh\,\A,\,
with increasing Output Unchanged Probability performance of LVT-mode dramati¬

cally decreases due to the higher number of connections on which null-messages must
be sent for time-keeping.

As in model Test^\A,i AVT- and GVT-mode performance is dependent on lookahead
for low Output Unchanged Probability as the output of the LPs is very unpredictable,

Chapter 8. Results 115

Figure 8.14: Model 725*4,2,4,2

which prevents optimism from succeeding. With increasing Output Unchanged Prob¬

ability optimism succeeds more often and AVT-mode performance is more stable re¬

garding Delay. AVT-mode outperforms GVT-mode because the former reduces AVT
computation and propagation cost in comparison with the latter.

As for model 725*4, 1,4,1 Event Processing Delay has an overall reducing effect on sim¬
ulation progress.

Generally, performance of AVT-mode in model 725*4,2,4,2 is reduced compared to
model - the effect of the increased number of connections between LPs.

Overall AVT-mode performs best in 68% of parameter sets on 2 processors, 72% on 4,
and 84% on 8 processors.

Figure 8.13 summarises the speedup of LVT, AVT, and GVT-mode on 2, 4, and 8

processors. The graphs show that in contrast to model 725*4,1,4,1 LVT-mode results in
the best speedup only for low Output Unchanged Probability. For higher values of
Output Unchanged Probability AVT-mode is best, even for high Delay.

The graphs show that AVT-mode results in the best speedup except for low Output

Unchanged Probability caused by the differences in performance between LVT-mode
and the AVT- and GVT-modes described above. Speedup for all Execution Modes
decreases notably with an increase in Output Unchanged Probability especially for

Chapter 8. Results 116

^NOr-tNO'-tNO'-^NOT-TtNO'-'tNO'-^NOT-TtNO
CDCDOOCOCOOOCOCDOOCOCDOOCOCDOOCOCDOOCOCDOOCDCDO'
~

~T-000^-000I-000I-000I-000T-000I-000I-«o o o
c? cf o o

Tj- s o T- Tf N o
1 CO CD O O CO CD O
O O f- O O O T-

CMCNJCNJWC0C0C0C0ttttCDCDCDCDNNNN00C0C0C0O)0)0)0)OOOOwc\]wc\icocococo^^-'<t^mininin<oco(D(DNNNNcocooocooooo

f=jl f=J *=*
T-TtNOr-^tN
O CO CD O O CO CD
O O O T- o o o

Tj- h- o T- K (
O O CO CD I
o o o

P) CD '
o o

T- T- T- T- C\j C\J
CJ(\JC0C0C0C0ttttCDCDCD(DNNNNC0C0C0C00)0)0)01OOgOWOlCOCOCOCO^^'t^lOmmmCDCDCDCDNNNNCOCOOOCOOOOO

tNOT-TtNOT-
COCOOOCOCDOO

r TtNOT-^NOr TtNOrTtSO^
OCOCDOOCOCDOOCOCDOOCOCDOO .

OOOT-OOOT-OOOT-OOOT-OOO
CD CD O o" T-" T-" T-" -T-" C\T C\T c\[C\J~ CO~ CO" n CO ^ CD (DCD CONN N NOD CO CO CO OIO) O) O) o o o or-i-i-T-CMWCVJCMCOCOCOCO^-^'t^lOmmmCDCDCDCONNNNCOCOOOCOOOOO

^NOrxtsoT-tNOi-TtNO
COCDOOCOCDOOCOCDOOCOCOO
OOI-OOOI-OOO-^OOOT-

T-^NOT-TfNOT-'tNO^^NOT-TtNOrTtN
OCOCDOOCOCDOOCOCDOOCOCDOOCOCDOOCOCD
OOOT-OOOT-OOOT-OOO-^OOOT-OOO
CD <D O o" T-" T-"

i-'tfNOT-Ttr^oi-Ttr^
OCOCDOOCOCDOOCOCD
OOOT-OOOT-OOO

C\JCNJC\1CJC0C0C0C0'^^'«t'^CDC0C0CDNNNN00C0C0C00)0)0)0)OOO1
CVJCMCNJCMCOCOCOCO^TtTtTtifimininCDCDOCDNNNNCOCOCDCOOOO'

X-Axis: Output Unchanged Probability, Delay [%, VTU]

LVT-Mode AVT-Mode GVT-Mode

Figure 8.15: Model Testy2A,2 Relative Progress versus Output Unchanged Probability
and Delay on 1, 2, 4, 8 Processors with Event Processing Delay = 100/xs

Chapter 8. Results 117

CMC\JC\JC\JOOCOCOCO'<t'«tOsJCMOsJCMCOCOCOCQ^^ ^^(0(0(D(0NM>-NC0C0C0CD0)0)0)0)OOQOTt\finiOlOm(0(0(D(DNNNNCO(OCOCOOOOO

80

60

40

20 7=gh-*-J-
l I 1 (I I I 1 I I I I IlI I I I I IllI I IlI I I it I I

T-^NOftNOr^NOi-^NOT-^SOi-^NOT-^NOT-TtNgr-rtNOi-lNO
8COCOOOCOCOOOCOCOOOCOCOOOCOCOOOCOCOOOCOCOOOCOCOOQCOCOOOCOCOOOO-r-OOOT-OOOT-OOOT-OOOi-OOOT-OOOT-OOOT-OOOT-OOOf-
o o o o CMCNJnnfOCO't'tt^CDCDCDCDNNNNCOODCOCOOIOIOICDQOQQCMWCOCOCOCO^^^^lOminmCOCDCDCONNNNCOCOOOOOOOOO

t NO
O CO CD O O CO CD 1

^-N-0t-Tth-0T-Tfh--0-«-^tN;0T-
o o o
o" o" o o

ScdooS(d§oS!oooo!o8
OOt-OOOT-OOOT-OOOT-

t- cvi c\i c\j c\j co co co co t* Tt- cd co cd co K is." rC K co" co co co o> of of of q q" q" q"CJCOCOCOCO^^^^lOmmmCDCDCOCDNNNNCDCOCOCOOOOO

OOOT-OOOT-OOOT-OOO

I— T— T— i— C\J C\J C\J

^NOT-TtNOr-TfSO
COCDOOCOCDOOCOCDO
OOi-OOOT-OOOT-

^NOI-TJNO
CO CD O O CO CD O
O O 1- O O O 1- '

CO CO O O CO CO § 1

O O O O 1- T- 1- CMaiC\JC\JC0C0C0C0ttttCDCDCDCDNNNNC0C0C0C00)0)0)0)OOOOC\JC\JWC\JCOCOCOCO4^^^mir)ir)lOCD(DCD0NNNNCOCOCOCOOOOO

X-Axis: Output Unchanged Probability, Delay [%, VTU]

LVT-Mode AVT-Mode GVT-Mode

Figure 8.16: Model Test*,2,4,2 Relative Progress versus Output Unchanged Probability
and Delay on 1, 2, 4, 8 Processors with Event Processing Delay = 1000/zs

Chapter 8. Results 118

NOi-^NOT-Ttsgr-^NOi-^NO
COOOCOCOOOCOCOOOCOCDOOCOCDO
Ot-OOO-^OOOT-OOOT-OOOI-
CO" CO Tf Tf rf Tf CD CD CD CO" [NT |sT |C |C CO 00 CO CO O) O) OO CXT O O O COOCO^^^^iOinifilflCOCDCDCDNNNNCOCOCOCOOOOO

CM

o t-
co o o
o -r- o

CO CD O O
O O 1- o

OOCOCDOO —
T- O O O 1- o

^NOi-^NOr-TfNOi-'^NO^-'tNO
COCDOOCOCDOOCOCDOOCOCDOOCOCDO
cd co t- c5 o_ cd t-_ © o co r-_ q co o_ t- cd_ cq co ^

CO" "t -M" "t CD cd" cd" cd" h-" h-" K |C CO oo" co" oo" <7>" oo oo oo" o" o" o" o"CO't4^^lOinmiOCOCD0CONNNNCOODCOCOOOOO

^ N O r- Tt N ,

OOCOCDOOCOCDOOCOCD
-

OOt-OOOT-OOO

i- tj- r^- o
O CO CD O
co q cd

CM C\J CM CM CO CO CO CO ^t" -fr" Tt
C\JC\JC\JC\JC0C0C0C0^t^t^t^-

OCDCOOOCOCDOOCOCDOOCOCOOCOCOCOO
o o o - o o o_ t- o_ o o t- © o_ co ^ co_ o_ ot t-
co" cd" cd" co" Is-" r-~" K h»" oo" oo" co" oo" ct>" a>" of 00" o" o" o" o"
lOirOLOLOCOCOCOCONh-Nh-OOCOCOOOOOOCO

