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Abstract

Solid hydrogen forms at extreme conditions, under high pressures. Although

the hydrogen atom is easy to understand theoretically, when interacting in the

solid state it becomes complicated. Up to now, five different solid phases have

been confirmed experimentally and theory has predicted numerous competing

crystal candidates. The goal is to obtain solid metallic hydrogen which has been

predicted theoretically eighty years ago and has since been considered the holy

grail of high pressure science. In nature, this form of matter is believed to exist

at the core of large planets like Jupiter and Saturn, being responsible for the

planets’ large magnetic fields. Understanding the different phases of hydrogen is

a test for our most advanced theories of quantum mechanics in condensed matter

and it is fundamentally important for both planetary and material science.

Recently discovered solid phase IV is stabilized by entropy and therefore only

exists at relatively high temperatures. Using molecular dynamics (MD) I studied

the room temperature behavior of phase IV starting with the ground state

candidate structures reported in the literature. Additionally, I devised a velocity

projection method for extracting Raman spectra from MD in light of direct

comparison to experiment. My results helped establish the true nature of phase

IV and validated the structure against experimental data. Applying the same

method to the previously proposed C2/c crystal structure, I obtained results

that confirm this structure is the best candidate for phase III.

Within the last year, a new phase V of solid hydrogen was discovered in Raman

experiments. While attempting to identify the crystal structure associated with

this new phase, I discovered a manifestation of solid hydrogen in the form of

long polymeric chains that could be stabilized by a charge density wave. Here I

discuss the possibility of such a state of matter as an intermediate on the path

to molecular dissociation of hydrogen. Chains could, however, be a spurious

structure - the effect of a subtle non-convergence problem in the MD, which could
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indicate serious issues with many previous studies reported in the literature. A

far more likely candidate for phase V is a structure similar to that of phase IV

with a subtle dynamical modification. I will present Raman and phonon results

from both static and dynamic calculations to support this claim. I conclude my

work on pure solid hydrogen with an instructive model that could explain the

entire phase diagram based on simple thermodynamic considerations. All of the

assumptions were extracted from our previous ab initio studies through analysis

and observations. This model encodes a comprehensive summary of the current

understanding of solid hydrogen at high pressures.

Raman and infrared spectroscopy have been the methods of choice in most

hydrogen studies. Another way to look at the problem is to analyze the

behavior of isotopic mixtures: hydrogen-deuterium binary alloys. Using isotopic

substitutions, I revealed a textbook effect in hydrogen: phonon localization

by mass disorder. The effect might be unique to this element, owing to the

large mass ratio between hydrogen and deuterium. Phonon localization explains

the complicated Raman spectra obtained experimentally in hydrogen-deuterium

mixtures at various concentrations. More recent experimental results claim an

unexpected phase transition in mixtures at low temperatures based on splittings

in the infrared spectra. Here I will show that the infrared splitting seen

experimentally could be induced by mass disorder in phase III and does not

necessarily indicate a structural transformation.
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Chapter 1

Introduction

1.1 Short History

It was late in the 18th century when the chemist Smithson Tennant burned pieces

of diamond and recognized they transformed into regular charcoal [10]. This

crucial observation spawned a global race for achieving the inverse process, namely

obtaining diamonds out of ordinary carbon products. It took more than a hundred

years of development until diamond could be produced in the lab by compressing

carbon at elevated temperatures. These initial struggles gave birth to the new

field of high pressure science.

Soon, scientists around the world realized they could pressurize a range of

materials, from pure elements to complex mixtures of elements. In 1946, Percy

W. Bridgman received the Nobel Prize for his achievements in high pressure

physics. He had built an apparatus to produce pressures in excess of 10 GPa

[11]. He studied the elements, plastics, glasses, minerals, alloys and many other

compounds, monitoring their compressibility, thermal conductivity, electrical

resistivity etc; and found intriguing properties [12, 13] that spawned great interest

in the field.

High pressure science became a tool for creating exotic materials but also a means

for testing our understanding and developing new theories regarding the structure

of matter. With slight refinements to Bridgman’s apparatus, the diamond anvil

cell (DAC) was invented in 1959 [14], pushing up the pressure scale about two

orders of magnitude. This device, which is still being refined today, can now
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reach static pressures comparable to the ones found in the center of the Earth

(400 GPa). In the light of new technologies, all elements from the periodic table

have been compressed to extreme conditions, giving rise to unexpected behavior:

oxygen was transformed into a superconductor at pressures around 100 GPa [15],

sodium changed from a metallic conductor to a transparent insulator around 200

GPa [16] and so on. Very interesting, and still the topic of much debate is the

unusual case of hydrogen.

The most abundant atom in the Universe, hydrogen is found naturally at

all pressures scales: from the intergalactic vacuum (10−18Pa) to the core of

exoplanets and brown dwarfs (1015Pa) [17, 18]. Hydrogen is the lightest of all

elements in the periodic table and has the simplest structure. It comprises of one

proton and a single electron which can be analytically described using quantum

mechanical theory. Although well understood at normal conditions, the behavior

of hydrogen at elevated pressures continues to surprise the scientific community.

Wigner and Huntington discussed in 1935 the possibility of hydrogen becoming

metallic at pressures in excess of 25 GPa [19] and later on, in 1968 Ashcroft

predicted it might also become a superconductor at high temperatures [20]. Since

then hydrogen has been in the spotlight of high pressure science and considerable

effort has been made towards achieving its metalization. In the following, I will

shortly review the most important experimental and theoretical advancements in

the race to metalize hydrogen. I will also outline how this thesis contributes to

extending our knowledge in this field.

1.2 Overview

When Wigner and Huntington studied the possibility of hydrogen metalization

back in 1935 [19], they assumed at high pressures hydrogen would adopt the

simple body centered cubic (bcc) configuration. They used the simple Coulomb

potential to model the ions and numerically solved the Schrödinger equation for

the electrons in the bcc structure. Upon adding three important corrections to

the electron energy: exchange, correlation and Madelung; they found that atomic

bcc hydrogen is much less stable than the regular molecular crystal at normal

conditions and the bcc structure could only be achieved at considerably higher

densities, at pressures in excess of 25 GPa, which seemed out of reach at the time.

Perhaps more intriguing is that they mentioned the possibility that ”layered-like
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lattices” might become metallic faster than bcc upon increasing pressure. As I

will show later, modern theoretical calculations show they had the right intuition.

Wigner’s suggestion aroused a lot of interest in solid hydrogen and motivated

more theoretical studies with exotic predictions. Ashcroft applied the Bardeen-

Cooper-Schrieffer (BCS) theory to the proposed metallic state. He calculated

the transition temperature to a superconducting state to be considerably higher

than that of other alkali metals [20]. Ashcroft also outlined that understanding

solid hydrogen could bear significance for planetary science. He pointed out that

conditions at the core of the largest planets in our solar system might be sufficient

to sustain hydrogen in a superconductive state which could explain the strong

magnetic fields surrounding some of these celestial bodies.

The exciting predictions regarding solid hydrogen do not stop at superconduc-

tivity. At high density, it is expected that the electron will migrate from the

intramolecular to the intermolecular region. In combination with the high zero

point energy of the light protons, this could result in more intriguing physical

phenomena. For instance, using ab initio methods Bonev et al. predicted

that hydrogen might become a metallic liquid at pressures of around 400 GPa

and low temperatures close to zero kelvin [21]. They also noted that the

existence of a ground state liquid requires a turn-over in the slope of the melting

curve. Interestingly, the turn-over has been recently confirmed experimentally

by Howie et al. [22], but the existence of a ground state liquid is still debated.

Simultaneously with Bonev, Babaev et al. applied a Ginzburg-Landau model

to liquid metallic hydrogen, accounting for the possible interaction between

electron-electron and proton-proton Cooper pairs [23]. Their study predicts a

unique superconductivity to superfluidity transition, switchable with an external

magnetic field.

Enthusiasm in the field of high pressure hydrogen was ignited by theoretical

predictions which, in turn, promoted technological advancements, making ex-

periments at high pressure possible. The most notable advancement was the

development of the diamond anvil cell (DAC), which increased the pressures

achievable in experiments by orders of magnitude. In a DAC, two diamonds are

centered on a hole in a metal gasket and pressed towards one another as shown

in figure 1.1. There are many types of DACs, but they are all based on the same

principle: the high pressure is achieved by focusing the applied stress on a very

small region where the sample is positioned [25]. This clever technique presents

an important disadvantage in that only small samples, of the order of a few µm

3



Figure 1.1 The figure reproduced from ref [24] shows the schematics of a
diamond anvil cell: simple experimental setup (left), zoom on the
actual diamond and important parameters (right)

can be examined. Additionally, the stress-strain fields are non-uniform, making

it difficult to obtain homogeneous conditions of pressure and temperature.

The crystal structure of a material is the most important aspect needed for

understanding the nature and characteristics of a given phase. Knowing the

crystal structure allows one to perform powerful theoretical calculations and

predict the physical properties of any material. Unfortunately, particularly in

the case of hydrogen, the limited sample size combined with the much stronger

scattering from the diamond anvils makes X-ray and neutron diffraction exceed-

ingly difficult. These methods are critical for obtaining reliable crystallographic

information and since they do not apply for hydrogen at high pressure, there is

little hope for obtaining the precise crystal structure of the different phases of

hydrogen. Optical spectroscopy does, however, provide a workaround and, to

date, offers the most reliable connection between theory and experiment.

Apart from being the strongest naturally occurring material, diamond offers

another important advantage to high pressure experiments: it is transparent to

visible and infrared light up to very high pressures. This makes it possible to

obtain important information about the tiny hydrogen samples, using mainly

Raman and infrared absorption techniques, alongside visible absorption and

reflectivity observation. Nevertheless, the crystallographic details cannot be

obtained by these means alone and it is here where the theoretical models come
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into play. A joint effort between experiment and theory has been proven very

successful in understanding the various hydrogen phases.

On the theoretical side, most studies rely on a range of ab intio methods which

I will review in the next chapter. The goal is to calculate the most stable from a

range of tryout structures. Raman and infrared calculations are then performed

for the energetically competitive lattices and the results are compared to the

experiment. This general approach informs on the possible structure candidates

for the actual hydrogen phases found in the lab. As we shall see later, there

are many imperfections associated with this approach and these shortcomings

generate many debates in the field.

In the following chapter, I will clarify the various theoretical methods that

have been used throughout the literature and I will summarize our current

understanding of the hydrogen phase diagram at extreme conditions. I will then

follow up with three chapters of results to report on my own work in the field and

finally conclude with a chapter of remarks and comments on the future outlook

for high pressure hydrogen research.
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Chapter 2

Background

2.1 Review of Theoretical Methods

I will begin with a short summary of the most important computational methods

that are being used to study hydrogen at extreme conditions.

2.1.1 Structure Searching and Energy Calculations

Density Functional Theory (DFT) is at the center of most algorithms in condensed

matter, and it has been the driving force for advancing the field of solid hydrogen

as well. More recently, quantum Monte Carlo methods have been used to

substitute for DFT, but since all the results I will present here were obtained

with DFT, I will focus on reviewing this method.

The general Hamiltonian of a condensed matter system with Ne electrons and Nn

nuclei can be expressed as:

Ĥ = T̂n + T̂e + V̂nn + V̂ee + V̂ne (2.1)

which comprises of the kinetic energy of the nuclei, the kinetic energy of the

electrons, the nuclear-nuclear interactions, the electron-electron interactions and

the nuclear-electron interactions. Solving the Schrödinger equation for this

general Hamiltonian is a difficult problem, but a solution can be obtained within

the DFT formalism by introducing a series of clever approximations. Since the
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mass of the nuclei is considerably larger than that of the electrons, the general

problem can be decoupled in two parts: one dealing with the electronic degrees

of freedom and one with the nuclear ones. This is called the Born-Oppenheimer

approximation.

The interesting Hamiltonian is the one associated with the electrons and it can

be written as:

Ĥ = −
Ne∑
i=1

h̄2

2mi

∇2
i +

1

4πε0

Ne∑
i=1

Ne∑
j=i+1

e

|ri − rj|
+

1

4πε0

Ne∑
i=1

Nn∑
k=1

−Qk

|ri −Rk|
(2.2)

where ri and Rk are the positions in space of the electrons and nuclei, respectively,

mi is the mass of the electrons and Qk is the charge of the nuclei. The first two

terms are universal, whereas the last term depends on the crystal structure.

Having defined the Hamiltonian, the ground state energy can generally be found

by solving for the many-body wave function of the system. This is, however,

almost intractable for a setup with many electrons. DFT provides an alternative

where instead of describing the system based on the complicated wave function,

the problem can be reformulated in terms of a scalar field, called the electron

charge density n(r). The first of the Hohenberg-Kohn theorems states that the

Hamiltonian is entirely determined by n(r) and each of the energy terms is a

functional of the electron density:

E[n(r)] = Te[n(r)] + Vee[n(r)] + Vne[n(r)] (2.3)

The second theorem states that the minimum energy of the system is obtained if

and only if the electron density is the ground state density. As a result the ground

state can be computed starting from an initial guess for the charge density, and

advancing towards the minimum energy in a self-consistent fashion.

The last term in equation 2.3 is simply:

Vne[n(r)] =

∫
V

n(r)Vne(r)dr (2.4)

The challenging problem is evaluating the first two terms in equation 2.3, in

particular the kinetic one. The kinetic functional of the electron density is not

known exactly and it is a major drawback in standard DFT. This problem is

solved in Kohn-Sham DFT, where the system of interacting electrons is reduced to

an equivalent system of noninteracting particles described by the pseudo-orbitals
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ψi. The corresponding fictitious fermions are chosen to reproduce the charge

density of the original system:

n(r) =
Ne∑
i

|ψi(r)|2 (2.5)

The kinetic energy can then be easily computed from:

TKS = −
Ne∑
i=1

h̄2

2mi

∫
V

ψ∗i (r)∇2
iψi(r)dr (2.6)

However, this is just an approximation to the true kinetic energy Te. The electron-

electron interaction Vee, comprises of a classical Coulomb repulsion that gives the

Hartree energy:

VH =
e

4πε0

Ne∑
i=1

Ne∑
j=1

∫
V

∫
V

|ψi(r)|2|ψj(r′)|2

|ri − r′
j|

drdr′ (2.7)

and a quantum interaction that includes the Pauli exclusion and is part of

a contribution called the exchange-correlation energy VXC . In KS-DFT, the

exchange-correlation also includes the kinetic correction Te − TKS. A common

problem with equation 2.7 is that it overestimates the energy by including self-

interactions, where an electron falsely ends up interacting with itself.

The equations that determine the pseudo-orbitals can be found by applying the

variational principle to the total energy:[
− h̄2

2mi

∇2
i +

e

4πε0

Ne∑
j=1

∫
V

|ψj(r′)|2

|ri − r′
j|
drdr′ +

δVXC
δn(r)

+ Vne(r)

]
ψi = εiψi (2.8)

where these are called the Kohn-Sham equations and are equivalent to the

Schrödinger equation for the fictitious system [26, 27]. In this theoretical

framework, each pseudo-particle interacts with the other particles via a mean

field potential as shown above.

The remaining problem with Kohn-Sham DFT is the evaluation of the exchange-

correlation energy. The functional for exchange-correlation is unknown and it can

only be approximated, usually based on the energy of a homogeneous electron

gas. The simplest approximation is the local density approximation (LDA) which

estimates the exchange-correlation energy based on the value of the charge density
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at every location. More advanced methods estimate the exchange-correlation

energy not only based on the point value of the density but also the gradient.

These methods are called general gradient approximations (GGA), the most used

of which is the Perdew Burke and Ernzerhof (PBE) method [28]. Quantum Monte

Carlo solves the exchange-correlation problem by statistically sampling the real

many body wave function. My results, which I will present in the later chapters,

were all based on DFT.

In KS-DFT, the electron density is normally expended in an orthonormal basis

set, usually as a set of gaussians (local basis set) or a set of plane waves (non-local

basis set). The latter is more practical for use in periodic crystals, therefore most

results in solid hydrogen are based on plane wave calculations. An additional

complication is given by the divergent nature of the Coulomb interaction. Since

nuclei are treated as massive point charges, in hydrogen the value of the potential

at the center of the atom is infinite and the wave function has a cusp. To

circumvent this problem a range of pseudo-potentials are used in practice to

approximate the interaction near the center of the nucleus. These pseudo-

potentials are identical to the Coulomb potential outside a cut-off radius and

vary smoothly near the center. Pseudo-potentials are further divided into norm-

conserving and ultra-soft depending on whether they conserve the norm of the

wave function inside the cutoff radius or not. For each value of the electron

angular momentum, a different non-local pseudo-potential is required. This sums

up in a very concise manner the main challenges with DFT.

DFT can be seen as the fundamental building unit in algorithmic condensed

matter. Going a level up, more complex routines like geometry optimization

are constructed upon DFT. The goal of geometry optimization is to find the

equilibrium atomic configuration of a crystal at zero temperature. The algorithm

proceeds as follows: it starts with an initial crystal structure, calculates the total

potential energy using DFT, then evaluates the forces on each atom i as a gradient

of the energy surface: ~Fi = −∇~riU(~r), and finally employs a minimization method

to update the atomic positions and minimize the total strain. The routine is

repeated until the force on each of the atoms is zero. The geometry optimization

technique is crucial and most algorithms employ it to relax the initial structures,

which then become the basis of subsequent calculations.

Yet one level up in complexity we find the recently proposed Ab Initio Random

Structure Searching (AIRSS) algorithm. AIRSS was first used by Pickard and

Needs to successfully solve two of the high pressure phases of SiH4 [29]. AIRSS
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involves a rather simple, yet effective method. The routine generates a series

of random crystals parametrized by the lattice constants: cell lengths (a, b, c)

and cell angles (α, β, γ); together with a number N of atomic positions (ri,

i = 1, 2, ...N). The variables are constrained by some reasonable conditions; for

example, the crystal should be a homogeneous continuum, with nearest neighbor

distances ranging from 0.75 to 3 Å[30]. Each structure is then geometrically

optimized. At the same time, the enthalpy is calculated for each candidate

arrangement and then compared to decide the most energetically favorable crystal

conformation. For a given number of atoms in the unit cell, the procedure is

repeated until many configurations are generated more than once, ensuring an

exhaustive search.

As we will see in the literature review section, the AIRSS approach has been

essential for the understanding of the high pressure phases of solid hydrogen. In

the case of hydrogen, there is a complication to the energy evaluation, in that

some phases are stabilized by entropy and zero point energy. The usual geometry

optimization drives the structure in the ground state, at zero temperature, and

therefore evaluates the static energy Etot. To correct for dynamical contributions a

thermodynamics calculation is usually performed, which evaluates the vibrational

and zero point energies. The latter is found to be substantial in the case of atoms

with light nuclei (e.g. hydrogen and its isotopes). In the following, the steps for

the thermodynamical correction are given as implemented in the code CASTEP

[31].

At first the phonons are calculated from Density Functional Perturbation Theory

(DFPT) [32] which I will return to in section 2.1.3. As such the phonon density

of states f(ω) can be evaluated. The zero point energy is thus given by:

Ezp =

∫ ∞
0

h̄ω

2
f(ω)dω (2.9)

Each phonon is a boson that in the harmonic approximation stores an energy

quantum h̄ω. The energy distribution over the collection of phonons follows

Bose-Einstein statistics, thus at a given finite temperature T , the energy stored

in the vibrational motion is:

Evib =

∫ ∞
0

h̄ωf(ω)

exp( h̄ω
kT

)− 1
dω (2.10)
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while the total Helmholtz free energy at fixed volume, in the harmonic approxi-

mation, is given by:

F (V, T ) = Etot + Ezp + kT

∫ ∞
0

f(ω) ln

[
1− exp

(
− h̄ω
kT

)]
dω (2.11)

The entropy can also be evaluated from:

S =
1

T
(E − F ) =

1

T
(Etot + Ezp + Evib − F (T )) (2.12)

where S = S(V, T ).

Although these calculations give a good measure of the dynamical effects, they are

still an approximation in the harmonic regime. In some materials, like various

phases of hydrogen, the anharmonic behavior is pronounced. Therefore, for a

better theoretical description one can employ proper dynamical calculations.

2.1.2 The Role of Temperature: Dynamical Simulation

Classical molecular dynamics (MD)[33] is an algorithm that simulates the motion

of atoms at finite temperature. For a given interaction potential and a set of initial

conditions and boundaries, the MD algorithm estimates, at every given step, the

force on each particle i as a sum of contributions from all other particles j 6= i.

Subsequently, the routine employs an integration scheme (e.g. Runge-Kutta,

Leap Frog, Verlet) and estimates both the velocities and the new positions for

each of the particles. Combined with DFT, the method can be used to simulate

real crystal structures at finite temperatures and pressures. There are two main

variants of ab initio MD: Born-Oppenheimer (BO) and Car-Parrinello (CP) [34].

In BO-MD, the electronic forces on each atom are extracted at every step from

a DFT calculation. When DFT is performed, the nuclei are fixed and later the

atomic positions are updated following an integration scheme (like in classical

MD). On the other hand, in CP-MD the electron degrees of freedom are associated

small fictitious masses and they are included in the dynamics. The results I will

show later were derived from BO-MD.

Ab initio MD can be performed in a range of ensembles depending on the

boundary conditions. The most natural for simulations is the NVE ensemble
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where the number of particles, volume and total energy are kept fixed. NVE

is appropriate when the system under study is insulated and does not exchange

energy and momentum with the outside world. In experiments, however, the

sample interacts with the setup and the system is more appropriately described

by the Gibbs free energy. Calculations can mimic these conditions by using the

NPT ensemble, where the number of particles, pressure and temperature are kept

constant. In NPT, temperature is kept fixed by a thermostat, usually Langevin

or Nose-Hoover and pressure is fixed by a barostat, typically Andersen-Hoover

or Parrinello-Rahman [31]. The Langevin thermostat adjusts the velocities by

introducing a set of friction forces to simulate a viscous behavior, whereas the

Nose-Hoover introduces an additional fictitious particle acting as a heat bath into

the dynamics. The Anderson barostat allows volume to vary by introducing three

additional degrees of freedom corresponding to the lengths of the box, whereas

the Parrinello barostat also allows the angles to change.

Many dynamical properties can be extracted from MD. Since the routine

simulates the actual motion of the atoms, both the potential and the kinetic

energy are readily estimated from the dynamics. However, MD treats the nuclei

classically, therefore the zero point motion is not accounted for in the calculations.

A modification of the MD algorithm called PIMD, is based on the path integral

formalism and can achieve proper quantum mechanical treatment of light nuclei,

such as the single protons in the case of hydrogen.

According to the minimum action principle in classical mechanics, from all the

possible paths a particle can follow, the particle will always choose the path

that requires the smallest possible action. In the path integral formalism of

quantum mechanics, all possible paths must be considered. The final path of

the particle is the sum over all possible paths weighted by a complex exponential

factor that depends on the action of each path. As such, the quantum system

can be simulated with an infinite number of classical systems that explore the

different paths.

PIMD exploits precisely this idea. The nucleus is simulated by a closed chain of

beads, where each bead samples a different path in imaginary time, and all the

beads are connected to one another by harmonic oscillators as shown in figure

2.1. In practice, this means that PIMD essentially comprises of a number of

separate ab initio MD trajectories that each simulate one of the beads from the

closed chain that describes one quantum nucleus. If the number of beads is large

enough, this algorithm asymptotically approximates the real wave function of the
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Figure 2.1 A nucleus modeled as a polymeric ring of fictitious classical nuclei,
living in imaginary time, with periodic boundary conditions and
connected by an harmonic potential [35, 36].

nucleus and the associated zero point energy. In the case of hydrogen which has

a light nucleus, the zero point energy is important, so PIMD is more appropriate

than MD to study the dynamics. However, since PIMD typically consists of a

large number of beads, these simulations are substantially more expensive than

MD.

Returning to structure searching, MD simulations can be used to solve some

entropy stabilized structures. While in the AIRSS approach, the most stable

crystal at a given pressure and temperature is chosen from a collection of

randomly generated candidates, in MD and PIMD the energetically favored form

should be achieved naturally, especially in ensembles that allow the cell to vary

as shown by Parrinello et al. [37]. Given a large and long enough simulation,

independent of the starting atomic configuration, MD and PIMD should drive

the crystal through various phase transitions to the most stable structure.

In practice, however, the energy barrier of many phase transformations might be

much higher than the available thermal energy and thus the probability of such an

event happening within reasonable simulation time is well reduced. Additionally,

the transition can only take place if the number of atoms in the unit cell of the

initial structure is a multiple of the number of atoms of the final structure. These

factors can lead to nonphysical metastability.

On the other hand, small simulation cells can promote transitions, but these are

spurious, owing to large energy fluctuations compared to the size of the system.

In practice, MD simulation with small systems tend to go back and forth between

all the energetically competitive crystal structures. These are called finite size

effects [1] and can be a big problem in hydrogen simulations. Intuitively, in

13



smaller cells, fewer atoms need to rearrange, thus increasing the probability of a

bogus phase transition.

Figure 2.2 A one dimensional representation demonstrating how metady-
namics efficiently scans the potential energy surface (PES). The
structure starts in a local minimum but it is encouraged to migrate
towards the lowest energy point. The figure was reproduced from ref
[38].

A solution to the metastability problem in dynamical structure searching is

offered by the metadynamics algorithm. The method was introduced by Laio

et al. [38] and later refined for pressure induced phase transformations [39]. In

one metadynamics step, several MD simulation replicas are run simultaneously,

independent of each other, starting from the same set of initial coordinates s0i.

A finite number of MD steps ensures that a local region on the potential energy

surface (PES) has been scanned around s0i. A collection of forces is then obtained

as derivatives of PES with respect to si. The forces obtained as such also contain

a history term that slowly fills up the PES local minima, which encourages the

system to move out of equilibrium and sample other regions as shown in figure

2.2. Filling local minima one by one, the method eventually drives the system

towards a globally stable configuration.

There are many other algorithms that attempt to gauge dynamical properties and

find the most stable structures at given conditions of pressure and temperature.

Notably, Monte Carlo molecular modeling (MCMM) and Path Integral MCMM

simulations which do not generate real dynamics, but can sample dynamical

properties according to proper quantum mechanical statistics. Details of those

algorithms are, however, beyond the purpose of this review.
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2.1.3 Phonons: the Connection to Experiment

Finally, there are the spectroscopy simulation methods which are crucial for

advancing the field of solid hydrogen. Predictions based on energetics alone are

not always informative for the experiment. The errors involved in the different

ab initio approximations such as the choice of exchange-correlation functional,

combined with the experimental errors for measuring pressure and temperature,

make it difficult to identify which crystal structure corresponds to which phase.

The way forward is to consider all competitive structures as candidates and make

a decision based on spectroscopic data.

Theory of lattice dynamics (LD) [40] is a well established framework that

prescribes the recipe for phonon calculations. The basic steps in LD are given in

the following [32]. Consider a solid with equilibrium atomic positions r0iα, where

the indices i, j label the atom number and α, β, γ one of the x, y, z Cartesian

coordinates. Call V (r) the effective potential felt by the nuclei in the electronic

environment. If all the atoms experience small displacements uiα around the

equilibrium r0, V (r) can be approximated as:

V (r0 + u) = V (r0) +
∑
iα

∂V

∂ui,α
uiα +

1

2

∑
i,j,α,β

uiα
∂2V

∂uiα∂ujβ
ujβ + ... (2.13)

However, since the perturbation is added to the equilibrium state, the first

derivatives cancel. Ignoring the first term which is just a constant and the higher

order terms (i.e. anharmonic contributions), the new potential becomes:

V (r) =
1

2

∑
i,j,α,β

uiαφ
α,β
i,j ujβ, φα,βi,j =

∂2V

∂uiα∂ujβ
(2.14)

where φα,βi,j is called the force constant matrix or Hessian matrix. The equation

of motion for the above potential takes the form (left) with Ansatz (right):

miüiα = −
∑
jβ

φα,βi,j ujβ, uiα =
√
miεiαqe

i(qriα−ωqt) (2.15)

with q labeling the phonons’ wave vector, ωq their frequency and εiαq the normal
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mode. After substituting the solution, an eigenvalue problem is obtained:

Dαβ
i,j (q) · εiαq = ωqεiαq, Dαβ

i,j (q) =
1

√
mimj

∑
γ

φα,βi,j e
−iqrγ (2.16)

where Dαβ
i,j (q) is just the Fourier Transform of the Hessian matrix [31]. For any

q there are exactly 3N eigenvalues (i.e. frequencies and eigenmodes), with N

being the number of atoms in the unit cell. The gamma point phonons can be

calculated by setting q = 0.

In practice, the problem lies in constructing the Hessian, for which two

independent methods exist: Finite Displacement (FD) and Density Functional

Perturbation Theory (DFPT). In FD the atoms in the unit cell are displaced one

at a time along x, y and z directions. For each perturbation, the force contribution

to all other atoms is calculated, which in turn allows the evaluation of the Hessian

matrix. The main limitation of this algorithm is that, in reality, contributions

from mirror images, located in neighboring cells, are wrongly included in the

values of the forces. Therefore this procedure only works well when the atomic

interactions are short range and do not extend beyond the unit cell.

The DFPT algorithm calculates the Hessian from linear response theory using

Hellmann-Feynman theorem, which can be derived as [32, 41]:

V (r) = 〈ψ|H |ψ〉 =

∫
ψ∗Hψdr (2.17)

dV

dr
=

〈
dψ

dr

∣∣∣∣H |ψ〉+ 〈ψ|H
∣∣∣∣dψdr

〉
+ 〈ψ| dH

dr
|ψ〉 (2.18)

dV

dr
= V

d

dr
〈ψ| ψ〉+ 〈ψ| dH

dr
|ψ〉 =

∫
ψ∗
dH

dr
ψ (2.19)

Taking second derivatives, which are needed for the Hessian, one finally obtains:

d2V

dr2
=

〈
dψ

dr

∣∣∣∣ dHdr |ψ〉+ 〈ψ| dH
dr

∣∣∣∣dψdr
〉
− 〈ψ| d

2H

dr2
|ψ〉 (2.20)

The problem is finally solved by calculating the response terms (i.e. derivatives

of the wave functions) in a self-consistent fashion by employing DFPT. Once the
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phonons are calculated, one can proceed by evaluating which of the vibrations

are infrared or Raman active, thus making the ultimate bridge to experiment.

Infrared absorption results from the transition of a vibrational mode at the

gamma point (i.e. q = 0) to an excited level by absorbing part of the energy from

an external field. When light is passing through a crystal, the infrared active

modes will absorb at their natural frequencies, leaving gaps in the transmitted

light spectrum. The intensity of the absorption is influenced by the change in the

electric dipole moment occurring in a given oscillation mode. The intensity of a

transition from state m to state n is given by [42]:

Inm ∝
∑
α

〈ψm|µα |ψn〉2 =
∑
α

(∫
ψ∗mµαψn

)2

(2.21)

with α, β, γ being one of the Cartesian components x, y or z, as before and µα

the dipole moment. Labeling the normal modes with k and normal vector εkα,

the dipole moment can be developed as a series in the basis of the modes:

µα = µ0
α +

∑
k

∂µα
∂εkα

εkα (2.22)

The intensity of absorption, thus, becomes:

Inm ∝
∑
α

(〈ψm|µ0
α |ψn〉+

∑
k

〈ψm|
∂µα
∂εkα

εkα |ψn〉)2 (2.23)

Since the states ψm, ψn are orthogonal to one another, the term 〈ψm|µ0
α |ψn〉 does

not give any contributions. As such, the only contribution to the intensity arises

from the change of dipole moment. Note that the integral 〈ψm| (∂εkαµα)εkα |ψn〉
is non-zero if the derivative is non-zero [42]. In simulations, the change in dipole

moment with respect to the normal modes can be calculated as a linear response

with DFPT or by numerical methods with finite displacement [43]:

∂µα
∂εkβ

= − ∂2E(r)

∂Aα∂εkβ
=
∂Fk
∂Aα

(2.24)

where Aα is an external field and Fk are the forces corresponding to each mode k.

