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CHAPTER I

HISTORICAL INTRODUCTION

(1.1) Inadequacy of the Dirac Theory of the Electron

As early as 1934 it had been suggested by Houston and

Hsieh that Dirac's relativistic electron theory did not

give a completely satisfactory account of the fine-

structure of the spectrum of atomic hydrogen. The measure¬

ments of R.C. Williams (1938) on the fine-structure of the

H^ line indicated that the component associated with the
2 2

transition 3 P^- > 2 ~s^_ was not in the predicted position
relative to the other components. The alleged discrepancy

was, however, on the limit of the precision then attainable

in optical spectroscopy and its existence was not generally

admitted by the spectroscopists.

With the development of microwave techniques direct

measurement became possible of the splitting of sublevels

belonging to the same principal quantum number, n. It was

shown by Lamb and Retherford (1947, 1950, 1951, 1952) that
their observations of the 22Sjl ant^

intervals in atomic hydrogen implied an upward shift of
p

the 2 s^ level relative to the p levels of about 1060 Mc/s
(0.035 cm*""*"). In Dirac theory the first interval is

actually zero, of course. Quantitatively, these measure¬

ments confirmed the observations of Williams mentioned
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above. The subsequent experimental studies of the spectra

of hydrogen, deuterium, tritium and singly-ionised helium

by the techniques of both optical and radio-frequency

spectroscopy have been discussed in detail by Series (1957).
It has been found that s-levels are shifted, while p, d,

etc., levels are unaffected.

Bethe (1947) was the first to give a theoretical

account of the phenomenon leading to a quantitative agree¬

ment with the observation of Lamb and Retherford. Although

there is a small contribution arising from other causes

(e.g. vacuum polarisation), the anomaly is associated

mainly with the electron's self-energy. Bethe's calcula¬

tion took account only of the latter contribution. A full

account would be out of place here. Suffice it to say that

the calculation was based on the concept of the self-energy

as arising from the interaction between the electron charge

and the so-called zero-point fluctuations of the electro¬

magnetic field in the surrounding vacuum, and that it in¬

volved the subtraction of two divergent integrals repre¬

senting the self-energies of a bound and a free electron

respectively. This technique, as we shall see, was to

become an essential feature of the later, more elaborate

theories of quantum electrodynamics. Anticipating for a

moment the discussion of section (1.2) we note that these

theories lead to the idea of "renormalisation" of mass and

of charge. That is, in the case of mass, the observed mass
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of the electron is supposed to be made up of a "bare mass"

together with a divergent contribution from the self-

energy.

Now the Dirac theory of the electron makes use of

parameters e and M which are of the nature of a "bare

charge" and "bare mass", respectively, and it cannot be

expected to describe accurately the motion of a real

electron, even when the observed values eQ and MQ are
used for e and M. This neglect of the effects of the

electron's own field on its motion was the reason for the

discrepancy between the predictions of Dirac's theory and

the results of the experiments referred to above.



(1.2) Quantum Elect rodynamlc affects and the g-factor
Anomaly

Calculations of the effects on the electron's motion

of its own field have been attempted from the earliest

days of electron theory. For a point electron in classical

theory, however, these effects turn out to be of infinite

magnitude. The difficulty could, of course, be avoided by

assuming a finite radius for the electron. Such a model

is no longer feasible in quantum electrodynamics and indeed

in the quantum-theoretic approach the infinities were, at

first sight, all-pervasive. One may see already in cer¬

tain classical relativistic considerations a hint of the

approach by means of which these infinities have been

eliminated in a self-consistent way, at least in the case

of electrodynamics. Classically, if one assumes that the

electronic charge is distributed uniformly over the sur¬

face of a sphere of radius R, the self-energy of the
2

electrostatic field of the "particle" is e /2R (see, for

example, Ranofsky and Phillips, 1955). This would appear

as a contribution to the observed mass. It cannot con¬

stitute the whole mass of the electron since this would

lead to difficulties when we consider a moving electron.

In this case the field possesses momentum as well as

energy and the total momentum and total energy of an

electromagnetic field transform together like a four-

vector under a Lorentz-transformation only if there are

no sources present. On the other hand the total energy
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(electromagnetic and other) and the total momentum

(electromagnetic and other) of a particle (charged or not)

together transform like a four-vector. One should, there¬

fore, think of the observed mass, MQ, as made up of two
parts, a "bare mass", M, of unknown origin and a contri¬

bution, aM, from the interaction of the charge with its
own field, such that

MQ = M + aM #

On this view neither M nor dM need be finite

provided that they are separately unobservable.

These hints have been elaborated and systematised in

the extensive development of quantum electrodynamics

associated principally with the names of Schwinger,

Feynman and Dyson, which followed on the experiment of

Lamb and Retherford and the work of Bethe. According to

this formalism, not only must the mass be " renormalised",
as indicated above, but so also must the charge. Thus

the observed charge eQ of the electron is to be written

eQ = e(l + A)
where e is a "bare charge" and A a (divergent) con¬

tribution whose origin actually lies not only in the

properties of the electron itself but also in those of

the vacuum surrounding it (the "vacuum polarisation").

The achievement of the more recent theory of quantum

electrodynamics has been two-fold. First, it describes

the various possible modes of interaction of the electron
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and photon fields in the language of scattering theory in

a way which makes their relativistic transformation

properties explicit and hy so doing is able to separate

out the matrix-elements for each possible type of

scattering of one field by another in a relativistically

covariant way. Second, when this programme is carried

through, it is found that the divergences occur only in
certain of the terms in the matrix-elements, and it is

possible to interpret these in a completely consistent

way as contributions to the mass and charge of the elec¬

tron, and thus to eliminate them from the expressions for

the transition matrix-elements. The remaining terms turn

out to be finite and they can be evaluated by substituting

the observed values of charge and mass for the "bare"

charge and mass wherever these occur. The whole treatment

depends on being able to write down the scattering

matrix-elements in an expansion of the type characteristic

of perturbation theory. If, further, it is desired to

evaluate the theory for comparison with experiment it is

obviously necessary that the expansion converge. The

theory leads naturally to an expansion in powers of the

square of the coupling constant, g, and for electro-
2

dynamics, where g = <x ■=* 1/137, this quantity is much less

than unity, so that in practice the expansion converges

rather rapidly, at least in the sense that the magnitudes

of successive terms decrease rapidly over the first few
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tenns, the ones of practical interest.
As examples of the kinds of term which crop up we

shall consider briefly the scattering of an electron by

an external electromagnetic field represented by the four-

potential A, . This might represent the Coulomb field
of the nucleus in the case of the hydrogen atom. The

zero-order approximation to the matrix-element gives the

Dirac results. The second-order (in e) and higher terms

(after renormalisation) represent small corrections to

these results, of the type observed by Lamb and Rether-

ford. The complexity of the virtual processes contribut¬

ing to each term increases very rapidly with increasing

order of the term and, since the second order term always

turns out to be much larger than any other, we shall

consider it alone. It is convenient to represent each

type of virtual process contributing to a term by a

Feynman diagram. There are three types of process lead¬

ing to observable effects in second order, represented by

the four graphs of Fig. (1.2.1). Graphs (a) and (b)

represent a process which may be thought of as the

emission and subsequent reabsorption of a virtual photon.

This process is associated x^ith the self-energy of the

electron and leads to a mass and charge renormalisation.

Graph (c) represents the creation and subsequent annihila¬

tion of virtual electron-positron pairs in the vacuum.

Polarisation of these charged pairs by the external field
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Aext lQads to a contribution to the second order term and

to a renormalisation of charge. This process is often

referred to as the vacuum polarisation. Finally graph (d)

represents a process whereby a virtual photon is emitted,

the electron is scattered by the external field and the

virtual photon is reabsorbed. This is known as a vertex

modification and leads to a charge renormalisation.

Graph (d) also contributes to the second-order correction

to the scattering in a way which will be explained in more

detail below.

The phenomenon of the Lamb-shift, where the external

field is the Coulomb field of the nucleus, seems to con¬

stitute the most comprehensive single test of the theory

at present (though certainly not the only test). This is

illustrated in Table (1.1).

The Lamb-shift corrections apply to a bound electron

but radiative effects are also predicted for a so-called

"free electron" in interaction with an external field.

By the term "free" is meant, of course, that the electron

in question is in a continuous-energy state under the

influence of the external field. The radiative effects

in this case manifest themselves as a correction, of
order a~ 1/137, to the Dirac magnetic moment of the elec¬

tron. The correction is often expressed in terms of the

free-electron g-factor, when it is known as the g-factor

anomaly.



TABLE1.1

RadiativeCorrectionstoAE(2s-2p^)inHydrogen(Lamb-shift)
OrderofTeim

Graphs

ContributiontoLamb-shift (Mc./sec.)K

"JESS'
Experiment (Mc./sec.)

2nd

(a)+(b) (c) (d)

1011.45 -27.13 67.82

4th

+proton mass,etc., corrections

All

5.89

Total.1058.03

1057<>77£0.10

xBetheandSalpeter,1958.,
3636Dayhoff,TriebwasserandLamb,1953.
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The g-factor, introduced by Lande' (1923), may be
defined as the ratio of the magnetic moment in units of the

Bohr magneton to the angular momentum in units of t .

Thus, for a free Dirac electron,

g = 2.

A small modification is introduced through the value of

the magnetic moment, the theoretical expression for which
is

(i = jj,q [l + a/2rc + C.(aA)^ + J
where p, and nQ are, respectively, the observed and
the Dirac values of the free-electron magnetic moment and

C is a numerical constant. This leads to

g/2 - 1 = a/2n + C(a/m)^ + .....

which is the g-factor anomaly. The factor C was original¬

ly calculated to be -2.973 (Karplus and Kroll, 1950) but

was later recalculated (Sommerfield, 1957, 1958) and is

now believed to be -0.328 (Petermann, 1958). To the

accuracy to which the fine-structure constant is known,

(Cohen and Dumond, 1958) the g-factor anomaly for the

free electron is therefore predicted to be

(g/2) - 1 = 0.00115961(4) (to fourth order).

± 0.000000004

p
It should be remarked that the term C(a/m) is a

fourth-order term and it amounts to slightly less than

0»2% of the g-factor anomaly. It is interesting to note
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that whereas the Lamb-shift stems to a greater or lesser

degree from the effects of all the possible second order

processes represented by the Feynman graphs (a) to (d)

((Fig. 1.2.1), the principal term in the expression for

the g-factor anomaly stems exclusively from the vertex

modification, graph (d)^ therefore, if the Lamb-shift and

the g-factor anomaly are separately verified experimental¬

ly (to second order) this will verify the contributions of

graphs (a) to (c) and of graph (d) independently.

Finally, it should be remarked that, of course, a

magnetic moment anomaly is also predicted for a bound

electron (this was first suggested by Breit, 1948) and

this will manifest itself, not only as a small contribution

to the Lamb-shift, but also, more specifically, in any

purely magnetic interaction in which the electron may take

part, such as the hyperfine-structure interaction. There

arise, therefore, two possible approaches to the experi¬

mental verification of the predicted value of the g-

factor anomaly, one relying on a study of bound electrons

the other on a study of free electrons.



(1.3) Experimental Verification of the Predicted g-factor

Anomaly for Bound Electrons.

The earliest measurements to show the effects of the

anomalous magnetic moment of the bound electron were those

of Nafe, Nelson and Rabi (19^7) (see also Nafe and Nelson,

19lj.8) on the hyperfine structure separation, (Av)H> in the
ground-state of hydrogen. This was a particularly con¬

venient state to choose, first because it is a very pure

state where gT = go very closely and second because exact.cJ S

wave-functions can be calculated (for a point nucleus) and

a correspondingly exact basic formula for (Av)^ obtained.
One should note, however, that the measured value of gT

cannot at once be compared with the predicted g-factor for

a free electron. A small correction of the form (l + a*~js)
must be applied (Breit, 1928). In addition, certain

reduced-mass, relativistic and small quantum-electro dynamic

corrections have to be made to the theoretical value of

(Av)h> some of which cannot be evaluated exactly. For
example, one should take into account the finite size and

electromagnetic structure of the proton. Of these cor¬

rections only the reduced-mass and relativistic corrections,

proportional to (1 + m/M)°^ and to (l + 3a2/2) (Breit, 1930)

respectively, are of importance in a test of the second-

order term a/2x. A summary and discussion of these cor¬

rections has been given by Series (1957).

Nafe, Nelson and Rabi (loc. cit.) using the method of
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atomic beam magnetic resonance, found a discrepancy between

the prediction of Dirac theory and their experimental

result, which was not, however, a highly precise result

ov/ing to the fact that the value of the proton magnetic

moment was not accurately known at that time. It was

Breit (1947) who suggested that the discrepancy arose from

an anomaly in the electron magnetic moment. The Dirac

value of (Av)h, with the two main corrections mentioned
above is

(Av)h = 1418.90 - 0.03 Mc/s.,
using the values of the atomic constants given by DuMond

and Cohen (1955). Recent experimental values are

(AV)H

and

(Av)h

After the various small corrections mentioned above,
5

amounting to a few parts in 10 , have been applied to the

Dirac value, multiplication by m/m-0 = 1.0011596 should
lead to a result in agreement with the experimental values.

Agreement is indeed obtained to an accuracy of the order

of one part in 10^ in (Av)H> representing a verification
of the g-factor anomaly itself to the order of 1 % .

Because of the uncertain corrections involved the method

1420.40573 )
Mc/s

±0.00005
(Kusch, 1955)

1420.40580 )

- 0.0006
Mc/ s

(Wittke and Dicke, 1956).
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is limited to a precision of this order.

Kusch and Foley (1948) attempted to evaluate the g-

factor anomaly by comparing the moments of gallium in two

spin and orbital contributions combine differently for

these states and a value of g„ could be isolated. They

found

Similar measurements on sodium and gallium and on

sodium and indium gave essentially the same value, showing

that the anomaly was an intrinsic property of the electron

and not an effect dependent on the state of binding. The

method is not acceptable for a precision determination be¬

cause one cannot rely on the purity of the states in com¬

plex atoms, nor can one calculate the necessary corrections.

Further progress, in fact, has come mainly from

studies of the ground-state Zeeman splitting in hydrogen.

The central problem in such work was the measurement of

the magnetic field. It therefore became customary to refer

the measured g-factor anomaly to the free proton g-factor

through a determination of the proton resonance frequency

in the same magnetic field. Thus in one experiment a value

the measurement of the zero-field and Zeeman splitting

frequencies in hydrogen in terms of the nuclear precession

frequency for protons in a spherical sample of mineral-oil

in the same magnetic field. Then, in an entirely

different states P±, in the same magnetic field. The

g/2 - 1 = 0.00111+ t 0.00004.

would be obtained by a method involving
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independent experiment, the ratio, g^/gp, of the free
electron cyclotron g-factor to the free-proton g-factor

would he determined, again in a common magnetic field.

The first type of experiment could he carried out

using either of two different experimental techniques,

Prodell and Kusch (1952) and Koenig, Prodell and Kusch

(1952) used the atomic-heam method and arrived at the

result

g/gp = 658.2288 ± 0.0006 ,

where the value given has heen corrected to refer to the

free-electron g-factor and to the protons in a spherical

sample of mineral oil.

A somewhat greater precision was achieved hy Beringer

and Heald (195^) using the electron paramagnetic resonance

method for measuring the Zeeman splittings. Their result,

referred to the same conditions, was

g/gp = 658.2298 ± .0003 .

A third result, obtained with, the apparatus used hy

Beringer and Heald hut now referring to deuterium instead

of hydrogen, was that of G-eiger, Hughes and Radford (1957)

g/gP = 858.2286 t 0.0009 .

Finally, a redetermination of gg/gp hy E. Lamhe using the
method of paramagnetic resonance has heen reported

(DuMond, 1959). A precision some ten times better than

that achieved hy Beringer and Heald is said to have been
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obtained. The quoted experimental result was referred to

the protons in a sample of distilled water and unfortunate¬

ly the geometry of the sample was not stated. Assuming

that it was spherical and making the necessary diamagnetic

correction (Ramsey y 1950), we find

gg/gp = 658.22983 - 0.0000U. ,

where now refers to protons in a spherical mineral oil

sample. It will be observed that this agrees completely

with the Beringer and Heald value. Again the Geiger,

Hughes and Radford result agrees well with that of Koenig,

Prodell and Kusch. The two pairs of values, however, are

only in marginal agreement. It is suggested that, in

arriving at a best value for gg/gp, we should ignore the
Geiger, Hughes and Radford result. Firstly its poorer

stated accuracy would in any case lead to its being assign¬

ed a small relative weight. Secondly, a deuterium result

may not be strictly comparable with those for hydrogen.

With regard to the Koenig, Prodell and Kusch result, it

should not lightly be discarded since it was obtained by an

independent technique which, even at that relatively early

date, had reached an advanced state of development. It is

felt, therefore, that it should be accorded the full weight

corresponding to its stated precision. The result of com¬

bining the three values is

g/gp = 658.22982 - O.OOOOh .
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It is seen that, in practice, the Koenig, Prodell and Kusch

result might as well have been neglected*

Coming now to the second type of experiment, the

earliest determination of g„/g^ was carried out by
</ P

Gardner and Pur cell (191+9) (see also Gardner, 1952).

The cyclotron resonance frequency of free low energy

electrons passing across a 3 cm. waveguide was compared with

the spin precession frequency of protons in a spherical

sample of mineral oil in the same field. The result was

2ge/gp = 657.1+75 - 0.008,
where the quoted error was twice the standard deviation.

A second determination was undertaken by Pranken and

Liebes (1956), in which much greater care was taken to

eliminate the effects of stray electric fields in the

cavity. Their result was

2gg/gp = 657.U63 t 0.007 .

The stated error, however, included 95$ of the data and it

would seem that a more suitable figure for a standard

deviation would be - 0.003. The result did not agree

well with that of Gardner and Purcell and this led Hardy

and Purcell (1959) to repeat the earlier experiment more

carefully with the result that

2g^/gp = 657.1+676 t 0.0010 .
It is understood that a redetermination of g./g has

<t/ P

recently been carried out by Sanders and Woodgate at the
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Clarendon Laboratory, Oxford, in which special care has

been taken to eliminate stray electric field effects, and

that the result is in agreement with that of Hardy and

Purcell.

It seems clear, then, that the result of Gardner and

Purcell may safely be ignored and, taking a weighted mean

of the two later results, we find

2g^/g = 657.^671 ± 0.0010.
ir

Combining the results of the two types of experiment,

we find

g/2 - 1 = 0.001160(0),
- 0.000001(5)

in excellent agreement with the theoretical prediction.

Although this outcome is satisfactory, it cannot be said

to be completely convincing. Quite apart from the lack of

full published accounts of the Hardy and Purcell and of the

Lambe experiments, the whole approach to the determination

of the g-factor anomaly through measurements on bound elec¬

trons suffers from two serious drawbacks. Firstly, the

result is obtained as a difference of the order of one part

in a thousand between the actual measured quantities.

Secondly, and because of this, the several corrections which

need to be made to the values of gs/g ,mainly for the dia-p

magnetism and geometry of the proton sample,and some uncer¬

tainties regarding the elimination of stray electric field
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effeets in the determinations of g„/g^ assume a dispropon
</ P

tionate degree of importance.



(1.4) Experimental Determinations of the g-factor anomaly
for Free Electrons

The whole problem of eliminating the effects of bind¬

ing and the nuclear g-value can be avoided by studying free

rather than bound electrons. The possible types of experi¬

ment fall into two classes;

(1) experiments which measure the g-factor of the free

electron directly,

(2) experiments which measure the anomaly (g/2) - 1

directly.

Into class (1) would fall, for example, the proposed

"macroscopic atom" experiment of Bloch (1953)• Very low-

energy electrons were to be trapped in a shallow potential

well in the presence of a homogeneous magnetic field. By

application of a radio-frequency field and suitable mani¬

pulation of the effective barrier heights in the trap it

was hoped to determine the spin precession frequency and

the cyclotron resonance frequency in the same magnetic

field. Because of practical difficulties this experiment

has not borne fruit and no detailed discussion of it will

%
be given here.

Also into class (1) falls the interesting experiment

of Dehmelt (1958). Partially polarised free thermal elec¬

trons (energy ^ 400°K) were produced by exchange collisions

between unpolarised electrons and optically oriented

sodium atoms in the presence of a buffer gas

(argon + helium) at 50-100 m.m. pressure. The initial

^ see Gardiner, 1961.
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flux of unpolarised electrons was obtained either by

radio-frequency pulse ionisation or by photo-ionisation of

a rubidium-cesium wall-coating using mercury light.

The polarised electrons, if undisturbed, could then

transfer some of their polarisation back to unoriented

sodium atoms by a second exchange collision. The overall

degree of orientation of the sodium vapour was monitored

by detecting the absorption of a beam of suitably polarised

sodium light. If a radio-frequency field was applied such

that its frequency was in resonance with the spin pre¬

cession frequency of the free electrons, the overall

orientation was found to decrease, the resonance condition

being detected as a decrease in transmission of the polar¬

ised beam. Then, if V~s was the observed resonance fre¬
quency,

where gg is the free-electron g-factor and BQ was the value
of the steady homogeneous magnetic field applied to the

sample. The quantity in brackets is half the electron

cyclotron-resonance frequency, but unfortunately the latter

could not be observed in Dehmelt's apparatus, apparently
because the relaxation time, f , associated with electron-' a'

argon collisions was much shorter than the cyclotron period,

Tc, in the field used (BQ— 20 gauss). One finds

% = 2mm/eBQ
OH. 15 mp,sec.,
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while Dehmelt assumes

m 0.05 mp,sec.

