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Abstract 

Electronic circuits are entering many aspects of our daily lives. Considerations of 

safety and cost have prompted a good deal of interest in verifying that they func-

tion as expected. This thesis explores several ways of conducting such verifica-

tions using a formal, mathematical calculus. The calculus is based on sequences 

of events and has a simple semantics. 

One of the most important influences on hardware designs is time. A va-

riety of temporal concepts are therefore represented in the calculus, including 

multilevel clocks, clock skew and others. Moving between different granularities 

of time is easily accomplished, thus providing support for temporally as well as 

spatially structured designs. 

Consequences of design decisions may not be immediately obvious, so it is 

important to have a way of investigating their ramifications. Accordingly, tech-

niques are developed for experimenting on designs, as are several mechanisms for 

analyzing the results. Some exploit basic properties of the calculus to increase 

the efficiency of a simulation at no extra cost. 

- More formal methods of verification are also provided that permit a large 

difference in complexity between a specification and its implementation. To en-

sure that this difference does not unwittingly introduce design errors, a notion 

of constraints on the use of an implementation is introduced. This finds appli-

cation in building libraries of pre-verified parts, as well as during the refinement 

of hierarchical designs. 

Finally, the techniques are illustrated through several examples, including a 

hardware implementation of a deck of playing cards and a simple CRT controller. 
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Chapter 1 

Introduction 

Electronic circuits are finding their way into many of the objects that surround 

us in our daily lives. Some of these objects are responsible for our health and 

safety, so it is important that they function properly and without unexpected 

side-effects. The dramatic reduction in cost of Integrated Circuit building blocks 

made possible by large production volumes has played an important part in 

this proliferation. Not only are errors in the design of these blocks potentially 

dangerous, but they are also costly when duplicated in quantity. For these 

reasons, a great deal of interest has been shown in methods for validating designs 

of electronic circuits. 

At one time, it was possible for the engineer to determine if a design would 

work correctly by building a prototype. The prototype would have been con-

structed from much the same parts as the end product, giving confidence that 

experimenting on one would yield results applicable to the other. The experi-

ments were simplified considerably by the fact that basic building blocks were 

quite small and the connections between them could be examined using oscillo-

scopes, logic analyzers and other test equipment. 

With the appearance of sophisticated microprocessors and other monolithic 

building blocks, this approach to design began to break down. Larger and larger 

portions of products began to migrate to silicon in the form of dedicated mi-

crochips. A silicon chip is a single entity whose functions can only be accessed 

through its interface pins; internal nodes are extremely difficult to examine be-

cause thejare small and covered with oxides. In addition, the behavior of pro- 

1 
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totypes built from, say, discrete TTL parts might alter dramatically when reim-

plemented in silicon. Delays and hence timing information may change due to 

the different physical properties of the new medium. 

Cost is another important factor. Prototypes built from small blocks are 

relatively easy to redesign should alterations become necessary, whereas the ex-

pense of fabricating a limited quantity of experimental chips can be considerable. 

The problem is exacerbated by the tendency of engineers to iterate their designs, 

changing features as problems or shortcomings are revealed. 

These deficiencies of the prototyping/breadboard approach have prompted a 

large increase in popularity of software simulations of designs. Software mod-

els are easily mutable and, as computers grow more powerful, are being made 

larger and more complete. Models have been formulated that span all levels 

of abstraction from the interactions of large functional blocks to the detailed 

behavior of primitive devices in the fabrication medium. Experimenting on de-

signs represented by such models is much simpler than on prototypes because 

all internal nodes are accessible and sophisticated analysis tools can be applied 

to the results. 

Experiments, whether on a bread-boarded circuit or on a software simula-

tion, have their own attendant problems. The aim of the experiments is usually 

to show that the design behaves according to some predetermined idea of how it 

should behave. Verifying this for a large design can require a very large number 

of test stimuli. In fact, the only way to be completely confident in the absence 

of errors is to apply all possible combinations of input values. Fueled by this 

rapid growth in complexity, attention has been turned to formal, mathematical, 

methods for conducting the verification in the hopes that they might alleviate 

the problem. This approach relies on mathematical laws to prove properties for 

large classes of input values. Analogous methods have been used for many years 

in other disciplines, such as civil engineering and aerospace, where mathemat-

ical models of physical processes are manipulated to produce safer and higher 

performance products. 

Producing validated designs using a software representation requires support 

in three areas. First and foremost, a mechanism for capturing the physical 
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behavior of a design is needed: 

A Hardware Description Language 

Hundreds of hardware description languages have been created to serve widely 

vafying needs. Some only describe the structure of a design, while others also 

incorporate ideas of how elements behave. The former are used as input to 

automatic, design systems and will not concern us here. The latter type can be 

used for simulation and/or verification, which is what we are interested in. 

Since the goal of using a language to describe hardware is to show that 

a design will work properly when it is built, preferably without exhaustively 

simulating it, we need support for: 

A Method for Verification 

Existing programming languages, which have influenced many hardware descrip-

tion languages, are notorious for their convoluted semantics. Verification involves 

showing that a specification of the intended behavior of a design is satisfied by 

an implementation. The task of demonstrating this is simplified considerably if 

the representation medium has a simple semantics. Even with simple semantics, 

expressing the ideas behind a design in a particular language can be difficult. 
'çO 

Often the only way"convince oneself that an attempt to do this is reasonable is 

to experiment on it and see if the ideas are adequately represented. Thus the 

last area that should be supported is: 

A Method for Experimentation 

Some researchers [Rem 81]  believe that the experimental (or simulation) ap-

proach to design should be abandoned altogether in favor of formal verification 

alone. We shall not be so limiting since it seems that experimentation has a 

legitimate place in the design cycle. After all, testing various possibilities is just 

a simple form of the proof technique known as case analysis. 

This thesis seeks to address each of the three areas. A mathematical calculus 

is chosen as the Description Language, because it is both powerful and has a 

simple semantics. As will be shown, it can be used to represent designs at many 

levels of abstraction and possesses facilities for moving between the levels. The 
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formal basis allows proofs of equivalence to be conducted and several ways of 

doing this are presented. Also demonstrated are ways of conducting experiments 

on descriptions without leaving the framework. Such a cohesive approach means 

that several avenues of attack can be applied to a particular problem, thus 

increasing the chance of a successful resolution. Indeed, the size of problem 

that can be worked for a given amount of effort increases as analytic techniques 

are developed through the thesis. 

1.1 Related Work 

Simulation as a way of experimenting on a design has been around a long time. 

Every type of simulator, from the detailed device level—typified by SPICE 

[Valdimirescu 811—through the high level functional simulator, has put on an 

appearance at one time or another. Functional simulators, in particular, take 

many forms since they are often simply a model of the design coded in a high 

level programming language (e.g., PASCAL) especially for the project. 

The majority of simulators operate at a single level of abstraction because 

they can then be optimized for execution speed. Many levels of abstraction are 

passed through during the refinement of a design, however, and maintaining 

consistency between the inputs to different simulators is notoriously difficult. 

Prompted by this, steps have been taken toward integrating several simulation 

levels, particularly at the primitive device level [Chen 84, Antognetti et al. 81, 

De Man et al. Si]. The simulator DIANA [De Man et al. 81]  typifies this ap-

proach by allowing parts to be specified in varying degrees of detail between the 

gate level (in terms of discreet valued signals) and the circuit level (in terms of 

continuous voltages and currents). Because of the optimizations needed to make 

these simulators practical, it is usually impossible to simulate a design at any 

but the provided levels of detail. 

• More general and more extensible simulators have put on an appearance in 

recent years. Called Behavioral [Coelho 841 or Functional simulators, they pro-

vide most of the flexibility of a high level programming language (as well as 

the complicated semantics in most cases [Nichols 83]). A typical example is the 
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ELLA simulation system [Morison 851. ELLA has a functional input language 

that lets the user define new data types as well as operations on them. Libraries 

of predefined functions provide software analogues of the parts that will be used 

to fabricate a design. ELLA differs from most related simulators, however, in 

that some encouraging work has been done on combining it with a formal verifi-

cation system in order to check a commercial microprocessor [Cullyer 851. High 

level blocks were described with the LCF–LSM notation (discussed in more detail 

below) with manual proofs of equivalence conducted between their descriptions 

and those of their refinements. At a certain point, the design was translated into 

ELLA and simulated. This was done because the designers felt that LCF–LSM 

was not descriptive enough for low level circuits. 

Complete verification of hardware without recourse to simulation has at-

tracted a lot of interest in the last few years. Hardware systems are character-

ized by a high degree of parallelism in their operation—indeed, explicit steps 

must taken to introduce sequentiality. For this reason, many of the formalisms 

that were developed to reason about concurrent systems have been applied to 

hardware. The most popular of these are covered below. 

The work of Milne and Milner [MM 791 on Concurrent Processes has inspired 

a number of calculi for reasoning about concurrency. Milne went on to develop 

the Dot Calculus [Milne 801 and then CmcAL, which forms the basis for the work 

in this thesis. Milner produced the Calculus of Communicating Systems (CCS) 

[Milner 80] and then a more general synchronous version (SCCS). The calculi all 

describe behavior in terms of sequences of atomic events and algebraic laws are 

given that define how parallel sequences interact. The ideas behind these calculi 

have influenced several interesting approaches to hardware verification. 

Milner gives an elegant proof of correctness for a latch constructed from 

NOR gates in SCCS [Milner 831. Also using SCCS, Backhouse [Backhouse 83] 

verifies a regular language recognizer built from primitive recognizer boxes. He 

proves that the specification of what the system should do is equivalent to the 

aggregate behaviors of the primitive components by means of a technique called 

bisimulation [Milner 831. Briefly, this involves showing that every state in either 

of the behaviors can be matched with one in the other. Hennessy [Hennessy 841 

introduces a transformational method of proving equivalences in the same calcu- 
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lus that is a bit easier to work with. The expression denoting a specification is 

transformed into that of an implementation (or vice versa) by syntactic manipu-

lations based on a collection of axioms. The axioms are powerful enough to per-

mit a good deal of difference in complexity between the two expressions, thus sup-

porting simpler specifications. By way of example, several systolic array designs 

are shown correct with the method. Finally, Subrahmanyam [Subrahmanyam 831 

uses CCS as a basis for an input language to a form of "silicon compiler" that 

generates layout from high level descriptions. 

One of the most comprehensive applications of formal techniques to all as-

pects of hardware analysis has been that of Cardelli [Cardelli 821. Using a small 

set of combinators (similar to those of SCCS) he introduces an algebra for manip-

ulating networks of hardware components. The algebra is applied to several levels 

of description with mappings given between them. Examples include clocked sys-

tems, transistor networks and topological connections of layout primitives. Also 

presented is an implementation of a general purpose programming language for 

manipulating layout information. The language supports algebraic operations 

on pictures corresponding to mask level data. The semantics of hardware are 

captured using an interesting calculus of Real Time Agents. This calculus is 

powerful enough to support reasoning about low level device behavior through 

(continuous) time. The emphasis throughout the thesis is on algebraic tech-

niques for all levels of VLSI design activity, from the abstract architectural to 

the primitive fabrication data. 

Perhaps the most successful of these types of formalisms has been the work 

Gordon on LSM (Logic for Sequential Machines) [Gordon 81]. He develops a 

simple model of hardware behavior in terms of functions from signals to signals, 

with a notion of state added to capture sequential behavior. The methodology 

is formulated as a calculus with combinators similar to those of CCS and given 

a denotational definition. Simulations of LSM descriptions could easily be run 

due to the denotational basis, but Gordon adopts a more ambitious approach 

by embedding the logic in an existing theorem proving environment (LCF) to 

produce a true verification system (LCF—LSM) [Gordon 83a]. Using this sys-

tem, he has proven a microcode implementation of a small computer correct 

[Gordon 83b]. Other researchers have also used the same formalism with some 
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success. Barrow [Barrow 83, Barrow 84] implements it as a PROLOG program 

with which he has automatically verified a module containing three multipliers 

and two adders down to the transistor level. The LSM formalism -has limitations 

when applied to designs having multiple levels of clocks and those where explicit 

timing information is needed. Because of this, Gordon has since moved on to 

another formalism, which will be discussed below. 

Another promising approach to hardware verification utilizes temporal logic 

to describe the behavior of a system through time. Moskowski defines a form of 

temporal logic called Interval Temporal Logic that captures many of the concepts 

needed to model hardware [Moszkowski 831. Time is not measured explicitly, but 

is instead broken up into implicit intervals corresponding to how long an opera-

tion takes. This concept seems particularly suited to the higher level descriptions 

of digital systems where relative time (e.g., with reference to system clocks) is 

more important than absolute time. Moskowski's thesis shows how a wide vari-

ety of digital phenomena can easily be modelled in ITL and relies on equational 

manipulation to prove equivalences. Moskowski has since produced an imper-

ative programming language called Tempura [Moszkowski 841 from a subset of 

ITL which serves as a simulator for designs coded in the formalism. Examples 

that have been simulated with it include a small array of RAM cells and a stream 

driven parser. 

Influenced by Moskowski and the VERITAS project of Hanna [Hanna 841, 

Gordon has replaced his Logic for Sequential Machines with a version of Higher 

Order Logic [Gordon 851. HOL seems to meet many of the requirements of hard-

ware verification, because both behavior (functional and temporal) and structure 

can be represented in a clear manner. Like LSM, it has been embedded in the 

LCF theorem proving environment, which has allowed several real VLSI designs 

to be verified, including portions of the Cambridge Ring Chip [Gordon 84]. 

Rem [Rem 841 advocates a slightly different approach to modelling concurrent 

systems—one using traces. Traces are sequences of atomic actions similar to 

those that form the basis of CCS-like languages. Instead of defining special 

construction operators, however, Rem generates traces by means of the language 

of regular expressions. Because of this, he notes that designs described by traces 

can be realized as compositions of finite state machines, thus giving a structural 
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flavor to the formalism. Conditions for delay-insensitive communications are 

given, which he argues can be used to determine which portions of a circuit 

should be grouped together. 

Closely related to the idea of traces is that of streams. Sheeran [Sheeran 831 

introduces a variant of the functional programming language FP, called pFP, 

that operates on streams of objects rather than the single objects of the original 

language. The language is built around the notion of functional composition 

which she extends to include a notion of state. The compositional nature yields 

succinct descriptions with a natural interpretation as networks of functional 

units. This interpretation is exploited in constructing a simple floor planner 

that reflects the semantics of a design in the layout that it produces. Semantics 

preserving transforms are used to produce  different layout arrangements. pFP 

deals only with simple synchronous systems and cannot handle the more general 

timing requirements needed by many digital designs. 

Another researcher who has applied streams to hardware descriptions is Kloos 

[Kloos 86]. He provides numerous agents for operating on streams as well as 

operators for composing the agents sequentially and in parallel. His approach is 

more general than that of Sheeran, with applications to register transfer, gate 

level and switch level systems demonstrated. 

The work of Kelly [Kelly 841 on the CRITTER project is an interesting at-

tempt at automatically critiquing digital designs. An applicative language that 

deals with a wide variety of temporal effects (including statistical and worst/best 

case estimates of delay times) as well as functional information is used as input 

to an expert system driven equation simplifier. Operating conditions for a design 

are derived from the estimated delays of its components and illegal or marginal 

results are reported together with suggestions of their cause. The system can 

also be used as a multi-level and symbolic simulator wherein the function of a 

block can be derived in terms of its input variables. Although quite powerful, it 

seems to have difficulties with feedback and the treatment of state information 

is complicated. 

Johnson [Johnson 84] shows how synchronous hardware can be synthesized 

from simple recursion equations. The idea is to produce implementations that 

are correct by construction, rather than verifying them after they have been 
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designed. 

Finally, Chen [Chen 831 applies fixed-point semantics to a model of processes 

that includes both spatial and temporal information. With it as a basis, she ex-

amines some systolic algorithms and a means of representing networks of MOS 

transistors at the switch level. She also discusses an implementation of her for-

malism as a multilevel simulator which is embedded in a high level programming 

language. 

Many of the approaches discussed above have been successful because they 

have concentrated on limited types of digital designs (e.g., purely synchronous 

systems). In particular, little attention has been paid to nondeterministic phe-

nomena and asynchronous systems. The former appear when random external 

events, such as interrupts in a microprocessor, can influence the behavior of a 

design. The latter hold promise for designs that need to operate at a high speed. 

Asynchronous (or self timed) blocks have the property that they can pass along 

an output value as soon as-it is calculated and then begin work on the next input. 

Synchronous systems, in contrast, require that each block wait for a global clock 

event before processing the new input values. All blocks therefore function at 

the speed of the slowest. This thesis seeks to address some of these issues. 

1.2 Topics Covered in the Thesis 

Chapter 2 covers the first component that was considered necessary for a verifi-

cation system: a description language. It introduces the calculus that will serve 

as a basis for the material developed in succeeding chapters. The calculus is 

designed for describing the interactions through time of objects that function in 

parallel. Hardware is by nature highly parallel —explicit steps must usually be 

taken to impose sequentiality—so it seems appropriate to apply the calculus to 

hardware problems. - 

The calculus portrays behavior in terms of (partial) orderings of events in 

time. These orderings are expressed as equations constructed using the operators 

of the calculus. There are only a small number of core operators, so the complete 

framework can be described quite compactly when compared to most hardware 
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description or programming language definitions. Building on the core opera-

tors, some derived operators are presented that make expressions syntactically 

simpler and easier to understand. Certain constructs arise quite commonly when 

describing hardware, so these are assigned their own notation for convenience. 

Once a feel for the nature of the calculus has been developed, consideration 

is turned to deciding just how events should relate to the physical phenomena 

that we are seeking to model. Two different approaches are presented and their 

merits and flaws discussed, thus ending the second chapter. 

One of the greatest concerns of hardware designers is time. Time manifests 

itself in circuits as delays, which are notorious for causing glitches and erratic 

malfunctions. The basic calculus, as described in Chapter 2, has no notion of 

quantitative time built in, so the third chapter presents several different ways of 

obtaining this type of information—without changing the underlying semantics 

in any way. Operators are developed that allow some ambiguity in describ-

ing relationships between events, loosening the rather precise view of temporal 

ordering imposed by the basic calculus. Delays were mentioned as a source of 

problems for designers, so the chapter goes on to consider several different types. 

Each approximates different physical properties, hence the variety. 

Being able to describe objects mathematically is not very useful if no analysis 

can be done on them. Chapter 4 shows how simple properties of the calculus can 

be exploited to generate simulations of a design's behavior through time. The 

method is refined further to obtain an increase in efficiency without complex 

optimizations. Finally, some ideas for analyzing the results of simulations are 

presented. This concludes the discussion of the third area identified as requiring 

support in a verification system: a method of experimenting on designs. 

Simulation alone is not adequate for building confidence in the correctness 

of a design. It can show that the portions effected by test stimuli function 

incorrectly, but it cannot show conclusively that they function properly unless 

all possible input sequences are applied. This is where verification in the form of 

mathematical proof enters the picture. A specification is written that captures 

the desired behavior of the design and the constructed implementation is shown 

to be in some sense equivalent. One way to do this is to manipulate the two 

sets of equations using the laws of the calculus until they agree. This is not 
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always possible, however, since specifications will be designed for a particular 

use, whereas implementations are often quite general. A microprocessor, for 

example, can be used to implement the logical NOT function as can an inverter, 

but the constraints on their use are quite different. A notion of context dependent 

equivalence is therefore developed and presented in two alternative forms. Both 

are useful for determining if two systems can ever be considered equivalent and 

if so, what constraints must be placed on their use. Together, these techniques 

support the second area that must be included in a verification system: a method 

of verifying designs. 

Chapter 6 consolidates much of the material discussed in the thesis by work-

ing through several examples. The first reveals some of the unexpected problems 

one encounters when combining functional units and shows how they may be cir-

cumvented. The second is a design for a deck of playing cards that is implemented 

in terms of gate level components in Appendix A. It serves as a good vehicle for 

demonstrating ways of coping with nondeterministic behavior utilizing the tech-

niques of Chapter 5. The final example shows how the description of a cathode 

ray tube controller can be simplified by partitioning it in both time and space. 

The controller's behavior is explored through simulation and a modification is 

considered that improves its performance. 

Finally, the thesis concludes with a summary of the results obtained. Areas 

needing further work are identified and some possible links with other work 

considered. A software system for manipulating expressions is briefly described 

as well as various ideas for its enhancement. The system proved highly useful in 

checking several of the examples that were worked in Chapter 6. 



Chapter 2 

The CIILCAL Calculus 

This chapter begins by presenting a brief and informal introduction to the calcu-

lus CIRCAL (CIRcuit CALculus), which will be used as the basis for the ideas 

developed in this thesis. Technical issues are covered cursorily in Section 2.6 and 

the interested reader is encouraged to look up the references mentioned there for 

more information. 

The calculus is derived from the work done by Milne and Milner [MM 79] 

and from the material in [Mime 771. It is quite similar in approach to CCS 

[Milner 80], SCCS [Milner 831, and other frameworks such as CSP [Hoare 781. 

It is designed for describing the behavior of systems composed of concurrently 

executing agents. Behavior is described in terms oL communications between 

agents and between agents and the environment. Communications will also be 

referred to as signals and events depending on what they represent. Similarly, 

agents will be called processes to emphasize their concurrent nature. 

The chapter begins by presenting the basic operators of the calculus. It then 

goes on to examine some derived operators and their properties. Occasionally, 

their derivation will seem unmotivated until they are applied in a later chapter. 

Finally, some structuring syntax and representation style is discussed and a few 

examples are worked. 

12 
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2.1 The Structure of Processes 

Processes communicate with each other and the environment through labelled 

ports (also called channels). The labels of these ports form the sort of the agent. 

A sort can be thought of as the set of all possible communications that an agent 

may ever participate in, no matter what state it evolves into. Sorts are static and 

may contain labels that will never actually be used in a communication. This is 

similar to having pins on an integrated circuit package that are not connected 

to the internal devices. 

(a) 
	

(b) 

Figure 2-1: (a) A process with sort {a, fi, -y}. 

(b) Two statically connected processes 

Processes will often be pictured as boxes with ports on the periphery (Fig-

ure 2-1(a)). No ordering is implied by the placement of the ports nor by the 

placement of boxes with respect to one another. Boxes communicate with each 

other by connecting similarly labelled ports with an arc (Figure 2-1(6)). The 

connections are static because they indicate potential interactions between the 

processes—some of which may never happen. 

Labels are drawn from the set £ of all possible labels, and will typically 

be ranged over by lower case Roman letters written in a typewriter font for 

clarity in complex expressions. Lower case Greek letters will usually refer to sets 

of labels. 

Labels may be indexed to produce vectors of channels. Each of these is a 
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label in its own right, but we will adopt the convention that a channel label will 

also refer to all its indexed derivatives. A sort is therefore a (not necessarily 

finite) subset L of £ and includes all the indices of its labels. 

The behavior of a process is described by one or more CIRCAL expressions. 

Expressions are built up out of other expressions, operators, and atomic state 

names. These names correspond to particular states in the evolving behavior 

of a process. They are drawn from the set of allowable process names P. To 

distinguish them from channel labels, they will be written as uppercase Greek 

and Roman characters, or as capitalized identifiers. Like labels, they may be 

indexed to generate families of process names. Names are assigned to expressions 

using the binary operator <=. 

2.2 . The Core Operators 

Part of the strength of this and similar calculi is the small number of core oper-

ators. The smaller the number of operators, the easier it is to design a complete 

set such that all fit cleanly and unambiguously together. The following sec-

tions describe the primitive combinators of the calculus as well as a few derived 

operators that will prove useful. 

2.2.1 Guarding 

A process may be described in terms of the communications that it engages in 

before evolving into a new (resultant) state. In other words, no transition occurs 

until the required communications have been resolved. The state transition is 

said to be guarded by the communications. Guards are sets of labels drawn 

from the sort L of the process and placed before the resultant state enclosed in 

curly brackets. They introduce sequentiality into a series of actions by forcing 

some actions to occur after or at the same time as others. A similar function 

is provided by the ';' semicolon operator in imperative programming languages 

and in temporal logic [Moszkowski 831. Note that we now have an implicit sense 

of time. An action can be required to occur after another action, but nothing 



Chapter 2. The CIRCAL Calculus 	 15 

can be said about the length of the interval between them. It could be one 

micro-second or ten years. 

CIItCAL allows sets of labels for guards. The communications named in the 

set are considered to occur at exactly the same time, no matter how closely they 

are examined. The sets obey all the normal set-theoretic operations, including 

union (U), intersection (n), difference (\), etc. When the set contains more than 

one element it will be referred to as a composite label. The empty set will not 

be allowed. 

Guards may also be superscripted to indicate a sequence of identical events. 

In addition, their labels may be indexed, allowing one label to refer to a logically 

grouped set of labels. The labels are included in a sort by specifying the domains 

of the indices, e.g. ai s.t. I E V. The domains may be infinite, but should be 

denumerable. 

Here are some examples that informally describe the semantics of guarding: 

Examples: 

Q 4= {a} {b} 3  P 	Means Q accepts an a communication, 
followed by three b communications, and 
then evolves into state P. 

R . {a b) {d e) R1 	R must interact with both an a and ,  a 
b communication simultaneously, followed 
by an and a d simultaneously before 
evolving into RI. 

Si sr {b} S 	 Si accjpts any communication on b that is 
inde*Thy a value equal to its current state 
variable i, and evolves to a state indexed 
by the incremented value. 

The last example actually defines a family of processes, but since they are closely 

related by the index variable i can be thought of as states of some "meta-process", 

with i the state variable of S. 

2.2.2 Relabeling 

Copies of an expression may be generated by changing its labels and index names 

using the relabeling or morphism operator. Relabellings are denoted by the 
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postflx operator [p], where p is a morphism from labels to labels. Typical 

morphisms will be of the form b/a, ci/c meaning that any channel labelled by 

a will be changed to b and similarly c channels will be changed to ci channels. 

The sort of the expression is implicitly changed as well. We shall make heavy 

use of this operator to instantiate copies of generic components. 

Examples: 

a 	 b 
p 	 p 

p 	 flb/a] 

({a} P) [b/a) = {b} (P [b/al) 

d 
p 

e 

f 

({a e} Qi + {t} QE) [g/d] 

g 
p 

—+ [g/dl  e 

I 

= {g e} (Qi [g/d]) + {t} (Q2 [g/d1) 

Relabelling will also be used to bind free variables in expressions. For exam-

pie, if a process P is defined as: 

P(x)  

then 

P(1) = P [i//x] = {ai} {xi} (P(i.+ 1) [ijx]) 

All free occurrences of r are bound to 1. The fact that a binding rather than 

a relabelling takes place is denoted by the // replacement. The effects of the 

binding hold until a resultant that re-binds the variable. Thus the free x's in 

P(1 + 1) = P(2) will get bound to 2 rather than 1. 

One important restriction will be made on p throughout this thesis, namely 

that the relabellings be static. In other words, the morphism must not con-

tain any free variables that can change value as the process evolves. If this 
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were allowed, processes could be created dynamically by recursively calling the 

morphism with the free variables being bound to different values each time (Cf. 

[Milner 83, page 292ff.]). Since we are concerned mainly with hardware models, 

which obviously cannot spawn new components, this restriction is not too limit-

ing. Removing it would require that the results of Chapter 5 be re-investigated. 

2.2.3 Deterministic Choice 

A process can typically evolve into one of many possible states depending on 

what communications it has with other processes. By explicitly listing these 

choices, we can model the possible branchings in its behavior. This is captured 

by the binary operator '+', called the deterministic choice operator. By deter-

ministic, we mean that the choice will somehow be made by external factors in 

the environment (e.g., the influence of other processes). The arguments of + 

will be referred to as branches for reasons that will become clear in Section 2.5. 

Both will have the same sort since thejare just different possible futures of the 

same process. 

Examples: 

Q 	{a}Q1+{b}Q2 

P 	{c}P1+{c d} P2 

means that Q will evolve into Qi if 
an a event occurs, or into Q2 if a b 
event occurs. 

means that P will become P1 under 
a c stimulus, or if c and d occur si-
multaneously, will become P2. 

Occasionally the symbol + will be used to indicate the addition operator. 

The context should make this use obvious. 

2.24 Nondeterministic Choice 

Nondeterministic choice, denoted by the e operator, is similar to deterministic 

choice, but with a subtle difference. Here the choice is no longer under the 

control of the environment, but instead is made internally. The system may 

arbitrarily pick one of the branches and make a silent move to that state. This 
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happens when we are observing the system at a more abstract level of detail 

than it was originally modeled at. The internal states may make choices based 

on information that is now lost, and in doing so end up in a state that cannot be 

predicted from the inputs. Like the deterministic choice operator, both branches 

have the same sort. 

Examples: 

9 <= 91 e 92 	 means 9 can spontaneously become 
either 91 or 92. 

P .4= {a} P1 e {b} P2 	P can spontaneously become either 
{a} Pi or {b} PR. 

2.2.5 Summation Operators 

Often a state may have many  possible states that it can evolve to. It is therefore 

convenient to have a shorthand for the expressing these multiple choices. This 

is done by defining the deterministic and nondeterministic summation operators 

E and  E as follows: 

LPI=def 	 (2.1) 

ie.t Qe•••eQ 	 (2.2) 

Here we depart slightly from the approach in [Mime 83a] by allowing the 

subscript i of the deterministic choice sum to range over any domain P, not 

just natural numbers and not necessarily finite. This relatively minor syntactic 

change will make it possible to introduce value passing in communications. 

2.2.6 Special Processes 

It is possible to define a process that has no communications with the environ- 

ment; in other words, it simply exists. This can happen when an agent performs 

a sequence of actions and terminates, or, as we shall see in the next section, 
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when two processes deadlock. It is therefore useful to explicitly indicate such a 

behavior with the symbol "A". A has a sort just like any other process and will 

be subscripted by it to prevent ambiguity, e.g., A{ a , b}• 

Another special process is the one that may perform any sequence of actions 

whatsoever. Any attempt at communicating with such a process may or may not 

succeed. It represents a process that we have absolutely no knowledge about, 

other than its sort. It will be called the most nondeterministic process and will 

be written as "11L", after the notation used in [deNicola 82]. The CSP operator 

called CHAOS [Brookes 83] is also very similar. This operator will not be utilized 

until Chapter 5. 

2.2.7 Composition 

Up till now we have only discussed constructs for modeling the sequential be-

havior of a process. Systems, however, are built from many communicating 

processes and so a combinator is needed to generate the aggregate behavior 

from the sub-behaviors. This combinator is the binary Dot Operator ".". 

Most of the properties of the operator will not be discussed here. Instead the 

reader is referred to the table at the end of the section. The composition of de-

terministic sums, however, is important enough to warrant a closer examination. 

Law [. +] (also called the Expansion Rule) is defined recursively as follows: 

Definition 2.2.1 The Dot Operator. 

Given: 
P 	EAP1 	of sort L 

Q = EpaQa of sort M 

Where Ai and lij may be single or multiple labels and I and j are unspecified 

indices 

P•'2 =d,f 	E A1 (Pi  sQ) 	 (1) 
A nM=ø 

+ E jt5(P.Q5) 	 (2) 
MJflL=ø 

+ 	E 	(A1up5) (Pi  sQ1) 	(3) 
A1nM = 

['+1 
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The sort of P.Q is L  M. 

This rather formidable collection of summations simply enumerates the out-

comes that are possible when two processes are run in parallel. Term (1) spec-

ifies all those communications of P that can never synchronize with Q—the 

independent labels of P. If no label in A1 is in M then P may evolve into P1 

independently of what Q does. Similarly, term (2) contributes the independent 

labels of Q. Term (3) actually embodies two possible outcomes. If both A1 and 

are independent labels, they may both occur at exactly the same time and 

so both expressions will evolve. Alternatively, if A1 and p5 have some labels 

in corn on—dependent labels—then these labels represent a synchronization on 

those lines and both expressions will again evolve, if any of the labels in A1 or 

p5 are in the sort of the other process, and there are no corresponding labels 

in the other guard, then that term can never synchronize and is removed, if all 

the A1 and p5 have dependent labels that don't synchronize, we are faced with 

the situation commonly called deadlock. In other words, one process is trying 

to communicate with another via a line that is unavailable for synchronization. 

This is represented by an instance of the deadlock operator A with sort L U M 

as described in the previous section. 

Note that this definition of composition contrasts with that of the CCS "I" 
[Milner 801 and the SCCS "x" [Milner 831 operators. The I operator has, on the 

surface, a similar definition to that of • for single labels (CCS does not support 

label sets for guards). Labels may either synchronize, resulting in a r action, or 

may independently evolve. The key difference is the definition of independent. 

In CIRCAL, labels are independent if they do not belong to the sort of the other 

process, whilst in CCS, they are independent if the other process is not indulging 

in those communications. The connections in CIRCAL can be thought of as being 

"static" - if the other process is not listening, nothing can happen. In CCS, on 

the other hand, if the other process is not listening, the process will wait until 

it does - a "dynamic" concept of communication. 

Another important difference is that communications in CIRCAL are multi-

way. Several processes can participate in the same communication instead of 

the CCS style of point to point communications. The intended meaning is that 
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a particular event (the communication) must happen to all processes having it 

in their sorts for any of them to evolve. A parallel can be drawn with the join 

operation in Petri nets. 

The SCCS x operator is similar to term (3) of the definition of.. All guards 

in SCCS have an implicit synchronizing label that makes them dependent (syn-

chronous). As in CCS, the communications are dynamic, so deadlock is not 

explicitly introduced. 

Multiple compositions can be specified by applying the fi operator in the 

same manner as multiple choices are represented by E Unlike the summation 

operator, however, products will always be finite. Infinite numbers of process 

have no physical analogy and are therefore to be avoided. 

Composing processes that have state variables results in a process whose 

state is determined by the union of the variables of its components. Care must 

be taken that state variables have unique names, so that an instantiation will 

have predictable results. 

Examples: 

A(x,y) .4= 

B(y,z) .4= 

C(x, Y,  y', z) = A(x, y) • B(y', z) 

The state of the composite process C is determined by the union of the state 

variables of A and B. Notice how the state variable y contributed by B was 

named y' to prevent a conflict with the variable of the same, name contributed 

by A. 

2.2.8 Value Passing 

All communications described so far have been in terms of atomic event names 

(the guard labels). The indexing of labels was mentioned in passing as a means of 

manipulating arrays of channels. The term "channel", however, seems to imply 

that something is being sent along it. How then can the ability to pass values 

between processes be defined? 
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Given the ability to index labels, it seems reasonable to allow the values of 

the indices to range through the domain of values that are to be passed through 

the channel. An event containing a label indexed by one of these values would 

then correspond to that value being passed. The ability to receive a binary value 

on channel b, for instance, might be modeled by a choice sum of two labels b1 

and ba. A change from 0 to 1 would be indicated by a b 1  event and similarly b 0  

would signal a 1 to 0 transition. This approach soon becomes tedious, especially 

when a signal can take on more than two values. 

Fortunately, it is possible to use the infinite choice sum operator to capture 

this type of behavior. A process seeking to input a value on a channel b indexes 

b by a variable x and sums x over the domain V corresponding to the type of 

the channel. This would be written as: 

P . 
ZED 

Any other process that generates a b event indexed by a particular value v will 

synchronize with the x that matches t.', selecting that branch of the summation. 

The sorts of the two processes are extended to include the subscripted labels 

so that this synchronization takes place. This can be done bj using a sort 

declaration operator that allows the types of the channels to be declared. For 

example: 

P of sort {a. b, c:int, d:bool, e} 

means that P is a process that has channels a, b, and c indexed by integers; a 

boolean valued channel d; and a non-typed channel e. 

But what happens if the channel synchronizing with an infinite summation is 

also a summation? Which indices get bound? Using the present notation there 

is no way to tell which is intended to be the receiver and which the sender. 

To indicate the direction of information flow, an arrow is written between 

the channel's label and its index. The arrows replace the summation over the 

domain, yielding a clearer and more compact expression. Arrows pointing toward 

the label denote output channels, whilst arrows pointing toward the index are 

input channels (the direction of the arrow symbolizes the direction of information 

flow). Values attached to output events will always bind variables attached to 
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input events. The scope of the binding is the output labels of the guard and 

the expression being guarded. By convention, unary postfix occurrences of a 

directionality indicator bind a variable with the same name as the channel. Thus 

{br} is a shorthand way of writing {br.b}. 

Examples: 

F(0) . 	{ari.z} P(x + 1) + {bcl} Q 	means that if P(0) inputs a value 
5 on a, it will evolve into P(6). 
Alternatively, it can output ,the' 
value 1 on channel b. 

Square(i :integer) . 	{outc(i x i)} Square(i + 1) 

Summer (x :integer) 	{lnr>} {out<(x + in)} Summer(x + in) 

The Square process produces a series of out events indexed by the squares 

of the integers beginning from the initial value of i. The direction of the arrow 

indicates that the squares are being output and thus will bind any free variable 

attached to an out channel. Similarly in Summer, an event on the in channel 

will bind the variable in, which is added to x and output on out. 

Care must taken in determining the binding rules for free channel variables 

to account for the presence of multiway synchronizations. If the processes P and 

Q are guarded by the same label c with a direction indicated and subscripted 

by x and y respectively, then there are four possible variations: 

1. The c of P is an output label and the c of Q is an input label. This is a 

proper communication in whichy gets bound to the value of x. The scope 

of the binding includes all resultants of Q until another input event that 

binds the same variable takes place (see Section 2.2.2). 

{c<x}Ps{crr.y}Q = {ccx}(P.Q(x//y]) 

Notice that the result of the communication is an output event. This 

happens because {c-ox} synchronizes with some subset of the summation 

symbolized by {c>y} , thereby preventing the other possibilities from oc-

curring. 
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The c of P is an input label and the c of Q is an output. This is the 

symmetric case to the above one. 

Both are input labels, and consequently must input the same value. 

{c>z} P • {c>y} Q = {c.c'z} (P [Z//X1 • Q [z//y)) 

Both are output labels and therefore will only synchronize if x = y. If 

z 6 X and y 6 Y then the values that allow synchronization will belong 

to X fl Y. Usually, x and y are either functions of the state variables, or 

variables that were bound by previous input communications. 

	

{acz} P • {acy} Q = 	L {aclz} (P [z//x] • Q [z//y]) 
zE(XflY) 

The scope of the binding action of input channels includes any output channels in 

the same label set, so: 

{ac1}P.{áb.xbc(x+3)}Q = {a<1 bci4} (P.Q [ljx]) 

The preceding rules seem obvious, but have some subtle pathological cases. 

Consider the following composition: 

{aNx b<f(x)}P.{br.y acg(y)}Q 

Both processes input a value and instantaneously output a function of it. 

Clearly, the two will synchronize only for values passed on a and b that are 

solutions to the simultaneous equations: 

y=f(x) 	and 	x=g(y) 

If at least one solution exits, the composite process will evolve to: 

{a-ax' bay'} (P.Q) 	x'E {x I x=.g(f(x))}, y' 6 { 	= f(g(y))} 

If there is no solution, the composition deadlocks. 

As can be seen from this example, implementing the synchronization seman-

tics can be difficult in the general case. Even if instantaneous calculations are 

not allowed, there is still the problem of checking the synchronization of channels 
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passing complicated data structures. Determining the result of combining a pro-

cess that is outputting a list on channel b with another that is also outputting 

a list on the same channel involves comparing the lists. This is rather expensive 

for such a primitive operation as value passing. Should this be a problem, one 

could institute a syntactic requirement that channels outputting complex data 

be attached only to input channels. That way the equality check need never be 

made. 

Another subtlety of value passing to be aware of is that one is allowed to 

deterministically output two different values on the same channel. For instance, 

the following expression is perfectly legal: 

J3  . 	 { a.042} F' + {ac17} P" 	 (2.3) 

It means something like, "You ask for a 42, I give you a 42. You ask fora 17, 

I give you a 17." One could argue that it is physically more natural to receive 

only one of these values, the choice being made nondeterministically. To do this, 

a new choice operator must be defined that has all the properties of +, except 

that law fry +] (see Section 2.2.11) applies only to channel names and ignores the 

attached values Since expression like Equation 2.3 are rather contrived, such an 

operator will not be defined here. Should these types of expressions be required, 

the nondeterminism must be indicated explicitly. 

2.2.9 Recursion and Induction 

Some of the examples above contained recursive equations of the form: 

P . 	E(P) 	 (2.4) 

Where E is an expression using P constructed from CIRCAL operators. 

Recursion is the way infinite behaviors are represented and is encountered so 

frequently that it has a special notation: 

rec X. E(X) 

X is a vector of free variables that are bound every time the expression recurses. 

Equation 2.4 can be reformulated in terms of this operator as follows: 

P = recX.E(X) 
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Note how it is possible to write an equation of th; form: 

rec X. X 

that has no useful meaning. We will therefore require that all recursive processes 

be guardedly well defined [Sanderson 821. This means that at least one guard 

must be interposed between one level of a recursion and the next. The guarded 

well definedness requirement will apply only to definitions of a processes, since 

as we shall see in the next section, it is possible to produce this type of recursion 

by abstracting away the interposed guard. 

Because the recursion operator can be used to produce sequences of events, 

a means of "folding" and "unfolding" these sequences is needed. The following 

law (called FOLD or UNFOLD as appropriate) shows how this is done: 

rec X.E = E [(rec X.E)//X] 	 [rec i ] 

Remember that the // relabelling operation binds free variables. Thus the law 

says that a recursive equation can be replaced by a non-recursive one with the 

recursion variable bound to the original equation. The following equality, for 

example, holds under this law: 

rec X. {a} X = {a} (rec X. {a} x) 

Now that we have a means of writing infinite behaviors, we also need a means 

of comparing then. To this end, we follow Hennessy [Hennessy 841 and introduce 

a simple form of induction called Fixpoint Induction. 

Definition 2.2.2 Fixpoint Induction 

If we have a recursive process F defined as 

P4E(P) 

then if it can be shown that for another process Q 

E(Q)=Q 

we can conclude that 

OWN 

'I 
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The term E(Q) refers to the equation that defines P with all occurrences of 

the identifier name P replacMby the name Q. If this relabelled equation can be 

shown equivalent to the expression defining Q's behavior, then we can conclude 

that P and Q define the same process. A simple example (also due to Hennessy) 

serves to illustrate this concept'. Consider P and Q defined by: 

P '4= E(P) = {a}P 

Q = F(Q) = {a}{a}Q 

Intuitively, the two represent the same sequence of events, but how do we show 

that this is true in the calculus? Clearly, some use must be made of [reci] and 

Fixpoint Induction: 

E(P) = {a}P 

= {a}{a}P 	 [UNFOLD] 

= F(F) 

Since the two definitions of the processes agree, we can use Fixpoint Induction 

to conclude that: 

Ii— -$ 

The reference to law [reci] was done through the name [UNFOLD] to indicate 

the direction in which it was being used. 

