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Abstract

This work is the result of the definition, design and evaluation of a novel method to interconnect

the computational elements - commonly known as ConfigurableAnalogue Blocks (CABs) - of

a programmable analogue array. This method is proposed for total or partial replacement of the

conventional methods due to serious limitations of the latter in terms of scalability.

With this method, named Asynchronous Spike Event Coding (ASEC) scheme, analogue signals

from CABs outputs are encoded as time instants (spike events) dependent upon those signals

activity and are transmitted asynchronously by employing the Address Event Representation

(AER) protocol. Power dissipation is dependent upon input signal activity and no spike events

are generated when the input signal is constant.

On-line, programmable computation is intrinsic to ASEC scheme and is performed without ad-

ditional hardware. The ability of the communication schemeto perform computation enhances

the computation power of the programmable analogue array. The design methodology and a

CMOS implementation of the scheme are presented together with test results from prototype

integrated circuits (ICs).
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Chapter 1
Introduction

1.1 Motivation

Electronic engineering attempt to realize mathematical models using electrical devices config-

ured and connected appropriately. In general such models can be implemented using digital,

analogue or combined approaches. Each approach has their own paradigms, techniques, advan-

tages and limitations.

Analogue systems use continuous variables to represent information whilst digital ones uses

discrete - usually binary - numbers. The continuous characteristic of the information implies

analogue systems are more vulnerable to a wide number of physical effects than digital ones.

Therefore the digital approach tends to make complex systemdesigns easier and faster than the

analogue approach. This characteristic helps to explain the ever-increasing popularity of digital

designs.

The robustness of digital designs allows for automation andflexibility and both of them are

difficult to achieve with analogue designs. These characteristics allow for complex systems like

digital Central Processing Units (CPUs), micro-controllers, Digital Signal Processors (DSPs)

and Field-Programmable Gate Arrays (FPGAs). In particular, FPGAs are digital systems used

specially for rapid prototyping. They contain a large number of basic digital circuits which can

be configured and connected to implement specific functions.Doing this is much faster than

designing a different system whenever you need to implementa different function.

With these crucial advantages of digital circuits, analogue designs survive due to specific appli-

cations. In particular, analogue circuits are used to interface with real world because most of its

information — measurements and controls — are continuous variables as well. Moreover ana-

logue designs usually present a more fitted solution than digital circuits because they are usually

smaller, spend less power and presents a higher processing speed for the same applications.

Therefore, if the main reason that drives the popularity of the digital circuits is design automa-

tion and operation flexibility, it is a reasonable ambition to incorporate these characteristics to

1
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an analogue design. This would shorten analogue design cycles, provides reconfiguration levels

similar to the digital case and, furthermore, will benefit from the analogue properties listed in

the previous paragraph.

Some efforts have been made on the automation field, as in Analogue-to-Digital Converters

(ADC) designs [1]. Regarding the flexibility, studies have been made on analogue CPUs [2, 3]

and on programmable analogue arrays.

Several researchers in institutions and companies have been trying to achieve a level of pro-

grammability in analogue systems similar to digital arrays. Some had coined terms as “Field-

Programmable Analogue Arrays” (FPAA) [4] and “Field-Programmable Mixed-signal Arrays”

(FPMA) [5] to define the class of circuits that are the analogue and mixed-signal counterparts

of the digital FPGA, respectively.

In general these architectures are built from a number of basic programmable processing blocks,

known as Configurable Analogue Blocks (CABs). The configurable blocks are then intercon-

nected using specific configurable signal routing. This signal routing is usually implemented in

a similar fashion as it is in a digital array, i.e., using switched-matrices: a collection of wires and

switches connected in a special pattern, defined by design requirements. However this routing

method imposes serious limitations to the number of CABs allowed in the array.

The limitation on the scalability of programmable analoguecircuits was the main motivation

for this thesis whose objectives are described in next section. To achieve this objectives, other

research fields with similar properties were investigated,mainly the systems developed to im-

plement neuromorphic circuits which are reviewed in the next chapter.

1.2 Statement of hypothesis

The main objectives of this thesis are:

1. to propose an alternative method for analogue communication between functional blocks

in a low-to-medium resolution, large-scale programmable analogue arrays context and

2. to demonstrate that this method is able to perform a set of computations on analogue

signals independently of or when combined with the configurable analogue blocks.

2
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1.3 Thesis overview

The chapters of this thesis are as follows:

The next chapter presents a brief history of FPAAs and the current state of those systems, fo-

cusing on the communication methods used on them. The limitations of the current communi-

cation strategies are highlighted. Paradigms of neuromorphic systems leading to an alternative

communication methods are therefore reviewed.

A novel method to interconnect the CABs of a programmable analogue array is then introduced

in the third chapter. The heart of this new architecture lieson the appropriate choice of the

coding scheme. A set of asynchronous pulse-based differential methods are also considered. A

figure of merit is used to choose the most suitable option for the specifications.

The fourth chapter introduces computational operations that can be performed by the proposed

communication method and are demonstrated with chip results.

The fifth chapter presents the design flow and parameters of the chosen coding scheme. It also

describes CMOS circuits designed for the implementation ofthe method with chip results being

shown.

Conclusions and possible future work are them discussed in the sixth and last chapter.
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Chapter 2
Communication in programmable

analogue arrays

2.1 Introduction

The first step taken in this work to achieve the goals stated inthe introduction was a compre-

hensive bibliographic review of work done in the programmable analogue arrays field up to

date. This review is synthesized in this chapter.

The general concept and reasons for using programmable analogue arrays are presented. Both

commercial and academic programmable analogue arrays developed so far are revisited, cat-

egorised and analysed. A list of implementations is given with their main characteristics and

differences.

The issue of the transmission of information both between the elements inside the array and

with the external world is studied. Despite being the most conventional method to perform

this communication, voltage or current signal representation using switch matrices for signal

routing present some limitations. An alternative method based on timing rather than voltage or

current is presented.

Using this alternative method, a novel programmable analogue array communication architec-

ture is described.

2.2 Programmable analogue architectures

Analogue circuits are much less robust than digital ones, because of their greater sensitivity to

noise, cross-coupling, process and temperature drifts among others. This characteristic makes

more difficult to change parameters and functionality of analogue circuits without degrading

the system performance. Therefore most of analogue circuits are the result of full-custom,

application-specific designs — presenting no reconfiguration capabilities — to provide high-

performance operations.
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The greater flexibility offered by digital systems has made them very popular. Digital comput-

ers have replaced their analogue counterparts a long time ago and most of the signal processing

is done in digital domain.

However analogue circuits have intrinsic advantageous characteristics comparing to digital cir-

cuits, in general being faster, smaller and less energy demanding [6, 7]. Naturally, these ad-

vantages lead engineers and researchers to a quest to develop analogue architectures that also

provide the high degree of flexibility experienced by FPGAs,DSPs or digital microproces-

sors [2].

Similarly to FPGAs, there are a wide range of potential applications for programmable analogue

systems, including low-power computing [8], remote sensing [9], rapid prototyping [10].

Although it was written in 1998, a good review of patents and academic and commercial circuits

point is presented in [5]. In this work, the authors first described the general idea of the Field

Programmable Analogue Array (FPAA), proposed some classifications and gave examples of

implementations. Usually, the characteristics of programmable analogue architectures can be

defined using different classifications. Some of these classifications are:

Programming capability - A system can be defined according to how many times it can be

programmed. Different systems vary from being only programmable once, like fused or

anti-fused architectures [11] and metal-mask programmable analogue arrays, to allowing

several — possible infinite — reconfigurations, like switched-capacitor circuits [12] and

neural networks [13].

Programming method - This classification defines how to change the system behaviour. These

changing can be obtained by either direct programming, where the designer or designer

tool has the detailed knowledge of the signal flow [4], or learning and adapting tech-

niques, where the system is seen as a “black box”. Usually, the latter is achieved using

genetic algorithms [14, 15] or neural networks [16, 17].

Structure flexibility - A system can also be characterized according to its versatility. Some

architectures allow only their parameters to be programmable, like programmable auto-

matic gain control (AGC) amplifiers and adaptive filters [18]whilst other systems allow

the signal path be changed [19], by changing the interconnection of different circuits.

Granularity - The basic idea behind FPAAs is the use of basic units — usually known as

6
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Configurable Analogue Blocks (CABs) — to implement a range offunctions. In general,

the complexity of these basic blocks is a trade-off between performance and flexibility.

The block complexity can range from fine granularity, where the basic blocks are basic

components, like transistors, resistors and capacitors [9], to coarse granularity, with more

complex circuits like capacitively coupled current conveyors (C4) and vector-matrix mul-

tipliers [20].

Signal representation - Signals need some sort of physical representation to be processed by

electronic circuits. Analogue circuits are defined as operating in one or more domains,

usually voltage, current or charge domain. Voltage domain is the classical choice for

analogue engineers, but current and charge techniques havetheir common applications,

like power control and CCD image sensors, respectively. Recently, timing has been used

as another possible representation. This representation and its benefits and drawbacks

will be presented in detail in the next section.