Neither could a direct comparison with the proton reson¬

ance frequency be made because of the low value of the

magnetic field. Instead, Dehmelt made a direct comparison
of V_ with the sodium hyperfine splitting frequencies,

V ]_—^ V4> shown in Figure (1.4.1), in the same magnetic
field, Bq• Then using a value of gj/gj from atomic beam
work, where gj is the bound electron g-factor in the
ground state of sodium (an s-state) and gj is the g-factor
for the sodium nucleus, he found

gj/gs = 1.00002(6)
t 0.00003 .

Although this result was not in itself sufficiently

precise to lead to an accurate determination of the free-

electron g-factor anomaly, the experiment was potentially

important. If the effect could be observed with a filling

of hydrogen and alkali vapour a direct comparison would

become possible between the free-electron g-factor and

the g-factor for the electron bound in hydrogen. Alter¬

natively, if an effect could be observed at very low
I I

pressures of buffer gas, it might become possible to com¬

pare directly the spin and cyclotron resonance frequencies

of the free electrons. Unfortunately it is essential that

the electron energy be kept very low, otherwise the spin-
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exchange cross-section becomes small, and this could lead
to difficulties when the thermal relaxation time is in¬

creased, as it would be at low pressures, owing to the

"heating" effect of the radio-frequency field. In fact it

is clear that the two requirements of low electron tempera¬

ture and appreciable cyclotron resonance absorption

militate against one another, although this could probably
be overcome by alternating the two forms of absorption in

time, at the expense of slight loss in accuracy. No ex¬

periments along these lines have been reported so far.

A quite different kind of experiment also falling

into class (1) was that of Louisell, PIdd and Crane (1954).
A partially polarised beam of 420 Kev electrons, obtained

by Mott scattering at a thin gold foil, was directed

parallel to the magnetic field of a long solenoid and the

rotation of the plane of polarisation of the beam was

measured after a known distance had been traversed in the

field. The plane of polarisation was determined by ob¬

serving the azimuthal asymmetry in a second Mott scatter¬

ing. The frequency of precession of the plane of polari¬

sation is linearly related to the g-factor in this experi-

ment and only five rotations of the plane of polarisation

could be observed with the solenoid used. Hence the

accuracy of the final result was rather poor. The value

obtained was

g = 2.00 £ 0.01.

However, the experiment showed what was not generally
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admitted at the time (see Section (II.1)) that one could

perfectly well carry out experiments using quasi-homo¬

geneous fields to determine the magnetic moment of a free

electron, provided that the electron is polarised and its

polarisation detected hy strictly quantum-mechanical means.

From this work was developed the only experiment in

class (2) whose completion has so far been reported in the

literature, that of Schupp, Pidd and Crane (1961). A

detailed description of this masterly, but complex, experi¬

ment cannot be given here from considerations of space, but

there follows an outline of the more important features.

A pulsed beam of 100 Kev electrons from an electron

gun was incident on a gold scattering foil and, under the

influence of the magnetic field of a long solenoid, the

partially polarised beam scattered at ~89° followed the

helical path indicated in Figure (1.4.2). Part of the beam

was trapped for a measured time by the weak auxiliary

field of the trapping coil. The resulting precession of

the polarisation could be detected by measuring the asi-

muthal asymmetry in a second Mott scattering (see Figure

(1.4.3)). The central feature of the experiment was the

trapping of the beam and this was brought about by means

of the pairs of cylinders A and B, the inner and outer
'

members of which were connected together. The following

was the sequence of operations, repeated 1000 times per

second:

(i) with A at earth potential, a negative potential of

100 v. was applied to B:
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(ii) the electron-gun was pulsed on, emitting a 0.13 p.sec.

bunch of electrons:

(iii) the potential of B was reduced to ground in about

30 m[j,S9c., thus capturing some electrons in the

betatron-shaped field of the auxiliary coil5

(iv) The operating voltage was applied to the Geiger

counters;

(v) A pulse of -100 v. was applied to A to eject the

electrons from the trap;

(vi) The counting circuits were gated on;

(vii) Cylinders A were returned to ground potential,

completing the cycle.

It was found to be possible to trap electrons for

over 300 (j,s.ec. while still retaining a measurable

asymmetry in the second Mott scattering.

Calculations carried out in connection with this

experiment by Mendlowitz and Case (1955), using quantum-

mechanical methods, showed that the cyclotron and spin

precession frequencies are given by

Uc = U0U - 02)^ (1.4.1)

us = u0(l - g2)i [l +(g/2 - 1)(1 - E>2)"£] (1.4.2)
= wc + u)Q(g/2 - 1),

respectively, where

% = eBaxial^noc ' 13 = v/o>

and therefore that
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g/2 - 1 = (ws - wc)/wQ = wD/wQ (1.4.3)

Equation (1.4.2) may also be derived directly from the

more general equation (11.4.5) by substituting E = 0;

v.(B x n) = vBaxj^« Here ®axiai the axial com¬
ponent of the magnetic field in the solenoid, v is the

velocity of the electrons (v = constant), and n is a

unit vector directed along the outward radius of the

solenoid. The aximuthal asymmetry, as a function of the

time spent by the electrons in the field, was expected to

vary sinusoidally at the "beat frequency" which was

the difference between the cyclotron- and spin-precession

frequencies.

An important advantage of the pulsed method of work¬

ing was that counting and infection were done at different

times and background was therefore largely eliminated. On

the other hand a feature which detracted from the simplic¬

ity of the experiment was the need to measure uQ, which was
proportional to the mean axial field, Baxj_ai« The latter
was not uniform in the trapping region and therefore had

to be estimated by an indirect procedure assuming a cal¬

culated value of the radial field. The radial field was

derived from a calculated total field which was fitted to

a series of values measured by the proton magnetic

resonance method in the trapping region. The uncertainty

introduced by this procedure was estimated as 0.1 gauss

( ~0.1$ of the total field) which must certainly be
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considered a generous allowance since the total range of

values of the axial field over the trap was only 0.3 gauss

The uncertainty associated with counting statistics was

reduced to comparable proportions by fitting cosine curves

at several points over the range 30-300 |isec. trapping-

time .

An aspect of this experiment which is, perhaps, open

to criticism is the interpretation of the results.

Measurements were carried out over a range of electron

energies from 50-100 Kev (implying a range of magnetic

fields from 82-117 gauss) and unfortunately the values of

Wp/u0 were found to depend to a small extent on magnetic
field. Figure (1.4.4) shows a plot of the results against

1//®axial* The authors were unable to demonstrate directly
any definite cause of this trend and they chose to deal

with the problem by assuming that a constant radial elec¬

tric field was present in the trapping region, giving rise

to a variation of wD/wQ according to the law

wD/wo = a +(Sr/cBaxial) ^ " 1)/'3 + a|3] <1-4*4)
- a - Er/cB2k

where a (g/2) - 1 ,

k

r

2
er/mQc ,

radius of orbit

and B is written for E
axial*
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2
A plot of w^/u0 against 1/B should then give

approximately a straight line. By extrapolation to

1/B =0 of a straight line fitted to the experimental

points by the least squares method, the authors obtained

the value,

wD/w0 (extrapolated) = (1160.6 + 1.2) x 10"^ .

The more exact form of the chosen law, equation (1.4.4),
was then fitted to the experimental points by choosing the

parameters lr and "a" so as to make the curve pass
through the weighted mean point and have the slope of the

best straight line at that point. The value of "a" found

in this way was

a = (1160.9 i 2.0) x 10~6
where the error was chosen to be great enough to include

the weighted average value, 1162.75 x 10"^. With the

addition of a small allowance for systematic error, the

final result was given as

a = (1160.9 i 2.4) x 10~6 ,

showing no disagreement with theory.

Such evidence as they were able to obtain from in¬

dependent experimental checks, however, so far from sup¬

porting the hypothesis of a radial electric field effect,

actually opposed it. If one approaches the data with an

open mind, that is without any preconceived ideas of the
cause of the admitted trend, one is led to analyse them in
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the following way (Farago, private communication).

One asks the question whether or not an equation of

the second order in 1/B (a parabola on Fig. 1.4.4) is a

significantly better fit to the data by the least squares

criterion than a first order equation (a straight line on

Fig. 1.4.4). Such an analysis carried out by the writer

(Appendix C) shows that this is not the case and therefore

that, on the evidence of the data themselves, one is en¬

titled only to draw a best straight line through, the points

on Fig. (1.4.4). Extrapolating such a line to 1/B = 0,

one finds

uD/wo (extrapolated) = (1158.4 £ 0.8) x 10""^.
In order to be able to equate this to the g-factor anomaly

one must assume that the equation of the straight line is

of the form

u>D/w0 = a + const ./B,

an assumption which is at least as difficult to justify

as that made by Schupp, Pidd and Crane.

The choice between the two approaches, neither of

which leads to a result in disagreement with theory, must be

a matter for personal judgement as the authors themselves

admit. The present writer inclines to favour the choice

of the straight line extrapolation on the grounds that

what little evidence there was tended to discredit the

electric field hypothesis. It is perhaps worth remarking

that if one does assume a law of the form
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wd/wO = a + conS"k */B
one is immediately led to consider equation (1.4.3) again.

Clearly, since u0 oc Baxia^> a constant error in measure¬
ment of Up would lead to precisely the law just mentioned.
Now u)^ was obtained from the relation

uD = 2tcN/(M - tc)

where M was the trapping-time required for an integral

number, N, of cycles of polarisation asymmetry and t

was a small zero-error in the time-scale. However, detail¬
ed analysis of the figures given by the authors reveals no

indication of a constant timing-error, and the authors

give convincing evidence that N cannot be in error. The

calculated values of magnetic field have also been examined

and, with the exception of one value in which there appears

to be a small arithmetical slip, all the given data appear

to be consistent.

Some of the assumptions made in evaluating the experi¬

ment can be questioned, for example that the polarisation

immediately after the first scattering is strictly radial

and that it remains in a plane noimal to the solenoid axis

throughout the motion, that the trapped beam oscillates

symmetrically about the magnetic centre of the trap, and

so on. But such effects as these do not appear to be large

enough to explain the observed trend.

In spite of the difficulty of interpretation it must

be concluded that this experiment constitutes a striking
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verification of the predictions of the renormalised theory

of quantum electrodynamics and provides one of the most

reliable values of the free-electron g-factor anomaly yet

measured. It is the only method which shows definite

promise of being able to verify the fourth-order term,

-0.328 (a/n)^.



CHAPTER II

SPIN DYNAMICS MP MOTT SCATTERING

(II.1) Electron Spin

Before 1925 the quantum theory of the atom had been

based on a study of the classically allowed types of

motion of a charged point-particle in the field of a

nucleus, the quantisation being carried out by restricting

the classical orbits rather than by generalising the laws

of motion. Attempts to construct a realistic classical

model of a rotating electron had, however, met with

serious difficulties especially when the requirements of

relativity theory were taken into account (Kramers, 1957).
It would not have been surprising, therefore, if the

concept of electron spin (Uhlenbeck and Goudsmit, 1925)
had been received with some scepticism, the more so as

Uhlenbeck's and Goudsmit's calculation of the splitting

of certain atomic energy-levels by the spin-orbit inter¬

action was in disagreement with experiment by a factor of

two, an effect which was later explained as being due to

the so-called Thomas precession (Thomas, 1926). That the

new concept found immediate acceptance was due largely,

of course, to the striking manner in which it clarified
certain hitherto obscure problems of spectroscopy, not¬

ably the anomalous Zeeman effect and the doublet structure

of many X-ray and optical levels. Even this might not

have been enough had it not been for the fortunate
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circumstance that at the very time when the proposal was

made, the groundwork of the new theory into which the spin

angular momentum could be fitted in a natural way was in

process of being laid. It is an interesting coincidence

that the first identification of a dynamical variable hav¬

ing no classical analogue should have been made indepen¬

dently in the field of experimental physics at the same

time that the first truly quantum-mechanical laws of motion

were being formulated. Spin was early incorporated into

the new matrix-mechanics (Heisenberg and Jordan, 1926) and

soon afterwards Pauli developed what has now become the

best-known form of spin-theory, in terms of non-relativistic

wave-mechanics (Pauli, 1927).

Quite apart from any difficulties there may be in

setting up a classical model of the spinning electron, it

is easy to see that the spin angular momentum can have no

classical analogue. According to the Correspondence

Principle the classical analogue must be obtained from the

quantum-mechanical variable in the limit of large quantum

numbers, as h 0. Since the spin angular momentum is

postulated to be observable only as a half-quantum,

£ £h, it follows that it must be unobservable in the
classical limit.

An interesting consequence of this fact was pointed

out by N. Bohr (1928), following the success of the Stern-
Gerlach experiment with silver-atoms, namely that it is

impossible to distinguish between the two spin-states of



(II.1) -3

a free electron by means of any macroscopic experiment of

the Stern-Gerlach type. In more general terms, one cannot
separate electrons which are initially in opposite spin-

states by any device in which their orbits can be described

in purely classical terms. A detailed discussion of Bohrls

argument can be found in Mott and Massey (1949), where two
different types of hypothetical experiment are analysed.

Unfortunately, a somewhat misleading conclusion became

widely accepted among physicists, including Mott and Massey

who wrote "From these arguments we must conclude that it is

meaningless to assign to the free electron a magnetic

moment." Presumably what they intended to convey was that,

as long as the electron is free in the sense that its orbit

can be correctly described in classical approximation, the

magnetic moment is unobservable (not because it does not

exist, but because any Stern-Gerlach splitting of an elec¬

tron beam produced by quasi-homogeneous electric and mag¬

netic fields would be small compared to the spreading of

the beam by diffraction).

If, however, we are allowed first to prepare the

electron in a definite spin-state then to send it through

our quasi-homogeneous electric and magnetic fields and

finally to measure the components of the spin along definite

axes, we shall find that the results of our experiment will

depend in a perfectly definite and, as we shall see in the

following sections, theoretically predictable way on the
initial spin-state and the electromagnetic fields.
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Furthermore, the theory shows that in an experiment of

this type the effect of the fields is just such as would

be experienced by a classical charged point-particle

endowed with a magnetic dipole moment very closely equal to

that postulated for the electron by Uhlenbeck and Goudsmit,

namely one Bohr magneton. It should be remarked that if we

consider such an experiment conducted with a single elec¬

tron there is, as is well-known, no possibility of measur¬

ing the final spin-direction in the sense implied above.

In practice a beam of electrons would be used, not all the

members of which will be in the same spin state in general.

The theory is then developed in terms of the "polarisation"

of the beam rather than of the spin itself.

Before discussing the concept of polarisation, it will

be convenient to summarise the relevant conclusions of the

Pauli non-relativistic spin-theory. For fuller details

see, for example, Rose (1961). Here, and throughout this

chapter, we use units such that di = m = c = 1. The

vector spin operator is

where the components of 0*, the Pauli spin operator, can

be written (in the "standard" representation)

The commutation relations satisfied by these operators

s £ 2T
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may be written

°k

where e

" iejklal + 9jk (J, k, I =1, 2, 3)

' jkl
f M 1

U 1; (j,k,l )

not all different

a cyclic/non-cyclic permuta¬
tion of (1,2,3)

and is the Kronecker-d. The actual direction of the

spin at any time is inherently unobservable, for the con¬

trary would imply the vector eigenvalue equation

<Xty = n \J)
—

where n is some unit vector, and this can easily be shown

jto be incompatible with the commutation rules of the

However, the component of gr along one definite direction

n is observable and so

£ 1flf.n ij) = \\|), where X =

since (cr.n)2 = S.°2. = I*

The wave-function is a two-component function, a

Pauli spinor. In the standard representation the simplest

choice for n is along the z-axis when the wave-functions

which diagonalise o*z can be written

\

\=-i = r

1

0

"o"
1

The labels £ % refer, of course, to the z-components of the

spin, Any other two-component spinor can be written as a
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linear superposition of these wave-functions.

X = aX^" + (II.l.l)

Although we cannot speak of the spin-vector pointing

in a definite direction, we can speak of an average spin

direction, given by (4», crty). In the case where the wave-

functions diagonal! se <r_ we havez

(X.^ , srffi = i3
where e^ is the unit vector along the z-axis. Since
this relation cannot be affected by the choice of axes, we

have in the general case

<Xi = -i en.i.2)
4*

where the X" are spinors which diagonalise the com¬

ponent of O" along the direction n •



(II.2) Electron Polarisation

As we have seen, it is not meaningful to speak in

terms of a definite direction for the spin vector-operator,

gr» However, confining attention for the moment to an elec-
+

tron whose wave-function is a pure spinor X* (equation

II.1.2), we can see that any such electron is associated

with a definite direction, ri, in space through equation

(II.1.2). We may call the unit vector n the polarisation

of the electron. C.G. Darwin (1928) first suggested that

one should define the polarisation of a free electron as

the expectation value of the Pauli spin operator, <T, in
the rest-frame of the electron. According to this the

polarisation can he obtained explicitly by expanding the
— A

wave function in terms of the 2 (equation (II.1.1))

and using the expansion coefficients to define the polar

and azimuthal angles of n •

It will be explained in due course how the presence of

the g-factor anomaly manifests itself through the behaviour

of the polarisationcf electrons as they pass through elec¬

tric and magnetic fields. Since, in addition, the electrons

used in the present experiment have velocities approximate¬

ly equal to half that of light, it will clearly be con¬

venient to have a definition of polarisation which will

apply to relativistic electrons and which will also be

meaningful where electric and magnetic fields are present.

The most recent developments in this subject have been

correlated and summarised by Fradkin and Good (1961) whose
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review can be recommended as a consistent account of the

theory of electron polarisation. Of the three approaches

mentioned by these authors only one satisfies both of the

requirements set forth above and we shall confine attention

here to a brief outline of this approach.

The polarisation is first defined in the absence of

fields through a polarisation operator

^ = V1Y,x " V . Cli = 1,2,3,4)
where the Y are the 4x4 Dirac matrices satisfying

r

y» + YvV - 2y

p^ is the four-momentum of the electron, and Y^ =
It can be shown (loc. cit.) that the expectation

value of T for a plane-wave state is a certain four-vector,
r

s . Thus
r

C^CE.) , VKE.)) = s (II.2.1)p, jj.

It can be further shown that s , thus defined, transforms
r

like an axial vector under Lorentz transformation. In fact

s is just the Lorentz transform to the laboratory frame

(hereafter referred to as the lab-frame) of the four-vector

(s, s4) which reduces to (s^ 0) in the rest-frame, where
£0 = n. The term "polarisation" is applied indiscrimin¬
ately by Fradkin and Good to both T and s but we shall

reserve it for the latter. It is easily shown that the

operator T commutes with the Dirac free-particle
Hamiltonian so that the polarisation of an electron in the



(II .2) -3-

absence of fields as a constant of the motion, as it should
be.

In the rest-frame of the electron T reduces to the
r

four-vector operator (<r, 0) where the are the Pauli

spin operators. This is because the four-component plane-

wave functions of the Dirac theory reduce to two-component

Pauli spinors (only the "large" components being retained)

and hence all "odd" Dirac operators such as and

T5T4, which mix large and small components, may be replaced
by zero in this limit, while "even" operators such as

iY,^ are replaced by 2 x 2 Pauli operators (unity in
Dirac space). Thus T constitutes a natural relativistic

r

generalisation of the Pauli spin operator, cr .

Furthermore, the definition of T is capable of
r

immediate generalisation to the case where electromagnetic

fields are present. In the usual way, we replace p by
r

V = P|X + eA(!
where A = (A, i §>) is the four-potential of the field,

r *"
in terms of which

V = 8Ay ~ 3V/aXv '

F being the field components in tensor form. Then we
p,y

generalise T to
r

V = w - V •

Of course, the T will no longer commute with the
r

Hamiltonian. For time-independent fields we may write



(II.2) -4-

aV/dx4 = 0 (x4 = it)
and from the equation of motion, which is

Hi}) = - (a/ax4)i}j, with H the Dirac Hamiltonian,
we have, after rearrangement of the terms,

Tvaf; + leYvAv +1 = 0
as an operator relation. Using these relations a straight¬

forward calculation shows that

«VdT = 1 [HTn " VH]
■ leY5Y4Fllv Ty

where d-tr - dt/1", Y = (1 - v2)"5 5

v = electron velocity.

For the polarisation we may therefore write

a/JT <T^>= 1 e J (Y, WVv Yv .

This may be regarded as an equation of motion for the four-

vector polarisation, s , provided that ^ is a plane-
wave state of definite momentum.



(II.3) Polarisation of Dlrac Electrons in Quasi-
homogeneous Electric and Magnetic Fields

In order to apply the foregoing result we take note

of the fact that in the present experiment the electrons

are subject to electric and magnetic fields which are

effectively homogeneous. By this is meant the following:

(a) the electron can be represented by a wave-function

whose amplitude is negligible except over a very small

region corresponding to the classical position of the par¬

ticle;

(b) the relative change in the fields over the typical

dimensions of such a wave-packet is negligible.

Since the apparatus behaves for this purpose like a

semicircular (3-ray spectrograph with orbit radius ~ 4 cm.

and since the fields were homogeneous to a few parts in a

thousand over the region of the orbits (Section IV.3),
these conditions may be assumed to be satisfied.

If the fields, F , do not depend on the space co-

ordinates over the region occupied by a wave-packet,

a/dT = -eF^y ]"($-, YjY4Yv )d3x (II.3.1)
Consider now the expectation value of T evaluated in the

rest-frame of the electron, denoted by . Using

the limiting properties of the Dirac matrices in this frame,

one finds from the definition of T
r

<?V>(r) = {<x>r)'<T4>(r)} - (<1Y4> > °}
Hence, expressing equation (II.3.1) in the rest-frame,
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a/dr <V>(r> = .^k<iT5Tk) = ^k<Tk)(r> .

We may regard this as the expression in the rest-frame of

the covariant equation of motion

a/a* <T^> = e F[1V <TV> (".3.2)
This derivation (Rose, 1961) is plausible rather than

rigorous. For the detailed proof the reader is recommended

to consult the paper of Fradkin and Good (1961).

