
A fast forward model for the assimilation of
radiances from the EOS-MLS

Donald Scorgie

Department of Atmospheric Science
University of Edinburgh

Thesis submitted for the Degree of Doctor of Philosophy in the
University of Edinburgh

2006•

('(
\\

Abstract

In this thesis the idea of using neural networks as a forward model for the EOS-
MLS (Earth Observation System - Microwave Limb Sounder) is considered for a
direct assimilation scheme. Neural networks are a type of non-linear regression
technique that can provide fast, accurate results and are used extensively in many
different fields.

Here a neural network is constructed to act as a forward model for the EOS-
MLS. The neural network uses a temperature profile and tangent pressure levels
as inputs and produces the corresponding radiance profile for one channel of
the EOS-MLS. The work here primarily concentrates on one band of the EOS-
MLS that is centred on an oxygen line and whose radiances are affected only by
temperature for the majority of the channels. It shows that a neural network
can function as a forward model in this case, producing radiances that are within
instrument noise and for most channels, within half the instrument noise.

Adding ozone to the forward model affects the radiances in only two channels
of this band, increasing the radiances in some minor frames by around 10K.
It was found that this difference could be accounted for in the neural network
forward model by adding ozone to the inputs. A second band, which is centred on
an ozone line, is briefly considered. It was found that above 150hPa the radiances
from this band could be modelled well using a neural network. Below this height,
the neural network produced large errors in radiance (of around 1.5K - four times
the instrument noise). This is thought to be due to the effects of water vapour.

A problem specific to limb sounders that must be faced when doing direct
assimilation is determining the tangent pressures of the radiances. During re-
trieval, these tangent pressures are normally retrieved as part of the state vector
and discarded. For an assimilation process, these tangent pressures may be un-
available and have to be deduced in some way. Here, a neural network is used
to retrieve tangent pressures outside the assimilation process. These retrieved
tangent pressures can then be used by the forward model and assumed to be
correct. It was found that tangent pressures could be retrieved with an accuracy
of around 50m, much better than required for a forward model.

The final problem faced within this thesis is the creation of the Jacobian of the
instrument forward model. This is the derivative of the radiances with respect
to the state vector and is used by the assimilation process to update the model
fields during the assimilation process. Traditional forward models can be differ-
entiated automatically within code. However for neural networks this presents
some difficulties. In this thesis, the neural network is differentiated analytically
and the result is implemented in the code. It was found that the Jacobian for
temperature can be generated which is good for much of the atmosphere but at

specific heights contains large discrepancies. It is shown that using a reduced neu-
ral network to calculate specific minor frames reduces these errors. The Jacobian
for both ozone and water vapour were generated for the ozone band modelled.
It was found that below 0.5hPa, the ozone derivative was in general agreement
with the true derivative but above this the derivative is much smaller than the
truth. For the water vapour profile it was found that, although the general shape
of the derivative is correct around the main feature, outside this the derivative
deviated significantly from the true derivative.

Overall, it is shown that using a neural network forward model is a promising
approach to assimilating radiances from the EOS-MLS. The neural network is
significantly faster to run than a traditional forward model, while still providing
good accuracy. There are several possible ways to improve the results found here.
The training data used in this thesis were generated using a non-tomographic
model. This will affect the accuracy of the radiances generated by around 1K.
In order to assimilate the ozone radiances, either the lower minor frames must
be ignored or an approach to deal with water vapour must be found.

2

Contents

Acknowledgements 	 xi

1 Introduction 	 1

2 Background 6

2.1 Introduction 6

2.2 Data Assimilation 6

2.2.1 	Fundamental Concepts 7

2.2.2 	4-Dimensional Assimilation 9

2.2.3 	What is Needed for a 4D-VAR Assimilation Scheme . . 11

2.3 The EOS-MLS 11

2.3.1 	Instrument Details 12

2.3.2 	Measurements 19

2.4 The Radiative Transfer Equation 19

2.5 Neural Networks 22

2.5.1 	Background 23

2.5.2 	Definitions 24

2.5.3 	ADALINE and MADALINE 26

2.5.4 	Perceptrons 29

2.5.5 	Back-propagation 33

1

2.6 Previous Work 	 . 38

3 Preliminary Evaluation of the Neural Network Forward Model 41

3.1 Introduction 41

3.2 The First Model 41

3.3 The Network Architecture 42

3.4 Training the Network 46

3.4.1 	The Training Set 47

3.5 Results 50

3.5.1 	Initial Trials 50

3.5.2 	The Effect of the Number of Hidden Nodes 56

3.5.3 	Improving the Initial Results 60

3.6 Discussion 63

4 Tangent Pressures 65

4.1 Introduction 65

4.2 What are Tangent Pressures? 65

4.3 The hydrostatic equation 68

4.4 Possible Solutions to the Tangent Pressure Problem 69

4.4.1 	Invariant Tangent Pressures 69

4.4.2 	Using Geometric Height Information 70

4.5 Acquiring Tangent Pressure Information 70

4.5.1 	Traditional Retrieval 73

4.5.2 	Neural Network Retrieval 73

4.6 Dealing with Noisy Radiances 78

4.6.1 	Training Using Clean Radiances 79

4.6.2 	Training With Noisy Radiances 82

11

4.7 Training a network with tangent pressure levels84

4.8 	Discussion87

5 Extending the Neural Network 89

5.1 Introduction 89

5.2 Extending the Network to More Channels 89

5.2.1 	The Network Architecture 90

5.2.2 	Training 90

5.2.3 	Badly Trained Channels 92

5.2.4 	The Neural Network With the Updated Training Sets . . 	 96

5.3 Dealing With Chemical Species 102

5.3.1 	Band 	One 102

5.3.2 	Band Seven 107

5.4 Discussion 111

6 The Adjoint Model 117

6.1 Introduction 117

6.2 The Adjoint Model 117

6.3 Calculating the Jacobian 120

6.4 Results 121

6.5 Tangent Pressure Jacobian 129

6.6 Jacobian for Constituant Species 136

6.6.1 	Improving the Neural Network Performance 144

6.7 Discussion 144

7 Conclusions and Discussions
	

I

111

A Further Discussion of Neural Networks
	 153

A.1 Simple Perceptron 153

A.2 Multi-layered Perceptrons155

B Definitions 	 160

References 	 164

C Papers 	 169

lv

List of Figures

2.1 Two forms of data assimilation 8

2.2 The components of the EOS-MLS instrument 	 12

2.3 The measurement suite for the EOS-MLS 14

2.4 Channel widths for EOS-MLS bands 16

2.5 The EOS-MLS radiometer layout 18

2.6 Observation paths for the EOS-MLS 20

2.7 A simple biological neuron 24

2.8 A sample neural network 25

2.9 The McCulluch-Pitts neuron 26

2.10 Input space for a 2-input AND problem 28

2.11 Input space for a 2-input XOR problem 29

2.12 A Simple Perceptron 30

2.13 A sample neural network with a hidden layer 32

2.14 Input space for a 2-input XOR problem a hidden node 33

2.15 A sample neural network with a bias node 36

2.16 The sigmoid function with bias 36

	

3.1 	The network architecture45

3.2 The temperature training set49

	

3.3 	The radiance training set51

WA

3.4 A sample network training result 53

3.5 A successful training run 55

3.6 Example error vs. hidden node number graph 57

3.7 The real error vs. hidden node number graph 59

3.8 A training run with weight decay 61

3.9 A training run with a nonlinear error function 62

4.1 Limb sounding geometry 66

4.2 A sample tangent pressure level profile 67

4.3 Tangent pressure variation 71

4.4 A neural network run using geometric heights 72

4.5 A neural network retrieval of tangent pressures 76

4.6 A neural network retrieval of tangent pressures using the reduced

profile................................. 77

4.7 Retrieved tangent pressures with no noise 80

4.8 Retrieved tangent pressures with a = 0.4 K noise 80

4.9 Retrieved tangent pressures with a = 1.0 K noise 81

4.10 Retrieved tangent pressures with a = 5.0 K noise 81

4.11 Retrieved tangent pressures with a = 0.4 K noise 83

4.12 Retrieved tangent pressures with a = 1.0 K noise 83

4.13 Retrieved tangent pressures with a = 5.0 K noise 84

4.14 A sample neural network run using varying tangent pressures.. . . 85

4.15 A comparison between the neural network and Pumphrey's for-

ward models with clean tangent pressures 86

4.16 A comparison between the neural network and Pumphrey's for-

ward models with noisy tangent pressures 87

vi

5.1 A neural network output for channel 16 of Band 193

5.2 A neural network output for channel 17 of band 194

5.3 A neural network output for channel 18 of band 195

5.4 A neural network output for channel 16 of band 1 trained with

new data97

5.5 A neural network output for channel 17 of band 1 trained with

new data98

5.6 A neural network output for channel 18 of band 1 trained with

new data99

5.7 A neural network output of channel 13 of band 1100

5.8 A neural network output of channel 13 of band 1 trained with new

data..................................101

5.9 The lower sideband of band 1 with oxygen, nitric acid, ozone and

water vapour spectral lines103

5.10 Sample radiance profiles from several channels in band 1 with no

species104

5.11 Sample radiance profiles from several channels in band 1 with wa-

ter vapour and nitric acid105

5.12 Sample radiance profiles from several channels in band 1 with wa-

ter vapour, nitric acid and ozone106

5.13 Neural network output for channel 3 of band 1 using ozone infor-

mation.................................108

5.14 Example radiance profiles from band 7109

5.15 The lower sideband of band 7 with oxygen, nitric acid, ozone and

water vapour spectral lines110

vii

5.16 The upper sideband of band 7 with oxygen, nitric acid, ozone and

water vapour spectral lines110

5.17 A training run for Channel 1 of Band 7112

5.18 A training run for Channel 13 of Band 7113

5.19 A Typical Water Vapour Profile114

6.1 The true Jacobian for channel 1 of band 1123

6.2 The temperature section of the Jacobian from the neural network 124

6.3 The temperature section of the Jacobian from the neural network

using hyperbolic tangent activation functions 126

6.4 The difference between the neural network and true Jacobians 	. 127

6.5 The M values for the network generated Jacobian 128

6.6 The Jacobian for a single minor frame 130

6.7 The true Jacobian for channel 8 of band 1 131

6.8 The network generated Jacobian for channel 8 of band 1 132

6.9 The differences between the neural network and true Jacobians for

channel 8 of band 1 133

6.10 The M values for the network generated Jacobian in Channel 8. . 134

6.11 The true influence function for z 135

6.12 The influence function for z from the neural network 137

6.13 The influence function summed for the neural network 138

6.14 The real Jacobian for ozone in R3.B7F.C13 140

6.15 The neural network Jacobian for ozone in R3.B7F.C13 141

6.16 Error on the network generated Jacobian for ozone in R3.B7F.C13 142

6.17 The true Jacobian for H20 in R3.B7F.C13 143

6.18 The neural network Jacobian for H20 in R3.B7F.C13 145

viii

A.1 An example no-hidden-layer perceptron154

A.2 An example hidden-layer perceptron157

A.3 Training a hidden-layer perceptron159

ix

List of Tables

2.1 A list of EOS-MLS radiometers with their corresponding bands

and primary measurements17

2.2 Differences between BNNs (Biological neural networks) and digital

computers24

4.1 The scan points used from different channels to construct the re-

duced profile . 75

4.2 Training runs with noisy radiances in a cleanly trained network . 79

4.3 Training runs with noisy radiances in a network trained with noise 82

5.1 Instrument noise levels for channels of band 191

5.2 A list of channels that had difficulty previously with their new

validation errors96

7.1 A comparison of running times between the neural network and

the true forward model149

B.1 Definitions of quantities used163

x

Acknowledgements

A number of people have helped in making the work carried out here possible.

These people should be thanked, so here goes.

NERC for providing the funding for the research to be carried out.

. Prof. R. S. Harwood for supervising the work, answering numerous

questions and making me look at things in different ways.

• Prof. H. C. Pumphrey for the reference forward model used in training

the neural network, helping fix numerous problems encountered with it

as well as giving insight into its workings and answering numerous other

questions.

• Dr. L. Feng for various discussions about how things work and compar-

isons with his own forward models.

• Dr. C. Jiménez for much background on neural networks and providing

access to his work on neural networks within atmospheric science.

• Many other people within the department for all the help and support

they provided throughout.

To these people, and to everyone else that I've forgotten, thanks.

xi

I hereby certify that: (a) That the thesis has been composed by .the candidate,

and (b) That the work is the candidates own, and (c) that the work has not been

submitted for any other degree or professional qualification

xii

Chapter 1

Introduction

The aim of this thesis is to investigate whether a neural network can be used as a

replacement for a traditional forward model for the EOS-MLS in a 4-D variational

assimilation scheme. Data assimilation is the process of incorporating real-world

measurements into atmospheric models, which provides optimal initial conditions

essential for a successful forecast.

Numerical weather forecasting began in the 1940s when modern computers

first became available (see e.g. Eliassen (1956)). Due to the speed of the com-

puters of the time, forecasts were created for limited areas with a small number

of grid points. Typically, they generated forecasts for 24 hour periods, due to the

amount of time needed to run the simulations, and were based on observations

made from ground stations scattered across the forecast region.

As these early forecasts were made only for short times at levels in the mid-

troposphere, the models only calculated effects in the troposphere and used only

temperature, pressure and the amount of water vapour as their forecast quanti-

ties. As computing power increased, the resolution of models was improved and

the time-frame of forecasts could be extended.

In order to produce a successful forecast, two things are required. First, the

laws that governing how subsequent states develop out of proceeding ones must be

known. The second requirement is that the initial state of the atmosphere must

be characterised as accurately as possible (e.g. Daley (1991)). Early forecasts

used synoptic measurements produced from observation stations and radiosondes

that were interpolated by hand to grid points for their initial state. As forecast-

ing became more advanced, techniques were developed that allowed computers

1

Chapter 1: Introduction 	 -- 	 2

to do this interpolation, not only in space but also in time, allowing asynoptic

measurements to be incorporated. The process of adding the measurements to

produce this initial state was named data assimilation. Since it was first intro-

duced, the term data assimilation has grown to include many methods of adding

real-world measurements into dynamic models (e.g. Lorenc (1986)).

From the 1960s onward, weather satellites have been launched to help aid un-

derstanding of the atmosphere. Instruments on satellites can be used to calculate

the temperature and moisture profiles throughout the atmosphere, which can be

used within numerical weather models to help improve them further. Satellite

data sets have some advantages over ground-based and radiosonde data as they

provide much better horizontal coverage and resolution, filling in gaps between

ground stations that are often hundreds of kilometres apart.

As computing power increased to the stage where longer forecasts could be

provided, the state of the upper atmosphere began to play an important role

in numerical forecasting. Models of the stratosphere were developed and added

to the forecast models. Several of the more influential chemical species, such as

ozone, were also added to the model. Today, information from nadir sounding

satellites is routinely assimilated into forecast models in the form of profiles.

While this gives much improved accuracy in forecasts, there are some problems

with this approach.

Satellite retrievals generally work by using an optimal estimation method (e.g.

Rodgers (2000)). An a-priori profile for the desired products is supplied (from

climatology data), in order to provide a starting point for the retrieval, and the

retrieval system calculates the expected radiances from these and the Jacobian

for the forward model (the derivatives of the radiance vector with respect to the

state vector) at that point. The difference between the true radiances and the

generated radiances is then used with the Jacobian to update the state vector

and the radiances are regenerated. This process is repeated until the maximum

number of iterations has been achieved(e.g. Livesey et al. (2006)). While this

produces good results, there will always be an element of the a-priori profile left

in the system, which is undesirable. The retrieval process also introduces delays

in getting the data into the assimilation scheme.

Assimilating radiances directly into a numerical model solves the problem

of a-priori information. In this case, the retrieval is effectively performed by

2

Chapter 1: Introduction 	 3

the assimilation with the model fields acting as the a-priori. This means the

resulting error will be between the original model state and the true atmosphere

state, instead of introducing the effects from a state that might be totally unlike

either (e.g. Lorenc (1986)). Using radiances directly in an assimilation is known

as direct assimilation.

With the introduction of the stratosphere and more vertical levels into forecast

models, a need arises for instruments that can provide data at . a range of heights

throughout the atmosphere. Nadir sounding instruments are limited in their

vertical resolution and can only provide data at a limited number of heights. By

contrast, limb sounders look at a tangent to the planet's surface and can provide

data at a wide range of heights.

One instrument that is of use here is a microwave limb sounder (Janssen

(1993)). The first satellite-borne microwave limb sounder (UARS-MLS - Barath

et al. (1993)) was launched in September 1991 and the second generation (EOS-

MLS - Waters et al. (2006)) was launched in July 2004. Along with temperature

and pressure profiles through-out the troposphere and stratosphere, it also pro-

vides profiles for a number of chemical species.

As the assimilation process uses a lot of computing power, there is only a

small amount of time available to carry out the forward model each time-step.

As satellite instruments grow in complexity, the forward models for them (used to

generate expected radiances) also grow in complexity, requiring more computing

time.

To counter this, forward models are often linearised when used in assimilation,

sacrificing precision for speed. This method relies on changes in radiances being

nearly linear for small changes in the forward model inputs. However, this does

not work in some cases when the radiance response is not linear enough and a

new method of speeding up the forward model must be found.

One possible solution to this non-linearity problem is to use neural networks

(e.g. Jain et al. (1996)). A neural network can be considered as a non-linear fitting

technique with the inputs and outputs of the algorithm represented as a pair of

vectors. The algorithm also uses an intermediate vector at a so-called "hidden

layer". Each element of this intermediate vector is associated with a "node" at

which other ancillary informations, "weights", are used in the calculation.

To find the weights that a neural network needs, it is necessary to train it on

3

Chapter 1: Introduction 	 4

a set of input-output vector pairs, found by other means. During this training

process, the network calculates the error on the outputs for the training set and

updates its weights according to the its training rules. Once the error on the

outputs is low enough, training is stopped and the weights are fixed. After this,

running the network is cheap in terms of computing power as it only consists of

a series of additions and multiplications (e.g. Sarle et al. (1997)).

A neural network does have some limitations that do not exist in a tradi-

tional forward model. A neural network is very good at interpolation but bad at

extrapolation. To ensure the network works well the training set must include

profiles from across the whole range of expected inputs / outputs. Checks must

also be made when running that the profile is indeed within expected ranges.

If these checks are not done, a neural network may produce wrong results. As

neural networks are trained prior to use, any parameters not included as inputs

must be fixed. For example, a neural network trained on frequency range of an

instrument cannot be used to generate radiances for a different frequency range

without retraining, due to different instrument responses and different chemical

species affecting radiances.

In this thesis, a neural network forward model is constructed for the EOS-MLS

for use in an assimilation scheme as an investigation of the feasibility of using such

neural networks in direct assimilation. As the aim is to use this forward model in

an assimilation scheme, the majority of the thesis will deal with radiances that

are only affected by temperature changes. The thesis is split into seven chapters.

The second chapter presents background information about the EOS-MLS, data

assimilation and neural networks. It also gives details of previous work carried

out involving neural networks in atmospheric science.

Chapter three gives details of what is required of a neural network in this

case. It shows that a neural network can simulate a forward model in an ide-

alised situation in which only temperature affects the radiances. Chapter four

introduces the problem of tangent pressures, which are related to determining

the pointing information associated with each observation. It demonstrates what

tangent pressures are and why they are a problem in an assimilation scheme. It

then gives a method for dealing with tangent pressures outside an assimilation

scheme and shows how they can be incorporated into the neural network forward

model.

Chapter 1: Introduction
	

VS

In chapter five, the neural network forward model is extended to more than

one channel and additional chemical species are added into the forward model.

Chapter six explores how a Jacobian of a neural network can be found and how it

compares to the true forward model's Jacobian. Finally, chapter seven discusses

the main conclusions of the thesis and looks at ways it can be extended. Appendix

A gives a list of acronyms and symbols used in this thesis.

5

Chapter 2

Background

2.1 Introduction

This chapter introduces to the three main technologies used within this thesis:

Data assimilation, the EOS-MLS and neural networks.

The data assimilation section gives details of the particular type of data as-

similation that the system is designed to be used in. The EOS-MLS section gives

details of what the instrument is and how it operates and the section on neural

networks describes the type of neural network used within this project, as well

as giving a general overview of other types.

The final section also gives details of previous work using neural networks

within atmospheric science.

2.2 Data Assimilation

Data assimilation is the method of taking real world measurements and incorpo-

rating them into a model. This technique is used extensively in the atmospheric

science community. This is done as forecast models need the most accurate ini-

tial state of the atmosphere possible in order to accurately predict future states.

There are many varieties of data assimilation. Here, the fundamental concepts

of data assimilation will be introduced and then one type of data assimilation,

4D-Var, will be discussed. Further information about other types is available in

e.g. F. Bouttier (1999). This section is derived from the paper by Nichols (2002),

which gives an introduction to different forms of data assimilation.

on

Chapter 2: Background 	 0 	7

2.2.1 Fundamental Concepts

In atmospheric modelling, the models are usually very large - of the order of 10 7

state variables and growing as computers get more powerful. As the atmosphere

is a chaotic entity, there is no way to accurately set up a model to reflect the

true state of the atmosphere at any particular point. Instead, an approximation is

derived from observations and is used as the initial state for the model. Typically,

these observations come from a variety of sources - radiosondes, weather stations,

radar and satellites, giving of the order of 10'-10' observations per day. Once the

initial state has been set, the model is run for a prescribed time. After this, the

model's state is reinitialised using new observations, combined with the current

model state, and the model is run again.

There are two classes of assimilation scheme which can be applied - sequential

assimilation and four dimensional assimilation, which are illustrated in figure 2.1.

In sequential assimilation, the model is started with an a-priori estimate for the

initial state, and is evolved to a later time, tk, where the first observation is made

(e.g. Daley (1991)). The model state at this time is known as the background

field. This background state is used to create a predicted observation vector

which can be compared to the true observation vector. The difference between

the predicted and true observation vectors is then used to update the background

state to get an improved model state, called the analysis field. This can be done

in a variety of different ways, such as "nudging" the background state towards

the observations or a variational process where the initial state is altered to bring

the background state nearer the observations (3D-VAR). From this point, the

model is evolved again until the next time when observations are available.

Sequential assimilation incorporates many popular forms of assimilation. As

more computing power becomes available and the number of available obser-

vations increase, another form of assimilation is becoming more popular - four

dimensional assimilation.

Four dimensional assimilation considers all the observations available within

a time window to give improved estimates over that window. This allows a range

of observations in time to have influences on the analysis, which results in more

consistent forecasts. The major form of four-dimensional assimilation is 4D-VAR

(e.g. Daley (1991)), which is discussed here.

7

Chapter 2: Background
	 [.]

Sequential
Value 	 Obs.

/ 	 Analysis

•_'

Forecast

Time

Four Dimensional
Value 	 Improved

- - - - 	 estimate

Initial
estimate

1st Window 	2nd Window 	 Time

Figure 2.1: Two forms of data assimilation - sequential and four-dimensional as-
similation. In the sequential case, the model is evolved to the time an observation
is made. A correction is made to the model state to account for this observa-
tion and the model evolution is continued. In four-dimensional assimilation, all
the measurements in a prescribed time window are used to provide improved
estimates for all the states in that window.

Chapter 2: Background 	 9

2.2.2 4-Dimensional Assimilation

Here, a brief treatment of 4D-VAR is presented. Further discussion about 4D-

VAR can be found in e.g. Nichols (2002). In an assimilation system, the model

is described by discrete non-linear equation 2.1 where Xk is the model states, Uk

are the known forcing inputs and fk is the (non-linear) function describing the

evolution of the system. The observations are related to the system states by

way of equation 2.2, where the forward model, hk, is a non-linear function and

the error term, 8k, is assumed to be unbiased, uncorrelated in time and Gaussian

with covariance matrix Rk.

Xk+1=fk(Xk,Uk), 	k=0,...,N-1 	 (2.1)

Wk = hk(xk) + 8k 	 (2.2)

Background estimates for the initial state, 4 are assumed to be known with

the initial random error assumed to be Gaussian with covariance matrix B0 . The

observation errors and the background errors must be uncorrelated. Using these

facts, the data assimilation problem can be restated as "Minimise, with respect

to go the cost function (equation 2.3) subject to %, k = 1,. . . , N - 1, satisfying

the system equation 2.1 with initial states ". Minimising the cost function,

equation 2.3, involves simultaneously trying to get the new starting state, Y O
,

to be near the background starting state, 4, while trying to get the predicted

observations as close to the true observations as possible.

N-i

J = (o -)TB0 -) + 	(h(x) -)TR(hk(k) - Yk) (2.3)
k=0

Two assumptions are then made. The first assumption is that the states

of the model, Yk, can be expressed in terms of the initial state, go , as Yk =

fk (fk - 1 (. .. fo(o,io))). The second assumption is that both fk and hk can be

linearised around the current trajectory, using equations 2.4 and 2.5, where Fk

and Hk are the Jacobians of fk and hk with respect to xk.

Xk+1 = fk(±'k, ilk) + FkEk 	 (2.4)

Chapter 2: Background 	 10

	

hk(xk) - Yk FkHkE_1 - Yk 	 (2.5)

Using these relations, along with the constraints given by equation 2.1, the

gradient of the cost function can be derived as in equations 2.6 - 2.9, where

dk = R' (hk (±k) - yk) is called the departure of the observation and V 0 is the

derivative with respect to Yo .

v o J = 	v o Jo +E v o Ji 	 (2.6)

v o J =
	BO '(go -) + 	v o Ji 	 (2.7)

v.o Ji =
	

>F1T F2T . :. FHdk 	 (2.8)

= Hd0 + FjT 	+ F27 (Hrd2 + . . . FNT 	(2.9)

Defining Ak as equation 2.11, the gradient of the cost function can be rewritten

as equation 2.12. Ak are the adjoint variables, which measure the sensitivity of

the gradient to changes in the measurement k.

AN = 0 	 (2.10)

	

Ak = FkT (k)Ak +l -HR'(hk(k) - yk) 	 (2.11)

V o J = B' (o - 	- A 0 	 (2.12)

Each iteration, one forward solution of the model equations (2.1 - 2.2) and

one backward solution of the so-called adjoint equations (2.10 - 2.11) is computed

using the best current estimate of the initial state. The initial state is then

updated using a gradient descent approach.

10

Chapter 2: Background 	 11

2.2.3 What is Needed for a 4D-VAR Assimilation Scheme

In order to incorporate measurements from an instrument into a 4D variational

assimilation scheme, several things are required in practise. The first, and most

important, is a fast forward model.

Running a 4D variational assimilation scheme is expensive in terms of com-

puter time. For each assimilation window, a forward run of the assimilation

model, as well as a backward run of the adjoint equations is required for each

iteration, and there may be several iterations. Within this, the forward model

of the instrument must also be run each iteration for each measurement in order

to simulate the instruments response to the new state of the atmosphere. Since

there may be many measurements to be assimilated, the forward model for each

instrument is only given a small amount of time to run.

The second thing needed is the Jacobian of the forward model (Ilk in equa-

tion 2.11), which is used to update the model state vector. This must be cal-

culated every time the forward model is run and can be generated either by

differentiating the forward model by hand, or by automatic differentiation tech-

niques available in a number of computer programs (e.g. Giering and Kaminski

(1998)).

The final thing that needs to be supplied in order to assimilate measurements

from an instrument is an estimate of the error characteristics. This is in the form

of the error covariance matrix for the instrument and includes instrument errors,

errors introduced due to inaccuracies in the forward model and interpolation

errors.

2.3 The EOS-MLS

The EOS-MLS is a microwave limb sounding instrument (Waters et al. (2006))

aboard the EQS Aura satellite (Schoeberl et al. (2006)) which was launched on

15th July 2004. It is the successor to another instrument called the UARS-MLS

which flew on the UARS satellite during the 1990's. The instrument's main aim

is to observe atmospheric chemistry in the stratosphere and upper troposphere.

11

Chapter 2: Background
	

12

Figure 2.2: The components of the EOS-MLS instrument.

2.3.1 Instrument Details

The EOS-MLS is a passive microwave limb sounding instrument that points along

the orbital motion. A diagram showing the basics of the instrument is given

in figure 2.2. While travelling, the field of view of the instrument is scanned

upward from 2.5km to 62.5km', creating a series of 120 radiance measurements

per channel in one scan. Each measurement within a scan is known as a minor

frame and one complete set of measurements is called a profile. A profile plus

calibration information is called a major frame. On the ray at the centre of the

field of view, the pressure at the point closest to the Earth is called the tangent

pressure.

'For the GHz radiometers. The THz radiometer is different and is described in Pickett
(2006)

12

Chapter 2: Background 	 13

The Aura satellite is in a 98° orbit at a height of 705km. It is a sun syn-

chronous satellite with an orbital period of approximately 100 minutes. Each

scan takes 24.7s, resulting in 240 scans per orbit and around 3500 scans per day.

The instrument resolution at the limb tangent point is typically around 3 km

vertically, 5 km cross-track and 500 km along-track. This gives the instrument

excellent vertical resolution at the cost of horizontal resolution when compared

to nadir sounding instruments.

The instrument is the successor to the UARS-MLS which flew on the UARS

satellite during the 1990's. The EOS-MLS improves on the UARS-MLS in a

number of ways, primarily, it covers more chemical species in more bands with

better resolution. For a comparison between the EOS-MLS and UARS-MLS

instruments, see Waters (1999).