10

8

6

4

T-TT TTT

T- Tf
O CO
o o
o" o"

NOrTtNOr^NO'-^SO'-^NOT-TtSOrTtSO'-^N
CDOOCOCDOOCOCDOOCOCDOOCOCDOOCOCDOOCOCDO
CDt- OOCDt-OOCDt— CDCDCDt— OOOt— CDOOi— ooco
CO o" T-" 1-" 1-" T-" cvf cm" cm" cm" co" co" co" co" xf Tt Tf cd" cd" cd" cd" Is-" h-~ K Is- CD CO CO CO OO OO 00 00 o o o or-i-i-i-CMCMCMCMCOCOCOCO^^^^lOifllOinCDCOCOCDNNNNCOOOCOCOOOOO

8 CO CD to o

1 r- M" N
O CO CD
o o CD

' f- "fr Is- o
O CO CD O
O O O T-

X-Axis: Output Unchanged Probability, Delay [%, VTU]

LVT-Mode AVT-Mode GVT-Mode

Figure 8.17: Model Test^2A,2 Relative Progress versus Output Unchanged Probability
and Delay on 1, 2, 4, 8 Processors with Event Processing Delay = 10000/xs

Chapter 8. Results 119

3 ^3

T-^NOi-4NOT-^NOT-TtNOi-TfNO^^, w .

ococdoococdoococdoococooococooocdcooo
OOO^OOO^OOO^-OOOT-OOOT-OOOT-O
0~ o" o o" 1-" 1-" t-" T—c\f cm" cm" cm" co co" co" co" tf" rf tt cd" cd cd" cd" rc r-" ic r-«" oo" co

T-^i-i-CMCMCMCMOCOCOCO^^^^mminm(D0(DCDNN

T- ^ N O
o co cd o
O O O 1-

o" o" o" o"
o o o o

=L
o
o

i
CD

gz^5
~\ ^ ^ am

I I I I I I I rrr ttt ttt 11 ii ii

i— ■*th-OT-^trs-OT-Tth-o^-,*th-OT-Tth«»OT-,M-r,s-o^^trs-OT-^tr,*-o^— n o n o
ococdoococdoococdoococdoococdoococdoococdoococdoococdoococdo
OOOi-^OO^OT-OOOT-OOO-r-OOOT-OOOT-OOOT-OOOT-OOO-r-OOOr-
o" o" O o" !-" 1-" 1-" 1-" cm" cm" cm" cm" cd" co" co" co" Tf" Tf tf cd" cd" cd" cd" K K K K co" oo" co" oo" of of of of o" o" o"

cm co co co co v m" * • • — — ----- -t— cmcmcmcmcocococo lolololncdcocdcdnnnncocococoo

=L
o
o
o
o

rTtNOT-TtNO^tNOrTtNO^^NO^'tNOT-^NOr'tNOr^SOrTtNO
ococdoococdoococdoococdoococdoococdoococdoococdoococdoococdo
OOOf-OOOT-OOO^-OOOT-OOOf-OOOi-OOOt-OOOi-OOOT-OOOT-
o" o" O o" T-" r-■" 1-" 1-" cm" cm" cm" cm" co" co" co" co" -M-" ^t" cd" cd" cd" cd" h»" k n" k co" co" oo" oo" of of of of o" o" o" o"

cmcmcmcmcocococo^^^^tiomioiocdcocdcdnnnncoooodcooooo?5mioioin(D<D(DiDSNSNncbcbcooo

X-Axis: Output Unchanged Probability, Delay [%, VTU]

LVT-Mode —

avi -Mode

GVT-Mode

Number of Processors

Figure 8.18: Model Test^2A2'- speedup on 2, 4, and 8 processors relative to the best
case on uniprocessor for Event Processing Delay = 100, 1000, 10000jtxs

Chapter 8. Results 120

Event Processing Delay = 1000/xs and Event Processing Delay = 10000/xs. This is
caused by the high stability of the LP's output for high Output Unchanged Probability,
which results in very few event-computations and reduces the amount of parallelism
that can be exploited.

8.2.4 Model Test^^

Figure 8.19 shows the model Test4,3,4,4, one with four connections per LP, and the
graphs in Figures 8.20 - 8.22 depict the results for the same parameter sets used in
Sections 8.2.2 and 8.2.3.

Figure 8.19: Model Test4,3,4^4

These results confirm the trends in models Test4,\,4,\ and Test4,2,4,2- the performance of
LVT-mode is reduced even further for higher values of Output Unchanged Probability
due to the even higher number of connections on which null-messages must be sent
for time-keeping purposes. AVT- and GVT-mode performances are more independent
of Delay, with larger values of Output Unchanged Probability as optimism succeeds
more often. The difference between the AVT- and GVT-mode is smaller than in the

case of model Test4,2,4,i due to the larger number of null-messages sent by the LVT
time-keeping mechanism used in the tightly-connected acyclic part of the model.

Chapter 8. Results 121

140

120

100

80

60

ocdcdoocdcdoocdcdoocdcdoocdcdo
O O O T- o o o ■

o o o o
CsJCOCOCOCOTj-Ti-Tf^tlOlOlOlOCDCDCDCD

COCOCOCOO)(J)0)010000
NNNNCOCOCOCOOOOO

140

120

100

80

^th-OT-Ttr-oi-
cdcooocdcdoo

O O O 1- o o
o" o" cf cf

^NOrTtNOrTfNOi-'tNOi-^NOrTtNO'-TtNOT-tNO
CDCOOOCDCOOOCDCDOOCDCDOOCDCDOQCDCDOOCDCDOQCDCOO
O O i-_ O o O T- o O O -r-_ O O O -r-_ O O O T- o O O -r-_ O O O T-_ o O O

CM C\f Csf CsT CO CO CO CO "*t <0 <0 ^ Is* Is-" Is*" oo" oo" CO 00 CT>" of of of cf q" cf o~WP4CVJC\iCOOncO^'^'«t^lOlf)mm(0(0(0(ONNNN(DOOCOCOOOOO

1 -rrrTTTTTT

o

rhTTT

3
TTT

h- o

TTTTT

a
TTTTTTT

o

TTT TTT

r-

Tm

RC) CO CD o 8 CD o o CD o o CD CD
o o o C_) O o CD O o O o
o o o o i— y— ■J— CM CM CM CM CD CD CD CD

T— T— T— -r- CM CM CM CM CD CD CD CD

OCDCDOOCDCDOOCDCD'
OOOT-OOOT-OOO

NNNNC0C0C0C00)0)0)0)OOOO
(OCD(D(ONNNNCOCOODCOOOOO

140

120

100

80

60

40

20

/ / ft, /
// ft/ /> /y —' /—j

y V W
i-^NO^'<tNOrTtNOr'tNOrTtNOT-TtNOT-TtNOt-^NOr-^NOi-5NO
ocdcdoocdcooocdcdoocdcdoocdcooocdcdoocdcdoocdcdoocdcdoocdcdo
000-^000T-_0 0_0T-000T-000I-000T-000T-000T-000T-000T-
cf Cf cf o T-" 1-" T-' T-" cvf cm~ oj c\[CO CO CO CO Tt Tf cd cd co~ cd~ k |c n k CO CO CO co of of of of cf cf cf cfT-T-i-T-CMC\JWCMCOCOCOC)4^^^iniOlOlOCO(D(D(DNNNNCOCOCOCOOOOO

X-Axis: Output Unchanged Probability, Delay [%, VTU]

LVT-Mode AVT-Mode GVT-Mode

Figure 8.20: Model 7^4,3,4,4 Relative Progress versus Output Unchanged Probability
and Delay on 1, 2, 4, 8 Processors with Event Processing Delay = 100/xs

Chapter 8. Results 122

60

40

omtooomcoooCT coSococooococooococoooobcooococooococo
000-*-000T-000T-000T-000T-000T-000-«-000T-000
O" O" CD CD 1-" T-" T-" T-~ Csf C\T C\F C\T CO CO" CO" CO Tf "«± CO" CD CD" CD" |C K K h»~ OCT CO CO Ir-T-T-T-cMcvjcjMcocooco^^^^mminmcococDCDNNM