Two remarks need to be made concerning this equation

of motion.

(1) In the rest-frame it reduces to

a/at<T3>(r) = e Fjk<Tk>(r) ,

or, since F^ = where B is the magnetic flux-
density,

d/dt<V>(r) = ~e/mQ <Jr.yr) X B
(in ordinary units) which is of the form of the classical

equation of motion for a spinning dipole with angular

momentum "fi/2 and magnetic moment equal to one Bohr mag¬

neton (cf. Section II.1).

(2) If the wave function, H , can be approximated by a

plane-wave function 3? (p.) of definite momentum p., then

equation (II.2.1) applies and equation (II.3.2) becomes

a classical equation of motion for the polarisation four-

vector s , namely
r

ds^/dr = e F^y sy (II.3.3)
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This approximation was certainly valid for the purposes of

the present experiment, for the radius of curvature of the

orbit ( —- 4 cm.) was greater by many orders of magnitude

than the de Broglie wavelength of the electron (^3 x 10"10
cm.).

Finally, we note that in the classical approximation

we can write for the orbital motion of the electron,

= <\>Y = "V*

(u^, the four-velocity = Y {v, ic} ) ,

and the classical (Lorentz) equation of motion for the

orbit can be shown to be valid, namely

du^/dir = e F^v uy (II.3.4)



(II.4) Polarisation of an Electron possessing an

Anomalous Magnetic Moment.

We cannot, without more ado, take over equation

(II.3.3) to apply to an electron with an anomalous magnetic

moment, jj = (g/2)^, merely by substituting ge/2 for e.
One reason for this is that ultimately this equation stems

from the Dirac equation which, as it were, contains the

magnetic moment [xQ within its essential structure and so
cannot be a description of any particle having a different

value of magnetic moment.

In the original classical treatment of the polarisa¬

tion of an electron with anomalous magnetic moment (Barg-

mann, Michel and Telegdi, 1959)? the difficulty was avoided

and the correct equations of motion obtained. Before con¬

sidering their treatment in more detail we shall summarise,

for purposes of comparison, the quantum mechanical approach

to the problem.

This depends on recognising (Pauli, 1958) that the

anomaly of the magnetic moment manifests itself only by

the small additional magnetic potential energy to which it

gives rise in the presence of fields. Therefore the true

equation of motion can be written in the form.

(ho + h«) = iha"ST /at,
where H is the Dirac Hamiltonian and Hf is an extra teiro

o

given by

h» = ~£e(g/2 - 1) (i T^t.B + T.e}
which accounts explicitly for the extra magnetic potential
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energy due to the anomalous part, (g/2 - l)n-0? of the
magnetic moment. Using this Hamiltonian together with the

resulting operator relation, namely

AVV + \le(g/2 - 15V Vv +1 = 0
and defining the polarisation operator, T , in the same way

as before, one finds for the equation of motion of the

polarisation four-vector, s , in the classical limit (that
r

is under the conditions of section II.3)

dVdT = ge/2"V sv + (e/2 " 1)e(uvpvxsx)'V
(II.4.1)

The same result was obtained by Bargmann, Michel and

Telegdi (1959) from purely classical considerations. They

based their argument on three assumptions:

(a) that the expectation value of the spin operator will

necessarily follow the same time-dependence as one would

obtain from a classical equation of motion, so that to

solve the problem of spin precession it is sufficient to

produce a consistent set of covariant classical equations

of motion;

(b) that the spin-polarisation can be represented by an

axial four-vector, s , which reduces in the electron'sM-
rest-frame to the three-vector, s0, which represents the
spin polarisation in that frame;

(c) that the equation of motion for s,0 is

ds^/dt = ge/2. s^ x B (II.4.2)
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They note the following relations;

u s
V- V-

u U = -1
V- ^

These are direct consequences of the definitions

S|i = is., s4J. = , o| in the rest-frame.

■V ■ YK i} = {0, ir} ti it it tt

where s2 = 1 and T2 = 1/(1 - v2).
Therefore

ds4/dr « i s..dv/dr (II.4.3)

in any instantaneous rest-frame. They proceed to write

down equation (II.4.1) as being the immediate generalisa¬

tion of (II 04.2) and (II.4.3) to an arbitrary Lorentz

frame, under the further (physically reasonable) assump¬

tion that the equation of motion for the orbit is

ayat = . y u^, <11.3.4)
In fact, the most general axial vector which can be

formed from the available physical quantities, F^y , u^,
s^, g, e, remembering that

s..s,, = s2 = const.,
[I [l o 7

"VV = 0
ana F44 = 0,
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A(g»e) V sv + B(§'e)u^(uvFyXsX)
where A, B are scalar functions of g and e.

Since s , and therefore ds,,/dt , is an axial vector,
r r

we may write

as^/a-r = A(g,e) + B(g,e)u(1(uvFvX sx) .

By writing down the components of this equation in the

rest-frame and comparing with (II.4.2) and (II.4.3) it is

easily shown that

(A - B) = e ,

A = ge/2 ,

and this assignment givss equation (II.4.1) correctly.

Assumption (c) might seem to he subject to the

criticism mentioned in the first paragraph of this section.

However, in the rest-frame the only possible type of motion
is a precession and, since the spin angular momentum is not

affected by the quantum electrodynamic corrections, it is

physically reasonable that if a real electron and a Dirac

electron were subject to the same magnetic field, the

ratio of their rates of precession would be the same as the

ratio of their magnetic moments, namely g/2.
It should be noted that the only term in equation

(II.4.1) which is proportional to the anomaly of the

g-factor is also dependent on the particle orbit through

the four-velocity, u . Thus any direct method of deter-

mining the g-factor anomaly using spin-precession in
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*

homogeneous fields must require a knowledge of the electron

orbit.

The application of equation (II.4.1) to the present

experiment, which will more conveniently be discussed in a

separate chapter (see Section III.2)), is facilitated by

writing s in the lab-frame in terms of two unit polarisa-

tion four-vectors e^ and e^ (following Bargmann et al,
loc. cit.), whose space-components are respectively para¬

llel and perpendicular to the velocity in the lab-frame.

Thus

s^ = S(e^ cos $ + e^ sin (II.4.4)
x

where S = (s s )2 is the magnitude of the polarisation
p, p,

and e^ , e^. are defined by
= Y(v, i| v {> ; et = (n, 0)

in the lab-frame, where n is a unit vector such that

a2 , , a a .

n = 1 and n.v = 0 .

The rats, XL , at which the polarisation is transformed
from longitudinal to transverse and vice versa in the lab-

%
frame may be written

XL = drf/dt

= Y"1 d^/dT

e

m„
-/ % - 1 - ^2J + v.B X n(g/2 - l)j

(II.4.5)

for details of the calculation see Gardiner, 1961.
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where all quantities are now expressed as ordinary vectors

and the mass of the electron has been reintroduced.

So far it has been implicit in the discussion that we

are dealing with a single electron. For a beam of electrons

which follow the same orbit and which do not interact with

one another, the polarisation can be obtained by taking an

incoherent average over all members of the beam. Since the

formulae describing the behaviour of the polarisation are

linear in T they will apply equally well to the
r

polarisation four-vector s of a mono-energetic beam
^

1-
except that now the magnitude (s s )2 = S of the

r r

polarisation four-vector will in general be less than unity.

Thus, for a single electron, <VXV/ may be evaluated
in the rest-frame, choosing the z-axis in the direction

which diagonalises the spin-operator, to give

<vXT/> ■ 1 •

But, employing the same procedure for a mono-energetic

beam, we obtain (Fradkin and Good, loc. cit.)

<VXV> ■ (p+ - »->2
where p+ are the probabilities of a particle being ob¬
served with spin up/down in its rest-frame.

100(p+ - p ) = 100S is the quantity usually referred to
as the percentage polarisation of a beam in, for example,

(3-decay experiments. It is sometimes convenient to be

able to regard a beam which is, say, 40% longitudinally
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polarised in the forward direction as being composed to

the extent of 30$ of electrons polarised in the backwards

direction and 70$ of electrons polarised in the forwards

direction.



(II.5) Preparation and Detection of the Electron.
Polarisation.

As explained in Section (II.1), it is possible to

study the behaviour of the electron spin in macroscopic

fields provided that one is allowed to prepare the spin

state beforehand and detect it afterwards by scsne purely

quantum-mechanical phenomena. In practice one deals with

a beam of electrons and prepares it in a state of known

polarisation. Methods of doing this have been discussed

by Tolhoek (1956). Three methods which have been applied

successfully are

(a) Mott scattering of unpolarised relativistic electrons

from heavy nuclei,

(b) exchange collisions between free low-energy electrons

and oriented atoms (e.g. alkali atoms),

(c) use of the naturally polarised beta-particle given

off in beta-decay.

The first method suffers from the disadvantage that

the cross-section for scattering into a beam of appreciable

polarisation is low. Despite this the method has been

successfully employed by Schupp, Pidd and Crane (1961)
(see Section 1.4). The second method (see Section 1.4)

cannot be used to produce a beam in the sense that the

electrons follow a known classical orbit and therefore,

according to a remark of the previous section, cannot be

applied in a direct determination of the g-factor anomaly.

The third method, chosen for the present experiment, arises
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from the fact that the (3-decay interaction violates the

law of conservation of parity (Lee and Yang, 1957), and

this leads to the result that the beta-particles emitted

in an allowed transition are longitudinally polarised

with S! = v/c (in the notation of the previous section)

and negative helicity. That is

sQ.v = - iv! /c.

A discussion of the theory of ^-decay would be out

of place here and we merely remark that the result just

quoted is well-supported experimentally for a wide variety

of p-emitters (Grodzins, 1959; Sternheimer, 1959). The

particular case of Sulphur-35, which was used in the

present experiment, is discussed in Section (III»3).
The detection of the polarisation of a beam after

passage through electromagnetic fields can also be carried

out by a variety of methods, at least in principle

(Tolhoek, 1956). The one which has most frequently been

applied and which is most suited to the present experiment

is the method of Mott scattering. A full discussion of

this phenomenon, first investigated by Mott (1929), has

recently been given by Rose (1961) whose treatment, using

density-matrix techniques (Fano, 1956), partly follows
that of Muhlschlegel and Koppe (1958). We need give only

a brief account of those aspects of the general theory

which are relevant to the present experiment.

It is assumed that an electron is scattered elastic-

ally from an incoming plane-wave stqte of momentum p. to
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an outgoing spherical wave of momentum jd'. Thus the

wave function after scattering is, asymptotically,

Y = a(p.) exp (ip..r) + bCp.') exP(1Pr)
where a(p_), 162.') ar9 four-component spinors. The Mott

cross-section is then given by

CT = (b, b)

A "transition amplitude" A(jd', p) is defined by

<^P0(s'0) = Ap0(sQ)At (II.5.1)

where Sq, s^ are the polarisations in the rest-frames
before and after scattering and the density matrix, pQ,
is that appropriate to the rest-frame, namely

Po^) = ^(1 + (II.5.2)

The theory then shows that

£(1 + T4)b = A £(1 + Y4)a (ii.5.3)

which means that the operator A transforms the large com¬

ponents of the incident wave into the large components of

the outgoing wave. In other words the scattering is

completely described by the manner in which the large

components are affected by the scattering field. This is

because the initial and final states are taken to be

plane-wave states (or nearly so) whose small components are
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determined in terms of the large ones in a way independent

of the history of the particle.

From (II.5.1) it follows that

<T= Trace (pQAt) (II.5.4)
since Trace = 1.

^ o

It is clear from (II.5.1), (II.5.2) and (II.5.3)
that A is a 2 x 2 matrix and it may therefore he written

as a linear combination of the unit matrix and the three

Pauli matrices, thus

A = -jjr(Tr A + Tr Acr.a)

or, as it is usually written,

A = F + G n.«r

where n is a unit vector which, as the detailed calcula¬

tion of A shows, is normal to the plane of the scattering;
n = (u x d'V|(p x t3)|. From (II.5.4) and (II.5.2) one

finds

<r(E.S B., Sq) = jFS2 +|g|2 + (f*g + g^f)^.^ .

If electrons are scattered "up" and "down" through equal

angles Q (see Figure II.5.1), then

<r(p") - <r(p') = g* g + F5* ( n)
cr(p") + <r(p«) J F j +| g|

= s(®) sQ.&, say (II.5.5)

Thus there results an up-down asymmetry in the

scattering which is proportional to the component of

polarisation transverse to the plane of scattering.
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This may be pictured classically as arising from the

spin-orbit interaction. A relativistic electron moving

through the Coulomb field, E, of the nucleus behaves as

though acted upon by a magnetic field B ~ E x v, which,
of course, is highly non-uniform and therefore exerts a

deflecting force by virtue of its interaction with the

electron dipole-moment, This spin-orbit force F will be

given, to order of magnitude, by

F ~ - V (n.B') ~ - V S.(v x ji) .

In a pure Coulomb field E ~ - Zr/r , and a straightfor¬

ward calculation leads to

F ~ | (s0.ft)(nxv) - |(so x v).nj n J-
where v is assumed constant for simplicity and Z is the

atomic number of the scatterer. Considering that in the

typical case of an electron of 100 KeV energy scattered

at 90° the classical impact parameter is only of the order

of 1/30 of the de Broglie wavelength, one cannot expect

such a result to be other than qualitative. Qualitatively,

then, the first term will give rise to an up-down asymmetry
of the type discussed above. Three important features of

the phenomenon are brought out by this simple formula.

(a) The asymmetry will be greatest for scatterers of

high atomic number.

(b) The asymmetry will be greatest for large-angle

scattering since the spin-orbit force increases as 1/r^ in
2

contrast to the 1/r dependence of the Coulomb force.
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(c) The asymmetry will be a maximum in the energy region

where v/c "-'0.7 since this is where v/Y has a maximum.

This corresponds to a kinetic energy of the order of 200

KeV.

Only for light elements (ZA37<3C l)can the amplitudes

F and G be given in analytic form (Mott, 1929). Numerical

calculations have been carried out for certain elements

over a range of values of energy and scattering angle.

The most detailed and extensive tabulation is that of

Sherman (1956) for aluminium, cadmium and mercury, which

was later extended to cover the case of gold (Sheiman and

Nelson, 1959). The former paper gives values of S(6) as

well as of <r(0). The calculations of Doggett and Spencer

(1956), for Z = 6, 13, 29, 50, 82 and 92, are also use¬

ful although they quote only the cross-sections for scatter¬

ing of an unpolarised beam. These calculations broadly con¬

firm the conclusions reached under the headings (a), (b)
and (c) above.

Corrections for screening by atomic electrons have

been considered by Bartlett and Watson (1940), Bartlett and

Welton (1941) and Mohr and Tassie (1954) and the effects of

screening have probably been observed experimentally

(Nelson, 1958; Murray, i960). The magnitude of these
effects would be too small to be an important consideration

in the present experiment, but in any case would tend to
increase rather than diminish the observed polarisation

asymmetry.
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The work of Pidd and Nelson (1959) and of Bienlien,

Felsner, Fleiscbmann, Guthner, Issendorf and Wegener (1959)

constitutes the most satisfactory experimental verification

of the predictions of the theory, and in particular of the

tables of Sherman. The agreement was sufficiently good

for our present purpose in the range of scattering angle

from about 80° to 130° for electron energies in the

neighbourhood of 120 Kev.

The way in which the characteristics of Mott scatter¬

ing affect the design of the present experiment will be

discussed more appropriately in Section (III.3).



CHAPTER III

THEORY AND DESIGN OF THE EXPERIMENT

(III.l) Outline of the Method

While the experiment of Schupp, Pidd and Crane was in

course of preparation a new proposal was put forward by

Farago (1958), inspired by the discovery of the non-con¬

servation of parity in weak interactions and the conse¬

quent realisation that the beta-particles emitted in

radio-active decay processes should be longitudinally

polarised (Lee & Yang, 1957; Landau, 1957; Salam, 1957).
Farago's method differs from that of the first-named

authors in the following two essential respects. First,

the polarised beam of free electrons is obtained from a

beta-active nuclide directly, thus eliminating the need

for an initial Mott scattering. Second, the time spent

by the electrons in the homogeneous magnetic field is not

measured directly but in terms of the number of cyclotron

revolutions performed by the electrons between emission

and detection. This number is calculated from the measured

strength of an auxiliary electrostatic field, as well as

from the magnetic field and electron velocity.

Figure (III.1.1) shows the general scheme of the

experiment, as proposed by Farago (loc. cit.)

Beta-particles from a sulphur-35 line-source, S, are

injected into a homogeneous magnetic field, B^,normal to
the plane of the diagram and perform nearly circular orbits
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of about 10 cm. diameter. A relatively weak homogeneous

electrostatic field, E , is applied perpendicular to the

magnetic field and to the line joining the source to the

"analyser" foil, F. The electric field is too weak

seriously to alter the share of the orbit (E,_ « cB_) andy z

its effect may be characterised as a "slow drift" of the

circular orbit in the direction of the x-axis (the line

SF) such that the beam passes the edge of the source hold¬

er on completion of the first revolution and strikes the

target foil after an integral number, k, of cyclotron

orbits given by

2uk = wcD2Bz/E (III.1.1)

where w = cyclotron frequency

= e Bz/m0Y , Y = (1 - j32)"-
Dg = distance from source to scatterer.

The derivation of this formula is given in Appendix C.

The direction of polarisation of the beam is measured

after k orbits by allowing the besm to impinge upon a thin

gold foil F and observing the Mott single-scattering

asymmetry by means of counters placed above and below the

plane of the diagram Fig. (III.1.1)(b). The theory (see

Section III.2) shows that the polarisation vector will

have performed one complete cycle of its precession

relative to the momentum vector after a number of turns,
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kQ, given by

a.k0.T(v) = Y(V0) * 1 (III.1.2)

where

a = (g/2) - 1 ,

v = electron velocity,

VQ = drift-velocity of orbit for kQ turns
= E' /B_ ,

y 2 '
Y(x) = (1 - x2/c2)"^" .

Y(Tp differs from unity by a few parts in 1(Section
III.2). kQ turns out to be of the order of 750 for the
electrons used in this experiment.

The change in polarisation direction relative to the

momentum direction per complete orbit is predicted to be

independent of the number of orbits, k, and hence the

measured asymmetry, written as

y(k) = (^ - I2)/(I1 + I2),
where 1^, I2 are the rates at which singly-scattered elec¬
trons are counted in the two counters, is expected to vary

sinusoidally with k, the period being kQ» The procedure
proposed by Farago for measuring the g-factor anomaly

was, therefore, to vary k (by varying Ey only) and to
observe the asymmetry y(k). By fitting a sine curve to

the observations one should be able to determine the

period k0, and hence the g-factor anomaly from equation
(III.1.2).

An account of the extent to which this programme
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has been achieved in practice will form the subject of

Chapter V. The remainder of this chapter will be devoted

to detailed discussion of the theory and design of the

experiment.



(Ill,2) Calculation of the Orbit and of the Relative

Spin Precession Rate,

First we give an elementary calculation of the motion,

valid in the non-relativistic approximation.

Let v = V + v' ,

where v is the electron-velocity in the lab-frame, V is

a constant velocity such that

V x B = - E ,

and vr is just the difference between v and V .

Since the fields are given by

B = (0, 0, Bz)
E = (0, Ey, 0)

where E c®z> we see ^katy

V = (Yx, 0, 0) = (Ey/Bz, 0, 0)
and Vx« c .

Now the equation of motion is

mv = e(E + v x B)

mv' = e(E + V x B + v* x B)

= e v' x B .

Thus, in a frame of reference moving with velocity V, the
motion of the electron is the same as if only the magnetic

field were present, namely a circular orbit executed at
constant speed v'. The approximation Vx« c is, in
fact, well satisfied in the present experiment for even as
few as 10 orbits (k = 10). For, using the notation of
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Section (III.l) and referring to Figure (III.1.1), we have

Vx/fv| - D^UD-jk)

est l/(7lk)

Now, for electrons of about 100 KeV,

v /c en ^ .

Therefore V ££ (l/2uk).c
A

Hence, for k = 10, say,

V — (1/60).c
A

and Y(V) « 1.00014 .

However, it is well known that, if E <cB, one may

transform away the electric field by making a Lorentz

transformation to the same moving frame of reference as

above, the only differences being that the electron now

sees a slightly modified magnetic field, B* = B_A(V),z z

and that its velocity vf in the moving frame must be ob¬

tained by using the relativistic law for composition of

velocities (see Appendices A and B). The picture of the

motion which was obtained non-relativistically is therefore

confirmed by a relativistic calculation.

Coming now to the calculation of the rate of precession

of the polarisation of the electrons relative to their

momentum, we only have to apply the results of the general

theory discussed in Section (II.4). In order to relate

the observed scattering asymmetry to the g-factor anomaly
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we need to know the angle tf(k) which the polarisation

vector makes with the momentum vector after k complete

orbits, as a function of the g-factor anomaly, a. In

terms of the time spent by the electrons in the field we

need to know ^(kT) where T is the period of one com¬

plete orbit in the lab-frame. Now in Section (II.4) we

saw that

aef/at = Jl = ^ |=^ g/z -1- g/(2T2)]
+ v.B x n(g/2 - 1) (11.4.5)

where n.y. = 0 and n lies now in the x-y plane.

Therefore we need to calculate

rkTi (kT) = f at.
rtO

In the present experiment we have the relations

v.B x n Bz
. P (III.2.1)

E.n/v = - Eyvx/v
On substitution of these expressions into equation (II.4.5)

the integration may be carried out. However, the direct

integration is rather heavy and it may be avoided by recog¬

nizing that is actually a Lorentz invariant. For the

product s (t + T)s (t) of the axial vector s at time
r r" r

t with its value at the later time, t + T, where T is

defined as before, will be a pseudo-scalar and will there¬

fore be invariant under proper Lorentz transformations.

