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Abstract 

In this thesis the idea of using neural networks as a forward model for the EOS-
MLS (Earth Observation System - Microwave Limb Sounder) is considered for a 
direct assimilation scheme. Neural networks are a type of non-linear regression 
technique that can provide fast, accurate results and are used extensively in many 
different fields. 

Here a neural network is constructed to act as a forward model for the EOS-
MLS. The neural network uses a temperature profile and tangent pressure levels 
as inputs and produces the corresponding radiance profile for one channel of 
the EOS-MLS. The work here primarily concentrates on one band of the EOS-
MLS that is centred on an oxygen line and whose radiances are affected only by 
temperature for the majority of the channels. It shows that a neural network 
can function as a forward model in this case, producing radiances that are within 
instrument noise and for most channels, within half the instrument noise. 

Adding ozone to the forward model affects the radiances in only two channels 
of this band, increasing the radiances in some minor frames by around 10K. 
It was found that this difference could be accounted for in the neural network 
forward model by adding ozone to the inputs. A second band, which is centred on 
an ozone line, is briefly considered. It was found that above 150hPa the radiances 
from this band could be modelled well using a neural network. Below this height, 
the neural network produced large errors in radiance (of around 1.5K - four times 
the instrument noise). This is thought to be due to the effects of water vapour. 

A problem specific to limb sounders that must be faced when doing direct 
assimilation is determining the tangent pressures of the radiances. During re-
trieval, these tangent pressures are normally retrieved as part of the state vector 
and discarded. For an assimilation process, these tangent pressures may be un-
available and have to be deduced in some way. Here, a neural network is used 
to retrieve tangent pressures outside the assimilation process. These retrieved 
tangent pressures can then be used by the forward model and assumed to be 
correct. It was found that tangent pressures could be retrieved with an accuracy 
of around 50m, much better than required for a forward model. 

The final problem faced within this thesis is the creation of the Jacobian of the 
instrument forward model. This is the derivative of the radiances with respect 
to the state vector and is used by the assimilation process to update the model 
fields during the assimilation process. Traditional forward models can be differ-
entiated automatically within code. However for neural networks this presents 
some difficulties. In this thesis, the neural network is differentiated analytically 
and the result is implemented in the code. It was found that the Jacobian for 
temperature can be generated which is good for much of the atmosphere but at 



specific heights contains large discrepancies. It is shown that using a reduced neu-
ral network to calculate specific minor frames reduces these errors. The Jacobian 
for both ozone and water vapour were generated for the ozone band modelled. 
It was found that below 0.5hPa, the ozone derivative was in general agreement 
with the true derivative but above this the derivative is much smaller than the 
truth. For the water vapour profile it was found that, although the general shape 
of the derivative is correct around the main feature, outside this the derivative 
deviated significantly from the true derivative. 

Overall, it is shown that using a neural network forward model is a promising 
approach to assimilating radiances from the EOS-MLS. The neural network is 
significantly faster to run than a traditional forward model, while still providing 
good accuracy. There are several possible ways to improve the results found here. 
The training data used in this thesis were generated using a non-tomographic 
model. This will affect the accuracy of the radiances generated by around 1K. 
In order to assimilate the ozone radiances, either the lower minor frames must 
be ignored or an approach to deal with water vapour must be found. 
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Chapter 1 

Introduction 

The aim of this thesis is to investigate whether a neural network can be used as a 

replacement for a traditional forward model for the EOS-MLS in a 4-D variational 

assimilation scheme. Data assimilation is the process of incorporating real-world 

measurements into atmospheric models, which provides optimal initial conditions 

essential for a successful forecast. 

Numerical weather forecasting began in the 1940s when modern computers 

first became available (see e.g. Eliassen (1956)). Due to the speed of the com-

puters of the time, forecasts were created for limited areas with a small number 

of grid points. Typically, they generated forecasts for 24 hour periods, due to the 

amount of time needed to run the simulations, and were based on observations 

made from ground stations scattered across the forecast region. 

As these early forecasts were made only for short times at levels in the mid-

troposphere, the models only calculated effects in the troposphere and used only 

temperature, pressure and the amount of water vapour as their forecast quanti-

ties. As computing power increased, the resolution of models was improved and 

the time-frame of forecasts could be extended. 

In order to produce a successful forecast, two things are required. First, the 

laws that governing how subsequent states develop out of proceeding ones must be 

known. The second requirement is that the initial state of the atmosphere must 

be characterised as accurately as possible (e.g. Daley (1991)). Early forecasts 

used synoptic measurements produced from observation stations and radiosondes 

that were interpolated by hand to grid points for their initial state. As forecast-

ing became more advanced, techniques were developed that allowed computers 
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to do this interpolation, not only in space but also in time, allowing asynoptic 

measurements to be incorporated. The process of adding the measurements to 

produce this initial state was named data assimilation. Since it was first intro-

duced, the term data assimilation has grown to include many methods of adding 

real-world measurements into dynamic models (e.g. Lorenc (1986)). 

From the 1960s onward, weather satellites have been launched to help aid un-

derstanding of the atmosphere. Instruments on satellites can be used to calculate 

the temperature and moisture profiles throughout the atmosphere, which can be 

used within numerical weather models to help improve them further. Satellite 

data sets have some advantages over ground-based and radiosonde data as they 

provide much better horizontal coverage and resolution, filling in gaps between 

ground stations that are often hundreds of kilometres apart. 

As computing power increased to the stage where longer forecasts could be 

provided, the state of the upper atmosphere began to play an important role 

in numerical forecasting. Models of the stratosphere were developed and added 

to the forecast models. Several of the more influential chemical species, such as 

ozone, were also added to the model. Today, information from nadir sounding 

satellites is routinely assimilated into forecast models in the form of profiles. 

While this gives much improved accuracy in forecasts, there are some problems 

with this approach. 

Satellite retrievals generally work by using an optimal estimation method (e.g. 

Rodgers (2000)). An a-priori profile for the desired products is supplied (from 

climatology data), in order to provide a starting point for the retrieval, and the 

retrieval system calculates the expected radiances from these and the Jacobian 

for the forward model (the derivatives of the radiance vector with respect to the 

state vector) at that point. The difference between the true radiances and the 

generated radiances is then used with the Jacobian to update the state vector 

and the radiances are regenerated. This process is repeated until the maximum 

number of iterations has been achieved(e.g. Livesey et al. (2006)). While this 

produces good results, there will always be an element of the a-priori profile left 

in the system, which is undesirable. The retrieval process also introduces delays 

in getting the data into the assimilation scheme. 

Assimilating radiances directly into a numerical model solves the problem 

of a-priori information. In this case, the retrieval is effectively performed by 
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the assimilation with the model fields acting as the a-priori. This means the 

resulting error will be between the original model state and the true atmosphere 

state, instead of introducing the effects from a state that might be totally unlike 

either (e.g. Lorenc (1986)). Using radiances directly in an assimilation is known 

as direct assimilation. 

With the introduction of the stratosphere and more vertical levels into forecast 

models, a need arises for instruments that can provide data at . a range of heights 

throughout the atmosphere. Nadir sounding instruments are limited in their 

vertical resolution and can only provide data at a limited number of heights. By 

contrast, limb sounders look at a tangent to the planet's surface and can provide 

data at a wide range of heights. 

One instrument that is of use here is a microwave limb sounder (Janssen 

(1993)). The first satellite-borne microwave limb sounder (UARS-MLS - Barath 

et al. (1993)) was launched in September 1991 and the second generation (EOS-

MLS - Waters et al. (2006)) was launched in July 2004. Along with temperature 

and pressure profiles through-out the troposphere and stratosphere, it also pro-

vides profiles for a number of chemical species. 

As the assimilation process uses a lot of computing power, there is only a 

small amount of time available to carry out the forward model each time-step. 

As satellite instruments grow in complexity, the forward models for them (used to 

generate expected radiances) also grow in complexity, requiring more computing 

time. 

To counter this, forward models are often linearised when used in assimilation, 

sacrificing precision for speed. This method relies on changes in radiances being 

nearly linear for small changes in the forward model inputs. However, this does 

not work in some cases when the radiance response is not linear enough and a 

new method of speeding up the forward model must be found. 

One possible solution to this non-linearity problem is to use neural networks 

(e.g. Jain et al. (1996)). A neural network can be considered as a non-linear fitting 

technique with the inputs and outputs of the algorithm represented as a pair of 

vectors. The algorithm also uses an intermediate vector at a so-called "hidden 

layer". Each element of this intermediate vector is associated with a "node" at 

which other ancillary informations, "weights", are used in the calculation. 

To find the weights that a neural network needs, it is necessary to train it on 
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a set of input-output vector pairs, found by other means. During this training 

process, the network calculates the error on the outputs for the training set and 

updates its weights according to the its training rules. Once the error on the 

outputs is low enough, training is stopped and the weights are fixed. After this, 

running the network is cheap in terms of computing power as it only consists of 

a series of additions and multiplications (e.g. Sarle et al. (1997)). 

A neural network does have some limitations that do not exist in a tradi-

tional forward model. A neural network is very good at interpolation but bad at 

extrapolation. To ensure the network works well the training set must include 

profiles from across the whole range of expected inputs / outputs. Checks must 

also be made when running that the profile is indeed within expected ranges. 

If these checks are not done, a neural network may produce wrong results. As 

neural networks are trained prior to use, any parameters not included as inputs 

must be fixed. For example, a neural network trained on frequency range of an 

instrument cannot be used to generate radiances for a different frequency range 

without retraining, due to different instrument responses and different chemical 

species affecting radiances. 

In this thesis, a neural network forward model is constructed for the EOS-MLS 

for use in an assimilation scheme as an investigation of the feasibility of using such 

neural networks in direct assimilation. As the aim is to use this forward model in 

an assimilation scheme, the majority of the thesis will deal with radiances that 

are only affected by temperature changes. The thesis is split into seven chapters. 

The second chapter presents background information about the EOS-MLS, data 

assimilation and neural networks. It also gives details of previous work carried 

out involving neural networks in atmospheric science. 

Chapter three gives details of what is required of a neural network in this 

case. It shows that a neural network can simulate a forward model in an ide-

alised situation in which only temperature affects the radiances. Chapter four 

introduces the problem of tangent pressures, which are related to determining 

the pointing information associated with each observation. It demonstrates what 

tangent pressures are and why they are a problem in an assimilation scheme. It 

then gives a method for dealing with tangent pressures outside an assimilation 

scheme and shows how they can be incorporated into the neural network forward 

model. 
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In chapter five, the neural network forward model is extended to more than 

one channel and additional chemical species are added into the forward model. 

Chapter six explores how a Jacobian of a neural network can be found and how it 

compares to the true forward model's Jacobian. Finally, chapter seven discusses 

the main conclusions of the thesis and looks at ways it can be extended. Appendix 

A gives a list of acronyms and symbols used in this thesis. 
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Chapter 2 

Background 

2.1 Introduction 

This chapter introduces to the three main technologies used within this thesis: 

Data assimilation, the EOS-MLS and neural networks. 

The data assimilation section gives details of the particular type of data as-

similation that the system is designed to be used in. The EOS-MLS section gives 

details of what the instrument is and how it operates and the section on neural 

networks describes the type of neural network used within this project, as well 

as giving a general overview of other types. 

The final section also gives details of previous work using neural networks 

within atmospheric science. 

2.2 Data Assimilation 

Data assimilation is the method of taking real world measurements and incorpo-

rating them into a model. This technique is used extensively in the atmospheric 

science community. This is done as forecast models need the most accurate ini-

tial state of the atmosphere possible in order to accurately predict future states. 

There are many varieties of data assimilation. Here, the fundamental concepts 

of data assimilation will be introduced and then one type of data assimilation, 

4D-Var, will be discussed. Further information about other types is available in 

e.g. F. Bouttier (1999). This section is derived from the paper by Nichols (2002), 

which gives an introduction to different forms of data assimilation. 

on 
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2.2.1 Fundamental Concepts 

In atmospheric modelling, the models are usually very large - of the order of 10 7  

state variables and growing as computers get more powerful. As the atmosphere 

is a chaotic entity, there is no way to accurately set up a model to reflect the 

true state of the atmosphere at any particular point. Instead, an approximation is 

derived from observations and is used as the initial state for the model. Typically, 

these observations come from a variety of sources - radiosondes, weather stations, 

radar and satellites, giving of the order of 10'-10' observations per day. Once the 

initial state has been set, the model is run for a prescribed time. After this, the 

model's state is reinitialised using new observations, combined with the current 

model state, and the model is run again. 

There are two classes of assimilation scheme which can be applied - sequential 

assimilation and four dimensional assimilation, which are illustrated in figure 2.1. 

In sequential assimilation, the model is started with an a-priori estimate for the 

initial state, and is evolved to a later time, tk, where the first observation is made 

(e.g. Daley (1991)). The model state at this time is known as the background 

field. This background state is used to create a predicted observation vector 

which can be compared to the true observation vector. The difference between 

the predicted and true observation vectors is then used to update the background 

state to get an improved model state, called the analysis field. This can be done 

in a variety of different ways, such as "nudging" the background state towards 

the observations or a variational process where the initial state is altered to bring 

the background state nearer the observations (3D-VAR). From this point, the 

model is evolved again until the next time when observations are available. 

Sequential assimilation incorporates many popular forms of assimilation. As 

more computing power becomes available and the number of available obser-

vations increase, another form of assimilation is becoming more popular - four 

dimensional assimilation. 

Four dimensional assimilation considers all the observations available within 

a time window to give improved estimates over that window. This allows a range 

of observations in time to have influences on the analysis, which results in more 

consistent forecasts. The major form of four-dimensional assimilation is 4D-VAR 

(e.g. Daley (1991)), which is discussed here. 

7 
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Sequential 
Value 	 Obs. 

/ 	 Analysis 

•_' 

 

Forecast 

Time 

Four Dimensional 
Value 	 Improved 

- - - - 	 estimate 

Initial 
estimate 

1st Window 	2nd Window 	 Time 

Figure 2.1: Two forms of data assimilation - sequential and four-dimensional as-
similation. In the sequential case, the model is evolved to the time an observation 
is made. A correction is made to the model state to account for this observa-
tion and the model evolution is continued. In four-dimensional assimilation, all 
the measurements in a prescribed time window are used to provide improved 
estimates for all the states in that window. 
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2.2.2 4-Dimensional Assimilation 

Here, a brief treatment of 4D-VAR is presented. Further discussion about 4D-

VAR can be found in e.g. Nichols (2002). In an assimilation system, the model 

is described by discrete non-linear equation 2.1 where Xk is the model states, Uk 

are the known forcing inputs and fk  is the (non-linear) function describing the 

evolution of the system. The observations are related to the system states by 

way of equation 2.2, where the forward model, hk, is a non-linear function and 

the error term, 8k,  is assumed to be unbiased, uncorrelated in time and Gaussian 

with covariance matrix Rk. 

Xk+1=fk(Xk,Uk), 	k=0,...,N-1 	 (2.1) 

Wk = hk(xk) + 8k 	 (2.2) 

Background estimates for the initial state, 4 are assumed to be known with 

the initial random error assumed to be Gaussian with covariance matrix B0 . The 

observation errors and the background errors must be uncorrelated. Using these 

facts, the data assimilation problem can be restated as "Minimise, with respect 

to go  the cost function (equation 2.3) subject to %, k = 1,. . . , N - 1, satisfying 

the system equation 2.1 with initial states ". Minimising the cost function, 

equation 2.3, involves simultaneously trying to get the new starting state, Y O
, 

to be near the background starting state, 4, while trying to get the predicted 

observations as close to the true observations as possible. 

N-i 

J = (o - )TB0 - ) + 	(h(x) - )TR(hk(k) - Yk) (2.3) 
k=0 

Two assumptions are then made. The first assumption is that the states 

of the model, Yk, can be expressed in terms of the initial state, go , as Yk  = 

fk (fk - 1 (. .. fo(o,io))). The second assumption is that both fk  and hk can be 

linearised around the current trajectory, using equations 2.4 and 2.5, where Fk 

and Hk are the Jacobians of fk  and hk with respect to xk. 

Xk+1 = fk(±'k, ilk) + FkEk 	 (2.4) 
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hk(xk) - Yk FkHkE_1 - Yk 	 (2.5) 

Using these relations, along with the constraints given by equation 2.1, the 

gradient of the cost function can be derived as in equations 2.6 - 2.9, where 

dk = R' (hk  (±k) - yk) is called the departure of the observation and V 0  is the 

derivative with respect to Yo . 

v o J = 	v o Jo  +E v o Ji 	 (2.6) 

v o J = 
	BO  '(go - ) + 	v o Ji 	 ( 2.7) 

v.o Ji  = 
	

>F1T F2T . :. FHdk 	 (2.8) 

= Hd0  + FjT 	+ F27 (Hrd2 + . . . FNT 	(2.9) 

Defining Ak as equation 2.11, the gradient of the cost function can be rewritten 

as equation 2.12. Ak are the adjoint variables, which measure the sensitivity of 

the gradient to changes in the measurement k. 

AN = 0 	 (2.10) 

	

Ak = FkT (k)Ak +l -HR'(hk(k) - yk) 	 (2.11) 

V o J = B' (o - 	- A 0 	 (2.12) 

Each iteration, one forward solution of the model equations (2.1 - 2.2) and 

one backward solution of the so-called adjoint equations (2.10 - 2.11) is computed 

using the best current estimate of the initial state. The initial state is then 

updated using a gradient descent approach. 

10 
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2.2.3 What is Needed for a 4D-VAR Assimilation Scheme 

In order to incorporate measurements from an instrument into a 4D variational 

assimilation scheme, several things are required in practise. The first, and most 

important, is a fast forward model. 

Running a 4D variational assimilation scheme is expensive in terms of com-

puter time. For each assimilation window, a forward run of the assimilation 

model, as well as a backward run of the adjoint equations is required for each 

iteration, and there may be several iterations. Within this, the forward model 

of the instrument must also be run each iteration for each measurement in order 

to simulate the instruments response to the new state of the atmosphere. Since 

there may be many measurements to be assimilated, the forward model for each 

instrument is only given a small amount of time to run. 

The second thing needed is the Jacobian of the forward model (Ilk  in equa-

tion 2.11), which is used to update the model state vector. This must be cal-

culated every time the forward model is run and can be generated either by 

differentiating the forward model by hand, or by automatic differentiation tech-

niques available in a number of computer programs (e.g. Giering and Kaminski 

(1998)). 

The final thing that needs to be supplied in order to assimilate measurements 

from an instrument is an estimate of the error characteristics. This is in the form 

of the error covariance matrix for the instrument and includes instrument errors, 

errors introduced due to inaccuracies in the forward model and interpolation 

errors. 

2.3 The EOS-MLS 

The EOS-MLS is a microwave limb sounding instrument (Waters et al. (2006)) 

aboard the EQS Aura satellite (Schoeberl et al. (2006)) which was launched on 

15th July 2004. It is the successor to another instrument called the UARS-MLS 

which flew on the UARS satellite during the 1990's. The instrument's main aim 

is to observe atmospheric chemistry in the stratosphere and upper troposphere. 

11 
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Figure 2.2: The components of the EOS-MLS instrument. 

2.3.1 Instrument Details 

The EOS-MLS is a passive microwave limb sounding instrument that points along 

the orbital motion. A diagram showing the basics of the instrument is given 

in figure 2.2. While travelling, the field of view of the instrument is scanned 

upward from 2.5km to 62.5km', creating a series of 120 radiance measurements 

per channel in one scan. Each measurement within a scan is known as a minor 

frame and one complete set of measurements is called a profile. A profile plus 

calibration information is called a major frame. On the ray at the centre of the 

field of view, the pressure at the point closest to the Earth is called the tangent 

pressure. 

'For the GHz radiometers. The THz radiometer is different and is described in Pickett 
(2006) 

12 
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The Aura satellite is in a 98° orbit at a height of 705km. It is a sun syn-

chronous satellite with an orbital period of approximately 100 minutes. Each 

scan takes 24.7s, resulting in 240 scans per orbit and around 3500 scans per day. 

The instrument resolution at the limb tangent point is typically around 3 km 

vertically, 5 km cross-track and 500 km along-track. This gives the instrument 

excellent vertical resolution at the cost of horizontal resolution when compared 

to nadir sounding instruments. 

The instrument is the successor to the UARS-MLS which flew on the UARS 

satellite during the 1990's. The EOS-MLS improves on the UARS-MLS in a 

number of ways, primarily, it covers more chemical species in more bands with 

better resolution. For a comparison between the EOS-MLS and UARS-MLS 

instruments, see Waters (1999). 

The instrument can measure a number of chemical species including ozone 

and water vapour as well as several other quantities such as the temperature. An 

indication of the measurement suite can be found in figure 2.3. 

The instrument has a set of 34 bands split over 5 radiometers, measuring a 

range of frequencies from 118 GHz to 2.5 THz (0.1 - 3 mm wavelength). Each 

band is centered on a spectral emission line and consists of a number of channels. 

There are 4 different types of bands - full-width, mid-width, narrow and wide. 

Full-width bands consist of 25 channels and cover a region of 1300 MHz and al-

low useful measurements in the atmospheric pressure range from 100 hPa to 

1 hPa. Mid-width bands are 11 channels wide and cover 200 MHz, providing 

additional measurements in the upper stratosphere ( 10 hPa to 1 hPa). Nar-

row bands have 10 MHz resolution and cover narrow spectral lines at atmospheric 

pressures less than 1 hPa. They have 129 channels and are implemented as 

Digital Autocorrelator Spectrometers (DACS). Wide bands are bands of 4 chan-

nels that extend full-width bands down into the troposphere. Each channel in a 

wide band is 0.5 GHz wide. 

The channel width for different band types varies between 500MHz (wide 

band channels) and 0.15MHz (narrow band channels). The channel width in full-

and mid-width bands varies with channel number and channel width for these 

band types is shown in figure 2.4. This figure shows typical radiance values for a 

simulated oxygen line at a height of lOhPa. The width and position (relative 

to the band center) of individual channels are shown by the horizontal lines. Mid- 

13 
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width bands consist of channels between the dotted lines in the figure. As the 

individual channels are much narrower than spectral lines, they can be treated 

as monochromatic in calculations. 

A full list of all bands giving details of radiometer, type of band and 

main target is given in table 2.1. Channels are reference as (Radiome-

ter). (Band). (Channel). So, R1A.B1F.C1 means "channel 1 of band 1 of radiome-

ter 1A". The "F" in the band indicates it is a full-width band. Other band types 

are denoted by "W", "D" and "M" for wide, narrow (DACS) and mid bands re-

spectively. More detailed information about the EOS-MLS nomenclature can be 

found in Livesey and Wu (1999). This information is represented graphically in 

figure 2.5 which shows the measuring frequencies of all radiometers for the EOS 

MLS, centered around the local oscillator frequencies for the radiometer. As ra-

diometers 2 - 5 use split sideband, the locations of both sidebands are presented 

on the graph. Radiometer 1 uses a single sideband, with the upper sideband 

filtered out. 

15 
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Figure 2.4: Channel widths for full- and mid-width bands of the EOS-MLS. 
The vertical scale gives example radiance values for this band at lOOhPa. The 
horizontal lines show individual channel widths, which range from 96MHz at 
the edges to 6MHz for the central channel. Mid-width band channels are those 
between the dotted lines. 