Other FPAA characteristics can be used to define other classifications. For instance, signal

timing characteristics employed, by using discrete or continuous time circuitry [21, 22]; design

techniques implemented, for instance sub-threshold transistor operation [4] or fully-differential

versus single-ended circuit structures; and signal routing approaches, e.g. global, hierarchical

or local routing [13].

Since the 1990s lot of work has been done to develop analogue architectures with a functional

philosophy similar to the digital FPGAs. This work resultedin various techniques and some

commercial products. It is worth describing in brief some commercial products that appeared

in the last two decades. Some of them were discontinued, likethe first three examples, but some

still are available:

• Totally Reconfigurable Analogue Circuit (TRACR©) IC family from Zetex Semiconduc-

tors Inc. - Fast Analogue Solutions branch of Zetex group introduced this technology

about twenty years ago. This architecture operates in continuous mode and is essentially

a collection of operational amplifiers configured as one of a set of predefined functions

to process analogue signals [23]. For instance, TRAC020LH [24] is a chip with twenty

CABs where each one can be configured to perform summation (oftwo signals), nega-

tion, logarithm compression, anti-log expansion, rectification, amplification, differentia-

tion and integration (the last three operations performed using external components, like

7
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resistors and capacitors). Further operations are possible combining them, like RMS

conversion, filtering and others. Every CAB input and outputare available outside and

internal routing is done connecting theses CABs terminals.

• Field Programmable System on a Chip (FIPSOC) from Sidsa: This system is a mixed

mode programmable circuit originally aimed to general front end and data acquisition [25].

The chip contains twelve differential amplifiers combined in four input channels, four

comparators, one analogue multiplexer, ADC/DAC blocks anda digital micro-controller

and memory [26]. The system is configured by the micro-controller or the internal logic

using the ADC and DAC blocks. Signal routing is performed by the analogue multi-

plexer.

• In-system programmable analogue circuit (ispPACR©) family from Lattice Semiconduc-

tor Corp.TM- These circuits are hierarchically built from basic cells (PACellTM) grouped

in functional modules (PACblockTM) and using an Analogue Rooting Pool (ARP) to

connect PACell and PACblocks inputs and outputs, DACs and the device pins [27].

Each product in the family was designed to one specific function and each one has its

own PACells [28]. PACells of ispPACR©10 — targeted to signal conditioning functions,

like amplification and filtering — consist of four PCAblocks containing instrumentation

and summing amplifiers and arrays of capacitors. Elements like comparators and po-

larity switches are added to the ispPAC10’s PACells to include non-linear processing in

ispPACR©20 architecture. IspPACR©30’s PACells include multiplying DACs, which make

it a FPMA.

• Mixed-Signal Programmable System-on-Chip (PsoCR©) from Cypress SemiconductorTM -

It is a family of architectures comprising both digital and analogue programmable blocks,

with supporting circuits, as SRAMs, clock generators and micro-controllers (M8, 8051

or ARM). Each block of PSoCR©1 sub-family consists of one operational amplifier. Addi-

tional circuitry determines whether they will operate either in continuous-time or discrete-

time fashion. Rather than providing universal connectivity and switch programming,

each block presents multiplexers sourcing the amplifier inputs, resistor strings, capaci-

tor terminals from its neighbour blocks outputs [29]. Blockdesigns were optimized to

support a few key functions such as a delta sigma modulator, again amplifier, digital-to-

analogue converter (DAC), or differencing amplifier [30].

• Dynamically programmed Analogue Signal Processors (dpASP) and Field Programmable
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Analogue Arrays (FPAA) from AnadigmR© - The former Motorola’s reconfigurable ana-

logue group [31] designed new system consisting of a matrix of fully Configurable Ana-

logue Blocks (CABs), surrounded by programmable interconnect resources and analogue

inputs and output cells with active elements and supportingcircuits. The first gener-

ation of these systems presented up to twenty CABs [32], but current products work

with just four CABs [33] in order to present greater signal-to-noise ratio and bandwidth.

Anadigm’s products are based on switched-capacitor circuit techniques. Therefore, the

core of their CABs is one operational amplifier and a programmable bank of capacitors

and they are surrounded by a fabric of programmable interconnect resources, such as

bandgap circuits, clock generators and lookup tables. These CABs are routed inside and

to external pins using local and global switch-matrices.

• Cellular Visual Microprocessor (CVM) from AnaLogic Computers Ltd. (Eutecus Inc. in

USA) - This system is a visual sensor and processor based on Cellular Neural Networks

(CNN) technique which is explained further in this section.For instance, ACE16k1 is

an 128x128 Focal-Plane Analogue Programmable Array Processor to work with high-

speed and moderate accuracy (around 8bits) requirements [34]. Each ACE16k’s CAB is

built with several different circuits like analogue multipliers, non-linear dynamic blocks,

analogue memory, optical detection circuits and others. Each CAB is analogue connected

with other eight adjacent CABs and digitally connected withcolumn ADC and DAC.

The previous list of commercial FPAAs are not exclusive, as there are other systems that in-

corporate some analogue array processing. Figure 2.1 showsdiagrams of cited architectures

whilst table 2.1 shows a comparison between the commercial products using the classifications

presented before.

1ACE16k is the analogue core of the CVM system and was designedby Instituto de Microelectrónica de Sevilla
(CNM-CSIC), Spain.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Architecture diagrams of the commercial FPAAs cited in thiswork. (a)
TRAC020LH [24] from Zetex, (b) FipSoc [26] from Sidsa, (c) ispPAC10 [27]
from Lattice, (d) PSoC CY8C27x43 [29] from Cypress, (e) AN231E04 [33] from
Anadigm and (f) ACE16k [34] from CNM-CSIC.
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Architecture Type Method Flexibility Granularity Routing Applications
Zetex’s TRAC ANA Direct PAR (using external

components), FUN
and ROUT

Medium
(op-amp)

External General signal processing. Able to
implement functions like filtering,
amplification, envelope and peak
detection.

Sidsa’s FIPSOC MS Direct PAR and ROUT Coarse
(op-amp,
DAC and
ADC)

Internal
multiplexer

General purpose front-end for sig-
nal conditioning and data acquisi-
tion.

Lattice’s ispPAC ANA/
MS

Direct PAR, FUN and ROUT Medium
(op-amp)

Crossbar/
switch matrices

General signal processing with dif-
ferent architectures for specific ap-
plications, e.g. signal condition-
ing, control loop and monitoring
and analogue front-ends.

Cypress’s PsoC MS Direct PAR, FUN and ROUT Medium
(op-amp,
comparators)

Local
multiplexers
(PSoC1),
multiplexers
and crossbars
(PSoC3)

General signal processing with dif-
ferent architectures for specific ap-
plications, e.g. touch screen sen-
sors, LED Back-light, Motor Con-
trol, Power Management and Gyro
Sensing.

Anadigm’s dpASP ANA/
MS

Direct PAR, FUN and ROUT Coarse
(op-amp,
comparator,
SAR)

Switch matrices General signal processing like sig-
nal conditioning, filtering and pro-
cess control.

AnaLogic’s CVM ANA Direct/
Adaptation

PAR and FUN Coarse
(multipliers,
memories,
photo-
detectors)

Crossbar/ direct
connection

Complex image processing imple-
mented locally like terrain feature
classification, multi-target tracking
and optical flow calculation.

Table 2.1: Characterization of commercial programmable analogue architectures. These systems are classified according to its signal processing
type - either Analogue (ANA) or Mixed-Signal (MS); programming method; flexibility for configure CABs parameters (PAR),functions
(FUN) and routing (ROUT); the granularity level; signals routing techniques and target applications. All architectures present infinite
programmable capability and signals are represented in voltage-domain.
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In academia, research groups in these areas were identified with projects related to FPAA field:

• Electronic Systems Design Group at University of Southampton, where continuous time

FPAA architectures were developed. This group was active until 2008. In [35], the

group presented the continuous-time Hierarchical Field Programmable Analogue Array

(HFPAA). This system presents a Differential Difference Amplifier (DDA) as the CAB.

This is an example of mixed signal representation due its dual voltage/current output

mode. The architecture uses hierarchical interconnectionswitches to achieve maximum

routing capability between CABs and minimum number of routing resources.

• Cooperative Analogue and Digital Signal Processing (CADSP) at Georgia Technology

Institute, where Dr. Paul Hasler’s group continues the development of floating gate tech-

nique in FPAA [36, 37, 38] architectures and in the neuromorphic systems. By using

floating gates as a switch for signal routing or even to reconfigure the function param-

eters, the group aims at very high-density field-programmable analogue arrays. Several

CABs architectures can be implemented using this technique. For instance, in [20], two

CABs were implemented, containing a mixture of fine-grained(MOSFETs and capaci-

tors), medium-grained (OTAs), and coarse-grained (capacitively coupled current convey-

ors) computational blocks. Signals are routed using crossbars and switch-matrices using

floating gate devices.