Evaluating the product in the lab-frame, using
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equation (II.4.4) we find

s^(t + T)s^(t) = S2 |e^ cos(jz? +&&)cos
* % % sln w +Aef) sin

= S2 cos /a 6 ,

where && is the change in over any one complete

orbit. So and hence tf(kT), is invariant under

proper Lorentz transformations.

We may now write

rkT',t (kT) = / _fi_ at1
Jo

the primed quantities being evaluated in the moving frame

of reference where Ef = 0. In that frame equation (11.4.5)

becomes simply

-CL' ^B-.a
= a 4

where u' is the cyclotron frequency in the field B*c z

and YT = T(v') is constant since the electron sees only

a pure magnetic field. ^y/
Hence gKkT) = Y 'af ^ at'

= 2ttkY' a

It may be shown by direct Lorentz transformation

(Appendix B) that

V.v*
Y(v) = Y(v').T(V)(l 4 5— )
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and since Y(v') is a constant it may be evaluated at

t = t* = 0, when the electron is emitted from the source.

At that instant, V.v' = 0 and

Y* = YCv)A(V) .

Hence, finally,

tf(kT) = 2itk.Y(v).aA(V) .

There remains the matter of the observed scattering

asymmetry. According to equation (11.5*5) this is propor-
a

tional, for a given scattering angle, ©, to the

component of polarisation normal to the plane of scattering

in the laboratory frame of reference. Since j| is normal

to the velocity we have

S0-n = s-S = ettl = S Bin,
where s = (s., sA) in the lab-frame,

r ^

Regarded as a function of the number of complete

orbits, the asymmetry, y(k) will then be given by

y(k) oc sin jzKk) = yo sin(27ck/k0) (III.2.2)

where kQ = Y(V)/a Y(v) •

It is of interest to recall the original argument

given by Farago (1958), in obtaining essentially the

result just quoted. The reasoning was as follows. Regard

the precessing momentum vector of the electron in the

moving frame of reference as constituting a clock and let

a second clock be defined by the precession of the
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polarisation vector relative to the momentum vector in

the same frame of reference. Then these clocks are at

rest relative to one another and the ratio of their

readings should be Lorentz-invariant. In the moving frame

the electron experiences a pure magnetic field B' = BA(V)

and the ratio of the precession rates, XL'/w' , had been
V

calculated previously for such a situation by quantum

mechanical methods (Mendlowitz and Case, 1955? Carrassi,

1958) giving

XLVuJ = Y(v*).a
In fact, as Farago pointed out, this result can also be

obtained from a straightforward classical calculation

taking account of the Thomas precession (Appendix A).

According to Farago's reasoning the same value should be

observed in the lab-frame and so the relation

JDl/wc = Y(v).a/T(V)
follows as before.

Although the result was correct, the reasoning on

which it was based was not completely valid, as was pointed

out by Telegdi and Winston (1959). It is quite true that

the readings of two clocks which are at rest relative to

one another will be in an invariant ratio. The difficulty

lies in defining clearly what kind of variable may properly

be employed as a clock in special relativity. According to

Telegdi and Winston (loc. cit.) any observable that is

periodic in time may be admitted as a clock provided Jtbat
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that the periodicity occurs at the same spece-point in

some inertial frame, the proper frame of the clock in

question. This is merely an expression of the natural

requirement that the interval between two readings of a

clock must be time-like. The conditions are satisfied by

the momentum vector of the electron in the moving frame of

reference (where the orbits are closed circles). If a

polarisation clock exists, its proper frame must be the

same as that of the momentum clock since this is the only

inertial frame in which the polarisation can be observed

at the same space point at different times. However, the

period T^' of the polarisation vector must be assumed to
be incommensurate with the period Tf of the momentum

vector, in the absence of any evidence to the contrary.

The assumption that the polarisation vector forms a clock

is not, therefore, justified. The reason why Farago's
final result was correct was, of course, that Atf, the

relative precession of the polarisation per complete orbit,

is, as we have seen, a Lorentz invariant.
One can see fairly easily what happens when the in¬

tegration over a complete orbit is carried out. If we

evaluate XL/wc from equation (11.4.5) using (III.2.1),
we find

XL/wc = T.a + (Vx/vY)(g/2 - aY2) cos 9
A A

where cos 6 = V • v .
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2
In the approximation where Vv<^c the first term

represents Farago's result and in the same approximation

the coefficient of cos © in the second term can he regard¬

ed as a constant. On integrating over a complete period

it is clear that the second term gives no contribution.



(III.3) Choice of Experimental Parameters

The choice of values for the experimental parameters

was restricted partly by practical considerations such as

the size of the available magnet and the availability of

suitable radio-active nuclides, and partly by the need to

obtain the maximum polarisation asymmetry in the Mott

scattering.

Source

We begin quite arbitrarily, by considering the best

source-material to use. A suitable nuclide must satisfy

the following requirements.

(1) It should be a pure beta-emitter, so that the back¬

ground count is not unnecessarily increased by gamma

radiation.

(2) As large a proportion as possible of the emitted

electrons should have energies in region of 100-150 KeV,

since this is the energy region in which the Mott asym¬

metry is greatest at reasonable scattering angles.

(3) The nuclide should be obtainable in carrier-free

form so that strong sources may be used without introduc¬

ing too much source-scattering and depolarisation.

(4) The nuclide should have a reasonably long half-value

period (say tjl. > 30 days) so that long runs may be carried

out without interruption. The only available nuclide

satisfying even the majority of these conditions is

Sulphur-35 and this was the material chosen for the source.
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In respect of condition (2) it falls short of the ideal

since the maximum number-density in the beta-spectrum lies

at about 45 keV energy, which is too low by a factor of

about 3.

Sulphur-35 is a pure beta-emitter with a half-value

period of 87.1 days and an end-point energy of 167.4 keV

(Connor and Fairweather, 1957). The spectrum is of the

allowed shape down to at least 5 keV (Moljk and Curran,

1954). Finally, the beta-particles have been shown to

conform to the predictions of the two-component neutrino

theory in respect of their polarisation (Murray, i960).
That is, they are longitudinally polarised with

S = v/c = 0

(inthe notation of Section (II.4)) and with negative

helicity.

Figure (III.3.1) shows a plot of N( r$ ) against yj ,

where N(rj )d?-; is the number of electrons per second
emitted by a Sulphur-35 source of arbitrary strength (the

figures are actually normalised to a source-strength of

about 34 [xC) with their momenta lying in the range

mQc to ( yj + d rj ) m0c. The values of N(t| ) were
calculated from the formula

N(yp = f(Z,?j Hl.3276 - Y)2
using the Tables for the Analysis of Beta Spectra of the

U.S. Department of Commerce ( EB.S. Applied Maths. Series
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13) to obtain values of the Fermi function f(Z,rj ). The
? 1

value Y = (1 - 3 ) 2 = 1.3276 at the end-point of

the spectrum corresponds to the end-point energy of

167.4 keV given by Connor and Fairweather (1957).

The magnitude, 3, of the polarisation has also been

plotted on figure (III.3.1) as a function of r) •

Slectron Energy

The next point which needs consideration is the

optimum electron energy for the experiment. This depends

on a number of factors, which may conveniently be combined

to give a "figure-of-merit", M, a function of electron-

energy only. This figure-of-merit will be defined to be

proportional to the maximum observed scattering asymmetry

as well as to the actual total single-scattering rate and

to contain the entire energy-dependence of the asymmetry

and the scattering-rate (as far as it is amenable to cal¬

culation). The factors contributing to M will now be dis¬

cussed in turn.

(1) Polarisation

The scattering asymmetry will be proportional to the

amplitude, (3, of the polarisation of the electron-beam,
assumed mono-energetic.

(2) ThP! hffta-snectruni

The total single-scattering rate will be proportional

to the number-density, N(r^) of electrons emitted by the
source into a beam of the chosen momentum, Y] . The greater
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the beam intensity, the less time will be required to

attain a given accuracy in the asymmetry measurement.

Hence this factor should be included in the expression

for M. In practice, of course, the beam will be charac¬

terised by a finite range of momentum about a mean value,

yjjT , given by
r7!3- rV-

r? = ( J rj N(ij )drj )/( J N(rj)dr| ) .
If the range of momentum, n 2 ~ *s n0^ "k00

large we may replace N( r\ ) in the formula for the

f igure-of-merit by N( fT ).

(3) The asymmetry factor. S(G)

According to the Mott-scattering theory the

asymmetry for a given electron-energy is proportional to

a certain function of the angle of scattering, ©. This

function, S(©), (see Section (II.5))» has been tabulated

by Sherman (1956) for a series of values of scattering

angle and of p. Table (III.3.1) summarises the relevant

parts of Sherman's table for Z = 80.

Sherman and Nelson (1959) have given values of S(6)

and of the scattering cross-section for a gold target

(Z = 79) at two energies only (75 keV, [3 = 0.49}

121 keV, S = 0.59). However, the values for Z = 79 do
not differ significantly from those given in Tables

(III.3.1) and (III.3.2), at least for the present purpose.
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TABLE (III.3.1)*
Mott-scattering Asymmetry-Factor S(6) for various p.

(Z = 80)

© 0.4 0.5 0.6

60° 2.2 x 10**3 -3.8 x 10"2 -6.2 x 10"2
75° -0.104 -0.143 -0.160

90° -0.234 -0.260 -0.270

105° -0.333 -0.356 -0.367

120°

1

-0.372
•

-0.400 -0.424

TABLB (III.8.2)*

Differential cross-section, d<a-/dJL , for Mott
PI 2

Scattering, in units of 10 x cm. per steradian

(Z = 80)

©
^

0.4 0.5 0.6

60° 74.5 31 14.2

75° 38 16 7.25

90° 23.5 9.6 4.3

1050 16.6 6.56 2.8

120° 13 4.9 2

■k From Sheiman, (1956).
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(4) The scattering cross-section

The more scattered electrons there are for a given

beam intensity the less time will be required to attain a

given accuracy in the asymmetry measurement. Hence a

factor d (r/diL should be included in the figure-of-

merit; this cross-section is again a function both of

energy and of scattering angle. Table (III.3.2) gives

the relevant values from Sherman's table for Z = 80.

(5) Counting efficiency

Finally we come to the most difficult factor to cal¬

culate, namely the variation of the counting efficiency

with electron energy. Both Geiger-Mttller counters and

scintillation counters were used at different stages of

the experiment. Unfortunately the energy region over

which there is an appreciable number of electrons in the

S3? spectrum is also the one in which the efficiencies of

both types of counter fall off rapidly with energy. As

the efficiency of a Geiger-Mttller counter in these circum¬

stances depends mainly on the transmission of its mica

window and as observations of this quantity are available

in the literature, we consider the latter system for

purposes of calculation. We characterise the transmission

of a window of given thickness by a function f(f3), the

fraction of the incident beam transmitted. Values of

this function may easily be calculated from data given by
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Saxon (1951) for a mica window of about 1.3 mg./cm.

thickness. In fact his data are fitted very well over a

wide range of energy by the formula

1 - f({3) = e*p( - E/B0)

where E is the electron kinetic energy and the formula

is fitted to Saxon's data at a particular value, E , of7 o 7

the energy. The figures given in Table (III.3.3) were

calculated from this formula with EQ = 97.4 keV. It is
believed that these figures would give a fair indication

also of the efficiency of the scintillation counters used

in the present experiment, although their efficiency pro¬

bably falls off much more rapidly at the lowest energies.

TABLE (III.3.3) *

2
Transmission of 1.3 mgm./cm. mica window as a function

of electron energy

3 E (keV) f(3)

0.4 46.9 0.56

0.45 61.2 0.66

| 0.5 79.4 0.75

0.55 100o9 0.83

0.6 128 0.90

x From data given by Saxon, (1951)



TABLB(III,^t4)
Figures-of-MeritforForward(Mp)andBackwardScattering

E(keV)

3

TJ=PT

N(7|)

dcr(©) dXL

xs(e)

f(3)

mf

M

B

75° ..

\

O

V
lT\

\

o

V

«H

46,9

0.40

0.435

246

3.95-.

5.50

0.56

218

303

61.2

0.45

0.504

235

2.82^
3.55

0.66

197

248

79.4

o.5o

0.577

200

2.29^

2.34

0.75

172

176

100.9

0.55

0.660

139

!.62̂

1.55

0.83

103

98

128

0.60

0.750

61

1.16

1.03

0.90

38

34
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The factors (1) to (5) above can now be combined to

give

M = (3 . N(t| ) . S(e) . (d <r /d-TL ) . f(0)
It will be convenient to calculate two sets of values of

M, one characteristic of backward scattering and one of

forward-scattering. The former, Mg., will be obtained
by taking © = 105° and the latter, M^, by taking © = 75°.
Then Table (III.3.4) gives the results of the calculation.

The following conclusions can be drawn from this

table.

(1) The extra asymmetry available (in theory) at backward

scattering angles compensates for the lower scattering

cross-section except at the very lowest energies' so that,

in practice, the choice of backward or forward scattering

must be made on some other basis, such as signal-to-noise

ratio.

(2) Because of the rapid falling off of numbers in the

0-spectrum of it is hardly worth considering electron

energies above about 100 keV, despite the better counting.

efficiencies. This emphasises again the unsuitability of
29

in this one respect.

(3) Very little advantage can be gained by going to

energies below about 80 keV in forward scattering, even

using Geiger-Mtlller counters.

(4) With backward scattering using Geiger-MUller counters

one might go as low as 60 keV but with scintillation
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counters this energy would certainly be too loxtf. In

addition it should be remembered that with both types of

counter, when the efficiency falls substantially below

100$, there is likely to be great difficulty in obtaining

a pair of counters with nearly equal efficiencies, such

as are required for making satisfactory asymmetry measure¬

ments.

It is concluded then, that the measurements should be

carried out using an electron energy in the range

80-100 keV.

Scattering Foils.

Various thicknesses of gold foil were used as tar¬

gets during the course of the work but for the purpose of

measuring Mott scattering asymmetries it is usually con¬

sidered necessary to use rather thin foils. In measure¬

ments of beta-particle polarisation in connection with

parity non-conservatioh it has become customary to use a

2
series of foils of thicknesses ranging from 0.1 mg./cm.

2
to 1.0 mg./cm. and to extrapolate the measured asymmetries

to zero foil thickness. An absolute measurement of the

Mott asymmetry was not called for in the present experiment

and, of course, the total counting rate may be expected to
fall off approximately in proportion to any decrease in

foil thickness. Therefore the thinnest foils need not be

the best for this purpose. A brief discussion of two

studies of the effect of foil thickness will now be given,
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with a view to estimating the optimum foil thickness.

Cavanagh et al. (1957) suggested that the spin-dependent

asymmetry in their experiment should depend on foil thick¬

ness according to a formula of the type

a = a/(l + C.t) (III.3.1)
obs.

where "a" and "a0^,s " were, respectively, the true and
observed spin-dependent asymmetries, t was the foil

thickness and C was a constant. On plotting the re¬

ciprocal of a0|3S against t, they found that the
points lay very nearly on a straight line whose equation

was

^obs. = °1 + °2 * '

where = 6.4

2
C2 = 16.9 per mg./cm. .

On the other hand Murray (I960) found that his observa¬

tions were consistent with a straight line whose equation

was

aobs. = Ci - Ci*
where C-£ = 0.22

p

C£ = 0.078 per mg./cm. .

Murray's observations could, in fact, almost equally

well have been fitted by a straight line on a plot of

reciprocal asymmetry against thickness, Figure (ill.3.3)-In
that case the gradient of the line would be

2
C2 = 2.4 mg./cm. .
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The considerable discrepancy between this and the result

obtained by Cavanagh et al. can probably be explained as

being due to the fact that the latter workers observed

electrons at a scattering angle of 90° from a foil which

was itself set at 60° to the incident beam, while Murray

observed electrons at an average scattering angle of 135°
from a foil which was set at 90° to the incident beam.

If we assume that the total scattering rate from a

foil is proportional to the foil thickness, we may write

Nx + N2 = kt
where , N2 are the numbers of particles scattered
"upwards" and "downwards" respectively and k is a constant.

N, -

But a,., = ~ 0.1,obs-
h-l + N2

and to achieve the best statistical accuracy in the

asymmetry one should maximise - N2«
We have, using the formula of Cavanagh et al.,

N, - NP = kt .x 1 + C t

and this expression increases monotonically with t.

However, there will be little to be gained in going beyond
that value of t where Ct ^ 3, say.

With the values given by Cavanagh et al. this leads
p

to t ~ 1 mg./cm. . On the other hand, using Murray's
linear formula, we obtain

Nx - N2 = kt(C£ - C£t)
and this is a maximum when
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t = C-jy2C4, = 1.4 mg./cm.2
2

With foil thicknesses greater than 1 mg./cm. , hcwever,
the assumption that the number of scattered particles is

proportional to thickness is rather questionable. If a

particle penetrates a distance x into the foil before

scattering and is then scattered through, say, 110°, it
must penetrate a further thickness of about 3x in order

to reach the counter. Although this effect is difficult

to allow for quantitatively, there is probably no advan-
2

tage to be gained in going beyond 1 mg./cm. for the foil

thickness. Further discussion of the effects of foil

thickness will be given in the context of the observations

(Section (V.3)).

Sffective Aperture

It has already been remarked that the apparatus be¬

haved in some respects like a 180° beta-ray spectrometer,

that is to say there was momentum-selection incorporated.

This is illustrated in Figure (III.3.2), in which the

drift-rate of the orbits is assumed small.

Electrons of momentum greater than eBD^/2 were
intercepted by the baffle after the first half turn and

were thus removed from the beam. Electrons of momentum

less than eBL2/2 were intercepted by the rear edge of
the source-holder after a number of turns depending on

their actual momentum. The range of momentum transmitted
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was therefore proportional to an "effective aperture"

given approximately by - L2 . Normally the distance
was fixed and the effective aperture could be adjusted

by moving the source-holder and baffle relative to the

foil. Now we have already seen (Bquation (III.1.1)), that

the number of orbits, k, executed by the beam for given
fields will be inversely proportional to y = (1 - (3 ) 2.

Thus corresponding to the finite range of energy trans¬

mitted by the effective aperture, there will be a range

Ak of k at the target. The question arises how far

one may open the effective aperture (to increase the beam

intensity) without at the same time causing an excessive

spread in k. We have

k oc l/Y

and thus Ak Ay
k y

where Ak, Ay are corresponding ranges of k and Y,
assumed small.

Now, x^riting rj for the electron momentum in natural
unit s,

Hence

or

71 = |3Y
1

? -1
= (Y - I)2

Arj ~ ^(Y2 - 1)"^ . 2Y. AY

Ayj /rj « 4>( AYA)

|/Tj fit - -4r( Ak/k)
— - 4( Ak/k)
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for electrons of about 100 keV energy. If we call the

effective aperture A,

then A/D-^ ^ Ar|
4Di

and so A — Ak in magnitude.
k

Now the measured asymmetry is expected to vary as

sin(2xk/k0) (equation (III.2.2)), so the systematic error

arising from the finite value of A k will be primarily

a function of Ak itself and not of the fractional

spread, Ak/k. For any fixed value of A the range Ak
will increase without limit as k increases. One must

therefore fix the maximum allowable aperture by choosing

a maximum allowable range A k^^ in conjunction with
the greatest value of k likely to be encountered

in the experiment. The aperture having been fixed at that

value, the range Ak will then be less than AlSnax for
all k less than ^ax» let us take k^ ~ 1000 as a
reasonable estimate. Then

"Vax ~ * ^\ax cm*

for an 8 cm. diameter orbit. A safe value for Ak would

be kc/25 30.
Thus W - 9 mm.

This would make Lg — 80-9 = 71 mm.
and Dg — 62 mm.
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Cholce of values for the Orbit Diameter

and Magnetic and Electric Fields

The orbit diameter, D^, was restricted by the size
of the region over which the necessary field homogeneity

could be achieved and was normally about 8 cm. Once this

and the momentum, , had been chosen the required magnetic

field could be found from

mo

Bz = -f~ <21/V
2

= 3.41 T| /D^ weber/m ,

where is measured in mm. Typically = 80 mm.,

= 0.65 and B = 277 gauss.

From equation (III.1.1) we then have

k = eD2Bz/ 2lt mo ^y (HI.3.2)
and this determines the values of E required for

various orbit numbers, k.

Vacuum Requirement

If the electrons perform 1000 orbits each of radius

4 cm. their total path in the vacuum will be 250 m. If

an electron suffers even a small deviation because of gas

scattering it is likely to be lost from the beam. The

pressure must therefore be reduced to a value at which

the probability of a scattering occurring in a path length

of 250 m. is quite small. An order-of-magnitude calcula¬

tion can be carried out by making the reasonable assumption
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that the cross-section for scattering of a relativistic
2 1 °

electron by a gas molecule is %r where r is -§-A. If

we define a "mean free path", X, by the relation

I = IQ exp (- XA)
where I is the initial beam intensity and I is the

intensity of that part of the beam which traverses a

distance x without being scattered, then an elementary

calculation yields the relation

p(\) c* 1.2 x 10 "3A mm. Hg. per metre

for the pressure required to give a mean free path X.

A mean free path of 1^00 m. would be ample to ensure

negligible attenuation over a path length of 2^0 m.

According to the above formula a pressure of the order
-6

of 10" mm. Hg. would be necessary to achieve this. Con-
-6

versely, at a pressure of 2 x 10" mm. Hg. (Section

(IV.4)) the mean free path would be of the order of 750m.

If the value chosen for the effective scattering radius

of the gas molecule were too small by a factor of 2, then

this last estimate would have to be reduced by a factor of

4 to about 200 m.