Within the finite displacement method, for each value of the external field, a new
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relaxation can be performed and the force contributions recalculated. As such,

the infrared activity can be easily computed since only first order derivatives of

the forces are required.

The Raman process results from the inelastic scattering of the photons by

phonons. When an external field Aα = A0
α cos(ωt) that is not in resonance with

some eigenfrequency of the lattice interacts with the electron density, it induces

a dipole moment proportional to the polarizability tensor ã(ω) [42]:

µα = ã(ω)A0
α cos(ωt) (2.25)

For a normal mode labeled by angular frequency ωk, the polarizability tensor can

be written as:

ã(ω) = ã(ω0) +
∂ã

∂εkα
dεkα = ã(ω0) +

∂ã

∂εkα
εkα cos(ωkt) (2.26)

Combining the two equations yields:

µα = ã(ω0)A0
α cos(ωt) +

∂ã

∂εkα
A0
αεkα cos([ω − ωk]t) +

∂ã

∂εkα
A0
αεkα cos([ω + ωk]t)

(2.27)

Figure 2.3 This figure reproduced from ref [42] illustrates the Raman processes.

This model offers a simple classical description of a Raman process. When an

external field interacts with the crystal, it will excite the system to a virtual state.

If the system was initially in the ground state, it can relax either back to the

ground state, conserving the energy (i.e. elastic photon scattering or Rayleigh

process) or to a real excited state, producing a photon with lower energy (i.e.
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Stokes process). If the system was found in an excited state, the external field

will add to the energy, and finally, the configuration will relax to the ground

state, emitting a photon with higher energy (i.e. anti-Stokes process). All three

mechanisms (i.e. Rayleigh, Stokes and anti-Stokes) are illustrated in figure 2.3

and they are present in equation 2.27 as the tree terms of the summation. In

reality, there is a much smaller probability of finding the system in the excited

state, so the cross-section of the anti-Stokes scattering is much smaller than

that of Stokes, however, this is not explained by the simple classical model.

Experimentally, by looking at the frequency difference between the Rayleigh and

Stokes radiation, one can determine the frequencies of the Raman active modes.

The temperature of the sample can also be deduced from the ratio between the

Stokes and anti-Stokes Raman intensities.

The intensity of the active Raman modes depends on the derivative of the

polarizability tensor. In practice this derivative can be evaluated within DFPT

from [43, 44]:

∂ã

∂εkα
= − ∂3E(r)

∂Aα∂Aβ∂εkγ
=

∂2Fk
∂Aα∂Aβ

(2.28)

In contrast with infrared, the Raman intensities require second order force

derivatives to be evaluated as a response to different external fields. The

calculation is, therefore, much more expensive.

The entire theory presented above works in the harmonic approximation. As we

shall see later, hydrogen does not always subscribe to this special case. A standard

method to account for anharmonicity is to extract the phonon frequencies from

MD simulations, by taking the Fourier Transform of the velocity auto-correlation

function (VACF) [45]. When the simulation is long enough and the structure

remains well behaved, this method can extract reliable frequencies even in the

anharmonic case. However, VACF gives the entire phonon spectrum, and there

is no way to distinguish the infrared and Raman active modes. In chapter 3

I will show the method we developed to map the phonons onto the atomic

trajectories, which allows us to calculate the Raman activity at finite temperature

for anharmonic crystal structures [1, 3, 4].

Having summarized the most important theoretical techniques involved in the

search and characterization of the high pressure hydrogen phases, we shall turn

our attention to the progress made in the field up to date.
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2.2 The Phase Diagram: Theory and Experiment

In this section, I will review our current understanding of the phase diagram of

hydrogen under pressure, see figure 2.4. Starting with a short revision of the

liquid phase, I will then progress through all the solid phases from I to the newly

discovered phase V. This survey will cover the most important experimental and

theoretical studies in the field in the past decades. For more comprehensive

reviews, the reader can consult refs [18, 24, 46–49].

Figure 2.4 Schematic illustration of the hydrogen phase diagram as we
currently understand it. I show the solid phases in light yellow,
separated from the liquid phases by the melting curve, depicted in
red. In blue I show the line of molecular dissociation in the liquid
phase. From ref [50].

In figure 2.4 I show our current view on the phase diagram. The liquid is stable

at high temperatures. At low pressure, the liquid is molecular and insulating,

but at high pressure, it becomes atomic and metallic. A mixed atomic-molecular

liquid is expected at intermediate pressures. In the second half of chapter 4, I

will present an intuitive thermodynamical model that explains this intermediate

state as a mixture following Boltzmann statistics. The melting line has a positive

slope early in phase I and then switches sign when the liquid becomes denser than

the solid. Higher up in pressure, the line flattens out as the solid phases become
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more entropic.

There are five distinct solid phases, none of which is metallic. At low pressures,

there are phases I and II. Phase I is a hexagonal close packing of quantum rotors,

while phase II is a broken symmetry phase, where molecules become classical and

assume a fixed orientation. Within phase I, there could be a variation - phase

I’, where the quantum rotors become correlated. At higher pressures, phases III,

IV and V are stackings of molecular layers. While phase III comprises of one

type of layer, phases IV, V comprise of two or more. Phases IV, IV’ and V are

very similar to one another and the subtle differences between them will be the

topic of chapter 3. Further up in pressure, the solid could become atomic and

then the liquid could become the ground state. In chapter 4 I will present an

additional intermediate metallic structure that could become stable before the

atomic phase.

2.2.1 Liquid Phases

Hydrogen metalization can be achieved following two different paths: by com-

pressing in the solid phase or in the liquid phase [51]. Since the former remains out

of reach, a lot of effort has been made to achieve metalization in the liquid state.

The liquid is stable at high temperatures, where static compression experiments

in DACs are limited by hydrogen diffusion and subsequent embrittlement. The

alternative is to use shock compression where a pressure pulse compresses the

sample along an equation of state called Hugoniot.

The first experimental confirmation of metallic hydrogen came in 1996, when Weir

et al. [52] used shock compression to measure the electric conductivity of small

hydrogen samples at temperatures of 2200-4400 K and pressures of 93-190 GPa.

They found a significant increase in conductivity up to 140 GPa, above which

the conductivity remained constant. They interpreted the results as a continuous

transition from a semi-metallic to a metallic fluid at 140 GPa and 3000 K. This

was the first account of metallic hydrogen. A more recent shock wave experiment

[53] achieved the metalization of deuterium at around 300 GPa as illustrated in

figure 2.5.

An experimental alternative used to achieve high temperatures in the liquid

state is the laser heating technique [54, 55]. The laser heating experiments

are performed in DACs where a laser is used to heat up only a small region
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Figure 2.5 The figure taken from ref [53] shows the PPT line in liquid
deuterium at 300 GPa. The experimental result is illustrated in
dashed red line. Solid purple, red, light green and blue are the
compression paths. The black, dark green and orange lines are
theoretical predictions within various approximations.

of the sample in the vicinity of a strong absorber. These studies claimed to have

identified a plasma phase transition (PPT) in liquid hydrogen at pressures much

lower than the shock experiment. Concerns about the loss of sample and uneven

temperatures make these results the subject of heated debates. The changes in

the optical properties of the samples could, however, be related to a first order

transition to a mixed atomic-molecular phase [56].

Unlike shock studies, laser heating experiments can also access lower temperature

regimes, closer to the melting line [57, 58]. The transition from solid to liquid has

captured a lot of attention mainly because of the prediction that the melting line

could change slope with pressure as the liquid is gradually becoming more stable.

More traditional DAC experiments where the samples are uniformly heated using

a thermostat [59, 60] and are thus more reliable than laser heating studies, have

attempted to find the maximum in the melting curve. The breakthrough came

last year when Howie et al. mapped the melting line to a record of 250 GPa [22] by

observing changes in the Raman spectra as shown in figure 2.6. For the first time,

they showed clear evidence that the melting line has a maximum above which the

melting temperature is decreasing upon increasing pressure. They also showed

that the Raman vibron persists in the liquid, which brings counter-evidence to

the liquid being atomic.
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Figure 2.6 The figure taken from ref [22] shows the most recent data on the
melting line with clear evidence of a maximum and a change of slope
sign with pressure. The data below 150 GPa is from previous studies,
while the red diamonds with associated errors are from theory [21].
The data shown with filled symbols and without error bars is from
the latest experiment [22].

On the theory side, the first study attempting to find the PPT line was performed

by Scandalo in 2003, who used ab initio MD to simulate liquid hydrogen in the

pressure range 75-175 GPa and temperatures around 1500 K [61]. He found a

first order transition from a molecular to an atomic fluid, indicated by an abrupt

change in the pair distribution function. Moreover, the transition with little

hysteresis was also accompanied by a substantial change in volume that made

the liquid denser than the solid. Based on Clausius-Clapeyron relation this result

indicated for the first time a possible downturn in the melting line.

One year later, Bonev et al. extended this previous theoretical study. They

used the phase coexistence method to map out the melting line in the pressure

range 50-200 GPa [21]. In their calculation, the PPT line was found at 200 GPa,

900-1000 K, in agreement with the former result. They also found a crossover

23



between the PPT and the melting line, yielding a liquid-liquid-solid triple point

at 300 GPa, 400 K. Furthermore, their results indicated the existence of a ground

state metallic fluid and supported the idea of a maximum in the melting line.

These initial results were based on DFT-MD. Nevertheless, they predicted

the maximum in the melting curve long before the experimental confirmation.

Recently, more advanced studies have used quantum Monte Carlo methods

(QMC) to calculate the forces and run the dynamics [56, 62, 63]. QMC provides

an exact numerical approximation for the exchange-correlation interactions.

However, QMC is more expensive than DFT so, generally, it is performed on

smaller systems, with fewer k-points. As I will show later, this can lead to finite

size effects which, in some cases, could be more important than errors in the

exchange-correlation energy.

Morales et al. compared DFT with QMC and found that QMC-MD places the

liquid-liquid transition 50 GPa higher than DFT. In a more recent study [64] they

found that the zero point energy of the nuclei and the van der Waals corrections

can shift the PPT higher and lower in pressure by more than 100 GPa. Last

year, Mazzola et al. showed that there might be in fact two different transitions

in the liquid which changes gradually from molecular to mixed atomic-molecular

and finally atomic [56]. This result inspired our simple thermodynamical model

which I will present in the second half of chapter 4 and which could reconcile the

experimental observations from laser heating and shock waves.

The prediction of a liquid ground state has intrigued the theoretical community.

Recent studies have extended the calculations of the melting line to higher

pressures to investigate the possibility of a ground state liquid. Liu et al. used the

Z-method and found that after going through a maximum at around 100 GPa,

the melt line drops with pressure but eventually flattens and the solid remains

stable at room temperature up to pressures higher than 600 GPa [65]. Chen et al.

obtained a similar result - they found that the stable phase between 500 GPa and

800 GPa is an atomic solid [66]. However, they also found that including the zero

point energy in the dynamics, using PIMD was crucial for the calculations. With

PIMD, the liquid did become the ground state above 800 GPa, while with classical

MD the solid remained stable. These pressures remain too high for experiments

at low temperature, so the experimental confirmation will have to wait. However,

all these studies agree on a low temperature melting line, which could be related

to a class of relatively unstable solids such as the one I will present in chapter 4.
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2.2.2 Phases I and II

Hydrogen was first solidified in 1899 [67], and for almost a century only one solid

phase of hydrogen was known - phase I. Later on, a transition to a new phase

was observed in para-hydrogen, ortho-deuterium [68] and in hydrogen deuteride

[69], by means of Raman spectroscopy, at low temperature and high pressure.

These initial Raman results followed by subsequent X-ray diffraction experiments

[70] led to the conclusion that phase I is a quantum solid consisting of free

quantum rotors arranged in a hexagonal closed packed (hcp) structure. Since

the transformation to phase II only happened in spherically symmetric molecules

(J = 0), it was classified as a broken symmetry orientational transition [24].

A series of crystal structures (i.e. P21/c, Pca21, P63/m) have been proposed

in early theoretical studies to account for phase II. Moraldi et al. approximated

the quantum rotational energies in Pca21, Cmc21, P21/c and P63/m, finding

Pca21 to be the best candidate for phase II of hydrogen [71]. More recently, Li

et al. performed a series of more sophisticated, PIMD simulations starting in

both P63/m and P21/c− 24 [72]. With the inclusion of zero point energy, which

is implicit in PIMD, both P63/m and P21/c − 24 [73] were identified as good

candidate structures for phase II. The calculated X-ray scattering, Raman and

infrared spectra for P21/c − 24 were found to be in good agreement with the

experimental observations [74, 75] as shown in figure 2.8.

Classically, the phase I to II transition can be viewed as an ordering by

quadrupole-quadrupole interactions as we showed in a recent MD study [7]. This

is the perspective we adopt in our simple thermodynamic picture discussed in the

second half of chapter 4.

2.2.3 Phase III

Hemley and Mao were the first who managed to compress pure hydrogen in

DACs up to 200 GPa at low temperatures (77 K) [76]. Around 150 GPa, they

found a new phase transformation, indicated by a considerable discontinuity

in the Raman vibron. Their results were first interpreted as an orientational

phase transition, similar to the phase I-II transformation. Lorenzana et al.

repeated the experiments and carefully analyzed the data [77]. They claimed

the transformation was structural and they named the new solid phase A, later
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known as phase III.

Figure 2.7 From left to right: P63/m, C2/c and Cmca − 12, candidates for:
phase II, III. The figure was adapted from ref [78].

In a systematic theoretical study [78], Pickard and Needs employed AIRSS to find

the most energetically favorable zero-temperature crystal configurations up to 500

GPa. Comparing the enthalpies, they found the most stable structures as follows:

P63/m (at pressures lower than 105 GPa), C2/c (105-270 GPa), Cmca−12 (270-

385 GPa) and Cmca−4 (385-490 GPa). Other predictions, similar in energy with

Cmca− 12 were a new class of mixed layer structures: Pbcn, C2 and Ibam. The

atomic crystal structure I41/amd was found to be similar in energy to Cmca−4.

Including the zero point energy (ZPE) through the quasi-harmonic approximation

changed slightly the regions of stability such that C2/c became stable below 240

GPa and Cmca− 12 above. Figure 2.7 shows the crystal structures of the likely

candidates.

Their study found C2/c to be a good match for phase III and predicted its

metalization above 350 GPa. For C2/c both Raman and infrared data were

found to agree with earlier experiments [79, 80], as shown by Tse et al. [81].

A series of more recent experiments were reported by Akahama et al. who

performed Raman measurements up to 296 GPa at low temperatures (90 K and

100K) [82]. Darkening of the samples was observed above 270 GPa in agreement

with previous results [79, 80], indicating the gradual closing of the band gap.

Akahama et al. also measured the X-ray powder diffraction for hydrogen up to

183 GPa, 100 K [75]. As shown in figure 2.8, they found two diffraction peaks 100

and 101 to be continuous across the II-III phase transition. They interpreted this

as evidence that the transition to phase III is non-reconstructive, being another
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Figure 2.8 Comparison between theoretical predictions for phases II (solid red
line) and phase III (solid blue line) and experimental observations
(black dots) of: a) infrared, b) Raman and c), d) crystallographic
information. This figure is from ref [72].

broken symmetry, in agreement with some theoretical studies [83]. Therefore,

they conclude that the phase transformation from II to III could be orientational

in nature, similar to the I-II transformation, and C2/c cannot be a good match

for phase III.

Akahamas’s conclusions were carefully analyzed in a more recent theoretical study

by Li et al. They demonstrate that the X-ray diffraction data is compatible with a

structural transformation [72]. They compared the Raman, infrared vibron and

X-ray diffraction parameters of phases II and III with their analog theoretical

predictions for the structures P21/c − 24 and C2/c, respectively; and found

reasonable agreement as shown in figure 2.8.

Further optical measurements at low temperatures and much higher pressures in

phase III were obtained by Zha et al. [84]. They measured infrared and optical

absorption as illustrated in figure 2.9, claiming to have achieved 360 GPa. Their

findings dismiss the possibility for a phase transition or metalization at those

pressures since their samples remain transparent and no discontinuity is found in

the infrared spectrum. These results are at odds with Pickard’s prediction that a
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phase transformation should occur at around 250 GPa and at low temperatures.

Figure 2.9 Experimental infrared and Raman spectra collected from various
sources. Figure adapted from [84].

In their recent work, Li et al. [72] used an improved DFT functional that

accounts for dispersion and found a shift in the stability range of C2/c from

the earlier prediction of 120-240 GPa [78] to 150-300 GPa, in better agreement

with the experiment. Furthermore, including contributions from ZPE shifts the

transition to the metallic Cmca − 4 at higher pressures, which reconciles with

the experimental observations that could not find the metallic state at similar

conditions.

The use of different exchange-correlation functionals [85] and more sophisticated

methods like quantum Monte Carlo [86] can drastically change the stability

of the different candidate structures. However, the ultimate confirmation

comes from the comparison to experimental data. Pressure calibration studies

have shown that the experimentally measured pressures are also subject to

substantial uncertainty. Errors from the DFT exchange-correlation functionals

and anharmonic effects of the free energies can result in large variations of the

region of stability of different structure candidates. It is no wonder that so many

theoretical and experimental studies obtain conflicting results. The approach in

my work was to understand the connection between the various experimental

phases and theoretical crystal structure predictions through spectroscopic data
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rather than energetics. The C2/c structure remains the best candidate for phase

III - to which I will bring supportive evidence in chapters 3 and 5.

2.2.4 Phase IV

Eremets et al. claimed the discovery of the metallic phase [87]. In their

experiments, they compressed small hydrogen and deuterium samples in DACs

to pressures as high as 300 GPa at room temperature. They measured Raman,

optical absorption and photo-induced conductance. Following a continuous

darkening in the interval 220-260 GPa and an abrupt drop in resistance at 270

GPa, they claimed their samples became metallic. Later, their experimental

findings were found to be highly controversial. Silvera et al. investigated their

work [88], and attributed the drop in resistance to leakage currents and chemical

reactions of the sample with the epoxy gasket.

Howie et al. conducted similar experiments with different outcomes [89]. They

manage to obtain clean Raman spectra as shown in figure 2.10, of both the vibron

and the lower frequency modes along the room temperature isotherm up to 310

GPa. At around 210 GPa a transition from phase I to phase III is indicated

by the abrupt shift in the intensity of the Raman vibron and the appearance of

a broad low energy phonon band. At slightly higher pressures, at around 220

GPa, a new, sharper vibron ν2 appears, the original vibron ν1 softens and rapidly

broadens, indicating the transition to a new phase IV. The new phase also yields

three strong lower energy modes and pronounced optical absorption. A further,

more subtle modification occurs at 270 GPa, where ν1 changes slope and a new

low frequency mode appears. These latter modifications were noticed by Howie

et al. and were associated with a slightly different phase IV’ [90].

The changes in the Raman signature are also present in the results by Eremets

et al., however, they focused more on the drop of resistivity. Howie et al. were

the first to suggest that the mixed Pbcn structure proposed by Pickard et al.

[78] as a candidate for phase III, could, instead, account for changes observed in

the new phase IV. Pbcn is a molecular, layered structure, but unlike the other

molecular candidates C2/c, Cmca − 12 or Cmca − 4; Pbcn comprises of two

different molecular environments, which could, in turn, explain the two vibrons

of very different frequencies. The structure consists of bromine-like layers, called

B layers and graphene like layers, called G layers. On the one hand, the molecules

in the B layer are shorter and form stronger bonds, generating a high frequency
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Figure 2.10 a) Representative Raman of hydrogen (A) and deuterium (B) at
room temperature. The diamond response (inset) is eliminated
from the Raman spectra (the gap around 1300 - 2000); b) The
dependency of the Raman spectra with pressure accounting for
phases I, III and IV at room temperature. Inset: the dependence
of the FWHM with pressure, which also changes at the phase
transitions. The figures were reproduced from ref [89].

vibron ν2. On the other hand, the molecules in the G layer are weaker and longer,

giving rise to a softer vibron ν1 [91].

The initial Raman spectroscopy experiments were followed by a series of infrared

studies that also found phase IV at room temperature [92–94]. Infrared as

depicted in figure 2.11 shows behavior similar to the Raman spectrum.

Within a given band of vibron frequencies, the Raman active vibrons are

symmetric and occupy the lower frequency of the band, while infrared ones are

anti-symmetric and usually live in the higher frequency range of the same band.

Except for a constant offset between Raman and infrared, the same behavior

is observed upon entering phase IV: the vibron splits in half, one of which

softens rapidly with pressure, the other remains pressure independent. This result

supports the model of a mixed molecular structure like Pbcn.

Although Pbcn appears to be a good candidate for phase IV, in phonon

calculations it gives negative frequencies. The existence of imaginary phonons

usually means that the structure is unstable, however, in the case of hydrogen,

the large zero point motion could stabilize the structure.

Following the discovery of phase IV, Pickard et al. extended their initial AIRSS
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Figure 2.11 Infrared measurements in phase IV of solid hydrogen at room
temperature in comparison with Raman measurements at the same
conditions. The figure is from ref [92].

study based on PBE-DFT and found a new structure Pc− 48 as shown in figure

2.12. The new Pc−48 is similar to Pbcn but with more distorted G layers [91]. In

phonon calculations Pc− 48 gives negative frequencies as well, however, a larger

unit cell, Pc−96 eliminates those. The study also estimated the energies including

zero point motion and vibrational energies in the harmonic approximation for

C2/c, Pbcn, Pc−48, Pc−96, Cmca−12 and Cmca−4. Additionally, the phonon

densities of states were calculated alongside Raman and infrared activity at the

gamma point. The extended version of Pc was found to be the best candidate

for phase IV, accounting for both energetics and Raman spectra. An erratum

published later by the same authors found the metallic Cmca − 4 more stable

than Pc on the entire pressure range [95] which further extended the metallic/non-

metallic controversy started by the conflicting experimental results of Eremets

and Howie. As shown by more recent studies [86], the increased stability of the

molecular Cmca− 4, could be an anomaly due to the PBE functional.

Ignoring the energetics, Pc partially explains the experimental results obtained

in phase IV. On closer inspection, the two molecular environments in Pc behave

very differently with increasing pressure. While the bond lengths in the B layer

change very little, the G layer molecules strongly elongate and the intramolecular
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Figure 2.12 An illustration of the extended Pc structure (96 atoms) at 250
GPa. Left: stacking; Right: top view and layer configuration.
Figure taken from ref [91].

distances get closer to the intermolecular ones as the pressure increases. The

structure seems to continuously transform towards the more symmetric Ibam,

where the G layers are entirely atomic.

The Raman spectra computed in the harmonic approximation for Pc, however,

do not entirely agree with the experimental result for phase IV. Although ν2 is

well explained by the Pc crystal, the calculated ν1 is softer in DFPT calculations

than in experiment. In our work [1, 3] we showed that phase IV, like phase I,

is stabilized by entropy and a better description comes from molecular dynamics

(MD) simulations. In chapter 3, I will explore a method to extract the Raman

vibrations from MD [4], which narrows the discrepancy between theory and

experiment.

Other studies have also investigated phase IV using dynamical methods. Liu et

al. employed metadynamics calculations to map the phases of hydrogen within

the pressure range 150-300 GPa at room temperature [96]. They found a new

candidate for phase IV (Cc), which is energetically degenerate with Pc. According

to their calculations, Cc does not contain imaginary phonons, which makes it

more stable than Pc. The molecules in the B layers are found to be rotating

freely in Cc which brings evidence that phase IV is inherently dynamical and

cannot be entirely understood with any of the 0 K, ground state symmetries.

In a different article, Liu et al. extended their calculations attempting to

give a better dynamical description of their Cc structure [97]. In their ab

initio MD simulations, they report an interesting proton diffusion effect which

they associate with the rapid softening and broadening of the ν1 vibron. This

diffusion phenomenon comprises of two distinct effects: spontaneous rotation of
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the molecular trimmers in the G layers, combined with the change of trimmer

identity through complete layer reconstruction.

Seeking to understand the intricate nature of phase IV, Goncharov et al. also

used MD to simulate the Pbcn crystal. They found layer structural fluctuations

where B and G switch identity and molecular ”hopping” [98]. We later show their

small cell simulations were affected by finite size effects [1]. They also computed

the phonon density of states extracted from auto-correlation function and showed

that the soft vibron could be highly anharmonic.

The results I will present in chapter 3 summarize our own work intended to

understand these issues. In agreement with Liu’s work [96, 97] we found that the

nature of phase IV is dynamical with free rotation of molecules in the B layers

and rotations of molecular trimmers in the G layers [1, 3]. In our simulations we

found little diffusion in the region of stability for phase IV and we believe this

could not affect the vibron frequency since it takes place at a much longer time

scale.

In parallel with dynamical studies, other groups continued to investigate ground

state candidates for phase IV in static calculations. They argue that the apparent

shortcomings of the Pc structure regarding energetic stability [95] stem from the

problems with PBE-DFT [86, 99], which is a poor approximation in hydrogen.

In quantum Monte Carlo (QCM) calculations, Drummond et al. found a more

stable Pc which exists in the region of stability of phase IV, in good agreement

with the experiment.

We believe that phase IV has a dynamical nature with free rotation in the B and

G layers, therefore MD is a better approach to investigate this phase [1, 3, 4].

The usual ab initio MD does not include quantum effects on the nuclei, which

were shown to be important, so we do not expect the pressure and temperature

transitions to match experimental observations perfectly. Nevertheless, as shown

in the results chapter 3, MD simulations can help us understand this phase better

and explain the experimental findings.

2.2.5 Phase V and Beyond

This year, three new experimental studies have claimed new phases of solid

hydrogen [100–102]. In particular, Dalladay-Simpson et al. showed a further
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modification at room temperature that occurs in hydrogen and hydrogen-

deuteride, but not in deuterium [100]. At 325 GPa, the soft vibron ν1 in solid

hydrogen becomes almost pressure independent and two out of the four low

frequency modes gradually disappear. This phase is new and little is know about

it. In the second half of chapter 3, section 3.3, I will show our preliminary

computational results on phase V. There, I will also discuss the experimental

observations in more detail. I believe phase V is a subtle dynamical modification

from phase IV, where the main change takes place in one of the layers.

It is clear that the new phase reported by Dalladay-Simpson et al. is not an

atomic phase, because the Raman vibrons persist at those conditions. It is also

clear that the new phase comprises of at least two molecular environments just

like phase IV, evident by the two vibrons of different origins. All these issues will

be discussed in more detail in the second half of chapter 3.

Theory predicts that at pressures higher than 800 GPa, the liquid becomes stable

close to zero kelvin [66]. The molecular phases persist up to almost 400 GPa as

shown by the recent experimental results [100].

Figure 2.13 The figure shows the best candidate structures for the atomic solid
phase [103, 104]. On the left is I41/amd and on the right Fddd, a
slightly distorted version of I41/amd. The distortion is visible in
the top-down view.

The region between these pressures is of great interest to both theory and

experiment. A series of DFT studies [103–105] have shown that at these pressures,

the most likely candidate is an atomic phase with a distorted diamond structure.
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This crystal candidate as shown in figure 2.13, has I41/amd symmetry and is also

the structure of cesium IV (Cs− IV ). A similar structure, almost degenerate in

energy [106], is Fddd which is a small distortion from I41/amd as illustrated in

figure 2.13. These initial results have been validated by quantum Monte Carlo

studies [107, 108] which also found these structures to be stable at high pressures.

In chapter 4, I investigated I41/amd using molecular dynamics simulations at

pressures around 400 GPa which might soon become accessible in experiments. I

also compared this structure against Cmca − 4 which has been found to be the

most stable from the molecular structures and remains a competitive candidate

for solid hydrogen above 400 GPa.

2.2.6 Hydrogen-Deuterium Mixtures

Deuterium is an isotope of hydrogen, with twice the nuclear weight. Since

deuterium has the same electronic structure as hydrogen, there is no difference

between the two isotopes in the Born-Oppenheimer approximation, where the

nuclear and electronic degrees of freedom are decoupled. Owing to its larger

mass, the deuterium atom has, however, lower zero point energy than hydrogen.

Studying the phase diagram of solid deuterium in comparison to that of hydrogen

can help us assess the contribution of zero point energy in stabilizing the

different phases [109]. The heavier mass of the deuterium isotope can also be

exploited as an experimental tool to investigate the strength of intramolecular

and intermolecular interactions. For instance, at the same pressures and

temperatures, the ratio between the HH vibron and the DD vibron in the

harmonic approximation should be
√

2. The deviation from this result can

inform on the weakening of the bond with increasing pressure [89]. Similarly,

the ratio between the free rotors of the two isotopes is expected to be 2, absent

any intermolecular interactions. Upon increasing pressure, the strength of the

intermolecular forces can be estimated from changes in this ratio.

Even more interesting than pure hydrogen and deuterium solids are the hydrogen-

deuterium mixtures. As I have extensively discussed above, many studies have

investigated pure solid hydrogen and deuterium across the accessible pressure

and temperature scales. However, hydrogen-deuterium mixtures have received

less attention, partially because they are much more complicated to deal with.

In the following, I will review the most notable studies in mixtures.
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Figure 2.14 The shift of the HH (left), DD (middle) and HD (right) Raman
vibrons as a function of mixture composition and pressure, at room
temperature. From ref [110].

Brown and Daniels performed a pioneering experiment where they compressed

hydrogen and deuterium mixtures up to 60 GPa at room temperatures [110].

As shown in figure 2.14, they observed that, in mixtures, the vibron frequencies

corresponding to each molecular species are higher than those obtained in the

corresponding pure solids. The lower the concentration of a particular species

and the higher the pressure, the larger its frequency shift from the pure solid.

They explained this phenomenon with a model of coupled oscillators [111]. In a

pure lattice, the molecules can couple and oscillate all in phase. This vibration

pattern has a lower Raman frequency than that of noninteracting free molecules

in the gas phase. In a mixture, the mass disorder breaks the coupling, increasing

the frequency of the minority species. Upon increasing pressure, the difference

between coupled and uncoupled molecules is enhanced as the strength of the

intermolecular interaction increases. This phenomenon has been observed in other

mixtures as well, where a small concentration of hydrogen molecules is embedded

in a matrix of heavier inert atoms like helium, neon and argon [112].

Our collaborators have recently managed to extend the experimental study of

hydrogen-deuterium mixtures into phase IV [2]. In the first half of chapter

5, I will present my computational work on phase IV mixtures that explains

the experimental observations through a phenomenon called phonon localization.

Basically, this phenomenon results from breaking the coupling between molecules

through mass induced disorder as previously noticed by Brown and Daniels.

