-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Archive

THE UNIVERSITY
of EDINBURGH

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree
(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following
terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are
retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without
prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or
medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given.

https://core.ac.uk/display/429710858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Efficient query processing in managed

runtimes

Fabian Nagel

Doctor of Philosophy
Laboratory for Foundations of Computer Science
School of Informatics
University of Edinburgh
2015

Abstract

This thesis presents strategies to improve the query evaluation performance over
huge volumes of relational-like data that is stored in the memory space of managed
applications. Storing and processing application data in the memory space of managed
applications is motivated by the convergence of two recent trends in data management.
First, dropping DRAM prices have led to memory capacities that allow the entire work-
ing set of an application to fit into main memory and to the emergence of in-memory
database systems (IMDBs). Second, language-integrated query transparently integrates
query processing syntax into programming languages and, therefore, allows complex
queries to be composed in the application. IMDBs typically serve as data stores to ap-
plications written in an object-oriented language running on a managed runtime. In
this thesis, we propose a deeper integration of the two by storing all application data in
the memory space of the application and using language-integrated query, combined
with query compilation techniques, to provide fast query processing.

As a starting point, we look into storing data as runtime-managed objects in col-
lection types provided by the programming language. Queries are formulated using
language-integrated query and dynamically compiled to specialized functions that pro-
duce the result of the query in a more efficient way by leveraging query compilation
techniques similar to those used in modern database systems. We show that the gener-
ated query functions significantly improve query processing performance compared to
the default execution model for language-integrated query. However, we also identify
additional inefficiencies that can only be addressed by processing queries using low-
level techniques which cannot be applied to runtime-managed objects. To address this,
we introduce a staging phase in the generated code that makes query-relevant managed
data accessible to low-level query code. Our experiments in .NET show an improve-
ment in query evaluation performance of up to an order of magnitude over the default
language-integrated query implementation.

Motivated by additional inefficiencies caused by automatic garbage collection, we
introduce a new collection type, the black-box collection. Black-box collections inte-
grate the in-memory storage layer of a relational database system to store data and hide
the internal storage layout from the application by employing existing object-relational
mapping techniques (hence, the name black-box). Our experiments show that black-
box collections provide better query performance than runtime-managed collections
by allowing the generated query code to directly access the underlying relational in-

memory data store using low-level techniques. Black-box collections also outperform

a modern commercial database system. By removing huge volumes of collection data
from the managed heap, black-box collections further improve the overall performance
and response time of the application and improve the application’s scalability when
facing huge volumes of collection data.

To enable a deeper integration of the data store with the application, we introduce
self-managed collections. Self-managed collections are a new type of collection for
managed applications that, in contrast to black-box collections, store objects. As the
data elements stored in the collection are objects, they are directly accessible from the
application using references which allows for better integration of the data store with
the application. Self-managed collections manually manage the memory of objects
stored within them in a private heap that is excluded from garbage collection. We in-
troduce a special collection syntax and a novel type-safe manual memory management
system for this purpose. As was the case for black-box collections, self-managed col-
lections improve query performance by utilizing a database-inspired data layout and
allowing the use of low-level techniques. By also supporting references between col-

lection objects, they outperform black-box collections.

Acknowledgements

I’d like to take the opportunity to thank the many people who supported and guided me
on my path towards and during my Ph.D. in Edinburgh. I cannot imaging having gone
through this journey without them.

Professor Stratis Viglas was my primary supervisor. He did an excellent job at
guiding me through my research and keeping me calm and focused at times when I got
frustrated with said research. I learned a lot from him during my studies and he always
had an open door when I was looking for valuable advice or just to have a chat. During
my studies, he always gave me enough space to find my own path, but, at the same
time, I knew that he would gently guide me back on track when I got lost. Beyond my
studies, he greatly helped me to find a job. I am very thankful for his guidance and
friendship. Dr. Gavin Biermann was my second supervisor. I was very lucky having
him as my Microsoft Research supervisor as he was very committed to our work and
took the time to have weekly meetings with us to discuss my progress. He gave me
valuable technical advice and helped me to find an Internship at Microsoft Research in
Cambridge. I am very grateful that he voluntarily stayed on as my second supervisor,
even after he left Microsoft Research. I want to thank the University of Edinburgh for
giving me the opportunity to do a Ph.D. in Edinburgh. I also want to thank Mary and
Armeane Choksi and Microsoft Research for financially supporting my studies.

During my studies, I went on two internships. I had a great time during both
internships and learned a lot about research outside of academia. Both internships were
a very welcome break from doing a Ph.D. and I returned from them with a fresh mind
and new energy for carrying on with my studies. My first internship was at IBM’s
T.J. Watson Research Center. I am very thankful to my supervisor Dr. Mohammad
Sadoghi, the database group and the many great people I met there for making this
internship so great. My second internship was with Dr. Aleksandar Dragojevic at
Microsoft Research in Cambridge. After we got on well during the internship, he
replaced Gavin as my official Microsoft Research supervisor. I am very thankful that he
also got very involved in the project and I ended up having two secondary supervisors
to guide me through the last year of my Ph.D.

There are also people that led me on the path towards doing a Ph.D. and prepared
me for it. Professor Torsten Grust was my database professor at Tuebingen University.
His lectures sparked my interest in database engineering and he arranged for me to
do my Diploma thesis at VectorWise / CWI in Amsterdam. Professor Peter Boncz

supervised my thesis and I quickly found out how lucky I was to have had him as a

supervisor. During my time with Peter, I learned a lot about software engineering,
database design and how to conduct research. I think that without Peter’s influence, I
would never have started a Ph.D. and I would not have had the ambition to look for a
job as good as the one I will start after finishing my studies. He introduced me to Stratis
and helped me on many other occasions to further my career. I value his friendship and
am very grateful for everything he did for me.

During my time in Edinburgh, I spent time with some exceptional people. With
Edinburgh being often referred to as the ”Athens of the North”, it was no surprise that
most of them are Greek. I am thankful for the many very funny lunch and tea breaks
with my fellow database Ph.D. students Andreas Chatzistergiou and Michail Basios
that greatly helped to get distracted from work and provided new energy to get back
to it afterwards. Both are great friends and I enjoyed the time I spent with them. We
had many joint cooking and dinner events with them and their girlfriends Silda and
Mihaela. We had so much fun together. I am also thankful to Informatics Football
for providing me with the opportunity to play football in Edinburgh and for Michail to
make it even more fun by joining me.

Finally, I want to thank my family. I am very thankful to my wife Rachel for her
support during the Ph.D., for always being there for me when I needed a hug, for
taking over the household when I was too busy because of various deadlines and for
not getting tired of my constant complaining about the Scottish weather. I also want to
thank my brother Christian for being my best friend ever since he was born and always
being there for me when I need him. This thesis is dedicated to my parents, Manfred
and Gisela, because they had the biggest contribution in me reaching this point. They
always did everything they could to ensure that I would have the best opportunities in
life and, in some way, this thesis is the fruit of their efforts. During my childhood, they
supported me with schoolwork, nurtured my interest in science and showed me most

of Europe in our little camping car. I will always be grateful for this.

vi

To my parents
Manfred and Gisela

Vii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

s, /ngﬁé

(Fabian Nagel)

viii

Table of Contents

1 Introduction

2 Background

2.1

2.2

2.3

24
2.5

2.6

Database systems
2.1.1 Query processingo i
2.1.2 Query compilation L.
2.1.3 Columnar versus row-wise storage
Managed runtimes
2.2.1 System architecture
2.2.2 Garbagecollection
Language-integrated query in C*
2.3.1 LINQ-to-objects
232 LINQgqueryprovider,
Object-relational mappings
Memory management e
2.5.1 Safe manual memory management
2.5.2 Safe memory reclamation in lock-free data structures
TPC-H. e

3 Query compilation for language-integrated query

3.1
3.2
33
34

3.5

Introduction Lo
Relatedwork L
Query compilation architecture in C*,
CompilingtoCfcode
34.1 Thegeneratedcode
3.4.2 The code generation process

Staged query processing

10
11
12
12
13
15
16
19
21
24
24
26
27

3.6

3.7

3.5.1 Thegeneratedcode

3.5.2 The code generation process
Evaluation
3.6.1 Experimentalsetup
3.62 CompiledC!
3.6.3 Staged query processing
Summary

Black-box collection

4.1
4.2

4.3
4.4

4.5

Introduction L
The basic collectiontype
42.1 Thegeneratedcode
4.2.2 The code generation processo ...
Columnar storage e
Relatedwork Lo
4.4.1 Building database systems in high-level languages

Evaluation

Safe manual memory management

5.1
5.2
5.3

54

5.5

Introduction
Designoverview oo
Safe manual memory management
5.3.1 Incarnation number overflow
5.32 Memorycontexts
Concurrency
54.1 Freeingobjects
5.4.2 Allocatingobjects

Concurrent compaction

Self-managed collections

6.1

6.2
6.3
6.4

Introduction
6.1.1 Collection semantics
6.1.2 Integration into the managed runtime
The basic collectiontype
Concurrent compaction

Directpointer L

73
73
79
81
84
85
86
86
88

93
93
94
96
97
99
99
103
105
108

6.5 Columnar Storageo 128

6.6 Evaluation 129
6.6.1 Sensitivity to relocation threshold 130

6.6.2 Evaluating collection primitives 131

6.6.3 Enumeration and query performance 133

6.7 Relatedwork 137
6.7.1 Object-oriented databases 137

7 Conclusion and discussion 141
Bibliography 145

Xi

Chapter 1
Introduction

In this thesis, we explore several strategies to improve the performance of query pro-
cessing inside the memory space of managed applications. In particular, we examine
how query processing and storage management technologies from database systems
can be applied in the context of managed applications to improve query processing
performance.

Over the past two decades, DRAM prices have been dropping at an annual average
of 33% with this trend projected to continue. As of July 2015, enterprises can buy
servers with a DRAM capacity of more than 1TB for under US$50,000. For many
applications, these servers allow the entire working set of the application to fit into
main memory. This trend has led to the emergence of in-memory database systems
(IMDBs). By storing and processing all data in main memory, these systems outperform
traditional database systems that are optimized for disk access. In-memory database
systems typically serve applications written in an object-oriented language running on
a managed runtime. For example, a C? application or an ASP.NET application running
on a web server that utilize an IMDB as their data back-end.

Such deployments have to deal with the impedance mismatch between the data
models of the object-oriented application and the relational database. To address this,
the application developer has to think at two different levels. The application level,
where data is represented in the object-oriented data model of the host programming
language, and the data processing and manipulation level where data is typically ex-
pressed in the relational model and processed through SQL queries. The programmer
has to either take care of the impedance mismatch through manual and potentially
error-prone data model translation, or through a high-level object-relational mapping

that bridges the two data models and manipulation methods such as LINQ-to-SQL. We

2 Chapter 1. Introduction

-

Managed runtime

Application code

LINQ ‘\I'\’ejerences

e 3

Managed Heap

Relational é
IMDBMS S | Object

Cache

Figure 1.1: Data managed in external IMDBMS

illustrate this scenario for a C* application that uses LINQ-to-SQL to communicate with
an external database system in Figure 1.1.

In many cases, these applications run on the same server instance as the database
system. This is, for example, the case for analytics and business intelligence applica-
tions where almost all of the application processing is spent inside the database sys-
tem and the application is merely responsible for facilitating the interaction with the
database system by providing a graphical user interface and visualizing query results
(e.g., as graphs, diagrams or tables). These applications usually have a very low num-
ber of concurrent users and often only perform off-line modifications to the data stored
in the database. Furthermore, they tend to aggregate huge volumes of data into a few
summarizing records that are then presented to the user through GUI elements.

These applications often do not need the full range of functionalities that the database
system is capable of. For instance, applications that do not perform on-line modifica-
tions to the data set do not need support for ACID transactions. Even with on-line
modifications, the application might not require the most recent view of the data as the
summarizing results produced by analytics queries are not hugely affected by small
changes to the data set and these application often are more interested in analyzing
past data (i.e., past days, months, years) than the most recent changes. As a result,
these applications tend to have low consistency requirements.

We argue that such applications could instead store and process their data in the

memory space of the application, e.g., as collections of objects, rather than employing

an external database system. Doing so has several advantages. It enables a deeper
integration of the data store into the application and the use of the full expressive
power of the object-oriented programming language to access, modify or query data.
For instance, application logic could directly access and modify data elements with-
out the need to marshal data between different systems or extend query processing
beyond what is supported in SQL (e.g., add new statistical query processing primitives
or application-specific logic). Modeling data using object-oriented principles, further,
allows a nested representation of the data sets where related objects are linked through
references. Following references between related objects can improve the query per-
formance compared to the corresponding relational representation as the latter has to
perform more expensive foreign-primary-key joins to access related objects. In addi-
tion, this approach eliminates the impedance mismatch problem as relational database
systems are not longer involved.

However, managing and processing data in the application is far from straightfor-
ward and often results in degraded performance compared to databases. Tradition-
ally, the developer has to implement all queries using imperative code, which pollutes
the code base and relies on complex optimizations being applied by hand, sacrificing
maintainability and extensibility in the process. These problems have led to the intro-
duction of language integrated query which adds query capabilities to the syntax of the
host programming language; in particular, most implementations add general-purpose
query operators to the programming language, e.g., C* with LINQ [Meijer et al., 2006]
and Java with (parallel) Streams. These operators resemble relational operators. They
are concatenated to compose more complex queries at ease. Language-integrated query
successfully addresses the impedance mismatch, as all queries are specified in the syn-
tax of the host programming language. In the following chapters, we will focus on
C! as the programming language and LINQ as the integrated query language, however,
most of our findings can be applied to other languages as well.

This thesis will present several strategies to improve query processing in the mem-
ory space of the application. We take LINQ-to-objects, C*’s implementation for language-
integrated query on collections of objects, as the starting point. We illustrate the ar-
chitecture for processing objects stored in the managed heap through LINQ-to-objects
in Figure 1.2a. In Section 2.3, we first look at the execution model of LINQ-to-objects
where we find parallels to volcano-style iterators [Graefe, 1994], an execution model
that has traditionally been used in relational database systems and exhibits a high in-

terpretation overhead. But we also find other inefficiencies that query processing in

4 Chapter 1. Introduction

Managed runtime 1 (Managed runtime

Application code Application code

LINQ References LINQ References

Managed Heap LINQ-to-X Managed Heap

LINQ-to-objects

(LINQ query provider)

(OIIT VAol [o]I[Tal - (- | C# collections

_ - AN Y,

EEREERPPRREE -1 C# collections
IEnumerable<T>

(a) LINQ-to-objects (b) Query Compilation

Figure 1.2: Data managed in managed heap

managed runtimes suffer from, most prominently, the cost of automatic garbage col-
lection.

Based on the parallels between the execution model of LINQ-to-objects and that
of traditional relational database systems, we address the inefficiencies of the former
by leveraging query compilation, an execution strategy that has been introduced in the
database space [Krikellas et al., 2010, Neumann, 2011] to address the inefficiencies of
volcano-style iterators. Query compilation refers to dynamically compiling SQL query
statements into specialized low-level code that executes the query on the data store
of the database system. The generated code is then compiled and executed to pro-
duce the result of the query. In the database space, this execution strategy has been
shown to greatly improve query performance. In Chapter 3, we apply query compi-
lation to query processing using language-integrated query on collections of objects
stored in the memory space of the application. In Figure 1.2b, we illustrate the over-
all architecture of this approach where LINQ-to-objects is replaced by a custom query
compiler. We then contribute an alternative query evaluation strategy that further im-
proves query performance by staging object-oriented data into temporal buffers and
then using unsafe Cf or native C code to process the query.

We identify the object-oriented data layout and the impact that automatic garbage
collection has on it as another bottleneck for query performance. To address it, we
propose to take garbage collection out of the equation by storing data that is predom-

inantly used for query processing through LINQ in unmanaged memory. In addition

.)\
Managed runtime
Application code
LINQ References
R
(N\ (\
LINQ-to-X Unmanaged Heap Managed
(LINQ query provider) Heap
. i J: Data store
Query Compiler @
\§ h J J,

Figure 1.3: Data managed by DBMS-inspired runtime

to the managed heap that contains all traditional object-oriented data the application
utilizes a second, unmanaged heap. We illustrate this scenario in Figure 1.3. In Chap-
ter 4 we introduce black-box collections, a collection type that internally stores data
in the unmanaged heap similar to the in-memory data store of relational database sys-
tems and utilizes existing object-relational mapping schemes to provide the illusion
of the collections containing object-oriented data. We adapt our query compiler to
generate code that directly processes queries on the unmanged database-like data store
of black-box collections. Evaluating the query performance of black-box collections
showcases huge improvements compared to LINQ-to-objects, in some cases over an
order of magnitude.

However, the performance improvement of black box collections is achieved at the
cost of generality. Data stored in the collections is no longer object-oriented, i.e., it
does not support references, and the object-relational mapping used to provide an illu-
sion of the collections containing objects causes overheads on the system and requires
additional efforts by the programmer. To improve on this, we introduce self-managed
collections, a novel collection type, that is designed to provide fast query performance
while allowing to store data as objects. Self-managed collections are supported by
a novel type-safe manual memory system that manages all collection objects outside
garbage collection and by collection semantics that differ from those of regular man-

aged collections which allows self-managed collections to automatically manage con-

6 Chapter 1. Introduction

tained objects. We will present the manual memory management system in Chapter 5
and self-managed collections in Chapter 6. Self-managed collections further improve
query performance compared to black-box collections.

The remainder of this thesis is structured as follows. Chapter 2 will give an overview
of existing query processing techniques in traditional database systems and in CZ.
Chapter 3 will present an architecture for query compilation in C! and techniques to
improve the performance of compiled queries. Chapter 4 will present black-box col-
lections, a collection type that utilizes the in-memory data store of a database system
to improve query processing performance. Chapter 5 will describe the implementation
details of a type-safe manual memory management system that is purpose-built for
self-managed collection, a collection type that delivers comparable query performance
to black-box collections, but allows for a deeper integration into the application by
storing manually managed objects instead of relational records. Self-managed collec-
tions will be presented in Chapter 6. Finally, Chapter 7 will conclude the thesis and
outline some future work directions.

Chapter 3 and Chapter 4 have been published in Proceedings of the VLDB Endow-
ment [Nagel et al., 2014].

Chapter 2
Background

This chapter provides background information on several topics that the following
chapters build on. In Section 2.1, we first outline query processing techniques in
traditional database systems and then focus on query compilation, a query process-
ing technique that gained traction in recent years. In Section 2.2, we provide a brief
overview of the architecture of managed runtimes and describe garbage collection in
more detail. In Section 2.3, we look into query processing in C!. We describe the
architecture of LINQ when querying managed objects in the memory space of the ap-
plication and the architecture of LINQ query providers. The latter allow LINQ to query
custom data sources. In Section 2.4, we outline object-relational mappings by using
LINQ-to-SQL as an example. Finally, we look into manual memory management tech-

niques in Section 2.5 and the TPC-H database benchmark in Section 2.6.

2.1 Database systems

2.1.1 Query processing

Relational database management systems (DBMSs) typically evaluate complex SQL
queries by concatenating multiple query operators, each representing a relational op-
eration (e.g., selection or projection). Traditional relational DBMSs use the volcano
iterator model [Graefe, 1994] to evaluate the resulting query tree on top of their data
store. Volcano iterators define a common interface (or base class) that all query opera-
tors implement. It contains an open () method that initializes the operator state before
query evaluation, a close () method that cleans up the operator state after query evalu-

ation and a next () method that is called by its parent operator to ask for (a pointer to)

8 Chapter 2. Background

next() <"Tom”> next() | | <EOF>
Project Name
next() <"Tom”, 52> next() | | <EOF>
Age > 50
next() || <"Peter”, 34> next()l <"Tom’, 562> next() | | <EOF>
Persons
Name Age
Peter 34
Tom 52

Figure 2.1: Query evaluation in the volcano iterator model

the next element of its result. Query evaluation is driven by issuing an open (), (mul-
tiple) next () and finally a close () call on the root operator of the operator tree. To
produce its output, the root operator has to in turn issue open (), next () and close ()
calls to its child operator(s). This process is repeated until a leaf node is reached,
which represents a table scan operator. The data flow within the operator tree is pull
based as operators pull data upwards. In Figure 2.1, we illustrate the evaluation of a
simple query that returns the names of all persons with an age greater than 50 using
the volcano iterator model. Note that the select operator issues several next () calls to
its child operator before it can produce its first output element. The classic execution
paradigm that is used with the volcano iterator model is referred to as tuple-at-a-time
as data is propagated through the operator tree at the granularity of a single tuple.
Query evaluation in database systems is traditionally interpretative. At database
compile time, there is no knowledge about the schemas that the database system will
host or the queries that will be evaluated on it. As such, query performance is heav-
ily dependent on the overhead that is imposed by the interpretative approach. This
overhead includes the cost of calling volcano’s open (), next () and close () func-
tions. As the operator tree is only constructed at runtime based on user input (the SQL
statement), the implementation of the query operators that implement the volcano it-
erator interface is not aware of their parent or child operators in the operator tree. At
compile time, the target of the open (), next () and close () functions is not known
and, therefore, the compiler cannot inline them, thereby increasing the cost of call-
ing these functions, while also preventing otherwise possible compiler and processor
optimizations. The implementation of each query operator is also unaware of its in-
put. This includes the number of columns, the types of each column and, in some

cases, the specific expressions that need to be evaluated on the input (e.g., selection

2.1. Database systems 9

conditions). The operator state stores meta data specifying these parameters and each
next () call has to interpret its input using the meta data and a multitude of condi-
tional statements and additional function calls. Tuple-at-a-time, the classic execution
paradigm of the volcano iterator model exacerbates these overheads as they have to be
amortized over a single tuple [Boncz et al., 2005]. This, further prevents compiler op-
timizations such as loop unrolling, loop pipelining, strength-reduction and automatic
SIMDization [Zukowski, 2009]. As a result, the execution paradigm does not expose
enough (instruction-level) parallelism to keep modern out-of-order superscalar CPUs
busy [Ailamaki et al., 1999].

Research addressed this issue by extending the volcano iterator model or propos-
ing new execution paradigms. In the operator-at-a-time paradigm [Boncz, 2002], each
operator processes its entire input at once and fully materializes its output to be con-
sumed by the consecutive operator. This execution paradigm reduces the interpretation
overhead (e.g., virtual function call overheads) as the overhead is amortized over all
input tuples. It, further, allows loop-based compiler optimization and exposes more
(instruction-level) parallelism to the CPU. However, the paradigm comes at the cost of
having to materialize all intermediate results during query processing and of missed
processing opportunities while a tuple resides in CPU caches as tuples that are loaded
into CPU caches are only processed by a single operator before being flushed out to
make space for the remaining input tuples. Other research addresses these issues
by proposing block oriented processing [Padmanabhan et al., 2001] or the vector-at-
a-time paradigm [Boncz et al., 2005]. The latter maintains the volcano iterator model,
but propagates data through the operator tree at the granularity of a fixed-size vector
(e.g., 1024 tuples). All interpretation overhead is amortized over the size of a vector.
The vector size is chosen to ensure that all vectors that are processed by the operator
pipeline at the same time all fit in the CPU cache.

In recent years, research has gone one step further by suggesting to scrap interpre-
tative query evaluation all together and instead dynamically compile SQL queries to
imperative and highly specialized native code [Krikellas et al., 2010, Neumann, 2011,
Rao et al., 2006] to eliminate all interpretation overhead, allow advanced compiler op-

timization and improved CPU and cache utilization.

10 Chapter 2. Background

2.1.2 Query compilation

A database system utilizing query compilation operates similar to a traditional, in-
terpretative database system. Incoming SQL statements are parsed into a tree repre-
sentation of the query. Each node of the tree specifies either a relational operation
or parameters of a relational operation. The optimizer rewrites this query tree into
a optimized query tree based on the database schema, collected statistics (e.g., his-
tograms) and a cost model. Instead of building and executing an operator tree from
the query tree, query compilation based systems emit native (e.g., C or LLVM) code to
evaluate the query. The generated code is then compiled and executed. As the code
is compiled at run time where all characteristics about the query and the underlying
database schema are known, the query compiler can generate specialized query code
that does not require any interpretation. Further, queries are evaluated in tight loops
over the input that allow advanced compiler optimization and improved CPU and cache
utilization. In contrast to volcano iterators, query compilation represents a push-based
approach where data is pushed through several operators inside a loop construct. How-
ever, research [Krikellas et al., 2010] has also noted the high cost of compiling queries
to binary code, in particular if compilation is to be performed using an external com-
piler process.

Query compilation in database systems has been around since the times of System-
R [Chamberlin et al., 1981]. However, as its query compiler directly generated as-
sembly, it was abandoned for its lack of portability. [Freytag and Goodman, 1989]
suggested to evaluate SQL queries by generating C or Pascal code, compile it using the
existing compiler infrastructure and execute it. The code generator uses functional pro-
gramming and program transformation techniques to translate optimized query plans
into iterative programs. It translates the query plan into map expressions that are mod-
elled after the Lisp operator map and lambda expressions. Multiple transformations
(e.g., loop fusion) are then applied to generate iterative code. Performance aspects
were only a minor concern. At the time, query performance in database systems was
disk 1/0 bound and improvements to CPU or cache efficiency only had a minor im-
pact. Since then, supported by a constant increase in main memory capacity, memory
performance became the new bottleneck and processing queries in a CPU and cache ef-
ficient manner became imperative. As a result, query compilation has gained renewed
interest in the research community in recent years which let to multiple industrial ap-

plications such as SQL Server’s Hekaton engine [Diaconu et al., 2013], Amazon Red-

2.1. Database systems 11

shift [Gupta et al., 2015], Cloudera Impala [Wanderman-Milne and Li, 2014] or IBM
Netezza [Francisco et al., 2011].

[Rao et al., 2006] present a relational, in-memory, Java-based database prototype
that generates Java code, compiles it into Java Bytecode and loads and executes it
through the JvM. Data is stored as Java objects that only contain primitive types (i.e.,
no references). [Krikellas et al., 2010] propose generating C code instead. The au-
thors precede query processing with a staging phase that prepares the input data for
cache conscious query processing. The authors also note the high cost of compiling
the generated C code. [Neumann, 2011] proposes generating LLVM code to reduce the
compilation cost. Additionally, he generates code that maximizes the processing per-
formed in each loop and therefore keeps data in CPU registers for as long as possible.
[Klonatos et al., 2014] propose the use of a high-level programming language to imple-
ment database systems in order to increase the productivity of database engineers. The
authors propose to use query compilation to enable fast query processing; in particular,
their query compiler performs a source-to-source compilation of high-level Scala code
to low-level C code that is then compiled and executed. A multitude of other work has
looked into various aspects of query compilation, e.g., [Sompolski et al., 2011] studied
query compilation at an operator level, [Dees and Sanders, 2013] explored code gen-
eration for many-cores in main memory column-stores and [Pirk et al., 2013] looked

into the symbiosis of query compilation and the partially decomposed storage model.

2.1.3 Columnar versus row-wise storage

The records in database tables are usually either stored columnar or row-wise. Row-
wise layouts store the fields of a record (columns) in consecutive memory addresses.
In a columnar data layout, the storage of each database table is vertically decomposed
into memory areas that each only contain the values of a single column (i.e., a single
field). Vertically decomposing the storage of a table can lead to better query per-
formance as it enables an improved utilization of CPU caches and prefetching, e.g.,
[Copeland and Khoshafian, 1985, Manegold et al., 2000]. Columns that are not ac-
cessed by the query are never fetched into CPU caches and a single cache line fetch of a
column that is accessed by the query reads many consecutive values of that column into
the CPU caches. As a result, queries that either do not touch a significant fraction of a
table’s columns or that tend to touch consecutive column values perform better when

using columnar storage. However, columnar storage comes at a higher CPU cost when

12 Chapter 2. Background

C# Code C# Compiler @ Base Class
Library

/

N

fManaged runtime

Class Loader

() Generational
Managed Heap Garbage
. Collector]
. JIT Compiler
I
\:
\.) ’ J

Figure 2.2: Overviews of .NET’s common language runtime (CLR)

accessing the columnar data as memory offsets have to be computed for each value.
An additional strength of columnar storage is that it works very well with compression
schemes [Abadi et al., 2009] because all data stored in a column has the same type and
often has a rather small value domain or small increments between successive values
(e.g., primary key columns). PAX (Partition Attributes Across) [Ailamaki et al., 2001]
is an alternative data layout that, instead of vertically partitioning the table as is the case
for columnar storage, only vertically partitions the records within a memory block.
This enables similar memory access properties as columnar storage while maintaining

the property of row-wise storage that records are stored in a single block.

2.2 Managed runtimes

2.2.1 System architecture

Applications written in many modern object-oriented programming languages require
a managed runtime to be executed; examples include the Common Language Runtime
(CLR) which is shared between various .NET languages (e.g., C! or Visual Basic) or
the Java Runtime Environment (JRE). In Figure 2.2, we give a high-level overview
of the CLR and the process that a C* application undergoes when being compiled and
executed. The C! compiler compiles the application’s source code into intermediate

language (IL) code. When running the application, each IL method is compiled into

2.2. Managed runtimes 13

native machine code by the just-in-time (JIT) compiler when it is executed for the first
time. Later invocations of the same method directly execute the compiled native code.
All objects created by the application are allocated from the managed heap which is
managed by the garbage collector. Hitting certain memory limits when allocating new
objects triggers garbage collections that automatically free the memory space of stale
objects. Parts of the garbage collection process require all other application threads to

be suspended.

2.2.2 Garbage collection

Most modern managed runtimes employ a generational garbage collector [Ungar, 1984,
Lieberman and Hewitt, 1983]. Generational refers to the fact that the managed heap is
divided into several generations, usually two or three. All objects created by the ap-
plication are allocated in the youngest generation and then gradually moved to older
generations by garbage collections as they mature. Allocating memory in the youngest
generation is typically very cheap as the memory space is thread-private and most al-
locations can be satisfied by pointer pushing. Once the youngest generation is full,
a garbage collection is invoked that copies all live objects, i.e., objects that are still
reachable by the application, to the next mature generation. This process repeats for
more mature generations. Typical implementations allow to collect the memory space
of a specific generation individually where collections in younger generations are usu-
ally much cheaper. After collecting the oldest generation, objects can no longer be
moved to older generations and instead remain in the same generation. The holes left
by unreachable objects are either filled by performing a compaction step at the end
of the garbage collection that moves reachable objects together or by maintaining free
lists that are filled in following garbage collections when moving objects from the next
younger generation. In the latter case, unused memory is managed as lists of memory
blocks catering for a specific range of object sizes. Each memory block is organized by
memory slots of the maximum size of that range and contains a list of free object slots
to be used for allocations. Both options prevent fragmentation and reduce the overall
memory footprint. Generational garbage collection typically improves garbage collec-
tion performance by exploiting a common allocation pattern in managed application.
The more recently created objects are also the ones that are more likely to become
unreachable. In particular, this implies that most objects tend to be short-lived and,

therefore, are not likely to survive a collection in the youngest generation. As alloca-

14 Chapter 2. Background

tions and garbage collections in the youngest generation are significantly cheaper than
in more mature ones, generational garbage collection employs frequent collections in
the youngest generation to get rid of short-lived objects and only performs the more
expensive collections in more mature generations very rarely.

Most garbage collectors are based on mark-and-sweep collectors [McCarthy, 1960]
which consist of two phases, the marking phase that finds all objects that are still
reachable by the application and the sweep phase that goes through all memory blocks
in the managed heap and reclaims the memory of all objects that have been deemed
unreachable. All objects that are reachable in the application form a graph from the
application roots where objects represent nodes in the graph and object references
the edges. Application roots are objects that are referenced from the call stack (e.g.,
local variables or function parameters) or from global variables. The marking phase
starts with the application roots and performs a depth first search that follows all their
references and marks the memory slots of all reached objects. In generational garbage
collectors, the runtime tracks references that cross generation boundaries. This allows
garbage collections in these generations to limit the marking phase to objects stored
in the memory space of a certain generation by treating objects referenced from more
mature generations as additional application roots and by stopping to follow references
beyond generation boundaries. Doing so allows to perform garbage collections in the
memory space of individual generations, without having to inspect objects in other
generations, and, hence, to significantly reduces the cost of such collections. After
the marking phase, the sweeping phase iterates over all memory slots in all memory
blocks in the generation to be collected and reclaims the memory slots of all objects
that have not been marked, as well as resetting all marked objects in preparation for
future garbage collections.

Blocking garbage collectors have to suspend all application processing while garbage
collections are in progress. Modern garbage collectors also support concurrent modes
where application processing only needs to be halted for some parts of the collection
process, e.g., for scanning the application’s stack. As a result, concurrent garage col-
lections reduce the maximum response time of the application, however, in many cases
it also increases the total time spent on garbage collection compared to batch collec-
tions.

.NET’s garbage collector is a generational mark-and-sweep garbage collector that
divides the managed heap into three generations (and an area for large objects). It sup-

ports two modes, workstation and server, that specify whether the garbage collection

2.8. Language-integrated query in ct 15

is performed by the application thread that triggered it (workstation) or by dedicated
garbage collection threads, one per CPU (server). Both modes support concurrent (in-
teractive) or non-concurrent (batch) collections. In both cases, collections of the two
youngest generations suspend all application processing for the duration of the col-
lection. However, concurrent collections of the most mature generation only suspend

application processing for small parts of the collection duration.

2.3 Language-integrated query in C*

Language-Integrated Query (LINQ) is a framework introduced by Microsoft that adds
powerful query-like capabilities to C* and other .NET programming languages. This is
achieved by defining a design pattern of general-purpose query operators that are com-
bined to form more complex queries and by extending the programming languages
with special query syntax that is compiled into these operators. The LINQ framework
also provides a number of domain-specific implementations of these query operators
which enables the use of LINQ over in-memory .NET collections (e.g., arrays, lists,
etc.), relational databases and XML documents. The framework is designed to be ex-
tensible, so developers can create their own domain-specific implementations.

LINQ bridges the semantic gap between programming languages and query lan-
guages. Previously, programming languages accessed query engines via a weak em-
bedding, where queries are expressed as strings and are interpreted at runtime by the
query engine. This approach has several disadvantages for developers. First, they have
to learn a new query language for each type of data source that they must support (e.g.,
SQL for relational data; or XQuery for XML). Second, there is no support from the pro-
gramming language to ensure that the embedded query is well-formed, or well-typed.
Lastly, this approach is infamously insecure: injection attacks are a direct consequence
of the naive representation of queries as strings.