§00 CD <o o ■

CO

E
3

£
CO
CO
CD
l_

O)
o

CD
>

J5
CD
0C

I
I

CM

r- ^ N O ^ 1 N
O CO CD O O CO CD
O O O 1- o o o
CD CD CD CD T-"

^ N O T- ^ s

8 CO CD O Q CO CDO O o o o

3NOr TtNl
CO CD O O CO CD i
O O T- o o o

T-T-qqwqC0C0C0C0ttttC0CDCDCDNNNNC0C0C0C00)010)0)OOO'i-i-CMCMWCJCOCOCOCO^^^^Lninir)lOCOCOCOCDNNNNOOCOCOCOOOO'

i-^h-OT-Ttr^oT-Tth-ot-^h-Of-^th-
OCOCDOOCOCDOOCOCDOOCOCDOOCOCD
OOOI-OOOT-OOOT-OOOI-OOO

t- r^» o e- 1
O CO CD O O CO CD '
O O O •»- O O O

r; t N OO CO CO O
O O O T-

O CO CO o
o o o

O T- ^ N '
_

CO CD i
o o

o o o o eg eg
eg eg

C^egcOCOCOCOttttCDCDCOCDNNSNCOCOCOODOIOOiaiOOOOCNJWCOCOCOCO-g-^g-g-inmiOiOCDCDCDCDNNNNCOCXJCOCOOOOO

NOr^NO^^SOr^NOr^NOr^SOT-TtSOrTfl
CDOOCOCDOOCOCDOOCOCDOOCOCDOOCOCDOOCOCDOOCO'
OT-OOOT-OOOT-OOO^OOOT-OOO-^OOOT-OO'
c\j" eg" co" co" co" co" to" to" cd" cd" h-" r-" N-" K co" co" cxf co" of of of of q" o"■CNJCNJCOCOCOCO^'tg-^lOlOmiOCDCDCDCDNNNNCOCOCCOOOO'

o
CO
CO
CD

8
k_

CL

X-Axis: Output Unchanged Probability, Delay [%, VTU]

LVT-Mode AVT-Mode GVT-Mode

Figure 8.21: Model Test^AA Relative Progress versus Output Unchanged Probability
and Delay on 1, 2, 4, 8 Processors with Event Processing Delay = lOOO/xs

Chapter 8. Results 123

1-TtNOr-tSOT-TtNOrTtSOrTtNO'

8COCOOQCOCDOOCOCOOQCOCOOOCOCDO<OOi-OOOi-OOOt-OOOt-OOO'
CO CD O Q CO CD I
O O T- o o o

csjojojc\jcocococoTt-TtTtT+tDCDCDCDN.r>-i^r^cocooocoa)a)cncnQoooCVJWWCMCOCOCOCO^^^^ininiOmCOCOCOCONSNNCDCOCOCOOOOO

CVJ

8COCDOQCO(DOOCOCDOOCOCDOOCO(DOOCOCDOOCOCDOQCOCDOOCO(DOQCOCDOoot-ooot-_oooi-ooot-ooot-ooot-ooo^-ooot-ooot-ooo^
T-" T-" cvf OJ CM" CM" CO" CO" CO" CO" -*t Tf Tf" CO" CD" CD" CD |C |C fC |C oo" CO CO CO of of of of o" q" q" q"T-T-(MCMCMWcocococo^^^^ir)mmir)(0(D(D(ONSNNcocococooooo

o o o o

cococoTt-<tTtTi-cocococor^r^h-r^cooooocoo>o)o>o>QoooCOCOCO^^^4lOlOinin0(D(D(DNNNNCOCOCOCOOOOO

TTTTTTTTT T-rrTTTTTT

8
Tt
CO
0

h-
CD
O
8 1 S

O

h-
CD
O

O
O

CM
CM

CM
CM

CM
CM

CM
CM

CO
CO

CO
CO

CO
CO

CO
CO

TtNO'-tNO'-^NO'-^NOT-^NO
COCDOOCOCDOOCOCDOOCOCDOOCOCDO CO CD 8

O O T-O o 1- o o o
K K K h- co co co oo" of of of of Q o o o"
(DCOCDCDNNNNCOCOCOCOOOOO

<0
k_

o
CO
CO
CD

8
u_

CL

X-Axis: Output Unchanged Probability, Delay [%, VTU]

LVT-Mode AVT-Mode GVT-Mode

Figure 8.22: Model TestAX^A Relative Progress versus Output Unchanged Probability
and Delay on 1, 2, 4, 8 Processors with Event Processing Delay = 10000/is

Chapter 8. Results 124

i-^NOT-^NO
00(000(0(00
OOOI-OOOT-
O Q CD o" T-" T-" T-" T-"

^h-OT-Ttf^OT-Tth-
(0(000(0(000(0(0
OO^-OOOT-OOO

(0(000(0(000(0(0
OOl-OOOr-OOO

c\jc\ic\jc\icocococo,<t'<t'<i-'<tcocococor-.r^r^r^cocoaocoo>o>o>o>OQQWCMWCJnCOCOn^4^^ir)lOUOir)(0(D(D(ONNNNCOCOCOCOOOO

o o o
cf cf o" cf

^ ■TtNO'-^NOT-TtN
(0(00 0(0(000(0(00 0(0(0
00T-000-<-000T-000

^tNOr-TtNO
CO CD O O CO CD O
O O T- o O O T-

o t- Tt h- o
CO CD O O CO CD o
O O 1- O O O T-

CVJCVJWCMCOCOCOCOtttt^CDCOCONNNNCOCOCDCOOOOOIOOOOCM(\J(NJC^C0C0C)C0^^^^Lni0ir)lfi(DCDCDCDNNNNCDC0C0CX)OOOO

T-1NOt-^NOT-TtN
OCOCDOOCOCOOOCOCD
OOOT-OO^OT-OOO
cf cf cf cf t-" T-" t-' t-' c\f c\f c\F

T- T- T- ^ OJ CNJ C4

COCDOOCOCDOOCO _

OOT-OOOT-OOO

r-^NOr-tNO'-^NOT-TtNO
OCOCDOOCOCDOOCOCDOOCOCDO
OOOT-OOOT-OOOT-OOOi-0 00-r-0 0^0i-000T-00 0^T-000T-0 00_T-000T-

C\f CO" CO C0~ CO" Tf "*t co" co" co" co" K inT n n oo~ co" co" oo" of of of of cf cf o" o"
(\l(OCOCOCO,T,TTt,T(filOlfiinCD(D(0(DNNNNCOCOCOOOOOOO

X-Axis: Output Unchanged Probability, Delay [%, VTU]

LVT-Mode

AVT-Mude

GVT-Mcxie

Number of Processors

Figure 8.23: Model TesU,3AA: speedup relative to the best case on uniprocessor on 2,

4, and 8 processors for Event Processing Delay = 100, 1000, 10000/xs

Chapter 8. Results 125

In general, the performance of AVT-mode in model 7^5/4,3,4,4 is reduced in compari¬
son to model 7^5/4,2,4,2 due to the large number of connections between LPs. As in the
previous models, Event Processing Delay has a general effect of reducing the simula¬
tion progress. Overall, the AVT-mode performs best in 61% of the parameter sets on 2

processors, 75% on 4, and 76% on 8 processors.

Figure 8.23 summarises the speedup of LVT, AVT, and GVT-mode on 2, 4, and 8 pro¬

cessors. As in model 7^5/4,2,4,2 the LVT-mode results in the best speedup only for low
Output Unchanged Probability. For higher values of Output Unchanged Probability
AVT-mode is best, even for high Delay. Speedup decreases notably with an increase
in Output Unchanged Probability especially for Event Processing Delay = lOOOjtts and
Event Processing Delay = 10000/xs. This is caused by the high stability of the LP's
output which results in very few event-computations and reduces the amount of paral¬
lelism that can be exploited.

8.3 Summary

The results presented in this chapter demonstrate that for models with a mixture of
cyclic and acyclic parts, the AVT-mode performs best for a large proportion of the
parameter space, compared to the LVT- and GVT-modes. On average, the AVT-mode
outperforms the LVT-mode in 70% of the distributed cases (Table 8.2), and performs
better or just as well as the GVT-mode. The percentage of cases with better AVT-
mode performance increases slightly as the number of processors increases. LVT-mode
outperforms the AVT- and GVT-modes only for high values of Delay, and low values
of Output Unchanged Probability, and low number of connections between LPs.