Other experimental studies have employed infrared spectroscopy to investigate

pure hydrogen-deuteride (HD). Figure 2.15 shows the result of Chijioke and

Silvera in pure HD, where they mapped the phase boundaries of phase II with

phase I and III [113]. Upon increasing pressure, at around 4-8 K the sample
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Figure 2.15 This figure reproduced from ref [113] shows the infrared spectra in
pure hydrogen-deuteride (HD) upon pressurizing, at around 4-8 K
(left), and upon heating at 159 GPa (right).

transformed on the path I-II-III. In phase III, the HD peak has two shoulders

and there is no evidence of HH or DD peaks.

In a recent study this year, Dias et al. extended the original work at low

temperatures in HD up to pressures of 350 GPa [114]. Based on infrared splitting

they claim two new phases. I will dedicate the second half of chapter 5 to

analyzing their result using ab initio calculations, starting from the best known

structural candidates for phase III, C2/c and Cmca− 12.
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Chapter 3

Solid Hydrogen Phases III, IV and V

3.1 Overview

In the first half of this chapter, I will present my initial work on phases III and

IV of solid hydrogen. The experimental discovery of phase IV [87, 89] revived

the field of hydrogen. The main indicator of phase III to phase IV transition in

experiment is the splitting of the Raman active vibron into two individual vibrons:

a higher frequency one which is pressure independent and a lower frequency one

that varies strongly with pressure. This is surprising for a molecular crystal,

especially for an element as simple as hydrogen, and it proves the existence of

two distinct molecular environments.

The study I report in the second half of the chapter was aimed at understanding

the origin of the newly discovered phase V [100]. My hypothesis is that this new

phase is a subtle modification from phase IV. The new structure maintains the

mixed molecular environments as evident by the continuity of the two different

vibrons from phase IV.
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3.2 Phases III-IV

3.2.1 Introduction

A substantial body of work, both theoretical [1, 3, 72, 96–98] and experimental

[75, 84, 90, 92–94] has been dedicated to understanding the crystal structures

and the physical properties of phases III and IV. The breakthrough came from

the AIRSS studies [78, 91] which proposed two crystal candidates based on

energy stability: C2/c for phase III and Pc for phase IV. Raman computed

with density functional perturbation theory (DFPT) yielded the correct number

of active vibrons in both cases and at roughly the correct frequencies, with one

notable exception: the lower frequency vibron in Pc is much softer than the

experimentally measured vibron in phase IV.

The important observation here is that phase IV does not extend to low

temperatures, indeed experiments that started in phase IV found a transition

back to phase III upon decreasing the temperature [89]. This indicates that phase

IV is stabilized by entropy and it is a high temperature phase. Therefore, the

true nature of this phase cannot be understood in zero kelvin (0 K) calculations

but can be studied using molecular dynamics (MD) simulations.

In this section I will present a range of MD simulations starting from the best

known candidates for phases III and IV at 0 K. The calculations were extended

in the pressure interval 180 to 350 GPa and at temperatures ranging from 150 to

500 K. Apart from investigating the dynamic behavior of these structures, I also

devised a simple technique to extract the Raman active vibrons directly from the

MD trajectories. The results presented in this section were also published in two

peer review papers [1, 3].

3.2.2 Methods

Simulation Details

All calculations presented here are molecular dynamics (MD) simulations per-

formed with CASTEP [31, 115]. For the density functional theory (DFT) step

of the calculations, the electron density was expanded in plane waves with an
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energy cut-off of 1200 eV. The density was treated as spin neutral (unpolarized).

Since the focus here was on phases III and IV, mostly at pressures below 300

GPa, all structures were modeled as insulators by fixing the occupancy of the

electronic bands. In the later parts of the chapter, section 3.3, the calculations

were mainly focused on the recently discovered phase V and those simulations

have variable occupancy to allow for possible metallic modifications.

Here I employed the Perdew Burke Ernzerhof PBE functional [28] to evaluate

the exchange-correlation energy. For electron minimization I used the Broyden

density mixing (dm) scheme and the total energy was converged within 10−11

eV at every iteration step. With these settings, I performed a series of MD

simulations as summarized by table 3.1.

To avoid the cusp at the center of the hydrogen nucleus, CASTEP em-

ploys pseudo-potentials. In simulations 1-25, table 3.1, I used the ultra-

soft pseudo-potential generated on the fly by CASTEP from the input string

”H 1|0.8|0.8|0.6|2|6|8|10(qc = 6)” [116], while for simulations 26-29, I used the

norm-conserving pseudo-potential generated by ”H 0|0.7|2|6|8|10L(qc = 10)”

[116].

In all the MD runs, the time step was fixed to 0.5 fs which is the setting I used

throughout the thesis. The highest frequency likely to be present in the system is

the vibration of the hydrogen molecule at around 4200 cm−1, which is equivalent

to approximately 8 fs. With a time step of 0.5 fs, the simulation samples the

highest frequency period at roughly 16 points, which should be sufficient to

conserve the energy of the system.

In order to understand the true nature of phases III and IV, but also to gauge the

contributions of spurious effects, I employed a variety of MD settings: pressures,

temperatures, ensembles, different cell sizes, k-point MP grids; all reported in

table 3.1. The structural candidate I used for phase III was C2/c [78], while

the candidates for phase IV were Pc [91] and Cc [96]. In the later parts of this

chapter, I will return to phase IV and consider more structural candidates. Note

that here all cells with 288 atoms comprise of four wider layers, while later in

section 3.3 the 288 atoms cells have eight narrower layers.

All the MD simulation here were performed in one of two thermodynamic

ensembles: constant volume and energy (NVE) or constant pressure and

temperature (NPT), both of which conserve the number of particles. In the
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Table 3.1 Summary of all MD calculations discussed in this section. Sim-
ulations 1-25 employ ultra-soft pseudo-potentials, while simulations
26-29 use norm-conserving pseudo-potentials. Shaded in blue are the
simulations I used to extract Raman information from the dynamics.

Id Start Atoms Length/Ensemble MP grid Pres. Temp.

1 Pc 48 4.5ps NVE 5x3x3 250 GPa 60 K
2 Pc 48 3.0ps NVE 5x3x3 250 GPa 145 K
3 Pc 48 3.0ps NVE 5x3x3 250 GPa 215 K
4 Pc 48 3.0ps NVE 5x3x3 250 GPa 285 K
5 Pc 48 3.0ps NVE 5x3x3 250 GPa 360 K
6 Pc 48 3.0ps NVE 5x3x3 250 GPa 430 K
7 Pc 48 3.0ps NVE 5x3x3 250 GPa 500 K

8 Pc 288 1.5ps NVE 1x1x2 250 GPa 145 K
9 Pc 288 1.5ps NVE 1x1x2 250 GPa 215 K
10 Pc 288 1.5ps NVE 1x1x2 250 GPa 285 K
11 Pc 288 1.5ps NVE 1x1x2 250 GPa 360 K
12 Pc 288 1.5ps NVE 1x1x2 250 GPa 430 K
13 Pc 288 1.5ps NVE 1x1x2 250 GPa 500 K

14 Pc 288 0.25ps NPT+0.75ps NVE 1x1x2 180 GPa 220 K
15 Pc 288 0.25ps NPT+0.75ps NVE 1x1x2 200 GPa 220 K
16 Pc 288 0.25ps NPT+0.75ps NVE 1x1x2 220 GPa 220 K
17 Pc 288 0.25ps NPT+0.75ps NVE 1x1x2 250 GPa 220 K
18 Pc 288 0.25ps NPT+0.75ps NVE 1x1x2 270 GPa 220 K
19 Pc 288 0.25ps NPT+0.75ps NVE 1x1x2 300 GPa 220 K
20 Pc 288 0.25ps NPT+0.75ps NVE 1x1x2 350 GPa 220 K

21 C2/c 288 0.25ps NPT+1.5ps NVE 1x1x2 200 GPa 220 K
22 C2/c 288 0.25ps NPT+1.5ps NVE 1x1x2 220 GPa 220 K
23 C2/c 288 0.25ps NPT+1.5ps NVE 1x1x2 250 GPa 220 K

24 C2/c 288 0.6ps NPT 1x1x2 250 GPa 200→400 K
25 C2/c 288 0.4ps NPT+1.0ps NVE 1x1x2 250 GPa 300 K

26 Pc 768 0.25ps NPT+1.5ps NVE 1x1x1 270 GPa 300 K
27 Pc 768 0.25ps NPT 1x1x1 340 GPa 300 K
28 Pc 288 1.5ps NPT+1.5ps NVE 2x2x4 270 GPa 300 K
29 Cc 384 0.3ps NPT+2.0ps NVE 1x1x2 270 GPa 300 K

NPT ensemble, the temperature was kept constant using the Nose-Hoover chain

thermostat with 5 particles and the default characteristic ionic time of 5 fs. The

pressure was kept fixed using either the Andersen-Hoover (simulations 14-20) or

the Parrinello-Rahman (simulations 21-29), in both cases with characteristic cell

time of 50 fs.

NVE keeps the simulation box fixed and usually does not allow for structural

phase transitions. NPT-Andersen assigns three degrees of freedom corresponding

to the lengths of the box, while NPT-Parrinello assigns six degrees of freedom

corresponding to the three lengths and three angles of the box, which are then
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allowed to change in time. Therefore, NPT was generally employed here to

equilibrate the simulations to the desired conditions, while NVE was employed to

study the properties of an equilibrated structure. Some of the trajectories were

used to analyze the behavior, like the average crystal structure or the dynamics,

while others were used to extract information about Raman activity. These latter

simulations were colored light blue in table 3.1.

Structure and Dynamics

The room temperature behavior of these crystal structures was analyzed through

time average trajectories and mean square displacements. To obtain the average

crystal structure in the case of NPT, I first calculated the average lattice

parameters:

M̃α,β =
1

tmax

tmax∑
t=1

Mα,β(t) (3.1)

where α and β label Cartesian coordinates, Mα,β is the transpose lattice matrix,

the tilde denotes time averaging, while tmax denotes the length of the simulations.

Since CASTEP allows atoms to cross the periodic boundary during the MD

simulation, in both NVE and NPT, the average positions can simply be obtained

from:

x̃αl =
1

tmax

tmax∑
t=1

xαl (t) (3.2)

where l = 1, N labels the atoms and xαl denotes the absolute atomic positions.

Finally, the average crystal structures presented in the results section were

obtained by reducing the average absolute positions to the main average cell:

x̂αl =
3∑

β=1

M̃α,β

[(
3∑

γ=1

M̃−1
β,γx̃

γ
l

)
mod 1

]
(3.3)

here, the hat represents time average and reduction to unit cell, as the equation

shows.
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I investigated diffusion and molecular rotations through mean displacement:

MSD(t) =
1

N

N∑
l=1

√√√√ 3∑
α=1

[xαl (t)− xαl (0)]2 (3.4)

Raman from MD

The idea here was to extract Raman from MD and account for the anharmonicity

of the modes in hydrogen, phases III and IV. The method presented below was

successfully applied before to classical MD simulations [117]. Here the method

was extended to ab initio calculations.

Given the trajectory of an equilibrium quasi-harmonic structure with associated

eigenmodes εαl,k (where k labels the 3N frequencies), one can expand the atomic

positions of this structure at every time step in terms of its normal modes [4]:

xαl (t) = x̃αl +
3N∑
k=1

ck(t)ε
α
l,k (3.5)

where ck is the projection of the trajectory onto each normal mode k.

To eliminate the complication introduced by the average positions, one can

expand the atomic velocities vαl instead. Since the center of mass is kept fixed in

MD, the velocities average to zero and the equation becomes:

vαl (t) =
3N∑
k=1

ċk(t)ε
α
l,k (3.6)

Since εαl,k span an orthonormal space, the contributions ċk to each mode k can be

obtained reversely by projecting the velocity onto each normal mode:

ċk(t) =
N∑
l=1

3∑
α=1

vαl (t)εαl,k (3.7)

All ċk(t) are oscillating in time. Furthermore, the frequency of this oscillation is

the temperature corrected frequency fk of each mode k.
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Now, if r0K
k is the Raman intensity of mode k at zero kelvin (0K), then the finite

temperature Raman distribution rTk (f) can be extracted from the discrete Fourier

Transform of ċk(t):

rTk (f) =
r0K
k

tmax

∣∣∣∣∣
tmax∑
t=1

ċk(t) exp(−2πift)

∣∣∣∣∣ (3.8)

At this point, rTk (f) is a gaussian distribution centered around a frequency fk

which is the temperature corrected frequency of mode k. The final spectrum can

then be obtained as a sum over all k:

rT (f) =
3N∑
k=1

rTk (f) (3.9)

Unfortunately, in the case of hydrogen, this method fails because, as shown later

in the results section, the hydrogen structures are not harmonic and they include

free rotations of molecules and trimers. Figure 3.1 shows how such a rotation can

render the method unusable.

Figure 3.1 The figure shows why the projection method onto fixed eigenmodes
fails when there are free rotations in the system. Top, mode e1

is a molecular vibration with frequency ν1. Middle, mode e2 is a
molecular libration with frequency ν2. Bottom, the molecule rotates
freely by 90◦, the vibrational motion ν1 moves along the librational
eigenmode e2 and the method fails.

In conclusion, the low frequency modes are nearly impossible to project. As

shown in the later parts of the chapter, section 3.3.3, they comprise of complicated
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oscillation motions. However, it turns out that the high frequency Raman vibrons

are simple, in phase oscillations of molecules in the B and G layers, respectively.

Therefore, here, I calculated the high frequencies Raman spectra by simply

projecting the velocities onto molecular axes aαl , which are bound to and rotating

together with the molecules:

rT (f) =
1

tmax

∣∣∣∣∣
tmax∑
t=1

N∑
l=1

3∑
α=1

vαl (t)al(t)
α exp(−2πift)

∣∣∣∣∣ (3.10)

To calculate the molecular axes, one needs to identify the molecules first. For

each atom, I find the closest atom pair that is not already part of a molecule.

This becomes problematic when molecules are no longer well defined, in which

case the order of the atomic labels matters. For instance, if both atoms 1 and 2

are close to an atom 3, but it is not obvious which of the pairs 1-3 and 2-3 is the

molecule, than the algorithm will automatically assign the molecule to the pair

1-3 and atom 2 will be left out. These cases are actually difficult to deal with

and there is no best solution to this problem.

Generally, I use two approaches for finding molecules. In the first approach, the

molecules are only identified once at the start of the simulations and then the

labels are kept throughout. However, in some cases, molecules are short lived and

dissociation and rebonding become frequent. Therefore, in the second approach,

the molecules are recalculated at every time step. The results from the two

methods are different only when dissociation is important.

3.2.3 Results

In figure 3.2 I show evidence that phase IV only exists at high temperatures and

it is stabilized by entropy. The C2/c structure is the best candidate for phase III

and it consists of a series of distorted G layers (GGGG stacking). MD simulations

started in C2/c and performed at 220 K are stable for almost 2 ps. However,

upon heating to 300 K, C2/c transforms into a stacking of BGBG layers which

is characteristic to phase IV.

Interestingly, the transformation is accompanied by a complete reconstruction of

the entire cell. Whereas the original layers in C2/c are perpendicular to the z-axis,

after the transition, the layers in BGBG reform in a direction perpendicular to the
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Figure 3.2 Results of the MD simulation performed in NPT (number 24
from table 3.1) which was started in a 288 atom supercell of C2/c
and which transformed to a series of BGBG layers upon heating
at constant 250 GPa. Left, the relaxed structure at the start of
the simulation and a snapshot of the BGBG structure after the
transition occurred. Alongside the 3D cell I also show the pattern of
the different layers as insets. The bromine-like layers are labeled B,
while the graphene-like layers are labeled G. Right, the temperature
as function of time, as well as the evolution of the lattice parameters
across the transformation.

x-axis. This new structure is similar to the ground state structure C2 discovered

by AIRSS [78], with the distinction that at room temperature in BGBG, the

molecules in the B layer appear to be rotating almost freely. The rotating B

molecules generate large entropy and therefore decrease the free energy of this

configuration, making BGBG more stable than the GGGG stacking at the same

pressure and higher temperature. In the next chapter, I will discuss in more detail

the thermodynamics behind these arrangements.

The structure of phase IV has been thoroughly studied in ground state calcula-

tions [91], metadynamics [96] and molecular dynamics [1, 3, 97, 98, 118], being

a unique molecular crystal with two different kinds of molecular environments.

Some of the earliest dynamics calculations employed simulations boxes as small as

the unit cell (48 atoms). In table 3.1 I summarized my own simulations (numbers

1-7) with such small cells. Although fewer atoms allow for longer trajectories

which are important in MD, these simulations are bugged with a range of severe

finite size effects. For instance, layers appear to often switch identity, with B

layers becoming G and vice versa. To eliminate these spurious effects, I extended

the cells used in MD to 288 atoms or more and these were found to be stable.
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As I will discuss later in chapter 4 the k-point sampling is also important, in

particular for metals. Here, however, the structures were treated as insulators

which are less affected by the number of k points.

To understand the true nature of phase IV, I performed a series of MD simulations

with 288 atoms and four layers, spanning the pressure range 180 to 350 GPa.

Interestingly, the results show a distinction between the behavior at pressures

below 260 GPa and above, see figure 3.3.

Figure 3.3 Atomic positions averaged over 1 ps of MD simulation with 288
atoms, originally started with Pc. Left, average structure at 220
GPa and 220 K (simulation 16 from table 3.1). Right, average
structure at 270 GPa and 220 K (simulation 18 from table 3.1).
In both cases the structures comprised of four layers which were
unfolded here for illustration purposes. Upon increasing pressure
the G layers differentiate into layers that allow trimer rotation G”
and layers that comprise of symmetric molecular trimers G’.

At the lower pressures, the simulations started in Pc remain close to the original

symmetry in the G layer, while in the B layer, the molecules are almost freely

rotating. The rotation is evident in the average trajectory, where the mean

position of the two atoms of the B molecule coincides with the center of mass of

the molecule. As a result, the B layer acquires hexagonal symmetry on average.

We call this stacking BGBG. This region is, however, outside the experimental

stability regime for phase IV.

At the higher pressures, above 260 GPa, where the experiment finds phase IV,

the B layers remain unchanged, but the G layers differentiate into two distinct

types: G’ and G” [1]. In the G” layers the molecular trimers rotate around their

axis of symmetry, independently of one another. The rotation is indicated by the

time average of the G” layers where the mean position of six atoms belonging to
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each trimer coincides with the center of mass of that trimer after long enough

time. On the other hand, the G’ layer becomes more symmetric and appears

to be more stable against rotation. This stacking was called BG’BG” and it is

possibly the true nature of phase IV. The rotation of the trimers in the G” layer

generates additional entropy which further stabilizes the BG’BG” structure at

finite temperature.

Figure 3.4 Full trajectories in grey and the average atomic positions with blue
dots, extracted from MD simulations at 270 GPa and 300 K. Panel
I, the result of the 768 atoms simulation started in Pc with 1x1x1
k−point MP grid (number 26 from table 3.1). Panel II, the 288
atoms Pc simulation with 2x2x4 k−point grid (number 28). Panel
III, the 384 atoms simulation started in Cc [96] with 1x1x2 k−point
MP grid (number 29). When averaged over a long enough period to
allow full rotations, the two blue dots in the B layer molecule / six
blue dots in the G′′ trimer will coincide with the center of molecule
/ trimer.

In order to check if this dynamic behavior is robust against finite size effects

I repeated the simulations with larger unit cells, consisting of 768 atoms and

double the number of layers (eight). I also performed a simulation starting from

a hexagonal setting of the BG pattern, having Cc symmetry at 0 K [96] and a

simulation starting with Pc but with denser k-point sampling.
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The results of these calculations are shown in figure 3.4 and are consistent with

the previous observations. At room temperature, the eight layer cell with 768

atoms displays a BG’BG”BG’BG” stacking which is just a repeat of BG’BG” in

the direction perpendicular to the layers. Similarly, the Cc structure displays the

same behavior with two types of G layers. The simulation performed with a denser

k-point grid (panel III in figure 3.4) is slightly different because the rotation of

the trimers took longer to initiate and therefore the distinction between G’ and

G” layers is less clear.

The studies presented in refs [97, 118] found substantial diffusion in the G layers

owing to a two step process: 1) rotation of molecular trimers and 2) complete

layer reconstruction such that an atom initially belonging to one trimer can

switch over to the neighbor one. While the results I show here, indicate clear

evidence of trimer rotation, at these pressures and temperatures I found no sign

of layer reconstructions. Subsequently, the diffusion cannot take place under these

circumstances.

Figure 3.5 On the left, I show the Raman vibrons computed with the molecular
projection method for 768 atoms Pc in red (simulation number 26)
and 384 atoms Cc in blue (simulation number 29). On the right, I
show the mean displacement (MSD) calculated for phase IV at 270
GPa with different simulation settings: starting cell, the number of
atoms and k-point grid as reported in the legend and table 3.1.

Figure 3.5 shows the MSD calculated for phase IV at 270 GPa from the various

MD trajectories presented in table 3.1. The displacement is unusually large owing

to molecular rotation in the B layers and trimer rotation in the G layers, however,

it does eventually reach an upper limit. The only simulation that appears to

sustain diffusion is the 48 atom cell. In this case, the increased diffusion is a
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result of finite size effects.

The study in ref [118] argued that the lack of diffusion in our calculation is mainly

the result of insufficiently long simulations. In the second half of this chapter in

section 3.3.3, I will present new simulations extended to higher pressures and

longer time scale that reconcile the disagreement between our studies [1, 3, 97,

118]. As we will see later, the structure that undergoes true diffusion is slightly

different than BG’BG” and could be related to the newly discovered phase V.

Figure 3.6 Here I report the result of a short NPT MD simulation at 340
GPa and room temperature (number 27 from table 3.1) which was
started in a 768 atom supercell of Pc and immediately transformed to
Cmca−4. The left figure shows the average atomic positions in four
of the eight layers. The right figure shows the temperature as well
as the evolution of the lattice parameters across the transformation.

Finally, at a pressure of 340 GPa, the simulation started in Pc immediately

transformed to Cmca − 4 which is a molecular structure with a single type of

molecule (see figure 3.6). The stabilization of Cmca− 4 at higher pressures was

found in both static [91] and dynamic simulations [1, 96, 98], however recent

studies have shown this result is highly dependent on the exchange-correlation

functional used.

When Raman is calculated in Pc from perturbation theory, the hard vibron fits

the experiment, but the soft vibron does not. This is expected since phase IV

is an entropically stabilized structure and at finite temperature, it has a higher

symmetry than Pc. This disagreement was the main motivation for performing

MD in the first place and for devising a method to calculate the vibrons from
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MD trajectories at finite temperature.

Figure 3.7 This figure reports the Raman vibrons calculated with the projection
method (equation 3.10) at 270 GPa and 220 K for phase IV
(simulation 18). On the left, I show the vibrons calculated separately
for each layer using two different approaches: 1) the molecules
are identified at the start of the simulation and the labels are kept
throughout (continuous red line), 2) the molecules are recalculated
at each step (dotted blue line). On the right, I compare the Raman
extracted from MD at 270 GPa and 220 K (blue) with the result
calculated with DFPT at 0 K (red) [1] and the experimental data
from ref [89] (dark gray).

In figure 3.7 I compare the Raman active vibrons extracted from MD at 270 GPa

with the experimental data [89] and the calculation obtained from perturbation

theory at 0 K [1, 91]. In this particular case, the vibrons extracted from the

MD agree well with the experiment and correct for the earlier discrepancy.

Interestingly, the simulation also predicts a shoulder on the softer vibron, which

was identified in more recent experiments [119], however, higher up in frequency.

By 270 GPa, the simulation is a BG’BG” stacking and the agreement of the

Raman data with the experiment brings new evidence that the true nature of

phase IV is dynamic and phase IV cannot be described well by any of the 0 K

symmetries found in AIRSS.

In figure 3.7, I also show the Raman spectra computed by projection separately

for each layer. It is clear that the high frequency vibron originates from the
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Figure 3.8 In this figure, I illustrate the pressure dependence of the Raman
vibrons computed by molecular projection. On the left I show
the spectra calculated for phase IV (starting in Pc) at 220 K
and pressures ranging from 180 GPa (bottom) to 300 GPa (top)
(corresponding to simulations 14-19 in table 3.1). On the right
I compare the Raman obtained from simulations (solid) with the
Raman measured experimentally (open symbols). Experimental data
for phase IV was obtained at 300 K in ref [89], while for phase III
at 90 K in ref [82]. DFPT data was calculated at 0 K in refs [1, 78]
while my MD results were obtained at 220 K (numbers 14-23 of table
3.1). The inset shows the Raman peaks extracted from the BGBG
structure after C2/c reconstructed at 250 GPa and 300 K. Notice
how the vibrons split after the transformation.

B layer while the softer vibron originates from the G layer. As I explained in

the methods section 3.2.2 the molecules were determined with two approaches:

1) identified in the beginning and then kept throughout the simulation and 2)

recomputed at every step. The two methods give the same result in layers B

and G’, but a slightly different result in layer G”. This difference indicates that

in layer G”, molecules are shorter lived and undergo continuous breaking and

rebonding.

The final test for the projection method and for the validity of the BG’BG” model

as a candidate for phase IV comes from the pressure dependence of the vibrons

presented in figure 3.8.
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Figure 3.9 This figure summarizes on the P-T phase diagram [90, 96] the
simulations performed in this section: MD started C2/c which
remained unchanged (open red rhombi); C2/c which transformed
to a BGBG stacking upon heating (solid red rhombus); simulations
started in Pc which stayed in a BGBG stacking and are probably
metastable (open blue squares); Pc that transformed to a BG’BG”
stacking (solid blue squares and solid green circle) and finally MD
initiated in Pc which transformed to Cmca−4 (solid black triangle).
Note that both the solid green circle and the solid black triangle
label simulations containing 768 atoms, while all the other labels
are simulations with 288 atoms.

For both phases III and IV, I compare the vibrons extracted from MD with those

computed by perturbation theory (DFPT) and the experimentally measured ones.

The result obtained from MD for C2/c matches the experimental data for phase

III better than the DFPT result. This brings additional evidence to support that

C2/c is a good candidate structure for phase III [78], despite the small discrepancy

between DFPT and experiment.

In phase IV, the vibrons obtained with the new projection method from the

MD started in Pc agree well with the experiment, especially at pressures

above 260 GPa where the stacking becomes BG’BG”. This result solves a

major disagreement between theory and experiment and indicates that the high

temperature nature of phase IV is the BG’BG” model.

Finally, in figure 3.9, I summarized all the MD simulation on the phase diagram
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[1]. The calculations agree with the experiment regarding the stability regions

of each phase. In the region of phase III, simulations started in C2/c remain

unchanged, while simulations started in Pc form a metastable BGBG stacking.

On the other hand, in the region of phase IV, the MD simulation started in

C2/c and heated up transformed to a BGBG type stacking. Additionally, in the

same regime, the Pc simulations changed to a BG’BG” stacking, which is the

high temperature manifestation of phase IV. Further in the chapter I will present

additional simulations in the pressure range 250 to 500 GPa that indicate more

subtle modifications beyond the BG’BG” model.

3.2.4 Summary

This section was aimed at understanding the dynamic behavior of phases III and

IV of solid hydrogen. For doing so, I performed a series of MD simulations in the

pressure range 180-350 GPa and at temperatures from 150 to 500 K. Additionally,

I developed a new technique for extracting the Raman active vibrons from the

dynamics in light of direct comparison with the experiment.

The Raman vibron computed from the dynamics of C2/c agreed well with

experiment even better than the previous DFPT result. Two conclusions can

be drawn: 1) the C2/c vibron which originates from distorted G layers is slightly

anharmonic and the new method corrects for it and 2) C2/c is a good candidate

for phase III.

Upon heating, the C2/c structure transforms to a BGBG type stacking accom-

panied by complete layer reconstruction. This transformation agrees with the

experimental result that phase IV is stabilized by entropy and only exists at

finite temperatures above phase III.

MD is crucial for understanding the dynamic nature of phase IV. The finite

temperature behavior is the stacking model BG’BG”, where molecules are almost

freely rotating in the B layer and the G layers differentiate into two types: one

which allows trimer rotation (G”) and one which does not (G’). The Raman

vibrons calculated with this model fit the experimental data well, bringing

evidence that BG’BG” is a good candidate for phase IV.

At the pressures and temperatures studied here, I found no diffusion in the BG

layered models, but as I will show in the next section 3.3, diffusion becomes
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possible after a slight change of symmetry which takes place at higher pressures.

3.3 Phases IV-V

3.3.1 Introduction

The new studies I will present here were prompted by a very recent experiment

which claims the discovery of a yet new solid phase V [100] based on modifications

recorded in the Raman spectra as shown in figure 3.10. The study also brings

new evidence for the phase IV to IV’ transition, claimed in previous work [90].

These findings were confirmed by an independent experimental study [101].

Figure 3.10 This figure is taken from ref [100] and summarizes their
experimental results in hydrogen where the new phase V is
identified. On the left is the change of Raman spectra with
increasing pressure, while on the right is the change in the position
of the vibrons ν2, ν1 and lattice modes L1−4.

The experimental signature of these phases can be summarized as follows. The

softer vibron originating from the G layers which varies strongly with pressure
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in phase IV, becomes less pressure dependent in phase IV’ and finally almost

pressure independent in phase V. Whereas phase IV generates three independent

low frequency lattice modes, labeled L1, L2 and L3, in phase IV’ a new mode

appears to split from L3 and is labeled L4. Upon transition into phase V, modes

L2 and L3 vanish. Additionally, L1 and L4 increase in relative intensity, while

the softer vibron ν1 decreases. Finally, the full width at half maximum (FWHM)

of L1 starts to increase rapidly at the IV’-V transition.

My hypothesis is that these modifications could be caused by a gradual

symmetrization of the G layer, where the intermolecular distances become similar

to the intramolecular ones. Since both vibrons persist in phase V, the new

structure is likely a variation of the bromine-graphene (BG) layering. The softer

vibron becomes pressure independent in phase V which indicates that while the

bond elongates rapidly with pressure in phases IV/IV’, upon transition to V, it

asymptotically reaches a physical limit. There are no abrupt changes in the low

frequency modes. Two of them gradually increase in intensity, while two gradually

decrease in intensity until they can no longer be detected in the experiment. This

again indicates subtle dynamical changes in one of the B or G layers.

To investigate these modifications, I analyzed a series of phonon calculations,

Raman and infrared alongside molecular dynamics in the pressure range 200 to

500 GPa. As shown previously in section 3.2.2 low frequency modes cannot be

extracted from MD in the case of phase IV. Therefore to understand the nature of

these modes we relied on the ground state structural candidates. Good candidates

for phase IV,IV’ and V at 0 K are the crystal structures Pc, Pbcn and Ibam as

discovered based on AIRSS [78, 91]. This structure sequence also represents a

continuous symmetrization from the least symmetric Pc to the most symmetric

Ibam which could be related to the transition into phase V.

I start from these candidates to investigate changes with pressure in both ground

state and at room temperatures, attempting to understand the origin of phase

V. The 0 K transformation were studied using energy calculations, bond analysis

and phonon calculations. On the other hand, the room temperature behavior

which reflects the true nature of the experimental phases, was investigated using

molecular dynamics MD alongside tools I developed to analyze the trajectories

in terms of structure and optical properties. Note that when I discuss MD

calculations, the space groups only denote the start of the simulations and do

not refer to the actual average symmetry at finite temperature. On the other

hand, in static calculations, the symmetries are precisely as named. The results
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of this section are soon to be published in a journal article [8].