The instrument can measure a number of chemical species including ozone

and water vapour as well as several other quantities such as the temperature. An

indication of the measurement suite can be found in figure 2.3.

The instrument has a set of 34 bands split over 5 radiometers, measuring a

range of frequencies from 118 GHz to 2.5 THz (0.1 - 3 mm wavelength). Each

band is centered on a spectral emission line and consists of a number of channels.

There are 4 different types of bands - full-width, mid-width, narrow and wide.

Full-width bands consist of 25 channels and cover a region of 1300 MHz and al-

low useful measurements in the atmospheric pressure range from 100 hPa to

1 hPa. Mid-width bands are 11 channels wide and cover 200 MHz, providing

additional measurements in the upper stratosphere (10 hPa to 1 hPa). Nar-

row bands have 10 MHz resolution and cover narrow spectral lines at atmospheric

pressures less than 1 hPa. They have 129 channels and are implemented as

Digital Autocorrelator Spectrometers (DACS). Wide bands are bands of 4 chan-

nels that extend full-width bands down into the troposphere. Each channel in a

wide band is 0.5 GHz wide.

The channel width for different band types varies between 500MHz (wide

band channels) and 0.15MHz (narrow band channels). The channel width in full-

and mid-width bands varies with channel number and channel width for these

band types is shown in figure 2.4. This figure shows typical radiance values for a

simulated oxygen line at a height of lOhPa. The width and position (relative

to the band center) of individual channels are shown by the horizontal lines. Mid-

13

K200HHO2 ° : 	: 	:
- • 	: 	HCICID

I 	:• 	I HCCI 	BrO
_

I
HCN: 	N2OHNO • ! i

CO I CI-CN

tempo rat u re

ye.:potentII
heIght

I 	I
	• re

I
IV C-1 	fl C

I

EOS MLS Atmospheric Measurements
(dotted lines Indicate averages)

. 	. 	.
• 	. 	 . 	 . 	 I 	 U

U 	• 	 • 	• 	 U 	 U

Chapter 2: Background 	 15

width bands consist of channels between the dotted lines in the figure. As the

individual channels are much narrower than spectral lines, they can be treated

as monochromatic in calculations.

A full list of all bands giving details of radiometer, type of band and

main target is given in table 2.1. Channels are reference as (Radiome-

ter). (Band). (Channel). So, R1A.B1F.C1 means "channel 1 of band 1 of radiome-

ter 1A". The "F" in the band indicates it is a full-width band. Other band types

are denoted by "W", "D" and "M" for wide, narrow (DACS) and mid bands re-

spectively. More detailed information about the EOS-MLS nomenclature can be

found in Livesey and Wu (1999). This information is represented graphically in

figure 2.5 which shows the measuring frequencies of all radiometers for the EOS

MLS, centered around the local oscillator frequencies for the radiometer. As ra-

diometers 2 - 5 use split sideband, the locations of both sidebands are presented

on the graph. Radiometer 1 uses a single sideband, with the upper sideband

filtered out.

15

MIIi

250

Ile 200

Q)
0
C

.2 150
-o
0

ry

10C

5C

El

Chapter 2: Background
	

Coll

—600 	—400 	—200 	0 	200 	400 	600
Frequency shift from center of band / MHz

Figure 2.4: Channel widths for full- and mid-width bands of the EOS-MLS.
The vertical scale gives example radiance values for this band at lOOhPa. The
horizontal lines show individual channel widths, which range from 96MHz at
the edges to 6MHz for the central channel. Mid-width band channels are those
between the dotted lines.

16

Chapter 2: Background
	

17

Radiometer Band Type Primary Spectral Line
1st LO frequency Measurements Prequency(GHz)

Ri B1 F P 118.75
126.8000 GHz B21 F P / T 118.75

B22 N P / T 118.75
B26 N P / T 118.75
B32 W P / T 118.75
B34 W P / T 118.75
B2 F H20 183.31

R2 B3 F N20 200.98
191.9000 GHz B4 F HNO 3 181.59

B5 F ClO 204.35
B6 F 03 206.13
B23 N H20 183.31
B27 M HCN 177.26

R3 B7 F 03 235.71
239.6600 GHz B8 F P / T 233.94

B9 F CO 230.54
B24 N 03 235.71
B25 N CO 230.54
B33 W 03 235.71
BlO F ClO 649.45

R4 Bil F BrO 650.18
642.8700 GHz B12 F N20 652.83

B13 F HC1 625.92
B14 F 03 625.37
B28 M H02 649.70
B29 M HOC1 635.87
B30 M H02 660.49
B31 M BrO 624.77
B15 F OH 2514.32
B16 F OH 2509.95

R5 B17 F P 2502.32
2522.7816 GHz B18 F OH 2514.32

B19 F OH 2509.32
B20 F P 2502.32

Table 2.1: A list of EOS-MLS radiometers with their corresponding bands and
primary measurements. Types are shown by one of 4 symbols: F represents full-
width bands, W are wide bands (Individual filters), M are mid-bands and N are
narrow-bands (DACS). P/T indicates the band is centered on an Oxygen line
and its primary measurements are pressure / temperature.

17

IEOS MLS SpectaD Cveirage (spDt sdeband)

A:

A

A A A A A AA1

BAnt linos Os po.ndio IOAP oognoi ni.

Crest lines coerespond Or 3OhP Argon! point,

Red lines or.rnsposrd Or iOOlrP. UnReel peArl.
P.Ier lS4. ind.Ot dr]rrthn5 ,Igr*ls Os .ItrrrA

pedarizatiom.

Sundoed 25 channtl AlA, bank

D 	Midbandliohaoneiflile,bank

• 	Single 03 Cl is wide tile,

• 	DigAsi Ausocoweiakr.Spenfrunrelee

(-0.2MHZ raIrlinrross, —iOMiiZl
Aeornindioaledireclwnoiohaorrolnornbering.

toni oscili.soehnrpoenoêes:

RI iktl:l iS 	126.1M) CH, ikorra sidcbaodoniyi

R2:190 	191.9000GHZ

R3:240 	239.66000Hz

R4,640 	642.6700011,

Rslltnll:215 	2.52271116luis

I

1 	 A 	£ 	A 	 A 	I 	 A 	 A

- -----.---4---- 	-,-. 	- - - - - i --.-lIt.-

so o

Figure 2.5: The bands measured by the EQS MLS and the spectral coverage of all radiometers, centered on the local
oscillator frequencies. The three spectra in each panel correspond to nominal atmospheric radiances for tangent pressures
of 10, 30 and 100 hPa and assume single sideband response for RI and equal relative sideband responses on all other
radiometers.

OR

Chapter 2: Background
	

19

2.3.2 Measurements

Data from the EOS-MLS instrument undergo several levels of processing. The

data at each stage are labelled levels 0 to 3. Each of these is explained in brief

below.

The first level, level 0, is the raw telemetry data sent back by the instrument.

This includes the raw counts and information about where the instrument is

looking (the FOV).

Level 1 data are data that have had some processing work done to convert

the raw telemetry into more useful information, such as the latitude and lon-

gitude of the measurement (from the satellite data) and the geometric tangent

height of each minor frame. The calibrated radiances are also generated at this

stage, taking into account various external factors such as antenna emissions and

scattering effects. These calibrated radiances are checked to determine if any are

unusable (i.e. are obviously wrong or out of expected measurement range). If

any unusable radiances are found, a flag is set stating this.

Level 2 files contain the retrieved profiles. There are generally in the form of

a set of values for the species involved, on a fixed pressure grid, for each profile.

Level 2 data also include the tangent pressure levels of the radiances (discussed

in section 2.3.1).

Level 3 files are made up of monthly means of zonal means for different species

and other mapped products. These are not relevant to the current study.

2.4 The Radiative Transfer Equation

The general solution of the radiative transfer equation in the case of microwave

radiometry can be written as equation 2.13, provided the atmosphere is in local

thermal equilibrium and no cloud particles are present (see e.g. Janssen (1993)).

In this case, scattering is neglected as the wavelengths involved are typically much

larger than the diameter of aerosol molecules.

J

00

O
+ 	k(, v,)B(v, T)e_ T de 	(2.13)

Here, I is the spectral radiance as a function of the solid angle, ft ii is the

frequency, the distance along the observation path, I the intensity at the

19

Chapter 2: Background 	 20

Obs
ent

Figure 2.6: Observation Paths for the EOS-MLS. This shows two observation
paths for a limb sounder. The radiance can be calculated by summing the con-
tributions along the solid part of the observation line. The dotted part of the
line can be considered to contribute nothing to the final radiance and so can be
replaced with a constant value of the cosmic background radiation level.

end of the observation path, k(e, z',) the total absorption coefficient, between

the height and the top of atmosphere, summed over the all species in the

state vector, Y. T the physical temperature, r(, ii) the optical depth defined by

equation 2.14 and B(v, T) is the Planck function defined by equation 2.15 where

h is the Planck constant, c the speed of light and kB the Boltzmann constant.

In k(e, v)d 	 (2.14)

B(v, T) = 2hv
3 	1
	 (2.15)

C2 elh/k8T - 1

In the case of microwave limb sounding, the observation path can be consid-

ered to end at the edge of the atmosphere (figure 2.6), and the value of I will

be the cosmic background radiation value.

20

Chapter 2: Background 	 21

In order to find the measured instrument radiance for a particular channel,

equation 2.13 must then be combined with the instrument response function,

G(ci, 110 (t), v), for that channel and the field of view (FOV) function, 1(v) (Read

et al. (2004)). This is then averaged over the frequency range of the channel.

Due to the continuous nature of the scan, this must also be averaged over the

solid angle over which the FOV function is measured. This results in two expres-

sions, one for the upper sideband of the channel and one for the lower sideband,

equation 2.16 and 2.17 respectively. Q0 (t) is the FOV direction that varies over

time, t. QA is the portion of the solid angle over which the instrument response

is measured.

f'01. fA I(zi, ci,)zi)G(ci, 110 (t), v)dcidii
(2.16) 'USB

= 	fZ fA (v)G(ci, ci0 (t), v)dcidv

J 	f I(v, ci, x) (ii)C(ci, ci0 (t), v)dcidv 	
(2.17) 'LSB

= 	f- f 	(v)G(ci, ci0 (t), v)dcidv

These can then be combined and averaged over the scan time using fractional

ratios, r and r1 which take into account the loss of signal as a result of scattering,

spill-over, absorption and efficiency of the receiver. Finally, equation 2.18 gives

the level 1 radiances, denoted by I. Here, 1bj is an additional term that corrects

the result for various additional effects outside the intended measurement. Fur-

ther information about this and how r and r1 are defined can be found in Read

et al. (2004).

1 I
t2

P - i =
	

{rIusB + rL ILSB } dt 	 (2.18)
t2 - tl i

The integrals in the denominators of equations 2.16 and 2.17 are normalisa-

tions of the instrument response functions and can be considered "constant" and

folded into (v) and G(11, 110(t), ii). The integration over QA is used to normalise

antenna gain over QA and evaluates to a constant. All the functions in equa-

tions 2.16 and 2.17 are channel dependent and it is assumed that the antenna

response is frequency independent across the highly weighted part of the filter

response, but different for the two sidebands.

As mentioned in section 2.3.1, radiometer 1 uses only the lower sideband, with

the upper sideband filtered out. In this case, equation 2.18 becomes 2.19 where

21

Chapter 2: Background 	 22

r1 is still required to account for loss of signal as before.

1 	P2

1 - Ibsl
= 	- 1 .i'tj {nhIL}

dt 	 (2.19)

2.5 Neural Networks

Research into artificial neural networks began in the 1940s, when they were hailed

as the next big thing in computing. This interest swiftly died out as technical

problems arose, but in the early 1980's these problems started to be solved and

interest was rekindled. Today neural networks are used in many different applica-

tions and fields, from helping to fly helicopters (Buskey et al. (2001)) to analysing

MRI images in hospitals (Feitham and Xing (1994)).

In theory, artificial neural networks, or ANNs, can do anything a conventional

computer can do, plus more (Sane et al. (1997)). They are well suited to pattern

recognition and classification tasks, which conventional programs have difficulty

with. They are also particularly suited to problems that are not exactly soluble

by tradition methods but have many examples of input/output sets.

There are literally thousands of different types of ANNs in the world today,

with a new variation being created all the time (e.g. Sarle et al. (1997)). Each

network created is virtually unique, with its own learning rules, network structure

and its own quirks which makes building a neural networks almost as much an

art form as a science. Having said this, all ANNs can be split broadly into one

of two groups.

The first group uses supervised training. In this case, the training set con-

sists of a series of input-output pairs and the aim is to minimise the difference

between the true outputs and the network outputs by altering values of some of

the internal parameters of the network. This type of network is used extensively

in "computational neural networks".

The second major group uses unsupervised learning. Here, no output is given

during training and the aim is to classify inputs according to characteristics within

the input values. An example of this is an insect classification system. In this

system, a collection of insects would be measured in various ways i.e. the wing

span, colour and overall length may be measured and encoded. These parameters

form the training set. The task for the network would be to classify the insects

22

Chapter 2: Background 	 23

into different species, which is achieved by calculating the "distance" between the

input vector and a set of idealised vectors for each classification group (calculated

during the training cycle). This method is used in image recognition and so-called

"Boltzmann Machines". Here, only computational neural networks are discussed.

This section assumes some knowledge of the fundamentals of neural networks.

Appendix A contains a more detailed and thorough outline of how the principle

types of network described here (simple and multi-layered perceptrons) operate.

2.5.1 Background

The ideas for artificial neural networks (ANNs) are inspired by their biological

counterparts (the brain). It is therefore useful before looking at ANNs to under-

stand the basics of how the brain works (e.g. Rojas (1996)).

The brain is made up of approximately 1014 neurons. Each of these neurons

is connected to up to io other neurons by means of dendrites and synapses.

Dendrites gather the inputs from other neurons while synapses send processed

information out to other neurons. Between these are two components, first the

soma which processes all the inputs from the dendrites, then the axon, which

converts these into the output for the synapses. This is shown in figure 2.7.

In this way, the brain can be thought of a massive parallel computer, with iO'

parallel processors, that are only capable of processing a few simple commands,

unlike conventional computers that only have a few processors (typically 1) but

can perform many different tasks.

There are many differences between conventional computers and the brain.

The main difference, apart from the number of processors, is the way memory is

stored and addressed. In conventional computers, the memory is a physical block

that is referenced by address. If a program asks for a certain memory address,

the computer will return the contents of that address with no checks to ensure

the data in it are sensible. In biological neural networks, the memory is stored

within neurons and can be retrieved when a partial or corrupt version of the

information is passed through the network (Braspenning et al. (1995)). This is

known as "content addressable" and has the highly desirable property, for some

applications, of being able to tolerate noise.

Another useful feature of neural networks is the ability for the neurons to

adapt to new inputs, and after training, new features. Some major differences

23

Chapter 2: Background
	

00

Parts of a
Typical Nerve Cell

Dendñtes: Accepts inputs

Soma: process the inputs

Axon: Turn the processed inputs into outputs

Synapses: The electrochemical
contact between neurons /

Figure 2.7: A simple biological neuron. This is the basis for an artificial neural
network's node.

between biological neural networks (brains) and conventional computers are il-

lustrated by table 2.2.

BNN Digital Computer
10 14 separate processors Few processors

Capable of 10 4 operations per second capable of up to 100 billion operations per second
Distributed Memory Centralised Memory core

fairly insensitive to noise in data Highly sensitive to noise
Ability to learn / adapt Can only perform exact operations specified to it

Table 2.2: Differences between BNNs (Biological neural networks) and digital
computers.

2.5.2 Definitions

Figure 2.8 shows schematically a typical setup of an ANN where squares are

referred to as nodes within the network. Each vertical column of nodes in this

figure is called a layer. Input data are fed into the "input" layer on the left

and the output emerges from the layer on the right. In this figure there is an

intermediate layer known as a "hidden" layer. Connections exist between the

24

Chapter 2: Background 	 25

Input 	Hidden 	Output

Figure 2.8: A sample neural network consisting of n input nodes, three hidden
nodes and three output nodes.

nodes in the input and hidden layer and between the nodes in the hidden and

output layer, represented by lines. Other configurations are possible.

Unfortunately there is no set standard notation or definitions in the field of

neural networks. For example diagram 2.8 may be referred to by some as being

a 1 layered network (excluding both the input and output layer), while others

would refer to it as a 2 or 3 layered network. While it is normally clear what

is meant when accompanied by a diagram, often diagrams are omitted to save

space (especially in articles), leaving the reader to figure out what is going on on

their own. This is only one example of the confusions that can arise; there are

many others.

In this thesis, figure 2.8 is referred to as a 3 layered network with n input

nodes, 1 hidden layer of 3 nodes and 3 output nodes. If a network with another

hidden layer is used, the network would be referred to as a 4 layered network

with n inputs, p and q hidden nodes, and r output nodes.

Throughout, a neural network, or NN, will refer to artificial neural networks.

The words neuron and node will also be used interchangeably.

It should also be noted that there are several opinions on the history of neural

networks. The version of neural network history that makes the most sense to

me is presented here, but other people argue about what was invented by whom.

25

Chapter 2: Background 	 26

Inputs Weights
II 	

Sum

1, 	2 	 Output

	

W 	

Threshold

Figure 2.9: The McCulluch-Pitts neuron. This is the basis for modern ANN
implementations. The neuron takes in N inputs, multiplies them by weights and
sums them. If this sum is greater than a threshold value, the neuron outputs a
1, otherwise it outputs a 0.

These facts should be taken into account when reading other articles about the

history of neural networks.

2.5.3 ADALINE and MADALINE

In this section, the simplest neural networks - ADALINEs and MADALINEs -

are looked at. These were originally created in the 1940's and are considered

the forerunners of today's neural networks. When they were first created and

demonstrated, everyone was impressed by their flexibility but this enthusiasm

soon waned as people realised that they were only capable of the simplest of

tasks.

In the early 1940's, McCulluch and Pitt presented a paper in which they sug-

gested a simple computational model of a neuron (McCulluch and Pitts (1943)).

They called this model ADALINE - ADaptive LInear NEuron. Its basic structure

is shown qualitatively by figure 2.9.

Here, the neuron takes in N inputs, multiplies them by weights, W, and sums

them. If this sum is greater than a threshold value, T, then the neuron outputs a

1, otherwise it outputs a 0. Although very simple, this unit could perform several

operations, for example, AND and OR operations. Initially weights had to be

predetermined and assigned before the unit was run. Later, it was suggested

that the weights of the network could be determined without human intervention

using training.

Training a network involves changing its weights in order to minimise the error

on the output. To do this, a set of example input/output profiles is constructed,

called a training set. This should cover the largest range of inputs and outputs

of

Chapter 2: Background 	 27

possible. One profile is then selected at random from the training set and run

through the network, producing the actual network output, 0. The weights of the

system are then updated using a simple rule, described by equations 2.20 and 2.21,

where i is the learning rate, E is the error on the output before thresholding, and

d is the desired output.

Once the weights are updated, a new training profile is selected at random

and the network runs through the training procedure again. Once the network is

in the right state for all the training cases, the training is stopped.

W(new) = W(old) + i,Ex 	 (2.20)

E=(d_0)2 =(d_W1X) 2 	 (2.21)

The next logical step was to combine several ADALINE units together in

parallel, to form a MADALINE - Many ADaptive LInear NEurons (e.g. Widrow

and Lehr (1990)). In this case, a number of ADALINE units are all given the

same input data and each produces an output value independently. There is a

final neuron whose inputs consist of the outputs from these neurons and which

performs a majority vote. If over half the networks claim the output is a 1, this

unit will output a 1 otherwise it outputs a 0;

Training in a MADALINE is a little more complicated than in an ADALINE.

Again, a training set is created and a profile is randomly chosen from this and run

through each unit but now all the units compete with each other to decide which

unit gets updated. Each unit calculates its error according to equation 2.21, as

before.

The winner of this competition is the unit with its error closest to 0, but

that is outputting the wrong value. Only this node's weights are updated using

equation. 2.20.

Although this model was highly original, it was also highly limited. It could

only solve certain classes of problems, known as linearly separable problems.

The problem of linear separability can be illustrated with a simple example

of a ADALINE / MADALINE system with two inputs in two cases - the AND

problem and the exclusive-OR (XOR) problem. Here, the input space will be

2-dimensional2 . If the system is attempting to perform an AND operation on its

2Provided there are only two inputs

27

Chapter 2: Background 	 28

Input space for the AND problem
2.0 	 II I'

1.5

N

0,
C

—0.5 	 0.0 	 0.5 	 1.0 	 1.5 	 2.0
Input 1

Figure 2.10: Input space for a 2-input AND problem. The aim of a neural network
in this case is to find a threshold (line in the diagram) that separates the red dots
(the neuron should output a 0) from the green dot (the neuron should output a
1).

input data, the input space will look like figure 2.10, where a red point indicates

the output neuron should not fire, while a green point indicates that it should.

Here, the system is attempting to create a line in input space that separates the

red and green dots. Then, when the point representing inputs (Ii , 12) is plotted,

if it is above the line, the output of the system will be one value (In this case 1)

and if it is below then the output will be another (0).

In the AND case, this is relatively simple - only one point needs to be above

the line. This is called a "linearly separable" problem 3 . The problems with

ADALINEs / MADALINEs (also no-hidden layer perceptrons - see section 2.5.4)

comes when the problem is not linearly separable. A simple example of this is

the XOR problem, as represented in figure 2.11. As there is no straight line that

can be drawn which separates the red and green dots into two distinct groups,

this is not solvable by an ADALINE system. This problem was illustrated by

Minsky and Papert (1969).

The other problem with ADALINE / MADALINE systems was that the out-

put could only be binary. This was solved by the introduction of perceptrons in

the late 1950's.

3 i.e. the solutions can be separated by a linear line'

Chapter 2: Background 	 29

br trie AUI-(pronem
2.0

1.5

1 0
Cl

0
C

0.5

0.0

—0.5
—0.5

[SJ

0.0 	 0.5 	 1.0 	 1.5 	 2.0
Input 1

Figure 2.11: Input space for a 2-input XOR problem. Here, no threshold (line)
can be drawn that separates the red dots (neuron output of 0) and the green
dots (neuron output of 1) thus the problem cannot be solved using an ADALINE
neural network.

2.5.4 Perceptrons

In the late 1950's Rosenblatt (1958) suggested an improvement to the McCulluch-

Pitt neuron in order to make the output continuously valued. A network of these

new neurons was called a perceptron.

Basic perceptrons are made up of two layers of nodes - an input layer and

an output layer. The input nodes each take one input and pass that value to

every output node. The output layer is made up of a number of these new nodes.

Each output node has a number of inputs from the input layer. This is shown in

figure 2.12.

These new neurons differ from the McCulluch-Pitt model in one important

way. In a McCulluch-Pitt neuron, the output can either be a 1 or a 0, but in

these neurons, the output is continuously valued. This is done by changing the

activation function from a threshold function to a continuous function. The most

commonly used activation function is given by equations 2.22 - 2.23, where Wi is

a weight, which may be any real number, V(a) is the output from the node and

1i is an input. This is known as the logistic sigmoid activation function.

29

Chapter 2: Background 	 30

Input 	 Output

Figure 2.12: A Simple perceptron. The network consists of two layers of nodes
connected by a series of weights. In the input layer, each node receives one
input and passes this to each output. The output layer consists of a number of
nodes that perform an activation on their inputs. This is an improvement on the
MADALINEs introduced previously as the outputs are now continuous.

30

Chapter 2: Background 	 31

1

V(a) = 1 + exp(—a) 	
(2.22)

a =

This is used as its derivative is easily replaced by functions of V(a) (equa-

tion 2.23), allowing easy implementation into simulations as V(a) is the value

outputted by the node. This property is useful during training.

dV(a) - exp(—U)
V(a){1 - V(a)} 	(2.23)

do,- {1+exp(—a)} 2

Training a network with no hidden layer is analogous to training on a MADA-

LINE. The difference is that the continuous nature of the activation function in-

troduces a derivative term into the training rule. Updating the system's weights

is then done using equation 2.24 where 17 is the "learning rate", which must

be specified prior to training and will absorb any numerical components of the

derivative into its definition. The learning rate is used to control how much the

weights change during an update cycle. A value of 1.0 will result in the weights

being updated fully to accurately reproduce the particular training profile. This

is undesirable as, during each update in the training cycle, the network will forget

all it has learnt before.

Ej = (d - O)2

w(New) = w(Old) + 17EI2 dV(a)
	

(2.24)
du

Here E2 is the error on node i, d2 is the desired output from node i (in the

training and Oi is the true output. Other quantities are as in section 2.5.2.

Further discussion about perceptrons can be found in appendix A.

When Minsky and Papert pointed out the problems with neural networks

and linear separability, the neural network community was quick to respond by

suggesting improvements to remove the problem by adding new hidden layers to

the perceptron (e.g. Rummelhart et al. (1986)). These hidden layers comprise

of neurons with a continuous activation function and go between the input and

31

Chapter 2: Background
	

32

Input 	Hidden 	Output

Upstream

Figure 2.13: A neural network with a hidden layer of three nodes. These hidden
nodes perform a non-linear activation function to allow continuous outputs. The
arrows show the relative directions of upstream and downstream as used in the
text.

output layers. The network topology is now shown in figure 2.13, with one hidden

layer.

Adding these hidden layers solves the linear separability problem. Having

extra hidden layers corresponds to being able to add extra lines to the input

space diagrams (figures 2.10 and 2.11 of section 2.5.3), so the XOR problem

could be solved as in diagram 2.14, where between the lines, the networks output

one value (1.0) and outside the gap it outputs another (0.0) (Russell (1993)).

Unfortunately, solving the linear separable problem created its own problem

- how to assign "blame" to the input-to-hidden weights. For example, if there is

an extra layer in a network, when the output and error is calculated for a given

input, how do you know which weight is responsible for each proportion of the

error?

This was a problem that stopped neural network research in its path for over

10 years during which time, excitement about neural networks vanished, and

4 Assuming McCulluch-Pitt neurons

32

Chapter 2: Background
	

33

2.0 • Input space for the XOR problem with 1 hidden node

1.5

1.0
N

0.

0.5

0.0

—0.5
—0.5 	 0.0 	 0.5 	 1.0 	 1.5 	 2.0

Input 1

Figure 2.14: Input space for a 2-input XOR problem using 1 hidden node. Using
hidden nodes in a neural network is equivalent to allowing additional lines to be
drawn in input space, allowing the XOR problem to be solved.

funds for research dwindled. This changed in 1986 when Rummeihart et al.

(1986) popularised a method for training perceptrons with hidden layers' called

backprop.

2.5.5 Back-propagation

Back-propagation, or backprop, or back-propagation of error, is a method of

training a perceptron with hidden layers using two stages.

The first stage is similar to what has gone before: the network is fed the input

for a randomly selected training profile and its output is calculated. This output

is then be used to calculate the error for each output node, Ej = (d -0,)2 , as

before.

The true power of back-propagation lies in what happens next, the so-called

"Back-pass".

The basic idea of this pass is that the error is allowed to propagate upstream

(i.e. to previous layers), where each node calculates its contribution to the overall

error, stores this and removes this contribution from the error, before passing the

'This method was independently discovered in Paul Werbos in 1975 and Rumeihart et. al.
in 1986

33

Chapter 2: Background 	 34

new value of the error upstream again.

When the error, E, starts at the output layer, it is necessary to calculate S,

a "sensitivity" factor for the error. This is defined as equation 2.25 where da
is the derivative defined as equation 2.23 previously.

=
du
	 (2.25)

Having found 6's for all the output nodes, it is then possible to propagate

these upstream to find the values at the next layer, using equation 2.26, where

the summation is over all nodes downstream that are connected to node k.

dV(a)
8k = 	 Wkh6h 	 (2.26)

da
h

This is calculated iteratively upstream until all nodes in the network have 8

values. Having successfully given every node in the network a 8 value, the weights

are updated using the "delta training rule", as given by equation 2.27 (Derivation

is given in Braspenning et al. (1995)). It should be noted here that the subscript

k refers to the source node of the link (i.e. the upstream node), while h refers to

the downstream node. A more detailed explanation of how backprop operates in

a multi-layered perceptron can be found in appendix A.

wkh(new) = Wkh(Old) + rl8hVk(o) 	 (2.27)

This is the basic building block of most modern neural networks. Many

additions have been proposed to this delta rule, but only two of them have really

been embedded into the foundations. This is the addition of the momentum

term (Hertz et al. (1991)) and the inclusion of a weight decay term (Krogh and

Hertz (1992)), producing what is known as the "Generalised Delta Rule". This

includes the addition of a fraction of the previous weight change (AL.' kh (old)) for

a momentum term and a fraction of all the weights in the current layer for a

decay term, and is given by equation 2.28. This introduces two new terms, c

and v, the momentum and weight decay coefficients respectively, which must be

chosen before training the network.

The purpose of both these are different. The momentum term allows the

weight change to build up, and get over any small bumps in weight-space. The

decay term favours smaller weights in the system and helps prevent over-fitting

34

Chapter 2: Background
	

35

(see section 2.5.5).

wkh(rlew) = Wkh(Old) + 778hVk(Y) + aAwkh(old) - ii E Wj 	(2.28)

This is still the most common basis for most of today's neural networks. Many

implement their own special modifications to this algorithm but these tend to be

extensions of the backprop algorithm.