LINQ, in contrast, offers a consistent model for representing and querying various
kinds of data sources based on the principles and syntax of the host programming
language. Moreover, the query language is deeply integrated into the host language to
further support the programmer when creating the data representation and queries for

an application. LINQ supports an SQL-like query syntax:

var gry_stmt = from p in Persons
where p.Age > 50

select p.Name;

16 Chapter 2. Background

The query specifies to return the names of all person objects in a Persons collection
that are older than 50. This query syntax is merely convenient syntactic sugar, as it is

compiled away to a series of method calls, e.g.:

var qry_stmt = Persons
.Where (p => p.Age > 50)
.Select (p => p.Name);

These methods on the data source (e.g., Where) are known as the standard query op-
erators. Many of these operators take lambda expressions (e.g., p => p.Age > 50)
as arguments, and some of these methods directly correspond to relational algebraic
operations. They are concatenated to compose more complex query operations. The
methods are overloaded to allow querying different types of data sources using the
same syntax. We next describe the two implementations provided by the LINQ frame-

work.

2.3.1 LINQ-to-objects

For types that implement the TEnumerable or I[Enumerable<T> interfaces, e.g., man-
aged .NET collections such as Array or List<T>, the base class library provides an
implementation of the standard query operators. This implementation is known as
LINQ-to-objects. In this section, we will have a closer look at the inner workings of
LINQ-to-objects.

Each of the standard query operators is implemented as an iterator method as illus-
trated for the Where and Select operators in Figure 2.3. Iterator methods are again
syntactic sugar to facilitate the implementation of the standard iterator pattern. From
the iterator method, the C* compiler automatically generates a class implementing
IEnumerator<T>, the actual iterator, and IEnumerable<T>. The compiler also mod-
ifies the iterator method to merely create a new instance of the generated class and
return it to the caller as an TEnumerable<T>. In Figure 2.4, we illustrate a heavily
simplified version of the code generated by the compiler for the Where iterator method
from Figure 2.3a. Note that the arguments of the original iterator method are passed to
the iterator.

Consider the following LINQ query in method syntax:

var qry_stmt = Persons
.Where(p => p.Age > 50)
.Select (p => p.Name);

2.3. Language-integrated query in ct 17

I IEnumerable<Tin> Where<Tin>(this IEnumerable<Tin> input,

2 Func<Tin, bool> predicate)
3

4 foreach (Tin elem in input) {

5 if (predicate(elem))

6 yield return elem;

7 }

8 yield break;

(a) Where

I IEnumerable<Tout> Select<Tin, Tout> (this IEnumerable<Tin> input,

[39)

Func<Tin, Tout> selector)

V)
—_

4 foreach (Tin elem in input)
5 yield return selector (elem);

6 yield break;

(b) Select

Figure 2.3: Implementation of standard query operators

foreach (var name in qry_stmt)

Console.WritelLine (name) ;

When calling the Where and Select methods in the query statement, the query is not
actually executed. Instead, a tree of iterators is constructed. The Where method takes
the Persons collection (as IEnumerable<Person>) and a function delegate created
from the lambda expression p => p.Age > 50 as arguments, passes them to the con-
structor of its iterator and then returns the iterator as IEnumerable<Person>. In turn,
the Select method takes the Where iterator (i.e., the TEnumerable<Person> returned
by the Where method) and a function delegate as argument. The [Enumerable<string>
returned by the Select method is then assigned to the gry_stmt variable.

The query is only evaluated when the application consumes its result elements

(here: in the foreach loop). The C* compiler translates the foreach loop into code

18 Chapter 2. Background

1 public IEnumerable<T> Where<T>(this IEnumerable<T> input,
2 Func<T, bool> predicate) {
3 return new Wherelterator<T>(input, predicate);

)

W

6 internal sealed class Wherelterator<T> : IEnumerable<T>, IEnumerator<T>
7

8 private IEnumerable<T> input;

9 private Func<T, bool> predicate;

10 /* ... %/
public Wherelterator (IEnumerable<T> input, Func<T, bool> predicate) {

13 this.input = input;

14 this.predicate = predicate;

17 public IEnumerator<T> GetEnumerator() { return this; }

18 public T Current { /* ... */ }

19 public bool MoveNext () { /* ... */ }
20 public void Dispose() { /* ... */ }
21}

Figure 2.4: Compiler-generated Where iterator

I IEnumerator<string> iterator = qgry_stmt.GetEnumerator ();
2 try {

3 while (iterator.MoveNext ()) {

4 string name = iterator.Current;
5 Console.WriteLine (name);

6 }}

7 finally {

8 iterator.Dispose();

9 '}

Figure 2.5: Compiler-generated iteration

similar to that shown in Figure 2.5. The generated code first assigns the root of the
iterator tree, the Select iterator, to its iterator variable (line 1). It then iterates over
the result elements of the Select iterator by continuously calling its MoveNext method

(line 3) and printing the result element returned by its Current getter (lines 4 and 5).

2.8. Language-integrated query in ct 19

The C* compiler transforms the foreach loops in the query operators to iterate over
their input elements (see Figure 2.3) accordingly. To produce its result elements, the
Select iterator iterates over the result elements of the Where iterator which, in turn,
produces its result elements by iterating over the elements of the Persons collection.
Note how this evaluation strategy evaluates the query by pulling objects through the
iterator tree, one object at a time. Therefore, the execution model of LINQ-to-objects
closely resembles that of volcano-style iterators (tuple-at-a-time) in relational database
systems.

One of the characteristics of LINQ is that the evaluation of a query is deferred
until the moment that a result element is actually requested by application code. In
our example, the definition of the query does not execute it, instead, iterating over the
result elements of the query in a foreach loop produces one result element at a time as
requested by each loop iteration. For instance, adding a break statement that exits the
loop once ten result elements are produced stops the query evaluation after the tenth
element. The deferred execution strategy allows to dynamically construct new queries
by combining existing query statements, but also reduces the query evaluation cost if

the application does not consume the entire query result.

2.3.2 LINQ query provider

The implementations of the LINQ standard query operators are overloaded. The base
class library also provides implementations for two additional interfaces which are
derived from the enumerable interfaces: 1Queryable and IQueryable<T>. These im-
plementations of the standard query operators provide the means by which data-source-
specific implementations, e.g., LINQ-to-SQL or LINQ-to-XML, are defined. Such im-
plementations are known as LINQ query providers.

The chief difference between the LINQ-to-objects implementation of the standard
query operators is that executing the query statement builds an expression tree instead
of an iterator tree. An expression tree is an AST representation of a given query. Any
lambda expression arguments of query operators are quoted, i.e., they are implicitly
converted into expression trees. This implicit conversion is implemented by the C*
compiler. After calling the methods defined in the query statements, the qry_stmt
variable holds an TQueryable<string> object that contains the expression tree. The
expression tree is made up of expression nodes of various types. The following three

are of particular interest to us:

20

MethodCallExpression
‘Select’

LambdaExpression

p

MethodCallExpression
‘Where’

MemberExpression
‘Name’

ConstantExpression
‘Persons’

Chapter 2. Background

ParameterExpression

‘o’

LambdaExpression

p

BinaryExpression
N

MemberExpression

ConstantExpression

‘Age’ 50’

ParameterExpression

‘o

Figure 2.6: Expression tree of the example query

e MethodCallExpression: This node type represents the standard query opera-
tors and, hence, the operation that has to be performed on the data returned from
its children (which are also MethodCallExpression or ConstantExpression

nodes)

e ConstantExpression: This node type represents constants; in particular, the

input collections.

e LambdaExpression: This node and its sub-tree specifies the lambda expression
arguments of the query operators. As such, they detail the variable parts of the

operations to be performed by a standard query operator.

We illustrate the expression tree that is constructed for our sample query in Figure 2.6.
The expression tree nodes also contain type information, which is omitted in the illus-
tration. In the case of MethodCallExpression nodes, the type information includes
their output types (e.g., IQueryable<Person> for the Where node). Note the resem-
blance of expression trees to query trees used in database systems to represent and
optimize SQL queries.

Other than storing a reference to the expression tree, the Queryable<string>
object that is assigned to the gry_stmt variable also holds a reference to the query
provider of the data source. When the evaluation of a query is triggered, e.g., by a
foreach loop iterating over the query result, the GetEnumerator method is called on

the TQueryable<string> object which is assigned to the qry_stmt variable. The

2.4. Object-relational mappings 21

implementation of the GetEnumerator method invokes the query provider implemen-
tation to supply the TEnumerator<string> requested by the loop; the expression tree
is supplied as argument. It is now up to the query provider implementation to return
an iterator that is capable of evaluating the query on the data source. Typical imple-
mentations interpret the expression tree, transform it into a representation of the native
syntax of the data source and then execute the query on the data source. For instance,
the LINQ-to-SQL query provider translates the expression tree to a SQL query statement
which is then executed on the external DBMS. The iterator finally creates C* objects
from the result elements returned by the data source once they are requested by the

foreach loop. We provide additional details on LINQ query providers in Section 3.3.

2.4 Object-relational mappings

When accessing database systems from an object-oriented programming language,
there is an impedance mismatch between both data representations. This mismatch
is typically addressed by employing an object-relational mapping framework to auto-
matically map between both representations to save the application programmer the
effort of manually having to deal with the mismatch. To facilitate the integration of a
relational database system into C? applications, .NET provides the LINQ-to-SQL query
provider and object-relational mapping framework. It manages the connection with
the external DBMS as well as the representation mismatch. The latter is addressed by
allowing the application programmer, once the mappings are created, to access data
stored in the external DBMS as if it was managed objects, stored in an in-memory col-
lection. LINQ provides the means to formulate complex queries to the database system.

There is a mismatch in how data is represented in object-oriented programming
languages and relational databases. Data in object-oriented languages is represented by
objects that form graphs, connected by references, to represent relationships between
them. Identity between two object references is usually defined by both referring to
the same instance of a type. The lifetime of objects is defined based on whether there
are references in the application through which the object can still be reached. It is not
necessarily linked to the object’s containment in a collection. In relational databases,
on the other hand, data is defined in terms of the relational model. Data elements are
represented as table rows. Relationships are loosely specified by primary and foreign
keys and related data elements are accessed together through explicit join operations.

Identity is defined by the equality of primary keys. The lifetime of data elements

22 Chapter 2. Background

| [Table (Name="Orders")]

3]

public class Order

{

w

~

[Column (IsPrimaryKey=true, IsDbGenerated=true)]

w

public int OrderID;

6

7 [Column (CanBeNull=false)]

8 private int CustomerID;

9

10 private EntityRef<Customer> _Customer;

11

12 [Association (IsForeignKey = true, Storage="_Customer",
13 ThisKey="CustomerID")]

14 public Customer Customer {

15 get { return this._Customer.Entity; }
16 set { this._Customer.Entity = value; }
17 }

18}

Figure 2.7: Annotating a class definition to allow it to be mapped to the data stored in a

relational DBMS

stored in a database table is defined by their containment in the table. Removing them
from the table erases the data elements and explicitly (e.g., indexes) or implicitly (e.g.,
foreign-key relationships) removes all references to it.

LINQ-to-SQL allows to enrich the class definition of managed classes that refer to
tables stored in database systems by adding attributes (in squared brackets) to the class
definition. These attributes allow the runtime to create the mapping between the object-
oriented type used in the managed environment and the one defined in the schema of
the database system. We illustrate a LINQ-to-SQL class definition that is annotated with
attributes to allow it to be mapped to data stored in a database system in Figure 2.7. The
Table attribute (line 1) specifies that the class type is backed by a table in a relational
database and the table’s name in the database. The Column attribute (lines 4 and 7)
specifies all object fields that are backed by the database and properties of the corre-
sponding columns, for example, whether the column is part of a primary key or may
contain null values. To form relationships (here, with a Customer object), the class
definition specifies an Association attribute (line 12). The Storage parameter spec-

ifies the name of the object’s EntityRef<Customer> field that will hold the instance

2.4. Object-relational mappings 23

~
(

1 public class DBContext : DataContext
2 A

3 public Table<Customer> Customers;
4 public Table<Order> Orders;

5 public DBContext (string connection): base (connection) {}

Figure 2.8: Example of the DataContext class

of the other class and ThisKey the name of the object’s field that holds the foreign key
to the other table. The Association attribute allows to access related objects in an
object-oriented manner using the dot notation (e.g., order.Customer.Name). When
evaluating the query on the database system, these object accesses are automatically
translated into relational joins. When retrieving objects in a query, LINQ-to-SQL uses
deferred loading to only retrieve related objects when attempting to access them. For
instance, when retrieving orders from the database, related customer objects are only
retrieved once they are accessed by the application.

A DataContext represents the glue between database and application. Its defini-
tion specifies Table<T> collections for all accessible tables in the database (as shown
in Figure 2.8). As identity has different meanings in the object-oriented and the rela-
tional world, the DataContext translates between both. Identity in a database means
equivalent primary key(s) whereas identity in an object-oriented language is defined
by the same object instance. To guarantee the latter, when retrieving the same row
(row with same primary keys) multiple times, the DataContext has to ensure that also
the same object instance is retrieved. For this purpose, the DataContext contains an
identity cache. The identity cache can be seen as a hash table that stores the primary
key(s) of a retrieved row together with the reference of the object representing that row.
Before returning a row that has been retrieved from the database to the application, the
DataContext first checks the identity cache if an object for this row already exists and
then returns that object, otherwise it creates a new object and adds it to the cache. In
the former case, the object is not updated with the current values of the row. Identity
is not only important to provide the application with familiar semantics, but also be-
cause it provides the means to write back changes that have been performed on objects
returned from the database. For this purpose, the DataContext tracks all changes that

are performed on objects returned from the database.

24 Chapter 2. Background

Note that, as the DataContext holds references to all returned objects that repre-
sent rows in the database for the cause of its lifetime, these objects cannot be reclaimed
by the garbage collector. This causes the DataContext to consume huge volumes of
memory; in the worst case leading it to contain a second, object-oriented copy of the
entire data set stored in the DBMS. For this reason, DataContexts are assumed to be
short-lived, their lifetime typically is a unit of work. DataContexts are usually created
in a using statement to ensure that they are disposed once the unit of work is finished.
All changes performed on objects representing rows that have been retrieved from the
database are only kept locally until the application explicitly calls the data context’s
SubmitChanges method. The DataContext tracks the original values and changes of
all objects returned from the DBMS. When SubmitChanges is called, all changes are
translated into equivalent SQL statements and executed against the database. Note that
object identity and, hence, the option to write changes to objects back to the database,
is only available in the scope of the data context that retrieved the objects. To reduce
the DataContext’s memory footprint and to improve performance, object tracking can

be turned off in a data context when dealing with a read-only workload.

2.5 Memory management

2.5.1 Safe manual memory management

Automatic garbage collection in managed runtimes typically guarantees memory, type
and thread safe memory management for managed types. Memory safety, e.g., ensures
that there are no dangling references to already freed memory addresses, no memory
leaks or accesses to uninitialized memory. Type safety ensures that references of a
certain type always refer to instances of that type. Thread safety ensures that memory
management remains memory and type safe, even when facing concurrent operations.
Providing safety guarantees without automatic garbage collection is more of a stretch.
In the past, several schemes have been proposed to add some safety guarantees to
memory operations without utilizing garbage collection. They either improve program
safety through static checks at the compiler level, through dynamic runtime checks or
both. Reference counting is a common runtime mechanism to ensure memory safety.
By counting references to an object or a memory area, these resources can be auto-
matically freed once they are no longer referenced. C++11’s shared ptr smart point-

ers are an example of this mechanism used at object granularity. However, reference

2.5. Memory management 25

counting comes at a high cost, especially when objects may be accessed concurrently,
e.g., [Michael, 2004]. Linear types [Wadler, 1990] are another option to ensure safe
memory deallocation by preventing aliases. C++11’s unique ptr smart pointers en-
sure safe deallocations through compile time checks based on linearity.

Region-based memory management has been proposed as an alternative to garbage
collection. It allows to allocate objects in regions (e.g., lists of memory blocks) and
to efficiently free all objects in a region at once. Memory safety is either added stat-
ically or dynamically. [Tofte and Talpin, 1997] maintain a stack of regions and use
a program analysis to automatically find program points where entire regions can be
allocated and freed and what region to use for an allocation. [Gay and Aiken, 1998]
describe a safe implementation of explicit regions, i.e., regions that are explicitly cre-
ated and freed by the programmer, that uses reference counting to prevent a region
from being freed while the reference count is greater zero. [Boyapati et al., 2003]
and [DeLine and Fihndrich, 2001] propose static schemes to check the correctness
of region management. [Dhurjati et al., 2003] statically ensure type safety of man-
ual allocations and deallocations by automatically assigning heap-allocated objects to
type-homogeneous pools (regions) that are destroyed when there are no more refer-
ences to data elements in a pool. Type safety is ensured by preventing the memory
within a pool from being released to the system until the pool is destroyed. Cyclone
[Grossman et al., 2002] is a C-like programming language that provides safe manual
memory management based on regions.

[Austin et al., 1994] transform programs at compile-time to automatically use an
extended pointer representation which they refer to as safe pointers. Safe pointers con-
tain the value of the pointer as well as object attributes like location, size or lifetime.
Memory access errors are detected by validating dereferences against the object at-
tributes at runtime. The lifetime of heap objects is validated by storing a unique value
that identifies the object instance (memory allocation) in the reference and by checking
in a dynamically maintained global table that contains all identifier of object instances
that have been allocated but not freed whether the object is still alive. Access is only
granted if the object is in the table, therefore, preventing accesses to dangling point-
ers. Other systems have used similar techniques to dynamically check memory safety.
For example, [Dragojevi€ et al., 2014] use fat pointers to track object incarnations to
prevent access to objects that have already been freed and to allow to safely reclaim
their memory space while there may still be references to them. For this purpose, the

memory space that is used to store an object is associated with an incarnation num-

26 Chapter 2. Background

ber and references to the object store the same incarnation number. Freeing the object
increments the incarnation number. Access to an object is only granted if the incarna-
tion number stored in the reference matches the one of the object to prevent accessing

dangling references.

2.5.2 Safe memory reclamation in lock-free data structures

The manual memory management system that we present in this chapter utilizes tech-
niques that have been proposed for memory reclamation in the context of lock-free data
structures. In particular, we use epoch-based memory reclamation to ensure that our
memory manager cannot reclaim memory space that is still accessed by a concurrent
thread. Lock-free data structures avoid problems like deadlocks that occur when using
locking as concurrency control mechanisms and, in some cases, can lead to perfor-
mance improvements. However, in the absence of automatic garbage collection, they
have to handle read/reclaim races. Consider a linked list where a thread T1 removes a
node while another thread T2 holds a reference to that node. The memory of the node
has to be reclaimed (freed) to allow it to be reused, however, reclaiming it is unsafe
while T2 still holds a reference to it.

Hazard pointers and their variants [Herlihy et al., 2005, Michael, 2004] address
this problem by introducing a special pointer type, hazard pointers, that protects ac-
cesses to elements of lock-free data structures. Each thread maintains N hazard point-
ers that are globally visible. It uses them to access protected data structure elements.
When removing an element, the thread first checks the hazard pointers of all other
threads to ensure that the element is only reclaimed if there are no protected references
to it. Otherwise it is added to a list to be reclaimed later.

Epoch-based reclamation [Desnoyers et al., 2012, Fraser, 2004] is an alternative
approach to ensure safe memory reclamation. Epoch-based reclamation uses time in-
tervals during which threads may safely hold references to protected data structure
elements. Removed elements are maintained in lists characterized by the time interval
they were removed and, once all threads passed a certain number of time intervals, they
are freed safely as there cannot be any more references. We will look at epoch-based
reclamation in more detail in Section 5.4 when describing how concurrency is handled
in our memory management system. [Braginsky et al., 2013] introduce an epoch-based
reclamation scheme that can recover from thread failures by using hazard pointers for

every Nth access to protected memory. Their approach also improves the performance

2.6. TPC-H 27

Orders - —-» Customer
A |
I |
\ 4
Part < - A Nation
A / v
I I / I
] \ 4 /’ Y
PartSupp -» Supplier [Region

Figure 2.9: Schema of the TPC-H Benchmark

compared to hazard pointers by amortizing the cost of hazard pointers over N accesses
to protected memory.

[Braginsky and Petrank, 2011] propose a lock-free sorted linked list optimized for
spatial locality by clustering multiple list elements together in a sub-list that is stored in
a chunk of consecutive memory addresses within the parent list element. Hazard point-
ers ensure safe memory reclamation, while a freeze bit in the elements’ next pointer
ensures lock-free splitting and merging of chunks. The implementation is limited to a

specific format for each list element (integer key and value).

2.6 TPC-H

TPC-H' is a popular business intelligence database benchmark. Its schema contains 8
tables that are arranged in a snowflake scheme with a single fact table (i.e., 1ineitem)
and several dimension tables (e.g., orders or supplier) as depicted in Figure 2.9.
In contrast to star schema arrangements, dimension tables in snowflake schemas are
normalized forming additional tables (e.g., customers or nations). The total size
of the data sets is specified by its scale factor (e.g., a scale factor of one corresponds
to a size of 1GB, a scale factor of two to 2GB, etc.). TPC-H consists of a total of
22 queries that represent typical business intelligence tasks. In the remainder of this
work, we focus on the first six queries of the TPC-H benchmark as we believe they are
representative of the remaining TPC-H queries as well as other analytics workloads.

Query 1 is very aggregation-heavy, query 2 contains a nested sub-query, query 3 to 5

Uhttp://www.tpc.org/tpch/

28 Chapter 2. Background

contain several join operations and query 6 is very selection-heavy.

The benchmark itself contains two parts, a power run that measures the evaluation
time of each of the 22 queries and a throughput run that executes several streams con-
taining the 22 queries together with two refresh streams that modify the data stored in
the database. Throughput runs measure the query throughput when evaluating these
streams concurrently. One of the two refresh streams removes a predefined percent-
age of records from the lineitem and orders tables, the other one inserts the same

number of records.

Chapter 3

Query compilation for

language-integrated query

3.1 Introduction

When describing LINQ-to-objects in Section 2.3.1, we highlighted the resemblance
between its iterator-based execution model and that of the volcano iterator model
(tuple-at-a-time) as traditionally utilized in most commercial database systems (Sec-
tion 2.1.1). Iterators allow complex queries to be composed out of standardized query
operators derived from relational operations. They are the means to support LINQ’s
deferred execution strategy which allows to only produce result elements of a query
when they are consumed by the application. However, they also exhibit the same ineffi-
ciencies as their counterparts from the database space (described in Section 2.1.1). The
following will outline inefficiencies arising from the LINQ-to-objects execution model
and, more generally, from querying objects in the memory space of a managed appli-
cation. Most of these inefficiencies can be assumed to also exist in other applications

(e.g., Java’s Streams).

e Virtual function calls Queries in LINQ are represented by a tree of LINQ’s
standard query operators. In LINQ-to-objects, each operator is implemented as
an iterator that, to produce its result, continuously pulls output objects from its
children by calling their MoveNext () method and Current getter. Queries are
evaluated by iterating over the root of the iterator tree, causing the iterators in the
tree to step-wise transform the input objects into the query’s result. For big data
sets, this causes millions of calls to MoveNext () and Current. Both methods

are defined in the TEnumerator<T> interface and, therefore, are virtual function

29

30

Chapter 3. Query compilation for language-integrated query

calls. As their target methods are not known at compile time, the compiler cannot
inline them, increasing the cost of each function call. On top of the cost of not
allowing inlining, virtual function calls cause an indirect branch!, which impedes
instruction pipelining. Iterating over each operator’s input using virtual function
calls, further, prevents loop based compiler optimizations like loop unrolling or
loop pipelining. Iterators cause two virtual function calls per input object per
operator. At least another virtual function call per input object is contributed
by the function delegate that is passed to each operator as argument to specify
the operator’s behaviour, e.g., a predicate or transformation function, usually

supplied in the query statement as lambda expression.

State machine logic As the iterators that compose the operator tree are state
machines, they incur additional per-object instruction overhead to maintain their

state.

Intermediate result materialization As all operators in the operator tree op-
erate independently, they have to hand over their result objects to their parent
operator. Operators that apply a transformation function on their input (e.g.,
projection, join or aggregation) have to materialize their intermediate result to
be able to transfer result elements to their parent operator. Creating result ob-
jects comes at a cost. This cost increases if the creation of a high number of
intermediate result objects triggers garbage collection which suspends all appli-
cation processing for its duration. In many cases, however, these results do not
need to be materialized. For instance, consider a sequence of two join operators
and an aggregation. Each join operator has to create intermediate result objects
to pass to its parent, however, looking at all operators as a single operation, the
aggregation could compute its aggregates directly from the triplet of matching
input objects of the joins rather than the intermediate result of the last join. This

would save having to create the intermediate results of both join operations.

Independent operators LINQ-to-objects does not exploit synergies between
successive query operators. Consider a query that contains an OrderBy with a
subsequent Take (N) . The OrderBy sorts its entire input and the Take (N) returns
the first N objects of the OrderBy’s sorted output. LINQ-to-objects first evaluates

the OrderBy and then returns the first N result elements. A better approach would

'A branch that, rather than specifying the offset to the next instruction to execute, as is the case for

direct branches, specifies where the address is located.

3.1. Introduction 31

be to merge both operations and maintain a heap with the N highest/lowest values

instead of sorting the entire input of the OrderBy operation.

e Aggregation Aggregation is another good example to illustrate missed syner-
gies between query operators. In LINQ, aggregation is expressed by a GroupBy
operator that groups all input elements by a key and either a result selector in the
GroupBy or a successive Select operator that construct the result for each key
using one or more aggregate operators such as Sum or Count. In both cases, each
aggregate operator individually iterates over all elements in the group to com-
pute the aggregate. We conducted a simple experiment based on the aggregation
in query 1 of the TPC-H benchmark. Our results show that LINQ could process
the aggregation 38% faster if it computed all aggregates in a single loop over
all elements of the same group. Furthermore, LINQ does not recognize overlaps
in the aggregation computations and computes the count of a group for each
aggregate computation individually. Eliminating these duplicate computations
improves performance by an additional 12%. Collapsing the grouping and the

aggregate computations into a single loop improves the performance by another
10%.

e No query optimization There is no query optimization in LINQ-to-objects.
Queries that are composed in method syntax are always executed in the or-
der specified by the concatenation of query operators in the method syntax.
Queries declared in query syntax are translated into method syntax in the C*
compiler based on the order that operations are declared in the query state-
ment. There is no optimization stage at compile or runtime that rewrites the
query based on heuristics like selection push-down or runtime statistics like his-
tograms to improve query performance. The latter could be collected by the in-
put collection and supplied to the query processor at runtime. Without automatic
query optimization, the programmer is required to have a solid understanding
of query processing and knowledge about characteristics of the underlying col-
lections to compose efficient queries. Query avalanches [Cheney et al., 2013,
Grust et al., 2010] are one of the unfortunate artifacts of this approach when

dealing with nested sub-queries.

e High-level language LINQ-to-objects is entirely implemented in C¥, whereas
database systems are usually written in a lower-level systems language such as C

or C++ to give the database engineer greater control over query processing and, in

32

Chapter 3. Query compilation for language-integrated query

particular, memory management. In managed languages like C?, all in-memory
data is typically stored as objects and managed by the garbage collector. This
applies to objects of the source collections of a query, but also to intermediate
data structures and results produced during query evaluation. As queries iterate
over all objects of their source collections, it is imperative that these objects are
stored in memory in close proximity and in the order that they are accessed by
the query. Otherwise, the query cannot benefit from CPU prefetching (e.g., cache
line prefetching) or may suffer under translation lookaside buffer (TLB) misses.
However, this cannot be guaranteed by memory managed by the garbage collec-
tor as it 1s not aware of collections, their content or the order in which contained
objects are accessed in queries. Further, the fact that garbage collection may
move objects around in the managed heap prevents the query from obtaining
direct pointer access to objects, which has negative effects on the performance
of decimal operations as we will see in Section 3.6. Objects that are allocated
during query evaluation for intermediate data structures or results have a limited
lifetime, defined by the query and known at compile time. However, garbage
collection is not aware of this and, therefore, has to perform garbage collections
to reclaim their memory. This causes all application threads to be suspended
for the duration of the collection and, hence, slows down query processing. We
can improve the query processing performance by manually managing all in-
termediate data, e.g., in regions [Gay and Aiken, 1998] that use pointer-pushing
to allocate data in memory blocks and free all query memory either after query
evaluation or at predefined save points during query processing. Storing collec-
tion or intermediate data as objects also increases the memory consumption as
objects require a 16 bytes per-object storage overhead (on 64 bit systems; e.g.,

for storing the VTABLE pointer).

The sum of these inefficiencies has a significant impact on the query evaluation

performance when using LINQ-to-objects. In this and the following chapters we will

try to address each of them to improve the query processing performance of querying

objects in the managed heap. The key to achieving this is to leverage query compilation

techniques from the database space and refine them to address additional inefficiencies

that are unique to managed environments. In Section 3.3, we introduce our architec-

ture to transform LINQ queries into fast imperative query functions that evaluate the

query. Our suggested approach is implemented as a library that utilizes LINQ’s query

provider framework to invoke the query compilation process. Existing applications

3.2. Related work 33

can be ported to use our library with minimal changes. In Section 3.4 we look into the
generation of pure C! code whereas in Section 3.5 we investigate how low-level pro-
gramming constructs and memory management can contribute to improved the query
performance. We then evaluate our approaches in Section 3.6 and see great improve-

ments over LINQ-to-objects.

3.2 Related work

[Murray et al., 2011] first proposed evaluating LINQ queries on in-memory objects by
generating imperative C* code from the LINQ query statement. Their system utilizes
LINQ’s query providers to construct a query’s expression tree and invoke their code
generator. They use an automation-based approach to transform the expression tree
via an intermediate representation into an AST representation of a C? class with a sin-
gle method that contains the optimized query. The authors then invoke the C* compiler
to build a dynamic library from the AST and dynamically load and instantiate it. Their
main contribution lies in the automation-based code generator that incorporates two
optimizations: iterator fusion and nested loop generation. Iterator fusion is compara-
ble to deforestation in functional languages [Wadler, 1988] and is, in a less formalized
way, an integral part of all code generator in database systems for fusing the operations
of several query operators into a single loop over the input, e.g., [Krikellas et al., 2010].
Our baseline approach described in Section 3.4 is comparable to this approach, how-
ever, produces more efficient code by supporting hash-based joins and by exploiting
additional opportunities arising when merging operations of different operators; at the

operator and at the source code level.

3.3 Query compilation architecture in C?

This section outlines the architecture to integrate dynamic code generation into the
managed runtime to provide more efficient query processing on data stored in the man-
aged heap as collections of objects. The dynamic code generator transforms the LINQ
statements declared in the application’s source code into specialized query functions
that evaluate the query.

As detailed in Section 2.3.1, LINQ queries that are defined on types that imple-
ment [Enumnerable<T>, e.g., collections, are automatically evaluated using LINQ-to-

objects. In Figure 3.1, we outline the code of such a query based on the example of

34 Chapter 3. Query compilation for language-integrated query

I void printNamesGreaterAge (List<Person> Persons, int age)

2 {

3 var qry_stmt = Persons

4 .Where (p => p.Age > age)
5 .Select (p => p.Name);

6 foreach (var name in gry_stmt)

7 Console.WritelLine (name);

8 }

Figure 3.1: Example of a LINQ query definition and evaluation

Section 2.3.1 wrapped in a function body. Note that, here, the predicate in the Where
operator (line 4) is parameterized by the age variable which is supplied as a function
argument. There are several options to automatically transform the query into a spe-
cialized query function and execute it instead of the original LINQ query. Our approach
uses a custom LINQ query provider to translate the query statement into a dynamically
created method that is then executed instead of the LINQ-to-objects operators defined
in the query statement. Before giving a detailed description of our approach, we dis-
cuss alternative strategies to transform LINQ queries into specialized query functions.
This transformation can either be performed statically at compile time or dynamically
at runtime.

Note that, in Figure 3.1, the collection type and the entire query statement can
be deduced at compile time. The only unknown are the concrete instance of the
List<Person> collection and the value of the age parameter. As the code of the
generated query function is independent of both, the query function can be statically
generated either by a C¥-to-C? compiler before compiling the C* source code into IL
or directly by the C* compiler. The C* compiler already translates LINQ queries in
query syntax into their method syntax equivalent. This could be extended to gen-
erate the query function. Both parameters to printNamesGreaterAge are also pa-
rameters to the generated query function. However, LINQ also allows query state-
ments to be constructed dynamically which cannot be statically deduced that easily.
For instance, if the Persons argument in printNamesGreaterAge was defined as
TEnumerable<Person> instead of List<Person>, then the method could be called
with a collection as Persons argument, but also with another query statement that

returns Person objects. As different calls to the method could pass different query

3.3. Query compilation architecture in C* 35

statements, static code generation is limited to generating a query function for the
fraction of the query defined in printNamesGreaterAge. Dynamic code generation,
on the other hand, sees the entire query (including the query fragment passed through
the Persons argument) and, hence, can generate query functions for the entire query
which enables more efficient query processing. Another disadvantage of static code
generation is that the generated code cannot be optimized based on runtime statis-
tics (e.g., by building collection types that incorporate histograms, as is common in
database systems) and cannot be recompiled dynamically if changing collection statis-
tics suggest that there is a better way to evaluate the query, i.e., by using a different
selection (filter) order. On the other hand, the cost of generating and compiling query
functions is non-negligible and static compilation benefits from only having to pay this
cost once at compile time, whereas dynamic compilation has to pay it for every query
evaluation at runtime. Another advantage compared to our LINQ query provider based
approach is that the code of the foreach loop that operates on the query result can
be pulled into the generated query function and thereby further improve query per-
formance; in particular, if the query has a huge result set and/or if the foreach loop
contains further refinements to the query result.