3.3.2 Methods

The CASTEP simulations presented in this second half of the chapter were

performed by two summer students Benjamin Tyson and Bálint Borgulya under

my guidance. Ben performed the phonon, Raman and infrared calculations, while

Balint performed all the molecular dynamics (MD) calculations. I did the analysis

and interpretation of the results.

DFT Details

All computations presented in this section were performed using the plane

wave method as implemented by CASTEP [31, 115]. The plane wave energy

cutoff was set to 1200 eV, which is necessary to achieve good convergence.

For approximating the exchange-correlation energy the PBE functional [28]

was employed. In all simulations, including molecular dynamics (MD) we

used the norm conserving pseudo-potential generated ”on the fly” by the

string ”H 0|0.7|2|6|8|10L(qc = 10)” [116]. The total energy in the electronic

minimization was converged within 10−11 eV and the charge density was treated

as spin unpolarized. In some calculations, the systems were considered metals

while in others they were treated as insulators as explained in each of the

subsections. Density mixing (dm) was the method used in the self-consistent

minimization loop.

Raman and IR Spectra

Metals do not generate Raman and IR spectra. This is mainly because in

conductive materials, the free electrons can easily rearrange to screen any external

electromagnetic field, such that inside the bulk the field is zero. Here, the electron

occupancy was set fixed and the Raman/IR calculation was only performed at

250 GPa where it is safe to assume that all crystals are still insulators [91].

For geometry convergence we used the following thresholds: 10−9 eV/atom for

energy, 10−6 eV/Å for force, 10−5 GPa for stress and 10−7 Å for the displacement.

These stringent constraints are required to obtain accurate spectra. Table 3.2

summarizes the cell setups of the three crystal structure candidates we considered:
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Pc, Pbcn and Ibam [78, 91]. These structures have 48, 48 and 16 atoms in

their standard unit cells, respectively. Here these cells were extended to ensure

sufficient convergence of long range interactions. Table 3.2 reports the optimized

geometries at 250 GPa with the settings detailed above.

Table 3.2 The table shows the cell setups. The last column summarizes the cell
geometries as optimized at 250 GPa.

structure cell atoms k MP grid optimized geometry (a,b,c,α,β,γ)
Pc 2 1 1 96 6 8 6 5.799, 5.043, 5.174, 90.00, 90.16, 90.00

Pbcn 2 1 1 96 6 8 6 5.794, 5.041, 5.179, 90.00, 90.00, 90.00
Ibam 2 2 1 64 4 12 4 5.731, 3.328, 5.246, 90.00, 90.00, 90.00

Raman calculations were performed with linear response, using a phonon

convergence tolerance of 10−5eV/Å2 and FINE method interpolate.

Phonon Pressure Dependence

All candidate structures become metals at high pressure [91]. To allow the

metallic modifications, we set the electron occupancy to variable. With this

setting, phonon calculations were performed on all three structures, every 25

GPa, in the pressure range 250-450 GPa. The occupancy was smeared using the

”fermidirac” scheme with smearing width 0.1 eV. The cell setups were the same

as for the Raman calculation at 250 GPa, shown in table 3.2. Additionally, 24

extra bands were added in all Pc and Pbcn calculations and 8 extra bands in all

Ibam.

As one may notice in figure 3.15 from section 3.3.3, Pc is the least symmetric

structure from the three, followed by Pbcn and finally Ibam, which is the most

symmetric one. During the geometry optimization, only phase transformations

that increase symmetry were allowed.

At the end of each geometry optimization CASTEP automatically computes

charge populations and bond statistics, which were used to analyze the pressure

evolution of the different distance scales in the three structures.

For each optimized structure, phonons were calculated at the gamma point only.

The calculations were performed using the finite displacement method, with the

super cell technique for Ibam and Pbcn. The super cell matrices chosen for the

two structures were diagonal [2, 4, 2] and diagonal [2, 2, 2], respectively. Pc
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created problems due to some software issues, so, in this case, linear response

with FINE method interpolate was used instead.

I devised a technique to track the phonons of each crystal structure along pressure,

based on the oscillation pattern. At the end of every calculation we obtained a

list of frequencies fj and associated eigenmodes εαl,j, where l = 1 : N labels the

atom, j = 1 : 3N labels the mode and α the Cartesian component. The index j

is not unique and it often points to different modes at different pressure points. If

εαl,j(p1) and εαl,k(p2) are the eigenvectors for modes j and k at pressures p1 and p2,

respectively, the challenge is to find the mapping between the j’s and k’s labeling

the same mode patterns. Every mode j at a pressure p1 is projected onto every

mode k at all pressures p2, by calculating the sums:

Sj,k(p1, p2) =
N∑
l=1

3∑
α=1

εαl,j(p1)εαl,k(p2) (3.11)

For every mode j at p1, I identify the label k at p2 that gives the maximum sum.

Note that the eigenmode completeness, requires that for every phonon j:

Tj(p1, p2) =
3N∑
k=1

Sj,k(p1, p2)2 = 1 (3.12)

In other words, the square projections of a given mode j at p1 onto each mode

k at p2 sum to unity. If the square of the maximum sum S2
j,k is less than half of

that the total sum T 2
j , the mode j from pressure p1 does not continue to pressure

p2 and it is likely a hybridization of several k modes at p2. Therefore one can say

the initial mode j ceases to exist at pressure p2 if there is no k for which:

Sj,k(p1, p2) ≥
√

1

2
≈ 0.7 (3.13)

This procedure allows us to compute the frequency dependence of a certain mode

with pressure. The Raman and infrared calculations performed at 250 GPa for

nonmetals help identify the active modes. One can then track those modes

along the pressure axis by projecting them onto the new eigenmodes calculated

for possible metallic systems at each pressure point, without performing the

otherwise expensive Raman calculations. The method assumes that for a given

structure, the Raman and infrared activities do not change significantly with
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pressure provided the oscillation pattern of the mode remains the same. This

might not always be the case.

Molecular Dynamics Simulation

I continued my previous study on the dynamics of phase IV presented in the

first half of this chapter, section 3.2, and extended the calculation to longer time

scales and higher pressures into the newly discovered phase V [100]. We employed

molecular dynamics (MD) to study the room temperature behavior of the three

structure candidates Pc, Pbcn and Ibam. Simulations with small cells were

shown to cause serious problems with finite size effects. Therefore for this section

we used large cell as reported in table 3.3. Note that here all cells comprised

of eight layers, where each layer contained 18 molecules. We allow for variable

occupation of the electron degrees of freedom which is the correct treatment for

possible metallic systems. The table also shows the number of atoms, k-point

grid and percentage of extra bands we used for each structure. In chapter 4, I

will show that even for large simulation boxes, sampling the Brillouin zone at the

gamma point only is not sufficient, especially when the structures could become

metallic, hence the dense k-point mesh.

Table 3.3 The table shows the cell setups used for molecular dynamics.

structure cell repeat number of atoms k-point MP grid extra bands
Pc 3 2 2 576 2 2 2 30%

Pbcn 3 1 2 288 2 4 2 100%
Ibam 3 3 2 288 2 4 2 100%

The calculations were started with geometry optimizations on the large cells at

a number of pressure points as shown later in table 3.6. MD does not require

the same level of convergence needed for phonon calculations so in this case

the convergence thresholds for the geometry optimization (GO) and subsequent

MD, were relaxed to the CASTEP default values: 2× 10−5 eV/atom for energy,

5× 10−2 eV/Å for force, 10−1 GPa for stress and 10−3 Å for atom displacement.

For the MD runs one additional DFT setting was changed after the GO, namely

the threshold for the total energy calculation in the self-consistent loop was set

to 10−9eV in light of faster convergence. The MD simulations were initiated with

tmax = 500 steps of equilibration in the NPT ensemble. The time step was 0.5

fs giving a total of 0.25 ps of equilibration. The target temperature was set to
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300 K and kept by a 5-chain Nose-Hoover thermostat. The pressures for each

structure were chosen as in table 3.6 and stabilized with the Parrinello-Rahman

barostat using the default characteristic cell time of 50 fs.

These short trajectories were analyzed using radial and angular distribution

functions (RDF and ADF). Throughout the simulations, the atoms remained

clustered in layers, except where the transition to Cmca − 4 occurred. I first

separated the trajectories into B layers and G layers, four of each type, and then

calculated a 2D, in layer, RDF from each layer type. At each time step t, I

created the histogram of atom to atom distances nt(ri) averaged over atoms from

which I could then derive the time averaged RDF as:

RDF (ri) =
1

tmax

tmax∑
t=1

4St
N
2

nt(ri)

2πridr
(3.14)

where ri is the space discretization, t labels the times steps running from 1 to

maximum time tmax. 4St is the total surface area at time t (there are four layers of

each type: 4B, 4G), N/2 the number of atoms (four out of eight layers gives half

the total number of atoms), and dr the bin width. I normalized with respect to

the 2D surface element, which only makes sense to the point where neighboring

layers of the same type start to contribute to nt(ri) at around 2.5 Å. I also

calculated the coordination number with respect to distance Ri as the sum over

the time averaged nt(ri):

c(Ri) =
1

tmax

ri≤Ri∑
ri

tmax∑
t=1

nt(ri) (3.15)

This allows us to study the average crystal structures in a somewhat standard way.

To gain more insight and understand the local order better, I also investigated

the angular distribution function (ADF). ADF is basically a histogram of angles

θ spanned by two distances r and q from a reference point (e.g atom or molecular

center) to two distinct neighboring atoms, respectively. I defined ADF differently

for the B layers and G layers because one layer is molecular in nature and the

other gradually becomes atomic upon increasing pressure.

For the B layer, I start from a reference atom, then limit the first distance to the

molecular length from the condition cB(r) ≤ 1. I calculate the second distance q′

from the center of the identified molecule (instead of reference atom) and limit
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it to the next twelve neighboring atoms by setting cB(q′) ≤ 13. In the G layer,

the first distance was limited by the condition cG(r) ≤ 3, since the molecule is

not always well defined. For instance, by 400 GPa the first RDF peak integrates

to three, whereas if the molecule was still intact, it would integrate to one. The

second distance q is limited by cG(r) ≤ 12 which includes the next 9 neighbors,

three hexagonal trimers in total.

Note that the two neighboring atoms spanning the angle θ at the reference atom

are always distinct, but while in the case of B layer only one atom falls behind

the first limit rcB(r)≤1, in the case of the G layer both atoms can be closer than

the first limiting distance rcG(r)≤3. Finally, at each time step, I calculate the

histogram mt(qi, θj(r, q)) with respect to the second reference distance qi and the

angle.

ADF2(qi, θj) =
1

I

1

tmax

tmax∑
t=1

mt(qi, θj(r, q)) (3.16)

where I is the volume integral under the averaged histogram, used for normal-

ization purpose.

Additionally, I also calculate a one variable ADF1 as a partial integral of ADF2

over the second reference distance q:

ADF1(θj) =
1

I

1

tmax

qi<qmax∑
qi=0

tmax∑
t=1

mt(qi, θj(r, q))
dq

q2
i

(3.17)

where dq is the bin size and q2
i is a factor used to emphasize the local order over

long range order.

As I will discuss in the results section, the simulations started in Pc and Ibam

gave the same dynamic behavior as Pbcn even after a very short NPT stage,

therefore we continued with Pbcn only. The Pbcn trajectories were extended for

5 ps in the NVE ensemble at 300 K. At 200 GPa and 500 GPa we only performed

2.5 ps of NVE simulation. All other settings that apply were kept unchanged

from the previous NPT stage.

For analyzing the average crystal structure and behavior as function of pressure

at room temperature I calculated RDF and ADF2 as explained above. I also

inspected the mean square displacement separately for the two layer types.
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Whereas in the first half of the chapter, section 3.2, I looked at the average crystal

structures to determine the dynamic behavior, here I computed iso-surfaces of

proton density (PDS). These were obtained by cumulating the whole trajectories

into density fields followed by surface interpolation and plotting using VMD [120].

The trajectories were also used to extract information about phonon density of

states by the standard Fourier Transform of the velocity auto-correlation function

(VACF). Raman vibrons were calculated with the molecular projection method,

introduced in the first half of the chapter, section 3.2.2. To remind the reader: I

project the velocities at each time step onto molecular stretches and then take the

Fourier Transform. The difference to the previous work in section 3.2.3, is that

here the molecules are always recalculated at each step because above 300 GPa,

at room temperature, molecules are short-lived and they can break and rebond

during the course of the simulation. The positions and widths of the peaks were

obtained by fitting gaussian functions with a constant background.

Finally, I calculated a free rotor frequency in the B layer, by using the fitted RDF

peak (molecular length b) to compute the moment of inertia IH2 :

EJ =
h̄2

2IH2

J(J + 1), ∆J = 2, ν =
∆E

h
=

3h

2π2mHb2
(3.18)

The approximation for the rotor linewidth in this case was also calculated as

propagated from the uncertainty in b, which was obtained by fitting the RDF

peaks:

∆ν =

∣∣∣∣∂ν∂b
∣∣∣∣∆b =

2ν

b
∆b (3.19)

3.3.3 Results

Figure 3.11 and table 3.4 summarize the Raman and infrared result for Pc, Pbcn

and Ibam, as calculated with linear response at 250 GPa. For consistency,

I labeled the most intense Raman modes based on their similarity to the

experimental modes with the same name. The prime symbol denotes modes that

are very close in frequency, almost degenerate. In ref [100], the high frequency

modes (vibrons) are labeled ν while the lower frequency modes are labeled L.
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Figure 3.11 Raman (left) and IR spectra (right) calculated with linear response
theory for Ibam, Pbcn and Pc, respectively, at 250 GPa. Insets
show the lower intensity, lower frequency Raman modes zoomed in.
The scale of the zoom is illustrated on the y-axis in bold. Notice
that the Raman intensities in Ibam are much larger than in Pc
and Pbcn. The modes are labeled based on their proximity to the
experimental peaks with the same names [100]: Li for low frequency
and νi for vibrons. The left superscript ”2” indicates a doublet. All
peaks were smoothed with gaussians of height unity and full width
a half maximum of 35 cm−1.

As we have seen before, structures Pc and Pbcn are molecular so they generate

two Raman vibrons, one from each layer: ν1 from the G layer and ν2 from the

B layer. On the other hand, Ibam is atomic in the G layer so it loses the softer

vibron ν1. Ibam generates an additional low intensity vibron which I labeled ν3

in the B layer. This vibron is also present in the other structures but it is much

weaker compared to the other vibrons. Notice that Raman peaks in the Ibam

structure are two orders of magnitude more intense than those in the Pc and

Pbcn structures.

In the low frequency regime, I found three clear Raman modes in Ibam, four in

Pbcn and three in Pc, some of which are degenerate in frequency. Modes from

different structures that are labeled the same, have very similar patterns. Ref

[91] shows four different low frequency modes in Pc, but here I only found three.
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Table 3.4 The table summarizes the most relevant Raman peaks for each
structure (Pc, Pbcn and Ibam) at 250 GPa.

struc. data L1 L2 L4 L3 L5 L′5 ν1 ν2 ν3

Pc
freq. (cm−1) 361 725, 746 — 1469 1488 2785 4173 4564

int. (104Å
4
) 2.4 3.2, 2.9 — 4.5 4.5 140 96 3.4

Pbcn
freq. (cm−1) — 790 959 1145 1711 1724 2477 4189 4590

int. (104Å
4
) — 10 4.6 11 5.6 10 280 140 4.7

Ibam
freq. (cm−1) — 781 — — 1669 1491 — 4136 4581

int. (106Å
4
) — 2.0 — — 33 47 — 60 5.5

In figure 3.11 I also show the infrared spectra calculated at 250 GPa. Pbcn and Pc

have almost identical infrared activity and they both generate two vibrons, one

from the B layers and one from the G layers, similar to the Raman spectra. The

result I obtained here is in good agreement with ref [91]. Unlike, the molecular

structures, Ibam, shows no infrared vibron at all and an extra intense peak at

lower frequencies, around 900 cm−1. This is important because these differences

are clear experimental signatures and could help identify easily an Ibam-like

structure in the experiment. However, to date, there is no infrared data for phase

V.

The frequencies and intensities of Raman and infrared are important, but one can

learn much more by inspecting the patterns of the modes. In figures 3.12 and 3.13

I show the eigenvectors for the most important Raman oscillations. Interestingly,

many of the modes are common to all three structures and that is the reason

why I chose to assign them the same label. For instance variations of the modes

L5 and L′5 from Ibam can also be found in Pc and Pbcn, albeit with different

frequencies (see table 3.4).

As I discussed previously, in the first half of this chapter, the Raman active

vibrons are in phase vibrations of the molecules in the B and G layer. Figure

3.12 illustrates the eigenmodes of ν1 and ν2, supporting this assumption which

made it possible to extract Raman signals from molecular dynamics. ν3 is an

exception, but its Raman activity is relatively weak.

The lowest frequency Raman mode is L1 and, as shown in figure 3.12, it consists

of an in-plane libration of the hexagonal trimers in the G layer, with no motion

in the B layer [98]. The low energy of this mode explains why in MD at room

temperature trimers can rotate. Interestingly, this mode is not Raman active in

Pbcn and Ibam, so one could expect the mode to vanish upon symmetrization of

the G layer.
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Figure 3.12 Here I illustrate the most important Raman active modes as
calculated with linear response at 250 GPa. Their frequencies
and intensities are plotted in figure 3.11. Modes labeled the same
in different structures have similar frequencies and oscillation
patterns, check for instance the L5, L′5 doublet in Pc and Pbcn. All
the modes shown here involve atom oscillations in one layer type
only, which is indicated in brackets next to the phonon label. All
panels are top views (perpendicular to the layers), except the ones
illustrating modes L3 and L4 which are side views. For reference,
the green rectangle in L4 marks a hexagonal trimer seen from the
side.

Further up in frequency is the mode L2, which can be clearly identified in both

Pbcn and Ibam. It consists of an in-plane, in-phase libration of all the molecule

in the B layer, with no motion in the G layer. At room temperature, in MD,

this mode becomes poorly defined, because as seen before in section 3.2.3 the

molecules can rotate almost freely in the B layer.

Modes L3 and L4 are out of plane oscillations and seem the be specific to Pbcn.

L3 is a translation of B layer molecules, while L4 is an out of plane libration of

the molecules from the G layer.

Although L4 and L2 do not appear in Pc with the same clear pattern as in Pbcn,
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Figure 3.13 This figure is supplementary to figure 3.12. Here I compare the
pure modes L2 and L4 in Pbcn with the degenerate mixed modes
L2−4 and L′2−4 in Pc. The green rectangle in L4 (Pbcn−G) marks
a hexagonal trimer in the G layer, seen from the side, while the
blue rectangle in L′2−4 (Pbcn − G) outlines a molecule in the B
layer. When comparing the modes notice that B layers in Pc are
aligned with the G layers in Pbcn. All the figures were compiled
with JMOL [121].

the degenerate modes L2−4 and L′2−4 in Pc seem to be a combination of L4 and

L2, being especially similar to the latter (see figure 3.13). This explains why L2−4

and L′2−4 have similar pressure dependence with L2.

Finally, the modes L5 and L′5 are specific to the G layers and can be found in

all of three structural candidates. These modes involve in plane librations of the

molecules in the trimers. In Pc and Pbcn the mode pair is almost degenerate,

but upon symmetrization of the G layer, the two modes split in frequency (check

figure 3.12). Interestingly, even though in Ibam the molecules are completely

dissociated, the two modes maintain a similar oscillation pattern.

Let us summarize all the important Raman active modes found in these BG

layered structures at 0 K:

� ν2: in plane vibration of the molecules in the B layer
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� ν1: in plane vibration of the molecules in the G layer

� L5, L
′
5: in plane librations of the molecules in the G layer

� L3: out of plane translations of the molecules in the B layer

� L4: out of plane librations of the molecules in the G layer

� L2: in plane libration of the molecules in the B layer

� L1: in plane libration of the hexagonal trimer in the G layer

An important observation here is that all Raman vibrons and low frequency modes

originate from one layer type only. This implies that there is little coupling

between layers, but it also helps explain what happens to the layers at phase

transitions. For instance, as we have seen in section 3.2.3, at the transition III

to IV, half of the G layers transform slightly, while the other half change entirely

into B layers. Since all Raman modes originate from one layer type only, one

expects that both the vibrons and low frequency modes should split in half at the

transition. This is consistent with the experimental findings [89]. Furthermore, if

the assumption that phase V is a symmetrization of the G layer with no significant

change in the B layer is correct, then only half of the low frequency modes and one

out of the two vibrons should change. This is what is actually observed in the

experiment, where ν1 becomes almost pressure independent and L2, L3 vanish

upon transition to phase V. To understand this better, I also investigated the

pressure dependence of these Raman modes, as I will show in the following.

To study the pressure dependence I first performed geometry optimizations on

all three structural candidates in the pressure range 250-450 GPa as shown in

table 3.5. Upon increasing pressure, both Pc and Pbcn eventually transform into

the more symmetric Ibam, but not into one another. This result supports the

assumption that phase V could be a symmetrization of the G layer from phase IV.

Pc further transforms into Cmca− 4, in agreement with the previous molecular

dynamics simulations presented in section 3.2.3.

In figure 3.14 I compare the energies and geometries of the three candidates

upon increasing pressure. Consistently with what is shown in table 3.5 Pbcn

and Pc transform into Ibam at 350 GPa and 375 GPa, respectively. This is

evident from the energies, volumes and lattice parameters. The more symmetric

structure Ibam has a higher internal energy because the molecules in the G

layer are dissociated into atoms, however, it has a smaller volume with better

packing so it wins at higher pressures with a smaller enthalpy. I will discuss
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Figure 3.14 On the left, I show the unit cell vectors of the three candidates.
Pc and Pbcn are broken symmetry Ibam and their unit cells can
be mapped onto a [1 3 1] multiplications of the Ibam unit cell. To
directly compare the geometries of Pc and Pbcn to Ibam, the b
length of the former was divided by 3. On the right, I compare the
energies, the volumes and the enthalpies of the three 0 K structure
candidates for phase IV and V across the pressure range. The
values are normalized with respect to the number of atoms and
Ibam is used as the reference structure.

Table 3.5 Here I summarize the results of the geometry optimizations of the
small cells that were later used for phonon calculations. The leftmost
column shows the starting geometry, while the rest of the table shows
the final symmetry after optimization at each pressure. The top row
shows pressure in GPa.

Start 250 275 300 325 350 375 400 425 450
Ibam Ibam Ibam Ibam Ibam Ibam Ibam Ibam Ibam Ibam
Pbcn Pbcn Pbcn Pbcn Pbcn Ibam Ibam Ibam Ibam Ibam

Pc Pc Pc Pc Pc Pc Ibam — Cmca Cmca

the thermodynamic characteristics of these structures in more detail in the next

chapter, section 4.3. Including zero point energy (ZPE) would change the energy

landscape entirely, but here I am more interested in understanding the physics

of symmetrization upon increasing pressure, which could be related to phase V.

For instance in figure 3.15 I show the results of the bond analysis in the three

structural candidates.
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Figure 3.15 This figure shows the pressure dependence of the characteristic
lengths for each of the candidate structures. The top panels
illustrate the defining motifs with the characteristic dimensions in
dotted lines. The bottom panel shows the pressure evolution of all
these dimensions: b1 is the molecular length in the B layers, while
gi are distances in the G layers with g1 the molecule length.

Ibam is the most symmetric structure with two important dimensions: the length

of the molecule in the B layer (labeled b) and size of the hexagon in the G layer

(labeled g). The hexagon has atoms at the vertices and it describes equal angles

spanning 120◦. Pbcn breaks the symmetry in the G layer, and while angles

remain close to 120◦, the atoms join into molecules breaking the g distances into

three categories: g1 is the distance between atoms within the molecule, g2 is the

distance between molecules within the molecular trimer (hexagon) and g3 is the

distance between neighboring hexagons. An important observation here is that

Pbcn comprise of three types of hexagons in the G layer: a small one with sides

g1 and g2, a medium one with sides g1 and g3 and a large one with sides g2 and

g3. The dynamic transition between phase IV and phase V could be related to

changes of these hexagons. Pc further breaks the symmetry of the angles at the

hexagonal vertices, which are no longer 120◦. Understanding these characteristics

of the G layer will help later when I discuss the high temperature results in MD

which simulates the true nature of these phases.

Following the geometry optimizations, phonons were calculated at all pressure

points. Using the phonon tracking technique explained in the methods section,
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I investigated the pressure dependence of both Raman (figure 3.16) and infrared

(figure 3.17) active modes in all three structural candidates. I also compared

the Raman modes with data from the recent experiments [100, 101] and data

extracted from the MD with the projection method (see later figure 3.22).

At high frequencies, the harder vibron ν2 calculated with lattice dynamics (LD)

fits the experimental data well, regardless of the structure, implying that the main

difference between the candidates is in the G layers and B layer is essentially the

same. The ν2 vibron extracted from MD fits experiment even better, bringing

new evidence that the true structure of phases IV and also V is dynamical and

should be described with MD.

The main problem here is with the softer vibron ν1. Lattice Dynamics gives a

value too low in frequency, which is related to anharmonicity. Once the structures

transform to Ibam, the vibron starts to harden with pressure. This is again

consistent with the idea that symmetrization of the G layer might be responsible

for the pressure independence of ν1 discovered in the experiment. However, keep

in mind that this vibron is not Raman active in Ibam.

My previous MD calculations with ultra-soft pseudo-potentials corrected for the

difference ν1 frequency between experiment and LD up to 300 GPa (see figures

3.7 and 3.8). With the new settings used here (norm conserving potentials, better

k-point sampling and longer trajectories) I find a slightly different result. MD

generates a ν1 vibron which is closer to the LD value at lower pressures, below 325

GPa, but at higher pressures it does move closer to the experiment, following the

same trend where the frequency flattens with pressures. Since MD behaves similar

to the experiment, it means that the change in slope of ν1 indicates a dynamic

transition which was successfully captured by MD. This will be discussed in more

detail later in the chapter.

Recent studies have shown that the discrepancy between the vibrons measured

experimentally and calculated could be a consequence of the functional [85] and

also the contribution from anharmonicity [122]. MD is important because not only

it can correct for anharmonicity [1, 123], but it also captures the high temperature

behavior, which in this case is crucial.

Interestingly, the vibrons measured experimentally in deuterium (scaled accord-

ingly) do not match the hydrogen data. This could be a result of pressure

calibration, isotopic phase boundary shift or the vibrons are less harmonic than

previously believed.
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Figure 3.16 I illustrate the pressure evolution of the high frequency (left) and
low frequency (right) Raman active phonons calculated from LD
in the candidate structures: Pc (blue), Pbcn (green) and Ibam
(red). The Raman activity was only computed at 250 GPa (see
figure 3.11) and the trends were obtained by mode tracking. A
phonon disappears when the value of the projection falls below 70%
as explained in the methods section. In black I present the Raman
vibrons fitted from MD (see figure 3.22) and I approximate the B
layer rotor R1 from the RDF fit (see methods). In gray I reproduced
the hydrogen and deuterium data (scaled accordingly) from the
newest experiments: Exp1 [100] and Exp2 [101]. Shaded in yellow
is the region of frequency occupied by the diamond spectrum in the
experiment.

In the low frequency Raman regime (right of figure 3.16), the L5 mode falls under

the diamond so it is not accessible in the experiment. The lowest frequency L1,

R1 and L2 fit the experiment well, however, we do find a discrepancy. The LD

calculations suggest that L1 is a libron in the G layer, while L2 is a libron in the

B layer. Yet, looking at the experimental data, L1 is pressure independent like

the B vibron ν2, making it more likely to be a B layer mode. On the other hand,

L2 varies stronger with pressure and then it flattens, just like ν1 and probably

originates from the G layer. These phases are dynamical, so probably MD would

give a better description of the low frequency modes. Yet, as I discussed before,

the projection method in MD fails for these modes. Interestingly, the free rotor

R1, approximated based on RDF (see figure 3.16), originates from the B layer
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and fits the lowest energy experimental phonon L1.

Figure 3.17 This figure reports the pressure evolution of the infrared spectra
for the three candidate structures, as labeled. As explained in the
methods section 3.3.2, the actual infrared was only performed at
250 GPa (see figure 3.11), while the evolution with pressure was
evaluated by tracking the modes using the eigenmode projection
method. High frequency modes are illustrated on the left panel,
while the low frequency phonons are on the right.

A similar story holds true for the L3 and L4. Whereas the pressure trends imply

that L3 originates from the G layer and L4 from B, the calculations indicate

otherwise. The assignment to layers according to the experimental observations

makes sense. It explains why at the transition to phase IV, the pairs L3, L4 and

L2, L1 appear to split from one single mode each, upon differentiation of the

layers into B and G. This observation also supports the idea that phase V is a

G layer symmetrization, where the phonons originating from the G layer change

(ν1) or disappear gradually (L2 and L3). This is also consistent with different

changes at different time scales as I will discuss later (see figure 3.20). The high

and low frequency regimes sample different dynamical processes.

In figure 3.17 I show the pressure evolution of the infrared modes, computed

with the same phonon tracking technique. In the high frequency regime, the

infrared spectra behave similarly to the Raman spectra. The quickly softening

vibron in Pc and Pbcn continues with slowly hardening modes in Ibam. Although
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these new modes would not be infrared active in Ibam, the dynamic transition

from lower to higher symmetry in MD at room temperature (later figure 3.20) is

likely softer than indicated by the 0 K calculations. Therefore this sharp change

in trend could manifest as a gradual change of slope in the experiment if the

symmetrization of the G layer hypothesis is correct.

LD allows us to study the origin of the different low frequency modes but does

not give an accurate account of the room temperature behavior. To study this,

we performed a new series of molecular dynamics calculations at higher pressures,

longer time scales and using better quality settings than other studies in literature

[96–98].

Table 3.6 Here I summarize the results of the geometry optimizations of the
large cells that were later used for MD simulations. The left most
column shows the starting geometry, while the rest of the table shows
the final symmetry after optimization at each pressure. The top row
shows pressure in GPa. Note that calculations with Ibam were run
every 50 GPa only. Compare to table 3.5.

Start 200 250 275 300 325 350 375 400 425 450 500
Ibam Ibam Ibam -/- Ibam -/- Ibam -/- Ibam -/- Ibam Ibam
Pbcn Pbcn Pbcn Pbcn Pbcn Pbcn Pbcn Pbcn Ibam Ibam Ibam Ibam

Pc Pc Pc Pc Pc Pc Pc Pc Pc — Cmca Cmca

In table 3.6 I present the geometry optimizations of the large unit cells (eight

layers each) ahead of the MD simulations. The results are consistent with those

reported in table 3.5: Pbcn transforms into Ibam upon increasing pressure.

We continued with short MD simulations in NPT to equilibrate the structures.

After only 0.25 ps of simulation, all structures converged to the same dynamic

behavior BG regardless of the starting configuration: Pc, Pbcn or Ibam.

In figure 3.18 I compare the RDF and ADF1 extracted from the NPT trajectories

with the RDF and ADF1 extracted from the structures at 0 K. Notice that at 0 K

all three structural candidates show distinct features, whereas the MD averages

out the small differences and at room temperature, all structures exhibit the same

behavior. Even Ibam which is noticeably different in the ground state, creates

molecules and becomes BG like. The thermal energy is sufficient to blur out the

small enthalpy differences. We, therefore, decided to only extend the trajectories

started in Pbcn. The subsequent simulations were run at all the pressure points

for 5 ps in NVE.