Special Types of Nodes

In all that has proceeded, it has been assumed the topology of a network has

consisted of a series of layers of nodes where each node is connected to all the

nodes of the previous layer upstream and every node in the next layer down-

stream, that is to say there have been no skip layer connections (e.g. Ripley

(1997)). These are relatively simple in theory. The main idea is to have a node

that links not to every node in the next layer, but to "skip" a layer or layers.

This is sometimes used if there is a known (or suspected) linear relation between

an input and output. In this case, a skip layer connection may be connected

from one or more input nodes straight to one or more output nodes, as well as

through the hidden layers. If there is a linear relation, the skip-layer weights will

become much greater than the hidden-to-output weights and so will dominate

the output.

The other type of special node is called a bias (e.g. Haykin (1998)). This is

a type of node that is implemented in nearly all neural networks, but generally

not discussed in literature. This node is a node whose output is always 1, and is

generally connected to every hidden and output node. A sample network with a

bias included is shown in figure 2.15. This acts to move the activation function

as shown in figure 2.16. Similar results are found for other perceptron activation

functions. A 'bias of 2.0' here implies the bias-to-node weight has a value of 2.0

(achieved by using setting the weight to 2.0).

Stopping Training

One major problem of using backprop is knowing when to stop training the

network. The network could be trained indefinitely, constantly reducing the

35

Chapter 2: Background 	 . 	 36

Input 	Hidden 	Output

Figure 2.15: A simple network with a bias node, B, includes. Traditionally, bias
nodes are included in almost every neural network, but are not discussed for
reasons of brevity.

me ioqistic siqmoia acuvoion runcuon wan oriu wILrIvu 0

1.0

No bias

0.8 - A bia& of 2.0

0.6
a

0

0.4

0.2

0.OL

—6
	

—4 	 —2 	 0 	 2 	 4 	 6

sigma

Figure 2.16: How the sigmoid activation function varies with a bias node. With
a bias of 2.0 included, the summed inputs (a) must be increased to get the same
activation level.

36

Chapter 2: Background 	 37

error. However, this may lead to over-fitting if the network is too complex. This

is the phenomena of the network learning all the noise in the data which leads to

poor generalisation. However, it is in general not possible to know if a network

is too complex for a given task until the network is fully trained and tested.

The most common, and simplest, way to combat this is to have a small set

of data to check how the network is getting on. This is the validation set. At

regular intervals during training, the network is tested (but not trained) on the

validation data. When the error on the validation set either becomes sufficiently

low (if asked to work out a problem to given precision), or the validation error

starts to rise, the training is stopped, and the weights are restored to the values

that gave the lowest validation error. This has some minor problems of its own.

During training, the error may well go up and down by quite a large amount and

the question arises "How do you define when the validation error is going up due

to over-fitting and not just through training?". One way around this is to store

the best validation error. When the current validation error is better, it is stored.

If it goes up some fraction (usually 1.2x to 2.0x) of the best validation error this

is an indication to stop.

Choosing Node Numbers

Another problem with any type of neural network is how to choose the number of

hidden nodes and the number of hidden layers (the number of input and output

nodes is fixed by the given number of inputs / outputs required by the system).

It has been shown by Hornik et al. (1989) that only one hidden layer is ever

required, but this could lead to a network having 1000's of hidden nodes in one

layer, whereas it may be faster to have several layers of 100 each.

The question of how many hidden nodes to put in can be resolved in one of

three ways: guessing, pruning or growing.

Guessing, though it sounds primitive, is still the most popular way due to some

technical difficulties associated with the other methods. This involves putting in

a number of nodes, training the network, see how it performs then adding or

subtracting more units to see how that affects the system.

Pruning, or "brain-damaging" is a another common way of getting hidden

node numbers (Romaniuk (1993)). Here, a network starts with a lot of hid-

den nodes. Training proceeds for a set number of epochs after which time, the

37

Chapter 2: Background 	 38

weights are reviewed. The hidden-to-output weight(s) that are closest to zero get

removed, along with the source node (i.e. the node that the weight originated

from). This then requires the network to be retrained. The procedure continues

until all node weights are far enough away from zero.

The final way the number of nodes is commonly chosen is by growing (e.g.

Sakar and Mammone (1993)). This is similar in style to pruning. The network

starts with a small number of nodes (typically 0). Training proceeds for a set

number of epochs after which time, the validation error is calculated. If this

is above a predefined limit, some new nodes are added. This is repeated until

either the validation error drops below some level, or a maximum nodes are added

(determined by the user). This method is very prone to over-fitting but does train

faster than a pruning network.

All these methods require some user input. Pruning requires a starting num-

ber of nodes and growing requires the maximum size of the network, so it doesn't

really eliminate the problem of choosing the number of hidden nodes, it just

rephrases it.

Clearly ADALINE and MADALINE systems will not be appropriate for an

EOS-MLS forward model, as their outputs are limited to binary, but of the

schemes discussed here, a multi-layered perceptron, trained with backprop, looks

promising. This scheme will be investigated in chapter 3 when using a much

simplified forward model and chapter 5 with a more realistic forward model.

Chapter 4 also looks at using a multi-layered perceptron with backprop to re-

trieve tangent pressures for use in an assimilation scheme.

2.6 Previous Work

This section aims to give an overview of some of the work carried out on the use

of neural networks in an atmospheric science context. There have been many uses

of neural networks in retrieval situations (for example, Jiménez (2003)) that have

worked in the past. In these cases, the neural network inputs are the radiances

returned from instruments (typically satellites) and the outputs have been atmo-

spheric profiles. In particular, Jiménez (2003) used a neural network to retrieve

several chemical species from Odin-SMR measurements (Murtagh et al. (2002)).

A multi-layered perceptron was trained using Bayesian techniques (not covered

Chapter 2: Background 	 39

here - see MacKay (1995)), that used radiances from several bands on the in-

strument to retrieve 03 and ClO profiles (among others) that were compared to

profiles retrieved using standard retrieval techniques.

It was found that, using model simulations of the Odin-SMR measurements,

the neural network gave comparable errors when compared to traditional retrieval

techniques but was much faster. When using real measurements, it was found

that there were biases of up to 10% at some heights in the neural network retrieved

profiles. This was determined to be due to limitations on the training data as

opposed to a problem with the technique. Overall, it was found that neural

networks provide "a very attractive alternative to the operational inversions".

There have been other attempts at using neural networks in a variety of ways

within data assimilation. One of these attempts involved using neural networks

to compute the atmospheric fluxes and cooling rates within a 4D-variational

assimilation scheme at the ECMWF (Chevallier and Hahfouf (2001)). In this

case, it was found that although the atmospheric fluxes and cooling rates could

be calculated, the neural network Jacobians had some irregularities but in general

"[...] this approach is able to provide fast computations with good accuracy".

There has been only one serious attempt to create a forward model based

on neural networks that I could find. This was done by Krasnapolsky (1997).

Using a neural network, he developed a forward model, called the OMBFM1, for

the SSM/I instrument (Hollinger et al. (1990)) across 5 of its channels. It was

found that the OMBFM1 could produce brightness temperatures in all channels,

together with associated derivatives, to an acceptable standard. It was also found

that the neural network based forward model was much simpler than a traditional

forward model to run in a retrieval scheme.

The task of creating a neural network forward model for the EOS-MLS is more

difficult than for the SSM/I instrument as the EOS-MLS is a limb sounder. The

OMBFM1 takes 4 inputs: wind speed, columnar water vapour, columnar liquid

water and sea surface temperature and produces 5 outputs: the brightness tem-

peratures in the 5 channels being modelled. In contrast, EOS-MLS radiances are

affected by temperature variations throughout the atmosphere as well as other

chemical species (see section 2.3.1), which drastically increases the number of

inputs required by the system. In addition, the EOS-MLS produces 120 outputs

per channel per scan resulting in many more outputs. There are further compli-

39

Chapter 2: Background

cations when determining pointing geometry which do not affect nadir sounding

instruments (chapter 4). These difficulties mean any forward model must per -

form additional steps when calculating radiances for limb sounders as opposed to

nadir sounders. In a neural network, this is represented by the need for additional

hidden nodes to deal with the added complexity.

Chapter 3

Preliminary Evaluation of the

Neural Network Forward Model

3.1 Introduction

In order to ensure that neural networks are a feasible method of producing a

forward model, a much simplified initial experiment was conducted, involving

limiting the radiances produced.

This chapter gives an overview of how the neural network forward model was

created, the training method employed and details of the first experiments in

modelling a forward model in limited circumstances.

3.2 The First Model

Only one channel in one band was modelled. It was decided to model only band

1 in this way. Band 1 was used as it is centered on an oxygen line and operates as

a single sideband. As the concentration of oxygen in the atmosphere is effectively

constant and the line the band is centered on (118.75 GHz) is strong and isolated

this means good radiances can be produced using temperature as the only species

input. In order to simplify the problem further, the tangent pressure levels of the

radiances were assumed to be constant across profiles (see section 2.3.1). This

means that the each minor frame radiance is measured at the same pressure in

each major frame.

41

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 42

3.3 The Network Architecture

This section deals with the construction of the neural network. It explains the

architecture as well as the normalisations and transfer functions.

As explained in chapter 2, a neural network is a quick way of estimating

functions using nonlinear neurons connected in a network. In order to keep the

number of outputs reasonable, it was decided to use one neural network per

channel for the EOS-MLS, rather than using one neural network for all channels

in the band. This means that. there are 120 outputs for the network. In addition

to this, there are 73 inputs, the temperature profile.

The network used is a multi-layered perceptron. The number of hidden nodes

within the network can be varied, along with the number of hidden layers. The

transfer function (the activation on the hidden and output nodes) can be varied to

be either a sigmoid function (equation 3.1), a hyperbolic tangent (equation 3.2)

or a linear transfer function (equation 3.3) where the symbols are as used in

section 2.5.4.

V(a) = 	
1 	

(3.1)
1 + exp(— o,)

=Wixi
i

V(a) = tanh(a) 	 (3.2)

= E wixi

V(u) = a 	 (3.3)

U =Wixi

Because the nonlinear transfer functions (described above), only return values

in the range [0,1] or [-1,1], some normalisation must be applied to the outputs of

the system. In addition, some form of normalisations is also applied to the inputs

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 43

of the system, but for different reasons.

As a typical temperature profile covers a large range of values, if these values

were fed directly into a neural network, several problems would arise. First,

during training, the values combined with typical initial weights would result

in the hidden nodes being saturated. This means all of them would output a

constant value of 1 (or very nearly). In this case, it is not possible to train

the network very efficiently, because the training relies on the gradient of the

transfer function. If the node becomes satñrated (either too high or too low),

this gradient falls to zero. Although this effect can be mitigated by using much

lower initial weights, these values would have to be constrained to be at most

given by equation 3.4, where W2 is the initial weight, N1 is the number of inputs

and I is the mean value of the inputs.

1 	 1
Wi 	 ±0.00003 	 (3.4)

N1 *I*2 73*200*2

This means that the initial weights would have to be in the range [-0.00003, 0.00003]

to avoid saturating the hidden nodes. If the weights get smaller, the internal cal-

culations within the neural network will start losing precision. A further problem

arises when more inputs are needed (see chapter 5) and this initial weights range

would have to be reduced further.

Another problem with unnormalised inputs is that some inputs may have a

larger influence on the outputs than others. Although this is to be expected

given the problem, there might be a single input that has a very large range

of values while all the rest have a much smaller range. In this case, the much

larger changes in one input may mask the changes in other inputs which could

be more important. Although this effect should dampen with training, it may

increase training time dramatically, or potentially not manifest itself until training

is complete.

For these reasons, both the inputs and the outputs must be normalised. In

order to normalise the inputs, equation 3.5 is used, where I(i) and I(i) are the

normalised and original un-normalised input to node i respectively.

• - 	I(i) - min*(Iu(i))
(3.5) I(z)

- max*(Iu(i)) - min*(Iu(i))

To allow some growth outside normal ranges, the maximum and minimum

43

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 44

factors in equation 3.5 are scaled by 10%. When the maximum or minimum

value is greater than zero, max*(Iu (i)) = 1. 01 * max(I(i)) and min*(Iu (i)) =

1.1 * min(I(i)). When the maximum or minimum value is less than zero,

max*(Iu (i)) = max(I(i))/1.1 and min*(Iu(i)) = min(I(i))/1.1.

These input normalisations result in the network inputs being approximately

in the range [0, 1]1. This allows the initial weights to be in the approximate range

[-0.01, 0.011, which allows more accurate internal calculations and prevents the

hidden nodes being saturated. Normalising the inputs also has an advantage in

equalising the input's influence on the outputs.

The raw outputs from the network will be in the range of [0, 11 or [-1, 1]

depending on which of equation 3.1 or 3.2 are used. These raw values are then

converted to radiances using equation 36 in the case of a sigmoid transfer function

or equation 3.7 in the case of a hyperbolic tangent transfer function. When a

linear transfer function is used, no output normalisations are applied.

O(i) = 072 (i) * { max *(Ou (i)) - m in*(Ou (i))} + m in*(Ou (i)) 	(3.6)

0. (i) = 'y(i) * {max* (O u (i)) - min* (O u (i))} + min* (Ou (i)) 	(3.7)

'y(i) = 0()+1

Here, the notation is similar to that for the input normalisation; O(i) is

the unnormalised (true) radiance for network output i, O(i) is the network

output from output node i, max*(Ou (i)) and min*(Ou(i)) are the maximum and

minimum true radiances in the training set, scaled to allow for larger / smaller

values in the same way as the inputs scaling. Figure 3.1 shows the final network

architecture.

'Assuming the absolute maximum and minimum values are approximately 110% of the
training set values

Unnormalised Input
'NW

Normalised Input
ITJ --1 	 (I.) (1,1)

W (1,2) 	 •,

- 	 Network internal value

(1,1) 	
I °N1 	

Unnormalised Output

'u 2 	1N2 	
:. 	

W (2,1) °U

H 	u (2)

'u 3

[j

	

On (3)

>iLr
' 	 (t)(731) 	

:
:

' 73 	'N73 	
...: 	

I . 	 .. 	 0 N 020

On (120)

Normalisation of Inputs Unnormalisation of Outputs

Input Layer (73 Nodes) 	 Hidden Layer Output Layer (120 Nodes)

Figure 3.1: The architecture of the network. 	The inputs are the (unnormalised) temperature profile. 	These are first
normalised and passed to the input layer. The input layer does nothing to these values, except to pass them to all the
hidden nodes. The hidden nodes then sum the weighted inputs and performs an activation, passing the result to the
output nodes. The output nodes again perform a summation of each of its weighted inputs and passes a value out. These
values are then unnormalised to produce the final radiance. As is conventional, the bias nodes are not shown in this figure. CR

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 46

3.4 Training the Network

In order to be useful, a neural network must be trained. This section describes

the training methods employed and how the training data were generated.

As discussed in chapter 2, there are many ways to train a neural network. The

network described here was set up to be trained in several different ways. The

first way is using backprop (discussed in section 2.5.5). Using backprop, there

are several parameters that can be varied - the learning rate (77), the momentum

of the system (a) and the weight decay factor (11).

The second training method employed is a technique called quickprop. Quick-

prop is a technique developed by Fahiman (1988) as an alternative to the backprop

algorithm. The idea is to use a copy of the derivative of the error with respect

to each weight for the previous training profile and use this combined with the

derivative from the current training profile to calculate an approximation to the

second derivative. The weights are then updated according to the rule given by

equation 3.8.

w(t) 	
S(t)

= 	 (3.8)
S(t— 1)— S(t)

SE
S(t) = - = yhVk(a) 	 (3.9)

Sw

Here, w(t) is the change to be made to the weight at timestep t and S(t)

is the current value of the derivative of the error with respect to the weights,

SE/5w, calculated using equation 3.9 where Yh is the "sensitivity factor" defined

as equations 2.25 - 2.26 in section 2.5.5 of chapter 22. As before, Vk(a) is the

value generated by the node k. Putting this update formula into the form of

the backprop equation (equation 2.28) gives an update rule of equation 3.10. As

before, ij is the learning rate. Unlike backprop, quickprop has no momentum or

weight decay terms as it doesn't suffer from the problems that they were intended

to solve.

S(t)
___ __________ 	 - 1) 	(3.10) wkh(new) = Wkh(old) + S(t

- 1) - S(t)

One problem that sometimes occurs with quickprop is that the denominator

2y is used in place of 5 as the sensitivity here to avoid confusion

me

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 47

of equation 3.10 becomes so small that a floating point overflow occurs, resulting

in infinite weight changes. The normal way of dealing with this is to introduce a

"maximum growth factor", p (Fahlman (1988)). Using this, the absolute value

of the weight change is not allowed to be more than ,u times the previous weight

change. If the weight change is greater than this threshold value, a constant value

is used in its place.

Q uickprop is also based on several assumptions. The first assumption is that

the weight space is approximately parabolic in shape. This means that there is

a well defined minimum that can be reached, and that weight space is relatively

smooth. In many cases, this is a reasonable assumption. If weight space isn't

parabolic, the method will still converge on a solution but will tend to become

stuck at local minima instead of the global minimum.

The second assumption is that the slope of the error vs. weight curve for

each weight is not greatly affected by other weights that are changed at the same

time. This is generally a good assumption when each output node is affected

in different ways by the input nodes. In this case, the hidden nodes will act

to separate out these effects. When creating the forward model for the EOS-

MLS though, each minor frame output 3 is dependent on similar inputs as those

around it as well as any temperature inputs from the atmosphere above it due

to the viewing geometry. This means that this assumption could be risky in this

case.

3.4.1 The Training Set

The training data were generated using a full 2-D (i.e. the atmosphere is assumed

to be horizontally homogeneous) forward model for the EOS-MLS created by H.

Pumphrey, which has been shown (Pumphrey (2006)) to reproduce the "official"

EOS-MLS forward model, described in Read et al. (2004), to within 1 K. Here,

the model of Pumphrey is assumed to be accurate. The training set was gen-

erated at constant tangent pressure levels with only temperature data included.

The training set contains 2,000 radiance profiles (along with corresponding tem-

perature profiles). Of these, 1,500 are used for training, 300 for validation (used

to measure training progress) and 200 for testing (used at the end of training

to ensure the network is well-trained). These values were chosen so that each

3Described in section 2.3.1 of chapter 2

47

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 48

set covers at least one orbit of the EOS-MLS, to give maximum coverage of the

expected temperature profiles, while allowing enough profiles remaining from a

full day's data to allow further testing of the network.

In order to ensure that the training set is representative of the complete input

/ output space, the following tests were undertaken. First, several parameters,

such as the mean, standard deviation, maximum and minimum values for each

minor frame within the profile were compared.

The second test is slightly more complex. This process gives a qualitative view

of which areas of input/output space are well represented and can be created as

follows. First, each height within the entire set is binned into a set of 10 ranges.

This procedure is then done again with the training set and the same ranges as the

complete set. These ranges are then normalised and the values from the training

set are subtracted from the values of the complete set, producing a difference

between the two sets.

Within a well represented area, the final ranges should have a value near zero.

A threshold value of 20% was chosen as the cut-off for defining well-represented

areas. Areas of the training set with 20% fewer profiles than the complete set are

unrepresentative and need to be improved.

In this case, 3496 profiles are used as the complete set. This represents one

day's worth of profiles and is a good representation of profiles across all latitudes

the instrument measures at. The training set consists of the 1500 training profiles.

The results in the case of temperature profiles are found in figure 3.2. This shows

two sub-figures. On the left, is a figure showing the mean, maximum, minimum

and standard deviation for each height. The red dashed line is the training

set, and the solid black line is the complete set. As can be seen, all of these

lines are almost perfectly matched. The figure on the right gives an indication

of the coverage as described above. The great majority of the area covered is

indeed near the "Perfectly Represented" colour, with a small amount number

of underrepresented and overrepresented areas appearing. The extremes of the

scale are where the training set has 15% more profiles (over-represented), or 15%

fewer profiles (under-represented) within the area, within the threshold defined

above.

The same procedure was also carried out to look at the network outputs (i.e.

the radiances). This can he found in figure 3.3 and is in the same format as

Mw

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 49

Complete and Training Set
3 	.IyIlIIIIIIiIIyIIII\iIIuriIIIIIiIeiIui.

an
2

Representation within the Training Set
3 	

Overrepresented

Perfectly Represe ted

Underrepresented

PA

o
0

-c

ci)

2

Maximum

Std. Dev.
Minimum

Complete Se
- - Training Set

o
2 —1

	

—2
	

EPA

	

—3
	

—3 L
	

I III 1111111 I 	 I 	 I 	ii

0
	

100 	200 	300 	400
	

100
	

200 	300 	400 	500

Temperature / K
	

Temperature / K

Figure 3.2: A figure showing that the temperature training set is representative
of the entire set. The left figure shows the maximum, minimum, mean and
standard deviation of the entire set (red dashed lines) and the training set (solid
black lines). The right figure gives a qualitative overview of how well different
areas are represented with well represented areas displayed in blue-green. A
small number of areas (around y = — 0.9) show deviations away from this well-
represented area. Here, the extreme under- and over-representation corresponds
to 15% fewer/more profiles in the training set than in the complete set.

0
0

ci)

0

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 50

figure 3.2. Again, it can be seen that the maximum, minimum, mean and stan-

dard deviation are all very similar in the training set and the complete set. The

right sub-figure shows that the complete set is well represented by the train-

ing set in almost all areas, with no seriously underrepresented areas. Here, the

scale used is from 5% under-represented to 5% over-represented, well inside the

threshold for well-represented areas. This suggests the training data gives a good

representation of the complete set.

The training process consists of showing the network 7500 profiles randomly

selected from the training set and updating the weights according to the errors

on those profiles. The network is then validated using the 300 validation profiles

and if the network error is better than in previous validation runs, the network

weights are stored. The training run is then restarted. This process continues

until the validation phase does not produce any better weights for the system for

50 validation runs (epochs) in a row. After this, the best weights are restored

and the network is run with the 200 testing profiles.

3.5 Results

3.5.1 Initial Trials

This section gives some results of tests carried out using the neural network and

includes the effect of training algorithm, choice of transfer function and hidden

node numbers.

A number of tests were carried out using a neural network forward model

under a range of different circumstances. These include changing the number of

hidden nodes, changing the training method and changing the transfer functions

used by the nodes within the network.

Results from an individual run will usually be presented here in the form of

a four-panel graph. An example graph can be seen in figure 3.4. Here, the upper

left panel shows a sample profile from within the testing set, chosen at random,

showing the real forward model output (solid line) with the corresponding net-

work forward model outputs at the end of training (crosses). The upper right

panel shows the absolute errors on each network output for this profile at the end

of training. The lower left panel contains information about the complete test

set. This includes the following information:

50

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 51

Complete and Training Set
3 	lUI 	1 11 1 11 1 111 1 11 	I_I

2

Representation within the Training Set
3 	

Overrepresented

Perfectly Represente

U n d e rre presented

0
0
-c

a)

2

Complete Set
- - - Training Set

cxi mum

Minimum

0
o
-c

a)

0
Q)

a-
o

0'
o

—2

Std. Dev.

M$an Mt an WO

	

—3 L
	 —3

	

0
	

50 	100 150 200 250
	

0
	

100 	200 	300
	

400
Temperature / K
	

Temperature / K

Figure 3.3: A figure showing that the radiance training set is representative of the
entire set. The left figure shows the maximum, minimum, mean and standard
deviation of the entire set (red dashed lines) and the training set (solid black
lines). The right figure gives a qualitative overview of how well different areas
are represented, with all areas being very close to the "perfectly represented"
colour. Here, the extreme under- and over-representation areas correspond to
5% fewer/more profiles in the training set than in the complete set.

51 LJRQ FR

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 52

Thick black line - The bias of the error for each network output

Blue lines - The standard deviation of the error for each network output

Crosses - The maximum and minimum error for each network output

Red lines - Instrument noise level

In each of these panels, the vertical axis denotes height and is in units of

z = - log10 (Pressure / hPa). The reason for this is discussed in section 4.3

of chapter 4. The scale runs from z = —3 to z = 3, or p = 1000 hPa to

p = 0.001 hPa.

The final panel (bottom right) gives information about the training run of

the network and some information about the network itself. The main .graph

shows the standard deviation of the network as a function of epoch. One epoch

is measured as the time from one validation run to the next. The plotted value at

each epoch represents the standard deviation of the network output that had the

largest error during the validation phase. A number of details about the network

are also given in this panel. These are:

77 - The learning rate of the network

a - The momentum of the network

zí - The weight decay in the network (if non-zero)

best std. dev. - The standard deviation of the worst network output

when the network couldn't be improved any further

Hidden Nodes - The number of hidden nodes in the network. If more

than 1 layer of hidden nodes was present, this information is displayed as

"n,m" where n is the number of nodes in the first hidden layer and m is the

number of nodes in the next hidden layer

R1A.B1F.C1 - The current channel that is being modelled. Further in-

formation about the naming scheme can be found in section 2.3.1.

In order to be considered successful, it was decided that the network would

have to have an error of less than the instrument noise. In order to do a good re-

trieval of atmospheric species, the forward model must be at least as good as the

52

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 53

Radiances Profile #63 	 Absolute Error

0
-c 	2

1

g 	0
a)
o-1

0

z; —2
0

- Truth
+ Network output

3

2

1

0

-1

-50 0 	50 100 150 200 250
	 -0.15-0.10-0.050.00 0.05 0.10 0.15

Brightness Temperature / K
	

Error in Brightness Temperature / K

Test Set Statistics
	

Training error
2.5

C

2.0
0

1.5

0 1.0
-o
C

(I)

1) = 0.20
a = 0.10
Best std. dev = 0.13
Hidden Nodes = 20
R1A.B1 F.C1

0
0
-c 	2

a) 	'
L 	 n

0

a:;- -2
0

-3

-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8
Deviation / K

0.0

0 	100 	200 	300
Epoch

Figure 3.4: A sample results diagram. The diagram is split into four panels.
The top left and right panel give a sample profile from within the testing set,
the network output and the error on this output. The bottom left panel gives
details about the overall test set, including the standard deviation, maximum
and minimum errors and the instrument noise for the channel. The bottom right
panel shows how the training of the network progressed and gives details about
the setup of the network.

53

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 54

instrument noise levels and preferably, more accurate than half the instrument

noise. For this reason, a network that, when trained, produces a standard devi-

ation on its errors of less than the instrument noise is considered successful. If a

network achieves a maximum standard deviation of less than half the instrument

noise level it is considered to be well trained. Assuming the errors are Gaussian,

insisting that the R.M.S. error is half the R.M.S. instrument noise implies that

less than 3% of the profiles have errors exceeding the instrument noise for that

tangent height.

Originally, the neural network was started using sigmoid transfer functions

for all the hidden and output nodes. In order to ensure the best results, low

values of 77 and a were used (0.2 and 0.1 respectively). The number of hidden

nodes was increased or decreased in different runs, depending on how the network

responded to different numbers. One of the first properly successful runs is given

in figure 3.5. In this case, there are 55 hidden nodes in 1 hidden layer and the

network returned a best error of o = 0.16 K during testing. This shows that

a neural network can act as a forward model in this case. It can be seen that

the principal errors occur in the lower region of the profile. As the atmosphere

is opaque to the instrument at these heights, these radiances won't generally be

used in the observations vector of an assimilation model and as such the errors

are less important than errors in the higher radiances.

Subsequent runs looked at the effect of varying several parameters in the

network.

Varying the learning rate

Increasing the learning rate, 77, allowed the network to rapidly reduce its

error at the start of the training but in latter stages of training, the network

tended to change the weights by too much, resulting in errors that didn't

improve as rapidly over time and larger errors overall.

Varying the momentum

Increasing the momentum factor, a, means that more of the previous weight

change is included in the current weight change. This should allow the

network to overcome larger "bumps" in weight-space and allow a better ,

final error. In practise, increasing the momentum rate too much again

54

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 55

Radiances Profile #319 	 Absolute Error

0
2

I -3 P
-50 0 	50 100 150 200 250

Brightness Temperature / K

3

2

1

0

-1

-0.15-0.10-0.050.00 0.05 0.10 0.15
Error in Brightness Temperature / K

Test Set Statistics
C we

Training error

CL
-c 	2

ci)

a:;- -2
0

3

n

C
0

0 1.5
> 1 1.0

0.5

0.0

1) = 0.20
a = 0.10
Best std. dev = 0.11
Hidden Nodes = 55
R1A.B1 F.C1

-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 	 0 	200 400 600 800 1000
Deviation / K 	 Epoch

Figure 3.5: One of the initial successful runs (format is the described in sec-
tion 3.5.1). This shows that a neural network is capable of learning to emulate
the forward model in this (highly restricted) trial. In this channel, the instru-
ment is sensitive between z — 1.5 and z —0.9 (r.' 30hPa to lOhPa). At
heights greater than z = —0.9, the atmosphere is transparent at this frequency
and the instrument measures background radiation. At heights below z = — 1.5,
the atmopshere is "blacked out" and the instrument detects radiation from (close
to) z = — 1.5.

55

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 56

results in too large changes in weight during the latter stages of training

and larger errors overall.

Overall, it was found that learning rates of 77 < 0.5 and momentum rates of

a < 0.3 produced consistently good results in this case.

The final parameter that can be changed and should be looked at is the

number of hidden nodes in the network.