Model Name Number of Processors

2 4 8

7^5/2,1,2,2 66% 71% -

7^5/4,1,4,1 63% 65% 74%

7^5/4,2,4,2 68% 72% 84%

7^5/4,3,4,4 61% 75% 76%

Table 8.2: Model Test- percentage of AVT-mode outperforming LVT-mode

The performance of the LVT-mode depends on parameters such as the Delay, Output

Chapter 8. Results 126

Unchanged Probability, and the number of connections between LPs. The LVT-mode
performance increases with the Delay and decreases with Output Unchanged Proba¬

bility caused by the dependency of the lookahead on both the Delay and the Output
Unchanged Probability, high Delay implies large lookahead while for high Output

Unchanged Probability event-computations are replaced by null-message-processing
which delivers little lookahead (= 1VTU).

In models with one connection per LP in the cyclic area (models Test2,\,2,2 and
Test^ 1,4,1), the input-LP (LPin in Figures 8.5 and 8.9) sends a new event every 100VTU.
This causes event-computations with Delay = 100, which infuses enough lookahead
in the cycle to result in good progress for high Delay and high Output Unchanged
Probability, this is slightly reduced in the cases of 4 and 8 processors, due to more

null-messages being sent to remote processors.

However, in models with more than one connection per LP in the cyclic area (models
Test^ 2,4,2, Test4t2,4,4), the performance of the LVT-mode is dramatically reduced with
Output Unchanged Probability increasing due to the larger number of connections on

which LPs are depending for lookahead information which results in a large number
of null-messages being sent for LVT time-keeping.

The AVT- and GVT-mode performance is more tolerant to Delay and the number
of connections between LPs. The AVT- and GVT-modes outperform LVT-mode for

higher values of Output Unchanged Probability and greater number of connections.

For low Output Unchanged Probability, AVT- and GVT-mode performance is simi¬
lar to LVT-mode, i.e. it is dependent on lookahead. This is because for low Output

Unchanged Probability the output of the LPs is very unpredictable, which prevents

optimism from succeeding, and the AVT-algorithm progresses on LVT alone. In this
case AVT- and GVT-mode performance is slightly reduced in comparison to LVT, be¬
cause of the overhead of sending AVT-messages to the AVT-keeper and computing
AVT itself.

With increasing Output Unchanged Probability, optimism succeeds more often and
AVT improves on the LVT in each LP. This results in AVT-mode performance that is

increasingly stable with respect to Delay, i.e. it is independent of lookahead, as the
Output Unchanged Probability increases, which is reflected in the almost horizontal

plot lines for high Output Unchanged Probability.

The performances of the AVT- and GVT-modes decrease slowly as the number of con-

Chapter 8. Results 127

nections between LPs increases. The AVT-mode outperforms the GVT-mode because
the former reduces AVT computation and propagation cost in comparison with the lat¬
ter. This difference in performance is reduced for the model with the highest number of
connections between LPs (model 7^4,3,4,4) compared to the other two models of the
same size as many more null-messages are sent by the LVT time-keeping mechanism
used in the tightly-connected acyclic part of the model.

The Event Processing Delay has an overall effect of reducing the simulation progress.

It also influences the difference in progress for parameter sets in which LVT-mode out¬

performs AVT-mode. This is reduced for higher Event Processing Delay as algorithmic
overheads of the GVT time-keeping are eclipsed by the computation requirements for
event-processing.

AVT-mode results in the best speedup except in cases when the Output Unchanged
Probability is low or the Delay is very high. This speedup decreases notably with an

increase in Output Unchanged Probability, due to the high stability of the LP's out¬

put. This in turn reduces the number of event-computations performed and therefore
the amount of parallelism that can be exploited. Any remaining speedup for Output

Unchanged Probability = 100 is an effect of distributing the computations performed
by the synchronisation and time-keeping algorithm.

The results obtained from the implementation closely match the simulation results in

Chapter 5. Any differences were due to the implementation version allowing variable
Delays, while the simulated one assumes these to be fixed and both the scheduling and
the AVT-computation costs were set to zero.

The results have demonstrated that the AVT-algorithm outperforms both the pure LVT
and GVT time-keeping mechanisms in a majority of cases in the parameters sets.

Chapter 9

Conclusions

The thesis is based on two orthogonal ideas, that of the synchronisation policy, and the
time-keeping mechanism for Distributed Discrete Event Simulation (DDES). The con¬

servative and the optimistic synchronisation policies had previously been integrated,
as exemplified in the Composite ELSA DDES algorithm [ArvindS92].

This thesis has proposed a new simulation scheme called the AVT-algorithm which for
the first time combined the LVT and the GVT time-keeping scheme on a per-LP basis.

Existing optimisations such as the adaptation of degree of optimism can be equally
applied to the AVT-algorithm.

The design of the AVT-algorithm was informed by the observation that the overhead
on the time-keeping mechanism is dependent to a large extent on the topology of the
simulation models. Acyclic models are generally better suited to operate under LVT
time-keeping schemes as the overhead due to null-messages is lower; whereas, cyclic
models are usually more efficiently simulated under a GVT time-keeping mechanism,
as the overhead due to messages for updating the global clock is lower.

The AVT is therefore appropriate for simulation graphs which contain a combination
of cyclic and acyclic parts. The former is mapped to a GVT time-keeping mechanism
and the latter to an LVT one which results in a network of virtual time regions. In these
cases mapping the model entirely to either one of the time-keeping schemes would be
less efficient for the respective parts of the simulation model.

The key contribution of the thesis is that it expands existing approaches to address
inefficiencies in simulation algorithms by extending the integration of synchronisation

128

Chapter 9. Conclusions 129

policies to incorporate two different time-keeping mechanisms.

Jha and Bagrodia [JhaB94] had proposed the idea of combining a Global Control
Mechanism (GCM), based either on null-messages orGVT, and a Local Control Mech¬
anism (LCM) which can be either conservative or optimistic. Each LP can be config¬
ured to use either LCM, and the GCM is used over the entire system. Unlike the

AVT-algorithm, there is no notion of areas of virtual time, and individual LPs cannot

be mapped to different time-keeping mechanisms.

Rajaei et al [RajaeiAT93] use Time Warp to synchronise between clusters of LPs,
where each cluster is allocated to a processor and runs a sequential simulation al¬

gorithm. The AVT-algorithm is distributed over all available processors and does not

distinguish between processes allocated on the same processor or a remote processor.

Avril and Tropper [AvrilT95] divide the simulation model into clusters each with its
own Cluster Virtual Time (CVT). Each cluster has one designated input and output

process in addition to the LPs of the cluster. The input process keeps track of the Input
Virtual Time, and the output process records an Output Virtual Time. The output pro¬
cess will only send events to other clusters once the CVT reaches the timestamp of the
respective events. A Conservative Time Window Algorithm is used for synchronisa¬
tion between clusters. In contrast, the AVT-based approach does not have designated

input/output nodes per cluster, and an LVT-based protocol is used between AVT re¬

gions, which can operate either conservatively or optimistically.

The AVT algorithm was first simulated which yielded promising preliminary results. It
was then implemented in C++ with MPI on a distributed computer: a Beowulf cluster.
The algorithm has been evaluated by means of a rigorous although not exhaustive
search of the parameter space, using generic parameterised models.

The results of the implementation and the simulation closely matched. Any differences
were due to the simulations assuming a fixed Delay and zero overhead for both the

scheduling and the AVT computation.

The results have demonstrated that the AVT-algorithm outperforms both the LVT and
the GVT for a majority of the parameters sets. On average, the AVT-algorithm out¬

performs the LVT time-keeping scheme in 70% of the distributed cases, and performs
better or just as well as the GVT time-keeping.

The AVT-algorithm will also perform just as well as the LVT or the GVT for mod-

Chapter 9. Conclusions 130

els which are completely acyclic or cyclic because in these cases all the LPs will be

mapped to the LVT or GVT time-keeping mechanism, respectively.

Another important feature of the AVT-algorithm is that it is less sensitive to model and
communication parameters which is desirable for any distributed algorithm.

The contribution of this work is significant as it extends DDES algorithms by combin¬
ing and integrating time-keeping mechanisms in an elegant manner.

Future research on the AVT-algorithm could concentrate on dynamically adapting the

time-keeping mechanism to simulation characteristics which vary during run-time in
order to use the appropriate time-keeping mechanism for the parts of the parameter

space where AVT is not better than LVT. The idea of adaptation has already been
applied to the synchronisation policy, i.e. between conservative or optimistic. A logical
extension would be to investigate an algorithm that is able to adapt both the time¬

keeping mechanism and the synchronisation policy.