Figure 3.19 shows the ADF2 and RDF extracted from these long trajectories.
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Figure 3.18 Here, the finite temperature 0.25 ps NPT trajectories of the three
candidate structures (top) were compared to the 0 K optimized
geometries (bottom) using RDF and ADF1. On the left, I show
RDF, while on the right I show ADF1, both computed from the
trajectories (curves) / geometries (bars) at 250 GPa. Dark colors
show the results from the G layers, while light colors from the B
layers.

In the B layer, the RDF shows one well defined peak at around 0.75 Å, which

integrates to one. This peak is weakly dependent on pressure and corresponds to

the molecular length. The next two peaks, integrating to 12, correspond to the

six neighboring molecules also shown in the proton density surface (figure 3.19).

These peaks are very broad because the molecules are almost freely rotating in

the B layer. The rotation is clearer in the ADF2 which shows the preferred

angle between an atom at distance q from the reference molecular center and the

molecular axis itself. Although there appears to be almost free rotation in the B

layer, at a closer look there is some weak correlation. At low pressures (250 GPa)

the molecules like to stay perpendicular to one another, while at high pressures

the molecules prefer angles of 45◦ and 135◦. At intermediate pressures, there is a

mixture of these preferred correlations.

In the G layer the calculated RDF and ADF2 support the assumption of

symmetrization with pressure. At low pressures, the RDF gives one peak between

0.75 and 0.9 Å, that integrates to one and corresponds to the molecular length
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Figure 3.19 RDF (left) and ADF2 (right) in the B and G layers, respectively.
The analysis was performed on the NVE simulations at 300 K,
as explained in detail in the methods section 3.3.2. The RDF
figure reports the integrals (value on the bottom curve) under the
distributions, as shaded regions at specific lengths. Gaussians were
fitted on the RDF peaks: one gaussian in the B layer and two in the
G layer, corresponding to distances b1, g1 and g(2−3) from the static
calculations (figure 3.15). The results of the fits are shown on the
bottom panel with the shaded area corresponding to the full width
at half maximum. In the ADF figure, the continuous color maps
on the eight bottom panels represent ADF2 extracted from MD,
while the dots are ADF2 calculated for the 0 K relaxed structures at
corresponding pressures: Pc (blue), Pbcn (green) and Ibam (red).
The top panels in this figure illustrate the short distance scales as
iso-surfaces of the proton density (PDS) at 350 GPa. The two
length scales shown in red and blue correspond to the reference
distances in the ADF2: r and q.

(i.e. g1 from the static calculations). This peak varies strongly with pressure and

relates to the soft Raman vibron ν1. The second important peak in the RDF

integrates to two and it is a combination between the distance scales g2 and g3,

which are no longer distinguishable at room temperatures. This implies that in
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MD the G layer no longer supports three hexagonal motives but at most two in

every layer: g1-g2 and g2-g2. At 400 GPa, the two peaks merge into one when

the molecule in the G layer dissociates completely and the layer becomes atomic.

The ν1 vibron disappears at this pressure.

Figure 3.20 In this figure I show the representative proton density iso-surfaces
(PDS) extracted from 5 ps of NVE simulations at 300 K and
different pressures as labeled on the top. Each simulation box
contained 8 layers which are shown separately: B on the left and
G on the right. Four different kinds of G layers gradually emerge
upon increasing pressure as illustrated (see labels).

The ADF2 in the G layer shows the distribution of the angles around an atom

(see PDS in figure 3.19). At 250 GPa, the molecule is well defined, but half

of the trimers rotate (G” layers) and half are static (G’ layer), shown by the

double peak distribution in the ADF2 at around 1.1 Å. So far this is consistent

with the previous MD simulations in phase IV, section 3.2. At higher pressures,

ADF2 becomes more symmetric and the distinction between the G’, G” layers

disappears. By 350 GPa, the distinction between the intra-molecular and inter-

molecular scales is greatly reduced and at 400 GPa the layer becomes atomic.

These observations are better substantiated by the proton density surfaces (PDS)

shown in figure 3.20. Not shown here is the MD at 200 GPa which has four

similar G layers, with distorted trimers, similar to the ones in Pc. By 250 GPa

(figure 3.20), half of the trimers start to rotate and the other half become more

symmetric. This is now phase IV, consistent with the study presented in the first

half of the chapter. With slow rebonding in the G” layers and no rebonding in G’,

this model does not support the diffusion (see figure 3.21) reported in ref [118].
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Figure 3.21 Here I show the mean square displacement (MSD) calculated
separately for the B layers (blue) and G layers (red) from the 5
ps NVE simulations. Each panel reports the result at a certain
pressure as labeled. Notice that the trajectories at 200 GPa and
500 GPa are shorter and only span half the time: 2.5 ps. Compare
to figure 3.5 from previous section 3.2.3.

At higher pressure, 325 GPa, the G layers are all the same and there is no more G’,

G” distinction. Although RDF indicates the bond is still well defined, on average

in G∗ the hexagons look all symmetric. The trimers rotate in both layers and the

molecules are breaking and rebonding frequently. At the short time scale, there is

a distinction between the two types of hexagonal patterns in the G∗ layer (i.e. g1-

g2 and g2-g2) but through layer reconstruction, these distinctions vanish and the

layer looks symmetric on average. This is important because instantaneously the

layer contains molecules which give a ν1 Raman vibron, but at long time averages

the layer looks honeycomb symmetric and the low frequency modes arising from

the G layer are suppressed. These changes are consistent with phase V discovered

experimentally [100]. As seen in figure 3.21, above 325 GPa, this model supports

the two step diffusion through trimer rotation and layer reconstruction and agrees

with the studies presented in refs [97]. Finally, at 400 GPa, the G layers become

atomic and they no longer support trimer rotation or diffusion.

The result of the Raman vibrons obtained through the projection method is

reported in figures 3.16 and 3.22. The harder vibron ν2 is almost constant with

respect to pressure and has a width of about 150 cm−1. The softer vibron ν1 varies

strongly with pressure in BG’BG” but then it becomes pressure independent when

the G layer becomes symmetric in BG∗. The width of ν1 increases with pressure

as the breaking and rebonding of molecules intensifies.
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Figure 3.22 The two panels on the left show the Raman signal extracted by
projection from the 5 ps NVE and the Fourier Transform of the
velocity auto-correlation function (VACF), respectively. VACF
was computed separately for the B layers (blue) and for the G
layers (red). I extracted the positions of the Raman peaks and
their widths at different pressure by fitting a sum of two gaussians.
The positions of the peaks are reported in figure 3.16, while the
full widths at half maximum (FWHM= 2σ

√
2 ln 2) are shown here

on the right most panel. Labeled R1 is the FWHM of the free
rotor approximation, calculated from RDF as explained in methods
section 3.3.2. In gray is the experimental FWHM of the vibrons,
digitized from ref [89] using an online tool [124]. Interestingly,
the difference between theory and experiment can be corrected by a
factor of

√
2.

To summarize, here I find five kinds of G layers in MD, first three are consistent

with previous simulations presented in section 3.2.3 while the last two are new:

� G: at 200 GPa, distorted molecular trimers similar to those found in static

Pc, not rebonding, not rotating, not diffusing

� G’: at 250 GPa, regular molecular trimers similar to those found in static

Pbcn, not rebonding, not rotating, not diffusing

� G”: at 250 GPa, molecular trimers, slowly rebonding, rotating, slowly

diffusing
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� G∗: at 325 GPa, molecular trimers at the short time scale, regular hexagons

at the long time scale, rebonding, rotating, diffusing

� Ga: at 400 GPa, regular hexagons similar to those found in static Ibam,

atomic, not rotating, not diffusing

The model BG’BG” is consistent with phase IV as discussed in detail in the first

half of the chapter. The new model BG∗ is a good candidate for phase V: the

softer Raman vibron becomes pressure independent and the low frequency modes

originating from the G layer disappear as the layer becomes more symmetric at

long time scales.

3.3.4 Conclusion

Motivated by the recent experimental claim of a new solid hydrogen phase (phase

V), I extended my previous analysis from phase III and IV to higher pressures

using a series of ground state calculations and molecular dynamics simulations in

the pressure range 200-500 GPa, starting from the 0 K candidates Pc, Pbcn and

Ibam.

With increasing pressure, the more symmetric structures become more favorable

in static calculations. In particular, while the B layer remains largely unchanged,

the G layer transforms gradually from distorted molecular trimers to regular

trimers and finally atomic hexagons. In molecular dynamics, I found a few

additional more subtle transformation owing to dynamical effects.

One the one hand, in MD, B layers are almost independent of pressure. While the

static structures have well defined symmetry of the B layers, in MD molecules are

spinning around almost freely and on average the B layers are hexagonal at all

pressures. This is consistent with the previous findings discussed in the first half

of the chapter and refs [1, 3, 97, 98]. Instantaneously, however, there is a weak

correlation between the neighbor molecules which prefer to remain perpendicular

to one another at low pressures and at angles of 45◦ at higher pressures.

On the other hand, the G layers experience changes on two different time scales.

At short time scales the molecules elongate with increasing pressure and then

start breaking and rebonding in phase V. As the molecules become longer, the

associated vibron frequency decreases sharply and when rebonding is important

the vibron becomes pressure independent, while the FWHM increases.
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At the longer time scale, lower pressures, the G layer is of two types: G’ symmetric

and static and G” comprising of rotating hexagons. This behavior agrees with

my previous result and it is consistent with phase IV. Higher in pressure, all G

layers become the same, they can rotate, reconstruct and therefore diffuse [97].

Although, instantaneously the atoms are grouped into molecules, on average this

G∗ layer appears symmetric. This means that while the vibron persists, the low

frequency modes originating in this layer are likely to disappear.

At yet higher pressures, the G layer becomes atomic Ga, where both the vibron

and the low frequency modes are lost. The BGa structure is similar to Ibam with

the distinction that the B molecules are still rotating at room temperature. It

turns out that this symmetry of type P6/mmm is the best close packing that

can be achieved with atoms and pure rotors. I will discuss this in more detail in

chapter 4.

It is clear that the experiment has not reached the BGa structure, however the

other structures BG’BG”, BG∗ are a good fit for the phases IV/IV’ and V. The

BG’BG” model explains the two vibrons (ν1 and ν2) and four low frequency

modes (L1−4), of which one vibron (ν1) and two low frequency modes (L2, L3)

are changing strongly with pressure due to the rapidly elongating molecule in

the G layers. The BG∗ explains why the softer modes (ν1, L2, L3) which likely

originate in the G layers, become pressure independent in phase V and then

gradually disappear as the G layers become more symmetric.

I conclude that the experimental observations recorded in ref [100] are consistent

with a gradual symmetrization of the G layer in the BG type structures. This

analysis predicts that upon increasing pressure the soft vibron will eventually

disappear upon entering a new phase consistent with the BGa model.

3.4 Summary

In this chapter, I covered my work on phases III, IV and V of solid hydrogen.

All our calculations were based on the simple PBE-DFT theory which might

be lacking when it comes to precise energetics, but which allows us to perform

long MD trajectories on large systems that are crucial for understanding the

entropically stabilized phases.

The best candidate for phase III remains C2/c. This phase contains a stacking
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of G layers, which are known to be anharmonic as a result of the intermolecular

interactions. Here I presented a method for extracting Raman from MD which

corrects for this anharmonicity.

Finally, phases IV and V are high temperature phases and best described by the

BG′BG” and BG∗ models rather than the ground-state symmetries Pc, Pbcn

and Ibam.
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Chapter 4

Solid Hydrogen Phase Diagram:

The Missing Pieces

4.1 Overview

The objective of this chapter is two-fold. On the one hand, I will explore the

region of the phase diagram around 400 GPa close to molecular dissociation,

beyond phase V. Recent experiments [100–102] managed to compress hydrogen

at comparable pressures, so this region of the diagram is relevant for future

experimental work. A series of theoretical studies [91, 103–105] investigated the

possible 0 K structure candidates at these pressures and proposed a collection

of molecular and atomic crystals. Here I will focus on understanding the finite

temperature regime from 0 K up to the melting temperature, searching for any

structures stabilized by entropy.

On the other hand, I will present a simple but powerful thermodynamic model

that captures the essential physics of the phase diagram. Many recent theoretical

studies focused on increasingly more advance methods to better describe all the

stable phases of hydrogen and the precise P-T boundaries in the phase diagram.

Initial work was performed within the PBE approximation of the DFT. Gradually,

different studies improved the resolution of the calculations in incremental steps:

� inclusion of nuclear quantum effects within PBE-DFT, quasi-harmonic

approximation
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� calculation of free energy based on PBE-DFT, quasi-harmonic approxima-

tion

� gauging the effect of different exchange-correlation functionals: local LDA,

general gradient PBE, semi-local BLYP

� inclusion of anharmonic effect and finite temperature through DFT MD

� inclusion of nuclear quantum effect in the dynamics using path integral

molecular dynamics (PIMD)

� using exact methods to calculate exchange energy - quantum Monte Carlo

� generating dynamics with quantum Monte Carlo

This work is crucial for understanding hydrogen and growing our knowledge.

However, here, in section 4.3 we will take a step back and attempt to see how it

all fits into the bigger picture.

4.2 Charge Density Wave: Chains

4.2.1 Introduction

The first prediction of hydrogen metalization was based on the assumption that

under pressure solid hydrogen would eventually become atomic BCC [19]. It was

proposed that under sufficient compressing energy PV, the electrons would be

squeezed out of the covalent bond and the solid would become both atomic and

metallic. Recent studies have shown that even the molecular phases can metalized

under sufficient pressure [91, 125]. Although the metallic liquid was confirmed

in shock experiments [52, 53], thus far, the solid metallic state remains elusive in

DAC experiments [100].

Even though all solid phases identified in experiments are still molecular, there

is mounting evidence that the electrons are slowly pushed out the bond. For

instance, the soft vibron in phase IV is rapidly decreasing in frequency upon

increasing pressure. This brings evidence of the rapid weakening of the bond and

migration of the electron density elsewhere. Surprisingly, even phase V [100],

where the soft bond has reached a steady length, being close to dissociation, is

still a semiconductor and the band gap is yet to close.
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As the electrons are leaving the bond, the solid can remain a poor conductor in

two scenarios. First, the freed electric charge could localize in real space and

create pockets of electrons that act as ions and form an electride structure. This

is predicted in the case of the alkali metals potassium, sodium and lithium [126–

128]. Second, if the charge that escapes the bond is delocalized, then it can form

a charge density standing wave to screen the ion-ion interaction. In this latter

case, instead of forming a close packing, the solid would rearrange in a pattern

that scatters the electron wave functions at twice the Fermi vector (2kF ). It is

possible that the high pressure solid phases III and IV are organized as layers for

precisely this reason.

Here, I will present a series of MD simulations at 400 GPa and various

temperatures that indicate to a candidate structure for hydrogen in the form of

long polymeric chains of atoms, that has been observed by others before [104, 129–

132]. This structure, although metallic, has a pseudo-gap, opened by a possible

charge density wave. This is evident from the XRD pattern of Chains, which

has a strong peak at 2kF . On the other hand, Chains could be a spurious effect

of sparse k-point sampling. I will compare and discuss both possibilities in this

section. The results presented below are soon to be published in a conference

proceeding [6].

4.2.2 Methods

Simulation Details

The goal here was to investigate possible candidate structures for solid hydrogen

beyond phase V at pressures larger than 400 GPa. AIRSS has been used

successfully in the literature to identify 0 K candidates for high pressure phases

[78, 91, 103]. By employing MD, I searched for candidates, beyond those

presented in chapter 3, that are possible dynamically stabilized and only exist

at high temperatures.

In this section, I will present a series of MD and PIMD simulations performed

with CASTEP at 400 GPa and various temperatures as reported in table 4.1. The

simulation settings were almost identical with those chosen in the previous section

3.3.2 on phase V: electron density expanded in plane waves with energy cut-off

1200 eV, norm conserving pseudo-potential generated on the fly by the string

85



Table 4.1 The table here summarizes the calculations I performed in this
section: Oi are a series of short MD runs at constant temperature
and pressure starting with various cells [78, 103–105]. In A the
simulations start at 0 K and are slowly heated up until melting. Blocks
C and D show simulations of phase I, IV and beyond candidates at
room temperature, while block B shows simulations at temperatures
other than 300 K. I compared the new Chains structure against
Cmca − 4 in a series of additional simulations (B and D). The
values for pressure and temperature are expressed in GPa and K,
respectively.

Id Start Atoms Length Simulation k-grid Pres. Temp. Final
O1 I41/amd [c > a] 128 2.75ps MD-PBE 2x2x2 280 300 Chains
O2 I41/amd [c > a] 128 2.75ps MD-PBE 2x2x2 350 300 Chains
O4 I41/amd [c > a] 128 2.75ps MD-PBE 2x2x2 500 300 undeterm
O5 I41/amd [c < a] 192 1.5ps MD-PBE 2x2x2 400 300 Chains
O6 P63/mmc 150 1.5ps MD-PBE 2x2x2 400 300 Chains
O7 R3m 192 1.5ps MD-PBE 2x2x2 400 300 Chains
O8 Immm1 180 1.5ps MD-PBE 2x2x2 400 300 Chains
O9 Immm2 180 1.5ps MD-PBE 2x2x2 400 300 Chains
O10 Pmmn 216 1.5ps MD-PBE 2x2x2 400 300 undeterm
O11 I4/mmm 200 1.5ps MD-PBE 2x2x2 400 300 Chains
O12 Cmca− 12 192 1.5ps MD-PBE 2x2x2 400 300 Cmca− 12
O13 Pc 192 1.5ps MD-PBE 2x2x2 400 300 undeterm
O14 mC24 144 1.5ps MD-PBE 2x2x2 400 300 mC24
O15 oC12 192 1.5ps MD-PBE 2x2x2 400 300 undeterm
O16 Pnma 192 1.5ps MD-PBE 2x2x2 400 300 Chains
O17 CI16 128 1.5ps MD-PBE 2x2x2 400 300 Chains
A1 I41/amd [c > a] 128 3.5ps MD-PBE 2x2x2 400 50 → 700 liquid
A2 I41/amd [c > a] 128 4.5ps MD-LDA 2x2x2 400 50 → 700 liquid
A3 Cmca− 4 128 3.5ps MD-PBE 2x2x2 400 50 → 700 liquid
A4 Cmca− 4 128 4.5ps MD-LDA 2x2x2 400 50 → 700 liquid
A5 I41/amd [c > a] 128 1.5ps MD-PBE 4x4x4 400 300 → 650 liquid
A6 Chains 128 1.7ps MD-PBE 4x4x4 400 300 → 650 liquid
A7 Chains 128 1.2ps MD-LDA 4x4x4 400 300 → 650 undeterm
B1 Chains 128 3.0ps MD-PBE 2x2x2 400 400 Chains
B2 Chains 128 2.5ps PIMD-PBE 2x2x2 400 200 Chains
B3 I41amd [c > a] 128 2.5ps MD-PBE 2x2x2 400 500 liquid
B4 Cmca− 4 128 2.5ps MD-PBE 2x2x2 400 500 Cmca− 4
C1 mol. hcp 288 3.75ps MD-PBE 2x2x2 50 300 mol. hcp
C2 Pc 288 1.5ps MD-PBE 2x2x2 275 300 Pc
D1 Chains 128 5.0ps MD-PBE 2x2x2 400 300 Chains
D2 Chains 128 2.5ps PIMD-PBE 2x2x2 400 300 Chains
D3 Cmca− 4 128 1.5ps MD-PBE 2x2x2 400 300 Cmca− 4
D4 Cmca− 4 128 1.7ps PIMD-PBE 2x2x2 400 300 Cmca− 4

”H 0|0.7|2|6|8|10L(qc = 10)” [116] and exchange-correlation functional LDA or

PBE as reported in table 4.1. The energy in the self-consistent loop was converged

within 10−11 eV, the electron minimization was performed with the default density

mixing scheme and the spin density was unpolarized. The structures were treated

as metals by setting fix occupancy to false and using 100% extra bands. Almost

all simulations were carried out in the NPT ensemble, using the Parrinello-Raman

barostat and the Nose-Hoover thermostat. The time step was set to 0.5 fs.

The initial round of simulations labeled Oi in table 4.1, were initialized with

various known crystal candidates and run at constant pressure and temperature.
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As expected, most simulations were unstable at those conditions, but surprisingly

they transformed to the same kind of structure which we called Chains [6] and

which I will discuss in detail in the results section 4.2.2.

Two competitive 0 K candidates at 400 GPa are the molecular Cmca − 4 [78]

and the atomic I41/amd (c > a, also structure of Cs − IV ) [72, 103, 104].

In the next round of simulations from table 4.1, labeled Ai, these structures

were slowly heated up by increasing the temperature 30 K every 0.15 ps (300

iterations) until melting occurred. Upon heating, some of the simulations resulted

in Chains. In order to study the validity of the new result, I repeated the heating

simulations with two different functionals (PBE and LDA) and with different k-

point densities. For the simulations with a denser k-point grid (A5, A6 and A7),

I reduced the self consistent energy threshold to 10−8 eV for speed up.

Simulations D1 to D4 further extend the study of Chains and Cmca−4 at 300 K,

while simulations B1 to B4 extend the study to other temperatures. To investigate

the contribution of ZPE, I used path integral molecular dynamics (PIMD) with

16 beads, where the temperature was kept constant with a Langevin thermostat.

Finally, simulations C1 and C2, at smaller pressures, were run in the NVE

ensemble, with fix occupancy (i.e. treated as insulators) and with a self

consistency energy tolerance of 10−9 eV.

Trajectory Analysis

I analyzed the trajectories employing a series of methods some of which were

introduced in the previous chapter. In section 3.3.2 I used a radial distribution

function (RDF) reduced to 2D because it was suitable to study layered structures.

Here I use the standard RDF, instead:

RDF (ri) =
1

tmax

tmax∑
t=1

Vt
N

nt(ri)

4πr2
i dr

(4.1)

where ri is the space discretization, t labels the times steps running from 1 to

maximum time tmax. Vt is the volume at time t, N the number of atoms and dr

the bin width.

To gain insight into the molecular orientation, I used the angular distribution

function (ADF1) as defined in section 3.3.2. Additionally, here, I also normalized
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the ADF1 with ∝ 1/ sin θ to account for the probability distribution in spherical

space.

The Chains structure can diffuse, particularly in the direction of the chains.

Now, identifying this direction is not trivial because it can be different for each

simulation instance. I devised an algorithm that computes the direction of the

chains by averaging the orientation of the shortest distances in the system.

In order to study the diffusion mechanism I used the standard mean square

displacement (MSD3D) but also a 1D displacement MSD1D and a 2D displacement

MSD2D which made it possible to assess the diffusion along the chains and

perpendicular to the chains. The displacements were also normalized according

to dimensionality:

MSD3D(t) =
1

3N

N∑
l=1

3∑
α=1

[xαl (t)− xαl (0)]2 (4.2)

where l running from 1 to N labels the atoms, α the Cartesian components and

xαl (t) the atomic position at time t. On the other hand, MSD1D was obtained by

projecting the displacements along the direction of the chains pα:

MSD1D(t) =
1

N

N∑
l=1

3∑
α=1

[pα(xαl (t)− xαl (0))]2 (4.3)

and finally the 2D MSD as the difference between the two:

MSD2D(t) =
1

2
[3MSD3D(t)−MSD1D(t)] (4.4)

Electronic Structure

Chains appears to be a good candidate for a charge density wave. To investigate

this possibility, I calculated the density of electronic states (DoS) and the XRD

patterns from the MD trajectories.

For mol. hcp, Pc (BG layers) and Chains, which are only stable at finite tem-

perature, the band structure calculations were performed at selected snapshots

extracted from the MD runs as detailed in table 4.2. In each of these calculations,

I increased the MP k-point grid to 8x8x8 ensuring better convergence. For
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Table 4.2 Here are the simulations I used for sampling the band structure and
XRD patterns. Runs D1 and D3 were also used for computing the
PDoS and project the phonons.

Id Start Phase First Sample Last Sample Step
C1 mol. hcp I 0.25ps 3.75ps 0.175ps
C2 Pc IV 0.25ps 1.5ps 0.0625ps
D1 Chains beyond V 0.5ps 5.5ps 0.25ps
D2 Chains beyond V 0.25ps 2.50ps 0.1125ps

comparison, I also computed the bands for the 0 K structures Cmca − 4 and

I41/amd using their unit cells (4 and 2 atoms, respectively), and k-point meshes

up to 21x21x21.

The actual Density of States (DoS) was obtained using a post-processing code

offered with the CASTEP package: band2dos, which does a simple gaussian

interpolation of the band structure with 0.2 eV smearing. In the results section,

I will show the DoS for each snapshot shifted to the origin and the average Fermi

energy which was obtained by integrating the DoS. For PIMD, I averaged the

centroid positions over the beads and calculated the DoS at each snapshot for

the centroid structure.

The ideal free electron gas curves and ideal Fermi Energy were calculated for

comparison, using the standard formulae:

N(E) =
V

2π2

(
2me

h̄2

)3/2√
E (4.5)

EF =
h̄2

2me

(
3π2Ne

V

)2/3

(4.6)

where me is the mass of the electron, Ne is the number of electrons in each cell

and V is the volume averaged over the snapshots.

XRD calculations were performed in a similar way at selected snapshots as shown

in table 4.2. For each calculation I used GDIS [133] to compute the XRD pattern

at a wavelength of λ = 0.7 Å, and then averaged the spectra to obtain the final

result. The standard spectrum is a function of the 2θ scattering angle, but here

the angle was expressed as an energy by the following argument. In Bragg’s

diffraction law, the scattering angle is related to λ and a family of planes at
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distance d:

d =
λ

2 sin(θ)
(4.7)

Assuming the structures can host charge density waves, then the family of atomic

planes spaced by distance d can scatter an electron wavelength q of size:

q =
1

2

2π

d
=

2π sin(θ)

λ
(4.8)

where the additional factor 1/2 relates the periodicity of electron wave function

(∝ cos(qx)) to the periodicity of the probability density (∝ cos2(qx) ∝ cos(2qx)).

Finally, using the energy dispersion relation of the free electron gas and combining

with equation 4.8:

E =
h̄2q2

2me

=
h2 sin2(θ)

2meλ2
(4.9)

This allows us to express the diffraction pattern averaged over all the snapshots

as a function of energy XRD(E(θ)) and therefore compare it with the DoS.

After an electronic structure calculation, CASTEP can print the electron charge

density. In the results section, I will show such a density field for an instance

of the Chains structure. For the same sample, I also calculated the electron

localization function (ELF) using the code VASP [134].

Finite Temperature Phonons

Finally, I investigated the vibrational properties of Chains and the other

structures by calculating the phonon density of states PDoS from the Fourier

Transform of the velocity auto-correlation function (VACF).

Since most of these structures are stabilized by entropy, extracting the 0 K

Raman spectra is difficult. Here, I used the projection method defined in the

previous chapter, section 3.2.2, to extract the frequency of the vibrons and

the most symmetric lattice modes from the MD trajectories. For Chains the

most symmetric lattice modes involve plains of chains oscillating along the three

Cartesian directions.
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4.2.3 Results

Figure 4.1 In panel A, I show the transformation of I41/amd into 2 distinct
chains wrapped around the periodic boundaries. Panel B illustrates a
snapshot from MD containing chains: associated charge density iso-
surface (top) and the electron localization function (ELF) [135] along
and across the chains (bottom). Panel C reports the cell volume
and total energy as a function of temperature upon heating at 400
GPa (simulations A1-A4 in table 4.1). Both quantities are moving
averages over a window of 0.1 ps. Shaded in red is the region where
I41/amd transformed to Chains.

One of the best candidates based on atomic hydrogen beyond phase V at high

pressures is the distorted diamond structure I41/amd [72, 103, 104], whereas

the best candidate based on molecular hydrogen is Cmca − 4 [78]. In this

section, I performed a range of MD simulations at 400 GPa with these and other

candidate structures. Surprisingly, upon increasing temperature, most of the

atomic candidates including I41/amd were unstable and transformed to the same

structure comprising of long polymeric chains wrapped around the simulation box
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as shown in figure 4.1.

Interestingly, every chain can slide up and down almost freely, with little

interaction with neighboring chains. At the same time, within the chains, atoms

can easily switch positions and diffuse along the tube of charge. This is clear from

the magnitude of MSD1D shown in figure 4.2. The diffusion of atoms from one

chain to the other is smaller (compare MSD2D to MSD1D) implying the chains are

well defined. The structure appears to be almost melted along the direction of

the polymers, while clearly solid forming a hexagonal pattern in the transversal

plane.

On closer inspection, the long chains appear to be parallel to one another,

organized in a hexagonal pattern when viewed transversally. The electron charge

density and the electron localization function (ELF) show that the molecular

bond is no longer well defined. However, most of the charge remains near the

chains, forming long uninterrupted tubes.

In figure 4.1 I compare two MD-PBE simulations started in I41/amd and Cmca−
4, respectively. The two runs were slowly heated up until melting occurred. At

around 430 K, I41/amd transformed to Chains which has a lower total energy

and a larger volume than the initial structure. Compared to Cmca− 4, Chains

has higher energy at the same pressure but a smaller volume. Chains has also

likely larger entropy as a result of its diffusive nature.

At 400 GPa, Cmca− 4 appears to be more stable than Chains since it melts at

a higher temperature, however, this could also be a result of hysteresis. Even if

Cmca−4 is more stable, Chains cannot transform into Cmca−4 spontaneously

because it would require all atoms in the chains to simultaneously pair up to

form molecules. Such a transition is very unlikely to take place in a short MD

simulation. The smaller volume and larger entropy could stabilize the Chains

over Cmca− 4 at higher pressures and temperatures, where Chains could be the

stable structure at high temperatures between the 0 K I41/amd structure and

the liquid phase.

I repeated the heating simulation using the local density approximation LDA.

With the latter exchange-correlation functional, the transition to Chains does

not occur and both I41/amd and Cmca− 4 remain stable until they melt. LDA

shifts down the melting temperatures by 100 K for Cmca − 4 and 200 K for

I41/amd. Consistently with PBE, Cmca− 4 melts at higher temperatures than

I41/amd at the same pressure - 400 GPa. Although generally LDA is less reliable
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than PBE, this result suggests Chains could be a spurious structure, albeit one

worth studying because of its interesting physics.

Figure 4.2 The left panels show the RDF and ADF (insets) for Chains and
Cmca − 4 calculated from both MD and PIMD at 400 GPa and
temperatures as labeled (simulations B1, B2, D1-D4). Shaded is
the integrated area under the first peak of the RDF which gives
the coordination number. The right panels depict the corresponding
MSD calculated as total displacement (3D), displacement along
chains (1D) and between chains (2D) for the same simulations;
normalized according to dimensionality.

In figure 4.2, I also compare the RDF and ADF for Chains and Cmca−4 in both

MD and PIMD. Both classically and quantum mechanically, Cmca−4 forms well

defined molecules as indicated by the clear peak in the RDF, which integrates to

one. As we have seen before in chapter 3, these molecules are weaker than the B

layer molecules in the BG structures, but stronger than the G layer molecules.
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On the other hand, the Chains structure generates a clear peak which integrates

to two. This implies that: 1) the chains are well defined and remain in tubular

shapes throughout the course of the simulations and 2) atoms do not pair up

into molecules and the electron has been pushed out of the bond. The ADF

further illustrates the difference between Chains and Cmca− 4. In Chains the

short-lived pseudo-molecules point towards one another, while in Cmca − 4 the

molecules point at angles of 60◦ to one another and the orientation remains fixed

during the simulation. Including quantum effects in PIMD has a similar effect as

increasing the temperature by about 100 K in Chains.