2.2.10 Abstraction 

Because systems tend to be built by composing smaller functional units which 

in turn are compositions of still smaller blocks, it is important to have a way of 

looking at the complete behavior at different levels of detail. If an integrated 

circuit chip is observed at the pin level, for instance, the events associated with 

internal communications should be hidden from the observer. This is accom-

plished by applying the abstraction operator, written "-". Abstraction implies 

the removal of labels associated with internal lines, so that the events associated 

with them are no longer available to the environment. Like the Dot Operator, 

abstraction on terms having deterministic choice sums is important enough to 

consider in detail. 
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The analogue to Law [. +] for abstraction is called [- +] and is also defined 

as a summation: 

P 	LAIPi 

P—b Me[M+ 
hEX1 

(b)$X1 

M= E(Pi — b) 
A4=(b) 

(A1\{b}) (Pi  —b) + LAI  (Pi — b)} 
bA1 

This rather complex expression may be explained briefly as follows: 

The two deterministic summation terms are generated by terms in P that either 

contain b as a member of their guards or do not contain it at all. If b is part of a 

guard, it is removed since it can no longer be seen. Otherwise, the term evolves 

as usual. 

The term represented by M is generated by terms in P that were guarded by 

label sets of the form {a} . Clearly, if a has been made internal, we will no 

longer be able to see if it occurs (a silent move is said to have taken place), 

hence the nondeterministic choice between M and the deterministic sums. The 

reason that M is also present in the deterministic sum is more subtle. Suppose 

that the environment never communicates with any of the guards belonging to 

the deterministic summations. Normally, the term would then evolve to a1L, but 

we know that an internal b communication is always possible. In the absence of 

any external communications, the internal one will eventually take place forcing 

the expression to evolve into M. Hence the presence of M in the deterministic 

choice as well. 

Examples: 

({ab}P1-i-{bc}P2)—b = {a} (PI —b)+{c}(P2—b) 

({a b} Qi +{b}Q2)—b = {a} (Qi —b)®(Q2—b) 

({a b} Ri + { b} RE + {c} RS) - b = [{c} (R5 —b) 	 t Lot- 

({ac,1b}P1+{at,2c}P2)—a 	{b}1{c}Q2-'C) 

Abstracting several channels is such a common operation that we will allow sets 

as arguments: 

P—{a. b, c} =def  P — a —b — c 
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Recursion and abstraction can interact in unexpected ways. Consider the 

process defined by: 

P01 sort {a. b) 	{a}P 

Now hide the a channel to produce 

(P — a) of sort {b} 	(P—a)e(P---a) 

=P—a 

What is the meaning of this expression? Have we succeeded in reducing the 

expression to :? a meaningless equality? The answer is no, because the 

equation represents a process that is engaging in an infinite number of internal 

actions and is therefore unable to communicate with the outside world (it is said 

to be diverging). Two possible interpretations can be made of this behavior. 

The first claims that since any attempt to communicate with the process on 

the b will never be answered, the result should be indistinguishable from 

Alternatively, it can be claimed that we have no idea whether this will be an 

infinite divergence or that at some unknown time in the future a b communication 

will be offered. Instead of termination, we would have an instance of the most 

nondeterministic process {b}  (For a more complete discussion of these two 

interpretations in a slightly different framework see [Brooks 83]). 

The first interpretation seems more natural when the original equation for P 

is considered (how could a b occur?) and will be adopted in this thesis. It can  

be justified by noticing that 

P—a = recX.X 

= recX.(X+A{b}) 

= A{b} + (rec X..(X + A{b})) 	 [UNFOLD] 

= 	 Induction 

= A{b} 	 [++] 

By taking advantage of the fact that A is the identity for + and using induction, 

we have shown that the infinite recursion is equivalent to an infinite, sum of 

deadlock elements. But + is idempotent, so this in turn is equivalent to a 

single deadlock.t The transformation discussed here only make sense when the 

tA table of these and other laws is given in the next section 
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unguarded recursion has resulted from making an action internal. In general, an 

unguarded recursive equation will have infinitely many solutions. 

Notice that under both interpretations, if the sort of P is simply { a }, the 

resulting process would have an empty sort. This type of process cannot interact 

with any other and hence is an identity element for the Dot Operator: 

= Q for any Q 

2.2.11 CIRCAL Laws 

Many algebraic laws are derivable from the acceptance semantics that defines 

CIRCAL'S basic operators. Table 2-1 is intended as a reference guide to some of 

the more useful ones. A more detailed discussion of some their derivations can 

be found in [Milne 83a1. 
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Name CIR CAL Expression Comments 

[+] P + P = P Idempotency 

[+a] P + Q = Q + P Commutativity 

L++] P + (Q + R) = (P + Q) + R Associativity 

[+A] P+iS=P Identity 

[es] P s P = P Idempotency 

[Sc] P s Q = Q s P Commutativity 

[se] Pe(QeR)=(PsQ)eR Associativity 

[+ e] P + (Q e R) = (P + Q) e (P + R) + distributes over ® 
[s+] Pe(Q+R)=(PsQ)+(PsR) $ distributes over + 

[-ye+] -1P+-7Q='yPs-yQ isaguard 

[•1] P • P = P Idempotency 

[•c] P • Q =,Q • P Commutativity 

[• •} P • (Q • R) = (P • Q) • R Associativity 

le el P • (Q e R) = (P • Q) s (P • R) Distributes over e 
[. +] See page 19 

[• Al AA.AB = aIAUB 

1-'] P — a — a=P — a Idempotency 

[ — ci P—a—bP—b—a Commutativity 

[-e1 (EPd — a=E(P — a) 
[- +] See page 28 

[reci] rec X.E = E (rec X.E//X] Called OLD/UNFOLD 
[rec2] (rec X.1 X) - 	= Sort(rec X.-1 X) = L 
[recs] (recX.(E + ix)) - -y = recX.(E - 
[rec4 ] (rec X. (E six)) - 	= rec X. (E - 

[] 1 	(P 	= 	E(F))=recX.E(X)  

Note: Law [.j] applies only to deterministic processes. 

Table 2—i: Some CIRCAL laws 
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2.3 Some Derived Operators 

2.3.1 Conditionals 

The deterministic summation operator can be used to define conditional resul-

tant states in a manner similar to the way it was used to define, value passing. 

Following the approach of [Milner 831, we can define an if-then-else construct 

for choosing between two resultant states based on the value of a boolean selector 

function. 

Definition 2.3.1 The if-then-else construct. 

if 6(v) then P1 else PP =def EPJ + E P2 
b(v) 	-'b(u) 

Where 6(v) is a boolean function of constants, state variables, and/or communi- 

cated values. 	 o 

A case construct can also be derived by replacing the boolean selection function 

by one that has multiple values. 

2.3.2 Hiding 

Sometimes it is necessary to remove a channel that is never used by a process. 

Using the abstraction operator to do this is meaningless since it makes the port 

internal and thereby introduces the possibility of nondeterminism. Clearly this 

is not what is desired. How can a totally unused channel contribute to the 

overall behavior of the process? A new operator, the hiding operator [Milne 83a] 

is therefore defined to handle this case. 

Definition 2.3.2 Hiding Operator 

Fa =d,f 
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The deadlock operator blocks all activity on the a channel and the abstraction 

operator removes it from the sort of the process. 

Examples: 

({ab}P1+{c}P2)±b = {c}(P2±b) 

{a}Q1i-a = A0 

2.3.3 Tight Synchronization 

Most well constructed systems are regular structures with highly localized com-

munications. This is increasingly true of VLSI designs, in particular, due to the 

cost of global connections in terms of wiring area and routing complexity. Since 

communications in CIRCAL are global by default, it is convenient to derive a 

composition operator that enforces locality. Not only do the resulting descrip-

tions more accurately reflect the intentions of the designer, but they are also be 

much clearer to read as irrelevant information is removed as soon as possible. 

Here is the definition of the new composition operator: 

Definition 2.3.3 Tight Composition 

P has sort L, Q has sort Iv!. 

P If Q =d.f (P.Q)—(LnM) 

The abstraction operator is used to remove any communicating lines which will 

be given by the intersection of the two sorts. This type of synchronization is 

called tight synchronization since it allows only the two processes to participate 

in any mutual communication(s). 
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2.3.4 The Array Operator 

Another common feature of VLSI circuits is the replication of primitive elements 

to form higher order components. A stack of depth D, for instance, is created 

by placing D copies of a single element stack cell end to end. Single bit storage 

elements are connected in arrays to form m x n memories. Since the intercon-

nections are highly localized, we can adapt the tight composition operator to 

generate single or multi-dimensional arrays. 

Definition 2.3.4 The Array Operator 

TI nc P =def 	

jPcc]
—Left(C 2...) 

P is defined as P [x/x, x € SortOf(P)]. 	 SI 

C, called a connection set, is an set of pairs of labels suitable for use by the 

relabeling operator. Each pair usually specifies an output (input) label that is 

to be connected to an input (output) label of the next stage. The channels of 

the last process are left dangling for possible use by the environment. Notice 

th4by default channel labels are indexed. If a channel is to be global to all the 

processes, it must be explicitly relabelled as such in the connection set. The Left 

function returns a set of all the indexed left members of the relabel pairs. This 

set is used to hide the connecting channels, except for those of the first stage 

which must communicate with the outside world (hence the index beginning at 

2) and those that are global (unindexed). A sample connection set might look 

like: 

{iny+j/outg, ay+i/b5, c/c5, d/d5} 

Applying it to the box in Figure 2-2(a) yields the array shown in Figure 2-2(b). 

Note how labels c and d form global communication lines. 

The array operator can be applied an arbitrary number of times to generate 

multidimensional arrays of processes. Each connecting label must be subscripted 

by the proper index. Figure 2-2(e) shows how the previous vector of processes 
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(a) Sample Process P. 
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Figure 2-1: Sample applications of the Array Operator 
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(a) Sample Process P. 
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(c) IIElPj  
i=1 5=1 

Figure 2-2: Sample applications of the Array Operator 
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can be extended into a two-dimensional array. The connection set D is defined 

as: 

D = { d1+j /ct} 

2.3.5 The "Any Actions" Operator 

As we shall see later, it is frequently necessary to synchronize with any subset 

of a set of actions. A process, for example, may wish to wait for any of or any 

combination of a number of events to occur before evolving. For convenience, 

we define an operator that generates the possibilities for us: 

ANY(L)P =def 	 (u-y) P 
liEpow (L) 

The notation pow(L) stands for the powerset (set of all subsets) of the set of 

label sets L and pow is the powerset with the emptyset excluded (pow(L) \ 0). 

Consequently, the guards of P will range over all subsets of L, with the exception 

of the empty set. The union on the guard is needed to "flatten" subsets of the 

form { {a}, {b c} } into label-sets like {a b c}. The end result is a deterministic 

sum of all possible combinations of the events • in the generating set. 

Notice that all the actions have the same resultants. A more general operator 

over process sets as well as label sets could be defined, but is not needed in this 

thesis, so only this restricted case will be considered. 

Examples: 

ANY({a})P = {a}P 

ANY(a,b)P = {a}P+{b}P+{ab}P 

ANY({a},{bc})Q = {a}Q+{bc}Q+{a b c}Q 

The outer level of braces of the set of label-sets has been removed in the last two 

examples for clarity. 

The Any-Actions operator has the interesting property of acting like an iden-

tity for the Dot Operator. Consider a label-set i  that is a subset of the restricted 

powerset of a set of label-sets A. Then: 

ANY(A)P.7P = 
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since ANY(A) generates a deterministic choice sum that includes -y  as one of its 

branches. By Law [.+], i will synchronize with this branch and remove the 

others. 

2.4 Peripheral Considerations 

2.4.1 Operator Precedences 

To prevent ambiguity in interpreting CIRCAL expressions and to decrease the 

usage of parenthesis, each of the core operators is assigned a precedence. Table 2-

2 lists all the core operators with their symbols and precedences. The highest 

precedence is 0; the lowest 3. 

Operator Symbol Precedence 

Relabel [] 0 

Dot • 1 

Choice + 2 

Nondeterminism 0 2 

Abstraction - 2 

Definition 3 

Table 2-2: Precedence Table 

2.4.2 Sort Determination 

It is often necessary to be able to determine the sort of an arbitrary expression. 

The Dot Operator, in particular, needs to know the sorts of its two arguments 

in order to perform channel synchronization. Usually, the sort of a process will 

be declared explicitly with the ofsort operator, but sometimes this is inconve-

nient. A system that expands equations, for example, will often be presented 

a mixture of operators and atomic state names. Having to indicate the sort of 

each expression is a needless waste of effort. For these applications a recursive 

function is presented in Figure 2-3 that can be used to determine a minimum 

sort for an expression. 
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SortOf( AE) =A u SortOf( E) 

SortOf( AL ) = L 

SortOf( E1  • E2 ) = SortOf( E1 ) U SortOf( E3 ) 

SortOf( E1 + E2 ) = SortOf( E1 ) U SortOf( E2 

SortOf( E1 e E2 ) = SortOf( E1 ) U SortOf( E2 ) 

SortOf( E - c ) = SortOf( E ) \ { c} 

SortOf( E [p] ) = SortOf( E) [p] where p is a relabel list 

Figure 2-3: Algorithm for determining the sort of an expression 

Notice that there is no way to stop unbounded recursion. If an expression is 

recursive, the algorithm will loop forever. The loop can be broken by using the 

olsort declaration operator that assigns an atom and its expression a sort. The 

assigned sort must include at least those labels used in the expression and may 

also include others if necessary. The following rule extends the sort determination 

function to cope with declarations: 

SortOf( (P ofsort L = E) ) = L 

Usually a sort will be declared when a process is first defined using the .= 

operator, or it will be obvious from its expression. The above algorithm is 

intended mainly for mechanical expansion systems that have to determine the 

sort of an expression from the context. That is why the rules for the choice 

operators have been included; even though the subterms E1 and E2  should have 

the same sort, it might not be determinable from their defining expressions. 
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2.5 Synchronization Trees 

In [Milner 801, Milner presents an elegant way of picturing behaviors as rooted 

trees. Each node in the tree corresponds to a state in the evolution of a process; 

the root node being the first state. The arcs connecting nodes are labelled by 

non-empty subsets of £ the set of all label names and represent the label-sets of 

guards. Multiple branches represent a (deterministic) choice of possible outcomes 

at that point. Expressions can be pictured quite naturally as trees, as Figure 2-4 

shows. 

aP 	 aP+flQ 

{a}P.{b}Q 	 {a}Pe{b}Q 

/\ 
a 	J {a b) 	

a b P.{b}Q 	 POQ 	

AA 
{a}P.Q 

Figure 2-4: Some sample trees 

Laws [. +] and [- +] allow all expressions to be represented as summations. 

Therefore, the expression that describes a process can be pictured as a tree of 

sequences of events. Finite trees have instances of the termination operator 

as leaves, whilst recursive terms give rise to infinite trees. 

A slight extension is needed to our informal tree semantics to cope with 

nondeterministic choices. The nodes described above and pictured by a solid 

circle (.) refer to purely deterministic choice, so we introduce a different type 
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of node pictured by an open circles (o) for nondeterministic choices. Branches 

leaving these nodes are not labelled since they stand for hidden moves. Trees 

having no nondeterministic nodes represent deterministic processes. 

Definition 2.5.1 Deterministic Processes [Mime Mb]. 

A process is said to be deterministic if it and all its resultants never face a 

non-deterministic choice. Therefore an expression E describing the process must 

be of the form: 

E 	-tj Ej 	and Ei is deterministic 
LEl 

lj 0lJi 

EN 

The 'ij 54  'm qualifier on the summation disallows nondeterministic choices 

of the form 'yP + 1Q. The deadlock operator AL is included by the degenerate 

case of iE 0. 

The choices available to a process when it is in a given state corresponding 

to a particular node can be collected in a set of sets of actions (and actions are 

sets of labels!) called the initial actions set. A function on expressions can be 

defined that generates such sets. For example: 

initials({a} P + {b} Q) = {{{a}, {b}}} 

Nondeterministic choices require the extra level of nesting, since they are repre-

sented by a set of possible deterministic choices: 

initials( ({a} P + {b} Q) e {c} R) 	= { {{a}, {b}}, {{c}} } 

Related to the initial actions set is the refusal set. This is the set of actions 

that belong to the process's sort, but are not found in the initial actions; in other 

words, the actions that are not part of the choice summation of the current state. 

Any attempt to communicate with them will deadlock. 
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Definition 2.5.2 Initial and Refusal Sets 

Given a process defined by: 

	

P ofsort L 	E 
iEI iEDi 

Then the initial actions set of P is calculated by the initials function as follows: 

initials(P) =d.f  {Di, i E I } 

and the refusal actions set by: 

	

refusals(P) =def  {z 	= (pow(L) \ 91), 1€ I} 

The index sets for the deterministic summation contain label-sets (guards), 

so the initials function will produce a set of sets of label-sets, the members 

of which correspond to the branches of the nondeterministic summation. The 

refusals function produces a similar set, except that the members are sets of all 

possible initial actions (pow (L)) with the actual initials removed. Here is a 

brief example to make this clearer: 

Pof sort {a,b,c} ={a}P'e{b}P' 

initials(P) = { {{a}}, {{b}} } 

refusals(P) = { {{b}, {c}, {b c}, {a c}, {a b c}}, 
I 

{{a}, {c}, {b c}, {a c}, {a b c}}} 

P is a nondeterministic process with two branches, i.e., the nondeterministic 

index set I has two members D = {{a}} and 92 = {{b}}. Thus the initial 

action set of P is a set containing P1 and 92 as members. The members of the 

refusals set are those possible actions not in 9 and 92 respectively. 

These functions will be used extensively in Chapter 5. 
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2.6 A Brief Introduction to Acceptance Seman-

tics 

The material in this section is on the technical side and can safely be glanced 

through. It will not be used until Chapter 5, where several proofs require recourse 

to this level of detail. Further information on acceptance semantics and the 

proofs of various CIRCAL laws using it can be found in [Milne 83a]. 

A natural way of finding out how something behaves is to experiment on it. 

In our framework processes are modelled by the communications that they can 

participate in. Experiments then take the form of applying stimuli to a process's 

ports and observing the results. Stimuli are communications of subsets of the 

sort of the process. They can be accepted, in which case the process evolves into 

another, or rejected and the meta-symbol * produced. This symbol is disjoint 

from both £, the set of all possible label names and P, the set of all process 

names. It simply indicates the refusal. 

The notion of acceptance can be formalized as a family of acceptance relations, 

indexed by sort and having type: 

	

PLX2L 	PLU{*} 

.PL is the set of all processes of sort L and 2L  is the set of all subsets of L minus 

the empty set. For F, Q E PL and c ç L, the relation is written as 

P_?4Q 

meaning that P accepts a and becomes Q. If F were to refuse a communication 

fi, it would be written as: 
P /3 

—* 

The accepts operator -K  is a relation and can therefore have multiple values. 

This is how meaning is given to nondeterminism. A nondeterministic process P 

can, for example, evolve to both * and Q under the same stimulus. 

Terms are considered equivalent if they have the same sort, accept the same 

stimuli, and refuse the same stimuli. They must also continue to do so through 



Chapter 2. The CIR CAL Calculus 	 43 

out their evolution. To capture this notion of comparison, we define an equiv- 

alence that is the intersection of ascending indexed relations 	It is always 

true that P 	Q for F, Q E P,. The equivalence -s  is then defined as fl, 
where: 

P 	Q 	VaçL,a50 

P 	impliesQ --** 

Q--.* implies P-2--* 

C) 	 P i3.  F' implies 3Q such that 9 --+ 9' and (F' - 9') 
d) 	9 —f-' 9' implies 3P" such that F --* F' and (9' 	F') 

The equivalence - is a congruence with respect to the operators of CIRCAL 

[Milne 83a]. This means that for all contexts C that can be constructed: 

Ps9 implies CI[P]-CQ1I 

A context is simply an expression with a "hole" in which any CIRCAL term may 

be placed. This is the equivalence that is implied when we write "=". 

2.7 Packaging behaviors 

High-level programming languages provide numerous methods (e.g., classes, 

records, objects, etc.) for packaging data to ease its manipulation and main-

tain consistency. Behavior expressions encapsulate a great deal of information 

about a system, so it is valuable to adopt similar techniques in structuring them. 

A low level component is typically described in terms of a number of CIRCAL 

expressions. Each expression corresponds to a state of the behavior and is often 

assigned using the operator to an atomic name. In a complicated system 

built from many components, it is all too easy to intermix thtexpressions and 

in doing so obscure their intended functionality. Changing the description of 

a component could also prove difficult. Each related expression would have to k 

tracked down and modified. 

To avoid these pitfalls, we introduce a minor syntactic addition called the 

part to our framework. A part is a vector of related state names or assignments 
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that unite to describe the complete behavior of some object. It is similar in 

application to the procedure construct in most block-structured programming 

languages. The syntax is as follows: 

part Name {sort} ( 

Statel .4= 

StateS .4= 

StateN 4= 

The processes associated with the state names can be referenced from outside 

the part's body by the identifiers Name.Statel, Narne.State2, and so forth. By 

convention, the part is considered to start in the first state of the vector; using 

the identifier Name in an expression is the same as referencing Name.Statel. 

The sort declaration sort is a set of channel labels with optional type declara-

tions. Many Hardware Description Languages represent connectivity by passing 

channel names as parameters to a part. Distinct parts which have a common 

label as a parameter are considered to be joined on the channel referenced by 

the parameter. A similar thing can be done here using a positional morphism. 

Instead of writing 

Count Ent/out. n2/preset, n3/clear, n4/clock] 

when we wish to use the part in a system, we can write 

Count [ni, n2, n3. n4] 

if the part was declared as 

part Count {out: byte, preset, clear. clock} 

The positional morphism is not a set but rather a vector, since the position of 

a label indicates what channel it names. 

Positions in the vector containing an underscore (_) denote hidden channels, 

i.e., channels that are removed using the hiding (~ ) operator. Positional mor-

phisms gives the part construct a flavour similar to the commercial Hardware 

Description Language MODEL [Lattice 821. 
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The expressions describing the behavior of each state can reference channels 

not declared in sort. These channels are considered to be local to the part's body 

and cannot communicate with outside processes. Consequently, an abstraction 

operator is implicitly applied to the first state (and therefore all succeeding ones) 

that removes the local channels from view when the part's definition is expanded. 

Most operators, with the exception of composition, distribute over the body 

of a part, changing the sort if necessary. Composing part G having it states 

with H having in results in a part with potentially it x in states. Some of the 

states will probably be unreachable when the system is "run", so in practice the 

composition night be implemented as a lazy evaluation. 

Example: To illustrate the utility of the part construct, consider a system 

built from two parts P and Q: 

S 14=P.Q 

The parts are defined as follows 

part P {start. a. b} ( 

unit . 	{start }P1 

P1 . {a}P2 

P2 	{b}Init 

part Q {start, C. d} ( 

Initi .= {start} Qi 

mitE .= {start} Q2 

Q1 .= {c) Q2 

QE 	{d}{e}Initl 

By our convention, this is simply an abbreviation for: 

S 	P.Init • (Q.Initl—e). 

The e channel is implicitly abstracted away since it not referred to in the outer 

sort declaration. 
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Now suppose, for some unknown reason, we wish to change Q so that it starts 

up in state Q.InitE. In the non-abbreviated form, this means going back to the 

definition of S and changing it to 

S 4= P.Init • (Q.Init2—e) 

In the abbreviated version, on the other hand, one simply exchanges the positions 

of QJnitl and QJnitR in the part declaration. In an elaborate version of S that 

references Q many times, this can save a considerable amount of effort, as well 

as reducing the opportunities for introducing errors. A degree of modularity has 

been introduced and with it a way of localizing changes that need to be made 

to a system's behavior. 

Here is a simple part that inputs a starting value, outputs every integer 

between this value and 0, and then terminates. 

Example: 

part CountDown {start,  c: mt } 

Stan = {startr.z} Count(x) 

Count(x) ' 	if  = 0 then- {start c} 

else {ccx} Courtt(x - 1) 

2.8 Modeling Systems 

Constructing a behavioral model of a system is not simply a matter of identifying 

the states that it can evolve into and listing the transition events, but also 

involves choosing a modeling style. The calculus provides operators for describing 

and manipulating behaviors in a certain framework, but says nothing about 

mapping real-world behaviors onto this framework. This section considers some 

of the general issues that arise when trying to construct a model of a real-world 

object. 
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2.8.1 Representation Style 

The behavior of most real-world systems is based in the interactions of continu-

ously varying phenomena. A. , discrete event oriented calculus such as CIRCAL 

needs to make some approximations in order to deal with these continuous val-

ues. This is done by sampling them at some granularity of time to produce a 

sequence of value-events. Two possibilities exist for representing these sequences 

in the calculus. The first method simply. writes the sequence as a list of guards 

that continually broadcast the current value of the parameter. In the second 

method, only changes to the value of the parameter are indicated. Parameters 

that change infrequently can be represented much more compactly using this 

method. 

To see the difference between the two approaches, consider a model of a 

boolean signal line that continuously outputs either a 0 tç a 1 based on a 

controlling event (the first method): 

Line(1) .= {control} Line(0) + {outct} Line(1) 

Line(0) .= {control} Line(l) + { outcO} Line (0) 

The line and a similar one are then connected to an ideal boolean OR box 

(Figure 2-5). The box is defined by: 

OR . {outlx out2y sigc(xvy)}OR 

Line 
	out 

control 
	 •sig 

out2 

Figure 2-5: OR box with two value generating boxes attached 

In the absence of a control signal, Line continually outputs its current value 

to OR which uses this in turn to continually (and instantaneously) calculate its 

logical OR with another value given on the out2 line. 
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On the surface, this appears to be perfectly acceptable. The definitions 

are compact and easy to understand. Further thought, however, reveals some 

problems. If a value has already been communicated to another agent, sending 

it again cannot really be considered an "event" worth noting. The receiving 

process must be able to accept the communication at all times or deadlock will 

result. This means that size of process descriptions increases as the number of 

channels increases, even if most of the channels have no relevance to a particular 

state. In addition, if one is interested in the change of a value, as is frequently the 

case in digital systems, a state variable is required to remember the previously 

communicated value so that it can be compared with the currentt rapidly 
.e.. - cumbersomeftdetectmg value changes on a number of channels. A final 

objection to this approach can be seen by noting that the V computation should 

only have to be performed when the value of a signal changes, not at every 

instant. This could, for example, be detrimental to the performance of a software 

implementation of the OR box. 

Accordingly, we modify the OR box example so that the state of the line is 

remembered and only changes to this value are accepted as input. 

Line(l) .= {control}{outcO}LIne(0) 

Line(0) 	{control} {outc1} Line(1) 

OR(O,O) '= {out>1 slgc1(1 V O)} OR(1,O) 

+{out2>1 sig'i(Ovl)}OR(O,l) 

+{outD.1 out2>1 sigc(1v1)} OR(1,1) 

OR(O, 1) .= {outvl sig4(1 v 1) } OR(1, 1) 

+{out2r'0 sig<(OVO)'} OR(O,O) 

+{out>1 out2r'0 sig.c(1v0)}OR(1,0) 

OR(1, 0) 	Symmetric case to the above 

OR(1,1) ' { outr>O sigc(0vl)}OR(0,1) 

+ {out2c'O sigc(1 V 0)} OR(1,O) 

+{outc"O out20 sig4(OvO)}OR(0,0) 

At the cost of a considerable increase in complexity, we now have a purely 

event driven model. The four possible states of the OR are explicitly listed in 



Chapter 2. The CIRCAL Calculus 	 49 

a rather naive fashion. In addition, the sig output line is asserted for every 

change in the inputs, even when the calculated value is the same as the one last 

output. This shows that the above equation for the OR box is still not a true 

event driven model. What changes must be made to accomplish this? 

The processes that drive the inputs to the OR box, Line and Line2, only 

output value changes. This means that we can input the values without worrying 

about absorbing spurious ones. To prevent such spurious values from being 

ptoduced on the sig channel, a conditional guard is used: 

OR(in, in2,last) .<= {outc'x if g(x, in2, last) then sigcl(zvinE)} 

OR (x, mE, (x V m2)) 

+{out2r.y if g(y, in, last) then aig.c(inV y)} 

OR (in, y, (in V y)) 

+{outr'x out2y if g(x,y,last) then sigci(xvy)} 

OR (x, y, (x V y)) 

9(X, &6Z) =d,f (xVyz) 

A definite improvement! The equation has been made considerably smaller 

at the expense of some new notation. Putting the conditional that tests whether 

or not to output a value inside the guard is legal since it amounts to adding 

a predicate to the summations that define the input channels. Even with this 

new trick, however, the expression is still much more complex than the contin-

uously communicating version. This demonstrates that the event interpretation 

is not very good for capturing the behavior of purely functional units. On the 

other hand, the continuous interpretation is just as unwieldy to use for repre-

senting events such as clock edges. Most of the systems that will be examined 

later on will be event based rather than functionally based, so the former is the 

interpretation that will be adopted. 

2.8.2 Generic Box Components 

Many hardware components can be thought of as black-boxes that take inputs, 

perform some function on thm, and output the results. The Boolean combi- 

national elements AND, OR, NOT, and their derivatives are prime examples. 
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If we examine the description for an OR box given in the previous section, we 

notice that the only thing that determines its function is the presence of the 

V operator. An AND Box could be generated by simply changing this to a A, 

without changing the CIRCAL expression in any way. This suggests that the 

expression describes a two-input one-output black-box, that can be personalized 

to produce a required functional element. 

If the function calculated by the box is ignored and the structure alone is 

considered, we see that it consists of an enumeration of all possible input events. 

This brings to mind the "Any Actions" operator ANY discussed in Section 2.3.5. 

If we combine the use of this operator and change the box to have some un-

specified delay, a very simple expression results. A picture of the box and the 

simplified CIRCAL expression describing its behavior are shown in Figure 2-6. 

Note the use of the notation that causes input channels to bind a variable with 

the same name as the channel. Thus {in1} would input a value on channel 

ml and bind it to the variable MI. This notation can greatly simplify complex 

device descriptions. 

(a) 

BoxR...l (ml, MB, out) 

ANY({mnl>}, {in2N1) 

(if f(inl,inB) out then {outcf(inl,in2)}) 

BoxB..I (liii, mB, f(inl , m2)) 

(b) 

Figure 2-6: Generic two-input one-output box. (a) Spatial properties (b) 

CIRCAL description. 
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The equation in Figure 2-6(b) has a subtle feature that should be examined. 

more closely. The Any-Actions operator generates a choice sum of all possible 

input events on the two channels. Now, what will happen if the state variables 

initially have the values ml = 1, mE = 2 and out = 1(1,2), and a value of 

3 is communicated to the mi. channel? The value will get bound to the Oil 

variable, replacing its previous value of 1. Similarly, communications on in2 will 

rebind mE. 

The box is personalized by renaming the channels and the transfer function 

f. In this manner, we obtain the CIRCAL expression for any two argument 

function. Unlike the OR box discussed in the previous section, however, the 

value takes time to calculate and is output some unspecified time after an input 

change. 

The personalization can be taken a step further if an n-input generic box is 

defined. Not only can the transfer function be easily selected, but so can the 

number of inputs. Here is the description of such a box: 

BoxN.i(,out) @ ANY({mn},i= 1...n) 

(if f(Cn) $ out then {outcf(t%i)}) 

BozNJ (, f(;)) 

where in = in 1 ,... ,in,., 

The two-input box had three (22 - 1) terms in the choice expression that 

described its behavior. An n-input box will have 2" - 1 possible input combi-

nations. This means that the behavior of an 8-input AND gate, for instance, 

would contain 256 terms in its choice-sum! In the absence of the derived op-

erators and the shorthand notation, these values would have to be enumerated 

by hand. This illustrates the importance of being able to easily introduce new 

ways of representing the large amount of information that is needed to describe 

even the simplest components in any detail. Mechanical manipulation aids soon 

become vital since the complexity of expressions grows exponentially. 
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2.8.3 Design Style 

There are three approaches to designing a system: top-down, bottom-up, and a 

mixture of the two. Top-down means that the system is specified in a macro-

scopic form and then gradually broken down into sub-systems, sub-sub-systems, 

and so forth until the primitive component level is reached. This is the approach 

generally advocated by structured programming proponents and to a lesser ex-

tent by hardware designers. It is successful mainly when the design style is highly 

stylized, such as in synchronous register transfer systems [Winkel 80]. 

Bottom-up is precisely the opposite. Primitive components are combined to 

yield a higher level module which can in turn be combined with other modules 

or components to form a yet higher level entity. This design style is considered 

bad practice, but is still quite common. 

In practice, neither approach is followed rigidly. Even the best top-down 

designs are influenced by "low-level" considerations. Availability and/or cost 

(on some arbitrary scale) of bottom-level components can greatly affect global 

design considerations. As constraints are satisfied, the composition of a system 

may change radically. Being able to change the design at any level as easily and 

quickly as possible is vital. 

Both styles have one thing in common, namely that they are modular. Mod-

ules are collections of elements grouped together to form a particular functional 

unit. Since elements may include other modules, the end result is a tree structure 

of module relationships whose bottom-most entries ("leaves") are the primitive 

components. The two design styles are simply different methods for generating 

this tree. This approach, as opposed to completely specifying the system at 

one level, is known as hierarchical design. In recent years, many people have 

demonstrated the benefits of designing hardware in such a fashion [Rowson 80, 

Buchanan 80, Mead 801. This methodology has been particularly successful in 

managing the complexity of VLSI layout design. Partitioning a system into func-

tional blocks is the same whether or not the end result is layout or a behavioral 

description. We will therefore describe our systems in as hierarchical a fashion 

as possible. Whether the hierarchy is constructed bottom-up or top-down is a 

purely personal choice. 



Chapter 2. The CIR CAL Calculus 	 53 

2.9 Summary 

This chapter has introduced a calculus for describing the behavior of concur-

rent systems in terms of sequences of events. The basic calculus, due to Mime 

[Mime 83a], draws upon a small number of operators to provide a rich framework 

for reasoning about the interactions of processes. As the examples in Mime's pa-

per show, however, use of these operators alone to describe even simple concepts 

can lead to unnecessarily complicated expressions. Consequently, some new op-

erators were introduced and restrictions were placed on the use of existing ones 

(e.g., dynamic relabelling is not allowed). The new operators include, among 

others, a mechanism for passing values through channels and a way of accepting 

any of a number of communications. These two are crucial in managing the 

exponential explosion in possible inputs to large processes. Along with the new 

operators, a syntactic construct was defined that eases the manipulation of sets 

of equations describing a single object (the part construct). 

With the framework established, consideration was turned to developing a 

representation for real-world phenomena in an event-driven manner suitable for 

use in CIRCAL. The case was made for events indicating value changes, rather 

than events that continuously assert the value of a channel. An example that 

contrasted the two approaches also led to the concept of generic boxes. The 
a 

boxes provide a general structure for handing the 	events needed to drive a 

functional unit. The actual function calculated by the box is orthogonal to its 

interaction with other processes, so it can be defined by relabelling the template 

process. 

Putting these ideas together suggests the following guidelines to describing 

behaviors: 

• CIRCAL expressions describing the behavior of a single component are 

packaged up into one object using the part construct. 

• Only changes in values are represented as events, thus upholding the char- 

acter of the calculus. Stable values will not be signalled continuously. 
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. Locality will be exploited as much as possible to generate modular descrip-

tions. The results will be combined in a hierarchical fashion. 

• Generic box components will be used as often as possible for describing 

primitive functional units. The boxes provide descriptions of n-input, in-

output components with a transfer function f. They are personalized using 

the relabelling operator to provide a particular functional block. 

2.9.1 Contributions of this Chapter 

Several additions were made to the CIRCAL calculus of Milne. These included 

a mechanism for passing values along channels, a conditional construct and an 

operator for generating arrays of interconnected processes. Some ambiguities in 

existing operators were resolved, such as the instantaneous communication of 

interdependent functions using the Dot operator and the semantics of hiding a 

singleton guard in a recursive equation. Two forms of packaging behaviors were 

then developed (the part and generic boxes concepts) in order to simplify the 

creation of behavioral descriptions. Finally, two modelling styles were compared 

and contrasted, resulting in the adoption of a purely event driven approach. 



Chapter 3 

Time, Clocks and Delays 

Towards the end of the previous chapter, we encountered several fairly large ex-

pressions that described the behavior of basic combinational elements. Although 

notation was developed that simplified these expression, they are still quite com-

plicated considering the simplicity of their function. Consequently, there must 

be a compelling reason for choosing an event-driven representation over other 

calculi —such as Boolean algebra—which produce far more succinct descriptions. 

The reason is, quite simply, time. Describing behavior in terms of events leads 

naturally to reasoning about the relationships between these events in time. 

Considering such relationships allows one to ask performance-related questions 

about a design (e.g., How much time will it take for this system to calculate an 

answer? Will this module provide a valid output during a single clock cycle?). 

Performance issues are particularly important in hardware designs, since they 

can determine whether a design will function at all. 

The chapter begins by showing how explicit time may be introduced into the 

calculus. Several approaches are developed and their application to particular 

kinds of problems discussed; Building on the basic approach, consideration is 

turned to multiple levels of clocks and temporal intervals in general. With time 

comes the concept of delay, and so several notions of delay are examined next. 

The effects of delay in certain common feedback arrangements (storage elements) 

are considered by way of example. 
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3.1 Time 

Recall that the calculus only orders events in time. , There 1sway of quantifying 

when they occur in relation to each other. Guarding imposes a simple before and 

after ordering on the events in a sequence. For instance the expression { a} {b} P 

implies that if the event a occurs then it will do so before b and nothing more. 

Reasoning about real world events, particularly hardware ones, often requires a 

means of measuring the passage of time between them. One way to accomplish 

this is to mark the real time axis with a series of events called ticks. The interval 

between ticks is usually assumed to be uniform and have an arbitrary length E. 

The ticks are generated by a central process call the Universal Clock. 

The Universal Clock sends tick events to all timeable processes in the process 

universe. A process universe is the collection of all processes that have the 

same tick label in their sorts (i.e., ones that are be$injexamined at the same 

granularity of time). All actions produced by these processes must occur "at 

the exact same instant" as a tick. Statements about the separation of actions 

in time may then be made by counting the number of ticks that occur between 

them. The length of the interval between ticks € must be - chosen to be smaller 

than the smallest separation between events of interest. Figure 3-1 shows how 

an arbitrary function of time is sampled by ticks labeled t, including a transient 

value that was missed because the granularity of time was too great. 

The Universal Clock concept presents a convenient way of comparing other-

wise asynchronous events. Moore used a similar synchronizing technique to deal 

with asynchronous transitions in state diagrams [Langdon 741. 

Milne [Milne 83b] shows how adding a Universal Clock to the calculus in-

volves no fundamental changes. A tick label, t, is introduced into the sort of all 

processes by forcing each communication to belong to a label-set containing t. 

For example, to indicate the fact that event b occurs two ticks after event a, we 

might write: 

	

Q = {at} It) {bt}Q 	
(31) 

UniversalCiock ' 	{t} Universalclock 
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Figure 3-1: Sampling the real time axis. 

The UniversalClock process is an example of what will be called a virtual 

process. Virtual processes are never actually implemented but are used instead 

to represent extra information about the system. In this case, UniversalCiocit 

simply generates the stream of t events that force the progression of the rest of 

the system. Strictly speaking, its presence is not required since guards containing 

a t will synchronize when composed using the Dot Operator. 

If the passage of time is abstracted away, the original asynchronous nature 

of the calculus should reassert itself. Therefore, as a crosscheck on this repre-

sentation of time, let us see what happens when the ticks in Equation 3.1 are 

removed using the abstraction operator: 

1? =Q — t 

({a t}{t}{b t}Q) — t 	 defn.Q 

= {a}({t}{bt}Q)—t 	 [-+1 
= {a}{b} (Q—t) 	 [- +] twice 
= {a}{b}R 	 defn.R 

Precisely the desired result. The information that b occurred two ticks after a has 

been lost, leaving only the before/after ordering of the asynchronous calculus. 

What happens when a process wishes to wait for an event? if the communi-

cation a is offered on a certain tick and there are no accepting communications 
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at that same tick, deadlock could result. An "idler loop" is needed to absorb 

ticks until the a communication is accepted. This is implemented with the 

deterministic choice operator as follows: 

Q . 	{at}P+{t}Q 	 (3.2) 

Note that this is similar to the "delay until" or "wait for" operator 5 in SCCS 

[Milner 831, but a more mneumonic name will be used as well as a subscript to 

indicate which tick label is being waited upon: 

Q 	WAITt({at}P) 

The intended meaning is that Q will idle, absorbing ticks (perhaps forever), until 

an a communication takes place. 

Definition 3.1.1 The "Wait For" Operator 

WAIT1 (P) =def recx.(iX+P) 

As another check on this scheme for representing time, let us see what happens 

if we remove explicit time from a process that is waiting for an event. Consider 

Equation 32 with t abstracted away: 

Q—t = ({t}Q+{at}P)—t 

= (Q — t) e ((Q—t) +{a}(P—t)) 	 [- +1 
We have encountered unguarded recursion again! Last time we encountered it 

(Section 2.2.10), it was equated with deadlock since all actions by the process 

were happening internally, blocking all external communications. The situation 

here, however, is a bit different in that the recursion appears in two different 

summations. Considering the nondeterministic summation first, we find that: 

Q—t = 

= (Q—t)eReR 	 [UNFOLD] 

= I 
1? 	 Induction 

R 	 [e'] 
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As before, the recursion was turned into an infinite summation and the idempo-

tency property of $ exploited to collapse the sum. This result will be referred 

to as law [rec41. A similar argument is used to remove the recursion in the 

deterministic summation to produce law [rec3]: 

Q—t = (Q—t)+{a}(P—t) 	 Above 

= 	
(P - t) 	 Induction 

= {a}(P—t) 	 [+1] 

An asynchronous expression results as expected. Any communication on the a 

channel will "pre-empt" the internal ticks andcause the process to evolve. 

3.1.1 Time in CIRCAL and SCCS 

We now digress slightly to explore the similarities and differences between Cm-

CAL and the closely related calculus SCCS. SCCS (Synchronous Calculus for 

Communicating Systems) has a concept of time roughly similar to the one pre-

sented here. All actions are assumed to occur simultaneously with an implicit 

tick action (hence the "Synchronous"). Points in time when no events hap-

pen are indicated by the special action 1. Like CIRCAL, SCCS has a guarding 

combinator, which is written as a colon prefixed by a label and followed by a 

resultant. 

Examples: - 

a b : P 	Perform a followed by b in the next unit 
- 	of time before becoming P. 

a : 1 b: P 	Perform a, delay one unit of time, and 
then continue as above. 