3.5.2 The Effect of the Number of Hidden Nodes

Initially, the number of hidden nodes within the network was chosen heuristically

- the number of hidden nodes for a particular run is chosen based on how the

network reacted to the previous run. Systematically examining how the network

responds to different number of hidden nodes allows us to check that the network

is working consistently and that the optimum number of hidden nodes is chosen.

56

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 57

Example error vs. hidden node number graph
[ii

0

I:
1

Ii

I
	

10 	 20 	 30 	 40 	 50
Number of hidden nodes

Figure 3.6: Example of an error vs. hidden node graph when the network is
working properly. The ideal number of hidden nodes is a trade-off between speed
and accuracy.

Consistently Working

Anthony and Bartlett (1999) suggest that there is an optimum number of

hidden nodes for any particular network and that the error vs. hidden

node number graph should be a decay graph, like figure 3.6. If a similar

figure can be produced for this particular network, it would indicate that

the network is indeed working properly. The optimum number of hidden

nodes is then a trade-off between how accurate the network is required to

be and the speed the network must be able to run at.

57

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 58

Optimum Number

Using heuristic methods could result in missing a minimum on the error vs.

hidden node number graph. If this were the case, there would be no real

way of knowing that a promising region had been missed.

Investigating the effect of hidden node numbers is an easy task, if a little

tedious. The basic principle involves starting the network with an arbitrary

number of hidden nodes (typically zero) and letting it train. Once the training

is complete, a test set is run through the network and the standard deviation is

calculated for each network output. The worst of these standard deviations is

recorded and the number of hidden nodes in the network is increased, the weights

are randomised and the training starts again. This is repeated a number of times

with varying numbers of hidden nodes. When this is complete, these standard

deviations are plotted against node number.

Initially, the network was trained with no hidden nodes and each time the

training was restarted, five more hidden nodes were added. This produces fig-

ure 3.7 where the bars on each point represent the maximum and minimum values

across five runs. In this case, there is a sharp rise in the error from zero hidden

nodes to 5 hidden nodes and then a steady decrease until around 20 hidden nodes.

From 20 hidden nodes upward, the error remains approximately constant. This

suggests that any additional hidden nodes above 20 are not being used in this

case and so can be ignored. The sharp increase from zero to 5 hidden nodes is

due to the 5 hidden nodes being unable to cope with the large number of inputs

and outputs. In the case where there are no hidden nodes, all the inputs are

directly connected to the outputs, and each output node can choose the most

important inputs to it. However, in the case with 5 hidden nodes, these 5 hidden

nodes must condense all the information from the inputs before passing it on to

the outputs. The outpits in this case only have access to 5 bits of information,

which is not enough to accurately calculate the radiances. The network therefore

has a larger error than with zero hidden nodes. The small error bars also show

that the network is well trained as the final network error is consistent across

training runs.

0.

Error vs. Hidden Node Number for the Network

C
0

0
>
C)

0

0
-D
C
0

(1)

(1)

0

Wei

1.5

1.0

0.5

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 59

x.I
0 	 20 	 40 	 60 	 80 	 100

Hidden Node Number

Figure 3.7: The error vs. hidden node graph for the forward model neural net-
work. The error bars show the maximum and minimum across 5 neural network
training runs. In this case, the graph is almost flat after around 20 hidden nodes.
This suggests the best number of hidden nodes to have is around 20.

59

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 60

3.5.3 Improving the Initial Results

This section looks at several techniques that other people have employed to im-

prove a network's ability or to reduce training times. There are many techniques

that can be used to improve a neural network in some way, but only three will

be considered here - using a weight decay parameter, using a non-linear error

function and training the network using quickprop instead of backprop.

The first of these is to examine the use of a weight decay parameter. A weight

decay parameter is an additional term to the weight update rule that subtracts a

small percentage of all the weights in that layer from each weight, which means

that smaller weights are favoured by the system. If large weights are present, the

activation function can become nearly discontinuous - small changes in input will

cause large changes in output (see e.g. Sarle et al. (1997) for more information

about weight decay).

Adding a weight decay term to the neural network is technically easy, the

difficulty coming with making the right choice. I simply used trial and error,

guided by results from previous runs. One of the most successful tests is shown

in figure 3.8. In this case, a weight decay coefficient of 0.01 was used. In compar-

ison to figure 3.5 it can be seen that although the bias is improved when using

weight decay, the network is not as well trained (seen by comparing the standard

deviations of the test set in the third panel.). When no weight decay is used the

standard deviations are better than when weight decay is used (0.16 K compared

to 0.20 K in the case with weight decay). Examining the fourth panel may reveal

• possible reason for this. In the weight decay case, the network is trained for

• much shorter time (401 epochs compared to 950 epochs). Both networks are

using the same criteria for stopping training (see section 3.4) which implies that

in this case, training with weight decay is not as efficient as training without

weight decay.

The second method of improving the network is using a better error func-

tion. It is suggested in Fahlman (1988) that using a nonlinear error function may

increase learning speed of the network. The idea is that for small differences be-

tween true and network outputs, the error function should behave almost linearly

but for bigger differences the error function should grow faster than linearly. This

allows much greater learning at the start of training, when the errors are large,

resulting in reduced training times. Fahlman (1988) used a hyperbolic arctangent

Ell

2.0

n

C
0

1.5 0
>
ci)
0

_0
1.0

0.5

- 0.20
a = 0.10
Best std. dev = 0.16
Hidden Nodes = 40
R1A.B1 F.C1

0.0

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 61

Radiances Profile #275
0
0
- 	2

0

z; —2
0

1-3
—50 0 	50 100 150 200 250

Brightness Temperature / K

Test Set Statistics

Absolute Error

—0.10 —0.05 	0.00 	0.05 	0.10
Error in Brightness Temperature / K

Training error
0

0
-c 	2

0
ci)

o-1
0

a:;- —2
0

3

- Bias
It 	- Std Dev.

lilt 	- Lns.trument Noise
• Max. Deviati

++++++++
+ 1+*ST 	..1Z

—0.5 	0.0 	0.5 	1.0
	

0 	100 200 300 400 500
Deviation / K
	

Epoch

Figure 3.8: A neural network trained with weight decay included (format is the
described in section 3.5.1). A weight decay coefficient of 0.01 is used in this
case. This shows that for this network, using weight decay does not provide an
advantage (when compared to figure 3.5).

61

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 62

Radiances Profile #249
	

Absolute Error
0

0
- 	2

0
ci
a-1

- Truth
+ Network output

3

2

0

—1
0

—2
0

1-3
—50 0 50 100 150 200 250

Brightness Temperature / K

Test Set Statistics

	

— 3 [, 	 . 	 . . 	-

	

0.2 	—0.1 	0.00.10.2
Error in Brightness Temperature / K

Training error
0

a-
-c 	2

ci) 	'

0

—2
0

I —3

It 	—Bias
- Std Dev.

lns.t ument
• 	INOI5

+ Max Deviat o

+. +++++ 	•+++ + +
++++ 	 ++

n

3
C
0

0

2 ci)
D

-Q

0
-o
C
0

Cr)
0

= 0.20
a = 0.10
Best std. dev = 0.09
Hidden Nodes = 55
R1A.B1 F.cl

—0.4 —0.2 0.0 	0.2 	0.4 	0.6
	

0 	200 	400 	600 	800
Deviation / K
	

Epoch

Figure 3.9: A neural network trained using a nonlinear error function (format
is the described in section 3.5.1). Compared to using a linear error function
(figure 3.5), the number of epochs needed to train the network is significantly
reduced at no loss of precision for the network.

error function and achieved a 25% improvement in training times.

An example training run using a hyperbolic arctangent error function can be

found in 3.9. Here, the important figure is the bottom right. This shows the

training error as a function of epoch. When compared to 3.5, it can be seen

that in this case, the training takes a shorter time (669 epochs compared to 950

previously) and the error has been slightly reduced (0.12 K compared to 0.16 K).

Subsequent runs show that the training time is, in general, reduced when using a

hyperbolic arctangent error function, with no loss of precision in the final trained

network.

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 63

Another possible method of improving the training of the network is to train

the network using quickprop instead of backprop - discussed in section 3.4. Quick-

prop should provide much quicker training and reduced error in the final network

provided both assumptions, that weight space is parabolic and that the error

vs. weight curve for each weight is independent of other weights, are met. In

this case, using quickprop with very low learning rate resulted in the internal

weights in the system rapidly diverging towards infinity. This suggests that one

of the two assumptions is false. This is probably due to the assumption that the

slope of the error vs. weight curve is independent for each weight. As previously

stated, outputs close to each other in the network will depend on similar inputs in

similar ways. This means that the errors for these outputs will be closely tied to

the same weights from the input-to-hidden layers, invalidating this assumption.

Once it was established that a well-trained network could not be produced using

quickprop further tests weren't carried out.

3.6 Discussion

In this chapter we have looked at using a neural network as a forward model in

a very limited set of cases. It has been shown that in these conditions, a neural

network can be created that does function as a forward model. It has also been

shown that using a nonlinear error function significantly improves training times

of the network without affecting the precision.

Several things that are not included in this chapter, but have been investi-

gated include changing the transfer function of the nodes within the network

(section 3.3) and using different training algorithms. In the first case, several

different transfer functions were tested, namely, the hyperbolic tangent transfer

function and the linear transfer function. In the case of the hyperbolic tangent

transfer function, the training was found to be very erratic, with the system

weights often diverging to infinity, while the system was not as accurate when

a finite result was produced. Using a linear transfer function the output nodes

with a sigmoid function in the hidden nodes resulted in much higher errors during

training while the training time was also increased.

Another possible way of improving the network is to use a different training

scheme. Here, quickprop was tested but found to be unusable in this case. This is

63

Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 64

thought to be due to the assumption, that the error vs. weight curve is indepen-

dent for each weight, is false in this case. Other methods of training the network

(e.g. using Bayesian learning techniques - MacKay (1995)) were not explored but

could provide improvements to the results presented.

Some of the work carried out in this chapter can be applied to the full neural

network. As quickprop proved unusable in this case, it was discarded as a possible

training method for future neural networks. The results for learning rate (i) and

momentum (a) can also be applied to future networks, keeping the value of both

low. As the number of inputs is greater when tangent pressures are included,

the results from the trials into hidden node number will not apply directly, but

have proved the neural network is behaving as expected. The results from the

tests into the number of hidden nodes also give a minimum bound to the required

number of hidden nodes. If the neural network in this case requires at least 15

hidden nodes, it is a reasonable assumption that future, more complex networks

will require at least this number of hidden nodes.

Other channels will be dealt with in chapter 5 but the work in this chapter

should apply in other channels in band 1. Band 1 is centered on the 118.75 GHz

oxygen line, which is much stronger than other spectral lines in the region and

means the effect from other chemical species will be minimal. Other bands are

centered on different spectral lines and will depend on the concentrations of other

chemical species. For this reason, the work presented here should provide a basis

for looking at these but will need substantially enhanced to deal with them.

Chapter 4

Tangent Pressures

4.1 Introduction

In the previous chapter, a neural network was developed that could act as a for-

ward model for the EOS-MLS instrument in a very limited case. The temperature

profile was the only input and it was assumed that a given radiance in a profile

was measured at a constant pressure across all profiles. In reality, the pressure

level that each radiance is measured at varies across profiles.

This chapter introduces the concept of tangent pressure levels and discusses

why they are problematic for data assimilation schemes. Several methods of

dealing with the problem are then explored and it is shown that a possible solution

is to use a neural network retrieval.

4.2 What are Tangent Pressures?

For a limb sounder, the viewing geometry is shown in figure 4.1. The field of

view can be scanned up and down, creating a series of measurements. Each

measurement within a scan is called a minor frame and one complete set of

measurements is a profile. On the ray at the centre of the field of view, the

pressure at the point closest to the Earth is called the tangent pressure. For the

EOS-MLS, one profile consists of 120 minor frames and the tangent pressures

are spaced approximately uniformly from 1000 hPa to 0.001 hPa with a typical

profile that looks like figure 4.2. Because of variations in the satellite attitude,

the tangent pressures differ slightly but significantly from one profile to the next.

65

Chapter 4: Tangent Pressures 	 66

Instrument

riosphere

Figure 4.1: The basic viewing geometry of a limb sounder.

Tangent pressure levels are related to the geometric heights by way of the

hydrostatic equation (see section 4.3) and hence can be calculated within error

limits from the satellite position and scanning angle, provided the temperature

and water vapour profiles are known. In most cases, these profiles are not known

and so the tangent pressures must be deduced in some other way.

The value of each tangent pressure level is required in any realistic forward

model as all retrievals are done in (log) pressure space. Normally, tangent pres-

sures are part of the retrieval process, as the instrument returns data in geometric

space, but the retrieval is done in (log) pressure space, thus it is necessary to re-

trieve tangent pressures to make the retrieval process optimal. At the end of the

process, tangent pressures are not normally reported as they serve no purpose for

the scientific end-user.

In section 4.4.1, it is shown that treating tangent pressures as fixed does not

give adequate accuracy. To overcome this, either the network must be supplied

with enough ancillary data to allow acceptable radiances to emerge or the tangent

pressures must be retrieved outside the assimilation scheme. These possibilities

Me

Chapter 4: Tangent Pressures
	

67

An example pressure tangent level profile
ri

2

0
0
-c

1)

:2

—2

0 	 20 	 40 	 60 	 80 	 100 	120
Minor Frame

Figure 4.2: A sample tangent pressure level profile for the EOS-MLS. Each dot
represents one minor frame. There are 120 minor frames per profile.

67

Chapter 4: Tangent Pressures 	 68

are dealt with in sections 4.4.2 and 4.5 respectively.

4.3 The hydrostatic equation

This section is derived from the document by Pumphrey (1999). The hydrostatic

equation is given by equation 4.1 where p is the pressure, p is the density and g

is the acceleration due to gravity and h is the geometric height.

dp

	

= —pg 	 (4.1)
dh

For an ideal gas, p = pRT/M. Here, R is the universal gas constant, T

is the temperature and M is the mole mass of the gas. Substituting this into

equation 4.1 leads to equation 4.2.

From equation 4.2, assuming that fractional changes in T are small, we see

that pressure is approximately an exponential function of height. As this re-

lationship would be exact in the case where g and T are constant in height, a

convenient vertical coordinate is given by z = —log10 (P/i hPa) (as used previ-

ously in section 3.5.1 of chapter 3). This can be defined in terms of the geometric

height using equation 4.3.

= - Mg p(h) 	 (4.2)
dh 	RT

dz 	go
(4.3)

dH - RT1n(10)

Here the geopotential height, H, is used as opposed to the geometric height,

h, and g0 is an arbitrary constant designed to make H h for altitudes close

to zero. The geometric height, h, can be converted to the geopotential height,

H, using standard formulae found in Wright Jr. (1997). Assuming that M is

constant for the height of interest, R = RU /M can be considered constant.

When doing a retrieval, it is assumed that T varies linearly with z between

adjacent pressure levels, z0 and z 1 , this can be written as T(z) = T0 + B(z - zo),

where B = (Ti - To)/(z i - zo). Integrating equation 4.3 with this relationship

leads to equation 4.4, which can be rearranged to 4.5, where Tm = (T0 +T(z))/2.

Chapter 4: Tangent Pressures 	 69

H—H0 =
p

	

Rln(10) J
z 	

- z0)}dz' 	 (4.4)
90 	zo

Z - zo
= 	

90 	(H - H0) 	 (4.5)
 Rln(1O)Tm

Using this formula, it is possible to find all values of the tangent pressures,

z, provided the geopotential heights, the temperature profile and an initial z0 is

knowh. Unfortunately, the temperature profile and z0 are not known in radiance

assimilation and are part of the retrieval hence a different method of getting z's

must be found.

4.4 Possible Solutions to the Tangent Pressure

Problem

This section looks at possible ways of avoiding using tangent pressure information

in a neural-network-based forward model. This may be possible due to the "black

box" nature of the neural network. Here, two possible methods of doing this

are examined: assuming invariant tangent pressures and using geometric height

information instead of tangent pressures as inputs for the neural network.

4.4.1 Invariant Tangent Pressures

The first, and simplest, solution to the problerrf is to assume tangent pressures are

fixed across profiles. If this were the case, the only inputs that would be required

by the neural-network-based forward model would be the temperature profile',

much like the model in chapter 3. A necessary (but not sufficient) condition for

this to be considered a good approximation is that the spread of the tangent

pressures at one level must be relatively small. This would mean the variance

in the tangent pressures would not have a drastic impact on the final radiance.

A relevant measure of invariance is whether the spread of one tangent pressure

level across profiles is much less than the difference between consecutive tangent

pressure levels within one profile.

'and any other species to be included in the forward model calculation

Chapter 4: Tangent Pressures 	 70

Figure 4.3 shows the spread for several typical levels from within the training

set. As can be seen, the spread is much greater than the difference between

the levels. This shows that treating tangent pressures as constant across profiles

will result in some radiances being attributed to the wrong minor frame tangent

pressure, implying the variation in tangent pressures must not be ignored. To

ensure that this is the case, several small trials were carried out (not presented

here). The results show a network error in the region of a = 1.2 K, which is about

four times the instrument error and hence unacceptable. Thus tangent pressures

cannot be treated as fixed.

4.4.2 Using Geometric Height Information

A second possibility is to use geometric height information in the neural network

forward model. Geometric heights are available as part of the level 1 ancillary

data and are deduced from the instrument's viewing geometry. It may be possible

to use geometric heights in a neural network forward model as tangent pressures

are linked to them (see section 4.3). In essence, this is adding an additional step

(converting geometric heights into tangent pressures) into the forward model

process which would happen implicitly within the neural network.

Figure 4.4 shows the network output of a sample run using geometric heights

instead of tangent pressures and takes the same form as previously described 2 .

Where geometric height information is used, the error is around 0.75K, about

twice the expected instrument noise level for this channel and hence still unac-

ceptable.

4.5 Acquiring Tangent Pressure Information

In the previous section, it was shown that tangent pressure information must

be found for a neural network forward model. In this section, several methods

for acquiring the tangent pressures are presented. First, traditional methods are

shown to be insufficient and then retrieving tangent pressures using a neural

network is explored.

2 See section 3.5.1

70

Chapter 4: Tangent Pressures
	

71

Frames 50 - 60
—1.55

—1.60

0 	1.65

0

j1.70

- 	—1.75

—1.80

—1.85

50
	

52
	

54
	

56
	

58
Minor Frame

Figure 4.3: Tangent pressure variation. The stars give the mean tangent pressure
value across 1500 profiles for minor frames 50 to 60. The vertical lines show
the extremes for that minor frame over the same series. This shows that the
variation in tangent pressure value within one minor frame is much greater than
the difference between adjacent minor frames

71

Chapter 4: Tangent Pressures
	 72

4
C
0

0
>
0

0
L.
0
0
Cl
0

(I)

0

Radiances Profile #221
0
0
-c 	2

1

Q)

o-1
0

a:;- —2
0

I — 3

—50 0 	50 100 150 200 250
Brightness Temperature / K

Test Set Statistics
0

0
-c 	2

0
0

—2
0

—4 —3 —2 —1 	0 	1 	2
Deviation / K

Absolute Error

2

0

—0.6 —0.4 —0.2 0.0 0.2 0.4 0.6
Error in Brightness Temperature / K

Training error

j=0.20
a = 0.10
Best std. dev = 0.78
Hidden Nodes = 50
R1A.B1 F.C1

0 	500 	1000 1500 2000
Epoch

—3

- Bias
- Std Dev
- ns.trument

Noise
+ Max. Deviation

+ + ++ 1 	++
TTTTTTT. L1 ITT

Figure 4.4: A sample neural network training run using geometric heights as
inputs as opposed to tangent pressures (format is the described in section 3.5.1).
The format of the figure is the described in section 3.5.1 of chapter 3. The error
in the test set is 0.75 K which is approximately 3 time the instrument noise in
this channel.

72

Chapter 4: Tangent Pressures 	 73

4.5.1 Traditional Retrieval

The first possibility for retrieving tangent pressures is to do some form of tradi-

tional retrieval. This could be done in one of several ways. One way is to wait

until the level 2 products become available, allowing the "official" tangent pres-

sures, and as' such the best estimate, to be used. This additional accuracy comes

at a cost of timeliness. It can take much longer for level 2 products to become

available than level 1 products.

The cleanest option, if it is feasible, is to incorporate the tangent pressures into

the state vector of the general circulation model (GCM) that is being assimilated

into. This involves supplying the measured tangent heights and geometric heights

and using the model's profile of temperature and geopotential height (GPH) to

determine the tangent pressures. These tangent pressures are then used within

the state vector that is to be updated during the assimilation process. This

way, the estimate of the tangent pressures gets better while the assimilation step

progresses. Once the vector is updated, the tangent pressures can be discarded.

This method should be relatively simple to achieve as the assimilation model

does contain temperature, water vapour and reference GPH but there are techni-

cal difficulties in adding tangent pressures to the state vector of the assimilation

model (Feng (2004)).

The final possibility is to perform a mini-retrieval outside the model. There

are several problems associated with this. The major problem is that this in-

troduces additional a-priori information into the data assimilation scheme thus

violating the major reason for using radiance assimilation in the first place. Along

with this, there are several other reasons why a traditional retrieval is not good in

this case. One of these is the speed element. A traditional retrieval is done itera-

tively and may require a number of iterations before the result is optimal. Each

iteration is itself a complicated process which is very computer-intensive. This

will hold up the assimilation process as this must be done before the assimilation

can be started.

4.5.2 Neural Network Retrieval

As traditional methods have been shown to be inadequate, a different approach

must be found. Jiménez (2003) showed that it is possible to retrieve species

73

Chapter 4: Tangent Pressures 	 74

profiles from a limb sounder using neural networks and so it is expected that a

neural network retrieval should be possible in this case. Here, several tests will

be 'presented that show it is possible to retrieve tangent pressures using a neural

network.

In order to be successful, the retrieved tangent pressures should have compara-

ble errors to results results produced using conventional optimal estimation meth-

ods. These errors in a standard retrieval have a standard deviation of o- < 50 m

for most minor frames within a profile (derived from Filipiak (1999)). The crite-

ria for success using a neural network was that a standard deviation of o = 50 m.

Using equation 4.6, where Lh is the error in (geometrical) height, Az is the error

in (log) pressure coordinates and s is a scale height, an error of cr 0.003 in

tangent pressure in 1og10(Pressure / hPa) units is acceptable, assuming a scale

height of 7.5km.

Ah = Az * s * ln(10) 	 (4.6)

The network used is, as before, a simple multi-layered perceptron trained using

back-propagation. The outputs are the minor frame tangent pressures within the

profile, and the inputs are the radiances from one or more channels.

The training data are a set of radiances generated from the same temperature

data used in chapter 3, but the tangent pressures are allowed to vary across

profiles here. As previously discussed, the training data has been shown to have a

good distribution across the expected input-output space. The tangent pressures

are randomly distributed around expected values and also give a good distribution

across the expected range. Radiances were generated for all channels across band

1.

An initial training run is shown in figure 4.5. Here, the minor frame number

is plotted on the vertical axis. For each case in the test set, the difference at

the end of training between the retrieved tangent pressure and the true tangent

pressure is calculated and plotted as a dot on the graph. The red line shows the

standard deviation of the outputs at each height.

As can be seen by this plot, the most accurately retrieved region is in the

middle of the profile (network outputs 40 to 70, around z = —2 to z = —1.2

or 100 hPa to 15hPa, where the channel used in this retrieval is most sensitive)

with a standard deviation around 0.002. Using equation 4.6, this is equivalent to

74

Chapter 4: Tangent Pressures 	 75

an error of around 35 m. This shows that, in this region, a retrieval of tangent

pressures within error is possible. Further regions can be improved by changing

the inputs of the network to use a reduced profile from several channels within

band 1 and band 32. Band 32 is a wide band with 4 channels centered around the

same oxygen line as band 1 (figure 2.5 in chapter 2). This allows measurements

much deeper in the atmosphere than using band 1 alone. This results in the

network having 200 inputs made up of minor frames from different channels in

band 1 and band 32. The minor frame numbers from each channel used can be

found in table 4.1.

Band Channel Minor Frames Used
1 40:60
3 50:70
6 55:75

Bi 8 65:80
10 75:85
11 80:90
12 80:100
13 95:120

B32 1 0:30
2 20:50

Table 4.1: The scan points used from different channels to construct the reduced
profile.

Figure 4.6 shows the outcome of a training run using this reduced profile.

Here, the results are again encouraging. The error across the entire profile has

been reduced, especially in the extremities. As expected, the largest errors are

still near the bottom of the profile because all the channels of the instrument are

saturated at this height and so give very little information. At the bottom of the

profile, the standard deviation is now around 0.015 (260 m) but in general the

standard deviation is less than 0.002 ('-.-' 35 m). This shows that it is possible to

retrieve tangent pressures using a neural network.

Using Geometric Heights

Geometric heights are derived from instrument pointing information and are re-

lated to the tangent pressures. In an optimal-estimation retrieval, they are used

75

Chapter 4: Tangent Pressures
	

76

The error on the complete test set
120

100

ci)
-o 80—
0
z
4-,

:3
0

60

0

-4-,

ci)
z 40

20

0

—0.06

....... .L..L.........L_--.—...--. I.

.........

	

--.--.. 	 ----..----

	

-- 	 --

Ti = 0.10

a = 0.15

Hidden Nodes = 15

—0.04 	—0.02 	0.00 	0.02 	0.04 	0.06
error in z

Figure 4.5: An attempt to retrieve tangent pressures using a neural network.
This shows the error across the entire - test set across all network outputs. The
best results come around network outputs 40 to 60 which correspond to the knee
of the radiance profile, where the instrument is gathering information. The red
line shows the standard deviation for each network output. The large errors at
the top of the profile are due to the instrument receiving very little radiation
at this height, while the large errors at the bottom of the profile are due to the
instrument being saturated, thus containing very little information about lower
heights.

76

Chapter 4: Tangent Pressures
	

77

The error on the complete test set
1 20

100

a)
-o 80 —
0
z
-I

0

60

0

-4-, a)
z 40

20

0

—0.06

77 = 0.10

a=0.15

Hidden Nodes = 15

......--- 	--..

- 	•1 	 ..!

—0.04 	—0.02 	0.00 	0.02 	0.04 	0.06
•error in z

Figure 4.6: The error on retrieved tangent pressures using a neural network with
a reduced profile created with Band 1 and Band 32 radiances. The red line shows
the standard deviation for each network output.

77

Chapter 4: Tangent Pressures 	 78

as they improve the accuracy of the retrieved tangent pressures (Livesey and

Wu (1999)). It is. possible they may improve the accuracy of the neural network

retrieved tangent pressures.

To test this, several neural networks were trained with geometric heights as

inputs. These networks consisted of 320 inputs (200 radiance inputs as before and

120 geometric heights) and 120 outputs. It was found that the error across all the

outputs was very similar to the case where no geometric heights were used. As

the neural network without geometric heights produced results within expected

the error range, the idea of using geometric heights in the neural-network retrieval

was not followed up further.

4.6 Dealing with Noisy Radiances

Until. now, this chapter has been dealing with retrieving tangent pressures from

clean (i.e. error-free) radiances. In reality, different channels / bands have dif-

ferent noise levels associated with them. In this section, using noisy radiances

within a neural network retrieval of tangent pressures is considered.

Neural networks are, in general, quite good at handling noisy inputs (e.g.

Braspenning et al. (1995)). There are two possible routes for dealing with noise,

both of which will be dealt with in this section. One is to train a network

using clean inputs and then use the noisy inputs during the testing phase (with

normally distributed random noise assigned to each input value in the test set),

as was done in the previous section when retrieved tangent pressures were used

in a forward model. The other way is to train the network using noisy inputs.

Both of the ways mentioned have advantages and disadvantages: training the

network using clean inputs has already been done and so requires no additional

work, just feed the noisy inputs in and work with the outputs. The disadvantage

of this procedure is that the network may produce less accurate results than

training with noise included in the inputs due to unexpected noise characteristics.

Training a network using noisy inputs is more time-consuming as noise must

be generated for each input, each time the network is trained on a profile. This

process slows down the training cycle substantially, but may result in better

retrievals in operation.

Each of the methods described have been looked at and the results are pre-

Chapter 4: Tangent Pressures
	

79

sented here.

4.6.1 Training Using Clean Radiances

In this section, the idea of using clean radiances to train a network and then

retrieving using noisy radiances is examined.

As several networks have already been trained using clean radiances (see sec-

tion 4.5.2), it is a trivial task to use one of these networks to evaluate the effect of

noise. Tests were run using a neural network with 200 inputs, 15 hidden nodes in

one hidden layer and 120 outputs as this proved the most successful configuration

when no noise was added to the inputs.

For the purposes of this experiment, 1000 profiles were used. These had never

been seen by the network before, and represent a good cross-section of expected

profiles. First, clean radiances were used to retrieve tangent pressure levels to use

as a base for comparisons. The results of this can be found in figure 4.7, which

shows the error on each tangent pressure (network output) for each retrieved

profile. This is similar to figure 4.6. The network was then run with several

levels of noise. The results are summarised in table 4.2. Here, the error column

gives the RMS error across all network outputs across all profiles. As can be seen

in figures 4.7 - 4.10, the majority of these errors are due to the minor frames at the

lower- and upper-most minor frames, while the central portion of the profile has

much better errors, as expected. This shows that a network trained with clean

radiances can retrieve tangent pressures well when the inputs have low enough

noise.