(III.4) Estimated Genuine Counting; Rate

If the magnetic field is homogeneous there will be

strong-focussing of the electron beam in the x-y plane

(Fig. (III.3.2)), as in a l80° beta-ray spectrometer. Two

types of focus occur in such a system. The first is at

the 180° point and is a perfect focus for monoenergetic

electrons only in the paraxial approximation. The

"effective aperture" stops were located at this kind of

focus. The second is at the 360° point and is a perfect

focus, in principle, for monoenergetic electrons emerging

from the source at any angle. The presence of the electro¬

static field does not affect this property (Appendix B).

The position of this focal point (always on the x-axis)

changed with energy only to the extent that the electron

mass varied with energy (Appendix C). Figure (III.4.1)

shows how the "angular aperture", 2©, of the beam was

limited in principle by the spacing of the two parallel

plates which provided the electrostatic field. We find

easily

sin © = || = (Ly^) - 1
Typical values might be r-^ = 4 cm., = 6.3 cm.,
giving sin © = 0.575 and 2© = 70°. In most cases

the beam was restricted in practice to an angular aperture

of about 30° by the form of the source-holder and the

latter figure will be accepted for the purpose of the
I I

following calculation.

An estimate will now be given of the expected beam
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intensity at the target under the assumption of a homo¬

geneous magnetic field; that is to say, there is no other

form of focussing than the one just mentioned. Let us

assume a source-strength of 10 millicuries of sulphur-35

and an electron energy of 90 keV. Then the momentum, in

units of mQc, is t| = 0.62 and, if the effective aperture
is set so that At| /r^ ~ 1/10,

X °-°62 (Fig. (III.3.1))
N( )dr^ 126

= 0.084.

The source, assumed for this purpose to be a point source,

emits electrons into an effective solid angle, An. ,

defined by the angular aperture of the beam in the x-y

plane (because of the 360° focussing) together with the

angle subtended by the target foil at the source. Taking

an orbit diameter of 8 cm., an angular aperture 2© = 30°
and a foil length of 2 cm. (in the z-direction), one finds

that, if the beam executes 200 orbits,

Ast ~ 2 x 10"4 steradian.
O

A source of 10 mC strength emits about 4 x 10 particles

of all energies into all directions per second. Hence the

initial beam intensity will be
R

j ^ 4 x 10 x 0.084 x 60 x 2 electrons
o ~ 4

4% x 10 per min.

= 32,000 electrons per minute.
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There are two reasons why fewer particles than this

should actually reach the target. One is that electrons

from some parts of the source may not be able to pass the

edge of the source-holder on completion of their first

orbit. For 200 orbits, the drift-distance per orbit

would be about /3 mm. and it would be impractical to have

more than about a tenth of the source-material lying with¬

in this distance from the edge (Section (IV.1).

The second reason is that gas scattering will deflect

some particles out of the beam. This is difficult to

allow for quantitatively, but it is believed (Section

(II1.3)) that the effective mean-free-path at the press¬

ures normally achieved would be of the order of 200

metres at worst. Since the actual path length assumed

above is 50 metres, this effect leads to a decrease in the

beam intensity by a factor of only about 0.8.

Finally, then, we arrive at a figure of about 2500
electrons per minute striking the target.

To see what this means in terms of the observed

single-scattering rate, N, we write

« = 1 • ■ ldy ip-' w.t.az

where I = incident beam intensity = 2500 per min.

1 = width of counter "window"

w = width of foil in x-direction

t = number of scattering centres

and dz, dy refer to typical small regions of foil and

counter window traversed by electrons (see Figure (III.4.2
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Wow sin © = z/r

2 2 2
r = y + z

Hence

This integral may he computed analytically if we assume

" ■ ■'■'H«'•' S5?=

|g-(©) = constant = , say,

over the range of scattering angle in which we are in¬

terested. Reference to Table (III.3.2) shows that this

is fairly well justified for backward scattering in the

range 90° < © < 120°.
If we choose the values

z^ = 0.5 cm. ; Zg = 2.5 cm.

y^ = 0.2 cm. ; y2 = 1.0 cm.

we find

N = 0.7 Ilw t j|~

Taking = 6 x lO*"2"*" cm.2/stdn., we find, for
2

scattering from a gold foil of thickness 0.35 mg./cm.

and width w = 2 mm. into a counter window of width 5

N = 0.7 x 2500 x 0.5 x 0.2 x °'^|0q 10 ^
x 6 x lO2^ x 6 x 10"2"'" electrons

per min.

= 1 electron per minute.

Experimentally (see Section (V.2)), it was usually
found that the background counting rate was of the order

of 100 per minute. Clearly, therefore, some means was
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required of increasing the genuine counting rate relative

to the background in order that the experiment should he

feasible.

Two possibilities present themselves. One may seek

to increase the beam strength by introducing focussing in

the z—direction as well as in the x-y plane or one may

try to improve the signal-to-noise ratio by introducing

energy selection of the scattered electrons. Let us con¬

sider the latter possibility first.

Snergy Selection after Scattering

In the work of Nelson and Piad (1959) on Mott double

scattering, the use of an electrostatic energy analyser

to select elastically scattered electrons resulted in a

substantial improvement in the observed scattering

asymmetry, as well as a reduction in background. Again,
it has sometimes been the practice in measuring beta-

particle polarisation to employ some form of energy

selection after the Mott scattering, (Cavanagh et al.,

1957). The best energy resolution would be obtained by

using a magnetic or an electrostatic analyser. The former

was ruled out for the purposes of the present experiment

because of the inevitable disturbing effect on the main

magnetic field (which cannot itself be used for energy

selection after scattering because the scattered par¬

ticles move nearly parallel to the field.) The latter was

ruled out, not only because of its disturbing effect on

the fields, but also because of the lack of space to
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accommodate such a device between scatterer and counter.

Energy selection in the counters themselves remains

a more practical possibility. Proportional counting was

not feasible because of the incompatible combination of

thin window and high gas pressure required - the former

to transmit low-energy electrons without degrading their

energy spectrum, the latter to stop them in the confined

space available. With a scintillation counter, on the

other hand, neither of these problems arises and, within

limits, the output is proportional to the electron energy.

Unfortunately, because of the need for fairly long light-

guides and the rather poor geometry for light collection

it was not possible in practice to achieve sufficient

resolution to be able to discriminate efficiently between

elastically scattered electrons and lower energy background

electrons (see Sections (TV.5) and (V.2)).

In any case, no matter how good the energy selection,
the problem remains of noise in the counters themselves

and of natural background.

A much more fruitful approach to the problem of beam

intensity was found to be the alternative one of intro¬

ducing weak focussing in the z direction.



(III.5) Focussing

Magnetic focussing of the beam in the z direction

might be expected to improve the beam intensity very sub¬

stantially. Because the orbits drift in the x-direction,

the focussing field should have the corresponding trans¬

lation symmetry while in the y-z plane it should have the

typical "betatron shape" (Figure III.5.1)). An approxi¬

mation to such a field could most conveniently be set up

in the present experiment by passing current through a

pair of rectangular coils, one set against each pole-face,

in such a sense as to augment the main field of the magnet

With such an arrangement the increase in the main field

would be greater at the pole-faces than in the plane lying

mid-way between them (referred to below as the "median

plane"), giving the desired field shape apart from some

inevitable, but not necessarily detrimental, end-effect
due to the finite length of the coils. However, it should

be remembered that the same disadvantages will attach to

this technique as to the similar technique used by Schupp,

Pidd and Crane (1961) (Section (1.4)). Therefore it will

be desirable that the degree of field inhomogene.ity intro¬

duced by the shimming coils should not amount to more than

about one or two parts per thousand of the main field.

Thus weak-focussing in the z-direction will be the most

that one can hope for.

The results obtained experimentally with such a

system will be discussed in Section (V.l), and we conclude
this section by remarking that a theoretical investigation
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FIG. (ill.5.1) Magnetic Field Configuration for
focussing in the z-direction.
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has recently been made Into the weak focussing of elec¬

trons in fields of the type described above (Farago, 1961),
in particular for the case of the trochoidal motion in

crossed fields. In that paper it is shown that the

essential features of the trochoidal orbit can be preserved

if the orthogonality between the two fields is preserved.

However, the focussing properties depend on the shape of

the magnetic field only, and if this does not deviate too

much from homogeneity it is possible to have focussing in

the z-direction as well as in the x-y plane.

Of course the respective periods of small amplitude

oscillations about the equilibrium orbit (which must lie

in the median plane) are not, in general, commensurate.

A particular configuration of crossed fields, which can be

described in terms of circular and hyperbolic functions,

is fully analysed in the paper just quoted. The properties

of the equilibrium orbit are worked out in detail, and the

conditions for stable oscillations about the equilibrium

orbit are given. It is shown that neither the foci pro¬

duced by oscillations in the median plane nor those pro¬

duced by oscillations normal to this plane are spaced at

distances which are integral multiples of the circum¬

ference of the equilibrium orbit. Although the field con¬

figuration chosen for analysis would be difficult to pro¬

duce experimentally it is not unreasonable to conclude

that a similar type of focussing would result with any

field of the same general shape provided it did not depart
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too much from homogeneity. One would not expect to be

able to observe sharp focal lines in practice, of course,

but, as Farago pointed out (loc. cit.) the value of using

this type of field is that it enables one to confine a

considerable part of the initial beam in the z-direction

over distances large compared with an orbit diameter.

Finally, we note that, although it is easy to produce

a suitable magnetic field configuration with the aid of

shimming coils, it is quite another matter to produce a

corresponding electrostatic field satisfying the orthogon¬

ality relation. Fortunately, the electrostatic field in

the present experiment is in any case small compared with

the magnetic field;so, if a uniform electric field is set

up, any deviation from orthogonality will be a small

quantity of second order and should not spoil the

focussing effect.



(III.6) Field Asymmetries

Electric Field

Owing to unavoidable departures from perfect mechanic

al symmetry in the construction of the parallel-plate

assembly used to produce the electrostatic field it is

possible to have a small z-component of electric field as

well as the main y-component. The effect of such a com¬

ponent, E , of magnitude independent of position, would

be to deviate the beam upwards or downwards from the

median plane. The amount of this deviation may be cal¬

culated as a function of the orbit-number, k, if the

magnetic field is assumed to be homogeneous.

The magnitude of the vertical component of accelera¬

tion is given by

z = eE/mY
z o

Therefore z = eE2t/m0Y
and z = eEzt^/2m0Y ,

where z is the distance from the median plane at time t

of an electron which is ejected from the source on the

median plane at t =0. Consider the displacement z^ at
completion of the k-th orbit. It is

zk = (eEz/2moY> x

where T is the cyclotron period.

Using Equation (III.1.1), this gives
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zk = 9VD2V2/2noY V
= (eD22Bz2/2m0T By)(E2/By)
= kD2 tan ©, k

where © is the angle by which the electric field deviates

from the horizontal (Figure III.6.1)).

Taking D2 - 7 cm. and k = 200, we see that, in the
absence of any compensating effect, the beam would be

markedly distorted (z^ y 5 cm.)
if © ~ tan © > 1/840 ^ 0.07° .

Fortunately the effects would be considerably mitigated

by the magnetic focussing described above. Nevertheless

it was thought desirable that careful alignment of the

parallel-plate assembly should be attempted.

Two kinds of distortion may be present (Figure

(III.6.1)). First, there maj?" be a lack of parallelism be¬

tween the plates. This should lead to no net deviation

of the beam since any effects will cancel out over a com¬

plete orbit. Second, there may be a mean deviation of the

system as a whole from the vertical. This is the type of

error which would lead to an uncompensated z-component of

electric field. A simple device was incorporated in the

system, by means of which the last-named error could be

controlled in a continuous manner (Section (1V.2)).
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Magnetic Field

If the horizontal symmetry-plane of the magnetic

field is displaced upwards or downwards from the geometric¬

al median plane, the effect will be similar to that

caused by an uncompensated z-component of electric field.

The teirn "symmetry-plane" as used here, though convenient,

is not strictly accurate. What is meant is that plane

(assuming one exists) which is everywhere intersected

normally by the magnetic flux-lines. If, for instance,

this plane is displaced upwards from the median-plane

then an electron emitted horizontally from a point on the

median plane will experience a small force tending to

deflect it upwards. If the displacement of the magnetic

symmetry-plane is not too great, the electron will

eventually cross the latter and will then begin to

oscillate about it. Thus, although the result would be

a mean deviation of the beam from the median plane, the

effect would not be identical with that due to an elec¬

tric field asymmetry except in the more extreme cases

where the magnetic symmetry plane actually lies outside

the vertical limit of the region available to the electron.

The possibility arises of making the electric and magnetic

asymmetry effects cancel one another. Such an arrange¬

ment cannot, however, be as satisfactory as one in which

both effects are eliminated independently. Unfortunately,

one could only hope to do this by means of direct
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observations on the beam itself and as it is very diffi¬

cult, if not impossible, to distinguish between the

effects of the two asymmetries by this means one cannot

in practice do more than achieve mutual cancellation.

The magnetic asymmetry just described can easily be

controlled in a continuous manner by passing current

through a shimming coil of large diameter on one pole-

face only (Section IV.3).

An asymmetry of a more intractable nature would be

one where the average magnetic flux-density is greater on

one side of the x-z symmetry plane than on the other. The

effect of this would be to introduce a spurious drift of

the orbits indistinguishable in nature from the genuine

drift due to the electric field, E^,. Indeed, in the ex¬
periment of Charpak, Lederman, Sens and Zichichi (I960)
(see also Charpak et al., 1961) to measure the magnetic

moment anomaly of the free mu-meson, such an asymmetry was

used expressly for the purpose of causing the mu-meson

orbits to drift, no electric field being applied at all.

In the present experiment this asymmetry would show

up as a phase-shift in the curve of counting-rate

asymmetry against orbit-number. Unfortunately the phase

shift would not be constant, as the following order-of-

magnitude calculation shows.

Let us assume that the mean value, B+, of the magnet¬
ic field on the positive-y side of the x-z plane differs

by AB from the mean value, B^, on the side of negative
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y. Then, correspondingly, the mean radius, p , of the
orbits on the positive side will differ by Ap = p+ - p_

from the mean radius, p_, on the negative side. We have

Ap = iQ.1

+Q.

=

B - B = C A(b), say,
"T~ •"»

where C sf Bp , the overall mean value of Bp.
Thus Ap ~ „ £ AB

B ' B
" P

. AB/B

Now the nominal value of the drift-distance per orbit

would be

a = C'V,
nom '

where C' is a constant, while thei actual value would be

"act. « C'V " 2 Ap

Similarly, with an obvious notation,

d2
nom- = anom.

°2
: (see Fig. (III.;

while
D2

act. = 7" ~
act.

D2\ i t ! M i i \

C'V - 2 Ap

2? k (1
nom.

+ §Tv#)
if 2 Ap « C'V .

itX<3•

•

• kact. ~ knom. C'V • knom.

2 Ap 2

D2 ' knom (III.6.1)

or, writing knom = k from now on,
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Ak » - Ab p

D2 B *

Ar p
= - ~ ■=— k (see Fig. (III.3.2))

D2 B

A typical value for the ratio D-^/Dg would he 1.2.
Thus | Akf ~ .1.2 -4s v2

b k

If we now lay down the criterion that Ak ^ 1/2 5 kQ
^ 30 (compare Section (III.3), p. 15),

then we require

AB/B

where k_ , as in Section (III.3), is the greatest numberhicajc 9

of orbits which we are likely to use in the experiment.

Let us choose > as before, so that

Ab/b ~ 2.5 x 10-5
It is believed (Section (IV.3)) that this degree of

field homogeneity was actually achieved and, in any case,
—

that 4B/B was not greater than 4 x 10 ', in which case

kmax~ 800 ~ 1'1 V
There are two ways in which this type of error might

be eliminated.

One would be to observe the asymmetry over

several complete periods and to plot 1/ k(N+l) - k(N)

against k(N+l) + k(N), where k(N) is number of orbits

required to reach the N-th complete period. The intercept

on the ordinate axis would then be Y(v).a, in the notation
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of Section (III.l). For, from equation (III.1.2),

assuming Y(V) — 1,

^ ■ kact.<K+ » -kact.(K> '

= k(N + 1) - k(N) + 2Aft^*lc2(fi+l) . k2(N))•
from equation (III.6.1)

= jk(N+l) - k(N)j [l + -£k(N+l) + k(R^
Therefore

= 2^P Y-a • k(N+l) + k(N)j° + Yk(N+l) - k(N) D2

Alternatively one might carry out the experiment at

different electron energies and assume ZlB/B to be

constant. Writing

a„K(, = 1/Y (k„rt„,)rtob s. nom o ,

and using equation (III.6.1) again, we find

D1 AB 1
~

n ' — *
2 B Y

Thus a plot of a0ks against 1/Y would give a straight

aobs. atrue D2 g y

line with intercept equal to a.
u rue •

However, neither of these methods would be easy to

apply in practice, the former because of the difficulty

of obtaining observations over more than one complete

period and the latter because of the small range of Y
available.



CHAPTER IV

APPARATUS

(IV. 1) Sources arid Source-holders

Sulphur-35 was obtained in carrier-free form as a

solution of sodium sulphate in water, and the source was

formed "by evaporating small droplets of the liquid on the

source-holder.

In the earlier stages of the work, when depolarisation

and "back-scattering were not important considerations, the

source-holder consisted simply of a suitably shaped piece

of aluminium or brass rod near the edge of which a line-

source was deposited. Difficulty was experienced in

practice in confining the source material strictly to the

forward side of the source holder. Electrons which have

performed only one semi-circular orbit must not be allowed

to strike the target. Therefore, in the later versions of

the line-source, the material was deposited on a thin wire

and shielded on all but the forward side by a thin aluminium

shield or baffle. A line-source of this type is illustrated

in Figure (lV.l.l)(a).

The great disadvantage of any such arrangement was

that the electrons, on completion of their first orbit,

had to pass by the outer edge of the shield and therefore

it was not possible to extend the experiment beyond that

number of orbits at which the drift-distance per orbit was



(IV. 1) -2-

equal to the thickness of the shield. Indeed, because of

the finite width of the source itself, the beam intensity

began to be severely reduced when as few as 50 orbits had

been reached (Section (V.l)).

The introduction of the weak-focussing field, however,

opened up new possibilities in source-holder design.

Referring to Figure (iV.l)(b), we note that, with the type

of "point-source" there illustrated, electrons which

succeed in passing above or below the source-holder on

their first few orbits may ultimately be focussed on to

the target. Thus, although there will be some attenuation

of the beam over the first few orbits there is the possi¬

bility that this will be much less serious than in the

case of the line source. Several designs of source-holder

were tried out, including a double source-holder in which

the source was split into two halves symmetrically dis¬

posed with respect to the median plane. The vertical

spacing between the two halves could be varied by means of

a screwed rod. The aim in this case was that the electrons

should pass between the two halves of the source-holder on

their first few orbits. Again, a npoint-source" of the

type illustrated was tried at various distances off the

median plane. The best results were obtained with the

design shown, however.

When the polarisation of the beam was an important

consideration, precautions had to be taken to minimise
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backscattering from the material upon which the source

was deposited, since this was the most important cause of

depolarisation of the beam. That appreciable depola&sation

of the beam can result from backscattering can be seen

from the following semi-quantitative argument. Let us

assume an electron-energy of 100 keV, giving an initial

beam polarisation of 55 $ for an infinitely thin source

and no backscattering. According to a remark at the end

of Section (II.U) we may picture the beam as consisting

to the extent of 77^$ of electrons with their spins

directed backward (opposite to their momentum) and 22i%
of electrons with their spins directed forwards. For

every 100 forward-emitted electrons there will be 100

emitted backwards with the same polarisation, that is with

77"?$ of their spins pointing in the direction of the beam.

Let us suppose that the source has been deposited on a

thick (> 100 mg./cm. ) aluminium backing. Then a reason¬

able estimate of the backscattering would be 20$ (Paul

and Steinwedel, 1955). The polarisation of these back-

scattered electrons would be little reduced in magnitude

by the scattering (Bernardini et al., 1958) so that the

result would be a forward beam in which, out of every 120

electrons, 7li + U-z - 82 would have their spins directed

backward and 22i + 15i = 38 would have their spins

directed forward. The net polarisation of the beam would

therefore be reduced from 55$ to 37$ . Fortunately the
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great majority of the backscattered electrons will have

their energy so substantially reduced (Bothe, 19^+9) that

they will not be transmitted to the target. By the same

token, however, there will be a contribution to the de-

polarisation from backscattered electrons whose original

energy was greater than 100 keV.

In the present apparatus one must arrange that all

backward-emitted electrons are stopped somewhere in the

source-holder and it was concluded that the best compromise

would be to deposit the source on a thin aluminium foil
2

about 1 mg./cm. aluminium gives negligible backscattering

depolarisation at 100 keV (Cavanagh et al», 1957;

Heintze, 1958) - backed by a hollow space as shown in

Figure ^IV.1.l)(b). Over the source was placed an

aluminium cover having a slot which subtended an angle of

about 20° at the centre of the source. Back-scattered

electrons, however, besides having to penetrate the alumin¬

ium foil in order to get out, would on average nsee" a

substantially smaller exit aperture than the 20° available

to the genuine beam. In this way it was hoped that back-

scattering would be reduced by a factor of at least three..

A rough calculation shows that the thickness of the

source material itself for a 50 mC source deposited on an

2 2
area of about Umm. would be expected to be 120 |j,gm./cm. ,

insufficient to cause noticeable depolarisation.

The use of aluminium instead of organic materials for

the supporting foil prevented charging up of the source, a
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phenomenon which can seriously affect the electron energy

(Slatis, 1955).

The exit slot was about 1 mm. wide. There will there¬

fore "be a corresponding range of orbit-number at the tar¬

get, given by Ak/k ~ Ax/D2> where Ax is the slit-
width. Ak would amount to about li+ orbits at k = 1000

and over this range the asymmetry could be assumed to vary

linearly with k. Hence it was customary to measure D2 from
the middle of the slit.