The optimistic synchronisation policy could be applied to the LPs which employ an

LVT time-keeping mechanism and which are conservative in the current implemen¬
tation in order to allow for the same range of configuration options as available in

Composite ELSA.

A further area of interest is to determine whether characterising simulation models on

the basis of the stability of the LPs' output to changes in the input, i.e. Output Un¬
changed Probability, the Delay, and other simulation parameters, is useful for perfor¬
mance prediction. This raises further questions regarding the computation of the Out¬
put Unchanged Probability for all imaginable simulations, and furthermore, whether
it is possible to compute a compound Output Unchanged Probability a priori, and
whether this can be used to select the optimal configuration of the AVT algorithm be¬
fore the start of the simulation. Alternatively, the time-keeping scheme may be adapted
at run-time based on observed and expected Output Unchanged Probability and De¬

lay. A different approach would be to use the self-simulating capability of AVTSIM
for performance estimation instead of performance prediction.

Finally, the AVT-algorithm could be ported to other platforms, such as a large multipro¬
cessor computer, e.g. the Cray T3E, in order to investigate how the algorithm would
scale on a massively parallel architecture; and a network of PCs running Microsoft
Windows, given that a suitable implementation of MPI has become available.

Appendix A

DS-RT 2001: Area Virtual Time

D. K. Arvind and J. Schneiders. Area Virtual Time. In Proceedings 5th IEEE Inter¬
national Workshop on Distributed Simulation and Real Time Applications, Cincinnati,
Ohio, USA, Pages 105-112, August 2001.

131

Area Virtual Time

D. K. Arvind and J. Schneiders
Institute for Computing Systems Architecture, Division of Informatics,

The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, SCOTLAND.
Email: dka|josch@dcs.ed.ac.uk

Abstract

We present a novel synchronisation algorithm for dis¬
tributed discrete-event simulation (DDES), called the
Area Virtual Time (AVT) algorithm. We first ex¬
pose two orthogonal ideas of the synchronisation policy
for DDES, which is either conservative or optimistic,
and the time-keeping mechanism, which is based on ei¬
ther Local or Global Virtual Times. The AVT algo¬
rithm is based on a network of virtual time regions,
which is a happy medium between the Local Virtual
Time (LVT) and the Global Virtual Time (GVT). The
AVT algorithm permits the different parts of the simu¬
lation model to run either under LVT or GVT time¬

keeping mechanisms. This is particularly suited to
models which are less than homogeneous. In those
cases, mapping the models entirely to either one of the
time-keeping schemes would not be efficient; or, the
real-time nature of the interfaces precludes the use of
GVT in those parts of the model. Our results demon¬
strate that the AVT algorithm progresses the simulation
times faster than either the LVT or the GVT schemes,
and is less sensitive to variations in some key model
and communication parameters - a desirable property
in distributed computation.

1. Introduction

The simulation model can be represented as a directed
graph, in which nodes and arcs correspond to logi¬
cal processes (LP) and communication channels, re¬

spectively. The LPs exchange information in the form
of messages containing time-stamped data which are
termed as events.

Distributed Discrete Event Simulation (DDES) can run
either under a conservative or an optimistic synchro¬
nisation policy. The policy determines the manner
in which simulation time is progressed. Conservative
DDES algorithms observe the strict partial ordering

in the sequence of evaluation, i.e. result at a node is
deemed safe to commit if, and only if, no message with
a timestamp less than the local time will ever arrive
at that node. This condition is relaxed in Optimistic
DDES algorithms, in which events can be processed
at the nodes in advance of their arrival. Errors due
to mis-speculation are detected should they occur, and
the algorithm recovers by rolling back in time to a con¬
sistent state, and then proceeding with the simulation.
The time-keeping mechanism is orthogonal to the syn¬
chronisation policy. Time is maintained in DDES in
one of two ways: each LP maintains a local clock, called
the Local Virtual Time (LVT), based on the time-
stamps of incoming events; or, the algorithm maintains
a Global Virtual Time (GVT), which is the minimum
time-stamp of all the incoming events and those in
transit. An increment in GVT is notified to all the

LPs, which update their respective local clocks.
Optimistic DDES algorithms such as Time Warp [Jef-
fersonS85] use a GVT-based time-keeping mechanism,
whereas conservative ones based on the Chandy-Misra-
Bryant algorithms [ChandyM79, Bryant81] use LVT-
based time-keeping schemes. The Composite ELSA al¬
gorithm [ArvindS92] is an exception to this rule, since
it integrates both the conservative and optimistic syn¬
chronisation policies, but uses only an LVT-based time¬
keeping mechanism.
We propose a novel algorithm for DDES called the
Area Virtual Time (AVT) algorithm which supports
both conservative and optimistic synchronisation poli¬
cies, and is based on a combination of LVT and GVT
time-keeping mechanisms. This is a happy medium be¬
tween the extremes of either each LP maintaining its
LVT, or calculating the GVT over all the LPs in the
simulation model.

In the AVT algorithm, a set of LPs is mapped to a
Virtual Time Area (VT-Area), which gives rise to a
network of VT-Areas. The choice of mapping a par¬
ticular set of LPs to a VT-Area is determined by the
topology of the simulation graph. In short, cyclic sub-

graphs are mapped to VT-Areas and the rationale for
this is next explained.
The following observations are made regarding the in¬
fluence of the synchronisation policy on the perfor¬
mance of DDES. Conservative algorithms, irrespective
of the time-keeping mechanisms, generally have lower
run-time overheads, but their performance is depen¬
dent on the lookahead, i.e., the time into the future that
a value is known to hold. Optimistic algorithms which
use either LVT or GVT time-keeping mechanisms, can
potentially infuse more concurrency at run-time by re¬
laxing the strict ordering of evaluation, but at a price:
the overheads of completion of non-preemptable tasks
and saving of states can attenuate this gain.
The influence, albeit simplified, of the time-keeping
mechanism on the performance of DDES is as fol¬
lows: in acyclic graphs, LVT-based time-keeping mech¬
anisms are more efficient due to the lower commu¬

nication overhead; and in cyclic graphs, the GVT-
based time-keeping schemes are more efficient as they
are less prone to fragmenting events. In more detail:
GVT-based time-keeping mechanism coupled with an

optimistic synchronisation policy (assuming good pre-
dictibility) is better suited for cyclic graphs. On the
other hand, the LVT-based time-keeping mechanism
are unable to exploit predictibility due to event frag¬
mentation. For instance, for an event received at time,
tnow, at an LP, a committed result needs to be passed
round the cycle, before another result can be commit¬
ted for time tnext. The amount of fragmentation de¬
pends on the relationship between the inter-arrival time
for events and their execution time in an LP. As in

acyclic graphs, event fragmentation does not hamper
LVT-based time-keeping mechanisms as they are bet¬
ter suited due to their lower communication overheads.

2. Related Work

Jha and Bagrodia [JhaB94] had proposed the idea of a
combination of a Global Control Mechanism (GCM),
which is based either on null messages or GVT, and a
Local Control Mechanism (LCM) which can be either
conservative or optimistic. Each LP can be configured
to use either LCM, and the GCM is used over the entire
system. Unlike the AVT algorithm presented in this
paper, there is no notion of multiple areas of virtual
time. Hamnes and Tripathi [HamnesT94] adapt the
degree of optimism on a per-LP and per-channel basis
and use GVT as the only Global Control Mechanism.
Wood and Turner [WoodT94] address the inefficiency
of using a null-message time-keeping mechanism for
models with cycles, in which the LPs use a local clock
and are conservative. In order to distinguish which

outputs should transmit carrier-null-messages (as op¬
posed to ordinary null-messages), the cyclic structure
of the graph is determined before run-time, and the
cyclic and non-cyclic outputs are marked.
Rajaei et al [RajaeiAT93] use Time Warp to synchro¬
nise between clusters of LPs, where each cluster is al¬
located to a processor and runs a sequential simula¬
tion algorithm. Avril and Tropper [AvrilT95] divide
the simulation model into clusters each with its own

Cluster Virtual Time (CVT). Each cluster has one des¬
ignated input and output process in addition to the
LPs of the cluster. The input process keeps track of
the Input Virtual Time (IVT), and the output process
records an Output Virtual Time (OVT). The output
process will only send events to other clusters once the
CVT reaches the timestamp of the respective events.
A conservative time window (CTW) algorithm is used
for synchronisation between clusters.
In contrast, the AVT-based approach does not have
designated input/output nodes per cluster, and an
LVT-based protocol is used between AVT regions,
which can operate either conservatively or optimisti¬
cally.