P .= 1 P - Idle indefinitely 

Other operators also have their counterparts in SCCS. Choice, written as -i-, 

is very similar to CIRCAL's deterministic choice operator. Parallel composition 

x, however, has a quite different effect from the Dot Operator. It distributes 

over SCCS's + and has the following propertieS for actions: 

a:P -x b:Q=ab:(PXQ) 	a:P x 1:Q=a:(PxQ) 
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Where ab : R is equivalent to writing {a b} R in CIRCAL. Notice that x does 

not rely on the sorts of its arguments to determine synchronization, unlike the 

Dot Operator. An expansion rule for x with respect to + can be written as: 

P . Eai:Pi 

Q .4= 	 (3.3) 

PxQ =d,f 
ij 

Contrast this with the expansion rule for the dot operator: 

R 
. LatR of sort L 

of sort M 

R 	def 	E a(R1sS) 
c1nM=ø 

+ E /3, (Re S,) 
j3,nL=ø 

+ 	L (au$5)(R.Sj) 
a nM=j95 flI, 

In the synchronized process-universe discussed in the previous section, all actions 

belong to a label-set containing the tick label t. The sorts of the two processes, 

L and M, will also contain t, soLflM 36 0. Furthermore, afl/31 $ 0 for any two 

guards a1  and $ (both contain the tick label). Using these facts, a simplified 

version of • (written with the tick label as a subscript) can be defined as: 

RstS = 	E 	auf31(RsS5) 	 (3.4) 
a1nM=j95flL 

This equation bears a striking resemblance to Equation 3.3. Both have the same 

form of a simultaneous action followed by a single resultant. Carrying this anal-

ogy tfar, however, is dangerous. In SCCS, events are not broadcast as they 

are in CIRCAL. Instead, each action has a "direction" so that when two comple-

mentary labels synchronize, a single point-to-point communication takes place. 

Should an event happen on the same tick as several instances of its comple-

ments, the choice of which one actually synchronizes is nondeterministic. This 
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communication semantics is characterized by its dynamic nature, unlike that of 

CIRCAL which determines synchronization based on static sorts. Because of this, 

deadlock is not explicitly represented in SCCS. Compare these two examples: 

(a:b:P)x(b:a:Q) = ab:ab:(PXQ) 	(SCCS) 

({a t} {b t}R).t({b t) {a t} S) = A{abt} (CIRCAL) 

The SCCS process P has no clue that Q will eventually perform an a event, so 

it happily produces one at the same time that Q is producing the b event. R, 

on the other hand, knows that S has the potential to do an a, so it waits. 5, 

meanwhile, knows that 1? can potentially produce a b, so it too waits. The result 

is deadlock. 

Both approaches to modeling synchronous process-universes yield similar re-

sults, modulo communication semantics. This is as it should be since CIRCAL 

and SCCS come from similar roots. The important difference, from the point 

of view of this quick comparison, is that the event mechanism in SCCS is truly 

global. All events happen at the same time as a universal tick.t As we shall see 

in a later section, CIRCAL is a bit more flexible than this. More than one tick 

label can be defined to yield multiple process-universes, each with a different 

granularity of time. This simplifies the description of systems having a several 

levels of clocking, as is often the case in digital designs. 

3.1.2 Enumerated Time 

Sometimes an application will need to generate an event at a particular time in 

the future. An alarm clock, for example, might wish to signal a wake up call 

at time t = 100 as measured by some arbitrary time units. One way to do this 

is to count all the ticks that occur from the time when the alarm is initialized. 

The wake-up signal can then be generated after a hundred have passed. This is 

needlessly complicated since it involves adding an extra state variable to each 

such process to keep track of the passage of ticks. A more elegant solution is to 

tActuajly, an asynchronous calculus (ASCCS) can be derived from SCCS that gets 

around this. The result resembles the aynchronous nature of raw CIRCAL. 
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let the Universal Clock to do the time keeping for us by attaching an integer tag 

value to each tick as it is broadcast. Waiting for a particular time then simply 

involves synchronizing with a tick subscripted by the appropriate tag value. 

A mechanism—similar to the "Wait For" WAIT, operator—is needed to indi-

cate the passage of time while waiting for the desired tick. There are two ways of 

doing this. The first involves modifying the wait-for operator so that it absorbs 

all unwanted tag values. The second method relies on a clever definition of the 

sort of the waiting proceás. If the sort excludes all ticks with a tagged value less 

than that required, the semantics of the Dot Operator will cause the process to 

wait when composed with the Universal Clock. This happens because the Uni-

versal Clock contains the desired tick in its sort, but must pass through all the 

preceding tag values before reaching it. These tagged ticks will be independent 

of the waiting process's sort and will therefore occur without its knowledge. This 

method has the advantage of being concise, but because it relies on the static 

sort, cannot be used for events that happen dynamically (e.g., at time t + 100). 

To illustrate the two approaches and to compare them with the plain tick 

representation of time, we now consider a simple example of an alarm clock that 

produces a wakeup signal at time t = 100 (arbitrary units). First we need to 

define the Universal Clock that broadcasts the tagged ticks: 

part UniversaiCloek { startclock • t 

StartCloek 	{startclock} BIGBEN(0) 

BICBEN (time) . {t<time} BICBEN (succ (time)) 

The universe's time begins with a value of 0 when the startclock signal is 

generated. For then onward, the current time is broadcast on the t channel, 

which has as its type the natural numbers (N). 

Now we see how the alarm clock would be defined in a pure tick universe. 

This is done by ignoring the tags attached to the ticks and counting them "by 

hand." 
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part Alarm-pt(0) {. t : N } ( 

Alrm(x) 	if x = 100 then {tr. wakeup} Alrm(succ(x)) 

else {t>} Alrm(succ(x)) 

The guard {tt..} will synchronize with any tagged tick since it is short-hand for 

Using the first method discussed above, any tick not labelled by the tag 100 

is ignored: 

part Alarm-ml(0) { wakeup. t : N } 

Alarm . {tr400 wakeup} Alarm 

+ {tN(i 0 100)} Alarm 

) 

Finally, using the second method, the sort of the alarm process is declared 

to include only a tick with a tag value of 100: 

part Alarm_mB { wakeup, t100 } 

Alarm 	{t'lOO wakeup} Alarm 

All the representations do nothing after the wake-up signal has been generated. 

Should further actions be required, Alarm...mB would have to be modified to 

receive all ticks with tags greater than 100. 

A functioning system is obtained by composing Alarm-re (where xx is re-

placed by pt, ml, or mE) with the virtual clock, and generating a startclock 

event. In all cases, the wakeup signal will be generated 100 ticks later. 

Wake UpAtlOO '<= {startclock} A{Btartclock} • Alarm_n • Universal Clock 

It is interesting to note that Universal Clock need not be defined to generate 

sequential integer tick tags. Any single valued function maybe used in place of 

the successor function, including piecewise linear ones. The usefulness of this is 

not clear, but it might simplify the task of describing a system in which events 

occur in clusters separated by large intervals of time. 
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3.1.3 Multiple Clocks 

As we have seen, controlling the occurrence of events by means of a Universal 

Clock is quite straightforward in CIRCAL. Digital designers make extensive use 

of clocks,t  often of many levels and interrelationships, to synchronize operations 

in a circuit [Winkel 801. To support this design philosophy, we too must be able 

go beyond the limitations of a single clock to model arbitrary clocking schemes. 

Further consideration of the Universal Clock method raises the question of 

why must the clock be universal? If a system can be separated into subsystems 

with different clocks, then each one may be placed in its own "universe" with 

its own concept of time. The system's concept of time should then be derivable 

from those of its parts. 

Example: Suppose we have a system clock, 'P1,  that dictates the order of the 

events a, b, c. Furthermore, coi occurs simultaneously with every second t tick 

generated by the Universal Clockt. A typical sequence of actions would then 

look like: 

P 	{coi at}{t}{'p i  bt}{t}{'p 1  c t}{t}Q 

With the Universal Clock's presence implied by the Vs. 

Now we forget the period of 'pi by hiding the ticks that were used to measure 

it. Here is what happens: 

P — t = { co j  a}{'p i  b}{ço 1  c} (Q — t) 	 (3.5) 

The result is a system in which events are controlled purely by 'p1;  in other 

words a new Universal Clock has been obtained that generates ticks labeled by 

'pi. This shows that a system controlled by a hierarchy of clocks can be viewed 

at a higher level by simply abstracting away the lower level ticks. 

tReai clocks, not the abstract Universal Clock that was introduced to enable mea-

surement of the passage of time 

tWe  say that ço 1  has a period of 2 and a frequency of 1/2
-

1  (tocks?). 
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Proceeding in the opposite direction—top down—is not quite so easy. Given 

Equation 3.5 with P - t replaced by.R and Q - t by 5, how can the 2 t's per 

coi relationship be recaptured? One way is to define a secondary process that 

embodies this relationship and compose it with R: 

II,  4= IV, t}{t} 

R = {' a} {çi  b} 	c} S 	 (3.6) 

R.e={'iat} It) (pi bt} It) {cict}{t}(ss) 

By multiple applications of law [. +]. 

The ob in Eqn. 3.6 is an example of what will be called a clock process, which 

implements a clock relationship. 

Definition 3.1.2 Simple Clock Relationships and Processes 

Given two tick actions t and u belonging to £, we say that they form a clock 

relationship if ii u events occur for every t event and t happens simultaneously 

with a u. The relationship is embodied by a clock process calculated by the 

following function of type £ x N x N x £ —+ 

Clk(t,l,r,u) =def  rec X.( {u}' {t u} {u}_i  X) 

Where I + r = n. 	 U 

It is sometimes desirable to start two parallel clock processes at different 

points in their cycles, hence the phase of the relationship can be changed by 

varying the two parameters I and r. The parameter I is the number of u ticks 

that must pass before the very first t tick when the system starts up. Thereafter, 

the period of the clock is the expected r + I. By way of example, here are two 

clock processes with the same period, but are they start up out of phase by two 

t ticks: 
CLOCK1 = Clk(çc'i 3 O,lO,t) 

CLOCK2 = Clk(ço2 ,2,8,t) 

The case when 1 is zero (the relationship is said to be zero phase) is so common 

that it is represented by a short form of the function e.g., 

Clk(t, 1O,u) 
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If a zero phase relation has a period of one (r = 1) both t and u will occur 

simultaneously as can be seen from the definition: 

Clk(t,1,u) = recX.({tu}X) 

In this case, the clocking process could be removed completely and all processes 

connected to the u tick renamed to use t instead. 

Clock processes are used to relate the tick events that govern the passage of 

time in two different process universes. The two universes are composed with 

the clock process using the Dot Operator to produce a single universe whose 

time is measured by the smallest of the two granularities. if the clock process 

were not part of the composition, the two notions of time would interleave and 

generate an explosion of terms. One would expect this collapsing procedure to 

be transitive, as the following property shows. 

Proposition 3.1.3 Clock processes with zero phase difference are transitive 

when composed. 

Clk(t,n,u) • Clk(u,m,v) implies Clk(t,n.xm,v) 

Proof: The above three relationships can be expressed as processes by 

applying the definition of Clk. 

P =rec X.({t u}{u}'X) 

Q = recY.({u v} {v}m_l  Y) 

R = rec Z.({t v}{v}tm_l Z) 

Composing P and Q and abstracting away the u channel should result in R. 

Invoking laws [UNFOLD] and [. +] results in: 

P • Q = ({t u} {u} "P) • (.{u v} {v} m'Q) 

= {t u v} {v} rn_1({u  v} {v} rtt-l)n-l(p • Q) 

Hiding u and applying a bit of elementary algebra reduces the expression con- 
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siderably: 

P • Q - u = {t v} {v} rn_i({V}  {v} rn-l)n-i(p • Q - u) 

= It v} {v} rn-i  ({v} rn)n-1  (P • Q - u) 

= It v} {v} rnn-rn+rn-1  (p • Q - u) 

= It v}{v}'1(PsQ—u) 

Applying the law [FOLD] to the last equation produces: 

rec W.( {t v} {v} -1  W) 

This is identical to the equation for R, so by Fixpoint Induction we can conclude 

that they are equivalent. 	 0 

The clock processes discussed above were called simple for a good reason. 

The clocks were fixed in the way that they behave with respect to each other. 

More complicated relationships can be envisaged, including ones that deal with 

more than two tick labels and others that change through time. The former 

type, for example, can be used to model an implementation phenomenon called 

clock skew. 

Clock skew refers to a variation in the arrival time (as measured by some 

global time standard) of clock events to different parts of a system. In VLSI cir-

cuits this is usually caused by high capacitance and/or long clock lines [Mead 801. 

A simple form of this effect can be modelled by partioning the system into sep-

arate process-universes, each having a universal clock which is slightly phase 

shifted ("skewed") with respect to that of its neighbor. A global clock with a 

finer granularity is used to measure the amount of skew. 

Example: Suppose that a circuit consists of two modules INPUT and OUT-

PUT, both controlled by a system clock 'p with a period of 4 t. Unfortunately, 

when the modules were placed on silicon, an automatic router wired the clock 

generator circuitry to INPUT with a short metal line (low capacitance) and to 

OUTPUT with a very long diffusion wire (high capacitance and hence a delay). 

The delay associated with the long diffusion wire is 2 t. 

The circuit can be broken down into two process-universes, one consisting of 

the clock generator and INPUT (clocked by the 'p label), the other of OUTPUT 
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t 

Figure 3-2: A model of clock skew. 

(clocked by the cc 5  label). Figure 3-2 shows how the pieces fit together, including 

a clock process SKEW that establishes a relationship between the two universes. 

The SKEW process is defined by a function similar to the 01k function: 

Skew(ccj,co2, t, p, .$) =d,f 

rec x.( {cc' t} {t} -1  {cc2  t} {t} - ' x) 

The period of the clocks is p in units of t and the amount of skew is 8. For this 

particular example, the clock process would be: 

Skew(cc,cc 8 ,t,4,2) =d.f recX.({cot}{t}{ccgt}{t}X) 

Although the skew is unrealistically large with respect to the clock period, it 

does serve to illustrate how the function operates. 	 E 

Example: Real world clocks can suffer from other problems besides skew. Two 

clocks that start in phase may slowly drift out of phase due to small variations-

in their timebases. This is known as clock drift and can be modelled by having a 

relationship that changes over time. Suppose that V, and ço2 start out perfectly 

in phase with a period of n ticks of the t universal clock: 

R 	{ccicc2t}{t}"'R 
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Now for every in x vi t ticks, the two drift apart by one tick. This is captured 

by adding a state variable to R: 

R'(U) .4= ({co Y2  t} {t}'') R'(rt - 1) 

R'(x) @ 	t} {t}" 1 {ep2 t} {t}t_I)R'(x  —1) 

For the first m x vi ticks, the process looks like R with the two clocks in perfect 

synchrony. On the very next tick, x gets set to vi- 1 which means that the clock 

relation looks like: 

{'i t}{2 t}{t}_2... 

After a further in x vi ticks, V2  becomes two ticks out of phase with p i . This 

continues until eventually the clocks drift back into perfect phase. 	 o 

These sections have presented some examples of what must be termed ideal 

clocks. Time is sampled by infinitely narrow (Dirac delta function) events called 

ticks. Two events sharing a guard label-set with a tick label are considered to 

happen at exactly the same time even when the tick is hidden. This representa-

tion presents some pit-falls in digital design where time is sampled by ticks of a 

finite width, i.e., step (Heaviside) functions. 

To illustrate some of these problems, consider a specification that says: "In 

state READ, events req and ack occur during ci  before progressing to state 

RELINQ". At first glance, one would be tempted to describe this in CIRCAL by 

writing: 

READ c=  {req ack 1}RELINQ 

Unfortunately, this says that even if we were to move to a very fine granu-

larity of time, req and ack would still occur simultaneously with the clock edge. 

What the specification really meant to say was: "..., events req and ack occur 

sometime, we don't care in what order, between the rising edge of p, and the 

falling edge V, ...". Time, at the current level of abstraction, is being sampled 

by the finite width clock cc 1 . 

With the goal of coping with this type of statement, we now define the 

temporal permutation operators and use them in turn to define clock intervals. 
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3.1.4 Temporal Permutations 

In order to make statements of the form: "we don't care in what order events 

b and c happen," we need a way of capturing this ambiguity in the calculus. 

Examining the statement closer, we can see that it means that one out of all 

possible orderings of b and c will be present, but which it is will be unknown. 

This immediately suggests an application of the nondeterministic choice opera-

tor: 

{c}{b}(...)e{b}{c}(...)e{b c}( ... ) 

This expression is called a nondeterministic temporal permutation of b and c. The 

concept of permutations is so useful in writing specifications (e.g., the informal 

example at the end of the last section) that a special operator will be defined to 

generate them. 

Definition 3.1.4 The Nondeterministic Temporal Permutation 

Operator. 

Let F be a set of label-sets and pow —  (F) be the powerset of F with the emp-

tyset removed. Then the nondeterininistic temporal permutation of F, written 

as ®(r)F, is defined by: 

=def P 

=def 	 us,j[®(r\P] 
-iEpow-  (r) 

Where F \ removes the label-sets in i.from F. 	 II 

The union is required when is used as a guard since it is a set of label-sets 

whereas guards are just label-sets. Thus, U{ {a}, {a b}} = {a b}. 

The result of applying ® to a set of composite labels (guards) is a tree-like 

structure of nondeterministic choices. The top level of the tree is a nondetermin-

istic sum of all combinations of the guards in the set (similar to what is produced 

by the "Any Actions" operator). The next level below a particular guard is a 

similar tree formed from the set with those elements removed that formed the 

guard. Thus, as one progresses deeper in the tree, the number of branches will 
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decrease until finally a single branch will lead to the resultant P. Here is a small 

example to consolidate this idea: 

= ({b}{bc}P)e({bc}{b}P)e({bc}P) 

Figure 3-3 shows part of the expansion of ®({a b}. {b c }. {c  }) P to illustrate 

the tree-like structure. The top level summation runs horizontally across the 

page, while the resultants of each branch run downward. A possible sequence 

can be examined by picking a top level guard, followed by one at the next level 

and so on down the page until a F is encountered. 

	

{a b} 	e{b c}e{c}e{a b c}®{a b c}e{b c}${a b c} 
{bc}e {c} e{bc} 	: 	: 	{c} 

	

{c} (b c) 	P 	 F 
F 	F 

Figure 3-3: Partial expansion of ®({a b}. {b c}. {c})P 

The nondeterministic temporal permutation operator as defined above pro-

duces sequences where the events may occur simultaneously. Sometimes it is 

more useful to produce sequences of purely interleaved events, without allowing 

simultaneity (e.g., see the second example in Chapter 6). Another version of the 

® operator can be created to do this by a simple change to the above definition. 

It will be callhe distinct permutation operator since it preserves the individual 

events. 

Definition 3.1.5 The distinct  nondetrministic permutation oper-

ator. 

Let r be a set of label-sets. Then the distinct nondeterministic temporal 

permutation of r, written as ®D(r)F, is defined by: 

def F 

def E 
_Ii E 

0 
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It is possible, with some restrictions, to define deterministic analogues of the 

above operators. Simply changing the nondeterministic choice sums to determin-

istic sums is not good enough. Consider r = {{ a b}. {b c}. {c d}}. Two 

subsets of pow —  (r) are A={{a b},{c d}} and B={{a b), {b c},{c d}}. 

But UA = UB = {a b c d} which would produce a nondeterministic choice by 

law [i e +] if the two were used as guards in a deterministic choice. To prevent 

this, it is necessary that r have the property: 

Vx,y€ pow—  (r). UZ$Uy 	 (3.7) 

Some legal sets are: 

{{a b}, {b c}} 	{{innt},{outcllt}} 	{{a}. {b}, {c}. {d}} 

Some illegal sets include: 

{{a b c}. {b c}} 	({a b c}u{b c} is the same as {a b c}) 

{{a}. {e}. {a e}} 	({d}u{d e}is the same as{d e},etc.) 

Here then is the definition of the deterministic version of the permutation 

operator: 

Definition 3.1.6 The Deterministic Temporal Permutation Oper-

ator. 

Let r be a. set of label-sets that obeys Equation 3.7 and pow (1') be the 

powerset of r with the emptyset removed. Then the deterministic temporal 

permutation of r, written as r(r)P, is defined by: 

ir(Ø).P 	def  P 

ir(I') P =d,f 	 u-y1.[ir(r \ -i) P1 
'yEpow (F) 

A similar definition can be given for the distinct version of this operator. 

The expansion for ir has a tree-like structure similar to that of ® with the 

nondeterministic choices replaced by deterministic ones. This leads to the fol-

lowing useful theorem: 
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Theorem 3.1.7 The deterministic temporal permutation operator ir is the 

identity for the nondeterministic version ®. In particular, 

• ir(r)P = 

Where r satisfies Equation 3.7. 

Proof: By induction on r. For the base case, choose r = 0. Then, by 

the definition of ®, ®(0)P = P and 7r(0)P = P. Thus the composition is 

P • P = P = ®(0)P as required. 

	

For the induction step, let Q 	®(r)P and Qi  = ®(r \ u11)P, where 

,yi E pow— (r). Similarly, let R <= ff(I')P and R1 be defined like Q. For 

convenience, also let C = pow — (r). 

Now assume that Q1 • Ri = Q, and show that Q • R = Q. Expanding Q on 

the left hand side by one level produces: 

Q.R= (Eu(Qi)) •R 
) 

R is a deterministic sum, so it can be distributed over the nondeterministic sum 

using law [e e] resulting in: 

Q.R = E
\ 	

• 

	

'iiEG 	 A,EG 

Both ,'j and A1 are subsets of C. Moreover, because of the restriction of Equa-

tion 3.7, there is only one A1 such that Uit = uA1. Since the sorts of Q1  and 

Rj are the same, law [. +] can be used to conclude that this A1 will be the 

only label-set to synchronize with Uy1, allowing the summation to be removed 

completely: 

	

QsR = E(u -y) (Q1.R1) = 	(u-y) (Q) 
mEG 	 mEG 

by the Induction Hypothesis. The last equation is just the expansion of Q, so 

	

we can conclude that Q • R = Q as required. 	 0 
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This theorem shows how the t'r operator can be used to describe a process 

that is able to accept an arbitrary sequence drawn from a given set of events. 

Such a process would typically receive communications from another process 

that outputs them in some unknown order, perhaps using the ® operator. 

Expanding permutation expressions so that they can be composed or other-

wise manipulated soon results in a morass of symbols, because the number grows 

exponentially with the size of the generating set. Deriving algebraic properties 

of the operators is vital for their effective use. The following theorem presents 

one such property that will be needed in a later chapter. 

Theorem 3.1.8 The composition of two deterministic temporal permutation 

expressions is the permutation of the union of the two generating sets if each set 

is independent of the other process's sort and both resultants are guarded by 

the same label-set: 

Fof sort L .=ir(F)-yP' 

Qof sort M .4=7r(A)-yQ' 

P.Q = ir(FuA)i(F'.Q') 

if 

mM = AnL = 0 

and F U A obeys the requirements of Equation 3.7. 

Proof: Sketch of an inductive argument. The base case of F = A = 0 clearly 

holds by the definition of ir, and P 
• Q = _1 

(p1  • Q'). If both F and A have 

one element, applying law [. +] produces all permutations of those elements, 

yielding the same expression as is produced by ir(F U A): 

P 	aiP' 

Q 4/3'7Q' 

P.Q = 

= 

This can be generalized by observing that adding another member to either F 

or A results in that label-set interleaving with the existing sequences by the 
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application of law [. +]. All sequences must rendezvous at the i  guard, so 

neither P nor Q can recurse before the sequence is completed. This completes 

the induction step. 	 o 

Example: Given P of sort {a. b. c} and Q of sort {c, d. e} defined as: 

P .= ir({a}, {b}) {c} P 

Q 4= 

Then the composition is given by: 

P.Q = 

•i 

3.1.5 Clock Intervals 

The motivation for defining the temporal permutation operators was the need 

for a way to represent events happening in any order during a particular period 

of time. Many digital systems are designed in a register transfer fashion wherein 

the outputs of blocks of combinational elements are saved in registers before 

being passed to the next block. The input values of the registers are transferred 

to the outputs by a global system clock, whose period is greater than the longest 

path delay through any of the blocks. In this way, each block will always have 

stable inputs and feedback loops may be constructed without fear of uncon-

trollable oscillation. Since the order in which input values to a register from a 

combinational block immaterial (all will be stable when the clock triggers the 

transfer), it makes sense to indicate this freedom in the specifications for the 

blocks. Many different implementations of a particular combinational function 

are possible, each of which will proba;:bIy generate output values in a different 

order. Requiring a particular ordering in the specification prevents equally valid 

(and perhaps better) implementations from being considered. 

To capture this requirement, we now define operators for producing clock 

intervals. Clock intervals allow one to indicate that a number of actions will 

occur in some unknown order between two delimiting events (e.g., the rising and 
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falling edges of a global system clock). Two varieties of operator will be defined. 

The first generates an open interval, meaning that the events that happen during 

the interval cannot do so simultaneously with the delimiting events. The second 

is similar, but produces a closed interval in which the internal events may overlap 

the delimiting ones. Open intervals are safer to use, since it is considered bad 

practice to allow digital values to change at the same time as a clock edge. 

Definition 3.1.9 Open Clock Intervals 

The open clock interval containing the set of label-sets r and delimited by 

events a and 0 that do not belong to any of the label-sets, is defined as: 

{a} ®(r) {/3} P 

and written as: 

Int(at r Is)" 

E 

The idea is that the beginning event of the interval, a, occurs followed by all 

possible sequences of the label-sets in r, then the closing event /3. 

Example: Suppose a block of combinational logic is fed values during phase one 

of the system clock, as indicated by the phi being high. The effects of the input 

changes percolate through the block until eventually they reach to output lines. 

These output lines will change value at different times according to the number 

of combinational elements between them and the inputs. As long as they all 

stabilize by the time phi goes low, however, we:  will not be interested in these 

delays. This type of behavior is modelled by an open clock interval: 

Int( {phicl} I {outiczj}, ..., {out,cx,} I {phi.cO}) 

Typically the outi will be connected to a register that will accept the changes 

in any order, perhaps using the ir operator: 

REG = ii({outiN}, .., {out,}) 
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Defining a closed interval is trickier. Not only can the events occur in any 

order, but they can also occur simultaneously with the delimiting events. A 

modification of the definition of ® is required. - 

Definition 3.1.10 Closed Clock Intervals. 

Given the same notation as Definition 3.1.4 and letting the delimiting events 

be a and j3, the closed clock interval containing r is defined as: 

F(ø,{A},13,P) = (Au13)P e A/3P 

F(ø,r,/3,.P) = 	 u11F(ø,r\1,fl,P) 
1Epor (I') 

F(a,F,/3,P) = aF(ø,r,i3,P) ® 	 aU(uit)F(ø,r\-yj,fl,P) 
'yiEpow (F) 

The notation { A } stands for a set of label-sets containing one element A. This 

is used to combine the last element in the sequence being generated with the j3 

terminating event. Closed clock intervals will be written as: 

Int(a, r, p) 

0 

The vertical bars- in the notation for open intervals are intended to show that 

the delimiting events are separated from the contents of the interval. Similarly, 

the commas in the notation for closed intervals show that the events may in-

termingle. 

Intervals may be cascaded so that the terminating event of one becomes the 

initial of the other. Here is how an open interval immediately followed by a 

i.4cwA would be written: 

Int( jai I  1" I Int({b}, r2, {c})) 

The first is delimited by a and b events, and the second by b and c. 
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3.2 Delay Elements 

With the introduction of time, comes the concept of delay, and with delay comes 

timing problems. Circuits that are designed to work in an ideal world where 

input values arrive simultaneously often cease to do so when they are held up by 

differing lengths of time. Spurious and even completely wrong output values can 

result, which in turn can cause attached components to malfunction. Coping 

with timing problems is probably the single largest issue faced by the designer 

of high performance circuits. As we shall see in a later section, delays can 

introduce unsuspected and usually undesirable features into even the simplest 

behavior. Not all forms of delay, however, are harmful. Some hardware devices 

depend on delay for their very operation. 

Delay manifests itself in many forms due to the variety of physical phenom-

ena that cause it. We begin by discussing what are considered the most common 

forms that arise in digital systems. The discussion is followed by sample descrip-

tions of the various delays in CIRCAL. 

Digital systems map the continuous analog world of voltages and currents 

onto a discrete—usually binary—set of values. The primitive components that 

make up digital systems are designed to conduct current when a controlling 

voltage is greater than a certain threshold. Below this threshold they cease to 

conduct and appear as an open switch. Delays can then arise in two different 

ways. 

The first, switching delay, is by far the most prevalent. It corresponds to the 

amount of time it takes the primitive element (transistor, relay, etc.) to change 

state from conducting to non-conducting or vice-versa. The output of a circuit 

might depend on a number of such switches and so will not present a valid result 

until all the devices have (in some sense) stabilized. The voltages controlling 

the switches take a finite amount of time to reach the switching threshold due to 

the resistances, inductances and capacitances present in the circuit. The time 

it takes for a controlling voltage to rise from zero to the threshold is called the 

turn on time. Similarly, the time it takes for the voltage to fall from a high value 

is called the turn off time and may or may not be the same as the turn on time. 
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The second type of delay, interconnection (propagation) delay, arises from the 

physics of charge flow. Electrons have a certain maximum speed (eight inches 

in one nano-second [Winkel 80]) that they can travel through even the best con-

ductor. Signal propagation through non-ideal wires is modeled by transmission 

line theory and will not be considered here. Instead, propagation delays will be 

modeled by pure delays (see below). The pure delay effect of interconnection 

lengths tend to be fax outweighed by the effects of switching delay. As feature 

sizes are being scaled down, however, the gap is closing [Mead 801. 

3.2.1 Pure Delay 

The simplest delay that one can imagine is to force an event to occur one time 

unit later than when it normally would. This is called Unit Delay and is modeled 

by a two-state part as follows: 

part UnitDelay {a. b. t} ( 

UD = WAITt({aC>v t} UD'(v)) 

UD'(l) 4= {t b<l} UD + {atv bcl t} UD'(v) 

This can be generalized to a D delay unit by composing D instances of 

UnitDelay and hiding the connecting lines: 

NDelay .4= 	UnitDelay(11) 

= ( UnitDelay [b i /b] 

UnitDclay Eb/a b +,/b] 	(b i ,. . . ,bD_1) 

The Array Operator is used to cascaded D instances of a unit delay using the 

connection vector C = [b1/a1+j t/t1]. Breuer [Breuer 761 calls this transport 

delay. 

Both UnitDelay and NDelay are forms of what Unger [Unger 69] calls pure 

delay. A pure delay is one that simply causes an event to occur some time after 
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it was signalled. For time-varying signals and a delay of D, this means that f(t) 

is transformed into f(t - D). 

The definition of NDelay given above is, to say the least, unwieldy! The 

longer the required delay, the more processes are needed to model it. An alter-

native formulation can be made that stores the values being delayed in a queue. 

The values are shifted left one place in the queue with every tick of the universal 

clock until they reach the head, from which they are output. 

NDelay(q) <= if (hd(q) $ I) then 

{b.chd(q) t} NDelay(shift(q, .14) 

+ {ac.x b.lhd(q) t} NDelay(shift(q, x)) 

else 

{t} NDelay (shift (q, .L)) 

± {aNx t} NDelay(shift(q,x)) 

Where hd(q) is the first element of list q. 

I is an undefined element not in the domain of z. 

shift(q, v) removes the head of q and appends v to the tail. 

Notice that the delay factor D is implicitly specified by the length of queue q. 

The domain of the elements of q is left unspecified, but must be the same as that 

of the input variable x. Every entry in the queue is assumed to be initialized 

to I. 

Both the representation using a queue and the one made from cascaded unit 

delays may be used interchangeabley. One stores information in the state 

variables of several processes, whilst the other achieves the same effect by using 

a more complicated data structure. The choice of one representation over the 

other depends on how it is to manipulated. In an environment in which process 

creation is expensive, for instance, the second model might be preferable. 

3.2.2 Inertial Delay 

An inertial delay, as defined in [Unger 69], is one that responds to an input 

change only if it has persisted for a certain period D. If another input event 
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Figure 3-4: Comparison of delay types (From [Unger 69]). The delay in both 

cases is one t tick 	- 

occurs during D, the previous one is forgotten. Figure 3-4 shows how this type of 

delay ignores rapid input value changes (spikes). The CIRCAL description of an 

inertial delay is even simpler than that of a pure delay because the intermediate 

transitions do not have to be stored: 

part IDelay {a. b} ( 

ID 	WAITt({a>x t}ID'(z,D)), 

ID'(v,1) 4= {bcv t}ID+{ai'.x bcv t}ID'(x,D) 

ID'(v,c) @ {t} ID'(v,e - 1) + {ac'x t} ID'(x,D) 

D > 0 is the required delay time in units of t. Many variations on this 

simple description are possible. An intermediate value, for example, can be 

output whilst the passage of time is being counted. In a three valued logic, this 

could correspond to the line taking on the "unknown" value. 

Inertial delays find applications in protecting spike sensitive circuits from a 

potentially hostile environment and in modeling switching delay due to capacitive 
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loading. A capacitor takes time to charge up to the switching threshold of a load 

device. Hence, the load will not switch if the charging voltage falls before the 

capacitor has charged up sufficiently. 

3.2.3 Separate Delays 

In real devices, logic values (voltages) often vary in the times it takes to change 

from one to another. NMOS is a common example of a technology that has 

widely differing times for a 0 to 1 transition as compared to a 1 to 0 transition. 

We can see how this happens by considering the NMOS inverter pictured in 

Figure 3-5. 

U 

Figure 3-5: NMOS inverter 

The capacitor C in the diagram is the combined capacitances of all the load 

devices. This can be done because MOS circuits have the nice feature that 

transistor gates form an almost ideal capacitive load (McCarthy 82]. Assume 

that the input in is at a logic High (Vdd) and that C is discharged. Node b is 

at ground and power is being dissipated by the pullup R and the on resistance 

RON of the transistor. Now in goes low (Gnd) turning off T. The transistor 

no longer pulls b to ground, so current will flow through R charging C up to 

Vdd. This take time proportional to the product of R and C (the rise time). If 

in subsequently goes high, turning T on again and pulling b low, the capacitor 

will discharge through RON. This resistance is typically much smaller than R (a 

factor of 4 is common) since R must be fairly large to reduce power dissipation 
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when b is at ground. Hence, the time constant for C to discharge is a quarter of 

the charging constant, giving the output signal separate rise and fall times. 

This behavior can easily be captured by a modification of the inertial delay 

model given above: 

part SepDel {a. b} ( 

SD 4= WAITt({aDx t}SD'(x,D(x))) 

SD'(v,l) -,t-= {bciv t}SD + { aNx bcv t}SD'(x,D(z)) 

SD'(v,c) 4= {t} SD'(v,c - 1) + { aL'.x t} SD'(z,D(x)) 

) 

Where D(x) maps an input value onto a delay count, e.g., D(0) = 10, D(1) = 40. 

The idea is that an input change triggers a value dependent count down until 

the change is reflected on the output. A simple approximation of the inverter 

discussed above would use D(0) = 1 and D(1) = 4 (and would invert the input 

value x) to show that the fall time is a quarter ofrise time. 

This delay is inertial; new changes override propagating values. A pure delay 

version seems unreasonable since the separate delay times usually arise due to 

capacitive effects, which are inertial. More accurate approximations can be made 

by outputting intermediate values based on c, the counter that measures the 

passage of time, and/or by parameterizing the delay function D with this value. 

3.2.4 Generic Boxes with Delay 

The concept of generic box components was introduced in the last chapter. They 

made the generation of similarly structured components much easier by confin-

ing the functional personalization to a simple relabelling operation. It is often 

desirable to have versions of these components that incorporate one of the delay 

models just discussed. Of course, this can be done by composing a delay ele-

ment onto the output of a box and hiding the connection, but these constructs 

are used so frequently that we will define a self-contained version. 

Examining the descriptions of the delays given above, we notice that they 

have a structure very similar to that of the generic boxes. One part of the expres-

sion detects input changes and another performs the actual delay operation. By 
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changing the input portion to that of an n-input one-output box, a new library 

component can be produced. For example, a generic two-input inertial delay 

box can be described as follows (remembering the requirement that only actual 

changes in value are output): 

part IBOXn..1(irs, out) {inj , ... , in,, out ( 

BID(in,out) 	WAITt(ANY({in t}) 

(if f(&) 54 out then BID'(&, f(g), D)) 
else BID(in, out)) 

.BID'(a, out, 1) ' {outc t} BID(in, out) 

+ANY({in outc t}) 

(if 1(M) $ out then BID'(in, 1(M), D) ) 
else BID'(&, out 

BID'(in, out; c) 	{t} BID'(in, out, c - 1) 

±ANY({in t}) 

(if f(&) 34 out then BID'(&, f(), D)  ) 
else BID'(in, out, c 1)) 

The part waits for any changes on the ini ports. When an input change 

happens, the delay count is started provided that the box's function returns a 

value different from that last output. When the delay count reaches one, this 

value is finally output. Input changes that happen during this period restart the 

count. 

Figure 3-6(a) shows how generic two-input, one-output delay boxes will be 

pictured. Figure 3-6(b) shows an inertial type two-input AND gate with delay 

10. Note that a particular instance requires three parameters to be specified 

viz., the function to be calculated by the box, the delay count D and the type 

of delay (inte.tial, pure, and so forth). The first two are defined by relabelling 

the appropriate parameters and the last by choosing a particular delay box. 
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Figure 3-6: (a) Delay box. (b) Inertial delay AND gate with a delay of 10. 

3.3 The Latch (SR Flipfiop) 

One of the simplest and most useful of the bistable feedback circuits is the Set-

Reset Flipflop, also known as the latch. Its operation involves feedback, which 

opens the door to some interesting aspects of behavior. Because of this, it will 

be the favorite example circuit throughout the rest of the thesis, much as the 

ubiquitous shift register cell is used to demonstrate layout design systems. 

As the name implies, the fiipflop can be in one of two possible states, namely 

Set or Reset. The current state is reflected by the output q and its complement 

4, called qbar here. A high logic value on q (and low on qbar) indicates the 

Set state, and vice-versa for the Reset state. A transition from Reset to Set is 

achieved by signalling an s event, called setting the latch. Similarly, an r event 

resets the state so that qis low and qbar is high. The a and r events are usually 

represented by low to high voltage transitions. This behavior is reflected in the 

following CIRCAL description: 

part LATCH {s, r, q. qbar} ( 

Reset 	{s1} {qbariO} {qcl} Set + {rr'x} Reset + {s0} Reset 

Set 	{r>1} {qcO} {qbar<1} Reset -f {sPx} Set + { rNO} Set 
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Note that the ordering of the output events was chosen to match that produced 

by the implementation considered below. We will return to this point in the 

next chapter. 

One way to construct the latch is by cross-coupling two NOR gates. The 

gates are formed from generic delay boxes personalized with the NOR function 

and a pure delay of two units (Figure 3-7). 

NA 4= PBOX2..1 [NOR/f, 2/D, r/in i , qbar/in2 , q/out] 

NB 	PBOX2..1 [NOR/f, 2/D, q/ini, s/in2, qbar/out] 

part SRLatch { s. r, q. qbar} 

NA(0,1,0,q(0,0)) • NB(0,0,1,q(1,1)) 

The PBOX2..1 are generic boxes with two inputs (in 1  and in2), one output 

(out) and a pure delay of length 2. They calculate the NOR function of any 

input changes and store this value in a delay queue. The queues of the two gates 

are initialized to contain all zeros and all onesA(the  q(O, 0) parameter to NA 

and an analogous one to NB). The queue is shifted from left to right with new 

entries appearing on the left. The arguments to the NOR gates are, from left to 

right, the previous value received on the in1 line, previous value on the in2 line, 

last value output (out line) and the current value of the delay queue. The part 

declaration thus describes a latch in the Reset state. 

As a foretaste of the material presented in the next chapter, let us examine 

the operation of the constructed flip-flop. Setting the flip-flop is accomplished 

by causing the s line to go to 1; in other words, signalling s'1 to SRLatch. 

By repeatedly applying law [. +] to rewrite the expression, the effects of this 

experiment will become visible as time ticks away. 

Testinput 	{scl} '{e, r} 

Test Input • SRLatch = 

{t} (Testlnput • NA(0,1.0,q(0,0)) • NB(0,0, 1,q(1, 1))) 

+ {scii t} (a1{ 9•  r} • NA (0, 1,0,q(0 1  0)) • NB (0, 1, 0, q(0 1  i))) 
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Figure 3-7: Constiucted SR flip-flop 

Expanding the second term six more times yields: 

{scll t} (Au, r} • NA (0, 1, 0, q(0,0)) • NB (0, 1, 1, q(0, 1))) = 

{scil t}{t}{qbar<0 t}{t}{qcl t}{t} 

(A{ 9 , r} • NA(0,0, 1, q(1, 1)) • NB(1, 1,0, q(0,0))) 

Note how the qbar line goes low two ticks before q goes high (Figure 3-8(a) 

shows these events plotted against occurrences of t). The two output lines are 

both low during this interval, yielding a transient illegal output value. What 

will happen if a subsequently goes low during this unstable period? To do this, 

we must make the a events occur at the same time as a tick. Only then can we 

make sure that they will occur at the desired time. Once the input stimuli have 

occurred, ticks must continue to be fed down the input lines until the effects 

have propagated through the circuit. With this in mind, let us redesign our 
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experiment: 

Ticks of sort {s, r. t} .= {t} Ticks 

Testlr&put of sort {s. r, t} <= {scl t}{scO t} Ticks 

Testlnput • SRLatch = 

{scil t} ({s<iO t} Ticks • NA(O,1,O,q(O,O)) • NB(O,1,O,q(O,1))) 

Expanding further yields: 

{scl t}{sclO t} 

{qbarcO) t}{qbarc1 t} 

{qcil t}{q<O t} 

{qbarcO t}{qbarcl t} 

{qcO t}{qcl t} 

(Ticks • NA(0,1,0,q(0,0)) •NB(0,0,1,q(1,0))) 

The latch has entered an unstable state with the outputs oscillating (see the 

waveform in Figure 3-8(b)). The indication is that the circuit does not react well 

to input spikes and should be used in an environment in which these do not occur. 

This is an encouraging sign, since it shows that the model approaches real-world 

behavior. The outputs of an real latch would probably attain some unknown 

intermediate value depending on how the circuit is fabricated. The oscillation 

in our simulation is an artifact of the two-valued logic used here which is trying 

to take on this intermediate value. If we were to further model the NOR gates 

with a larger value set , the oscillation would be replaced by the unknown value. 

This example shows how a description of a component in CIRCAL can be used 

to investigate its behavior. Additional methods for conducting the investigation 

will be encountered in the succeeding chapters. 



a) Setting the latch. 