(IV.2) Blectric Field

The values of the potential difference which had to

"be applied between the parallel plates (Figure (IV.2.2)) to

give the various orbit numbers, k, satisfied the relation

kV = constant.

In a typical case the constant amounted to 160 kilovolts.

Thus in order that a range of orbit-number of, say, k = 10

to k = 1000 might be covered, voltages ranging from 16 kV

to 160 v. were required. It was desirable that these should

be stabilised to better than 3$ over long periods.

A radio-frequency voltage generator was employed to

give a continuously variable output from about 300 volts to

about 17 kV in three ranges (for voltages below 300 v.,

batteries were used.) The output was symmetrical with

respect to ground (so that the source-holder and target

holder would be in a region near ground potential and so

that the field would be as symmetrical as possible) and

was stabilised by negative feedback taken directly from the

negative D.C. output.

The circuit of the E.H.T. generator is given in

Figure (lV.2.l). The beam tetrodes, Vg and V^, acted in
parallel as a Class C power oscillator at a frequency of

about 60 kc./s. Their output was transformed up to 3 kV.

by the R.F. transformer coils Tr 2, which were housed

in an oil-bath to prevent discharges between sections of

the transformer, and also for cooling purposes. The

This was constructed by Mr. R.B. Gardiner
(see Gardiner, 1961).
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positive feedback to the oscillator could he varied by

moving the feedback coil relative to the main coils. The

R.F. output from the transformer was applied to a double-

ended Cockcroft-Walton voltage-trebler using metal rectifiers.

The capacitors employed in the voltage-trebler were

chosen so as to reduce the ripple voltage at the output to

about 0.1 i° of the total voltage. A chain of high-

precision (0.1 %) wirewound resistors, inmersed in an oil

bath, was connected between the positive and negative out¬

puts, and the centre of the chain was earthed. Three

ranges of output voltage could be obtained by tapping the

chain at the points indicated in the diagram. Approxi¬

mately 1 % of the total negative output was fed back

through the D.C. amplifier formed by V2, V^ and V^ to
stabilise the oscillator. The necessary control was exer¬

cised through the screen-grids of the oscillator tubes,

their voltage being regulated by the output of the D.C.

amplifier through the cathode-follower, V^. A 50 k-0-
helical potentiometer, providing a reference voltage for

the D.C. amplifier, constituted a convenient means of ad¬

justing the output voltage continuously over a range of

U:l.

Absolute measurements of both the positive and

negative outputs could be made with a precision potentio¬

meter, by measuring the voltage developed across precision

(0.1 %) wirewound 2000 XL- resistors forming part of the
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resistor chain.

Figure (IV.2.2) shows, schematically, the construc¬

tion of the electrodes inside the vacuum box. The

orientation of the parallel plates with respect to the

vertical could he varied slightly under vacuum by means

of the simple screw device illustrated, the control rod

for which passed through a vacuum seal in the wall of the

chamber.

The electric field was, of course, required to be

uniform, as far as possible, in the space between the

plates. To this end a series of equally-spaced grids was

provided whose relative potentials were fixed by means of

a resistor chain. High-stability carbon resistors were

used at first, until it was found that the end-caps on

this type of resistor were slightly ferromagnetic and were

seriously affecting the magnetic field distribution.

Ordinary carbon resistors were used thereafter, equal

values being obtained by selection from a large group. The

total resistance of the chain was 80 MIX; heating effects

and consequent drift of the resistance value were therefore

minimised even at the highest voltages.

A sufficient density of grids had to be provided to

keep the electric field homogeneous to about 1% at the

highest voltages. On the other hand, from the construc¬

tional point of view, it was desirable to keep the number

of grids to a minimum. Although some information on this

type of problem did exist in the literature (for example,



FIG. (IV.2.2) Electrostatic Field Assembly (not to
scale).
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Kemp and Barber, 1957)> there was nothing which could be

applied directly to the present case. It was therefore

decided to set up an electrolytic tank and to try various

configurations.

As some features of this tank were unconventional a

brief account may be of interest. The circuit is shown in

Figure (lV.2.3), and was quite conventional. The function

of the variable capacitors was to annullthe effects of the

stray capacitances between the probe and the electrodes.

It is usual when the highest accuracy is desired (Kennedy

and Kent, 1956) to employ a Wagner earthing device, but

this was found not to be necessary in the present applica¬

tion. The detector could be a sensitive oscilloscope or,

for maximum sensitivity, a specially designed grid-leak

detector (Figure (lV.2.3)). The latter combined high sen¬

sitivity for small inputs with the useful property of

saturating at high inputs so that the meter could not be

accidentally subjected to excessive deflections.

The probe assembly, illustrated in Figure (IV.2.14-),
was so constructed that its position could be transferred

directly to a piece of tracing paper without the use of the

conventional pantograph which introduces all the uncer¬

tainties associated with imperfect mechanical construction.

A beam of light was directed upwards in a line with the

probe and the image of a fine cross-wire was focussed on

the tracing paper supported above the tank on a horizontal

sheet of plate-glass. The only mechanical parts of this
i
system which needed care in construction were the two rails
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PIG. (IV.2.k) The Probe Assembly.
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upon which the probe-trolley ran. These had to be parallel

to one another, though in fact even the effects of this

error could be eliminated by orienting the model in the

tank so that the equipotentials lay as nearly as possible

at right angles to the rails in question. These rails

were themselves supported on trolleys, one at each end, so

that the probe could be traversed in two directions mutual¬

ly at right angles.

A test of the accuracy of the whole device wg.s made

by plotting the equipotentials for a simple electrode

system and comparing with theory. A model was constructed

to represent a normal section of a cylindrical condenser

(Figure (IV.2.5). Ordinary tap water was used as the

electrolyte and the electrodes were of untreated brass.

The probe supporting assembly was carefully levelled so

that the probe, a fine platinum wire, just touched the sur¬

face of the water over the whole area of interest.

The potential at a distance r from the centre of a

cylindrical condenser is given by

V(r) = C-j^ log r + C2,
where C-^ and C2 are constants. If log r is plotted
against x where

x = (V(r) - V(a))/(V(b) - V(a)),

a, b being the radii of the inner and outer cylinders res¬

pectively, then the points should lie on a straight line

of gradient log(a/b). When the observations were treated
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in this way they were found to lie on a straight line to

an accuracy of 0.5$ . Furthermore, this line, when extra¬

polated to x = 1, gave a value

b = 27.93 - 0.07 cm.,

while the actual radius of the outer cylinder was 28.0cm.

This showed that any surface effects at the "brass electrode

were negligible (Einstein, 1951? Kennedy and Kent, 1956).

In any case the accuracy of simulation of any given elec¬

trode configuration "by a tank model was not more precise

than this.

One of the models used in tests relevant to the

design of the grid system is shown in Figure (IV.2.6). In

order to obtain the most reliable results it is necessary

to make a model on the largest possible scale, and this can

often be done "by taking advantage of any symmetry which may

be present in the original system. The model shown in the

figure represents a section normal to the grids, including

one complete inter-grid gap and half each of the two

neighbouring grids* In this way the effect of varying the

grid-width to gap ratio could be studied. This also gives

an answer, as we shall see, to the problem of the minimum

density of grids required. The equipotentials for various

grid-to-gap ratios were plotted successively on the same

sheet of paper. It was found that, at all distances from

the grids greater than lv times the grid spacing (centre-to

centre distance), the equipotentials corresponding to

grid-to-gap ratios from 1:1 to i+: 1 could not he distinguished
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from one another. In addition, beyond the same limit, the

equipotentials themselves showed no detectable deviations

from straight lines. To allow a sufficient margin of

safety a distance of three times the grid-spacing was

chosen as the criterion for field homogeneity. Now the

electron orbits occupy a region between planes spaced

about - 2 cm. above and below the median plane (the

effective vertical length of the scattering-foil was usual¬

ly about 2 cm.), while the total vertical space between the

magnet pole-faces available for a grid-system was 9 cm.

Deducting 1+ cm. for the orbits and making a reasonable

allowance for the vertical thickness of the grids them¬

selves leaves a vertical " dead-space" of 18 mm. top and

bottom. The grid-spacing, on the above criterion, should

then be 6 mm. In the practical design (Figure (IV.2.2))

the centre-to-centre grid spacing was inch, and the

grids were inch thick and Jp inch deep. With these
dimensions 18 grids could be fitted in, the spacing between

each of the innermost pair and the source-holder grid being

70$ greater than the average to allow of detectors being

inserted above and below the scattering-foil. The centre of

the system being in any case at earth potential, the greater

spacing of the innermost grids should not cause undue

inhomogeneity.

In conclusion, the following points must be emphasized.

Provided any small deviation from homogeneity is (a) rapid¬

ly fluctuating as seen by the electron or (b) symmetrical
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with respect to the x-z plane, no deleterious effect on

the orbits need be expected. Finally, it is not necessary

to rely solely on the kind of criterion given above.

Observations on the electron beam itself (Section (V.l))

showed that the electric field was performing its function

correctly, at least up to 50 orbits.



(IV.3) The Magnetic Field

Figure (IV.3.1) shows the electromagnet with the

arrangement of the coils. The magnet was machined from

commercial soft iron of a type relatively free from

structural inhomogeneities such as gas "bubbles ("rolled

bar") and was designed so that the pole faces could act

as the closing sides of the vacuum vessel. The upper yoke

and pole-piece could be raised by means of a block and

tackle to allow access to the vacuum vessel. The pole-

faces were machined flat but were not optically polished.

Rose shims were machined round the perimeter of each pole-

face to improve the field homogeneity.

Power for the magnet was provided by a rectifier set

whose output was smoothed ana to some extent stabilised by

a system of floating batteries, (Figure (IY.3.2). For

greater short-term stability a transistorised stabiliser

was designed and built. The complete circuit is shown in

Figure (IV.3.2). The stabiliser was of the conventional

series type, the series transistors being mounted on cool-

ing fins. A potential difference proportional to the mag¬

net current was developed across a 1 ohm standard oil-

immersed resistor and was compared with a constant voltage

obtained from a Zener Diode. The error voltage was
.

amplified by a D.G. difference amplifier consisting of two

silicon transistors in the "long-tailed pair" configuration.

The output of this stage was fed to the series controlling
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transistors in the correct phase to give overall negative

feedback. Two series transistors were employed in

parallel,so that currents of up to b amps could be

stabilised without excessive heat dissipation.

The primary purpose of the transistor stabiliser was

to suppress rapid fluctuations of the magnet current (due

to mains fluctuations) which made proton resonance magneto-

metry almost impracticable. The fact that the stabiliser

was uncompensated for temperature fluctuations was there¬

fore of no importance. The short-term stability achieved
b

was better than one part in 10 . The main cause of long-

term drift would be expected to be the variation with

ambient temperature of the Zener diode reference voltage.

The diode was chosen so as to give a stabilised voltage of

5.6 v., the value near which the temperature coefficient

of voltage for this type of diode is zero. Certainly, in

practice, long-term fluctuations were less than

Since the magnetic field was required to be homogene-
b

ous to a few parts in 10 over the area swept out by the

electron orbits, it was necessary to have some means of

making relative field measurements to this degree of pre¬

cision. Absolute measurements of the field were required

to about 1% only. These requirements are conveniently

met by the method of proton magnetic resonance for fields

as low as 100 gauss. A proton resonance magnetometer,

based on the circuit of Watkins and Pound (1951) (see also
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Pound, 1952), was t>uilt and was subsequently modified for

the direct measurement of field inhomogeneity.

Figure (IV.3.3) is a block diagram of the magneto¬

meter and Figures (IV.3.^-) and (IV.3.5) show the complete

circuit. The operation of the basic magnetometer circuit

will be described very briefly and the modifications made

to it will then be discussed in more detail. The tank

coil of the oscillator was wound, on a small piece of glass;

tubing which contained the proton sample (Figure (IV.3.6)).

The frequency of oscillation was controlled manually

by the variable air capacitors and Gg and. was normally
about 1 Mc/s. The cathode-coupled oscillator was con¬

veniently stabilised in amplitude by means of the D.C.

bias on the grid of V-^. The proton absorption signal was
passed to the two-stage R.F. amplifier and rectified by

V^a and V^. The rectified output from V^a was returned
to the grid of V-^ to stabilise the level of oscillation
at the low value necessary to avoid saturation of the

proton absorption. The output of V^ was further ampli¬
fied by a two-stage audio-frequency amplifier and could

then be displayed on an oscilloscope.

In the first version of the circuit the oscillator

was incorporated with the probe head in a separate metal

box and a cathode follower was included to feed the R.F.

signal through a length of coaxial cable to the R.F.

amplifier input. It was later found, however, that removal

The first version of the magnetometer was built by
Mr. R.B. Gardiner (see Gardiner, 1961)*



probe assembly

FIG. (IV.3.3) Block diagram of Proton Magnetometer.
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of the cathode follower circuit improved the signal-to-

noise ratio by a factor of about 3> and in the final model

all stages except the A.F. amplifier were incorporated in

the probe-head box.

Figure (IV.3.6) shows the design of the probe-head.

The volume of the sample was about 0.5 ml. and it nor¬

mally consisted of tap-water with the addition of ferric

nitrate at about 10 gm. per litre or manganese sulphate at

a similar concentration.

The purpose of adding these paramagnetic ions was, of

course, to decrease the spin-lattice relaxation time and

so make it possible to obtain a larger signal. The natural

line-width was increased at the same time but in the pre¬

sent application where most of the line-width was accounted

for by the field inhomogeneities, a suitable compromise was

easily reached empirically.

A pair of auxiliary coils on the pole-pieces of the

magnet enabled the main field to be modulated sinusoidally

at about 15 c/s about its mean value, the necessary cur¬

rent being provided by an A.F. power oscillator whose out¬

put, suitably shifted in phase, was also applied to the

X-plates of the oscilloscope. The absorption peak was thus

displayed directly against magnetic field.

Several systems, of varying degrees of elegance and

complexity, suitable for the direct estimation of magnetic

field inhomogeneities have been described in the literature
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(for example, Baker and Burd, 1957). The most obvious

method is to have two independent oscillators, each with

its own probe, and to measure directly the frequency dif¬

ference when both are on resonance. As well as being

uneconomic, this system is unsatisfactory in practice be¬

cause it is a matter of considerable difficulty to avoid

coupling between the two oscillators, especially when the

two frequencies are nearly equal. Before constructing one

of the more complex circuits it was decided to try an easy

modification of the original system whereby one simply

introduces a second probe head with its R.F. coil connect¬

ed in parallel with the first one. This arrangement is

indicated in Figure (IV.3.^)« The second probe-head was

connected to the oscillator chassis by about 3 feet of

coaxial cable and could be traversed horizontally and

vertically in the magnetic field while the first probe-

head was kept fixed. This system was found to work very

well, although, of course, the signal-to-noise ratio was

reduced by half. Two absorption peaks were observed whose

separation on the oscilloscope display was directly pro¬

portional to the difference in field strength between the

fixed and the movable probes. The necessary calibration

of the oscilloscope scale could be carried out directly in

terms of frequency.

The frequency-measuring circuit was designed for the

present application and is shown in block form and in
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detail in Figures (IV.3.3) and (IV.3.5). The R.F. signal

was taken through two buffer amplifier stages to the first

grid of a mixer tube. A fixed-frequency signal generated

by a quartz-crystal oscillator was applied to the second

grid. The output of the mixer tube was taken through a

loY/-pass filter whose cut-off frequency was of the order

of 100 Kc/s and the beat-frequency, normally in the range

2-5 Kc/s, was displayed on an oscilloscope against the

signal from a good-quality commercial A.F. oscillator.

Troublesome feed-through of the quartz-crystal signal to

the proton resonance circuit was reduced to an insignifi¬

cant amount by picking up the proton R.F. signal in a short

length of wire suitably placed near the R.F. amplifier,

thus avoiding any direct connection between the two circuits.

Contour maps were plotted of the total magnetic flux

density over various horizontal planes in the magnet gap,

and some of these are reproduced in Figures (lV.3.7 - 9).

Initial exploration of the field in the mid-plane

showed (Figure (lV.3.7)) that it was not quite axially

symmetric. A simple and convenient method of correcting

this was found to be to wrap a few turns of wire round

each of the four corner-posts (return-paths for the flux)

and to adjust a D.C. current through each coil independent¬

ly until a symmetrical field distribution had been attain¬

ed. The coils were then replaced by the appropriate numbers

of turns of a single wire carrying the stabilised magnet



PIG. (IV.3.7) Contour map of magnetic field in median
plane "before adjustment;
1 unit = 1 part in 105 (arbitrary zero);
region of electron orbits indicated.



 



PIG. (IV.3.9) Contour-map of magnetic field in a

horizontal plane 1 cm. above median

plane; 1 unit = 1 part in 10^"
(arbitrary zero).
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current to the main coils, so that the same number of

ampere-turns as before (to a sufficiently good approxima¬

tion) were provided at each corner-post. The number of

turns needed ranged from +1+ to -2+, representing a total

range of 1% of the number of ampere-turns in the main

coils.

There still remained a substantial variation of field

strength in the vertical direction, which appeared to

originate in some small asymmetry between the two sets of

main windings. To compensate this asymmetry a coil of 30

turns was placed against one pole-face just inside the

Rose-shim and outside the vacuum chamber. A current of the

order of 0.5 Amp was needed in this coil, representing

approximately 1% of the total ampere-turns. In what

follows this coil will be referred to as the "correcting

coil" and the current in it as the "correcting current,

i ". To illustrate the final field profile two contour-
o

maps are reproduced. These give the field profiles over

horizontal planes respectively 1 cm. above (Figure

(IV.,3.8)) and 1 cm. below (Figure (lV.3.9)) the median

plane. The region swept out by electron orbits of 8 cm.

diameter has been indicated to show the scale.

With regard to the type of magnetic field asymmetry

referred to at the end of Section (ill.6), scrutiny of

these and their companion charts for planes at from +2 cm.

to -2 cm. from the median plane, suggests that A B/B was

5
not greater than 2.5 parts in 10 on average.
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The magnet was cycled when switched on to ensure

reproducibility of the field. The main current could be

measured by means of a standard 0.01 St resistor and a

potentiometer, but was normally reset to 0.3^ using a good

quality ammeter whose calibration was checked against the

potentiometer. A magnetisation curve, Figure (IV.3.10),

was taken with a Grassot Fluxmeter, and showed satisfactory

linearity. Two spot values measured with the proton

resonance magnetometer in the neighbourhood of the working

field gave an absolute calibration and thereafter all mag¬

netic field values were derived from the straight line

passing through the origin and through the proton points.

It was of course necessary to make a correction for the

contribution due to the correcting current, i , and the

appropriate calibration curve is given in Figure (lV.3.1l).
It will be noted that the contribution in question amounts

to 3.0U gauss/amp.

For the purpose of effecting weak focussing (section

(ill.5)) a pair of so-called shimming coils of rectangular

shape and of 15 turns each were placed one above and one

below the parallel-plate assembly inside the vacuum chamber.

The width of the coils was equal to their separation, about

11.5 cm. The calibration curve for these coils is included

in Figure (lV.3.11). Under normal working conditions the

shimming current, i . did not exceed 0.J+ Amps: thus the

contribution to the main field from this source at the

centre of the working region was normally not greater than
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0.3 ^ 9 and the inhomogeneity associated with this con¬

tribution was clearly within the limits mentioned in

Section (ill.5).



(IV.h) The Vac-gum

—6
We have seen that a pressure of the order of 10~

mm. Hg. would "be desirable in the present experiment.

Such a pressure can "be reached and even surpassed in an

unbaked metal apparatus provided certain conditions are

met.

(a) All exposed surfaces should be clean and substances

having an appreciable vapour pressure (such as perspex)

should be excluded.

(b) A fast pump should be used, followed by a high-

conductance pumping line.

(c) An efficient trap should be provided for oil and

other vapours.

( d) All detectable leaks must be rigorously suppressed.

The vacuum system was designed with these require¬

ments in mind, although it was not possible to satisfy the

first condition completely. The vacuum vessel itself was

of brass, the magnet pole-faces forming the closing sides.

Silicone rubber O-rings were used to make the seals, since

this material retains its resilience for long periods

under stress. A six-inch fractionating oil-diffusion pump,

provided with a water-cooled baffle, was backed by a single-

stage rotary pump. Pressures were measured with a cali¬

brated ion-gauge.

The steady vacuum attainable after prolonged pumping

was, in practice, critically dependent on the rate of
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leakage from the outside air and, after all detectable

leaks had been sealed up, a pressure of less than
—6

2 x 10 ram. Hg. was reached with several square inches

of perspex surface in the system. A useful method of leak

detection at low pressures was to direct a jet of helium

gas at the suspected part and to observe the ion-gauge

reading. When helium entered the system a marked decrease

in the reading could be observed.

It was necessary to pass perspex light-guides through

the wall of the vacuum vessel. Fortunately a simple type

of compression seal proved adequate for this purpose

(Figure (IV.5.2)).



(IV.5) The Counters

Certain advantages attach to the use of Geiger-Muller

counters for detecting the scattered electrons. First, the

counting efficiency depends almost entirely on the area and

thickness of the window, and, with care, a pair of counters

can "be made nearly identical in these respects. Second,

the counting rate due to natural "background can be reduced

to quite a low level (10-15 counts per minute) and will be

closely equal in the two counters. Third, the counting

rate is largely independent of small fluctuations or drift

in the high voltage supply and, if a quenching circuit is

used, electronic amplifiers may be dispensed with. Thus

long counts may be taken without fear of drifts in counting

rate.

In the earlier investigations of the scattering

commercial thin-window counters were used. However, these

suffered from three disadvantages. The window thicknesses

varied from one tube to the next, though they were all

specified to lie within the range 1-2 mg./cm. . Unfor¬

tunately, at electron energies as low as 100 keV, quite

small differences in thickness become important. In

addition the window area was very small, about 3 mm. x 9

mm., and as the counter could not be brought very close to

the scattering foil the effective solid angle was small.