• NASA’s JPL Evolvable Hardware Laboratory, where Dr. AdrianStoica’s group works on

adaptive techniques for the use in analogue processing [9].Their work objective is to de-

velop a class of self-configurable and evolvable hardware, which adapts to its working en-

vironment to obtain optimal signal processing and providesfault tolerant functionality. In

special the group has been working with Field Programmable Transistor Array (FPTA),

where the CABs are fine-grained components like MOSFETs. In the Evolutionary Ori-

ented Reconfigurable Architecture [39], CABs are made of 8 transistors, being 4 PMOS

and 4 NMOS, and 24 switches. CABs are divided in clusters, where each cluster presents

CABs with different transistor sizes. The routing are performed by switches and multi-

plexers. FPTA has also been the subject of other groups in University of Heldelberg [40],

whose architecture is based on all-PMOS and all-NMOS CABs configurable in up to 75

different sizes in a checker-board pattern and routed usingalso switch-matrices and mul-

tiplexers. Recently, JPL group has designed another architecture — Self-Reconfigurable

Analogue Array (SRAA) [41] — which presents a medium coarse granularity (OTA).
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• Dr.-Ing. Joachim Becker from Department for Microelectronics at the University of

Ulm. His Ph.D. studies at Institute of Microsystem Technology (IMTEK) with supervi-

sion of Prof. Yiannos Manoli resulted in an architecture based on digitally configurable

transconductors. These continuous-time CABs presents a number (normally seven), bi-

nary weighted sizes Gm-cells that can be turned on or off. These cells are configuredin a

parallel fashion to obtain different transconductance. The CABs are also used to routing

the signals inside the system and, therefore, avoiding the use of switches in the signal

path [42]. A more recent implementation of this architecture use floating-gates to add

current programmability and a 3-bit capacitor array [43].

• Prof. Leon O. Chua on Control, Robotics & Biosystems group atUniversity of Califor-

nia Berkeley works on Cellular Neural (or Non-linear) Networks (CNN). The Universal

Machine version of this architecture (CNN-UM) is based on the concept of specific con-

nectivity model and analogue circuit dynamic with continuous valued state variables [44].

Signals are routed through direct, local interactions within a finite radius, however fur-

ther cells can be “virtually” connected due to dynamic propagation. The research of CNN

techniques and applications involved other groups and researchers like Dr. Támas Roska

at Neural Computing Lab at Hungarian Academy of Sciences. This architecture is chiefly

used to model physical phenomena, neuromorphic control anddifferent applications like

visual processing [45].

The diagrams for these architectures are shown in figure 2.2.All approaches mentioned so far

face the problem of sensibility of analogue signal to interferences in different ways, either by

careful layout routing [27], using specific circuit techniques [20] or trying to limit the scope of

routing [13, 42]. This research differs from these approaches as we aim to use timing represen-

tation for convey analogue variables instead of traditional voltages and currents. The inspiration

for this idea came from in a specific class of systems described next.

2.2.1 Neuromorphic systems as FPAAs

While general purpose FPAAs architectures have been continuously undermined by successive

failures and struggle on producing viable and popular market solutions, at least one application

field has provided a better prospectus: artificial neural networks with neuromorphic systems in

particular.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Architecture diagrams of some academic FPAAs. (a) Hierarchical Field Pro-
grammable Analogue Array [46], (b) Large scale FPAA as in [20], (c) Field
Programmable Transistor Array (FPTA) presented in [9], (d)Self-Reconfigurable
Analog Array (SRAA) [41], (e) the Gm-C based Field Programmable Analogue
Array with floating gate transistors [43] and (f) analogue programmable Cellular
Neural Network (CNN) chip [45].
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Artificial Neural Networks (ANNs) are computational architectures where each element per-

form a similar computational role of biological neurons andsynapses. The computation is

highly associated with the interconnection between the elements in the network rather than

with the elements functionality. Usually its configurationis adaptive and it is defined though

the use of learning algorithms.

Although ANN can be implemented in software, its hardware implementations (HNN) lead

to greater computational performance [47]. These hardwarearchitectures can be implemented

either using specific designed IC (ASIC) or a more generic platform. Examples of ASIC ICs

include digital-based designs [48, 49], analogue [50, 51],mixed-mode [52] or even optical [53]

designs. More recently, artificial neural networks designed on programmable platforms have

appeared, both in digital [54], analogue [55, 16] and mixed-mode domains [17].

ANN computations are biologically inspired but they intendto replicate the computational func-

tions of biological neurons rather than reproduce in detailtheir working principles. In other

words, ANN aims to mimic the biological neurons computational principles but not their struc-

tures. For this goal the concept of neuromorphic systems wascreated. Neuromorphic systems

are VLSI systems designed to mimic at least some functional and computational properties of

the biological nervous systems [6].

Most of the neuromorphic systems are classified as Spike Neural Network (SNN), based on

the concept that the information is transferred between neurons using temporal information

conveyed on the onset of spikes [59]. Accurate representations of the neuron functionality

may include complex and non-linear mathematical models like the Hodgkin and Huxley or

Izhikevich [60] models of ions channels on the neuron membrane. As an example of VLSI

implementation of such ion channels is the Field Programmable Neural Array (FPNA) [56].

It is an array of neurons (one per line) with sub-threshold circuits emulating dendrite sections

(columns) and the soma. Regarding the connectivity, in thiscircuit external inputs and soma

outputs are routed back to dendrite sections throughout cross-bars.

However most of the neuromorphic architectures are based onthe simpler integrate-and-fire

(I&F) representation of the neuron [61]. From this principle, very simple basic blocks were

designed to represent neurons and synapses [62, 63, 64]. Although some recent approaches

use digital architectures, traditionally these circuits were designed using analogue circuitry

mainly [65, 57] due their smaller sizes.
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(a) (b)

(c) (d)

Figure 2.3: Examples of neuromorphic architectures. (a) Field programmable neural ar-
ray (FPNA) presented in [56] is an array of sub-threshold circuits to mimic ion
channels presented in neuron membrane; (b) an event-based VLSI network of
integrate-and-fire (I&F) neurons from [57] with neurons (trapezoids) and excita-
tory (E) and inhibitory (I) synapses; (c) a FPGA-based neuromorphic architecture
as in [58] and (d) a neuromorphic system implemented into theAN221E04 FPAA
from Anadigm Inc. presented in [55].

Most neuromorphic systems are very specialised programmable arrays, where neurons, synapses

and other functional blocks act as CABs. In [57] the system isbuilt from 32 neurons with 22

synapses each. However these systems can also be implemented using generic programmable

arrays, both digital — DSPs [66] and FPGAs [58, 67] — and analogue [68, 69]. The last two

systems implement an I&F SNN and a pulsed coupled oscillator, respectively, into Anadigm’s

FPAAs. Due to limited hardware resources on these FPAAs, theI&F SNN system were imple-

mented using multiple devices. Figure 2.3 shows some ANN andneuromorphic systems.
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(a) (b)

Figure 2.4: Altera and Xilinx FPGA routing styles. (a) Altera’s StratixII architecture presented
in [70] and (b) the Xilinx XC4000 family as presented in [71].

Despite all these interesting and innovative “analogue programmable architectures”, the main

contribution to this thesis from neuromorphic systems is the most common method (Address

Event Representation — AER, described on next chapter) usedto rout information among its

elements, which differs from the conventional analogue routing methods used so far.

2.3 Analogue information routing

As said before, one of the main issues faced by programmable analogue systems is the com-

munication of information between their computational blocks. The main characteristics of

analogue routings are their degree of connectivity, signalintegrity and power and area used by

them. The ideal routing architecture would present a maximum degree of connectivity, con-

necting every signal of any CAB to any other CAB in the system.It would also convey the

signals with no degradation, either from the routing itselfor from other signals, and present the

minimum area and power consumption overhead.

In FPGAs the signals are usually routed using switch-based routers and buffers with each ven-

dor presenting different routing implementations. Xilinximplements island-style architectures

with each logic block surrounded by connection blocks whichconnect them to different wires

segments that end at switching blocks. The different wire segments allows for short, direct

interconnection for speed optimization to long wires to large fan-out and clock signals. Local

and global connections are used by Altera FPGAs as depicted in figure 2.4(a) whilst a Xilinx

routing example is illustrated in figure 2.4(b).
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Figure 2.5: FPAA routing example. (a) An example of a programmable analogue array as
presented in [73] and (b) an example of CABs connection pattern.

Similar approaches are used by most of the programmable analogue systems [72], with the

figure 2.5 showing an example architecture and connection examples. Examples of commer-

cial systems include architectures from Lattice, Cypress and Anadigm as shown in table 2.1.

Academic examples that use switch-based routers are HFPAA [35] and floating-gate based

FPAAs [20], among others.

Using switch matrices and crossbars leads to some design issues like connectivity and signal

integrity. The degree of connectivity is related to the power and area usage2. The degree of

connectivity (fanout) presented by these techniques are given by Rent’s rule, after E.F. Rent’s

empirical work on sockets for digital computers to IBM [74] and can be applied even for brain

connectivity [75]. In one interpretation of this rule [76],if a group of elements is arbitrary

bounded, then it defines the number of links crossing this boundary:

P = P0N
b (2.1)

with P being the number of links (wires),P0 being the number of pins of eachN elements

2In digital systems, timing is also affected by the degree of connectivity
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inside the boundary andb is an empirical constant dependent of specificity and optimization of

the system. For programmable gate arraysb is close to 1 [75] where different algorithms are

employed to optimise number of switches and wire lengths.