(b) Spike on the set line. 
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Figure, 3-8: Experimenting on a latch 

3.4 Summary 

A lot of ground has been covered in this chapter. We began by considering the 

mechanism due to Mime [Milne 83b] by which the notion of explicit time can be 

added to the calculus. This involved introducing a tick action into the guards of 

all processes. The tick action is produced by a Universal Clock process and is 
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used to divide time into uniform fragments. Delays can be measured by counting 

the number of ticks that occur between events. 

An alternative method for telling time was then presented that attached 

integer time stamps to the ticks. The integer values make it easy to wait for a 

particular time as, for example, might be required for an alarm clock function. 

The tick method of representing time makes it easy to define hierarchies of 

clocks, each with a different granularity of time. This ability is of particular 

importance in digital systems where several notions of time can exist (e.g., mi 

crocode cycles, register transfers, gate delays, etc.). For clarity, a notation was 

defined to represent these clock relationships in terms of clock processes. 

When designing a system from the top down, knowledge about the character-

istics of lower level components is rarely available. Thus, imposing an ordering 

on particular events in a specification at one level abstraction may not only be 

meaningless, but may also interfere with an equivalence proof conducted between 

the specification and a valid implementation at a lower level. Consequently, sev-

eral operators (the temporal permutation and clock interval operators) were 

defined to capture this temporal ambiguity. 

Finally, some concrete manifestations of time in the form of delay models 

were presented. The operation of some circuits is heavily influenced by delays in 

their components, as was demonstrated by constructing a latch from non-ideal 

NOR gates. Experimenting on the CIRCAL representation of this system with 

select stimuli revealed that it had the possibility of producing unexpected output 

values. 

3.4.2 Contributions of this Chapter 

New topics developed in this chapter included the notion of process universes 

and the clock relationships between them, tagged universal clock ticks, and the 

temporal permutation operators. The latter will prove to be highly useful in the 

following chapters and indeed were already used to define clock intervals in this 

one. The delays models presented here are neither complicated nor completely 

new, rather their representation in CIRCAL illustrates the formalism's ability to 

model a wide range of phenomena. 



Chapter 4 

Simulating Systems in CIRCAL 

4.1 CIRCAL as an HDL 

Chapter 2 introduced the CIRCAL calculus due to Mime and went on to present 

some new operators, and syntax. In Chapter 3, we saw how the calculus can be 

used to represent various aspects of time and also saw some example descrip-

tions of simple digital circuits. The emphasis all along has been on capturing 

the behavior of hardware and hardware related concepts. Little, however, has 

been said about what advantage is gained by applying this particular calculus 

to hardware description. Since the literature abounds with hardware descrip-

tion languages of every kind [Uehara 83, Breuer 751, there must be a compelling 

reason to introduce yet another into an already crowded field. 

Hardware description languages (HDL's) are designed to capture either the 

physical structure of systems, or their behavior, or sometimes both. HDL's of 

the first type, such as CIF [Mead 80], SCALE [Marshall 831, and Sticks and 

Stones [Cardelli 81] are designed primarily for describing the layer masks that 

are used to fabricate integrated circuits. They provide a vehicle for representing 

the structure of a finished device with the ultimate purpose of driving fabrication 

equipment, and hence will not be considered here. CIRCAL is primarily a behav-

ioral HDL, although there is a notion of structure imposed by the part construct 

and the static nature of process interconnections. This structure usually, but not 

always, has a physical interpretation. 
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Van Cleemput [VanCleemput 791 identifies four areas that behavioral HDL's 

can be applied to: 

As a means of communicating a description of the behavior of a system 
between designers and clients. 

Input to a simulator. 

Input to a formal verification system. 

Input to a hardware generator (compiler). 

CIRCAL, perhaps embroidered with comments, is eminently suitable for the 

first application. Its well defined and compact semantics go a long way toward 

ruling out ambiguities. Moreover, new operators are easy to define and integrate 

with the existing ones. This is an important ability because, as we have seen in 

the previous chapters, describing the behavior of even simple systems can become 

complex very rapidly. Replacing common sequences of the basic operators by a 

new operator not only reduces the notational complexity, but more accurately 

reflects the designer's intentions. 

Even with derived operators, constructing a description of a system in Cm-

CAL is a difficult task. Is the extra effort of creating the description worth it? The 

answer is yes, for that is the only way of exploring the functionality of a design 

short of fabricating it. Building a circuit, whether on silicon or on printed circuit 

boards, can involve considerable costs both in time and in resources. Engineers 

tend to iterate their designs, changing features as prototypes reveal problems or 

shortcomings. As designs become larger, each iteration becomes more expensive. 

No tatter how carefully specified a system may be, performance difficulties and 

algorithmic problem areas will almost always surface. They must be detected 

before the design is built. Computer time is far cheaper than the costs associ-

ated with most forms of fabrication. It therefore makes sense to retain a design's 

representation in a "soft" form (i.e., the description language) for as long as pos-

sible. Not only are changes easier to introduce, but simulation and verification 

tools may be applied to detect and eliminate design flaws. Another incentive 

is that the physical realization may be packaged in a form that does not per-

mit access to the internal components, making testing difficult. Furthermore, a 
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clear line may be draw between the flaws that are introduced by the fabrication 

process and those that are inherent in the design. 

The goal of this chapter is to show how CIItCAL satisfies the second of 

Van Cleemput's applications—not just as input to a separate simulation pro-

gram, but as a medium for conducting the simulation itself. We shall see that 

various simulation mechanisms can be obtained by exploiting properties of the 

operators of the calculus. A connection with the third application is also estab-

lished, which will be followed up in a later chapter on verification. The fourth 

application, as input to a hardware generator, is not discussed in this thesis. 

Throughout the chapter, reference will be made to various representation 

levels. These range from low (detailed information about primitive elements) 

to high (macroscopic properties of the complete system). The ranging can be 

continuous, but is usually considered to be divided into the following classes 

when discussing hardware [Coelho 841: 

• Circuit Level. Circuit elements (such as capacitors, resistors, transistors, 

etc.) are represented by detailed equations in terms of voltages and cur-
rents. 

• Switch Level. Transistors are modelled as simple voltage controlled 
switches. 

• Gate Level. Groups of transistors are replaced by the functional unit that 

they implement. Examples include NAND and NOR gates, counters, and 

most macrocells. 

• Register Transfer Level. Behaviors are described as sequences of operations 

on data. Intermediate results are held in registers. Data and control busses 

are described at this level. 

• Architectural (Block) Level. The overall structure of the system is repre- 

sented and global conventions (such as I/O protocols) are specified. 

These divisions are the most commonly accepted out of the many that are 

possible. They represent a convenient way of conveying the level of detail at 

which a particular system is being modelled. 



Chapter 4. Simulating Systems in CIR CAL 	 94 

4.2 The Role of Simulation and Verification 

The terms verification and simulation have come to mean many different things. 

This section compares several of the common meanings and settles on the ones 

that will be used throughout the rest of the thesis. Loosely speaking, verification 

will refer to the process of showing that two representations of a system (a 

specification and an implementation) behave identically for all possible input 

sequences. The term simulation will be used to refer to the approach of applying 

a particular stimulus to a system and examining the resulting behavior for errors. 

4.2.1 Verification 

One way to obtain a high degree of confidence that a design will work properly 

when fabricated—modulo fabrication errors—is to check each step carefully as it 

is refined through successive representation levels. At each level, a specification 

(spec) is written detailing the intended behavior at that level. The blocks that 

form the next level down are then composed and shown to meet the requirements 

of the specification. The design is said to be verified when the implementation 

satisfies the specification for all possible input sequences. The term verification 

will be applied in this thesis only when the proof of the satisfaction relation 

is done with formal methods. Verification has a rather different meaning in 

industry. It is usually used to mean what we will call simulation, i.e., the 

determination of correct behavior by the exhaustive application of test stimuli 

(called test vectors in hardware circles and test suites in software ones). 

A point that must always be born in mind is that a circuit that has been 

shown to meet a spec is not guaranteed to work once it is physically realized, 

even with no fabrication errors. If a specification incorrectly reflects the required 

behavior, then so will the implementation. Similarly, an inaccurate model of the 

primitive components' behavior will yield verified designs that have no basis in 

reality. The degree of confidence inspired by a verification is in direct proportion 

to the accuracy of its input and of its underlying model. Verification, even with 

very simple models of device behavior, is still exceedingly valuable. Eliminating 
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fifty percent of design errors can help immensely. If nothing else, the number of 

test stimuli that need be applied is drastically reduced. 

Care must be taken in constructing the specification of each stage of the 

design. Too restrictive a specification and the constructed system may never 

meet it; too general and undesirable implementations may slip through. Trading 

detail versus ease of use and tractability is something of an art. It reflects the 

classic space-time tradeoff that is so often encountered in computer science. 

Verification is particularly good for showing the functional correctness of an 

implementation in terms of smaller functional blocks. Most of the successful pro-

totype hardware verification systems to date have been of this variety [Barrow 83, 

Gordon 83b, Shostak 831. These systems have yielded some encouraging results, 

primarily because temporal issues have been dealtndely, or not at.all. Similar 

automated theorem proving techniques have been successfully applied to proving 

simple software systems correct [Hailpern 82, Nelson 81, Anderson 7.71. 

Detailed hardware specifications are hard to construct. Values are not dis-

crete, but are continuous and usually time-varying in a complex manner. Indi-

vidual components operate in a highly concurrent manner unless strict steps are 

taken to enforce sequentiality. Most importantly, hardware applications usually 

have far stronger performance requirements than do software ones. An imple-

mentation of an adder, for example, may not only have to add two numbers 

properly, but also to do so in 10 milliseconds and dissipate 10 microwatts of 

power. 

Verification at this level can be extremely difficult and we shall not consider 

it further until a later chapter. 

4.2.2 Compilation 

An approach closely related to verification is that of compilation or transforma-

tion. The goal of the transformation process is to map a high level. description 

of a design onto a hardware (or other low-level) realization. If the mapping can 

be proved correct (in some sense) for all possible input formulations, then much 

of the difficulty of designing a system would be eliminated. The question of 
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whether or not the circuit will function properly then depends, as in verification, 

on how well the high level input description matches the designer's intentions. 

Extensive efforts have 'been made by many groups [Deas 83, Bergmann 84, 

Ayres 83, Lattice 82]  to develop so called "silicon compilers". These take a 

structural specification and turn it into fabrication masks for an integrated cir-

cuit chip. In the process they ensure that topological design rules are followed, 

loading constraints are satisfied (sometimes), and that gross "syntactic" errors 

have not been made (e.g., connecting power to ground, leaving outputs dangling, 

attaching a 16-bit bus to an 8-bit register, and so forth). In these respects they 

have been quite successful, although the mappings that they use have not been 

proven correct in any formal sense. Some attempts, however, have been made in 

this direction that point the way for future research. In one paper [Milne 83c], 

Milne sketches a method (using CIRCAL) for proving a NOR—expression to ge-

ometry compiler correct. Sheeran, in her thesis [Sheeran 831, shows how the 

combinators of a functional language can be used to produce a floorplan corre-

sponding to expressions in the language. 

No further discussion of validating the compilation process will be made 

in this thesis. The approach taken is that a design will be verified and then, 

perhaps, given to a silicon compiler to implement. 

4.2.3 Simulation 

As we mentioned previously, the terms simulation and verification are often used 

interchangeably, mainly because the industrial state-of-the-art in determining 

the correctness of ,a design is through some form of simulation. We differentiate 

between the two terms as follows. Verification guarantees that a system will 

function exactly the same as a specification for all possible input stimuli. Sim-

ulation, on the other hand, shows that given a particular input (a test vector), 

the constructed system will respond with a certain output. This can be viewed 

as experimenting on a system and observing the results. 

On the surface, verification seems far superior to simulation. For a simula-

tion to reveal all design flaws, a large number of test vectors must usually be 

generated. Even then, there is no guarantee that the tests will be exhaustive 
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(although there are methods for automatically generating tests for certain types 

of faults [Breuer 72]). There are, however, a couple of areas that are readily 

supported by simulation and not by verification. These are: 

Pure verification does not support the experimental approach to design. 

Engineers like to "bread-board" ideas and apply stimuli to see how they 

function. In this manner they develop a feel for the requirements that must 
be included in a specification. 

Even correctly designed systems will still malfunction due to fabrication 

errors. Test vectors designed to expose these potential errors should b4x-

ercised on a simulation of the system to determine their efficacy. 

Point 1 concerns the manner in which engineers design systems. A complete 

system seldom springs fully specified from the void; it is built from a Set of ideas 

that are iteratively refined until a satisfactory result is obtained. Often, the 

only way of telling if an iteration is a step forward is to see how it functions 

under select stimuli, in other words, by simulating it. Since there may not 

yet be a completely determined algorithm, much less a system specification, 

verification (in the total sense) is useless. Verification during this phase may 

find application locally in demonstrating properties such as termination and 

freedom from deadlocks in particular modules. 

Even high level programming languages, such as Smalltalk [Goldberg 841 

and LISP [Foderaro 801 have found it valuable to provide elaborate debuggers. 

A debugger is a form of interactive simulator that allows the user to monitor 

outputs and set inputs. No matter how good the compiler for a high level 

language is at checking the syntax and semantics of the program given to it, 

human mistakes will often get through. A constant may be defined incorrectly, 

a conditional expression may not be properly specified, or whatever. These will 

only get caught when the program is run and the results examined. 

Studies in programming styles [Boehm et al. 841 reveal that specifying a sys-

tem completely before implementing it does not necessarily produce a better 

product than the prototyping/iterative approach. Prototyping results in an end 

product that is easier to use and maintain, whilst specification generated prod- 

ucts are more comprehensive and better documented. It is important that both 
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styles be available to the designer so as to accommodate different design ap-

proaches. Simulation and experimentation are the primary tools of the proto-

typing approach. 

The second point presented above is very important for hardware applica-

tions. Next to performance evaluation, fault modelling and analysis are the 

biggest applications for industrial simulators. Fabricating circuits, particularly 

on silicon, is. an error-prone process. Wires may become shorted, transistors may 

be stuck open or closed, timing characteristics may vary across the chip, and so 

forth. Vectors must be generated for test equipment so that it can isolate faulty 

parts quickly and accurately. Introducing select faults into the simulation of a 

circuit allows the effectiveness of test vectors to be determined. 

With these reasons as motivation, the following sections will examine how 

simulations can be conducted in the formal framework of CIRCAL. The impor-

tant thing about remaining within the framework is that a direct link is then 

established with the verification techniques developed in Chapter 5. The abil-

ity to intermix the two approaches at will greatly facilitates the designer's job 

and should increase the likelihood that a system will work properly when first 

fabricated. 

4.3 Simulation in CIRCAL 

In Section 2.5, we saw how the behavior of a system can be represented by a 

synchronization tree in which arcs are labelled by events and nodes correspond 

to states in the computation. A path through the tree can be traced by choosing 

to traverse one of the branches available at each node. The path corresponds to 

a particular possible behavior of the complete system. When such a path can be 

determined by feeding a pattern to the system's inputs, we say that the system 

has been simulated for that stimulus pattern. In C IRCAL, stimulus patterns are 

just sequences of events and the process that generates them is attached to the 

test system using the Dot and relabelling operators (see Figure 4-1). 

The simulation itself is conducted by simply expanding the'composition of 

system and stimulus using the properties of the Dot operator. If the synchro- 
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Figure 4-1: Applying a test pattern to a system 

nization tree of the system contains only deterministic nodes, the expansion will 

consisted of repeated applications of law [. +]. The Dot Operator chooses the 

one branch at each deterministic choice node that matches an input stimulus (see 

Figure 4-2), and thus generates a sequence of events that reflect the system's 

response to those inputs. This works only if the input sequence has a sort that is 

a subset of the sort of the system's sort. In particular it should include all input 

channels, even if no activity will happen on some of them. If this were not done, 

some of the inputs could generate independent terms when the Dot Operator is 

expanded, resulting in a tree instead of sequence being output. 

Figure 4-2: Choosing a path through the synchronization tree. 

Non-deterministic nodes pose a problem because, by definition, not enough 

information exists to resolve them. One possible solution if this simulation tech-

nique were being mechanized would be to randomly choose a branch and warn 

the user to that effect. Another is to traverse each branch in turn, thus generating 

all possible output sequences. A third possibility is to relegate the responsibility 

for the choice to the user. 
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Example: Suppose a simple one digit calculator has an input channel that 

accepts a value in the range 0.. .9 (i.e., of type inti) from some form of keypad 

decoder. There are also two operations available, addition as signalled by an add 

event and subtraction by sub. The result of a calculation is displayed on the one 

digit channel out. The behavior is given by: 

part CALC {in, out:intl, add, sub} ( 

CALC 	{inc'x} ({add} {ixuy} {outc((z + y) mod 10)} CALC 

+ {sub}{inr'y}{outcIx — yl}CALC) 

The calculator inputs a number with in>x, inputs either an add or a sub 

operation, then another number with inD'y, and finally outputs the result on 

out. A fragment of the communication tree looks like this: 

inx 

add 	sub 

inDy 	 iny 

out 	 out 

Now suppose we wish to test if the calculator adds one and one correctly. 

We therefore define a stimulus process that signals an mcii event followed by an 

add and finally an in<i again: 

ST of sort {mn, add, sub} ' 	{mncl}{add}{incll} IX{in  add, sub} 

Composing CALC with ST and repeatedly expanding produces the following 

output sequence: 

imil 	add 	in-al 	out-12 
Vsl 

Precisely what was expected! The Dot Operator selected only those paths 

that synchronized with the stimulus. The out-12 event was not found in the sort 

of ST and so was allowed to occur independently. 
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This approach to simulation is quite elegant. Both the behavior of the system 

and the stimuli that are used to experiment on it are expressed in the same 

language. Moreover, the simulation itself is conducted by simply applying the 

expansion rule for the Dot Operator, obviating the need for a separate simulation 

mechanism. 

The next sections show how to construct more elaborate testing schemes that 

bridge the gap between pure simulation and pure verification. 

4.3.1 Symbolic Simulation 

Pure simulation involves applying particular data values to the inputs of a circuit. 

The results of the simulation then hold for those and only those values. For many 

applications, the number of possible input combinations is very large (there are 

264  possible permutations of two 32 bit integers alone) making exhaustive testing 

very expensive. Frequently, many of these tests are redundant because they 

reveal no new information about the design. Simulating an implementation of 

a function that adds two 32 bit integers, for example, is counterproductive if all 

that results is a truth-table with 264  entries. Who would have the patience to 

analyze this output? 

An alternative approach, called symbolic simulation, applies stimuli contain-

ing variables rather than constant values to the inputs of the system. The 

variables pass through the sub-units of the system to produce a composite func-

tion on the input and state variables as the output. In the adder example, two 

variables x and y can applied to the inputs in lieu of 32 bit constants, result-

ing in a function on these variables that could be shown equal to the addition 

function using elementary algebra (if it works properly). The full complexity of 

comparing the system's temporal as well as functional behavior with a specifi-

cation has been avoided by removing the temporal aspect. This is a first step 

in the road to proving that the system is equivalent to its specification. Simpler 

proof techniques can be used than if the full complexity of the synchronization 

tree were being examined. 

Conducting symbolic simulations in CIRCAL is almost as easy as doing pure 

ones. Recall that value passing along a communication channel was defined 
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in terms of a possibly infinite choice summation of labels (Section 2.2.8). A 

pure simulation, because it always applies a constant value, selects only one of 

these branches to produce a single sequence of events. Symbolic simulation, on 

the other hand, can be done by simply allowing certain trees as a valid result 

instead of just sequences. These trees are the summations corresponding to the 

outputting of a function on a channel. 

To see how this form of simulation works, let us apply it to a simple circuit 

consisting of two cascaded adder elements. The adders are defined by person-

alizing the generic box component defined in Section 2.8.2 with the addition 

function. The domain of the input ports will be the natural numbers and the 

adders will be initialized to have previously input and output zeros. Figure 4-3 

shows the structure. 

I 
• 	 I 
I 	 I 
I 	 I 

Ii 
n 
A 
d 2 

d 
3 

Add 	out 

Figure 4-3: Cascaded adders 

Here is the CIRCAL description of the system, including a sample symbolic 
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test stimulus: 

Adderl 	BOXE..1 1+/f, il/in 1 , i2/1n2, c/out] 

Adder2 = BOXE.1 1+ /1 13/in1, c/in2] 

System 	(Adderl ( 0,0,0) • Adder2 (0,0,0)) —c 

ThAdder 	{ilcx 12<2 13c31 {L} 

L = {ii. U. 13} 

The channel ii will have a variable applied to it, while the other two will have 

constants. The resulting output on channel out should be a simple function of 

the single input variable since there is no internal state. By repeatd applications 

of laws [. +] and [— +], the following output is generated: 

mAdder • System = {ilcx 12<2 1341 {out-a(0 + 3)} {outic((x + 2) + 3)} 

• ((dderi (x, 2, (x + 2)) 

• Adder2((x + 2), 3, ((x + 2) + 3))) - c) 

={i-ox 12<2 13.13}{out.c3}{out.i(x+5)} 

a{L}. ((Adderl(x, 2, x±2) 

S Addere(x+2,3,x+5))_c) 

We have shown that for all values of x, when i2 is 2 and 13 is 3, the final 

output of the circuit will be x + 5. The laws of addition were used to collapse 

the tern ((x + 2) +3) down to x + 5. The simulation also showed that the circuit 

will produce a transient output value due to the delay through the c channel. 

The generality of the result can be extended by applying variables to all the 

input ports. This moves the problem of showing that the circuit does add three 

numbers from the CIRCAL domain to that of normal arithmetic (the final output 

value will be (x + y) + z). In this case no further simplification is necessary, but in 

general a simple theorem prover might be able handle the resulting expressions, 

whereas it would have very little hope of conducting a successful proof in C IRCAL. 

All the other input possibilities would have to be consideredas well as just the 

case when all three change simultaneously. With symbolic simulation, human 

intuition is used to select significant input sequences. 
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4.3.2 Constructive Simulation 

In Chapter 2, the case was made for designing systems in a hierarchical fashion. 

The simulations demonstrated above flatten this hierarchy in order to produce 

the synchronization tree of the system under test and then go on to prune this 

tree. Such an approach not only renders useless the effort that went into con-

structing the hierarchy, but also means that a tree must be constructed most 

of which will be thrown away. Any implementation of CIRCAL style simulation 

would therefore require a large amount of temporary storage to hold these trees. 

Much of this wastage could be eliminated by pruning the tree as it was being 

built from the hierarchy. Milne [Milne 84a] calls this constructive simulation 

because the results are constructed in precisely the same manner as the system. 

Figure 4-4 shows how the trees of two constituent parts of a system are pruned 

and composed to produce a simulation of the complete system. 

S1 0 TI 	• 	S2sT2 	= 	S.T 

and 	 gives 

Figure 4-1: Constructing a simulation from locally pruned synchronization 

trees 

The pruning of synchronization trees to produce a simulation is done in 

CIRCAL by the composing a test stimulus process with the tree. Normally this 

is done for the synchronization tree that describes a complete system, so how 

can it be applied to the constituent processes? Two methods are considered here 

that have local and global effects respectively. 

Local Constructive Simulations 

Since test processes are described in the same calculus as the object under test, 

they too can be constructed in a hierarchical fashion. In this way, the parts of a 
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test stimulus that effect a particular sub-unit of the system are grouped with that 

sub-unit. Each such splinter of the original stimulus prunes the synchronization 

of the sub-unit that it is grouped with before the sub-unit is composed with its 

neighbors. This technique is called local constructive simulation since the test 

patterns are designed with a localized effect in mind. It can be demonstrated by 

considering a two component system S 4= Si • 52 which is being tested by the 

test process T .@ T1 • T2: 

T.S = (TI .T2) • ( Si •S2) 

= (Ti • S 1 ) • (T2 • 52) 	 [•c], Es •] 
The sort of T must be a subset of the sort of Sifor them to have the desired 

effect. 

Local constructive simulations are very useful when a particular unit of a 

system is to be simulated at a different level of abstraction from the others. 

Because the portion of the test stimulus that effects the unit is attached lo-

cally, it fax easier to change the nature of the stimulus than if it were part of a 

larger pattern. For example, suppose that a system consisting of five units with 

byte-wide inputs has been successfully simulated at the block level. Then the 

designer becomes curious about the behavior of the first unit under the same 

test patterns when it is considered at the gate level. Accordingly the unit is 

replaced by its gate level description. At this level the byte-wide input channel 

appears as eight one-bit channels, necessitating a change in the test patterns. If 

a local constructive simulation approach were in use, this change would be easily 

accomplished. Under a normal approach, on the other hand, all references to 

this channel must be tracked down amongst the stimuli for the other channels. 

The ability to simulate a system at mixed levels of abstraction can save 

tremendously on the execution time of a simulation. Complexity and hence exe-

cution time tend to be inversely proportional to the level of abstraction at which 

a system is represented. This encourages the inclusion of a minimum of low level 

units during a single simulation run. Using local constructive simulation, the ab-

straction level of a unit and its test pattern can be easily changed, thus making 

the use of mixed levels easier. An approach similar to this, called "multi-level 

simulation", is discussed by Coelho [Coelho 841 in the context of a commercial 

simulator. 
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Example: To demonstrate the local constructive simulation approach, we will 

now apply it to the 3-input adder example used above. Instead of defining a single 

test agent, mAdder, that communicates with all the input ports, we define one 

such agent for each of the constituent boxes that have inputs (Figure 4-5). As 

the system is built up by composition of these boxes, the test agents join up to 

form a single test process. If the simulation were being run on a multiprocessor 

machine (e.g., a tree machine), each test agent would perform its own local 

simulation and then pass the results to neighboring processors. 

Al 	 InAdderl • Adderl 

AR 	4= InAdderE • Adder2 

InAdderl 	{iici i2c2}  Ail,  12 

InAdder2 -4--  {1343} a113  

System 	(A1(O,0,O) • A2(O,0,O)) - c 

Add 	C 10:3i~2 Add 

Add 	

2: 

out  ut  

Figure 4-5: Local constructive simulation of a 3-input adder 

As before, the simulation is conducted by applying law [. +} multiple times: 

System = {13<3} (({outc3} Adder2(0,3,3) • 

• InAdderl • Adderl(0,O,0)) —c) 

+ {ilcil i2i2} ((Adderl (1, 2,3) • 	12) 

• InAddert • Adder2(0,0,0)) —c) 

+{ilcil i2<2 i3431 (({c.13}Adderl(1,2,3) • 

• 	• lout-41 Adder2(O,3,3)) _L c) 
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Expanding the third term twice more yields: 

{iicii i2<2 i3ci3}{outc31{outc61 

((a±. 12,13) • Adderl (1,2,3) • Adder2(3,3,6)) - c) 

This shows that the circuit does indeed add 1,2, and 3 to eventually produce 6. 

As before, a spurious transient output generated before the correct one. 

The problem with the above expansion was that we had to realize that ex-

panding the third summand would give us the correct result. When the same 

simulation was conducted earlier without using the constructive approach, the 

other summands did not appear. Where have they come from? The answer can 

be found in the way we defined the two test agents. Each has a sort independent 

of (disjoint from) the other since they test separate parts of the system. Thus, 

when they are combined with the Dot Operator, all possible interleavings result: 

mAdden • InAdder2 = {il41 12.C21 (LS{ jl , 12 }.InAdder2) 

• {13c3} (A{i3) • mAdden) 

+{ii.cii 12.c2 

34 {il.il 12"a2 13<3}A{jl,12 1 is) 

Since the problem stems from the fact that the individual test agents have 

disjoint sorts, it is possible to construct an ad hoc solution to the problem. If a 

synchronizing label is introduced into each communication, exactly as was done 

in Chapter 3 to add absolute time to a system, the interleavings will disappear. 

This makes sense when we consider that the individual test processes are the de-

composition of a single pattern which is applied to all the inputs simultaneously. 

Each process must wait for the others to finish calculating their portions of the 

current stimulus before proceding to the next in the test sequence. 

Here is an example of how the test processes from the last example can be 

used to apply a sequence of stimuli to the adders: 

mAdden 	{ilcl i2<i2 sync} {ilc47 sync} {sync} ah{ll, 12, sync) 

InAdden2 @ {i3c3 sync} {sync} {i3<17 sync} A{ll, sync) 
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TestSeq = mAdden • InAdder2 

= {ilcl 12c2 i3.c3 sync} 

{13.c3 sync) 

{ilci47 sync} A{jl, 12, 13, sync} 

The synchronization signals have eliminated the interleaving and perinited a 

sequence to be defined in which the values of 1, 2 and 3 are applied to ii, i2 

and i3 respectively, followed by a 3 to iS and then a 47 to ii. 

One problem with using local constructive simulation during the design of 

a system is that the test agents are interspersed with the constituent parts. 

Removing these agents at a later date if use of the complete behavior is necessary 

might be difficult. This would be readily accomplished if somehow the names 

of the test processes could be left syntactically grouped with their target parts, 

but defined in such a way as to be unable to interact with them. The null-sorted 

deadlock process A{Ø} has precisely this inablity to interact any other process, 

so it can be used to "deactivate" local test agents. The identifier that names the 

agent is simply defined to be 

Global Constructive Simulation 

When constructive simulation was first introduced, itAmentioned  that there were 

two ways of approaching it. As we have just seen, one way is to decompose test 

patterns into stimuli that locally prune a synchronization tree as it is constructed. 

Another way is to leave the test pattern intact, but still have it operate locally. 

This is called global constructive simulation because the test pattern is shared 

by the test systems's constituent parts, and is accomplished by exploiting the 

idempotency property of the Dot Operator. 

Idempotency of the Dot Operator—Law [*I] in Section 2.2.11—simply means 

that two copies of a deterministic process (see Definition 2.5.1) running in parallel 

will function exactly as a single instance of that process: P • F = P. This can 

be used to produce as many "copies" of a process as required: P = P • P = 

P • (P • P). Thus, a copy of the complete test process can be combined with every 

sub-block of the system using the associative and commutative properties of.. 
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The test vector need never be decomposed, as is done with local constructive 

simulation. 

Using laws.[. e], [n] and  ['c],  we can show why nondeterminism invalidates 

the idempotency property. For a nondeterministic choice sum P = Q e R, the 

following expression arises:. 

Ifl— (QE)R)*(QEDR)r- - 

Test patterns should always be deterministic, since they tend to be sequences of 

actions with no choice sums of any kind,, so this problem does not arise. 

The three input adder can be used again to contrast this simulation approach 

with the local version discussed above: 

mAdder 4r  {iici i2<2 0c31 A{120.} 

TestS ystem 	mAdder • System 

= mAdder • ((Adderl • Adder2) - c) 

= mAdder • mAdder • ((Adderl • Adder2) - c) 

= ((mAdder • mAdder) • (Adderl • AdderS)) - c 

= ((mAdder • Adder.!) • (mAdder • AdderS)) - c 

mAdder can be moved inside the abstraction since it does not contain the c label 

in its sort and is therefore not affected. 

Only the relevant parts of mAdder will synchronize with the the inputs of 

each Adder element. Again, the behavior of the components has been limited 

before the composition of the complete system, reducing intermediate term gen-

eration considerably. 

It was noted earlier that local constructive simulations are amenable to exe-

cution on a multiprocessor machine, with each portion running on its own pro-

cessor. Simulation in the global constructive style is better suited to a shared 

memory system in which the test pattern is kept in the central store. Multiple 

processors could access the shared memory, but this usually involves complicated 

synchronization mechanisms, so we can conclude that they global approach is 

preferable for a uniprocessor implementation. . - 
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4.3.3 Synchronizing Simulations 

When a simulation is run, the designer usually indicates events and/or channels 

to be monitored. The results of this monitoring are converted to a form— usually 

wave-forms--suitable for human perusal. The designer then manually examines 

the data looking for performance errors. In doing so, an implicit comparison is 

being made with some idea of the expected behavior. Sometimes this idea has 

actually been formalized by a written specification. 

A mathematical framework, such as the one used here, provides an ideal lan-

guage for writing unambiguous specifications. If the construction of the system 

is described in the same language, direct comparisons may be made between 

the two. It seems a pity to have the specification, the system, the test vector, 

and the simulation results all in the same representation and then rely on a "by 

eye" comparison with the expected behavior. A far better approach would be to 

apply the vector to both the specification and the constructed system in parallel 

and then attach a comparison mechanism to the two sets of outputs. 

Recall that the Dot Operator has the property of deadlocking a system if a 

communication is presented that the intended receiver is not ready to synchronize 

on and no other action is possible. This property can be utilized to produce a 

simple comparison mechanism. If the specification produces the same output 

events as the constructed system, the two will continue to synchronize for as long 

as the expansion is carried out. if on the other hand there is a discrepancy, the 

expansion will deadlock at that point. The events leading up to the deadlock 

can then be examined to see what caused the error. This technique will be 

called a synchronizing simulation, since the specification and implementation 

must synchronize for the simulation to progress. Figure 4-6 shows how the 

various parts fit together. 

Example: A simple specification can be written for a latch as follows, ignoring 

for the moment the qbar output line: 

part LATCHSpec { s, r q} ( 

Reset -4-- {s1} {qcil} Set + {rPx} Reset 

Set = {rt4}{qlO}Reset+{sNx}Set 
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Figure 4-6: Simulating a system and its specification in parallel 

For an implementation of this specifitLion, we refer back to the cross-coupled 

NOR gates discussed on page 86. It has the same sort as LATCHSpec, except 

for the qbar line, and the two may be placed in parallel using the Dot Operator 

to conduct a synchronizing simulation. To verify that both perform the set 

operation properly (given that they start in the Reset state), we apply a test 

agent that generates a s-ol signal and expand. 

Testlnput of sort {s, r, t} .= {311}{t} 4 A{sr t} 

System 	Testlnput • LATCHSpec • LATCHImp 

= {acl t}{qbarcO t}{qcl t}{t}{t} 

(NA(O,O,l,l).NB(l,l,o,o) • Set sA{ B . r . t }) 

= {a<1 t}{qbarcO t}{qcll 0 {t}{0 zs{3.r,t,q,qbar} 

Examining the output sequence reveals that it does not deadlock until ex-

plicitly forced to do so by the test agent. The specification has synchronized 

with the implementation at every step, implying that it has been satisfied. We 

have thus shown that LATCHImp satisfies LATCHSpec when both start in the 

reset state, an a event is signalled, and time is allowed to progress for four ticks. 

The Testinput agent requires a closer examination. It outputs a test stimu-

lus and then feeds a sequence of ticks down the input channels. This sequence 
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stimulates the "wait for input" portion of the implementation while the results 

of the first input percolate through. It acts as an implicit Universal Clock with 

a lifetime of four ticks. Note that the test agent cannot be applied to the speci-

fication alone since it does not satisfy the requirement that its sort be a subset 

of the target's sort (the specification has no notion of explicit time in the form 

of a t label). The result would be all possible interleavings of the Vs and the 

output events—a complex tree that is hard to examine. Alternatively, we could 

have defined Testinput to be an asynchronous agent of the form {s41} 
16

6{8 r}• 
This would compose well with the spec, but causes problems when the imple-

mentation is present. Its sort doesn't contain t and once again there would be 

an explosion of interleavings. 

Another point to notice is the method of terminating the expansion. The 

length of the simulation is specified as the stimulus plus four ticks, equalling five 

ticks total before the expansion deadlocks. This period had to be determined 

a priori as being sufficiently long to obtain a stable output. An alternative 

method would be to define a termination agent that monitors the sequence being 

generated and deadlocks the expansion when it considers the outputs to have 

stabilized. This is more elegant, but has the dangerous feature that an oscillating 

output would prevent termination (unless, of course, the agent were sophisticated 

enough to detect this case). 

Observe that we carefully avoided including the qbar event in the specifica-

tion. At first one might be tempted to specify that the q and qbar events occur 

simultaneously, as conceptually they should. Unfortunately, there is no way to 

construct a latch that exhibits such behavior. The delay through the feedback 

loop will always cause one event to precede the other. The order is usually im-

material from the point of view of the specification, especially if the circuit is 

only part of a larger system. Unless knowledge exists about the structure of the 

actual implementation (i.e., whether q or qbar occurs first), a specification can-

not be produced that will match it. This is not much of a problem when human 

judgement is used to examine the simulation results, but makes synchronizing 

simulation as it now stands almost impossible to automate. 
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4.3.4 Imprecise Specifications 

One way to avoid incorporating implementation details into a specification is to 

allow a small amount of "fuzziness". Usually, this fuzziness takes the form of 

ignoring the temporal ordering of certain events. If the uncertainty is represented 

by a deterministic choice sum of all possible orderings, the correct ordering will 

then be chosen when the specification is composed with the implementation. 

The spec can then be rewritten to remove the ambiguity so that it more closely 

mirrors the behavior of the implementation. The latch specification, for example, 

can be modified to include the qbar event either before or after q as follows: 

part LATOHSpec {s. r. q. qbar} ( 

Reset 	{sr'1} ({qbar.ciO} {q-all Set. + { q"il} {qbar'cO} Set) 

+ {rNl} Reset + { r'O} Reset 

Set . 	{rr1} ({qcO} {qbar<1} Reset + { qbarcl} {q'iO} Reset) 

+ {sr4} Set +{nO} Set 

The modified part, when placed in the test system described in the last 

section, produces the same output sequence as the original with qbar occurring 

before q. Once this ordering has been revealed by the simulation, the other 

choice branch can be removed from LATCHSpec, yielding a specification that 

correctly reflects the implementations behavior, yet is much simpler. 

The idea of generating all possible orderings should seem familiar; it was 

discussed in Chapter 3 when dealing with the temporal permutation operators. 

In that chapter, the operators were Used to define intervals during which we 

don't have an exact knowledge of event ordering. The usage here is similar, 

except that we wish the environment (in this case the implementation) to chose 

one of the orderings. The above preliminary spec can be rewritten using the 

deterministic temporal permutation operator ir as follows: 
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part LATCHSpec { s. r, q. qbar} ( 

Reset .4-- 	{s1}ir({qbar<O},{q<1})Set 

+ {rD.1} Reset + {r>O} Reset 

Set 	.= 	{rt'1}r({q'ciO},{qbarc1})Reset 

+ {sr1} Set +{s>O}Set 

Strictly speaking the nondeterministic permutation operator should be used, 

since this indicates that we do not care at all about the order of the output 

events. Unfortunately, the tools for dealing with nondeterminism are not yet 

available, so we must remain with the deterministic version for now. A later 

chapter will show how this problem can be solved properly. 

Designers of formal specifications for programming languages have en-

countered the need for a similar permutation operator (called ARBITRARY-

PERMUTATION in [Anderson 77]). A common problem is specifying what the 

value of an expression should be without specifying the order in which is cal-

culated. For example, the value of the expression a + b + c (where + stands 

for addition) should not require that a be evaluated before b and c. This would 

place an unnecessary burden on the implementors of the language with no real 

benefit. Instead, the result should be specified as simply "the sum of the values 

of a, band c". 

4.3.5 Probes, Taps and Transformers 

One of the most important applications for timing simulators is in revealing 

transient events that occur during the operation of a circuit. Spikes, oscillations 

and other anomalies can cause a circuit to function in a totally unexpected man-

ner. Hardware designers have traditionally built prototypes of designs and used 

various tools, such as test meters, oscilloscopes and logic analyzers to investigate 

malfunctions. These useful aids are not available when a design is still in "soft" 

form, i.e., represented by a software description, nor when it has been commit-

ted to silicon with many of the internal nodes unprobeable. Ideally, one would 

wish to have a means of statically determining the existence of these anomalies, 
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but in general this an' extremely difficult task. Methods exist that automati-

cally check for certain limited forms of hazards, such as critical races, in boolean 

combinational circuits [Friedman 77]. Others forms of hazard detection, such as 

spike detection, are incorporated directly into switch  and gate level simulators 

[Breuer 75, Newton 811. These approaches are effective, but limited. To achieve 

a high degree of confidence that a design is free of error inducing transients, an 

extensible toolkit of detectors is required. In other words, it would be desirable 

to have software analogues of the hardware debugging aids. 

We have seen that the system, its specification and its test stimuli can all 

be represented in the same framework. Why not do the same for the output 

analysis tools? In this section, a few such constructs are developed and their 

application demonstrated. 

Probes: It is often useful to be able to attach some form of monitoring device 

to a node. A voltage monitor could either communicate voltage changes at a 

node to the user or, alternatively, warn of illegal values. Glitches (undesirable 

voltage transients) and other momentary phenomena can be detected with a 

spike detector. These are just some examples of a construct that we shall call a 

software probe. Probes are passive watchers that observe events on a particular 

line or set of lines. They may use a history mechanism to decide if an event 

is of interest based on the ones that preceded it. In short, any behavior that 

can be specified by a sequence can be detected. - Probes should only indulge in 

output communications with the environment—usually to report the detection 

of an error—and not interact with the system under observation. 

Probes must, naturally, be introduced into the system under test at the same 

level of the hierarchy as the channel(s) being observed. The probe's input ports 

are attached by simply renaming them to have the same labels as the channels. 

Example: Suppose we wish to detect the occurrence of a spike on a voltage 

line. A spike is arbitrarily defined as a voltage transition that occurs less than 

two time units after another transition. A "window" into the past that will catch 

the spikes is kept by counting ticks that occur since the last input transition. 

If this count is two or less when the line changes again then a spike has been 

detected and a spikeDetected error is signalled. 
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part Detector {in,  t. spikeDetected } ( 

Detecting(0) = WAITt({in>x t} Detecting(2)) 

Detecting(c) 	{t} Detecting(c - 1) 

+ {int'x spikeDetected t} Detecting(2) 

The in line accepts a value of any type, since a change of any kind can be 

used to signal the spike. 

We can use the detector to monitor the q output of the RS latch used above 

to see what happens when a spike is applied to the a line. The structure of 

the system is given in Figure 4-7(a) and &plot of the events generated during 

its expansion for 10 ticks is shown in Figure 4-7(b). The NOR gates have a 

propagation delay of two time units and the complete system is defined by: 

Ticks of sort {s, r, t} 	{t} Ticks 

Input 	{t}{acl t}{s.i0t} Ticks 

System @ Input • LATCHImp • Detector Eq/in] 

Taps: Counterparts to probes are taps. Rather than passively observing, taps 

"splice in" to a communication link and have the ability to modify the values 

being passed. They can be used to inject test stimuli into a port in much the 

same manner as a hierarchical test agent, but have the added ability to construct 

the stimulus based on the previous traffic through the port. Illegal values can be 

trapped, replaced by a legal one and either reported to the user or the simulation 

can be halted and a debugger process enabled. 

A very simple tap that checks if integers passing along a channel are less 

than zero, signals the fact to an error log, and changes the value to zero is given 

below: 

IntChecker 	{in4x integer)} if x < 0 then 

{ erroriogcz out-i0} mt Checker 

else 

{out-lx)  mt Checker 
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Figure 4-7: Spike detector applied to a latch 

Transformers: A sub-class of taps are transformers.  Transformers input a 

value and instantaneously map it to another value. They are primarily used for 

type conversions between different representations of the same value. 