An alternative strategy of dynamic code generation is to utilize the just-in-time
compiler infrastructure that is already present in managed runtimes. When JIT com-
piling a method that contains LINQ statements, the compiler can directly generate the
query function in its internal representation and replace the original LINQ statement
with calls to it. Directly generating the code in the internal representation of the JIT
compiler can improve the cost of compiling the query function. However, out of the
box, this approach shares the same disadvantages as static compilation as the JIT com-
piler has no knowledge of the full query statement or about the exact instance of the
collection and its runtime statistics when generating the code.

Our approach uses a custom LINQ query provider to dynamically generate, com-
pile and execute the source code for processing a query. Recall from Section 2.3 that
queries on collections of objects (which implement TFnumerable<T>) are automati-
cally processed using LINQ-to-objects, whereas types that implement 1Queryable<T>
do not use LINQ-to-objects but instead allow query processing through a type-specific
LINQ query provider. To bypass the default behaviour of collections and to enable
them to use our query provider instead of LINQ-to-objects, we define wrapper classes
that implement IQueryable<T> around all collection types that we support (e.g., we

wrap the L1st<T> collection with 0List<T>). To utilize our approach, the program-

36 Chapter 3. Query compilation for language-integrated query

GetEnumerator() CompilationQueryable<T>
: IQueryable<T>

l Execute()

P q Invoke
| CompationProvider |—0.| Reflection API |

GenerateCode() CompileCode()

: ExpressionVisitor ExpressionVisitor ExpressionVisitor

| CodeGenerator | | QueryCompiler |
CompileAssembly
FromSource()
| ConstantEvaluator | I QueryCache | | ExprTreeTranslator | | CodeTreeTranslator | | CSharpCodeProvider |

!

| QueryComparer |

: ExpressionVisitor

Figure 3.2: Overview of our query provider

mer merely has to replace the original managed collection type with the corresponding
wrapper type. This makes our approach very transparent to application developers and
facilitates the process of porting existing applications to utilize our approach in order
to improve query processing performance.

Recall from Section 2.3.2 that executing the query statement of a LINQ query de-
fined on an TQueryable<T> data source, i.e., our collection wrapper, does not evalu-
ate the query, but instead constructs an expression tree representing the operations of
the query and returns an [Queryable<T> object (CompilationQueryable<T> in our
case) that contains a reference to the expression tree as well as to the data source’s
query provider. The expression tree serves as input to our query compiler. Evaluation
of the query is deferred to the point where the application consumes a result element.
This usually occurs in a foreach loop that iterates over the query result or an operation
that materializes the query result, e.g., a ToArray () or Count () operation. However,
before evaluating the query, we first have to translate the query’s expression tree into
specialized source code, compile it using the C* compiler, load and finally execute the
compiled code to evaluate the query. Our LINQ query provider takes care of all of this.

In Figure 3.2, we outline the processing steps inside the query provider once the
evaluation of a query statement is triggered by a foreach loop. The foreach loop re-
quests an instance of IEnumerator<T> from the CompilationQueryable<T> object
that has been generated from the query statement (held in variable qry_stmt) by call-
ing its GetEnumerator () method. The queryable objects invokes our query provider
CompilationProvider to produce the enumerator by calling its Execute () method.
The Execute () method receives the query’s expression tree as argument. The query
provider then orchestrates the translation of the query tree to a source code represen-

tation of the query and the compilation of the generated source code. In the generated

3.3. Query compilation architecture in ct 37

source code, the query is implemented as an iterator method that essentially combines
the operations of the query’s entire iterator tree into a single iterator over the input.
As described in Section 2.3.1, iterator methods are translated into methods that return
an TEnumerable<T> object by the CF compiler. After compiling the generated source
code, the query provider uses C¥’s reflection API to locate and invoke the generated
method and calls the GetEnumerator () method on the TEnumerable<T> object re-
turned from the query method. The enumerator is then returned to the foreach loop
to produce the query’s result.

The code generator is invoked by our query provider to translate the expression
tree, a tree representation of the standard query operators which is comparable to a
query tree in a database system, into the source code of an iterator method. Before
generating the code of the iterator method, the query compiler performs several passes
over the expression tree to gather information about the query and to apply optimiza-
tions by rewriting the expression tree. This part of the query compiler is extensible to
allow additional rules to further optimize the generated query code. This is supported
by the ExpressionVisitor base class which is contained in the base class library and
provides a framework to implement custom passes over the expression tree. Our imple-
mentation consists of two rewrite rules, the ConstantEvaluator and the QueryCache.
The FExpressionVisitor base class allows to add additional rewrite rules to enable
more efficient query processing. These rewrite rules could incorporate the following

optimizations:

e Changing selection or join orders based on heuristics (e.g., estimated cost to
evaluate a selection predicate) and runtime statistics (e.g., histograms) gathered

by the underlying collection type.

e The automatic use of predefined data structures that accelerate access to specific

data elements such as (B+ tree) indexes or alternative sort orders.

e Automatically decide whether to materialize intermediate or final query results
in an in-memory cache and reuse them to answer future invocations of the same
queries to improve query performance and response time [Nagel et al., 2013]. In
particular for query processing inside applications, queries are likely to repeat as
they are statically defined with only a few variable query parameters (e.g., the

age value in the selection predicate).

The ConstantEvaluator traverses the expression tree and identifies all sub-trees

that can be evaluated independently of the query’s source data (i.e., the underlying

38 Chapter 3. Query compilation for language-integrated query

collections). It then evaluates these sub-trees and replaces them with an expression
tree node that represents the result. This step also replaces all references to external
parameters (e.g., the age parameter in our example query) with a node representing the
concrete value of that parameter. In addition to improving query performance by only
evaluating constant expressions once instead of for every object in the source data, the
ConstantEvaluator also produces a canonical representation of the query, which is
required for the following rewriter rule.

The QueryCache contains compiled code of previously evaluated queries together
with their expression trees and a hash signature of the expression tree. A second
rewriter rule compares the expression tree of the query with the expression trees stored
in the QueryCache and, if it finds an exact match, uses the already compiled code
to evaluate the query instead of producing it again. This saves the time of generat-
ing and compiling the query’s iterator method, which has been identified by previous
work on query compilation in database systems to be a major performance bottle-
neck [Krikellas et al., 2010]. As we only cache the canonical representation of the op-
timized query plans, creating a different query plan in an earlier rewriter step because
of changed runtime statistics also results in creating a new iterator method instead of
using the cached one of the previously used query plan. To efficiently compare the
query’s expression tree with all cached expression trees we utilize the cached expres-
sion tree’s hash signatures. All cached expression trees are stored in a hash table based
on their hash signature. The first step of the rewriter rule is to compute the hash sig-
nature of the query’s expression tree in a pass over all of its nodes. The hash signature
is dependent on the number and types of the source data and the type and order of the
standard LINQ query operators represented by the expression tree. Once the signature
is computed, all expression trees in the query cache that hash to the same signature
are retrieved from the hash table and each of them is individually compared to the
query’s expression tree in a top-down pass over both expression trees that checks if
the structure and nodes (i.e., node types and values) of both trees are equal. Constant
query parameters (e.g., age in our example) are ignored to allow the same compiled
code to be used for all variations of a query pattern, as long as the parameters do not
have an impact on the optimized query plan and, hence, on the generated code. Note
that a typical LINQ application does not contain many different query patterns. These
are typically hard-coded into the application and the queries only vary in parameter
values, which typically are either generated by the application from a limited domain

or supplied through user input. Thus, LINQ queries are likely to repeat and reusing

3.3. Query compilation architecture in C* 39

their compiled query code improves the overall query performance and response time
of individual queries.

As the cost of finding matching expression trees in the query cache increases with
the size of the query cache, the number of compiled queries stored in the cache has to
be limited. A limited cache size requires an admission and replacement policy to keep
compiled queries in the cache that are likely to benefit the overall performance of the
application. Research on automatically caching intermediate and final results during
query processing, e.g., [Ivanova et al., 2010, Nagel et al., 2013], has proposed metrics
to determine the relative benefit of having a certain result cached. These metrics are
based on the cost of producing a result, the saved cost when reusing it from the cache
and the expected number of future reuses. The latter is estimated based on uses of the
result in the past adapted by an aging factor. In our case, the metrics are simpler as the
cost of producing compiled code to evaluate a query can be assumed to be similar for
all queries and the benefit of reusing a compiled query from the cache equals the cost
of producing it as we compile all LINQ queries before evaluating them. As a result,
the benefit metric for the replacement policy is solely based on previous occurrences
of the query, aged by lazily multiplying it with a constant factor (e.g., 0.99) for every
query received by the query compiler. The admission policy admits all new queries
and ensures that they remain cached for a predefined number of query evaluations to
prevent cache thrashing of freshly compiled queries.

If the query cache does not contain a compiled version of the query, we have to
generate and compile the C! code to evaluate the query. Code generation is split into
two passes over the expression tree. In a first pass, the ExprTreeTranslator trans-
lates the expression tree into a code tree, an AST representation of the C¥ code of the
iterator method that evaluates the query. In a second pass, the CodeTreeTranslator
translates the code tree into a string that contains the C* code of the iterator method.

C! supports multiple options to dynamically generate and compile code at runtime:

e The CodeDOM namespace provides a framework to dynamically build a graph
representation of source code elements which can then be compiled using the C*

compiler.

e The CSharpCodeProvider class provides direct access to the C* compiler which

allows to compile a string containing the source code.

e The IL.Generator of the reflection APT allows to construct a DynamicMethod by

directly emitting intermediate language (IL) instructions.

40 Chapter 3. Query compilation for language-integrated query

I static IEnumerable<string> Execute(IEnumerable<Person> input_l1,

\8}

int param_1)

W
—_

4 foreach (Person p in input_1) {
5 if (p.Age > param_ 1)

6 yield return p.Name;

7 }

8 yield break;

Figure 3.3: lterator method generated from the LINQ query of Figure 3.1

We chose to generate the iterator method that evaluates the query in a string rep-
resentation of its C* code and then use the CSharpCodeProvider class to compile
it. Having a string representation of the generated code makes it easier to debug and
manually modify it. Directly emitting IL instructions, however, can improve query
performance as it bypasses the C? compiler and only requires the JIT compiler. We
introduce the intermediate step of translating the expression tree into a code tree to re-
duce complexity when generating the code of the iterator method. Directly emitting C*
source code from the expression tree can become very cluttered and hard to maintain.
By adding the intermediate step, the query operators can be translated into C* syntax
on a more abstract level without having to deal with concatenating string fragments in
the correct order. It also improves the extensibility of the compiler as the compilation
back-end (i.e., the second pass) can be exchanged. The IL generator is an example of
this.

In Figure 3.3, we illustrate the code of the iterator method that is generated from
the LINQ query example of Figure 3.1. Note that the operations of all query oper-
ators are combined in a single loop over the query’s input (lines 4 to 7). Once the
code of the Execute iterator method is generated, the query compiler invokes the
CompileAssemblyFromSource method of the CSharpCodeProvider class to com-
pile it. We then create a delegate (C* function pointer) to allow easy and fast access
to the generated Execute method. Executing the delegate returns an enumerable that
is capable of evaluating the query by iterating over its result. The query provider then
returns the corresponding enumerator object to the foreach loop, which produces the

result of the query by iterating over each result object.

3.4. Compiling to C* code 41

3.4 Compiling to C code

3.4.1 The generated code

We outlined in Section 3.1 that the default implementation to evaluate LINQ queries
on collections of objects, LINQ-to-objects, exhibits overheads imposed by its query
execution model. LINQ-to-objects composes complex queries by concatenating LINQ’s
standard query operators and produces the result objects of a query by executing the
resulting operator tree. Processing is propagated through the operator tree in a pull-
based approach using virtual function calls to transfer processing and data between
operators. Operators themselves perform custom processing through function objects
that also involve virtual function calls. This execution model poses a high per-object
overhead as virtual function calls hinder compiler and processor optimizations. We
leverage query compilation to address these inefficiencies. The generated code follows
the same principles as introduced in the database space, e.g., by [Krikellas et al., 2010]
and [Neumann, 2011]:

e Specialization LINQ-to-objects’ general-purpose query operators are defined
over generic types and use function delegates, usually created by lambda ex-
pressions in the query statement, to specify custom behaviour (e.g., predicate or
transformation functions). To address the virtual function call overhead caused
by the lambda expressions, we replace all generic types with their actual types

used in the query and automatically inline the code of all lambda expressions.

e Operator fusion To address the virtual function call overhead caused to prop-
agate data through the operator tree, we collapse the entire operator tree into a
single, specialized operator that is capable of evaluating the query. To achieve
this, we convert the query from a pull-based approach where operators pull their
input from child operators to a push-based approach where one or more loop

constructs push processing through multiple operators.

Beyond these fundamental changes, the generated code, also addresses some of the
other inefficiencies discussed in Section 3.1 such as deeper symbiosis between con-
secutive operators to save result materializations, unnecessary processing or generally
inefficient processing as discussed for aggregation. Apart from this, we mostly do not
change the query processing primitives from those used in LINQ-to-object’s standard

query operators as they already are in line with typical query processing strategies in

42 Chapter 3. Query compilation for language-integrated query

database systems. Joins are performed using hash-joins, aggregation is based on hash
tables and sorting utilizes quick sort.

We illustrate the conceptual steps to transform the implementations of LINQ’s stan-
dard query operators into a single, specialized query operator in Figure 3.4 and Fig-
ure 3.5 (based on the example of Figure 3.1). As a first conceptual step, each query
operator is individually specialized, replacing all generic types with the ones used in
the query and inlining the code of all lambda expressions (Figure 3.4b). In a second
step, the code of all operators that are involved in the query is combined into a single
operator that evaluates the query in one or more tight loops iterating over the query’s
input or intermediate results (Figure 3.5b). In Figure 3.5a, we present an intermediate
step that illustrates the fusion of the Select and Where operators by combining both
in a single iterator method and simulating the control flow that is dictated in the oper-
ator tree by virtual function calls to pull output objects from child operators with goto
statements. By replacing the virtual function calls with goto statements, the query
evaluation strategy is implicitly transferred from a pull-based to a push-based approach
where the for loop of the leaf operator pushes objects to its ancestor operators. Note
that the operator tree in Figure 3.5a only illustrates the simplified case of two standard
query operators. In the more general case, each operator implementation contains an
OP_Pre and OP_Post label and a separate OP_Next label for each in- and output. This
means that most operations require four labels to simulate the function calls of the
original operator tree, while binary operations like joins require five. Take aggregation
as an example of a more complex query operator. Aggregation is a blocking operation,
i.e., an operation that consumes its entire input before producing its output objects in
a second loop, based on an intermediate result produced from the input in the first
loop. A hash-based aggregation uses an Aggr_Input_Next label to return control to
the aggregation when iterating over the input objects to compute the aggregates. It then
uses an Aggr_Output_Next label in the loop over the computed aggregates to regain
control from the parent operator. Note that the steps presented here are only of a con-
ceptual nature, we do not generate the specialized iterator method by refactoring the
implementation of LINQ’s standard query operators but, instead, directly produce the
iterator method from the expression tree representation of the query operators. How-
ever, our code generation process that builds the code tree from the expression tree is
conceptually based on these observations. In particular, the use of goto statements in
Figure 3.5a provides a general approach on how to interleave the operations of mul-

tiple standard query operators. The query compiler of SQL Server’s Hekaton engine

3.4. Compiling to C* code

43

(3%

IEnumerable<Tout> Select<Tin, Tout>(IEnumerable<Tin> input,

Func<Tin, Tout> selector)

31
4 foreach (Tin elem in input)
5 yield return selector(elem);
6 yield break;
7}
8
9 TIEnumerable<Tin> Where<Tin>(IEnumerable<Tin> input,
10 Func<Tin, bool> predicate)
1|
12 foreach (Tin elem in input) {
13 if (predicate(elem))
14 yield return elem;
15 }
16 yield break;
17}
(a) Standard LINQ query operators
1 IEnumerable<string> Select (IEnumerable<Person> input)
2
3 foreach (Person elem in input)
4 yield return elem.Name;
5 yield break;
6 }
-
8 IEnumerable<Person> Where(List<Person> input)
9 |
10 for (int 1 = 0; 1 < input.Count; i++) {
11 Person elem = input[i];
12 if (elem.Age > 50)
13 yield return elem;
14 }

yield break;

(b) Specialized LINQ query operators

Figure 3.4: Conceptual first step: Specializing LINQ’s standard query operators

44

Chapter 3. Query compilation for language-integrated query

{
Select_Pre:
goto Where_Pre;
Select_Next:
yvield return elem.Name;
goto Where_Next;
Select_Post:

yield break;

Where_Pre:
Person elem;

for (int 1 = 0; 1 < input.Count; i++) {

14 elem = input[i];

15 if (elem.Age > 50)

16 goto Select_Next;

17 Where_Next:

18 }

19 Where_Post:
20 goto Select_Post;
21}

(a) Virtual calls replaced with goto calls

I IEnumerable<string> Query(List<Person> input)
2

3 for (int i = 0; 1 < input.Count; i++) {

4 Person elem = input([i];

5 if (elem.Age > 50)

6 vield return elem.Name;

7 }

8 yield break;

(b) Specialized query operator

Figure 3.5: Conceptual second step: Fusing LINQ’s standard query operators

produces C code that is connected by goto statements [Freedman et al., 2014], similar

to our conceptual intermediate step in Figure 3.5a.

The specialized iterator method of Figure 3.5b processes the operations of all query

operators (here: Select and Where) in a single loop. This improves query perfor-

3.4. Compiling to C* code 45

mance, by eliminating the overhead of virtual function calls and enables additional
compiler and processor optimizations. However, it is not always possible to perform
all query processing in a single loop construct. If the query contains blocking operators
(e.g., hash join or aggregation) that require all input objects to be consumed before they
can produce the first output object, we have to break the current loop and start a new
one. In this case, the operation requires an intermediate result (e.g., a hash table) to
be materialized in the first loop and then the intermediate result to be consumed in the
second loop. Take aggregation as an example. The aggregation iterates over its input
in a first loop and, for each input element, it updates the aggregates in a hash table. It
then starts a new loop that iterates over the elements in the hash table. As proposed by
[Neumann, 2011], we always perform as many query operations as possible in a loop
to get the most processing out of every object that is loaded into the CPU cache and
touched by the CPU and, hence, maximize query processing performance.

The code generator goes beyond placing the individual operations of successive
query operators in the query tree after each other in the generated loop construct. If
beneficial for query performance, successive operations are merged. On the operator
level, we, for example, merge group by and aggregation operations to save the addi-
tional loops over the elements in each group produced by the group by. We also merge
successive sort and take (returns the first N objects) operators and process them using
a heap of N elements instead of sorting the entire input. Furthermore, we do not create
any temporary objects to pass intermediate results between successive operations in
the same loop. In LINQ-to-objects, each standard LINQ query operator that does not
return input objects (e.g., projections or joins), creates intermediate result objects to
pass its result to its parent in the operator pipeline. Instead of following this approach,
we delay intermediate result materialization until the end of the loop where we have
to materialize the result anyway; either to return an object of the query result to the
application or because a blocking operation ends the current loop and, hence, has to
materialize the result before starting a new loop on the intermediate result. For in-
stance, take a query that performs several joins and then an aggregation. Following the
materialization strategy of LINQ’s standard query operators in the loop that performs
the probing part of the hash joins and then builds the aggregates in a hash table would
lead to creating intermediate objects after each join operation and then again as part of
creating the aggregates. Instead, we only create the intermediate objects representing

the aggregates and use the input objects of the joins to compute them.

46

Chapter 3. Query compilation for language-integrated query

Declaration Declaration
‘int param_1’ ‘List<Person> input_1’
Declaration Variable
‘Person elem_1’ ‘input_1’
Binary Operation
N
- - =~ ~
- ~
- - =~ ~
- ~
MemberAccess Constant Member Access
‘Age’ ‘50’ ‘Name’
1 1
1 1
Variable Variable
‘elem_1’ ‘elem_1’

Figure 3.6: Code tree that is generated from the expression tree of Figure 2.6.

We do not cover parallel execution, but because of our database-centric approach,
existing parallelization strategies [Dees and Sanders, 2013, Viglas, 2014] are applica-
ble.

3.4.2 The code generation process

The code generator outlined in Section 3.3 utilizes the expression tree which repre-
sents the query in terms of LINQ’s standard query operators to generate the C* code
of an iterator method (a specialized query operator) to evaluate the query. In this sec-
tion, we have a closer look at how the canonical representation of the expression tree
is transformed into C source code. A first pass translates the expression tree into a
code tree, a tree representation of the C* source code of the iterator method. In Fig-
ure 3.6, we illustrate the code tree that is generated for the LINQ query of Figure 3.1.
Each node represents a Cf code fragment (foreach, if and yield) and contains ad-
ditional information required to construct the source code for the fragment. Most of
the additional information describing a code fragment can be directly obtained from
the lambda expressions that characterize the corresponding operator in the expression
tree. More complex operations (e.g., insertions into a hash table) do not have their
code included in the code tree, but are instead represented by abstract method calls.
The code tree to C’ string translation then replaces the call with inlined code to per-
form the operation. The order in which fragments are arranged represents their order
in the generated source code. Children are contained in the body of their parents and

siblings are placed in order after each other (not present in the example). The order

3.4. Compiling to C* code 47

of arranging code fragments is based of the observations when transforming the im-
plementation of LINQ’s standard query operators into a single method using labels and
goto statements, as illustrated in Figure 3.5a. In this model, each standard query op-
erator is interleaved with the operations of its parent and child operators using four
(five for binary operators like joins) labels, OP_Pre, OP_Next_In, OP_Next_Out and
OP_Post. The points where each operator is interleaved with its parent and children
are independent of their operator type and can, therefore, be hard-coded in the code
generator for each operator. When traversing the expression tree to create the code
fragments for each standard query operator and adding them to the code tree, these
fragments have to be added to different parts of the code tree to allow them to be in-
terleaved with those of other operators in the final C* source code. We maintain five
pointers, derived from the got o labels to keep track of where in the expression tree the
generated code fragment nodes have to be inserted and, hence, their operations to be
interleaved.

The pass over the expression tree also identifies segments that are combined into a
single loop construct and the expression tree nodes that border them. These segments
either start with the query input or a blocking operation (e.g., aggregation or join)
and end with either the root node of the expression tree or another blocking operation.
Recall that we only materialize intermediate results that end loop segments. We use the
same intermediate result types as specified in the expression tree nodes of the operators
that delimit the loop segments. For instance, in the case of aggregation we use the
aggregation operator’s output type to store the aggregates that make up its intermediate
result and in the case of a hash join operator, we use the type of its blocking input
(the one used to build the hash table) to store the intermediate result (the hash table).
Note that we only create the objects composing the intermediate result if their type
differs from the type of the loop input. Using the same type definitions as specified in
the expression tree and, therefore, the same naming conventions, allows us to access
intermediate result objects as depicted in the expression tree. The nodes that delimit
loop segments are either MethodCallExpression or ConstantExpression nodes,
both of which allow type information to be obtained on its in- and outputs. We do
not create any other objects representing intermediate results from the expression tree
inside a loop construct, but instead apply pending operations on the objects of the
loop’s final intermediate result. As a result, all objects in a loop construct are either
its input or output. The former includes the objects that the loop iterates over, but

also objects retrieved when probing hash tables as part of a join operation. To aid the

48 Chapter 3. Query compilation for language-integrated query

creation of the code tree for each loop construct, we track the names of all variables
that we assign to the inputs of the loop (using numerical identifiers) together with the
nodes in the expression tree that define each input. We further track all assignments
that the expression tree defines for operations that are part of the loop construct and
the name of the variable storing the objects that embody the result of the loop. This
allows us to interleave the operations that are performed in a loop construct to avoid
the creation of unnecessary intermediate result objects.

Once the code tree is constructed, we traverse it in a final pass to generate the source
code string. The C? class CSharpCodeProvider provides access to instances of the C*
code generator and compiler. Its CompileAssemblyFromSource () method allows us
to compile the generated source code in-memory, without having to utilize any external
processes. This improves the compilation time compared to what is common when
compiling native C code which usually involves writing the string to a file and then
starting an external compilation process to compile it and then loading the compiled

binary into main memory.

3.5 Staged query processing

Query compilation in database systems usually generates code in a low-level language
(typically C or LLVM). This provides the code generator with more control over how
a query is to be processed. In particular, this allows the database system to define
the memory layout of the source data (tables) and how to access it in the generated
code. It further provides full control of the storage layout and memory management of
intermediate query data structures and results. Combined with the use of a powerful
ahead-of-time compiler, this allows a highly optimized query binary to be produced in
order to execute a query. We believe that utilizing the same techniques on collections
of objects can considerably improve the query performance. The basic requirement to
achieve such improvements is to be able to access the collections and objects stored
therein using C-style pointers. However, this is not possible for managed objects as
they are managed by the runtime and may therefore be moved in memory at any time
without the application knowing. Accessing a pointer to a memory address inside an
object after the object has been moved by a garbage collection would result in incorrect
memory accesses. For this reason and to ensure type safety for class types, the .NET
framework does not allow direct pointer access to arbitrary collections of objects in the

managed heap. Pinning objects in memory to notify the garbage collector to keep their

3.5. Staged query processing 49

memory location stable for the time they are pinned would allow for direct pointer
access, however is too restrictive for use with arbitrary collections that may contain
millions of objects of arbitrary types. However, there are cases where LINQ queries
can be processed by native code. Value types in C¥ are not stored in the managed
heap but on the stack. Alternatively, C* allows unmanaged memory to be allocated
using Marshal.AllocHGlobal which can then be cast in an unsafe environment into
a native pointer to a value type. This pointer can then be accessed like an array using
indexes. Note that st ructs in C¥ are value types. If the input data of the query was to
be stored in blocks of unmanaged memory containing value types, then LINQ queries
could be processed by native code. As the input data is represented as managed objects
that are stored in the managed heap, we propose to stage all input data into unmanaged
memory before processing it using native code. To do so, we copy the part of the input
that is relevant for processing the query into a representation that can be accessed by
native code and then evaluate the query or a part of it using native C code (or unsafe
C%; in the following we will use both interchangeably). Because only data that is
relevant for processing the query is copied to the native representation, the copied
data exhibits better spatial locality than in the previous approaches, which allows us to

leverage cache-conscious query processing techniques.

3.5.1 The generated code

For simple select-project queries, the cost of copying the source data into a representa-
tion that can be accessed from C outweighs the performance benefits of processing the
query in native code. Thus, we only generate C? code for such queries. However, for
queries that contain complex operations like aggregations, sorting, or joins, we pro-
cess the most expensive parts in C. To process these parts in C, the data stored in the
managed heap first has to be copied into unmanaged memory to allow C direct pointer
access when processing the copied data. We look into two options to transfer data to
unmanaged memory, materializing all data that is exchanged before processing it in C
or incrementally pushing processing from Cf to C using a buffer. Both the C* method
that stages the data and returns the query’s result objects and the C function that returns
the result elements produced in native code are implemented as iterators. However, as
query results are assumed to be small, the overhead of pulling result objects from the
generated C function is negligible. Alternatively, we could also return result elements

from C to C! in unmanaged buffers, but to conform with LINQ’s deferred execution

50 Chapter 3. Query compilation for language-integrated query
strategy, we chose to use iterators.

3.5.1.1 Full materialization

Before performing the heavy lifting of a query in native C code, the data that is to be
processed in C is first copied to unmanaged memory. The unmanaged heap is orga-
nized as linked lists of blocks of unmanaged memory, i.e., memory allocated outside
garbage collection. The generated C code is only invoked once all data has been staged.
The staging process is dependent on the query. The query compiler generates the code
that performs the staging based on the standard query operators in the expression tree,
as was the case when generating the C? code to process the query in Figure 3.4. To
reduce the volume of data that has to be copied to unmanaged memory blocks, the
query compiler decides which parts of query processing are to be performed in the
generated C! code and which parts in the generated C code. Typically, all selections
are pushed into the generated C¥ code as this reduces the number of objects that have to
be copied to unmanaged memory. In addition, we perform an implicit projection step
in the generated C* code to ensure that only data that is actually processed in the gen-
erated C code is copied. This is of particular importance because data is copied from
objects that may contain references to other objects and copying all data reachable by
an object would not be feasible. To copy the object-oriented data to flat unmanaged
memory blocks, all object nesting has to be flattened out.

In Figure 3.7, we illustrate the generated C? code to stage the data from its input
collection and call the generated C (or unsafe C?) code to perform the heavy lifting of
the query. We use C¥’s platform invoke services (PInvoke) to declare all generated C
functions in the class definition (lines 1 to 8) and then use them as if they were local Ct
methods. If the query was to use unsafe CF instead of C code, these functions would
be implemented in the class definition instead of in an external dynamic C library that
is accessed using Plnvoke. As was the case when performing all query processing
in C!, the Execute method (line 10) receives the input collections and all query pa-
rameters (e.g., the value of a selection predicate) as arguments. It first allocates and
initializes a query-specific Context structure (line 13) that provides the C code with
access to the staged input data stored in unmanaged memory and enumeration state.
The generated code then iterates over all input objects (lines 17 to 26), performs the se-
lection on each object to reduce the number of objects that have to be staged (line 18)
and finally performs an implicit projection (lines 23 and 24) that only selects object

members that are required by the generated C code (key and price) by only copying

3.5. Staged query processing 51

1 [DllImport ("query0.dll")]

(3%

public static extern void ProcessInput (IntPtr ctx);

w

4 [DllImport ("query0.dll")]

W

public static extern void ProcessIntermediates(IntPtr ctx);

7 [DllImport ("query0.dll")]

8§ public static extern int StreamResult (IntPtr ctx);

10 public static unsafe IEnumerable<Tout> Execute(IEnumerable<Order> input_1,

11 DateTime param_1)

13 Context* ctx = CreateContext();

14 CInput* buffer = AddBuffer(ctx);

15 int count = 0;

16

17 foreach (Order elem_1 in input_1) {

18 if (elem_1.0rderdate >= param 1) {

19 if (count == ctx->elems_per_buffer) ({
20 buffer = AddBuffer (ctx);

21 count = 0;

22 }

23 buffer[count].key = elem_l.key;

24 buffer[count].price = elem_l.price;
25 count++;

26 bl

27

28 ProcessInput (ctx);

29 ProcessIntermediates (ctx);

30

31 while (StreamResult (ctx) > 0) {

32 yield return new Tout (ctx->out_elem);

Figure 3.7: Sample of the generated C! code that performs full input staging before

invoking C code

their data values to blocks of unmanaged memory. The copying strategy depicted in
Figure 3.7 automatically flattens the nested object-oriented data to a flat, row-wise data
representation in the unmanaged memory blocks.

The query compiler also generates C* code of the st ruct type definition (CInput)

52 Chapter 3. Query compilation for language-integrated query

for the data stored in memory blocks. This allows the unmanaged blocks to be ac-
cessed like arrays of that type and improves readability of the generated code by
avoiding manual pointer arithmetic to address the data elements and their fields in
the unmanaged memory blocks. Data could also be staged in a columnar fashion
by using a separate unmanaged memory block per field (column) and copying each
primitive value (e.g., int or decimal) that is to be staged to the memory block that
represents the corresponding field. Once all the data is staged, the generated C code
is called to continue processing the query on the staged data. We split the process-
ing performed in C code into several functions. For queries that do not contain bi-
nary operators, i.e., no joins, processing is split into three functions: ProcessInput,
ProcessIntermediates and StreamResult. For queries that contain binary opera-
tors, we generate a ProcessInput for each input collection. For every result element
returned from C, we create a result object. We assign its members from the unmanaged
representation of the result elements, stored in ctx->out_elem, and yield the object to
the caller. Note that the code in Figure 3.7 only serves for illustration purposes. Instead
of using an iterator method, we directly generate the enumerable and enumerator. This
enables the use of unsafe Cf code, which is not allowed in iterator methods and to
ensure that all unmanaged memory is always cleaned up by placing an additional C
call to clean up all unsafe memory into the enumerator’s Dispose method.

The generated C code for a complex query is outlined in Figure 3.8. Processing
is split into three functions. ProcessInput processes all staged input blocks until the
point where a blocking operation, e.g., an aggregation, ends the loop over the input.
The intermediate result of the blocking operation, e.g., the aggregation’s hash table, is
stored in the query’s context structure. The second function, ProcessIntermediates
starts processing with the intermediate result that has been generated when processing
the input in ProcessInput and that is stored in the context structure. This function
contains all query processing until the final blocking operation of the query. This could
contain several loop constructs that each further refine the intermediate result produced
by the previous loop. The last intermediate result is again stored in the context to keep
it accessible. The StreamResult then iterates over the intermediate result, performs
all query processing from the final loop construct and returns each result element to
the generated C? code by assigning it to the out_elen field of the context structure.
This function is implemented as an iterator. In Figure 3.8, we assume that the last in-
termediate result is represented as an array. In this case, the current_pos field in the

context structure maintains the state between successive calls to StreamResult. Each

3.5. Staged query processing 53

int ProcessInput (Context* ctx)
{
MemoryBlock* blk = ctx->input_head;
HashTable* ht = ctx->hashtable;
while (blk) {
for (int 1 = 0; 1 < blk->size; i++) {
CInput* elem_ 1 = &(blk->datali]);
/* Process input here, e.g. insert into aggregation hash table */
}
blk = blk->next;

int ProcessIntermediates (Context* ctx)
{
HashTable* ht = ctx->hashtable;

/* Process intermediate result here, e.g. by sorting it */

ctx->result = result;
ctx->num_result_elems = num_result_elems;

ctx->current_pos = 0;

int StreamResult (Context* ctx)
{
if (ctx->current_pos < ctx->num_result_elems) {
ctx—>out_elem = ctx->results[ctx->current_pos];
ctx->current_pos++;
return 1;
}

return 0;

Figure 3.8: Generated C code that processes the query based on the staged input

invocation assigns the next result element to the context’s out_elem field, increments

current_pos and returns 1 to indicate that there is a result element accessible through

the out_elem field or O if all result elements have been returned. In Figure 3.8, the ac-

tual query processing code is omitted to maintain readability. For instance, the omitted

code in ProcessInput could update the aggregates of an aggregation by probing and

inserting the staged input elements into a hash table. After all input is processed, the

54 Chapter 3. Query compilation for language-integrated query

omitted code in ProcessIntermediates could iterate over all elements in the previ-
ously built aggregation hash table and sort them inside the result array. As queries
only use data staging if they contain blocking operators and the generated C code is
only called for each result object requested by the application, staged query processing
maintains support for the deferred execution principle of LINQ: only parts of the query
that are consumed by the application have to be evaluated.