16 



Chapter 2: Background 
	

17 

Radiometer Band Type Primary Spectral Line 
1st LO frequency  Measurements Prequency(GHz) 

Ri B1 F P  118.75 
126.8000 GHz B21 F P / T 118.75 

B22 N P / T 118.75 
B26 N P / T 118.75 
B32 W P / T 118.75 
B34 W P / T 118.75 
B2 F H20 183.31 

R2 B3 F N20 200.98 
191.9000 GHz B4 F HNO 3  181.59 

B5 F ClO 204.35 
B6 F 03  206.13 
B23 N H20 183.31 
B27 M HCN 177.26 

R3 B7 F 03  235.71 
239.6600 GHz B8 F P / T 233.94 

B9 F CO 230.54 
B24 N 03  235.71 
B25 N CO 230.54 
B33 W 03  235.71 
BlO F ClO 649.45 

R4 Bil F BrO 650.18 
642.8700 GHz B12 F N20 652.83 

B13 F HC1 625.92 
B14 F 03  625.37 
B28 M H02  649.70 
B29 M HOC1 635.87 
B30 M H02  660.49 
B31 M BrO 624.77 
B15 F OH 2514.32 
B16 F OH 2509.95 

R5 B17 F P 2502.32 
2522.7816 GHz B18 F OH 2514.32 

B19 F OH 2509.32 
B20 F P 2502.32 

Table 2.1: A list of EOS-MLS radiometers with their corresponding bands and 
primary measurements. Types are shown by one of 4 symbols: F represents full-
width bands, W are wide bands (Individual filters), M are mid-bands and N are 
narrow-bands (DACS). P/T indicates the band is centered on an Oxygen line 
and its primary measurements are pressure / temperature. 

17 
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2.3.2 Measurements 

Data from the EOS-MLS instrument undergo several levels of processing. The 

data at each stage are labelled levels 0 to 3. Each of these is explained in brief 

below. 

The first level, level 0, is the raw telemetry data sent back by the instrument. 

This includes the raw counts and information about where the instrument is 

looking (the FOV). 

Level 1 data are data that have had some processing work done to convert 

the raw telemetry into more useful information, such as the latitude and lon-

gitude of the measurement (from the satellite data) and the geometric tangent 

height of each minor frame. The calibrated radiances are also generated at this 

stage, taking into account various external factors such as antenna emissions and 

scattering effects. These calibrated radiances are checked to determine if any are 

unusable (i.e. are obviously wrong or out of expected measurement range). If 

any unusable radiances are found, a flag is set stating this. 

Level 2 files contain the retrieved profiles. There are generally in the form of 

a set of values for the species involved, on a fixed pressure grid, for each profile. 

Level 2 data also include the tangent pressure levels of the radiances (discussed 

in section 2.3.1). 

Level 3 files are made up of monthly means of zonal means for different species 

and other mapped products. These are not relevant to the current study. 

2.4 The Radiative Transfer Equation 

The general solution of the radiative transfer equation in the case of microwave 

radiometry can be written as equation 2.13, provided the atmosphere is in local 

thermal equilibrium and no cloud particles are present (see e.g. Janssen (1993)). 

In this case, scattering is neglected as the wavelengths involved are typically much 

larger than the diameter of aerosol molecules. 

 
J

00 

O 
+ 	k(, v, )B(v, T)e_ T de 	(2.13) 

Here, I is the spectral radiance as a function of the solid angle, ft ii is the 

frequency, the distance along the observation path, I the intensity at the 

19 
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Obs 
ent 

Figure 2.6: Observation Paths for the EOS-MLS. This shows two observation 
paths for a limb sounder. The radiance can be calculated by summing the con-
tributions along the solid part of the observation line. The dotted part of the 
line can be considered to contribute nothing to the final radiance and so can be 
replaced with a constant value of the cosmic background radiation level. 

end of the observation path, k(e,  z',  ) the total absorption coefficient, between 

the height and the top of atmosphere, summed over the all species in the 

state vector, Y. T the physical temperature, r(, ii)  the optical depth defined by 

equation 2.14 and B(v, T) is the Planck function defined by equation 2.15 where 

h is the Planck constant, c the speed of light and kB the Boltzmann constant. 

In k(e, v)d 	 (2.14) 

B(v, T) = 2hv
3 	1 
	 (2.15) 

C2 elh/k8T - 1 

In the case of microwave limb sounding, the observation path can be consid-

ered to end at the edge of the atmosphere (figure 2.6), and the value of I will 

be the cosmic background radiation value. 

20 
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In order to find the measured instrument radiance for a particular channel, 

equation 2.13 must then be combined with the instrument response function, 

G(ci, 110 (t), v), for that channel and the field of view (FOV) function, 1(v) (Read 

et al. (2004)). This is then averaged over the frequency range of the channel. 

Due to the continuous nature of the scan, this must also be averaged over the 

solid angle over which the FOV function is measured. This results in two expres-

sions, one for the upper sideband of the channel and one for the lower sideband, 

equation 2.16 and 2.17 respectively. Q0 (t) is the FOV direction that varies over 

time, t. QA  is the portion of the solid angle over which the instrument response 

is measured. 

f'01. fA I(zi, ci, )zi)G(ci, 110 (t), v)dcidii 
(2.16) 'USB 

= 	fZ fA (v)G(ci, ci0 (t), v)dcidv  

J 	f I(v, ci, x) (ii)C(ci, ci0 (t), v)dcidv 	
(2.17) 'LSB 

= 	f- f 	(v)G(ci, ci0 (t), v)dcidv 

These can then be combined and averaged over the scan time using fractional 

ratios, r and r1  which take into account the loss of signal as a result of scattering, 

spill-over, absorption and efficiency of the receiver. Finally, equation 2.18 gives 

the level 1 radiances, denoted by I. Here, 1bj  is an additional term that corrects 

the result for various additional effects outside the intended measurement. Fur-

ther information about this and how r and r1  are defined can be found in Read 

et al. (2004). 

1 I
t2 

P - i = 
	

{rIusB  + rL ILSB } dt 	 (2.18) 
t2 - tl i  

The integrals in the denominators of equations 2.16 and 2.17 are normalisa-

tions of the instrument response functions and can be considered "constant" and 

folded into (v) and G(11, 110(t), ii).  The integration over QA  is used to normalise 

antenna gain over QA  and evaluates to a constant. All the functions in equa-

tions 2.16 and 2.17 are channel dependent and it is assumed that the antenna 

response is frequency independent across the highly weighted part of the filter 

response, but different for the two sidebands. 

As mentioned in section 2.3.1, radiometer 1 uses only the lower sideband, with 

the upper sideband filtered out. In this case, equation 2.18 becomes 2.19 where 
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r1  is still required to account for loss of signal as before. 

1 	P2 

1 - Ibsl 
= 	- 1 .i'tj {nhIL} 

dt 	 (2.19) 

2.5 Neural Networks 

Research into artificial neural networks began in the 1940s, when they were hailed 

as the next big thing in computing. This interest swiftly died out as technical 

problems arose, but in the early 1980's these problems started to be solved and 

interest was rekindled. Today neural networks are used in many different applica-

tions and fields, from helping to fly helicopters (Buskey et al. (2001)) to analysing 

MRI images in hospitals (Feitham and Xing (1994)). 

In theory, artificial neural networks, or ANNs, can do anything a conventional 

computer can do, plus more (Sane et al. (1997)). They are well suited to pattern 

recognition and classification tasks, which conventional programs have difficulty 

with. They are also particularly suited to problems that are not exactly soluble 

by tradition methods but have many examples of input/output sets. 

There are literally thousands of different types of ANNs in the world today, 

with a new variation being created all the time (e.g. Sarle et al. (1997)). Each 

network created is virtually unique, with its own learning rules, network structure 

and its own quirks which makes building a neural networks almost as much an 

art form as a science. Having said this, all ANNs can be split broadly into one 

of two groups. 

The first group uses supervised training. In this case, the training set con-

sists of a series of input-output pairs and the aim is to minimise the difference 

between the true outputs and the network outputs by altering values of some of 

the internal parameters of the network. This type of network is used extensively 

in "computational neural networks". 

The second major group uses unsupervised learning. Here, no output is given 

during training and the aim is to classify inputs according to characteristics within 

the input values. An example of this is an insect classification system. In this 

system, a collection of insects would be measured in various ways i.e. the wing 

span, colour and overall length may be measured and encoded. These parameters 

form the training set. The task for the network would be to classify the insects 
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into different species, which is achieved by calculating the "distance" between the 

input vector and a set of idealised vectors for each classification group (calculated 

during the training cycle). This method is used in image recognition and so-called 

"Boltzmann Machines". Here, only computational neural networks are discussed. 

This section assumes some knowledge of the fundamentals of neural networks. 

Appendix A contains a more detailed and thorough outline of how the principle 

types of network described here (simple and multi-layered perceptrons) operate. 

2.5.1 Background 

The ideas for artificial neural networks (ANNs) are inspired by their biological 

counterparts (the brain). It is therefore useful before looking at ANNs to under-

stand the basics of how the brain works (e.g. Rojas (1996)). 

The brain is made up of approximately 1014  neurons. Each of these neurons 

is connected to up to io other neurons by means of dendrites and synapses. 

Dendrites gather the inputs from other neurons while synapses send processed 

information out to other neurons. Between these are two components, first the 

soma which processes all the inputs from the dendrites, then the axon, which 

converts these into the output for the synapses. This is shown in figure 2.7. 

In this way, the brain can be thought of a massive parallel computer, with iO' 

parallel processors, that are only capable of processing a few simple commands, 

unlike conventional computers that only have a few processors (typically 1) but 

can perform many different tasks. 

There are many differences between conventional computers and the brain. 

The main difference, apart from the number of processors, is the way memory is 

stored and addressed. In conventional computers, the memory is a physical block 

that is referenced by address. If a program asks for a certain memory address, 

the computer will return the contents of that address with no checks to ensure 

the data in it are sensible. In biological neural networks, the memory is stored 

within neurons and can be retrieved when a partial or corrupt version of the 

information is passed through the network (Braspenning et al. (1995)). This is 

known as "content addressable" and has the highly desirable property, for some 

applications, of being able to tolerate noise. 

Another useful feature of neural networks is the ability for the neurons to 

adapt to new inputs, and after training, new features. Some major differences 
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Parts of a 
Typical Nerve Cell 

Dendñtes: Accepts inputs 

Soma: process the inputs 

Axon: Turn the processed inputs into outputs 

Synapses: The electrochemical 
contact between neurons /  

Figure 2.7: A simple biological neuron. This is the basis for an artificial neural 
network's node. 

between biological neural networks (brains) and conventional computers are il-

lustrated by table 2.2. 

BNN Digital Computer 
10 14  separate processors Few processors 

Capable of 10 4  operations per second capable of up to 100 billion operations per second 
Distributed Memory Centralised Memory core 

fairly insensitive to noise in data Highly sensitive to noise 
Ability to learn / adapt Can only perform exact operations specified to it 

Table 2.2: Differences between BNNs (Biological neural networks) and digital 
computers. 

2.5.2 Definitions 

Figure 2.8 shows schematically a typical setup of an ANN where squares are 

referred to as nodes within the network. Each vertical column of nodes in this 

figure is called a layer. Input data are fed into the "input" layer on the left 

and the output emerges from the layer on the right. In this figure there is an 

intermediate layer known as a "hidden" layer. Connections exist between the 
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Input 	Hidden 	Output 

Figure 2.8: A sample neural network consisting of n input nodes, three hidden 
nodes and three output nodes. 

nodes in the input and hidden layer and between the nodes in the hidden and 

output layer, represented by lines. Other configurations are possible. 

Unfortunately there is no set standard notation or definitions in the field of 

neural networks. For example diagram 2.8 may be referred to by some as being 

a 1 layered network (excluding both the input and output layer), while others 

would refer to it as a 2 or 3 layered network. While it is normally clear what 

is meant when accompanied by a diagram, often diagrams are omitted to save 

space (especially in articles), leaving the reader to figure out what is going on on 

their own. This is only one example of the confusions that can arise; there are 

many others. 

In this thesis, figure 2.8 is referred to as a 3 layered network with n input 

nodes, 1 hidden layer of 3 nodes and 3 output nodes. If a network with another 

hidden layer is used, the network would be referred to as a 4 layered network 

with n inputs, p and q hidden nodes, and r output nodes. 

Throughout, a neural network, or NN, will refer to artificial neural networks. 

The words neuron and node will also be used interchangeably. 

It should also be noted that there are several opinions on the history of neural 

networks. The version of neural network history that makes the most sense to 

me is presented here, but other people argue about what was invented by whom. 
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Figure 2.9: The McCulluch-Pitts neuron. This is the basis for modern ANN 
implementations. The neuron takes in N inputs, multiplies them by weights and 
sums them. If this sum is greater than a threshold value, the neuron outputs a 
1, otherwise it outputs a 0. 

These facts should be taken into account when reading other articles about the 

history of neural networks. 

2.5.3 ADALINE and MADALINE 

In this section, the simplest neural networks - ADALINEs and MADALINEs - 

are looked at. These were originally created in the 1940's and are considered 

the forerunners of today's neural networks. When they were first created and 

demonstrated, everyone was impressed by their flexibility but this enthusiasm 

soon waned as people realised that they were only capable of the simplest of 

tasks. 

In the early 1940's, McCulluch and Pitt presented a paper in which they sug-

gested a simple computational model of a neuron (McCulluch and Pitts (1943)). 

They called this model ADALINE - ADaptive LInear NEuron. Its basic structure 

is shown qualitatively by figure 2.9. 

Here, the neuron takes in N inputs, multiplies them by weights, W, and sums 

them. If this sum is greater than a threshold value, T, then the neuron outputs a 

1, otherwise it outputs a 0. Although very simple, this unit could perform several 

operations, for example, AND and OR operations. Initially weights had to be 

predetermined and assigned before the unit was run. Later, it was suggested 

that the weights of the network could be determined without human intervention 

using training. 

Training a network involves changing its weights in order to minimise the error 

on the output. To do this, a set of example input/output profiles is constructed, 

called a training set. This should cover the largest range of inputs and outputs 

of 
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possible. One profile is then selected at random from the training set and run 

through the network, producing the actual network output, 0. The weights of the 

system are then updated using a simple rule, described by equations 2.20 and 2.21, 

where i is the learning rate, E is the error on the output before thresholding, and 

d is the desired output. 

Once the weights are updated, a new training profile is selected at random 

and the network runs through the training procedure again. Once the network is 

in the right state for all the training cases, the training is stopped. 

W(new) = W(old) + i,Ex 	 (2.20) 

E=(d_0)2 =(d_W1X) 2 	 (2.21) 

The next logical step was to combine several ADALINE units together in 

parallel, to form a MADALINE - Many ADaptive LInear NEurons (e.g. Widrow 

and Lehr (1990)). In this case, a number of ADALINE units are all given the 

same input data and each produces an output value independently. There is a 

final neuron whose inputs consist of the outputs from these neurons and which 

performs a majority vote. If over half the networks claim the output is a 1, this 

unit will output a 1 otherwise it outputs a 0; 

Training in a MADALINE is a little more complicated than in an ADALINE. 

Again, a training set is created and a profile is randomly chosen from this and run 

through each unit but now all the units compete with each other to decide which 

unit gets updated. Each unit calculates its error according to equation 2.21, as 

before. 

The winner of this competition is the unit with its error closest to 0, but 

that is outputting the wrong value. Only this node's weights are updated using 

equation. 2.20. 

Although this model was highly original, it was also highly limited. It could 

only solve certain classes of problems, known as linearly separable problems. 

The problem of linear separability can be illustrated with a simple example 

of a ADALINE / MADALINE system with two inputs in two cases - the AND 

problem and the exclusive-OR (XOR) problem. Here, the input space will be 

2-dimensional2 . If the system is attempting to perform an AND operation on its 

2Provided there are only two inputs 
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Input space for the AND problem 
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Figure 2.10: Input space for a 2-input AND problem. The aim of a neural network 
in this case is to find a threshold (line in the diagram) that separates the red dots 
(the neuron should output a 0) from the green dot (the neuron should output a 
1). 

input data, the input space will look like figure 2.10, where a red point indicates 

the output neuron should not fire, while a green point indicates that it should. 

Here, the system is attempting to create a line in input space that separates the 

red and green dots. Then, when the point representing inputs (Ii , 12) is plotted, 

if it is above the line, the output of the system will be one value (In this case 1) 

and if it is below then the output will be another (0). 

In the AND case, this is relatively simple - only one point needs to be above 

the line. This is called a "linearly separable" problem 3 . The problems with 

ADALINEs / MADALINEs (also no-hidden layer perceptrons - see section 2.5.4) 

comes when the problem is not linearly separable. A simple example of this is 

the XOR problem, as represented in figure 2.11. As there is no straight line that 

can be drawn which separates the red and green dots into two distinct groups, 

this is not solvable by an ADALINE system. This problem was illustrated by 

Minsky and Papert (1969). 

The other problem with ADALINE / MADALINE systems was that the out-

put could only be binary. This was solved by the introduction of perceptrons in 

the late 1950's. 

3 i.e. the solutions can be separated by a linear line' 
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Figure 2.11: Input space for a 2-input XOR problem. Here, no threshold (line) 
can be drawn that separates the red dots (neuron output of 0) and the green 
dots (neuron output of 1) thus the problem cannot be solved using an ADALINE 
neural network. 

2.5.4 Perceptrons 

In the late 1950's Rosenblatt (1958) suggested an improvement to the McCulluch-

Pitt neuron in order to make the output continuously valued. A network of these 

new neurons was called a perceptron. 

Basic perceptrons are made up of two layers of nodes - an input layer and 

an output layer. The input nodes each take one input and pass that value to 

every output node. The output layer is made up of a number of these new nodes. 

Each output node has a number of inputs from the input layer. This is shown in 

figure 2.12. 

These new neurons differ from the McCulluch-Pitt model in one important 

way. In a McCulluch-Pitt neuron, the output can either be a 1 or a 0, but in 

these neurons, the output is continuously valued. This is done by changing the 

activation function from a threshold function to a continuous function. The most 

commonly used activation function is given by equations 2.22 - 2.23, where Wi  is 

a weight, which may be any real number, V(a) is the output from the node and 

1i  is an input. This is known as the logistic sigmoid activation function. 
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Input 	 Output 

Figure 2.12: A Simple perceptron. The network consists of two layers of nodes 
connected by a series of weights. In the input layer, each node receives one 
input and passes this to each output. The output layer consists of a number of 
nodes that perform an activation on their inputs. This is an improvement on the 
MADALINEs introduced previously as the outputs are now continuous. 
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1 

V(a) = 1 + exp(—a) 	
(2.22) 

a = 

This is used as its derivative is easily replaced by functions of V(a) (equa-

tion 2.23), allowing easy implementation into simulations as V(a) is the value 

outputted by the node. This property is useful during training. 

dV(a) - exp(—U) 
V(a){1 - V(a)} 	(2.23) 

do,-  {1+exp(—a)} 2  

Training a network with no hidden layer is analogous to training on a MADA-

LINE. The difference is that the continuous nature of the activation function in-

troduces a derivative term into the training rule. Updating the system's weights 

is then done using equation 2.24 where 17 is the "learning rate", which must 

be specified prior to training and will absorb any numerical components of the 

derivative into its definition. The learning rate is used to control how much the 

weights change during an update cycle. A value of 1.0 will result in the weights 

being updated fully to accurately reproduce the particular training profile. This 

is undesirable as, during each update in the training cycle, the network will forget 

all it has learnt before. 

Ej  = (d - O)2 

w(New) = w(Old) + 17EI2 dV(a) 
	

(2.24) 
du 

Here E2  is the error on node i, d2  is the desired output from node i (in the 

training and Oi  is the true output. Other quantities are as in section 2.5.2. 

Further discussion about perceptrons can be found in appendix A. 

When Minsky and Papert pointed out the problems with neural networks 

and linear separability, the neural network community was quick to respond by 

suggesting improvements to remove the problem by adding new hidden layers to 

the perceptron (e.g. Rummelhart et al. (1986)). These hidden layers comprise 

of neurons with a continuous activation function and go between the input and 
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Input 	Hidden 	Output 

Upstream 

Figure 2.13: A neural network with a hidden layer of three nodes. These hidden 
nodes perform a non-linear activation function to allow continuous outputs. The 
arrows show the relative directions of upstream and downstream as used in the 
text. 

output layers. The network topology is now shown in figure 2.13, with one hidden 

layer. 

Adding these hidden layers solves the linear separability problem. Having 

extra hidden layers corresponds to being able to add extra lines to the input 

space diagrams (figures 2.10 and 2.11 of section 2.5.3), so the XOR problem 

could be solved as in diagram 2.14, where between the lines, the networks output 

one value (1.0) and outside the gap it outputs another (0.0) (Russell (1993)). 

Unfortunately, solving the linear separable problem created its own problem 

- how to assign "blame" to the input-to-hidden weights. For example, if there is 

an extra layer in a network, when the output and error is calculated for a given 

input, how do you know which weight is responsible for each proportion of the 

error? 

This was a problem that stopped neural network research in its path for over 

10 years during which time, excitement about neural networks vanished, and 

4 Assuming McCulluch-Pitt neurons 
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2.0 • Input space for the XOR problem with 1 hidden node 
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Figure 2.14: Input space for a 2-input XOR problem using 1 hidden node. Using 
hidden nodes in a neural network is equivalent to allowing additional lines to be 
drawn in input space, allowing the XOR problem to be solved. 

funds for research dwindled. This changed in 1986 when Rummeihart et al. 

(1986) popularised a method for training perceptrons with hidden layers' called 

backprop. 

2.5.5 Back-propagation 

Back-propagation, or backprop, or back-propagation of error, is a method of 

training a perceptron with hidden layers using two stages. 

The first stage is similar to what has gone before: the network is fed the input 

for a randomly selected training profile and its output is calculated. This output 

is then be used to calculate the error for each output node, Ej  = (d -0,)2  ,  as 

before. 

The true power of back-propagation lies in what happens next, the so-called 

"Back-pass". 

The basic idea of this pass is that the error is allowed to propagate upstream 

(i.e. to previous layers), where each node calculates its contribution to the overall 

error, stores this and removes this contribution from the error, before passing the 

'This method was independently discovered in Paul Werbos in 1975 and Rumeihart et. al. 
in 1986 
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new value of the error upstream again. 

When the error, E, starts at the output layer, it is necessary to calculate S, 

a "sensitivity" factor for the error. This is defined as equation 2.25 where da 
is the derivative defined as equation 2.23 previously. 

= 
du 
	 (2.25) 

Having found 6's for all the output nodes, it is then possible to propagate 

these upstream to find the values at the next layer, using equation 2.26, where 

the summation is over all nodes downstream that are connected to node k. 

dV(a) 
8k = 	 Wkh6h 	 (2.26) 

da 
h 

This is calculated iteratively upstream until all nodes in the network have 8 

values. Having successfully given every node in the network a 8 value, the weights 

are updated using the "delta training rule", as given by equation 2.27 (Derivation 

is given in Braspenning et al. (1995)). It should be noted here that the subscript 

k refers to the source node of the link (i.e. the upstream node), while h refers to 

the downstream node. A more detailed explanation of how backprop operates in 

a multi-layered perceptron can be found in appendix A. 

wkh(new) = Wkh(Old) + rl8hVk(o) 	 (2.27) 

This is the basic building block of most modern neural networks. Many 

additions have been proposed to this delta rule, but only two of them have really 

been embedded into the foundations. This is the addition of the momentum 

term (Hertz et al. (1991)) and the inclusion of a weight decay term (Krogh and 

Hertz (1992)), producing what is known as the "Generalised Delta Rule". This 

includes the addition of a fraction of the previous weight change (AL.' kh (old)) for 

a momentum term and a fraction of all the weights in the current layer for a 

decay term, and is given by equation 2.28. This introduces two new terms, c 

and v, the momentum and weight decay coefficients respectively, which must be 

chosen before training the network. 