The MSD shows that Chains can diffuse and supports the idea of a 1D melt.

This freedom gives the structure high entropy and makes it more stable than

I41/amd at high temperature. On the other hand, Cmca − 4 shows no sign of

diffusion.

More interesting than the dynamics of Chains is its electronic structure. In figure

4.3 I show the electronic density of states DoS and the XRD pattern computed

from both MD and PIMD as explained in the methods section. Surprisingly, the

DoS looks similar to that of a free electron gas, except for a small pseudo-gap

near the Fermi energy.

The XRD gives one pronounced peak near twice the Fermi vector (2kF ),

corresponding to the spacing between the different chains in the transversal plane.

The position of the peak on the energy axis is such that below it, the calculated

DoS is larger than that of the ideal gas and above it, smaller. This mechanism

creates extra quantum states at lower energies, allowing the electrons to rearrange

and decreases the overall energy of the structure. As a result, a pseudo-gap

appears near the Fermi vector. These observations are consistent with a charge

density wave created by the special periodicity of the chains.

Surprisingly, Chains is not the only solid hydrogen structure with this pattern.

The previous candidate for phases IV and V (the BG layers), the 0 K structures

I41/amd and Cmca − 4 show similar behavior. In the case of the layered

structures, the distance between layers is the defining scale that scatters the

charge density near 2kF . This could be the reason why most of the candidate

structure at these high pressures appear to be organized in layers: C2/c, Pc,

Pbcn, Ibam etc.

Interestingly, even in mol. hcp, the DoS resembles the free electron gas at low

electronic energies. This is surprising, because at 50 GPa, mol.hcp is expected to
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Figure 4.3 In this figure I show in red the density of electronic states (DoS)
from multiple snapshots in the MD/PIMD at 300 K and from static
relaxations (middle panels) for comparison. The pressure is different
for each phase candidate: mol. hcp (50 GPa), Pc (275 GPa),
Cmca− 4, I41 − amd and Chains (all at 400 GPa). Blue lines are
the analytic DoS for a free electron gas at the same density. Shaded
regions depict the occupied states for both calculated and ideal DoS
in red and blue, respectively. In solid black I show the simulated
XRD powder pattern (calculated with GDIS [133]) averaged over the
MD/PIMD snapshots. Only the relative intensities are meaningful,
and the peak positions are plotted in units of energy as explained
in the methods section 4.2.2. The insets show the length scale that
scatters the most intense XRD peaks.

be a molecular crystal with a well defined energy of the covalent bond, whereas

here the electrons have an energy spread of up to 15 eV. This could be an effect

of the Kohn-Sham approximation, where electrons are often treated with plane

waves which are more appropriate to describe a free electron gas rather than a

molecular crystal, where all the electrons are localized on the bonds.

If Chains do form in the experiment, they will be hard to identify. Since the

molecule ceases to exist and so does the Raman vibron. In figure 4.4 I show the
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Figure 4.4 Here, panel A illustrates the Raman vibron computed at 300 K from
the MD as a Fourier Transform of the molecular projection for the
candidate structures of phases I, IV and beyond. Panel B shows
the phonon density of states (PDoS) extracted from VACF together
with projections onto the most symmetric lattice modes generated by
Chains. The eigenvector patterns are depicted in the insets. Panel
C shows PDoS calculated from MD (300 K) and LD (0 K) [5] for
Cmca−4 and I41/amd. Panels D illustrate how the most symmetric
modes emerge in the MD projection as the reference eigenvector is
rotated from 0◦ to 90◦ .

result of the molecular projection performed on the MD trajectories of different

hydrogen structural candidates. For phase I, at 50 GPa, the mol. hcp generates

one well defined vibron at around 4300 cm−1. At 275 GPa, for phase IV, the

BG layers give two vibrons from the two layers, respectively. At even higher

pressure, 400 GPa, Cmca− 4 gives one vibron again, albeit at a lower frequency,

comparable to the softer vibron in BG. At these conditions, Chains does not

have a well defined vibron, but a broad range of frequencies around 2500 cm−1
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which corresponds to some collective oscillation of the atoms within the chains.

The phonon density of states PDoS in Chains is different than both PDoS in

Cmca−4 and I41/amd. In Cmca−4 there is a clear band arising from molecular

vibrations and one arising from low frequency lattice modes. Whereas I41/amd

gives three well defined, low frequency peaks and no vibrons. In contrast, the

PDoS of Chains is featureless and comprises of one wide band spanning 3000

cm−1. However, by projecting the velocities onto a series of possible eigenvectors,

I identified the three most symmetric modes that involve oscillations of planes

of chains in the three Cartesian directions as shown in figure 4.4. Some of this

low frequency modes could be Raman or infrared active and facilitate possible

comparison to experiment.

Finally, in figure 4.5 I show one last convergence test. It is common practice to

run MD simulations with less dense k-point grids, because it is generally believed

that forces need not be perfectly converged to obtain well behaved trajectories.

Here, I identified a possibly spurious effect resulting from sparse k-point sampling.

The atoms appear to rearrange themselves in the MD to minimize the energy on

the particular k-point grid at which the simulation is carried out. For instance in

panel A of figure 4.5 I show this effect in the MD-PBE simulation with a 2x2x2

k-point grid, that started in I41/amd and was gradually heated up (simulation

A1 from table 4.1). I chose two snapshots from the trajectory, one before the

transition, containing I41/amd and one after the transition containing Chains.

For each sample, I recalculated the energy on different k-point grids. Notice how

after the transition to Chains, the structure reorganized itself to minimize the

energy on a 2x2x2 grid. In this case, even at convergence, Chains is still lower

in energy than I41/amd, albeit the energy difference is much smaller.

Starting from the selected snapshots, I replicated the heating simulation on a

denser grid (e.g. 4x4x4). The Chains eventually transformed to a BG type

structure, which is expected at 400 GPa, as shown in the previous chapter.

I41/amd remained stable until melting at around 450 K. Furthermore, when

I41/amd was simulated at constant 400 GPa and constant 500 K (in contrast to

being slowly heated up) the structure melted immediately. As shown in panel

D from figure 4.1 the resulting MSD is specific to the liquid phase. All these

observations imply that Chains might be a spurious effect.

Only experiment can eventually conclude whether Chains is a real candidate for

a higher pressure phase or just a simulation spurious effect. Nevertheless, Chains
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Figure 4.5 Panel A illustrates the transitions from Chains to BG through
snapshots from the simulations in Panel C. Panel B shows single
point calculations (SP) illustrating the convergence of energy with k-
point sampling for Chains and I41/amd. Panel C reports the results
from a series of MD runs that replicate the heating simulation at
400 GPa with denser k-points (4x4x4) (simulations A5 and A6 from
table 4.1). These calculations were started with snapshots from the
original simulation (see figure 4.1, here faded lines). The colors
code the different structures: Cmca− 4 (green), Chains (blue), BG
layers (brown), liquid (purple). Panel D shows the MSD extracted
from the MD runs at 500 K, started in I41/amd and Cmca − 4,
respectively (simulations B3 and B4).

is an interesting structure which could be hosting a charge density wave. This

study tells us a cautionary story that k-point convergence is actually important

in MD, especially in treating metallic systems. If the charge density wave is a

real phenomenon that stabilizes the various phases of hydrogen, it can only be

studied well by sampling the reciprocal space at the location where the pseudo-

gap is opened. However, this is not known a priori, and therefore we can only
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choose a dense enough k-point grid hoping to sample this position in the reciprocal

space. On the other hand the MD could reorganize itself to open the pseudo-gap

at one of the available k-points instead, introducing spurious effects.

4.2.4 Conclusions

The experiments are moving closer to dissociation and metalization of solid

hydrogen as evident by the strong softening of the molecular vibrons and

darkening of the samples [80, 89, 100]. Structure searching studies have proposed

a range of weak molecular and atomic candidates at high pressures [91]. As we

have seen in the case of phase IV and V, the structures at those conditions are

dynamic in nature, so perhaps molecular dynamics (MD) is more suitable to

search for candidate structures.

In this section, I presented a series of MD simulations performed at 400 GPa

and various temperatures. The calculations were initialized with a range of

structures identified in 0 K studies [103–105]. Surprisingly the unstable atomic

cells transformed to Chains [130, 131], a structure comprising of long tubes of

charge hosting hydrogen atoms that are no longer bound in molecules. The

structure exists at finite temperature, where it is stabilized by entropy. With

large diffusion along the direction of the chains and smaller diffusion between

chains, this candidate behaves like a 1D melt.

Upon inspecting the density of electronic states, it is clear that Chains is metallic.

The calculated DoS resembles that of a free electron gas except for a pseudo-gap

opened by a charge density wave. The crystal organizes itself as to allow the

electrons to form standing waves extended throughout the structure. This effect

is illustrated by a clustering of diffraction peaks near 2kF . Other solid hydrogen

candidates, in particular, the layered ones present a similar pattern: the spacing

of the layers creates a periodicity that could allow the formation of a charge

density wave. This observation could explain why solid hydrogen continues to

avoid metalization at high pressures.

Finally, more detailed calculations using denser k-point sampling and a different

functional (e.g. LDA) for comparison, indicate that Chains could be a spurious

effect. In particular, I found that structures which appear to be k-point converged

at the start of the MD, can reorganize during the simulation in order to minimize

the total energy on the chosen k-point grid. The subsequent structures (in this
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case, Chains) appear to be no longer k-point converged. To my knowledge,

this MD shortcoming has not been discussed in the literature before. Despite

conventional wisdom, k-point convergence appears to be important in MD

especially when modeling metallic systems.

Whether Chains can be realized in DACs or it is just a bogus effect will be

decided by future experiments. As with all the other structural candidates, the

experiment will be the final arbiter.

4.3 Phase Diagram

Having explored the various high pressure structures of solid hydrogen, in this

section I will integrate all the essential observations and findings in the context of

a simple model of the hydrogen phase diagram. This model is not a quantitative

result, but qualitative, constructed around sensible assumptions derived from

previous studies and the basic laws of thermodynamics. Despite its simplicity,

the model gives a nice overview of hydrogen at high pressures from a simple and

instructive perspective and summarizes the essential physics needed to explain

the phase diagram. This study will be published in a conference proceeding [7].

The main idea here is that each phase can be assigned a simple free energy

function that captures the important characteristics of the phase. In reality, these

functions are very complicated and cannot be solved analytically, only calculated

in DFT or quantum Monte Carlo (QMC) based simulations.

Before I explain the origin of each free energy function in this model, let us

summarize all the known hydrogen phases and their characteristics. Phase I is

the first solid phase, it is stable at finite temperature and it consists of molecular

rotors that are hexagonally close packed [70]. Classically, the rotors can be viewed

as spherical objects with high entropy. Phase II is a low temperature phase, where

the rotors are arrested by quadrupole interactions [24] and the molecules assume

fixed orientations. The exact structure of phase II is not known but some of the

best candidates are P63/m and P21/c − 24 [72, 78]. At higher pressure above

150 GPa, phase III is another low temperature phase. As discussed previously

the best candidate for this phase is the structure C2/c [72, 78].

In chapter 5 on hydrogen-deuterium mixtures, I will show new evidence that

C2/c is a good candidate for phase III. C2/c comprises of molecules which are
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organized in distorted graphene layers (G). The molecules are elongated but the

structure is better packed since it becomes stable at higher pressures.

At higher temperature, above the region of phase III, is the solid phase IV.

Phase IV comprises of a stacking of atomic and molecular layers, where the

molecular layers are freely rotating [1, 97, 98] and the atomic ones describe a

honeycomb pattern. In chapter 3 I presented a detailed study that explores

the subtle differences between phase IV and V and their structural candidates

Pc/Pbcn/Ibam at 0 K and BG′BG”/BG∗/BGa at finite temperature. These

variations are negligible within this simplistic model and here phase IV is viewed

as a packing of atoms and rotors (spherical objects), essentially a mixture between

phases I and III. Although, to date, all experimentally discovered phases are

molecular, at high enough pressures, hydrogen will probably become atomic

eventually. Here I model this hypothetical atomic phase as a simple hcp packing

of atoms, although, in reality, the atomic phase will probably adopt the I41/amd

symmetry.

The liquid phases are also complex and they undergo a transition from molecular

to atomic [52, 53, 61, 63]. Recent simulations have shown that a mixed atomic

and molecular fluid [56] could also exist at the transition between the former two.

The important observation is that all these phases, solid and liquid, comprise of

the same underlying building blocks: free rotors that act as spherical objects (S),

molecules that can be viewed as rods (R) and atoms that are basically smaller

spheres (A) [136]. Table 4.3 summarizes the thermodynamic properties of these

elements in our model. Both spheres and rods are essentially molecules and they

were assigned similar internal energies (US = UR). This energy is lower than that

of individual atoms (UA) since electrons gain energy when forming molecules.

The volume assigned to spheres (VS) is larger than the volume assigned to rods

(VR) which in turn is larger than that of two individual atoms (VA). Finally, in

contrast to rods and atoms, the spherical objects were given an entropy related

to their orientational disorder. All the values chosen here are arbitrary and they

only have qualitative meaning in relation to each other.

Starting from these assumptions, one can now define the free energies of each

phase in the model. Phase I is a hexagonal close packing (hcp) of spherical
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Table 4.3 This table summarizes all the thermodynamic parameters used in
the model. The columns report, in order, the parameters used for the
basic building blocks (first three), each of the five solid phases (next
five) and the liquid phase (last column). On the last two lines, C
refers to packing efficiency and f to the change of packing efficiency
upon melting to a liquid comprising of one of the building blocks (S,R
or A). The zero point energy was introduced as a temperature offset
TZP = 0.4.

Quant. S R A 1 2 3 4 5 liq.
U -1.5 -1.5 0.0 0.0 -0.2 0.2 0.1 -0.2 2.0
V 3.5 2.2 1.6
S 1.0 0.0 0.0 2.0
C 0.74 0.57 0.73 0.92 0.74
f 0.2 0.4 0.9

objects, so the free energy can be modeled as follows:

G1(P, T ) = U1 + US +
P × VS
C1

− (T − TZP )× SS (4.10)

where US, VS and SS are the internal energy, volume and entropy of the spherical

objects and C1 is the packing efficiency of hcp. U1 is the binding energy between

the rotors in phase I, here set to zero (see table 4.3). The PIMD results I presented

at the start of the chapter, suggest that the zero point contribution can be viewed

as a temperature offset, here modeled as TZP .

In phase II, the spherical rotor (S) transforms to a simple rod (R) and the free

energy can be written as:

G2(P, T ) = U2 + UR +
P × VR
C2

− (T − TZP )× SR (4.11)

where U2 is slightly negative, symbolizing the attractive quadrupole-quadrupole

interaction between rods which is responsible for the orientational order. In phase

II, the packing C2 is less efficient than that of hcp.

At higher pressures, phase III loses internal energy as the bond is elongated, but

gains better packing efficiency as the rods are now organized in layers:

G3(P, T ) = U3 + UR +
P × VR
C3

− (T − TZP )× SR (4.12)
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here, U3 > 0 models the increase in energy as the electron is pushed out of the

bond, while C3 > C2 shows that phase III wins over phase II at high pressures.

Above phase III, at high temperatures, we find phase IV which, in a simple

picture, is a combination of spheres (S) in the B layers and atoms (A) in the G

layers. Surprisingly, the BGa model, where large spheres (S) are sandwiched

between a hexagonal pattern of smaller spheres (A) is a known theoretical

arrangement of high packing efficiency, even higher than hcp [137]. All these

observations are included in the expression of the free energy:

G4(P, T ) = U4 +
UA + US

2
+
P × (VA + VS)

C4 × 2
− (T − TZP )× (SS + SA)

2
(4.13)

where U4 is half of U3 and represents an energy penalty for elongating molecules

in the G layers (here simplified as atoms).

Finally, when all molecules have dissociated, one can expect an atomic phase with

free energy:

G5(P, T ) = U5 + UA +
P × VA
C5

− (T − TZP )× SA (4.14)

here, U5 is the internal energy of the atomic solid and C5 = C1 is the packing of

hcp.

In the following, I will continue with the liquid phase. Interestingly, the melting

curve has a maximum above phase I, such that at pressures below the maximum

the solid is denser than the liquid, while at pressures above the maximum, less

dense [21, 22]. Notice that in our simple model, the volume of a phase is

considered independent of pressures. This is a big simplification, a better model

would include equations of state.

However, the maximum in melting can still be achieved within this approxima-

tion, if the overall liquid is modeled as a mixture of three different liquid types,

where each type of liquid comprises of one of the three different basic building

units. In this model, every liquid of a certain building unit (i.e. S, R or A) is stable

at higher temperatures, above the solid comprising of the same respective unit,

having a larger entropy but smaller packing efficiency than the corresponding

solid. The loss in packing efficiency is modeled by the parameter f , different for
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each type of building unit (see table 4.3). Surprisingly, at high enough pressure,

the sum liquid can achieve lower volume than the competing solids, reproducing

the maximum feature of the melting line.

Below are the free energy expressions for each type of liquid:

GlS(P, T ) = Uliq + US +
P × VS
fS × C1

− (T − TZP )× SS − (T − TZP )× Sliq (4.15)

GlR(P, T ) = Uliq + UR +
P × VR
fR × C3

− (T − TZP )× SR − (T − TZP )× Sliq (4.16)

GlA(P, T ) = Uliq + UA +
P × VA
fA × C5

− (T − TZP )× SA − (T − TZP )× Sliq (4.17)

here, Uliq is the internal energy and Sliq is the entropy characteristic of the liquid,

regardless of the building unit. Finally, the liquid, overall, can be modeled as

Boltzmann mixture of the different liquid types depending on their individual

free energies:

Gliq(P, T ) =
GlS × exp

(−GlS
T

)
+GlR × exp

(−GlR
T

)
+GlA × exp

(−GlA
T

)
exp

(−GlS
T

)
+ exp

(−GlR
T

)
+ exp

(−GlA
T

) (4.18)

This model for the liquid can reproduce well the melting curve measured

experimentally [22]. In figure 4.6 I show the phase diagram generated using

the free energies laid out above and the parameters reported in table 4.3. First

I computed all the free energies on an evenly spaced pressure-temperature grid

and compared them to one another to find the regions of stability for each phase.

Although this thermodynamic model is extremely simple, it reproduces the

actual hydrogen phase diagram quite well. The exact values for pressure and

temperature are irrelevant and can be easily tweaked by changing the parameters.

However all the phases are in the right regions of the pressure-temperature (PT)

space, the transition lines have plausible slopes, while the melting line has the
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Figure 4.6 The figure shows an example phase diagram obtained with the simple
packing model and the parameters from table 4.3. The free energies
were calculated on an evenly distributed P-T grid using a code I
developed in GNU Octave [138].

expected behavior.

Overall, the model is surprisingly successful in summarizing the essential physics

of hydrogen at high pressure. Phase I has high entropy which makes it stable

at high temperatures, whereas phase II has lower internal energy as a result

of quadrupole-quadrupole interactions and is, therefore, more stable at lower

temperatures. Phase III has higher internal energy as a result of the electron

moving out of the bond, however, at the same time, it is a better packing so

it wins at higher pressures. Phase IV, is an excellent packing of spheres (S)

and atoms (A) and at the same time, it has high entropy owing to the spherical

objects in the B layers. As a result, phase IV wins over phase III at higher

temperatures and over phase I at higher pressures. In other words phase IV is a

mixture between phases I and III, more entropic than the latter and better packed

than the former. The liquid above phase I comprises predominantly of spherical

objects, being less dense than the solid below. Upon increasing pressure, the

liquid of rods gradually contributes more and increases the density of the fluid,

which eventually becomes denser than the solid below. This gives an excellent
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account of the phase diagram as it is known today.

4.4 Summary

In this chapter, I presented two important results. First I showed that in

molecular dynamics, at finite temperature hydrogen can organize itself in an

interesting structure comprising of long polymeric chains of atoms that could be

stabilized by a charge density wave. This phenomenon could also be responsible

for the increased stability of the layered molecular structures as shown by the

grouping of diffraction peaks near 2kF in the DoS. Alternatively, Chains, which

has been found before in the literature [130, 131] could be a spurious effect of

insufficient k-point sampling. Interestingly, k-point sampling might be much more

important for molecular dynamics than previously believed. This could have far

reaching implications for the more advanced studies as well. For instance, while

quantum Monte Carlo molecular dynamics is praised for solving the exchange-

correlation problem, it could be lacking in other respects which might be far more

important.

Second, I showed that the hydrogen phase diagram can be understood from a

simple thermodynamics perspective. Currently, the workflow in the field is: the

theory predicts the ”final product” like the pressure and temperature of transition

for phases III to IV, and the experiment validates the ”final product”, or not. I

believe that much can be gained by bridging the gap from the experimental side

as well. For instance starting from the simple model that I presented here, one

could further reduce the number of parameters by synthesizing more physics into

the model. The equations could then be numerically fitted to the experimental

phase diagram to obtain an ”intermediate product” like entropy or internal energy

differences, which would be more readily available as a benchmark for the theory.

A model that enforces the basic physics could also be helpful for experiments.

For instance, all melting experiments so far have checked their results against the

Kechin fit [139], which helps to draw the line but also extrapolate the results. One

could develop a simple routine that provided with the list of the pressures and

temperatures, where each of the phases has been found, could output the most

likely phase diagram. This way all diagrams published throughout the literature

could be directly compared to one another, considerably speeding up the progress.
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Chapter 5

Hydrogen-Deuterium Mixtures:

Phases III and IV

5.1 Overview

The results showed so far concerned pure solid hydrogen. This chapter is centered

around the two most recent experimental studies in hydrogen-deuterium mixtures:

one using Raman spectroscopy in phase IV at room temperatures [2] and the

other using infrared spectroscopy in the region of stability of phase III at lower

temperatures [114].

The experiment in phase IV started with loading hydrogen and deuterium gas

together in diamond anvil cells at room temperature. In their study [2], they claim

that even pressures as low as 0.2 GPa were sufficient to induce recombination,

necessary to generate hydrogen-deuteride molecules. On the other hand, the

phase III experiment, which I will discuss in the second half of the chapter, started

with pure hydrogen-deuteride at low temperature and claimed that dissociation

and recombination (which they call DISREC) only takes place at a high pressure

above 150 GPa. The probability of a dissociation event is proportional to

e−(H−TS)/kBT where at low temperatures, the molecular binding enthalpy H

is the important energy scale. At low temperatures, dissociation has a small

probability. Furthermore, for the completion of the recombination process, a

second disassociation event needs to take place in the proximity of the first. This

requirement decreases the probability even further. Therefore, it is expected that
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mixing does not occur at low temperature but it does at high temperatures, where

TS becomes comparable to the binding enthalpy H.

The concentration of the different molecular species in a hydrogen-deuterium

mixture can be deduced by the ratio between their respective Raman or

infrared intensities. Monitoring these ratios with time at different pressures and

temperatures could serve as a direct probe for the molecular strength at those

conditions. The experiment in phase III [114] already carried out such a study at

one point in the phase diagram. Future experiments could extend their analysis

to the rest of the phase diagram.

Recombination is just one of the interesting processes that take place in mixtures.

Even more interesting are the changes in the Raman and infrared spectra owing

to different hydrogen-deuterium compositions. In the first half of the chapter, I

will argue that Raman changes in phase IV mixtures are driven by a textbook

effect called mass induced phonon localization, which might be unique to solid

molecular hydrogen. The second half will focus on a cautionary tale, namely that

splitting or appearance of new infrared vibron peaks in phase III mixtures should

be carefully investigated and they are not necessarily indicators of structural

phase transitions. My first result was published in ref [2] and the second is being

prepared for publication [9].

5.2 Mixtures in Phase IV: Phonon Localization

5.2.1 Introduction

Hydrogen-deuterium mixtures in phase IV represent a particularly interesting

system to study. As I showed in chapter 3, it is generally acknowledged that

phase IV comprises of at least two very different layer types B and G. Additionally,

phase IV is also a molecular solid with two different scales of interactions: strong

intramolecular and weak intermolecular. These different molecular environments

should generate six distinct Raman active modes in pure hydrogen phase IV

crystals [89]. On one hand, the two higher frequency modes called vibrons stem

from the intramolecular interaction and comprise of in-phase molecular stretching.

On the other hand, the four lower frequency modes are generated by the weaker

intermolecular interaction. As shown in chapter 3, two of these low frequency

modes are out of layer oscillations and the other two are in layer oscillations.
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Similarly to vibrons, the low frequency modes are in pairs, one mode from each

layer type. This complexity offers a unique playground for mixtures.

A very interesting idea was formulated in ref [78], even before the experimental

discovery of phase IV [87, 89]. They proposed that owing to its unique structure,

Pbcn could induce isotopic segregation where hydrogen and deuterium are

separated in the different layer environments (i.e. B and G) to minimize the free

energy. If this was true, the experiment would only measure two vibron modes

one compatible with pure hydrogen, the other compatible with pure deuterium.

In the low frequency range, the experiment would find four low frequency modes,

two from each molecular species. This prediction motivated our collaborators

on the experimental side to perform a study with hydrogen-deuterium mixtures

in phase IV. I also tested the hypothesis using theoretical methods as explained

later in the chapter.

Figure 5.1 This figure was reproduced from ref [2] and shows the experimental
Raman spectra in hydrogen-deuterium mixtures as function of
pressure, up to phase IV. The different colors correspond to different
compositions as labeled. The convention for naming the low
frequency modes and vibron modes is the same as in chapter 3.

As shown in figure 5.1, the experiment claimed six Raman active vibrons in

mixtures which implies that mixtures are randomly distributed and there is no

sign of isotope segregation. Their findings were consistent with my analysis which
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showed that the free energies gained by segregation would be insufficient to drive

order at room temperature. Furthermore, I found a textbook effect called phonon

localization, which here is purely induced by mass disorder - unique to hydrogen

mixtures.

The idea of localization in random lattices was first introduced by Anderson [140]

who noted that disorder can affect transport in electronic systems. Since then,

localization has been thoroughly investigated in many other random systems as

well. Several studies demonstrated the phenomenon: ultrasound localization in

random elastic networks [141], localization of Bose-Einstein condensates [142] and

even localization of light [143].

The localization of phonons means that the concept of a phonon band where all

atoms across the crystal contribute to the oscillation breaks down. Instead, a

small group of atoms oscillate together separated from the rest of the crystal.

Hydrogen and deuterium have the same electronic structure but a large mass

ratio of 1:2, so here the phonon localization is purely induced by mass disorder.

Localization itself cannot be measured directly in experiment. However, phonon

localization affects the Raman spectra and it is, in turn, strongly influenced by

the composition of the hydrogen-deuterium mixture. Theoretically, I investigated

these dependencies and made a prediction on how Raman vibrons would vary with

pressures and hydrogen-deuterium concentrations in the presence of localization.

All my findings were confirmed by experimental observations, indirectly proving

phonon localization in hydrogen-deuterium mixtures.

5.2.2 Methods

DFT settings

All the calculations in this chapter were performed with CASTEP [31, 115], unless

otherwise specified. I used the Perdew-Burke-Ernzerhof (PBE) [28] exchange-

correlation functional. The electron charge density was set to spin unpolarized

and expanded in plane waves with an energy cut-off of 1200 eV. All the systems

were treated as insulators by fixing the occupancy of the electronic bands, which

allowed the calculation of infrared and Raman spectra. The total energy in the

DFT loop was converged within 10−11 eV and the minimization method of choice

was density mixing (dm). The pseudo-potentials were generated on the fly using
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the CASTEP input string ”H 0|0.7|2|6|8|10L(qc = 10)” [116].

Table 5.1 The table shows the two settings used for geometry optimizations in
this section.

Converged Quantity Coarse Fine
Energy 5× 10−6 eV/atom 1× 10−8 eV/atom
Force 1× 10−2 eV/Å 5× 10−4 eV/Å
Stress 1× 10−1 GPa 5× 10−4 GPa
Displacement 5× 10−4 Å 5× 10−4 Å

Free Energy Calculations

The goal here was to test the hypothesis proposed in reference [78] according to

which hydrogen and deuterium could segregate into layers to minimize the free

energy in phase IV. All calculations were performed on the Pc structure, which

is a good ground state candidate for phase IV. I started with a coarse geometry

optimization (see table 5.1) of the Pc unit cell containing 48 atoms at 250 GPa.

For sampling the reciprocal space I employed a k-point Monkhorst-Pack (MP)

grid with spacing 0.04 Å
−1

.

I then continued with a phonon calculation at the gamma point using finite

displacement and FINE method supercell, followed by a thermodynamics calcu-

lation as implemented in CASTEP. This procedure allowed me to evaluate the

free energy at room temperature (300 K) in the quasi-harmonic approximation.

For extending this calculation at other hydrogen-deuterium mixtures I used

a CASTEP post-processing code called PHONONS. The software PHONONS

reloads the check file written by the initial CASTEP calculation, together with the

reconstructed cell file obtained by isotopic substitution to generate new phonons

and thus a new free energy approximation for each of the mixture samples.

Here I focused on 50:50% mixtures containing exactly 12 hydrogen (H) and

12 deuterium (D) molecules. Generating completely random mixtures is not

sufficient for this exercise, because the cases of interest where layer segregation

occurs, are relatively unlikely. Therefore I used my own script to generate random

samples, allowing no repetition as explained in the following.

Let nTL be the number of bonds of a specific type T (i.e. HH, HD or DD) within

a certain layer L (i.e. G or B). I define a class of structures as the collection of all

the configurations determined by the same 6-tuple (nHHB, nHDB, nDDB, nHHG,
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nHDG, nDDG). Now, I sample each class of structures by generating a total of

Ns = 2400 different samples uniformly in this configurational space; all subject

to the following independent constraints:

nHHB + nHDB + nDDB = 12 (5.1)

nHHG + nHDG + nDDG = 12 (5.2)

2nHHB + nHDB + 2nHHG + nHDG = 24 (5.3)

2nDDB + nHDB + 2nDDG + nHDG = 24 (5.4)

Equations 5.1 and 5.2 reinforce that each layer type should accommodate exactly

12 molecules, while relations 5.3 and 5.4 ensure that the number of hydrogens

equals the number of deuteriums and thus both equal half the total number of

atoms.

Both hydrogen and deuterium have the same electronic structure and thus the

enthalpy is the same for all the generated mixed samples, however, the zero point

energy and the entropy vary due to changes in the phonon spectrum. For each of

the 2400 different mixture samples, I performed a thermodynamic calculation and

evaluated the free energy within the quasi-harmonic approximation. As shown

in the results section, the free energy difference between the fully segregated

and randomly mixed configurations is not sufficient to drive order at room

temperature.

Phonon calculations in mixtures

As I will show later in more detail, the result derived from the thermodynamic

calculation suggests that at room temperature there is no isotopic segregation in

Pc hydrogen-deuterium mixtures. Therefore, for this next exercise, I doubled the

unit cell of the Pc structure to 96 atoms and prepared one uniformly distributed

mixture sample at 240, 270 and at 300 GPa, respectively, in which the identities

of the atoms (i.e. H and D) were randomly assigned. I re-optimized the structure

at all three pressure points using the fine settings reported in table 5.1. The
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reciprocal space was sampled using an 8x8x8 k-point MP grid. I continued

with a gamma point phonon and efield calculation at each pressure, using finite

displacement and FINE method supercell. Additionally, at 270 GPa I also

performed a full Raman calculation which was then used as a benchmark for

the method introduced below.