Quite often in mixed level descriptions, data of one type must be passed 

to a functional unit that accepts it as another. If data channels are typed, 

this should result in either a type mismatch error or the automatic generation 

of a transformer to convert the two. A similar thing happens in most high 

level programming languages when real variables, for example, are combined 



Chapter 4. Simulating Systems in CIR CAL 	 118 

with integers in an expression. The integers are automatically converted to real 

numbers. 

bits in bytes out 

Figure 4-8: An eight bit bus to byte transformer 

A common application for a transformer in simulations of digital circuits is 

to "bundle" a number of lines with bit values into a single more abstract value. 

For example, an eight bit bus may be viewed as an integer in the range 0 to 127, 

as an ASCII character, or any of numerous other choices. Such a transformer 

simply detects a change on any of the bit-lines and recomputes its conversion 

function with the new value(s). Defining a choice sum that detects any of the 2" 

possible changes on an n-bit wide bus is tedious by when done by hand, but is 

precisely what the Any Actions operator discussed on page 36 was designed for. 

The similarity to the Generic Box concept is obvious, differing only in that the 

output function is calculated instantaneously, instead of having an unspecified 

delay. The following expression, describing an n-bit to integer conversion unit, 

should clarify matters: 

part Bits_toJnt(x o,... ,x, : bit) {do... : bit, out: int} ( 

C(i) = ANY({do t.xo  outif()} ... {d,rx, out<f(i)}) C(rc) 

f(1) = (2° xxo)+...+(2"xx) 

The reason this produces the required behavior is that the scope of the vari-

ables bound by the input channels includes the guard itself. Thus if ANY gen-

erates the term {doc'.xo  di'xi outcf()} C(ffi), then the xo and x 1  in i will 

be bound by the input channels, whilst x2,... , x,, will be bound by the state 

variables. 

Suppose we have a 4 bit to integer transformer that is attached to a bus with 
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all lines low. Lines d1  and d2 then go high simultaneously, producing: 

Bits _toJnt(O,O,O,O) • ({d i -cl d2 c11 A0) 

= {djil d2-i1 out4f(0,1,1,0)} (BitsJo.Jnt(O,1,1,O) 'tsr,) 

= {diil d2-01  outc} (Bits_toJnt(o,1,1,o) .t) 

Where: .D = {d0, d1, d2, d31. 

(p 

The correct conversion value (6) is instantaneously output. This lack of 

calculation time is not as unrealistic as it seems since we are-not actually doing 

any calculations, but -  merely - changing-the-way the- value- is--viewed; Care - must 

be taken to use transformers purely as filters. For example, it might be tempting 

to convert a serial bit stream into a sequence of integers with a transformer, but 

this would be incorrect since we are really specifying a circuit that can perform 

the conversion and not simply viewing the stream in a different way. 

Transformers with state can be used to convert between more complicated 

abstractions. A signal 40 1 , for instance, might be modeled at a lower level of 

abstraction as a sequence of voltages. A transformer would then be used to sam-

ple this stream and output a 0 1 event when the voltage crosses a predetermined 

threshold. 

A similar application of transformers is particularly useful as a documentation 

mechanism. For example, if the occurrence of a particular value on a channel 

is used to control several processes, a transformer can be defined that assigns a 

descriptive name to the event. Events of this type are particularly common in 

clocked systems. A typical system clock might be defined as: 

C 	{w-iO} {'pcl} C 

Now suppose that most of the flip-flops controlled by the clock change state 

on the negative going edge (i.e., on a {ciO} event). Normally the definitions 

of the flip-flops would have to include terms for absorbing the unwanted{c1} 

events. A transformer, however, can be used to assign a more descriptive name, 

say cik, to the negative edge event thus not only simplifying the definitions, but 

also makes them easier to understand. Here is a sample definition for such a 

transformer: 

T - 	{çoco clk}T 

Composing T with C and then with the system produces the required result. 



4.4 Contributions of this Chapter 

This chapter cleaned up and extended several simulation techniques developed 

by Mime. It was shown how the basic simulation technique could be used to 

conduct symbolic simulations with no extra effort. Then Milne's notion of con-

structive simulation was subdivided into two sub-classes and a small stumbling 

block in one of these (local constructive simulation) was removed. Synchroniz-

ing simulations were proposed as a way of comparing the results of simulating 

specifications and their implementations with little extra effort. Finally, several 

types of tools for examining the results of a simulation were developed and their 

application illustrated through examples. 



Chapter 5 

Verification 

The introduction to Chapter 4 discussed the differences between the terms sim-

ulation and verification and then went on to examine simulation in detail. Sim-

ulation was defined as the procedure  whereby a particular path through the 

synchronization tree describing a process's behavior is selected by the applica-

tion of sequences of test stimuli. The resulting path is checked for validity by 

comparing it with some idea of what the process should do (a specification), 

either manually or automatically, 

Suppose that instead of using a test pattern to select a path, we were to 

use the specification itself? The specification can, after all, be expressed as a 

synchronization tree and thereby compared directiyhat of the implementation. 

A careful examination of the points were they fail to match will show whether 

the implementation does indeed satisfy the specification. 

The following sections explore a variety of ways of performing the compari-

son between two synchronization trees. The first method, discussed only briefly, 

involves transforming an implementation tree into that of its specification by ap-

plying laws of the calculus. This is the traditional wayroving a system correct 

but, as we shall see, it is too restrictive to perform certain desirable compar-

isons. Based on these failings, the case is then made for another, approach using 

partial specifications. Partial specifications, as the name implies, describe only 

a portion of the potential behavior of a process. The understanding is that the 

process will never be used in a way that exploits capabilities unmentioned in the 

specification. As can be imagined, it is difficult to avoid doing this, unknowingly. 

120 
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Two processes that function properly when their specifications are composed 

may cease to do so when their unspecified portions interact. A technique for 

preventing these undesirable interactions is evolved using constraints on the en-

vironments in which a specification may be placed. Methods for generating and 

combining such constraints form the central topic of this chapter. Nondetermin-

ism causes problems in these methods and so additional operations are defined 

to handle it in the final sections. 

5.1 Total Specifications and Transformations 

The normal approach to verifying if a constructed system is correct is to write a 

specification of its intendd function and then transform the construction using 

laws of the calculus into a syntactically equivalent form. Sometimes additional 

techniques, such as induction, are needed to complete the proof. This approach 

works only when the two processes have basiy the same behaviors, modulo the 

abstraction of internal communications. In most applications, however, this is 

seldom the case. Knowledge about the environment in which the system is to be 

used will often permit a dramatic simplification of its specification. The presence 

of a global clock in a register transfer system, for example, allows one to largely 

ignore transient values ("glitches") produced by blocks of combinational logic 

(the clock samples the outputs of the blocks after they have stabilized). Proving 

a simplified specification equivalent to its implementation is usually impossible 

with a transformational approach because one will have capabilities (e.g., to 

generate glitches) unavailable to the other. 

Here is a simple example that illustrates a transformational proof and reveals 

its limitations: 

Example: Suppose we have two "doubling" processes that input a value, output 

twice that value some time later and wait for a clock event before recursing. Each 

of the doublers is described by: 

D 	{brx}{c.i(2•x)}{c1k}D 

D' 	D [c/b, d/c] 
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Cascading two such processes should produce a "quadrupler" unit: 

Q 	(D.D)—c 

which can be specified by: 

S 4-= {bNx}{dc(4.x)}{c1k}S 

Proving that S = Q is straightforward: 

Q = (DsD')—c 	 bydefn. Q 

= ({bx}{cc(2.z)}{c1k).D 	 bydefn. D, D' 

• {ct'y} {dci(2 y)} {clk} D') - c 

= ({b>x}{cc(2.x)}{dl(2.(2.z))}{clk} 

(D sD')) - c 	 [. +] four times 

= {b>x} {dc(2. (2 z))} {clk} Q 	[- +] four times 

= {bx} {&c(4 . x)} {clk} Q 	 Arithmetic 

= S 	 Fixpoint Induction 

Notice that if the cik guard were not present, D could recurse and input a 

new value on b before D' has a chance to output on d. Applying law [. +J to such 

a case would result in all possible interleavings of b and d. No CIRCAL laws can be 

applied to transform the resulting expression into a form syntactically equivalent 

to S without the cik guard, since the latter does not contain a corresponding 

interleaving. Yet S without the guard is still a valid description of what the 

system will do provided that b events always wait until all pending d events 

have occurred. 

For a transformational proof to succeed, S would have to be changed to 

reflect the possibility of b and d interleaving. But such a specification is not 

something that one would naturally write for a quadrupler unless knowledge of 

its eventual implementation were available. Requiring such advance knowledge 

makes a mockery of the whole concept of top-down design. If even such a simple 

example as this encounters problems in comparing implementations and spec-

ifications, what hope have we of refining truly complex designs? Some degree 

of freedom to write simplier but still valid specific.tiofts is needed and this is 

presented in the following sections. 



Chapter 5. Verification 	 123 

5.2 Partial Specifications 

The main problem with total specifications, as we have seen, is that they are sel-

dom natural to formulate. Many systems, particularly digital ones, are designed 

around extremely simplified ideas about the behavior of primitive components. 

Thinking of a device as operating on binary data is far easier than analyzing it 

in terms of voltage and current laws, which in turn, are simpler than the phys-

ical laws governing electron motion. The goal in constructing a specification 

is to keep it as simple as possible yet still correctly reflect the behavior of an 

implementation at any lower level of abstraction. If the effects of these lower 

abstraction levels always has a direct influence on the higher levels, not only do 

specifications become difficult to write, but the whole notion of making behaviors 

manageable through hierarchical design is rendered ineffectual. 

Adding to these problems is the common practice of using part of the func-

tionality of an agent to implement a simpler function. The agent is placed in 

an environment that never attempts to use its extra capabilities. A specification 

crafted for this restricted environment will probably never match an implemen-

tation designed for more general uses. The usual specification for a Set/Reset 

flipflop, for example, says that it can accept a signal on either the set or the re-

set lines and alter the state accordingly. A perfectly acceptable implementation 

might have the added option of accepting signals on both lines simultaneously 

and generating an undefined output. Clearly, there is no way to transform the 

implementation into the spec in isolation since the former has more capabilities 

than the latter. Should the fiipflop be used in an environment that never allows 

both signals to occur simultaneously, however, both should be considered equally 

acceptable. 

What is needed is the concept of a partial specification that contains just 

enough information to fulfill the requirements of the environment. Provided 

that the points at which it disagrees with the implementation do not affect its 

functionality in that environment, we can say that it has been satisfied by the 

implementation. Such a satisfaction relation would provide the necessary free-

dom to produce sensible implementations of simple specifications. Care must be 
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taken not to make the relation too free, since illegal or unacceptable implemen-

tations may then be declared valid. A compromise will usually have to be found 

between simplicity and realism. 

So how can an implementation be checked to see if it satiSfies a specification? 

In Section 4.3.2, we saw how the idempotency property of the Dot Operator 

guarantees that an agent P is identical to the composition of two copies of P. 

Now if one of the copies is replaced by another agent F', having the same sort as 

P and performing the same sequences of actions, the equality should be preserved 

(up to the presence of resultants of F' in the resultants of F): 

(F.F') = F 
	

(5.1) 

F' must synchronize with every action of P. 

Observe that Equation 5.1 remains true even if is capable of sequences in 

addition to those of P. For example: 

F 	{a}{b}P 

Q .4= {a}{b}Q+{b}{a}Q 

P.Q = {a}{b}(FsQ) 

Since the composition has exactly the same structure as F, we can conclude that 

Q is capable of exactly the same actions as P. The "action matching" property of 

the Dot Operator was exploited to remove the extraneous actions available to Q. 

If at any point an action of P had not been matched by a corresponding action 

in Q, either the composition would have deadlocked or the resulting expression 

would not have been syntactically equivalent to P. Representing the processes 

by synchronization trees makes this technique easy to visualize. Here are the 

trees for the above example: 

Q 	 Discarded Branches 

lb b 

Q 
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At each node there might be branches belonging to Q that do not have corre-

sponding branches in P. These branches and their successor trees are discarded 

when the two are composed with the Dot Operator (in this case the branch la-

belled by b at the first node). Actions that label the first branch of a tree of 

discarded branches (the b label in this case) will be referred to as the Distin-

guishing Actions, since experiments on the two processes using these actions can 

distinguish them. 

Based on this example, we might be tempted to define a satisfaction relation 

between two agents in terms of composition and pattern matching of the result 

with the simpler of the two. Unfortunately, this definition fails to cope with the 

nondeterministic choice operator since the idempotency property is valid only for 

deterministic choice sums (see Definition 2.5.1). A simple additional requirement 

rectifies this deficiency and we obtain the following definition of satisfaction due 

to Mime [Milne 84b]: 

Definition 5.2.1 Strong Satisfaction 

An implementation I is said to satisfy a deterministic partial specification given 
by 

S . 
EX 

aa;dak 

written as 

I sat S 

if the following three conditions hold: 

(1) sortOf(I) = sortOf(S). 

(ii) S.I= > a(S.i) 

(iii)SsI=SsI1 and 
IEI 

and IsatSforallie%. 

Ii sat S for all i 6 1. 
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The a5 $ aj qualification ensures that the sums are deterministic. 

The first and second requirements perform the composition and pattern 

matching operations discussed above. The third requirement says that every 

nondeterministic branch in the implementation must match the specification. 

The net effect is to make all the nondeterministic branches look the same. An 

alternative relation, the maysat relation, is defined by relaxing this requirement 

so that only one nondeterministic branch need match. Except for certain styl-

ized cases, this weak relation is not very useful since the implementation may 

nondeterministically decide to act quite differently from the specification. 

Definition 5.2.2 Weak Satisfaction [Milne 84b]. 

An implementation I may satisfy a deterministic partial specification given by 

S 	L ajS 
161 

written as 

I maysat S 

if the following three conditions hold: 

sortOf(I) = sortOf(S). 

5.1= 	a(S.I) 
IC I 

SoI= I:S*Ii  and 
iEI 

and Ii maysat Sifor all i 6 I. 

Ii maysat S for at least one i 6 1. 

. 

To see how the satisfaction relations can be applied, let us return to the 

example from the last section involving doubling agents. This time the cik 

guard will be removed so that the implementation can input new values on b 

before the previous calculation has been output on 1. Here are the modified 

equations: 

D .= {b.x}{cc(2.z)}D 

.I=  {c>x}{d<(2.x)}D 

Q . (D.D')—c 

S 	{br'x}{dc(4.z)}5 
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We wish to show that 

Q §M S 

by applying Definition 5.2.1. The two have identical sorts, so the first require-

ment is met and there are no nondeterministic choices to worry about, so the 

third requirement can be ignored. This leaves requirement (ii). Composing S 

and Q produces: 

S.Q = {b>x} (Si  .Q j ) 

= {d<(4.z)}S.((Ds{dc(4.z)}D')—c) 

= {dc(4-x)IS. 

({b>y} ( ... ) + {dc(4 . x)} ( ... ) + {b>y d<(4-x))(... 

= {dc(4 . x)} (({br'y} ( ... ) • .17') - c . 5]) 

= {dc(4.x)}(S.Q) 

So Q does indeed satisfy S. Notice how the composition discarded the extraneous 

{ ar.y} and {aNy c.c(4 . x)} choice branches on the second line of the expansion 

of 51 • Q. 

One might be tempted to always use S in place of Q in some larger system 

since it is syntactically much simpler. Consider what this means, however, if 

both are placed alternatively in parallel with a process defined like this: 

R . 	{bc1}{bc2}{dNx}R' 

S would deadlock after accepting the first b communication, since it must output 

a d before accepting another. Q, on the other hand, can input new values on b 

while previous values are still percolating through to d. Although S and Q do 

behave identically in some contexts, they will not when placed parallel with R. 

Some method is needed indicate what contexts are safe. 

The satisfaction relations due to Milne are a step in the right direction toward 

simplier verification proofs. As we have just seen, however, something more is 

needed if they are to be used without introducing the possibility of incorrect 

results. 
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5.3 Constraints 

A time honoured approach to constructing a complex system is that of modular 

decomposition. First the intended behavior of the system is described by some 

form of specification. Then the specification is decomposed into a collection 

of "simpler" behaviors that together can be shown to give the required result. 

These smaller behaviors are in turn decomposed into still smaller units and so on, 

until some primitive level is reached. This method of continually moving toward 

a more concrete representation of the system is known as step-wise refinement. 

A high degree of confidence in the correctness of the end result can be obtained 

by proving that each refinement preserves the semantics of the previous levels of 

abstraction. Care must be taken, as we saw in the last section, that a refinement 

interacts properly with the context in which it is placed. It is all to easy to refine 

a specification for one block in the "safe" environment of the specifications of 

the other blocks and then forget that when they in turn are refined, unexpected 

interactions may develop. Figure 5-1 shows how the implementations of two 

interacting specifications may themselves have additional interactions. 

Figure 5-1: Unexpected interactions between two implementations. 

Recently, some interesting work has been undertaken in this area. In partic-

ular, Larsen [Larsen 861 has developed a notion of context dependent equivalence 

that fits in naturally with the step-wise refinement approach to design. His idea 
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is that information about the contextt in which a sub-block is to be placed is 

already available and can perhaps be used to simplify the comparison between it 

and its refinement. Quite often the refinement will have more capabilities than 

the process it replaces, having been arrived at by juggling factors unrelated to 

behavior, such as package count and part availability. In this case, the process 

and its refinement will not be equivalent at all when used in isolation. When 

placed in a particular context, however, the differences may become irrelevant if 

the extra capabilities are never used. Larsen, therefore, parameterizes his equiv-

alence with information about the context so that such a proof will succeed. In 

particular, for a one-hole context c and two processes P and Q, we have the 

following: - 

r C~ Pl CM 

for some "environment" e E Inf(C) where Inf(C) is a subset of a domain of 

information I containing information about the context C. He goes on to de-

fine this domain for CCS contexts and presents an ordering corresponding to 

how discriminating the environment is. The ordering has a minimal element 

representing the "least restrictive" environment that makes two processes act 

identically. This element is called the weakest inner information about an en-

vironment by analogy to Dijkstra's concept of weakest preconditions in program 

verification. 

The design process used by most designers is not nearly as structured as 

advocates of the step-wise refinement methodology would desire. Often a system 

grows from both directions simultaneously, particularly as the design approaches 

the more primitive levels. High level design decisions must sometimes be changed 

when problems are encountered at lower levels (e.g., a given module may not 

run fast enough when designed with one architecture, but will with another). In 

addition, experienced designers usually have a "bag of tricks" consisting of clever 

ways to implement certain common functional units. Ideally these tricks should 

verified once, then annotated with information about their interface requirements 

tRemember, a context is a CIRCAL expression with a "hole" that must be filled by 

another expression to produce a legal behavior. 
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and stored away in a library for later use. Many VLSI design systems already 

maintain large databases of pre-designed functional units that are verified in 

the geometrical sense (for example [Lattice 82, Deas 841). Individual functional 

units are handcrafted by experts to fulfill some requirement such as minimum 

area or maximum speed and stored in the database. Users or higher level tools 

connect together units of widely varying complexity, from simple pass gates to 

complete microprocessors, to produce a given design. Each will have restrictions 

on how other units can interact with it and still receive the expected results. 

These restrictions are called constraints. 

Constraints have a direct connection with Larsen's weakest inner information 

concept. The latter corresponds to the smallest (in some sense) set of constraints 

on a unit that will allow it to function as specified. Larsen's notion of context 

dependent equivalence deals only with single hole contexts, which means that 

once a specification has been refined, its implementation becomes part of the 

context in which other blocks are refined in turn. Equivalence proofs thus become 

progressively more difficult as the system becomes less abstract. This section 

develops an alternative representation for constraints that exploits some:  of the 

properties of CIRCAL to limit this growth in complexity. The representation 

is also readily amenable to the bottom up approach required for producing 

standard part libraries. Verified parts can be stored in these libraries as triples 

consisting of a specification, an implementation and a constraint on when the 

specification may safely be used. 

5.3.1 Constraints as Covering Trees 

Earlier we saw how the behavior of a process can be represented by a tree. The 

branches at each node are labelled with the actions corresponding to the choices 

available to the process at that point. For the moment, let us consider trees that 

are fully deterministic; each node represents a single state of a process and all 

branches have distinct labels. Under what conditions, then, can one tree replace 

another? 

Consider two deterministic tree that describe processes having the same sort. 

At any node, a set of actions (possibly empty) can be constructed from the labels 



a  

Chapter 5. Verification 	 131 

of branches that are the same in both trees. These actions are called the common 

actions of the trees (i.e., the actions common to both) and can be calculated 

for each corresponding pair of nodes. Another set can be constructed from the 

actions that do not match, and this will be called the distinguishing actions set. 

The union of the two sets contains all the actions available to both processes 

at that point in their evolution. A node pair that has an empty set of common 

actions corresponds to the two processes doing completely different things. The 

two are completely distinguishable there, so the branch leading up to this node 

pair should be added to the distinguishing action set of the parent node pair, 

since that path should be avoided. If the root nodes of the trees have no common 

actions, the two processes are not related and can never be used interchangeably. 

Q b 

c 	 d/\c 
I 

e 	 ,,/ \\e 

Figure 5-2: Sample covering tree 

For any two trees, another tree can be formed by creating a node for each node 

pair and labelling the branches exiting from it With members of the common-

action set. This tree is in some sense the "intersection" or "greatest common 

denominator" of the two original trees. Clearly, it can replace them in any 

context that does not attempt to interact with the distinguishing actions. 

Figure 5-2 shows two trees P and Q, and their common denominator R. The 

distinguishing actions are indicated by dashed lines and actions rejected by both 

processes are not shown. The distinguishing actions of R are contained in the 
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set of label-sets {{a}, {b}, {d}land those of IV in {{f Ill. Both P and Q may 

be replaced by I? provided that no a, b, or d communications are engaged in at 

the top level. R is said to be the covering tree of P and Q, or the annotated 

covering tree when the distinguishing actions are indicated. The idea is that in 

a system designed around the behavior of R, it will not matter which of P or Q 
is actually present. 

The annotated covering tree (ACT) R is similar in nature to Larsen's weakest 

inner environment, in that it gives an indication of the most general environment 

which will interact in the same way with P and Q. An ACT, however, combines 

information about both the allowable environments and the process's behavior 

in one place. A weakest inner environment contains just the former type of 

information and requires a process to give the complete picture. 

Now that we have seen what is required of an ACT, it is time to formalize 

some of the concepts. 

Definition 5.3.1 Distinguishing Actions 

The distinguishing actions of two processes P and Q are those actions be-

longing to the set (the da-set) defined by: 

da(P,Q) =def  {APL Aq-L*} U {itIP- ~ *  

507 

The notation P -L is shorthand for BP. P --* F' and F 
A & * means that 

F rejects the A communication. The definition can be summed up by saying 

that the da-set contains all of those actions that F accepts and Q rejects and 

those that P rejects and Q accepts. 

tSingleton  label-sets are written as plain labels to prevent proliferation of br aces. 
Thus, R's distinguishing action set would be written { a • b, d ) 
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Definition 5.3.2 Common Actions 

The common actions of two processes P and Q are those actions belonging 

to the set (the ca-set) defined by:• 

ca(P,Q) =def {AP -- * AQ —L} U {,zFP —.+* A 

The set can be further subdivided into an initials set, containing the A's and 

a refusals set containing the M's. These are respectively, the actions that the 

process is willing to accept and those that it rejects. 	 o 

Definition 5.3.3 Deterministic Annotated Covering Trees 

The function ACT(P, Q) defined below constructs a process that can be 

expanded to generate an annotated covering tree for 

\ deterministic P and Q, with sortOf(P) = sortOf(Q) = L. This process 

is call'1in Annotated Covering Process (there can be more than one) and its 

synchronization tree is called an Annotated Covering Tree. The distinguishing 

actions are indicated by the dis operator. 

P . 	>aiPi 
a EA 

Q 4= 

PE B 

ACT(P,Q) = 	>i mACT(Pk,Qk) dk AeJB 
1&EAflB 

UI 

Where AWB =def  (AuB)\(AnB), e.g., for A = {a, 6, c} and B ={a, 6, d}, 

A U B = { c, d}. Throughout the chapter, the da-set of an annotated covering 

tree P will usually be written as Dp and the ca-set as Ap. 

The actions belonging to A fl B are those in the choice sum that are common 

to both processes and form the initial actions of ACT(P, Q). Combined with the 

refusals of the ACT—defined as pow (L) \ (A U B))—they form the common 

actions set. The actions belonging to A U B, on the other hand, are those 
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that differ when the choice sums are overlayed, and hence belong to the da-

set. All the actions understood by a process 1? (all subsets of the restricted 

powerset of its sort L) can be pladed in one and only one of these sets. Thus 

initials(R) U refusals(R) U da(R) = L. Furthermore, any communication with an 

ACT will have one of four possible outcomes: 

The communication is ignored since it does not belong to the sort of the 
ACT. 

It is accepted and the ACT evolves. 

It is rejected and the ACT evolves, perhaps to LL. 

4; The communication belongs to the set of distinguishing actions. It may 

- be accepted or rejected depending on which of the original processes is 

actually present. 

The first three outcomes are the usual possible results of an interaction as de-

termined by the Dot Operator. The fourth is precisely the situation we wish 

to avoid, since what happens depends on which of the two original processes is 

actually present. We can therefore conclude that the two processes may be used 

interchangeably in any context that never attempts to communicate with their 

ACT's distinguishing actions. A predicate on contexts and ACT's can be defined 

that indicates if it is "safe" to place the ACT in the context. Safety is defined 

as the absence of communications with the distinguishing actions, so that the 

fourth outcome never arises. Here is an attempt at defining such a predicate: 

Definition 5.3.4 Given an ACT generated by the annotated covering 

process U of sort Su: 
U 	U' dis Dv 

U''= 
UjEAu 

It is safe to place U in a context formed from the core operators and another 
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deterministic process V (with no distinguishing actions) 1ff: 

(1) 	aafe (ftI+V,U) 
&&(j]eV, U) 

§f(ftI [p], U) 
(iv)safe([ - A, U) 

(v) 	aafe (IJ].V,U) 

. initials(V) 0 DU  

initials(V) 0 Du 

p preserves uniqueness of labels 

Let D' = {x\A I x  Du} in: 

(,PjcxeAu. r2\AEDu) 

AØD J  

A safe Q] —A, U0 
,x E Du, y € initials(V). x  Sv = y fl Su 

A The resultants are safe 

Other contexts, notably action prefixing and recursion, are always safe. 	D 

Discussion: The motivation for (1) and (ii) is straight forward. If any initial 

actions of V were to match any distinguishing actions of U, in the case of (i), 

unexpected nondeterminism could be introduced through law [i e +]. In case 

(ii), having one well defined possible outcome of a communication and another 

that is ill defined should be considered dangerous. Case (iii) is self explanatory-

non-unique labels could lead to unexpected nondeterminism. 

Abstraction is a little bit trickier. A member of a composite action may be 

removed making the result identical to one of the distinguishing actions, thus 

introducing potential nondeterminism. In the above definition, D'u is the set 

of distinguishing actions with A removed from each label-set in the set. If one 

of the initial actions a with A removed belongs to this set, we know that the 

harmful nondeterininism may be introduced, so this ev4uaiiity is ruled out by 

the first clause. The second checks that no distinguishing actions are being 

hidden, which may or may not result in unknown nondeterministic moves. The 

last clause checks that resultants are also safe, because abstraction is a self-

renewing operator. 

As was discussed when the case was being made for the safety predicate, 

communications with distinguishing actions are undesirable because the outcome 

is unknown. The first clause in case (v) enforces this by making sure that none of 

the initials of V can synchronize with a distinguishing action of U. Composition, 

like abstraction, is a self rend.'ing operator and so its resultants need checking 

for safety too. 
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Example: An ACP U defined by: 

U . 	({a}Ui+{a b}U2) jj  {{b},{c}} 

can safely be placed in these contexts: 

I  [g/al 	{a}P+fl 	({a b}Q+{d}R).ftI 

but not in these: 

[I Cc/a] Distinguishing action same as an initial action. 

{b}R+ 1111 bmatches ad.a. 

{ c} Q • ft ]J c communicates with a d.a. 

ft 	- b A d.a. is abstracted away 

ft 	- a Initial becomes same as a d.a. 

Ii 

In practice the safe predicate is not very useful. It can only be applied to 

a context having a single operator. Most useful contexts are combinations of 

several e.g., composition and abstraction. Also, other processes in the context 

(the V's in the definition of Sg) might be ACP's as well and not just determin-

istic processes. The rules given in the definition do not indicated under what 

conditions, for example, it is safe to place two ACP's in parallel. A more flexible 

notion of safety is needed. 

5.3.2 Comparing Covering Trees 

Clearly, to use ACT's effectively algebraic laws must be defined that allow them 

to be manipulated in the same fashion as normal processes. Central to the 

definition of such laws is a means of comparing ACT's. To do this, we notice that 

the method for generating an ACT from two processes as given in Definition 5.3.3 

will yield only one of possibly many covering trees. Some will be more restrictive 

than others in that their distinguishing action sets will be larger. These will not 

fit safely into quite as many contexts, but are still perfectly valid. Such a notion 

of restrictivity suggests a pre-order on covering trees. 

Definition 5.3.5 The Restrictiveness Pre-order ; 

A covering tree U is said to be more restrictive (alternatively, less general) 

than another tree V with the same sort if U ;R  V. The preorder is defined as 
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the intersection of ascending indexed relations n 	, where U % V always 
holds and U E4' V 1ff: 

1) 	 DuDlJv 

(initials(V) tJ initials(U)) C Du 

U --* U', V --* V', A Du implies U' 	V 1  
JA 

U -* 	p Du implies V -+ * 

FE 

The indexed chain of relations allows recursive processes to be compared 

[Milner 801. D represents the da-set of x. The resultants U' and Vt in con-
dition (iii) are unique since the trees are deterministic. 

The first condition ensures that U has at least as many distinguishing actions 
as V. Condition (U) makes sure that any differences in the common action sets 

belong to the da-set. This prevents the following from being true; 

{c}V' dis {a} 	 ({b}U'+{c}U") dis {a} 

since the process on the right can accept a b communication, while the one on 

the left rejects it. A simple change makes the statement true: 

{c}V' dis {a. b} 	 ({b}U"+{c}U") dis {a} 

Of particular interest are the maximal and minimal elements of this ordering. 

When the da-set of an ACT contains all communications possible with that pro-

cess (i.e., is equal to the powerset of the sort), any attempt at communication will 

have an unknown outcome. This is true because the only communications that 

will have a definite outcome are those that belong to the initial and refusal sets, 

which are empty. Such behavior is exactly that of the most non-deterministic 

process 0, as discussed in Section 2.2.6. We can therefore infer that: 

fILRU 
	

E;R 1} 

For all annotated covering trees U of sort L. 
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At the opposite extreme is the least restrictive covering tree for two processes 

P and Q, called the Minimal Covering Tree (MCT) The tree produced by the 

ACT function of Definition 5.3.3 is defined to be the MCT for P and Q. Thus, 

U E_R  MCT(P, Q) 	 [;R 21 

for all annotated covering trees U of P and Q. 

The restrictiveness preorder can be used to define some laws about annotated 

covering trees: 

Proposition 5.3.6 

[ji] 	(aP+Q)dis{a} =R Qth{a} 

[dis2] 	 Qdis{a,/3} 	R (13P+Q)dis{cx} 

[kø] 	 P0 =n  P 

[diu4la] 	(PJ!A)j!B =R PAAuB 

Proof- 

[dis 11 	Using Definition 5.3.5 and considering one direction of the equality: 
(CIF + Q dis {a}) j (Q dis {a}). The distinguishing action sets are 
identical, so condition (1) is satisfied. The initial actions of the left side 
are A = {a} U initials (Q) and those of the right side are B = initials(Q). 
Therefore, AUB = { a} g { a }, fulfilling the requirements of condition (ii). 
The only actions common to both sides are initials(Q) and Q 9;R Q from 
the reflexivity property of pre-orders, thus satisfy requirement (iii). The 
ordering holds in the other direction by a similar argument, so we can 

conclude that the two are equivalent. In practice, the left hand side is 

considered illegal since a belongs both to an initial action set and to a 

distinguishing actions set, violating the requirement that all actions belong 

to only one of the sets. This law shows that membership in the da-set is 

more influencial than membership in the refusal or initial sets. 

[dis 21 	Again, using Definition 5.3.5, the two distinguishing action sets are 
A = {a, $} and B = { a}. Condition (1) requires that A D B, as is clearly 
true. To meet condition (ii), the initial action sets, C = initials(Q) and 
D,= initials(Q) U {fl} respectively, must satisfy C 1i D = {j3} C A, which 
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they do. The last condition is met by the same reflexivity argument as 
used above. 

[dis 0] 	Clearly true. No distinguishing actions means that no restrictions are 

placed on the process's use. 

[dis !Lis] 	Trivially true. 

•i 

Care must be taken when applying law [J! 2] from left to right that one 

does not move more actions from the da-set to the initial actions set than were 

present in the minimal covering tree. The result would be a meaningless tree 

that does not completely cover the two generating processes. For example, given 

two processes and their MCT: 

P .. {a}Pj+{b}P2+{a c}P3 

Q .4= {b}Q j.+{c}Q 2  

MCT(F,Q) = [{b} MCT(P2 ,Q 1 )] dis {a, c, {a c}} 

Where a and c in the da-set stand for {a} and {c} respectively. Applying 

law [j  2] produces: 

MCT(F,Q) ;R ({a}X+{b}( ... ))dis{c,{ac}} 

Where X can be any process. This contradicts law [ 	2], so we can conclude 

that the ACT on the right side of the ordering is not a legal covering tree of P 
and Q. 

Having a means of comparing covering trees allows us to investigate their 

interactions with general contexts, as the next section shows. 

5.3.3 Manipulating Covering Trees 

Since the operators of the calculus can be expressed as operations on synchroniza-

tion trees, one would expect to find similar operations on covering trees. Cover-

ing trees have a corresponding process representation in terms of the guarding, 

deterministic sum, recursion, and dis operators. It should therefore be possible 
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to formulate laws along the lines of [• +1 and [- +] that allow combinations of 

ACT's to be expressed as a single ACT. The laws will most likely take the form: 

op(Pl.J!Dj,. ... ,P .4jD) =R op(Qi, ... , QM) disDq 

As you can see, propagating distinguishing action sets is a bottom-up procedure. 

Each argument to the operator must be in ths outermost form before the expres-

sion itself can be put in such a form. This is to be expected since the da-sets 

function as constraints on the environment and constraints are pushed outward 

as they interact with more and more of the environment. 

Now we consider applying in turn each of the core operators to some represen-

tative covering trees. The laws that result should parallel the requirements first 

laid out in the definition of the safe predicate, since we are still trying to check 

for legal combinations of ACT's. Some sample ACT's are needed to construct 

the contexts from, so let: 

U=U'disDu 

V ' V dis Dv 

U'$: 
c4EAU 

V I  .4= E ojvi 
/31EAv 

for some sets of actions A. and D8 , a = U, V. The term >, aEA o4pi will often 

be abbreviated to EA  cxj P1 in the interests of saving space. Similarly, ai will 

stand for Vaj € A 8 , i.e., all members of the set A 8 . It will be obvious from the 

definitions above which set is begin referred to. 

Law [4j +] 

U+V =R (+)disDuuDv 
ccDv 6j%Du 

Remember that dis is a special versfon of the choice operator that marks 

illegal branches. It is therefore commutative and associative with respect 

to +, so Du and Dv can be grouped on the right and law !js] applied 

to produce the union. Actions that have the possibility of introducing 

nondeterminism are relegated to the da-set by applying the absorption law 

[dis 11, hence the restrictions on the summations, if the restrictions cause 

the indexing set to become empty, an instance of the deadlock operator 

A with distinguishing actions results. Note that U and V must have the 

same sort by definition of the choice operator. 
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Law [di! ®] Nondeterminjstjc choice is similar to the deterministic version. 

There is no way of knowing whether U or V will actually be present, so we 

play it safe and distinguish actions that are the union of the two da-sets. 

Similarly, guards that have a counterpart in one of the da-sets must be 

removed, or the possibility of an unknown nondeterministic choice results. 

( 
E(D E)dISDUUDV R 

aDv /3aDu 

Law [dia 1]] A renaming can be applied to a process as long as it preserves 

uniqueness of labels. 

	

-  - 

U[p] = U' [p3 dis.Du[p] 

Law [di! .] The desire to prevent certain communications from taking place 

motivated the development of the dis operator in the first place. Since 

communication links are established by application of the Dot Operator, 

it is important to examine the interaction between the two. 

Communicating with a distinguishing action does not automatically re-

sult in disaster. Other factors in the environment may prevent it from 

actually taking place e.g., later composition with a deadlocked element. 

Distinguishing actions thus "absorb" attempts at communication, in much 

the same manner as matching actions in two composed deterministic sums 

unite to become one when law [. +] is applied to the expression. Here is 

the analogue to that law for the dis operator: 

U.V = E ajU1disDu • 	I f3jVjdisDv 
cEAu 	 1316AV 

R U'.V' dis 	{DujIDujflSvØ} 

I Dy5 fl Su = 01 
• {aj U Dyy I Dy1 fl  Su = ai fl Sv} 

U{I3IUDuiIDuIflSv =f3jflSu} 

U {Du i  U D5 I D, 1  n S1, = D 5  fl S} 

Where U' • V' is a composition of deterministic choice sums expandable 

using [. +] (see the definitions of U and V above for an explanation of U' 

and V'). The rather large union that forms the new distinguishing actions 
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set, arises for much the same reasons as the three summations do in law 

[. +]. The first two include the independent distinguishing actions, the 

third and fourth handle possible interactions between initial actions and 

distinguishing actions and finally, the last generates interactions between 

Du and Dv. Actions belonging to Du, for example, would be excluded 

from the final set if they were not independent of Sv and did not synchro-

nize with either a fig or a Dv k• This is the way that the environment can 

elmininate the possibility of a communication with a distinguishing action 

and thus can remove it from the set. 

Law [j -] Abstraction is harder to deal with. The problem of communicat-

ing with distinguishing actions was alluded to above, but was put off by 

claiming that other parts of the context might block the communication. 

This argument no longer holds when the communications have been made 

internal by applying the abstraction operator, because if a distinguishing 

action is hidden, the process may nondeterministically decide to something 

completely unknown. The lack of knowledge is not so strange when we con-

sider that the dis operator was developed to allow irrelevant portions of a 

behavior to be discarded. Following an internal distinguishing action, the 

process enters such a discarded portion and all knowledge of what it will do 

is lost. It can potentially engage in any sequence of actions drawn from the 

process's sort L. This type of behavior should seem familiar; it is exactly 

that of the most nondeterministic process Ii. The following law shows how 

U is introduced into an expression by abstracting away a distinguishing 

action. 

U—A =R(> 
QjEA IU  

Where: 

aiu1)—A disD J  

[( E aiui) — x dis Db\Ø] 
aEA, 

if A V Du 

if A € Du 

D', = {i\AInEDu and A#'y} 

4, = { aja2EAu and aAADb} 

The set D',  is simply the da-set of U with A removed from each element and 

any element that is equal to A eliminated. A', is the subset of Au whose 
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elements when A is removed do not belong to Db.  Those elements that 

do belong to Db  correspond to actions that could act nondeterministically 

with ones,the new da-set, so law [di!  11 is applied to absorb them. Note 

how 0 is introduced if a singleton label in Du is hidden. 

Examples: 

P 4=  ({a}P1+{b}P)dis{c} 

	

pj 	({c}P+{a}P1)dis{b} 

	

Q 	({c}Q1+{a}Q)dis{b} 

	

Qi 	({b}Q+{a}Q1)dis{c} 

P.Q =, {a} (Pi .Q)dis{b,c} 

P1.Q =R ({a}(P1.Q)+{c}(P.Q1))dis{b} 

P.Q1 =n  ({a}(P1.Q1)+{b}(PsQ))d1Ls{c} 

P10Q1 =R  {a}(P1sQI)dis{b,c} 

	

P—b 	= 	((P—b)e((P—)+{b}(P1—b))) dis{c} 

=R {a} (P1 - b) diLs {c} 	(by law [rec a]) 

P1—b =R f29({c}(P—b)+{a} (Pi —b)) 

P+Q =R ({a}Qe{a}P1)dj.{b,c} 

To sum up, covering trees are more generally useful than the partial specifi-

cations and satisfaction relations of the second section for the simple reason that 

they may be constructed for any two processes. A satisfaction relation, on the 

other hand, requires that the initial actions of one process must always be a sub-

set of those of the other; This happens to be true of specification/ implementation 

pairs, but might not be in general. In addition, a satisfaction relation provides 

no information on how two processes will interact with their environment, while 

a covering tree not only encapsulates this information, but also allows it to be 

manipulated algebraically. 



Chapter 5. Verification 	 144 

Example: Here are two sample specification/implementation pairs: 

Si 	{in}{b}{clk}S 1  

I .= {in}{b}{cijc}11 + {b}{in}{cllc}Ii 

52 	{b}{out}{c1k}S2 

12 4= {b}{out}{clk}12 + {out}{b}{clk}12 

Both specifications say that the parts will perform two actions and wait for a 

clock event. The implementations allow the two events to happen in either order. 

Using Definition 5.2.1 we can say that: 

I sat S1 	and 	12 Sat S2 

but it is clear that when S i  is composed with 52  the result will be quite different 

from the result of composing 11  with 12. The extra branches of the imple-

mentations interact to produce behavior that can not be deduced from their 

specifications. 

Let us now see what happens when we compose the covering trees of the two 

pairs. The trees are calculated using the ACT function with these results: 

T1 = ACT(S1 , Ii) 
	

= ACT(52,1 2 ) 

= {in}Rjdis{b} 
	

= {b}R2dis{ out } 

RI = {b}{clk}Tidis{in} 
	

R2 = {out}{clk}T2 !Lis {b} 

The composition is expanded using law [dl! 9] with the following results: 

T1sT2 = {in}(J?i.T2)d.is{b, out} 

= {b}({cllc}T1sR2)dis{in. out} 

{cllc} 1'1 • R2 = {out} {cllc} (Ti • T2) dis {b} 

Note how the da-sets of each resultant is the union of the sets of the two con-

stituent processes. The distinguishing actions of the top level, for example, say 

that no communications may be made with b nor out until after the in has 

happened. Composing the two trees with a process that forces in, b, and out 

to occur in sequence eliminates the da-sets: 

C = {in}{b}{out}C 

CsT1.T2 = {in}{b}{out}{c].k}(C•Tj•T2) 
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The {in} guard of C causes the distinguishing actions of Ti • '2 to be dropped, 

since they belong to the sort of C and are thus prevented from happening. 