So far we assumed that result objects can always be constructed from the output
produced by native code, however, this is not always possible. Consider the case where
the query result contains references to objects of the query’s input. In this case, we can-
not copy the reference (i.e., pointer) of the object to unmanaged code. We also cannot
copy the object’s data to unmanaged memory and then build the result based on a copy
of the input object as this changes the semantics expected by the application, espe-
cially when the application wishes to modify the input data based on the references
contained in the query result. Or consider the case where the query result contains lots
of data from the input objects without accessing most of the data in the generated C
code. Here, in contrast to the first case, it is possible to copy the data to unmanaged
memory and then back to construct the result objects, but it is likely to be too expen-
sive. In such cases, we use the input objects to construct the result. To achieve this,
instead of transferring all data to unsafe memory, we only transfer the data relevant
for query processing together with a unique identifier that allows the source object to
be accessed after query processing to construct the query result. For most input col-
lection types, the unique identifier is already available, e.g., the index of the object in
an array or ist<T> (C%’s dynamic array) or a unique hash key in a Dictionary. If
this is not the case, we insert all input objects that are copied to unmanaged memory
into a C* array or List<7T> and transfer their indices. To construct a result object of
the query in the generated C* code, we look up the source object referenced by the
unique identifier returned from the generated C code and copy all missing values from
it. For instance, consider sorting all elements in a collection. When LINQ-to-objects
processes the query, it first creates an array that contains references to all objects, an
int array that contains the indexes of all objects, and an array that contains the keys
to sort by. The latter two arrays are passed to a quicksort algorithm to sort the indexes.
Our approach processes the query in a similar way, but performs the quicksort in native
code on the index and key arrays and then returns result objects in the generated C*

code in the order defined by the sorted index array.

3.5. Staged query processing 55

3.5.1.2 Block-wise materialization

Materializing the entire input of the generated C code suffers from a large memory
footprint. Consider aggregating a huge data set to reduce it to a couple of aggregate
objects. Only compiling C* code as in Section 3.4 does not require much memory
as the hash table for the aggregation only contains the resulting couple of objects.
However, having to stage all relevant input data before processing the aggregation
on the staged data in the generated C code requires a considerably larger memory
footprint. To reduce the memory footprint of the staging process, we transfer data
from managed memory to unmanaged memory at the granularity of a memory block
instead of all data at once. To achieve this, the generated C* code stages its input data
until a memory block is filled. It then calls the generated C code to process the data in
the memory block. Once all elements in the buffer block are consumed by the native
code, control is returned to C? to prepare the next memory block. The C? code can
reuse the same memory block for this purpose. As memory blocks are sized to easily
fit in the CPU cache, access to the single memory block that is used to transfer data
between CF and C can be assumed to be very fast. In this case, the additional memory
footprint for staging data is bound to the size of a single memory block. However,
transferring data in a single memory block does not always contribute to reduce the
memory footprint and improve performance. If the generated C code has to keep all
streamed data without any modifications (e.g., streaming the blocking part of a join
operation), then the staged data has to be copied inside unmanaged memory to empty
the block and allow the C? code to overwrite its content. If this is the case, we rather
fall back to the full materialization approach of Section 3.5.1.1 for that input and copy
the entire input to unmanaged memory before processing it in C. As a result, the query
compiler often uses a combination of full and block-wise materialization. For instance,
if the generated C code processes a hash join, then the input collection that is used to
build the hash table is fully materialized before calling C to build the hash table, but
the input collection used for probing the hash table is block-wise transferred to C.

In Figure 3.9, we show the Execute method of the generated C* code to process
a query similar to that of Figure 3.7. Instead of adding a new memory block to the
linked list whenever the current one is full, C is called to process its content (line 11).
The code sample assumes that the generated C code contains a blocking operation and,
thus, does not return a result before all input is consumed. We use the context structure

to maintain state between different calls to ProcessInput.

56 Chapter 3. Query compilation for language-integrated query

o

DateTime param_1)

V)
—_~—

4 Context* ctx = CreateContext ();

5 CInput* buffer = AddBuffer(ctx);

6 int count = 0;

7

8 foreach (Order elem_1 in input_1) {

9 if (elem_l.0Orderdate >= param_1) {

10 if (count == ctx->elems_per_buffer) {

11 ProcessInput (ctx);

12 count = 0;

13 }

14 buffer[count].key = elem_l.key;

15 buffer[count].price = elem_l.price;
16 count++;

17 b}

18 ProcessInput (ctx);

19

20 ProcessIntermediates(ctx);

21

22 while (StreamResult (ctx) > 0) {

23 yield return new Tout (ctx->out_elem);
%))

Figure 3.9: Generated C? code that performs block-wise input staging

I int ProcessInput (Context* ctx)

2 {

3 MemoryBlock* blk = ctx->input_head;
4 HashTable* ht = ctx->hashtable;

5 for (int 1 = 0; 1 < blk->size; i++) {
6 CInput* elem_1 = &(blk->datali]);
7 /* Process input here, e.g. insert into aggregation hash table */

public static unsafe IEnumerable<Tout> Execute(IEnumerable<Order> input_1,

Figure 3.10: Generated C code that processes the query based on the block-wise

staged input

We outline the C code to process the block-wise buffered result in Figure 3.10.

Compared to the code generated for full materialization, only the ProcessInput func-

3.5. Staged query processing 57

tion changes. As it only processes the data of a single block with each invocation, there
is no need to iterate over multiple blocks. Everything else remains as before. Note that
the intermediate result of the query, e.g., the aggregation hash table, has to be main-
tained in the context structure to keep it accessible between different invocations to

ProcessInput.

3.5.2 The code generation process

Generating C and C? code from LINQ is similar to generating pure C? code. However,
this time the code generator has to split processing between both runtimes based on
predefined rules. Recall that the generated C? code in Section 3.4 is divided into loop
segments that were delimited by blocking query operators. When splitting query pro-
cessing between generated C* and C code, the inner loops, i.e., all loops in the query
that are not on the input or return output elements, are always performed by the gen-
erated C functions (ProcessIntermediates). The processing of the final loop that
returns the query result (StreamResult) is also fully processed in the generated C
code, but requires additional care to stage data between both runtimes, to create result
objects and to possibly look up source objects in order to assign data that has not been
staged to the result objects. Processing in the loops over the input, however, has to be
split between both runtimes based on heuristics. We assume that the code generator
receives a (hand or automatically) optimized operator tree that already has selections
pushed down. To reduce the amount of data that has to be transferred to unmanaged
memory, these selections are performed in the generated C* code, together with an
implicit projection and flattening step.

We use individual code trees for the generated C? and C code. While travers-
ing the expression tree, we construct both based on the query operators encountered
when traversing the expression tree. In contrast to generating pure C* code, it is no
longer possible for the generated code to directly access all fields of objects from the
input collections and (intermediate) results as depicted in the expression tree. The
expression tree specifies input and result types in an object-oriented data layout that
allows a nested data representation through references to arbitrary data types. The
generated C code, on the other hand, relies on a flat, value-type data representation,
similar to that of a row-wise relational database, to allow leveraging relational query
processing techniques. The mismatch in representations is a key challenge in pro-

cessing data in unmanaged memory. We address this issue by creating mappings

58 Chapter 3. Query compilation for language-integrated query

Reference

Saleltem s
Reference Reference Value
Category cat Shop shop decimal price_4
Value Value Reference
int id intid City city
Value
string name

object-oriented

native

Value Value Value Value
intid_1 intid 2 string’ name_3 decimal’ price_4

Reference

Saleltem’ s

Figure 3.11: Mapping between C? and C value types; all value types are stored in-place

between the object-oriented data layouts of the expression tree (i.e., result types of
MethodCallExpression nodes) and the flat data layouts that the generated C code
expects. This allows data accesses depicted in the expression tree to be directly trans-
lated to native code that accesses the corresponding data elements in the unmanaged
heap. We create st ruct definitions for all data types that are staged between C* and
C and for all intermediate results produced in C. Doing so improves readability of the
generated C code by avoiding unnecessary pointer arithmetic and type casts to access
the data. Producing more readable query code facilitates the development of the query
compiler as the automatically generated code can be easier read in the debugger. Note
that the definition of the context structure is also part of the generated code as it has to
be adapted to each individual query.

A mapping consists of two parts: (a) an object-oriented representation of the data
as found in the expression tree; and (b) a native representation of the data layout that
we have chosen to use for processing the query in unmanaged memory. The object-
oriented data layout is represented by a tree with nodes of four types: value, reference,
enumerable value or enumerable reference. Value types represent non-composed types
such as integer, float or st ring values. Reference types represent composed types
such as classes or structs. The children of reference types represent their (public)

members. Both enumerable types represent enumerable versions of their respective

3.5. Staged query processing 59

types. The unmanaged data layout is represented by one or more trees that each can
either be a single value type node or a reference type node which only contains value
type children. The unmanaged representation is usually similar to its object-oriented
equivalent, but with all references flattened out, leading to a row-wise data layout in un-
managed memory. Value type nodes of the object-oriented representation map to value
type nodes of the unmanaged representation (e.g., in Figure 3.11). However, there are
cases where the representations diverge. For example, if some elements in the object-
oriented representation are not copied to unmanaged memory but instead represented
by an index to a C? array that allows C? to look them up (see Section 3.5.1.1), then the
reference type to represent these elements maps to the value type that represents the
index.

All mappings are created in the same pass over the expression tree that builds the
tree representations of the source code. Mappings are created bottom-up. Before gen-
erating the tree representation of the code that corresponds to a MethodCallExpression
node, we have to obtain the mapping for its result. We decide, based on the type of
the MethodCallExpression, whether to use the same mapping as its child (e.g., for
Where, OrderBy) or create a new one (e.g., for Select, Join). In the latter case, one
of the LambdaExpressions usually specifies the creation of the method’s result either
by defining a constructor call to produce result objects or by providing a projection
that extracts them from the result of its child. We use these definitions to create the
object representation of the method’s result. Based on the type of the method call and
its parameters, we decide how to process it and create the corresponding native rep-
resentation of its result. We use the native representation of an intermediate result to
create its structure definition. For better readability, we name the fields of the structure
as their equivalent in the object-oriented representation, but append a unique identifier
to the name to avoid collisions.

As mentioned in Section 3.5.1, we inject an implicit projection step into the gen-
erated C! code before staging the input data to reduce the data volume that has to be
copied to unmanaged memory. This projection is driven by the mapping of the type
that is copied i.e., the type of the input. The input may contain members that are nei-
ther accessed in the query nor part of the query’s result. We only add members to the
input mapping that are required for processing the query in native code. When com-
ing across a ConstantExpression that represents an input collection in the bottom-up
traversal of the expression tree, we create an empty reference mapping for it. Whenever

a LambdaExpression in one of the expression’s ancestor MethodCallExpression

60 Chapter 3. Query compilation for language-integrated query

3) Add referenced input fields

LambdaExpression

MethodCallExpression ‘ g => new { Catld = g.K ey,

Select

SumPrice = g.Sum(s => s.price)} cat price
id
2) Add referenced input fields
MethodCallExpression LambdaExpression Saleltem
GroupBy ‘s => s.cat.id’ cat
id
1) Create empty input mapping
MethodCallExpression LambdaExpression Saleltem
Where ‘s => s.shop.city.name == “London”

ConstantExpression
Saleltem

Figure 3.12: Steps of creating an input mapping (bottom-up; selection ignored because

it is performed in Cﬁ)

nodes denotes an access to a field of the type stored in the input collection, we check if
that field has already been added to the input mapping; if not, we add it. We illustrate
this process in Figure 3.12. While navigating up the expression tree, the input mapping
is extended with object members that are referenced in the lambda expressions of the
expression tree. Note, that s.shop.city is not part of the input mapping, because we
perform the selection (Where in LINQ) in C? before copying data to be accessible from
native code. We perform the implicit projection step by only copying parts of the input
to unmanaged memory that are contained in the mapping.

Once the expression tree traversal reaches the root node and the mapping for the
query result is generated, we use reflection to check if the mapping contains any ref-
erences to input objects whose members have not been accessed in the expression tree
and, hence, have not been added to the mapping. In this case, we extend it with an
index to allow us to look them up in C? after processing the query in C and generate
the C* code to do so when creating result objects.

As all intermediate results are only used by the generated C code, we can modify
the layout of the fields in their structure definition to improve the query’s evaluation
time. For instance, we can place fields in a structure that are frequently accessed

together (e.g., group-by keys in an aggregation) in close proximity or fields that do

3.6. Evaluation 61

not change between two successive intermediate results next to each other to allow to
block-copy them between both results. While building the code tree, for each loop that
produces an intermediate result, we check if there are fields in the result that are either
not modified in the loop or are accessed together in the successive loop and group them
together.

The staging approach is not used for simple queries that do not contain enough
query processing to justify moving managed data to C. There are other occasions when
staging cannot be used. This is, for example, the case when the LINQ query statement
contains custom logic that goes beyond LINQ’s standard query operators. For instance,
calling custom C* methods during query processing prevents the code generator from
porting them to native code and, therefore, it has to fall back to generating pure C? code.
If the application extends LINQ’s standard query operators with custom operators, then
neither of our approaches can be applied as the code generator is unaware of them.

In contrast to C* compilation, the compilation of the C code cannot be performed
in-memory or without invoking external processes. We compile the C code by placing
the generated source code into a file and creating a new process that calls an external
compiler to compile the file into a dynamic library. This library is linked into the
generated C! code by using C*’s PInvoke to define a method for calling the generated

C function.

3.6 Evaluation

3.6.1 Experimental setup

All experiments in this and the following chapters are performed on an Intel Core 17-
2700K system with 16GB of DDR3 RAM, running Windows 8.1 and .NET 4.5.2. The
processor has 4 cores at 3.4GHz to 3.8GHz each and supports a total of 8 hardware
threads through SMT. It has 8MB of total CPU cache. Unless otherwise specified,
all experiments show the average of multiple (typically 7) runs on a warm system.
The system was warmed up by running the experiment twice before any performance
measurements. All measurements only include the time to execute the compiled query
code. We will look into the cost of generating and compiling the code separately after
presenting the pure query processing performance.

We evaluate our approaches using the TPC-H benchmark (see Section 2.6) as we

believe business intelligence applications represent a common use case of our work.

62 Chapter 3. Query compilation for language-integrated query

We adapt the schema to allow us to store the data set in the memory space of the ap-
plication (e.g., as collections of objects). To achieve this, we translate the schema into
an object-oriented representation. Tables become collections. Records become objects
and all SQL types are translated into C¥ types that can store the same information; i.e.,
any character sequence defined in SQL becomes a C? string and all other SQL types are
translated to their corresponding primitive types in C? (e.g., decimal or DateTime).
Note that, since objects store additional information (e.g., VTABLES) than their payload
and most C! types are wider than their SQL-equivalent in database systems, the total
space required to store the data set is significantly greater than specified by its scale
factor (e.g., scale factor one occupies almost 3GB).

As the data set is to be translated into an object-oriented representation, we also
translate primary-foreign key relations between records in the database to references
connecting related objects. In relational databases, records of different tables are re-
lated by one of the tables containing a foreign key column that stores the primary key
of the related record in the other table. Queries that intend to access related records to-
gether have to perform an explicit join operation between both tables that groups pairs
of matching foreign-primary-key pairs together. Joins between foreign and primary
keys are very common as records in the fact table are related to records in the di-
mension tables through foreign-primary key relations. In contrast, the object-oriented
model supports these kind of (1:1 or N:1) relationships by defining references from the
class type representing the table containing the foreign key column to the class type
representing the other table (the direction of the arrows in Figure 2.9). When trans-
lating the data set into an object-oriented representation, we omit all foreign keys as
references take their place. However, we keep primary keys as they are required for
some of the queries.

Translating foreign-primary key relations into references removes the need for
queries to perform explicit join operations to access related objects together as they
instead merely follow references. As this data layout trivializes some of the join-heavy
queries of the TPC-H benchmark, we also test the alternative data representation that
uses foreign and primary keys instead of references to relate objects, and, hence has
to perform joins to relate objects, as intended in the original (relational) version of the
benchmark.

All experiments in this and the following chapters use the scale factor three version
of the TPC-H data set, translated into Cf as described above. We use the first six

queries of the benchmark for evaluating our approaches. To evaluate these queries in

3.6. Evaluation 63

120 | Compiled C# BEX=XO |
g
£ 100 - —
e
©
© 0% ;
R %%
2 eof 5 (S .
= e o%ed
5 0% o%ed
§ 40f R 9% .
S KX LXK
3 o2ed o
> XX KXA
i o KA
2r Lede ‘o%ed T
KX <K
0% N
0 g‘:‘ KX DX
Query 1 Query 2 Query 3 Query 4 Query 5 Query 6 Total

Figure 3.13: Query performance of TPC-H queries 1 to 6 on a reference-based repre-
sentation of the TPC-H data set

C! they are translated from SQL to LINQ statements embedded into the application.
Because LINQ-to-objects does not support query optimization as in database systems
and instead executes all standard query operators in the order they are specified in the
query statement, we declare all LINQ queries in method syntax with query operators
concatenated in an optimized execution order. This execution order is based on query
plans produced by database systems (e.g., selections pushed down). In the reference-
based version, foreign-primary-key joins are replaced by following references (using
the dot operator, e.g., lineitem.Order) and some selection orders are adapted to
reflect the cost of following these references. We obtained these orders through manual
experiments. The code generator receives these, already optimized, LINQ statements

as input.

3.6.2 Compiled C’

We first look at the query performance when dynamically generating pure C? code
from LINQ queries. We compare the query evaluation time of the compiled C* code
with that of the default LINQ-to-objects implementation of .NET for the first six queries
of the TPC-H benchmark. In Figure 3.14, we show the result for the reference-based
representation of the data set and in Figure 3.13 for the join-based representation. In
both cases, compiling the query to specialized C* code improves the evaluation time
of each of the six queries, other than query 2 for the join-based representation. Note
that query 2 contains a correlated sub-query and the reported evaluation times corre-

spond to a hand-optimized LINQ version that avoids executing the sub-query multiple

64 Chapter 3. Query compilation for language-integrated query

Compiled C# EX=X1

140 |

g
Z 120 |- g
-
o
[100 L] -
=):vzi
g oo
2 80 [XX] R R
2 < K
= (XX q 000
T 60| SR P L] -
§ K) Koo
g 59) 0%
3 wr]] K -
g <X %% [XX]
o [XX] KM 0.0
R P %%
2 K oo 1% :
& A KX [>

’v
XS
o
RS
<X

S
Query 1 Query 2 Quer

VAVAN,

Query 4 Query 5 Query 6 Total

<
o P

Figure 3.14: Query performance of TPC-H queries 1 to 6 on a join-based representation
of the TPC-H data set

times by storing an intermediate result. Directly executing the correlated query in LINQ
results in a several orders of magnitude higher evaluation time. The most notable im-
provements are for query 1 and 3. For some of the queries, the compiled code exhibits
a smaller standard deviation. We assume that this is caused by less interruptions due
to garbage collections of intermediate query objects in the compiled code.

Query 1 is very aggregation heavy, summarizing a huge input data set into four
summarizing result elements that each contain several aggregates. The improvements
in query 1 are due to additional shortcomings of LINQ-to-objects when processing mul-
tiples aggregates (e.g., Sum or Average). In this case, LINQ-to-objects computes each
aggregate in a separate iteration over the elements of each grouping. These additional
iterations over the input data heavily reduce query performance. The generated code
processes all aggregates in a single iteration over the input and, further, merges the op-
erations of the GroupBy operator with the aggregation to avoid having to create explicit
groups beforehand.

Query 3 joins the 1ineitem fact table with the orders and customer dimensions,
performs a simple aggregation, sorts the result and returns the first 10 result elements.
The generated C* code achieves better query performance by merging operations. In
particular, merging the sort and the sucessive Take (10) operation into a TopN opera-
tion improves performance by avoiding having to sort the entire result of the aggrega-
tion, but instead only maintains a min heap of the greatest 10 elements to process both
operations at once.

Overall, the performance difference between the reference-based and the join-

based data representation is negligible for queries that do not contain joins (e.g., queries 1

3.6. Evaluation 65

160 | LINQ e Staged (C) E=—=1
Compiled C# EX=Xa Buffered (unsafe C#) I

o 140 F Staged (unsafe C#) — Buffered (C) EZzzza |
Z
-
o 120 | i
[}
2
& 100 - I < B
° 1
g ¥r i
§ 60 _
©
5
© 40 E
>
in}

20 i M |

0

Query 1 Query 2 Query 3

Figure 3.15: Query performance of staged versions of TPC-H queries 1 to 3 on a join-

based representation of the TPC-H data set

120 - LINQ Staged (C) BT |
Compiled C# EX=Xa Buffered (unsafe C#) I
Staged (unsafe C#) =—=— Buffered (C) &z

80 |-

60 -

40

Evaluation time relative to LINQ

20

Query 4 Query 5 Query 6 Total

Figure 3.16: Query performance of staged versions of TPC-H queries 4 to 6 on a join-

based representation of the TPC-H data set

and 6) as the queries are identical and operate on comparable data sets. For join-heavy
queries (e.g., queries 3, 4 and 5), the reference-based data layout is between 40% and

50% faster than the join-based one.

3.6.3 Staged query processing

In Figures 3.15 and 3.16, we compare the query performance of various staging-based
approaches to that of compiling to pure C* code and evaluating the query with LINQ-
to-objects for the join-based data representation. We compare both staging strategies
discussed in Section 3.5. The regular approach that fully stages all object-oriented data
to unmanaged memory blocks before beginning to process the staged data in native

code and the buffered approach that, where possible, continuously stages data between

66 Chapter 3. Query compilation for language-integrated query

140 | LINQ Staged (C) =1 _|
Compiled C# EX=Xa Buffered (unsafe C#) I
Staged (unsafe C#) —3 Buffered (C) &Zzzzzza

g 120} -
|
L
< 100 | :
2
g 80 | * IS -
Q
£
= 60 :
K<)
3 4}t 4
®©
>
1

20 -

0
Query 1 Query 2 Query 3

Figure 3.17: Query performance of staged versions of TPC-H queries 1 to 3 on a

reference-based representation of the TPC-H data set

managed and native code at the granularity of a single unmanaged memory block. We
tested both approaches with generating unsafe C* and native C code to process the
unmanaged buffer blocks.

The potential for improving query performance by staging object-oriented data into
unmanaged memory and then processing it in unsafe C* or native C code depends on
how much of the query processing can be offloaded into unsafe code, how expensive
the staging process is and how much processing time can be saved by performing
parts in unsafe code. We first have a look at the join-based data representation as it
allows more query processing (i.e., the joins) to be offloaded into unsafe code and,
hence, is expected to produce the greater benefits compared to evaluating the entire
query in (safe) C*. Other than query 6, all queries see improvements in evaluation time
compared to that of generating pure C* code for all staging strategies. Most queries
exhibit better query performance when staging is performed at the granularity of a
block. This reduces the memory footprint of the query and improves performance
by only using a single unmanaged memory block for staging data that resides in the
CPU cache at all times. Query 4 poses the exception to this observation. For most
queries, the staged variants exhibit a smaller standard deviation compared to the other
cases. This can be explained with the staged variants storing all intermediate query
processing data in unmanaged memory and, hence, not requiring garbage collection to
reclaim their memory.

Before having a closer look at some of the queries, we first present the results of the
reference-based data representation in Figures 3.17 and 3.18. As expected, the benefit

of staging diminishes as there is less processing to be performed in native code. Only

3.6. Evaluation 67

120 L LINQ mmmm Staged (C) =<1
Compiled C# EX=Xa Buffered (unsafe C#) I
Staged (unsafe C#) — Buffered (C) zzzzzza

100 - N

Evaluation time relative to LINQ

Query 4 Query 5 Query 6 Total

Figure 3.18: Query performance of staged versions of TPC-H queries 4 to 6 on a

reference-based representation of the TPC-H data set

700

Creating results m— Creating results Exx<1
Sorting E==<1 Aggregation ——1
Aggregation ——1 Staging to Buffers
4000 - Staging to Buffers Enumeration and Selection ez
Enumeration and Selection 2=z
3500 b
3000 b
@ o
£ £
£ 2500 1 £
(o) (o}
£ E
c c
2 S
= 2000 F 1 =
=] 3
© ©
> >
w w
1500
1000
500
0
Compiled C# Full Staged Buffered Staged Compiled C# Full Staged Buffered Staged
(a) Query 1 (b) Query 6

Figure 3.19: Evaluation cost break-down of TPC-H query 1 and 6

query 1 still shows substantial improvements over pure C! code, however, none of the
queries show a substantially worse performance either.

We now have a closer look at the cost break-down of some of the queries. Other
queries exhibit similar characteristics to the selected queries. Note that the break-down
1s just an approximation as some of the cost fractions have to be measured in different

query evaluations which are manually combined afterwards. First, we have a look at

68 Chapter 3. Query compilation for language-integrated query

the two queries which do not contain any joins. In Figure 3.19a, we show the cost
break-down of query 1 and in Figure 3.19b that of query 6. Even after removing the
inefficiencies that are introduced by LINQ-to-object’s execution model in the generated
Cf code, query 1 is still heavily dominated by the cost of computing the decimal ag-
gregates. Processing these aggregates in C* comes with a disadvantage. As objects may
be moved in garbage collection at any time without notice, the methods that compute
decimal arithmetic cannot directly access the decimal values stored in an object using
pointers to the decimal value. Instead, they have to be called by value and returned
by value. In-place updates are not possible. This poses a huge overhead as decimal
values are 16 bytes wide and the query computes millions of decimal additions, sub-
tractions and multiplications. By copying these decimals to unmanaged buffers and
using unmanaged memory for intermediate results, each only has to be copied once
and then can be passed by pointer. In the case of intermediate results (i.e., the aggre-
gates), they can even be updates in-place. In Figure 3.19a, we show how doing so
contributes to greatly reduce the aggregation code. It also shows that using a single
buffer block reduces the staging cost as all staged data is, at all times, written to and
read from a buffer that resides in the CPU cache. As query 1 stages a total of over 1GB
of data, this in not the case when staging all data at once before starting to process it in
the generated unsafe C* or native C code.

Query 6 behaves very differently. It is heavily selection dominated. As we perform
all selections in C? before staging the data and these selections make up for 97% of
the total query evaluation time, there is only 3% left that could possibly benefit from
being processed in native code. We illustrate this behaviour in Figure 3.19b. Staging
reduces the cost of the simple decimal aggregation in query 6 for the same reasons as
was the case for query 1, but, as the aggregation is only a small fraction of the query
processing cost and the total data staged is merely 10MB, the overall result does not
show any significant performance improvement.

Query 3 constitutes a representative join-heavy query. In Figure 3.20a, we provide
the cost break-down for the query evaluated on a join-based representation of the data
set and in Figure 3.20b that of the query evaluated on a reference-based representation.
For the join-based version, the two cost fractions that see improvements from compiled
Cf code are the cost of building the orders hash table and the cost of probing that hash
table and computing aggregates. The latter part is improved for the same reasons as
was the case for query 1. We believe that the cost reduction of building the hash

table is mostly due to cheaper allocation of temporary memory from the unmanaged

3.6. Evaluation 69

1600 [Creating results —3 7| Creating results I

Sorting EZZZa Sorting =<1
Probing Hash Tables and Aggregation Aggregation C——1
Lineitem Staging to Buffers EXxx1 Lineitem Staging to Buffers
Lineitem Enumeration and Selection == 700 Lineitem Enumeration and Selection Bz |
1400 - Order Build Hashtables 1

Order Staging to Buffers

Order Enumeration and Selection E==<1
Customer Build Hashtables ———1
Customer Staging to Buffers s 600 |
1200 Customer Enumeration and Selection Bz -

1000 800

400

Evaluation time (in ms)
©
o
o
T
Evaluation time (in ms)

600 | 300 |

400

Compiled C# Full Staged

Buffered Staged Compiled C# Full Staged Buffered Staged

(a) Key-based joins (b) Reference-based joins

Figure 3.20: Evaluation cost break-down of TPC-H query 3

heap. The hash table on orders has to store over two million elements. To keep
the comparison fair, we use the same hash table implementation for the generated
code as is used by the LINQ-to-objects implementation. This implementation requires
around 130MB to store the entire hash table (exclusive of the size of data elements)
and some additional space as the hash table dynamically grows. As this data does
not fit in the youngest generation(s) of the garbage collector, query evaluation has to
endure several short garbage collections which suspend the query processing thread
while garbage collection is active and, hence, reduce query performance. Running
query 3 multiple times also causes garbage collections in more mature generations.
The unmanaged allocator, in contrast, uses a region based implementation, similar to
[Gay and Aiken, 1998], that allocates all memory from preallocated memory blocks by
merely pushing pointers and frees all memory at once as soon as it is no longer required
by the query. Further, as all hash table data is stored in unmanaged memory rather than
as objects, the total size of the hash table shrinks to 80MB. Similar to query 1, the cost
of staging data is reduced by the buffering approach. Here, a total of 300MB is staged
and the reduced staging cost can again be explained by better CPU cache utilization.
The reference-based results shown in Figure 3.20b again behave very differently. The

cost of accessing the objects through references that may point to random memory

70 Chapter 3. Query compilation for language-integrated query

800
Creating results EXxxa Creating results H—

Sorting == Sorting E==<1
1400 | Probing Hash Tables and Aggregation B Aggregation ——
Lineitem Staging to Buffers Lineitem Staging to Buffers

Lineitem Enumeration and Selection E=~<1 700 Lineitem Enumeration and Selection ez |

Order Build Hashtables ——
Order Staging to Buffers mmmm
Order Enumeration and Selection ez |

1200

600

500

400

Evaluation time (in ms)
Evaluation time (in ms)

300

200

100

(a) Key-based joins (b) Reference-based joins

Figure 3.21: Evaluation cost break-down of TPC-H query 4

addresses all over the managed heap and, thereby, prevent possible CPU caching and
prefetching performance improvements dominates the cost of evaluating the query.
The total data staged to unmanaged memory is only 4MB and any performance benefit
obtained by the staging process has no impact on the overall query performance.

Finally, we show the same results for query 4 in Figures 3.21a and 3.21b. As before,
the aggregation cost in the join-based version (Figure 3.21a) is reduced in the staged
versions. However, in contrast to all other tested queries, its cost clearly increases when
using the buffering approach. Thorough investigations revealed that the orders hash
table has a total size of SMB. By interleaving the enumeration over lineitem in the
generated C? code with the native C code to probe the orders hash table and perform
the aggregations, as is the case in the buffered approach, the hash table is flushed out
of the CPU cache which reduces the query performance because (most) of the hash
table has to be re-loaded from main memory with every buffer block processed. The
full materialization approach, in contrast, keeps the entire hash table cached at all
times and, hence, provides better performance. The referenced-based results, shown
in Figure 3.21b, behave similar to what has been the case for query 3 with the cost of
accessing objects through references dominating query performance.

So far, we have only looked at the cost of evaluating the query and ignored the

3.7. Summary 71

cost of generating query code and compiling it. This is a reasonable assumption as
most LINQ queries are hard-coded into the application and only differ in a few query
parameters (e.g., the value of a selection predicate). In this case, caching the com-
piled query after it is produced for the first time and then reusing it on all successive
calls to the same query reduces the generation and compilation cost in most cases.
However, we report these costs for completeness. Source code generation costs be-
tween 30ms and 60ms. C* code compilation costs around 75ms and C code compilation
around 720ms. To provide a point of reference, the query evaluation time for the six
TPC-H queries tested ranges from 105ms (query 2) to 15s (query 1). The cost of finding
and reusing a compiled query in the QueryCache is negligible. The cost of compiling
C! code could possibly be reduced by directly emitting IL instructions in the code gen-
erator and the cost of compiling C code by generating LLVM code [Neumann, 2011].
As our experiments did not show a significant difference between generating unsafe
C* code and native C code, we will in the remainder of this thesis use both synony-
mously and only report results for unsafe Cf code. As their generated code is mostly
identical, all performance differences come from the different compilers which may

change with future releases.

3.7 Summary

This section has shown that query processing in managed runtimes benefits from lever-
aging query compilation techniques to compile LINQ queries into specialized query
functions to evaluate the queries. Query compilation can further benefit from staging
the object-oriented data into unmanaged memory blocks to process parts of the query
in unsafe C! or native C code. However, the benefit of all staging approaches is lim-
ited by the fraction of the query that can benefit from such an approach. If the cost of
accessing the object-oriented data dominates the cost of evaluating a query, then there

is not much improvement to be had from staging data.

Chapter 4

Black-box collection

4.1 Introduction

The previous chapter has shown that the performance of query processing in managed
applications using LINQ can be improved by leveraging query compilation techniques
from the database space. It also demonstrated that there are further performance im-
provements to be had when processing queries in low-level code and memory manage-
ment instead of in pure C? using automatically managed types. However, the represen-
tation of the data set as collections of objects requires the latter and prevents low-level
query processing unless an expensive staging phase is added in the generated code.
When evaluating low-level query processing using unsafe C? or native C code in Sec-
tion 3.6.3, we identified the following main factors improving query performance over

using pure C? code:

e Direct pointer access Providing direct pointer access to operations on a data
element’s primitive types enables more efficient query processing as opposed
to performing the operations on copies of the primitive types. The latter is re-
quired for arithmetic functions on primitive types contained in managed objects
(e.g., decimal) as these objects may be moved by garbage collection and, hence,

disallow direct pointer access.

e Query memory The lifetime of any intermediate data structure or intermediate
results produced during query evaluation is limited by the evaluation time of the
query. Furthermore, for every intermediate data structure or result, there is a
point during query evaluation where it is known to leave the scope of the query

and, hence, can be freed. Using a simplistic memory manager to handle tempo-

73

74 Chapter 4. Black-box collection

rary query memory improves the query evaluation performance for queries that
produce large intermediate results. Such a memory manager could allocate inter-
mediate data in memory regions [Gay and Aiken, 1998] using pointer-pushing
and free all data stored in a region at once when it is known to have left the scope.
Garbage collection based memory management, in contrast, is not aware of life-
time characteristics of memory allocated during query evaluation and, therefore,
has to perform garbage collections to reclaim unused memory, which poses addi-
tional overhead on query processing. For intermediate data structures or results
that contain a huge number of small elements, e.g., the overflow lists of a hash
table used in a join operation, the per-object storage overhead of 16 bytes that is
required when storing objects in the managed heap poses an additional memory

space overhead.