The purpose of both these are different. The momentum term allows the 

weight change to build up, and get over any small bumps in weight-space. The 

decay term favours smaller weights in the system and helps prevent over-fitting 
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(see section 2.5.5). 

wkh(rlew) = Wkh(Old) + 778hVk(Y) + aAwkh(old) - ii E  Wj 	(2.28) 

This is still the most common basis for most of today's neural networks. Many 

implement their own special modifications to this algorithm but these tend to be 

extensions of the backprop algorithm. 

Special Types of Nodes 

In all that has proceeded, it has been assumed the topology of a network has 

consisted of a series of layers of nodes where each node is connected to all the 

nodes of the previous layer upstream and every node in the next layer down-

stream, that is to say there have been no skip layer connections (e.g. Ripley 

(1997)). These are relatively simple in theory. The main idea is to have a node 

that links not to every node in the next layer, but to "skip" a layer or layers. 

This is sometimes used if there is a known (or suspected) linear relation between 

an input and output. In this case, a skip layer connection may be connected 

from one or more input nodes straight to one or more output nodes, as well as 

through the hidden layers. If there is a linear relation, the skip-layer weights will 

become much greater than the hidden-to-output weights and so will dominate 

the output. 

The other type of special node is called a bias (e.g. Haykin (1998)). This is 

a type of node that is implemented in nearly all neural networks, but generally 

not discussed in literature. This node is a node whose output is always 1, and is 

generally connected to every hidden and output node. A sample network with a 

bias included is shown in figure 2.15. This acts to move the activation function 

as shown in figure 2.16. Similar results are found for other perceptron activation 

functions. A 'bias of 2.0' here implies the bias-to-node weight has a value of 2.0 

(achieved by using setting the weight to 2.0). 

Stopping Training 

One major problem of using backprop is knowing when to stop training the 

network. The network could be trained indefinitely, constantly reducing the 
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Input 	Hidden 	Output 

Figure 2.15: A simple network with a bias node, B, includes. Traditionally, bias 
nodes are included in almost every neural network, but are not discussed for 
reasons of brevity. 
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Figure 2.16: How the sigmoid activation function varies with a bias node. With 
a bias of 2.0 included, the summed inputs (a) must be increased to get the same 
activation level. 
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error. However, this may lead to over-fitting if the network is too complex. This 

is the phenomena of the network learning all the noise in the data which leads to 

poor generalisation. However, it is in general not possible to know if a network 

is too complex for a given task until the network is fully trained and tested. 

The most common, and simplest, way to combat this is to have a small set 

of data to check how the network is getting on. This is the validation set. At 

regular intervals during training, the network is tested (but not trained) on the 

validation data. When the error on the validation set either becomes sufficiently 

low (if asked to work out a problem to given precision), or the validation error 

starts to rise, the training is stopped, and the weights are restored to the values 

that gave the lowest validation error. This has some minor problems of its own. 

During training, the error may well go up and down by quite a large amount and 

the question arises "How do you define when the validation error is going up due 

to over-fitting and not just through training?". One way around this is to store 

the best validation error. When the current validation error is better, it is stored. 

If it goes up some fraction (usually 1.2x to 2.0x) of the best validation error this 

is an indication to stop. 

Choosing Node Numbers 

Another problem with any type of neural network is how to choose the number of 

hidden nodes and the number of hidden layers (the number of input and output 

nodes is fixed by the given number of inputs / outputs required by the system). 

It has been shown by Hornik et al. (1989) that only one hidden layer is ever 

required, but this could lead to a network having 1000's of hidden nodes in one 

layer, whereas it may be faster to have several layers of 100 each. 

The question of how many hidden nodes to put in can be resolved in one of 

three ways: guessing, pruning or growing. 

Guessing, though it sounds primitive, is still the most popular way due to some 

technical difficulties associated with the other methods. This involves putting in 

a number of nodes, training the network, see how it performs then adding or 

subtracting more units to see how that affects the system. 

Pruning, or "brain-damaging" is a another common way of getting hidden 

node numbers (Romaniuk (1993)). Here, a network starts with a lot of hid-

den nodes. Training proceeds for a set number of epochs after which time, the 
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weights are reviewed. The hidden-to-output weight(s) that are closest to zero get 

removed, along with the source node (i.e. the node that the weight originated 

from). This then requires the network to be retrained. The procedure continues 

until all node weights are far enough away from zero. 

The final way the number of nodes is commonly chosen is by growing (e.g. 

Sakar and Mammone (1993)). This is similar in style to pruning. The network 

starts with a small number of nodes (typically 0). Training proceeds for a set 

number of epochs after which time, the validation error is calculated. If this 

is above a predefined limit, some new nodes are added. This is repeated until 

either the validation error drops below some level, or a maximum nodes are added 

(determined by the user). This method is very prone to over-fitting but does train 

faster than a pruning network. 

All these methods require some user input. Pruning requires a starting num-

ber of nodes and growing requires the maximum size of the network, so it doesn't 

really eliminate the problem of choosing the number of hidden nodes, it just 

rephrases it. 

Clearly ADALINE and MADALINE systems will not be appropriate for an 

EOS-MLS forward model, as their outputs are limited to binary, but of the 

schemes discussed here, a multi-layered perceptron, trained with backprop, looks 

promising. This scheme will be investigated in chapter 3 when using a much 

simplified forward model and chapter 5 with a more realistic forward model. 

Chapter 4 also looks at using a multi-layered perceptron with backprop to re-

trieve tangent pressures for use in an assimilation scheme. 

2.6 Previous Work 

This section aims to give an overview of some of the work carried out on the use 

of neural networks in an atmospheric science context. There have been many uses 

of neural networks in retrieval situations (for example, Jiménez (2003)) that have 

worked in the past. In these cases, the neural network inputs are the radiances 

returned from instruments (typically satellites) and the outputs have been atmo-

spheric profiles. In particular, Jiménez (2003) used a neural network to retrieve 

several chemical species from Odin-SMR measurements (Murtagh et al. (2002)). 

A multi-layered perceptron was trained using Bayesian techniques (not covered 
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here - see MacKay (1995)), that used radiances from several bands on the in-

strument to retrieve 03  and ClO profiles (among others) that were compared to 

profiles retrieved using standard retrieval techniques. 

It was found that, using model simulations of the Odin-SMR measurements, 

the neural network gave comparable errors when compared to traditional retrieval 

techniques but was much faster. When using real measurements, it was found 

that there were biases of up to 10% at some heights in the neural network retrieved 

profiles. This was determined to be due to limitations on the training data as 

opposed to a problem with the technique. Overall, it was found that neural 

networks provide "a very attractive alternative to the operational inversions". 

There have been other attempts at using neural networks in a variety of ways 

within data assimilation. One of these attempts involved using neural networks 

to compute the atmospheric fluxes and cooling rates within a 4D-variational 

assimilation scheme at the ECMWF (Chevallier and Hahfouf (2001)). In this 

case, it was found that although the atmospheric fluxes and cooling rates could 

be calculated, the neural network Jacobians had some irregularities but in general 

"[...] this approach is able to provide fast computations with good accuracy". 

There has been only one serious attempt to create a forward model based 

on neural networks that I could find. This was done by Krasnapolsky (1997). 

Using a neural network, he developed a forward model, called the OMBFM1, for 

the SSM/I instrument (Hollinger et al. (1990)) across 5 of its channels. It was 

found that the OMBFM1 could produce brightness temperatures in all channels, 

together with associated derivatives, to an acceptable standard. It was also found 

that the neural network based forward model was much simpler than a traditional 

forward model to run in a retrieval scheme. 

The task of creating a neural network forward model for the EOS-MLS is more 

difficult than for the SSM/I instrument as the EOS-MLS is a limb sounder. The 

OMBFM1 takes 4 inputs: wind speed, columnar water vapour, columnar liquid 

water and sea surface temperature and produces 5 outputs: the brightness tem-

peratures in the 5 channels being modelled. In contrast, EOS-MLS radiances are 

affected by temperature variations throughout the atmosphere as well as other 

chemical species (see section 2.3.1), which drastically increases the number of 

inputs required by the system. In addition, the EOS-MLS produces 120 outputs 

per channel per scan resulting in many more outputs. There are further compli- 
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cations when determining pointing geometry which do not affect nadir sounding 

instruments (chapter 4). These difficulties mean any forward model must per -

form additional steps when calculating radiances for limb sounders as opposed to 

nadir sounders. In a neural network, this is represented by the need for additional 

hidden nodes to deal with the added complexity. 



Chapter 3 

Preliminary Evaluation of the 

Neural Network Forward Model 

3.1 Introduction 

In order to ensure that neural networks are a feasible method of producing a 

forward model, a much simplified initial experiment was conducted, involving 

limiting the radiances produced. 

This chapter gives an overview of how the neural network forward model was 

created, the training method employed and details of the first experiments in 

modelling a forward model in limited circumstances. 

3.2 The First Model 

Only one channel in one band was modelled. It was decided to model only band 

1 in this way. Band 1 was used as it is centered on an oxygen line and operates as 

a single sideband. As the concentration of oxygen in the atmosphere is effectively 

constant and the line the band is centered on (118.75 GHz) is strong and isolated 

this means good radiances can be produced using temperature as the only species 

input. In order to simplify the problem further, the tangent pressure levels of the 

radiances were assumed to be constant across profiles (see section 2.3.1). This 

means that the each minor frame radiance is measured at the same pressure in 

each major frame. 
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3.3 The Network Architecture 

This section deals with the construction of the neural network. It explains the 

architecture as well as the normalisations and transfer functions. 

As explained in chapter 2, a neural network is a quick way of estimating 

functions using nonlinear neurons connected in a network. In order to keep the 

number of outputs reasonable, it was decided to use one neural network per 

channel for the EOS-MLS, rather than using one neural network for all channels 

in the band. This means that. there are 120 outputs for the network. In addition 

to this, there are 73 inputs, the temperature profile. 

The network used is a multi-layered perceptron. The number of hidden nodes 

within the network can be varied, along with the number of hidden layers. The 

transfer function (the activation on the hidden and output nodes) can be varied to 

be either a sigmoid function (equation 3.1), a hyperbolic tangent (equation 3.2) 

or a linear transfer function (equation 3.3) where the symbols are as used in 

section 2.5.4. 

V(a) = 	
1 	

(3.1) 
1 + exp( — o, ) 

=Wixi  
i 

V(a) = tanh(a) 	 (3.2) 

= E wixi 

V(u) = a 	 (3.3) 

U =Wixi 

Because the nonlinear transfer functions (described above), only return values 

in the range [0,1] or [-1,1], some normalisation must be applied to the outputs of 

the system. In addition, some form of normalisations is also applied to the inputs 
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of the system, but for different reasons. 

As a typical temperature profile covers a large range of values, if these values 

were fed directly into a neural network, several problems would arise. First, 

during training, the values combined with typical initial weights would result 

in the hidden nodes being saturated. This means all of them would output a 

constant value of 1 (or very nearly). In this case, it is not possible to train 

the network very efficiently, because the training relies on the gradient of the 

transfer function. If the node becomes satñrated (either too high or too low), 

this gradient falls to zero. Although this effect can be mitigated by using much 

lower initial weights, these values would have to be constrained to be at most 

given by equation 3.4, where W2  is the initial weight, N1  is the number of inputs 

and I is the mean value of the inputs. 

1 	 1 
Wi 	 ±0.00003 	 (3.4) 

N1 *I*2 73*200*2 

This means that the initial weights would have to be in the range [-0.00003, 0.00003] 

to avoid saturating the hidden nodes. If the weights get smaller, the internal cal-

culations within the neural network will start losing precision. A further problem 

arises when more inputs are needed (see chapter 5) and this initial weights range 

would have to be reduced further. 

Another problem with unnormalised inputs is that some inputs may have a 

larger influence on the outputs than others. Although this is to be expected 

given the problem, there might be a single input that has a very large range 

of values while all the rest have a much smaller range. In this case, the much 

larger changes in one input may mask the changes in other inputs which could 

be more important. Although this effect should dampen with training, it may 

increase training time dramatically, or potentially not manifest itself until training 

is complete. 

For these reasons, both the inputs and the outputs must be normalised. In 

order to normalise the inputs, equation 3.5 is used, where I(i) and I(i) are the 

normalised and original un-normalised input to node i respectively. 

• - 	I(i) - min*(Iu(i)) 
(3.5) I(z) 

- max*(Iu(i)) - min*(Iu(i)) 

To allow some growth outside normal ranges, the maximum and minimum 
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factors in equation 3.5 are scaled by 10%. When the maximum or minimum 

value is greater than zero, max*(Iu (i)) = 1. 01  * max(I(i)) and min*(Iu (i)) = 

1.1 * min(I(i)). When the maximum or minimum value is less than zero, 

max*(Iu (i)) = max(I(i))/1.1 and min*(Iu(i)) = min(I(i))/1.1. 

These input normalisations result in the network inputs being approximately 

in the range [0, 1]1.  This allows the initial weights to be in the approximate range 

[-0.01, 0.011, which allows more accurate internal calculations and prevents the 

hidden nodes being saturated. Normalising the inputs also has an advantage in 

equalising the input's influence on the outputs. 

The raw outputs from the network will be in the range of [0, 11 or [-1, 1] 

depending on which of equation 3.1 or 3.2 are used. These raw values are then 

converted to radiances using equation 36 in the case of a sigmoid transfer function 

or equation 3.7 in the case of a hyperbolic tangent transfer function. When a 

linear transfer function is used, no output normalisations are applied. 

O(i) = 072 (i) * { max *(Ou (i)) - m in*(Ou (i))} + m in*(Ou (i)) 	(3.6) 

0. (i) = 'y(i) * {max* (O u (i)) - min* (O u (i))} + min*  (Ou (i)) 	(3.7) 

'y(i) = 0()+1 

Here, the notation is similar to that for the input normalisation; O(i) is 

the unnormalised (true) radiance for network output i, O(i) is the network 

output from output node i, max*(Ou (i)) and min*(Ou(i))  are the maximum and 

minimum true radiances in the training set, scaled to allow for larger / smaller 

values in the same way as the inputs scaling. Figure 3.1 shows the final network 

architecture. 

'Assuming the absolute maximum and minimum values are approximately 110% of the 
training set values 
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Figure 3.1: The architecture of the network. 	The inputs are the (unnormalised) temperature profile. 	These are first 
normalised and passed to the input layer. The input layer does nothing to these values, except to pass them to all the 
hidden nodes. The hidden nodes then sum the weighted inputs and performs an activation, passing the result to the 
output nodes. The output nodes again perform a summation of each of its weighted inputs and passes a value out. These 
values are then unnormalised to produce the final radiance. As is conventional, the bias nodes are not shown in this figure. CR 
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3.4 Training the Network 

In order to be useful, a neural network must be trained. This section describes 

the training methods employed and how the training data were generated. 

As discussed in chapter 2, there are many ways to train a neural network. The 

network described here was set up to be trained in several different ways. The 

first way is using backprop (discussed in section 2.5.5). Using backprop, there 

are several parameters that can be varied - the learning rate (77), the momentum 

of the system (a) and the weight decay factor (11). 

The second training method employed is a technique called quickprop. Quick-

prop is a technique developed by Fahiman (1988) as an alternative to the backprop 

algorithm. The idea is to use a copy of the derivative of the error with respect 

to each weight for the previous training profile and use this combined with the 

derivative from the current training profile to calculate an approximation to the 

second derivative. The weights are then updated according to the rule given by 

equation 3.8. 

w(t) 	
S(t) 

= 	 (3.8) 
S(t— 1)— S(t) 

SE 
S(t) = - = yhVk(a) 	 (3.9) 

Sw 

Here, w(t) is the change to be made to the weight at timestep t and S(t) 

is the current value of the derivative of the error with respect to the weights, 

SE/5w, calculated using equation 3.9 where Yh  is the "sensitivity factor" defined 

as equations 2.25 - 2.26 in section 2.5.5 of chapter 22.  As before, Vk(a) is the 

value generated by the node k. Putting this update formula into the form of 

the backprop equation (equation 2.28) gives an update rule of equation 3.10. As 

before, ij is the learning rate. Unlike backprop, quickprop has no momentum or 

weight decay terms as it doesn't suffer from the problems that they were intended 

to solve. 

S(t) 
___ __________ 	 - 1) 	(3.10) wkh(new) = Wkh( old) + S(t 

- 1) - S(t) 

One problem that sometimes occurs with quickprop is that the denominator 

2y is used in place of 5 as the sensitivity here to avoid confusion 

me 



Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 47 

of equation 3.10 becomes so small that a floating point overflow occurs, resulting 

in infinite weight changes. The normal way of dealing with this is to introduce a 

"maximum growth factor", p (Fahlman (1988)). Using this, the absolute value 

of the weight change is not allowed to be more than ,u times the previous weight 

change. If the weight change is greater than this threshold value, a constant value 

is used in its place. 

Q uickprop is also based on several assumptions. The first assumption is that 

the weight space is approximately parabolic in shape. This means that there is 

a well defined minimum that can be reached, and that weight space is relatively 

smooth. In many cases, this is a reasonable assumption. If weight space isn't 

parabolic, the method will still converge on a solution but will tend to become 

stuck at local minima instead of the global minimum. 

The second assumption is that the slope of the error vs. weight curve for 

each weight is not greatly affected by other weights that are changed at the same 

time. This is generally a good assumption when each output node is affected 

in different ways by the input nodes. In this case, the hidden nodes will act 

to separate out these effects. When creating the forward model for the EOS-

MLS though, each minor frame output 3  is dependent on similar inputs as those 

around it as well as any temperature inputs from the atmosphere above it due 

to the viewing geometry. This means that this assumption could be risky in this 

case. 

3.4.1 The Training Set 

The training data were generated using a full 2-D (i.e. the atmosphere is assumed 

to be horizontally homogeneous) forward model for the EOS-MLS created by H. 

Pumphrey, which has been shown (Pumphrey (2006)) to reproduce the "official" 

EOS-MLS forward model, described in Read et al. (2004), to within 1 K. Here, 

the model of Pumphrey is assumed to be accurate. The training set was gen-

erated at constant tangent pressure levels with only temperature data included. 

The training set contains 2,000 radiance profiles (along with corresponding tem-

perature profiles). Of these, 1,500 are used for training, 300 for validation (used 

to measure training progress) and 200 for testing (used at the end of training 

to ensure the network is well-trained). These values were chosen so that each 

3Described in section 2.3.1 of chapter 2 
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set covers at least one orbit of the EOS-MLS, to give maximum coverage of the 

expected temperature profiles, while allowing enough profiles remaining from a 

full day's data to allow further testing of the network. 

In order to ensure that the training set is representative of the complete input 

/ output space, the following tests were undertaken. First, several parameters, 

such as the mean, standard deviation, maximum and minimum values for each 

minor frame within the profile were compared. 

The second test is slightly more complex. This process gives a qualitative view 

of which areas of input/output space are well represented and can be created as 

follows. First, each height within the entire set is binned into a set of 10 ranges. 

This procedure is then done again with the training set and the same ranges as the 

complete set. These ranges are then normalised and the values from the training 

set are subtracted from the values of the complete set, producing a difference 

between the two sets. 

Within a well represented area, the final ranges should have a value near zero. 

A threshold value of 20% was chosen as the cut-off for defining well-represented 

areas. Areas of the training set with 20% fewer profiles than the complete set are 

unrepresentative and need to be improved. 

In this case, 3496 profiles are used as the complete set. This represents one 

day's worth of profiles and is a good representation of profiles across all latitudes 

the instrument measures at. The training set consists of the 1500 training profiles. 

The results in the case of temperature profiles are found in figure 3.2. This shows 

two sub-figures. On the left, is a figure showing the mean, maximum, minimum 

and standard deviation for each height. The red dashed line is the training 

set, and the solid black line is the complete set. As can be seen, all of these 

lines are almost perfectly matched. The figure on the right gives an indication 

of the coverage as described above. The great majority of the area covered is 

indeed near the "Perfectly Represented" colour, with a small amount number 

of underrepresented and overrepresented areas appearing. The extremes of the 

scale are where the training set has 15% more profiles (over-represented), or 15% 

fewer profiles (under-represented) within the area, within the threshold defined 

above. 

The same procedure was also carried out to look at the network outputs (i.e. 

the radiances). This can he found in figure 3.3 and is in the same format as 

Mw 



Chapter 3: Preliminary Evaluation of the Neural Network Forward Model 49 

Complete and Training Set 
3 	.IyIlIIIIIIiIIyIIII\iIIuriIIIIIiIeiIui. 

an 
2 

Representation within the Training Set 
3 	

Overrepresented 

Perfectly Represe ted 

Underrepresented 

PA 

o 
0 

-c 

ci) 

2 

Maximum 

Std. Dev. 
Minimum 

Complete Se 
- - Training Set 

o 
2 —1 

	

—2 
	

EPA 

	

—3 
	

—3 L 
	

I III 1111111 I 	 I 	 I 	ii 

0 
	

100 	200 	300 	400 
	

100 
	

200 	300 	400 	500 

Temperature / K 
	

Temperature / K 

Figure 3.2: A figure showing that the temperature training set is representative 
of the entire set. The left figure shows the maximum, minimum, mean and 
standard deviation of the entire set (red dashed lines) and the training set (solid 
black lines). The right figure gives a qualitative overview of how well different 
areas are represented with well represented areas displayed in blue-green. A 
small number of areas (around y = — 0.9) show deviations away from this well-
represented area. Here, the extreme under- and over-representation corresponds 
to 15% fewer/more profiles in the training set than in the complete set. 
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figure 3.2. Again, it can be seen that the maximum, minimum, mean and stan-

dard deviation are all very similar in the training set and the complete set. The 

right sub-figure shows that the complete set is well represented by the train-

ing set in almost all areas, with no seriously underrepresented areas. Here, the 

scale used is from 5% under-represented to 5% over-represented, well inside the 

threshold for well-represented areas. This suggests the training data gives a good 

representation of the complete set. 

The training process consists of showing the network 7500 profiles randomly 

selected from the training set and updating the weights according to the errors 

on those profiles. The network is then validated using the 300 validation profiles 

and if the network error is better than in previous validation runs, the network 

weights are stored. The training run is then restarted. This process continues 

until the validation phase does not produce any better weights for the system for 

50 validation runs (epochs) in a row. After this, the best weights are restored 

and the network is run with the 200 testing profiles. 

3.5 Results 

3.5.1 Initial Trials 

This section gives some results of tests carried out using the neural network and 

includes the effect of training algorithm, choice of transfer function and hidden 

node numbers. 

A number of tests were carried out using a neural network forward model 

under a range of different circumstances. These include changing the number of 

hidden nodes, changing the training method and changing the transfer functions 

used by the nodes within the network. 