Similarly, the da-sets of the succeeding resultants are also dropped. C has con-

strained the three events to act in sequence and in doing so eliminated the 

possible alternative orderings that necessitated the distinguishing actions. It is 

interesting to note that if C were composed with either element of the first spec-

ification/implementation pairs and another from the second, precisely the same 

sequence would result. The ACT need not be computed at all! This observation 

forms the basis for an alternative representation of constraints as discussed in 

the next section. 

5.3.4 Constraints as Contexts 

Covering trees are conceptually a bit messy, since the description of a process's 

behavior is intermingled with information on how it should interact with the 

environment. A cleaner approach is to separate the two into a purely behavioral 

description and a constraint upon its use. In other.word, the annotated covering 

tree is replaced by an unannotated process and a context that captures the 

constraints on the use of the process. An parallel can then be drawn with 

Larsen's context dependent equivalence. 

A system is typically constructed by fitting together various blocks in order 

to obtain the required behavior. The connections are determined by applications 

of the renaming and abstraction operators, but the actual composition is done 

with the Dot Operator. Since this type of context is so common, it is convenient 

to give it a special name: 

Definition 5.3.7 Compositional Contexts 

A context is said to be compositional if it is of the form: 

P.R 

for some process P. 	 0 
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Each block will usually be defined as a pair consisting of a specification—

which indicates how the block looks to the rest of the system—and an imple-

mentation in terms of less abstract blocks. By applying Definition 5.3.3, a single 

covering tree can be defined for the pair that will govern the block's use. Other 

blocks in the system may also be represented by ACT's, so the overall behavior 

can be derived using law [j .}. Since the various trees interact, one would 

expect there to be certain combinations that could prevent any communication 

with \\ the  distinguishing actions of a particular tree i.e., when [dis •] is ap-

plied the da-set of the resulting expression is empty. This amounts to saying 

that in this particular (compositional) context the two generating processes are 

completely interchangeable. 

To illustrate this, consider a particular block that has a specificationt S and 

an implementation I. It's behavior as far as the outside world were concerned 

would then be described by the covering tree U = ACT(S, I). U would be of the 

form U = U' dis Du for some (possibly empty) distinguishing actions set Du. 

Now suppose that another tree C = C' dis Dc is constructed from U as 

follows. (1) A node is created for each node in U. (2) The initial actions of the 

node are the same as those of the corresponding node in U. (3) The refusal set, 

however is the union of both the refusal and the distinguishing actions sets of 

U. In other words, C will be a tree that refuses all of U's distinguishing actions 

and has none of its own. 

Law [i1..] can be invoked to see what happens when C is placed in parallel 

with U. Two things need to be calculated: the body of the resulting process 

and its distinguishing actions set. First the da-set Dv is calculated using the 

tNote  that unlike partial specifications, these may have actions that unavailable to 

the implementation. Why this capability would be used is unclear, but it's available 

all the same. 
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following identities: 

sU = Sc 

Dc0 

initials(U) = initials(C) 

ai E initials(U) 

Applying law [jj..] to U • C leads to these equations for the new da-set: 

{Du i  IDui  flSc=O} 	 = 0 

{Dc5jDc5flSu=O} 	 = 0 

{aiuDc5Dc,nSu=ajnSc} 	= 0 

{ajuDu5Du5nSc=ajnSul 	= 0 

{Du i  UDcjI Du i  flSc=DcjflSu} = 0 

by substitution and elementary algebra. Dv is the union of of these sets, which 

is simply the empty set. This is to be expected since C was defined so as to reject 

all of U's distinguishing actions. The bodies of the two trees (U' and C') are 

combined as usual using law [ + J. Thus the covering tree V for the complete 

system is given by: 

V = UsC = (CT'.C')disO = U'.C' 

A similar result is obtained for every resultant of U' and C'. We can conclude 

that C prevents all communications with the distinguishing actions and that: 

C.S=CsI 

C has constrained S and I so that they function in exactly the same way. 

U was defined as the minimal (least restrictive) covering tree of S and I, so the 

context C. fl is, to use Larsen's terminology, the weakest inner environment that 

makes S and I equivalent. The notion of environment has not been developed 

here, so from now on we will call this context the weakest safe context, and C 
the constraint process. 

Definition 5.3.8 Weakest Safe Context. 

The compositional context that produces the same behavior when filled by 

either of two deterministic processes P or 

COP = COQ 
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is called the weakest safe context if the constraint process C is defined as the 

process that results when the da-set of the annotated covering tree of P and Q 

is relegated to the refusal set. 	 0 

But what will happen if we wish to place the processes in another context? 

The part described by the processes will typically be connected to other parts 

in order to implement some system. The behaviors of the other parts unite to 

form a context in which the part will be placed. It is highly unlikely that this 

context will be identical to the weakest safe context, so how can we tell if it is 

also safe? If it is will it then be related in some way to the weakest safe context? 

The rest of the section develops a way of comparing contexts and shows how it 

can be used to check if two processes are interchangeable in a particular context. 

Expanding on the previous example, suppose that we wish to use the S and 

I processes as part of a larger system. The rest of the system appears as a 

compositional context of the form V = R • ]. R is a process (deterministic and 

with no distinguishing actions) that represents the aggregate behavior of the 

other blocks. We have already calculated the weakest safe context C JJ = C • 
of S and I. The question is, can the information contained in C be used to check 

if it is safe to place S and I interchangeably in V? Let us see what happens if 

the equations are expanded: 

CISI=ClI] 

so 	 s•C=I•C 

and 	R.IJSsC]=R.jJI.CJJ 

thus 	(R.C).S=(R.C),I 

implies? 	R.S=R.I 

The only way for the final step to hold is if 

FiNMOAMA 
	

(5.2) 

In other words, the context must be at least as restrictive as the weakest safe 

context. Equation 5.2 bears a striking resemblance to Milixe's definition of sat' 

isfaction as discussed in Section 5.2. His relation was considered inadequate be- 

cause it failed to take account of the effects of the environment on the processes 
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being compared. This objection does not apply here, because the environments 

themselves are being compared. Thus R • C = R could be written as R sat C. 

Another interesting observation is that Equation 5.2 corresponds to the fol-

lowing relation on (deterministic) C and R: 

R R C 

R - -*R' implies 2C'.C-'-C' A R'RC' 

C-1'-** implies R -L.* 

Any action that R can accept, must also be accepted by C and so on for their 

resultants. If C rejects an action, R must reject the same action or R • C will 

not behave like R. 

2 is just half of the well known bisimulation ordering [Milner 83], called the 

simulation ordering. It is this observation that gives a link to Larsen's work. 

His so-called Main Theorem states that if two processes are equivalent in an 

environment E, then they will also be equivalent in another environment F if 

F simulates E. The environments E and F correspond to the contexts C and V 

respectively, and R 2 C is the simulation ordering. 

Definition 5.3.9 The Simulation Ordering . 

A process R of sort 8R  is said to simulate another process C of sort Sc iff 

these conditions hold: 

SR.DSC 

R 
AEA, 

 B' implies C'.C---C' A R'<C' 
AEA 	 A C 	implies mplies R — +* 

B 	B' implies R'<C 

Where A is the set of actions that both processes have in common: 

A={xlxepovr(SR) A xflSc$Ø} U pow- (Su ) 

Requiring that the sort of C be a subset of the sort of B means that B is 

allowed to indulge in actions that might not be available to C. It must, however, 
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always have the potential to accept every one that C can. Condition (2) takes 

this a step further by saying that the initials of R that intersect the sort of C must 
be matched by a corresponding action in the initials of C. Condition (3) ensues 
that all actions refused by C are also refused by R and the last condition handles 
independent actions by R. Note that the first condition makes the simulation 

ordering more general than the satisfaction relation since the latter requires that 

the two sorts be identical. 

Example: P will simulte Q when they are defined as: 

P 4= {t}P+{a t} {b t}P 

Q 4= {a}{b}Q+{b}{a}Q 

The first condition of the definition of the simulation ordering hold becasue 

Sp = {t. a. b} is a superset of Sq = {a. b}. The actions that the two have 

in common are 

A={a. b. {a b}. {a t}. {b t}. {a b t}} 

elicit the same response from both, fulfilling the second condition. P rejects 
the same members of A as Q does and P < Q after the independent t action 
happens. 	 o 

One would expect that if P < Q and  Q :~ P then P = Q. This is the bisimu-

lation equivalence and has the same properties as the intersection-of-ascending 

chains equivalence used throughout the thesis (see Section 2.6). 

Theorem 5.3.10 Bisimulation 	 I  

P<Q A Q:5P implies P=Q 

Proof: From Definition 5.3.9 condition (1), we know that Sp C Sq and 
Sq C Sp, which implies that Sp = Sq. Condition (4) can then be eliminated 

since neither side has any independent actions. 0 
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The simulation ordering was defined in order to check if a context could 

replace a weakest safe context and still have the generating processes act iden-

tically. The following theorem shows exactly how the ordering is used to check 

a particular context. 

Theorem 5.3.11 Compositional Context Replacement 

Given two deterministic processes P and Q (P $ Q) that behave identically 

in a weakest safe context C ft I = C • ft Jj for some deterministic process C with 

no distinguishing actions. Another context D  ] = R • ft] for some deterministic, 

undistinguished process R, will preserve this equivalence if R simulates C: 

C.P=C.Q implies R.P=R.Q 	R < C 

Proof: (*) Assume that the left hand side is true, i.e., that P and Q are 

equivalent in both contexts. Now if R :9 C, one or more of the conditions of 

Definition 5.3.9 will not be met. By case analysis on these conditions: 

Assume that 5R Z Sc. Then either SR n Sc = 0, or 5R C Sc. Since C is 
the weakest covering process of P and Q, its sort must be the same as Sp 
and Sq. Therefore, if 5R  is completely independent of 5c,  it can interact 
with neither P nor Q. The only way for 11 • P = 1? • Q to be true then is 
if P = Q, which leads to a contradiction. 

If 5R C Sc, then there must be a subset of 5c  that is independent of 
5R Consequently, P and Q could be construct with branches labelled by 
actions from this set such that C prevents these actions from happening, 
but V cannot since they are independent as far as it is concerned. R • P 
would therefore not be equal to R • Q, which contradicts the assumption. 

Suppose that R -- R' but C 	*. A P and a Q could then be con- 
structed such that P -* P, , Q -* Q, and P Q. The two processes 
would behave identically when composed with C, but would differ when 
composed with R. This contradicts the assumption that R • P = R • Q. 

A  A similar argument is used to show that if C -* * but R A 
-. &  R

, 
 a 

contradiction is reached. 

4. Actions independent of 8c  are also independent of Sp and Sq since C is 
the weakest covering process and has the same sort. Suppose R --* R' 
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for independent action ju and R' • P 0 RI • Q. But the assumption that 
R • P = .11 • Q holds for all resultants, so a contradiction is reached. 

(4=) For this case, assume that C.P = C.Q, R < C and R.P 36 R.Q. If the 

inequality is true, there must be a A such that: 

(R.P) ._I:i 	 (R.P) A -+ * 
or 

(R.Q) —14 * 	 (R.Q) -14 

If A is independent of SC , it cannot interact with P and Q and these assertions 

are false. On the other hand, if An Sc $ 0 then, by condition (2) of the definition 

of the simulation ordering, C must accept the same action, leading to: 

(COP) __1+ 	 (COP) -+ * 
or 

(COQ) -14 * 	 ( C.Q) A 

This means that C • P $ C • Q, whicb leads to a contradiction. 

Using this theorem and taking advantage of the broadcasting nature of guards 

in the calculus, a simple notion of many-hole contexts can be developed. Consider 

two interchangeable pairs and their constraint processes: 

dsp1  = C16Q 1  

C20!'2  = C29Q2  

Composing the two results in: 

C1 0 C2 0 (P1  or Q1).(P2  or Q2) = C(P1 or Q) (P2  or Q2)fl 

Any mixture of P1  or Q with P2 or Q2  will be indistinguishable in the context 

C. C1  and C2 are deterministic processes, so their composition may simplify 

considerably when expanded using law [. +]. In addition, if both P2 < C1 and 

Q2 :5 C1 then C1  can be removed altogether, since (P2  or Q2)  will correctly 
limit (P1 or Qi)  due to the broadcast nature of guard. Similarly, C2  can be 
removed if P1  :5 C2 and Q  < C2. 

This result illustrates a major difference between Larsen's work and the con-

straint method presented here. His context dependent equivalence, although 

applicable to contexts constructed from arbitrary operators, cannot cope with 
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multiple hole contexts. We, on the other hand, get this ability "for free" from 

properties of the calculus at the expense of only being able to use it in composi-

tional contexts. These are by far the most prevalent form in hardware applica-

tions, so it should not be regarded as a serious deficiency. 

5.3.5 Discussion 

So what are the advantages and disadvantages of the covering tree and composi-

tional context approaches? Covering trees require the use of a special operator—

the dis operator—for indicating dangerous actions, but are almost as compact 

as the simpler of the two generating processes. Moreover, they may be placed in 

any context provided that the laws governing the dis operator are obeyed. 

Compositional safe contexts, on the other hand, can be constructed using 

the core operators of the calculus alone. In addition, the constraint process can 

be separated into smaller, more obvious, constraints that are combined with the 

Dot Operator in much the same way as one would formulate a conjunction of 

facts about safe contexts. On the minus side, weakest safe contexts tend to be 

larger than comparable coveHng trees because information about the generating 

processes must be included in the constraint process. 

Covering trees may be more amenable to machine manipulation, whereas 

constraint processes are easier for a human to understand, particularly if pre-

sented in a "conjunction" of smaller constraints form. Since covering trees can 

be converted into safe contexts. quite easily, there is a great deal of flexibility in 

the choice of which approach to use for an application. 

5.4 An Example 

Two techniques for specifying constraints on processes were discussed in the last 

section. By way of clarifying their use, we now apply each in turn to a simple 

example, our old favorite the latch. 

Although the latch is a very simple circuit, the presence of feedback opens the 

door to some unexpected behavior, as we saw during the experiments conducted 

in Section 3.3. A specification for the required behavior is very simple, so it 
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will be instructive to see under what conditions it really does produce the same 

behavior as the implementation. Here is the specification for the latch as it was 

first presented on page 85: 

part LATCH {s. r. q. qb} ( 

Reset ' 	{ s1} {qbcO} {q<1} Set + {rx} Reset + {s>O} Reset 

Set . 	{r1}{qciO}{qbc11}Reset +{sr'x} Set +{rrO}Set 

p.' 

S _____ NOR LI ' S qbar 
. 

Figure 5-3: Latch implementation 

The latch was constructed from two cross-coupled NOR gates as illustrated 

in Figure 5-3. Each NOR gates can be described by a generic box with an 
unspecified delay. 

NA(r, qb, q) 	Boz2_1 [NOR/f, r/inj, qb/1n2, q/out] 

= ANY(r>, qDb) 

(if NOR(r, qb) 0 q then {qclNoR(r, qb) }) 

NA(r, qb, NOR (r, qb)) 

NB(q,s,qb) 	BoxE_1 [NOR/f, q/inj, s/1n2, qb/out] 

= ANY(st', q) 

(if NOR(s,q) 0 qb then {qbcNoR(s,q)}) 

NA(s, q, NOR (s, q)) 

Both boxes have three state variables corresponding to the current states 

of the two input lines and the state of the output line. The composite system 
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will therefore have six state variables, two of which (the duplicate q and qb) are 

redundant. The variable storing the value last output by NA on q should always 

be equal to the variable storing the value last input by NB on its q port and 

similarly for the qb channel. The redundent state variables are eliminated by 

defining an appropriate implementation name: 

IMP(r,s,q,qb) . 	NA(r,qb,q) • NB(q,s,qb) 

There remain, however, four state variables in the implementation that must 

somehow be matched up with the two states of the specification (Set and Re-

set). This can be done by indicating that when q is high (and qb is low), the 

implementation is has been set and when it is low the implementation has been 

reset. This suggests the following mapping: 

IMP(r,s,1,O) '-* Set 

IMP(r,s,O,1) '-* Reset 

Now let us try applying Definition 5.3.3 to generate an Minimal Covering 

Process for the implementation and specification processes. The procedure is a 

follows: (1) Starting with the root nodes (initial states) of the two trees, each 

matching node is considered as a pair and is assigned a number in bold face. The 

pair is written (t, R), where L  refers to the left member and 2 to the right, 

as inspired by the notation used by Prasad for bisimulation proofs [Prasad 84]. 

(2) Each half of the pair is written as a deterministic choice sum and placed side 

by side. The resultants, if they are not state names, are assigned unique ones by 

indexing the main state name. (3) The guards in the choice sums are compared. 

Any that match become part of the covering tree's choice sum, whilst those that 

do not are relegated to the da-set. The resulting equation describes a node in 

the covering tree and is highlighted with a box. Its resultants are state numbers 

corresponding to other state pairs in the derivation. Many state palEs will be 

eliminated from consideration, since actions leading up to them will belong to 

the da-set of the previous node. 

We begin by assuming that the specification starts in the Set state and the 

implementation in state IMP (0, 0, 1,0) (remember, the q line high implies that 

the latch is set).. 
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(Set, IMP(0,0,1,0)) 

£ = {r>1} Set 1  + { sc'x} Set + {rc'O} Set 

£ ={rr'}IMP1(r,O,0,1)+{sN}IMP2 (0,s,1,O) 

+{a> r>} IMP5 (r,s,l,O) 

I{r> 1 }( 2)+{s}( 5)+{rD0 }(9) dis {{rNsr}} 

(Setj, IMP 1 (1,0,1,0)) 

C = {qcio} Set2 

2 = [(if NOR(1,0) $ 1 then {qc0})NA(1,0,0)] 

. ({s>} ( ... ) + {qt'} ( ... ) + {qt s}( ... )) 

= {q.tiO} IMP4 + {s>} ( ... ) + {qNO sr} (...) 

{q<01 (3) 4j {{a}, {s> qc'0}} 

(Se4, IMP4(1,0,0,0)) 

£ = {qbcl} Reset 

2 =({rN}( ... )+{qbc}( ... )+{rc. qbr.}( ... )) 

• (if N0R(0,0) $0 then {qbcil})NB (0, 0, 1) 

+ {qb>0} IMP5  + { r> qb>0} (...) 

I{cb< 1 }(4) 	{{r},{rNqbc11}} 

(Reset, IMP5(1,0,0,1)) 

£ = NB(0,0, 1) • (if NOR(1, 1) :AO  then {qc0})NA(1, 1,0) 

= NA(1,1,0) .NB(0,0,1) 

= IMP (1,0, 0, 1) 

Goes to state (a) of the Reset comparison  

(Set, IMP2  (0, s, 1, 0)) 

£ = NA (0, 0,1) • (if NOR (s, 1) $ 0 then {qb<0} NB (s, 1,0) 

= IMP (0,s,1,0) 

ifs = 0 then (i.) else ifs = 1 then (6) 
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(Set, IMP (0,1,1,0)) 

(Similar to State (1)) 

I {rN1}(7)+{s.}(5)+{rrO}(o) dis {{rc.st.}}I 

(Set1, IMP1 (i,i,i,o)) 

£ = {q.clO} Set2  

£ = [(if Noa(1,0) 54 1 then {qc0})NA(1,0,0)] 

•[{s>}( ... )+{qc.}( ... )+{q> sr.}(...)] 

={qciO}IMP4 (1,1,O,O)+{ s>}( ... )+{qrosr}(  ... ) 

{q<0}(8) 4j 

(Set2 , IMP4 (1, 1, 0, 0)) 

= {qbcl} Reset 

2 = NA(1,0,0)s(if NOR(0,1) 0 0 then {qbcO})NB(1,o,o) 

= NA(1,0,o) • NB(1,0,0) 

= IMP (1, 1, 0,0) 

There is no match! IMP can not accept a qb<1 action, so this 

branch is illegal. The guard {qco} leading to it in State (7) 

must be added to its da-set. But this leaves an empty initial: 

actions set, so the {r>1} action leading to (7) in State (6) 

be added to the 

(Set, IMP5(0,s,1,0)) 

£ = N.B(s,1,0) • (if NOR(0,0) $1 then {qi1})NA(0,0,1) 

= NA(0,0,1) •N.B(s,1,0) 

= IMP (0,s,1,0) 

ifs = 1 then State (6), otherwise State (1) 1 
The case for (Reset, IMP (0,0,0,1)) is completely symmetrical. Note that it is 

entered from State (4) in the above set of pairs. The entry state is the state 

corresponding to State (6) above, with IMP(O, 1, 1,0) replaced by IMP(1, 0, 1,0) 

since it will have been the r line that changed, not s. 
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Note how we had to backtrack in State (8) when we discovered that this 

branch lead to ,a node with no initial actions. While this is acceptable in theory 

(it corresponds to a dangerous deadlock element), in practice we will not want 

this to happen, so the branch in State (8) that lead up to the state is moved 

to the da-set. The branch is taken when the reset line goes high while the set 

line is high, a condition which the specification and the implementation treat in 

different ways. In any case, it is an illegal operation and should be avoided. 

We can gather together the nodes derived above to form the covering process, 

which is defined as a new part: 

part LATCH-CT {s, r. q. qb} 

Set' 4= ( { rr>1} 

{qcO} ffi {{sr}, {sD. q.cO}} 

{qbcl} jjLis {{r.}, {rr' qb.11}} 

Reset' dis {{sc4}} 

+ {rtO} Set' 

+{sNl}(Set' jj {{rt.1}}) 

+ {s>O} Set' 

) 4j {{scrt}} 

Reset' 	( { si} 

{qbcO} jiLs {{rt.}, {rD qbcO}} 

{qcil} 4A {{st'}, {sc' qc1}} 

Set' 4A {{r'1}} 

+ {sNO} Reset' 

+{rr1}(Reset' dis {{s>J.}}) 

+ {rNO} Reset' 

) 41a {{s>r'}} 

Although not quite as simple as the original specification, the covering process 

has much the same structure and is a good deal clearer than the expansion of 

the implementation. 

By way of comparison, let us see what the corresponding weakest safe context 

looks like. A new process is constructed from the covering node equations that 

includes each node's distinguishing actions in its refusal set, as discussed on 
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page 151. Since the result falls naturally into several states, it is useful to define 

a mechanism similar to the part construct for grouping them together: 

constraint LATCH-CONS {r, s, qb, q} ( 

CR0 	{scl} {qbc'x} {qy} CS1 

• {sciO} CRC 

• {rcO} CR0 

+ {r<1} CR1 

CR1 	{rcO} CRO+{scio} CR1 

CSO 	{rc1}{qx}{qb>y}CR1 

• {r.1O} 050 

• {scO} CS0 

+ {sc1} CS1 

CS1 	{sc0}CSC+{r40}CS1 

This process is defined so that: 

LATCH-CONS .LATCH = LATCH-CONS .IMP 

The constraint places three important restrictions on the process(es) that 

may be composed with LATCH. 

Simultaneous occurrences of s and r are not allowed. 

The inputs are not allowed to change until the events resulting from a 

change of state are accepted by the environment. This disallows 'spikes" 

on the input lines. 

The s line is prevented from going high when the r line is already high, 

and vice-versa. 

Notice that the context is allowed to signal the same value on the set and 

reset channels as was last signalled (for example, two {rcO} events in sequence). 

Normally our design style prevents such occurrences, so the above constraint 

could be somewhat simplified to prevent this possibility. 
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The original LATCH specification can be used freely in any compositional 

context that follows the rules imposed by LATCH-CON. Since latches are 

general purpose devices that are found in many circuits, the specification and its 

constraints may be placed in a library of standard parts for future use. Figure 5.4 

shows what such an entry might look like. Notice that it is rather larger than 

the LATCH-CT covering tree described above. 

Latch Is. r. q. 

Specification: 

	

Reset 	{sc?1}{qb4O}{q.cil}Set 

• + {rt.x} Reset + {sc.0} Reset 

Set . 

	

	{rc.1}{qco}{qbcl}Reset 

+ {sc'x} Set + {rrO} Set 

Constraints: 

	

CR0 	{s.il} {qbx} {q>y} CS1 

• {sco} CR0 

• {rcO} CR0 

+ {ril} CR1 

	

CR1 	{rcO} CR0 + { sciO} CR1 

C50 4= {rc1}{qz}{qbNy}CR1 

• {rcO} CSO 

• {s<O} CSO 

+ {scll} CS1 

	

CS1 	{scO} CSO + {riO} CSI 

Figure 5-4: A latch as a library component 

We have derived two general descriptions of the latch that can be safely used 

in place of of its implementation in terms of cross coupled NOR gates. The 
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LATCH specification, however, is not as general as it should be. If the above 

derivation is studied carefully, it will soon become apparent that the order in 

which the q and qb events were specified to occur was carefully chosen. It 

just "happens" to match the order generated by the implementation. This is a 

dangerous course to adopt, since another (equally valid) implementation might 

cause these events to occur in the opposite order. There is no real reason to 

care which ordering is used, so the specification should be changed to indicate 

that either is acceptable. Since not enough information is available yet to know 

which implementation will be used, the choice of possible orderings must be 

nondeterministic. The output sequences of LATCH should then be changed to 

something of the form: 

{q.ix} {qbcly} ( ... ) e {qbciy} {q-ix} ( ... ) = ®r,({qb<x}, {qcy})('n) 

This says that either q can happen before qb or vice versa—we don't care 

which. The distinct nondeterministic temporal permutation operator as defined 

on page 71 captures this concept cleanly. 

If this enhancement is made, it will no longer be possible to construct an an-

notated covering process for the new specification and the previous implementa-

tion, since the method was defined only for deterministic choice sums. However, 

for this particular use of nondeterminism—as a way of indicating "don't care" 

orderings—a constraint can be constructed that will allow the new flexible spec-

ification to be used interchangeab1y with the implementation. To do this, we 

refer back to Theorem 3.1.7 which says that the deterministic temporal permu-

tation operator is the identity for the nondeterministic version. From this we 

observe that: 

®({q<x}, {qbcy}) • lrD({qt'}, {qb}) = ®({qcx}, {qbcy}) 

{qiO} {qbcl} (...) • ?r({qNx}, {qby}) = {qcO} {qbil} (...) 

{qbcO} {q.cl} (...) • irD({qrx}, {qby}) = {qbcO} {qcl} (...) 

The process or environment that acts like the deterministic permutation opera-

tor can accept what ever output sequence is used. Therefore, any context that 

is willing to input all possible sequences of the output values is acceptable. The 

problem is that when the Simulation Ordering is used to check whether a par-

ticular context is safe, it will allow ones that accept only a single sequence. The 
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single sequence is unable to cope with the nondeterminism in the specification 

and so cannot be considered safe. An ad hoc solution can be produced by not 

applying the simulation ordering to terms containing the permutation operator. 

Thus the context: 

{qbz}{q>y} ... ) • 111 

is not an acceptable simulation of: 

1rD({qbx},{qPy})( ... ) • fl 

only when the permutation is being used to absorb a nondeterrninistic choice. 

While the ad hoc solution proposed above is adequate, it is not very satisfying 

and something more general is needed. The next section examines some such 

methods for coping with nondeterministic choices in a cleaner way. 

5.5 Handling Nondeterrninism 

Nondeterministic choices are difficult to deal with because they can have many 

different interpretations. They are a sign that information has either been lost, 

is not yet available (i.e., is unknswn), or is not quite representable in the cal-

culus. Each of these interpretations should be treated in a different way, since 

they symbolize quite different ideas. This chapter is about comparing processes, 

so it will be instructive to see what happens when they contain some form of 

nondeterminism. In this section, a look is taken at some different interpretations 

of nondeterminism and suggestions are offered for comparing nondeterministic 

processes. 

Most uses of nondeterminism fall into the following categories: 

1. As a means of capturing truly random behavior. For example, an inter-

rupt might be modelled as a nondeterministic choice that is always present 

throughout the evolution of the process describing the behavior of a mi-

croprocessor. Similarly, a random number generator could be specified by 

a nondeterministic sum of all of its possible values. 
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To represent loss of information. The application of the abstraction oper-

ator produces this type of nondeterminism. Removing the knowledge of 

why an event happens makes it appear random. 

To indicate multiple possibilities. This is the form that was discussed at 

the end of the last section. A number of events are allowed to happen, 

but it doesn't matter which one really does and/or in what order they all 

do. The choice will be made using information that is not available, so it 

cannot be represented by a deterministic choice. 

The first interpretation refers to processes that are intentionally random. A 

process defined with this type of nondeterminism wants it to be preserved, so the 

only valid comparison between it and another process is through a transforma-

tional approah using the laws of the calculus. An implementation of a random 

number generator, for example, must show that it will generate the same range 

of numbers as promised by the specification. This range could be represented as 

a nondeterministic sum of all possible results. An example in the next chapter 

will go into more detail about this application. 

The other two interpretations, however, have some interesting ramifications 

and will now be considered in more detail. 

The second type of nondeterminism typically arises through the application 

of law [- +]. An action that is part of a deterministic choice can happen "spon-

taneously" as far as the environment is concerned once it has been made internal 

to a process. Again, this type of nondeterminism must be dealt with by applying 

laws of the calculus. 

The last interpretation is more interesting, since ambiguity can be removed 

as more information is made available. Deciding if the information does resolve 

the ambiguity requires the definition of a new comparison operator, as we shall 

see below. 

5.5.1 Ambiguity 

The rationale behind top down design is that specifications for higher level blocks 

need not describe the detailed behavior of their eventual implementation. Typ- 
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ically, it is sufficient to specify what a sub-block does without worrying about 

how it does it. For example, at a high level of abstraction, a Boolean equation 

is sufficient to describe a combinational element. As delays make an appearance 

in the lower levels, however, more detailed information of the element's behavior 

through time is required. This information should only be necessary at the lower 

levels, and not have to be reflected in higher level descriptions. 

Event based calculi frequently force one to be far more precise about temporal 

ordering than is strictly necessary or even desirable. Because of this, specifica-

tions must sometimes incorporate features of implementations simply to make 

them comparable using existing tools, as we saw in Section 4.3.4 when we first 

implemented a latch. This is highly undesirable since changing the implementa-

tion would necessitate changing the specification as well. A specification should 

remain fixed, yet have just enough ambiguity to allow the designer to investigate 

various avenues of implementation. 

What, exactly, characterizes an ambiguous specification? To find out, let 

us consider two typical examples. The first is the specification for the latch 

(LATCH) as it was presented on page 85. Recall that the latch was required 

to output values on both the q and qb channels after a change on one of the 

input lines. For almost all uses of the latch, the order in which these channels 

output values is immaterial, so this fact should be reflected in its specification. 

The temporal permutation operators defined in Section 3.1.4 are ideal for this 

purpose, since they capture the notion of ambiguity in time. A portion of a 

revised LATCH might look like this: 

{rc'l} ®({q<O}, {qb<1}) 

A zero can be output on q and a one on qb in any order except simultaneously. 

An implementation can choose either one of the two sequences that are produced 

by expanding 01): 

= {q.cO}{qbcl}... e {qbcl}{qcO}... 

The environment should be prepared to accept either of the sequences in order 

to cope sensibly with the spec, so passing it the same one every time is perfectly 
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satisfactory. There is no notion of fairnesst built into the nondeterministic choice 

operator; the environment cannot expect any particular one of the sequences and 

must be prepared to receive either. Producing the same sequence every time the 

{rDl} event happens simply looks like we are being unfair to the other choice. 

This form of ambiguity is called sequence nondeterrninisrn becaufe there is a 

nondeterministic choice between possible sequences. 

Another form arises when any one of several events, usually values output on a 

channel, can happen (hence is called value nondeterminism). A typical example, 

taken from Mitchell's thesis [Mitchell 85], is a change dispensing machine. It 

inputs a pound coin and outputs some equivalent amount of lower denomination 

coins. The choice of what particular coins are dispensed depends on what the 

machine was initially stocked with. The possibilities include 100 pence (d), 20 

shillings (s) or 2 fifty-pence (fifty-p)  pieces. This behavior is easily described by: 

CD 	{pound} ({s1otc100d}e{s1otc20s}e{s1otc2fiftyp}) CD 

It is perfectly reasonable for an implementation to dispense only one type of 

change, yet we have no way of formally showing that it is valid. No amount 

of equational manipulation will introduce the possibility of dispensing the other 

types, so an equivalence proof cannot succeed. A looser notion of what it means 

to implement a nondeterministic choice is needed. As Mitchell points out, how-

ever, such a notion cannot be too loose. An implementation that dispenses 

dollars and cents should not be allowed, even though it might perform correctly 

in all other respects.t 

Both forms of nondeterminism can, of course, be mixed to specify "don't care 

when" sequences of "don't care what" values. The categorizations used above 

Fairness means, loosely, that if a nondeterministic choice is presented to the envi-

ronment infinitely often, every branch will eventually be taken 

Note that this form of nondeterminism should not be confused with the "Any 
Actions" operator defined in Section 2.3.5. The operator provides a number of possi- 
bilities any of which can be selected by the enivronment. With value nondeterminism, 
on the otherhand, the selection is made by unknown factors, hence the environment 
must be prepared to cope with all possibilities (perhaps using the ANY operator). 
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simply define the opposing ends of a spectrum. In both cases a single sequence 

of the implementation must be compared with several in the specification and 

shown to match only one. This is done by the following relation on processes: 

Definition 5.5.1 Implementation 

A process F defined by: 

P 4--  

IEIIEJ 

is implemented by another process Q (written  Q imp F), where: 

Q .: EN Qk 
kEK 

if for all j € J and k E K there exists one and only one i €1 such that ajJ = fik 

and Qk  imp P,j. 

This just says that the deterministic summation that defines Q must be 

present just once in the nondeterministic choices provided by P. 

Here are some small examples to illustrate the operator's power: 

Examples: 

P ={a}P 

Q 	{a}Qe{b}Q1 

Qi = {c}Q${d}Q1 

P imp Q 

R 	{b}{c}R 

R imp Q 

S 	®({qcl},{qbcO}){clk}S 

I 	{qbcO}{qcil}{clk}I 

limp S 

The last example demonstrates sequence nondeterminism. The environment in 

which S and I will used must be willing to accept all the possible sequences 
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of {qcl} and {qb<O}, since it rarely makes sense to specify a system that can 

nondeterministically deadlock. For this example, the environment might look 

something like: 

E 4r  ir({qcl},{qb.cO}){clk}E 

Theorem 3.1.7 given on page 73 states that ir is the identity for ®, so this 

environment will accept anything that S sends it. It is equally happy with the 

communications presented by I. To demonstrate this, the q and qb channels can 

be hidden in both processes with an identical result: 

S — {q. qb} = 	{clk}(S—{q. qb}) 

I — {q. qb} = 	{clk}(I—{q. qb}) 

The Dot Operator distributes over nondeterministic choice (Law 
[6 e]),  so 

the implementation relation can be applied to compositional contexts. The con-

straint technique discussed earlier can therefore be generalized to indicated in 

what contexts one process will implement another. 

U of sort {a. b. c} 	({a}U+{b}U)e({a}U+{c}U) 

V of sort {a, b. c} 	{b}V+{c}V 

Cof sort {a.b.c} 	{b}C 

C•V im p C•U 

because: 
C.V = {b}(V.C) 

c.0 = 

It is using the implementation ordering that compositional safe contexts come 

into their own. The dis operator as it stands cannot be extended to cope with 

these relations since it is so tightly tied to deterministic processes. Other, similar, 

operators would have to be contrived. 
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5.6 Summary 

This chapter has covered a lot of ground, most of it fairly technical. It began 

by considering the normal approach to showing that two processes describe the 

same behavior by transforming them into an identical C IRCAL expression using 

laws of the calculus. This was demonstrated to be inadequate, because many 

applications specify only the desired portions of a behavior and ignore aspects 

of an implementation that are not relevant to the current use. Proving the spec-

ification of such an application equivalent to the implementation thus becomes 

impossible. 

Milne addressed this problem by defining partial specifications that include 

only information relevant to the application at hand. He defines a satisfaction 

relation on processes that determines if one accurately reflects the partial speci-

fication imposed by the other. Again, this was shown to be inadequate because 

portions of the implementing process not covered by the specification might in-

teract in unexpected ways with the context in which the part will be placed. 

The satisfaction relations were abandoned and two related approaches to 

the problem of using partially specified processes safely were considered instead. 

The first involved looking at the specification and implementation processes as 

synchronization trees and deriving a greatest common tree called the annotated 

covering tree. The annotations on the tree indicate at each point in the evolution 

of the processes what actions will be able to differentiate them. The annotations 

can be manipulated algebraically using several laws that were then derived. 

The second approach showed how the dangerous actions could be prevented 

from happening by defining an appropriate safe context. An ordering was de-

fined that can be used to check if an arbitrary compositional context fulfills the 

requirements of a safe context. An example using our old friend the latch was 

then worked to contrast the two approaches. 

Deterministic partial specifications alone are not general enough for repre-

senting most highlevel behaviors. These behaviors tend to incorporate ambiguity 

in the form of "don't care what order" sequences of "don't care what" values. 
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Such statements are readily captured by the nondeterministic choice operator, so 

a relation for comparing nondeterministic processes was developed. The relation 

indicates that one process implements some of the possibilities allowed by the 

other. 

These three ways of comparing processes simplify considerably the difficult 

task of writing meaningful and concise specifications. 

5.6.1 Contributions of this Chapter 

This chapter presented the most important ideas contributed by this thesis. 

Foremost among these was the idea of constraints on the environment in which 

a -1. specification may be used. The constraints ensure that there is no way of dis-

tinguishing the specification from its implementation, thus allowing them to be 

used interchangeably. Only through the careful use of constraints can problems 

of any complexity be subdivided into manageable pieces. Further flexibility is 

provided by allowing some carefully controlled ambiguity in a specification and 

then comparing it with its implementation using the implements relationship. 

This was adapted from work by Mitchell and others to fit the C IRCAL frame-

work and completes the spectrum of analytic techniques that can be brought to 

bear on a problem. 



Chapter 6 

Some Examples 

The presentation of operators and techniques in the previous chapters has been 

interspersed with some small examples to illustrate their uses. One of the goals 

of this thesis, however, is to apply these techniques to "real" problems. To this 

end we now tackle some more ambitious and perhaps more interesting examples. 

Some are not covered in full detail, but the aim is to investigate some of the 

pitfalls that are encountered in typical applications rather than to produce large 

collections of equations. 

6.1 Gates 

In this section, a surprisingly simple example will be considered that demon-

strates some of the difficulties one encounters when performance as well as func-

tion is considered. Perhaps the most common operation in designing a digital 

circuit is connecting together logic gates to implement a particular function. The 

functional correctness of this circuit can easily be verified by applying the laws 

of Boolean logic. Verifying performance, or "what happens when," requirements 

is more difficult, as we shall now see. 

In Section 2.8.2, the behavior of a generic n-input, one output functional unit 

with unspecified delay was described in CIRCAL by the equation: 

BoxN..1(in) 4= ANY({inj},. . 

{outcf(1n 1 ,... , inn) } BorN_i (in') 

170 
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Where in = (in 1 ,..., ins). The original definition also had a conditional on the 

output guard that prevented duplicate values from being output. This condi-

tional will be dropped in the following analysis since its presence complicates 

the equations needlessly and the results will be just as valid without it. 

Later on, in Section 4.3.2, we encountered two cascaded two-input generic 

boxes in the guise of adders and saw that when all the inputs changed simul-

taneously, a spurious transient value was output before the correct one. This 

transient value is not just a feature of the addition function, but rather of the 

manner in which the box was defined to communicate with its environment. 

Cascading any generic boxes will produce exactly the same result. In fact, as 

more boxes are cascaded, more spurious outputs can occur before the correct 

one. Because of these transient values, one cannot blindly replace an n-input 

generic box by a cascade of ii - 1 two-input boxes and hope that the circuit will 

function correctly. The ability to do so depends largely on the behavior of the 

components that will be connected to the output. In particular, they must be 

able to absorb the spurious values without ill effect before finally taking action on 

the correct one. Some form of constraint must be placed on the environment to 

enforce this requirement before the cascade implementation may be used safely. 

Will the ability to accept spurious values be the only constraint that must 

be placed on the environment, or will there be others? To investigate this, let us 

contrast the description of a three-input generic box with the partial expansion 

of the behavior of two cascaded two-input boxes: 

.81 4r  Box2..1 [b/out g//f] 

BE = Boxti [b/in1 1n3/in2] 
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in1 

in2 

ins 
out 

Figure 6-1: How Bi and B2 are connected 	 - 

(Bi (in1, in 2 ) • B2(b, in3)) - b = 

{inip} (BI (1) • {outcf(g(in 1 , in2 ), in3)} B2(g(in 1 , in2), ins)) 
 

+ {inar'} (B1 (.fl • {outcf(b,in3)} B2(ü)) 

+ {in,> ifl3>} 

{outcf(b, ins)} 

(Bi(1) • {outcf(g(1n 1 , in2 ), in3)} B2(g(. . .), ins)) 
+ {in2c. 1n3t.} (...) 

+ {inp ins} (...) 

+{injr' ins> insc.}(...) 

Where i = (in 1 , in2) and ü = (b, in3). 

The specification for the three-input box is much simpler: 

Boz3..1(in 1 ,in 2 ,in3 ) = ANY({injp},{in2N}, {in3I.}) 

{outih(in i , in 2 , in3) } 

Boz5d (in 1 , in 2 , m a ) 

The function h(X,y,z) is just f(g(x,y),z). 

The most apparent difference between the specification and the .constructed 

system is the number of state variables. The system has four (one for each of 

the inputs to the constituent boxes), while the specification has only three. The 
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extra variable sets the starting state of the internal channel that connects the two 

boxes (the b line in Figure 6-1). Once either in1 or in2 or both change value, 

this variable will always have the value g (in i , in 2 ). Consequently, if we force 

the variable to start with this value, it becomes redundant and can be ignored. 

Limiting the possible initial conditions can be done by defining the system like 

this: 

SYS(inj, in2, in s) 	fBi (in 1 , in2) • B2(g(in 1 , in2), ins)] - b 

Looking closer at the expansion for SYS, we can see, that the top level consists 

of a choice sum of all possible combinations of the input channels—just as is 

produced by expanding the ANY in the specification. Moving down a level, 

however, reveals a host of discrepancies between the behavior of SYS and that 

of BoxY_i. On line (1), Bi can recurse and input a new value on mi or in2 

before the value associated with the last change of in1 is output. On line (3), the 

previous value of the internal channel b—which has no counterpart in BozS_l - 

is used to calculate the new output value. Finally, notice the transient spike on 

the output line that occurs when in 1  and/or in2  change simultaneously with 

ins  as shown, for example, on line (4). This arises from the fact that inputs 

to BI must pass through two boxes worth of delay before affecting the output, 

while that of ff2 passes through only one. 