Once the dynamical matrix was calculated at all three pressure points with

CASTEP, I used the software PHONONS to extend the phonon calculation to

other isotopic configurations. At each pressure point, I generated Ns = 2700

random hydrogen-deuterium configurations with hydrogen concentrations ranging

from 0 to 100%. I based my method on the assumption that there is no isotopic

segregation in mixtures, regardless of hydrogen concentration. Although I only

tested this assumption at 50:50% mixtures, this result was demonstrated by

experiment at other compositions as well.

Raman and Localization from Lattice Dynamics

The idea here was to calculate Raman spectra and phonon localization in phase

IV hydrogen-deuterium mixtures at different concentrations and pressures in

light of comparison to experiment [2]. Since mass disorder breaks translational

symmetry in mixtures, the Raman signature for mixtures can only be obtained

by sampling many different mixture configurations and averaging the spectra.

Recalculating the Raman intensity for each sample is a non-trivial expensive task,

so here I developed a proxy for approximating the high frequency Raman vibrons.

Based on the previous observations presented in chapter 3, the Raman active

vibrons in Pc comprise of in-phase stretches of the molecules. Unfortunately, the

low frequency modes cannot be easily recomputed in mixtures. Here, for any

random mixture sample s, I approximated the high-frequency Raman intensities

by projecting the eigenmodes εαl,k onto molecular axes:

rs(fk) =
N∑
l=1

3∑
α=1

aαl ε
α
l,k (5.5)

where l running from 1 to N labels the atoms, k labels the modes and α the

Cartesian components. The vector ~al = (a1
l , a

2
l , a

3
l ) represents the molecular axis

pointing away from atom l to the nearest neighbouring atom.

Comparing the result obtained with this method with the actual Raman
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Figure 5.2 In this figure I compare the Raman vibrons obtained in two different
ways for a random mixture at 270 GPa in Pc. In red is an actual
calculation with CASTEP and in blue is the proxy method I used to
approximate the high frequency Raman vibrons.

calculation performed with CASTEP for the same mixture sample at 270 GPa,

I found good agreement (figure 5.2). I concluded that this projection method is

sufficiently accurate to be used as a proxy in mixtures [4].

This method also allows us to calculate independently Raman contributions from

HH, HD and DD, respectively, by summing selectively over those molecule types

(denoted T ). For instance to obtain the Raman contribution from HH molecules:

rHHs (fk) =

N ;Tl=HH∑
l=1

3∑
α=1

aαl ε
α
l,k (5.6)

Apart from the Raman method, I also defined a measure of phonon localization

which is the main finding discussed in this chapter. For a given mixture sample,

the localization is calculated via the inverse participation ratio [144]:

pls(fk) =
N∑
l=1

[
3∑

α=1

εαl,kε
α
l,k

]2

, subject to:
N∑
l=1

3∑
α=1

εαl,kε
α
l,k := 1 (5.7)
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I also calculated integrated localizations over the low frequency range (LF), high

frequency range (HF) and over the entire frequency range (EF). These give

a measure of how localized are the vibrons, the low frequency modes and all

phonons, overall.

plLFs =

fk<=f0∑
fk

pls(fk); plHFs =

fk>f0∑
fk

pls(fk); plEFs =
∑
fk

pls(fk) (5.8)

where f0 = 1800 cm−1 is an arbitrary frequency that separates the high and low

frequency range.

Localization is a measure for the number of molecules participating in a phonon

mode and it is related to the inverse participation ratio [144]. To get a feeling for

the kind of values one would expect for this quantity, let us look at some specific

examples in Pc. For instance, a completely delocalized vibrational mode would

induce equal displacements in all the molecules in one layer type (B or G). Using

the normalization condition, the localization of such a mode in a 96 atom Pc cell

is approximately:

plmin(fk) ≈
N

2
ε4 =

N

2

22

N2
=

2

N
=

1

48
(5.9)

where ε is the displacement along each eigenvector, here assumed equal for all

the atoms. On the other hand, a completely localised vibrational mode, would

induce vibrations in one molecule only, so:

plmax(fk) ≈ 2ε4 = 2
1

22
=

1

2
(5.10)

The final Raman activity and localization at one given pressure and concentration

were obtained by binning up the result from many randomized hydrogen-

deuterium mixture samples s. For every configuration, the eigenvectors were

recomputed with PHONONS as explained in section 5.2.2. In total, I sampled

2700 different mixture samples at each of the pressures 240, 270 and 300 GPa,

which was sufficient to ensure convergence. For this study, I will not delve

into details on how the histograms were binned up and normalized. These

specifications will become important in the next study of infrared spectra in

phase III, presented later in section 5.3.2.
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Molecular Dynamics Calculation

The LD method is useful for sampling many molecular environments and thus,

ensuring good convergence of Raman spectra. Nevertheless, as I extensively

discussed in the chapter 3, at room temperature, the crystal structure of phase IV

is not exactly Pc and static methods cannot reproduce the dynamic behavior. LD

calculations, alone, cannot account for phonon anharmonicity, which is especially

problematic in the G layers of Pc. Here I performed Molecular Dynamics (MD)

calculations which help account for the dynamical effects.

MD is expensive so here I only performed calculations with pure isotopes H (100%

hydrogen), pure D (0% hydrogen) and with one random 50:50% mixture sample,

no other intermediate concentrations. As a starting point, for the pure isotopes,

I chose Pc cells with 288 atoms and 1x1x2 k-point MP grids. For the mixture

I chose a 768 atom cell and I only sampled the reciprocal space at the gamma

point. I used a larger cell for the mixtures to better represent a random mass

distribution and minimize the effect of the implicit translational symmetry.

Table 5.2 Here I present the summary of MD calculations in hydrogen-
deuterium mixtures.

Cell H % Atoms Ensemble Iterations Length Pressure Temp.
pure H 100% 288 NVE 3000 1.5 ps 272 GPa 294 K
pure D 0% 288 NVE 3000 1.5 ps 272 GPa 307 K

rand mix 50% 768 NPT 1000 0.5 ps 268 GPa 219 K
rand mix 50% 768 NVE 3000 1.5 ps 267 GPa 296 K

Table 5.2 summarizes the details of the MD simulations. The cells were geometry

optimized at the start using the coarse settings reported in table 5.1. The pressure

and temperature reported in table 5.2 are averages over the values printed by

CASTEP at each step. The simulations meant for calculating Raman, were

performed in the NVE ensemble. For mixtures I used a long equilibration stage

in NPT to allow the large cell to reach equilibrium first. The pressure was fixed

with the Parrinello-Raman barostat and the temperature with the Nose-Hoover

chain thermostat using CASTEP default settings. The time step in all the MD

runs was set to 0.5 fs, consistent with the simulations presented in the previous

chapters.
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Raman and Localization from Molecular Dynamics

I devoted the entire chapter 3 to the method of projecting Raman from MD in

molecular hydrogen. Here I will shortly summarize the basic procedure for the

benefit of the reader. Instead of projecting the normal modes like in LD, in the

case of MD, I project the velocities onto in-phase molecular stretching and then

take the Fourier Transform of the result:

r(f) = FT

[
N∑
l=1

3∑
α=1

aαl v
α
l (t)

]
(5.11)

where vαl (t) is the velocity of the atom labeled l at time t.

Same as in the case of LD, in MD I can also separately compute Raman for HH,

HD and DD, by performing the projection selectively:

rHH(f) = FT

[
N ;Tl=HH∑

l=1

3∑
α=1

aαl v
α
l (t)

]
(5.12)

The projection method was thoroughly tested in chapter 3 and refs [1, 3, 4] for

pure hydrogen. Mixtures are a more difficult case than pure isotopes, so here I

performed a new test. I applied the projection on short, consecutive simulation

windows of 0.25 ps each as reported in table 5.2.

Table 5.3 Peak positions with their standard deviations computed from MD in
50:50% mixtures using the window method.

Time Interval HH-G HH-B HD-G HD-B DD-G DD-B
0.00 - 0.25 ps 3466 4379 2915 3731 2268 3080
0.25 - 0.50 ps 3223 4380 2916 3718 2401 3046
0.50 - 0.75 ps 3350 4393 2944 3710 2281 2943
0.75 - 1.00 ps 3470 4387 2665 3606 2010 3047
1.00 - 1.25 ps 3457 4409 2553 3737 2266 2945
1.25 - 1.50 ps 3330 4408 2911 3607 2275 2909

average 3383 4393 2817 3685 2250 2995
std. dev. 111 15 185 69 144 79

Figure 5.3 illustrates the vibrons obtained from the 50:50% mixture simulation

where projections are performed selectively onto each molecular species. Table

5.3 summarizes the positions of the peaks as obtained from each window of the
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Figure 5.3 Left, middle and right panels show selective molecular projections
onto HH, HD and DD molecules as calculated from MD. Each curve
is a spectrum obtained from a short 0.25 ps window of simulation.
The positions of the peaks which were summarized in table 5.3 are
consistent across the simulation, proving the method is robust.

simulation. With the exception of a few outliers, the results are robust and even

simulations as short as 0.25 ps are sufficient to obtain reliable Raman vibrons,

once the cells have equilibrated. Note that a frequency of 2000 cm−1 corresponds

to 0.017 ps, meaning that a 0.25 ps window contains about 15 molecular vibrations

for each of the molecules. On the other hand, this windows would be too short

to gain any useful information about the low frequency modes. All the vibrons

presented in the results section were obtained from 1.5 ps long simulations and

concern the vibrons only.

I also developed a method to approximate phonon localization from MD as I

explain in the following. Denote tmax the total simulation time and dt the time

step. One can naturally construct a set of frequencies with fmin = 1/tmax, fmax =

1/dt, sampled at a frequency step df = fmin, which avoids aliasing. One can, then,

compute a set of displacement vectors δαl,k as Fourier Transforms of the atomic

positions xαl (t):

δαl,j = A−1
j · FT [xαl (t)] , where: A2

j =
N∑
l=1

3∑
α=1

(δαl,j)
2 (5.13)

where l labels the atoms and j labels the frequencies running from fmin to fmax.

Note that the set of displacements δαl,j is an approximation to the normal modes,
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but it is over-complete and encodes anharmonicity as well. Finally, using the

calculated displacements, the phonon localization can be computed from the MD

as:

pl(fj) =
N∑
l=1

[
3∑

α=1

(δαl,jδ
α
l,j)

]2

(5.14)

where as in the static case, pl is inverse proportional to the number of atoms that

participate to the oscillation.

5.2.3 Results

Let us explore the idea proposed in ref [78] according to which phase IV mixtures

could exhibit an unusual case of isotopic segregation into layers. In pure hydrogen,

the B layer Raman vibron is around fHHB = 4000 cm−1, while the G layer vibron

has a value of fHHG = 3000 cm−1 [100]. These are just rough approximations

since the frequencies change strongly with pressure. Assuming that the zero

point energy (ZPE) from the vibron gives the most important contribution to

ZPE, a segregated configuration where all deuteriums are in the B layers and all

hydrogens are in the G layers would yield lower energies than a random mixture.

In the simple harmonic approximation the frequency of the vibrons is:

f =
1

2π

√
k

µ
, with the reduced mass: µ =

m1m2

m1 +m2
(5.15)

For the three different molecular species, equation 5.15 yields:

fDD =
1√
2
fHH and fHD =

√
3

2
fHH (5.16)

In the case of segregation, the ZPE contribution, per molecule, from the vibrons

in the two layers (B and G) is:

ZPEseg =
h

4
(fDDB + fHHG) =

h

4

(
1√
2
fHHB + fHHG

)
(5.17)

In perfectly random 50:50% hydrogen-deuterium mixtures, both HH molecules

119



and DD molecules form with probability 25%, whereas HD molecules being

equivalent with DH molecules are twice as likely. Therefore the contribution

from the vibrons to the ZPE in random mixtures is:

ZPEmix =
h

4

[
1

4
(fHHB + 2fDDB + fDDB) +

1

4
(fHHG + 2fDDG + fDDG)

]
(5.18)

And combining with equation 5.15:

ZPEmix =
h

4

√
4 + 2

√
3 +
√

2

8
(fHHB + fHHG) (5.19)

The difference in ZPE introduced by segregation is finally:

∆ZPE = ZPEseg − ZPEmix =
h

4
(−0.1527fHHB + 0.1402fHHG) (5.20)

Placing the heavier DD molecules in the B layer stabilizes the lattice. The extra

energy gained, however, is counterbalanced by the energy lost from placing all

the remaining light HH molecules in the G layer. Using the experimental values

for the vibron frequency, the ZPE difference per atom calculated from equation

5.20 is roughly 3meV/atom.

I continued this analysis further by performing thermodynamic calculations with

CASTEP on 2400 configurations at 50:50% hydrogen-deuterium concentrations.

The results are shown in figure 5.4 and are consistent with my theoretical analysis.

The structure with all the DD molecules in the B layer, all HH molecules in

the G layer and hosting no HD molecules at all, has the lowest free energy in

mixtures. One of the highest energies is attained in the inverted structure with

all DD in the G layer and all HH in the B layer. However, when all modes are

accounted for (i.e. not only the two vibrons as in the previous approximation) the

energy differences are even smaller. In dynamics, the entropy will further help to

stabilize a randomly distributed mixture. The difference between the segregated

structure and the completely random is less than 1.2 meV/atom in LD, which

is relatively small compared to kBT ∼ 26 meV . I, therefore, conclude that at

room temperature hydrogen-deuterium mixtures are randomly distributed and

the energy differences found here are insufficient to drive segregation.
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Figure 5.4 The six panels on the top show the free energy per atom for all
the 2400 samples of 50:50% hydrogen-deuterium mixtures calculated
in 48 atoms Pc at 250 GPa and 300 K. The same result is
plotted six times with respect to the different molecule occurrences
nTL. Green, gray and blue bullets label some special mixture
cases with all deuteriums in the B layers, randomly distributed
hydrogen and deuterium atoms and all hydrogens in the G layer,
respectively. The three bottom panels illustrate examples for these
mixture configurations. Note that all the free energies are given as
differences with respect to the reference configuration of minimum
energy.

As I explained in the methods section 5.2.2 these calculations involved only the

phonons at the gamma point, future work could repeat the simulation with a

better sampling of the Brillouin zone, but this is unlikely to change the result.

My result here is consistent with the experimental findings of our coworkers [2]

who found strong evidence of disordered mixtures at all concentrations. Their
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conclusions are based on Raman measurements which indicate six distinct vibrons

originating from the three molecular species (HH, HD and DD) distributed equally

in both B and G layers.
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Figure 5.5 Here I show the Raman vibrons extracted from LD in 96 atoms Pc
mixtures at different pressures and concentrations. The results were
grouped into intervals depending on the mixture composition, and
binned into histograms.

Here, I also calculated Raman vibrons at various concentrations and pressures as

shown in figure 5.5 and I then compared these results to the experiment, later

in figure 5.10. As figure 5.5 illustrates, the Raman vibrons in mixtures of phase

IV are very diverse, they vary with pressure, but much stronger with hydrogen

concentration. At around 30% hydrogen concentrations, one can distinguish six

individual vibron peaks, but above 50% concentrations only five peaks are left.

At higher and lower hydrogen (H) concentrations, respectively, the number of

122



vibrons decreases further. I attribute this strong dependence on concentrations

to a phenomenon called phonon localization which I will discuss later in this

section. Note that at 70% H two of the lower frequency peaks merge into one with

increasing pressure. Many times in experiment, the disappearance, emergence

and splitting of peaks is associated with structural phase transitions. As I will

also discuss in the second part of this chapter 5.3 this is not always true, certainly

not here. Changes to Raman and infrared spectra in mixtures should be analyzed

with care, more often they are a result of mass disorder and phonon localization

and do not indicate structural phase transitions.

The method of projecting selectively onto the three molecular species allowed me

to identify the origin of each mode in the Raman spectra as I illustrate in figure

5.6. The signal originating from the DD molecule is clear and presents two well

defined peaks that can be attributed to the two layers B and G. As expected the

DDG vibron changes faster than the DDB vibron with increasing pressure, as

shown by the different colors in figure 5.6. Apart from the two intense peaks, the

spectra also contain smaller peaks which are the results of coupling with the HD

molecule.

I found a similar behavior in the case of HD: two intense peaks that I label HDB

and HDG and a few weaker peaks which originate from small coupling with the

other species, mainly DD in the G layer and HH in the B layer. Finally, the

HH molecule generates two vibrons at lower H concentrations, however, above

50% H concentration, the HHG peak becomes a broad band, which only depends

weakly on pressures. These observations are consistent with the experimental

results which show that HHG peak is broad and independent of pressure unlike

the other peaks originating from the G layers.

Even though I found some evidence of coupling, it is surprising how well separated

the spectra originating from the different species are. Furthermore, even within

the same molecular species, not all molecules participate to the vibrations. As

seen in figure 5.7 the modes seem to be localized on small groups of molecules of

the same kind (e.g. all HH) separated from the rest of the crystal by molecules of

different kinds (e.g. HD and DD). We call this phenomenon phonon localization

because it is similar to the concept advanced by Anderson for electronic systems

[140]. Phonon localization breaks the concept of a phonon band because the

modes are no longer spread across the entire crystal but focused on a small island

of similar molecules.
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Figure 5.6 These figures illustrate the total Raman spectra but also partial
Raman contributions from different molecular species. It also shows
phonon localizations. All results here were calculated from LD in 96
atoms Pc. In each figure, consecutive panels from top to bottom show
results from mixtures with a decreasing concentration of hydrogen as
labeled in one of the figures. The individual colors label the three
different pressure points as shown in the legend. The top left figure
is essentially a summary of all figures 5.5.

Although localization itself cannot be measured experimentally, it can be gauged

through its influence on the frequency of the modes. In figure 5.7 I show how

the frequency of the vibrons in the B layers depends on the localization of the

phonons. On one hand, more localized vibrons involve fewer molecules and

generate higher frequencies. On the other hand, less localized vibrons, involve

more coupling between molecules of the same kind and generate lower frequencies.

The widths of the peaks are also related to the amount of localization.
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Localization affecting the phonon frequency
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Figure 5.7 The figure illustrates the correlation between the Raman frequency
and mode localization, both calculated with LD. Here I show only
results from the B layer. The top left panel shows examples of
localized modes in 50:50% mixtures. The other panels show Raman
versus localization for the three molecular species: HH, HD and DD,
respectively. A quadratic fit appears to describe the data well.

In figure 5.8 I show how the localization of different modes changes progressively

with increasing hydrogen concentration. The vibrons originating from HHB and

HDB are the highest in frequency (above 3700 cm−1) and they form two bands

that are independent of the rest of the modes. At low H compositions, there

are few HH molecules available in the mixture and the HHB modes are highly

localized, occupying a narrow band of high frequencies. As the H concentration

is increased, the HHB band becomes broader and shifts to lower frequencies. The

HDB band behaves in similar fashion. The band is wider and lower in frequency

at high concentration of HD, while narrower and higher in frequency at lower

concentration of HD. Note that the concentration of HD molecules cHD is not

linear in the H concentration cH , but follows this equation in random mixtures:

cHD = 2cH(1− cH) (5.21)

These conclusions hold true for the other vibron bands as well (e.g. DDB, HHG,
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Figure 5.8 Here I show in more detail the phonon localization calculated with
LD at 270 GPa. Panels a-f report the localization per mode over
intervals of decreasing hydrogen concentration. Shaded brown are
the low frequency modes, which show no localization. Red, green
and blue colors indicate vibrons involving mainly HH, HD and DD.
I assigned the colors to peaks based on the Raman result in figure
5.10. The hashed regions illustrate overlap. Panel g shows the
total localization as a function of hydrogen concentration for vibrons
(black) and low frequency modes (brown), all at 270 GPa. In light
gray I show the limit of entirely delocalized phonons generated by
pure hydrogen and pure deuterium solids.

HDG, DDG), however, in those cases, it is harder to analyze the peaks since

all the bands merge together into one. Figure 5.8 shows all the modes not only

the Raman active ones. Usually, the Raman vibrons are located on the lower

frequency side within a vibron band, therefore, both softening and broadening

of the band will generally result in softening the frequency of the Raman active

vibrons.
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Another very important observation is that low frequency modes are delocalized.

As one can see in figure 5.8, the low frequency range of the spectrum comprises

of homogeneous delocalized modes. This conclusion is also consistent with

the experiment which finds only four Raman low frequency modes in phase

IV of mixtures, the same number as in pure hydrogen/deuterium phase IV.

If these modes were also localized, the experiment would find twelve of them

corresponding to the three molecular species. Localization is the result of a

trade-off between the strength of coupling and the mass ratio between different

oscillating motives, this can easily be understood with the coupling model of

oscillators. The transfer of energy from one oscillator to another is enhanced by

stronger coupling and decreased by the difference in mass. This explains why

vibrons are localized in space, while low frequency modes are not.

Figure 5.8 also shows integrated localization as function of H concentration at 270

GPa. Once more this shows the difference between the highly localized vibrons

and delocalized low frequency modes. Vibrons of a certain molecular species are

more localized at smaller concentrations of that species. However, the integral

localization which is an average over all the vibrons, achieves a maximum when

most of the vibrons are localized. This occurs at intermediate H concentrations.

The curve is skewed with the maximum located around 20-30% H instead of 50%

H. This is because HH vibrons are more localized at low hydrogen concentrations

than DD vibrons are at low deuterium concentrations.
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Figure 5.9 Similar to panel g in figure 5.8 this shows the overall mode
localization as function of hydrogen concentration calculated from
LD. Here the result is also showed at 240 and 300 GPa for
comparison. The arrow emphasizes the change in overall localization
upon increasing pressure from 240 to 300 GPa.

The shape of this overall vibron localization changes with pressure as showed in
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figure 5.9. With increasing pressures, the B layers remain mostly unchanged,

but in the G layers the difference between the intramolecular and intermolecular

interaction strength is reduced and the DDG vibrons start coupling with other

vibrons and reduce the overall localization. The HHG vibrons are affected less

by changes in pressure, which is confirmed by experimental observations.

Figure 5.10 Here I compare the Raman vibrons calculated at 270 GPa with
the result from the experiment [2]. Panel a: Shows the Raman
active modes from all the 2700 LD calculations (one colored solid
dot per mode) at 270 GPa and various concentrations. The
color of each dot is generated in RGB where the ratios of the
color components are based on the partial Raman contributions
from each molecular species: HH (red), HD (green) and DD
(blue). The saturation of the color is proportional to the overall
Raman intensity. The experimental data is plotted with ellipses,
the size of which are the errors in concentration and frequency,
respectively. Colors demonstrating the character of each mode
in the experiment were assigned by observing the behavior of the
spectra with pressure. With solid colored rectangles, I show the
Raman frequencies extracted from the MD, where errors were
assessed using the window method as explained in section 5.2.2.
Panel b: The Raman spectra from LD, MD and experiment
at 270 GPa in 50:50% hydrogen-deuterium mixtures. Panel c:
Same spectra broken into individual contributions from different
molecular species.
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Finally, in figure 5.10 I show a direct comparison between the theoretical and

the experimental results in phase IV mixtures. All the observations above are

nicely summarized in this figures. On the left, the pure vibrons originating from

HH, HD and DD molecules are represented in red, green and blue, respectively,

while all other coupled modes are mixed colors (e.g. brown and violet). It is

clear that most vibrons originate from one type of molecules only and very little

cross-coupling is observed.

The HHB and DDB bands are separated from the rest of the vibrons at all

concentrations. As the H concentration increases, the proportion of HH molecules

increases quadratically, the proportion of DD molecules decreases, while the

proportion of HD molecules increases and then decreases with a maximum at 50%

H. These changes are reflected in the frequency of the Raman vibrons through

localization. When a molecular species is rare in mixtures, the vibrons from

that species are more localized and their Raman frequency is higher. When the

opposite is true, the vibrons are less localized and their Raman frequency is lower.

Overall, the agreement with experimental data is good. The computational

results agree with the assignment of the Raman vibrons and reproduces well

the changes induced by different mixture compositions. I attribute the small

discrepancies in the positions of the peaks to anharmonicity [1] and inaccuracies

of the PBE functional [85] as thoroughly discussed in chapter 3. Raman extracted

from MD, shown on the right of figure 5.10 introduces corrections that shift

the B vibrons down and the G vibrons up in frequency, which improves the

agreement with experiment. The thorough analysis I gave here shows that we

now understand well the nature of phase IV in both pure isotopes and mixtures.

These results, further, support the BGBG layer models for phase IV and offer

new insights into the changes induced by increasing pressure or varying isotopic

compositions.

5.2.4 Conclusions

In this first half of the chapter, I presented my results and analysis of hydrogen-

deuterium mixtures in phase IV. I carried out phonon and lattice dynamics

calculations in the Pc structure, studying the effect of hydrogen-deuterium

concentrations on the Raman spectra at three different pressure points: 240, 270

and 300 GPa. Additionally, I performed molecular dynamics simulations which

were proven to be vital to the correct description of phase IV in pure isotopes
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as I showed in chapter 3. MD calculations here improve the agreement with the

experiment, showing once more that phase IV is dynamical in nature and cannot

be entirely understood with static methods.

My results rule out the possibility of isotopic segregation in phase IV and show

that mixtures are randomly distributed, at least at room temperatures. My

conclusions are in agreement with the experimental observations. The measured

Raman spectra contain six vibrons and four low frequency modes, which is

consistent with a random distribution of isotopes in a Pc like crystal.

Furthermore, I found evidence of a theoretical concept called mass induced

phonon localization which appears to be unique to molecular hydrogen-deuterium

mixtures. While the vibron modes, which are found at high frequencies are highly

localized, the low frequency modes are still extended crystal-wide. This explains

why the experiment only detects four of these modes like in the case of pure

isotopes, but six independent vibrons which correspond to each of the molecular

species (i.e. HH, HD and DD) in each of the layer types (i.e. B and G).

Localization also explains the evolution of the Raman spectra with hydrogen

composition, which can be measured directly in experiment. At low composition

of a certain molecular species (e.g HH, HD or DD), that species gives rise to

highly localized Raman vibrons which are higher in frequency. Conversely, at

high compositions, the vibrons are more delocalized and their Raman frequency is

lower. This is consistent with the experimental findings upon measuring samples

with different hydrogen concentrations.

5.3 Mixtures in Phase III: Infrared Splitting

5.3.1 Introduction

In this second half of the chapter, I will focus on the new study presented in ref

[114] which concerns phase III of hydrogen-deuterium mixtures at low tempera-

tures. This experiment claims two new phase transitions in mixtures based on

changes in the infrared spectra at high pressures, below room temperature. The

study starts with pure hydrogen-deuteride (HD) and compresses the samples up

to 350 GPa. Their findings are summarized in figure 5.11.
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At low pressures they observe only vibrons originating from the HD molecule.

Upon entering phase III at 150 GPa, a new vibron associated with the HH

molecule is detected, yet no DD vibron is measured. Although their original

figure showing the raw spectra, has been truncated at the location of the DD

vibron. They attribute the new high frequency vibron to a 4% HH impurity in

the original HD gas. The HD molecule has a permanent dipole moment so it is

infrared active in phase II, on the other hand, the HH molecule only acquires a

dipole moment in phase III.

Figure 5.11 This figure was adapted from ref [114] and shows the experimental
infrared result in hydrogen-deuterium mixtures at 82 K. On the left
is the fitted spectra as function of pressure and on the right are the
positions of the peaks as function of pressure. The new phases were
claimed on the basis of infrared splitting.

Above 200 GPa, two new DD peaks appear and both HH and DD peaks split in

two. These changes were associated with the onset of a new phase called HD-IV*

in the experiment. They argue that at those conditions HD molecules also start

a process of dissociation and recombination which leads to the formation of HH

and DD molecules. In thermal equilibrium the HH, HD and DD molecules should

be present in the ratio 1:2:1.

Around 250 GPa, yet another phase transition to HD-PRE was claimed, where

the two HD vibrons split into three. The relatively small peak splittings of

the order 50 cm−1 are close to the maximum experimental resolution which

raises concerns over the accuracy of the results. It is also striking that the

vibron frequencies, widths and their pressure dependence are unchanged at the

claimed phase transitions. This indicates that further investigation is required to

understand the behavior of the spectra.

Here I investigated hydrogen-deuterium (HD) mixtures in 50:50% concentrations
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with the help of ab initio calculations. First I calculated the infrared spectrum

in pure hydrogen using DFPT, then I used the method of isotopic substitution

to extend the result to mixtures at pressures ranging from 150 to 350 GPa.

The calculations were performed starting from C2/c and Cmca − 12, which are

the proposed structural candidates for hydrogen phase III. The results suggest

that the infrared splitting occurs naturally in C2/c and this phenomenon can

be explained in the absence of a structural phase transition. Additionally, the

theoretical result fits well with the experiment which brings new convincing

evidence that C2/c is the best crystal structure of phase III, in both pure isotopes

and mixtures. These results are soon to be published in a journal article [9].

5.3.2 Methods

All the calculations below use the same DFT setting as reported in the previous

section 5.2.2. Here I found necessary to explain the exact procedure I used

for normalization and smoothing of spectra in mixtures because I will draw

conclusions based on small frequency splittings that might be sensitive to these

methods. In the previous section, this was not an issue.

Infrared Calculations: Pure Hydrogen

I started with the geometry relaxation of the two structural candidates C2/c and

Cmca−12 [78] using pure hydrogen. The simulation boxes contained 24 hydrogen

atoms, each, and the calculations were performed in the pressure range 150-350

GPa, every 20 GPa. For sampling the reciprocal space I used an MP k-point grid

of 8x14x14 for C2/c and 14x8x8 for Cmca− 12. I also performed one additional

CASTEP calculation with an increased cell of 288 atoms in C2/c at 250 GPa, to

study finite size effects. In this case, I used an MP grid of 4x4x6. To ensure the

good convergence required by phonon calculations, I relaxed the structures using

small thresholds: 10−9 eV/atom for energy, 10−6 eV/Å for force, 10−5 GPa for

stress and 10−7 Å for the atomic displacement. No phase transformations were

observed and all structures retained their starting symmetry.

I continued with phonon calculations using linear-response and FINE method

interpolate. The calculation of Born effective charges was also enabled. All

unspecified parameters were automatically set to the CASTEP default values.
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The infrared spectra calculated at the gamma point (q = 0) for pure hydrogen

structures were smoothed with non-normalised gaussians for illustration purpose:

Ipure(fj) =
3N∑
k=1

i(fk) exp

(
−(fk − fj)2

2σ2

)
(5.22)

where fk are the k = 3N frequencies calculated with CASTEP and i(fk) are

the corresponding infrared intensities. I binned the data using the frequency

discretization fj = 0 : 1 : 5000 cm−1 (5000 := NB). The gaussian standard

deviation was set to σ = 3 cm−1.