3. The AVT Synchronisation Algorithm

Each LP in the AVT algorithm can be configured to
use any combination of the modes of synchronisation
mentioned in the previous section. In the current in¬
stantiation of the algorithm, a GVT node has bounded
optimism and the LVT node is conservative. However,
the GVT and LVT nodes could just as well have either
limited or unlimited optimism [ArvindS92],
Each cyclic area of the simulation graph is assigned to
a Virtual Time Area (VT-Area), in which a GVT-style
time-keeping scheme is used.

3.1. Definitions

LVT: Local Virtual Time - the time up to when the
inputs are committed.

LOT: Local Optimistic Time - the time up to when
an LP has speculated based on its input

Event-Message is of the form:
(tstart) tendi tendopt, data), where.
tstart is the start-time of an event
tend is the time until when the event is committed

to hold

tendopt is the time until when an event is presumed
to hold based on the input

data is the value of the event.

Event-messages can be either: committed, i.e.,
tstart ^ tenci, and tenci — tendopt, uncommitted,
i.e., tstart — tendi and tend tend0pti ptcrticilly
committed, i.e., tSfart tend tendapt•

AVT: Area Virtual Time is defined as the minimum
LOT of the members of the VT-Area and the min¬
imum (tendopt) °f all the messages in transit in the
VT-Area.

AVT-Message is used to communicate between the
LPs and the AVT-manager, and is of the form
(LVT, AVT) and defined as:

LVT - the sending LP's LVT, or empty when sent
by the AVT-manager

AVT - the sending LP's LOT, or the updated
AVT sent by the AVT-manager

Delay (5) - the virtual execution time of an LP.
min(t^d) - denotes the minimum tend of all inputs

to an LP

min(ty^T) - denotes the minimum tend of all inputs
to an LP from predecessors outside the VT-Area.

min(tg"dVT) - denotes the minimum tend of all inputs
to an LP from predecessors inside the VT-Area.

Predecessor (Successor) of an LP, A, is any other
LP from which A receives its input (to which A
sends its output).

Graphic Symbols: The height of a box corresponds
to the interval between tstart and tend (or tend„pt)-

1 I Committed part of event-message

L ; Uncommitted part of event-message
I i AVT-message
II Input different from previously received/guessed

Discarded state

3.2. Description of the AVT Algorithm

The instantiation of the AVT algorithm, as described
in this section, assumes fixed connections between the
LPs, and that the results of the evaluation are commit¬
ted before event-messages are sent to the neighbouring
LPs.
The format of the event-messages are similar to those
used by Composite ELSA, i.e., a time interval defines
the period for which a value is guaranteed to hold. The
AVT messages have an additional time-stamp to de¬
note the time until when the value is presumed to hold
optimistically. The LVT nodes employ a conservative
synchronisation policy, while the GVT nodes in the
VT-Area employ an optimistic one. The optimism is
limited by the look-ahead in the event-messages from

outwith the VT-Area. When viewed from beyond, a
VT-Area behaves as if it were a conservative LVT node,
albeit a conglomerate one. The VT-Areas never emit
an uncommitted event-message, although this is not a
fundamental restriction: nodes in the VT-Areas (and
indeed any LVT node) can range from conservative,
to locally or globally optimistic - similar to nodes in
Composite ELSA.
The AVT algorithm can be applied to LPs which can
be synchronised either locally (LVT-node) or globally
(GVT-node), or both (hybrid-node). Consider the log¬
ical processes in Figure 1

Figure 1. Simulation Graph

LP1 is an LVT-node. It can either be a conserva¬

tive node (corresponding to a CMB or conservative
ELSA node), or an optimistic node (corresponding
to an optimistic ELSA node).

LP2 is a hybrid-node, i.e. it behaves both as an LVT-
and as a GVT-node.

LP3 is a GVT-node. It can either execute either op¬
timistically or conservatively.

3.2.1 The LVT-node

In the instantiation of the AVT algorithm described in
this paper, the LVT nodes synchronise conservatively.
The node is ready to progress its time once all the end-
times of the input event are greater than its LVT, i.e.,

> LVT (Figure 2). This node sends the
following event to its successors:

(Lstart = LVT + 5, tend = min(t™d) + <5,
tendopt = tendi f (fnpuf))

Its LVT is advanced to the minimum of the end-times
of the input (i.e., minit1^)), and any state prior to
the LVT is discarded.

3.2.2 The GVT-node

A GVT-node is ready to compute once all its input-
queues contain unprocessed events (Figure 3), i.e.,

min(t™~) > LVT V min(t?ndopt) > LOT

Figure 2. LVT-node in conservative mode

The following event is sent to its successors in the VT-
Area:

start ' LVT + 5, tend = min(t™nd) + 5,
tendopt = min(t™dopt),f (input))

The LVT is advanced to rnin(tl^d), the LOT
to 77un(f^do J, and an update AVT-message,
(LVT, LOT), is sent to the AVT-manager.

Figure 3. Computing and updating AVT in a
GVT-node

A GVT-node is ready to progress conservatively if the
AVT has been updated (Figure 4). The following event
is sent to all its successors outside the VT-Area:

(start = LVT + 6,tend = AVT + 5,
tendopt ~ tend-, f (iTiput))

LVT is advanced to AVT, and all the states before the
LVT are discarded.

3.2.3 The Hybrid-node

Hybrid nodes have split personalities: they appear as

GVT/optimistic nodes to those inside the VT-Area,
and as LVT/conservative nodes to those outside. When
the committed inputs from outwith the VT-area are
available, the hybrid node guesses the values for others
from within the VT-area, evaluates based on all the
inputs (both guessed and committed), and fires opti¬
mistically, but only to its neighbours within the VT-
area.

Figure 4. GVT-node progressing conserva¬
tively

The dual behaviour of the hybrid-node is described as
follows:

• Once all the input-queues to the LVT part of the
hybrid-node contain events, i.e.,

min(tZLdVT) > LOT
the LP fires optimistically (Figure 5). The follow¬
ing event is generated, which is stored in the LPs
output-queue, and is sent to the LP's successors
in the VT-Area.

('J*start = LVT + 5, tend — mi-n(t™nd) + ^)>
tendopt = min(tTndVT), f (input))

The LOT is advanced to mm(t*"(jVT).

Figure 5. Speculation in a hybrid-node

• An input received from within the VT-Area is
checked against the speculated value. In the event
of a mis-speculation, the LP is rolled back to a safe
state and the correct result is resent to its succes¬

sors within the VT-Area. Otherwise, an update
AVT-message is sent to the AVT-manager. This
is described in more detail below:

1. When the speculation was correct:

(a) The input is committed up to the LOT:
> LOT results in a com¬

mitted output being sent to the succes¬
sors outside the VT-Area; the LVT is
advanced to mm(t*"d); and the AVT-
message, (LVT, LVT), is sent to the
AVT-Manager.

(b) If the input is not committed up to LOT,
i.e. min(t'lJ^d) < LOT, then an update
AVT-message, (LVT, LOT), is sent to
the AVT-manager (Figure 6).

' VT-Area J VT-Area

Figure 6. Update in a hybrid-node

2. Should the received input be different from
the speculated one, then the LOT is rolled
back to LVT, or the result is computed if it
had not already been done so, and compared
with the speculated one. The following three
cases arise:

(a) If there is no previous result, then the
following event is sent to the successors:

i^start = LVT + <5,
tend = min(t™d) + 6,
tendopt = rnin(t™LdVT) + 6,
/(input))

and, the following update AVT-message
is sent to the AVT-manager:

(LVT = LVT, AVT = min(t™LdVT))
(b) If the recomputed result is unchanged,

then the same event and AVT-message
(as in Case 1) is sent.

(c) Should the result differ from the one

propagated (Figure 7), then the correct
result is sent to its successors in the VT-

Area, in the following event:

(/start — LVT + 5,
tend = min(t™d) + 6,
tendopt=min(C7t)+<5,
/(input))

The following event is sent to the suc¬
cessors outside the VT-Area, with the
LVT being advanced to mm(t®"d), and
any state before LVT being discarded:

(Pstart = LVT + 6,
tend = min(t™d) + 6,
tendopt = tend,
/(input))

; VT-Area • VT-Area

Figure 7. Roll-back in a hybrid-node

• Once an LP receives an update AVT-message from
the AVT-manager, it fires conservatively (Fig¬
ure 8). The committed result is sent to all the
successors outside the VT-Area.