The discrepancies fall into two classes. The first involves the inputs changing 

before the results of the previous input changes have percolated through the 

cascade. The second is the transient values that might be output if several 

inputs change simultaneously. The former is easily resolved by requiring that 

the environment never indulge in two sequential input events before an output 

event has occurred. The following constraint sums this up: 

Ci = {incz} {outy} Ci 

This constraint is fine so long as there is a single output event associated 

with each change at the inputs. As we have seen, this is not always true becasue 

of the transients that arise due to the delay added to the signal path by El. 

How then can the constraint be extended to cope with an unknown number of 

out events? Some of the transient values may be the same as the correct one, so 
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in' 

in3 

out 

Sample here 

Figure 6-2: Example of a minimum safe sampling time. 

we cannot just absorb output events until the right one comes along. Applying 

the techniques for creating and unfolding Covering Trees as discussed in Sec-

tion 5.3.4 does not help either. The constraint that results prevents transients 

by not allowing simultaneous changes on the input lines. Intuitively, this seems 

unnecessarily restrictive, since there are many situations in which values chang-

ing simultaneously should have no harmful effects. A more general constraint 

on the environment is need. 

Since the output will stabilize after a certain amount of time (provided that 

the inputs do not change during this interval), it seems reasonable to conclude 

that if we wait long enough, the correct value of the channel will always be 

observed. How long is long enough? For it cascaded boxes, the worst case is 

when a value change has to pass through all it of them, 11 the delay of each box 

is specified by an integral number of t ticks, clearly the output will be stable 

after an interval that is the sum of these delays. This interval is called the 

minimum safe sampling time, in units oft, and is pictured in Figure 6-2. It can 

be determined experimentally for cascaded generic boxes by applying a stimulus 

to each of the input channels in turn and observing which takes the longest to 

produce an output. The resulting time is the minimum safe sampling time. 

By way of example, let us determine the minimum safe sampling time of the 

two cascaded two-input boxes used above. The descriptions for Bi and BE are 
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extended to include explicit delays of ii and m ticks respectively: 

B1(in) 	WAITt(ANY({inir.t},{in2c.t}){t}{bcg(jn i ,in2 ) t}Bi(&)) 

B2(ã) = WAITt(ANY({bD. t}, {in3> t}){t}m{out<f(a,ins) t}B2(a)) 

The two are composed and stimuli applied to in 1 , in2 and ins in turn: 

SYS(X, y, z) 

TICKS of sort STICKS 

S TIM1 

S TIM2 

S TIMS 

STICKS 

.4= (BI (x,y) • B2(g(x,y),z)) —b 

.4= {t} TICKS 

{inicv t} TICKS 

{in2cv t} TICKS 

.4= {in3cv t} TICKS 

{inj, in2, ins, t} 

Expanding each of the stimulus applications produces: 

STIM1.SYS(x,y,z) = {inj iv t} {t}+m+1) {outcf(g(v,y),z) t} (...) 

STIM2sSYS(x,y,.z) = {in2cv t} {t}(n+m+1) {out.cf(g(x,v),z) t} (...) 

STIMS.SYS(x,y,z) = {in3 c1v t}{t} m {out<f(g(z,y),v) t}(...) 

The first two tests show that the maximum time for an output to appear is 

(n + rn + 2) t. Any application that needs a stable output value must wait at 

least that many ticks from the time that the inputs change before taking action 

on the result. This can be expressed as: 

C2 .4= WAITt(ANY({inj<t}, i=1,2,3) 

({outt} +{t})(n+m+ 2)C2) 

The repeated term indicates that the environment must have the potential to 

accept an out event for (ii + in + 2) ticks after the inputs change. The {ouw t} 

guard binds the variable out which will then contain the final output value of 

the channel after the transients have died out. CR supercedes Cl because it 

handles transients properly and because it works for the case when no output is 

generated corresponding to an input event (the value didn't change), which Cl 

does not. The delay between ini events prevents them from interleaving with 

the output events. 

In typical digital applications, registers clocked by a system clock separate 

blocks of combinational elements. These registers sample the outputs of the 
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block once they have stabilized and hold them steady for other components to 

use. The above constraint ensures that the sampling period in such a system 

will be greater than the worst case delay. 

6.1.1 Generalizing the Constraints 

Now that we have seen how constraints can be formulated for three-input generic 
boxes, it is time to generalize them to apply to n-input boxes. A typical box—

with n > 2 inputs—will be taken to have a delay of d ticks and is specified 
by: 

BozN..1(in) 	WAITt(ANY({injt}, i=l...n) 

{ t 
}d 

(6.1) 
{outcf(f_ i ( .. . ),sn,) t} 

BoxN..1(in)) 

It can be implemented by cascading n - 1 two-input boxes with the array oper-

ator: 

IMP(1i) 	H Box2_1j 

BoxE..15 =def  BoxE.1 [ina+j/1n2, a/mi, 

f1(f1_i(. ..),irLy)//in i , my//in2 my//rn] 

Where A = [outy/ay i ]. Each two-input box has a delay of in and is described 

by: 

BoxBJ (in j ,in 2 ) = WAITt( ANY ({ini> t}, f in2 > t}) 

{t}' {outcif (in 1 , in 2 ) t} BozP ..1 (mi, in2 )) 

The delay of the spec is defined to be d = rn1  + + Mn+ (it - 1). 

Theorem 6.1.1 Cascading Generic Boxes 

The implementation and the specification for an n-input generic box as de-

fined above are interchangeable in any context that satisfies: 

CON . WAITt (ANY ({mn$ t}, I = 1... it) ({t} + {outr> t})MCON) 

Where M= in 1  + + Mn + (it - i) The context should not take action on 

any values received until M ticks have elapsed. 
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Proof: By induction on it. 

Base Case The base case of it = 3 was considered briefly above and will now 

be considered in detail. The implementation is defined by: 

B1 (z) 4. WAITt(ANY({inj> t}, {in2r t}) 

{t I',  { a.ifi (in i ,1ri2) t}Bi(&)) 

B2(ã) 	WAITt(ANY({a> t}, {inar. t}) 

{t}12 {outcif2 (a, In3) t} B2(a)) 

IMP (in i ,inz ,Ins ) i= (BI (ini,in2) .B2(fi(ini,in 2 ),Ina)) —a 

A context is now defined that accepts a value on the out channel and re-

outputs it on the b channel M = in1  + in2 + 2 ticks after the input channels had 

changed. It is the simplest context to satisfy both CON and the requirement 

that the environment not make use of any of the transient values. Here is its 

definition: 

efl = (Eel])—out 

E . WAITt(ANY({inj< t}, I = 1,2,3) 

({t} + {outPv t})M_i 

({bcv t} +{out>v b'iv t})E) 

Any occurrence of an out event will bind v, which gets output:on channel b on 

the first tick that it is safe to do so. Now we have to show that: 

eI[IMP]I 	? flRoz&1 

The behavior of the three-input box is described by Equation 6.1, where the 

delay d is m 1  + in2 + 1. 

When BoxS.J is placed in 6, its output event always synchronizes with the 

{ out>v biv t} guard, so: 

6BozS...1()I = [E.BoxS_1(&)J —out 

= WAITt(ANY({in1ct},I=1,2,3) 

{t}ml+m3+ 1  

{bclf2 (fj ( ... ), 1n3) t}&Box8J(&)) 
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But this is identical in structure to Box3_1 with out relabelled to b, which 

shows that the context has no effect on the specification. Placing IMP in e 

should result in an identical expression. Here goes: 

egIMP = (E. IMP) — {out } 

= {t}8IMP] 

+ {in, t} E' 

• {in2< t} E' 

• {in3i t} E' 

• {in1 in2 ca t} E' 

• {ini in3c t} E' 

• {in2 in3c t} E' 

• {inj in2 c1 in3< t} E' 

= WAITt (ANY({inçc t}, I = 1,2,3)E') 

s {t}ml+m2+i {bcif2(fi(ini,irz2),1n3) t} Lft IMP ]J 

All the terms have the same resultant because E not only makes the b event 

happen after a fixed delay, but also prevents input events from interleaving with 

events that occur during this interval. Thus if B2 inputs a value on the ins  
channel, Bi must pass the time in its WAITt loop until the b event happens. 

Substituting the definition of E', an expression is obtained that is identical to 

Equation 6.2. Both the specification and the implementation behave identically 

in 8, as required. We can conclude that the theorem is valid for the base case 

of n = 3. 

Induction Step For the induction step, we assume that the equality is true for 

a box with ii - 1 inputs and show that it then holds for m inputs. Precisely the 

same reasoning is used as in the base case, with BI replaced by the n - 1 input 

box. This box is described by: 

BN-1(in) = WAITt(ANY({injN t}, i = 1... n — i) 

{t}Mn_1 

{acf_ j (f_ 2 ( . .. ), inn-1) t} BN-i(In)) 

M_1 = 
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Bid then becomes the n'th box, so it will have a delay of m and compute the 

function f,. The context £ is changed to have a sampling period of m1 + + 

m + n. By using exactly the same analysis as in the base case, it can be shown 

that the modified BE composed with BN-1 behaves identically to BoxNJ when 

placed in6. 0 

FAND2 

AND 3 I 
J 

Figure 6-3: The wave forms input to the two circuits produce corresponding 

output waveforms that are in turn fed to the environment process E. This 

process absorbs transients to produce a stable waveform. 

Figure 6-3 summarizes pictorially the results of using this theorem to construct 

a three input AND gate. 

As we saw earlier, the length M of the danger period can be determined 

empirically from the implementation by applying stimuli to each of the inputs 

in turn. The passage of time is marked until an output event occurs for each 

stimulus; the largest of these timings is the length of the danger period, if this 

method is used, the individual gate delays of a particular implementation need 

not be known and the constraint on its use can be written directly in terms of 

the measured value. Unfortunately, the method works only for cascaded boxes 

and not for general networks of boxes, because it relies on the fact that only 
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one output event will happen for a given input event.t In a general network a 

particular input may effect several gates in parallel, leading to transient outputs. 

These invalidate the condition for stopping the marking of time, making the 

empirical approach unusable. The only solution is to trace all possible paths 

through the block5 adding up the delays of the boxes pas through. Using 

the largest such value, one can still formulate a constraint similar to CON that 

makes the block appear to be an it input, in output generic box. 

6.1.2 Summary 

This section has shown that simple circuits often develop unexpected complex-

ities when performance as well as functional criteria are considered. Although 

only generic boxes were considered, similar techniques can be applied to any 

transient producing circuit. If a safe sampling time can be determined for the 

circuit's outputs, a constraint can be setup that requires that the environment 

be able to handle their transients. Transient values in the form of spikes and 

glitches are the bane of digital designers, particularly in high performance ap-

plications. Being able to verify their harmlessness may well reduce the problems 

that they cause considerably. The extremely precise nature of the calculus makes 

the analysis more laborious than might be expected for such a simple problem, 

but having been done once, the results can be applied to any similar situation. 

6.2 A Hardware Card Deck 

Although difficult to deal with, nondeterminism can be integral to a particular 

application and therefore unavoidable. In this section we shall examine such an 

application in the form of a hardware implementation of a deck of playing cards. 

The example has the following objectives: 

tAlthough this might not be true if the boxes do not generate an event if the value 
to be output is the same as was last output. 
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• To demonstrate how a truely nondeterministic specification (as opposed to 

one containing ambiguity) can be implemented. 

. To show some of the problems encountered when processes are connected 

in a loop. 

. To show how such a loop may be dynamically shrunk. 

The card deck is represented by a sequence of "card events" that correspond 

to the drawing of a random card. The events are communications on the card 

channel of values drawn from the set: 

cv ={A,2,s,4,5,e,7,s,9,J,Q,Ic} x  

Any sequence is possible, so we use the dinct nondeterministic temporal per-

mutation operator to represent this: 

SHUFFLED-DECK 4 ®({cardcx}, x € CV) SHUFFLED..DECK 

The distinct version must be used since we don't want events of the form 

{ cardcA4 cardcJCJ to occur. 

In essence, this specification says that a shuffled deck is the nondeterministic 

sum of all possible sequences of card events. The unpredictable nature of the 

nondeterministic choice operator is used to represent random chance. So how 

can randomness be implemented in terms of hardware devices? Is the calculus 

expressive enough to deal with it? To answer these questions, consideration of 

the card deck will temporarily be put off until the problem of generating random 

values has been solved. This is done in the next section. 

6.2.1 Generating Random Numbers 

Many schemes exist for producing random numbers in hardware. Most rely on a 

random and non-uniform clock to continuously increment some form of counter. 

Sampling the output of the counter yields the required number. Two forces work 

together to produce the randomness of the result. One is the unpredictable na-

ture of the clock that drives the counter—its period constantly changes. The 
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other is the unknown point at which the output of the counter is sampled with 

respect to the time it takes to cycle through all its values. Hardware circuits 

that are concerned with generating truly random numbers use some physically 

random source such as thermal noise across the junction of a diode as the clock. 

Further randomness can be introduced by having the user press a button that 

samples the output of the counter to produce a random number. The first form 

will not be considered here, because it is a physical embodiment of the nonde-

terministic choice operator. The second is more interesting, since it illustrates 

some uses of the abstraction operator. 

Implementing the button sampling scheme is easy. A normal, uniform, clock 

is controlled by a pushbutton switch in such a way that the clock cycles only 

while the button is held down. The clock drives a counter that is incremented 

modulo the maximum number to be generated with each cycle. Provided that 

the clock rate divided by the period of the counter is much higher than the rate 

at which the button can be pushed, a large number of cycles will be run through 

even for a "quick" push. When the button is released, the counter halts with 

a random number on its outputs. The randomness derives from such things as 

switch bounce and inability of the person controlling the button to hold it down 

for anywhere near identical periods relative to the cycle time of the counter. 

Here is the description of such a part in CIRCAL. It inputs a range on channel 

range, waits for the button to be pressed and released, and returns the result 

via the channel number. 

part RAND_GEN {range. number: mt } ( 

Get-Val 	{rangerni} Wait-for-But 

Wait-for-But 	{ButDwn.} Count (0) 
Count(x) 4= {clk}Count(x+l mod n) 

+ {ButUp numbercx} Get-Val 

The net effect should be equivalent to something of the form: 

RAND 	{rangeNn.} 	{ number.ci }  RAND 

How can we prove this equivalence? 



Chapter 6. Some Examples 	 183 

The first thing to notice is that RAND _GEN has a declared sort of 

{ range, number), whereas the equations inside the part's body refer to other 

channels, namely {c].k, ButUp, ButDwn}. In Section 2.7, we adopted the con-

vention that channels referenced in the body of the part but not in the sort decla-

ration are implicitly abstracted away. Thus RAND _GEN should more properly 

be written: 

part RAND_GEN { range.  number mt } ( 

(Get-Val 	...)—{clk, ButUp. Butown} 

(Wait-for-But 4= ...)—{clk. Butup. ButDwn} 

(Count = ... )—{clk. ButUp. ButDwn} 

Applying Law [- +] to each of the equations produces: 

Get - Val' 	{ rangen } Wait-for-But' 

Wait-for-But' = Count' (0) 

Count'(x) <= Count(x + 1 mod it) ® { number4x} Get-Val' 

The state Wait-for-But' can be eliminated entirely since it silently becomes 

Count'(0). Get-Val' then matches the first portion of RAND up to the nonde-

terministic sum. All we have to do now is show that the recursive equation for 

Count' produces this sum. 

Substituting for x all the possible values that it can have (in this case 0. . . it - 

1), we obtain it interdependent equations: 

Courtt'(0) .= Count'(1) $ {number-41 Get-Val' 

Count'(1) = Count'(2) e {numbercl} Get-Val' 

Count' (a - 1) 	Count'(0) e {numbercn - i} Get- Val' 

The states can be combined and the guards collected into a summation to pro-

duce: 

' Count'(0) .'= Count'(0) s 	{numberci} Get-Val' 
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The unguarded recursion comes about because the cik channel was hidden, so 

we can use law [rec4] (derived in Section 3.1) to simplify it: 

Count' (0) = 
	

{numberci} Get-Val' 

Inserting this back into the equation for Get-Val' results in: 

Get-Val' 	{ ranger>n } 
 :{number<i} 

Get-Val' 

The result is identical in structure to the behavior of RAND. We can therefore 

conclude that the button scheme does implement randomness properly and that: 

RAND G EN = RAND 

6.2.2 Picking a Card 

Selecting a random card from the card deck is not quite as simple as generating 

a random number. Each card must be removed from the deck as it is picked 

so that it cannot be picked again. One way to look at it is that as long as the 

button is held down, the cards are "riffled" through very quickly. When the 

button is released, the card that is being touched is displayed and removed from 

the deck. This continues until only one card remains. 

The easiest way to implement the riffling action is to use something like a 

shift register. Instead of flip-flops, the shifter will be made up of "card slices." 

Each slice inputs the value of its neighbor to the left and passes it to the right 

with every clock tick. The output of the last slice is fed back around to the 

first, producing a loop. If one of the slices is initially marked as containing a 

"token" and the rest are cleared, the token will cycle around the loop as the 

clock ticks away time. When the button is released, the shifting stops and the 

slice containing the token is considered to be picked. When the button is next 

pushed, this element removes itself from the loop after first passing the token 

on to its neighbor on the right. Eventually, as the button is pushed multiple 

times, the loop shrinks until only one element remains. A clear signal can then 

be generated which re-initializes the slices, effectively reshuffling the deck. 
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Each card slice is conceptually quite simple. It can be in one of two states: 

(1) either shifting a value from left to right (unpicked), or (2) passing the value 

through transparently (picked). The first state is described by: 

AVAIL 	{in>v}{clk}{outcv}AVAIL 

The second by: 

PICKED 	{ inv} {out<v} PICKED 

Both the in and out channels have type bit. 

AVAIL acts just like a D-type flipflop. It samples the input line and repro-

duces the value on the output line after the next clock edge. As with D flip-flops, 

multiple copies of AVAIL can be cascaded to achieve a shifting effect; values in-

put by the left-most stage are passed right one stage with each tick. The way 

AVAIL is defined, each stage must wait for the previous one to output a value 

before it can accept the clock event and output in turn to the next stage. So 

what happens when the output of the last slice is connected to the input of the 

first? Each will be waiting on the output of its neighbor on the left, resulting 

in the classic "snake eating its tail" form of deadlock. Indeed, S would result if 

several instances of AVAIL are formed into a loop using the Dot and relabelling 

operators and the expression expanded using law [• +1. 

To avoid this nasty state of affairs, each slice is "decoupled" from its prede-

cessor to the left. The decoupling agent corresponds to a time delay between 

a value being output and its reception by the next stage. In an actual circuit, 

there will probably be combinational elements between the stages which would 

provide this delay. Here is the description of the 'decoupling agent: 

DECOUPLE(v) = {outciv} {in>x} DECOUPLE(z) 

Notice that the state value is output before a new one is read. This is necessary to 

"prime" the loop. After the first event, the agent acts exactly like an unspecified 

delay. 

To get a feel for how the complete system will work, let us connect two card 

slices and their decoupling agents in a loop and expand the expression's behavior. 
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Figure 6-4: Cascaded card slices and their joins. 

The system is pictured in Figure 6-4 and is described by: 

	

CA 	AVAIL[a/in. b/out] 

	

GB 	AVAIL [c/in. d/out] 

	

JA 	DECOUPLE [d/in, a/out] 

	

JB 	DECOUPLE [b/in, c/out] 

	

SYS 	CA.JA(1).CB.JB(0) 

Since expanding SI'S produces a bit of a mess, we expand half of it at a time: 

GA • JA(v) = {acv} ({dz} (JA(x) • {clk} {bcv} CA) 

+ {c1-kJ ({bcv} CA • {dr.x} JA(x)) 

+ {clk dr'z} ({b4v} CA. JA(x))) 

CB will always produce a d event after a c].k event, so the first and third 

branches of the choice sum will never be taken when the two halves are composed. 

Expanding the second branch further produces: 

{bcv} CA • {dr'x} JA(x) = {bclv} {dNx} (JA(x) • CA) 

+ {dNx} {bcv} (JA(x) • CA) 

+{dx bcv}(JA(x).CA) 

= ir({bcv}, {d>x}) (JA(x) • CA) 

The second half can be analyzed in precisely the same manner. Combining the 
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two at the top level results in: 

(JA(v) • CA) • (.12(w) • CE) = {acv} {ccw} (Ri • RB) 

+ {c.caw} {acv} (Ri • RB) 

+{ccaw aclv} (Ri • RB) 

= lr({acv}, {cr'w}) (Ri • RB) 

Ri (v) = {clk} ir({bcv}, {4>x}) (JA(x) .. CA) 

R2(w) . {clk} ir({dcw}, {bc'y}) (JB(y) • CE) 

To produce the expansion for SYS, the above equations are collected, v is set to 

1 and w to 0. Two auxiliary states, Si and SB, are defined implicitly to simplify 

the notation: 

SI'S = S1(1).S2(0) 

= (JA (1) • CA) • (JB(0) • CE) 

= ir({acl}, {ccO}) {c].k} 

(ir({bcll}, {dNz}) S1 (x) • r({dc0}, {b>y}) 52(y)) 

= ir({a<1}, {ccO}) {clk} ir({bcl}, {d<01) (51 (0) • 52(1)) 

Applying the temporal permutation operator as early: as possible has reduced 

the composition to a manageable form. The result shows that the outputs of 

the join elements and those of the card elements are allowed to happen in any 

order (concurrently). Notice how the state variables have swapped values in the 

resultant. This demonstrates the shifting effect of the slices and also that the 

value of the last slice will circle back to the first. 

Fifty-two slices are needed to model a complete card deck, so it is worth 

generalizing the above result. 

Proposition 6.2.1 A stage is defined to be a decoupling agent connected to a 

card slice. Cascading it stages that are in the shift state so that the rightmost 

stage is connected to the leftmost produces a system with it state variables that 

is described by: 

SYS(v i ,... ,v) . 	ir({in<v}){c1lc}7r({out<v1})sYS(v,v j , .. . ) v,. j ) 

For i=i;... ,n. 
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Proof: By induction on n. The base case is the expansion of: 

SYS(v) 	AVAIL. (DECOUPLE(v) [out/in in/out]) 

Which is just: 

SYS(v) = {in.cv}{clk}{outcv}SYS(v) 

= {in.cv} {clk} {outiv} {in.iv} {clk} {in<v} 

as required. No shifting takes place because there is only one element. 

Induction Step The ii = 2 case was considered in detail above, so we must 

now use a similar analysis to show that given a loop of a - 1 stages, 

S(vi,.. . ,v,_i) .4-- ir({incv}) {clk} r({out 1 .civ}) 

S(v.... i ,v i ,... , vfl_2) 

I = 

the loop can be broken, another stage added, and the loop closed again to pro-

duce an identical equation with the i = 1,. .. , a - 1 qualification replaced by 

n. 

The loop is broken by renaming the input channel of the leftmost decoupling 

agent to some independent label, say b. Channel b is completely independent of 

{ cik, in, out }, so it can interleave not only with the out events, but also with 

c].k. This makes the expansion of the broken loop rather messy. However, we 

know that when the loop is reconnected, b will be attached to out- 1 , which 

always occurs after cik, so a constraint C can be defined that exploits this 

knowledge to prevent b from happening simultaneously with the clock event. It 

will then interleave only with the output events. Here is the constraint and the 
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broken loop: 

	

C 	{clk}{bc}C 

	

STAGE 1 (v j ) 	AVAI[L[in 1 /in, outj/out] 

•(DECOUFLE(vi) ( b/in, mi/out)) 

	

STAGE1(v1) 	AVAIL [in1/mn, out/out] 

•(DECOUPLE(V1) [ out_ i/in, in1/out]) 

C • 5' = ir({in1civ}) {clk} ir({bcx}, {outcv}) 

C • S'(x,,... )Vn2) 

5' is just S with the loop broken. 

To perform the induction step, STAGE S  must be composed with 5'. The 

stage's behavior is described by: 

STAGEn(v n ) 	AVAIL [inn/in, out,/Out] 

• (DECOUPLE(v n ) [out n_j/mn, inn/out]) 

= {mnn c'x} {clk} {out<x} (...) 

•{inncvn}{out n ...icvn }( ... ) 

= {inn cvn }{clk} ir({out n ivn }, {outn_i>z})STACE n (x) 

Composing this with 5' and the constraint produces: 

C • 5' • STAGE R  = 7r({in 1iv 1 }) {clk} lr({bDx}, {outcv1}) 

C • 5(,v1, . ,v n_) • STACE n (v n_i) 

I = 1,...,n 

The loop is closed again by relabelling b to out,. The value stored by Vn no 
longer drops off the end, but instead is bound to x. STAGE n  clearly satisfies C 
(that b and hence out s  occur after cik), so the constraint can be removed: 

SYS(vj,...,vn) = S'(vi,...,vn_i)sSTAGE n (v n ) 

= 7r({inciv1}) {c].k} lr({outjtivj})SYS(v n ,v j ,... ,vn_i) 
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This completes the inductive step and concludes the proofit 	 o 

To pick a random card in the range 1 to ii, we use the same trick as was 

discussed earlier of clocking the shifter for as long as a button is held down. 

When the button is raised—signalled by the ButIJp event—the clock is stopped 

and the outputs are allowed to settle. Provided that only one of the decoupling 

agents starts out with a state value of one (the rest being zero), only one of the 

n output lines will be high. The button's actions are specified by: 

part BUTTON {ButUp. ButDwn, clk} ( 

WAIT 	{ButDwn} {clk} CEK 

CLK = { clk} CLK + { Butup} WAIT 

At least one clock edge always separates button events. 

The card deck as we have implemented it so far sets one of the fifty-two output 

lines high if that card is being "touched." The card being touched changes with 

each clock event for as long as the clock is running. Only when the clock stops can 

the outside world consider this card picked. Our specification for the complete 

deck as given at the beginning of the section (page 181) represents a card being 

picked as a communication on the card channel of a value draw from the set CV. 

A transformer must therefore be defined so that the two differing approaches can 

be compared. The transformer remembers which slice last indicated that it was 

being touched and uses this value to generate the proper card event when the 

clock stops. This is signalled by ButUp which can be used to do the sampling 

provided that it occurs after all the output lines have settled: 

ST_TO_CRD(15) 4= [ANY({out>v})+{Butup cardcic(ti)}] ST_TO..CRD(€) 

The function c maps unary information onto card values. For example, if v25 is 
one and the rest are zero, c(s) would select the twenty-fifth value from the set of 

tfr gpjratjon  for the trick of breaking the cyclic dependency with a constraint so that 

induction can be used came from a conversation with Kim Larsen. 
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card values e.g., the result might be Q4. If this system were implemented as an 

integrated circuit, a grid decoding scheme could be used to generate signals on 

two sets of pins: thirteen value pins and four suit pins. Figure 6-5 shows how• 

the card slices might be arranged to do this in CMOS logic. Any active slice 

pulls its row and column lines low, generating a negative-true logic signal on the 

corresponding pins. 

1 ----------- 

a 

V 

4 

Figure 8-5: Possible grid decoding floorplan for a card deck chip 

The composition of 52 slices, the BUTTON part, and the state-to-card-

event transformer can be analyzed in precisely the same fashion as the random 

number generator discussed earlier. Abstracting away the button and clock 

events results in a system that produces a sequence of random {cardcx} events 

without removing the chosen card from the deck. To make it a true card deck, 

each slice must pass into the PICKED state if the clock stops while it is active 

(has a high value on its output channel). Since this happens when the button is 

released, the ButUp event can be used to make the state transition. Here is the 

description of a card slice updated to reflect these requirements and also changed 

to combine the function of the decoupling agent with that of the shifter: 
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part SLICE(v) {Butup. in, out. clk} ( 

	

AVAIL(v) 	{clk} ir({in>x}, {outcv}) AVAIL(x) 

+ {ButUp} (if v = 1 then PICKED else AVAIL(v)) 

	

PICKED 	({clk} +{Butup}) PICKED 

+ {inr'x} {outcz} PICKED 
) 

The card deck itself is defined to be: 

	

DECK(1) 	(BUTTON. SLICES (I) 

•ST_TO_CRD(i)))—{in. out. cik. ButUp. ButDwn} 
52 

	

SLICES(u) 	IISLICE1(vi) 

SLICE(v1) = SLICE [out 9 (j)/in, outi/out] 

g(i) = if 1=1 then 52 else 1-1 

The next section shows in detail what must be done to remove a card slice from 

the loop. 

6.2.3 Removing a Card from the Deck 

To illustrate what happens when a card is removed from the deck, we now 

compose a slice in the AVAIL state (Si) with another in the PICKED state 

(SE). The composition should function identically to a single available slice 

(with 52 acting like an unspecified delay); 

	

51(v) 	SLICE [b/out] 

	

SE 	SLICE.PICKED [b/in] 

SA (v) = (S1(v)0 S2)—b 

= {clk} lr({inNx}, {outcv}) SA(x) 

+ {ButUp} (if v = 1 then SP else SA(v)) 

SF = SE • (S1 -PICKED [b/out]) 

= ({clk} +{ButUp})SP 

+ {in>x} ((Si .PICKED [b/out] • {out-1x} SE) - b) 

By multiple applications of laws [! +], [- +1 and [®J. Notice that until a 
ButUp event occurs, SA behaves exactly like AVAIL. This means that as long as 
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values are being shifted around the loop, already picked slices will be completely 

transparent. The problem comes when a slice that is connected to a picked 

slice is itself picked. As shown in the SP state above, the out-ax event will 

interleave with the next inDy event from Si 's PICKED state. Two picked slices 

in sequence should appear as an unspecified delay (i.e., as something that does 

an inr'x followed by an out<x), which these do not because of the interleaving. 

The extraneous possibilities introduced by the interleaving can be eliminated by 

specifying that the input event occur only after a clock event. This forces the 

out-ax event to happen before any of the events in Si .PICKED (b/out]: 

Cl . {clk}.{inclx} Cl 

Ci.SP = ({clk} +{Butup})(CRsSP) 

+ {inr'x} {out.cx} (Cl • SP) 

We can conclude that a picked slice in series with an available one acts com-

pletely transparently provided that the input events to the pair are separated 

by clock ticks. As long as there is at least one unpicked slice, this constraint 

will be satisfied. The output channel of the unpicked slice is connected to the 

first input in the chain of picked slices and events happening on that channel 

always do so after a clock event. Care must be taken not to let the last available 

slice enter the picked state itself as deadlock would ensue. The slice would be 

waiting for input from the previous slice before outputting a value of Its own. 

But the previous slice is the end of a chain of picked slices which inputs this 

output value before generating any output of its own. Both portions are waiting 

for each other's output, hence the deadlock. 

In addition to preventing the last picked slice from entering the PICKED 

state, a mechanism is need for resetting the entire deck so that the slices are 

made available again. Moreover, one and only one of the slicesmust have have 

its state variable initialized to one. Both these requirements are easily met having 

each slice generate a picked signal as it is chosen. The deck is considered empty 

when all the slices have generated such a signal. Each slice is then reset to the 

AVAIL(0) state, except for the last one picked, which will already be in the 

AVAIL(1) state. Here is the final description for a card slice, incorporating all 

of these additions: 
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part SLICE(v) {in, out, next, picked: bit, dr. cik. ButUp, ButDwn} ( 

AVAIL(v) = { clk} 1r({inx}, {out.clv}, {nextcv}) AVAIL(x) 

+ {Butown} AVAIL(v) 

+ {Butup} (if v = 1 then {picked-ill BP 

else AVAIL(v)) 

.BP .-- {clr} {ButDwn} {pickedcO} AVAIL(1) 

+ {ButDwn} PICKED 

PICKED 	({clk} +{ButDwn} +{ButUp})PICKED 

+ {clr} {pickedcO} AVAIL(0) 

+ ir({outcO}, ({in>x} {nextc1x})) PICKED 
) 

While the structure similar to that of the previous definition, several impor-

tant changes have been made. The output channel of the slice has been split 

in two: out and next. The next channel passes values to the neighboring slice, 

while the out channel signals the value of the slice itself. This prevents transient 

values from being signalled to the outside world when the slice is in the PICKED 

state and values are being passed through transparently. To reach this state, the 

out line must have been high when the button was released, so it must go low 

when the button is next pressed, hence the interleaving of the {out<O} event 

with the {in>x} {next4x} sequence. The Butup event still indicates that the 

card is picked if it is in the AVAIL(i) state at the time, but instead of going di-

rectly to the PICKED state, an intermediate state is passed through first. This 

state checks if a clear signal is generated before the next ButDwn event, as would 

happen when the slice is the last card in the deck. If so, the slice resets itself to 

the AVAIL(1) immediately without ever entering the picked state. All the other 

slices will have been picked and will therefore be reset to A VAIL(0). 

Generating the clear signal is easy since all the slices indicate when they have 

been chosen on their picked channel. The signal is just the logical AND of these 

channels: 

CLEAR(fl 	ANY(pickedpv, I = 1,. ,52) 

(if At3 then {c1r})CIEAR() 

The complete deck in its final form (i.e., outputting only card events) is imple- 
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mented by 

DECK(t5) . [cLEAR() . BUTTON • ST..TO...CRD(€) 
52 

SLICE1(v1)] 

—{inj. outj, dr. nextj, ButUp. ButDwn, pickedj, clk} 

SLICE(v) = SLICE [p] 

p = (next 9 (j)/in, outi/out, nextj/next, pickedi/piciced) 

g(i) = if i=1 then 52 else i — i 

In the last section, we discussed how the loop of card slices will "sponta-

neously" produce a random card value when all the channels except the output 

channel are abstracted away. In this section, we took the analysis a step further 

by considering the removal of chosen cards from the deck. It was demonstrated 

that the loop does indeed shrink to produce a smaller card deck which is in turn 

amenable to the same analysis as the larger case. The structure of the resulting 

behavior mimics the tree-like form generated by the nondeterministic temporal 

permutation operator as used in the top level specification: 

SHUFFLED ..DECK = ®D({cardcz}, x € CV) SHUFFLE&DECK 

Finally, a clear signal resets the slices when they have all been picked, paralleling 

the recursion in SHUFFLED-DECK. 

An implementation of the card slice in terms of gate level components is 

described in Appendix A. The analysis is made possible only by extensive use 

of constraints to partition the problem into manageable pieces. The final, un-

resolved constraints provide operating requirements (e.g., maximum clock rate) 

for that particular implementation. 

6.2.4 Summary 

This example was interesting because nondeterminism due to abstraction (as 

discussed in Section 5.5) played a key role. It was demonstrated that random 
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values can be produced by cycling through a number of possibilities and ab-

stracting away from the action that stops the cycling. To the environment, it 

appears as though the part spontaneously produces a sequence of values. 

Constructing the card deck involved connecting a series of card slices in a 

loop so that the shifting action would cycle through each in turn. The slices 

were initially defined to input a value, wait for the clock event and then output 

it. This proved inadequate because when connected in a loop, each slice would be 

waiting on its neighbor to produce output, thus leading to deadlock. To break the 

deadlock, decoupling agents were introduced that acted like unspecified delays 

between the slices. These allowed the slices time enough to output their value 

before inputting new ones from their neighbors. 

Finally the problem of removing picked card slices from the deck was con-

sidered. As each card was picked, it transformed itself into a state that trans-

parently passed values through, effectively shrinking the loop. Care had to be 

taken that the last available slice did not enter the picked state since that would 

introduce the same type of deadlock as discussed above. This was done by 

re-initializing the deck before the slice could be removed. 

The example has achieved its goals of demonstrating abstraction nondeter-

mism, problems with cyclically connected process and how such cycles can be 

dynamically reduced. Some use of constraints was also made in order to simplify 

a few of the derivations. 

6.3 A CRT Controller 

Most computer terminals contain a microchip that generates the signals required 

for displaying character data on a video monitor. The chip fetches character 

codes from a bank of RAM that stores a representation of the 1Y screen (the 

screen memory), converts them to serial bit data, and uses this data to modulate 

the intensity of the electron beam in the monitor. In addition to painting the 

picture, signals must be generated for blanking the beam when it retraces to 

the beginning of a new scan line and when it returns to the top of the screen. 
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These signals must happen at precisely the right time for a meaningful picture 

to result. 

In this section, we will examine a highly idealized CRT controller (loosely 

based on the National Semiconductor DP8350) together with some of the asso-

ciated parts that go into making a display controller. The purpose is twofold. 

First of all, the plethora of timing related signals make this an excellent show-

case for demonstrating the techniques for representing time that were discussed 

in Chapter 3. Multiple clocking levels should challenge our ability to decompose 

the design into temporally as well as spatially self-contained blocks. 

Secondly, the basic simulation method presented in Chapter 4 will be illus-

trated by using it to explore the behavior of the system. The idea is not to 

produce a fully verified implementation, but rather examine some design deci-

sions and see what effect they have on performance. 

The section begins by describing the requirements imposed by the video 

monitor and goes on to show how they determine the timing discipline. Video 

monitor fundamentals are covered only cursorily as are the numerous functions 

provided by most CRT controller chips. The interested reader is referred to 

[Kane 80] for a far more complete introduction. 

6.3.1 The Video Monitor 

A typical video monitor consists of a Cathode Ray Tube (CRT) and circuitry 

for decoding the control signals that drive it. A CRT is an evacuated glass tube 

with a phosphor coated screen at one end and an electron gun at the other. The 

gun emits a beam of electrons that, if the intensity is high enough, will cause the 

phosphor to glow and so display a picture. The beam is swept across the screen 

from left to right with its intensity modulated by the picture information in what 

are called scan lines. At the end of each line, the beam's intensity is reduced 

and it is quickly brought back to the left and down one line (the horizontal 

retrace operation). The time at which this occurs is controlled by the HSYNC 

control pulse. Similarly, when the beam reaches the bottom of  the screen, 

the VSYNC pulse is used to initiate the vertical retrace to the top left corner. In 

most European monitors, the VSYNc pulse is generated at the rate of 50 Hertz. 
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This can be expressed as a clock relationship (see page 65): 

REFRESH = Clk(ts ec,50,vsync) 

= rec X.({t3 vsync} {vsync} 49 X) 

For computer applications, the screen is usually divided up into a grid of 

virtual dots called pixels. These dots are produced by turning the electron beam 

fully at precisely the right points in its path across the screen. The beam is 

controlled by a binary VIDEO signal, so a particular pixel on a scan line can be 

turned on by bringing this signal high at the correct time after an HSYNC. For 

this example, we will consider a very small grid of four scan lines per screen with 

four pixels per scan line. Furthermore, it is assumed that the vertical refresh 

takes the same amount of time as it does to display a scan line. This means that 

there are five HSYNC's per VSYNC (one per line plus one for the refresh time): 

VSYNC = Clk(vsync,5,hsync) 

= rec X.({vsync hsync} {hsync} 4 X) 

If VSYNC is composed with REFRESH, we can see that the horizontal syn-

chronization pulse will happen with a frequency of 50 x 5 = 250 Hertz. 

Characters are displayed as blocks of pixels, some dark and some light, so 

that when viewed at a distance the correct shape is seen. Our toy monitor will 

display two characters per line and two lines per screen. Each character is two 

pixels wide and two scan lines high. Figure 6-6 shows the resulting grid with 

four different characters being displayed to form the shape of a cross. 
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Figure 6-6: Screen representation 

The fastest clock in the system is the one that modulates the video signal 

to the monitor. In the worst case, it must make a transition for every pixel on 
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the screen (if they are all on). Since there are two characters per line and two 

pixels per character, there must be at least four dot-clock transitions before an 

HSYNC. The horizontal retrace time is arbitrarily chosen to be the same as the 

time it takes to display one character (two dot clocks), so there will actually be 

six transitions: 

HSYNC = Clk(hsync,6,dotclk) 

= rec X.({hsync dotclk}{dotclk} 5 X) 

Composing this relation with VSYNC and REFRESH shows that the maximum 

clock rate in the system will be 50 x 5 x 6 = 1.5 kiloHertz. 

Two other clock rates are also defined that, although not need by the monitor, 

are needed by the control circuitry. These are the line clock and the character 

clock. Each character is two scan lines high, so the rate at which a line of text is 

displayed is half the USYNC rate. A new line is only started during the display 

portion and not during the vertical retrace, so the definition of the line rate is 

not a simple clock relationship: 

LINE-RATE '= {vsync hsync} {hsync lineIf hsync) 

{hsync line} {hsync} LINE SATE 

Note that this parallels the VSYNC definition in that there are five haync's 

per vsync. The line signal is asserted at the same time as hsync, so whatever 

circuitry that uses it to access data has the horizontal retrace time to do so (two 

cycles of dotcik). 

Since there are two pixels per character in the horizontal direction, the char-

acter clock goes at half the rate of the dot clock: 

CHAR-RATE = CIk(char,2,dotclk) 

6.3.2 Generating Characters 

Text is stored in a screen memory as a sequence of character codes. These codes 

must be converted into pixel information and sent to the monitor at the correct 

time to produce a meaningful image. The decoding process is accomplished by 

a character generator that takes as inputs the character code, the number of 
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the current scan line and the dot clock. High and low bit values are shifted 

out on the video channel synchronized to the dot clock. The bit patterns for 

the characters are usually stored in ,a Read-Only-Memory inside the character 

generator. For the purposes of this simulation, the ROM will be represented by 

a function that takes a scan line and a character number and returns a two bit 

quantity that is the bit pattern of that scan line of the character. Furthermore, 

the beam must be blanked during the horizontal and vertical retraces, so a bit 

pattern of zeros is loaded when these are initiated. Here is the description of the 

complete part, based on these requirements: 

part GHAR..GEN(ü) { data:0 ... 3. video: bit. char, haync, dotclk} ( 

CG(data,1,v) 4= {datar} CG(ü) 

+{dotcllc}{video.c(vA 1)} CG(data,l,(v >> 1)) 

+ {char dotclk} {video.c(rom(data,1) A 1)} 

CG (data, 1, rom(data, 1) >> 1) 

+{hsync char dotclk}{videocio} 

CG (data, (1 + 1 mod 2),0) 

+{vsync hsync char dotc1k}{video<0} 

BLANK(data,0,0) 

BLANK(data,1,v) 	{ hsync char dotèllc} CG(data,1,v) 

± {char dotclk} BLANK(data,1,v) 

• {dotclk} BLANK(data,1,v) 

• {datac.} BLANK (data, 1, v) 
) 

The definition is separated into two major states, each performing a different 

function. The first (CG) describes what happens during the visible portion 

of the display cycle, while the second (BLANK) is responsible for the interval 

during vertical retrace. Both have the same state variables, although only data 

is modified during BLANK. The state variable v stores the bit string currently 

being shifted out. The expression (v A 1) selects the low order bit, which controls 

the electron beam's intensity, and (v >> 1) shifts the string one bit position right 

and places a zero on the left e.g., 112 >> 1 = 012. The variable 1 is incremented 

modulo 2 with each hsync, so it alternates between 0 and 1 and indexes the scan 
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lines that make up a text line. It is initialized to 0 at the beginning of the vertical 

retrace in preparation for the first scan line of the first character. Finally, the 

variable data always contains a number in the range 0 to 3 which is the code of the 

character that is to be displayed. Using this and 1, the function rom calculates 

a two-bit quantity according to Table 6-1 which is the bit representation of that 

character at that scan line. 