Considering a chip withN elements, Sivilotti [76] definedβ as the fanout of each element:

β =
Ns

P0
2N

(2.2)

whereNs is the number of switches to connect these elements. In a non-hierarchical connection

pattern withP0N inputs andP outputs then applying equation 2.1:

Ns = P 2
0N

b+1 (2.3)

which givesβ = N b. For full connectivity, each element needs to connect to anyother element,

giving b = 1. Therefore, the number of switches needed for a full connectivity using crossbars

increases proportionally to the square of the number of elements. Hierarchical approaches can

reduce this number [76].

The switch-based analogue routing is used by many analogue programmable arrays implemen-

tations. As crossbars are efficient only for small size architectures [75], current systems tend to

present a small number of CABs [77].

Other issues appear with the use of switches for routing analogue signals and one is related to

the linearity of switches. When implemented with MOS transistors, the switch resistance is

heavily dependent of the signal amplitude, which leads to signal distortion. CMOS transmis-

sion gates and, more recently, floating-gate transistors can reduce but not eliminate this limi-

tation [20], as shown in figure 2.6. However, floating-gate transistors require highly complex

programming methods due the high voltage required for the generation of tunnelling effect.

In a programmable array a signal is normally connected to several other CABs, i.e. the signal

has a high fanout. These CABs are located at different distances from the signal origin and,

therefore, the connections present different dynamic responses. These responses are due to dif-

ferent capacitances and resistances (wire lengths and number of switches) of each connection.

These differences results in destination-dependent signal distortion due to the different delays

(phase shift) applied to the signal.
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Figure 2.6: Non-linear switch resistance. Typical MOS switch (pFET), transmission gate (TG)
and floating-gate switch (FG pFET) resistance as a function of input signal ampli-
tude (Vs), from [20]. This input amplitude dependence contribute to signal distor-
tion on switch-based routing.

In a switch-based routing, signals are transmitted using wires laid orthogonally. Capacitive

coupling between these wires leads to another source of distortion known as inter-channel in-

terference. Longer the routing path, higher is the probability of a signal suffer interference from

other signals.

When a high fanout is required, CABs are designed with buffers for their output signals. As

these buffers are designed to meet the worst case condition (highest fanout) their inclusion leads

to high power consumption.

If crossbars are in one extreme point presenting full connectivity, in the other extreme are sys-

tems where each cell is allowed to connect only to its neighbours, like in CNN topologies [44]

and in hexagonal FPAAs [42]. Whilst these approaches avoid most of the area overhead of

routing-dedicated circuitry, they tend to use the CABs themselves as routing channels. Unless

these systems target very specific applications, they tend to require a high level of CABs used

exclusively for routing.

2.3.1 Timing communication

Analogue signals conveys information which using a limitedrange of continuous values chang-

ing in continuous or discrete times. The continuous characteristics of its amplitude, although

allows for more compact information representation, make its storage and transmission less

accurate due to presence of noise and distortion among others.
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Modulation methods are used to increase the efficiency of such signals because they use a more

robust carrier for transmission. Information is then codedby changing one or more characteris-

tics of the carrier. Because this carrier is more easily detected and measured, its use can reduce

information loss common to analogue signals.

Modulations are usually classified into digital, analogue and pulse modulations. In analogue

modulations the carrier is also an analogue signal with welldefined characteristics such a sine

wave. The information is then coded into the carrier’s amplitude (AM), frequency (FM) or

phase (PM). Although it presents greater immunity then the original representation, these mod-

ulations are also susceptible to the same effects due its analogue characteristics. Digital mod-

ulations also use analogue carriers but coded with a digitalrepresentation according to the

information to be transmitted. It requires analogue-to-digital conversions of the information

before signal transmission, therefore losing the advantages of the analogue representation.

In contrast, the carrier in the pulse modulations is usuallya signal with a limited number of

states. The information is coded into the switching time or switching frequency of these states.

Binary state representation presents a higher amplitude separation and, therefore, an easier

distinction between them. This distance has the potential to offer good noise immunity [78]

and, therefore, an easier routing in a programmable analogue array architecture when compared

to the use of an analogue signal. Inaccuracies appears on theswitch timing (jitter) rather than

in the carrier amplitude.

Examples of pulse modulations are Pulse Frequency and Rate Modulation (PFM/PRM), Pulse

Delay or Position Modulation (PDM), Pulse Width Modulation(PWM), Pulse Code Modula-

tion (PCM) and Stochastic Pulse Modulation (SPM) and are shown in figure 2.7. A detailed

review of these modulations is found in [79], where the author did an extensive analysis of the

mentioned modulations regarding on accuracy, multiplexing and power dissipation, and in [80],

where the modulations are considered in neuromorphic realm.

The idea of using timing as the key parameter in analogue processing is not new, and it is more

clear if we consider PWM modulations. The PWM is used in D-class audio amplifiers, which

are more energy-efficient than other power amplifiers classes, electric motor drive control and

communications, for instance.

As an analogue signal representation, timing representation coding has been used by neuromor-

phic systems groups in their quest to mimic the biological neuron [81]. The coding is associated
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Figure 2.7: Some pulse stream modulations. From the top: Pulse Rate Modulation (PRM),
Pulse Width Modulation (PWM), Pulse Amplitude Modulation (PAM), Pulse Code
Modulation (PCM), Stochastic Pulse Modulation (SPM), Pulse Delay Modulation
(PDM) and Pulse Burst Modulation (PBM). Adapted from [79].

with spike trains in this specific case. A great number of circuits modelling specific properties

of the neurons have been published [82, 83], whilst others focus on its computational poten-

tials [59]. Currently, these researches find applications on field of neuro-inspired circuits, like

auditory [84], olfactory [85] and visual [86] systems.

Other two groups — the Hybrid Group at University of Florida (Dr. John G. Harris) and the

Bionet Group at University of Columbia (Dr. Aurel A. Lazar) —have developed similar works

also using spike coding. Their researches focus on mathematical foundations and implemen-

tations of time encoding machines using irregular samplingtechniques [87, 88]. Both uses the

integral characteristic of integrate-and-fire neurons models to perfectly reconstruct an analogue

signal from a spike train. This reconstruction is based on finding the weights of a coefficient

matrix.

By using timing representation, the signal dynamic range isincreased. Voltage and current

dynamic ranges tend to be reduced with the evolution of the CMOS fabrication technologies

and system requirements, as low voltage supplies and low power consumption are required. On

the other hand, timing dynamic range tends to increase as theIC fabrication technology delivers

faster and smaller transistors.

One limitation of timing to express analogue variables is regarding to its continuity. Because of

the analogue (voltage or current) to time conversion, thereis always a period of time allowed
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Figure 2.8: PDM distortion. Example of distortion due to asynchronous pulse distance mod-
ulation (PDM). Eachy(t) is the modulated output for the sine wavex(t) with
different timing characteristics.∆tdc represents the mean time distance of events
for each case. A constant ratio between the timing dynamic range to mean time
distance of 1.8 was used. In other words, fory(t) modulated with∆tdc = 50ms,
the highestx(t) value presents a distance of50ms−1.8∗50ms/2 = 5.0ms whilst
for the lowest value ofx(t) the distance is50ms + 1.8 ∗ 50ms/2 = 95.0ms. As
the outputy(t) is updated at different times, this output is a distorted version of the
inputx(t).

to represent the measured value. Therefore information cannot be measured continuously and

therefore every timing modulation is time-sampled. This sampling time can be fixed — as in

clocked systems — or variable, allowing another measurement after a previous one has finished.

Clocked versions — specially PWM-based ones — have been usedfor transmission of analogue

information in arrays [21, 89]. However, the requirement ofa global clock signal to synchronize

the transmission leads to greater power consumption and issues such as clock skew, noise [90],

metastability and high levels of electromagnetic interference (EMI) compared to variable-timed

sampled (asynchronous) systems [91].
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However continuously-update variable-timed sampled systems leads to signal distortion due to

phase shift generated by different timing windows, as shownin figure 2.8 for PDM modulation.

A special class of timing modulations are known as differential modulations. The information

transmitted with these methods is related to the previous measurements rather than the infor-

mation itself. Because of this property these modulations need some type of memory to store

previous information.

Delta-based modulations [92] are differential modulations where the conveyed information is

restricted to represent an increase or decrease by a fixed small amount. In the simplest case, a

simple bit is enough to represent these binary states. In their asynchronous versions of these

modulations, each timing event does not convey signal amplitude information, but rather the

instant when the signal amplitude has changed by a fixed valueand the direction of this change.

Some of these modulations are studied in more details in the next chapter.

2.4 Summary

In this chapter, a brief history of the analogue programmable arrays was presented. This type of

circuits have been struggling to obtain the same level of maturity and popularity as the digital

arrays. One of the reasons is the relatively small array sizein the available analogue arrays and

it is due mainly to the intercommunication between the arrayelements.