Finally, the metal parts of the glass-to-metal seals

were of a magnetic alloy so that there was a risk of dis¬

torting the magnetic field.

I
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At one stage in the investigation a pair of non¬

magnetic Geiger-Muller tuhes was constructed. As some of

the constructional features were not completely convention¬

al, a brief description may be of interest. The tungsten

anode-wire, of 6 mil. thickness, was sealed directly into

Pyrex glass (Figure (IV.5.1)), an operation needing con¬

siderable care. The body of the counter was of smooth

drawn aluminium tube and the ends were sealed with

"Araldite", close-fitting "Teflon" ("P.T.F.E.') plugs

having previously been inserted to prevent any possibility

of the filling gases being contaminated by the "Araldite".
2

Both windows were cut from the same piece of 1.5 mg./cm.

mica sheet and were about 12 mm. long by 5 mm. wide. They

were sealed on with a little "Araldite". The counters were

filled to a pressure of 10 cm. Hg. with a mixture of dry

argon and ethyl acetate vapour in the ratio of 9:1. For
6o

Co Y-radiation the plateaux of the two tubes, used as

self-quenching counters, were 250 volts long and had slopes

of 3% and 3z % per 100 volts respectively. For soft 0-

rays (S^) the plateaux were 300 volts long and of neglig¬

ible slope. The starting voltage in both cases was some¬

what less than 1100 v.

It was found convenient, for the reason mentioned above,

to use quenching circuits with these and with the commercial

counters. The two anode leads had then to be shielded

rather carefully to avoid triggering of one quenching cir¬

cuit by the 2h0 v. quenching pulse of the other.
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Although the tubes just described avoid some of the

disadvantages of the commercial types, the use of Geiger-

Muller tubes turned out in practice to be unfruitful and

was discontinued in favour of scintillation counting* As

sometimes happens, not all the reasons for abandoning the

method still appear valid in the light of later work. Two,

however, can be mentioned which still weigh heavily.

These may be summed up loosely in the term " signal-to-

noise ratio". The first, and perhaps the most important,

reason was the almost complete absence of energy resolution

in the counter, while the second was related to the

geometry of the system and in particular to the difficulty

of making a sufficiently large window in a counter whose

form was restricted to that shown in Figure (lV.5.l) by

the cramped space available inside the vacuum vessel.

In studying the electron optics of the system it had

in any case been found convenient to employ a scintillation

counter to count electrons at the position of the target

foil. A small piece of plastic scintillator (NE102) was

attached to the end of a Perspex light-guide 12 ins. long

and of 1 in. diameter. An E.M.I. 6097B photomultiplier

picked up the scintillations and its output was passed to

a pulse-amplifier, a single-channel pulse height analyser

and a scaler. The necessity for such a long light-guide

arose, of course, from the need to keep the photomultiplier

well away from the influence of the magnetic field (the
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use of a rau-metal shield would have caused gross dis¬

tortion of the magnetic field itself). It was found that

the efficiency of light collection could he increased very

considerably by coating the scintillator and the end of the

light-guide with a thin layer of magnesium oxide and by

keeping the remainder of its surface polished and, in

particular, grease-free. A special siliconeoil (Nuclear

Enterprises (G.B.) Ltd.) was used to make good optical

contact between the end of the light-guide and the photo-

cathode.

This system was modified for the purpose of making

scattering measurements, as follows. The single l,f-

diameter light guide was replaced by two ^"-diameter light

guides, as shown in Figure (lV.5.2). The E.M.I. 6097B

tube was replaced by a pair of Twentieth Century Electron¬

ics RBMSlO/lij-B miniature 10-stage photomultipliers with

li| mm. photo-cathodes, mounted one above the other (Figure

(IV.5.2)). By using these tubes and the thinner light-

guides not only could the double system be fitted into the

space formerly occupied by the single scintillation

counter, but also the scintillators could be brought close

up to the scattering foil, thus greatly improving the

solid angle for acceptance of scattered electrons. The

greater length of the light guides relative to their dia¬

meter entailed some loss of energy resolution, unfortunately,

but this was not serious.
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Once this system had heen set up it was possible, by

using suitably shaped scintillator-light-guide combina¬

tions to make observations on the direct beam also.

Examples are given in Figure (lV.5.3) of pulse-height

spectra obtained with such an arrangement for the nearly-

monoenergetic electrons falling upon the scintillators

when the magnetic field was reversed so that a semi¬

circular electron-beam was formed with the scintillator

at the 180° point. Clearly, even at 100 keV energy, one

cannot expect to be able to work at a very high overall

counting efficiency especially when it is remembered that

in practice the bias had to be turned up to about 20 v.

when counting scattered electrons so as to reduce the

relative number of photomultiplier noise pulses.
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CHAPTER V

OBSERVATIONS AND CONCLUSIONS

(V.l) The Electron Beam

In an experiment involving the observation of electron-

nuclear scattering it is clearly of vital importance to

have an adequate beam intensity incident upon the scatterer.

When the beam is derived from a (3-active substance this may

raise some problems. In the present experiment there have

been two central experimental problems, that of beam in¬

tensity and that of eliminating instrumental asymmetries.

The first will be discussed in this section.

For a long time line-sources were used exclusively

but, even with the introduction of the z-focussing

(Section (III.5)), it proved impossible to maintain a

reasonable beam strength over much more than about 50

orbits. The reason for this, as has already been indicated

(Section (IV.1)), was the necessity for the beam to pass

the edge of the source-holder on completion of the first

orbit. Because of this a progressively smaller segment of

the source was effectively contributing to the final heam

as the drift-distance per orbit was decreased.

The effect of this is illustrated by the lower curve

in Figure (V.l.l). Each point on this curve represents

(on a logarithmic scale) the best beam intensity obtainable

with a particular line-source (Fig. (IV.1.1) at a given

orbit-number after adjustment of the correcting current, ic.
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The magnetic field and shimming current, i , were fixed

and the beam was observed by means of the scintillation

counter with l"-diameter light-guide mentioned in Section

(IV.5).

The curve falls into two parts, the first section

corresponding to those values of orbit-number, k, for which

the whole beam was able to pass the source-holder. Even on

this part of the curve, which extends up to about k = 60,
there is an exponential fall-off in beam intensity with k.

The slope is such that the intensity falls by a factor of

"e" in the first 55 orbits. This is now believed to have

been due largely to a distortion of the magnetic field in

the region between source and baffle, caused by the pre¬

sence of ferromagnetic end-caps on the cracked-carbon

resistors used with the grid-assembly. The second section

of the curve, which shows a much more rapid exponential
.fall-off of intensity, corresponds with orbit-numbers for

which an ever-increasing fraction of the initial beam was

cut off by the source holder as the drift-distance per

orbit was decreased. Two quantitative considerations sup¬

port this interpretation. First, the drift-distance per

orbit, 8 , is given by

8 = 2ran0TE /dBj; (Appendix C)

and, in the present case, this gives for the drift-distance,
8 c, at which the cut-off effect began to occur

8 c — 1.5 mm.»
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corresponding approximately with the distance of about

1.2 mm. from the outer edge of the source-holder to the

inner edge of the source. Secondly, it was found that the

"beam intensity was reduced practically to the background

level by the time a drift-distance of 0.8 mm. had been

attained, corresponding to the distance from the outer edge

of the source-holder to the outer edge of the source.

The improvement which was brought about with the

introduction of the "point-source (Fig. (IV.l.l))(b) was

most striking, as can be seen from the upper curve in

Figure (V.1.1), the more so inasmuch as the weak-focussing

field was less by a factor of 7 in the second case than in

the first. The upper curve was taken with the double

scintillation counter described in Section (TV.5) using

the Type A scintillator design shown in Figure (V.1.2).

By the time these observations were taken the field homo¬

geneity had been improved and the orbit diameter had been

reduced from 10 cm. to 8 cm., but these factors could have

made no more than a relatively minor contribution to the

overall improvement. There was still an exponential de¬

crease of intensity with orbit-number at orbit-numbers

greater than about 150. Most of this must have been due

to the removal of a definite fraction of the beam at each

extra orbit by reason of its striking the back of the

source-holder. The slope of the log plot can be accounted

for quantitatively by assuming that the vertical width of

the beam was about 8.5 times that of the source-holder, the

latter being 3*5 mm. wide. A total beam width of 3 cm.
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seems a very reasonable value. The apparent in

beam intensity at the smallest orbit-numbers was probably

not a genuine effect but simply a result of the fact that

the drift-distance per orbit was greater than the width of

the scintillator (0.6 mm.) as also was the width of the

source ( ~ 2 mm.). Thus part of the beam may have missed

the scintillator altogether.

A satisfactory beam intensity having been obtained, it

was essential to examine how its distribution in the z-

direction depended on such parameters as the correcting

current, i , the shimming current, i_, and the orientationc s

of the parallel-plate assembly. This could be investigated

rather conveniently using the double counting system re¬

ferred to above, with the Type A scintillation heads.

Figure (V.l.3) illustrates the effect of altering the

mean angle made by the parallel-plate system with the

vertical at a relatively low orbit number (k o^35), and

with no weak-focussing (i_ = 0). Without weak-focussing,
o

of course, one could not observe the beam at high orbit-

numbers, whereas with weak-focussing present the orienta¬
tion of the parallel-plate system had no effect on the

respective counting-rates in the two counters. The latter

observation indicated that the beam was being efficiently

trapped by the weak-focussing field. Returning now to

Figure (V.l.3) we see that, for each of the three values

of correcting current, iQ, there appears to have been a
well-defined electron beam which could be swept across each
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counter in turn. Positive deviations on Figure (V.1.3)

corresponded to an increasing positive z-component of

electric field and therefore to a downward displacement of

the beam, in accordance with the observations. The separa¬

tion of the peaks in terms of parallel-plate angle was

nearly independent of i and was about 0.007 radians in

magnitude. Using the foimula

z =n D2 sin © k

derived in Section (III.6), we find, for the conditions of

the experiment (D2 = 79 mm.),
z 6 cm.

The most plausible explanation for the discrepancy between

this and the actual distance of 2.1 cm. separating the

centres of the scintillators is that a small degree of

weak-focussing existed even in the absence of a shimming

current. Had this not been so, in fact, it is difficult

to see how such an apparently well-defined bean could have

been formed at all. The presence of this residual focussing

effect was not unexpected, since positive values of i were

such as to make a positive contribution to the total magnet¬

ic field while at the same time improving its symmetry with

respect to the median plane, and these effects in combina¬

tion imply the introduction of a weak-focussing configura¬

tion. It will be observed that the effect on the beam of

increasing i was such that a negative orientation change
v>

was required to counteract it, indicating that increasing
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values of i tended to depress the beam. This is in accord

with the view already expressed (Section (III.6)) that the

effect of increasing i should be to lower the horizontal

symmetry-plane of the magnetic field and, with it, the

beam. We note that there is no means of deciding, from

this type of observation alone, what settings of i and of
V

the plates give the ideal field configurations. The only

way one can see of achieving this would be to observe the

beam over a wide range of orbit-number and to adjust the

two parameters in turn until the beam could be maintained

in the median plane at all orbit-numbers. It has not been

thought worthwhile to attempt this very lengthy operation

at the present stage of development of the experiment,

especially as the presence of even a small shimming current

makes the beam distribution quite insensitive to the plate

orientation.

As might be anticipated, however, the beam configura¬

tion was still moderately sensitive to i even with the

weak-focussing field present. This is illustrated in

Figure (V.l.4) for a particular value of electric field

(V = 760 v.; k w 185 orbits) and for three values of

shimming current, ig. Only the curves for the lower
counter have been shown, for greater clarity. It seems

reasonable that, the greater is the shimming current, the

greater will be the variation of i required to shift the

horizontal magnetic symmetry-plane through a given

vertical distance. This would explain the greater "half-

widthiS;" of the curves corresponding to higher values of i_
o •
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For values of ig between 0.1 Amp. and 0.3 Amp., particular¬
ly at lower orbit-numbers, these curves were not always as

simple and symmetrical in shape as they are in Fig. (V.l.4).

In some cases sharp peaks in the counting-rate were observ¬

ed in one or the other of the two counters. It is possible,

but difficult to prove, that these peaks were due to

focussing effects. In any case, it was considered desir¬

able, for the purpose of measuring asymmetries, to raise
the shimming current to a value sufficient to damp out any

such abnormalities. A shimming current of 0.4 Amp. was

found to be adequate to render all the curves similar in

shape to that for i_ = 0.3 Amp. in Figure (V.l.4). An

encouraging feature was that the peak of the curve occurred

at nearly the same value of i over a wide range of voltage.
v»»

At lower voltages, however, there was a fairly marked

shift in the position of the curves as i was changed. This

is illustrated in Figure (V.l.5), which includes the curves

for both counters. It would appear that a small shift of

the horizontal magnetic symmetry plane was introduced by

the shimming coils. In measuring scattering asymmetries

one keeps ig constant and varies the orbit-number so that,
strictly speaking, one should reset i for each asymmetryV-»

measurement. This refinement has not been thought worth¬

while at the present stage. In a final form of the

apparatus, more care would be taken to avoid any structural

asymmetry in the shimming coils.

It was possible, using the type A scintillation heads,
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to make a direct check on the validity of the equation

k = eD2Bz/2ran0YEy (III.1.1)
which gives the orbit-number in terms of the field-strengths.

For this purpose a line-source was used and observations

were made of counting-rate as a function of 3 or, in

practice, as a function of the voltage-setting on the

potentiometer which was used to monitor the output of the

R.F. Voltage Generator. D2 and Bz were kept constant,
implying a nearly constant value of Y (but see later).

The source and scintillator widths (about 0.4 mm. and 0.6

mm. respectively) were sufficiently narrow that the indivi¬

dual orbits could be resolved quite easily. The results

are shown on Figure (V.l.6). It is clear, first of all,

that the 360° focussing property was well-maintained over

the whole range of orbit-number examined. The beam inten¬

sity falls off fairly rapidly, since only 0.1 Amp. shimming

current was applied. The abscissae, v and v', represent

the potentiometer readings on two different output ranges

of the voltage generator.-; in both cases, however, they

wwere proportional to electric field strength. The numbers

attached to the individual peaks represent the number of

orbits executed by the beam between source and scintillator

at that particular voltage setting. These numbers were

obtained from the following analysis, based on Equation

(III.1.1).

From the form of that equation we see that, if the
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reciprocals of the voltages corresponding to successive

peaks in the counting rate are plotted against a series of

consecutive integers n, the points should lie on a

straight line of gradient (eDgB^/STai^Y)""1 = M, say.
Further, if the intercept made by this straight line on the

axis of n = 0 is denoted by C , then

k = n + Cq/M,
where k is the orbit-number associated with that peak to

which the number n has been arbitrarily allocated. It

follows then that, if Equation (III.1.1) was actually

obeyed, then not only should the points conform to a

straight line but also CQ/M should be an integer. The
reciprocal-voltage plots corresponding to the observations

of Figure (V.l.6) are shown in Figure (V.l.7). There was

no significant departure from the linear laxv. Analysis of

the straight line plots gave the following results: see

Table (V.l.l).
n

The mean value of the gradient was 7.57 x 10""' (V/m) J".

This ought to agree with the value calculated from the

expression

M = 2nTm0/eD2B^
given above. Using the values of Y, D2 and Bz appropriate
to the conditions of the experiment one finds

M (calc) = (7.7 - 0.1) x 10~7 (V/m)""1 .

Most of the uncertainty in this value arises from uncer¬

tainty in D2, and, to some extent, in Y. The observed and
calculated results are not in disagreement.
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One of the conclusions that can be drawn from these

observations concerns the type of magnetic field asymmetry

discussed at the end of Section (III.6). If such an

asymmetrywas actually present, then, in view of the in¬

tegral values obtained for the orbit numbers, its contri¬

bution to the drift-rate of the orbits probably did not

amount to more than one part in 200 up to the 50th orbit.

Unfortunately since the error, Ak, in orbit-number due to
2

this cause is proportional to k , one cannot usefully

extrapolate this result up to orbit-numbers of the order

of 1000.

Finally, the uncertainties in the values of D2 and Y
mentioned above call for some comment. In the case of D2,
the source-to-target distance, the uncertainty can be

reduced to negligible proportions by taking sufficient

trouble over the distance measurement, by using a travell¬

ing microscope for instance. The appropriate value of Y,

however, has to be calculated from a knowledge of the

effective aperture - L2 (Section (III.3), p. 13) in
conjunction with the shape of the 3-spectrum over the

momentum range transmitted. The effective aperture can be

measured accurately, but the shape of the (3-spectrum must

be assumed. However, at energies of 100 keV, the p-

spectrum cannot be seriously distorted by source absorption

and back-scattering and, in any case, Y is a very slowly

varying function of momentum. Thus, neither of the uncer¬

tainties mentioned need be a permanent feature of the

experiment.



(Y.2) Observations efthe Scattering Asymmetry

Several attempts were made to detect the spin-

dependent scattering asymmetry using Geiger-Muller

counters, but none were successful. As has been indicated

already (Section (IV.5)), this was not wholly attributable

to the properties of the counters. The main reasons, in

fact, were first and foremost a lack of adequate beam

intensity and, secondly, insufficient care in eliminating

instrumental asymmetries. Scattered electrons were

actually detected with Geiger-Muller counters at low orbit-

numbers, the ratio of scattered electrons to background

electrons being about 1:3. This would have been a very

favourable ratio had all the scattered electrons been

elastically scattered. But, because of the lack of energy

resolution of the counters, this could not have been so

and the signal-to-noise ratio just mentioned certainly

gives a falsely optimistic picture vis-a-vis elastic

scattering.

More recently a considerable degree of success has

been achieved in obtaining an adequate and properly formed

electron beam and renewed efforts have been directed to¬

wards the measurement of scattertogasymmetry. Scintilla¬

tion counting has been adopted for this purpose because of

the better energy resolution obtainable and because of the

much greater solid angle which can be subtended by the

counter "window" at the scatterer. The system with which

the observations to be reported below were obtained was
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that illustrated in Figure (IV.5.2) and described in

Section (IV.5)« Type B light guides were employed (Fig.

(V.1.2)). The principal experimental problems which

arose in the use of scintillation counters were three in

number. First, it was desirable that the counting

efficiencies of the upper and lower units should be

equalised as far as possible. To achieve this, the mag¬

netic field was reversed and a pulse-height spectrum taken

for the approximately monoenergetic beam falling on the

scintillators. The H.T. supplies to the photomultipliers,

the gains of the respective amplifiers and the discriminator

biases were then set so that as nearly as possible the

same numbers of electrons were being counted in each

counter. With the semicircular electron-beam the counting

rates were such as to swamp the photomultiplier background

noise, which could therefore be ignored for this purpose.

These same settings were maintained constant during the

scattering measurements when, in fact, the photomulti¬

plier noise formed an appreciable fraction of the total

counting-rate. The actual pulse-height curves obtained

with the type B heads were closely similar to those shown

in Figure (IV.5.3) so it was clearly necessary to sacri¬

fice a good deal of the counting efficiency in order to

keep the background level down. Under conditions giving

curves similar to those of Fig. (IV.5.3)? the discriminator

biases were set at from 20v. to 25v. The electron energy
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chosen for the scattering measurements was 100 keV, so that

the counting efficiencies for elastically scattered elec¬

trons were probably in the range 50-70$.
The second experimental problem mentioned above was

that of eliminating the background counts contributed by

photomultiplier noise pulses. To do this it was necessary

to set up an interchangeable foil-holder so that counts

could be taken with.foil and without. The foil-holder is

illustrated in Figure (IV.5.2), the centre space being

blank and provision being made for fitting two different

foils. The control rod for the foil-holder passed through

a vacuum seal of the same kind as x^as used for the light-

guides and emerged through a light-tight orifice at the

rear of the photomultiplier housing.

Subtraction of the counting-rates with and without

foil should give the genuine scattering rate provided, of

course, that the noise-level remains constant throughout

For the most part this would appear to be a valid assump¬

tion but, in any case, slow drifts in noise level may be

eliminated by breaking up the full counting periods into

short sections and carrying out the subtraction over the

individual sections. This was the procedure actually used.

Another advantage of this procedure is that any sudden

change in background counting rate can be detected at once.

Such a change has been noticed on one or two occasions,

and because of this it was unfortunately not possible to

leave the apparatus counting for long periods unattended,
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thus limiting the quantity of data obtainable.

The third problem requiring careful attention was

that of eliminating instrumental asymmetries. It is

orthodox practice to use an aluminium scattering foil for

comparison purposes, since there is only a small spin-

dependent contribution to the elastic scattering from

light elements. This has been tried in the present case

2 2
both with 1 mg./cm. and with 2 mg./cm. aluminium foils

but the scattering-rate has always been found to be so

low that an adequate signal-to-noise ratio has not been

achieved. In principle, taking account of the different
2

densities and scattering cross-sections, a 2 mg./cm.
aluminium foil should give the same scattering at backward

angles near 90° as a 0.4 mg./cm.2 gold foil. In practice,

however, the scattering rates from such foils x^ere in the

ratio of 1:5 approximately, a point which will be further

discussed below.

Although it is possible that this difficulty may be
2

overcome by the use of, say, a 10 mg./cm. foil there are

reasons (see below) for thinking that the scattering rate may

be much less than proportional to the thickness.

A less well-known method has, therefore, been

attempted. This method makes use of the fact, discussed

in Section (III.3), p• 10, that the spin-dependent

asymmetry for thick gold foils is much reduced compared

with that for the thinnest foils. An analysis can be

given (see Section (V.3)) which suggests that the dif¬

ference between the asymmetries measured with a thin and

a thick gold foil should be proportional to the spin-
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dependent asymmetry and independent of the instrumental

asymmetry, provided the latter is not too large. Further

discussion of this general problem will he postponed to

the next section.