In addition to identifying these opportunities for performance improvements, the
experiments in Section 3.6.3 also uncovered limitations of the staging approach that
restrict the performance improvement that can be achieved for a query. These limita-
tions are mostly caused by the cost of accessing data stored in collections and applies
to both, accessing data in the objects of the primary collection and of secondary collec-
tions reached through references. To gain any meaningful performance improvement
over the approaches of Chapter 3, these limitations have to be lifted. To achieve this,
we have to take garbage collection out of the equation and, instead, introduce a second
application heap for storing all data that is used by the application for database-like
query processing. This second heap consists of unmanaged memory that enables the
performance improvements discussed above and is managed by the collection type
that uses it to store contained data elements. Such an approach provides the following,

additional performance benefits:

e Collection-aware memory management By allowing the collection to man-
age the memory space of contained data elements, those elements can be ar-
ranged in consecutive memory areas in the order in which they are accessed by
queries. Doing so improves query performance by making better use of com-
piler and CPU prefetching (e.g., via cache line fetches) and reduces the likeliness
of translation lookaside buffer (TLB) misses. Automatic garbage collections,
in contrast, are not aware of the collections in an application, their content or
the order in which their objects are accessed in a query and, therefore, cannot

optimize the placement of objects in the managed heap based on these charac-

4.1. Introduction 75

teristics. Objects contained in a managed collection are accessed through an
indirection layer (e.g., an array) containing object references. Managing the in-
direction layer and object placement within the managed heap independently can
lead to degraded query performance as collection objects may end up being laid
out in the managed heap in a different order than in the indirection layer of the
collection. Furthermore, objects that are in close proximity in the indirection
layer may end up being far apart in the managed heap. Some implementation
characteristics of garbage collectors may worsen this. For example, using the
same memory blocks to allocate objects of various sizes as long as they fit in
the same size range naturally contributes to object fragmentation. This is also
the case when using free lists within managed memory blocks to find slots in
which to allocate objects when moving them from a younger to a more mature
generation. Finally, the 16 byte per-object overhead on 64 bit systems (e.g., to

store the VTABLE pointer) reduces the efficiency of memory prefetching.

e No impact on GC duration Storing huge volumes of database-like data in the
managed heap increases the maximum duration of garbage collections, indepen-
dent on whether the collection was triggered by creating objects that represent
database-like data or ones that are used by other parts of the application. As
objects that are stored in database-inspired collections are assumed to be long-
lived, they will most likely end up in the oldest generation and whenever this
generation has to be collected, the marking phase first has to perform a depth-
first search following all of their references and then the sweep phase has to scan
over all their memory blocks to reclaim memory. With data sets at gigabyte
scale, this overhead can have a negative effect on application performance. For
batch collectors, the extended GC duration results in application threads being
suspended for longer amounts of time. For concurrent collectors, it results in
the background garbage collection threads consuming CPU and cache resources
that could otherwise be utilized by the application for a longer period of time.
Storing database-like data in a separate unmanaged heap improves query and
application performance by keeping a large fraction of the total application data

set outside the managed heap and, hence, excluding it from garbage collection.

e Long-lived data Generational garbage collection, as employed by most man-
aged runtimes, relies on the assumption that objects that are created more re-

cently are also more likely to become unreachable. However, this typically does

76 Chapter 4. Black-box collection

not apply to objects that are stored in database-inspired collections as they are as-
sumed to be long-lived. Storing them in the managed heap further increases the
duration of garbage collections as most of these objects survive all collections in
younger generations and, therefore, are gradually copied from the youngest to

the oldest generation which further increases the garbage collection overhead.

e Decoupled storage layout As data elements are managed at the granularity
of a collection that contains huge numbers of elements of a single type which
are predominantly accessed through LINQ queries, we can decouple the internal
storage layout from the type definition. In particular, introducing columnar stor-
age layouts [Copeland and Khoshafian, 1985] instead of row-wise layouts, as is
the case for managed objects, has been shown in the database space to improve

query performance [Manegold et al., 2000].

In the following chapters, we will introduce two collection types that make use of
an additional application heap for storing unmanaged data. In both cases, the collection
type itself is automatically managing the memory space of all data that is stored in the
collection. Furthermore, in both cases, language-integrated query is assumed to be
the dominant means of accessing collection data. In this chapter, we introduce black-
box collections which store data in a database-inspired in-memory data store inside an
unmanaged heap that does not allow the application to directly access the elements in
the underlying data store (hence, black-box). In Chapter 6, we introduce self-managed
collections, a collection type that stores manually-managed objects in the unmanaged
heap. Self-managed collections rely on a safe manual memory manager that will be
presented in Chapter 5.

Black-box collections are designed to provide a query processing performance that
is comparable to that of a modern relational database system. To achieve this, we no
longer use the runtime’s automatic memory management system and, hence, no longer
store data as managed objects. Instead, black-box collections employ a database-
inspired in-memory data store that is hidden from the application. Only the collection
type and automatically generated query code have direct access to data elements inside
the data store. From the perspective of the application, the collection stores objects of
a managed type and the application code interacts with the collection through objects.
This illusion is achieved using existing object-relational mapping techniques.

Data elements inside black-box collections are assumed to be predominantly ac-

cessed through LINQ queries. Furthermore, these queries are assumed to rarely return

4.1. Introduction 77

elements of the collection’s data type but, instead, return types that represent refine-
ments of the base data. We believe that this is a common use case for many applications
as the results of LINQ queries are often used to generate the application output (e.g.,
as tables, charts or graphs) and, hence, tend to be rather small im order to not over-
whelm the user. For instance, most queries in analytics workloads make heavy use of
aggregation to condense their input data into a few summarizing elements. Based on
these assumptions, our design of black-box collections focuses on improving the query
evaluation performance, if necessary, even at the cost of the performance of returning
or modifying collection data. To provide fast query processing, we integrate the data
store of a relational database system into the unmanaged heap and allow our code gen-
erator to translate LINQ queries over black-box collections into unsafe C* or native C
code that directly processes the query on the underlying data store rather than on the
object-oriented representation that the application uses to interact with the collection.
This implies that the generated query code directly operates on the memory blocks of
the data store rather than on an indirection level as is the case for regular collections.
By storing collection data in consecutive memory addresses and allowing queries to
iterate over collection elements in the order they are stored in memory improves the
effectiveness of compiler and CPU prefetching and, hence, the query performance. As
black-box collections use the same data layout and, by using similar query compilation
techniques as [Krikellas et al., 2010, Neumann, 2011], also the same query processing
techniques as in database systems, the query processing performance can be assumed
to be comparable to that of relational database systems. Compared to the approaches
of Chapter 3, we no longer store data as collections of objects and, hence, provide
better query processing performance by addressing the issues listed above.

Black-box collections essentially integrate the in-memory storage layer of a database
system into the managed runtime. Compiling LINQ queries into low-level source code
that directly operates on the data store allows a deep integration of the data store and the
managed runtime where the boundaries of both are continuous. Utilizing the storage
of a database system allows to easily incorporate more advanced database techniques
such as the collection of runtime statistics (e.g., histograms), clustering the data store
or defining indexes on the data. With LINQ queries on black-box collections being
parsed into an expression tree representation that resembles query trees in database
systems and allows to rewrite it in multiple passes before generating the source code to
process the query as described in Section 3.3, we can employ query optimization like

in database systems to improve the quality of the generated query code based on the

78 Chapter 4. Black-box collection

collected runtime statistics and the availability of indexes or orders in the underlying
collection.

Instead of storing managed objects, black-box collections store data elements in
an in-memory data store in a manner that is derived from how relational database
systems store the data contained in a database table. As a result, data elements stored in
black-box collections do not support references to directly connect related objects and,
hence, do not allow nested data representations. Instead, relationships are modeled
as in relational database systems where an object stores the primary key of a related
object as foreign key. Explicit primary-foreign-key joins are used to access related
data elements. Employing this strategy facilitates memory management as there are
no references between elements in the data store and, hence, removing or relocating a
data element does not leave any dangling references. However, performing explicit join
operations comes at a cost and may cripple query processing for join-heavy queries.

Application code that uses black-box collections cannot directly interact with the
data elements stored in the collection. Instead, managed objects serve as proxy be-
tween application and collection. The collection provides the application with an illu-
sion of containing objects by allowing the application to interact with it as if it was a
managed collection that contained objects of a predefined type. This is enabled using
existing object-relational mapping techniques. From the perspective of the application,
black-box collections are defined on a managed type and contain objects of that type.
The collection’s insertion and removal methods take an object reference of the collec-
tion type to insert (or remove) the corresponding data elements into (from) the col-
lection’s data store. Black-box collections implement the [Queryable<T> interface,
where T is the managed type that the collection is defined on, to allow LINQ queries
over black-box collections to be formulated using the collection’s managed type. How-
ever, the generated code to evaluate the query operates directly on the underlying data
store and employs the object-relational mapping to create managed objects when re-
turning data elements stored in the collection. Mapping data elements between both
data representations causes overhead when exchanging data between the data store
and the application. Based on our assumptions about typical use cases for black-box
collections, the performance improvements gained by more efficient query processing
should compensate for these overheads. As black-box collections have a different in-
ternal representation to the object-oriented one used in the application, some of the
issues that applications face when integrating external relational database systems, as

discussed in Chapter 1, are also present for black-box collections.

4.2. The basic collection type 79

4.2 The basic collection type

Black-box collections manage the memory space of contained data in a similar manner
as data stored in tables is managed in relational database systems. As such, they can be
seen as the storage layer of an in-memory database system integrated into the managed
runtime. Despite storing relational data, the application code interacts with black-box
collections as if they stored the managed type that is defined by the collection’s generic
type argument. We assume existing object-relational mapping techniques, in particular
LINQ-to-SQL (see Section 2.4), to be used with black-box collections to achieve this.
However, as our main focus is to show the performance benefits of processing LINQ
queries using a database-like data store and compiling to low-level code, we will only
have a brief look at object-relational mappings. The following code illustrates the basic

use of black box collections:

CollectionContextImpl mydata = new CollectionContextImpl ();
Person adam = new Person ("Adam", 27);

mydata.Persons.Add (adam) ;

/* oo */

mydata.Persons.Remove (adam) ;

Note the similarities to using managed collections like 1.1 st <T>. The only difference is
that all collection instances are declared inthe CollectionContext (DataContext in
LINQ-to-SQL) implementation. This is the case because the object-relational mapping
framework requires prior knowledge about the collection instances that foreign keys
refer to. LINQ queries on black-box collections also exhibit the same syntax as queries
on conventional collection types. However, differences occur when defining the classes
used with black-box collections as they have to be annotated with additional informa-
tion like key constraints to allow the object-relational mapping system to automatically
map between the object-oriented and the relational representation, as illustrated in Fig-
ure 2.7. Additionally, updates to the underlying data store are handled differently as
an explicit SubmitChanges call is required to write pending changes performed on the
object-oriented representation of the data back to the collection’s data store. The life-
time of all data elements stored in black-box collections is from their insertion into the
collection to their removal. The lifetime of their object-oriented equivalents is as long
as they are reachable through references, but modifications can only be written back
to the collection’s data store while the CollectionContext instance that retrieved the

data exists and the data elements are not removed from the collection’s data store.

80 Chapter 4. Black-box collection

We only assume common object-relational mapping techniques and no deeper in-
tegration between a collection’s data store and the managed application code to allow
the collection to manage the memory of the data store as in a relational database sys-
tem without imposing any external restrictions (e.g., by pointer to elements in the data
store). However, in what follows, we will outline the implementation and semantics of
an alternative version of a LINQ-to-objects DataContext to allow a deeper integration
of the relational data store and the object-oriented application. This alternative version
is enabled by the relational data store residing in the memory space of the application
rather than in an external database system. Our implementation also uses an identity
cache to store references of all objects returned from the data store; however, instead of
each element in the cache containing the pair <primary key(s), reference>, we
instead store the triplet <primary key(s), weak reference, pointer>. Note that
the reference to the returned object is turned into a weak reference and a pointer field
is added. The pointer field contains a pointer to the data element in the data store that
the returned object was created from. To allow the identity cache to store pointers to
elements in the data store, these elements may not be moved inside the data store (e.g.,
to compact non-full memory blocks) while being in the identity cache. We achieve
this by pinning the elements in the data store. As the identity cache is implemented
as a hash table on the primary key(s), the addition of the pointer provides fast access
from an object to its underlying element in the data store. We use this to directly write
back all changes performed on objects returned from the data store when they occur
instead of requiring the programmer to issue SubmitChanges calls to update the data
store. This can be achieved by using automatically generated setter methods, similar to
how LINQ-to-object’s DataContext tracks changes to returned objects. As all changes
to returned objects are automatically written back as they occur, we no longer have to
keep these objects alive for the lifetime of the Dat aContext. This is where weak refer-
ences come in. Weak references store a reference to a managed object, but in contrast
to regular (i.e., strong) references, they do not prevent garbage collection from reclaim-
ing their memory space. If the referenced object has been collected, the weak reference
becomes null. By only storing weak references in the identity cache, we no longer
prolong the lifetime of returned objects. Once a returned object is no longer reach-
able by application code, it is collected. Automatically generated finalize methods
are used to remove objects from the identity cache and to unpin data elements in the
data store when the corresponding object is collected. Alternatively, this could also be

performed periodically by scanning over all elements in the identity cache and remov-

4.2. The basic collection type 81

ing the ones where the weak reference is null. As this approach limits the number
of returned objects that are kept in memory, we can allow an instance of the adapted
DataContext to be used for the entire lifetime of the application rather than requir-
ing to create a new one for each individual unit of work. By making this instance
a singleton, we prevent the existence of any other instances and, hence, ensure that
all application threads operate on the same object instances and, therefore, see each
other’s modifications.

Black-box collections are implemented using unsafe C? code to manage their data
store. Each collection contains a linked list of unmanaged memory blocks that contain
collection elements. As was the case for the unmanaged memory blocks used to stage
data between managed C¥ and low-level code in Section 3.5 ,weuse the AllocHGlobal
method from C¥’s Marshal class to allocate blocks of unmanaged memory. We use a
C*-to-C* compiler to automatically add st ruct definitions for all managed classes that
are used with black-box collections. Furthermore, we generate conversion functions
for each of these managed types that copy the data stored in a managed object to its
unmanaged representation or vise versa. We also add a static getter method to the
managed type that returns the size of a data element in the unmanaged representation.
The collection’s Add method uses these methods to access the unmanaged data store
and to write data from the supplied managed object to the data store’s memory repre-
sentation. Furthermore, the query utilizes them to create a managed object from the
unmanaged representation that has been returned from the data store, in case the query
returns elements of an input collection and the corresponding object is not yet stored

in the identity cache.

4.2.1 The generated code

Black-box collections provide fast query processing performance through the symbio-
sis of dynamic query compilation and an unmanaged in-memory data store that is or-
ganized as in a database system and that allows the generated code direct pointer-based
access to the memory blocks of the data store. To allow the generated code to access
elements in the data store using C-style pointers, we compile LINQ queries into either
unsafe Cf or native C code. In both cases, we generate a specialized query function
that allows the application to iterate over the query result using an [Enumerator<T>,
as was the case for the approaches of Chapter 3. The query function constructs man-

aged C! objects from the unmanaged query result produced by the unsafe C? or native

82 Chapter 4. Black-box collection

[D1lImport ("query0.dll")]

3]

public static extern int EvaluateQuery(IntPtr ctx);

w

4 [DllImport ("query0.dll")]

w

public static extern int CleanUp (IntPtr ctx);

7 public static IEnumerable<string> Execute(BlackBoxCollection<Person> input,

8 int param_1)

10 IntPtr ctx = CreateContext (input->data, param_1l);

12 while (EvaluateQuery(ctx) > 0)

13 vield return CreateResultObject (ctx);

15 CleanUp(ctx);

16 yield break;

Figure 4.1: Generated C! code wrapping calls to the query function written in native C

code

C code. If the query result consists of elements from the input collection’s data store,
then the identity cache (as described in Section 2.4 for LINQ-to-SQL) is probed and,
only if the object is not cached, it is created and its values assigned from the unman-
aged result. If the query result does not consist of elements from the input collection,
the result objects are created as specified in the query’s expression tree based on the
values from the unmanaged result. The latter is assumed to be the most common use
case.

In Figure 4.1, we outline the code of the generated C* wrapper class that serves
as glue between the application and the generated C code to evaluate the query. As
was the case in Section 3.5, the generated C code is compiled into a dynamic C library
and the generated C? code declares the generated C functions in the class definition
using PInvoke to allow the C functions to be used as if they were C* methods. If the
query was to use unsafe CF rather than C code, there would be no need for a second
iterator as all query processing could be implemented in a single iterator. The Execute
method (line 7) is again implemented as an iterator method to allow the application to
iterate over the query’s result objects. However, here, it does not perform any query

processing itself, instead merely acts as glue between the application and the generated

4.2. The basic collection type 83

I int EvaluateQuery (Context* ctx)
2|
3 MemoryBlock* blk = ctx->current_blk;

4 while (blk) {

5 for (int i = ctx->current_pos; 1 < blk->size; i++) {
6 Person* elem_1 = & (blk->datali]);

7 if (elem_l1->Age > ctx->param_1) {

8 ctx->out_elem = elem 1->Name;

9 ctx->current_pos = 1 + 1;

10 return 1;

11 bl

12 blk = blk->next;

13 ctx->current_blk = blk;
14 }

15 return 0;

Figure 4.2: Query function written in native C code

low-level code that processes the query. The Execute method receives the black-
box collections it operates on as well as all query parameters. It first allocates and
initializes a query-specific context structure (line 10) that provides the C code with
access to the unmanaged data store of each input collection, the parameters of the
query and the enumeration state. The EvaluateQuery C function is also implemented
as an iterator that, for each unmanaged result element, sets the out_elem field of the
context structure to point to that result element and returns 1. The Execute method
continuously calls the EvaluateQuery C function (line 12) to produce the next result
element until it returns O to indicate that there are no further result elements. For
each unmanaged result element returned by EvaluateQuery, CreateResultObject
(line 13) constructs the corresponding managed result object and returns it to the caller.
This evaluation strategy maintains support for the deferred execution principle of LINQ:
only parts of the query that are consumed by the application have to be evaluated. Once
the entire result has been produced, CleanUp (line 15) is called to give the generated
C code a chance to free all the memory it used to produce the unmanaged result.

The generated C code follows the same principles and exhibits the same optimiza-

tions as discussed in Chapter 3. However, instead of iterating over collections of ob-

84 Chapter 4. Black-box collection

jects (as in Section 3.4) or over staged buffers (as in Section 3.5), it iterates over all un-
managed blocks in the input black-box collection and process all data elements stored
in each block. In Figure 4.2, we illustrate the generated C code for the example LINQ
query of Figure 3.1. The query function iterates over all data elements (lines 4 and 5),
checks if the age is greater than the supplied parameter (line 7) and if this is the case,
assigns the person’s name to the out_elem field of the context structure (line 8) before
returning control to the generated C* code to create the result object and return it to the
caller. The current_blk and current_pos fields in the context structure are used to
split the iteration over the input data into several function calls. Before returning, both
are set to the next element of the input to continue processing from that element in the
next EvaluateQuery call. The context structure also holds all local variables that need

to be kept between different calls to EvaluateQuery (e.g., pointers to hash tables).

4.2.2 The code generation process

The code generation and compilation process for LINQ queries on black-box collec-
tions is very similar to that of generating C* and C (or unsafe C%) code when staging
data in C! and processing the staged data in the generated C code (as discussed in Sec-
tion 3.4). The main difference is that all query operations are mapped to the generated
C code and the generated C! code merely acts as wrapper between both runtimes. Fur-
thermore, result objects are created differently as the identity cache has to be consulted
if the query result consists of elements from the input collections.

The generated C code contains the st ruct definitions of all unmanaged types that
are used to represent the elements of the input collections of the query. They are com-
parable to the st ruct definitions that are included in the generated C code to access
the unmanaged data stored in buffers in the staging approach of Section 3.5. However,
as our C’-to-C* compiler already automatically creates the st ruct definition for the
black-box collection implementation to manage the data store, we reuse it when gen-
erating query code. To achieve this, the Cf-to-C* compiler adds a static getter method
to the class definition of the corresponding managed type, the generic type parameter

of the collection, that returns a string representation of the st ruct definition’s C code.

4.3. Columnar storage 85

I int EvaluateQuery (Context* ctx)

2 A

3 MemoryBlock* age_blk = ctx->current_blks[0];
4 MemoryBlock* name_blk = ctx->current_blks[1l];

5 while (age_blk) {

6 int* Age = (int*) (&age_blk->data);

7 char** Name = (char**) (&name_blk->data);

8 for (int i = ctx->current_pos; i < age_blk->size; i++) {
9 if (Agel[i] > ctx->param_1) {

10 ctx—>out_elem = Name[i];

11 ctx->current_pos = 1 + 1;

12 return 1;

13 b}

14 age_blk = age_blk->next;

15 name_blk = name_blk->next;

16 ctx->current_blks[0] = age_blk;
17 ctx->current_blks[1l] = age_blk;
18 }

19 return 0;

Figure 4.3: Query function on top of columnar data store

4.3 Columnar storage

Black-box collections group data elements into unmanaged memory blocks of the same
type and collection. The data elements are organized in a similar way as in a relational
database system which also implies that they are inaccessible by application code and
are only accessed by the collection or through code generated from LINQ queries. As
such, black-box collections allow us to decouple the layout of the managed type that
the application uses to interact with the collection and the memory layout that the
collection uses to store the data elements in the collection’s data store. So far, we used
a row-wise data layout in the data store as this closely resembles the internal layout
of objects where all fields are stored in consecutive memory addresses. However, as
outlined in Section 2.1.3, for many workloads, a columnar data layout can lead to
superior query processing performance.

It is fairly straightforward to create a columnar version of black-box collections.

86 Chapter 4. Black-box collection

Instead of each collection’s data store containing a single linked list of memory blocks
that each contain data elements defined by the st ruct type derived from the managed
type of the collection’s generic type parameter, the data store contains multiple linked
lists, each representing a columns and containing the primitive type values of that
column. In our implementation, we use different block sizes for the blocks of each
column to insure that the memory blocks of all column store the same number of
elements. Doing so reduces the loop overhead when iterating over the data elements
as the values of all columns can be accessed with the same index variable and the
iteration reaches the last element of the block at the same time for all columns. The
code generator has to be aware of columnar black-box collections in order to produce
code that accesses the data store in a columnar fashion. In Figure 4.3, we outline
the C code generated to process the query of Figure 3.1 on top of a columnar black-
box collection representing the Person type. The query context contains an array
(ctx->current_blks) that stores pointers to the current memory blocks of all input
columns that are accessed by the query. The generate query code iterates over these
blocks, casts the data in each block to an array of the correct primitive type and accesses

the values of each column using its array index.

4.4 Related work

4.4.1 Building database systems in high-level languages

Black-box collections aspire to integrate some of the functionality of database systems
into the memory space of a programming language to enable the application to perform
faster query processing without the need of a full-blown external database system.
At the time of publishing this approach in [Nagel et al., 2014], [Klonatos et al., 2014]
proposed using comparable techniques to write the entire database system in a high-
level programming language (Scala) and utilize query compilation techniques to lower
the entire database system in several steps to the level of native C code that is then
compiled using the existing compiler infrastructure. In this section, we describe our
take on this idea and how we see it fits with our approaches by outlining an example
DBMS that, like our approaches, is written in C* and utilizes existing .NET components
as much as possible.

Implementing database systems in a high-level language improves the productivity

of the database engineer and results in a code base that is easier to maintain and extend.

4.4. Related work 87

For example, the query execution engine of the database system can be implemented
by using the same high-level language constructs as are used for LINQ-to-objects’ im-
plementation of the standard query operators. This facilitates the work of the database
engineer as she no longer has to deal with the low-level aspects of the query like input
type interpretation or pointer arithmetic. In fact, the database system could even start
off by using the actual LINQ-to-objects implementation. Since the input of a database
system are SQL queries represented as strings, the system has to parse them into a tree
representation of the query operators. As the operators are the LINQ-to-objects opera-
tors, the expression tree seems a reasonable representation of the query. This further in-
creases productivity compared to low-level code as the existing ExpressionVisitor
base class can be utilized to define rewrite rules to perform query optimization.

The database system discussed so far is a Cf-specific re-imagination of the over-
all design of [Klonatos et al., 2014]. For their query compilation approach, similar
to [Freytag and Goodman, 1989], the authors suggest to step-wise transform the high-
level implementation of the query operators to specialized low-level C code. Going
back to our example database, this implies that the code generator produces the code
to execute the standard query operators, as would be the case when evaluating the
query using LINQ-to-objects, and then compile it using a specialized C* compiler. This
compiler then contains steps that, at the moment, are not part of the C! compiler like
automatically fusing query operators, specializing all generic types and lambda func-
tion calls and lowering the implementation to C code. The latter may include replacing
managed types and automatic memory management with unmanaged types and man-
ual memory management. Similar to the case for black-box collections, this is possible
because the lifetime of all intermediate memory is known at query compile time and
the data stored in the data store follows the relational model. The generated C code is
then compiled using existing compiler infrastructure and finally executed to evaluate
the query.

Re-evaluating the code generation and compilation strategy, it seems unnecessary
to go from an expression tree representation of LINQ’s standard query operators to
a string representation that evaluates the query using LINQ-to-objects just to call a
compiler that parses the C? string into a tree representation, optimizes and lowers it to
native C code in several rewrite steps and then outputs the optimized C code as a string.
Instead, since the expression tree representation of the query already represents the C*
code to call the query operator methods, it could directly be passed to the specialized

C* compiler, then be compiled using the optimizations discussed above and returned

88 Chapter 4. Black-box collection

as C string or, preferably, compiled to IL instructions representing native code and
directly forwarded to the just-in-time compiler to compile them into machine code.
Note that this is very similar to our code generation and compilation approach with
the difference that our approach performs the transformation to C code in the code
generator rather than the compiler and we only use the syntax of LINQ-to-objects and
produce the query code by emitting code fragments that are hard-coded into the code
generator instead of utilizing the full implementation of the standard query operators.
The latter, however, has advantages as it removes the clutter in the code generation
process to emit and combine code fragments represented as strings and instead uses
the implementation provided by the general-purpose query operators.

[Klonatos et al., 2014] do not provide any information on how their underlying data
store is represented and how the system deals with SQL queries that create database ta-
bles or insert rows from a table. We assume that the system stores and manages all data
as in regular database systems. However, to expose the underlying data store to the
generic query operators, they have to dynamically generate high-level type definitions
for the data stored in each table and instantiate a generic collection type that represents
the table. When compiling the high-level query code that operates on this input repre-
sentation, the compiler has to lower the high-level query code to the unmanaged level
of the data store. This requires the compiler to be aware of the collection type that
represents a table and its semantics. Based on these assumptions, the similarities with
black-box collections become obvious. Other than that both systems target different
use cases, the biggest difference between both is that our approach performs the low-
ering from a high-level to a low-level representation explicitly in the code generator
whereas their approach employs a specialized, database-aware compiler to automati-

cally perform the task.

4.5 Evaluation

In this section, we evaluate a prototype implementation of the black-box collection
type. Our prototype supports row-wise and columnar data storage. We evaluate black-
box collections using the same six TPC-H queries as used in Section 3.6 and com-
pare them against the results of LINQ-to-objects and our approaches evaluated in Sec-
tion 3.6. As the data store of black-box collections stores data in a relational fashion
without supporting references between data elements, all queries on black-box collec-

tions utilize explicit join operations to access related elements from different collec-

4.5. Evaluation 89

LINQ e Buffered (unsafe C#) —23
140 Compiled C# BE=X=1 Black-box collection === +

120 B
100 4
80 |-
60 -

40 |-

Evaluation time relative to LINQ

20 -

Query 1 Query 2 Query 3 Query 4 Query 5 Query 6 Total

Figure 4.4: Query performance of TPC-H queries 1 to 6 versus a join-based represen-
tation of the TPC-H data set

tions. However, in the following, we compare the query performance of black-box
collections with the join-based and reference-based object representation from Sec-
tion 3.6.

Note that all measurements presented here are obtained by loading the data set into
the main memory of a freshly started application and then running the benchmark.
This results in all managed objects in a collection to be stored in (mostly) consecutive
memory addresses in the order they are accessed. However, a real-world application
is likely to exhibit a greater degree of fragmentation in the managed heap as typical
applications remove and add collection objects, create multitudes of non-collection ob-
jects and gradually reclaim memory space of objects that are no longer reachable using
garbage collection. This causes queries on collections of managed objects to often per-
form worse than presented here. In contrast, the performance of black-box collections
is independent of allocations or garbage collections in the managed heap. Enumer-
ations are always in the order of memory locations rather than that of an indirection
level that may point anywhere in the managed heap. We will have a look at the im-
pact of fragmentation in the managed heap when evaluating self-managed collections
in Section 6.6.

We first compare the query performance of data stored in black-box collections
with that of data stored in collections of objects. In Figure 4.4, we compare the re-
sults of black-box collections with those of objects stored in a join-based represen-
tation and in Figure 4.5 with those stored in a referenced-based representation. For
data stored as collections of objects, we report the performance of evaluating LINQ

queries using LINQ-to-objects, generated C' code and generated (unsafe) Cf code

90 Chapter 4. Black-box collection

140 | LINQ mmmm Buffered (unsafe C#) —= |
Compiled C# BE=X=1 Black-box collection E==3

o 120 | -
=
-
2 100 | -
(]
2
s 80 -
£
= 60 - .
c
o
S 4} E
g
L

20 N .

0
Query 1 Query 2 Query 3 Query 4 Query 5 Query 6 Total

Figure 4.5: Query performance of TPC-H queries 1 to 6 versus a reference-based

representation of the TPC-H data set

that stages the data in a single buffer block. In all cases, black-box collections sig-
nificantly outperform LINQ-to-objects, in some cases even by more than an order of
magnitude. Black-box collections also outperform all approaches presented in Sec-
tion 3.6. It is particularly notable that black-box collections even outperform queries
evaluated on the reference-based versions that do not have to perform explicit join op-
erations, whereas black-box collections have to perform explicit joins as they do not
support references and there were no index data structures defined on them. The huge
performance improvements can be explained by the factors that have been discussed
in Section 3.6. Less overhead in the processing model compared to LINQ-to-objects,
better performance for decimal computations because of direct pointer access to the
data elements without the need for staging and less memory allocation overhead be-
cause garbage collection is taken out of the equation. Additional benefits come from
the vastly improved data layout where consecutive data elements are placed in con-
secutive memory addresses resulting in better CPU caching and prefetching effects and
fewer TLB misses (compared to following references to arbitrary memory locations in
the managed heap). Further, data elements are directly accessed in their memory block
rather than having to go through an indirection structure (e.g., an array) and data ele-
ments do not have any per-object overhead (like managed objects do, e.g., to store the
VTABLE).

In Figure 4.6, we compare the query performance of black-box collections stored
in a traditional row-wise layout (as used so far) with that of a columnar storage layout.
Columnar storage improves query performance of all queries tested. The performance

difference between row-wise and columnar storage depends on the query’s memory

4.5. Evaluation 91

o 120 Row-wise Columnar EX=1 -
©
o
@ 400 | .
] I~
= %% .
: 80 z:::: % K]
o p 4 VaVa\ .
: S o0 [2o
e (XA P X KR <X
ol I IS ol B
2 eof o0 0% KX P RS KXY -
: s Sl S s
2 0202 0% 030, 020 ‘%! 2030
o Ll P %% 53 %93] 0% |
E 4] IR IS <] K IS
: S S S I RS
5 wf o 0% e R e coo
3 o0 %% boded o X %%
; =l Sl =l Sl &
0 X RS KX <X 0% K
Query 1 Query 2 Query 3 Query 4 Query 5 Query 6 Total

Figure 4.6: Comparison of the query performance of TPC-H queries 1 to 6 between

row-wise and columnar data storage

access pattern. The more useful data (i.e., data that is accessed by the query) that can be
brought into the CPU with a single cache line fetch, the better the query performance.
Queries that on average only touch a small fraction of a database row benefit from
columnar storage. On the other hand, if most of each record is touched by the query
or the stride in which column values are touched is too big to benefit enough from
prefetching, then row-wise layouts perform better. Columnar storage further exhibits
a greater CPU cost to compute the memory address of each value within a column. In
the benchmarks of Figure 4.6, the selection in query 1 only filters out 3% of all records
and the following aggregation touches a big fraction of each record. This characteristic
results in query 1 exhibiting the smallest improvement from columnar storage of all
queries. Query 6, in contrast, contains four fairly selective queries and, hence, benefits
greatly from columnar storage as for most records (5/6th) it is only necessary to touch
the column specified in the first selection.

Finally, to put our results into perspective, we compare the query performance
of columnar black-box collections with that of a modern commercial database sys-
tem that incorporates a compressed columnar store to provide fast in-memory OLAP
query processing!. We store all tables in the database’s column store and, in addi-
tion, use clustered indexes on the shipdate and orderdate columns. We believe
that these settings are representative for a real-world deployment. We use the read
uncommitted isolation level and disable parallelized query execution to level the play-
ing field. The LINQ-to-SQL query provider supports the chosen database system to al-

low to LINQ queries to be translated into SQL queries to be evaluated on the database

'We cannot reveal which database we used due to the terms of the licensing agreement.

92 Chapter 4. Black-box collection

140 | Commercial columnar DBMS Columnar black-box collection EX=X3 _|

120 -

X X]
X

’v
RRRXKK]

’V
&R

100 -

KX X
3R

Z

X >
SR

80 -

’V
&R

’v
&R

60 -

XA

>
’v
&R

’v
&R

40 |-

Evaluation time relative to
a commercial columnar DBMS

v’v
RR

X
o

’V
o

%%

XX

20 -

>
’v
&R

.V
R

KX
N/

XX 00, P
Query 1 Query 2 Query 3 Query 4 Query 5 Query 6 Total

-

Figure 4.7: Comparison of the query performance of TPC-H queries 1 to 6 between

columnar black-box collections and a commercial columnar DBMS

system. However, the presented results are obtained by directly running SQL queries
on the database system. The results are shown in Figure 4.7. Black-box collec-
tions outperform the database system for all queries but query 6. The performance
improvements are in line with what has been shown by related work when com-
paring compiled query engines with traditional query engines [Diaconu et al., 2013,
Klonatos et al., 2014, Neumann, 2011], as is the case for the commercial DBMS. The
better performance of query 6 stems from the indexes we defined in the database as two
of the selection conditions in query 6 are on shipdate. Query 3 also hugely benefits

from these indexes.