Run Noise Used / K Error I Height Error / in Figure
Al 0.0 0.004 69 4.7
Bi 0.4 0.005 86 4.8
Cl 1.0 0.006 103 4.9
Dl 5.0 0.012 207 4.10

Table 4.2: Training runs carried out using a network trained with clean radiances.
The error column is the RMS error across the complete set.

79

Chapter 4: Tangent Pressures

120

100—

80-

0
. 	60-

z
40- 	 -

20- 	 -

0 	 .

—0.06 	—0.04 	—0.02 	0.00 	0.02 	0.04 	0.06
Error in

Figure 4.7: Retrieved tangent pressure levels for run Al.

120 	 F.. -------

100-

80-

0.

o
. 	60- 	 -
o

z
40- 	 -

20- 	 .. 	 -

0

—0.06 	—0.04 	—0.02 	0.00 	0.02 	0.04 	0.06
Error in

Figure 4.8: Retrieved tangent pressure levels for run Bl.

EM

Chapter 4: Tangent Pressures

120 	.

100

80

o
. 	60

z
40

20

0 .

—0.06 	—0.04 	—0.02 	0.00 	0.02 	0.04 	0.06
Error in z

Figure 4.9: Retrieved tangent pressure levels for run Cl.

120

100

80

0.

.o 60
0

z
40

20

0
—0.06 	—0.04 	—0.02 	0.00 	0.02 	0.04 	0.06

Error in

Figure 4.10: Retrieved tangent pressure levels for run Dl.

roi

Chapter 4: Tangent Pressures 	 82

4.6.2 1aining With Noisy Radiances

This section looks at how a network can be trained using noisy radiances and how

that affects the retrieval. The architecture of the network is the same - 200 inputs

in the form of a reduced profile as described in section 4.5.2, and 120 outputs for

the tangent pressure levels. The number of hidden nodes was chosen to be 15 in

one hidden layer, as this worked well when dealing with clean radiances.

Each time a training profile is read in, a normally distributed noise, with a

standard deviation at the noise level being examined, must be generated for each

individual radiance. This can take a long time when each training epoch runs for

7500 profiles, and there can be hundreds of epochs. For this reason, training with

noisy radiances can take much longer than training with clean radiances and so

fewer tests were carried out in this case.

As before, several noise levels were investigated and these are summarised in

table 4.3. As can be seen, when the network noise is sufficiently low (u to 1.0K),

there is no advantage to training the network with noisy radiances. At large noise

levels however, the network performs significantly better when trained with noisy

radiances.

LRun Noise Used / K Error Height Error / m Figure
A2 0.4 0.005 86 4.11
B2 1.0 0.005 86 4.12
C2 5.0 0.007 121 4.13

Table 4.3: Training runs carried out using a network trained with noisy radiances.
The error column give the RMS error across the complete set.

This section has discussed dealing with noisy radiances in two different ways.

The first method involves training a network using clean radiances and then

subjecting that to radiances with noise and seeing how it copes. The second

method involves using noisy radiances during training. It was shown that when

the noise on the radiances is small (standard deviation of less than a = 1.0 K),

both approaches work equally well. When the noise grows to significant levels

(a = 5.0 K), training a network with noisy radiances becomes worthwhile.

As has been stated, training a network with noisy radiances becomes more

expensive as many thousands of noise levels must be generated. The expected

M.

E-IN Chapter 4: Tangent Pressures

120

100

80

0

60 - 	 -

z
40 - 	 - 	 -

20

o 	 .
-0.06 	-0.04 	-0.02 	0.00 	0.02 	0.04 	0.06

Error in z

Figure 4.11: Retrieved tangent pressure levels for run A2.

120 .• . . 	 . -

100 -

80 -

0.

o 	 -
. 	60 -
o

z
40 - 	 -

20 - 	 -

01

-0.06 	-0.04 	-0.02 	0.00 	0.02 	0.04 	0.06

Error in

Figure 4.12: Retrieved tangent pressure levels for run B2.

EX

Chapter 4: Tangent Pressures
	 01

100U Hetrieved Hrotiles a=D.US
120

100

80
0
0

0
0
. 	60
0

z
• 40

20

0
—0.06 —0.04 	—0.02 	0.00 	0.02 	0.04 	0.06

Error in

Figure 4.13: Retrieved tangent pressure levels for run C2.

instrument noise levels are also sufficiently low (around a = 0.4 K) that training

using noisy radiances isn't worthwhile in this case.

4.7 Training a network with tangent pressure

levels

In the previous section, it was shown that it is possible to retrieve tangent pressure

levels using a neural network. In this section, using tangent pressures as inputs to

the neural-network-based forward model is examined and shown to be effective.

This is done in two stages. In the first stage, the neural network is trained

using pre-computed tangent pressures. In the second stage, the tangent pressures

retrieved by a neural network are used.

Initially, the precomputed tangent pressures were used in the neural network.

This ensures that the network can act as a forward model using accurate tangent

pressures before adding in potential errors from retrieved tangent pressures. The

network used is the same as the one introduced in chapter 3 with an additional 120

inputs - the tangent pressure levels - making 193 total inputs. The results from

one training run can be seen in figure 4.14, which has the same format as those

presented in chapter 3. As can be seen, the worst error is approximately 0.15 K,

well below the instrument noise of the channel (0.37 K). This demonstrates that

01

Chapter 4: Tangent Pressures 	 85

Radiances Profile #148
	

Absolute Error
-%
0

0
-c 	2

- Truth
+ Network output

3

2

1

0

—1

—50 0 	50 100 150 200 250
Brightness Temperature / K

Test Set Statistics
-
0

—31 	 ITT..,......
—0.3 —0.2 —0.1 0.0 0.1 0.2 0.3
Error in Brightness Temperature / K

Training error
2.5

0
-c 	2 - Stcj Dev

- 1nstrum
NO se

+ Max. De

+ + +

t

jtion

C

0 2.0

1.5

-o
0

-o
C

0.5
If)

77 = 0.20
a = 0.10
Best std. dev = 0.10
Hidden Nodes = 45
R1A.B1 F.C1

NO
	

0.0

—0.6 —0.4 —0.2 0.0 0.2 0.4 0.6
	

0 2000 4000 6000 80001 0000 2000
Deviation / K
	

Epoch

Figure 4.14: A sample neural network training run using varying tangent pres-
sures (format is the described in section 3.5.1). The largest error is approximately
0.15K, much less than the instrument noise level but the training time has in-
creased substantially.

if exact tangent pressures were available, it is feasible for a neural network to

utilise these in a forward model.

The second set of tests examines the effect of adding noise, from the retrieval

procedure, to the tangent pressures when using them as inputs to the neural

network forward model. In section 4.5.2, the retrieved tangent pressures had an

error with standard deviation between or = 0.002 (in the middle of the profile)

and ci = 0.005 (near the bottom).

The network that was trained on precomputed tangent pressures was reused

in this process. First, the network was run with a set of 2000 input profiles to

120

100

80

0.

0

60
0

z
4C

2C

0 	-
—1.0 	 —0.5 	 0.0 	 0.5 	 1.0

Error / K

+ 	+++ +

+
+++

Chapter 4: Tangent Pressures 	 86

2000 orofiles usina oreaenerated tonaent oressures

Figure 4.15: A comparison of 2000 radiances generated using a neural network
compared to the Pumphrey (2006) forward model, using clean tangent pressures
in both cases. The solid black line is the standard deviation of the error and the
stars indicate the maximum deviation at each network output. The red lines are
the expected instrument noise

generate a base for comparisons. The same network was then reused with the

same temperature profiles, but with noise added to the tangent pressures. The

noise was randomly generated with a normal distribution with the level of the

noise varying with minor frame number. These noise levels came from the data

given by figure 4.8.

The results of these runs are given in figure 4.15 for the no-noise run and fig-

ure 4.16 for the run with noise. Here, the central line gives the standard deviation

through the outputs (compared to the radiances generated using a traditional for-

ward model with no noise on the tangent pressures), the red lines indicate the

noise level of the instrument and the stars indicate the maximum deviation for

each network output. The aim is to keep the standard deviation within the in-

strument noise, as discussed in chapter 3. As can be seen, although adding noise

to the tangent pressures does increase the error in the system (previously this

error was around a = 0.1 K, with noise it is around a = 0.2 K), it is still below

the instrument noise. This indicates that the network can successfully handle

noise on the tangent pressures.

—0.5 	 0.0 	 0.5 	 1.0
Error / K

12C

icc

8C

0

. 	6C
0

a,
z

4c

2(

0
—1.0

Chapter 4: Tangent Pressures

2000 orofiles usina retrieved toncent oressures

Figure 4.16: A comparison of 2000 radiances generated using a neural network
with noisy tangent pressures compared to the Pumphrey (2006) forward model
using clean tangent pressures. The solid black line is the standard deviation of
the error and the stars are the maximum deviation at each network output. The
red lines are the instrument noise. Compared to figure 4.15, there is an increased
level of noise in the outputs however they are still within instrument noise levels.

4.8 Discussion

This chapter has discussed the problems posed by needing to know the tangent

pressuresto the process of assimilating radiances. To assimilate EOS-MLS radi-

ances directly, tangent pressures would be dealt with in one of two ways. The

preferred method would be to incorporate them into the assimilation model's

state vector, which cannot be done in this case due to technical difficulties. The

second way of dealing with tangent pressures would be to do a retrieval outside

the assimilation scheme. Using optimal estimation methods would consume a

large amount of computer power and introduces additional a-priori information

into the assimilation system. Therefore a new approach must be considered if

EOS-MLS radiances are to be assimilated. This approach should ideally be com-

putationally quick to run, accurate and not introduce any a-priori information.

One proposed solution to the problem of determining tangent pressures in-

volves using a neural network to retrieve tangent pressures from given radiances.

This is what has been discussed in detail in the latter part of this chapter. It

has been shown that a neural network is capable of retrieving tangent pressure

[!1I

Chapter 4: Tangent Pressures
	 [•1'I

information from radiances within reasonable errors. Further, this network is as

been shown to be able to deal with noisy radiances.

Overall, it is felt that using a neural network to retrieve tangent pressure

information is a strong possibility in a real system. It is much faster than tradi-

tional methods, can be used independently of any retrieval system and does not

include any a-priori information on what the tangent pressure profile will look

like.

['I.
]
]

[Js

Chapter 5

Extending the Neural Network

5.1 Introduction

This chapter looks at ways of extending the neural network-based forward model

introduced previously. The networks described so far have simulated a simplified

model as a proof of concept. In chapter 3 the network took only a temperature

profile, measured at fixed pressure levels, and produced a set of radiances, again

at fixed pressure levels, for a single channel in a single band. Chapter 4 extended

the neural network to include varying tangent pressure levels, creating a more

realistic model.

This chapter generalises the neural network to a more complete model. This

is done in two ways. Firstly the network is extended by including more channels

within band 1. The second way of extending the neural network is to use chemical

species within the calculation to give a more realistic forward model.

5.2 Extending the Network to More Channels

The EOS-MLS instrument includes 1237 channels spread across 34 bands. The

distribution of these channels can be found in table 2.1 in chapter 2. Up until now,

the neural network has been concentrating on a single channel (R1A.B1F.C1). It

was decided that the neural network should first be extended to deal with addi-

tional channels within band 1 before attempting to add extra chemical species.

Satellite data used in assimilation processes are generally limited to temper-

ature and ozone measurements. As was previously mentioned, band 1 of the

Chapter 5: Extending the Neural Network 	 90

EOS-MLS is centered on an strong oxygen line and effects from other species are

negligible in comparison. For this reason, only temperature need be considered

when running most channels in band 1 in the neural network forward model.

5.2.1 The Network Architecture

In order to keep the network to a manageable size, it was decided that each chan-

nel should be modelled using a separate neural network. This has several ad-

vantages, namely that the problem can then be considered, in the jargon phrase,

embarrassingly parallel and also reduces required complexity of each network.

An embarrassingly parallel problem is one that each subprocess can be run

independently and hence be sent to a separate processor in a computer system.

In this case, the complete system can be considered a doubly embarrassingly

parallel system as each neural network can be considered a separate process and

then each node within the network can be considered a separate process (albeit

depending on inputs from previous layers of nodes).

All the networks in this section trained here have 193 inputs, 73 inputs repre-

senting the temperature profile and 120 inputs representing the tangent pressure

levels, and the 120 outputs, representing the radiance profile. As before, these in-

puts and outputs are normalised according to equations 3.5 and 3.6 in chapter 3.

Each network was started with 45 hidden nodes - the number found in section 4.7

of chapter 4 to produce the best results in channel 1 - with this number being

altered heuristically between training runs.

5.2.2 Training

Training was carried out in a similar way to previously. Several networks were

trained for each channel, with the number of hidden nodes, the learning rate and

momentum being altered between runs.

The results of the best run for each channel can be found in table 5.1. As

can be seen, almost all channels meet the requirement of being within instrument

noise and several are below half the instrument noise. This shows that the network

can be extended to include a full band.

Chapter 5: Extending the Neural Network
	

91

Channel Instrument Noise / K Network error / K Hidden Nodes
1 0.37 0.13 45
2 0.37 0.15 45
3 0.37 0.18 45
4 0.34 0.25 45
5 0.34 0.25 40
6 0.34 0.26 45
7 0.33 0.28 45
8 0.33 0.26 38
9 0.33 0.27 45
10 0.32 0.22 60
11 0.32 0.29 55
12 0.32 0.16 40

13 * 0.32 0.70 45
14 0.32 0.20 50
15 0.32 0.27 70

16 * 0.32 0.31 55
17 * 0.33 0.32 40
18 * 0.32 0.31 55
19 0.32 0.27 60
20 0.33 0.21 50
21 0.33 0.21 45
22 0.32 0.27 60
23 0.34 0.24 45
24 0.33 0.15 45
25 0.33 0.19 45

Table 5.1: A list of channels in Band 1 giving the instrument noise level, the
validation error of the network and the number of hidden nodes in the network
for the best training run. Channels marked with * are not considered well trained
and are looked at in detail in section 5.2.3.

JI

Chapter 5: Extending the Neural Network 	 92

5.2.3 Badly Trained Channels

There are several channels that are not trained to within instrument noise or

are very close to instrument noise - channel 13 is well out-with this target and

channels 16, 17 and 18 are very near the limit. This section will look at why

these channels are not well trained and ways of improving the training of these

channels.

Figures showing the trained network output for channels 16, 17 and 18 can be

found in figures 5.1, 5.2 and 5.3. As can be seen in figures 5.1 and 5.2, in these

cases the problems occur near the "transition phase" of the profile - the phase

of the radiance profile where the radiance grows from no signal (around z = 1.0

in figure 5.1) to saturated (around z = —0.5 in figure 5.1) and the instrument

is receiving most information about the atmosphere and where we want the best

results. Figure 5.3 shows that the bias in channel 18 is very large around the

transition phase. This implies that in these channels, the training data may be

insufficient, resulting in badly trained networks. This effect may be mitigated

due to changes in the operating specifications of the instrument, discussed below.

The Newer Training Data

During the course of this research, the instrument specifications were changed

slightly. Previously, the instrument was designed to scan 120 minor frames per

major frame. The updated instrument specifications increased this to 125 minor

frames per major frame. In addition to this, a higher resolution temperature

set was developed for use with the forward model. This new set of temperature

profiles extends between —3 < z < 5 (1000hPa to 0.00001hPa) instead of between

—3 < z < 3 (1000hPa to 0.001hPa). This increased the number of temperature

points in a profile from 73 to 97. The temperature set is also at a higher resolution

in the upper atmosphere (above z = 0), allowing radiances in the upper region

of the atmosphere to be much more accurately determined.

Using this new data, new training, validation and testing sets were con-

structed. The training set was extended to 2400 profiles from 1500 while the

validation and testing sets were kept the same size - 300 and 200 profiles respec-

tively. The number of network inputs was increased to 222, 125 tangent pressures

and 97 temperatures, and 125 radiance outputs.

92

Chapter 5: Extending the Neural Network
	

93

Radiances Profile #192
0

0
-c 	2

1

I 	—3k. 	

—50 0 50 100 150 200 250 300
Brightness Temperature / K

Test Set Statistics

Absolute Error
3

2

1

0

—1

—0.15-0.10-0.050.00 0.05 0.10 0.15
Error in Brightness Temperature / K

Training error
0

0
- 	2

a) 	'

0

b - —2
0

i —3

ion

4
C
0

>
a)
0

0

0
-c
Cl
0

(I-)

0

7) = 0.40
a = 0.20
Best std. dev = 0.26
Hidden Nodes = 55
R1A.B1 F.C1 6

—1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0 	 0 	500 	1000 	1500 	2000
Deviation / K 	 Epoch

Figure 5.1: A neural network training run for channel 16 of band 1 (format
is the described in section 3.5.1). The format of the figure is the described in
section 3.5.1 of chapter 3. Here, the error on the test set is a = 0.31 K, very close
to the instrument noise level in this channel (a = 0.32 K).

93

Chapter 5: Extending the Neural Network

Radiances Profile #265
0

0
-c 	2

0
a)
o-1

0

—2
0

I — 3 k
—50 0 50 100 150 200 250 300

Brightness Temperature / K

Test Set Statistics

Absolute Error
3

2

30T1.0.2

Error in Brightness Temperature / K

Training error
0

0
-c 	2

a) 	'

a)
o-1

0

—2
0

I —3

- Bias
- Std Dev.
-- Lns.trume

IN 01 se
+ Max. De

+++++++ +
++

+ +

j tio n

OUN

o 2.5

> 2.0

1.5

1.0

a)

0.5

-Ix.'

'Ti = 0.40
cx = 0.20
Best std.. dev = 0.27
Hidden Nodes = 40
R1A.B1 F.C1 7

—1.5 —1.0 —0.5 0.0 0.5 1.0 1.5
	

0 	500 	1000 	1500
Deviation / K
	

Epoch

Figure 5.2: A neural network training run for channel 17 of band 1 (format is
the described in section 3.5.1). Here, the error on the test set is a = 0.32 K, very
close to the instrument noise level in this channel (a = 0.33 K).

Ul

Chapter 5: Extending the Neural Network 	 95

0
0
-c 	2

1

Radiances Profile #265
3

2

Absolute Error

II

I —3....

—50 0 	50 100 150 200 250
Brightness Temperature / K

	
Error in Brightness Temperature / K

Test Set Statistics
	

Training error
0

0
-c 	2

a)

0
a)

0
s:;- —2
0

I —3

ii.

> 2.0

1.5

1.0

a)

io
0.5

0.0

7) = 0.45
a = 0.25
Best std. dev = 0.22
Hidden Nodes = 55
R1A.B1 F.C18

—2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 	 0 	1000 	2000 	3000 	4000
Deviation / K 	 Epoch

Figure 5.3: A neural network training run for channel 18 of band 1 (format is the
described in section 3.5.1). Here, the error on the test set is 0.31 K, very close to
the instrument noise level in this channel (a = 0.32 K).

95

Chapter 5: Extending the Neural Network 	 96

5.2.4 The Neural Network With the Updated Training

Sets

Using the updated training sets, channels 16, 17 and 18 were retrained. The

results from the best training runs for each channel can be seen in fig-

ures 5.4, 5.5 and 5.6, with a summary presented in table 5.2. As can be seen, the

test set errors are now well below the required noise levels of the instrument.

hannel Instrument Noise / K Old Network Error / K Final network error / K Hidden nodes
16 0.32 0.31 0.21 50
17 0.33 0.32 0.28 50
18 0.32 0.31 0.17 65

Table 5.2: A list of channels that had difficulty previously with their new valida-
tion errors

The final channel that caused problems in the original neural network was

channel 13, the central channel in band 1. The original network output can

be seen in figure 5.7 where the change to the scaling of the y-axis should be

noted. Previously, the first three graph's y-axes cover the range z = [- 3, 3] as

anything above z = 3 can be assumed to come from background radiation. In

channel 13 however, this is not the case and here the y-axis of these plots has been

extended to cover the range z = [-3,4]. The fact that channel 13 receives a signal

above z = 3 also provides a possible -explanation of why this channel performs so

badly. As can be seen in figure 5.7, the network cannot satisfactorily simulate the

forward model right at the top of the profile (around z = 3 or 0.001 hPa). This

may be due to the lack of temperature inputs at this level (the old temperature

training data only extended up to z = 3.0) and by adding more, the problem

may be better handled by the network. As was mentioned in section 5.2.3, the

new datasets used for training extend the temperature profile much higher than

previously (up to z = 5.0). Using this new data, a network was trained and

produced the results shown in figure 5.8.

As can be seen, all the network outputs are now well within the noise level,

with a network error level of 0.13 K (Instrument noise in this channel is 0.32 K).

There is still a large bias which can be removed from the results of the network

in operation, further improving accuracy.

Chapter 5: Extending the Neural Network
	

97

Radiances Profile #04
0
0
-c

	

--- 	2
a.)

	

g 	0
a)

0
0 -

0

	

I 	—41....

—50 0 	50 100 150 200 250
Brightness Temperature / K

Test Set Statistics
..

0

Absolute Error

—0.15-0.10-0.050.00 0.05 0.10 0.15
Error in Brightness Temperature / K

Training error

0
-c 	2

1

- Bias
- Std Dev.
- Lns.trument

IN 01 se
+ Max. Deviation

++ ++++

cc 1.2

1.0

0.8
0
L. 0.6
0

0.4 -o
C
0

(I) 0.2

77 = 0.30
a = 0.15
Best std. dev =0.17
Hidden Nodes = 50
R1A.B1 F.C1 6

—3
	

0.0

—0.5 	0.0 	0.5 	1.0 	1.5 	 0 	100 	200 	300 	400
Deviation / K 	 Epoch

Figure 5.4: A neural network training run for channel 16 of band 1, using the
new dataset (format is the described in section 3.5.1). Here, the error on the test
set is now 0.211 K, much lower than previously (figure 5.1)

97

1.2
C

• o 1.0
0
> 0.8

0.6

0.4

0.2

0.0

77 = 0.30
a = 0.15
Best std. dev =0.22
Hidden Nodes = 50
R1A.B1 F.C1 7

Chapter 5: Extending the Neural Network

Radiances Profile #289
0

0
-c 	2

I —3........

—50 0 	50 100 150 200 250
Brightness Temperature / K

Test Set Statistics

Absolute Error
-3

2

0

—1

ir.. 	. 	. . i. 	.. 	.1
—0.15-0.10-0.050.00 0.05 0.10 0.15
Error in Brightness Temperature / K

Training error

I - Bias
- Std Dev.
- lns.trument

Noise
+ Max. Deviation

I : 	++ + ++

JM .

0
0
- 	2

Q)

0
a.)
o-1

0

—2
0

i —3

—1 	0 	1 	2 	3
	

0 	50 	100 150 200 250
Deviation / K
	

Epoch

Figure 5.5: A neural network training run for channel 17 of band 1, using the
new dataset (format is the described in section 3.5.1). Here, the error on the test
set is now 0.284 K, much lower than previously (figure 5.2)

Chapter 5: Extending the Neural Network

0 a-
-c 	2

0

Radiances Profile #153 Absolute Error

0

o —2
0

1-3... 	 0•

—50 0 	50 100 150 200 250
Brightness Temperature / K

Test Set Statistics

—0.3 —0.2 —0.1 0.0 0.1 0.2 0.3
Error in Brightness Temperature / K

Training error
0
0
-c 	2

0

0

:; —2
0

I —3

—Bias

c4 	
- Std Dev.
- Lns.tru men t

INolse 	-
+ Max. Deviation

+4+ 	+ + + + + + +

+ 	+
-

2.0
C
0

1.5 0
>
a)
0 i 1.0

Cn

0.0

= 0.30
a = 0.15
Best std. dev =0.12
Hidden Nodes = 65
R1A.81 F.c18

—0.5 	0.0 	0.5 	1.0 	1.5
	

0 	200 	400, 	600
Deviation / K
	

Epoch

Figure 5.6: A neural network training run for channel 18 of band 1, using 'the
new dataset (format is the described in section 3.5.1). Here, the error on the test
set is now 0.176 K, much lower than previously (figure 5.3)

Chapter 5: Extending the Neural Network
	

100

Radiances Profile #5
0

Tle

—50 0 	50 100 150 200 250
Brightness Temperature / K

Test Set Statistics

Absolute Error

Error in Brightness Temperature / K

Training error
0 2.5

0
-c 	3

2
0

(I)
(I-)
0

a-
-

0

1-61

2.0

1.5

-Q
•- 10 0

-o
C

-2 0 . 5
C/)

0.0

77 = 0.40
a = 0.20
Best std. dev = 0.32
Hidden Nodes = 55
R1A.B1 F.C1 7

—6 	—4 	—2 	0 	2 	4
	

0 500 1000 1500200025003000

Deviation / K
	

Epoch

Figure 5.7: A training run for channel 13 of band 1 using the old dataset (format
is the described in section 3.5.1). The y-scale of the first 3 sub-diagrams have been
extended to [-3,4] as the knee of the profile extends up past 3, as was previously
used. The error in the test set is 0.698 K, which is clearly unacceptable.

100

Chapter 5: Extending the Neural Network
	

101

Radiances Profile #310
	

Absolute Error
-

0
0
-c 	3

2
0

(I)
Cl)
0

0
-

0

- Truth
+ Network output

4
3

2

0

—1

—2
—3

—50 0 	50 100 150 200 250
	 —0.15-0.10-0.050.00 0.05 0.10 0.15

Brightness Temperature / K
	

Error in Brightness Temperature / K

Test Set Statistics
	

Training error
0
a- - 	3

2
Q)

1
U)
U)
0

0
-

0

I —3

'1 .2

1 1.0
5 0.8

0.2

0.0

7) = 0.30
a 	0.10
Best std. dev =0.12
Hidden Nodes = 30
R1A.B1 F.C1 3

—0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6
	

0 	50 	100 150 200 250
Deviation / K
	

Epoch

Figure 5.8: A training run for channel 13 of band 1 using the new dataset (format
is the described in section 3.5.1). The error now has been reduced to 0.13 K, much
improved from previous training runs (figure 5.7).

101

Chapter 5: Extending the Neural Network 	 102

5.3 Dealing With Chemical Species

So far, all the neural networks examined here have been trained using only tem-

perature profiles. That is, the training data have been generated assuming that

only oxygen and temperature have an effect on radiances. This is clearly a large

simplification. In reality, there are a large number of chemical species in the

atmosphere which absorb and emit in the measured bands and hence need to be

taken into account, even for temperature assimilation. This section looks at how

this can be done for a neural network forward model.

In the assimilation model, only a few species are present. The majority of

bands on the EOS-MLS instrument are centered on spectral lines that are not in

the assimilation model and so are not useful in the assimilation at the moment.

There are several bands that would be useful in an assimilation scheme but have

signals from chemical species that are not part of the assimilation. For these

bands, the forward model must account for these additional species while the as-

similation process must supply a profile for these additional species, to accurately

simulate the radiances and save contamination of other information, useful to the

assimilation.

Here, the effect of chemical species are considered on two bands: band one

and band seven. Band one is the band considered previously and is centered on

a strong oxygen line. The effects of chemical species in this case is small. Band

seven is a band centered on the 235.7 GHz ozone line and as such is strongly

influenced by this. Here, only two chemical species are considered: ozone (03)

and water vapour (H20).

5.3.1 Band One

In order to assess whether it is viable to include additional species in the neural

network, it is useful to investigate the effects of species on a band where these

effects will be small. Band 1, the band used previously, is centered on a strong

oxygen line and so the effects from other species is minimal. There are several

channels, though, that are affected by minor ozone lines. In this section, the

effect of these ozone lines are discussed.

Figure 5.9 shows the calculated spectrum received at the satellite as a function

102

Chapter 5: Extending the Neural Network 	 103

oee

Iry

b)— 13.81
15.53
17.23

LI1
47.31

- 64.91
- 99.8

I 	 I 	 I 	 I 	 I 	 I 	 I 	 I

118000 	118200 	118400 	118600 	118800 	119000 	119200 	119400

Lower SB freq / MHz

Figure 5.9: Radiance received by the EOS-MLS as a function of frequency for the
frequency range of the lower sideband of band 1, calculated from an atmosphere
in which 02, HNO3, 03 and H20 are significant emitters in the frequency range.
The inset scale gives the tangent height of the radiance in kilometres and the
circles represent the sampling points used to generate the plot.

of frequency for different tangent heights for the lower sideband of band 11 with

02, 03, HNO3 and H20 present in the modelled state. In addition to the central

02 spectral line, which dominates the radiances for the band, there are two 03

spectral lines - around 118.35 GHz and 119.30 GHz - which produce a measurable

effect on radiances. Although water vapour doesn't have any lines centered in

this region, there is water vapour continuum which effectively reducing the depth

the instrument can look through.

Several radiance profiles from band 1 are given in figures 5.10, 5.11 and 5.12

which show, respectively, the original radiance profiles without any chemical

species, the radiance profile with water vapour and nitric acid in the forward

model and the radiance profile with ozone, nitric acid and water vapour added.