The problem of intercommunication between each block inside an array is an important issue

in digital arrays but rather more problematic in its analogue counterpart. In digital domain

the used area, power overhead, the degree of flexibility in the communication pattern and the

delays inserted in the signal path are the main aspects to be considered in the communication

design. In analogue arrays, these aspects are added to intrinsic analogue challenges of the signal

distortion, white noise and interference.

The use of communication methods similar to the digital arrays present a great limitation on the

practical size of the analogue array and power consumption.In the next chapter a time based

alternative to overcome this essential limitation is proposed.
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Chapter 3

Asynchronous spike event coding
scheme: the communication method

3.1 Introduction

In the previous chapter a detailed review of the field of programmable analogue arrays were

presented. The limitations of the current communication mechanisms were explained and a

different approach using time as the information representation was suggested.

In this chapter a novel programmable analogue communication architecture is proposed. This

architecture uses timing-encoded signals to convey information between the CABs within the

array and outside the system.

Firstly, the communication method used for the proposed programmable architecture is pre-

sented and its functionality is explained. In this chapter the communication aspects of the

method is studied whilst its computational properties are presented in chapter 4. Address Event

Representation (AER) constitutes an important part of the method and therefore is presented in

this chapter as well.

The core of such method, the timing coding, is presented. A specific timing coding scheme, the

Ternary Spike Delta (TSD) modulation is used in this work. However other timing schemes are

also able to be integrated into the architecture. A set of these alternative methods are presented

in the following sections.

Finally, with different timing coding candidates being available, a method to evaluate the per-

formance of each coding schemes is needed. The evaluation isperformed by measuring its

Channel Efficiency(CE) together with other constraints, mainly their computational properties.

The outcome of such evaluation reveals that the TSD coding istheoretically the most suitable

to be implemented.
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Figure 3.1: Proposed communication architecture. The array of Configurable Analogue Blocks
(CABs) is connected using an asynchronous digital channel.Asynchronous Spike
Event Coding (ASEC) coders and decoders (codec) are also used to interface the
array with external circuitry.

3.2 Asynchronous spike event coding scheme

From the review of the previous and existing FPAA architectures, the inter CABs communica-

tion was identified as an important issue and one of the main limitations of FPAA performance.

In this work a novel architecture is proposed based on the timing communication.

The architecture is designed to be flexible regarding the CAB’s internal functionality or imple-

mentation as long their inputs and outputs signals respect the limitations of the communication

scheme. The system is flexible enough to even allow a hybrid implementation of communica-

tion methods. For instance, a system can use conventional communication method of analogue

switch matrices to transmit information inside a small-size cluster of CABs and the timing

method used to communicate between clusters.

In the architecture shown in figure 3.1, CABs in an array are virtually interconnected using a

common asynchronous digital channel. The communication between those CABs is the role

of the Asynchronous Spike Event Coding (ASEC) communication scheme [93]. This scheme

is the result of theassociationof the AER communication method with the TSD modulation

which perform the conversion of analogue signals into timing information and vice-versa. The

TSD modulation output is used to trigger AER communication signalling in the digital channel.
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Figure 3.2: ASEC-CAB interface diagram. Block diagram of the Asynchronous Spike Event
Coding (ASEC) scheme interfacing with a CAB. With this architecture, analogue
signals are limited to the CAB realm, reducing the levels of interference.

ASEC conversion consists of oneSpike Event1 coder and decoder pair for each CAB as shown

in figure 3.2. These coders and decoders work on the onset of specific events: whenever the

CAB output analogue signal is found in certain conditions for the coders and on the common

channel state for the decoders.

The transmission of these spike events is implemented usingthe common digital channel rather

than dedicated interconnections. Because these events areasynchronous, the AER protocol —

widely used in neuromorphic designs [94] — is an appropriatechoice2 for the management of

information flux inside the array. This protocol has been used to convey analogue information

in the past, as in [96].

3.3 The channel component: Address event representation

As said in the previous chapter, neuromorphic systems try tomimic structures and function-

alities of biological neuronal systems into VLSI technology. Similar to biological neurons,

most of such systems use spike representation for transmit information between their elements.

However real neurons can be connected to hundreds or thousands of other neurons in a 3-D

1The “Spike” part of the name is derived from the neuromorphicsystems, where the communication method
was inspired. In these systems, as well as in actual neurons,an abrupt change of the a variable state (the membrane
potential) encodes information in the instant it has happenrather than the change itself.

2In [95], Boahen performed a statistical evaluation of the AER protocol against other asynchronous protocols
like ALOHA and CSMA. He concluded that arbitrated channels provide a communication throughput five fold than
an non-arbitrated (ALOHA) channel.

27



Asynchronous spike event coding scheme: the communicationmethod

(a)

(b)

Figure 3.3: Address Event Representation. (a) Address Event Representation (AER) working
principle and (b) conventional AER architecture from [95].All events generated
by the neurons (or CABs in our case) are coded according to theneuron address
(an unique identification), multiplexed in time and then decoded at the receiving
side. The conventional architecture comprises of horizontal and vertical arbiter
trees and handshaking signalling circuitry.

configuration whilst individual elements in analogue VLSI systems are connected in a 2-D sili-

con IC. A solution to overcome this limitation is to create “virtual connections” between those

elements. An asynchronous communication system which implement these connections is the

Address Event Representation(AER).

Original AER is a point-to-point asynchronous handshakingprotocol for transmission of digital

words using a Multiple Access Channel (MAC) common to every element in the array. The

information coded in these transmitted digital words represents the identification (address) of

either the transmitting or receiving CAB, depending on the implementation. The former case

will be used in the following description.
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The communication initiates whenever an element (a CAB in a FPAA) in the array generates an

event. This element requests a permission to access the digital bus. If granted by the arbiter, its

address is written on the digital bus, broadcasting the event to other elements in the array. An

AER router is responsible for distributing these events to the appropriate receiver using internal

or external LUTs, for instance. In this work, we use an external FPGA to route the spikes

between coders and decoders. After the target element had acknowledged the reception of the

event, the bus is freed to further utilization.

The asynchronous nature of the AER protocol greatly preserves the information conveyed in

the time difference between events. The main source of inaccuracy between the generated and

the received time difference is found in the presence of event collisions. Because the access

to the channel is asynchronous and random, different elements may try to access the channel

simultaneously. The AER protocol offers mechanisms to handle these spike collisions. Usually,

a unique and central arbiter is used to manage collisions. Inthis case, collisions are resolved by

an arbiter by queueing and transmitting successively all the spike events involved in a collision.

Although this process can be made relatively faster than thesignal, it is the main source of

distortion due to the communication channel.

The use of AER protocol allows random time-sharing of the same physical channel between

multiple CABs thereby avoiding an exponential increase in the number of physical connections

— a limiting factor in the realization of large programmableanalogue arrays. Our system has

an interconnect complexity of O(
√
N ) [97], whereas analogue interconnect using switch ma-

trices have a complexity of O(N2). The area used to implement crossbars and switch matrices

increases as O(N2) as well, whilst our architecture has a proportional increase in circuit area,

increasing as O(N ). In other words, this architecture is more suitable to larger arrays.

Spike events are essentially asynchronous and robust digital signals that are easy to route on

shared channels, not only between CABs, but also between ICsproviding improved scalability.

When extended to inter-chip communications the interconnect complexity is O(log2 N ).

Since its introduction in Mahowald’s work [65] different versions of AER protocol have been

proposed to overcome some limitations. Boahen’s group havedeveloped a serial version to

improve its scalability [98] as well John Lazzaro in [99]. Andreou worked on increasing its

speed [100] whilst Brajovic [101] presented an error correction codes method to avoid the use

of arbiters. Appendix C presents a novel implementation with a distributed arbitration.
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3.4 The coding component: Ternary spike delta modulation

The coding scheme used in this work is based on a derivation ofthe delta modulation. Delta

modulation and its derivatives have been receiving multiple denominations in the time. The

derivation used in this thesis is named Ternary Spike Delta (TSD) modulation. Being a deriva-

tion of the delta modulation, general aspects of the delta modulation will be analysed first. It

will be useful also to describe other methods evaluated in this chapter. Because these other

methods can also be linked with the AER communication, they are called spike delta modula-

tions in this work.

The working principle of delta modulations is based on limiting the errore(t) between the input

signalx(t) and an internal variablez(t):

|e(t)| = |x(t)− z(t)| ≤ e(t)max (3.1)

using a negative feedback loop in the modulator orcoder. In other words, these modulations

work by forcing a feedback signalz(t) to track the input signal.

The error is sensed by a (normally 1-bit) quantizer system inorder to produce the coder output

y(t) whilst the internal variablez(t) is generated by the integration this output signal:

z(t) = ki

∫

y(t)dt (3.2)

whereki is the integration gain.

The communication process is completed at the demodulator or decoderside, where the signal

z(t) is replicated aszR(t)

zR(t) = ki

∫

yR(t)dt (3.3)

whereyR(t) are the spikes at the decoder input.

In order to obtain this replication, an ideal channelCH3 is considered, withyR(t) = y(t).