Chapter 5

Safe manual memory management

5.1 Introduction

This chapter describes the implementation details of a type-safe manual memory man-
agement system that constitutes the foundation of what is discussed in Chapter 6 when
introducing self-managed collections. The memory management system combines
several existing techniques like incarnation numbers, epoch based memory reclama-
tion or indirection to allow type save manual memory management and to enable the
characteristics that are required for self-managed collections.

The experiments in Section 4.5 show that black-box collections can significantly
improve query processing performance by storing all contained data outside the man-
aged heap. Instead, their data is stored in a second heap of unmanaged memory and
is managed by the collection type itself. The performance improvements achieved for
black-box collections can be attributed to memory management that is aware of the
collection’s semantics and to allowing the generated query code to use unsafe tech-
niques to process the query. Columnar storage layouts further contribute towards a
query processing performance that can level, or even greatly surpass, that of commer-
cial database systems.

However, the approach of Chapter 4 also imposes overheads on the application
developer by introducing a relational data store into the managed runtime. Object-
relational mapping technologies can unburden the developer of some parts of this
overhead, but others remain. These include having to create the initial mappings by
annotating class definitions or explicitly having to call SubmitChanges to write all the
changes on objects returned from the relational data store back. There are also perfor-

mance overheads that come with relational mappings, e.g., the cost of marshaling data

93

94 Chapter 5. Safe manual memory management

between both representations, the cost of managing an identity cache and the cost of
tracking changes to returned objects.

To address these overheads, we propose self-managed collections. Instead of in-
ternally storing relational data, self-managed collections store object-oriented data.
By storing objects, self-managed collections can directly return data elements from
the data store to the application. There is no need for an object-relational mapping
and, hence, for the overheads implied. To maintain the performance characteristics
of black-box collections, we propose to store contained objects outside the managed
heap and, hence, outside the scope of garbage collection. Similar to what has been the
case for black-box collections, self-managed collections manage the storage of con-
tained objects themselves. For this purpose, we introduce a novel type-safe manual
memory management system that is designed specifically for use with self-managed
collections. In this chapter, we introduce the manual memory system. Self-managed
collections will be introduced in Chapter 6. As the memory management system is
purpose-built for self-managed collections, we will not evaluate it separately, but eval-
uate the characteristics relevant for self-managed collections when evaluating them in

Section 6.6.

5.2 Design overview

The primary difference between automatically and manually managed types is the re-
quirement that manually managed objects have to be freed manually by the developer
using the free keyword!, whereas for automatically managed types, the runtime em-
ploys garbage collection to automatically reclaim the memory space of objects that
are no longer reachable by the application. By manually freeing objects, there is no
guarantee that the application does not hold references to an object after it has been
freed (i.e., dangling pointers). Accessing this object violates memory safety. To ad-
dress this issue, our manual memory management system assumes that all references
to manually-managed objects implicitly become null when the object is freed. Deref-
erencing them will throw a NullReferenceException.

Another requirement for the manual memory system is to provide type and thread
safety. The type safety guarantees for manually managed types are not the same as
for automatically managed ones. We guarantee that a reference always refers to an in-

stance of the same type and that this instance is either the one that was assigned to the

'Unless they are automatically freed when going out of scope

5.2. Design overview 95

reference or, if the instance has been freed, nul1. This differs from automatically man-
aged types that guarantee that a reference points to the object it was assigned to for as
long as the reference exists and refers to that object. We will introduce the techniques
to guarantee type-safety in Section 5.3 and deal with thread-safety in Section 5.4.

As we intend manually managed types to be excluded from garbage collection, we
have to impose further restrictions on them. They may not contain references to auto-
matically managed types as, otherwise, they have to be scanned with each garbage col-
lection to check whether the referenced managed objects are alive. However, manually
managed types may contain references to other manual managed types and automat-
ically managed types can reference manually managed types. To address the duality
of having two class types with different semantics we introduce the tabular class
keyword to indicate classes backed by the manual memory manager.

As the manual memory management system is purpose-built for the use with self-
managed collections, which will be introduced in Chapter 6, its design is based on the

following assumptions about self-managed collections:

e Collections contain several millions of objects and, hence, the application main-
tains minimal references to these objects in any structure other than the collection

itself.

e The dominant way of accessing the objects in a collection is through enumer-
ation using language-integrated queries which are automatically compiled into

imperative query functions that produce the query’s result.

e These queries are predominantly read-only. Their result sets tend to consist of
new (managed) objects to be used by the application (e.g., aggregate computa-
tions) rather then objects from the base collections. As the result sets usually are
part of the application’s output to the user (e.g., as tables, graphs or charts), they

tend to be rather small.

e The objects stored in a collection are usually updated or removed from the col-
lection by iterating over all collection elements in a LINQ query and performing

the updates / removals on the objects returned by the query.

Based on these assumptions, the memory management system is designed to optimize
the performance of query functions that are automatically generated from LINQ state-
ments; if necessary even at the expense of other use-cases, e.g., the cost of random

accesses to collection objects through references. It is, further, assumed that main

96 Chapter 5. Safe manual memory management

memory is cheap and plentiful and, thus, the design favours performance over space
wastage caused by delayed memory reclamations or compactions.

The manual memory management system described in this chapter requires a deep
integration into the managed runtime. The alloc and free methods of the memory
system are part of the runtime API and are called by the application to allocate and
free manually managed objects. To ensure type-safe reference accesses, references to
manually managed objects are implemented as fat pointers that store additional meta
data and, before granting access to a manually managed object, the memory manage-
ment system has to verify the correctness of the access based on the reference’s meta
data. In contrast, references to automatically managed types are directly translated into
pointer-to-memory addresses by the JIT compiler. To integrate the manual memory
system into the runtime, the JIT compiler has to be made aware of manually managed

type references and the code that has to be produced when dereferencing them.

5.3 Safe manual memory management

The memory manager allocates objects from unmanaged memory blocks, where each
block only serves objects of a certain type. Only storing objects of a certain type in
each block and disallowing variable-sized objects to be stored in-place ensures that
all object headers in a block remain at constant positions within that block, even after
freeing objects and reusing their memory space for new ones of the same type. This
ensures type-stability for all objects stored by the memory manager. The base address
of all memory blocks is aligned to the block size to allow extracting the address of
the block that an object is stored in from a pointer to that object. Being able to access
an object’s memory block from its pointer provides several benefits, one of them is
the ability to store type-specific information like VTABLE pointers only once per block
rather than with every object. The memory space in a block that is occupied by an
object is referred to as the object’s memory slot. Each memory slot consists of an ob-
ject header and the object’s data, i.e., its non-static fields. Object headers consist of
a 32-bit incarnation number. Incarnation numbers ensure that objects are no longer
accessed after the object was freed. For each memory slot, the incarnation number
is initialized to zero and incremented whenever an object is freed. References to ob-
jects store the incarnation number of the memory slot together with a pointer to the
memory slot. Before accessing an object’s data, the system verifies that the incarna-

tion number in the reference matches that in the object’s header and only then allows

5.3. Safe manual memory management 97

access to the object. If the application tries to access an object that has been freed,
i.e., an object where the incarnation numbers do not match, then the system throws a
null reference exception. The JIT compiler automatically injects these checks when
dereferencing manually managed objects. The combination of these techniques, in
combination with C*’s existing type-safety guarantees for class types (e.g., no unsafe
type casts or pointer arithmetic), guarantees type-safe manual memory management as
defined in Section 5.2.

We illustrate the safe reclamation of memory slots using incarnation numbers in
Figure 5.1. When allocating the adam object, the system allocates it in a new memory
slot with the incarnation number initialized to zero. Freeing the adam object increments
the incarnation number of its memory slot to 1, thereby implicitly setting the adam ref-
erence that is still held by the application to null. The allocation of tom reclaims the
memory slot previously held by adam and uses it to store the t om object. The incarna-
tion number stored in the returned reference is the memory slot’s current incarnation
number 1. At this point, the adam and tom references both refer to the same memory
location, but only tom’s data is still accessible as the incarnation number stored in the
reference and the memory slots’s incarnation number only match for tom. Trying to

print adam’s name will cause a null reference exception.

5.3.1 Incarnation number overflow

Incarnation numbers can overflow, which may cause references to already freed ob-
jects to become valid again. To prevent this, the memory system stops reusing mem-
ory slots once they reach the maximum incarnation number. If freeing an object sets
its incarnation number to the maximum value, the slot becomes a dead slot and all
references to that slot remain null until the overflow is dealt with. Note that each
memory slot has an individual incarnation number that is only incremented once with
every reuse of that slot for a new object. With 32-bit incarnation numbers, overflows
are unlikely to occur in the lifetime of a typical application. However, should incar-
nation slot overflows occur, then the memory system allows dead slots to accumulate
until their number surpasses a threshold. It then invokes a background thread to scan
all references in the application and set all invalid references (ones where incarnation
numbers do not match) to null. This process has similarities with the marking phase
of traditional garbage collection, however, does not require any other application pro-

cessing to be suspended while all references held by the application are scanned as

98 Chapter 5. Safe manual memory management

Person adam = persons.Add("Adam", 27);

adam Data Block
“Adam”, 27

Person adam = persons.Add("Adam”, 27);
persons.Remove(adam);

adam Data Block
“Adam”, 27

Person adam = persons.Add("Adam”, 27);
persons.Remove(adam);
Person tom = persons.Add(“Tom”, 25);

adam Data Block
“Tom”, 25

tom

Person adam = persons.Add("Adam”, 27);
persons.Remove(adam);

Person tom = persons.Add(“Tom”, 25);
PRINT(adam.name),‘ x Exception

adam Data Block
“Tom”, 25

tom

Figure 5.1: Safely reclaiming memory using incarnation numbers

long as the application cannot obtain new references to dead slots. To ensure that this
is the case, the memory manager prevents the application from copying existing ref-
erences to dead slots by, before copying a reference to a manually-managed object,
automatically checking that the reference is valid and, otherwise, setting it to null.

Once the background thread is finished, the incarnation numbers of all dead slots that

5.4. Concurrency 99

Thread 1 Thread 2
1f (CHECK_INC (adam))

persons.Remove (adam) ;
Persontom = persons.Add(‘‘Tom’’, 25);

PRINT (adam.name) ;

Figure 5.2: Concurrency conflict

accumulated before the start of the background thread are reset to allow them to be

reused again.

5.3.2 Memory contexts

Objects have so far been grouped into memory blocks with other objects of the same
type. However, in many use cases, certain object types exhibit temporal and/or spatial
locality: e.g., objects of the same collection are more likely to be accessed in close
proximity. By defining memory contexts, the memory system allows the programmer
to instruct the allocation function to allocate objects in the blocks of a certain context
(e.g., a collection). The memory blocks of a context only contain objects of a sin-
gle type and only the ones that have been allocated in that specific memory context.

Memory contexts can be seen as explicit regions, similar to [Gay and Aiken, 1998].

5.4 Concurrency

Incarnation numbers provide memory safety by protecting references from accessing
objects that have been freed. However, they do not protect objects from being freed
and reused concurrently while being accessed. Consider Figure 5.2: Thread 2 frees and
reuses the memory slot referenced by the adam reference just after Thread 1 success-
fully checked the incarnation numbers for the same object. As Thread 1’s incarnation
number check was successful, the thread accesses the object, which is now no longer
Adam, but Tom. This behavior violates the type-safety requirement of always returning
the object assigned to a reference, or null if the referenced object has been freed. We
refine the requirement for the concurrent case by specifying the check of the incar-
nation numbers to be the point in time where the requirement must hold. Thus, all

accesses to objects are valid as long as the incarnation numbers matched at the time

100 Chapter 5. Safe manual memory management

Global epoch 0 epoch 1 epoch 2

Thread? [epoch 1 epoch 1

|

time

Figure 5.3: Epoch-based memory reclamation

they were checked. To ensure type safety, i.e., that all object accesses are to the same
object that the incarnation number check was performed on, the memory system must
prevent concurrent threads from overwriting the object (by reclaiming its memory slot)
until all threads have finished accessing it. Note that this does not disallow concurrent
threads from freeing the object concurrently, but it prevents them from reclaiming the
object’s memory slot to allocate new objects.

Lock-free concurrent data structures have faced similar issues when reclaiming
memory in the absence of garbage collection, with various solutions having been
proposed, e.g., [Desnoyers et al., 2012, Fraser, 2004, Michael, 2004]. To prevent the
reclamation of memory slots that are still being accessed concurrently, the memory
manager employs a variation of epoch-based reclamation [Fraser, 2004]. Epoch-based
reclamation is based on grace periods. Grace periods are time intervals during which
a thread can access objects without fear that the memory space of the object could
be concurrently reclaimed. Thus, grace periods are the time interval during which a
thread can access objects without re-checking their incarnation numbers to ensure type
safety. The length of grace periods can be controlled by varying the frequency in which
threads re-check incarnation numbers when accessing the fields of an object. An ob-
ject’s memory slot can only be reclaimed once all threads that may have accessed the
object in a grace period have completed this grace period.

Epochs are time intervals during which all threads pass at least one grace period.
The memory slot of objects that are freed in some epoch e can safely be reclaimed
in epoch e 4 2 because, by that time, all threads that accessed the object in a grace
period in epoch e must have completed at least one grace period since accessing the
object and, hence, cannot access the object any more. There cannot be any further
accesses to the object after epoch e because, by that time, the object is already freed

and the incarnation number check will fail. The memory system tracks epochs by

5.4. Concurrency 101

1 void enter_critical_section() f{

\S}

global->sectionCtx[threadId].epoch = global->epoch;

(O8]

global->sectionCtx[threadId].inCritical = 1;

4 memory_fence();

7 void exit_critical_section() {
8 memory_fence();

9 global->sectionCtx[threadId].inCritical = 0;

Figure 5.4: Entering and exiting critical sections

maintaining a global epoch. In addition, each thread tracks its thread-local epoch in
a variable that is accessible by all other threads. Upon entering a grace period, each
thread sets its thread-local epoch to the current global epoch. When leaving the grace
period, each thread checks whether all other threads are in the same, the global epoch
e. If this is the case, it increments the global epoch to e 4 1. This procedure ensures
the invariant that, at any time, all threads can either be in the global epoch e or in
e — 1 and, hence, the memory slots of all objects freed in e — 2 can safely be reclaimed.
We illustrate how threads progress through epochs in Figure 5.3. When exiting the
grace period in epoch 0, Thread 2 observes that all threads are in the same, the global,
epoch 0 and increments the global epoch to 1. When finishing the first grace period
in epoch 1, Thread 2 cannot increment the global epoch to 2 as Thread 1 still is in
epoch 0. However, when Thread 1 finishes the grace period in epoch 1, it observes that
all threads are in epoch 1 and, hence, sets the global epoch to 2.

Epoch-based reclamation is implemented by performing all accesses to manually
managed objects in critical sections (i.e., grace periods). To do so, the JIT compiler
automatically injects code to enter and exit critical sections around (reference) accesses
to manually managed objects. We outline the code to enter and exit a critical section
in Figure 5.4. Upon entering a critical section, each thread sets its local epoch to the
current global epoch (line 2) and sets a flag to indicate that the thread is currently in
a critical section (line 3). When exiting the critical section, the thread clears this flag
(line 9). To ensure that the code to enter a critical section is executed before accessing

the object and that there is no further accesses to the object after exiting the critical

102 Chapter 5. Safe manual memory management

I Dbool try_increment_epoch() {

2 enter_critical_section();

4 // Check that all threads are in the same epoch e

5 for (int i = 0; 1 < global->numThreads; i++) {

6 if (global->sectionCtx[i].epoch != global->epoch
7 && global->sectionContext[i].inCritical) {
8 exit_critical_section();

9 return false;

10 } o}

11 memory_barrier();

13 // Increment epoch to e + 1

14 global->epoch = global->sectionCtx[threadID].epoch + 1;

15 exit_critical _section();
16

17 return true;

18}

Figure 5.5: Trying to increment the global epoch counter

section, the JIT compiler also has to inject memory fences (lines 4 and 8) to enforce
compiler and CPU instruction ordering. Critical sections are not limited to a single
reference access. Several accesses can be combined into a single critical section to
amortize the overhead of starting and ending critical sections.

The epoch-based memory slot reclamation used by the memory manager differs
for the epoch scheme introduced by [Fraser, 2004] in that epochs are not incremented
when exiting grace periods but by the allocation function of the memory manager and
that global epochs are not incremented modulo three but as a continuous counter. These
modifications allow the memory manager to lazily reclaim memory slots on demand
when allocating objects. We outline the code to increment the global epoch counter in
Figure 5.5. Incrementing the global epoch to e + 1 is only possible if all threads that
are currently in a critical section are in the same, the global, epoch e. Performing this
operation in a critical section ensures that concurrent threads can only increment the

global epoch to e + 1, but not e + 2.

5.4. Concurrency 103

So far, memory slots could be in one of two states, free i.e., the slot has never been
used before, or occupied i.e., the slot contains object data. Epoch-based reclamation
introduces a third state: Memory slots that are not occupied because the contained ob-
ject has been freed, but that also cannot be reclaimed yet, because two epochs haven’t
passed since the object was freed. This kind of memory slot is in the following re-
ferred to as limbo slot. The state of each memory slot is maintained in a contiguous
segment of each memory block, the slot directory. The slot directory stores a 32 bit
state for each memory slot. It is accessible through the block’s header and indexed
by the slot’s identifier. The state of a memory slot is encoded in two 16 bit parts, the
most significant part stores the actual state code (1 for occupied, 0 otherwise) and the
least significant part stores additional state information. For limbo slots, this additional

information is the timestamp of the earliest global epoch that the slot can be reclaimed.

5.4.1 Freeing objects

We outline the code to free a manually managed object in Figure 5.6. To improve read-
ability, the code sample omits some of the concurrency control mechanisms required.
The free function takes a reference to the object as argument (line 1). Here, the refer-
ence is represented by the value type ObRef which contains the object’s incarnation
number (oref.inc) and a pointer to the object’s memory slot (oref.ptr). The free
function first checks that the reference is to an object that has not been freed already
by comparing incarnation numbers (line 5). Then, the object’s incarnation number is
incremented (line 13) to ensure that no concurrent thread can obtain a direct pointer
to the memory slot anymore. To ensure that the memory slot of the object cannot be
reclaimed until two epochs have passed and, hence, no other thread can still have a
direct pointer to the memory slot at the time of reclamation, the state of the memory
slot in the slot directory (b1k->slots) is set to limbo (line 16). This is done by set-
ting its state code to zero and its reclamation epoch to the current global epoch plus
two. Finally, the system checks if the block has to be added to the reclamation queue
(line 20), a queue of same-type memory blocks that qualify for reclamation, along with
the earliest epoch when the block can be reclaimed (global epoch plus two).

The memory system tolerates a certain degree of unused memory space due to
limbo slots before trying to reclaim their memory space. The reclamation threshold
regulates the fraction of limbo slots allowed per memory block before attempting to

reclaim them. If the free function encounters a block that contains more limbo slots

104 Chapter 5. Safe manual memory management

I void free(ObjRef oref)

2|

3 // Ensure that reference is valid

4 ObjectHeader* ohead = (int*)oref.ptr;

5 if (oref.inc != ohead->inc)

6 throw new NullReferenceException();

;

8 // Get pointer to memory block and slot identifier

9 MemoryBlock* blk = MemoryBlock.GetMemoryBlock (oref.ptr);
10 int slotId = MemoryBlock.GetSlotId(blk, oref.ptr);

12 // Increment incarnation number

13 ohead->inc++;

15 // Mark slot as limbo and set removal timestamp
16 blk->slots[slotId] = ThreadContext.globalEpoch + 2;

17 blk->numLimbo++;

19 // BAdd block to reclamation queue if necessary
20 1f (blk->onReclamationQueue == false &&

21 blk->numLimbo > blk->reclamationThreshold)
22 MemManager.addToReclamationQueue (blk,

23 ThreadContext.globalEpoch + 2);
24}

Figure 5.6: Freeing an object

than specified by the reclamation threshold, the block is put on the reclamation queue
(if it is not already on there) as possible candidate for reclamation. However, the
block is only considered for reclamation after two epochs passed. This ensures that,
when reclaiming memory slots from the block, the number of limbo slots that can
be reclaimed is at least as high as the number specified by the reclamation threshold.
This allows to lazily perform memory reclamation on-demand when searching for a

memory slot to allocate a new object.

5.4. Concurrency 105

I ObjRef alloc()

2 A

3 // Check if we need to increment the global epoch

4 MemoryBlock* blk = PeekReclamationQueueHead();

5 if (blk !'= null &&

6 blk->startReclaimingEpoch > ThreadContext.globalEpoch)

7 TryIncrementEpoch();

9 // Get memory slot for object
10 AllocCtx ctx = new AllocCtx();

11 GetMemorySlot (&ctx) ;

13 // Set Slot directory to occupied
14 ctx.blk->slots[ctx.slotId] = (1 << 16);

16 // Return reference to object
17 byte* ptr = ctx.blk->data + (ctx.slotId * this.objectSize);

18 return new ObjRef () { ptr = ptr, inc = *((int*)ptr) };

Figure 5.7: Allocating a new object

5.4.2 Allocating objects

In Figures 5.7 to 5.9, we illustrate the code to allocate a memory slot for a new object.
The alloc function (Figure 5.7) first checks if the global epoch needs to be incre-
mented (line 5). This is the case if the first block in the reclamation queue and, hence,
all other blocks in the queue, cannot be reclaimed yet because its reclamation epoch is
greater than the current global epoch. Then, it finds a memory slot for the new object
by calling GetMemorySlot (line 11, code in Figure 5.9), sets the memory slot’s slot
directory entry to occupied (line 14) and finally returns a reference to the manually-
managed object (line 18) that contains a pointer to the memory slot and the incarnation
number of the object.

GetMemorySlot (Figure 5.9) calls GetMemoryBlock (Figure 5.8) to get a memory
block that may contain free or reclaimable memory slots. We only allow a single thread
to claim memory slots from a block at a time (though there can be concurrent free oper-

ations on the same block). Before using a block for allocations, the thread has to claim

106 Chapter 5. Safe manual memory management

I void GetMemoryBlock (AllocCtx* ctx)
{

[\

w

// If possible, use thread-private block
4 MemoryBlock* blk = GetThreadLocalBlock();
5 if (blk !'= null) {

6 ctx->blk = blk;

7 return;

10 // Try to claim a blk from the head of the limbo list
11 blk = ClaimBlockFromReclamationQueue () ;

12 if (blk != null) {

13 AddThreadLocalBlock (blk) ;

14 ctx->blk = blk;

15 return;

16 }

17

18 // Allocate a new memory block

19 blk = NewMemoryBlock () ;
20 AddThreadLocalBlock (blk);
21 ctx->blk = blk;

Figure 5.8: Finding a memory block for a new object

the block to prevent any other thread from using it and store it in a thread-local variable
to allow several successive allocations of the same type (or memory context) from that
block. GetMemoryBlock first checks if a thread-local block is already claimed (line 4)
and, if this is the case, returns the block. Otherwise, it checks if there is a block on the
reclamation queue that qualifies for reclamation (line 11) and, if this is the case, claims
the block and returns it. If there is no qualifying block on the reclamation queue, a
new block is allocated from unmanaged memory (line 19), claimed by the thread and
returned to the caller. Claiming a block from the reclamation queue requires synchro-
nization primitives as other threads may try the same. Claiming a block as thread-local
does not require any further synchronization mechanisms.

Memory blocks remain claimed by a thread for the cause of a single iteration

5.4. Concurrency 107

1 void GetMemorySlot (AllocCtx* ctx)
2

3 do {

4 GetMemoryBlock (ctx) ;

5 MemoryBlock* blk = ctx->blk;

6 int slotId;

7

8 // First check if there are free slots
9 if (blk->hasFreeSlots) {

10 slotId = blk->lastClaimed + 1;
11 if (slotId <= blk->lastSlot) {

12 blk->lastClaimed = slotId;

13 ctx.slotId = slotId;

14 return;

15 b}

16

17 // Otherwise check if there are limbo slots to reclaim

18 else {

19 for (slotId = blk->lastClaimed + 1; slotId <= lastSlot; slotId++) {
20 if (blk->slots[slotId] <= ThreadContext.globalEpoch) {

21 blk->lastClaimed = slotId;

22 ctx.slotld = slotld;

23 return;

24 b

25

26 // Block has no further free slots or reclaimable limbo slots
27 RemoveThreadLocalBlock () ;

28 } while (true);

Figure 5.9: Finding a memory slot for a new object

over the block’s slot directory. This iteration is spread over several successive calls
to GetMemorySlot and, hence, object allocations. The block’s 1astClaimed variable
maintains the progress of the iteration between successive allocations by storing the
slot directory position of the last slot that was considered by the previous allocation.
It is initialized to -1 when claiming a block. There are two cases for claiming mem-
ory slots: if the memory block was freshly allocated, then all allocations are from free
slots, otherwise, all allocations are from limbo slots. In the former case, all free slots

are in consecutive memory slots and, hence, GetMemorySlot always claims the slot

108 Chapter 5. Safe manual memory management

following lastClaimed and updates lastClaimed accordingly (lines 9 to 15). In the
latter case, GetMemorySlot iterates over the slots in the slot directory starting with the
slot following 1astClaimed and, for each slot, checks if the slot is a limbo slot that can
be reclaimed (lines 19 to 24), i.e., where the state code is 0 and the reclamation epoch
is smaller or equal the current global epoch. If such a slot is found, lastClaimed is
set to this slot and the slot is returned. The number of slots that need to be scanned
before finding a limbo slot that can be reclaimed depends on the reclamation thresh-
old. For instance, if blocks can host one hundred objects and are added to the queue
once they contain more than 5% limbo slots, then each allocation scans an average of
twenty slots to find a reclaimable limbo slot. The actual number is likely to be smaller
as additional removals might have happened in the meantime. If the last slot of the
block is reached without finding a slot that can be claimed, then the thread removes its
claim from the block and repeats the procedure to try to claim a memory slot from a
different block.

Instead of using epoch-based memory reclamation, we could have also used hazard
pointers [Michael, 2004] to prevent concurrency artifacts. In this case, dereferencing
manually managed objects would require the use of a hazard pointer to access the ob-
ject safely. Hazard pointers require a memory fence after assigning the reference to one
of the thread’s hazard pointers to prevent compiler and processor instruction reordering
and, hence, to enforce that the hazard pointer is set before accessing the reference. We
chose epochs over hazard pointers, because epochs allow us to amortize the cost of a
memory fence over all object accesses inside a critical section, whereas hazard pointer
require a memory fence for each individual memory access. This decision will become
more apparent when we discuss how the manual memory management system is used

to provide fast query processing for self-managed collections in Chapter 6.

5.5 Concurrent compaction

As the memory manager automatically fills empty slots with newly allocated objects,
it does not require any compaction as long as the number of objects of a type (or mem-
ory context) remains fairly stable over time. We assume that this is the common case.
However, the memory manager behaves poorly if the number of objects of a certain
type shrinks heavily. Due to a lack of garbage collection, it is not possible to compact
low-occupancy blocks because moving an object to a different memory slot requires

to atomically update all references to the object, which in turn requires suspending

5.5. Concurrent compaction 109

Reference

T inc_ Number |

Data Block

Indirection Table Block

Block Header

Inc. Number

Object Data

Freeze and Lock Bits

Figure 5.10: Accessing object data through indirection

all application processing in the meantime. Even if there are empty blocks of a cer-
tain type, they cannot be freed or reused for a different type because the application
may still hold references to the objects that were stored in the block and their incarna-
tion numbers, stored in their memory slot, are needed to ensure that these references
are interpreted as null. We address these issues by introducing indirection to object
references. Indirection is not a new concept for virtual machines. Early virtual ma-
chines, e.g., Smalltalk VMs of the 80s [Goldberg and Robson, 1983], used indirection
to translate object identifiers to virtual memory addresses to locate objects in memory.
However, indirection is no longer used in modern VMs because of the higher cost of
memory accesses compared to a direct representation.

The indirection architecture is sketched in Figure 5.10. Instead of pointing to the
object’s memory slot, object references point to indirection table entries, which in turn
point to the memory slot. The incarnation number is no longer stored in the memory
slot but moved to the indirection table entry. The indirection table is organized as
a linked list of indirection blocks, each storing a fixed number of indirection table
entries. As the size of each indirection table entry (96 bits) is independent of the
object type, we use a global indirection table to serve objects of any type. This scheme
allows empty indirection blocks and empty indirection slots to be reused by a different
type and, hence, allows the indirection table to better adapt to a shrinking number of
objects of a certain type, as their indirection table blocks and entries can be reused for
any other type. Moreover, the space wasted by dead slots (caused by an incarnation
number overflow) is limited by the size of an indirection table entry. When moving
objects to a different memory slot (e.g., as part of a compaction), the memory manager
requires access to an object’s indirection table entry from its memory slot. To allow

this, each memory block contains another consecutive memory area, referred to as

110 Chapter 5. Safe manual memory management

back-pointer in Figure 5.10, that stores pointers to the indirection table entries of all
objects stored in the memory block. As is the case for the slot directory, each element
in the back-pointer array is indexed using the corresponding memory slot’s identifier.

As shown in Figure 5.10, each data block is divided into four consecutive segments:
block header, object store, slot directory, and back-pointers. The object store contains
all object data. Each object’s data is accessible through a pointer from the correspond-
ing indirection table entry or through the identifier of the object’s slot in the memory
block. The slot directory stores the state of each slot and additional state-related in-
formation (for a total of 32 bits). The back-pointer stores a pointer to the object’s
indirection table entry. The slot directory entry and the back-pointer are accessible
using the object’s slot identifier.

The indirection table allows to move objects within and across memory blocks
(e.g., for compaction) without having to update all references held by the applica-
tion. Atomically updating the pointer in the indirection table suffices to ensure that
all threads use the new location of the object when accessing the object’s memory
slot through its indirection table entry. However, threads that already have obtained a
direct pointer to the old memory location through the indirection table may cause in-
consistencies by performing updates on an outdated memory location. As we intend to
address these inconsistencies without having to suspend all application processing (as
would be the case for garbage collection), we extend the epoch scheme described in
Section 5.4 for object relocation. We reserve the two most significant bits of the incar-
nation number in the indirection table for a frozen flag [Braginsky and Petrank, 2011]
and a lock flag. The new epoch scheme requires extending the try_increment_epoch
function (from Figure 5.5). After a thread successfully increments the global epoch, it
checks if a compaction is necessary. The global epoch cannot be incremented in the
meantime because the thread is still in a critical section using the previous epoch. If
compaction is necessary the thread sets the global nextRelocationEpoch to e+ 2 (e
is the thread-local epoch and e + 1 is the global epoch that was just incremented) and
then awakes the compaction thread. We use a separate thread for compaction to en-
sure that no application thread is blocked for the duration of the compaction. Once the
relocation epoch is set, no other but the compaction thread can increment the global
epoch until the compaction is finished (epoch e+ 3). To guarantee this, the compaction
thread is run in a critical section that uses the thread-local epoch e, which prevents all
other threads from incrementing the global epoch.

The compaction thread is active through two epochs: the freezing epoch e + 1 and

5.5. Concurrent compaction

Before:
Indirection Table Block

Freezing Epoch:
Indirection Table Block
Header

F Inc. Number

Data Block

valid

free

W Inc. Number [0 valid
AN valid

111

Relocation Epoch, Moving Phase:

Indirection Table Block

F L Inc. Number

Indirection Table Block
Header

F L Inc. Number

After:
Indirection Table Block

W Inc. Number [0

Data Block
Block Header

[| valid | |
valid
valid
valid
free

Figure 5.11: Relocating an object

Next —>
Data Block From Silot
Blo eade To Pointer
valid Status
free P
valid
\\ valid
Next —>
Data Block el -
Blo eade To Pointer
valid Status
free PP :
valid
AN valid
Next —>
Data Block From Slot |-
Block Header To Pointer
 [aid | Status
Va“d
valid
valid :
free e :

112 Chapter 5. Safe manual memory management

I void* dereference_object (ObjRef oref) {

2 if (oref.inc == oref.ptr->inc) {

3 return oref.ptr->memptr;

4 } else if (oref.inc == (oref.ptr->inc & FL_MASK)) {
5

6 // First case:

7 if (global->sectionCtx[threadID].epoch

8 != global->nextRelocationEpoch)

9 return oref.ptr—>memptr;

11 // Second case:

12 } else if (!global->inMovingPhase) {
13 bail_out_relocation (oref);

14 return oref.ptr->memptr;

15

16 // Third case:

17 } else {

18 relocate_object (oref);

19 return oref.ptr->memptr;

20 }

21 } else {

22 throw new NullReferenceException();

Figure 5.12: Handling all cases when dereferecing an object

the relocation epoch e + 2. In the freezing epoch it iterates over all blocks that need
compaction (marked by previous allocations/removals). For each block, it constructs
a list of all objects that have to be moved. For each object scheduled for relocation,
the list contains the identifier of its old memory slot and a pointer to the new memory
slot it will be moved to. This list is accessible through the block’s header. The thread
then sets the frozen bit in the indirection table entry of each slot that is scheduled to
be copied?. Once all blocks are prepared for compaction, the thread waits until all
other threads are in the freezing epoch (e + 1) and then increments the global epoch to

e + 2 to start the relocation epoch. The relocation epoch consists of two phases: the

By using a CAS operation; this requires free to also use CAS to increment incarnation numbers

5.5. Concurrent compaction 113

waiting phase, which lasts until the compaction thread observes that all other threads
are in the relocation epoch, and the moving phase that starts thereafter. While waiting,
the compaction threat continuously tries to increment the global epoch to proceed to
the moving phase. Once in the moving phase the compaction thread makes this phase
globally visible by setting a global variable to indicate that frozen objects may now be
moved. It then iterates over all blocks scheduled for compaction. For every slot to be
moved, it atomically locks the incarnation number by setting the lock bit and copies
the object to the new location, updates the pointer in the indirection table, unsets the
lock and frozen bits, and marks the relocation as successful in the block’s relocation
list. Once all scheduled relocations are done, the compaction thread increments the
global epoch to e + 3 (all threads are guaranteed to be at e 4 2 at this point), exits its
critical section to allow other threads to increment the global epoch, and goes back to
sleep. We illustrate the steps to move an object inside a memory block in Figure 5.11.