Results from an individual run will usually be presented here in the form of 

a four-panel graph. An example graph can be seen in figure 3.4. Here, the upper 

left panel shows a sample profile from within the testing set, chosen at random, 

showing the real forward model output (solid line) with the corresponding net-

work forward model outputs at the end of training (crosses). The upper right 

panel shows the absolute errors on each network output for this profile at the end 

of training. The lower left panel contains information about the complete test 

set. This includes the following information: 
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Figure 3.3: A figure showing that the radiance training set is representative of the 
entire set. The left figure shows the maximum, minimum, mean and standard 
deviation of the entire set (red dashed lines) and the training set (solid black 
lines). The right figure gives a qualitative overview of how well different areas 
are represented, with all areas being very close to the "perfectly represented" 
colour. Here, the extreme under- and over-representation areas correspond to 
5% fewer/more profiles in the training set than in the complete set. 
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Thick black line - The bias of the error for each network output 

Blue lines - The standard deviation of the error for each network output 

Crosses - The maximum and minimum error for each network output 

Red lines - Instrument noise level 

In each of these panels, the vertical axis denotes height and is in units of 

z = - log10  (Pressure / hPa). The reason for this is discussed in section 4.3 

of chapter 4. The scale runs from z = —3 to z = 3, or p = 1000 hPa to 

p = 0.001 hPa. 

The final panel (bottom right) gives information about the training run of 

the network and some information about the network itself. The main .graph 

shows the standard deviation of the network as a function of epoch. One epoch 

is measured as the time from one validation run to the next. The plotted value at 

each epoch represents the standard deviation of the network output that had the 

largest error during the validation phase. A number of details about the network 

are also given in this panel. These are: 

77 - The learning rate of the network 

a - The momentum of the network 

zí - The weight decay in the network (if non-zero) 

best std. dev. - The standard deviation of the worst network output 

when the network couldn't be improved any further 

Hidden Nodes - The number of hidden nodes in the network. If more 

than 1 layer of hidden nodes was present, this information is displayed as 

"n,m" where n is the number of nodes in the first hidden layer and m is the 

number of nodes in the next hidden layer 

R1A.B1F.C1 - The current channel that is being modelled. Further in-

formation about the naming scheme can be found in section 2.3.1. 

In order to be considered successful, it was decided that the network would 

have to have an error of less than the instrument noise. In order to do a good re-

trieval of atmospheric species, the forward model must be at least as good as the 
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Figure 3.4: A sample results diagram. The diagram is split into four panels. 
The top left and right panel give a sample profile from within the testing set, 
the network output and the error on this output. The bottom left panel gives 
details about the overall test set, including the standard deviation, maximum 
and minimum errors and the instrument noise for the channel. The bottom right 
panel shows how the training of the network progressed and gives details about 
the setup of the network. 
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instrument noise levels and preferably, more accurate than half the instrument 

noise. For this reason, a network that, when trained, produces a standard devi-

ation on its errors of less than the instrument noise is considered successful. If a 

network achieves a maximum standard deviation of less than half the instrument 

noise level it is considered to be well trained. Assuming the errors are Gaussian, 

insisting that the R.M.S. error is half the R.M.S. instrument noise implies that 

less than 3% of the profiles have errors exceeding the instrument noise for that 

tangent height. 

Originally, the neural network was started using sigmoid transfer functions 

for all the hidden and output nodes. In order to ensure the best results, low 

values of 77 and a were used (0.2 and 0.1 respectively). The number of hidden 

nodes was increased or decreased in different runs, depending on how the network 

responded to different numbers. One of the first properly successful runs is given 

in figure 3.5. In this case, there are 55 hidden nodes in 1 hidden layer and the 

network returned a best error of o = 0.16 K during testing. This shows that 

a neural network can act as a forward model in this case. It can be seen that 

the principal errors occur in the lower region of the profile. As the atmosphere 

is opaque to the instrument at these heights, these radiances won't generally be 

used in the observations vector of an assimilation model and as such the errors 

are less important than errors in the higher radiances. 

Subsequent runs looked at the effect of varying several parameters in the 

network. 

Varying the learning rate 

Increasing the learning rate, 77, allowed the network to rapidly reduce its 

error at the start of the training but in latter stages of training, the network 

tended to change the weights by too much, resulting in errors that didn't 

improve as rapidly over time and larger errors overall. 

Varying the momentum 

Increasing the momentum factor, a, means that more of the previous weight 

change is included in the current weight change. This should allow the 

network to overcome larger "bumps" in weight-space and allow a better ,  

final error. In practise, increasing the momentum rate too much again 
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Figure 3.5: One of the initial successful runs (format is the described in sec-
tion 3.5.1). This shows that a neural network is capable of learning to emulate 
the forward model in this (highly restricted) trial. In this channel, the instru-
ment is sensitive between z — 1.5 and z —0.9 (r.'  30hPa to lOhPa). At 
heights greater than z = —0.9, the atmosphere is transparent at this frequency 
and the instrument measures background radiation. At heights below z = — 1.5, 
the atmopshere is "blacked out" and the instrument detects radiation from (close 
to) z = — 1.5. 
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results in too large changes in weight during the latter stages of training 

and larger errors overall. 

Overall, it was found that learning rates of 77 < 0.5 and momentum rates of 

a < 0.3 produced consistently good results in this case. 

The final parameter that can be changed and should be looked at is the 

number of hidden nodes in the network. 

3.5.2 The Effect of the Number of Hidden Nodes 

Initially, the number of hidden nodes within the network was chosen heuristically 

- the number of hidden nodes for a particular run is chosen based on how the 

network reacted to the previous run. Systematically examining how the network 

responds to different number of hidden nodes allows us to check that the network 

is working consistently and that the optimum number of hidden nodes is chosen. 
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Figure 3.6: Example of an error vs. hidden node graph when the network is 
working properly. The ideal number of hidden nodes is a trade-off between speed 
and accuracy. 

Consistently Working 

Anthony and Bartlett (1999) suggest that there is an optimum number of 

hidden nodes for any particular network and that the error vs. hidden 

node number graph should be a decay graph, like figure 3.6. If a similar 

figure can be produced for this particular network, it would indicate that 

the network is indeed working properly. The optimum number of hidden 

nodes is then a trade-off between how accurate the network is required to 

be and the speed the network must be able to run at. 
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Optimum Number 

Using heuristic methods could result in missing a minimum on the error vs. 

hidden node number graph. If this were the case, there would be no real 

way of knowing that a promising region had been missed. 

Investigating the effect of hidden node numbers is an easy task, if a little 

tedious. The basic principle involves starting the network with an arbitrary 

number of hidden nodes (typically zero) and letting it train. Once the training 

is complete, a test set is run through the network and the standard deviation is 

calculated for each network output. The worst of these standard deviations is 

recorded and the number of hidden nodes in the network is increased, the weights 

are randomised and the training starts again. This is repeated a number of times 

with varying numbers of hidden nodes. When this is complete, these standard 

deviations are plotted against node number. 

Initially, the network was trained with no hidden nodes and each time the 

training was restarted, five more hidden nodes were added. This produces fig-

ure 3.7 where the bars on each point represent the maximum and minimum values 

across five runs. In this case, there is a sharp rise in the error from zero hidden 

nodes to 5 hidden nodes and then a steady decrease until around 20 hidden nodes. 

From 20 hidden nodes upward, the error remains approximately constant. This 

suggests that any additional hidden nodes above 20 are not being used in this 

case and so can be ignored. The sharp increase from zero to 5 hidden nodes is 

due to the 5 hidden nodes being unable to cope with the large number of inputs 

and outputs. In the case where there are no hidden nodes, all the inputs are 

directly connected to the outputs, and each output node can choose the most 

important inputs to it. However, in the case with 5 hidden nodes, these 5 hidden 

nodes must condense all the information from the inputs before passing it on to 

the outputs. The outpits in this case only have access to 5 bits of information, 

which is not enough to accurately calculate the radiances. The network therefore 

has a larger error than with zero hidden nodes. The small error bars also show 

that the network is well trained as the final network error is consistent across 

training runs. 
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Figure 3.7: The error vs. hidden node graph for the forward model neural net-
work. The error bars show the maximum and minimum across 5 neural network 
training runs. In this case, the graph is almost flat after around 20 hidden nodes. 
This suggests the best number of hidden nodes to have is around 20. 
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3.5.3 Improving the Initial Results 

This section looks at several techniques that other people have employed to im-

prove a network's ability or to reduce training times. There are many techniques 

that can be used to improve a neural network in some way, but only three will 

be considered here - using a weight decay parameter, using a non-linear error 

function and training the network using quickprop instead of backprop. 

The first of these is to examine the use of a weight decay parameter. A weight 

decay parameter is an additional term to the weight update rule that subtracts a 

small percentage of all the weights in that layer from each weight, which means 

that smaller weights are favoured by the system. If large weights are present, the 

activation function can become nearly discontinuous - small changes in input will 

cause large changes in output (see e.g. Sarle et al. (1997) for more information 

about weight decay). 

Adding a weight decay term to the neural network is technically easy, the 

difficulty coming with making the right choice. I simply used trial and error, 

guided by results from previous runs. One of the most successful tests is shown 

in figure 3.8. In this case, a weight decay coefficient of 0.01 was used. In compar-

ison to figure 3.5 it can be seen that although the bias is improved when using 

weight decay, the network is not as well trained (seen by comparing the standard 

deviations of the test set in the third panel.). When no weight decay is used the 

standard deviations are better than when weight decay is used (0.16 K compared 

to 0.20 K in the case with weight decay). Examining the fourth panel may reveal 

• possible reason for this. In the weight decay case, the network is trained for 

• much shorter time (401 epochs compared to 950 epochs). Both networks are 

using the same criteria for stopping training (see section 3.4) which implies that 

in this case, training with weight decay is not as efficient as training without 

weight decay. 

The second method of improving the network is using a better error func-

tion. It is suggested in Fahlman (1988) that using a nonlinear error function may 

increase learning speed of the network. The idea is that for small differences be-

tween true and network outputs, the error function should behave almost linearly 

but for bigger differences the error function should grow faster than linearly. This 

allows much greater learning at the start of training, when the errors are large, 

resulting in reduced training times. Fahlman (1988) used a hyperbolic arctangent 
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Figure 3.8: A neural network trained with weight decay included (format is the 
described in section 3.5.1). A weight decay coefficient of 0.01 is used in this 
case. This shows that for this network, using weight decay does not provide an 
advantage (when compared to figure 3.5). 
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Figure 3.9: A neural network trained using a nonlinear error function (format 
is the described in section 3.5.1). Compared to using a linear error function 
(figure 3.5), the number of epochs needed to train the network is significantly 
reduced at no loss of precision for the network. 

error function and achieved a 25% improvement in training times. 

An example training run using a hyperbolic arctangent error function can be 

found in 3.9. Here, the important figure is the bottom right. This shows the 

training error as a function of epoch. When compared to 3.5, it can be seen 

that in this case, the training takes a shorter time (669 epochs compared to 950 

previously) and the error has been slightly reduced (0.12 K compared to 0.16 K). 

Subsequent runs show that the training time is, in general, reduced when using a 

hyperbolic arctangent error function, with no loss of precision in the final trained 

network. 
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Another possible method of improving the training of the network is to train 

the network using quickprop instead of backprop - discussed in section 3.4. Quick-

prop should provide much quicker training and reduced error in the final network 

provided both assumptions, that weight space is parabolic and that the error 

vs. weight curve for each weight is independent of other weights, are met. In 

this case, using quickprop with very low learning rate resulted in the internal 

weights in the system rapidly diverging towards infinity. This suggests that one 

of the two assumptions is false. This is probably due to the assumption that the 

slope of the error vs. weight curve is independent for each weight. As previously 

stated, outputs close to each other in the network will depend on similar inputs in 

similar ways. This means that the errors for these outputs will be closely tied to 

the same weights from the input-to-hidden layers, invalidating this assumption. 

Once it was established that a well-trained network could not be produced using 

quickprop further tests weren't carried out. 

3.6 Discussion 

In this chapter we have looked at using a neural network as a forward model in 

a very limited set of cases. It has been shown that in these conditions, a neural 

network can be created that does function as a forward model. It has also been 

shown that using a nonlinear error function significantly improves training times 

of the network without affecting the precision. 

Several things that are not included in this chapter, but have been investi-

gated include changing the transfer function of the nodes within the network 

(section 3.3) and using different training algorithms. In the first case, several 

different transfer functions were tested, namely, the hyperbolic tangent transfer 

function and the linear transfer function. In the case of the hyperbolic tangent 

transfer function, the training was found to be very erratic, with the system 

weights often diverging to infinity, while the system was not as accurate when 

a finite result was produced. Using a linear transfer function the output nodes 

with a sigmoid function in the hidden nodes resulted in much higher errors during 

training while the training time was also increased. 

Another possible way of improving the network is to use a different training 

scheme. Here, quickprop was tested but found to be unusable in this case. This is 
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thought to be due to the assumption, that the error vs. weight curve is indepen-

dent for each weight, is false in this case. Other methods of training the network 

(e.g. using Bayesian learning techniques - MacKay (1995)) were not explored but 

could provide improvements to the results presented. 

Some of the work carried out in this chapter can be applied to the full neural 

network. As quickprop proved unusable in this case, it was discarded as a possible 

training method for future neural networks. The results for learning rate (i) and 

momentum (a) can also be applied to future networks, keeping the value of both 

low. As the number of inputs is greater when tangent pressures are included, 

the results from the trials into hidden node number will not apply directly, but 

have proved the neural network is behaving as expected. The results from the 

tests into the number of hidden nodes also give a minimum bound to the required 

number of hidden nodes. If the neural network in this case requires at least 15 

hidden nodes, it is a reasonable assumption that future, more complex networks 

will require at least this number of hidden nodes. 

Other channels will be dealt with in chapter 5 but the work in this chapter 

should apply in other channels in band 1. Band 1 is centered on the 118.75 GHz 

oxygen line, which is much stronger than other spectral lines in the region and 

means the effect from other chemical species will be minimal. Other bands are 

centered on different spectral lines and will depend on the concentrations of other 

chemical species. For this reason, the work presented here should provide a basis 

for looking at these but will need substantially enhanced to deal with them. 



Chapter 4 

Tangent Pressures 

4.1 Introduction 

In the previous chapter, a neural network was developed that could act as a for-

ward model for the EOS-MLS instrument in a very limited case. The temperature 

profile was the only input and it was assumed that a given radiance in a profile 

was measured at a constant pressure across all profiles. In reality, the pressure 

level that each radiance is measured at varies across profiles. 

This chapter introduces the concept of tangent pressure levels and discusses 

why they are problematic for data assimilation schemes. Several methods of 

dealing with the problem are then explored and it is shown that a possible solution 

is to use a neural network retrieval. 

4.2 What are Tangent Pressures? 

For a limb sounder, the viewing geometry is shown in figure 4.1. The field of 

view can be scanned up and down, creating a series of measurements. Each 

measurement within a scan is called a minor frame and one complete set of 

measurements is a profile. On the ray at the centre of the field of view, the 

pressure at the point closest to the Earth is called the tangent pressure. For the 

EOS-MLS, one profile consists of 120 minor frames and the tangent pressures 

are spaced approximately uniformly from 1000 hPa to 0.001 hPa with a typical 

profile that looks like figure 4.2. Because of variations in the satellite attitude, 

the tangent pressures differ slightly but significantly from one profile to the next. 

65 



Chapter 4: Tangent Pressures 	 66 

Instrument 

riosphere 

Figure 4.1: The basic viewing geometry of a limb sounder. 

Tangent pressure levels are related to the geometric heights by way of the 

hydrostatic equation (see section 4.3) and hence can be calculated within error 

limits from the satellite position and scanning angle, provided the temperature 

and water vapour profiles are known. In most cases, these profiles are not known 

and so the tangent pressures must be deduced in some other way. 

The value of each tangent pressure level is required in any realistic forward 

model as all retrievals are done in (log) pressure space. Normally, tangent pres-

sures are part of the retrieval process, as the instrument returns data in geometric 

space, but the retrieval is done in (log) pressure space, thus it is necessary to re-

trieve tangent pressures to make the retrieval process optimal. At the end of the 

process, tangent pressures are not normally reported as they serve no purpose for 

the scientific end-user. 

In section 4.4.1, it is shown that treating tangent pressures as fixed does not 

give adequate accuracy. To overcome this, either the network must be supplied 

with enough ancillary data to allow acceptable radiances to emerge or the tangent 

pressures must be retrieved outside the assimilation scheme. These possibilities 
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Figure 4.2: A sample tangent pressure level profile for the EOS-MLS. Each dot 
represents one minor frame. There are 120 minor frames per profile. 
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are dealt with in sections 4.4.2 and 4.5 respectively. 

4.3 The hydrostatic equation 

This section is derived from the document by Pumphrey (1999). The hydrostatic 

equation is given by equation 4.1 where p is the pressure, p is the density and g 

is the acceleration due to gravity and h is the geometric height. 

dp 

	

= —pg 	 (4.1) 
dh 

For an ideal gas, p = pRT/M. Here, R is the universal gas constant, T 

is the temperature and M is the mole mass of the gas. Substituting this into 

equation 4.1 leads to equation 4.2. 

From equation 4.2, assuming that fractional changes in T are small, we see 

that pressure is approximately an exponential function of height. As this re-

lationship would be exact in the case where g and T are constant in height, a 

convenient vertical coordinate is given by z = —log10  (P/i hPa) (as used previ-

ously in section 3.5.1 of chapter 3). This can be defined in terms of the geometric 

height using equation 4.3. 

= - Mg p(h) 	 (4.2) 
dh 	RT 

dz 	go 
(4.3) 

dH - RT1n(10) 

Here the geopotential height, H, is used as opposed to the geometric height, 

h, and g0 is an arbitrary constant designed to make H h for altitudes close 

to zero. The geometric height, h, can be converted to the geopotential height, 

H, using standard formulae found in Wright Jr. (1997). Assuming that M is 

constant for the height of interest, R = RU /M can be considered constant. 

When doing a retrieval, it is assumed that T varies linearly with z between 

adjacent pressure levels, z0  and z 1 , this can be written as T(z) = T0  + B(z - zo ), 

where B = (Ti  - To )/(z i  - zo ). Integrating equation 4.3 with this relationship 

leads to equation 4.4, which can be rearranged to 4.5, where Tm  = (T0  +T(z))/2. 
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H—H0 = 
p 

	

Rln(10 ) J 
z 	

- z0)}dz' 	 (4.4) 
90 	zo 

Z - zo 
= 	

90 	(H - H0 ) 	 (4.5) 
 Rln(1O)Tm  

Using this formula, it is possible to find all values of the tangent pressures, 

z, provided the geopotential heights, the temperature profile and an initial z0  is 

knowh. Unfortunately, the temperature profile and z0  are not known in radiance 

assimilation and are part of the retrieval hence a different method of getting z's 

must be found. 

4.4 Possible Solutions to the Tangent Pressure 

Problem 

This section looks at possible ways of avoiding using tangent pressure information 

in a neural-network-based forward model. This may be possible due to the "black 

box" nature of the neural network. Here, two possible methods of doing this 

are examined: assuming invariant tangent pressures and using geometric height 

information instead of tangent pressures as inputs for the neural network. 

4.4.1 Invariant Tangent Pressures 

The first, and simplest, solution to the problerrf is to assume tangent pressures are 

fixed across profiles. If this were the case, the only inputs that would be required 

by the neural-network-based forward model would be the temperature profile', 

much like the model in chapter 3. A necessary (but not sufficient) condition for 

this to be considered a good approximation is that the spread of the tangent 

pressures at one level must be relatively small. This would mean the variance 

in the tangent pressures would not have a drastic impact on the final radiance. 

A relevant measure of invariance is whether the spread of one tangent pressure 

level across profiles is much less than the difference between consecutive tangent 

pressure levels within one profile. 

'and any other species to be included in the forward model calculation 
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Figure 4.3 shows the spread for several typical levels from within the training 

set. As can be seen, the spread is much greater than the difference between 

the levels. This shows that treating tangent pressures as constant across profiles 

will result in some radiances being attributed to the wrong minor frame tangent 

pressure, implying the variation in tangent pressures must not be ignored. To 

ensure that this is the case, several small trials were carried out (not presented 

here). The results show a network error in the region of a = 1.2 K, which is about 

four times the instrument error and hence unacceptable. Thus tangent pressures 

cannot be treated as fixed. 

4.4.2 Using Geometric Height Information 

A second possibility is to use geometric height information in the neural network 

forward model. Geometric heights are available as part of the level 1 ancillary 

data and are deduced from the instrument's viewing geometry. It may be possible 

to use geometric heights in a neural network forward model as tangent pressures 

are linked to them (see section 4.3). In essence, this is adding an additional step 

(converting geometric heights into tangent pressures) into the forward model 

process which would happen implicitly within the neural network. 

Figure 4.4 shows the network output of a sample run using geometric heights 

instead of tangent pressures and takes the same form as previously described 2 . 

Where geometric height information is used, the error is around 0.75K, about 

twice the expected instrument noise level for this channel and hence still unac-

ceptable. 

4.5 Acquiring Tangent Pressure Information 

In the previous section, it was shown that tangent pressure information must 

be found for a neural network forward model. In this section, several methods 

for acquiring the tangent pressures are presented. First, traditional methods are 

shown to be insufficient and then retrieving tangent pressures using a neural 

network is explored. 

2 See section 3.5.1 
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Figure 4.3: Tangent pressure variation. The stars give the mean tangent pressure 
value across 1500 profiles for minor frames 50 to 60. The vertical lines show 
the extremes for that minor frame over the same series. This shows that the 
variation in tangent pressure value within one minor frame is much greater than 
the difference between adjacent minor frames 
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Figure 4.4: A sample neural network training run using geometric heights as 
inputs as opposed to tangent pressures (format is the described in section 3.5.1). 
The format of the figure is the described in section 3.5.1 of chapter 3. The error 
in the test set is 0.75 K which is approximately 3 time the instrument noise in 
this channel. 
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4.5.1 Traditional Retrieval 

The first possibility for retrieving tangent pressures is to do some form of tradi-

tional retrieval. This could be done in one of several ways. One way is to wait 

until the level 2 products become available, allowing the "official" tangent pres-

sures, and as' such the best estimate, to be used. This additional accuracy comes 

at a cost of timeliness. It can take much longer for level 2 products to become 

available than level 1 products. 

The cleanest option, if it is feasible, is to incorporate the tangent pressures into 

the state vector of the general circulation model (GCM) that is being assimilated 

into. This involves supplying the measured tangent heights and geometric heights 

and using the model's profile of temperature and geopotential height (GPH) to 

determine the tangent pressures. These tangent pressures are then used within 

the state vector that is to be updated during the assimilation process. This 

way, the estimate of the tangent pressures gets better while the assimilation step 

progresses. Once the vector is updated, the tangent pressures can be discarded. 

This method should be relatively simple to achieve as the assimilation model 

does contain temperature, water vapour and reference GPH but there are techni-

cal difficulties in adding tangent pressures to the state vector of the assimilation 

model (Feng (2004)). 

The final possibility is to perform a mini-retrieval outside the model. There 

are several problems associated with this. The major problem is that this in-

troduces additional a-priori information into the data assimilation scheme thus 

violating the major reason for using radiance assimilation in the first place. Along 

with this, there are several other reasons why a traditional retrieval is not good in 

this case. One of these is the speed element. A traditional retrieval is done itera-

tively and may require a number of iterations before the result is optimal. Each 

iteration is itself a complicated process which is very computer-intensive. This 

will hold up the assimilation process as this must be done before the assimilation 

can be started. 

4.5.2 Neural Network Retrieval 

As traditional methods have been shown to be inadequate, a different approach 

must be found. Jiménez (2003) showed that it is possible to retrieve species 
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profiles from a limb sounder using neural networks and so it is expected that a 

neural network retrieval should be possible in this case. Here, several tests will 

be 'presented that show it is possible to retrieve tangent pressures using a neural 

network. 