Infrared Calculations: Hydrogen-Deuterium Mixtures

I simulated the infrared spectra for 50 : 50% hydrogen-deuterium mixtures using

PHONONS, the CASTEP post-processing code. At every pressure point and for

each of the two structural candidates C2/c and Cmca−12, I generated Ns = 3000

random samples containing exactly 12 hydrogen atoms and 12 deuterium atoms

at random sites. For the 288 atoms C2/c calculation at 250 GPa I generated 1000

random samples. Unlike Raman (see section 5.2.2), the entire infrared spectra

can easily be recalculated for every mixture sample s starting from the pure

isotope dynamical matrix and using Born effective charges. For each mixture

configuration, the PHONONS package was used to automatically compute new

infrared spectra is(fk) as shown in figure 5.12. At every pressure point and

for each structure, I built a histogram from the individual spectra and then

normalized by the total number of samples:

H(fj) =
1

Ns

fk<fj+1∑
fk≥fj

Ns∑
s=1

is(fk) (5.23)

Finally, the data was smoothed with normalised gaussians:

Imixed(fj′) =

NB∑
j=0

H(fj)√
2πσ

exp

(
−(fj − fj′)2

2σ2

)
(5.24)

where fj′ represents the same discretization as fj and σ = 7 cm−1. The mixture

spectra have no continuity, meaning that eigenmodes with similar frequencies
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Figure 5.12 The first panel bottom-up shows the high-frequency infrared
spectrum of pure hydrogen C2/c (288 atoms) at 250 GPa. The
second panel shows with dots the spectra generated from 1000
random samples of hydrogen-deuterium mixtures calculated with
PHONONS. Variable M in the measurement unit is the mass of
the whole simulation cell expressed in atomic mass units. The third
panel bottom-up shows the same data binned up in a histogram. The
top most panel is the final data smoothed with gaussians.

can have very different infrared intensities, therefore in the case of mixtures, it

is not obvious what is the best way to normalize the infrared data. I found that

after normalization, absolute intensities bear no meaning and only the relative

intensities matter. The procedure I used to obtain the final spectra as explained

above is also illustrated step by step in figure 5.12. The number of mixture

samples used was sufficient to ensure the convergence of the spectra.

Localization and Raman Projections

The high-frequency Raman vibrons of each sample s can also be computed, by

using the empirical rule introduced and tested in section 5.2.2 for the Pc structure.

Namely, by projecting the phonon eigenmodes onto molecular stretching. The
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final Raman spectrum at each pressure was binned up and smoothed, similarly

to the infrared. I first collected all the Ns = 3000 samples into a histogram, then

normalize and smoothed with gaussians:

Rmixed(fj′) =
1√

2πNsσ

NB∑
j=0

exp

(
−(fj − fj′)2

2σ2

) fk<fj+1∑
fk≥fj

Ns∑
s=1

rs(fk) (5.25)

Similarly, the phonon localization pls(fk) for each sample was computed as in

section 5.2.2. Additionally, here I also introduced a measure called hydrogen

participation hps(fk):

hps(fk) =

N/2∑
lH=1

3∑
α=1

εαlH ,kε
α
lH ,k

mlH

(5.26)

The hydrogen participation sums selectively over the hydrogen atoms lH and gives

a measure of how much hydrogen participates to any given mode, compared to

deuterium.

Unlike Raman and infrared data, localization and participation have continuity,

so modes that are close in frequency have similar values. Therefore, when I

constructed the histograms, instead of normalizing all bins with the total number

of samples Ns, I divided each bin by the total number of values Nj that fall into

that particular bin. Nj is different for each of the NB + 1 bins and it can be

smaller or larger than the number of mixture samples Ns. The final localization

and hydrogen participation were obtained from:

PLmixed(fj′) =
1√
2πσ

NB∑
j=0

1

Nj

exp

(
−(fj − fj′)2

2σ2

) fk<fj+1∑
fk≥fj

Ns∑
s=1

pls(fk) (5.27)

HPmixed(fj′) =
1√
2πσ

NB∑
j=0

1

Nj

exp

(
−(fj − fj′)2

2σ2

) fk<fj+1∑
fk≥fj

Ns∑
s=1

hps(fk) (5.28)
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Size Effects on Infrared Spectra

The initial cells I chose for C2/c and Cmca−12 contained 24 atoms each, which is

sufficiently large for an accurate infrared calculation in pure isotopes. In mixtures,

however, a simulation box with 24 atoms only, could be too small. Finite size

effects might be important for two reasons: poor sampling of randomness, on

one hand, and the lack of long range interactions on the other. Every randomly

mixed unit cell is in effect periodically repeated, which makes the whole crystal

ordered at the large scale. The smaller the cell, the poorer the sampling and

approximation of a random mass distribution.

One could address both issues simultaneously by simply performing phonon

calculations on larger simulation boxes with CASTEP and then generating the

mixture infrared spectra using the PHONONS code. However, this method

proves to be very computationally costly. Although only the force constant

matrix is needed to generalize the spectra to mixtures, CASTEP writes by

default all the wave-functions to the checkfile which renders a massive file. The

software PHONONS needs to load the checkfile for every random sample and

this results in a huge amount of time and computing power being lost with

reading and writing. This limitation restricts the number of mixture samples

one can realistically calculate and leads to poor statistics. I performed, however,

one expensive calculation with 288 atoms in C2/c followed by 1000 randomly

generated mixtures and obtained a converged spectrum at 250 GPa. Computing

phonons on simulation boxes larger than 288 atoms is very costly.

I addressed the sampling issue by developing an in-house code. At the end of

each phonon calculation, I prompted CASTEP to print the dynamical matrix

at the gamma point and the Born effective charges in the main output file. I

then expanded the simulation box and, with it, the dynamical matrix as shown

on a simplified example in figure 5.13. If the interaction between atoms l and

l′ is within the unit cell (i.e. the distance between the atoms is less than half

the cell size) the interaction is simply duplicated to all atom pairs in the image

cells. If the interaction crosses a boundary that later becomes an interface, the

interaction is then moved to the closest image atom in space, as best illustrated

in figure 5.13.

This is a crude approximation and it does not extend the interaction cutoff, it

simply deals with the sampling problem. An improvement would be to divide

the interaction terms between the image atoms according to some power law,
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Figure 5.13 This figure illustrates the method I used to expand the dynamical
matrices while increasing the system size. On the bottom row, I
show a model unit cell with four atoms. Atom 2 is connected to
atom 3 via the vertical boundary. On the top row, I show the
corresponding dynamical matrix. When the system is replicated
along the y direction, the dynamical matrix is just repeated along
the diagonal. However, when the system is reproduced along the
vertical boundary, atom 2 becomes closer to the image 3’ than to
the original atom 3. This is then reflected in the new dynamical
matrix by shifting the elements to non-diagonal blocks.

with weaker interactions between more distant images. The distribution I used

here is effectively a step function, which means that only the closest image atoms

interact. The method is not perfect but it does allow testing for the size effects

due to limitations in random sampling.

Following the expansion of the dynamical matrix to Next atoms, I simply generate

mixed random samples of hydrogen-deuterium isotopes and re-normalize the

matrix with the new atomic mases. I then diagonalize the matrix to extract the

k = 3Next eigenmodes. The infrared activity is then calculated by multiplying

the eigenvectors with the Born effective charges Bα,α′

l [145]:

is(fk) =
3∑

α′=1

∣∣∣∣∣
3∑

α=1

Next∑
l=1

Bα,α′

l εαl,k

∣∣∣∣∣
2

(5.29)
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where α′, like α, labels the three Cartesian components. To obtain the infrared

spectra for mixtures I simply bin the data from many samples and then smoothen

the normalized histogram as explained previously.

This method is much faster than the one involving the PHONONS software and

it allowed me to treat larger cells with larger number of samples. I started from

the dynamical matrix computed in the 24 atoms C2/c phonon calculation at 250

GPa and expanded the simulation to different sizes as summarized by table 5.4.

Table 5.4 The table shows the cell setups I used to study the size effects with
the in-house code.

FC expand cell sides: a b c multiply number of atoms number of samples
1 1 1 5.07 2.89 4.25 1 24 6000
1 2 1 5.07 5.77 4.25 2 48 5000
1 2 2 5.07 5.77 8.49 4 96 4000
1 3 2 5.07 8.66 8.49 6 144 3600
2 3 2 10.14 8.66 8.49 12 288 2000
2 4 2 10.14 11.54 8.49 16 384 1600
2 4 3 10.14 11.54 12.74 24 576 1200

Finally, I employed this method to extend the previous calculations in both C2/c

and Cmca− 12 to larger simulation cells of 96 atoms, at all pressure points.

5.3.3 Results

In the case of pure hydrogen, I found two distinct infrared vibrons labeled ν1 and

ν2 in both C2/c and Cmca − 12. The corresponding eigenmodes are illustrated

in figure 5.14 and their frequency and pressure evolution are shown on the left of

figure 5.15.

In Cmca − 12, both vibrons involve eight out of the total of twelve molecules,

where a group of four is out of phase with the other four. The peaks corresponding

to the two modes are well resolved at all pressures and they reside more than 200

cm−1 apart. On the other hand, in C2/c where I also found two distinct infrared

peaks, the two are almost degenerate at low pressures and move further apart

as the pressure is increased (figure 5.15). When inspecting the eigenmodes, it is

clear that the two have very different symmetries. While ν2 comprises of eight

molecules vibrating out of phase in two groups of four, ν1 only involves four of

the molecules, two in each layer. This explains the different pressure evolution of

the two peaks.
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Figure 5.14 In the top half I illustrate the most intense infrared active vibrons
at 250 GPa, generated by the pure hydrogen C2/c and Cmca− 12
structures with 24 atoms. The unit cells comprise of two layers,
which I show separately for clarity (L1 - orange and L2 - yellow).
On the bottom half of the figure I show one layer from the extended
C2/c cell (288 atoms) of hydrogen-deuterium mixtures at 250 GPa.
Hydrogen is displayed in orange, while deuterium in cyan. The two
vibron modes (left and right) shown as examples are not the only
infrared active ones but they are representative for the spectrum
generated by mixtures. Note that the out of phase eigenvectors are
less visible because they are masked by the bond.

In the recent experimental study [114] new phase transitions were claimed based

on the splitting of infrared peaks. Here I show a trivial example where infrared

splitting in pure hydrogen does not require a change of symmetry. The two modes

in C2/c are almost degenerate in frequency at low pressures, so the experimental

resolution would not be sufficient to resolve them separately. Owing to their

different characteristics, the frequency of the two peaks have different pressure

evolutions, and past 250 GPa they start to separate. At 350 GPa the two modes

are about 30 cm−1 apart, while based on the raw data [114] the experiment

appears to achieve a frequency resolution around 35 cm−1 . In this case, the

splitting of infrared coincides with a pressure induced lift of accidental degeneracy

and does not imply a change of cell symmetry. This is a reminder that the optical

signature is only a weak indicator for crystal structure and not every change in

the infrared, Raman or optical absorption indicates a phase transformation.
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Figure 5.15 Here I show the pressure evolution of the high-frequency infrared
spectra for the two candidate structures Cmca − 12 and C2/c as
calculated from the cells with 24 atoms. Pure hydrogen spectra on
the left and 50 : 50% mixture spectra, calculated with PHONONS,
on the right.

Based on the pure hydrogen infrared spectra in C2/c one would expect three

peaks in mixtures, corresponding to the HH, HD and DD molecules, respectively.

However, here, I find six separate peaks in the high frequency regime of C2/c

at 200 GPa and up to nine at 350 GPa as illustrated in figure 5.15. The peak

splitting at high pressures could be related to the lift of degeneracy explained

above because it follows a similar pressure dependency. However, the individual

peaks at low pressures are likely induced by mass disorder and provide a reliable

experimental fingerprint for the C2/c structure.

In Cmca− 12 mixtures I find a large collection of infrared peaks especially in the

frequency region of HD. The spectrum originating from HH and DD molecules

can be separated into one higher frequency narrower peak and a broader lower
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frequency collection of peaks. The two signals could be resulting from the two

mode symmetries ν1 and ν2 in pure hydrogen Cmca− 12.

Figure 5.16 Here I compare the computational infrared result, reported also in
figure 5.15, to the recent experimental data from ref. [114]. Top
left I show the mixture spectra calculated with PHONONS at 300
GPa for 24 atoms C2/c (3000 randomized samples shown in gray).
Bottom left is the smoothed result shifted to higher frequencies
by 200 cm−1 and then compared to the experimental data at 307
GPa which was digitized from ref [114] using an online tool [124].
On the right I show as a color map the pressure dependence of
the calculated infrared spectra shifted 200 cm−1 up in frequency,
while in black the experimental pressure dependence of the infrared
spectra from ref [114].

Based on the result presented in figure 5.15, it is clear that C2/c is the better

candidate for the experimental phase III in mixtures [114], therefore in figure 5.16

I compare the experimental infrared to this theoretical result. Generated spectra

appear to be 200 cm−1 softer than experimental spectra. This discrepancy can

be explained by a combination of errors derived from the choice of exchange-

correlation functional, the harmonic approximation and the experimental choice

of pressure gauge [100]. Ref [85] shows that the choice of functional can

change the position of the spectra by as much as 500 cm−1, while my result

from molecular dynamics reveals an extra 100 cm−1 correction in C2/c at 200

GPa when anharmonicity is accounted for [1]. More important than the exact

frequency match is the shape of the spectrum which is surprisingly similar to the

experimental data, so I shifted the calculated infrared 200 cm−1 up in frequency

and compared it to the experiment in figure 5.16.
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Figure 5.17 This is the infrared spectra of mixtures calculated with my own
code. The code starts from the original 24 atoms dynamical matrix
calculated with CASTEP and extends it as illustrated in figure 5.13.
On the left, I show the spectra in C2/c for increasing cell sizes at
250 GPa. The number of atoms is shown along the y axis, while
the number of random samples was reported in table 5.4. The one
spectrum shown in black is the expensive calculation, where the
dynamical matrix was actually calculated with CASTEP on a 288
atom cell and 1000 mixtures were generated with the PHONONS
code. On the right, I report the pressure dependence of the infrared
spectra as calculated with my own code on 96 atom extensions of
the original cells in both C2/c and Cmca− 12.

Notice that the calculated spectra correctly reproduces the width and shape of the

peaks which result from mass disorder and phonon localization. Furthermore, the

calculation agrees with the experiment on the number of peaks as shown in the left

panel on figure 5.16. The pressure evolution of the experimental spectra is also

well fitted by the theoretical result. The lack of DD signal at lower pressures in

the experiment, most probably indicates incomplete equilibration of the isotopes.

Since the experiment starts with a pure HD structure with stable molecules,
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the equilibration of an HH, HD and DD mixture requires the dissociation and

recombination of molecules which takes a long time to occur, especially at lower

pressures. The infrared activity of HH is higher than that of DD, therefore the

HH signal is measurable at relatively lower concentrations. At higher pressure,

the molecule recombination is faster which facilitates the transition from pure

HD to equilibrium mixtures, where DD becomes visible.

Figure 5.18 This figure shows the same result as figure 5.15 but in the low
frequency range. I report the pressure evolution of the infrared
spectra for C2/c and Cmca−12 (24 atoms). On the left, I present
the spectra for pure hydrogen, and on the right, I show the data for
50 : 50% mixtures calculated with PHONONS from 3000 random
samples.

The conclusions presented above hold if the theoretical result is robust. Here

I investigated the possibility of finite size effects (see figure 5.17). The chosen

cells for both C2/c and Cmca − 12 contain 24 atoms each, equivalent to twelve

molecules. Since both crystal structures have two layers, the molecules are

further divided: six in each layer. When hydrogen-deuterium mixtures are in
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thermodynamical equilibrium the HH, HD and DD molecules occur with the

probabilities 25%, 50% and 25%, respectively. As a result, in every given mixture

sample, one is likely to find only three HH molecules in the entire cell, 1.5 in

each layer. This small number of molecules raised concerns over the validity

of the previous results. In figure 5.17 I investigated the infrared spectrum of

C2/c as function of size at 250 GPa and as a function of pressure for a 96

atoms simulation cell. The main result is unchanged: the HH, HD and DD

contributions are each divided into distinct peaks. The separation between the

peaks varies slightly with size but not significantly and the pressure variation

is only slightly changed compared to figure 5.15. I conclude that despite the

small number of molecules of similar type, due to phonon localization, only small

groups of molecules contributes anyway and thus finite size effects are minimal.

In figure 5.18 I present the lower frequency infrared spectra in both C2/c and

Cmca − 12, mixtures and pure hydrogen. Although presently these are exper-

imentally inaccessible, they could become relevant for structure discrimination

in the future. On one hand, the C2/c pure hydrogen spectra feature two main

modes that become degenerate at higher pressure. The mixtures infrared is very

similar except that modes are much broader (i.e. around 300 cm−1) as a result

of mass disorder. On the other hand, the pure hydrogen Cmca − 12 generates

rich infrared spectra comprising of a number of peaks spread across the entire

frequency range. In mixtures, the higher frequency phonons are broaden in an

almost continuous band and only two of the lower frequencies persist as narrow,

well defined peaks.

Hydrogen participation presented in figure 5.19, shows that in the high frequency

range there is a clear distinction between HH, HD and DD vibrons, whereas in

the low frequency regime the modes become gradually hydrogen dominated at

progressively higher frequencies.

The localization data implies that, like in Pc [2], the high frequency modes are

also localized in C2/c and Cmca − 12. For instance, the HH vibrons have a

localization value of the order 0.25, which corresponds to roughly 2 molecules out

of 12 participating to the mode. This is consistent with visual inspections of the

modes, shown in figure 5.14, where very few molecules participate in each mode.

The localization alongside mass disorder is responsible for the broadening of the

modes. A delocalized mode means that atoms of the same type, from across the

entire crystal, can easily couple which reduces the frequency and increases the

widths of the peaks [110]. On the other hand, a localized mode is confined in
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Figure 5.19 In this figure I show for comparison the hydrogen participation,
localization, Raman (molecular projection) and infrared for C2/c
and Cmca− 12, beside each other. The calculation was performed
with mixtures at 250 GPa, in 24 atoms cells. The Raman spectra
are just approximations obtained from the molecular projection of
in-phase vibrations.

space and involves only a small group of molecules which, then, generates sharper

and higher frequency peaks.

The amount of mode localization is the result of a trade-off between the isotopic

mass ratio and the general strength of the intermolecular interaction as can be

seen in figure 5.20. At low pressures, the mass difference wins which enhances

the localization. At higher pressures, the amount of localization is reduced as the

intermolecular forces increase.

Finally, in figure 5.20 I also show the Raman vibrons and their evolution with

pressure, computed using the molecular projection method in both C2/c and

Cmca− 12. Previously, for phase IV, I validated that molecular projection gives

a good estimation of the high frequency Raman spectrum in mixtures. Here,

the approximation holds in C2/c but fails in Cmca − 12. The study presented

in ref [91] found only one Raman active vibron in pure hydrogen Cmca − 12,

whereas, here, I found two using the molecular projection technique. Upon careful

inspection of these modes in Cmca−12, I discovered that only the actual Raman
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Figure 5.20 Here I report the localization (left) and molecular projection (right)
results for 24 atoms cells Cmca − 12 (top) and C2/c (bottom).
The result is from mixtures which were generated with the software
PHONONS. The spectra are stacked up in pressure as indicated
along the y-axis.

active mode comprises of in-phase stretching of all the molecules, the other higher

frequency mode consists of two thirds of the molecules vibrating in-phase and

one third out of phase. The projection method, however, wrongly identifies both

modes as Raman active for pure hydrogen, which leads to six distinct modes

identified as Raman active in Cmca − 12 mixtures, three of which are artifacts.

In the case of C2/c, the projection method correctly finds the in-phase molecular

stretching as Raman active and predicts the high frequency Raman spectra in

mixtures, which is yet to be measured experimentally.
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5.3.4 Conclusions

In this second half of the chapter, I showed my results, mainly on the pressure

evolution of the infrared spectra for hydrogen-deuterium mixtures in phase III. All

calculations were performed on the structures C2/c and Cmca−12 in the pressure

range 150-350 GPa. At low pressures, I find six clear distinct infrared peaks in

C2/c, two for each molecular species. At higher pressures (above 230 GPa),

all peaks split further, but most notably the HD signal splits into three peaks.

This spectrum transformations are consistent with those found experimentally

[114]. Whereas the experimental study associates the infrared splitting with

new structural phase transitions to phases IV* and REC, my analysis shows

that these changes are a result of mass disorder and phonon localization and are

not associated with structural transformations. Moreover, my results bring new,

more reliable evidence that C2/c is the right crystal candidate for phase III. As

I showed in the case of phase IV, the entropy associated with mass disorder is

small compared to kBT , meaning that hydrogen-deuterium mixtures are likely

to manifest the same crystal structures as pure isotopes. C2/c is, therefore, the

most likely candidate for phase III in both pure hydrogen and hydrogen-deuterium

mixtures.

My hypothesis is that the experimental phases III, IV* and IV-REC are all in fact

phase III, represented by the C2/c crystal structure. According to this theory,

the experiment should have observed six peaks from the onset of phase III at

150 GPa, which is not the case. It could be that the peaks are weak because

mixtures are far from the equilibrium concentrations and only small traces of

DD and HH molecules are present at the start. Another possibility is that the

peaks are too close in frequency and the resolving power of the measuring device

is not sufficient to distinguish them. The first idea could be tested in practice

by running simulations at difference concentrations. Better quality simulations

with more atoms in the cells could also give better estimates for the experimental

measurements.

5.4 Summary

In this chapter, I summarized my work on hydrogen-deuterium mixtures, which

consists of two studies centered around recent experimental work [2, 114].
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The first study targeted hydrogen-deuterium mixtures in phase IV. Using a

series of phonon and molecular dynamics calculations I show that the Raman

modifications in phase IV mixtures can be understood in terms of phonon

localization. This phenomenon originally proposed by Anderson [140] for

electrons was realized before for sound, light and Bose-Einstein condensates in

randomly disordered systems. This work reports for the first time the localization

of phonons, which in this case is purely induced by mass disorder. Neglecting

zero point energy, the strength of the bond and the intermolecular forces are

approximately the same in all three species: HH, HD and DD. Therefore the

localization is effectively the result of the large mass difference between the

different isotopes.

In the second study, reported in the second half of the chapter, I performed

phonon calculations in phase III mixtures, mainly to investigate the evolution of

the infrared spectra with pressure. The simulation results are in good agreement

with the experimental data but suggest a different interpretation. Whereas

the experimental study concludes that the infrared splitting at high pressure

is indicative of a series of structural phase transitions, my results show that the

splitting occurs naturally in phase III as a result of mass disorder. Additionally,

the spectra calculated in C2/c match the experiment better than those computed

in Cmca−12, bringing new evidence that the former crystal structure is a better

candidate for phase III.

The takeaway message is that spectra in mixtures are a lot richer than those in

pure isotope homologues and can help us learn a lot more about the intramolecular

and intermolecular interactions and the crystal structures in general. So far

mixtures have received little attention from experiment and even less from theory.

My hope is that this initial studies will spark interest in this direction of research.
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Chapter 6

Conclusions

6.1 Concluding Remarks

The science of high pressure is rapidly expanding and every year brings new

exciting discoveries. Most elements have been exhaustively compressed to very

high pressures, but mixtures of different substances offer, still, a vast territory of

exploration in both experimental and theoretical condensed matter. For instance,

just last year Drozdov et al. discovered superconductivity at record high 203 K

in sulfur hydride under pressure [146].

Elemental hydrogen remains, however, one of the most studied topics in high

pressure science. To date, five solid phases are known and at least two liquid

phases, one of which is metallic. Solid hydrogen is yet to be metalized, and

many different groups around the world are getting closer to the metallic phase

every year. The phase diagram has some remarkable elements like a negative

melting curve over an extended pressure, at least two entropy stabilized solids

and possibly a ground state metallic liquid at very high pressures.

In this thesis, I reported my contribution to understanding the finite temperature

behavior of the high pressure solid hydrogen phases. Additionally, I showed

my results derived for hydrogen-deuterium mixtures which have recently sparked

the interest of the experimental community. The zero temperature structure

candidates for phases III and IV were previously identified in AIRSS studies

[78, 91]. In my work, I focused on investigating the dynamical behavior and

the connection to the experimental data through spectroscopy. In recent years
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most theoretical efforts have been redirected at increasing the accuracy of energy

calculations by adding layers of approximation. Most of the ongoing studies

have migrated from the use of DFT to QMC on account of more accurate

energetics. While this it very important for obtaining competitive crystal

structure candidates, the bridge to experiment is also essential, and much less

studied. While QMC is without a doubt more accurate than DFT, it is also more

computationally expensive. DFT allows us to carry out long molecular dynamics

simulations with large system sizes, which are essential to understanding the

phases stabilized by entropy.

In chapter 3, I presented my work on solid hydrogen in phases III, IV and newly

discovered phase V. The main result is that phases IV and V are similar to one

another and have a dynamical behavior which cannot be understood in terms

of a fixed crystal configuration. These structures comprise of different layer

types, called B and G. In the B layer the molecules are almost freely rotating,

similar to the quantum rotors in phase I. The B layer is quite robust and remains

largely unchanged over the pressure range 250-380 GPa. Conversely, the G layer

comprises of relatively weakly bonded molecules and goes through a series of

transformations, gradually allowing the rotation of molecular trimers, rebonding

of molecules and eventually, at high enough pressures, proton diffusion [97]. In

this chapter, I also reported a new method for extracting the Raman vibron from

molecular dynamics trajectories, which reduces the discrepancy between theory

and experiment and provides new evidence that the nature of these phases is

truly dynamical.

At higher pressure, beyond the currently known phases, the electron charge will

eventually move away from the covalent bond as it has been originally predicted

[19]. In that case, hydrogen can only remain a poor conductor if the electron

charge localizes elsewhere (e.g. in the lattice interstices) or if the crystal organizes

itself to screen the ion-ion interactions by scattering the charge density at 2kF

and effectively opening a pseudo-gap.

In chapter 4, I studied the behavior of hydrogen at the upper pressure limit that

can be achieved currently in the experiment - 400 GPa. In molecular dynamics,

many of the unstable atomic candidates, all transformed to a similar structure

comprising of long polymeric chains of atoms. By comparing the XRD patterns

with DoS, I showed that Chains could be stabilized by a charge density wave

evident by the clustering of diffraction peaks near 2kF . Surprisingly some of the

layered structures exhibit a similar behavior, which could explain how hydrogen
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managed to remain a semiconductor to such high pressures. The structure

Chains, which has been found by others in simulations before, could also be

a spurious effect of sparse k-point sampling. Interestingly, this setting might

be more important in MD that was previously believed and this issue needs

to be addressed in future studies. At the end of the chapter, I also presented

a simple thermodynamical model that summarizes the essential physics of the

phase diagram and gives a broader perspective.

Finally, in chapter 5, I focused on hydrogen-deuterium mixtures where I found

evidence of a textbook phenomenon - phonon localization. Owing to the large

mass ratio between hydrogen and deuterium, the concept of a phonon band is

broken in random mixtures, especially in the high frequency regime. Each vibron

consists of a small group of vibrating molecules, which are decoupled from the

rest of the system. This phenomenon is observed in phonon calculations but

cannot be directly measured in the experiment. However, the dependence of the

Raman spectra on the mixture composition and pressure, which was observed

experimentally, is linked to phonon localization and implicitly proves it. The main

message from this chapter was that hydrogen-deuterium mixtures are a much

richer system to study than pure solids. For instance, by comparing the calculated

infrared spectra with recent experimental results in phase III mixtures, I showed

new evidence in support of the previously discovered structural candidate for this

phase.

Overall, my work contributed to a better understanding of the different solid

phases at high pressure, in both hydrogen and hydrogen-deuterium mixtures.

Additionally, it helped us assess the quality and limitations of different theoretical

methods, especially DFT-MD. All my results were published in, or will be

submitted soon to journal articles and conference proceedings, while this thesis

brings all the pieces together.

6.2 Future Directions of Work

Finally, let me present a few idea that I wish I had time to explore. Hopefully,

this will serve as inspiration for future studies on this line of research.

One interesting problem is the shift of the Raman vibron upon heating and

melting at different pressures. In their study on melting, Howie et al. [22]
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have shown that the sign of the Raman shift changes depending on pressure.

This shift cannot be measured in DFPT, since this theory is not appropriate for

entropy stabilized crystals and liquids. The method I developed and presented in

chapter 3 could be used, instead, to study this behavior with molecular dynamics.

However, an important improvement is needed to better identify molecules before

projection. This is not a trivial task in systems such as liquid hydrogen at

high pressure, where the molecules probably break and reform often during the

dynamics.

Good methods for computing Raman and infrared from MD are essential, because

as I showed before, many of the phases, like I, IV and V, are dynamic and can

only be simulated at finite temperature. Unfortunately, the method that involves

projecting the velocities onto normal modes fails in hydrogen, mainly because of

the free rotations and diffusion present in the systems. One idea would be to

develop methods that do not require a priori calculation of the modes, but use

the rich information present in the charge density during the dynamics, that is

otherwise ignored. One could create a method to estimate changes in the dipole

moment and polarizability directly from the dynamics of the electron density.

Another method could attempt to extract spectroscopic information from a

quantum molecular dynamics simulation. The standard PIMD does not generate

meaningful dynamics, so frequency cannot be extracted from a simple Fourier

Transform like in MD.

While most studies focus on the high pressure, there is still plenty to learn at

lower pressures. For instance, to my knowledge, there is no algorithm that can

distinguish between the para and ortho states of molecular hydrogen. One could

envision a quantum molecular dynamics method that encodes for the nuclear

spin, and then revisit the low pressure phase diagram.

The hydrogen-deuterium mixtures offer still more possibilities for future research.

For a start, I would have liked to extend my study to other crystal structure

candidates and obtain some predictions that could offer guidance for future

experiments. While in most pure hydrogen structures one finds a small number

of Raman and infrared active modes, the mixture analogs generate an almost

continuous distribution that depends on pressure and composition and can be

used as a fingerprint to identify the best candidates for each solid phase. There is

also the prospect for an important algorithmic improvement: while infrared can

be recomputed cheaply upon isotopic substitution, the Raman spectra is difficult
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to recompute. One could develop an approximate method to speed up this task.

For instance, I used molecular projection to estimate the Raman activity of the

vibrons, which made it possible to sample many hydrogen-deuterium distributions

and converge the mixture spectra. Computing the Raman activity of the low

frequency modes requires a different method.

Figure 6.1 The citation graph of some of the most relevant papers to this thesis.
The color is related to the year of publication and the size to the
connectivity (i.e. references and citations) in this subgraph.

Finally, I think that the most important step that could substantially improve the

quality of research in the field, is to build an open access wiki that summarizes

all the essential results and which can then be kept up to date. This may seem

like a tedious task but I believe it is crucial for synchronizing the collective work

of all the different groups around the world. Especially in recent years, there has
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been a myriad of conflicting results coming from both theory and experiment.

The page could contain an interactive phase diagram that collects all the

experimental results together, it could summarize all the Raman and infrared

spectra ever measured or calculated at all temperatures and all pressures.

Subsequently, every new study could include their data and compare it against all

previous work, at once. The page could show all crystal structure candidates with

all associated, calculated properties from both DFT and QMC, such that future

studies could easily benchmark their simulations. Researchers would notice at

a glance where the gaps in the knowledge are, without having to browse large

amounts of tedious literature.

Even a simple graph of papers and references like the one I show in figure 6.1

could show the literature interactively on the website and cluster the papers on

similar topics: experiment/theory, solid/liquid etc. Newcomers in the field would

take much less time to get familiar with the previous work.

Ideally, the website would provide space to upload data such as molecular

dynamics trajectories or phonon calculations and means to visualize them.

Additionally, a list of users could be put in place such that everyone that wants

to stay updated with the field could sign up and get newsletters with the most

recent related publications. I believe this wiki page could significantly increase

research productivity in the field.
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[6] I. B. Magdău and G. J. Ackland, “Charge density wave in hydrogen at high
pressure,” arXiv preprint arXiv:1511.05173, 2015.
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