Uflfln  non 
U non 
U non 
Unon 

non 
Table 6-1: Table of data returned by the rom function. 

6.3.3 The Screen Memory 

A character code to be displayed must be made available before the char event 

that causes it to be decoded happens. Since the screen memory that stores the 

code will have an access delay, steps must be taken to fetch the code before its 

needed. This is done while the previous character is being displayed: 

FETCH 	{vsync hsync char} {char} {char} FETCH 

+ {hsync char} {get} {char} {get} {char} FETCH 

No characters are fetched during the vertical retrace time as shown by the first 

line. The second line shows that the first character is fetched during the hori-

zontal retrace time and the next one character time later. 

The screen memory returns a character code for the current screen location 

on the data channel (which will usually be the system bus) when requested to 



Chapter 6. Some Examples 	 202 

do so by a get signal. In practice, address generation circuitry is needed to 

access the memory, but for this example it will be considered as part of the 

memory module. Thus to the rest of the system, the memory will look like a 

sequence of data values corresponding to the code of the first character on the 

screen, followed by that of the second, followed by the first code again (used to 

generate the second scan line), and so forth. For the screen representation given 

in Figure 6-6, the first character will have a code of 0 (referring to Table 6-1), 

the second a code of 1, the third 2, and the fourth 3: 

MEM 	({get} {data<0} {get} {datacl} )2 

({get} {dataci2} {get} {data-a3} )2  MEM 

The description could be further refined to input line and vsync events and in 

that way generate the addresses, but this expression is clearer and has the same 

effect. 

6.3.4 Simulating the Controller 

The controller itself just generates all the timing signals that were defined above. 

It can therefore be specified by the composition of these definitions: 

CONTROLLER 	VSYNC 

• HSYNC 

• CHAR ..RATE 

• LINE-RATE 

• FETCH 

The REFRESH definition was not included because a real controller will input 

the fastest clock (dotclk) and divide it to produce the others. REFRESH simply 

allows us to derive the correct clock rate from the refresh requirements of the 

video monitor. 

A complete display can be produced by connecting the controller to the screen 

memory and the character generator: 

DISPLAY 	CONTROLLER • CHAR..GEN • MEM 
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Since the screen memory is not being changed by any outside source, DIS-

PLAY forms a self-contained system and can be simulated without the need to 

supply input stimuli. Expanding DISPLAY using law [. +] produces a sequence 

that looks like this: 

{vsync haync char dotclk} {video<O} {dotclk} {videociO} 

{char dotclk} {video.cO} {dotclk} {videoc0} 

Only the behavior of the video channel is suitable for display as a waveform 

since it outputs bit data. The others are either pure events (haync, dotcik, and 

so forth) or output non-bit values (data). An alternative representation called 

a sequence diagram is used to display the simulation results so that they can 

be easily understood. Time runs from the top of the page downward with each 

channel having its own time line. Instead of transitions of waveforms, events on 

the channel (including the passing of data values) are indicated by solid circles 

(.). Events that may occur at any time during a particular interval (as, for 

example, might happen if the ir operator is used) are represented by an oval 

(C) that covers the interval. Note that the oval implies that one event happens 

during that interval, and not many as it may appear. Using these conventions, 

the results of simulating DISPLAY are depicted in Figure 6-7. 

Some points to notice are that (1) Video is blanked (low values are on the 

right of the waveform) during horizontal and vertical retrace as required. (2) The 

points at which get and data occur are constrained only by the char events and 

can therefore interleave with the dotcikevents. That is why they are portrayed 

by ovals. Notice that the data arrives at least one dot time before it is displayed, 

even though there is a delay in fetching it from memory. 
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vsync hsync char 	get data dotcik video 
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Figure 6-7: Results of simulating DISPLAY. 
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6.4 Adding a Line Buffer 

Simple CRT controllers, such as the one presented here are quite greedy in their 

use of the system bus. They need to have data delivered frequently and at 

precisely the right time. Examining the behaviors of the data channel (which 

corresponds to the system data bus) and the get channel (loosely related to the 

address bus) in Figure 6-7, we can see that there is almost continuous activity, 

except during the vertical retrace time. A microprocessor sharing the bus would 

have only this interval for long uninterrupted memory access, such as might be 

needed to scroll the screen memory. In our small example, the percentage of 

time that the bus is free is quite high, but this would lower dramatically for real 

controllers which must typically display eighty characters per line. 

The reason that bus utilization is so high is that every character must be 

•fetched, not just once, but once for each scan line. If a buffer is used to retain 

one line of text, bus accesses would be cut down by the number of scan lines 

per character (two in this case). The buffer must be circular to present each 

character in the line in turn at one scan line and then again in the same order 

at the next. Here is the description for such a loadable circular buffer: 

BUF(ci, c2) = {hsync char} ({dataic21 BUF1 (c2, CI) 

+ {bufrx} {datacx} BUFf (x,c i )) 

BUF1(c1,c2) . {char}({data.cc2}{char}BUF(c 2 ,è i ) 

+ {bufx} {data'ix} {char} BUF(x,c i )) 

The buffer loads values received on the buf channel and passes them through to 

the data channel at the same time. This allows a line to be displayed while it's 

being loaded, thus simplifying the timing requirements by not requiring earlier 

fetch times. The buffer is not shifted during the character time before an hsync, 

in order that the first store( character code will be output during the horizontal 

retrace, hence the two states. 

With the buffer inserted between the screen memory and the character gen- 
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erator, the memory fetch times must be changed: 

FETCH ' { vsync char} {char} {char} FETCH 

+ {line char} {get} {char} {get} {char} FETCH 

+ {char} FETCH 

The only difference is that characters are fetched at the beginning of a line, 

rather than at every scan line. With this change, MEM must also be modified, 

both to output the correct values and to do so on but. The but channel will 

therefore correspond to the system bus. 

MEM = { get}{buf.cO}{get}{bufcl} 

{get} {but c2} {get} {bufc3} MEM 

The system is expanded to include the buffer: 

DISPLAY' 	CONTROLLER • CHAR..CEN • BUFFER • MEM 

and the same simulation is run again with the results shown in Figure 6-8. 

Comparing the output of the data channel in Figure 6-7 with that of the 

but channel in Figure 6-8 reveals that the bus access time has been cut in half 

by the addition of the buffer. The saving becomes even more dramatic as the 

number of scan• lines per character increases. - 

This example has shown that experimenting with a design—even in a crude 

form—can reveal valuable information about performance. Now that the experi-

ments have indicated that a line buffer might be a desirable feature, the next step 

would be to implement the various parts making up DISPLAY and verify that 

they meet the requirements outlined above. Implementing and verifying the ini-

tial version of the controller would not have revealed the improvements brought 

about by the buffer, thus illustrating the value of high level experimentation. 
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vsync hsync char 	line 	get 	data dotclk 
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Figure 6-8: Adding a line buffer to DISPLAY. 



Chapter 7 

Discussion 

Three desirable components of a hardware verification system were identified in 

the introduction. These were: 

A Description Language 

A Method for Verifying Designs 

A Method for Experimenting on Designs 

The rest of the thesis went on to consider each in detail using a formal calculus 

as a base. 

Chapter 2 introduced the calculus—the CIRCAL calculus of Milne andde-

scribed its core operators. Grey areas in the definitions of a few operators were 

identified and solutions proposed. These included the passing of values along 

channels between processes for which new notation and composition rules were 

given. Also considered were interpretations of diverging processes (those that 

engage in infinite internal actions), which were equated with the deadlock op-

erator. This interpretation became particularly important when the concept of 

explicit time was introduced in a later chapter, since it gives the behavior of a 

system that passes time without contact with the environment. 

Once the core operators were presented, several others were derived from 

them for capturing certain common hardware constructions. This was followed 

by a discussion on packaging collections of equations that describe a single ob-

ject for ease of manipulation. The result was the part construct. It was noticed 

ON 
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that for many combinational elements, function can be separated from the struc-

ture of communications with the environment. Based on this observation, the 

idea of generic boxes that can be personalized with a particular function was 

introduced. The chapter concluded by considering various ways of representing 

physical phenomena in the calculus and then evolving a design style. Altogether, 

the material covered forms the Description Language component of a hardware 

verification system. 

Chapter 3 started off by describing a way of using the calculus to model dis-

crete time due to Milne and then went on to extend it in several directions. It 

was shown that hierarchies of system clocks could be easily represented and a 

special notation was introduced to define their interrelationships. Similar nota-

tion was used to model the hardware phenomena of clock skew and clock drift. 

Other operators were defined to convey the notion of temporal ambiguity of 

events i.e., events that can occur either simultaneously or in any sequential or-

der. Using these operators, the idea of clock intervals was developed to indicate 

that a set of events may happen at any time during the interval delimited by 

two others. This concept is particularly important in high level specifications 

where implementation dependent details of sequence are meaningless. To make 

the interval concept more useful, additional equational laws must be derived so 

that they can be manipulated without continual recourse to their definition. In 

addition, it would be advantageous to establish a link with work on Interval 

Temporal Logic [Moszkowski 831 so that some of its powerful temporal concepts 

may be exploited. 

Delay was identified as an important factor in the temporal behavior of dig-

ital systems. Accordingly, several types of delay were characterized using the 

discrete model of time and their physical causes discussed. The chapter closed 

by considering the effects of delay on feedback circuits, as represented by a latch 

constructed from two cross-coupled NOR gates. Simple experiments on the im-

plementation revealed that it suffers from metastability problems under certain 

input conditions. It might be desirable to categorize what types of feedback are 

prone to these problems and see if they can be recognized from their CIRCAL 

expressions. 
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In Chapter 4, the first analytic techniques were introduced. A notion of sim-

ulation/experimentation, originally due to Mime, was derived from basic prop-

erties of the Dot composition operator. We saw how the same technique yields 

symbolic simulations without extra effort, whereby the outputs of a module can 

be determined as a function of its input values. Another idea of Mime's called 

constructive simulation also derives from properties of the Dot Operator. With 

this approach, the result of a simulation is constructed using the same hierar-

chy as the target design, potentially increasing the efficiency of an execution 

immensely. Problems with the mechanics of conducting such simulations were 

revealed and simple solutions proposed. Further work needs to be done on im-

plementing these techniques on parallel processors in order to exploit the gains 

in simulation efficiency fully. 

After discussing the constructive approach, attention was turned to a way of 

simulating a specification and an implementation in parallel. It was shown that 

such a simulation would reveal any difference between the two through the action 

of the Dot Operator alone, thus taking a step toward true verification. Finally, 

several constructs were developed for analyzing the output of simulations. They 

were categorized by the manner in which they could be attached to the system 

under test and the effect they have on output values. A simple, but effective, 

example was a spike detector which signalled an error whenillegal transient 

value appeared on a line. This completed support for the third area required for 

a verification system: a Method of Experimentation. 

Chapter 5 considered the second and last component of a verification system: 

a Method of Verification. Actually several methods were presented, each with its 

own strengths and weaknesses. Proof of equivalence using algebraic and trans-

formation methods was shown to be inadequate because a specification will often. 

include only a subset of the behavior of a valid implementation. To get around 

this limitation, the idea of a partial specification was introduced along with a 

means of showing that it is satisfied by an implementation. Although a step 

in the right direction, the idea of partial specifications turned out to be flawed 

when it was noticed that implementations could interact illegally in ways not 

covered by their specifications. To rectify this, constraints were placed on their 

usage. Two ways of generating and propagating these constraints were given, 
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namely Annotated Covering Trees and Safe Contexts. Several laws were given 

for manipulating the former and others should be derived. Safety was defined 

only for compositional contexts and work remains to be done on generalizing it 

to all contexts. The limitation did not prove too obstructive since most designs 

are built by composing smaller blocks. Additional equational laws would ease 

the burden of checking if constraints are satisfied, as would the verification of 

common contexts. An example of such a frequently encountered context is the 

hole between two registers in a register transfer system. The clock period of the 

registers would eliminate most transient values produced by any process that fills 

the hole, as long as the period is greater than the maximum delay introduced 

by the process. This is much simpler to verify than proving the process correct 

in the complete context. 

The last chapter dealt with several larger examples. These demonstrated the 

techniques presented previously and showed how various types of behavior could 

be expressed in CIRCAL. A wide variety of problems were covered, ranging 

from ways of dealing with transient values, through generating random num-

bers, to modelling hierarchical clocks. They demonstrate that the calculus has 

a surprisingly wide range of application. Further examples will reveal additional 

techniques and derived operators. 

7.1 Further Ideas 

Perhaps the most important requirement that came across when working the 

larger examples in Chapter 6 was the need for mechanized assistance in ma-

nipulating equations. Clever notation can go only just so far in alleviating 

the growth of equational complexity. Many of the expansions done during the 

course of the examples were checked using an equational rewrite system written 

in PROLOG [Clocksin 811. The system is a successor to an earlier LISP based 

one [Traub 83] and uses some ideas from a functional extension to PROLOG de-

scribed in [Newton 85]. It proved essential for exploring the feasibility of various 

communication structures and, because simulation is available "for free" by the 

application of law [. +], made the CRT controller example in Chapter 6 quite 

easy to conduct. The system works by rewriting equations as much as possible 
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into a "standard form" using expansion laws such as [. +J, [- +] and so forth. 

The standard form is a nondeterministiç sum of deterministic summations: 

P .r 

ii 

which is just the syntactic representation of a synchronization tree (Section 2.5). 

Further refinements could be made to sort guards with a lexical ordering so that 

two expressions can be textually compared. 

The system is not nearly as adept as those of Gordon [Gordon 83a] and 

Barrow [Barrow 831 in simplifying functions, but it works quite well as a proof 

aid and as a means of investigating the ramifications of design decisions. It seems 

possible to extend the system so that it can derive covering contexts as discussed 

in Chapter 5, which would be a step toward a more comprehensive verification 

system. Another approach would be to formulate a simulation language around 

CIRCAL, as Moskowski has done with his Tempura language [Moszkowski 841 

and Sheeran with her implementation of pFP [Sheeran 831. With this method, 

the constructive and hierarchical techniques developed in Chapter 4 could be 

exploited to yield more efficient simulations. 

Other areas merit further research as well. Some work was done on applying 

the calculus to low level circuit elements without much success. The elements 

were modelled as black-boxes that input and output current and voltage values 

as determined by their function (capacitor, resistor, etc.). At the electrical level, 

however, components cannot be considered in isolation since their behavior de-

pends heavily on the dynamic context in which they find themselves. Simple 

composition operations, such as those done with the Dot operator, give way to 

complex relaxation processes that are difficult to characterize with acceptance 

semantics. Digital systems seek to limit most of this flexibility, so they are far 

more suitable for modelling in the calculus than are analog devices. Perhaps 

an approach similar to Cardelli's Analog Processes [Cardelli 821 can be derived 

which incorporates a notion of continuous values. 

Even with this limitation, the surprisingly wide applicability of CIRCAL to 

many problems in hardware design shows that formal techniques hold a lot of 

potential. The primary impediment to large scale applications at the moment is 

the rapid growth in complexity of behavioral expressions. As machine assistance 
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matures and new operators are defined to capture common concepts, the size of 

problems that can be considered will also grow. We hope that this growth will 

soon reach the level where real designs can be verified in detail, thus yielding 

safer and less costly products. 



Appendix A 

An Implementation of a Card 

Slice 

The tWiYd example of Chapter 6 (on page 180) concerned an implementation of 

a hardware card deck. The deck was implemented as a loop of "card slices," 

one for each card in the deck. Random choice was produced by shifting a single 

high value quickly through the loop until a button was released, which happens 

nondeterministically as far as the system is concerned. After several iterations, a 

suitable description of the behavior of a slice was determined and this reproduced 

here: 

part SLICE(v) {in, out, next, picked: bit, dr. cik, Butup. BütDwn} 

AVAIL(v) 	{clk}ir({inrz}, {out'lv}, {nextcv})AVAIL(x) 

+ {Butown} AVAIL(v) 

+ {Butup} (if v = 1 then {pickedc1} BP 

else AVAIL(v)) 

BP = {clr} {ButDwn} {picked4o} AVAIL(1) 

+ {Butflwn} PICKED 

PICKED ' ({ clk} +{Butflwn} +{ButUp}) PICKED 

• {clr} {pickedco} AVAIL(0) 

• ir({outco}, (Jinx} {nextcx})) PICKED 
) 

The part has two major states: one corresponding to the slice being available and 

shifting values from left to right, the other to the slice being picked and passing 

214 
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values through transparently. The intermediate state BP was introduced to allow 

the last available card in the loop to be reset without entering the PICKED state. 

An auxiliary part was also specified that generated the correct signal for 

resetting the deck to an unpicked state: 

CLEAR(1) 4= ANY(piciced 1 Pv1, I = 1,... ,52) 

(if At3 then {clr})CLEAR(1) 

The output is just the logical AND of the picked lines. 

A final part was defined that determined the behavior of the button with 

respect to the system clock. 

part BUTTON {Butup. ButDwn clk} ( 

WAIT 	{ButDwn} {clk} CLK 

CEK . { clk} CLK + { ButUp} WAIT 

Figure A—i shows one possible implementation of a card slice in terms of gate 

level elements. The information about whether or not the slice has been picked 

is stored on a JK flip-flop, while the D-type flip-flop implements the shifting 

action of the slice. Both are positive edge-triggered, meaning that information 

is transfered from the inputs to the outputs by a low to high transition on the 

clock line. 

Informally, the implementation works like this. 01 passes the input values 

to FF1 when the slice has not yet been picked (the pb line is high). These are 

clocked through to 03 which passes them on to the next slice. When a save 

signal is generated (as a result of the button being released), FF2 samples the 

value being output by the slice. If the value is one then the flip-flop is set, 

indicating that the card has been picked. This disables 01 (pb is low) and 

forces FF1 to continually input a zero. 02 is enabled (p is high) and passes 

values directly from in to next. On the next clock tick, FF1 passes its high 

value to the next slice through 03 (the last slice's value being passed through 

02 is always zero since there is only one active slice at a time). It then reads 

a zero from the disabled 01 and continues to signal this on out until the slice 

is reset. All the slices have been picked when their respective p lines go high. 



next 
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Figure A—i: Implementation of a card slice. 



Appendix A. An Implementation of a Card Slice 	 217 

These are ANDed together to produce a clear signal (cir), which is fed to the 

K inputs of all the JK flip-flops, causing them to be cleared on the next save 

event. The last slice picked will still have its 3 input high, so K going high in 

turn means that the flip-flop will toggle when next clocked, resetting it to zero 

as well. The save event that is used to clock FF2 is normally produced by the 

button signal going low (i.e., the button being released). However when all the 

cards have been picked, as indicated by the dr being high, save is generated 

by the button being pressed. The reason the controlling action changes is that 

a new deck must be made available before the riffling action commences again. 

If this were not done, all the slices would enter the picked state, resulting in 

deadlock. The ButDwn event always precedes the' clock that causes the riffling, 

so it can be used to clear the FF2's. This should only happen when the deck is 

full, hence the button line is exclusive OR-ed with the dr line. 

To show that this implementation meets the requirements of SLICE, we must 

first have some descriptions of the constituent parts. Since delays will effect the 

speed at which the circuit may be run, the behavior of each part will be given in 

terms of explicit time. A Universal Clock which emits t g  ticks a unit gate-delay 

apart is used to measure the passage of time. G1 therefore has a delay of one 

tick: 

part G1(ii) {in, pb, d, tg} ( 

G1(6) 	WAITtg (ANY({inr t g }, {pb t g }) 

{dc(inApb) tg } Gi(tZ)) 

= (in, pb) 

Flip-flops are made up out of several gates internally, so they can be expected 

to have greater than unit delay. The D-type flip-flop is arbitrarily chosen to have 

an output delay of three ticks: 

part FF1(i) {d. out: bit, cik. tg} ( 

FF1 (1) 	WAITtg  ({d>x t g } FF1 (x) 

±{4k tg }{t g } 2 {out.4 'cg}FFl(i)) 
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The two output gates, 02 and 03, are grouped together and modelled by a 

three-input generic box: 

part G2GS(ü) {in, out, p, next: bit. t g } 

GEGS(ü) 4= WAITtg (ANY({int t g }, {outr. t g }, {p> tg }) 

{tg } 

{nert'cf(ü) t g } 

C2CS (ii)) 

ü = (in, out, p) 

f(p, in, out) = (pA in) Vout 

The part could be further refined into two cascaded two-input boxes—an OR 

gate and an AND gate. 

The results of Section 6.1 say that parts attached to blocks of combinational 

elements must be prepared able to accept transient values before the correct 

one. If the next slice has not been picked, C2C3 will be connected to a 01 gate 

forming a two element block which is in turn connected to a D-type flip-flop. 
The flip-flop can handle any input changes up until the cik event occurs and 

then must have stable inputs for a further three ticks. Thus, at the minimum, 

there will be three gates between the output of one flip-flop and the input of 

the next (two from GECS and one from Cl). So what is the maximum (worst 

case) delay? if all the slices have been picked except for one, the output of that 

slice's flip-flop must pass through 52 - 1 = 51 G2GS parts and a 01 part before 

reaching its own D input. This is equivalent to a combinational block whose 

longest path is 51 x 2 + 1 = 103 gates long. The minimum possible delay D 

between clock events is then 103 t g  plus the output delay of the flip-flop: 

D = (103 + 3) t g  = 106tg  

which prompts the following constraint on the clock signal: 

C2 	WAITtg ({c].k tg }{t g } 106 C2) 

This says is that when eventually a cik happens, there must be at least 106 ticks 
before the next one. 
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Returning to the analysis of the implementation, note that there are three 

cases to consider. The first is when the slice is available and shifting values 

through itself. The second is when the slice has been picked and acts simply as 

a delay. The third is the transition between these two steady states. Each case 

will be considered separately. 

A.1 Case I: The Slice is Available 

We must show that the portion above the dotted line in Figure A—i functions in 

the same manner as the AVAIL state in the specification SLICE. In other words 

T(v) 	(C1•FF19GEC3)_{d,t 8 } 

is equivalent somehow to 

AVAIL(v) .= {clk}ir({in>x}, {outiv}, {nextcv})AVAIL(x) 

+{Butup}(if v=i then {pickedcil}BP 

else AVAIL(v)) 

We do this by constraining T so that it reflects the steady-state condition of 

the slice being available. Such a condition means that the ButUp event can be 
ignored since it causes a change in state. 

The first thing to notice is that if the slice is available, pb will be high and 

GI will act just like a unit delay. This is the steady-state condition alluded to 

above and is produced by placing the gate in a context that prevents any pb 

events from occurring: 

PB of sort {pb,t g } 4= { tg }PB 

PB • C1(in,i) = WAITtg ({inD tg } {d.zi(In A 1)} (G1(il) • PB)) 

= WAITt g ({in> tg }{dcin}(G1(tD).PB)) 

Composing this simplified form of Cl with FF1 produces: 

PBsG1.FF1(v) = 

WAITtg ({iflDz t8} (...) + {in>x cik t,}(...) 

+{clk t g } (PB • Cl • {t g } FF1(v))) 
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For this to match AVAIL, only the third branch can be used by the environment, 

so we have the following constraint: 

CS 4 WAITtg ({clk t g } {t 8 } 2  WAITtg ({in< t8 } Cs)) 

This is simply a timed version of constraint Cl, given on page 193, that was 

needed during the derivation of SLICE. It said that an in must always follow a 

cik event. The timed version says that the input event will happen no sooner 

than two ticks after the clock tick, whenever one may occur. Each in channel is 

connected to the next channel of the previous slice and events on this channel 

are directly caused by the neighbor's out events which always happen two ticks 

after a cik, thus satisfying the constraint. 

Applying CS to the gate and flip-flop combination yields: 

CS.PB.G1.FF1(v) = 

WAITtg ({clk t g } 

{t o2 

[{out<v tg } (Cs • PB • Cl • FFI(v)) 

+ {outcv inr' t g } (CS • PB • {dcin tg } Gl • P71(v))]) 

Ignoring.the t g  tick, this equation has much the same structure as AVAIL. The 

resultant, however, requires that in happen simultaneously or after out, whereas 

AVAIL specifies a full interleaving via the temporal permutation operator. Before 

resolving this discrepancy, let us see what happens when G2CS is added to the 

system. 

The same steady-state condition that motivated the definition of PB also says 

that p will be low, thus making GEGS act like a two unit delay. The context 

process PB can easily be extended to include this extra information by simply 

adding p to its sort: 

PPB of sort {p, pb. tg } 	{t g } PPB 

Placing PPB in parallel with CECS demonstrates the delay effect: 

PPB • GEGS(out,in,O) = WAITt8 (ANY({in t g },{outN t g }) 

{t8 } { nextcout tg } 

(PPB • CEGS(out, in, O))) 
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Only communications on the out channel are passed with a delay. Signals on 

the in channel are simply absorbed, since the slice has not yet been picked (p is 

low) 

Before composing G2GS with the flip-flop and input gate, let us simplify 

the expansion still further with another constraint. The behavior of G2CS is 

completely independent of the clock event, allowing next to interleave with it. 

AVAIL, however, does not allow this, so we require that: 

C4 	{c1k}{next}C4 

The next channel is connected directly to the in channel of the succeeding slice 

via relabelling, so this constraint can be derived from CS. CS says that every in 

must happen after a cik, which means that next must also, since they will be 

the same channel. Here is how the expansion of the complete system looks—with 

simplifications—once the constraints have been applied: 

T'(v) 	(PPB • CS • C4 • Cl • FFI(v) • G2C3) - {d, t9  

= {clk} ({outcv} ({inrx} {nextcv} 

+ {nextcv} {inn} + {in*z next<v})T'(x) 

+ {inrx outiv} {nextcv} T'(x)) 

Laws [recs] and [rec4] were needed since hiding the passage of time (the WAITtg  

operation) results in an unguarded recursion. 

The only difference between this expression and the shifting portion of AVAIL 

is that instead of interleaving out and next, it indicates that they will occur 

sequentially. Provided that the environment cannot demand a different ordering, 

the two will be interchangeable. But will this requirement be met? To see, we 

must consider how the slice is to be used. Recall that thei deck was made up out 

of a loop of slices with each in channel connected to the lefthand neighbor's next 

channel, as shown in the definition of DECK on page 195. For slices defined to 

act like AVAIL,, the loop would allow the out events to happen in any order, 

with an effect similar to: 

L = { clk} 7r({out 1 4}, {inc}, I = 1... 52) L 

If the slices behave like T', on the other hand, the out events will all happen 

at exactly the same time, because each occurs two t g  ticks after the clock. The 
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input events must occur after that because they are caued by next events which 

happen after {out} 's, with the following effect: 	 - 

L' 	{clk}{outjc ... out52c}{inl.c ... in52.c}L' 

The output channels of-the loop are connected to the ST...TO..CRD transformer 

which can accept signals on them in any order (i.e., will not distinguish between 

the L ordering and the L' ordering). No other process uses these channels, so 

we can conclude that T' will produce behavior similar to AVAIL when used with 

ST...TOJJRD. 

Notice that to convince ourselves that the implementation was acceptable, we 

had to recourse to fairly high level knowledge about how the parts will be used. 

When using constraints it is quite often necessary to move back up through the 

hierarchy of design levels until they are resolved by some higher level knowledge. 

In the last step above, the difference in ordering on the output events between 

T' and AVAIL could have been resolved by constraining the environment to only 

accept the L' ordering since it is a subset of L. While valid, this constraint would 

not have been met by ST_TO _CRD, so we used the meta-knowledge to achieve 

a simpler result and saved having to redesign the transformer. 

£2 Case II: The Slice Has Been Picked 

The next case to be considered is when pb is low and p is high. Cl will be 

disabled, causing FF1 to continually output a zero. CRCS will ignore this output 

and simply pass the value of in through unhindered with a delay of two t g  ticks. 

Since this is supposed to correspond to the card being picked, let us review the 

specification for that state: 

PICKED 	({clk} +{ButDwn} +{ButUp}) PICKED 

+ {clr} {picked4iO} AVAIL(0) 

+ ir({out.cO}, ({int.x} {nextcz}))PICKED 

Ignoring, for the moment, the transient Butup, ButOwn and dr events, we see 

that the last choice branch is the one that determines the steady-state behavior 
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of the part. Clock events do not change the state and are simply absorbed. We 

must show that this state is implemented by the top half of Figure A-i with the 

controlling p and pb lines high and low respectively. 

Much of the analysis is almost identical to the last case; the same PPB 

context is used to prevent the p and pb lines from changing. The difference lies 

in the values that are give initially to the state variables of the various parts. 

Starting from the left, Cl should not contribute much to the behavior since it 

is disabled: 

PPB • G1(in,O) = WAITtg ({in> t g }{d<O tg }(G1(ñ5)•PPB)) 

All that the disabled gate can do is while away the time, accept in communica-

tions and output 0 on the d channel. 

The gate is combined with FF1 to produce a process that absorbs in and 

cik events: 

(CS •PPB•G1•FF1(0))_{d,t g } = 

{clk} ({outciO} {inr} + {in. outcO}) 

((Cs. PPB • Cl • FFI(0)) {d, tg }) 

Notice that despite values being input on in, the state never changes. 

G2C3 can be simplified in exactly the same way as Ci: 

PPB • CRCS(irs,0,i) = WAITtg (ANY({inD t g }, {outr. t g }) 

{ tg } 

{next.if(in,O, i) t g } 

(C2GS(in,0, 1) . PP.8)) 

But 1(ü) = (p A in) V out = 1 A in V 0 = in if we use the fact that FF1 will 

always be outputting a 0 on out. The overall effect is to act as a two t g  tick 

delay on values sent on the in channel. Composing all the elements results in: 

U(v) $: (PPBsC5•C4•CisFFi(v)•GQ3)-.{ci,tg} 

= {clk} ({outcO} {nextcin} {inNz} {next<x} 

+ {inr.z outiO}{riextcx})U(x) 

It is only here that our casual pseudo event-driven approach was caught up with 

us. FF1 and indeed the SLICE description itself output values in response to an 
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input change regardless of whether that value is a true change on the line. This 

was done for simplicity and to reduce the size of the equations and has not been 

harmful until now. Barring the spurious {nextcin} event, U behaves identically 

to the PICKED state (with in not allowed to precede out), as required. The 

transient, however, invalidates a direct comparison between the two, even though 

it is just a re-signalling of the last change on the channel. This happens because 

the outcO event triggers G2C3, resulting in a next<in event, where in is just 

the value last input on the in channel. To reconcile the two, a transformer could 

• easily be attached to next that removes these redundent value signals. This is 

not as unrealistic as it seems, since the channel is connected to a FF1 through a 

Gi in the neighboring slice which can accept any number of events until a clock 

edge. All will be well provided that the transients have settled by the time the 

clock samples the input value. Such a step might be necessary anyway if G2GS 

is decomposed into two cascaded gates since the results of the first example in 

Chapter 6 warn us that transients should be expected. 
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A.3 Case III: Moving Between the States 

For this case, we have to show that the circuitry below the dotted line in Fig-

ure A—i together with the BUTTON part act to fulfill the PPB constraint used 

above to select the two steady-states. The constraint dictated what state the 

slice was in by setting the values of the p and pb lines. These lines are controlled 

by the BC flip-flop FF2, whose description is a bit more complicated than that 

of FF1 since it has both two inputs and two outputs: 

part F172(out,c1r,p) {out, dr. p, pb:bit. save} ( 

FF2() 4 WAITtg  (ANY({out'. t g }, {cirr t g }) FF2(4) 

+ {save tg } {t g } 2  FFE'(a)) 

FF21 (9) 	(if h(ä) 36 p then ®D({p.ch(l) tg }, {pb0i() tg })) 

FF2(out, c1r,h(5)) 

h(out, clr,p) = case out, dr of 

	

1,1: 	p 

	

1,0: 	1 

	

0,1: 	0 

0,0: p 

esac 

MC flip-flops complement their stored value if both inputs are high (in this case 

out = dr = 1) when the clock makes a transition. If this is not the case, the 

value of the p line will be set the same as the J input, in this case out. 

Two further parts effect the state of the JK fiipflop, namely G4 and G5. 

G4 is a fifty-two input AND gate with the same behavior as the CLEAR part 

described earlier: 

part G4 {p, I = 1 ;..52, dr bit, tg} ( 

G4 U, elr) 	WAITt g (ANY({pj t g }, I = 1... 52) 

(if AP $ dr then {circA tg }) 

) 

	 G4 (, AP)) 
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G5 calculates the exclusive-OR of the button and clear lines, but instead of 

outputting value changes it signals a low to high transition with the save event. 

The effect is that of connecting a transformer for converting s<1 events to save 

events to the output of a generic box personalized with the exclusive-OR function. 

This is makes the part compatible with FF2 which is positive edge triggered and 

uses save as a clock line. 

part G5{c1r, But: bit. save, tg} ( 

G5(1,$) .= wAITtg (ANY({clrN t g }, {Butt. t,}) 

(if (dr xor But) = 1 $ s then {save tg} 

else {tg}) 

When dr is low, the save event will be generated by the button line going 
p low (0 xor 1 = 0 and 0 xor 0 = 1 which is a low to high transition as is required 

to clock FF2). The button line going iow happens when it is released (the ButUp 

event). To show the relationship between save and the button's behavior when 

dr is low, we can define a translation from the voltage changes caused by the 

button to ButUp and ButDwn events (ButDwn happening before ButUp as per the 

behavior of BUTTON given on page 215). This transformer is composed with 

C5 and changes to the dr line are blocked to yield a process that shows save 

happening one tick after ButUp: 

B .= {Butcl ButDwn}{ButcO ButUp}B 

.RC . B.G5(0,0,1).a{ clr } 

= WAITtg ({But<1 ButDwn t g } {t g }) 

WAITt8 ({ButcO ButUp t g } {save tg }) BC 

Conversely, whencir is high (the first state variable of G5 is 1), the save event 

will be caused by ButDwn: 

BC' 	B • C5(1,0, 1) • 

= WAITtg ({Butll ButDwn -t g }{save t g }) 

WAITtg ({ButcO ButUp t g }{tg }) BC' 
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Figure A-2 shows the relationships between events on the But, dr and save 

lines. The idea is that the slice will usually change state when the button is 

released (save causes FF2 to sample the out line). The exception is if this 

causes the clear line to go high (all the p lines are high) as would happen if the 

last slice were picked. All the slices must then be reset to the available state (the 

deck reshuffled) before clocking commences, which is signalled by ButDwn. 

But 

dr 

save 	 n 
save events happen on the rising edge 

Figure A-2: Relationship between But, dr and save. 

Choosing the correct point at which the button can be pressed or released 

with respect to the global clock is crucial for a clean transition between the two 

steady states. Button events happen one tick before save (as shown by BC and 

BC') because of the delay through CS. The save event is used to clock FF2 

which should always have stable inputs when sampled. From the definition of 

FF2, we can see that for the J input to sample a Stable out line, the save event 

must happen on the next tick after a value is output on that line at the very 

earliest. Events on the out channel happen on the third tick after a cik event, 

so save should not happen sooner then the fourth tick after a clock edge. The 

worst case therefore looks something like this: 

{clk t g } {tg } {t g } {Butc t g } (save t 8 } 

Now we must determine the latest that the button can change before a cik. 

A save event might cause a change on the pb line, which is connected to the 

D input of FF1 through Cl. The D input should not change later than one 

tick before a clock edge, so adding the delays due to Cl and FF2 (one and four 

respectively) results in a requirement that save not happen later than five ticks 
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before c].k: 

{save t g } {tg } 3  {pbc t g } {di t g } {clk t g } 

A But event happens one tick before this, giving a total of six ticks between the 

event and a clock edge at the minimum. 

Together these worst case times form a window during which the button 

signal may safely change, as shown by the following constraint: 

CS 4= WAITt8  ({Butcl t 5 } {tg } 6  + {clk tg} {tg}2) 

It says that no cik event may happen sooner than the seventh tick after the 

button has changed state and that this may not happen sooner than the third 

tick after a clock edge. No two But events can happen sequentially without a 

cik in between because of the behavior of the controlling BUTTON part defined 

on page 215. 

CS determines when the slice may safely make a state transition; the next 

step is to show that the correct states are entered. Since we are assuming that 

the slice is available, it must enter a state analogous to BP in the specification if 

the output is high when the button was released. From there it should move to 

the PICKED state (Case II above) unless c].r goes high before the next Butflwn. 

If this does happen, no change should be made to the p and pb lines and the 

slice should remain in a state analogous to AVAIL(1) (Case I above). We shall 

consider each sub-case in turn. 

The transition to the PICKED state should happen if the card is not the last 

in the deck (at least one other pi is low), is selected (out high), and is available 

(p low, pb high). Here is the state determination portion (parts below the dotted 

line in Figure A—i) initialized with these conditions and connected to the button 

stimulus B defined above: 

V(p) 4= [Be CS•C4((O  ... p  ... O),O).Cs(o,o,i).FFP(i,o,p)I 

' {clk, out, p, 1€ others} 

= BC • CS • (FF2(1,O,p) {cik, out}) 

The cik line (and hence out) are removed because we do not want the slice to 

shift its selected state on to the right while the button is held down. This is done 

purely for the purposes of allowing us to generate a ButUp event without danger 
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of the slice deselecting itself. Similarly, we want none of the other p i  lines to 

change so all are hidden using ±. At least one of the other pi lines is low, which 

means that t34 cannot produce a dr event and therefore acts like the 

in .BG defined above. 

The slice is available, so V starts out with the p line low (p = 0) and con-

sequently should generate a save event when the button is next released. The 

p line will then go high to indicate that the card has been picked. Expanding 

V(0 ) demonstrates this behavior 

V(0) = WAITtg ({But<1 ButDwn tg }{t g } 6 V') 

V = WAITtg  ({Butco Butup tg} {save t g } {tg} 2  

®D ({P< 1  tg }, {pbclO t g }){tg } V(i)) 

V(1) = WAITtg ({ButclButDwnt g }) 

WAJTt5 ({ButcO ButUp t g }{save t g }V(1)) 

Abstracting away t, But, save, and pb and identifying p with picked should 

produce a behavior identical to the transition from AVAIL(1) through BP to 

PICKED in the specification SLICE: 

V(0){tg . But, save, pb} = {ButDwn}{ButUp}{pcl}(V(1)—.{ ... }) 

The relevant portion of the specification looks like this: 

AVAIL(v) 

+ {Butflwn} AVAIL(v) 

+ {Bu'tup} (if v = I then {picicedcl} BP 

else AVAIL(v)) 

BP 	{clr} {ButDwn} {picked.cO} AVAIL(1) + { ButDwn} PICKED 

The variable v is 1 because the slice is selected, so picked-11 is produced as 

required. Following the implementation's transition into state V(1), the values 

of the p and pb lines (high and low, respectively) will not change. This fulfills 

the conditions required for Case II above, which was the analogue of PICKED 

as required. 
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An almost identical analysis can be used to check the second sub-case: that 

when the slice is the last available, it will clear itself and return to the available 

state with the next ButDwn event. The initial conditions are the same, except 

that all the other pi lines are high: 

W(p) = [Be C5•G4((1 ... 0 ... 1),O).G5(0,0,1)sFF9(1,o,p)] 

{c1k. out} 

Again the slice starts off unpicked (p = 0) and is expanded as before: 

W(0) = WAITt g ({Butcl ButDwnt g }{tg } 6 W') 

W' = WAITt g  ({Butco ButUp t g } { save t g } { tg } 2  

®D({P'hl tg } { clrcl t g }, {pbco tg })W") 

W" = wAJTt g ({Butl.1 ButDwn t g } { save t g } { t8 } 2  

®D({P<O tg } { c1r40 tg }, {pbc1 tg })v(o)) 

Notice that after the c 1 line goes low in W", the system evolves to V(0) because 

all the p lines will have gone low. The flipifop toggles when the button is pressed 

for the second time because its two inputs are high (FF1 's output and the dr 

line), thus clearing the output. All the other slices will have only their K lines 

high (corresponding to cir), so they too will be cleared. 

Abstracting away t 8 , But, save, and pb as before reveals that W(0) produces 

the same behavior as the fragment of the specification given above: 

W{t g , But, save, pb} = {ButDwn}{ButUp}{p.cil}{clrcl} 

{ButDwn} {pcO} {clrcO} (V(o) - {...  

With p low and pb high, we have the conditions for Case I. Since the slice's out 

cannot change until after the {clrcO} event (i.e., at least seven ticks after the 

ButDwn), it will still be high when the slice becomes available, corresponding to 

the transition to AVAIL(1) in BP. 

This completes the proof that the transition from the AVAIL state to 

PICKED and back again is handled correctly. The initial conditions and the 

PP$ constraint that determined the previous two cases have been satisfied by 

the state determination portion of the implementation. 
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A.4 Summary 

We have seen the essence of a proof that the circuit pictured in Figure A—i on 

page 216 correctly implements the specification for a card slice developed in the 

4 example of Chapter 6. 

Constraints were used liberally to simplify expressions as soon as possible. 

They allowed analysis of the implementation to be divided up into three fairly 

independent cases that parallel the operation of the slice. Some of the constraints 

were formulated with knowledge of how the slice will be used, which is defensible 

when one considers that this is part of a top-down design started in Chapter A-

1. A more simple-minded verification could have been done by expanding the 

composition of all the constituent parts and trying to manipulate it into a form 

similar to that of the specification. It was felt, however, that the opaque juggling 

of symbols which this would have involved could serve no useful purpose and 

would probably have been very difficult to conduct. 

Although the comparison between the specification of a card slice and its 

implementation was not presented in full detail, some important information 

about the circuits operating conditions was still discovered. The information 

takes the form of constraints that are not satisfied by other portions of the 

system and thus must be determined by the environment. Most important of 

these, perhaps, is the constraint that determines the maximum rate at which the 

clock may run: 

CE 	WAITtg ({clk tg }{t g }' °6 C2) 

The rate is given in terms of unit gate delays since that is smallest unit of time 

used. It works out to be 106 tg  ticks between clock events (positive edges of the 

clock waveform) at the very minimum. 

The button is operated asynchronously by the user, so it is assumed that 

there is some circuitry to force its effects to happen at a known time. The 

circuitry must ensure that the clock starts no sooner than six ticks after the 

button is pressed and that the button is released no sooner than two ticks after 
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a clock edge: 

CS 	wAITtg ({But< t g } {t8 } 6  + { clk tg } {tg } 2) 

Figure A-3 shows these constraints in terms of waveforms. 

c 1k 

But 

Figure A-3: Relationship between the button and clock signals (in units of t g ) 

Provided that the environment in which the card deck is to be used obeys 

these constraints, no unexpected behavior will happen. We have shown not only 

that our design is functionally correct, but have also determined the minimum 

operating conditions for it to remain so. These types of results are particularly 

important in digital designs where speed is critical, so it is encouraging to find 

that they can be derived using our constraint method. 
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