In order to be successful, the retrieved tangent pressures should have compara-

ble errors to results results produced using conventional optimal estimation meth-

ods. These errors in a standard retrieval have a standard deviation of o-  < 50 m 

for most minor frames within a profile (derived from Filipiak (1999)). The crite-

ria for success using a neural network was that a standard deviation of o = 50 m. 

Using equation 4.6, where Lh is the error in (geometrical) height, Az is the error 

in (log) pressure coordinates and s is a scale height, an error of cr 0.003 in 

tangent pressure in 1og10(Pressure / hPa) units is acceptable, assuming a scale 

height of 7.5km. 

Ah = Az * s * ln(10) 	 (4.6) 

The network used is, as before, a simple multi-layered perceptron trained using 

back-propagation. The outputs are the minor frame tangent pressures within the 

profile, and the inputs are the radiances from one or more channels. 

The training data are a set of radiances generated from the same temperature 

data used in chapter 3, but the tangent pressures are allowed to vary across 

profiles here. As previously discussed, the training data has been shown to have a 

good distribution across the expected input-output space. The tangent pressures 

are randomly distributed around expected values and also give a good distribution 

across the expected range. Radiances were generated for all channels across band 

1. 

An initial training run is shown in figure 4.5. Here, the minor frame number 

is plotted on the vertical axis. For each case in the test set, the difference at 

the end of training between the retrieved tangent pressure and the true tangent 

pressure is calculated and plotted as a dot on the graph. The red line shows the 

standard deviation of the outputs at each height. 

As can be seen by this plot, the most accurately retrieved region is in the 

middle of the profile (network outputs 40 to 70, around z = —2 to z = —1.2 

or 100 hPa to 15hPa, where the channel used in this retrieval is most sensitive) 

with a standard deviation around 0.002. Using equation 4.6, this is equivalent to 
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an error of around 35 m. This shows that, in this region, a retrieval of tangent 

pressures within error is possible. Further regions can be improved by changing 

the inputs of the network to use a reduced profile from several channels within 

band 1 and band 32. Band 32 is a wide band with 4 channels centered around the 

same oxygen line as band 1 (figure 2.5 in chapter 2). This allows measurements 

much deeper in the atmosphere than using band 1 alone. This results in the 

network having 200 inputs made up of minor frames from different channels in 

band 1 and band 32. The minor frame numbers from each channel used can be 

found in table 4.1. 

Band Channel Minor Frames Used 
1 40:60 
3 50:70 
6 55:75 

Bi 8 65:80 
10 75:85 
11 80:90 
12 80:100 
13 95:120 

B32 1 0:30 
2 20:50 

Table 4.1: The scan points used from different channels to construct the reduced 
profile. 

Figure 4.6 shows the outcome of a training run using this reduced profile. 

Here, the results are again encouraging. The error across the entire profile has 

been reduced, especially in the extremities. As expected, the largest errors are 

still near the bottom of the profile because all the channels of the instrument are 

saturated at this height and so give very little information. At the bottom of the 

profile, the standard deviation is now around 0.015 ( 260 m) but in general the 

standard deviation is less than 0.002 ('-.-' 35 m). This shows that it is possible to 

retrieve tangent pressures using a neural network. 

Using Geometric Heights 

Geometric heights are derived from instrument pointing information and are re- 

lated to the tangent pressures. In an optimal-estimation retrieval, they are used 
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Figure 4.5: An attempt to retrieve tangent pressures using a neural network. 
This shows the error across the entire - test set across all network outputs. The 
best results come around network outputs 40 to 60 which correspond to the knee 
of the radiance profile, where the instrument is gathering information. The red 
line shows the standard deviation for each network output. The large errors at 
the top of the profile are due to the instrument receiving very little radiation 
at this height, while the large errors at the bottom of the profile are due to the 
instrument being saturated, thus containing very little information about lower 
heights. 
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Figure 4.6: The error on retrieved tangent pressures using a neural network with 
a reduced profile created with Band 1 and Band 32 radiances. The red line shows 
the standard deviation for each network output. 
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as they improve the accuracy of the retrieved tangent pressures (Livesey and 

Wu (1999)). It is. possible they may improve the accuracy of the neural network 

retrieved tangent pressures. 

To test this, several neural networks were trained with geometric heights as 

inputs. These networks consisted of 320 inputs (200 radiance inputs as before and 

120 geometric heights) and 120 outputs. It was found that the error across all the 

outputs was very similar to the case where no geometric heights were used. As 

the neural network without geometric heights produced results within expected 

the error range, the idea of using geometric heights in the neural-network retrieval 

was not followed up further. 

4.6 Dealing with Noisy Radiances 

Until. now, this chapter has been dealing with retrieving tangent pressures from 

clean (i.e. error-free) radiances. In reality, different channels / bands have dif-

ferent noise levels associated with them. In this section, using noisy radiances 

within a neural network retrieval of tangent pressures is considered. 

Neural networks are, in general, quite good at handling noisy inputs (e.g. 

Braspenning et al. (1995)). There are two possible routes for dealing with noise, 

both of which will be dealt with in this section. One is to train a network 

using clean inputs and then use the noisy inputs during the testing phase (with 

normally distributed random noise assigned to each input value in the test set), 

as was done in the previous section when retrieved tangent pressures were used 

in a forward model. The other way is to train the network using noisy inputs. 

Both of the ways mentioned have advantages and disadvantages: training the 

network using clean inputs has already been done and so requires no additional 

work, just feed the noisy inputs in and work with the outputs. The disadvantage 

of this procedure is that the network may produce less accurate results than 

training with noise included in the inputs due to unexpected noise characteristics. 

Training a network using noisy inputs is more time-consuming as noise must 

be generated for each input, each time the network is trained on a profile. This 

process slows down the training cycle substantially, but may result in better 

retrievals in operation. 

Each of the methods described have been looked at and the results are pre- 
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sented here. 

4.6.1 Training Using Clean Radiances 

In this section, the idea of using clean radiances to train a network and then 

retrieving using noisy radiances is examined. 

As several networks have already been trained using clean radiances (see sec-

tion 4.5.2), it is a trivial task to use one of these networks to evaluate the effect of 

noise. Tests were run using a neural network with 200 inputs, 15 hidden nodes in 

one hidden layer and 120 outputs as this proved the most successful configuration 

when no noise was added to the inputs. 

For the purposes of this experiment, 1000 profiles were used. These had never 

been seen by the network before, and represent a good cross-section of expected 

profiles. First, clean radiances were used to retrieve tangent pressure levels to use 

as a base for comparisons. The results of this can be found in figure 4.7, which 

shows the error on each tangent pressure (network output) for each retrieved 

profile. This is similar to figure 4.6. The network was then run with several 

levels of noise. The results are summarised in table 4.2. Here, the error column 

gives the RMS error across all network outputs across all profiles. As can be seen 

in figures 4.7 - 4.10, the majority of these errors are due to the minor frames at the 

lower- and upper-most minor frames, while the central portion of the profile has 

much better errors, as expected. This shows that a network trained with clean 

radiances can retrieve tangent pressures well when the inputs have low enough 

noise. 

Run Noise Used / K Error I Height Error / in Figure 
Al 0.0 0.004 69 4.7 
Bi 0.4 0.005 86 4.8 
Cl 1.0 0.006 103 4.9 
Dl 5.0 0.012 207 4.10 

Table 4.2: Training runs carried out using a network trained with clean radiances. 
The error column is the RMS error across the complete set. 
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Figure 4.7: Retrieved tangent pressure levels for run Al. 
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Figure 4.8: Retrieved tangent pressure levels for run Bl. 
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Figure 4.9: Retrieved tangent pressure levels for run Cl. 
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Figure 4.10: Retrieved tangent pressure levels for run Dl. 
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4.6.2 1aining With Noisy Radiances 

This section looks at how a network can be trained using noisy radiances and how 

that affects the retrieval. The architecture of the network is the same - 200 inputs 

in the form of a reduced profile as described in section 4.5.2, and 120 outputs for 

the tangent pressure levels. The number of hidden nodes was chosen to be 15 in 

one hidden layer, as this worked well when dealing with clean radiances. 

Each time a training profile is read in, a normally distributed noise, with a 

standard deviation at the noise level being examined, must be generated for each 

individual radiance. This can take a long time when each training epoch runs for 

7500 profiles, and there can be hundreds of epochs. For this reason, training with 

noisy radiances can take much longer than training with clean radiances and so 

fewer tests were carried out in this case. 

As before, several noise levels were investigated and these are summarised in 

table 4.3. As can be seen, when the network noise is sufficiently low (u to 1.0K), 

there is no advantage to training the network with noisy radiances. At large noise 

levels however, the network performs significantly better when trained with noisy 

radiances. 

LRun Noise Used / K Error Height Error / m Figure 
A2 0.4 0.005 86 4.11 
B2 1.0 0.005 86 4.12 
C2 5.0 0.007 121 4.13 

Table 4.3: Training runs carried out using a network trained with noisy radiances. 
The error column give the RMS error across the complete set. 

This section has discussed dealing with noisy radiances in two different ways. 

The first method involves training a network using clean radiances and then 

subjecting that to radiances with noise and seeing how it copes. The second 

method involves using noisy radiances during training. It was shown that when 

the noise on the radiances is small (standard deviation of less than a = 1.0 K), 

both approaches work equally well. When the noise grows to significant levels 

(a = 5.0 K), training a network with noisy radiances becomes worthwhile. 

As has been stated, training a network with noisy radiances becomes more 

expensive as many thousands of noise levels must be generated. The expected 
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Figure 4.11: Retrieved tangent pressure levels for run A2. 
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Figure 4.12: Retrieved tangent pressure levels for run B2. 

EX 



Chapter 4: Tangent Pressures 
	 01 

100U Hetrieved Hrotiles a=D.US 
120 

100 

80 
0 
0 

0 
0 
. 	60 
0 

z 
• 40 

20 

0 
—0.06 —0.04 	—0.02 	0.00 	0.02 	0.04 	0.06 

Error in 

Figure 4.13: Retrieved tangent pressure levels for run C2. 

instrument noise levels are also sufficiently low (around a = 0.4 K) that training 

using noisy radiances isn't worthwhile in this case. 

4.7 Training a network with tangent pressure 

levels 

In the previous section, it was shown that it is possible to retrieve tangent pressure 

levels using a neural network. In this section, using tangent pressures as inputs to 

the neural-network-based forward model is examined and shown to be effective. 

This is done in two stages. In the first stage, the neural network is trained 

using pre-computed tangent pressures. In the second stage, the tangent pressures 

retrieved by a neural network are used. 

Initially, the precomputed tangent pressures were used in the neural network. 

This ensures that the network can act as a forward model using accurate tangent 

pressures before adding in potential errors from retrieved tangent pressures. The 

network used is the same as the one introduced in chapter 3 with an additional 120 

inputs - the tangent pressure levels - making 193 total inputs. The results from 

one training run can be seen in figure 4.14, which has the same format as those 

presented in chapter 3. As can be seen, the worst error is approximately 0.15 K, 

well below the instrument noise of the channel (0.37 K). This demonstrates that 
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Figure 4.14: A sample neural network training run using varying tangent pres-
sures (format is the described in section 3.5.1). The largest error is approximately 
0.15K, much less than the instrument noise level but the training time has in-
creased substantially. 

if exact tangent pressures were available, it is feasible for a neural network to 

utilise these in a forward model. 

The second set of tests examines the effect of adding noise, from the retrieval 

procedure, to the tangent pressures when using them as inputs to the neural 

network forward model. In section 4.5.2, the retrieved tangent pressures had an 

error with standard deviation between or = 0.002 (in the middle of the profile) 

and ci = 0.005 (near the bottom). 

The network that was trained on precomputed tangent pressures was reused 

in this process. First, the network was run with a set of 2000 input profiles to 
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2000 orofiles usina oreaenerated tonaent oressures 

Figure 4.15: A comparison of 2000 radiances generated using a neural network 
compared to the Pumphrey (2006) forward model, using clean tangent pressures 
in both cases. The solid black line is the standard deviation of the error and the 
stars indicate the maximum deviation at each network output. The red lines are 
the expected instrument noise 

generate a base for comparisons. The same network was then reused with the 

same temperature profiles, but with noise added to the tangent pressures. The 

noise was randomly generated with a normal distribution with the level of the 

noise varying with minor frame number. These noise levels came from the data 

given by figure 4.8. 

The results of these runs are given in figure 4.15 for the no-noise run and fig-

ure 4.16 for the run with noise. Here, the central line gives the standard deviation 

through the outputs (compared to the radiances generated using a traditional for-

ward model with no noise on the tangent pressures), the red lines indicate the 

noise level of the instrument and the stars indicate the maximum deviation for 

each network output. The aim is to keep the standard deviation within the in-

strument noise, as discussed in chapter 3. As can be seen, although adding noise 

to the tangent pressures does increase the error in the system (previously this 

error was around a = 0.1 K, with noise it is around a = 0.2 K), it is still below 

the instrument noise. This indicates that the network can successfully handle 

noise on the tangent pressures. 
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2000 orofiles usina retrieved toncent oressures 

Figure 4.16: A comparison of 2000 radiances generated using a neural network 
with noisy tangent pressures compared to the Pumphrey (2006) forward model 
using clean tangent pressures. The solid black line is the standard deviation of 
the error and the stars are the maximum deviation at each network output. The 
red lines are the instrument noise. Compared to figure 4.15, there is an increased 
level of noise in the outputs however they are still within instrument noise levels. 

4.8 Discussion 

This chapter has discussed the problems posed by needing to know the tangent 

pressuresto the process of assimilating radiances. To assimilate EOS-MLS radi-

ances directly, tangent pressures would be dealt with in one of two ways. The 

preferred method would be to incorporate them into the assimilation model's 

state vector, which cannot be done in this case due to technical difficulties. The 

second way of dealing with tangent pressures would be to do a retrieval outside 

the assimilation scheme. Using optimal estimation methods would consume a 

large amount of computer power and introduces additional a-priori information 

into the assimilation system. Therefore a new approach must be considered if 

EOS-MLS radiances are to be assimilated. This approach should ideally be com-

putationally quick to run, accurate and not introduce any a-priori information. 

One proposed solution to the problem of determining tangent pressures in-

volves using a neural network to retrieve tangent pressures from given radiances. 

This is what has been discussed in detail in the latter part of this chapter. It 

has been shown that a neural network is capable of retrieving tangent pressure 
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information from radiances within reasonable errors. Further, this network is as 

been shown to be able to deal with noisy radiances. 

Overall, it is felt that using a neural network to retrieve tangent pressure 

information is a strong possibility in a real system. It is much faster than tradi-

tional methods, can be used independently of any retrieval system and does not 

include any a-priori information on what the tangent pressure profile will look 

like. 
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Chapter 5 

Extending the Neural Network 

5.1 Introduction 

This chapter looks at ways of extending the neural network-based forward model 

introduced previously. The networks described so far have simulated a simplified 

model as a proof of concept. In chapter 3 the network took only a temperature 

profile, measured at fixed pressure levels, and produced a set of radiances, again 

at fixed pressure levels, for a single channel in a single band. Chapter 4 extended 

the neural network to include varying tangent pressure levels, creating a more 

realistic model. 

This chapter generalises the neural network to a more complete model. This 

is done in two ways. Firstly the network is extended by including more channels 

within band 1. The second way of extending the neural network is to use chemical 

species within the calculation to give a more realistic forward model. 

5.2 Extending the Network to More Channels 

The EOS-MLS instrument includes 1237 channels spread across 34 bands. The 

distribution of these channels can be found in table 2.1 in chapter 2. Up until now, 

the neural network has been concentrating on a single channel (R1A.B1F.C1). It 

was decided that the neural network should first be extended to deal with addi-

tional channels within band 1 before attempting to add extra chemical species. 

Satellite data used in assimilation processes are generally limited to temper-

ature and ozone measurements. As was previously mentioned, band 1 of the 
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EOS-MLS is centered on an strong oxygen line and effects from other species are 

negligible in comparison. For this reason, only temperature need be considered 

when running most channels in band 1 in the neural network forward model. 

5.2.1 The Network Architecture 

In order to keep the network to a manageable size, it was decided that each chan-

nel should be modelled using a separate neural network. This has several ad-

vantages, namely that the problem can then be considered, in the jargon phrase, 

embarrassingly parallel and also reduces required complexity of each network. 

An embarrassingly parallel problem is one that each subprocess can be run 

independently and hence be sent to a separate processor in a computer system. 

In this case, the complete system can be considered a doubly embarrassingly 

parallel system as each neural network can be considered a separate process and 

then each node within the network can be considered a separate process (albeit 

depending on inputs from previous layers of nodes). 

All the networks in this section trained here have 193 inputs, 73 inputs repre-

senting the temperature profile and 120 inputs representing the tangent pressure 

levels, and the 120 outputs, representing the radiance profile. As before, these in-

puts and outputs are normalised according to equations 3.5 and 3.6 in chapter 3. 

Each network was started with 45 hidden nodes - the number found in section 4.7 

of chapter 4 to produce the best results in channel 1 - with this number being 

altered heuristically between training runs. 

5.2.2 Training 

Training was carried out in a similar way to previously. Several networks were 

trained for each channel, with the number of hidden nodes, the learning rate and 

momentum being altered between runs. 

The results of the best run for each channel can be found in table 5.1. As 

can be seen, almost all channels meet the requirement of being within instrument 

noise and several are below half the instrument noise. This shows that the network 

can be extended to include a full band. 
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Channel Instrument Noise / K Network error / K Hidden Nodes 
1 0.37 0.13 45 
2 0.37 0.15 45 
3 0.37 0.18 45 
4 0.34 0.25 45 
5 0.34 0.25 40 
6 0.34 0.26 45 
7 0.33 0.28 45 
8 0.33 0.26 38 
9 0.33 0.27 45 
10 0.32 0.22 60 
11 0.32 0.29 55 
12 0.32 0.16 40 

13 * 0.32 0.70 45 
14 0.32 0.20 50 
15 0.32 0.27 70 

16 * 0.32 0.31 55 
17 * 0.33 0.32 40 
18 * 0.32 0.31 55 
19 0.32 0.27 60 
20 0.33 0.21 50 
21 0.33 0.21 45 
22 0.32 0.27 60 
23 0.34 0.24 45 
24 0.33 0.15 45 
25 0.33 0.19 45 

Table 5.1: A list of channels in Band 1 giving the instrument noise level, the 
validation error of the network and the number of hidden nodes in the network 
for the best training run. Channels marked with * are not considered well trained 
and are looked at in detail in section 5.2.3. 
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5.2.3 Badly Trained Channels 

There are several channels that are not trained to within instrument noise or 

are very close to instrument noise - channel 13 is well out-with this target and 

channels 16, 17 and 18 are very near the limit. This section will look at why 

these channels are not well trained and ways of improving the training of these 

channels. 

Figures showing the trained network output for channels 16, 17 and 18 can be 

found in figures 5.1, 5.2 and 5.3. As can be seen in figures 5.1 and 5.2, in these 

cases the problems occur near the "transition phase" of the profile - the phase 

of the radiance profile where the radiance grows from no signal (around z = 1.0 

in figure 5.1) to saturated (around z = —0.5 in figure 5.1) and the instrument 

is receiving most information about the atmosphere and where we want the best 

results. Figure 5.3 shows that the bias in channel 18 is very large around the 

transition phase. This implies that in these channels, the training data may be 

insufficient, resulting in badly trained networks. This effect may be mitigated 

due to changes in the operating specifications of the instrument, discussed below. 

The Newer Training Data 

During the course of this research, the instrument specifications were changed 

slightly. Previously, the instrument was designed to scan 120 minor frames per 

major frame. The updated instrument specifications increased this to 125 minor 

frames per major frame. In addition to this, a higher resolution temperature 

set was developed for use with the forward model. This new set of temperature 

profiles extends between —3 < z < 5 (1000hPa to 0.00001hPa) instead of between 

—3 < z < 3 (1000hPa to 0.001hPa). This increased the number of temperature 

points in a profile from 73 to 97. The temperature set is also at a higher resolution 

in the upper atmosphere (above z = 0), allowing radiances in the upper region 

of the atmosphere to be much more accurately determined. 

Using this new data, new training, validation and testing sets were con-

structed. The training set was extended to 2400 profiles from 1500 while the 

validation and testing sets were kept the same size - 300 and 200 profiles respec-

tively. The number of network inputs was increased to 222, 125 tangent pressures 

and 97 temperatures, and 125 radiance outputs. 

92 
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Figure 5.1: A neural network training run for channel 16 of band 1 (format 
is the described in section 3.5.1). The format of the figure is the described in 
section 3.5.1 of chapter 3. Here, the error on the test set is a = 0.31 K, very close 
to the instrument noise level in this channel (a = 0.32 K). 
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Figure 5.2: A neural network training run for channel 17 of band 1 (format is 
the described in section 3.5.1). Here, the error on the test set is a = 0.32 K, very 
close to the instrument noise level in this channel (a = 0.33 K). 
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Figure 5.3: A neural network training run for channel 18 of band 1 (format is the 
described in section 3.5.1). Here, the error on the test set is 0.31 K, very close to 
the instrument noise level in this channel (a = 0.32 K). 
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5.2.4 The Neural Network With the Updated Training 

Sets 

Using the updated training sets, channels 16, 17 and 18 were retrained. The 

results from the best training runs for each channel can be seen in fig-

ures 5.4, 5.5 and 5.6, with a summary presented in table 5.2. As can be seen, the 

test set errors are now well below the required noise levels of the instrument. 

hannel Instrument Noise / K Old Network Error / K Final network error / K Hidden nodes 
16 0.32 0.31 0.21 50 
17 0.33 0.32 0.28 50 
18 0.32 0.31 0.17 65 

Table 5.2: A list of channels that had difficulty previously with their new valida-
tion errors 

The final channel that caused problems in the original neural network was 

channel 13, the central channel in band 1. The original network output can 

be seen in figure 5.7 where the change to the scaling of the y-axis should be 

noted. Previously, the first three graph's y-axes cover the range z = [- 3, 3] as 

anything above z = 3 can be assumed to come from background radiation. In 

channel 13 however, this is not the case and here the y-axis of these plots has been 

extended to cover the range z = [-3,4]. The fact that channel 13 receives a signal 

above z = 3 also provides a possible -explanation of why this channel performs so 

badly. As can be seen in figure 5.7, the network cannot satisfactorily simulate the 

forward model right at the top of the profile (around z = 3 or 0.001 hPa). This 

may be due to the lack of temperature inputs at this level (the old temperature 

training data only extended up to z = 3.0) and by adding more, the problem 

may be better handled by the network. As was mentioned in section 5.2.3, the 

new datasets used for training extend the temperature profile much higher than 

previously (up to z = 5.0). Using this new data, a network was trained and 

produced the results shown in figure 5.8. 

As can be seen, all the network outputs are now well within the noise level, 

with a network error level of 0.13 K (Instrument noise in this channel is 0.32 K). 