! VT-Area / VT-Area

Figure 8. Hybrid-node progression based on
AVT

A hybrid node progresses its LVT based on the
AVT when the following conditions hold: if the up¬
dated AVT is larger than the minimum end-time of
all the committed inputs, i.e., AVT > min(tt^ld),
then the following event is sent to its successors
outside the VT-Area

(pstart == LVT + 6, tend = AVT + S,
tend0pt — tend, /(tnput))

The LVT is advanced to the AVT, and any state
before the LVT is discarded.

3.2.4 The AVT-manager

The behaviour of the AVT-manager is next sum¬
marised.
The AVT-manager computes the AVT as the minimum
of all the estimates received by the GVT and hybrid
nodes in the VT-Area, and the minimum, committed
time-stamp of any event-message in transit within the
VT-area. If AVT can be advanced, then the AVT-
manager sends the updated AVT to all the nodes in the
VT-area. All events up to the AVT are then committed
and sent to neighbours outwith the VT-area. The LVT
is brought forward to the AVT and all state information
before the AVT is discarded.
When the AVT-manager receives an AVT-message,
{LVT, LOT), from an LP within its assigned VT-Area,
then it is stored and the AVT is re-estimated as the
minimum of the LOT of all the LPs in the VT-Area
and tend t of all events in transit within the VT-Area.
If the new estimate is greater than the previous one,
then the AVT-manager notifies all the LPs in the VT-
Area whose LVT is less than the AVT.

4. The Simulation Environment

The behaviour of the AVT algorithm was modelled in
C++ and simulated in a sequential event-driven simu¬
lator (also written in C++). The simulator also models
a distributed system connected by a network. All the
significant operations, such as computing results and
sending event messages, are assigned costs.
The network model assumes a fixed cost and a mini¬
mum fixed delay for each message. The bandwidth of
the network determines the number of messages that
can be transmitted over the network at any time. Mes¬
sages are delayed until the network bandwidth becomes
available. Thus the network model neither takes into
account the relative sizes of messages nor the effects of
thrashing, although congestion is accounted for.
We distinguish between two notions of virtual time.
The virtual time according to the AVT algorithm is
called virtual time. The virtual time according to the
simulated distributed system on which the AVT algo¬
rithm is run is referred to as simulated real time.
The parameters of interest are:

System Parameters

Number of Processors

Communication Bandwidth This determines the
number of messages the network can transmit at
any time. Bandwidth can be made unlimited, in
which case every message is delayed by a fixed
amount of simulated real time.

Event Propagation Delay The amount of simu¬
lated real time required to send an event from one

processor to another.
AVT Propagation Delay The number of units of

simulated real time needed to send an AVT-

message.

Input Delay The simulated real time required to read
an input value from an external source.

End of simulated real time The number of units of
simulated real time for which the distributed sys¬
tem is simulated.

Algorithm Parameters

Mode One parameter each from the two sets - {LVT,
AVT, GVT} and {Conservative, Optimistic} - is
selected.

AVT Processing Delay The amount of simulated
real time needed to process an AVT update at the
AVT-manager.

Model Parameters

Event Processing Delay The amount of simulated
real time needed to compute a result in an LP.

Input Interval The amount of virtual time between
the arrival of two input events to the model.

Delay The virtual time between receiving an event in
an LP and producing an output event.

Output Change Probability A value between 0%
and 100% which gives the probability of the output
of an LP changing should one of the inputs change

5. Results

The benchmark under simulation has cyclic (2 LPs)
and acyclic parts (3 LPs). The model was run under all
the different combinations of the following parameters:

Number of Processors {1, 2, 5}
Communication Bandwidth 1

Event Propagation Delay {1, 3, 10, 32, 100} units
of simulated real time

AVT Propagation Delay Same as Event Propaga¬
tion Delay

Input Delay 0 units of simulated real time
End of Simulated Real Time 10000 units

Mode {LVT, AVT, GVT} and Conservative (i.e.,
the VT-area as a unit operates conservatively al¬
though the LPs within the VT-area may progress

optimistically).

AVT Processing Delay 0 units of simulated real
time

Event Processing Delay 100 units of simulated real
time

Input Interval 100 units of virtual time.
Delay {1,3, 10, 32, 100} units of virtual time.
Output Change Probability {0%, 25%, 50%, 75%,

100%}
The graph in Figure 9 compares the progress in Vir¬
tual Time for the three time-keeping schemes (y-axis)
while changing the simulation parameters along four
dimensions - Delay, Event Propagation Delay (denoted
as "Message Delay" in the graph), Number of Proces¬
sors, and Output Change Probability ("Change Prob."
in the graph). In the two-processor case, the cyclic part
was mapped to one processor and the acyclic part to
the other. The graphs in Figures 10-13 show details of
Figure 9.
As the value of the Delay is incremented, the progress
of the virtual time improves, and in the extreme, to a
spike, when the Delay is the same as the Input Interval.
In this case the lookahead is right up to the arrival of
the next event, resulting in no event fragmentation.
We also observe that in the case of mapping to two pro¬

cessors, the performance of the AVT algorithm is more
stable over changes to the parameters, compared to the
GVT time-keeping scheme, which is hit by network de¬
lays, and to the LVT time-keeping mechanism, which
only performs well in the cases of good look-ahead (aka
Delay (<5)). In the mapping to five processors, it is evi¬
dent that the AVT algorithm degrades more gracefully
with increases in network delays.
The AVT algorithm maintains this superiority over the
other two time-keeping mechanisms for different Out¬
put Change Probability values.
The results demonstrate that the AVT algorithm per¬
forms better or just as well as the other two mecha¬
nisms for simulation models containing a mixture of
cyclic and acyclic parts.

6. Conclusions and Future Work

We have proposed a novel synchronisation scheme
called the Area Virtual Time (AVT) algorithm which
uses the apt time-keeping mechanism for simulation
graphs containing a combination of cyclic and acyclic
parts.
The cyclic part of the graph is mapped to a GVT-
based time-keeping mechanism, and the acyclic part to
an LVT-based time-keeping mechanism.
Our results demonstrate that the AVT algorithm pro¬

gresses simulation time more efficiently than either the

GVT- or LVT-based time-keeping schemes, and the al¬
gorithm is less sensitive to variations in key model and
communication parameters - a desirable property in a
distributed computation.
The AVT algorithm is currently being extended to sim¬
ulate efficiently simulation graphs in which connections
between nodes change dynamically.

References

[ArvindS92] D. K. Arvind and C. Smart. Hierarchi¬
cal Parallel Discrete Event Simulation in Composite
ELSA. In 6th Workshop on Parallel and Distributed
Simulation (PADS92), Pages 147-156, 1992.
[AvrilT95] H. Avril and C. Tropper. Clustered time
warp and logic simulation. Proceedings of the 9th
workshop on Parallel and distributed simulation, 1995,
Pages 112-119
[Bryant81] R. E. Bryant. A switchlevel model and
simulator for MOS digital systems. IEEE Transactions
on Computers, C-33(2):160177, Feb. 1981.
[ChandyM79] K. Chandy and J. Misra. Distributed
Simulation: A Case Study in Design and Verification
of Distributed Programs. IEEE Transactions on Soft¬
ware Engineering, SE-5(5):440-452, 1979.
[HamnesT94] Donald O. Hamnes and Anand Tri-
pathi. Investigations in adaptive distributed simula¬
tion. Proceedings of the 1994 Workshop on Parallel
and Distributed Simulation, 1994, Pages 20-23
[JeffersonS85] D. Jefferson and H. Sowizral. Fast
Concurrent Simulation Using the Time Warp Mecha¬
nism. In Proceedings of the Conference on Distributed
Simulation, pages 63-69, July 1985.
[JhaB94] Vikas Jha and Rajive L. Bagrodia. A unified
framework for conservative and optimistic distributed
simulation. Proceedings of the 1994 Workshop on Par¬
allel and Distributed Simulation, 1994, Pages 12-19
[RajaeiAT93] Hassan Rajaei, Rassul Ayani and Lars-
Erik Thorelli. The local Time Warp approach to par¬
allel simulation. Proceedings of the 1993 Workshop on
Parallel and Distributed Simulation, 1993, Pages 119-
126

[WoodT94] Kenneth R. Wood and Stephen J. Turner.
A generalized carrier-null method for conservative par¬
allel simulation. Proceedings of the 1994 Workshop on
Parallel and Distributed Simulation, 1994, Pages 50-57

Abbreviations in Figures 10-13:
EPD = Event Propagation Delay (message delay)
NP = Number of Processors
OCP = Output Change Probability

#T

yffA> 4000 — ff
J/

o 1000

i i i

3 10 32 100
Delay [time units]

— LVT

— AVT

— GVT

Figure 10. Progress for Delay=1,3,10,32,100;
EPD=1; NP=2; OCP=75%

LVT

— AVT

— GVT

Figure 11. Progress for Delay=32; EPD=1, 3,
10, 32,100; NP=5; OCP=0%

110000
® 9000

= 8000 -

| 7000 -
i= 6000 -

| 5000 -

« 3000
® 2000

o 1000 -

0 —I
2 5

Number of Processors

— lvt

— AVT

— GVT

Figure 12. Progress for Delay=10; EPD=10;
NP=1, 2, 5; OCP=0%

Output Change Probability

— LVT

— AVT

— GVT

Figure 13. Progress for Delay=32; EPD=32;
NP=2; OCP=0%, 25%, 50%, 75%, 100%

Bibliography

[ArvindS92] D. K. Arvind and C. Smart.
Hierarchical Parallel Discrete Event Simulation in Composite ELSA.
In Proceedings of the 6th Workshop on Parallel and Distributed Simu¬
lation, Pages 147-156, 1992.