The frozen and lock flags in the incarnation number have to be dealt with when
accessing an object through a reference. If the frozen flag is not set (and, hence, also
the lock flag), then there is no risk of the object being moved in the current epoch, no
matter whether the thread is in a regular, a freezing or a relocation epoch. In this case,
it is sufficient to compare the incarnation number stored in the reference with the one in
the indirection table entry as has been the case before. If the object has not been freed
since the reference was acquired, it is safe to access the object’s memory slot. Note
that, as relocations are rare, this is the common case and there is no additional overhead
posed by possible relocations. However, if the frozen flag is set in the incarnation
number (i.e., the first incarnation number comparison fails, but a second that excludes

frozen and lock bits succeeds), there are three cases (as outlined in Figure 5.12):

(1) The thread is in the freezing epoch. There will not be any relocation in this epoch,

so it can safely access the memory slot of the object (lines 7 to 9).

(2) The thread is in the waiting phase of the relocation epoch and not all threads are in
the relocation epoch yet. A relocation might happen while the thread accesses the
object so it cannot proceed. However, it also cannot relocate the object because
not all threads are in the relocation phase so they do not expect relocations yet.
The only option is to bail out from relocating the object. To do so, the thread finds
the object’s entry in the block’s relocation list, atomically sets the lock bit in the
object’s incarnation number, then sets the status of the relocation to failed (in the

object’s relocation list entry), and finally unsets the frozen and lock bits. If the

114 Chapter 5. Safe manual memory management

lock bit has already been set by another thread, the thread spins until the lock bit
is unset and then rechecks the object’s incarnation number. Once the frozen bit is

removed, the object’s memory slot can be safely accessed (lines 12 to 14).

(3) The thread is in the moving phase of the relocation epoch and all other threads are
also in the relocation epoch. The thread again cannot proceed because the object
may be moved at any time, but it can help the compaction thread move the object to
its new location and then proceed. To do so, it finds the object’s entry in the block’s
relocation list, atomically sets the lock bit in the object’s incarnation number and
moves the object to its new location. It then sets the status of the relocation to
succeeded, and unsets the frozen and lock bits. As in the previous case, the thread
spins while the incarnation number is locked by another thread, then rechecks the
incarnation number and finally accesses the object’s memory slot once the frozen

bit is unset (lines 17 to 20).

If the object access is known to be read-only, the thread can always use the original
location of the object in the waiting phase of the relocation epoch as its memory slot
cannot be reclaimed while it is accessed. This allows the thread to proceed without
having to fail the relocation. At the same time, the read access is guaranteed to access
the most recent data while in the waiting phase and, if the relocation phase starts while
accessing the object, the most recent data at the end of the waiting phase.

When the compaction thread starts iterating over the blocks to be compacted (i.e.,
the moving phase of the relocation epoch), all failed relocations are visible so the
thread can deal with them. If necessary, it extends compaction by one additional epoch
to try all unsuccessful relocations again by adding another freezing phase at the end of
the relocation epoch and setting the following epoch to be a relocation epoch before

exiting the current relocation epoch.

Chapter 6

Self-managed collections

6.1 Introduction

In Chapter 5, we introduced a safe manual memory management system that is purpose-
build for self-managed collections (SMCs). In this chapter, we introduce self-managed
collections and show how they achieve fast query processing performance by utilizing
the manual memory management system. Many of the goals for self-managed collec-
tions remain the same as for black-box collections. We want to improve query and
application performance for query-intensive applications that store and process huge
volumes of database-like data in the memory space of the application. To achieve
this, we have to address the inefficiencies that come with LINQ-to-objects, in particular
its execution model, as described in Section 3.1 and the inefficiencies that come with
garbage collection managed data representations as outlined in Section 4.1. Compared
to black-box collections, self-managed collections are intended to allow a deeper in-
tegration of the data store and the application by storing collection data as manually
managed objects and allowing the application to directly access and modify collec-
tion objects using references. The foundations of achieving these characteristics is the
manual memory management system introduced in Chapter 5 and query compilation
to allow queries to directly operate on the memory blocks of the memory management

system rather than on some indirection data structure.

6.1.1 Collection semantics

In order to achieve our goal of fast query processing and improved scalability of query-

intensive applications that store huge volumes of data in main memory, we have to

115

116 Chapter 6. Self-managed collections

eschew garbage collection and use off-heap storage managed by a collection-specific
memory manager. The semantics of conventional collections do not allow them to
manage the lifetime of contained objects as these objects may reside outside the col-
lection or be contained in several collections at the same time. To allow self-managed
collections to manage all objects stored therein, we introduce new semantics that cou-
ple the lifetime of objects to their existence within the collection.

Self-managed collections own their objects. Objects are not created individually
by using the new keyword. Rather, they are created when they are inserted into the
collection and their lifetime ends with their removal from the collection. This accu-
rately models many use cases, as objects often are not relevant to the application once
they are removed from their host collection. Consider, for example, a collection that
stores products sold by a company. Removing a product from the products collection
usually means that the product is no longer relevant to any other part of the applica-
tion. Managed applications, on the other hand, keep objects alive so long as they are
still referenced. Object containment is inspired by the table type of relational database
systems, where removing a record from a table entirely removes the record from the
database.

The following code excerpt illustrates how the Add and Remove methods of self-

managed collections are used:

Collection<Person> persons = new Collection<Person>();
Person adam = persons.Add("Adam", 27);
/* L0 %/

persons.Remove (adam) ;

The collection’s Add method substitutes the new keyword and allocates memory for
the object, calls the object’s constructor and returns a reference to the object. As the
lifetime of each object in the collection is defined by its containment in the collection,
mapping the collection’s Add and Remove methods to the alloc and free methods
of the underlying manual memory manager is straightforward. The manual memory
management system prevents accesses to the object after it has been removed from the
collection by throwing a Nul1ReferenceException.

Self-managed collections expose bag semantics. Bags are collections of unordered
data that may contain duplicate elements. This ensures that query functions do not
need to follow a specific order when iterating over a collection’s objects which al-

lows the query function to process objects in memory order. Doing so, in combination

6.1. Introduction 117

with allocating all objects stored in the collection using a private memory context, bet-
ter exploits spatial locality and, as a result, improves query processing performance.
Iteration is assumed to be the dominant access method to self-managed collections.
Indexed access (e.g., persons [5]) is not supported; but can be manually implemented
using references. However, high enumeration performance is favoured over high per-
formance when randomly accessing self-managed objects through references.

As self-managed collections utilize the manual memory management system in-
troduced in Chapter 5, the objects stored in the collection are exposed to the same
restrictions as discussed in Section 5.2. In the following, we refer to manually man-
aged objects that are stored in self-managed collections as self-managed objects. To
allow the collection to automatically manage contained objects and provide fast enu-
meration performance, there are some additional restriction for objects stored in self-
managed collections. References contained in self-managed objects may either refer
to other manually managed objects stored in self-managed collections or ones that are
not stored in self-managed collections. As self-managed collections are intended to be
well integrated into managed runtimes and should not require the application developer
to directly deal with the manual memory management system, the latter are assumed to
be owned by the self-managed object referencing them and, hence, have the same life-
time. This implies that all referenced manually managed objects that are not contained
in self-managed collections are freed together with the self-managed object that refer-
ences them. In our case, fixed and variable-length strings are the only allowed manu-
ally managed types that may be referenced by self-managed objects but not be part of
a self-managed collection themselves. To enforce that manually managed strings have
the same lifetime as the referencing self-managed objects, each self-managed object
either references private copies of all referenced strings or it references shared copies
that are managed using reference counting. In the former case, the private copies
are automatically created in the constructor or on assignment, are automatically freed
when the referencing self-managed object is freed and their memory space is reclaimed
when the self-managed object’s memory space is reclaimed. In both cases, overwriting
an existing string reference requires adapting its lifetime first. As manually managed
strings are part of the referencing self-managed object, we do not allow the application
to hold direct references to them but, instead, access them through the self-managed
objects. Manually managed types support inheritance and implement interfaces just
as normal class types. However, self-managed collections may not be defined on base

classes or interfaces. This ensures that all objects in a collection have the same size

118 Chapter 6. Self-managed collections

and memory layout. Alternatively, self-managed collections could allow base classes
and interfaces by maintaining a separate memory context for each type implementing
or inheriting from the collection’s type. Queries then have to also iterate over all these

memory contexts to process the query.

6.1.2 Integration into the managed runtime

Self-managed collections are defined as a class library. However, their underlying man-
ual memory management system requires deeper integration into the managed runtime
as described in Section 5.2. This includes to provide self-managed collections ac-
cess to the manual memory manager’s alloc and free functions and to automatically
expand code fragments that dereference manually managed objects returned from a
self-managed collection into code fragments that access the indirection table, compare
incarnation numbers and deal with not matching incarnation numbers appropriately.
Replacing code fragments when dereferencing references to manually managed ob-
jects could either be performed in a C¥-to-C? preprocessor, the C* compiler or the JIT
compiler. In the prototype implementation of self-managed collections that is evalu-
ated in Section 6.6, the code fragments are replaced by hand. The code generator and
query compiler is implemented as a LINQ query provider as described in Section 3.3.
However, under the assumption that LINQ queries typically are statically defined in the
source code with only some query parameters (e.g., a constant in a selection predicate)
dynamically assigned, it might be preferable to use a Cf-to-C* compiler (or the C*
compiler) to automatically generate specialized query functions for LINQ queries on
self-managed collections at compile time. This would eliminate the code generation
and compilation overhead at runtime for all LINQ queries that are statically defined in

the source code.

6.2 The basic collection type

Similar to black-box collections, self-managed collections aspire to improve the per-
formance of query-intensive applications that store huge volumes of database-like data
in their memory space in two areas. First, self-managed collections improve the query
performance of language-integrated queries by using query compilation and by provid-
ing a data layout that exposes better spatial locality. Second, they improve the overall

application performance and scalability by excluding the collection’s data from the

6.2. The basic collection type 119

managed heap and, hence, the garbage collector.

Improved enumeration performance is achieved by allowing the collection to man-
age contained objects itself rather than relying on independent systems like garbage
collection. To manage contained objects, self-managed collections employ the novel
collection semantics introduced in Section 6.1.1 and the manual memory management
system as described in Chapter 5. Combining memory and collection management en-
ables the collection to place objects in memory based on the order in which the objects
are touched when enumerating over the collection’s content in a query. This improves
the locality of memory accesses during enumeration, leading to improved query per-
formance compared to iterating over the collection’s content through references in an
indirection structure that may point anywhere in the managed heap, as is the case for
conventional .NET collections. By using bag-semantics, there is no predefined enumer-
ation order on objects in self-managed collections and, hence, they can be placed in
memory in any order while still allowing queries to enumerate the collection’s content
in memory order to provide fast enumeration performance. To further improve locality,
each collection contains a private memory context that enables the collection to store
all contained objects in memory blocks private to the collection. By placing collec-
tion objects in consecutive memory locations and enumerating them in memory order,
queries on self-managed collections make better use of cache line and CPU prefetching
and reduce the likeliness of TLB misses.

When facing huge volumes of data stored in the memory space of the application,
self-managed collections improve the overall performance and scalability of the entire
application by excluding this data from garbage collection. Full garbage collections
have to scan the entire managed heap to find objects that are no longer reachable by
the application and to reclaim their memory. The duration of a full garbage collection,
therefore, depends on the size of the managed heap. Storing huge volumes of data in
the managed heap (i.e., gigabytes or even terabytes of data) can drastically increase
the duration of a full garbage collection. For non-concurrent garbage collectors that
require to suspend all application processing for the duration of the garbage collec-
tion, this has a significant negative impact on the overall application performance and
response time. As concurrent garbage collectors perform big parts of full garbage col-
lections on a background thread, they do not suffer big response time hits when facing
increasing volumes of data. However, as the background thread has to be active for a
longer period of time, increasing data volumes also affect the overall performance and

scalability of the application.

120 Chapter 6. Self-managed collections

To exclude collection data from the managed heap, self-managed collections have
to manage the memory space of contained objects themselves. The collection seman-
tics of self-managed collections, which were introduced in Section 6.1.1, allow the
collection to automatically manage the memory space of contained objects by restrict-
ing their lifetime to their containment in the collection. As a result, the collection’s
Add and Remove methods are merely wrappers around the underlying manual memory
manager’s alloc and free functions. Supplying both operation with the collection’s
private memory context is sufficient to ensure that collection objects are stored in close
proximity to improve enumeration performance. As self-managed collections expose
bag semantics, we do not need to be concerned about the order in which the mem-
ory manager places objects in the context’s memory blocks as long as the context will
allow directly enumerating over contained objects in memory order. In addition to
allocating memory for the object, the Add method calls the object’s constructor and
returns a reference to the object (referred to as Ob jRef). The Remove method calls the
free function on the supplied object reference.

Fast query processing performance is achieved through the private memory context
that each collection uses to allocate and free contained objects. The memory context
provides the collection with full access to all unmanaged memory blocks that are used
to store the objects contained in the collection. To allow our code generator to pro-
duce fast query code from LINQ queries on self-managed collection, we also provide
the generated query functions with access to the collection’s memory context. This
allows the code generator to produce query code that directly operates on the memory
blocks that store the objects contained in the collection instead of having to process
them through some means of indirection, as is the case for managed collections. Do-
ing so improves query performance by iterating over the collection’s objects in their
memory order and, therefore, better exploiting spatial locality. As all data is stored in
unmanaged memory, query performance can be further improved by accessing collec-
tion objects using C-style pointers and using query-specific memory management for
intermediate query data as discussed in Chapter 4. The following outlines the gener-
ated code for a simple compiled query that enumerates over all objects in the collection
by iterating over all valid slots in all blocks in the collection’s memory context, check-

ing a predicate on the age field, and returning references to all qualifying objects:

enter_critical_section();
foreach (Block* blk in persons.GetMemoryContext ())

foreach (Slot i in Dblk)

6.2. The basic collection type 121

if (blk->slots[i] == VALID)
if (blk->data[i].age > 50)
yvield new ObJjRef { ptr = blk->backptr[il],
inc = blk->backptr[i]->inc };

exit_critical_section();

The query uses the memory block’s slot directory blk->slots to check whether the
corresponding memory slot is occupied (in contrast to a free or limbo slot). As the
slot directory is stored in a consecutive memory area inside each block, separate from
the memory area that stores object data, and its elements are only four bytes wide,
it is fairly cheap to iterate over the slot directory to check for valid slots. The query
touches the object’s data only if the slot is valid. If the slot also satisfies the selection
predicate, the query returns a reference to the object. To do so, it uses the back-pointer
field blk->backptr to obtain a pointer to the corresponding indirection table entry.
The reference contains this pointer and the current incarnation number of the object
to ensure that the memory slot can safely be reclaimed once the object is removed
from the collection. To generate code for more complex queries we follow a similar
strategy as described in the previous chapters and utilized in other query compilation
approaches, e.g., [Krikellas et al., 2010, Murray et al., 2011, Neumann, 2011].

As the generated query code directly accesses the memory slots of collection ob-
jects, it is imperative that the accessed objects cannot be removed from the collection
and their memory slot reclaimed while accessing the object. To ensure this, all direct
access to memory slots have to be in critical sections. This not only applies to accessing
objects in the primary collection(s) of the query, i.e., the one(s) that the query enumer-
ates over, but also objects in other self-managed collections that the query accesses
by following references from objects stored in the primary collection(s). To amortize
the cost of entering and exiting a critical section around each object access, the query
remains in the same critical section either for its entire duration, or for the duration of
processing a single memory block. The query compiler chooses the desired granular-
ity for each query based on the requirements of the query. Staying in the same critical
section for the duration of the query allows to generate code that stores direct pointers
to memory slots of collection objects in intermediate results and data structures. Other-
wise the query may only use object references (Ob jRe£). However, it also increases the
time until the memory manager can increase the global epoch to reclaim limbo slots.
As LINQ queries are lazily evaluated, we enforce that critical sections are exited before

a result object is returned and, hence, control is returned to the application. Since most

122 Chapter 6. Self-managed collections

queries contain several blocking operations (e.g., aggregation or sorting), most of the
query processing can still be performed in a single critical sections. Whether objects
that are concurrently added or removed from the collection are reflected in the query’s
result depends on the order in which the query accesses the objects and the concurrent
operation modifies the slot directory (if the object is part of a primary collection of the
query) or reference / incarnation number (if the object is part of a secondary collec-
tion and was reached through a reference). Note that self-managed collections use a
lower isolation level than typical database systems, but comparable to other managed

collections. Supporting more restrictive isolation levels is not the focus of this work.

6.3 Concurrent compaction

Common uses of self-managed collections do not cause them to shrink significantly;
they stay at a stable size or steadily grow. But in the case of rapid shrinkage, we use the
relocation technique outlined in Section 5.5 to ensure that all memory accesses through
references remain correct. However, the memory management system of Section 5.5
does not guard against queries directly accessing memory slots through enumeration
while some blocks of the collection are being compacted concurrently. This may result
in inconsistencies where the query misses some objects because they are concurrently
being relocated or includes them twice. To prevent this, the compaction scheme of
Section 5.5 has to be adapted to also ensure consistent object accesses from queries
directly iterating over the memory slots of the collection.

As a first step to avoid inconsistencies in queries that are (partially) evaluated dur-
ing a relocation epoch, we refine the relation between memory blocks that take part in
a relocation. Relocations are triggered by a shrinking number of objects in a collec-
tion and serve to improve the memory footprint of the collection by moving objects
from some of the low-occupancy blocks to other low-occupancy blocks and, thereby,
emptying the former and allowing them to be reclaimed. If, for example, relocation
is only triggered once a certain number of blocks have over a threshold, say 33%, of
unreclaimed memory slots, then compaction can free one out of three blocks by mov-
ing all objects stored in one of the block to the other two. As this scheme results in a
small number of blocks that exchange objects with one another, we define compaction
groups where each group only contains blocks that exchange objects with each other
in the current compaction. In our example, each group contains three memory blocks.

Using compaction groups reduces the problem of having to prevent inconsistencies

6.3. Concurrent compaction 123

caused by relocations while processing a query to only having to prevent inconsisten-
cies while processing the blocks contained in a compaction group. To allow the query
to process blocks in the same compaction group together, we add a pointer field to the
memory block header that states whether the block is part of a compaction group and,
if it is, what compaction group the block is in.

As long as a thread is outside a relocation epoch while processing the blocks of
the same compaction group, it can access their content as per usual without fear of
inconsistent accesses due to concurrent relocations as relocations cannot start until all
threads are in the relocation epoch. To ensure this, all blocks of a compaction group are
processed in the same thread-local epoch. However, as soon as the compaction group
is processed in the relocation epoch, the query has to ensure that concurrent relocations
cannot cause inconsistencies. If a query starts processing the blocks of a group in the
relocation epoch, we process them differently dependent on whether processing starts
during the waiting or the moving phase. In the latter case, the query first performs
all relocations in the compaction group and only then processes the entire group using
the new locations of all contained objects, hence, processing the objects in their post-
relocation memory order.

When we encounter a block that is part of a compaction group while we are in
the waiting phase of the relocation epoch, we cannot start the relocation because other
threads may still be in the previous epoch and, hence, do not expect relocations. In
this case, we put the compaction group on a list of groups that still have to be pro-
cessed, if it is not already on there, and continue the iteration with the next block.
After all blocks that do not require compaction are processed, we start processing the
compaction groups. If the moving phase has already started, we relocate all objects
in a group and then process them in the post-relocation order. Otherwise, we have to
process the objects without first relocating them based on their order before perform-
ing the relocation. However, processing the compaction group as usual would cause
inconsistencies because relocations can start at any time and modify the slot directory,
thereby preventing us from using the pre-relocation order. For this reason, queries that
start processing a compaction group in the waiting phase of the relocation epoch have
to atomically increment the query counter in the compaction group before processing
the group and decrement it after they finished processing it. Any relocations performed
in the compaction group have to wait for the counter to become zero. Note that relo-
cations only occur in the moving phase of the relocation epoch and, hence, once a

relocation waits for the query counter of a compaction group to become zero, there are

124 Chapter 6. Self-managed collections

no more queries incrementing it. This makes the starvation of the relocation thread
impossible. The impact of compaction on query performance can be assumed to be
minimal as all overhead is amortized over all objects in a compaction group. Note that,
in contrast to garbage collections, compactions are assumed to be very rare and, when
they occur, they typically only have to scan the blocks that require compaction (i.e.,
under-populated blocks) of a single collection. The consistency of memory accesses
when following references between self-managed objects during query processing is
already ensured by the relocation scheme as described in Section 5.5.

As LINQ queries are lazily evaluated, it is possible that a query processes part of a
compaction group, returns an object from the group to the application and then stops
processing the query, e.g., using a break or return statement. In this case, the query
would not decrement the query counter in the compaction group and, hence, infinitely
stall any thread attempting to relocate objects in the group. To prevent this, we store
the current compaction group in a thread local variable before returning control to
the application. Furthermore, we automatically modify the code in the loop over the
query result that exits query evaluation early to first decrement the query counter of
the compaction group stored in the thread-local variable (if any). In addition, we limit
the time that an application thread has to wait for a query to decrement the compaction
group counter before it can relocate an object to ensure that the response time of the
application stays within bounds. As soon as the relocation surpasses this limit, the

thread bails out of relocating the objects as described in Section 5.5.

6.4 Direct pointer

Compared to managed collections, self-managed collections exhibit a higher cost when
following references to related objects because self-managed collections have to look
up the pointer of the related object in the indirection table. For queries that require fol-
lowing references from objects in the primary collection(s), this cost may adversely af-
fect the query performance compared to that of managed collections. For self-managed
collections, each dereferencing not only has to check incarnation numbers, but, more
importantly, it also has to pay for an additional (random) memory access to the indi-
rection table. We now provide an alternative implementation that solves this problem.
We keep indirection for all external references, i.e., references held by the application
or managed objects, but, for references between self-managed collections, we store

the direct pointer to the corresponding memory slot. To be able to check incarnation

6.4. Direct pointer 125

Data Block (Order)
Data Block (Order) D ome Price
Inc.

ptr

ID Customer @ Price

ptr

Data Block (Customer)

Data Block (Customer) Indirection Block Back Ptr.

Indirection Block Back Ptr.
ptr > ptr
> ptr
[T inc | [T inc_|
Customer Reference Customer Reference
(a) Direct pointer (b) Indirect pointer

Figure 6.1: External and internal pointer representations

numbers in both cases, the incarnation number of a memory slot is moved back into
the memory slot (object header) instead of the indirection table. In Figure 6.1, we
illustrate the new layout and compare it with the indirection based layout used pre-
ciously. The new layout allows queries to directly access referenced objects instead of
having to rely on indirection and, hence, improves the query performance for queries
that access several self-managed collections by following references from the primary
collection(s).

However, when relocating an object, the new memory location of the object has to
be updated in the indirection table as well as in all self-managed objects that reference
it, which is no longer an atomic operation. We address this by adding a third flag
to the incarnation number, the forwarding flag. The forwarding flag instructs to use
the object’s new memory slot instead of the one that has been reached by following
the reference. To access the new memory slot of the object, the thread has to use its
back-pointer to obtain a pointer to its indirection table entry and then access it to get a
pointer to the new memory slot of the object.

Relocating an object, independent of whether the relocation is performed by the
compaction thread or an application thread that encountered a frozen incarnation num-
ber in the moving phase of the relocation epoch, is mostly performed as described in
Section 5.5. Figure 6.2 illustrates the relocation process. The only difference is that the

thread performing the relocation now sets the forwarding bit in the incarnation number

126 Chapter 6. Self-managed collections

After freeze phase:

M new location
’_\w old location
Relocation step I:

M new location

old location

A

Relocation step I

->_—>~ new location
=hﬂm old location

->_—>~ new location
*M old location

After relocation:

After access through direct pointer:

new location

hﬂ-__ old location

Figure 6.2: Handling relocation with direct pointers

L L0 L0 L O

when unsetting the frozen and lock bits after finishing the relocation. Note that, by
the time the forwarding flag is set, the relocation is already completed and the new
memory location of the object is the only valid one. At this time, it is impossible for
accesses through external (i.e., indirect) references to reach the old memory location
of the object as the memory slot is accessed through indirection and the indirection
table entry already points to the new location of the object. However, direct pointers
still point to the old locations.

When following a direct pointer to such a memory slot, then the first incarnation
number comparison will fail because the forwarding bit is set, but a second one that
excludes the forwarding flag succeeds (i.e., the forwarding flag is set and incarnation
numbers match). If this is the case, the thread uses the back-pointer to obtain a pointer
to the object’s indirection table entry and proceeds with the pointer to the new mem-

ory slot of the object stored in the indirection table entry. Threads that follow a direct

6.4. Direct pointer 127

pointer to a memory slot that have the forwarding flag set, automatically update the
pointer they have followed to point to the new memory slot of the object to improve the
performance of future accesses through the same pointer. This is illustrated in the last
step of Figure 6.2. Note that any additional overhead is only exposed on objects that
have been relocated and, hence, have the forwarding flag set. There is no additional
performance cost outside relocations. The extra checks for handling the forwarding
flag are performed whenever following a reference between two self-managed objects
and the incarnation number comparison fails. This applies to automatically generated
query code as well as reference accesses between self-managed objects in the appli-
cation itself. In the latter case, the JIT-compiler must automatically add the required
incarnation number checks. Queries iterating over their primary memory blocks are not
affected by direct pointers and, hence, the strategy to handle concurrent compactions,
as discussed in Section 6.3, remains unaffected as well. For queries that follow direct
pointers to secondary collections, the code generator includes the code to perform the
necessary incarnation number checks and handle relocations.

Memory slots that have the forwarding flag set cannot be reclaimed because there
may still be direct pointers to them. Even incrementally updating all pointers encoun-
tered during query processing to their new memory slot does not allow to reclaim the
old memory slot as there may still be other pointers to them. As we cannot allow these
slots to accumulate infinitely, wasting memory space and fragmenting object storage,
we have to deal with them regularly. We use the compaction thread to deal with them
in the background after the compaction is finished and the reclamation epoch ended.
As direct pointers are only used between self-managed objects, the compaction thread
can update all direct pointers by enumerating over each self-managed collection and
for each reference in the object, check if the pointer is pointing to a memory slot that
has the forwarding flag set and, if this is the case, update the pointer to the new mem-
ory slot. As compaction is usually performed one collection at a time and, for each
self-managed type, it is known at compile time what self-managed types reference it,
it is not necessary to scan all self-managed collections. Instead, it is sufficient to only
scan the ones that store types that reference the type of the collection that has been
compacted. Furthermore, only the references to that type have to be checked and up-
dated. As all of this information is known at compile time, we automatically generate
compaction functions for each type in a C*-to-C* compiler. After the relocation phase,
the compaction thread then executes the functions generated for the type stored in the

collection that has been compacted on all self-managed collections that contain direct-

128 Chapter 6. Self-managed collections

pointers that could have been affected by the compaction. The compaction thread does
not have to suspend any application processing while updating direct pointers in a col-
lection.

Until they are dealt with, we have to prevent old object slots from becoming poten-
tial reclamation candidates. When an object is relocated, instead of turning its object
slot into a regular limbo slot, as was the case for the compaction strategy presented in
Section 5.5, the memory slot is turned into a limbo slot with the maximum removal
timestamp. The latter is reserved only for this purpose and not reachable otherwise
and does not count towards the memory block’s reclamation threshold. Once the com-
paction thread has updated all pointers, the removal timestamp is set to the correct
removal epoch. In this case, it is two epochs after the relocation epoch as this was the

last epoch that threads could have accessed the object’s data.

6.5 Columnar storage

In Section 4.5, we have shown that, for black-box collections, replacing row-wise stor-
age with a columnar layout can improve query evaluation performance. Columnar
storage in black-box collections was enabled by decoupling the object-oriented type
representing the data stored in the collection with the layout the data was actually
stored in the collection’s data store and making the code generator aware of the col-
lections internal data layout. The same is also possible for self-managed collections;

however, it requires the following two changes to the system:

e As manually managed objects in columnar self-managed collections are stored
in a vertically decomposed layout, the JIT compiler has to be aware of this layout

and inject the corresponding code to access columnar data.

e The code generator has to be aware of the columnar data layout and also has to
generate code that iterates over the columnar data and follows references in a

columnar-aware manner.

In order to require as little change as possible to the manual memory management
system and to self-managed collections, we do not use traditional columnar storage for
self-managed collections, but instead employ PAX. Employing PAX allows us to iden-
tify every self-managed object by the identifier of its memory block and its memory
slot in that block. Both identifier are identical to the ones in a row-wise data layout,

but each memory block is divided into several consecutive memory areas that each

6.6. Evaluation 129

represent a column and allow access to the object’s fields by casting the memory area
to an array and then using the objects slot identifier to index this array, as was the
case for the slot directory and back-pointer before. To adapt the memory manager and
self-managed collections for columnar storage, we have to replace the pointer to the
object’s memory slot that is stored in the indirection table with the object’s block and
slot identifier. This is necessary because there is no single pointer to the object’s data
anymore, but one for each field (column). To access the data of an object, we look up
its memory block using an array of memory blocks indexed by their block identifier,
and then use the slot identifier to find the position of the value in its column. The
memory areas that store columns are reachable by a constant offset in the data section

of each memory block.

6.6 Evaluation

We now evaluate a prototype of self-managed collections (SMCs) implemented in CF.
Our prototype is not integrated into the managed runtime as proposed in Section 6.1,
but instead implemented as a library using unsafe C? code. As we did not change the
JIT-compiler to automatically inject the code for correctly dereferencing references to
self-managed objects, we have to add this code by hand when accessing self-managed
objects outside the generated query code. The generated code automatically adds these
checks in unsafe Cf code.

As before, our benchmarks are based on the TPC-H benchmark. Self-managed col-
lections store data elements as manually-managed objects which could use a reference-
based or join-based data representation. However, as the support for references are the
major difference between self-managed and black-box collection and the reference-
based representation embodies typical object-oriented design, we only test self-managed
collections using this representation.

So far, we only compared our approaches against C*’s .i st <> collection type.
From our experience, L1 st <> is the best performing collection type that ships with C¥.
However, this comparison is no longer fair when it comes to self-managed collections.
Self-managed collections are inherently thread-safe when adding or removing objects.
This is not the case for List<T> or most of the default collection types that ship with
C!. For these collection types, it is up to the programmer to ensure that the collection
is used in a thread-safe manner when utilizing multiple application threads. For this

reason, we also compare self-managed collections to some of the thread-safe collection

130 Chapter 6. Self-managed collections

1.1 T T T T

allocation / removal performance total memory size -------
query performance

0.9

07 | .

Normalized measurements
o
oo
T
1

0.5 I I I I
0 20 40 60 80 100

Relocation threshold (in %)

Figure 6.3: Performance characteristics of self-managed collections when varying a
memory block’s relocation threshold. Measurements normalized to their maximum
value with the exception of the allocation / removal performance which is normalized

to a 1% relocation threshold to improve readability

types that ship with C!. However, the choice of thread-safe collection types in C? is
limited and only ConcurrentBag<T> and ConcurrentDictionary<TKey, TValue>
provide comparable functionality. However, the former does not allow the removal of
specific objects.

As some of the experiments presented here highlight the weaknesses of storing
database-like collections in a memory space managed by automatic garbage collec-
tion, we first have a look at the configuration options available. .NET supports two
garbage collection modes: workstation and server. Both modes support either interac-
tive (concurrent) or batch (non-concurrent) garbage collections. In our tests the server
modes consistently outperformed the workstation ones, so we only report results for

the server mode and only report both concurrency settings if their results differ.

6.6.1 Sensitivity to relocation threshold

In Section 5.4, we introduced the relocation threshold. 1t specifies the percentage of
memory slots in a data block that may be occupied by limbo slots before the system
adds the block to the reclamation queue to initiate their reclamation. The actual recla-
mation is then performed by the allocation function once at least two epochs have
passed to ensure that at least as many limbo slots as specified by the threshold can be
safely reclaimed. Varying this threshold affects the memory size, the cost of memory

operations and the query performance of self-managed collections. In Figure 6.3, we

6.6. Evaluation 131

25

T T T
Pure allocation (interactive) C. Dictionary (interactive) I
Pure allocation (batch) BEX=a C. Dictionary (batch) &z
C. Bag (interactive) ——3 SMC (any) =3
20 | C. Bag (batch) ===—1 - -

IRRRRK

9
hal

Allocations per second (in millions)

K

N/
KKK

X0

Y

1 Thread 2 Threads 4 Threads

Figure 6.4: Batch allocation throughput

show how these factors change when varying the threshold. The measurements are
normalized to their maximum values with the exception of the allocation / removal
performance which is normalized to a 1% relocation threshold to improve readability.
As the percentage of unused limbo slots grows, so does the memory footprint of the
collection. The cost of performing memory operations (i.e., insertions and removals)
slowly decreases with an increasing threshold as allocations have to scan less mem-
ory slots to find a slot that can be reclaimed. Query performance seems to be less
dependent on the additional slot directory entries that have to be processed with an
increasing threshold, but more on the branch misprediction penalties when verifying
if the slot is occupied. At a 50% threshold, the branch predictor has the most trouble
to correctly predict if the slot is occupied. Based on the results of Figure 6.3, we will
use a 5% threshold for the following experiments. For a 5% threshold, the memory
requirements of self-managed collections are comparable to that of storing managed

objects in List<T>.

6.6.2 Evaluating collection primitives

In Figure 6.4, we compare the throughput (in objects per second) of allocating 1ineitem
objects (using the default constructor) in an SMC to the pure allocation throughput of
managed objects in .NET' and the throughput of allocating managed objects and adding
them to a concurrent collection. For managed allocations we report the throughput for
interactive and batch garbage collection; the latter consistently provides better per-

formance. SMCs perform significantly better than both managed collections and even

"We use pre-allocated, thread-local arrays to prevent objects from being garbage collected.