The gold foils used, in the observations were of
2 2

thickness 0»4 mg./cm. and 2 mg./cm." respectively, and

the data are given in Table (V.2.1). Because of the very

time-consuming nature of the operation these were more

limited in number than was desirable. They were obtained

by the subtraction procedure described above. Each count

lasted for 30 minutes; a complete set of three therefore

occupied 1-jg- hours, over which period there was assumed to

have been only a negligible drift in the various parameters.

Seven such sets of values for the scattering rates from

the thin and thick foils at each orbit-number, k, were

taken. These were averaged and the standard deviations

calculated from the residuals. Any observation lying at

more than four times the standard deviation from the mean

was rejected (4 actual counts out of 15*0 were involved),

and a new mean and standard deviation were calculated.

The asymmetries are shown graphically in Figure (V.2.1)

with their standard deviations. Comment will be reserved

for the next section.

Since these observations were taken a new pair of

light-guides have been installed in an attempt to improve

the signal-to-noise ratio. These were the Type C light-

guides of Figure (V.1.2) and they were designed to give

better shielding of the scintillator against electrons from



ORBIT-NUMBER,k.
PIG.(V.2.1)Asymmetryobservationswithgold targets.



TABLE!(V.2.1)
ObservationsonScatteringfromThinandThick GoldTargets

Orbit Number,

Thin

Thick

k

Upper cts./30mins.
Lower cts,/30mins.
Asymm.% u+L^

Upper cts./30mins.
Lower cts./30mins.
Asymm.% Vu+L;

Athin ~"Athick

160

915

+ —

47

1056i
37

-7-3

1155

+

70

1477

+

24

-12±3

+5

225

820

+

36

920-

30

-6t3

1020

80

1260

+

21

-10.£4

+4.5

300

715

+

36

735-

93

-1.4i7

1104

+

67

1179

+

116

-3.3±6

+2

400

693

+

66

727i

57

-2.4i6

1022

+

95

1042

+

35

-1.0i-5
-1.5

525

616

+

50

767i

55

-11i5

842

+

59

940

+

58

-5.5-5
-5.5

640

513

+

28

657±

26

-12i3

772

+

62

925

+

36

-9-4

-3

715

517

+

58

557±

10

-3.7±5

842

+

59

876

+

32

-2i4

-1.5
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the electron beam Itself. These have been found to

Improve the signal-to-noise ratio by a factor of two. A
2 2

0.4 mg./cm. gold foil and a 2 mg./cm. aluminium foil

have been used with these but, as has been explained above,

the aluminium gave a very low scattering rate and no valid

comparison would have been possible in a reasonable

counting-time. The results obtained are given in Table

(V.2.2). The asymmetries for the gold foil were all

shifted upwards compared with the previous.case because

the discriminator biases were changed to suit the new

light-guides.

It should be remarked, in connection with the con¬

siderations of Section (ill.3), that it has been found

best in practice to observe backward scattering because

it is easier to protect the scintillator from the main

beam and so to obtain the best signal-to-noise ratio.



TABLE(Y,2,2)

22

ObservationsofScatteringfromGold(0,4mg./cm.andAluminium(2.0mg./cm.)
Orhit

Gold

Aluminium

Number,k
Upper cts./min.

Lower cts./min.
Asymm (U=k)u+L'

.%

Upper cts./min.

Lower
cts./min.

Asymm (u=L)u+L

.%

160

26.0i

O

•

rH

24.9-
0.8

2.1

4* Mr

2.5

6.0

4"

1

4.3

t 0.8

+ 1

H

12

400

21.9i
1.1

16.8i
0.9

13.2

+

3.5

3.3

4-

0.9

4.5

t 0.8

-16i

15

525

17.6±
1

16.3i
0.9

3.8

4-

4

4.8

+

0.9

2.9

00

.

0

+ 1

25i

16

715

19.6t
0.9

16.6i
0.7

8.3

+

3.2

4.5

+

0.9

0.0

-0.7

100£

25

890

15.8i
0.9

17»5i
0.8

-4.9

4-

3.5

2.1

+

0,9

1.6

1+

0

0

CO

15.5±

34



(V.3) Interpretation of the Observations

We give first an analysis of the problem of instru¬

mental asymmetries. In the experiment of Schupp, Pibd and

Crane (1961) these were ignored on the tacit assumption

that they were at most slowly-varying functions of the

trapping time, as indeed they appeared to be. In the

present experiment, however, where at most two full periods

of the relative spin"precession may be expected to be

observed, one cannot assume that the instrumental

asymmetries will not seriously affect the measurement of

the period.

Let us assume that we use two foils to measure

2
asymmetry, one of thin gold (thickness = t mg./cm. ) and

2
one of thick gold (thickness = T mg./cm. ). Let the

counting rates in the upper and lower counters after sub¬

traction of background be for the thin foil and

for the thick foil. Then

= N(k) (l + a(k, t)} { 1 + e(k)}
= N(k) {l - a(k,t)} {l - e(k)}

with similar expressions for the thick foil. Here N(k)

is some number depending on the orbit-number, k, while

e(k) expresses the instrumental asymmetry which - comprises

all asymmetries other than the spin-dependent asymmetry

a(k,t). The latter is assumed to be a function of foil

thickness as well as of orbit-number, but e(k) is assumed
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not to be different for the two foils. Then, writing A^,

A^, for the asymmetries, we have

A = (l + a(k,t)){l + s(k)> - {l - q(k,t)Hl - e(k)}
{l + a(k,t)\{l + e(k)} + {1 - a(k,t)}{l - e(k)}

= a(k,t) + e( k)
1 + a(k,t)e(k)

and A_ = a(lc,T) . e(lc) ,

1 + a(k,t)e(k)

Now in the present experiment a(k,t) cannot be appreciably-

greater than 0.15 even for the thinnest foil, and it is

reasonable to assume that e(k) < 0.3 (according to the

results given in the previous section it was probably less

than 0.2). Thus the denominators of these expressions

are very nearly unity. The spin-dependent term is expected

to be periodic in k and so, therefore, should be the

measured asymmetries, provided e(k) is a slowly-varying

function of k. However, e(k) may be eliminated in the

approximation where

1 + a(k,t)e(k) ^ 1 + a(k,T)e(k) 1 .

Subtraction of the two asymmetries gives

At ~ At = a(k,t) - a(k,T)

If an aluminium comparison scatterer were used instead of

thick gold, the same analysis would apply but now

a(kT) =* 0 and. the elimination of e(k) is rather more

exact. On the other hand the fundamental assumption upon

which the whole method is built, namely that e(k) is
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independent of the type of foil, cannot he so convincingly

sustained as in the case where both foils are of gold.

Returning to the latter case, we remark that a(k,t) must

be of the form a(k)f(t), where a(k) = aQsin( 2xk/ko)
(Section (ill.2)) and f(t) is some function of the foil

thickness. Hence

At " AT a(k) {f( t) - f(T)} .

The observations reported in the last section were made at

scattering angles over the range 100° - 120° with the foil

at right angles to the incident beam. Thus the results of

Murray, discussed in Section (ill.3), should be relevant.

His expression for the effect of foil thickness may be

written

f(t) = 1 - Ct

2
where G = 0.35 per mg./cm. .

Hence At ~ AT = ~
2 2

For the case where t = 0.2+ mg./cm. , T = 2.0 mg./cm.

we have

At - Ay = 0.6 aQ sin(2xk/kQ)
However, it is probably better, when dealing with thickness-

9
es as large as 2 mg./cm.", to use the reciprocal law given

by Cavanagh et al. (1957) (Section (III.3)), with the

parameters derived from Murray's results. Taking

f(t) = 1/(1 + Ct)
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and using Murray's data (Figure (III.3.3)), we find

At - Ay = 0.3k- aQ sin (2xk/kQ).
The maximum available value of aQ would, in theory, be
3S(9), in the notation of Section (ill.3), which would

give

aQ ~ 0.35 x 0.55 = 19 % .

However, on account of depolarisation by back scattering

in the source-holder and by other causes, it is unlikely

that the actual value of aQ was greater than 15 % and it
may have been as low as 12 ^ . Thus the amplitude of the

difference curve would be about b - 5 a1 » In the case of

the individual asymmetry curves, the application of the law

f(t) = 1/(1 + Ct)

in conjunction with Murray's data, as above, yields

At = 0.10 sin(2xk/kQ) + e(k)

At =0.06 sin(2xb/kQ) + e(k) .

Turning now to the observations with the two gold

foils (Figure (V.2.1)), the first remark to be made is,

of course, that the statistical errors are rather large and

that one should therefore refrain from attempting to draw

definite conclusions from them regarding the value of the

g-factor anomaly. Rather one should ask whether they are

compatible with the expected curves, remembering that the

period, kQ, is expected to be in the neighbourhood of 700.
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Actually one expects
.

kQ = 1/(Ya) « 1/(1.2 x 0.00116) = 720.

The values of the differences, - A^, are certainly
compatible with the expected results. The values of the

individual asymmetries need more consideration. It is

arguable that e(k) may be slowly varying for orbit-numbers

greater than 350 but may become increasingly negative at

lower orbit-numbers, in which case the observations would

be compatible with expectation for k > 350 and possibly

also for k < 350.

Prom experience in working with the beam it is thought'

to be quite probable that the vertical distribution of

electron intensity in the beam may have changed quite

markedly at the higher voltages. Of course, if the dis¬

tribution of electron-beam intensity over the scattering

foil changed, asymmetrically, then quite large spurious

asymmetries in counting-rate could have occurred because

the scintillators were positioned close to the ends of the

foil.

On the other hand, one may assume that e(k) is slowly

varying for all k. To gain some experience in the fitting

of periodic curves to observed data (with a view to the

future), the definite assumption was made that e(k) was of

the form a + bk where a, b are constants and an equation

of the form

A^ = a + bk + c-^ sin(2?ck/ko) + c2 cos(2xlq/k0)
was fitted to the thin foil data using a digital computer.
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The results of this exercise which was carried out for

several values of kQ are quoted in Table (V.3.1).

TABLE (V.3.1)

Least-squares fit to A^. for various kQ

ko a % t a!b p cl c2 1° Standard devn.
squared. n

0*2 i%)2
575 -10.2 -0.011 -7.3 -7.4 179

600 -9.1 +0.0076 -4.5 -6.0 113

625 -8.3 +0.0053 -2.6 -5.0 85

650 -7.9 +0.0038 -1.36 -4.25 75

675 -7.6 +0.0029 -0.1+7 -3.64 71

700 -7.5 +0.0023 +0.17 -3.1 70

725 -7.3 +0.0019 +0.61+ -2.6 70.6

750 -7.2 +0.0016 +1.0 -2.2 71

The squares of the standard deviations show a shallow

minimum near kQ = 700, so that one might say that the
curve was periodic with period 700 - 100, giving an esti¬

mate of the g-factor anomaly to within the order of 15 ^ .

However, closer examination shows that the actual curve

fitted was very nearly an inverted cosine curve. Unfor¬

tunately, it is very difficult to think of any physical

reason for the presence of a large constant phase shift in

the present experiment. In other words it is unlikely that
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e(k) is periodic with, period kQ. Periodic curves of the
same type were fitted at a few values of kQ to the thick
gold data. It was interesting that, if the "best-fitting

curve to the thick-gold data for kQ = 725 was subtracted
from the corresponding curve for the thin gold data, one

obtained

(At - At)?25 = (-0.29 - 0.0003 k
r- , . 27Ck _ , 2xk\ 0/

+ 5.3 sin - 0.13 cos -£-) %
o o

showing that the difference curve was quite compatible

with the expected form.

Glancing now at the second set of observations

(Table (V.2.2)) we note first of all that the aluminium

data are not meaningful by any standards.. It is encourag¬

ing to note, however, that the asymmetries for the 0.1+

mg./cm. target in so far as they are comparable with the

previous data behave in the same way with respect to

variation of k, and this, despite the scintillators and

light-guides having been replaced and the gold foil chang¬

ed in the interval.

In view of all the above considerations, it is the

opinion of the writer that one should accept the possi¬

bility that e(k) may vary quite rapidly over some range

of k (probably k < 300) and accordingly should attempt to

eliminate it. This brings us to a consideration of the

actual counting-rates observed. One of the curious

features which has appeared has been the lack of
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proportionality between foil thickness and scattering rate

for the gold targets. Some observations of Dougal (private

communication) on the scattering of 200 keV electrons from

gold foils at angles near 70° have confirmed this effect.

The most likely explanation is that, as the foil thickness

increases, the inelastic scattering becomes more important

and a large proportion of the scattered electrons have

their energies so far' reduced that they are no longer

detected by the scintillation counter. Various obser-
2

vations by the present writer on foils of 0.2 mg./cm. ,

2 2 2
G .k mg./cm. , 1.0 mg./cm. and 2.0 mg./cm. suggest that,

while the thicknesses are in the ratios 1:2:5: 10,

the scattering rates are in the ratios 1 : 2 : 3 : 3» very

approximately. If the same applies to aluminium, then it

sets an upper limit on the signal-to-noise ratio which can

be obtained with an aluminium foil in the present apparatus

A 2 mg./cm. .aluminium foil ought to be equivalent to a

p
O.U rag./cm. gold foil,but in practice gives only one

fifth of the scattering. It is, therefore, not clear

without further experiment where it should be placed in

the sequence.



(V»^0 Conclusions

The situation at the time of writing may he summed up

as follows. In the first place the problem of obtaining

an adequate beam intensity has been solved and, although

a more intense beam 'would be useful in reducing the

counting times, it is believed that the limitations on

intensity which exist at present are mainly those inherent

in the use of radio-active sources as opposed to electron

guns. An improvement of a factor of two may be expected

from increasing the source strength and from more careful

setting up of the field configurations.

The problem of the detection of asymmetries has been

brought to the point where there is some evidence that a

genuine spin-dependent asymmetry has been observed and

where further progress depends mainly on reducing the

statistical errors by counting for long periods. It is

believed that the instrumental asymmetries can be eliminat¬

ed by the use of a suitable comparison foil.

Alternatively, if it is confirmed that e(k) is

slowly varying for k > 300, the observations could be

carried out only for k > 300 and a periodic curve fitted

by least squares computation as indicated in the last

Section.

Substantial improvement could be expected in signal-

to-noise ratio if the scintillation counters were replaced

by solid-state detectors, such as lithium ion drift
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detectors, which would give much, better energy resolution

and lower intrinsic background.

Finally, a more thorough, examination of the technical

details of setting up the field configurations needs to be

undertaken so that the distribution of intensity in the

beam can be controlled at all orbit-numbers.

Given all these improvements, there appears to be no

fundamental reason why the experiment should not achieve

the 1-2% accuracy for which it was. originally designed.
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APPENDIX A

CLASSICAL CALCULATION OF RELATIVE SPIN PRECESSION RATE

IN MOVING FRAME OF REFERENCE

Let a frame of reference S' move with velocity

V = (V , 0, 0) with respect to the laboratory frame, S.
A

Let the velocities of the electron in the two frames he

v*, v, respectively, where v = v ' = 0, Then the elec-—• **■ z z

tron experiences, in its instantaneous rest-frame, a

magnetic field B'' = Y(v' )B' = Y'B' where B' is thez z z z

magnetic field in the moving frame, s' , corresponding to

the field B„ = (0, 0, B_) in S.z z

In these circumstances

0)
1

= CO^* +

where

to« is the spin precession rate in S1,

"L

0),
T

is the spin precession rate in the electron's

rest frame,

is the Thomas precession of the electron's rest

frame relative to S'.

Hence co^ = (S2g)z = (s£ + Sip) z

= 1 T'Bz + (Y'M 1} (V-
V'

dv'
x

dY'
But pp- = 0, since the electron sees a pure magnetic
field in s' .
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o v' m dt'
o

(jd' = electron momentum in s')

= ^r|fY'Bz +(Y,-l)[v' x (v' xB' )]
= T« _ Y* + l| since v.B' = 0.

'c{l + (f " X)Y'}= CO

where w' = cyclotron frequency in S'.c

WL ~ w'
— 2 = Y'(f _ i)< 2 15 •



APPENDIX B

TRANSFORMATION PROM MOVING FRAME. S' , TO LABORATORY

FRAME. S, WITH A NOTE ON THE PRESERVATION OF THE

360° FOCUSSING PROPERTY.

Defining the symbols as in Section (II.U) we have

uja = Y(v) ^ v, ic | in the frame 3.

That is fuk = Y(v) vk (k = 1, 2, 3)
= ic Y(v) .

Correspondingly

u^ = ic Y(v') in s', which moves with
velocity V relative to S,

If the Lorentz transformation matrix between S and S*

is A (V) (|u, V = 1» •••> ij-) *lav

then (Akk(Y) = - \ Y(V) Vk^ (see, for example,

kuuW = Y(V) Rose'' 1961^
Hence u^ = A^ ufc + a^ u^

icY(v') = - |y(V) Y(v) SVk + ic Y(V)Y(V)
k

Y( v* ) = Y(V)Y( v) | 1 - Y.v/c2 |
Replacing V by —V and v by v* yields the required

result.
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The transformation of velocities (Section (lll.2)p.2)
in the special case where the motion is along the x-axis

is given in all the text-hooks of Special Relativity, hut

we give here the algebraic derivation using the remaining

terms of the Lorentz matrix, namely

A1K = Sik + ^ Vi
This gives, in the present case,

ui = ZAiA + Aikub
k

= + Y(v) |r(Y) - l] Vi(V.v) - r(v)Y(V) V±
Therefore

ux = Ux + Y(v) Vx ~ Y(V)Y(V) Yx •

That is

Y(v')v^. = Y(v) |vx + Y(V) vx - vx - Y(Y)v}
= Y(v)Y(V)(vx - V)

vx = (vx " V)/(l "

Also Y( v^Vy = Y(v)vy since Vy = 0
vf = v /Y(V)(1 - V.v/c2)

and v ' = v =0 in the present experiment,
z z

Finally we note that the 3^00 focussing property

which exists in S* is preserved in S. For let us suppose

that, in S* , two electrons start from a point P' in the source

at an instant t^ = t^ =0. Their orbits in S' are circles
and they again coincide at P' at some later instant tl.
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At the beginning and. end of this motion the interval (in

the relativistie sense) between them is identically zero,

and is therefore zero in all inertial frames including S.

Let us suppose that they start from a point in S at

t-^ = 0 and let P' have coordinates x' = y' = z' =0. Then
because the two frames are in relative motion in the x

direction only we have x = y = z = 0 at t^ = 0 for the
coordinates of P1# The interval between them will next
be zero at the point P2 in S corresponding to P' at time
t^ in S'. Clearly this point P2 must lie on the x-axis.



APPENDIX G

DERIVATION OF EQUATION (ill.l.l)

If the drift-distance per orbit is & , we have

E /B = V = 8. to (to = cyclotron frequency)
j Z X c c

eBz.&
2raiQY

S - 270noY Ev
eBz2

Now k = Dr/& (Section (ill.l))

2
eD2Bz
2OTloY Ey



APPENDIX D

LEAST SQUARES ANALYSIS OF DATA

Given a set of observations y. ( j = 1, 2,..., s)
J

corresponding to values x. of the independent variable, it
J

is sometimes useful to be able to give a criterion by which

to decide whether a best-fitting 2nd order (parabolic)

curve is a significantly better fit to the points than a

straight line. The following technique is useful for this

purpose.

Define XH = x. - x" (x"= ^ Yx.)J J • » *** J
3

Yd = y3 - y (y = | |>3)
(weighted means may be used if desired)

Then = XYi = 0.
3 ° j °

Let a curve Y = P(X) be fitted to the data

where P(X) = fi-^X + j.)

with P2(X) = MQ + M^X + MgX2
such that __

■ 0

Xxap2<xf = 0

DPs(Xj) = o

Then the constant coefficients MQ, M^, M2 are given by
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V"o

VMo

1/M„

s Sxj)2
=

t 5

®5L
'(Sx2)2

3 J

(S^)2
(|x~2)3

1
S

Note that the M's are not subject to error. To determine

the (o,^ and jjcoefficients we make

Z [p(xj) - Y.] ^ a minimum.

Putting

gives

d(cr2)
dji.

M'o

3

and

3' "3

2

dho
eq.ua! to zero

= H^XjYJ ♦ M2 £X§ Y3
3 - 3

Nov/ it can be claimed that the 2nd order fitting is signi¬

ficantly better than the 1st order fitting if and only if

« 1, say Sn2 < ,

where S|x2 is obtained from the assigned standard devia¬
tions of the individual data.

Thus

3 v-j

2
■ EW <§V2 >

and (S Yj)2 ■ z
/dY-\ 2

k^]
( aYv)'

k;
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Sy in most practical cases, where §y. are
tl J

the assigned standard deviations of the data.

Similarly, we find

(S,,)2 = ^x2(§Y.)V(^V2)2y •

Finally we note that the error of the fitting is given "by

(sy)2 = \ 2
and thus the error of the 2nd order fitting is

(§2us =i(
while the error of the first order fitting is

(Sxy)2 -1( - 4 2>?)
3 3

d 3
j

Thus

(^1Y) ~ ( 2,[\p 2 2 v 2%
-— -

(\?r
which is another way of expressing the criterion mentioned

above.

This technique was applied to the results of Schupp,

Pidd and Crane (1961). The outcome was that

1^1 = O.i+52 x 10~^ .

p2 = 59 x 10"18 .

>2/ 2( Sp1) /jx1 = 0.16

(8^2)2/M- 2 = °*9

( 8-.Y) 2 - (S Y)2 -21v 1 2 ' = 1 . p * in x= 1.2 x 10

(S 1)2
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Hence the conclusion stated in the textjSeetion (1.1+),

p. 10.

The great advantage of the above method of analysis is

that the 1st and 2nd order fittings are carried out complete¬

ly independently of one another, so that the statistical

comparison is made quite explicit.

The method could equally well "be applied to other types

of function, such as sine curves.
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