There is still a large bias which can be removed from the results of the network 

in operation, further improving accuracy. 
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Figure 5.4: A neural network training run for channel 16 of band 1, using the 
new dataset (format is the described in section 3.5.1). Here, the error on the test 
set is now 0.211 K, much lower than previously (figure 5.1) 
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Figure 5.5: A neural network training run for channel 17 of band 1, using the 
new dataset (format is the described in section 3.5.1). Here, the error on the test 
set is now 0.284 K, much lower than previously (figure 5.2) 
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Figure 5.6: A neural network training run for channel 18 of band 1, using 'the 
new dataset (format is the described in section 3.5.1). Here, the error on the test 
set is now 0.176 K, much lower than previously (figure 5.3) 
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Figure 5.7: A training run for channel 13 of band 1 using the old dataset (format 
is the described in section 3.5.1). The y-scale of the first 3 sub-diagrams have been 
extended to [-3,4] as the knee of the profile extends up past 3, as was previously 
used. The error in the test set is 0.698 K, which is clearly unacceptable. 
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Figure 5.8: A training run for channel 13 of band 1 using the new dataset (format 
is the described in section 3.5.1). The error now has been reduced to 0.13 K, much 
improved from previous training runs (figure 5.7). 
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5.3 Dealing With Chemical Species 

So far, all the neural networks examined here have been trained using only tem-

perature profiles. That is, the training data have been generated assuming that 

only oxygen and temperature have an effect on radiances. This is clearly a large 

simplification. In reality, there are a large number of chemical species in the 

atmosphere which absorb and emit in the measured bands and hence need to be 

taken into account, even for temperature assimilation. This section looks at how 

this can be done for a neural network forward model. 

In the assimilation model, only a few species are present. The majority of 

bands on the EOS-MLS instrument are centered on spectral lines that are not in 

the assimilation model and so are not useful in the assimilation at the moment. 

There are several bands that would be useful in an assimilation scheme but have 

signals from chemical species that are not part of the assimilation. For these 

bands, the forward model must account for these additional species while the as-

similation process must supply a profile for these additional species, to accurately 

simulate the radiances and save contamination of other information, useful to the 

assimilation. 

Here, the effect of chemical species are considered on two bands: band one 

and band seven. Band one is the band considered previously and is centered on 

a strong oxygen line. The effects of chemical species in this case is small. Band 

seven is a band centered on the 235.7 GHz ozone line and as such is strongly 

influenced by this. Here, only two chemical species are considered: ozone (03) 

and water vapour (H20). 

5.3.1 Band One 

In order to assess whether it is viable to include additional species in the neural 

network, it is useful to investigate the effects of species on a band where these 

effects will be small. Band 1, the band used previously, is centered on a strong 

oxygen line and so the effects from other species is minimal. There are several 

channels, though, that are affected by minor ozone lines. In this section, the 

effect of these ozone lines are discussed. 

Figure 5.9 shows the calculated spectrum received at the satellite as a function 
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Figure 5.9: Radiance received by the EOS-MLS as a function of frequency for the 
frequency range of the lower sideband of band 1, calculated from an atmosphere 
in which 02, HNO3, 03 and H20 are significant emitters in the frequency range. 
The inset scale gives the tangent height of the radiance in kilometres and the 
circles represent the sampling points used to generate the plot. 

of frequency for different tangent heights for the lower sideband of band 11  with 

02, 03, HNO3 and H20 present in the modelled state. In addition to the central 

02 spectral line, which dominates the radiances for the band, there are two 03 

spectral lines - around 118.35 GHz and 119.30 GHz - which produce a measurable 

effect on radiances. Although water vapour doesn't have any lines centered in 

this region, there is water vapour continuum which effectively reducing the depth 

the instrument can look through. 

Several radiance profiles from band 1 are given in figures 5.10, 5.11 and 5.12 

which show, respectively, the original radiance profiles without any chemical 

species, the radiance profile with water vapour and nitric acid in the forward 

model and the radiance profile with ozone, nitric acid and water vapour added. 

In both the latter cases, the left figure shows the change in radiances with height 

compared to the base case of figure 5.10. As can be seen, adding nitric acid and 

water vapour has no significant effects on the radiance profile (differences have a 

magnitude of around 0.1 K) and are due almost entirely to water vapour. Adding 

'The upper sideband is masked in this band and does not contribute to the final radiances 
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Figure 5.10: Radiance profiles for channels 1, 3, 10, 14 and 24 of Band 1 generated 
with no species information in the forward model. 

ozone to the profiles significantly changes channels 3 and (to a lesser extent) 24. 

In channel 3, ozone typically increases radiances by around 10 K near 100 hPa 

and channel 24 increases by around 3 K in the same area. This is shown clearly 

in figure 5.9 where the two large ozone lines show large spikes in the radiances at 

the frequencies that correspond to these channels. 

Having seen how chemical species affect radiances in band 1, it is necessary to 

try running a neural network forward model including these effects. If the neural 

network cannot handle the relatively small effects in band 1, other bands would 

have larger problems. An initial impression of the importance can be gained 

by modelling only one channel - channel 3. This is the channel with the most 

difference due to ozone included. 
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Figure 5.11: Radiance profiles for channels 1, 3, 10, 14 and 24 of Band 1 generated 
with water vapour and nitric acid information in the forward model. The left 
sub-figure shows the difference from figure 5.10. It can be seen that the maximum 
difference is again around 0.1 K which is almost completely due to the presence 
of water vapour. 
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Figure 5.12: Radiance profiles for channels 1, 3, 10, 14 and 24 of Band 1 generated 
with water vapour, nitric acid and ozone information in the forward model. The 
left sub-figure show the difference from figure 5.10. Here, the largest difference is 
around 8 K which is in channel 3 and is caused by the large spectral ozone line 
there. 
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Results 

A new training set was constructed using the same temperature and tangent 

pressure information as was used previously. In addition, ozone data, taken from 

the same source as the temperature data, was included in the forward model cal-

culations. This ozone data covers the expected range of ozone values throughout 

the atmosphere. 

Initially, the new training set was used to train a neural network in the same 

configuration as previously - 97 temperature and 125 tangent pressure inputs, 

and 125 radiance outputs. This was done to assess whether the ozone profile is 

required as an input to the neural network. Ignoring the ozone profile as an input 

resulted in errors of around a = 0.9K, approximately three times the instrument 

noise for this channel. This shows that ozone is required as an input. 

The ozone profiles are supplied as a set of 85 concentrations at fixed pressure 

heights. Including this information into the neural network as inputs increases 

the number of inputs from 222 to 3062.  One result of this added complexity to the 

neural network is the requirement for more hidden nodes. Previously, 45 hidden 

nodes were used to train channel 3 resulting in an error of a = 0.18 after training. 

Now, 120 hidden nodes are needed in order to train the network properly. The 

results of one training run with ozone included can be found in figure 5.13. In 

this case, the error is around a = 0.24 K, which is still lower than the instrument 

noise thus ozone can be handled in this case. 

5.3.2 Band Seven 

The previous section showed that ozone could be dealt with in band 1, which is 

centered on a strong oxygen line. The instrument has several bands centered on 

ozone lines and in order to assimilate ozone information from the EOS-MLS, a 

forward model is required for these bands. One of these is band 7, a band that 

it is highly nonlinear, creating much more work for the forward model. 

Example radiance profiles from several channels in band 7 are shown in fig-

ure 5.14, which were generated using temperature, ozone and water vapour as 

species input. As can be seen, these profiles are very different from the profiles 

from band 1. The addition of water vapour in this band causes changes of the 

'One ozone input is constant across all profiles and so can be considered as part of the bias 
node 
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Figure 5.13: Training a network for channel 3 of band 1 with ozone (format is the 
described in section 3.5.1). Here, ozone concentration is used as part of the inputs 
to the neural network. The error in the network during testing is around 0.24 K, 
well below the instrument noise (0.37 K). This shows that a neural network can 
cope with chemical species in this context. 
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Figure 5.14: Example radiance profiles from channels 1, 13 and 25 of band 7 
generated using temperature, ozone and water vapour. This band is highly non-
linear as demonstrated by channel 13s profile. 

order of 40 - 100 K and so is necessary to include it. The effect on radiance of 

spectral lines against frequency for the lower and upper side bands of band 7 are 
shown in figures 5.15 and 5.16 respectively, in the same format as figure 5.9. 

Due to time constraints, only two channels were modelled: channel 1 and 

channel 13. These were chosen as they represent the extremes of height that the 

band gathers information at. The instrument noise in these channels is a = 0.37 K 

and a = 0.31 K for channels 1 and 13 respectively. Three network configurations 

were tried. 

First, a network whose inputs consisted of the tangent pressure, ozone and 

temperature profiles. was trained. This was found to produce errors of around 
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Figure 5.15: Frequency range for the lower side band of Band 7 showing the effect 
of spectral lines on radiances (similar to figure 5.9). Here oxygen, nitric acid, 
ozone and water vapour are used in the forward model. 
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Figure 5.16: Frequency range for the upper side band of Band 7 showing the 
effect of spectral lines on radiances (similar to figure 5.9). Here oxygen, nitric 
acid, ozone and water vapour are used in the forward model. 
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a = 5 K in both the modelled channels. 

The second network c9nflguration has tangent pressure, ozone, temperature 

and water vapour profiles as inputs. When using this network, the training error 

dropped to around a = 3 K for both channels. While an improvement, this error 

is still unacceptably large. 

The third network configuration removed the temperature profile from the in-

puts while keeping the tangent pressure, water vapour and ozone profiles. Train-

ing a network in this configuration improved the network error dramatically to 

produce a worst error of a = 1.45 K for channel 1 and a = 0.75 K for channel 13. 

Although still well above instrument noise levels, this error is localised around 

z = —2.7. Above z = —2.2, the error in both channels drops well below instru-

ment noise to a = 0.2 K for both channels. The results from both channels can 

be seen in figures 5.17 and 5.18 for channel 1 and 13 respectively. 

A possible reason for this large error in the lower section of the profile can 

be seen in figure 5.19. The large increase in water vapour below z = —2.2 

corresponds well with the height of the large error in the neural network. Above 

this level, there are only trace amounts of water vapour and the neural network 

is able to model the radiances well. Below z = —2.2, the water vapour level 

increases and the neural network error increases substantially. 

As this problem only affects the tangent heights below z = —2.2 or p 

160 hPa, and below this height very little ozone is present in the atmosphere, 

the neural network can be used with these channels as part of an assimilation 

process for ozone. To do this, only those minor frames above z = —2.2 would 

be considered as part of the assimilation process. Several possible methods for 

dealing with water vapour are discussed briefly in chapter 6. 

5.4 Discussion 

This chapter has shown that it is possible to extend the neural network in several 

ways. It has been shown that the neural network can generate radiances from 

different channels and that the network can be extended to work in more realistic 

atmospheres where additional chemical species affect the radiances. 

The initial part of the chapter looked at extending the neural network de-

veloped in chapters 3 - 4 for use in different channels. It was shown that most 
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Figure 5.17: A training run for channel 13 of band 7 with ozone and water vapour 
as inputs (format is the described in section 3.5.1). Here, the worst standard 
deviation is around 1.45 K near z = —2.7. Above z = —2.2, the network is well 
trained with the worse error being around cr = 0.25 K. 

112 



Chapter 5: Extending the Neural Network 
	

113 

Radiances Profile #172 
0 a- 

- 	2 

0 

' - 7 
0 

—2 
0 

—3 

—50 0 	50 100 150 200 250 
Brightness Temperature / K 

Test Set Statistics 
0 

Absolute Error 
3 

2 

1 

0 

—1 

- 2 

—1.0 	—0.5 	0.0 	0.5 	1.0 
Error in Brightness Temperature / K 

Training error 

0 
-c 	2 - Bias 

—Std Dev 
- Lns.trument 

IN 01 S 

+ Max. Devia 

C 
0 

0 
> 
0 

-o 
a 

-a 
Cl 
0 

(1) 

?7 	0.10 
a = 0.05 
Best std. dev =0.81 
Hidden Nodes = 150 
R3.B7F.0 1 

+ 	4 

—6 	—4 —2 	0 	2 	4 	 0 	100 200 300 400 500 
Deviation / K 	 Epoch 

Figure 5.18: A training run for channel 13 of -band 7 with ozone and water vapour 
as inputs (format is the described in section 3.5.1). Here, the worst standard 
deviation is around 0.75 K near z = —2.7. Above z = —2.2, the network is well 
trained with the worse error being around a = 0.2 K. 
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Figure 5.19: A typical water vapour profile used when running the forward model. 
Above z = —2.2, there is only a small amount of water vapour in the atmosphere 
which does not affect the produced radiances significantly. Below z = —2.2, the 
amount of water vapour increases significantly. 

114 



Chapter 5: Extending the Neural Network 
	

115 

channels could be modelled within instrumental error levels. Several channels 

presented problems, but retraining these channels using an updated training set 

based on new instrument specifications resulted in training errors well below in-

strument noise levels. 

The second part of the chapter looked at adding more chemical species to the 

neural network, resulting in a more realistic forward model. Initially, 03 and 

H20 were added to one channel in band 1, the channel most affected by these 

species. It was shown that the neural network could cope with these species, 

producing errors less than the instrument noise level. 

Several channels from another band were modelled using a neural network. 

This band, band 7, is centered on an ozone line and has a highly non-linear re-

sponse. It was found that the radiances for these channels could be well modelled 

above 160 hPa. Below this, the effects of water vapour dominate the radiances 

and the neural network is unable to cope, producing errors of around a = 1 K. 

The failure of the neural network may be due to the large range of values encoun-

tered in water vapour, which varies proportionally much more at one height than 

other species examined. This may mean the training data is much less represen-

tative or more sparsely spaced, resulting in the neural network being unable to 

learn the data correctly. One solution to this would be to increase the training 

dataset size, allowing more coverage of the expected range of water vapour values. 

Due to time constraints, the effects of water vapour on band 7 radiances 

were not thoroughly explored. One approach that was examined briefly was to 

use a neural network to calculate only the bottom 30 minor frames (to around 

200 hPa). This reduced the error for those minor frames in channel 1 but the 

resulting network still had an error much larger than the instrument noise. 

The work on incorporating chemical species in this chapter has focused on 

ozone as this is normally part of the assimilation models state vector. It should 

be possible to deal with other species in a similar way. Problems will arise when 

adding a species that are not part of the assimilation process's state vector to the 

forward model as the species profile must be specified externally. It should be 

noted that, as the neural network is a straight replacement for a traditional for-

ward model, these problems must also be faced when using a traditional forward 

model. 

This chapter has extended the neural-network-based forward model to sim- 
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ulate a more realistic atmosphere. It has shown that the network can work in 

different channels and that it is possible to handle species information in some 

cases. Chapter 6 looks the final problem that must be overcome for a neural-

network-based forward model to be considered - providing a Jacobian for the 

neural network. 
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Chapter 6 

The Adjoint Model 

6.1 Introduction 

Previously, it has been shown that a neural network can replicate a forward model 

for the EOS-MLS well. However, in order to integrate this neural network into 

an assimilation scheme, an adjoint model is also required. 

A 4D-VAR assimilation scheme is a three-step process. First, the model 

fields are used to generate expected instrumental radiances using a forward model 

within a time window. These radiances are then compared to the real instrumen-

tal radiances at the same location and the error established. In the final step, 

the model fields are updated for this time window using the adjoint model. 

In this chapter we discuss what is involved in the adjoint model and how this 

cah be achieved using a neural network forward model. It shows that an adjoint 

model can be constructed using a neural network that may suitable for use in an 

assimilation scheme. 

6.2 The Adjoint Model 

Chapter 2 discusses the assimilation process of a 4D-VAR system in detail. The 

framework is reiterated here with an emphasis on the adjoint model. 

In a 4D-VAR assimilation scheme, the system evolves according to equations 

6.1 and 6.2, where Xk is the state of the system at time-step k (where an obser-
vation is made), 11k  are the inputs to the dynamical model at time-step k (e.g. 
ground albedo values) and fk  is a nonlinear function describing the evolution 
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of the system, through the dynamical equations, between successive observation 

times, k = 0, . .. , N - 1. The observations are related to the system states by 

way of the radiative transfer equation (6.2), which has an error term, 8k  which 

is assumed to be unbiased, uncorrelated in time and Gaussian with covariance 

matrix Rk. 

Xk+1 = fk(Xk,Uk), 	k=O,...,N-1 	 (6.1) 

Yk-hk(Xk)+8k 	 (6.2) 

The assimilation is achieved by minimising the cost function, J, given by 
equation 6.3 with respect to x 0 , where 4 is the initial background state with 

error covariance B0 , which is assumed to be known. 

J = 	- )TB'(0 - ) + 
2 
E (h(x) - )TR'(hk(xk) - ilk) (6.3) 

This problem can then be solved iteratively using a gradient descent method. 

The cost function is first split into two parts (equation 6.4) where J0  and J are 
given by equations 6.5 and 6.6 respectively. 

J=JO+. Ji 	 (6.4) 

Jo= (6.5) 

Ji = (hk (k) - Yk) R' (hk (k) Yk) 	 (6.6) 

Two assumptions are then made. The first assumption is that the states 

of the model, Yk, can be expressed in terms of the initial state, ±, as x, = 

fk(fk-.1(... fo(o, '7))). The second assumption is that both fk  and hk can be 

linearised around the current trajectory, using equations 6.7 and 6.8, where Fk 

and Hk are the Jacobians of fk  and hk with respect to Xk. 

Xk+1 = fk(Xk,ilk) + Fk Fk 	 (6.7) 
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hk(xk) - Yk FkHk_l 
- 

Wk 	 (6.8) 

Using these relations, along with the constraints given by equation 6. 1, the 

gradient of the cost function can be derived as in equations 6.9 - 6.12, where 

dk = R' (hk (±'k) 
- Wk) is called the departure of the observation and V 0  is the 

derivative with respect to . 

v o J 	v oJo  + E v oJi 	 (6.9) 

v o J = 	BO  '(So - ) + : 17-0  Ji 	 (6.10) 

v o Ji  = 	F1TF2T  . .. 	 (6.11) 

= Hd0  + F(H'd1  + F27'(Hd2  + . . . F_l H1 _ l dN_l))(6.12) 

Defining Ak by equation 6.14, the gradient of the cost function can be rewritten 

as in equation 6.15. Ak are the adjoint variables, which measure the sensitivity 

of the gradient to changes in the k 1 measurement. 

AN = 0 	 (6.13) 

= Fk7 k)Ak+1 —HR'(hk(k) - Yk) 	 (6.14) 

vxoJ - D' 	
- 	- A 0 	 (6.15) - -  

It is assumed that Fk and Rk are known in equation 6.14. Hk is the Jacobean 

of the instrument forward model, hk This Hk must be calculated and supplied 

by the forward model for each forward model calculation. This chapter discusses 

how Hk may be calculated for the neural-network forward model. 
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6.3 Calculating the Jacobian 

In traditional forward models, the Jacobian of the instrument's forward model 

is generally found by using an automatic differentiation routine (e.g. Giering 

(1999)). This process takes in a (FORTRAN) routine and produces a corre-

sponding routine for calculating the derivative of this function. 

With a neural network, automatic differentiation would be slow and error 

prone. During the running of the neural network, derivatives of the activation 

functions for each node are calculated for training (see section 2.5.4 in chapter 2). 
An automatic differentiation scheme would recalculate them numerically, result-

ing in a large slowdown and may introduce numerical errors due to non-analytical 

differentiation. 

Instead, the neural network may be differentiated by hand and then imple-

mented in code. The general equation for output q of a neural network with one 
hidden layer of m nodes is given by equation 6.16 (derived from Krasnapolsky 
(1997)) where Yq  is the output value of the node q, bq  and aq  are normalisation 
constants, 0 is the activation function of the output node. W qj  is the weight from 
hidden node j to the output node q, 'y  is the activation function of the hidden 
node, IIjj  is the weight from the input node i to the hidden node j and 1(i) is 
the input value of node i. min*  1(i) and max*  1(i) are the (constant) minimum 

and maximum values of the training set for the input node i including scaling 
factors, as defined in section 3.3 of chapter 3. B 1  and i3 are the network biases 
for the hidden node j and the output node q respectively. 

\ 
Yq = bq +aq { 	Wqj [ ( 	jj 	

min* 1(i) 
 

3=1 	 \i=1 	
max* 1(i) - min* 1(i)) 

+ B3)] + q } (6.16) 

In this case, both 0 and 'y  are the sigmoid function 6.17, which has a derivative 

of 6.18. When written this way, it is, possible to differentiate the equation for Yq 
analytically using the chain rule. This results in equation 6.19 for the derivative 

Of Yq  with respect to input 'a where z3  is the output of the hidden node j and V 
is the (unnormalised) output of the output node q. 

ac(a) = 	
1 
	 (6.17) 

1 + exp(—a) 

120 



Chapter 6: The Adjoint Model 
	

121 

d 
—ac(a) = a(1 - a) 	 (6.18) 
du 

M 
1 ayq  

= a(V(1 - ))wqjja (zj(1 —z)) 
max*I(a) _ min* I(a) 	(6.19) 

j=1  

In equation 6.19, the term aq  is a normalisation constant used to convert (with 

bq  in equation 6.16) the output from the range {0, 11 to the actual output. The 

actual value of this is defined by equation 6.20 where max* 0(q) and min* 0(q) 
are the scaled maximum and minimum values in the training set for output q, 
discussed in section 3.3 of chapter 3. 

aq = max* 0(q) - min* 0(q) 	 (6.20) 

All the values in equation 6.19 are easily found in the neural network program 

and have already been calculated on the forward pass. Using the pre-generated 

values, it is easy to calculate the Jacobian of the neural network at very little cost 

in time. The issue faced here is whether this neural-network generated Jacobian 

is accurate enough, compared to the true Jacobian, to be used in an assimilation 

scheme. 

6.4 Results 

To create the Jacobian of the network, the formula 6.19 must be applied to each 

output for each input. In the neural network, this creates an array of [193, 120] 
numbers as there are 193 inputs to the neural network (73 temperature inputs 

and 120 tangent pressures) and 120 outputs (radiances). 

Figure 6.1 shows an example Jacobian for temperature generated using au-

tomatic differentiation of the true forward model. This Jacobian is generated 

from channel 1 of band 1. The main feature of this is the large red bulge below 

zr,, = —1.7 and the large negative (blue) values above this, around z, = —1.2. 
This means that for all tangent z < — 1.7, the radiances contain information 

about the temperature near z = — 1.7 while around z = —1.2, the radiances 

are inversely proportional to the temperature (the influence is negative). This 

121 



Chapter 6: The Adjoint Model 	 122 

negative influence arises principally from the temperature dependence of the ab-

sorption coefficient. 

Using the neural network, the corresponding Jacobian with respect to tem-

perature can be seen in figure 6.2. Here, the negative section, below z = — 2.7, 

is visible though the values are smaller than the true Jacobian. The negative 

area, around z = — 1.2 in the true Jacobian, is less well defined in the neural 

network Jacobian and is more horizontal. This shows that the network Jacobian 

is unacceptable for use in this case. 

Retraining the network used, the validation error was reduced from 0.13 with 
45 hidden nodes to 0.11 with 55 hidden nodes. This was achieved by undatin 

the network to use the new training data described in section 5.2.3 in chapter 
5. Previously, the network had 120 outputs and 193 inputs. When using the 

new instrument specifications, the network was increased to 125 outputs and 222 

inputs. The Jacobian in this case was found to be still too noisy. 

Up until now, the network had been trained using sigmoid transfer functions. 

Chapter 3 discussed the use of hyperbolic tangent transfer functions, but their use 

was rejected as they tended to send the error towards infinity, if not used with 

care, moreover they provided no significant advantage over sigmoid functions. 

Here, they are again considered. The previous network-generated Jacobians may 

have been inaccurate due to the network finding local minima in weight-space 

instead of the global minimum. By using a hyperbolic tangent transfer function, 

this problem may be avoided as the previous behaviour of sending the error 

towards infinity might allow it to pass these local minima and find the global 

minimum. 

When the network is trained using hyperbolic transfer functions, together 

with the new training data, the validation error was again around 0.11. The 

derivative of the network, equation 6.19, can be adapted when using hyperbolic 

tangent transfer functions to equation 6.21, where the symbols are as described 

previously (see section 6.3). 