[ArvindS2001] D. K. Arvind and J. Schneiders.
Area Virtual Time.

In Proceedings 5th IEEE International Workshop on Distributed Simu¬
lation and Real Time Applications, Cincinnati, Ohio, USA, Pages 105-
112, August 2001.

[AvrilT95] H. Avril and C. Tropper.
Clustered Time Warp and Logic Simulation.

Proceedings of the 9th Workshop on Parallel and Distributed Simula¬
tion, Pages 112-119,1995.

[BauerSK91] H. Bauer, C. Sporrer, andT. H. Krodel.
On Distributed Logic Simulation Using Time Warp.
In A. Halaas and P. B. Denyer, editors, VLSI 91, Pages 127-136, Edin¬

burgh, Scotland, 1991.

[Bellenot90] S. Bellenot.
Global Virtual Time Algorithms.
In Proceedings of the Multiconference on Distributed Simulation,

Pages 122-127, 1990.

[Bryant77] R. E. Bryant.
Simulation of Packet Communication Architecture Computer Sys¬
tems.

140

Bibliography 141

Computer Science Laboratory, MIT-LCS-TR-188. Massachusetts Insti¬
tute of Technology, Cambridge, Massachusetts, 1977.

[Bryant81] R.E.Bryant.
A Switchlevel Model and Simulator for MOS Digital Systems.
IEEE Transactions on Computers, C-33(2), Pages 160-177, Feb. 1981.

[CaiT90] W. Cai and S. J. Turner.
An Algorithm for Distributed Discrete-event Simulation: The "Carrier
Null message" Approach.
In Distributed Simulation: Proceedings of the 1990 SCS Muliconfer-
ence on Distributed Simulation, Pages 3-8, January 1990.

[CarothersPF99] C. D. Carothers, K. S. Perumalla and R. M. Fujimoto.
Efficient Optimistic Parallel Simulations Using Reverse Computation.
ACM Transactions on Modeling and Computer Simulation, Vol. 9,
No. 3, Pages 224-253, July 1999.

[ChandyMH83] K. M. Chandy, J. Misra, and L. M. Haas.
Distributed Deadlock Detection.

ACM Transactions On Computer Systems, Vol. 1, No. 2, Pages 144-
156, May 1983.

[ChandyM79] K. Chandy and J. Misra.
Distributed Simulation: A Case Study in Design and Verification of
Distributed Programs.
IEEE Transactions on Software Engineering, SE-5(5), Pages 440-452,
1979.

[ChandyM81] K. M. Chandy and J. Misra.

Asynchronous Distributed Simulation via a Sequence of Parallel Com¬

putations.
Communications of the ACM, Vol. 24, No. 11, Pages 198-206, Nov.
1981.

[DickensR90] P. M. Dickens and P. F. Reynolds.
SRADS with Local Rollback.

Proceedings of the 1990 SCS Multiconference on Distributed Simula¬
tion, Pages 137-143, January 1990

Bibliography 142

[FerschaC94] A. Ferscha and G. Chiola.

Self-Adaptive Logical Processes: the Probabilistic Distributed Simu¬
lation Protocol.

In Proceedings ofthe 27th Annual Simulation Symposium, IEEE Com¬

puter Society Press, Pages 78-88, 1994.

[Gafni88] A. Gafni.
Rollback Mechanisms for Optimistic Distributed Simulation Systems.
In Proceedings of the SCS Multiconference on Distributed Simulation,
19 (3), Pages. 61-67, February 1988.

[HamnesT94] Donald O. Hamnes and Anand Tripathi.

Investigations in Adaptive Distributed Simulation.

Proceedings of the 1994 Workshop on Parallel and Distributed Simu¬
lation, Pages 20-23, 1994.

[Jefferson85] D. Jefferson.
Virtual Time.

ACM Transactions on Programming Languages and Systems 7 (3),
Pages: 404-425, 1985.

[JeffersonS85] D. Jefferson and H. Sowizral.
Fast Concurrent Simulation Using the Time Warp Mechanism.
In Proceedings of the Conference on Distributed Simulation, Pages
63-69, July 1985.

[Jefferson90] D. Jefferson.
Virtual Time II: the Cancelback Protocol for Storage Management in
Time Warp.
In Proceedings of the 9th Annual ACM Symposium on Principles of
Distributed Computing, Pages 75-90, New York, 1990.

[JhaB94] Vikas Jha and Rajive L. Bagrodia.
A Unified Framework for Conservative and Optimistic Distributed
Simulation.

Proceedings of the 1994 Workshop on Parallel and Distributed Simu¬
lation, Pages 12-19, 1994.

[LinL89] Y.-B. Lin and E. D. Lazowska

Bibliography 143

The Optimal Checkpoint Interval in Time Warp Parallel Simulation.

Department of Computer Science and Engineering, Technical Report
89-09-04, University of Washington, Seattle, Washington, 1989.

[LinP91] Y.B. Lin and B. R. Preiss.

Optimal Memory Management for Time Warp Parallel Simulation.
ACM Transactions on Modeling and Computer Simulation, Vol. 1,
No. 4, Pages 283-307, October 1991.

[Mattern93] F. Mattern.
Efficient Algorithms for Distributed Snapshots and Global Virtual
Time Approximation.
Journal ofParallel and Distributed Computing, Vol. 18, No. 4, Pages
423^434, August 1993.

[MisraC82] J. Misra and K. M. Chandy.
Termination Detection of Diffusing Computations in Communicating

Sequential Processes
ACM Transactions on Programming Languages and Systems, Vol. 4,
No. 1, Pages 37-43, January 1982.

[Misra86] J. Misra.
Distributed DiscreteEvent Simulation.

ACM Computing Surveys, Vol. 18, No. 1, Pages 39-65, 1986.

[RajaeiAT93] Hassan Rajaei, Rassul Ayani and Lars-Erik Thorelli.
The Local Time Warp Approach to Parallel Simulation.
Proceedings of the 1993 Workshop on Parallel and Distributed Simu¬
lation, Pages 119-126, 1993.

[Samadi85] B. Samadi.
Distributed Simulation: Performance and Analysis.
Ph.D. dissertation, Department of Computer Science, UCLA, Los An¬

geles, 1985.

[SokolBW88] L. Sokol, D. Briscoe, A. Wieland.
MTW: A strategy for Scheduling Discrete Simulation Events for Con¬
current Execution.

Bibliography 144

Proceedings Distributed Simulation Conference, Society for Computer
Simulation, February 1988.

[SrinivasanR98] S. Srinivasan and P. F. Reynolds.
Elastic Time.

ACM Transactions on Modeling and Computer Simulation, Vol. 8,
No. 2, Pages 103-139, April 1998.

[Steinman91] J. Steinman.
SPEEDES: Synchronous Parallel Environment for Emulation and Dis¬
crete Event Simulation.

In Proceedings of the SCS Multiconference on Advances in Parallel
and Distributed Simulation, Pages 95-103, 1991.

[West88] D. West.

Optimizing Time Warp: Lazy Rollback and Lazy Re-evaluation.
Masters Thesis, University of Calgary, Calgary, Alberta, 1988.

[WoodT94] Kenneth R. Wood and Stephen J. Turner.
A Generalized Carrier-null Method for Conservative Parallel Simula¬

tion.

Proceedings of the 1994 Workshop on Parallel and Distributed Simu¬

lation, 1994, Pages 50-57.