3The main characteristic of an ideal channel for this thesis is the fact that the spike time intervals from the input
to the output of the channel are the same. In other words, the channel does not change the time elapsed between
spikes generated by the coder.
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Furthermore, both coder and decoder integrators are required to present the same initial con-

dition and gain. Otherwise,zR(t) andz(t) will present different DC levels and amplitudes,

respectively.

Finally, a better approximationxR(t) of the input signal is obtained by averaging the recon-

structed signalzR(t). A low-pass filter (LPF), whose impulse response function ish(t), can be

used for this purpose:

xR(t) = h(zR(t)) ≈ zR(t) = x(t)− e(t). (3.4)

Equations 3.1 and 3.4 show that the difference between the reconstructed signal and the input

signal is bounded by the maximum allowed errore(t)max.

These methods are known as delta modulations because the feedback control updates the feed-

back signal by a fixed amountdelta(δ), which is a function of the resolution of the converter.

If the system is designed to provideNb bits of resolution, then:

e(t)max = δ =
∆xmax

2Nb
(3.5)

where∆xmax = xmax − xmin is the maximum amplitude variation of the input signal. The

parameterδ, known as tracking or quantization step, is used in quantizer and integrators designs

to limit the error to its maximum.

In the PWM version the quantized output is the output of the coder, i.e. y(t) = Q(e(t)).

However, in spike-based versions the output of the quantizer(s) trigger(s) a spike generator

(SG) such asy(t) = SG(Q(e(t))).

Ternary Spike Delta (TSD) modulation was presented by [102]and further analysed by [103]4.

This modulation is similar to the schemes described in [104], [105], and [106] which are based

on the principle of irregular sampling used to implement asynchronous A/D converters, for

instance. A similar version was also used in [107] and by Miskowicz (re-branded as Send-on

Delta) [108] for low-bandwidth, low-power sensors.

4Although the scheme studied in these works are PPM-based, they were named Asynchronous Delta Modulation
(ADM).
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Figure 3.4: Ternary Spike Delta modulation - TSD. (a) is the block diagram of coder and de-
coder. It presents two comparators with different thresholds (eth1 andeth2), a Spike
Generator (SG), Pulse Generators (PG), integrators (INT),the channel (CH) and
the decoder Low-Pass Filter (LPF). Signalx(t) is the coder input signal while
the feedback signalz(t) is an approximated copy ofx(t) generated from the spike
outputy(t). SignalszR(t) andyR(t) are, ideally, copy of signalsz(t) andy(t) re-
spectively on decoder side. Decoder outputxR(t) is an approximation ofx(t). (b)
presents illustrative waveforms of important signals. Thespike trainy(t) presents
three states: up, down and null.T is the pulse period,∆t is the inter-spike period
andδ is the tracking step.
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In ternary modulations, the output present three possible states [102, 109]. These are used

to indicate the spike onset and its “signal”. Therefore, thesignal transmitted is represented

by “positive” and “negative” spikes and each resulting in anincrement or decrement ofδ,

respectively. As the decrement inz(t) is also controlled by spikes, the absence of spikes in this

modulation indicates no change in the current value ofz(t).

Because of this three state output, it is not possible to use only one 1-bit quantizer (comparator).

Another comparator is inserted in the coder loop and the figure 3.4(a) presents the coder block

diagram of TSD modulation. This extra comparator also senses the error signale(t) but its

comparison thresholdeth2 is different5. The comparator outputs are combined within the SG

block to generate the proper spikesy(t), if needed. These spikes are outputted to the channel

CH and to the Pulse Generator (PG) block. The respective pulse is then sourced to the integrator

INT to produce the proper increase or decrease inz(t) andzR(t).

The difference of thresholds∆eth impacts the performance of the coder and its ideal value is

the same as the tracking step, i.e.,∆eth = δ. This ideal value is used in the following analysis

whilst deviations from this will be considered in the chapter 5.

Although the integrator can present different gains for positive and negative spikes, only the

case where the gains are symmetric is considered. For the following analysis the figure 3.4(b)

is used as an example. The function of the integrator is to updatez(t) by a fixed amount and,

therefore, it works as an analogue accumulator.

After analysing the figure 3.4(b), one can verify that the variation in the feedback signalz(t)

since the initial timet0 is:

∆z(t) = δ(np − nn) (3.6)

wherenp is the number of positive spikes andnn of negative ones generated sincet0. According

to equation 3.6, the value of the feedback signalz(t) in TSD depends only of the number of

positive and negative spikes sincet0, but not of the actual timet.

Although the TSD was adopted as the analogue coding method tothe ASEC scheme, other

five methods were also considered throughout this thesis. This methods are also presented in

this chapter to be evaluated against the TSD. The next two methods are also based on delta

modulation whilst the others are based on sigma-delta modulations.

5For the sake of simplicity, in this study it was considered thateth1 andeth2 are symmetric.
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3.5 Alternative modulations

3.5.1 Binary spike delta modulation

Variations on the delta modulation model can be achieved by selecting the number of output

states. In this thesis, the options for the amount of output states were limited to two (binary)

and three (ternary) as in the TSD case described before. Although others are possible and

are derivations of these two basic types, they increase the complexity of the communication

scheme.

In Binary Spike Delta (BSD) modulation [103], the output is represented by only two states:

either there is a spike or there are no spikes at all. For everyspike generated, the feedback

signalz(t) increases by a fixed amount6 δ. On the other hand, when there are no spikes,z(t)

decreases by a constant rateαd. The diagram of the BSD modulation is showed in figure 3.5(a).

In this case the error signale(t) is compared against a fixed thresholdeth using only one com-

parator7. Therefore, the comparator outputc(t) is high when thee(t) − eth > 0 and low

otherwise. Every timec(t) turns high, a spike is generated by the spike generator block(SG)

as shown in figure 3.5(b), which is a detailed illustration ofa possible waveform.

Being a delta modulation, the signalz(t) in BSD method is generated by the feedback integrator

and its variation from an initial timet0 is

∆z(t) = ∆z(tn−1) + δ − ki(t− tn−1) = · · ·

= nδ − ki(t− t0) (3.7)

wheren is the number of spikes generated sincet0. That is, the feedback signal is a function of

the number of spikes and the time elapsed since the initial timet0.

Different processes can be used to produce this dynamic in the integrator output. One possible

method is to generate a fixed width(T ) pulse from each output spike to create a fixed increment

on z(t), using the Spike Generator (SG) in figure 3.5(a). Also this spike generator would

provide an appropriate DC level (pdc) to decrementz(t) proportionally (αd) to the time between

6Other implementations can use the symmetrical process, i.e. z(t) decreases byδ where there are spikes and
increase when there is not. However the analysis is similar to the one presented.

7The choice of comparator thresholdeth impacts the average (DC) errore(t) and should be designed to beδ/2
to cancel this DC error. Figure 3.5(b) shows the effect foreth = 0: a constant and positive DC shift ofδ/2.
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Figure 3.5: Binary Spike Delta modulation - BSD. (a) presents the BSD functional block di-
agram. Signals descriptions are similar to the ones in figure3.4(a). (b) shows
example waveforms of the relevant signals. Similarly to TSD, there may be a DC
offset betweenx(t) andz(t). In this case the DC offset is approximatelyδ/2.

spikes. In this case

ki =
δ

psT
=

αd

pdc
(3.8)

whereps is the pulse amplitude triggered by the spikey(t). As the variation of signalz(t)

during the period∆t is controlled by the pulse DC level, then

pdc =
∆z(t)

ki∆t
. (3.9)

In order to obtain the minimum number of spikes, the following condition is needed:

αd = −|∆z(t)|max

∆tmax

≈ − |ẋ(t)|max = −αs. (3.10)
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From equations 3.8 to 3.10, the DC level is

pdc = −Tαs

δ
ps. (3.11)

A PWM-like version can also be implemented using spikes and this implementation is de-

scribed next.

3.5.2 Asynchronous delta modulation

Asynchronous Delta Modulation (ADM) was presented by [103], where it was referred asAsyn-

chronous PLM, and [110], presented ashybrid PLM-FM or rectangular-wave modulation.

This modulation presents a two-state output pulse, with variable width and frequency. This

bipolar representation is preferably used because it is adequate to digital channels. When used

in a spike-based communication system, each spike can specify the time of each coder output

y(t) switch.

The block diagram of this modulation is presented in figure 3.6(a). The comparator outputc(t)

controls SG and PGs converts each spike into a PWM (±b) signal representation to apply to

both integrators.

The variation on the integratorz(t) output since the initial timet0 is

∆z(t) =
n
∑

i=1

(−1)i+1αd(ti − ti−1) (3.12)

with αd being thez(t) update rate. Figure 3.6(b) shows an example of the behaviourof some

signals of the modulation.