In both the latter cases, the left figure shows the change in radiances with height

compared to the base case of figure 5.10. As can be seen, adding nitric acid and

water vapour has no significant effects on the radiance profile (differences have a

magnitude of around 0.1 K) and are due almost entirely to water vapour. Adding

'The upper sideband is masked in this band and does not contribute to the final radiances

103

Chapter 5: Extending the Neural Network
	

104

Radiance profiles without chemical species
3

2

0
a 	1

ci)

3-
0

o
2—i

—2

—3

Chbniiel 1 I 	

Channel
' 	I

- - channel io
--- channel 14

- - channel 24 \

\

0 	 50 	 100 	 150 	 200 	 250
	

300
Radiance / K

Figure 5.10: Radiance profiles for channels 1, 3, 10, 14 and 24 of Band 1 generated
with no species information in the forward model.

ozone to the profiles significantly changes channels 3 and (to a lesser extent) 24.

In channel 3, ozone typically increases radiances by around 10 K near 100 hPa

and channel 24 increases by around 3 K in the same area. This is shown clearly

in figure 5.9 where the two large ozone lines show large spikes in the radiances at

the frequencies that correspond to these channels.

Having seen how chemical species affect radiances in band 1, it is necessary to

try running a neural network forward model including these effects. If the neural

network cannot handle the relatively small effects in band 1, other bands would

have larger problems. An initial impression of the importance can be gained

by modelling only one channel - channel 3. This is the channel with the most

difference due to ozone included.

Chapter 5: Extending the Neural Network
	

10

Deviation from 02 only case

L 1 	

liii 	iji 	 i 	i 	
I

2 	
oil

Radiance Profiles

Channel 1

Channel 3

- - Channel 10

Channel 14

Channel 24

Ij

0
0

Q)
I-
:3

ci)
I.-

0
0

—2

—3
	

I 	I 	I 	I 	I 	i 	— 3

0.000.020.040.060.080.100.12 0 	50 	100 	150 	200 	250
	

300

Deviation / K 	 Radiance / K

Figure 5.11: Radiance profiles for channels 1, 3, 10, 14 and 24 of Band 1 generated
with water vapour and nitric acid information in the forward model. The left
sub-figure shows the difference from figure 5.10. It can be seen that the maximum
difference is again around 0.1 K which is almost completely due to the presence
of water vapour.

105

'S .

2
5)

0
0
-c

10 0

1

0

Chapter 5: Extending the Neural Network
	

106

	

Deviation from 02 only case
	

Radiance Profiles
I 	 I 	I

Channel i

Channel 3

- - Channel 10
2 	 2

	
Channel 14
Channel 24

	

—2
	 —2

	

—3
	 —3

0 	2 	4 	6 	8 	0 	50 	100 	150 	200 	250 	'Juu
Deviation / K 	 Radiance / K

Figure 5.12: Radiance profiles for channels 1, 3, 10, 14 and 24 of Band 1 generated
with water vapour, nitric acid and ozone information in the forward model. The
left sub-figure show the difference from figure 5.10. Here, the largest difference is
around 8 K which is in channel 3 and is caused by the large spectral ozone line
there.

106

Chapter 5: Extending the Neural Network 	 107

Results

A new training set was constructed using the same temperature and tangent

pressure information as was used previously. In addition, ozone data, taken from

the same source as the temperature data, was included in the forward model cal-

culations. This ozone data covers the expected range of ozone values throughout

the atmosphere.

Initially, the new training set was used to train a neural network in the same

configuration as previously - 97 temperature and 125 tangent pressure inputs,

and 125 radiance outputs. This was done to assess whether the ozone profile is

required as an input to the neural network. Ignoring the ozone profile as an input

resulted in errors of around a = 0.9K, approximately three times the instrument

noise for this channel. This shows that ozone is required as an input.

The ozone profiles are supplied as a set of 85 concentrations at fixed pressure

heights. Including this information into the neural network as inputs increases

the number of inputs from 222 to 3062. One result of this added complexity to the

neural network is the requirement for more hidden nodes. Previously, 45 hidden

nodes were used to train channel 3 resulting in an error of a = 0.18 after training.

Now, 120 hidden nodes are needed in order to train the network properly. The

results of one training run with ozone included can be found in figure 5.13. In

this case, the error is around a = 0.24 K, which is still lower than the instrument

noise thus ozone can be handled in this case.

5.3.2 Band Seven

The previous section showed that ozone could be dealt with in band 1, which is

centered on a strong oxygen line. The instrument has several bands centered on

ozone lines and in order to assimilate ozone information from the EOS-MLS, a

forward model is required for these bands. One of these is band 7, a band that

it is highly nonlinear, creating much more work for the forward model.

Example radiance profiles from several channels in band 7 are shown in fig-

ure 5.14, which were generated using temperature, ozone and water vapour as

species input. As can be seen, these profiles are very different from the profiles

from band 1. The addition of water vapour in this band causes changes of the

'One ozone input is constant across all profiles and so can be considered as part of the bias
node

107

- Bias
- Std Dev
- Lns.trumer t

Noise
+ Max. Devi tior

+ ++ +?

0
- 	2

a) 	'

0

az;- —2
0

i —3

2.0
C
0

0
>
a)

1.0 i
0.5

0.0

= 0.30
a = 0.15
Best std. dev =0.15
Hidden Nodes = 120
R1A.B1 F.C3

Chapter 5: Extending the Neural Network
	

LE

Radiances Profile #72
0

0
-c 	2

0
a)
o-1

0

o —2
0

I 	—3...

—50 0 	50 100 150 200 250
Brightness Temperature / K

Test Set Statistics

Absolute Error
3

2

—0.6 —0.4 —0.2 0.0 0.2 0.4 0.6
Error in Brightness Temperature / K

Training error

—1.5 —1.0 —0.5 0.0 	0.5 	1.0
	

0 	100 	200 	300 	400
Deviation / K
	

Epoch

Figure 5.13: Training a network for channel 3 of band 1 with ozone (format is the
described in section 3.5.1). Here, ozone concentration is used as part of the inputs
to the neural network. The error in the network during testing is around 0.24 K,
well below the instrument noise (0.37 K). This shows that a neural network can
cope with chemical species in this context.

Chapter 5: Extending the Neural Network 	 109

Radiance Profiles from channels in band 7
3

2
	

channel 1

Channel 13
- - - - channel 25

0
o 	1

a)

0 Cn

0
0

—2

—3

-

- S.-
-

-S
-

\ r
\

:

- - _- -

- S_S

o 	 50 	 100 	 150 	 200
	

250
Brightness Temperature / K

Figure 5.14: Example radiance profiles from channels 1, 13 and 25 of band 7
generated using temperature, ozone and water vapour. This band is highly non-
linear as demonstrated by channel 13s profile.

order of 40 - 100 K and so is necessary to include it. The effect on radiance of

spectral lines against frequency for the lower and upper side bands of band 7 are
shown in figures 5.15 and 5.16 respectively, in the same format as figure 5.9.

Due to time constraints, only two channels were modelled: channel 1 and

channel 13. These were chosen as they represent the extremes of height that the

band gathers information at. The instrument noise in these channels is a = 0.37 K

and a = 0.31 K for channels 1 and 13 respectively. Three network configurations

were tried.

First, a network whose inputs consisted of the tangent pressure, ozone and

temperature profiles. was trained. This was found to produce errors of around

109

- 18.62
- 21.66
- 26.57

31.42
- 36.24

-434.
- 63.65

0
C5
LO

q
LO

L

0

a

Chapter 5: Extending the Neural Network 	 110

235000 	235200 	235400 	235600 	235800 	236000 	236200
	

236400

Lower SB freq / MHz

Figure 5.15: Frequency range for the lower side band of Band 7 showing the effect
of spectral lines on radiances (similar to figure 5.9). Here oxygen, nitric acid,
ozone and water vapour are used in the forward model.

tHI 16.2
ç 18.62

- 21.66
- '26.57

31.42

—iF- 36.24
46.34 di-

-* 63.65

243000 	243200 	243400 	243600 	243800 	244000 	244200

Upper SB freq / MHz

Figure 5.16: Frequency range for the upper side band of Band 7 showing the
effect of spectral lines on radiances (similar to figure 5.9). Here oxygen, nitric
acid, ozone and water vapour are used in the forward model.

110

Chapter 5: Extending the Neural Network 	 111

a = 5 K in both the modelled channels.

The second network c9nflguration has tangent pressure, ozone, temperature

and water vapour profiles as inputs. When using this network, the training error

dropped to around a = 3 K for both channels. While an improvement, this error

is still unacceptably large.

The third network configuration removed the temperature profile from the in-

puts while keeping the tangent pressure, water vapour and ozone profiles. Train-

ing a network in this configuration improved the network error dramatically to

produce a worst error of a = 1.45 K for channel 1 and a = 0.75 K for channel 13.

Although still well above instrument noise levels, this error is localised around

z = —2.7. Above z = —2.2, the error in both channels drops well below instru-

ment noise to a = 0.2 K for both channels. The results from both channels can

be seen in figures 5.17 and 5.18 for channel 1 and 13 respectively.

A possible reason for this large error in the lower section of the profile can

be seen in figure 5.19. The large increase in water vapour below z = —2.2

corresponds well with the height of the large error in the neural network. Above

this level, there are only trace amounts of water vapour and the neural network

is able to model the radiances well. Below z = —2.2, the water vapour level

increases and the neural network error increases substantially.

As this problem only affects the tangent heights below z = —2.2 or p

160 hPa, and below this height very little ozone is present in the atmosphere,

the neural network can be used with these channels as part of an assimilation

process for ozone. To do this, only those minor frames above z = —2.2 would

be considered as part of the assimilation process. Several possible methods for

dealing with water vapour are discussed briefly in chapter 6.

5.4 Discussion

This chapter has shown that it is possible to extend the neural network in several

ways. It has been shown that the neural network can generate radiances from

different channels and that the network can be extended to work in more realistic

atmospheres where additional chemical species affect the radiances.

The initial part of the chapter looked at extending the neural network de-

veloped in chapters 3 - 4 for use in different channels. It was shown that most

111

Chapter 5: Extending the Neural Network 	 112

Radiances Profile #146
0

0
-c 	2

a)

ci)

o-1

—31 - 7~!~
—50 0 	50 100 150 200 250

Brightness Temperature / K

Test Set Statistics
0

Absolute Error
3

2

0

—1

—2

—3

—3 —2 —1 	0 	1 	2 	3
Error in Brightness Temperature / K

Training error

a-
- 	 2

ci)

a:;- —2
0

—3

- Bias
—Std Dev
- Lns.trument.

IN 01 S
+ Max. Deviat n

0

0
>
ci)
0 i 4

Cn

77 = 0.10
a = 0.05
Best std. dev = 1 .08
Hidden Nodes = 100
R3.B7F.C1

—10 	—5 	0 	5 	10
	

0 200 400 600 800 10001200
Deviation / K
	

Epoch

Figure 5.17: A training run for channel 13 of band 7 with ozone and water vapour
as inputs (format is the described in section 3.5.1). Here, the worst standard
deviation is around 1.45 K near z = —2.7. Above z = —2.2, the network is well
trained with the worse error being around cr = 0.25 K.

112

Chapter 5: Extending the Neural Network
	

113

Radiances Profile #172
0 a-

- 	2

0

' - 7
0

—2
0

—3

—50 0 	50 100 150 200 250
Brightness Temperature / K

Test Set Statistics
0

Absolute Error
3

2

1

0

—1

- 2

—1.0 	—0.5 	0.0 	0.5 	1.0
Error in Brightness Temperature / K

Training error

0
-c 	2 - Bias

—Std Dev
- Lns.trument

IN 01 S

+ Max. Devia

C
0

0
>
0

-o
a

-a
Cl
0

(1)

?7 	0.10
a = 0.05
Best std. dev =0.81
Hidden Nodes = 150
R3.B7F.0 1

+ 	4

—6 	—4 —2 	0 	2 	4 	 0 	100 200 300 400 500
Deviation / K 	 Epoch

Figure 5.18: A training run for channel 13 of -band 7 with ozone and water vapour
as inputs (format is the described in section 3.5.1). Here, the worst standard
deviation is around 0.75 K near z = —2.7. Above z = —2.2, the network is well
trained with the worse error being around a = 0.2 K.

113

Chapter 5: Extending the Neural Network
	

114

Typical Water Vapour Profile
II

2

0
o 	1
-c

0

g: 	0
a)

0

0

2-1

EWA

—3

1 	 10 	 100 	 1000 	 10000
Concentration / ppm

Figure 5.19: A typical water vapour profile used when running the forward model.
Above z = —2.2, there is only a small amount of water vapour in the atmosphere
which does not affect the produced radiances significantly. Below z = —2.2, the
amount of water vapour increases significantly.

114

Chapter 5: Extending the Neural Network
	

115

channels could be modelled within instrumental error levels. Several channels

presented problems, but retraining these channels using an updated training set

based on new instrument specifications resulted in training errors well below in-

strument noise levels.

The second part of the chapter looked at adding more chemical species to the

neural network, resulting in a more realistic forward model. Initially, 03 and

H20 were added to one channel in band 1, the channel most affected by these

species. It was shown that the neural network could cope with these species,

producing errors less than the instrument noise level.

Several channels from another band were modelled using a neural network.

This band, band 7, is centered on an ozone line and has a highly non-linear re-

sponse. It was found that the radiances for these channels could be well modelled

above 160 hPa. Below this, the effects of water vapour dominate the radiances

and the neural network is unable to cope, producing errors of around a = 1 K.

The failure of the neural network may be due to the large range of values encoun-

tered in water vapour, which varies proportionally much more at one height than

other species examined. This may mean the training data is much less represen-

tative or more sparsely spaced, resulting in the neural network being unable to

learn the data correctly. One solution to this would be to increase the training

dataset size, allowing more coverage of the expected range of water vapour values.

Due to time constraints, the effects of water vapour on band 7 radiances

were not thoroughly explored. One approach that was examined briefly was to

use a neural network to calculate only the bottom 30 minor frames (to around

200 hPa). This reduced the error for those minor frames in channel 1 but the

resulting network still had an error much larger than the instrument noise.

The work on incorporating chemical species in this chapter has focused on

ozone as this is normally part of the assimilation models state vector. It should

be possible to deal with other species in a similar way. Problems will arise when

adding a species that are not part of the assimilation process's state vector to the

forward model as the species profile must be specified externally. It should be

noted that, as the neural network is a straight replacement for a traditional for-

ward model, these problems must also be faced when using a traditional forward

model.

This chapter has extended the neural-network-based forward model to sim-

115

Chapter 5: Extending the Neural Network
	

116

ulate a more realistic atmosphere. It has shown that the network can work in

different channels and that it is possible to handle species information in some

cases. Chapter 6 looks the final problem that must be overcome for a neural-

network-based forward model to be considered - providing a Jacobian for the

neural network.

116

Chapter 6

The Adjoint Model

6.1 Introduction

Previously, it has been shown that a neural network can replicate a forward model

for the EOS-MLS well. However, in order to integrate this neural network into

an assimilation scheme, an adjoint model is also required.

A 4D-VAR assimilation scheme is a three-step process. First, the model

fields are used to generate expected instrumental radiances using a forward model

within a time window. These radiances are then compared to the real instrumen-

tal radiances at the same location and the error established. In the final step,

the model fields are updated for this time window using the adjoint model.

In this chapter we discuss what is involved in the adjoint model and how this

cah be achieved using a neural network forward model. It shows that an adjoint

model can be constructed using a neural network that may suitable for use in an

assimilation scheme.

6.2 The Adjoint Model

Chapter 2 discusses the assimilation process of a 4D-VAR system in detail. The

framework is reiterated here with an emphasis on the adjoint model.

In a 4D-VAR assimilation scheme, the system evolves according to equations

6.1 and 6.2, where Xk is the state of the system at time-step k (where an obser-
vation is made), 11k are the inputs to the dynamical model at time-step k (e.g.
ground albedo values) and fk is a nonlinear function describing the evolution

117

Chapter 6: The Adjoint Model 	 118

of the system, through the dynamical equations, between successive observation

times, k = 0, . .. , N - 1. The observations are related to the system states by

way of the radiative transfer equation (6.2), which has an error term, 8k which

is assumed to be unbiased, uncorrelated in time and Gaussian with covariance

matrix Rk.

Xk+1 = fk(Xk,Uk), 	k=O,...,N-1 	 (6.1)

Yk-hk(Xk)+8k 	 (6.2)

The assimilation is achieved by minimising the cost function, J, given by
equation 6.3 with respect to x 0 , where 4 is the initial background state with

error covariance B0 , which is assumed to be known.

J = 	-)TB'(0 -) +
2
E (h(x) -)TR'(hk(xk) - ilk) (6.3)

This problem can then be solved iteratively using a gradient descent method.

The cost function is first split into two parts (equation 6.4) where J0 and J are
given by equations 6.5 and 6.6 respectively.

J=JO+. Ji 	 (6.4)

Jo= (6.5)

Ji = (hk (k) - Yk) R' (hk (k) Yk) 	 (6.6)

Two assumptions are then made. The first assumption is that the states

of the model, Yk, can be expressed in terms of the initial state, ±, as x, =

fk(fk-.1(... fo(o, '7))). The second assumption is that both fk and hk can be

linearised around the current trajectory, using equations 6.7 and 6.8, where Fk

and Hk are the Jacobians of fk and hk with respect to Xk.

Xk+1 = fk(Xk,ilk) + Fk Fk 	 (6.7)

118

Chapter 6: The Adjoint Model 	 119

hk(xk) - Yk FkHk_l
-

Wk 	 (6.8)

Using these relations, along with the constraints given by equation 6. 1, the

gradient of the cost function can be derived as in equations 6.9 - 6.12, where

dk = R' (hk (±'k)
- Wk) is called the departure of the observation and V 0 is the

derivative with respect to .

v o J 	v oJo + E v oJi 	 (6.9)

v o J = 	BO '(So -) + : 17-0 Ji 	 (6.10)

v o Ji = 	F1TF2T . .. 	 (6.11)

= Hd0 + F(H'd1 + F27'(Hd2 + . . . F_l H1 _ l dN_l))(6.12)

Defining Ak by equation 6.14, the gradient of the cost function can be rewritten

as in equation 6.15. Ak are the adjoint variables, which measure the sensitivity

of the gradient to changes in the k 1 measurement.

AN = 0 	 (6.13)

= Fk7 k)Ak+1 —HR'(hk(k) - Yk) 	 (6.14)

vxoJ - D' 	
- 	- A 0 	 (6.15) - -

It is assumed that Fk and Rk are known in equation 6.14. Hk is the Jacobean

of the instrument forward model, hk This Hk must be calculated and supplied

by the forward model for each forward model calculation. This chapter discusses

how Hk may be calculated for the neural-network forward model.

119

Chapter 6: The Adjoint Model 	 120

6.3 Calculating the Jacobian

In traditional forward models, the Jacobian of the instrument's forward model

is generally found by using an automatic differentiation routine (e.g. Giering

(1999)). This process takes in a (FORTRAN) routine and produces a corre-

sponding routine for calculating the derivative of this function.

With a neural network, automatic differentiation would be slow and error

prone. During the running of the neural network, derivatives of the activation

functions for each node are calculated for training (see section 2.5.4 in chapter 2).
An automatic differentiation scheme would recalculate them numerically, result-

ing in a large slowdown and may introduce numerical errors due to non-analytical

differentiation.

Instead, the neural network may be differentiated by hand and then imple-

mented in code. The general equation for output q of a neural network with one
hidden layer of m nodes is given by equation 6.16 (derived from Krasnapolsky
(1997)) where Yq is the output value of the node q, bq and aq are normalisation
constants, 0 is the activation function of the output node. W qj is the weight from
hidden node j to the output node q, 'y is the activation function of the hidden
node, IIjj is the weight from the input node i to the hidden node j and 1(i) is
the input value of node i. min* 1(i) and max* 1(i) are the (constant) minimum

and maximum values of the training set for the input node i including scaling
factors, as defined in section 3.3 of chapter 3. B 1 and i3 are the network biases
for the hidden node j and the output node q respectively.

\
Yq = bq +aq { 	Wqj [(jj 	

min* 1(i)

3=1 	 \i=1 	
max* 1(i) - min* 1(i))

+ B3)] + q } (6.16)

In this case, both 0 and 'y are the sigmoid function 6.17, which has a derivative

of 6.18. When written this way, it is, possible to differentiate the equation for Yq
analytically using the chain rule. This results in equation 6.19 for the derivative

Of Yq with respect to input 'a where z3 is the output of the hidden node j and V
is the (unnormalised) output of the output node q.

ac(a) = 	
1
	 (6.17)

1 + exp(—a)

120

Chapter 6: The Adjoint Model
	

121

d
—ac(a) = a(1 - a) 	 (6.18)
du

M
1 ayq

= a(V(1 -))wqjja (zj(1 —z))
max*I(a) _ min* I(a) 	(6.19)

j=1

In equation 6.19, the term aq is a normalisation constant used to convert (with

bq in equation 6.16) the output from the range {0, 11 to the actual output. The

actual value of this is defined by equation 6.20 where max* 0(q) and min* 0(q)
are the scaled maximum and minimum values in the training set for output q,
discussed in section 3.3 of chapter 3.

aq = max* 0(q) - min* 0(q) 	 (6.20)

All the values in equation 6.19 are easily found in the neural network program

and have already been calculated on the forward pass. Using the pre-generated

values, it is easy to calculate the Jacobian of the neural network at very little cost

in time. The issue faced here is whether this neural-network generated Jacobian

is accurate enough, compared to the true Jacobian, to be used in an assimilation

scheme.

6.4 Results

To create the Jacobian of the network, the formula 6.19 must be applied to each

output for each input. In the neural network, this creates an array of [193, 120]
numbers as there are 193 inputs to the neural network (73 temperature inputs

and 120 tangent pressures) and 120 outputs (radiances).

Figure 6.1 shows an example Jacobian for temperature generated using au-

tomatic differentiation of the true forward model. This Jacobian is generated

from channel 1 of band 1. The main feature of this is the large red bulge below

zr,, = —1.7 and the large negative (blue) values above this, around z, = —1.2.
This means that for all tangent z < — 1.7, the radiances contain information

about the temperature near z = — 1.7 while around z = —1.2, the radiances

are inversely proportional to the temperature (the influence is negative). This

121

Chapter 6: The Adjoint Model 	 122

negative influence arises principally from the temperature dependence of the ab-

sorption coefficient.

Using the neural network, the corresponding Jacobian with respect to tem-

perature can be seen in figure 6.2. Here, the negative section, below z = — 2.7,

is visible though the values are smaller than the true Jacobian. The negative

area, around z = — 1.2 in the true Jacobian, is less well defined in the neural

network Jacobian and is more horizontal. This shows that the network Jacobian

is unacceptable for use in this case.

Retraining the network used, the validation error was reduced from 0.13 with
45 hidden nodes to 0.11 with 55 hidden nodes. This was achieved by undatin

the network to use the new training data described in section 5.2.3 in chapter
5. Previously, the network had 120 outputs and 193 inputs. When using the

new instrument specifications, the network was increased to 125 outputs and 222

inputs. The Jacobian in this case was found to be still too noisy.

Up until now, the network had been trained using sigmoid transfer functions.

Chapter 3 discussed the use of hyperbolic tangent transfer functions, but their use

was rejected as they tended to send the error towards infinity, if not used with

care, moreover they provided no significant advantage over sigmoid functions.

Here, they are again considered. The previous network-generated Jacobians may

have been inaccurate due to the network finding local minima in weight-space

instead of the global minimum. By using a hyperbolic tangent transfer function,

this problem may be avoided as the previous behaviour of sending the error

towards infinity might allow it to pass these local minima and find the global

minimum.

When the network is trained using hyperbolic transfer functions, together

with the new training data, the validation error was again around 0.11. The

derivative of the network, equation 6.19, can be adapted when using hyperbolic

tangent transfer functions to equation 6.21, where the symbols are as described

previously (see section 6.3).

1
DIa 	 max* 1(a) - min* 1(a) 	

(6.21)
 J=1

The network Jacobian in this case is shown in figure 6.3. As can be seen,

122

Chapter 6: The Adjoint Model
	

123

Jacobian for Temperature in Channel

3

2

0.20

0.3

[IIIP A

>,

•isi•'

—0.07

—2

MI

—0. 13

_0_0
—2 	 —1 	 0 	 1 	 2

ZT

Figure 6.1: The Jacobian for temperature, for channel 1 of band 1 generated using
automatic differentiation of the true forward model. Each input to the forward
model will have 125 entries in the Jacobian (one value for each output), and is
represented by a vertical slice in the diagram at the corresponding height (in
log-pressure space), ZT. z, corresponds to the tangent pressure of the measured
radiance and the Jacobian value at that point is represented by a colour, indicated
by the scale on the right. This shows that for z < —1.7, the radiances in this
channel contain information about the temperature near z=-1.7 (The channel is
blacked out)

123

>'

3

—2

—3

0.20

0.13

0.07

1409161

-0.07

-0.13

-0.20

Chapter 6: The Adjoint Model
	

124

Jacobian for Temperature in Channe

—2 	 —1 	 0 	 1 	 2
z

T

Figure 6.2: The Jacobian for temperature, for channel 1 of band 1, generated
using differentiation of the neural network. Compared to figure 6.1, it can be
seen that the main features are similar but there are a lot of extra features.

124

Chapter 6: The Adjoint Model 	 125

this is much closer to the true Jacobian. There are still several unaccounted fOr

discrepancies (e.g. around z = [1.0, —1.3]) however these are have values around

0.02. The difference from the truth is shown in figure 6.4. The largest error is

around 0.05 and occurs near the large negative section around z = [-1, —1]. This

error means that a 1K change in temperature at that height will result in error

of 0.05K in the radiance.

Garand et al. (2001) propose a "goodness" measure for Jacobians of a nadir

sounding forward model. This "goodness", M, can be defined as equation 6.22,

where JM,i are the elements of the proposed Jacobian and JR,j are the elements

of the true Jacobian. The summation is over all elements in the Jacobian.

N J

M = loOj 	
(M,i JR,i)2 	 (6.22)

NFi=l R,i

It is suggested that values of M < 5 indicate an excellent fit, 5 < M < 15

are a good fit, and generally suitable for use in NWP applications. Values of

15 < M < 25 are fair to marginal and M> 25 indicate a serious problem. This

measure only gives an indication of whether the Jacobian is suitable. Examination

of Jacobians within the assimilation process environment is needed to ensure the

Jacobian is suitable.

This measure can be adapted to the limb sounding case by considering each

minor frame as a separate measurement. In the case of the EOS-MLS, this

produces a set of 125 M-values, which can be plotted. For the Jacobian in this

case, the results can be found in figure 6.5. In this case, below zr,, < 1.5, the M

value is around 10. Above this, the Jacobian is effectively zero and the M value

tends towards infinity. This suggests that the Jacobian may good enough to use

in an assimilation scheme.

The largest errors in the network Jacobian occurs in a small selection of minor

frames near z = — 1.3. To investigate whether the model could be made more

accurate in this area, a reduced neural network was constructed. This network

consisted of one output, the radiance for one minor frame near this height. The

inputs consisted of 1 tangent pressure for the radiance and 36 temperature inputs

from z < 0.0. It was found that using 5 hidden nodes produced optimal results,

with a testing set error of a = 0.10K. The Jacobian generated from this can be

seen in figure 6.6 and is equivalent of taking a horizontal slice through figure 6.3

125

>'

3

2

—3

0.20

0.13

0.07

0.00

—0.07

—Un.l U
-z

—0.20

Chapter 6: The Adjoint Model
	

126

Jocoban for Temperature in Channel 1

—2 	 —1 	 0 	 1 	 2
Z

T

Figure 6.3: The Jacobian for temperature, for channel 1 of band 1, generated
using a neural network with hyperbolic tangent transfer functions. Compared
to figure 6.2, it is now much cleaner and the main features are much more pro-
nounced. There are still small errors outside the main feature but these have a
size of around 0.02.

126

3

2

N 	0

IN

—3

0.05

0.03

0.02

0.00

Chapter 6: The Adjoint Model
	

127

Difference in Network Jacobian from Truth

—2 	 —1 	 0 	 1 	 2
z

T

Figure 6.4: The difference between the true Jacobian (figure 6.1) and the network-
generated Jacobian (figure 6.3). The largest error is approximately 0.05 in value
which corresponds to around 2K error in temperature.

127

Chapter 6: The Adjoint Model
	

128

M Value for Temperature Jacobian in Channel 1
'I

PAI

>..

—2

—3

0 	 10 	 20 	 30 	 40
M Value

Figure 6.5: The M-value plot for the network-generated Jacobian (figure 6.3).
This gives an approximation of how good the generated Jacobian is. Values of
M < 15 are considered good. Here, for z < 1.5, the M values are approximately
10, suggesting the Jacobian is suitable for use in an assimilation scheme.

128

Chapter 6: The Adjoint Model 	 129

at zr,, = —1.3. The error in this Jacobian is now less than 0.03, which shows that

it is possible to further improve the Jacobian produced by the neural network.

Other channels within band 1 have similar results. Figures 6.7, 6.8 and 6.9

show the true Jacobian, the network Jacobian for temperature inputs and the

difference from truth for channel 8. Here, the network has been retrained as

above using hyperbolic tangent activation functions. The network validation

error is approximately a = 0.1 and the worst error in the Jacobian is around

0.06. As before, the sections outside the main negative section have values of less

that 0.03. Here, the error in the negative section of the K matrix is much more

pronounced. The M-values of this can be seen in figure 6.10. Here, the M values

are approximately 16, which higher than channel 1 and may pose larger problems

when integrating with an assimilation model.