1 
DIa 	 max* 1(a) - min* 1(a) 	

(6.21) 
 J=1 

The network Jacobian in this case is shown in figure 6.3. As can be seen, 
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Figure 6.1: The Jacobian for temperature, for channel 1 of band 1 generated using 
automatic differentiation of the true forward model. Each input to the forward 
model will have 125 entries in the Jacobian (one value for each output), and is 
represented by a vertical slice in the diagram at the corresponding height (in 
log-pressure space), ZT. z, corresponds to the tangent pressure of the measured 
radiance and the Jacobian value at that point is represented by a colour, indicated 
by the scale on the right. This shows that for z < —1.7, the radiances in this 
channel contain information about the temperature near z=-1.7 (The channel is 
blacked out) 
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Jacobian for Temperature in Channe 
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Figure 6.2: The Jacobian for temperature, for channel 1 of band 1, generated 
using differentiation of the neural network. Compared to figure 6.1, it can be 
seen that the main features are similar but there are a lot of extra features. 
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this is much closer to the true Jacobian. There are still several unaccounted fOr 

discrepancies (e.g. around z = [1.0, —1.3]) however these are have values around 

0.02. The difference from the truth is shown in figure 6.4. The largest error is 

around 0.05 and occurs near the large negative section around z = [-1, —1]. This 

error means that a 1K change in temperature at that height will result in error 

of 0.05K in the radiance. 

Garand et al. (2001) propose a "goodness" measure for Jacobians of a nadir 

sounding forward model. This "goodness", M, can be defined as equation 6.22, 

where JM,i  are the elements of the proposed Jacobian and JR,j  are the elements 

of the true Jacobian. The summation is over all elements in the Jacobian. 

N J  

M = loOj 	
(M,i JR,i)2 	 (6.22) 

NFi=l R,i 

It is suggested that values of M < 5 indicate an excellent fit, 5 < M < 15 

are a good fit, and generally suitable for use in NWP applications. Values of 

15 < M < 25 are fair to marginal and M> 25 indicate a serious problem. This 

measure only gives an indication of whether the Jacobian is suitable. Examination 

of Jacobians within the assimilation process environment is needed to ensure the 

Jacobian is suitable. 

This measure can be adapted to the limb sounding case by considering each 

minor frame as a separate measurement. In the case of the EOS-MLS, this 

produces a set of 125 M-values, which can be plotted. For the Jacobian in this 

case, the results can be found in figure 6.5. In this case, below zr,, < 1.5, the M 

value is around 10. Above this, the Jacobian is effectively zero and the M value 

tends towards infinity. This suggests that the Jacobian may good enough to use 

in an assimilation scheme. 

The largest errors in the network Jacobian occurs in a small selection of minor 

frames near z = — 1.3. To investigate whether the model could be made more 

accurate in this area, a reduced neural network was constructed. This network 

consisted of one output, the radiance for one minor frame near this height. The 

inputs consisted of 1 tangent pressure for the radiance and 36 temperature inputs 

from z < 0.0. It was found that using 5 hidden nodes produced optimal results, 

with a testing set error of a = 0.10K. The Jacobian generated from this can be 

seen in figure 6.6 and is equivalent of taking a horizontal slice through figure 6.3 
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Jocoban for Temperature in Channel 1 
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Figure 6.3: The Jacobian for temperature, for channel 1 of band 1, generated 
using a neural network with hyperbolic tangent transfer functions. Compared 
to figure 6.2, it is now much cleaner and the main features are much more pro-
nounced. There are still small errors outside the main feature but these have a 
size of around 0.02. 
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Difference in Network Jacobian from Truth 
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Figure 6.4: The difference between the true Jacobian (figure 6.1) and the network-
generated Jacobian (figure 6.3). The largest error is approximately 0.05 in value 
which corresponds to around 2K error in temperature. 
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Figure 6.5: The M-value plot for the network-generated Jacobian (figure 6.3). 
This gives an approximation of how good the generated Jacobian is. Values of 
M < 15 are considered good. Here, for z < 1.5, the M values are approximately 
10, suggesting the Jacobian is suitable for use in an assimilation scheme. 
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at zr,, = —1.3. The error in this Jacobian is now less than 0.03, which shows that 

it is possible to further improve the Jacobian produced by the neural network. 

Other channels within band 1 have similar results. Figures 6.7, 6.8 and 6.9 

show the true Jacobian, the network Jacobian for temperature inputs and the 

difference from truth for channel 8. Here, the network has been retrained as 

above using hyperbolic tangent activation functions. The network validation 

error is approximately a = 0.1 and the worst error in the Jacobian is around 

0.06. As before, the sections outside the main negative section have values of less 

that 0.03. Here, the error in the negative section of the K matrix is much more 

pronounced. The M-values of this can be seen in figure 6.10. Here, the M values 

are approximately 16, which higher than channel 1 and may pose larger problems 

when integrating with an assimilation model. 

This section has looked at the Jacobian of the neural network with respect to 

temperature. It has shown that a Jacobian for the neural network can be con-

structed analytically and that the resulting Jacobian may be sufficiently accurate 

for use in an assimilation scheme, though this would need further testing within 

the assimilation scheme environment. The analytical differentiation produces the 

same derivative as perturbation of temperatures, but is substantially quicker as 

all the intermediate variables are already available. 

6.5 Tangent Pressure Jacobian 

The role of tangent pressures in the forward model was previously discussed in 

chapter 4. It was shown that it is possible to retrieve the tangent pressures us-

ing a neural network outside the forward model. As previously stated, tangent 

pressures are not part of the assimilation state vector for technical reasons. How-

ever, the tangent pressures are still inputs into the forward model. It is therefore 

interesting to look at their derivatives. 

In the true forward model, the section of the Jacobian related to the tangent 

pressure is highly sparse as the tangent pressure for one scan position has no 

effect on the radiances at any other scan positions. The non-zero elements are 

plotted in figure 6.11. 

The network output is plotted in figure 6.12. In this case, it can be seen that 

the Jacobian is definitely not sparse but has a structure similar to the temperature 
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Figure 6.6: The Jacobian elements for temperature for one minor frame from 
the truth (dashed line) and a reduced neural network (solid line). The reduced 
neural network inputs consists of 36 temperatures (levels below z = 0.0) and the 
tangent pressure for the minor frame. The output is a single radiance for that 
level. Here, the error in the neural network Jacobian is always less than 0.03. 
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Jacobian for Temperature in Channel 8 
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Figure 6.7: The Jacobian for the true forward model, generated using automatic 
differentiation for channel 8 of band 1. 
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Figure 6.8: The Jacobian for the network for channel 8 of band 1. Although not 
as clean as the channel 1 Jacobian (figure 6.3), the large errors occur at only a 
small number of minor frames (see figure 6.9) which suggests a similar problem 
to the Jacobian from channel 1. 
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Figure 6.9: The difference between the network generated and the true Jacobians 
for channel 8. The largest error is around 0.06. Away from the large errors, the 
errors are less than 0.03. 
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Figure 6.10: The M values for the network generated Jacobian for channel 8. 
Here, the M values are around 16. For comparison, channel 1 produced M values 
around 10. 
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Figure 6.11: The non-zero elements of the K matrix for tangent pressure used by 
the traditional forward model. 
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K matrix. This implies that radiances at one level do depend on the tangent 

pressures at other levels. Summing all the tangent pressure contributions for each 

radiance output results in figure 6.13. For reference, the truth (red line) and the 

difference (dashed line) are plotted as well. It can be seen from this that the 

overall influence function is correct (the largest error is around 5%). This means 

that the neural network expects each tangent pressure to influence a group of 

radiances, not a single radiance, however, the network is using the total tangent 

pressure information across each radiance as expected. Figure 6.12 shows the 

same overall structure as the temperature section of the Jacobian. This suggests 

the network is unable to separate the contributions from the tangent pressures 

on the radiances from the effects of temperature. 

In the reduced neural network trained in section 6.4, there is only one tangent 

pressure input, resulting in a single element for the tangent pressure K matrix. 

This has the value of —315.11, compared to the true value at that level of —316.80. 

This shows that when other tangent pressures are not present, the neural network 

can calculate the derivative of the radiance with respect to the tangent pressure 

well. It may thus be possible to improve the use of tangent pressures within the 

neural network using a more complex network structure, however this was not 

investigated as the radiances generated are within instrumental noise and the 

tangent pressures are not part of the assimilation scheme. 

Previously, it was stated that the tangent pressures cannot be part of the 

assimilation model's state vector due to technical reasons. In this section, it was 

shown that, in its current configuration, the neural network cannot produce an 

accurate enough Jacobian for tangent pressures. Without an accurate Jacobian, 

tangent pressures cannot be used within the assimilation process. This supports 

the previous argument for retrieving the tangent pressures separately from the 

forward model and assuming them to be known. 

6.6 Jacobian for Constituant Species 

So far, this chapter has examined the Jacobian for temperature and tangent 

pressure. In chapter 5, the neural network was extended to include additional 

species in the forward model calculation. In this section, the Jacobians for these 

species is examined. Chapter 5 used band 7, a band centered on an ozone line, 
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Figure 6.12: The Jacobian for the network with respect to the tangent pressures 
for channel 1. Ideally, this should be sparse matrix, with the z only being affected 
by the corresponding tangent pressure. Here, this is not the case, implying that 
each radiance depends on more than one tangent pressure. 
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Figure 6.13: Summing the tangent pressures along each output level leads to 
the correct influence function. This shows that the network is using the tangent 
pressure information in the expected way but expects each radiance to affect 
those around it. 
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for this work. Here, the same band will be considered. 

The neural network for band 7 relied on ozone and water vapour as inputs 

and ignored temperature information. It was found that above about 150hPa, 

the neural network performed well, but below this the network produced large 

errors in the results. Here, the Jacobian of these inputs is examined and possible 

reasons for this poor performance are considered. 

The derivatives are calculated in the same way as previously explained. Here, 

the neural network is using sigmoid activation functions. In band 1, this produced 

unreasonably large errors in the Jacobian. The Jacobian for the true forward 

model with respect to ozone is presented in figure 6.14. Here, the radiances 

are solely affected by the ozone concentrations near the measurement height. 

Figures 6.15 and 6.16 show the Jacobian generated from the neural network and 

the difference from truth. 

Below z = 0.3 (around 0.5hPa), the Jacobian from the neural network is 

very similar to the true Jacobian, with only small deviations near the bottom of. 

the atmosphere. Above zr,, = 0.3, the neural network Jacobian drops by an order 

of magnitude compared to the true Jacobian. Figure 5.18 in chapter 5 shows 

that the radiances above z = 0.3 are effectively at background radiation level 

and hence contain no useful information. 

Previously, it was found that the neural network performs poorly in the lower 

regions of the profile. The reason for this poor performance was thought to be 

due to the effects of water vapour (see chapter 5). If the neural network was 

unable to cope well with water vapour inputs, this is the region the problem 

would show in. The Jacobian for water vapour, generated using the true forward 

model is shown in figure 6.17. Here, the scale has been changed to concentrate 

on the lower part of the atmosphere. Outside this region, the Jacobian is very 

close to zero. 

Figure 6.18 shows the corresponding region of the neural network generated 

Jacobian. As can be seen, the main peak (at zr,, = — 2.5) has got a similar shape 

to the true Jacobian but its effect is an order of magnitude lower. Beyond this 

(ZH20> —2.4), the values rapidly increase in magnitude. Figure 5.19 in chapter 5 

shows a typical water vapour profile. It can be seen that the largest concentration 

of water vapour is below z < —2.4, where the network Jacobian follows the true 

Jacobian in shape. Above z = —2.4, the concentration of water vapour drops 

139 



Chapter 6: The Adjoint Model 
	

140 

ce 

 

- 

± 06 

 

z 

U I•. 

Z 03  

Figure 6.14: The real Jacobian for ozone in channel 13 of band 7, generated using 
automatic differentiation of the real forward model. This shows that the radiances 
are almost entirely affected by the ozone concentrations at the measurement 
height. 
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Figure 6.15: The neural network-generated Jacobian for ozone in channel 13 of 
band 7. Compared to figure 6.14, the network performs well up to around z, = 0.3 
(0.5hPa) where the Jacobian becomes much smaller-valued. 
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Figure 6.16: The difference between the neural network-generated Jacobian (fig-
ure 6.15) and the true Jacobian (figure 6.14). As expected above 0.3hPa, there 
are large differences where the neural network uses less ozone information. 
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Figure 6.17: The true Jacobian for water vapour in channel 13 of band 7. The 
scale has been changed to only show the lower part of the atmosphere, where the 
water vapour has an influence. 
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significantly. The true forward model ignores water vapour information above 

z = —2.4 (i.e. its Jacobian is zero at that point) but in the neural network, these 

values contribute to the radiances. Even if the contribution is small, the effect 

seen in the Jacobian will be large, due to the concentration of water vapour being 

small. This is what is seen in figure 6.18. 

6.6.1 Improving the Neural Network Performance 

One possible solution to this problem might be to split the problem across two 

networks. The first would cover the lower part of the radiance profile (where 

water vapour affects it) and use water vapour and ozone profiles as inputs. The 

second network would cover the upper part of the profile and only use ozone 

profiles as inputs. To test this, two networks were trained, the first ran the upper 

95 minor frames of the profile (network A) and the second trained on the lower 

30 minor frames (network B). As expected, network A produced similar errors to 

the previous results. Network B did, improve from a = 1.4K to a = 1.0K, still 

well above the instrument noise level. 

There are several improvements that could be made that might reduce the 

error but these were not tested due to lack of time. One possibility is to introduce 

skip layer connections (e.g. Ripley (1997)) between the input ozone levels and 

the radiances at the corresponding tangent heights. As shown previously, only 

the ozone concentrations very near the measurement height have an affect on the 

radiances. Doing this would reduce the complexity of the problem for the neural 

network as it does not have to deal with irrelevant information in each output 

node. 

6.7 Discussion 

This chapter has shown that it is possible to calculate the Jacobian for the neural 

network-based forward model using analytical differentiation. The Jacobian for 

temperature was investigated for two channels. In the first, it was found that the 

Jacobian may be acceptably accurate for use in an assimilation scheme, though 

testing within the assimilation environment would be necessary. In the second 

channel, the Jacobian was less accurate, though may still be acceptable in an 

assimilation scheme. A reduced neural network was constructed to examine the 
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Figure 6.18: The neural network-generated Jacobian for water vapour in channel 
13 of band 7. Compared to figure 6.17, the main feature is the right shape 
but there are large areas where the Jacobian does not fit in the scale. This is 
partly due to the scarcity of water vapour in the atmosphere above ZH2O =-2.5. 
Small changes above this height will result in dramatic changes in the measured 
radiance. 
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Jacobian for a single minor frame, where the error in the Jacobian was greatest. 

In this reduced network, the Jacobian was very close to the true Jacobian. This 

suggests it is possible to improve the Jacobian across the entire profile. 

It was found that using sigmoid transfer functions in the neural network, 

in this case, produced significant errors in the Jacobian. Instead, the networks 

for the two channels examined were retrained using hyperbolic tangent transfer 

functions. It is thought that hyperbolic tangent transfer functions allow the 

network to more easily find the global minimum in weight space, hence allowing 

more accurate Jacobians to be found. 

The Jacobian with respect to the tangent pressures was also investigated and 

found to be much different from the true forward model. This implies that the 

"black box" nature of the neural network is using the tangent pressures in a way 

that the true forward model does not use them. In the reduced neural network, 

the tangent pressure Jacobian was found to be very close to the true value (less 

than 1% difference). This again suggests that the Jacobian can be improved. 

Possible ways of improving the neural network include looking at using skip-

layer connections and investigating more advanced training methods. As the 

tangent pressure Jacobian is sparse, with each tangent pressure only affecting 

its corresponding minor frame radiance, using skip-layer connections could be 

constructed between the tangent pressure inputs and their own corresponding 

radiance output. This may allow a more accurate Jacobian for tangent pressures 

to be created. It may also help reduce the errors seen in the temperature Jacobian. 

Chapter 5 examined the use of a neural network in a band dominated by 

an ozone line. Here, the corresponding Jacobian was examined. It was shown 

that the Jacobian generated from the neural network was very similar to the 

true Jacobian up to 0.3 hPa. Above this, the Jacobian is an order of magnitude 

smaller than the true Jacobian. Above this height, the radiances in the channel 

had values very near background radiation levels and would not be used in an 

assimilation scheme. 

The Jacobian for water vapour in this channel was also investigated. It was 

found to differ significantly from the true Jacobian. This is the reason the neural 

network had difficulty modelling radiances in the lower atmosphere in this band. 

Several suggestions have been made to improve this but due to the complexity 

of the changes required in the code and a lack of time, these were not tested. 
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Calculating the Jacobian using analytical differentiation comes at little cost 

within a forward model run. The intermediate variables are already available 

from the initial run of the neural network and all that is required is a series of 

additions and multiplications. The analytical differentiation produces identical 

results to perturbing the network inputs, but is substantially faster. 

Overall, the network Jacobians generated in this chapter for temperature 

and ozone may be acceptable in an assimilation model, though testing within 

the assimilation environment is necessary to determine this. The Jacobian for 

water vapour was shown to be largely inaccurate and in need of further work. 

Several suggestions for further work have been made, should the Jacobians prove 

unacceptable. 
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Chapter 7 

Conclusions and Discussions 

The work carried out in this thesis has demonstrated that it is possible to con-

struct a forward model for the EOS-MLS based on neural networks. It has been 

shown that a neural network can perform well in band 1, which is centered on an 

oxygen line so temperature and pressure have the largest effect on radiances. It 

has also been shown that the Jacobian for this band, calculated by analytical dif-

ferentiation of the neural network, may be acceptable in an assimilation scheme 

but testing within the assimilation environment would be needed. It was further 

shown that discrepancies in the network Jacobian can be overcome in principle. 

The issue of how to cope with tangent pressures in an assimilation scheme 

has also been examined. As has been stated, the assimilation model does not 

have tangent pressures in its state vector and these are unlikely to be added for 

technical reasons (Feng (2004)). It has been shown that these tangent pressures 

can be retrieved, outside the assimilation scheme, using a neural network with 

errors that are comparable to traditional retrieval methods. 

The main reason for investigating the use of a neural network as a forward 

model is computer time. Assimilating instrument measurements takes a large 

amount of computer power and anything to reduce this would allow the computer 

time to be spent on other tasks, such as increasing the number of instruments 

assimilated or increasing the resolution of the model. As computers become more 

powerful, instruments also become more complex and require more computing 

power to run their forward models. This means there will always be a need to 

reduce the processing cost of the forward models. 

Neural networks provide such a way. Table 7 shows the times needed to 
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run 10 profiles through the neural network and the true forward model for one 

channel. Both runs were carried out on a SunBiade 100 desktop PC running 

at 502MHz with 256MB of RAM. Each run was carried out twice to reduce the 

effects of network latency. Although this well below the power available to run 

the assimilation process, it can be seen that the neural network is almost 100 

times quicker than the full forward model while still having acceptable errors. As 

linearised forward models are currently unavailable, no testing compared to these 

could be carried out. 

Model Run 1 Run 2 
True without Jacobian 2m 31.1s 2m 30.3s 
True with Jacobian 13m 52.7s 13m 47.Os 

Neural Net without Jacobian 2.1s 1.9s 
Neural Net with Jacobian 9.4s 8.7s 

Table 7.1: A comparison of running times between the neural network and the 
true forward model 

Chapter 2 gives a list of prerequisites for incorporating measurements into 

a 4D-VAR scheme. The first is a fast forward model. This has been shown to 

be achievable using neural networks (approximately lOOx faster than traditional 

forward models). The second thing required is the Jacobian for the forward 

model. Chapter 6 has shown that the Jacobian for a neural network can be 

calculated using -analytical differentiation. For the large majority of the profile, 

the errors in the Jacobian are small but near the largest values, the discrepancies 

in the Jacobian become larger. As shown in chapter 6, these Jacobians may 

be acceptable, subject to testing within the assimilation environment. If these 

discrepancies are a problem, more work needs to be done to improve the accuracy 

of the Jacobian. The final thing needed is an estimate of the error covariance 

matrix for the instrument. This should include instrument errors, interpolation 

errors and errors due to the forward model. Here, the forward model contributes 

errors typically around a = 0.1K (around 1/3 of the instrument noise). The 

testing phase of the neural network provides a number of radiance profiles that 

can be compared to the equivalent profiles in the testing set. This, combined 

with characteristics from the assimilation model, should provide a good estimate 

of the error covariance matrix for the neural network forward model. 
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In order to use a neural network forward model in an assimilation scheme, 

the following steps must be taken prior to including it: 

Decide which minor frames from which channels / bands will be used in 

the assimilation scheme 

Generate training set from real forward model based on these, covering all 

expected input values 

Train the neural networks to generate weights for forward model 

Train a neural network to retrieve tangent pressures 

Once these have been done, it is possible to use the neural network in place of 

the full forward model. 

There are several limitations on neural networks. The major disadvantage 

is that they handle poorly inputs which are outside their operating range. This 

means that all inputs must be checked to ensure they lie within the expected 

ranges and if not, either discard the profile or run it with a full forward model. 

Another disadvantage is that a neural network is unable to run new channels 

without first being trained for them. 

The work in this thesis has dealt with training data generated using a non-

tomographic forward model, i.e. the atmosphere is considered horizontally homo-

geneous. In reality, the radiances are affected by inputs across a large (horizontal) 

area, over which the atmosphere is likely to change significantly. As was stated 

in chapter 3, this non-tomographic forward model reproduces the true radiances 

within approximately 1K. To improve this, data from several profiles are used 

within a tomographic forward model. It would be possible to simulate this in 

a neural network by increasing the number of inputs in the neural nelwork to 

accommodate more input profiles. In this case, the size of the training and vali-

dation sets may need to be increased to cover a much larger range of conditions. 

There are several ways the work in this thesis could be extended. The first and 

most obvious way would be to extend the network to work in other bands. As-

similation models are starting to deal with more chemical species than just ozone 

and there are chemical transport models that are already implementing data as-

similation. The EOS-MLS and other satellite data contain a lot of information 

about these species and could be useful in their assimilation processes. 
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The work in this thesis has mainly concentrated on band 1 of the EOS-MLS. 

This is because the effects of the oxygen line at 118.75 GHz dominate the radi-

ances in this band, while the upper sideband is masked. It has been shown that 

in all channels of this band, the neural network-based forward model works well. 

Band 7, a highly non-linear band centered on an ozone line was also considered. 

In this case, the radiances in the lower atmosphere (below z = —2.2) have large 

errors when generated using the neural network-based forward model. Above 

this, the radiances are well below instrument noise levels. This suggests that 

the work here should apply to other bands, provided the appropriate species are 

included in the input state-vector. 

Another possible improvement might be to investigate other training methods. 

Here, backpropagation was used, while quickprop was found to be unsuitable for 

this network. There are a large number of other training methods that could 

be investigated such as Bayesian learning (e.g. MacKay (1995)). These more 

advanced training methods may significantly improve results and help resolve 

some of the outstanding issues discovered during the course of this work (such as 

improving the Jacobian). 

There are several other possible fast forward models for the EOS-MLS cur -

rently in development, principally a linearised and a quadracised forward model 

being developed by Feng (2004). These operate by assuming the radiances have a 

near-linear (or near-quadratic) dependency on the model inputs around the mean 

value which allows the forward model calculation to be greatly simplified. Cur -

rently, these forward models operate non-tomographically' and achieve radiances 

well within instrument noise levels for several bands. 