The coder uses ahysteresiscomparator as the amplitude-to-time converter. In fact thecompara-

tor limits the error using its hysteresis window. Considering a comparator with a symmetrical

hysteresis window, the error is limited by−d ≤ e(t) ≤ d where−d andd define the compara-

tor hysteresis. Whenever the error reaches the limits of thewindow, a spike is generated and

the feedback loop acts bringing the error signal inside the window. The comparator hysteresis

is designed as

d = δ/2. (3.13)
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Figure 3.6: Asynchronous Delta Modulation - ADM. (a) is the block diagram of the ADM mod-
ulation. As for BSD and TSD cases, Spike Generators (SG) are used to generate
the pulses used as the input of integrators. In (b),∆t1 and∆t2 are the spike time
intervals which defines the low and high periods for the PulseGenerator (PG) at
the input of the integrators.

For the correct working of the coder, the maximum speed whichthe signalz(t) increases or

decreases has to be greater than the speed of the signal. Ifαs is the absolute value of maximum

derivative of the input signal, i.e.,αs = |ẋ(t)|max ≤ αd, then the integrator gain must be

ki ≥
αs

b
. (3.14)

If this condition is not satisfied, the signalz(t) will not able to trackx(t) all the times. This

effect, common to every delta-based modulation, is known asslope overload [111].

Up to this point only spike versions of the PWM delta modulations have been discussed. These

modulations are prone to slope overload, i.e., the feedbacksignalz(t) may not be able to track

the input signalx(t) if this signal rises or fall very quickly. In other words, thecoder works
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Figure 3.7: Asynchronous Sigma Delta modulation - ASDM. (a) Block diagram and (b) exam-
ple waveform with the important signals. Signalz(t) tracks the input signalx(t).
The spike trainy(t) is used to replicate the tracking signalzR(t). The output signal
xR(t) is a filtered version ofx(t).

well up to a maximum input bandwidth. Alternative methods toavoid this effect are based on

sigma-delta modulations and are presented in the next subsection.

3.5.3 Spike sigma-delta modulations

All methods evaluated in this chapter are spike differential modulations. These modulations

present two different types of feedback control loop in the coding and transmission mechanism.

Therefore they are classified according to the type of feedback loop. In delta modulations

the integrator is in the signal feedback path whilst the sigma-delta modulations present the

integrator on the forward path, before the quantizer.
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Figure 3.8: Binary Spike Sigma Delta modulation - BSSD. (a) BSSD block diagram and (b) an
example waveform. Signalz(t) tracks the input signalx(t). The spike trainy(t)
is used to replicate the tracking signalzR(t). The output signalxR(t) is a filtered
version ofx(t).

The slope overload present in delta modulations can be minimized by increasing the tracking

step or reducing the loop delay. The first impacts the system resolution and the second is

limited by the technology used. Other methods include change the topology as in adaptive delta

modulations (Continuously-Variable Slope Delta modulation [112], for instance) with requires

a great complexity, or using sigma-delta modulations.

Sigma delta modulation is a variation of the delta modulation, where a block diagram reduc-

tion is performed in such way that only one integrator is used, by merging coder and decoder

integrator and moving it to another position in the loop [92]. This removes the problem of mis-

match between integrators found in delta modulations. In this new position of the integrator in

the feedback loop, the quantizer codes theintegral of this error instead of the error signal.

39



Asynchronous spike event coding scheme: the communicationmethod

   
∫

CH

Coder Decoder

PG

SG
c1(t)

eth1

c2(t)
eth2

x(t) xR(t)z(t) y(t) yR(t)

INT

ki

LPF

e(t)

(a)

x(t)

z(t)

z(t)

y(t)
np

nnnn − 1

t = t0 t = t1

∆x(t)

∆tT

t

1

1

2

2

...

...

e(t)

(b)

Figure 3.9: Ternary Spike Sigma Delta modulation - TSSD. (a) Block diagram with (b) an
illustrative waveform. Signalz(t) tracks the input signalx(t). The spike trainy(t)
is used to replicate the tracking signalzR(t). The output signalxR(t) is a filtered
version ofx(t).

The main advantage of this modulation is known as noise shaping. Noise shaping is the pro-

cessing of moving the quantization error to high frequencies. Therefore, the low pass filter

at the decoder removes this high frequency components, resulting in a better Signal-to-Noise

Ratio (SNR). However, this advantage is not present in the asynchronous version because there

is no sampler inside the loop [113].

Asynchronous Sigma Delta Modulation (ASDM) was presented in [110] and since then some

studies have been carried out on this technique [114, 115, 113, 91]. Likewise in the case

of Spike Delta modulations, different output states are possible and, again, just binary and

ternary are analysed. The block diagrams of the former, the Binary Spike Sigma-Delta (BSSD)

modulation and the latter, the Ternary Spike Sigma-Delta (TSSD) modulation, are shown in

figures 3.8(a) and 3.9(a), respectively. However, the implement ion of these modulations as

presented in the figures are impractical, due to high amplitudes required for the signaly(t),

specially for higher resolutions.
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3.6 Evaluation of the communication methods: Why TSD?

The Ternary Spike Delta (TSD) modulation (the heart of the SEC scheme) and other alternative

differential methods were described in the previous sections. Having different characteristics

and properties, a common measurement is required to quantitatively compare these modula-

tions. The channel efficiency measure is defined next followed by simulation results. Although

those channel efficiency expressions for each method was derived, a direct comparison is diffi-

cult to visualize. Therefore, numerical simulations of models for each modulation were used to

help in the evaluation.

3.6.1 Channel efficiency

In this architecture, the usage of the common channel is the most important factor. In this

context, it is desirable that a communication method uses asfew as possible the channel to

convey the signal with a specific quality (resolution) to an efficiently utilization of the channel

capacity. For this thesis, Channel Efficiency (CE) is definedas

CE =
fin × 2ENoB

Ns
(3.15)

whereNs is the number of spikes per second transmitted when a sine wave with frequency

fin is used as the input signalx(t) andENoB is the coder resolution expressed inEffective

Number of Bits.

According to this definition, each modulation is evaluated according to the number of spikes

generated by a specific signal for a fixed resolution coding. In other words, the smaller the spike

frequency (for a specific input frequency), the better is thecoder performance. This metric was

used because the utilization of the communication channel is the main limitation foreseen for

large analogue arrays using such modulations. This definition resemble a common ADC figure

of merit cited in [116] and the one presented in [106] for asynchronous ADCs with the power

being replaced by the spike frequency.

Approximated instantaneous spike frequency expressions for each modulation is presented in

table 3.1. It also presents the input signal conditions needed for the maximum and minimum

number of spikes, the number of spikes and measurement for the channel efficiencies. Deriva-

tions of table 3.1 results can be found in the appendix A.
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ẋ(t)− ki pdc
δ − ki pdc T

k2i − [ẋ(t)]2
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Table 3.1: Spike frequency and channel efficiency comparison.fsk(t) is the approximate instantaneous spike frequency,x(t)|fsk(t)=fsk(max/min)

is the condition for maximum/minimum spike frequency,fsk|x(t)=xDC
is the spike frequency for DC input signals,Ns is the number

of spikes per second for an sine wave inputx(t) = A sin(ωint) andCE is the channel efficiency for each modulation. The TSD
modulation is the only that presents no spikes for any DC input signal.
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As expected the spike frequency of delta-based modulationsis a function of the input signal

derivative. But the frequency characteristics are very different: whilst the maximum frequency

when using ADM is met with a DC input signal, the same signal will not generate spikes on the

TSD modulation (and about half of the maximum for the BSD case).

In details, the ADM output frequency is proportional to the square of the input derivative.

Therefore this frequency reaches its minimum with fast changing input signals and there is

a self-oscillation frequency(f0) for DC input signals8. Alternatively, the spike frequency for

BSD modulation is a function of the input derivative. The maximum spike frequency is obtained

when the input signalrisesat its maximum rate. When the input signalfalls at maximum rate,

the spike frequency is the minimum. For TSD, the spike frequency is a function of theabsolute

input derivative9. Consequently, there are no spikes when the signal does not change10.

Considering the sigma-delta-based modulations, their spike frequency is a function of the am-

plitude of the input signal. It is proportional to the squareof the input signal amplitude in

ASDM method; to the amplitude itself in BSSD case and to the absolute value for TSSD. As

for the delta-based cases, these differences reflect on the conditions where the method will pro-

duce the minimum and maximum output frequency. For instance, whilst a null input signal will

generate no spikes in a TSSD method, the same signal will generate spikes at the maximum

frequency for ASDM method. The opposite is true when the input signal reaches its maximum

or minimum: no or few spikes for ASDM and maximum output frequency for TSSD.

All these three modulations present a self-oscillation frequency for DC input signals [118], with

the exemption of TSSD when the input amplitude is null (although very low self-oscillation

frequencies can be obtained for the other methods in extremecases, i.e.,|x(t)| = xmax). Only

the TSD modulation has no self-oscillation frequency for any constant input.

Regarding the number of spikes generated per secondNs, TSD method generate more spikes

(4/π) than ASM method and less (2/π) than BSD method. The number of spikes per second is

a function of the signal amplitude in sigma-delta versions,with the binary version (BSSD) also

presentingπ/2 times more spikes per second than the ternary case (TSSD).