This section has looked at the Jacobian of the neural network with respect to

temperature. It has shown that a Jacobian for the neural network can be con-

structed analytically and that the resulting Jacobian may be sufficiently accurate

for use in an assimilation scheme, though this would need further testing within

the assimilation scheme environment. The analytical differentiation produces the

same derivative as perturbation of temperatures, but is substantially quicker as

all the intermediate variables are already available.

6.5 Tangent Pressure Jacobian

The role of tangent pressures in the forward model was previously discussed in

chapter 4. It was shown that it is possible to retrieve the tangent pressures us-

ing a neural network outside the forward model. As previously stated, tangent

pressures are not part of the assimilation state vector for technical reasons. How-

ever, the tangent pressures are still inputs into the forward model. It is therefore

interesting to look at their derivatives.

In the true forward model, the section of the Jacobian related to the tangent

pressure is highly sparse as the tangent pressure for one scan position has no

effect on the radiances at any other scan positions. The non-zero elements are

plotted in figure 6.11.

The network output is plotted in figure 6.12. In this case, it can be seen that

the Jacobian is definitely not sparse but has a structure similar to the temperature

129

Chapter 6: The Adjoint Model
	

130

Jacobian for 69th Minor Frame for Temperature

2

H-O

—1

—2

—0.15 	 —0.10 	 —0.05 	 0.00
	

0.05
Jacobian Value

Figure 6.6: The Jacobian elements for temperature for one minor frame from
the truth (dashed line) and a reduced neural network (solid line). The reduced
neural network inputs consists of 36 temperatures (levels below z = 0.0) and the
tangent pressure for the minor frame. The output is a single radiance for that
level. Here, the error in the neural network Jacobian is always less than 0.03.

130

Chapter 6: The Adjoint Model
	

131

Jacobian for Temperature in Channel 8

3 0.20

0.13

0. C I H

>'

0.00

-0.07

-2

-3

_0 . 1

—2 	 - 	 0 	 2
z

Figure 6.7: The Jacobian for the true forward model, generated using automatic
differentiation for channel 8 of band 1.

131

Chapter 6: The Adjoint Model
	

132

Jacobian for Jemperotre n Chann& 8

3 lowN

0.13

0. C 7

>'

0.00

-1

—2

—3

-0.07

-0.1 T

-2 	 -1 	 0 	 1 	 2
z

T

Figure 6.8: The Jacobian for the network for channel 8 of band 1. Although not
as clean as the channel 1 Jacobian (figure 6.3), the large errors occur at only a
small number of minor frames (see figure 6.9) which suggests a similar problem
to the Jacobian from channel 1.

132

3

ON

EPA

0.06

0.04

0.02

S..

-0.02

-0.04

Chapter 6: The Adjoint Model
	

133

Difference in NetworK Jacobian from Truth

—2 	 —1 	 0 	 1 	 2

ZT

Figure 6.9: The difference between the network generated and the true Jacobians
for channel 8. The largest error is around 0.06. Away from the large errors, the
errors are less than 0.03.

133

Chapter 6: The Adjoint Model
	

134

M Value for Temperature Jacobian in Channel 8
3

2

>'
NO

—2

IMI
0 	 10 	 20 	 30 	 40

M Value

Figure 6.10: The M values for the network generated Jacobian for channel 8.
Here, the M values are around 16. For comparison, channel 1 produced M values
around 10.

134

Chapter 6: The Adjoint Model
	

135

Diagonal Elements for Jacobian for Tangent Pressure
3

2

>'
M

—1

—2

IMI
—400 	 —300 	 —200 	 —100 	 0 	 100

Jacobian Value

Figure 6.11: The non-zero elements of the K matrix for tangent pressure used by
the traditional forward model.

135

Chapter 6: The Adjoint Model 	 136

K matrix. This implies that radiances at one level do depend on the tangent

pressures at other levels. Summing all the tangent pressure contributions for each

radiance output results in figure 6.13. For reference, the truth (red line) and the

difference (dashed line) are plotted as well. It can be seen from this that the

overall influence function is correct (the largest error is around 5%). This means

that the neural network expects each tangent pressure to influence a group of

radiances, not a single radiance, however, the network is using the total tangent

pressure information across each radiance as expected. Figure 6.12 shows the

same overall structure as the temperature section of the Jacobian. This suggests

the network is unable to separate the contributions from the tangent pressures

on the radiances from the effects of temperature.

In the reduced neural network trained in section 6.4, there is only one tangent

pressure input, resulting in a single element for the tangent pressure K matrix.

This has the value of —315.11, compared to the true value at that level of —316.80.

This shows that when other tangent pressures are not present, the neural network

can calculate the derivative of the radiance with respect to the tangent pressure

well. It may thus be possible to improve the use of tangent pressures within the

neural network using a more complex network structure, however this was not

investigated as the radiances generated are within instrumental noise and the

tangent pressures are not part of the assimilation scheme.

Previously, it was stated that the tangent pressures cannot be part of the

assimilation model's state vector due to technical reasons. In this section, it was

shown that, in its current configuration, the neural network cannot produce an

accurate enough Jacobian for tangent pressures. Without an accurate Jacobian,

tangent pressures cannot be used within the assimilation process. This supports

the previous argument for retrieving the tangent pressures separately from the

forward model and assuming them to be known.

6.6 Jacobian for Constituant Species

So far, this chapter has examined the Jacobian for temperature and tangent

pressure. In chapter 5, the neural network was extended to include additional

species in the forward model calculation. In this section, the Jacobians for these

species is examined. Chapter 5 used band 7, a band centered on an ozone line,

136

Chapter 6: The Adjoint Model
	

137

Jacobian for Tangent Ressure in Channel 1
3
	

Me]

2
	

2.7

1 	 7

N.J
>'

—1

—2 Lb _ 1lr'aIIIL

- 110.3

147

—3
	 -

—3 	—2 	—1 	0 	 2 	3
z

Y

Figure 6.12: The Jacobian for the network with respect to the tangent pressures
for channel 1. Ideally, this should be sparse matrix, with the z only being affected
by the corresponding tangent pressure. Here, this is not the case, implying that
each radiance depends on more than one tangent pressure.

137

	

Chapter 6: The Adjoint Model
	

110

Summed Elements of Jacobian for Tangent Pressure
3
	

I 	 I 	 I 	 I 	 I 	 I 	 I 	 I 	I 	 I 	 I 	 I

Network Result

Truth
2 	- - - - - Difference

>'
N

—1

—2

I 	

11 11 1 	 II

—400 	 —300 	 —200 	 —100 	 0
	

100
Jacobian Value

Figure 6.13: Summing the tangent pressures along each output level leads to
the correct influence function. This shows that the network is using the tangent
pressure information in the expected way but expects each radiance to affect
those around it.

138

Chapter 6: The Adjoint Model
	

139

for this work. Here, the same band will be considered.

The neural network for band 7 relied on ozone and water vapour as inputs

and ignored temperature information. It was found that above about 150hPa,

the neural network performed well, but below this the network produced large

errors in the results. Here, the Jacobian of these inputs is examined and possible

reasons for this poor performance are considered.

The derivatives are calculated in the same way as previously explained. Here,

the neural network is using sigmoid activation functions. In band 1, this produced

unreasonably large errors in the Jacobian. The Jacobian for the true forward

model with respect to ozone is presented in figure 6.14. Here, the radiances

are solely affected by the ozone concentrations near the measurement height.

Figures 6.15 and 6.16 show the Jacobian generated from the neural network and

the difference from truth.

Below z = 0.3 (around 0.5hPa), the Jacobian from the neural network is

very similar to the true Jacobian, with only small deviations near the bottom of.

the atmosphere. Above zr,, = 0.3, the neural network Jacobian drops by an order

of magnitude compared to the true Jacobian. Figure 5.18 in chapter 5 shows

that the radiances above z = 0.3 are effectively at background radiation level

and hence contain no useful information.

Previously, it was found that the neural network performs poorly in the lower

regions of the profile. The reason for this poor performance was thought to be

due to the effects of water vapour (see chapter 5). If the neural network was

unable to cope well with water vapour inputs, this is the region the problem

would show in. The Jacobian for water vapour, generated using the true forward

model is shown in figure 6.17. Here, the scale has been changed to concentrate

on the lower part of the atmosphere. Outside this region, the Jacobian is very

close to zero.

Figure 6.18 shows the corresponding region of the neural network generated

Jacobian. As can be seen, the main peak (at zr,, = — 2.5) has got a similar shape

to the true Jacobian but its effect is an order of magnitude lower. Beyond this

(ZH20> —2.4), the values rapidly increase in magnitude. Figure 5.19 in chapter 5

shows a typical water vapour profile. It can be seen that the largest concentration

of water vapour is below z < —2.4, where the network Jacobian follows the true

Jacobian in shape. Above z = —2.4, the concentration of water vapour drops

139

Chapter 6: The Adjoint Model
	

140

ce

-

± 06

z

U I•.

Z 03

Figure 6.14: The real Jacobian for ozone in channel 13 of band 7, generated using
automatic differentiation of the real forward model. This shows that the radiances
are almost entirely affected by the ozone concentrations at the measurement
height.

140

N4

.2E±07[

-

Chapter 6: The Adjoint Model
	

141

Z
03

Figure 6.15: The neural network-generated Jacobian for ozone in channel 13 of
band 7. Compared to figure 6.14, the network performs well up to around z, = 0.3
(0.5hPa) where the Jacobian becomes much smaller-valued.

141

3

2

N 	0

/

—3

5.OE+06

3.3---+06

1.7---+06

rwiiiøi.i

—1 .7E+06

—3.36+06

—5.CE+06

Chapter 6: The Adjoint Model
	

142

Difference in Network Jacobian from Truth

—2 	—1 	 0 	 1 	 2
Z

03

Figure 6.16: The difference between the neural network-generated Jacobian (fig-
ure 6.15) and the true Jacobian (figure 6.14). As expected above 0.3hPa, there
are large differences where the neural network uses less ozone information.

142

Chapter 6: The Adjoint Model
	

143

>'
.4

-z.

-z

-2

-.0

;-, .0 7 +04

6.650L

355-flL

7 	fl

- 5.0 E +03

-3.0 	-2.8 	-2.6 	-2.4 	-2.2 	-2.0 	- .8 	- .6

z
H20

Figure 6.17: The true Jacobian for water vapour in channel 13 of band 7. The
scale has been changed to only show the lower part of the atmosphere, where the
water vapour has an influence.

143

Chapter 6: The Adjoint Model 	 144

significantly. The true forward model ignores water vapour information above

z = —2.4 (i.e. its Jacobian is zero at that point) but in the neural network, these

values contribute to the radiances. Even if the contribution is small, the effect

seen in the Jacobian will be large, due to the concentration of water vapour being

small. This is what is seen in figure 6.18.

6.6.1 Improving the Neural Network Performance

One possible solution to this problem might be to split the problem across two

networks. The first would cover the lower part of the radiance profile (where

water vapour affects it) and use water vapour and ozone profiles as inputs. The

second network would cover the upper part of the profile and only use ozone

profiles as inputs. To test this, two networks were trained, the first ran the upper

95 minor frames of the profile (network A) and the second trained on the lower

30 minor frames (network B). As expected, network A produced similar errors to

the previous results. Network B did, improve from a = 1.4K to a = 1.0K, still

well above the instrument noise level.

There are several improvements that could be made that might reduce the

error but these were not tested due to lack of time. One possibility is to introduce

skip layer connections (e.g. Ripley (1997)) between the input ozone levels and

the radiances at the corresponding tangent heights. As shown previously, only

the ozone concentrations very near the measurement height have an affect on the

radiances. Doing this would reduce the complexity of the problem for the neural

network as it does not have to deal with irrelevant information in each output

node.

6.7 Discussion

This chapter has shown that it is possible to calculate the Jacobian for the neural

network-based forward model using analytical differentiation. The Jacobian for

temperature was investigated for two channels. In the first, it was found that the

Jacobian may be acceptably accurate for use in an assimilation scheme, though

testing within the assimilation environment would be necessary. In the second

channel, the Jacobian was less accurate, though may still be acceptable in an

assimilation scheme. A reduced neural network was constructed to examine the

144

8.0E+04

6.6E+04- -

5.2E+04

3.8E + 04

2.3E+04

9.26+03

-5.06m03

-2

-2

-2

-2

-3.

Chapter 6: The Adjoint Model
	

145

k_ _-el 13

-30 	-2.8 	-2.6 	-2.4 	-2.2 	-2.0 	-1.8 	-1.6
z

-120

Figure 6.18: The neural network-generated Jacobian for water vapour in channel
13 of band 7. Compared to figure 6.17, the main feature is the right shape
but there are large areas where the Jacobian does not fit in the scale. This is
partly due to the scarcity of water vapour in the atmosphere above ZH2O =-2.5.
Small changes above this height will result in dramatic changes in the measured
radiance.

145 -

Chapter 6: The Adjoint Model 	 146

Jacobian for a single minor frame, where the error in the Jacobian was greatest.

In this reduced network, the Jacobian was very close to the true Jacobian. This

suggests it is possible to improve the Jacobian across the entire profile.

It was found that using sigmoid transfer functions in the neural network,

in this case, produced significant errors in the Jacobian. Instead, the networks

for the two channels examined were retrained using hyperbolic tangent transfer

functions. It is thought that hyperbolic tangent transfer functions allow the

network to more easily find the global minimum in weight space, hence allowing

more accurate Jacobians to be found.

The Jacobian with respect to the tangent pressures was also investigated and

found to be much different from the true forward model. This implies that the

"black box" nature of the neural network is using the tangent pressures in a way

that the true forward model does not use them. In the reduced neural network,

the tangent pressure Jacobian was found to be very close to the true value (less

than 1% difference). This again suggests that the Jacobian can be improved.

Possible ways of improving the neural network include looking at using skip-

layer connections and investigating more advanced training methods. As the

tangent pressure Jacobian is sparse, with each tangent pressure only affecting

its corresponding minor frame radiance, using skip-layer connections could be

constructed between the tangent pressure inputs and their own corresponding

radiance output. This may allow a more accurate Jacobian for tangent pressures

to be created. It may also help reduce the errors seen in the temperature Jacobian.

Chapter 5 examined the use of a neural network in a band dominated by

an ozone line. Here, the corresponding Jacobian was examined. It was shown

that the Jacobian generated from the neural network was very similar to the

true Jacobian up to 0.3 hPa. Above this, the Jacobian is an order of magnitude

smaller than the true Jacobian. Above this height, the radiances in the channel

had values very near background radiation levels and would not be used in an

assimilation scheme.

The Jacobian for water vapour in this channel was also investigated. It was

found to differ significantly from the true Jacobian. This is the reason the neural

network had difficulty modelling radiances in the lower atmosphere in this band.

Several suggestions have been made to improve this but due to the complexity

of the changes required in the code and a lack of time, these were not tested.

146

Chapter 6: The Adjoint Model 	 147

Calculating the Jacobian using analytical differentiation comes at little cost

within a forward model run. The intermediate variables are already available

from the initial run of the neural network and all that is required is a series of

additions and multiplications. The analytical differentiation produces identical

results to perturbing the network inputs, but is substantially faster.

Overall, the network Jacobians generated in this chapter for temperature

and ozone may be acceptable in an assimilation model, though testing within

the assimilation environment is necessary to determine this. The Jacobian for

water vapour was shown to be largely inaccurate and in need of further work.

Several suggestions for further work have been made, should the Jacobians prove

unacceptable.

147

Chapter 7

Conclusions and Discussions

The work carried out in this thesis has demonstrated that it is possible to con-

struct a forward model for the EOS-MLS based on neural networks. It has been

shown that a neural network can perform well in band 1, which is centered on an

oxygen line so temperature and pressure have the largest effect on radiances. It

has also been shown that the Jacobian for this band, calculated by analytical dif-

ferentiation of the neural network, may be acceptable in an assimilation scheme

but testing within the assimilation environment would be needed. It was further

shown that discrepancies in the network Jacobian can be overcome in principle.

The issue of how to cope with tangent pressures in an assimilation scheme

has also been examined. As has been stated, the assimilation model does not

have tangent pressures in its state vector and these are unlikely to be added for

technical reasons (Feng (2004)). It has been shown that these tangent pressures

can be retrieved, outside the assimilation scheme, using a neural network with

errors that are comparable to traditional retrieval methods.

The main reason for investigating the use of a neural network as a forward

model is computer time. Assimilating instrument measurements takes a large

amount of computer power and anything to reduce this would allow the computer

time to be spent on other tasks, such as increasing the number of instruments

assimilated or increasing the resolution of the model. As computers become more

powerful, instruments also become more complex and require more computing

power to run their forward models. This means there will always be a need to

reduce the processing cost of the forward models.

Neural networks provide such a way. Table 7 shows the times needed to

Chapter 7: Conclusions and Discussions 	 149

run 10 profiles through the neural network and the true forward model for one

channel. Both runs were carried out on a SunBiade 100 desktop PC running

at 502MHz with 256MB of RAM. Each run was carried out twice to reduce the

effects of network latency. Although this well below the power available to run

the assimilation process, it can be seen that the neural network is almost 100

times quicker than the full forward model while still having acceptable errors. As

linearised forward models are currently unavailable, no testing compared to these

could be carried out.

Model Run 1 Run 2
True without Jacobian 2m 31.1s 2m 30.3s
True with Jacobian 13m 52.7s 13m 47.Os

Neural Net without Jacobian 2.1s 1.9s
Neural Net with Jacobian 9.4s 8.7s

Table 7.1: A comparison of running times between the neural network and the
true forward model

Chapter 2 gives a list of prerequisites for incorporating measurements into

a 4D-VAR scheme. The first is a fast forward model. This has been shown to

be achievable using neural networks (approximately lOOx faster than traditional

forward models). The second thing required is the Jacobian for the forward

model. Chapter 6 has shown that the Jacobian for a neural network can be

calculated using -analytical differentiation. For the large majority of the profile,

the errors in the Jacobian are small but near the largest values, the discrepancies

in the Jacobian become larger. As shown in chapter 6, these Jacobians may

be acceptable, subject to testing within the assimilation environment. If these

discrepancies are a problem, more work needs to be done to improve the accuracy

of the Jacobian. The final thing needed is an estimate of the error covariance

matrix for the instrument. This should include instrument errors, interpolation

errors and errors due to the forward model. Here, the forward model contributes

errors typically around a = 0.1K (around 1/3 of the instrument noise). The

testing phase of the neural network provides a number of radiance profiles that

can be compared to the equivalent profiles in the testing set. This, combined

with characteristics from the assimilation model, should provide a good estimate

of the error covariance matrix for the neural network forward model.

149

Chapter- 7: Conclusions and Discussions
	

150

In order to use a neural network forward model in an assimilation scheme,

the following steps must be taken prior to including it:

Decide which minor frames from which channels / bands will be used in

the assimilation scheme

Generate training set from real forward model based on these, covering all

expected input values

Train the neural networks to generate weights for forward model

Train a neural network to retrieve tangent pressures

Once these have been done, it is possible to use the neural network in place of

the full forward model.

There are several limitations on neural networks. The major disadvantage

is that they handle poorly inputs which are outside their operating range. This

means that all inputs must be checked to ensure they lie within the expected

ranges and if not, either discard the profile or run it with a full forward model.

Another disadvantage is that a neural network is unable to run new channels

without first being trained for them.

The work in this thesis has dealt with training data generated using a non-

tomographic forward model, i.e. the atmosphere is considered horizontally homo-

geneous. In reality, the radiances are affected by inputs across a large (horizontal)

area, over which the atmosphere is likely to change significantly. As was stated

in chapter 3, this non-tomographic forward model reproduces the true radiances

within approximately 1K. To improve this, data from several profiles are used

within a tomographic forward model. It would be possible to simulate this in

a neural network by increasing the number of inputs in the neural nelwork to

accommodate more input profiles. In this case, the size of the training and vali-

dation sets may need to be increased to cover a much larger range of conditions.

There are several ways the work in this thesis could be extended. The first and

most obvious way would be to extend the network to work in other bands. As-

similation models are starting to deal with more chemical species than just ozone

and there are chemical transport models that are already implementing data as-

similation. The EOS-MLS and other satellite data contain a lot of information

about these species and could be useful in their assimilation processes.

150

Chapter 7: Conclusions and Discussions 	 151

The work in this thesis has mainly concentrated on band 1 of the EOS-MLS.

This is because the effects of the oxygen line at 118.75 GHz dominate the radi-

ances in this band, while the upper sideband is masked. It has been shown that

in all channels of this band, the neural network-based forward model works well.

Band 7, a highly non-linear band centered on an ozone line was also considered.

In this case, the radiances in the lower atmosphere (below z = —2.2) have large

errors when generated using the neural network-based forward model. Above

this, the radiances are well below instrument noise levels. This suggests that

the work here should apply to other bands, provided the appropriate species are

included in the input state-vector.

Another possible improvement might be to investigate other training methods.

Here, backpropagation was used, while quickprop was found to be unsuitable for

this network. There are a large number of other training methods that could

be investigated such as Bayesian learning (e.g. MacKay (1995)). These more

advanced training methods may significantly improve results and help resolve

some of the outstanding issues discovered during the course of this work (such as

improving the Jacobian).

There are several other possible fast forward models for the EOS-MLS cur -

rently in development, principally a linearised and a quadracised forward model

being developed by Feng (2004). These operate by assuming the radiances have a

near-linear (or near-quadratic) dependency on the model inputs around the mean

value which allows the forward model calculation to be greatly simplified. Cur -

rently, these forward models operate non-tomographically' and achieve radiances

well within instrument noise levels for several bands.

As these models are based on traditional forward model techniques, they are

easy to extend to other bands of the instrument. One problem with a linear

forward model arises when the dependency between inputs and radiances is not

linear enough, such as in band 7 of the EOS-MLS. In this case, the resulting

radiances will have large errors. Errors can also occur in near-linear bands when

the inputs are far away from the mean value, when the deviation from linearity

becomes larger.

Neural networks are inherently non-linear and hence can avoid large errors

when the radiances are not linearly related to inputs. This can be seen in chapter

'Current work on these forward models include expanding them to work tomographically

151

Chapter 7: Conclusions and Discussions 	 152

5, where the neural network-based forward model was extended to band 7 - a

highly non-linear band. Although there were large errors below z = —2.2, above

this the neural network was well trained. When the inputs are far away from

the mean value, the neural network may suffer from increased errors due to the

normalisations that are applied.

Overall, it is felt that neural networks provide a viable alternative to tradi-

tional forward models in this case but some work must be done before they are

able to be used in a real assimilation scheme. In addition, it has been shown

that tangent pressures can be successfully, and rapidly, retrieved using a neural

network, independent of the forward model used within the assimilation scheme.

152

Appendix A

Further Discussion of Neural

Networks

This appendix continues the discussion of neural networks from chapter 2 to

provide illustrations of the major type of neural networks used within this thesis.

It is intended to give readers unfamiliar with neural networks a better grounding

for following discussions in this thesis. The discussion begins by considering the

simple perceptron case (where there are no hidden layers) and illustrates how this

type of network is run and trained. It then considers the hidden-layer perceptron

case, the major type of neural network considered in this thesis and illustrates

how these are run and trained.

A.1 Simple Perceptron

This section looks at no-hidden-layer perceptrons and describes how they work.

No-hidden layer perceptrons are the most basic non-trivial neural networks. Their

inputs are directly connected to their outputs, as illustrated in figure A. 1. When

run, the input values are multiplied by the weights connecting the input node to

the output node and summed. The resulting value is then "activated" using the

activation function (equation A.1 in this case), producing the output value.

153

Chapter A: Further Discussion of Neural Networks 	 154

6
A

II 	 II 	 —

154

-)

— 0

0

E
Cl)

411
bC

Cl)
.-4 0

Cd

Cd

cc

Cd

Cl)

Cl)
Cl)

— 0

0

.- —

0

0
-c$ 0

C

- 	0

o

— 0
0 _z H

4,

CID

çL 	H

Chapter A: Further Discussion of Neural Networks 	 155

V(cx)== 	
1 	

(A.1)
1 + exp —cx

or = 	W ill

The "weights" in the network can be found by a process of training. To train

a network, a representative group of input-output vectors are found by other

means. From this set of profiles, one profile is chosen at random and run through

the network and the error calculated against the true output value. This can then

be used to update each weight in the system using equation A.2, where Ej is the

error on the output compared to the true value (di), taken from the training set.

The process of selecting a random profile from the training set and updating the

weights is then repeated until the network is considered fully trained.

Ei = (d - 0)2

w(new) = w(old) + criEI dV(a)
	

(A.2)
dcx

A network can be considered fully trained using a number of different criteria.

The most common is to have a "validation set". This is a selection of input-

output profiles, separate from the training set that are run through the network

periodically (though the network is not trained on these). The error across the

entire validation set (the "validation error") is then recorded. If the validation

error is lower than previous validation runs, he internal weights of the system are

stored. Once the network has completed a pre-defined number of validation runs

without improving its validation error, the network is considered fully trained

and the system weights are restored to those that produced the best validation

run.

A.2 Multi-layered Perceptrons

As discussed in chapter 2, single-layer perceptrons are limited to solving "linearly

separable" problems. To remove this restriction additional, hidden, layers of

nodes are introduced in the network, as shown in figure A.2, which shows the steps

155

Chapter A: Further Discussion of Neural Networks 	 156

involved in running a multi-layered perceptron. Training a multi-layer perceptron

is more difficult than training a simple perceptron as there are now multiple layers

of weights that must be updated during training, with no direct measure of error

available for the hidden node values.

156

>0 1

I
0

0

'1

12

I .

1 3

Calculated forward
Figure A.2: The layout of a perceptron with one hidden layer. Inputs are passed through the input layer, where normali-
sations are applied. They are multiplied by the appropriate weights (connecting lines) and summed to produce a within
the hidden nodes. This a value is then "activated" to produce the output for the hidden nodes (V). The output from the
hidden nodes are then passed along to the output layer where the same process occurs again.

Chapter A: Further Discussion of Neural Networks 	 158

Backprop provides a way of estimating the portion of the final value error

coming from the input-to-hidden weights as well as the hidden-to-output weights.

As discussed in chapter 2, a "sensitivity" factor, 6 is calculated from the final

error for each output node, defined by equation A.3. Sensitivity factors for each

hidden node can then be calculated using equation A.4. The weights can then

be updated using equation A.5- A.6 (for the hidden-to-output weights and input-

to-hidden weights respectively). Figure A.3 shows the steps involved in updating

the weights (the so-called "backpass" of backprop).

= (d - Q)2

Jk dO
(a) Ej

dci

Jk
= dV(o -)

lkh(new) = kh(0ld) + 71 6h0k(a)
	

(A.5)

wkh(new) = Wkh(Old) + T/ShVk(a)
	

(A.6)

158

Ii
(0 	 6h1=1 da

0

11(new) (0 11(oJ4)+T16h11 1

/) W 21(new) (0 21(oi4)+16M1 2
M\/ / (0 31(new)=O)31(oI4) -1- 16h11 3

12 0

CA

>El=(dl_OJ) 2

80= ' E
dc 	1

11(new) = Q 11(oiO + Y160V
QL4new) = Qoi4) +

QB(new) = QdoiO + 1160V3

6=2 Q2180

()(new)oI4)+16I1

(0 (new)woJ4)+1163

w (new) J)o14) + 161121 2

31
7 \\I 	dV3 	2 \\J 	°h3j 	31°O

(013(new)= 0) i3(o14)+u161131i

(033 	
(0 23 (new) = 00 014 + 1180 2
(0 33 (new) = 04014 + 161131 3

Calculated backwards
Figure A.3: The steps involved in training a hidden-layer perceptron. Initially, the error in the output is calculated and a
"delta" value (6o is computed for each output node. This ö value is then combined with the "upstream" weight and the
derivative of the hidden node to produce the hidden nodes delta value

(8hj) Using these delta values, the new weights can
be calulated as shown.

11

1 3

01

Appendix B

Definitions

Quantity Definition

EOS-MLS
EQS Earth Observation System
MLS Microwave Limb Sounder

EQS Aura Satellite the EOS-MLS instrument is on
MIF Minor Frame
MAF Major Frame
DACS Digital Autocorrelator Spectrometer
P / T Pressure / Temperature

UARS MLS The predecessor to the EOS-MLS
UARS The satellite the UARS MLS was flown on
FOV . 	 Field Of View

Neural Networks
NN Neural Network

Node / Neuron The basic calculation unit
Layer A collection of nodes. Typically a network is made up

of an input layer, hidden layer(s) and an output layer
Committee A group of networks

Weight Strength of a link between nodes
Training phase The phase of network evolution where the weights are changed

Validation Phase The phase of network evolution where the network is

tested to see if it has improved over previous validation phases

Continued on next page

160

Chapter B: Definitions 	 161

Table B.1 - continued from previous page

Quantity Definition

Testing Phase The phase of network evolution after training is

complete where the network's ability to generalise is tested

Upstream Refers to the previous layers - the layers closer to the input layer

Downstream Refers to the layers closer to the output layer

ADALINE The simplest type of neural network. One binary neuron that

performs a threshold transfer of inputs

MADALINE A committee of ADALINEs that output binary values

depending on a majority vote

Perceptron A general class of neural networks that form the basis of

most computational neural networks

Backprop A method of training neural networks that relies on the

derivatives of each node to update their weights.