As these models are based on traditional forward model techniques, they are 

easy to extend to other bands of the instrument. One problem with a linear 

forward model arises when the dependency between inputs and radiances is not 

linear enough, such as in band 7 of the EOS-MLS. In this case, the resulting 

radiances will have large errors. Errors can also occur in near-linear bands when 

the inputs are far away from the mean value, when the deviation from linearity 

becomes larger. 

Neural networks are inherently non-linear and hence can avoid large errors 

when the radiances are not linearly related to inputs. This can be seen in chapter 

'Current work on these forward models include expanding them to work tomographically 
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5, where the neural network-based forward model was extended to band 7 - a 

highly non-linear band. Although there were large errors below z = —2.2, above 

this the neural network was well trained. When the inputs are far away from 

the mean value, the neural network may suffer from increased errors due to the 

normalisations that are applied. 

Overall, it is felt that neural networks provide a viable alternative to tradi-

tional forward models in this case but some work must be done before they are 

able to be used in a real assimilation scheme. In addition, it has been shown 

that tangent pressures can be successfully, and rapidly, retrieved using a neural 

network, independent of the forward model used within the assimilation scheme. 
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Appendix A 

Further Discussion of Neural 

Networks 

This appendix continues the discussion of neural networks from chapter 2 to 

provide illustrations of the major type of neural networks used within this thesis. 

It is intended to give readers unfamiliar with neural networks a better grounding 

for following discussions in this thesis. The discussion begins by considering the 

simple perceptron case (where there are no hidden layers) and illustrates how this 

type of network is run and trained. It then considers the hidden-layer perceptron 

case, the major type of neural network considered in this thesis and illustrates 

how these are run and trained. 

A.1 Simple Perceptron 

This section looks at no-hidden-layer perceptrons and describes how they work. 

No-hidden layer perceptrons are the most basic non-trivial neural networks. Their 

inputs are directly connected to their outputs, as illustrated in figure A. 1. When 

run, the input values are multiplied by the weights connecting the input node to 

the output node and summed. The resulting value is then "activated" using the 

activation function (equation A.1 in this case), producing the output value. 

153 



Chapter A: Further Discussion of Neural Networks 	 154 

6 
A 

II 	 II 	 — 

154 

- ) 

— 0 

0 

E 
Cl) 

411  
bC 

Cl) 
.-4  0 

Cd 

Cd  

cc 

Cd 

Cl) 

Cl) 
Cl) 

— 0 

0 

.- — 

0 

0 
-c$ 0 

C 

- 	0 

o 

— 0 
0 _z H 

4, 

CID 

çL 	H 



Chapter A: Further Discussion of Neural Networks 	 155 

V(cx)== 	
1 	

(A.1) 
1 + exp —cx 

or = 	W ill 

The "weights" in the network can be found by a process of training. To train 

a network, a representative group of input-output vectors are found by other 

means. From this set of profiles, one profile is chosen at random and run through 

the network and the error calculated against the true output value. This can then 

be used to update each weight in the system using equation A.2, where Ej  is the 

error on the output compared to the true value (di ), taken from the training set. 

The process of selecting a random profile from the training set and updating the 

weights is then repeated until the network is considered fully trained. 

Ei  = (d - 0)2  

w(new) = w(old) + criEI dV(a) 
	

(A.2) 
dcx 

A network can be considered fully trained using a number of different criteria. 

The most common is to have a "validation set". This is a selection of input-

output profiles, separate from the training set that are run through the network 

periodically (though the network is not trained on these). The error across the 

entire validation set (the "validation error") is then recorded. If the validation 

error is lower than previous validation runs, he internal weights of the system are 

stored. Once the network has completed a pre-defined number of validation runs 

without improving its validation error, the network is considered fully trained 

and the system weights are restored to those that produced the best validation 

run. 

A.2 Multi-layered Perceptrons 

As discussed in chapter 2, single-layer perceptrons are limited to solving "linearly 

separable" problems. To remove this restriction additional, hidden, layers of 

nodes are introduced in the network, as shown in figure A.2, which shows the steps 
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involved in running a multi-layered perceptron. Training a multi-layer perceptron 

is more difficult than training a simple perceptron as there are now multiple layers 

of weights that must be updated during training, with no direct measure of error 

available for the hidden node values. 
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Backprop provides a way of estimating the portion of the final value error 

coming from the input-to-hidden weights as well as the hidden-to-output weights. 

As discussed in chapter 2, a "sensitivity" factor, 6 is calculated from the final 

error for each output node, defined by equation A.3. Sensitivity factors for each 

hidden node can then be calculated using equation A.4. The weights can then 

be updated using equation A.5- A.6 (for the hidden-to-output weights and input-

to-hidden weights respectively). Figure A.3 shows the steps involved in updating 

the weights (the so-called "backpass" of backprop). 

= (d - Q)2 

Jk dO 
(a) Ej 

dci 

Jk 
= dV(o - ) 

 

 

lkh(new) = kh(0ld) + 71 6h0k(a) 
	

(A.5) 

wkh(new) = Wkh(Old) + T/ShVk(a) 
	

(A.6) 
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Appendix B 

Definitions 

Quantity Definition 

EOS-MLS 
EQS Earth Observation System 
MLS Microwave Limb Sounder 

EQS Aura Satellite the EOS-MLS instrument is on 
MIF Minor Frame 
MAF Major Frame 
DACS Digital Autocorrelator Spectrometer 
P / T Pressure / Temperature 

UARS MLS The predecessor to the EOS-MLS 
UARS The satellite the UARS MLS was flown on 
FOV . 	 Field Of View 

Neural Networks 
NN Neural Network 

Node / Neuron The basic calculation unit 
Layer A collection of nodes. Typically a network is made up 

of an input layer, hidden layer(s) and an output layer 
Committee A group of networks 

Weight Strength of a link between nodes 
Training phase The phase of network evolution where the weights are changed 

Validation Phase The phase of network evolution where the network is 

tested to see if it has improved over previous validation phases 

Continued on next page 
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Table B.1 - continued from previous page 

Quantity Definition 

Testing Phase The phase of network evolution after training is 

complete where the network's ability to generalise is tested 

Upstream Refers to the previous layers - the layers closer to the input layer 

Downstream Refers to the layers closer to the output layer 

ADALINE The simplest type of neural network. One binary neuron that 

performs a threshold transfer of inputs 

MADALINE A committee of ADALINEs that output binary values 

depending on a majority vote 

Perceptron A general class of neural networks that form the basis of 

most computational neural networks 

Backprop A method of training neural networks that relies on the 

derivatives of each node to update their weights. 

Quickprop A method of training neural networks that relies on both the 

first and second derivatives of each node to update their weights 

Epoch The number of validation runs performed during training 

Data Assimilation 
ECMWF The European Centre for Medium Range Weather Forecasting 

4D-VAR 4-D variational assimilation - A type of assimilation process 

Other 
SSM/I Special Sensor Microwave / Imager 

OMBFM1 A neural network for the SSM/I based on a neural network 

NWP Numerical Weather Prediction 

GPH Geopotential Height 

GCM General Circulation Model 

Symbols 
1(v) Intensity per unit area 

frequency 

Optical Depth 

k(e, v) Total absorption Coefficient, defined in terms of volume 

T Absolute temperature 

kB Boltzmann Constant 

Continued on next page 
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Table B.1 - continued from previous page 

Quantity Definition 

c Speed of light 

h Planck constant 

A Wavelength 

Distance along observation path 

P Pressure 

P Density 

g Acceleration due to gravity 

h Geometric Height 

H Geopotential Height 

M Mole mass of a gas 

R. Universal gas constant 

Pressure coordinate, z = - log 10 (p) (used interchangeably) 

W2  Weight in an ADALINE / MADALINE network connecting 

input i to the output node 

Ej  Error n an ADALINE / MADALINE network. 

d Desired output for an ADALINE / MADALINE network 

77 The learning rate for a neural network 

1i 1 1. W Input i into a neural network after normalisation 

1. W Input i into neural network before normalisation 

O, 0" (i) Output i from a neural network after normalisation 

y, 0 . W Unnormalised output i from a neural network 

w(t) Weight change at time-step t 

S(t) at time-step t 

ai  Normalisation multiplicative factor for a neural network 

bi  Normalisation additive factor for a neural network 

di  Desired output i of a neural network 

w, Qjj A weight from node i to node j 

ci The summed inputs into a node 

ac(a), 	(a), 'y(o) The activation function with respect to or 

((o) and 'y(o) are used to indicate different 

activation functions within the same network) 

Continued on next page 
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Table B.1 - continued from previous page 

Quantity Definition 

ji The sensitivity factor for node i 

Vk, Zi The outputted value of node k (= O - d2  for output node, i) 

c Momentum coefficient for a neural network 

ii Weight decay coefficient for .a neural network 

Maximum growth factor in quickprop 

B2 , 3 Bias on node i 

Yk The model state vector at time step k 

The background model state vector at time step k 

Pk The analysis model state vector at time step k 

Uk Model inputs vector at time step k 

71k Observation vector at time step k 

Aj  The adjoint equation, j 

B0  Covariance matrix of initial background model state error 

K Gain matrix 

H Observation matrix, including forward model 

and grid interpolations 

F, C Model forcing matrices 

hk(x) Observation function. Analogous to H 

Jk Observation functions error vector 

Rk covariance matrix for Sk 

fk(xi, 4) evolution function for the system 

Fk Jacobian of fk(x,irk) 

Hk Jacobian of hk(±) 

Table B.1: Definitions of quantities used 
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Retrieval of Tangent Pressures from EOS-MLS 
Radiances Using a Neural Network for use in an 

Assimilation Scheme 
Donald J. Scorgie, Robert S. Harwood, and Hugh C. Pumphrey 

Abstract— Limb sounding instruments provide high vertical 
resolution data on the temperature and composition of the 
atmosphere. Their data is therefore valuable for assimilating into 
general circulation models of the atmosphere. Direct assimilation 
of radiances from limb sounders is more complex in practise 
than from nadir sounders due to the need to know the tangent 
pressures of the measurements. This paper discusses the practical 
implications of tangent pressures in direct radiance assimilation 
of limb sounding radiances and demonstrates that a neural 
network can be used to find these tangent pressures for the EOS-
MLS with an RMS error of a = 50m, which is comparable with 
that in traditional retrieval techniques. 

Index Terms— Microwave, Limb, Neural Network, Tangent 
Pressure. 

I. INTRODUCTION 

I NDIRECT, or profile, assimilation uses retrieved profiles, 
such as temperature, from instruments to improve the 

model's state vector. While this works well for certain types of 
instrument that measure atmospheric properties directly (e.g. 
in-Situ measurements), for satellite data this introduces several 
problems [1]. Typically, satellite retrieval systems use an a-
priori profile and associated covariance matrix to perform an 
optimal estimation consistent with the radiances (e.g. [2]), 
which will result in traces of the a-priori still being present in 
the final profile. For an assimilation scheme, the a-priori profile 
is typically unlike either the retrieved profile or the background 
state of the model. When assimilating, this a-priori may drag 
the model state away from both the background state and the 
observations. 

Direct, or radiance, assimilation reduces this problem by us-
ing the measured radiances directly, thus effectively perform-
ing the retrieval as the assimilation step, with the background 
model state acting as the a-priori. This results in a final state 
that is a combination of the initial background state and the 
observations, with no other a-priori. 

A problem when attempting direct assimilation of radiances 
from limb sounding instruments arises from the need to deter-
mine pointing information, normally the maximum pressure 
on the central ray of the field of view, called the tangent 
pressure. This is normally found by a retrieval process and 
so is not readily available when doing direct assimilation. 

This paper investigates whether tangent pressures needed 
for the assimilation can be provided with sufficient accuracy 
using a simplified, rapid, limited retrieval scheme based on a 

Manuscript received September 11, 2006; revised November 20, 2006. This 
work was supported by NERC.  

neural network, bypassing the need for the complete retrieval 
step at assimilation time. The method was developed for the 
EOS-MLS instrument, described in section II. Section III 
gives details of the neural network adopted and the training 
procedure. The results and conclusions are given in sections 
IV and V respectively. 

11. MEASUREMENTS FROM THE EOS-MLS INSTRUMENT 

Radiances 

The Earth Observing System (EOS) Microwave Limb 
Sounder (MLS) is an instrument aboard the EOS Aura satellite 
launched in July 2004 [3] [4]. It measures thermal emis-
sions throughout the Earth's limb to determine atmospheric 
composition and temperature throughout the stratosphere and 
troposphere. 

The EOS-MLS principally uses a band of 25 channels 
centred on the 118.75 GHz 02 line to determine tempera-
ture and pressure information. The field of view is scanned 
vertically upward during one scan, producing a series of 125 
measurements per scan. Each measurement within a scan is 
called a minor frame and a complete scan, together with 
ancillary information, is referred to as a majorframe or profile. 
Figure 1 shows an example of radiance profiles from several 
channels, where the radiances are expressed as brightness 
temperatures. The line width is proportional to pressure, so 
it decreases rapidly as the instrument scans upward through 
the atmosphere. Hence, the brightness temperature in any 
one channel will be close to zero above some given point. 
Below this, the brightness temperature will increase until the 
atmosphere becomes opaque. Once the atmosphere becomes 
opaque, the brightness temperature represents the temperature 
near the height where the opaqueness began. 

Tangent pressures 

As the measurements are strongly dependent on the pressure 
of the air in the field of view, a convenient vertical co-ordinate 
is the logarithm of the pressure, 	= - 1og10 (p/lhPa). 
Retrievals are frequently carried out using 	as a "height 
coordinate" and direct assimilation of brightness temperatures 
often uses the same coordinate. 

While the frequency range for a given channel remains the 
same from one scan to the next, the tangent pressure for each 
scan step changes across scans, due to spacecraft movement 
and atmospheric variations. The instrument system has no 
direct way of measuring tangent pressures although it does 
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Fig. 1. Simulated radiance measurements from the EOS-MLS. The channels 
shown here are from band 1 of the instrument which operates near the 118GHz 
Oxygen line. There are 125 measurements per profile. 

Fig. 2. An example neural network structure with n input nodes, 3 hidden 
nodes and 3 output nodes. 

provide an estimate of geometric height of the tangent point, 
known as a tangent height. 

As the line width is a strong function of pressure, the 
radiances contain information about the tangent pressures. This 
pressure information is sufficiently decoupled from the tem-
perature information that tangent pressures can be included in 
the state vector and retrieved, together with the temperatures. 

In a direct assimilation scheme, the retrieved products may 
not be available. Incorporating the tangent pressures into the 
model state vector is technically complex and outside the 
scope of this paper [5] and it has been shown that it cannot be 
assumed the tangent pressures at the same minor frame is the 
same across profiles [6].  Therefore, a different method must 
be used to establish the tangent pressures. 

III. NEURAL NETWORKS 

Neural networks are used for many purposes, both within 
and outwith remote sensing [7] [8].  A neural network can 
be considered as a non-linear fitting technique. The inputs 
and outputs can be represented as a pair of vectors and the 
algorithm uses one or more intermediate vectors at so-called 
"hidden layers". Each element of this intermediate vector 
is associated with a "node" at which ancillary information, 
namely a set of "weights", is combined with the inputs in the 
calculation. These weights are adjusted in a training process 
to give acceptable results for a set of input-output vector pairs 
found by other methods. 

A graphical representation of a sample neural network is 
shown in figure 2. Here, there are ii inputs, 3 hidden nodes 
and 3 outputs. The neural network is run by setting the input 
node values. These are then multiplied by the input-to-hidden 
weights and passed to the hidden nodes. Here, the inputs to 
the hidden nodes are summed and an activation is performed 
and the resulting values are used as the output of the hidden 
nodes. This activation is typically based on a sigmoid function, 
given by equation 1, where wi  are the weights leading into the 
node and Ii  are the corresponding input values. The outputs of 
the hidden nodes are then multiplied by the hidden-to-output 
weights and passed to the output layer. Here, each output node 
sums its inputs and again performs an activation, resulting in 
a (normalised) output value. 

ac(a) =  
1 + exp(—o, ) 

ci = Wih 

Training is done here using a three-stage process. The first 
stage (stage I) runs an input profile from the training set 
through the network and produces an output. This is then 
compared to the expected output. The second stage (stage II) 
involves updating the weights within the system to bring the 
output closer to the expected output. A second set of profiles, 
the validation set, is then used to assess the suitability of 
the network (stage III). This validation set is run through 
the network at regular intervals, and the error calculated. If 
the error in these validation set is lower than previous errors, 
the network state is stored. Once the error on the validation 
set has not improved for a set number of training-validation 
cycles (epochs), the training of the network is stopped, the best 
network state is restored and the network is ready for use. 

Here, the neural network was trained using the backprop 
algorithm [9].  This is one of the simplest forms of training 
algorithm available for neural networks but produces reliable 
results. Backprop works by calculating a "sensitivity" factor 
for each node in the network. The weights for that node 
are then updated using the (first) derivative of the activation 
function and this sensitivity factor, combined with a "learning 
rate" and "momentum" that are user-defined. Further details 
of the algorithm can be found in e.g. [ 1 0]. 

A. Training Data 

All the training data were generated by an accurate, full 
forward model created by H. Pumphrey. The atmospheric 
temperature and pressure profiles used in generating the ra-
diances were taken from Met Office assimilation data [11] 
[12], and represent typical conditions encountered by the EOS-
MLS. 3496 radiance profiles for band 1 and band 32 Of 
the instrument were then generated from these atmospheric 
profiles, representing a complete day of measurements by the 
EOS-MLS. 

An alternative, considered but not possible before launch 
when the bulk of this work was undertaken, would be to use 
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Fig. 3. Example profile from the training set showing the channels and minor 
profiles used as inputs to the neural network. The crosses represent minor 
frames that are used. These are chosen as they give the most information 
about tangent pressures at these heights. There is some overlap between the 
chosen minor frames. This is done to ensure good results in the network and 
introduce redundancy, allowing the best fit possible. 

the actual MLS radiances with optimally retrieved profiles as 
the training data. This alternative was rejected however, as in 
that case the actual values of the "truth" would be unknown 
and the extra representativeness compared with the present 
training set is believed to be marginal. Moreover the error 
covariance matrix (needed in the assimilation) resulting from 
the MLS-trained network would inevitably be overestimated. 

The network was constructed using 200 inputs and 125 
outputs. The inputs consist of radiances from different minor 
frames across several channels in band 1 and band 32 of the 
instrument. Details of which minor frames are used is given in 
figure 3. These input radiances provide tangent pressure infor-
mation from almost ground level to the top of the atmosphere 
and allow the neural network to retrieve tangent pressures 
throughout. The outputs of the neural network consists of 125 
tangent pressures, one for each scan step within the profile. 

B. Training Procedure 

The training data were split into three sets, A) 1500 profiles 
that were used as a training set, B) 300 profiles, used for 
validation. A final dataset of 1000 profiles (C) was used as a 
testing set after the training cycle was finished to ensure the 
network was accurate. The training consisted of the following 
steps 

Select one profile from the training set (A) at random 
(stage I) 
Train the network with this profile (stage II) 
Repeat steps 1 and 2 5000 times (profile is randomly 

chosen each time) 
4 Validate the network using all profiles in the validation 

set (B) (stage III) 
5 If the new validation error is less than the current 

validation error, save the network state 
6 After 100 validation runs produce no better error, stop 
training and restore weights to their best values 

Once these steps were completed, the network was tested 
using the testing set (set Q. Using traditional retrieval meth-
ods, tangent pressures have an RMS error of 50m (derived 
from [13]), equivalent to an error in of = 0.003. To be 
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Fig. 4. RMS error for 1000 testing profiles, with no noise associated, run 
through a fully trained neural network. The largest errors are found at the 
bottom of the profile, where little information is gathered by the instrument 
(see figure 3). The dotted line shows the approximate error associated with 
optimal-estimation retrieval techniques. Between height indexes 15 < h < 
112 (where the instrument gathers information), the RMS error is between 
a = 0.0015 and a = 0.003 with a bias of b < 0.0001. 

useful, the tangent pressures retrieved using a neural network 
should have comparable or better errors. 

IV. RESULTS 

The number of hidden nodes in the network was varied 
across training runs and ranged from 0 to 50 hidden nodes. 
It was found that the best results were obtained when using 
20 hidden nodes. More than 20 hidden nodes resulted in 
extra running time with no improvement in error in either 
the noiseless and noisy case (see below). The use of tangent 
heights, as inputs to the neural network retrieval, was also 
investigated but found to produce no effect on the retrieved 
tangent pressures. 

Figure 4 shows an example of a testing run on a fully trained 
network with 20 hidden nodes. Here, RMS error across the 
test set for each network output (minor frame) is plotted. The 
largest errors occur at the bottom of the profile (height index 
0 < h < 15). Above this, the error drops dramatically and 
again increases slightly at the top of the profile (height index 
112 < h < 125). Between these extremes (height index 15 < 

h < 112), the RMS error is a <0.003, in line with the error 
from traditional retrieval techniques given above. 

Below the 15th height index, the errors on network outputs 
increase to or = 0.01, or 	180m. These levels correspond 
to —3.2 < 	< —2.8, very near the Earth's surface. At 
these heights, all the channels of the EOS-MLS instrument are 
saturated (figure 3). Similarly, above the 112th network output 
(around 

( 
~: 1.8), the atmosphere is thin and all channels 

register near-background radiation. 
The previous results were gathered using noiseless radi-

ances. In practice, the noise associated with the measure-
ments in the channels used here has a standard deviation of 
or 0.4K. To deal with this, a new network was trained 
in the same way as previously but with all inputs having a 
randomly generated normally distributed noise associated (that 
was regenerated every time each profile was used), with a 
standard deviation of or = 0.4K 1 . During the testing phase, 

1 0.4K is used as an approximation across all channels here 
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Fig. 5. 	Results of the testing phase with noise added to the inputs in all 
data sets. Between height indexes 15 < 6 < 112. the RMS error ranges from 

= 0.0017 to or = 0.0026 and a bias of b < 0.0001. 

noise was again added to each input. The results of a test 
run using this configuration can be found in figure 5, in the 
same form as previously. Here, the largest RMS error, between 
height index 15 < h < 112, is a = 0.0026, which is again 
comparable to the error achieved using traditional retrieval 
techniques. In this case, the spike near height index 1, = 92 has 
been reduced. As different training runs in a neural network 
produce slightly different results, this is attributed to natural 
variation between training runs. 

V. Cor'tcusio 

This paper has addressed the problem of estimating tangent 
pressures for a limb-sounding instrument for use in a direct 
assimilation scheme, using a neural network retrieval. It has 
been shown that this approach can achieve comparable errors 
to traditional retrieval techniques. 

As the tangent pressures are not part of the assimilation 
model's state vector, the errors associated with their retrieval 
must be accounted for in the forward model error matrix. 
This is independent of the method used in retrieving tangent 
pressures and must be faced however they are retrieved. In 
a neural network retrieval, the testing phase of the neural 
network training provides enough information to construct an 
error covariance matrix. 

To use this technique in an assimilation scheme, the tangent 
pressures would be retrieved prior to the assimilation process 
and then assumed to be constant within the assimilation, with 
the error from tangent pressure retrieval considered as part of 
the forward model error covariance matrix. 

Neural network retrieval of tangent pressures in this case 
provides several advantages over traditional retrieval tech-
niques. They introduce no a-priori estimate of the tangent 
pressures and are significantly faster. The a-priori is used by 
traditional retrievals as a starting point for an iterative descent 
and the final result will always have a component of the a-
priori in it. 
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