132 Chapter 6. Self-managed collections

18 T T T
List

16 C. Dictionary EX=Xa 4
sSMC ==

Streams per minute

. = 1

1 Thread 2 Threads 4 Threads

Figure 6.5: Combined throughput of both refresh streams

better than the pure allocation cost of managed objects. All objects remain reachable
so the runtime performs numerous garbage collections, with many of them stopping
all other application threads, to copy objects from younger to older generations. SMCs
allocate from (previously unused) thread-local blocks, which reduces the synchroniza-
tion overhead of multiple allocation threads to about one atomic operation per 10k
lineitem allocations.

To measure the throughput of memory operations we use an adapted version of
TPC-H’s refresh streams. Each thread continuously runs one of two kinds of streams
with the same frequency. The first stream type creates and adds lineitem objects
(0.1% of the initial population) to the 1ineitem collection. The second stream type
enumerates all elements in the 1ineitem collection and removes 0.1% of the initial
population based on a predicate on the object’s orderkey value. All 0.1% objects
to delete are provided in a hash map and removed in a single enumeration over the
collection. This benchmark represents a common use case of refreshing the data
stored in self-managed collections. In Figure 6.5, we report the stream throughput
(in streams per minute) for SMCs against ConcurrentDictionary<TKey, TValue>;
ConcurrentBag<T> is not included because it does not support the removal of specific
elements. SMCs perform better than both types of managed collections in all cases.

Out of the two garbage collection settings reported in Figure 6.4, the (non-concurrent)
batch mode provides the higher throughput. In other garbage collection intensive
benchmarks, we found the batch mode to enable a several times higher throughput.
However, the higher throughput comes at a price: response time. Where concurrent
collectors (interactive) can perform big parts of the garbage collection on a background

thread without pausing all application threads, non-concurrent collectors have to pause

6.6. Evaluation 133

4000

T T
Managed (batch) —d—
3500 | Self-managed (batch)
Managed (interactive) —yé—
Self-managed (interactive) —@—

3000

2500

2000

1500

1000

Longest thread timeout (in ms)

500

5 10 15 20 25 30 35
Collection size (in number of lineitem objects)

Figure 6.6: Timeouts caused by garbage collection

all threads for the entire duration of the collection. As the size of the managed heap
grows, so does the duration of full garbage collections and, hence, the application’s
maximum response time. To illustrate this, we insert a number of objects into a collec-
tion, either managed or self-managed, and then start two threads in parallel. The first
thread continuously allocates managed objects with varying lifetimes and the second
continuously sleeps for one millisecond and measures the time that passed in the mean-
time. If it observes that significantly more time has passed than expected, it records the
value as it most likely was caused by garbage collection triggered by the other thread.
We show the maximum timeout measured for a varying number of objects stored in
the collection in Figure 6.6. For non-concurrent garbage collection, the maximum
timeout increases with a growing number of objects stored in a managed collection,
but remains fairly stable when these objects are stored in a SMC instead. It shows
that the duration of garbage collections increases with growing data volumes stored in
the managed heap. In the batch mode this negatively impacts the responsiveness of
the application; in the interactive mode, it negatively impacts the overall application
performance as the background collection thread steals processing resources from the
application. In both cases, using SMCs improves the scaling when facing an increasing

data volume.

6.6.3 Enumeration and query performance

We first report the pure enumeration performance of self-managed collections before
considering more complex queries. Our queries either: (a) enumerate the 1ineitem

collection and perform a simple function on each object to ensure that all 1ineitem

134 Chapter 6. Self-managed collections

3500 T T
— List (fresh) =
7 List (worn) EX=Xa
3000 |- C. Bag (fresh) —3
C. Bag (worn) E==—~<1
C. Dictionary (fresh) mmmm
% 2500 __| C. Dictionary (worn) EZZZZa
£ SMC (fresh) =23
® SMC (worn) EXXZXx
E 2000 N 7 SMC (direct, fresh) =3
'Z SMC (direct, worn) ===
o
% 1500 - T
=
[
>
w1000 'E?' b
500 :E: &% .
0 Ry 124 *
Simple enumeration Nested enumeration

Figure 6.7: Enumeration performance

objects are accessed (simple enumeration); or (») enumerate the 1ineitem collection,
and for each object follow the order reference to a customer object and perform a
simple function on the latter to ensure that customer objects are also accessed (nested
enumeration). Query performance deteriorates over time as objects are added and re-
moved from the collection. In managed collections, objects may end up scattered all
over the managed heap, whereas in SMCs the blocks containing objects may have holes
due to limbo slots. In Figure 6.7 we show the performance of both query types after
the collections are freshly loaded (fresh) and after the collections have undergone nu-
merous (typically three times the number of objects in the collection) removals and
insertions of new objects (worn). Each removal and insertion step removes a ran-
dom object from the collection, creates a new object that is a copy of the removed
object and then adds the newly created object to the collection. SMCs (indirect) outper-
form all automatically managed collections. However, when performing nested object
accesses, the difference with 1.1st<T> diminishes because of the additional memory
access required by the indirection step when following self-managed references. By
utilizing the direct pointers of Section 6.4, we can bypass this look-up and improve
performance. When comparing the fresh and worn states, SMCs only lose performance
under nested accesses, whereas managed collections exhibit reduced enumeration per-
formance in both cases. As ConcurrentDictionary<TKey, TValue> is the best per-
forming thread-safe managed collection, we exclude ConcurrentBag<T> in what fol-
lows.

In Figure 6.8, we show the performance of the first six TPC-H queries. For managed
collections, we report the query performance of compiled C* code on the reference-

based data representation. We report on two versions of compiled code for SMCs:

6.6. Evaluation 135

250 - " List oo ' SMC I(C#) —3
C. Dictionary EX=1 SMC (unsafe C#) ==—s1

150 -

100 -

Evaluation time relative to List

50 |-

o BN

Query 1 Query 2 Query 3 Query 4 Query 5 Query 6

Figure 6.8: TPC-H Queries 1 to 6

(a) Compiled C* code that, other than the enumeration code, is equivalent to the code
used for managed collections. This illustrates the fraction of the overall improvement
contributed by the better enumeration performance of SMcs. (b) Compiled unsafe C*
code that contains optimizations only possible on SMCs. One such optimization is to
use direct pointers to primitive types in an object (e.g., decimal values) as arguments
to functions that operate on them (e.g., addition). For managed objects, these functions
have to be called by value as the garbage collector may move the object inside the man-
aged heap at any time without notice and, hence, the pointer would become invalid.
Another optimization is to use memory regions [Gay and Aiken, 1998] for all interme-
diate data during query processing, which improves performance by excluding those
intermediates from garbage collection. In Figure 6.8, we report the query process-
ing performance relative to the performance of List<T>. SMCs perform significantly
better than ConcurrentDictionary<TKey, TValue>, the fastest competing thread-
safe collection in .NET; and even between 47% and 80% better than L.ist<T>. For all
queries, storing data in self-managed collections rather than as objects in the managed
heap significantly improves query performance, even if only compiling (safe) C* code.
Similarly to what has been the case for black-box collections, this performance benefit
1s mostly caused by the more cache and prefetching efficient data layout. Enumera-
tions on the primary collection(s) access objects in the order in which they are stored in
memory and successively accessed objects are (mostly) stored in consecutive memory
locations. However, this is not the case when following references to objects stored in
secondary collections. In this case memory accesses are randomly, but in most real-
world applications (as is the case for the TPC-H data set), there is still some locality

when following references. On top of the performance benefits caused by the data

136 Chapter 6. Self-managed collections

SMC (Idirect) IZZZ:II I SMC (columlnar) —
100 B
%%
KX <
e (X2 [
% <X <X
(&) [X [X3
g e 1% < -
2% % S
EE o &
=2 1% &
gg oo 1% & 1
S% R b
32 1% 5
> %% [
oo 40 <X] <N i
E S X
w [0 [X
© <X] %%
e R
» [X 4
20 '004
s
. %

Query 1 Query 2 Query 3 Query 4 Total
Figure 6.9: Direct pointer and columnar storage
140 | _LINQ == Black-box collection E==3 |
Compiled C# EX=Xa Self-managed collection I

Buffered (unsafe C#) —=3
120 T

100

80 |- L

60 |-

40

Evaluation time relative to LINQ

\m

Query 1 Query 2 Query 3

Figure 6.10: Query performance of TPC-H queries 1 to 3

layout of self-managed collections, query 1 again benefits greatly from having direct
pointer access to the data objects when performing decimal computations.

In Figure 6.9, we show the impact of the direct pointer optimization introduced in
Section 6.4 and columnar storage as discussed in Section 6.5. Direct pointer moder-
ately improve query performance for queries that contain joins, in particular for query
5, by reducing the additional random memory access that has to be payed when access-
ing related objects through references. Columnar storage (also using direct pointers)
shows further improvements similar to what has been the case for black-box collec-
tions by better utilizing the memory read from main memory into the CPU. Note that,
in contrast to the columnar implementation for black-box collections, we rather use a
PAX-like [Ailamaki et al., 2001] layout to represent columnar data than a pure colum-
nar layout. PAX layouts do not vertically partition the entire table, but instead only

vertically partition the data elements within the same memory block.

6.7. Related work 137

120 | LINQ o Black-box collection E==1 |
Compiled C# EX=Xa Self-managed collection I
o Buffered (unsafe C#) —=3
Z 100 E
L
[}
5 or 20 1
= <
I o L 7
= < <6
KX [X0
2 L [X KX i
g 0 R <6
=] [X0
S [X <X
5 1S K
w 20 KX [X i
o 2
b 5
KRS 5
0 [!
Query 4 Query 5 Query 6 Total

Figure 6.11: Query performance of TPC-H queries 4 to 6

In Figures 6.10 and 6.11, we compare the direct pointer version of the same six
queries with the best performing approaches presented in previous chapters. Other than
for black-box collections which inherently rely on a join-based data representation, all
reported results rely on a referenced-based representation. Of the approaches presented
in this thesis, self-managed collections provide the best querying performance. They
feature the advantages of black-box collections, but as all data elements are objects,
they allow accessing related elements through references which improves the query

performance of join-heavy queries.

6.7 Related work

6.7.1 Object-oriented databases

As self-managed objects store object-oriented data in a database-inspired storage layer,
they share some common characteristics with object-oriented databases (OODBMSS).
OODBMSs gained traction in the 80s and early 90s. They were intended to address the
needs of an emerging class of non-traditional application areas [Carey et al., 1986].
These areas include computer aided technologies (e.g., CAD or CAM), multimedia ap-
plications or artificial intelligence systems. The main requirements posed by these
emerging applications were persistence of object-oriented data with transactional con-
sistency guarantees and support for accessing older versions of object-oriented data.
[Zand et al., 1995] compare features and implementation details of the major commer-
cial and research OODBMSs that existed at the time. In the following, we will have a

closer look at some of these object-oriented database systems to illustrate the similari-

138 Chapter 6. Self-managed collections

ties and differences between them and self-managed collections.

Object-oriented data cannot be represented on disk in the same way as it is in
memory because references between nested objects in memory are implemented by
pointer to virtual memory addresses whereas the same is not possible for disk ad-
dresses. OODBMSs typically maintain unique object identifier (OID) for all persistent
objects. References to nested objects are implemented by storing the referenced ob-
ject’s OID. Some systems use logical surrogates for OIDs, e.g., [Kim et al., 1990] uses
the pair <class identifier, instance identifier>, others use physical surro-
gates, e.g., [Carey et al., 1986] use the pair <disk page number, slot number>.
Because of this difference in memory and disk representation of object-oriented data,
many OODBMSs manage objects in two different formats, a disk format and an in-
memory format, e.g., [Kim et al., 1990]. Objects are fetched from persistent storage
based on their OID. Most systems using logical surrogates maintain some form of ta-
ble that contains information on what objects are in the buffer pool. Objects that are
not in the buffer pool are fetched from physical storage. Some systems prevent reusing
OIDs to handle dangling references, e.g., [Hornick and Zdonik, 1987].

The ORION database system [Kim et al., 1990] divides the buffer pool of the database
into a page buffer and an object buffer. The page buffer is managed at the disk page
level and stores objects in the disk format. The object buffer stores objects in their
in-memory format. When the application accesses an object, the storage manager is
responsible to bring the page that contains the object into memory and copy it into the
in-memory format of the object buffer. The application directly interacts with objects
in the object buffer pool through calls using an object’s unique OID. The transaction
manager feature ensures consistency of accesses to these objects. Instances of the same
class are clustered in physical storage. Queries are defined against a single target class,
but also allows nested access to referenced objects of other classes.

The ODE object database [Agrawal and Gehani, 1989] is built on the database pro-
gramming language O++, which is based on C++. O++ extends C++ by adding the
option to create persistent objects in a similar manner as volatile C++ objects are cre-
ated. Instead of pointers, persistent objects are referenced using their unique identi-
fier. Pointers to persistent objects can only refer to other persistent objects and pointer
to volatile objects can only refer to other volatile objects. Objects of the same type
are clustered together in physical storage and subclusters can be manually defined to
further refine the clustering. Queries are processed in for loops over clusters or sub-

clusters that provide integrated query syntax to evaluate predicates and to define an

6.7. Related work 139

order.

EXODUS [Carey et al., 1986] provides software tools to facilitate the semi-automatic
generation of application-specific database systems. The storage layer handles data
elements unaware of their object-oriented representation. Storage objects are uninter-
preted variable-length byte sequences. Database consistency is provided at this level.
The custom database code of the system is written in the database programming lan-
guage E, which is based on C. E provides support for persistent objects and allows the
database engineer to handle them like regular objects. The E compiler is responsible to
add the relevant code to bring the required data of the persistent objects into memory
buffers and ensure database consistency. The E compiler translates E code into C code.
The storage manager improves query performance by accepting performance-related
hints, e.g., to place a new objects in close proximity to a specific existing object. File
objects, which are collections of persistent objects, are used to group objects together.
This allows queries to iterate over them and the storage manager to cluster them in
physical storage by placing all objects in disk pages allocated to a file. Files may
only contain objects of a single class, however, this also includes inherited classes.
ENCORE/ObServer [Hornick and Zdonik, 1987] also uses a typeless back-end that is
responsible for managing the persistent object store.

The object-oriented database systems described in this section share some com-
mon characteristics with self-managed collections. The main similarity is that both
systems handle a duality of storage types. In OODBMSs, the duality refers to volatile
and persistent objects whereas for self-managed collections it refers to automatic and
self-managed objects. OODBMSs that provide deep integration with the application
such as ODE [Agrawal and Gehani, 1989] also use a compiler to automatically address
the duality by adding the required code. On top of this, the indirection table exhibits
similarities to the table used in OODBMSs to map logical OIDs to physical storage. Fi-
nally, OODBMSs reduce the cost of disk accesses by clustering related data together.
However, self-managed collections are built for a different purpose. Instead of pro-
viding persistence, transaction consistency and object versioning in the presence of
multiple clients, they are designed to improve query processing performance inside a

single application.

Chapter 7
Conclusion and discussion

The previous chapters have presented several strategies to process data in the memory
space of a managed application. We started off by having a look at the execution
model of LINQ-to-objects and recognized that it exhibits similar inefficiencies to the
volcano iterator model used in traditional relational database systems. To address these
inefficiencies, we leveraged query compilation techniques similar to those that have
been proposed in the database community to eliminate these inefficiencies as discussed
in Chapter 3. Our experiments showed improvements in query evaluation performance
compared to LINQ-to-objects of up to a factor of three. However, we also identified
additional inefficiencies that could be addressed by processing queries using low-level
techniques. Since garbage collection managed objects do not allow us to use these
techniques, we introduced a staging phase in the compiled query code to make query-
relevant managed data accessible to optimized low-level query code. Evaluating this
approach showed a performance improvement in query evaluation of up to an order of
magnitude compared to LINQ-to-objects.

Motivated by our findings when evaluating the staging approach, in Chapter 4, we
identified further inefficiencies that are caused by automatic garbage collection and
chose to address them by replacing automatic memory management for the data ele-
ments in a collection with the in-memory storage layer of a relational database system.
As a result, we introduced black-box collections. Black-box collections hide away
the relational data store by utilizing existing object-relational mapping techniques and
improve query evaluation performance by allowing queries to directly operate on the
data in the data store. However, as data is stored in a relational fashion, black-box col-
lections do not allow references and, hence, require implicit join operations to access

related data elements together. Despite this disadvantage, our experiments showed an

141

142 Chapter 7. Conclusion and discussion

improved query evaluation performance compared to all previous approaches. Com-
pared to the staging approach, which so far provided the best performance, query
evaluation performance improved by up to a factor of four. We also compared the
query evaluation performance of black-box collections to that of a modern commer-
cial database system and achieved superior query performance for five of the six tested
queries.

Black-box collections showed the best query evaluation performance of all ap-
proaches covered so far, however, they also expose additional overhead to the appli-
cation developer as they have to deal with the object-relational mapping and the re-
strictions that come with it. To address this and to allow the developer to deal with
application data as objects that can be referenced in the application in a similar way to
managed objects, we introduced self-managed collections. Self-managed collections
exhibit different semantics to regular managed collections in order to allow them to
manually manage allocations and deallocations of all contained objects using a type-
safe manual memory management system. The semantics of black-box collections
couple the lifetime of all objects stored in the collection with their containment in the
collection. We introduced the safe manual memory management system in Chapter 5
and self-managed collections in Chapter 6. We evaluated self-managed collections
together with some basic operations of the manual memory management system and
saw that self-managed collections exhibit superior performance. Furthermore, due
to allowing references between related objects, self-managed collections also outper-
formed black-box collections by up to 50%.

This thesis has shown that there is huge potential for improving the evaluation
performance of LINQ queries on data stored in the memory space of a managed ap-
plication. The strategies that we presented to achieve this showed a varying degree of
performance improvements and required a varying degree of programmer awareness
and involvement. A good approach should provide excellent query performance, but
also has to be as transparent as possible and pose as few restrictions as possible to
the programmer. Out of our approaches, we believe that self-managed collections pro-
vide this balance as they allow the necessary steps to improve query performance, but
also manage data as objects and, hence, pose very little restriction on the programmer.
However, generating pure C* code, as presented in Section 3.4, requires the least pro-
grammer involvement as the approach is entirely built on existing C* technologies and
hides away the query compilation using the query provider facility.

There are other factors that impact query evaluation performance that we did not

143

look at in this thesis. Some of them were assumed, but not explicitly dealt with.
This includes, for example, query optimization based on heuristics and statistics on
the data stored in a collection. As expression trees are comparable to query trees
in database systems and the input collections of a query are accessible in the query
provider through the expression tree, we assume that query optimization can be added
to queries on collections in the same way as in relational database systems. How-
ever, instead of implementing query optimization, we merely assumed its existence and
started all our experiments using a hand-optimized LINQ query plan based on LINQ’s
method syntax. The optimized LINQ statement is based on optimized query plans from
commercial database systems and manual measurements. Future work could provide a
full implementation of a query optimizer inside a LINQ query provider and a collection
type that gathers collection statistics and provides the query optimizer with access to
them. Statistics could either be collected through an explicit GatherStatistics call
or by incrementally updating them when objects are added and removed. The imple-
mentation could further add support to automatically cache and reuse intermediate and
final results, similar to [Nagel et al., 2013].

Another option to improve query performance that has not been covered is parallel
query evaluation. In all our experiments, all queries are evaluated using a single thread.
However, as LINQ queries (using a query provider) are declarative and, hence, only
specify the query result and not how to obtain it, the code generator can employ exist-
ing parallelization techniques from the database space (e.g., [Dees and Sanders, 2013])
to evaluate queries using multiple threads. This improves query performance by better
utilizing modern processors that typically support four or more hardware threads. We
believe that multi-threaded query evaluation strategies from database systems can be
directly applied to query compilation of LINQ queries. One interesting aspect here is
reference-based joins. The performance benefits when parallelizing query evaluation
are limited by query operations that require synchronization between different threads
that perform the same task. For example, parallelizing a hash-based join operation
requires all threads to insert data elements in the same hash table or to pre-partition
each thread’s key range to later build an individual hash table for each key partition.
Reference-based joins, on the other hand, do not require any synchronization to per-
form the joins and, therefore, exhibits a greater degree of parallelism.

Other options to improve the evaluation performance of LINQ queries are to intro-
duce indexes or physical clustering of data elements based on a sort key. The former

can be added as a feature of the collection type. The query optimizer then uses the ex-

144 Chapter 7. Conclusion and discussion

istence of indexes and the collection’s statistics to decide what access path to use when
evaluating a query. Physical clustering is not possible when storing data as managed
objects. Having the storage layer of a database system, black-box collections can sup-
port clustering. The same is also possible for self-managed collections, but because
clustering requires under-full blocks to be merged and over-full ones to be split, the
required relocation epochs to allow the movement of objects between these blocks are
likely to cause a significant overhead.

Some applications might also require more database features than assumed here.
These include persistent storage of objects or transactional consistency guarantees.
Future iterations of our approaches could integrate these features. Another interesting
area of future research is on how to achieve these characteristics using emerging non-

volatile memory technologies, as suggested in [Viglas et al., 2014].

Bibliography

[Abadi et al., 2009] Abadi, D. J., Boncz, P. A., and Harizopoulos, S. (2009). Column-
oriented database systems. Proceedings of the VLDB Endowment, 2(2):1664—1665.

[Agrawal and Gehani, 1989] Agrawal, R. and Gehani, N. H. (1989). Ode (object
database and environment): the language and the data model. In ACM SIGMOD
Record, volume 18, pages 36—45. ACM.

[Ailamaki et al., 2001] Ailamaki, A., DeWitt, D. J., Hill, M. D., and Skounakis, M.
(2001). Weaving relations for cache performance. In VLDB, volume 1, pages 169—
180.

[Ailamaki et al., 1999] Ailamaki, A., DeWitt, D. J., Hill, M. D., and Wood, D. A.
(1999). DBMSs on a modern processor: Where does time go? In VLDB” 99,
Proceedings of 25th International Conference on Very Large Data Bases, September
7-10, 1999, Edinburgh, Scotland, UK, number DIAS-CONF-1999-001, pages 266—
277.

[Austin et al., 1994] Austin, T. M., Breach, S. E., and Sohi, G. S. (1994). Efficient
detection of all pointer and array access errors, volume 29. ACM.

[Boncz, 2002] Boncz, P. A. (2002). Monet; a next-Generation DBMS Kernel For
Query-Intensive Applications. PhD thesis, University of Amsterdam.

[Boncz et al., 2005] Boncz, P. A., Zukowski, M., and Nes, N. (2005). MonetD-
B/X100: Hyper-pipelining query execution. In CIDR, volume 5, pages 225-237.

[Boyapati et al., 2003] Boyapati, C., Salcianu, A., Beebee Jr, W., and Rinard, M.
(2003). Ownership types for safe region-based memory management in real-time
Java. ACM SIGPLAN Notices, 38(5):324-337.

[Braginsky et al., 2013] Braginsky, A., Kogan, A., and Petrank, E. (2013). Drop the
anchor: lightweight memory management for non-blocking data structures. In Pro-
ceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms
and architectures, pages 33—42. ACM.

[Braginsky and Petrank, 2011] Braginsky, A. and Petrank, E. (2011). Locality-
conscious lock-free linked lists. In Distributed Computing and Networking, pages
107-118. Springer.

145

146 Bibliography

[Carey et al., 1986] Carey, M. J., DeWitt, D. J., Frank, D., Muralikrishna, M., Graefe,
G., Richardson, J. E., and Shekita, E. J. (1986). The architecture of the EXODUS
extensible DBMS. In Proceedings on the 1986 international workshop on Object-
oriented database systems, pages 52—65. IEEE Computer Society Press.

[Chamberlin et al., 1981] Chamberlin, D. D., Astrahan, M. M., King, W. F., Lorie,
R. A., Mehl, J. W., Price, T. G., Schkolnick, M., Griffiths Selinger, P., Slutz, D. R.,
Wade, B. W, et al. (1981). Support for repetitive transactions and ad hoc queries in
System R. ACM Transactions on Database Systems (TODS), 6(1):70-94.

[Cheney et al., 2013] Cheney, J., Lindley, S., and Wadler, P. (2013). A practical theory
of language-integrated query. In ACM SIGPLAN Notices, volume 48, pages 403—
416. ACM.

[Copeland and Khoshafian, 1985] Copeland, G. P. and Khoshafian, S. N. (1985). A
decomposition storage model. In ACM SIGMOD Record, volume 14, pages 268—
279. ACM.

[Dees and Sanders, 2013] Dees, J. and Sanders, P. (2013). Efficient many-core query
execution in main memory column-stores. In Data Engineering (ICDE), 2013 IEEE
29th International Conference on, pages 350-361. IEEE.

[DeLine and Fiahndrich, 2001] DeLine, R. and Fihndrich, M. (2001). Enforcing high-
level protocols in low-level software. ACM SIGPLAN Notices, 36(5):59-69.

[Desnoyers et al., 2012] Desnoyers, M., McKenney, P. E., Stern, A. S., Dagenais,
M. R., and Walpole, J. (2012). User-level implementations of read-copy update.
Parallel and Distributed Systems, IEEE Transactions on, 23(2):375-382.

[Dhurjati et al., 2003] Dhurjati, D., Kowshik, S., Adve, V., and Lattner, C. (2003).
Memory safety without runtime checks or garbage collection. ACM SIGPLAN No-
tices, 38(7):69-80.

[Diaconu et al., 2013] Diaconu, C., Freedman, C., Ismert, E., Larson, P.-A., Mittal,
P., Stonecipher, R., Verma, N., and Zwilling, M. (2013). Hekaton: SQL Server’s
memory-optimized OLTP engine. In Proceedings of the 2013 ACM SIGMOD In-
ternational Conference on Management of Data, pages 1243—-1254. ACM.

[Dragojevic et al., 2014] Dragojevi¢, A., Narayanan, D., Hodson, O., and Castro, M.
(2014). FaRM: Fast remote memory. In Proceedings of the 11th USENIX Confer-
ence on Networked Systems Design and Implementation, NSDI, volume 14.

[Francisco et al., 2011] Francisco, P. et al. (2011). The Netezza data appliance ar-

chitecture: a platform for high performance data warehousing and analytics. IBM
Redbooks.

[Fraser, 2004] Fraser, K. (2004). Practical lock-freedom. PhD thesis, University of
Cambridge.

Bibliography 147

[Freedman et al., 2014] Freedman, C., Ismert, E., and Larson, P--A. (2014). Compila-
tion in the Microsoft SQL Server Hekaton engine. IEEE Data Eng. Bull., 37(1):22—
30.

[Freytag and Goodman, 1989] Freytag, J. C. and Goodman, N. (1989). On the trans-
lation of relational queries into iterative programs. ACM Transactions on Database
Systems (TODS), 14(1):1-27.

[Gay and Aiken, 1998] Gay, D. and Aiken, A. (1998). Memory management with
explicit regions, volume 33. ACM.

[Goldberg and Robson, 1983] Goldberg, A. and Robson, D. (1983). Smalltalk-80: the
language and its implementation. Addison-Wesley Longman Publishing Co., Inc.

[Graefe, 1994] Graefe, G. (1994). Volcano-an extensible and parallel query evaluation
system. Knowledge and Data Engineering, IEEE Transactions on, 6(1):120-135.

[Grossman et al., 2002] Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y.,
and Cheney, J. (2002). Region-based memory management in Cyclone. In ACM
Sigplan Notices, volume 37, pages 282-293. ACM.

[Grust et al., 2010] Grust, T., Rittinger, J., and Schreiber, T. (2010). Avalanche-safe
LINQ compilation. Proceedings of the VLDB Endowment, 3(1-2):162—172.

[Gupta et al., 2015] Gupta, A., Agarwal, D., Tan, D., Kulesza, J., Pathak, R., Stefani,
S., and Srinivasan, V. (2015). Amazon Redshift and the case for simpler data ware-
houses. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pages 1917-1923. ACM.

[Herlihy et al., 2005] Herlihy, M., Luchangco, V., Martin, P., and Moir, M. (2005).
Nonblocking memory management support for dynamic-sized data structures. ACM
Transactions on Computer Systems (TOCS), 23(2):146—196.

[Hornick and Zdonik, 1987] Hornick, M. F. and Zdonik, S. B. (1987). A shared, seg-
mented memory system for an object-oriented database. ACM Transactions on In-
formation Systems (TOIS), 5(1):70-95.

[Ivanova et al., 2010] Ivanova, M. G., Kersten, M. L., Nes, N. J., and Gongalves, R. A.
(2010). An architecture for recycling intermediates in a column-store. ACM Trans-
actions on Database Systems (TODS), 35(4):24.

[Kim et al., 1990] Kim, W., Garza, J. F.,, Ballou, N., and Woelk, D. (1990). Architec-
ture of the ORION next-generation database system. Knowledge and Data Engi-
neering, IEEE Transactions on, 2(1):109-124.

[Klonatos et al., 2014] Klonatos, I., Koch, C., Rompf, T., and Chafi, H. (2014). Build-
ing efficient query engines in a high-level language. In Proceedings of the VLDB
Endowment, volume 7.

148 Bibliography

[Krikellas et al., 2010] Krikellas, K., Viglas, S. D., and Cintra, M. (2010). Generating
code for holistic query evaluation. In Data Engineering (ICDE), 2010 IEEE 26th
International Conference on, pages 613—624. IEEE.

[Lieberman and Hewitt, 1983] Lieberman, H. and Hewitt, C. (1983). A real-time
garbage collector based on the lifetimes of objects. Communications of the ACM,
26(6):419-4209.

[Manegold et al., 2000] Manegold, S., Boncz, P. A., and Kersten, M. L. (2000). Op-
timizing database architecture for the new bottleneck: memory access. The VLDB
JournalThe International Journal on Very Large Data Bases, 9(3):231-246.

[McCarthy, 1960] McCarthy, J. (1960). Recursive functions of symbolic expressions
and their computation by machine, Part I. Communications of the ACM, 3(4):184—
195.

[Meijer et al., 2006] Meijer, E., Beckman, B., and Bierman, G. (2006). LINQ: rec-
onciling object, relations and XML in the .NET framework. In Proceedings of the
2006 ACM SIGMOD international conference on Management of data, pages 706—
706. ACM.

[Michael, 2004] Michael, M. M. (2004). Hazard pointers: Safe memory reclama-
tion for lock-free objects. Parallel and Distributed Systems, IEEE Transactions on,
15(6):491-504.

[Murray et al., 2011] Murray, D. G., Isard, M., and Yu, Y. (2011). Steno: automatic
optimization of declarative queries. In ACM SIGPLAN Notices, volume 46, pages
121-131. ACM.

[Nagel et al., 2014] Nagel, F., Bierman, G., and Viglas, S. D. (2014). Code genera-
tion for efficient query processing in managed runtimes. Proceedings of the VLDB
Endowment, 7(12):1095-1106.

[Nagel et al., 2013] Nagel, F., Boncz, P., and Viglas, S. D. (2013). Recycling in
pipelined query evaluation. In Data Engineering (ICDE), 2013 IEEE 29th Inter-
national Conference on, pages 338-349. IEEE.

[Neumann, 2011] Neumann, T. (2011). Efficiently compiling efficient query plans for
modern hardware. Proceedings of the VLDB Endowment, 4(9):539-550.

[Padmanabhan et al., 2001] Padmanabhan, S., Malkemus, T., Jhingran, A., and Agar-
wal, R. (2001). Block oriented processing of relational database operations in mod-

ern computer architectures. In Data Engineering, 2001. Proceedings. 17th Interna-
tional Conference on, pages 567-574. IEEE.

[Pirk et al., 2013] Pirk, H., Funke, F., Grund, M., Neumann, T., Leser, U., Manegold,
S., Kemper, A., and Kersten, M. (2013). CPU and cache efficient management of
memory-resident databases. In Data Engineering (ICDE), 2013 IEEE 29th Inter-
national Conference on, pages 14-25. IEEE.

Bibliography 149

[Rao et al., 2006] Rao, J., Pirahesh, H., Mohan, C., and Lohman, G. (2006). Com-
piled query execution engine using JVM. In Data Engineering, 2006. ICDE’06.
Proceedings of the 22nd International Conference on, pages 23-23. IEEE.

[Sompolski et al., 2011] Sompolski, J., Zukowski, M., and Boncz, P. (2011). Vector-
ization vs. compilation in query execution. In Proceedings of the Seventh Interna-
tional Workshop on Data Management on New Hardware, pages 33—40. ACM.

[Tofte and Talpin, 1997] Tofte, M. and Talpin, J.-P. (1997). Region-based memory
management. Information and computation, 132(2):109-176.

[Ungar, 1984] Ungar, D. (1984). Generation scavenging: A non-disruptive high per-
formance storage reclamation algorithm. In ACM Sigplan Notices, volume 19, pages
157-167. ACM.

[Viglas et al., 2014] Viglas, S., Bierman, G. M., and Nagel, F. (2014). Processing
declarative queries through generating imperative code in managed runtimes. /EEE
Data Eng. Bull., 37(1):12-21.

[Viglas, 2014] Viglas, S. D. (2014). A comparative study of implementation tech-
niques for query processing in multicore systems. Knowledge and Data Engineer-
ing, IEEE Transactions on, 26(1):3—15.

[Wadler, 1988] Wadler, P. (1988). Deforestation: Transforming programs to eliminate
trees. In ESOP’88, pages 344-358. Springer.

[Wadler, 1990] Wadler, P. (1990). Linear types can change the world. In IFIP TC,
volume 2, pages 347-359. Citeseer.

[Wanderman-Milne and Li, 2014] Wanderman-Milne, S. and Li, N. (2014). Runtime
code generation in Cloudera Impala. IEEE Data Eng. Bull., 37(1):31-37.

[Zand et al., 1995] Zand, M., Collins, V., and Caviness, D. (1995). A survey of current
object-oriented databases. ACM SIGMIS Database, 26(1):14-29.

[Zukowski, 2009] Zukowski, M. (2009). Balancing vectorized query execution with
bandwidth-optimized storage. PhD thesis, University of Amsterdam.

	cover sheet
	thesis