Quickprop A method of training neural networks that relies on both the

first and second derivatives of each node to update their weights

Epoch The number of validation runs performed during training

Data Assimilation
ECMWF The European Centre for Medium Range Weather Forecasting

4D-VAR 4-D variational assimilation - A type of assimilation process

Other
SSM/I Special Sensor Microwave / Imager

OMBFM1 A neural network for the SSM/I based on a neural network

NWP Numerical Weather Prediction

GPH Geopotential Height

GCM General Circulation Model

Symbols
1(v) Intensity per unit area

frequency

Optical Depth

k(e, v) Total absorption Coefficient, defined in terms of volume

T Absolute temperature

kB Boltzmann Constant

Continued on next page

161

Chapter B: Definitions
	 162

Table B.1 - continued from previous page

Quantity Definition

c Speed of light

h Planck constant

A Wavelength

Distance along observation path

P Pressure

P Density

g Acceleration due to gravity

h Geometric Height

H Geopotential Height

M Mole mass of a gas

R. Universal gas constant

Pressure coordinate, z = - log 10 (p) (used interchangeably)

W2 Weight in an ADALINE / MADALINE network connecting

input i to the output node

Ej Error n an ADALINE / MADALINE network.

d Desired output for an ADALINE / MADALINE network

77 The learning rate for a neural network

1i 1 1. W Input i into a neural network after normalisation

1. W Input i into neural network before normalisation

O, 0" (i) Output i from a neural network after normalisation

y, 0 . W Unnormalised output i from a neural network

w(t) Weight change at time-step t

S(t) at time-step t

ai Normalisation multiplicative factor for a neural network

bi Normalisation additive factor for a neural network

di Desired output i of a neural network

w, Qjj A weight from node i to node j

ci The summed inputs into a node

ac(a), 	(a), 'y(o) The activation function with respect to or

((o) and 'y(o) are used to indicate different

activation functions within the same network)

Continued on next page

162

Chapter B: Definitions 	 163

Table B.1 - continued from previous page

Quantity Definition

ji The sensitivity factor for node i

Vk, Zi The outputted value of node k (= O - d2 for output node, i)

c Momentum coefficient for a neural network

ii Weight decay coefficient for .a neural network

Maximum growth factor in quickprop

B2 , 3 Bias on node i

Yk The model state vector at time step k

The background model state vector at time step k

Pk The analysis model state vector at time step k

Uk Model inputs vector at time step k

71k Observation vector at time step k

Aj The adjoint equation, j

B0 Covariance matrix of initial background model state error

K Gain matrix

H Observation matrix, including forward model

and grid interpolations

F, C Model forcing matrices

hk(x) Observation function. Analogous to H

Jk Observation functions error vector

Rk covariance matrix for Sk

fk(xi, 4) evolution function for the system

Fk Jacobian of fk(x,irk)

Hk Jacobian of hk(±)

Table B.1: Definitions of quantities used

163

References

M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Founda-

tions. Cambridge University Press, 1999.

T. Barath et al. The upper atmosphere research satellite microwave limb

sounder instrument. Journal of Atmospheric Science, 98:10751-10762, 1993.

P. J. Braspenning, F. Thuijsman, and A. J. M. N. Weijters, editors. Artificial

Neural Networks: An Introduction to ANN Theory and Practice. Springer-

Verlag, 1995.

Buskey, G. F. Wyeth, and J. Roberts. Autonomous heleicoter hover using

an artificial neural network. In International Conference on Robotics and Au-

tomation, pages 1635-1640, 2001.

Fredric Chevallier and Jean-Francois Hahfouf. Evaluation of the jacobians of

infrared radiation models for variational data assimilation. Journal of Applied

Meteorology, 40(8):1445-1461, 2001.

Roger Daley, editor. Atmospheric Data Analysis. Cambridge University Press,

1991..

Arnt Eliassen. Numerical forecasting. In Weather Analysis and Forecasting Vol-

ume 1, pages 371-387, 1956.

P. Courtier F. Bouttier. Data Assimilation Concepts and Methods. ECMWF

Training Course Lecture Notes, 1999.

Scott E. Fahiman. Faster learning variations on back-propagation: An empirical

study. In T. J. Sejnowski, G. E. Hinton, and D. S. Touretzky, editors, Pro-

ceedings of the 1988 Connectionist Models Summer School. Morgan Kaufmann,

1988.

164

REFERENCES 	 165

R. Feitham and G. Xing. Pyramidal neural networking for mammogram tumour

pattern recognition. In IEEE World Conference on Neural Networks, 1994.

Liang Feng,. 2004. Private Communication.

Mark J. Filipiak. EOS MLS retrieved geophysical parameter precision estimates..

Technical Report JPL D-16160, JPL, October 1999. Version 1.1.

L. Garand et al. Radiance and jacobian intercomparison of radiative transfer

models applied to hirs and amsu channels. Journal of Geophysical Research,

106(D20):24017-24031, 2001.

Ralf Giering. Tangent linear and Adjoint Model Compiler, Users manual 1.,

1999. URL http://www.autodiff.com/tamc . Unpublished.

Ralf Giering and Thomas Kaminski. Recipes for Adjoint Code Construction.

ACM Trans. On Math. Software, 24(4):437-474, 1998.

Simon Haykin. Neural Networks: A Comprehensive Foundation (Second Edition).

Prentice-Hall, 1998.

J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural

Computation. Addison-Wesley Publishing Company, 1991.

James P Hollinger, James L Peirce, and Gene A Poe. Ssm/i instrument evalu-

ation. IEEE Transactions on Geoscience and Remote Sensing, 28(5):781-790,

1990.

A. K. Hornik, A. M. Stinchcombe, and A. H. White. Multilayer feedforward

networks are universal function approximators. Neural Networks, 2:359-366,

1989.

Anil K. Jam, Jaingchang Mao, and K. Mohiuddin. Artificial neural networks: A

tutorial. IEEE Computer Special Edition on Neural Computing, March 1996.

Micheal A Janssen, editor. Atmospheric Remote Sensing be Microwave Radiom-

etry. Wiley-Interscience, 1993.

Carlos Jiménez. A neural network technique for retrieving atmospheric species

from microwave limb sounders. PhD thesis, Chalmers University of Technology,

Sweden, 2003.

165

REFERENCES
	

166

Vladimir M. Krasnapolsky. Neural network for standard and variational satellite

retrievals. Technical Note OMB Contribution No. 148, National Oceanic and

Atmospheric Administration, 1997.

V. M. Krasnopolsky and H. Schiller. Some neural network applications in envi-

ronmental sciences. part i: forward and inverse problems in geophysical remote

measurements. Neural Networks, 16:321-334, 2003a.

M. Krasnopolsky and H. Schiller. Some neural network applications in environ-

mental sciences. part ii: Advancing computational efficiency of environmental

numerical models. Neural Networks, 16:335-348, 2003b.

Anders Krogh and John A. Hertz. A simple weight decay can improve generaliza-

tion. In John E. Moody, Steve J. Hanson, and Richard P. Lippmann, editors,

Advances in Neural Information Processing Systems, volume 4, pages 950-957.

Morgan Kaufmann Publishers, Inc., 1992.

Nathaniel J. Livesey and Dong L. Wu. EOS MLS retrieval processes algorithm

teoretical basis. Technical Report JPL D-16159, JPL, October 1999. Version

1.1.

Nathaniel J. Livesey et al. Retrieval algorithms for the EOS microwave limb

sounder (MLS). IEEE Transactions on Geoscience and Remote Sensing, 44

(5):1144-1155, 2006.

A. C. Lorenc. Analysis methods for numerical weather prediction. Quarterly

Journal of the Royal Meteorological Society, 112(474):1177-1194, 1986.

David J C MacKay. Probable networks and plausable predictions - a review of

practical bayesian methods for supervised neural networks. Network: Compu-

tation in Neural Systems, 6(3):469-505, August 1995.

S. McCulluch and W. H. Pitts. A logical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 5:115 - 133, 1943.

- M. Minsky and S. Papert. Perceptrons: An introduction to Computational Ge-

ometry. MIT Press, 1969.

D. Murtagh et al. An overview of the odin atmospheric mission. Canadian

Journal of Physics, 80:309-319, 2002.

166

REFERENCES 	 167

N. K. Nichols. Data assimilation: Aims and basic concepts. In Proceedings of the

NATO Advanced Study Institute on Data Assimilation for the Earth System,

2002.

Herbert M. Pickett. Microwave limb sounder THz module on aura. IEEE Trans-

actions on Geoscience and Remote Sensing, 44(5):1122-1130, 2006.

Hugh C. Pumphrey. The hydrostatic equation and MLS. hcp©met.ed.ac.uk ,

1999.

Hugh C. Pumphrey, 2006. Private Communication.

William G. Read, Zvi Shippony, and W. Van Snyder. EQS MLS forward model

algorithm theoretical basis document. Technical Report JPL D-18130, JPL,

July 2004. Version 1.0.

B. D. Ripley. Can statistical theory help us use neural networks better? In 29th

Symposium on the Interface: Computing Science and Statistics, 1997.

Clive D. Rodgers. Inverse Methods for Atmospheric Sounding: Theory and prac-

tise (ISBN 981-02-2740-X). World Scientific, 2000. ISBN-N 981-02-2740-X.

Raul Rojas. Neural Networks - A Systematic Introduction. Springer-Verlag, 1996.

Steve G. Romaniuk. Pruning divide and conquer networks. Network: Computa-

tion in Neural Systems, 4(4) :481-494, November 1993.

Frank Rosenblatt. The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65(6):386-408, 1958.

D. E. Rummelhart, G. E. Hilton, and R. J. Williams. Learning internal repre-

sentations by error propagation. In D. E. Rummelhart and J. L. McClelland,

editors, Parallel Distributed Processing: Explorations in the Microstructure of

Cognition, volume 1. MIT Press, 1986.

Ingrid F. Russell. Neural networks. Journal of Undergraduate Mathematics and

its Applications, 14(1), 1993.

A. Sakar and R.J. Mammone. Growing and pruning neural tree networks. IEEE

Transactions on Computers, 42(3):291-299, 1993.

167

REFERENCES 	 168

Warren S. Sane et al. 	Usenet Neural Network FAQ.

ftp://ftp.sas.com/pub/neural/FAQ.html, 1997.

Mark R. Schoeberl et al. Overview of the EOS Aura mission. IEEE Transactions

on Geoscience and Remote Sensing, 44(5):1066-1074, 2006.

Joe W. Waters. An overview of the EOS MLS experiment. Technical Report JPL

D-15745, JPL, October 1999. Version 1.1.

Joe W. Waters et al. The earth observing system microwave limb sounder (EQS

MLS) on the Aura satellite. IEEE Transactions on Geoscience and Remote

Sensing, 44(5):1075-1092, 2006.

B. Widrow and M. A. Lehr. 30 years of adaptive neural networks: perceptron,

madaline, and backpropagation. Proceedings of the IEEE, 78, 1990.

Julian M. Wright Jr. Federal Meteorological Handbook No. S - Rawinsonde and

Pibal Observations. http://www.ofcm.gov/fmh3/text/default.htm, 1997.

168

Appendix C

Papers

The following paper has been accepted by the IEEE Transactions on Geoscience

and Remote Sensing and is currently awaiting publication.

169

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. XX, DATE

Retrieval of Tangent Pressures from EOS-MLS
Radiances Using a Neural Network for use in an

Assimilation Scheme
Donald J. Scorgie, Robert S. Harwood, and Hugh C. Pumphrey

Abstract— Limb sounding instruments provide high vertical
resolution data on the temperature and composition of the
atmosphere. Their data is therefore valuable for assimilating into
general circulation models of the atmosphere. Direct assimilation
of radiances from limb sounders is more complex in practise
than from nadir sounders due to the need to know the tangent
pressures of the measurements. This paper discusses the practical
implications of tangent pressures in direct radiance assimilation
of limb sounding radiances and demonstrates that a neural
network can be used to find these tangent pressures for the EOS-
MLS with an RMS error of a = 50m, which is comparable with
that in traditional retrieval techniques.

Index Terms— Microwave, Limb, Neural Network, Tangent
Pressure.

I. INTRODUCTION

I NDIRECT, or profile, assimilation uses retrieved profiles,
such as temperature, from instruments to improve the

model's state vector. While this works well for certain types of
instrument that measure atmospheric properties directly (e.g.
in-Situ measurements), for satellite data this introduces several
problems [1]. Typically, satellite retrieval systems use an a-
priori profile and associated covariance matrix to perform an
optimal estimation consistent with the radiances (e.g. [2]),
which will result in traces of the a-priori still being present in
the final profile. For an assimilation scheme, the a-priori profile
is typically unlike either the retrieved profile or the background
state of the model. When assimilating, this a-priori may drag
the model state away from both the background state and the
observations.

Direct, or radiance, assimilation reduces this problem by us-
ing the measured radiances directly, thus effectively perform-
ing the retrieval as the assimilation step, with the background
model state acting as the a-priori. This results in a final state
that is a combination of the initial background state and the
observations, with no other a-priori.

A problem when attempting direct assimilation of radiances
from limb sounding instruments arises from the need to deter-
mine pointing information, normally the maximum pressure
on the central ray of the field of view, called the tangent
pressure. This is normally found by a retrieval process and
so is not readily available when doing direct assimilation.

This paper investigates whether tangent pressures needed
for the assimilation can be provided with sufficient accuracy
using a simplified, rapid, limited retrieval scheme based on a

Manuscript received September 11, 2006; revised November 20, 2006. This
work was supported by NERC.

neural network, bypassing the need for the complete retrieval
step at assimilation time. The method was developed for the
EOS-MLS instrument, described in section II. Section III
gives details of the neural network adopted and the training
procedure. The results and conclusions are given in sections
IV and V respectively.

11. MEASUREMENTS FROM THE EOS-MLS INSTRUMENT

Radiances

The Earth Observing System (EOS) Microwave Limb
Sounder (MLS) is an instrument aboard the EOS Aura satellite
launched in July 2004 [3] [4]. It measures thermal emis-
sions throughout the Earth's limb to determine atmospheric
composition and temperature throughout the stratosphere and
troposphere.

The EOS-MLS principally uses a band of 25 channels
centred on the 118.75 GHz 02 line to determine tempera-
ture and pressure information. The field of view is scanned
vertically upward during one scan, producing a series of 125
measurements per scan. Each measurement within a scan is
called a minor frame and a complete scan, together with
ancillary information, is referred to as a majorframe or profile.
Figure 1 shows an example of radiance profiles from several
channels, where the radiances are expressed as brightness
temperatures. The line width is proportional to pressure, so
it decreases rapidly as the instrument scans upward through
the atmosphere. Hence, the brightness temperature in any
one channel will be close to zero above some given point.
Below this, the brightness temperature will increase until the
atmosphere becomes opaque. Once the atmosphere becomes
opaque, the brightness temperature represents the temperature
near the height where the opaqueness began.

Tangent pressures

As the measurements are strongly dependent on the pressure
of the air in the field of view, a convenient vertical co-ordinate
is the logarithm of the pressure, 	= - 1og10 (p/lhPa).
Retrievals are frequently carried out using 	as a "height
coordinate" and direct assimilation of brightness temperatures
often uses the same coordinate.

While the frequency range for a given channel remains the
same from one scan to the next, the tangent pressure for each
scan step changes across scans, due to spacecraft movement
and atmospheric variations. The instrument system has no
direct way of measuring tangent pressures although it does

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. XX, DATE

Input 	Hidden 	Output

00

j - I
0

-2

-3 t
0

RIA:BIF.cI
- RIA.BIF.C4

RIA.BIFC6

50 	100 	150 	200 	250 	300
Brightness Temperature / K

Fig. 1. Simulated radiance measurements from the EOS-MLS. The channels
shown here are from band 1 of the instrument which operates near the 118GHz
Oxygen line. There are 125 measurements per profile.

Fig. 2. An example neural network structure with n input nodes, 3 hidden
nodes and 3 output nodes.

provide an estimate of geometric height of the tangent point,
known as a tangent height.

As the line width is a strong function of pressure, the
radiances contain information about the tangent pressures. This
pressure information is sufficiently decoupled from the tem-
perature information that tangent pressures can be included in
the state vector and retrieved, together with the temperatures.

In a direct assimilation scheme, the retrieved products may
not be available. Incorporating the tangent pressures into the
model state vector is technically complex and outside the
scope of this paper [5] and it has been shown that it cannot be
assumed the tangent pressures at the same minor frame is the
same across profiles [6]. Therefore, a different method must
be used to establish the tangent pressures.

III. NEURAL NETWORKS

Neural networks are used for many purposes, both within
and outwith remote sensing [7] [8]. A neural network can
be considered as a non-linear fitting technique. The inputs
and outputs can be represented as a pair of vectors and the
algorithm uses one or more intermediate vectors at so-called
"hidden layers". Each element of this intermediate vector
is associated with a "node" at which ancillary information,
namely a set of "weights", is combined with the inputs in the
calculation. These weights are adjusted in a training process
to give acceptable results for a set of input-output vector pairs
found by other methods.

A graphical representation of a sample neural network is
shown in figure 2. Here, there are ii inputs, 3 hidden nodes
and 3 outputs. The neural network is run by setting the input
node values. These are then multiplied by the input-to-hidden
weights and passed to the hidden nodes. Here, the inputs to
the hidden nodes are summed and an activation is performed
and the resulting values are used as the output of the hidden
nodes. This activation is typically based on a sigmoid function,
given by equation 1, where wi are the weights leading into the
node and Ii are the corresponding input values. The outputs of
the hidden nodes are then multiplied by the hidden-to-output
weights and passed to the output layer. Here, each output node
sums its inputs and again performs an activation, resulting in
a (normalised) output value.

ac(a) =
1 + exp(—o,)

ci = Wih

Training is done here using a three-stage process. The first
stage (stage I) runs an input profile from the training set
through the network and produces an output. This is then
compared to the expected output. The second stage (stage II)
involves updating the weights within the system to bring the
output closer to the expected output. A second set of profiles,
the validation set, is then used to assess the suitability of
the network (stage III). This validation set is run through
the network at regular intervals, and the error calculated. If
the error in these validation set is lower than previous errors,
the network state is stored. Once the error on the validation
set has not improved for a set number of training-validation
cycles (epochs), the training of the network is stopped, the best
network state is restored and the network is ready for use.

Here, the neural network was trained using the backprop
algorithm [9]. This is one of the simplest forms of training
algorithm available for neural networks but produces reliable
results. Backprop works by calculating a "sensitivity" factor
for each node in the network. The weights for that node
are then updated using the (first) derivative of the activation
function and this sensitivity factor, combined with a "learning
rate" and "momentum" that are user-defined. Further details
of the algorithm can be found in e.g. [1 0].

A. Training Data

All the training data were generated by an accurate, full
forward model created by H. Pumphrey. The atmospheric
temperature and pressure profiles used in generating the ra-
diances were taken from Met Office assimilation data [11]
[12], and represent typical conditions encountered by the EOS-
MLS. 3496 radiance profiles for band 1 and band 32 Of
the instrument were then generated from these atmospheric
profiles, representing a complete day of measurements by the
EOS-MLS.

An alternative, considered but not possible before launch
when the bulk of this work was undertaken, would be to use

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. XX, DATE

RIA.BIF.C3
-- RA.BIF.C6 - ._ 	
---. R

I
A.BF.C8 - - '-. 	

--- RtA.BIF.CIO - -- 	- - RIA.BIF.CtI - --i... 	 - R.BtF.Ct2 -- R
IA
A.BIF.C13

' 	 -.- RIAB32WCt
- RIAB3W.C2

-

IT1Z1 LL
0 	50 	100 	150 	200 	250 	300

Brightness Temperature I K

Fig. 3. Example profile from the training set showing the channels and minor
profiles used as inputs to the neural network. The crosses represent minor
frames that are used. These are chosen as they give the most information
about tangent pressures at these heights. There is some overlap between the
chosen minor frames. This is done to ensure good results in the network and
introduce redundancy, allowing the best fit possible.

the actual MLS radiances with optimally retrieved profiles as
the training data. This alternative was rejected however, as in
that case the actual values of the "truth" would be unknown
and the extra representativeness compared with the present
training set is believed to be marginal. Moreover the error
covariance matrix (needed in the assimilation) resulting from
the MLS-trained network would inevitably be overestimated.

The network was constructed using 200 inputs and 125
outputs. The inputs consist of radiances from different minor
frames across several channels in band 1 and band 32 of the
instrument. Details of which minor frames are used is given in
figure 3. These input radiances provide tangent pressure infor-
mation from almost ground level to the top of the atmosphere
and allow the neural network to retrieve tangent pressures
throughout. The outputs of the neural network consists of 125
tangent pressures, one for each scan step within the profile.

B. Training Procedure

The training data were split into three sets, A) 1500 profiles
that were used as a training set, B) 300 profiles, used for
validation. A final dataset of 1000 profiles (C) was used as a
testing set after the training cycle was finished to ensure the
network was accurate. The training consisted of the following
steps

Select one profile from the training set (A) at random
(stage I)
Train the network with this profile (stage II)
Repeat steps 1 and 2 5000 times (profile is randomly

chosen each time)
4 Validate the network using all profiles in the validation

set (B) (stage III)
5 If the new validation error is less than the current

validation error, save the network state
6 After 100 validation runs produce no better error, stop
training and restore weights to their best values

Once these steps were completed, the network was tested
using the testing set (set Q. Using traditional retrieval meth-
ods, tangent pressures have an RMS error of 50m (derived
from [13]), equivalent to an error in of = 0.003. To be

120

100

80

60
no

40

20

0L_
0.000
	

0.002 	0.004 	0.006 	0.008 	0.010
Error in ç

Fig. 4. RMS error for 1000 testing profiles, with no noise associated, run
through a fully trained neural network. The largest errors are found at the
bottom of the profile, where little information is gathered by the instrument
(see figure 3). The dotted line shows the approximate error associated with
optimal-estimation retrieval techniques. Between height indexes 15 < h <
112 (where the instrument gathers information), the RMS error is between
a = 0.0015 and a = 0.003 with a bias of b < 0.0001.

useful, the tangent pressures retrieved using a neural network
should have comparable or better errors.

IV. RESULTS

The number of hidden nodes in the network was varied
across training runs and ranged from 0 to 50 hidden nodes.
It was found that the best results were obtained when using
20 hidden nodes. More than 20 hidden nodes resulted in
extra running time with no improvement in error in either
the noiseless and noisy case (see below). The use of tangent
heights, as inputs to the neural network retrieval, was also
investigated but found to produce no effect on the retrieved
tangent pressures.

Figure 4 shows an example of a testing run on a fully trained
network with 20 hidden nodes. Here, RMS error across the
test set for each network output (minor frame) is plotted. The
largest errors occur at the bottom of the profile (height index
0 < h < 15). Above this, the error drops dramatically and
again increases slightly at the top of the profile (height index
112 < h < 125). Between these extremes (height index 15 <

h < 112), the RMS error is a <0.003, in line with the error
from traditional retrieval techniques given above.

Below the 15th height index, the errors on network outputs
increase to or = 0.01, or 	180m. These levels correspond
to —3.2 < 	< —2.8, very near the Earth's surface. At
these heights, all the channels of the EOS-MLS instrument are
saturated (figure 3). Similarly, above the 112th network output
(around

(
~: 1.8), the atmosphere is thin and all channels

register near-background radiation.
The previous results were gathered using noiseless radi-

ances. In practice, the noise associated with the measure-
ments in the channels used here has a standard deviation of
or 0.4K. To deal with this, a new network was trained
in the same way as previously but with all inputs having a
randomly generated normally distributed noise associated (that
was regenerated every time each profile was used), with a
standard deviation of or = 0.4K 1 . During the testing phase,

1 0.4K is used as an approximation across all channels here

a-

go

nO_ I
0

-2

IEEE TRANSACTIONS ON GEOSCIENCE AND REMfE SENSING. VOL. X. NO, XX. DATE
	

4

120-

too-

i 80

60-

20

01
0.000 	0.002 	0.004 	0.006 	0.008 	0.010

Error in

Fig. 5. 	Results of the testing phase with noise added to the inputs in all
data sets. Between height indexes 15 < 6 < 112. the RMS error ranges from

= 0.0017 to or = 0.0026 and a bias of b < 0.0001.

noise was again added to each input. The results of a test
run using this configuration can be found in figure 5, in the
same form as previously. Here, the largest RMS error, between
height index 15 < h < 112, is a = 0.0026, which is again
comparable to the error achieved using traditional retrieval
techniques. In this case, the spike near height index 1, = 92 has
been reduced. As different training runs in a neural network
produce slightly different results, this is attributed to natural
variation between training runs.

V. Cor'tcusio

This paper has addressed the problem of estimating tangent
pressures for a limb-sounding instrument for use in a direct
assimilation scheme, using a neural network retrieval. It has
been shown that this approach can achieve comparable errors
to traditional retrieval techniques.

As the tangent pressures are not part of the assimilation
model's state vector, the errors associated with their retrieval
must be accounted for in the forward model error matrix.
This is independent of the method used in retrieving tangent
pressures and must be faced however they are retrieved. In
a neural network retrieval, the testing phase of the neural
network training provides enough information to construct an
error covariance matrix.

To use this technique in an assimilation scheme, the tangent
pressures would be retrieved prior to the assimilation process
and then assumed to be constant within the assimilation, with
the error from tangent pressure retrieval considered as part of
the forward model error covariance matrix.

Neural network retrieval of tangent pressures in this case
provides several advantages over traditional retrieval tech-
niques. They introduce no a-priori estimate of the tangent
pressures and are significantly faster. The a-priori is used by
traditional retrievals as a starting point for an iterative descent
and the final result will always have a component of the a-
priori in it.

ACKNOWLEDGEMENT

The authors would like to thank NERC for providing the
funding for this research and Liang Feng for assistance during
this research.

REFERENCES

[1] P. C. F. Bouttier, Data Assimilation Concepts and Methods. ECMWF
Training Course Lecture Notes. 1999.

[21 C. D. Rodgers, "Retrieval of atmospheric temperature and composition
from remote measurements of thermal radiation," Reviews of Geophysics
and Space Physics. vol. 14. no. 4, pp. 609-624. 1976.

131 M. R. Schoeberl et al., "Overview of the EOS Aura mission," IEEE
Transactions on Geoscience and Remote Sensing, vol. 44, no. 5, pp.
1066-1074, 2006.

141 J. W. Waters ci al., "The earth observing system microwave limb sounder
(EOS MLS) on the Aura satellite." IEEE Transactions on Geoscience
and Remote Sensing, vol. 44. no... pp. 1075-1092, 2006.

151 L. Feng. 2004. private Communication.
[61 D. Scorgie. "A fast forward model for the assimilation of radiances from

the EOS-MLS," Ph.D. dissertation. University of Edinburgh, 2006.
[71 C. Jiménez, "A neural network technique for retrieving atmospheric

species from microwave limb sounders," Ph.D. dissertation. Chalmers
University of Technology. Sweden, 2003.

18] R. Yasdi, "Prediction of road traffic using a neural network approach."
Neural Computing and Applications, vol. 8. no. 2. pp. 135-142. 1999.

191 D. E. Rummelhart. G. E. Hilton. and R. i. Williams, "Learning internal
representations by error propagation," in Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, D. E. Rummelhart
and J. L. McClelland, Eds.. vol. 1. MIT Press, 1986.

101 P. J. Braspenning, F. Thuijsman. and A. J. M. N. Weijters, Eds., Arti-
ficial Neural Networks: An Introduction to ANN Theory and Practice.
Springer-Verlag. 1995.

1111 G. L. Manney ci al.. "Comparison of U.K. Meteorological Office
and U.S. National Meteorological Center stratospheric analyses during
northern and southern winter," Journal of Geophysical Research, vol.
101, no. D6, pp. 10311-10334. 1996.
R. Swinbank and A. O'Neill, "A Stratosphere-Troposphere data assim-
ilation model," Mon. Weather Rest, vol. 122. pp. 686-702, 1994.
M. J. Filipiak. "EOS MLS retrieved geophysical parameter precision
estimates," JPL. Tech. Rep. JPL D-16160, October 1999. version I.I.

Donald Scorgie Donald Scorgie studied maths and
physics at Manchester University, emerging with a
M.Math.Phys in 2002. Since then, he's been working
towards his Ph.D. entitled "A Fast Forward Model
for the Assimilation of Radiances from the EOS-
MLS". at the University of Edinburgh.

d'

Robert Harwood "Bob" Harwood is Professor of
Atmospheric Science at Edinburgh University. He
obtained B.Sc. in mathematics and Ph.D. in Mete-
orology at Imperial College London, and spent 7

, years at Oxford University, moving to Edinburgh
' in 1976. His research interests are remote sensing

and computer simulation of the atmosphere at global
scales.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. VOL. X. NO. XX, DATE

Hugh Pumphrey Hugh Pumphrey received a BA
in physics from Cambridge in 1986 and a Ph.D in
physics from the University of Mississippi in 1989.
After working for three years as a research fellow
in underwater acoustics at Cambridge University. he

'- V' \4 moved to Edinburgh, where he has remained, first fr as a research fellow, then as a reader. His current
research interests are in the field of atmospheric
remote sounding. He is a co-investigator on the EOS
MLS instrument.