8In synchronous delta modulation systems, this effect is also known as granular noise [117].
9For comparison purposes, it was shown [102] that the frequency of asynchronous version of TSD is

π

3
√
2

smaller than the synchronous version.
10In fact, no spikes are generated in TSD modulation when the change in the input signalx(t) is smaller than the

quantization stepδ
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Comparing delta with sigma-delta modulations using the table 3.1 is not straightforward. Nu-

merical simulations were performed to visualize this comparison. The results are presented in

the next subsection.

3.6.2 Comparison results and discussion

Models of all modulations were designed for resolutions spanning from 3 to 8 bits and simulated

using a 1-kHz sine wave. The conversion results and the frequency response for the 4-bit

resolution case and frequency spectrum are plotted in figures 3.10 and 3.11 for delta-based and

sigma-delta-based modulations, respectively.

In both figures, two graphs are reserved for each modulation.The first one shows the coder

input signalx(t), the decoder output signalxR(t) and, for delta-based cases, the output of

decoder integratorzR(t)11 in time domain. Due the filter design, where the pole is selected to

be the same as the input signal frequency, all signalsxR(t) present a 3 dB attenuation and a

45◦-phase shift. The second graph corresponds to the frequencycharacteristicsX(s), XR(s)

andZR(s) of the same signals, respectively, having the fundamental component at 1 kHz.

Although the modulations are asynchronous by definition, all simulations were performed using

sampled signals. According to the sampling theory, frequency components of a sampled signal

which are greater than the Nyquist frequencyfs/2 will be mirrored (around Nyquist frequency)

and then added into the lower frequency components. Therefore, by performing sampling on

the signals involved, the simulation provides worse results than in reality. To minor this effects,

one can increase the sampling frequency, i.e., increase theOversampling Ratio(OSR). By

doing that, the amount of the frequency components mirroredto baseband(f ≤ fs/2) will

decreased, considering that all modulations present a low-pass filter at the output. For the

simulations presented here, the sampling frequency used was 16.78 GHz for an input signal

frequency of 1kHz (OSR =224).

Also using these simulations, the number of spikes per second Ns generated were measured

and they are presented in figure 3.12(a), whilst figure 3.12(b) shows the calculatedNs using

equations on table 3.1. The difference is due to the fact thatsome expressions on table 3.1 are

approximations from the actual expressions.

11Different to sigma-delta modulations, where the decoder filter is compulsory, its implementation is optional
(although desirable) in delta modulations. Therefore, signal zR(t) is also showed to comparison purposes.
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Figure 3.10: Numerical simulation of the delta modulations models. The signal reconstruction
and the frequency spectrum of this reconstruction are shownfor each modulation:
(a) TSD, (b) BSD and (c) ADM. SignalzR(t), as wellz(t), is the result of the
discreteoutput spikes and tracks thecontinuousinput signalx(t). How close is
this tracking depends on the system resolution.
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Figure 3.11: Numerical simulation of the sigma delta modulations models. The signal recon-
struction and the frequency spectrum of this reconstruction are shown for each
modulation: (a) ASDM, (b) BSSD and (c) TSSD. For the first case(ASDM), this
figure also shows the pulse signal produced by the incoming spikesyR(t). This
intermediate signal, namedzR(t), is the conventional asynchronous sigma-delta
output signal.
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A comparison of the channel efficiencies of the modulations from simulations can be visu-

alized in figure 3.13. In this figure, the graphs (a) and (b) present the results ofnormalised

channel efficiency considering the outputxR(t) whilst the graphs (c) and (d) showactualchan-

nel efficiencies using the signalzR(t). Normalisation is need forxR(t) because the design was

performed to obtainNb on the signalzR(t) for delta-based modulations. Therefore the com-

putation of channel efficiency consideringxR(t) would lead to efficiencies greater than unity

because of the decoder filter.

By the analysis of these graphs and the table 3.1, the ADM method presents the highest channel

efficiency of delta-based cases studied. However this is a valid result when considering the sig-

nalzR(t). For the results based of the signalxR(t), the TSD presents a better efficiency for low

resoltions. This is mainly because the segments of the TSDzR(t) resembles square waveforms,

presenting greater harmonic components at high frequency spectrum than the triangular shape

of ADM zR(t). Therefore the effect of the low-pass filter is more significant. For higher res-

olutions the effect of the filter is not so important because the harmonics amplitude decreases,

i.e., the signalzR(t) becomes more similar to the input signal and the better channel efficiency

of the ADM starts to reflect in the signalxR(t) as well.

Besides presenting the better channel efficiency figures forlow resoltions, the TSD modulation

was chosen as the modulation for the communication method because of other two factors:

1. TSD modulation is the only modulation studied that presents no spikes for constant input

signals. This analogue array is intended to work for low-frequency input signals and it is

expected that many of the input signals might present no activity during a considerable

period of time. By making this assumption, it is likely that asystem with TSD modulation

implemented will generated the lowest communication traffic.

2. As it will be shown in the computational characteristics in chapter 4, TSD modulation

presents some properties that enable an inherent signal computation.

3.7 Summary

An alternative communication method to the commonly used switch matrices was introduced:

the Asynchronous Spike Event Coding(ASEC) scheme. The method relies on an efficient

method of analog-to-timing conversion and on an asynchronous communication protocol (AER).
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Figure 3.12: Number of spikes per second (Ns) for the communication methods. Output activ-
ity of all coding methods studied. The graphs present both the calculated values
of Ns according to table 3.1 (indicated with the marker ‘o’) and measured from
simulations (marker ‘x’). The difference between calculated and measured lies
on the fact the equations in table 3.1 are approximated expressions. (a) are the
results when using the designed resolutionNb and (b) when using the output
ENoB. Differences are more visible on delta-based methods because the design
is performed to using the required resolution onzR(t) rather than on the coder
outputxR(t). Markers ‘x’ and ‘o’ are equals for delta-based modulationson (b)
because no calculations were performed for the filter outputxR(t).
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Figure 3.13: Channel Efficiency (CE) of the communication methods. (a) calculated (see ta-
ble 3.1) and simulated (b)normalisedchannel efficiency of each communication
method in terms of the designed resolutionNb and the resolution at the output
xR(t). Graphs (c) and (d) show theactualchannel efficiency when signalzR(t) is
considered. Lines market with ‘x’ and ‘o’ have similar meaning as in figure 3.12.
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The conversion method was selected among several differential asynchronous pulse modula-

tions which were presented and analysed. These modulationsare spike-based derivations of the

well-known PWM-based delta and sigma-delta modulations.

Because our architecture uses a common digital channel, themain criteria to evaluate these

modulations is the channel activity required by each of them. A measurement for the channel

utilisation (channel efficiency) was defined as the amount ofspike generated for a specific de-

coder output resolution. For each modulation studied, table 3.1 presents analytical expressions

for the spike activity.

From these expressions one can notice that TSD is the only onethat does not output spikes for

constant input signals. This fact adds to the highest channel efficiency for low resoltions from

the simulations and its unique computational properties asthe main reasons for the selection of

the TSD as communication method for the architecture.

In this thesis, there isno claim about the novelty of the analogue modulation used (TSD). The

novel aspects introduced in this thesis are the TSD usage in an analogue array architecture

working in association with the AER protocol —Asynchronous Spike Event Coding(ASEC)

scheme — and the analysis of the computational properties ofsuch scheme as presented in

chapter 4.

Apart the alternative methods evaluated here, other variations of the differential modulations are

possible. These include Asynchronous Pulse Length Modulation (A-PLM) and Asynchronous

Bipolar Pulse Length Modulation (AB-PLM) as presented in [103] and asynchronous versions

of the Continuously Variable Slope Delta (CVSD) modulation. The adequacy of these methods

would be evaluated in future works.

In the next chapter the computation properties of the ASEC will be demonstrated with examples

of some elementary and complex functions.
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Chapter 4
Computation in communication with

asynchronous event coding scheme

4.1 Introduction

In the chapter 3 a novel analogue communication method for analogue arrays based on asyn-

chronous events and using a common channel to transmit theseevents were presented. Analogue-

to-timing conversion methods were studied and evaluated. The TSD modulation was selected

among other methods according to a figure of merit, being the core of the ASEC scheme. In

this chapter, it will be shown that the ASEC may be configured to perform a set of analogue

computations, corresponding to the second part of the statement of hypothesis in section 1.2.

Although the first electronic computations were performed by analogue circuits, digital tech-

niques gradually become more popular over the years, mainlydue to its reliability, simple

configuration and a wide range of computations performed by asmall set of basic blocks.

Consequently, analogue computation had became restrictedto a small set of operations. In

particular, these operations perform low complexity functions requiring real-time processing,

low-power consumption, low circuits area. Moreover, analogue circuits are used to interface

real world signals, who present a continuous-value representation. Current examples of ana-

logue computations are found in various types of sensors [94, 119, 120] and array-based ap-

plications [121, 13]. However analogue computation has potential benefits compared against

its digital counterpart. When considering low to moderate (SNR up to 12-bit) resolution sig-

nals, analogue computation could be tens of thousands timesmore efficient and less costly than

custom digital processing [7, 6].

Analogue numeric representation is based on continuous physical properties which leads to a

limited precision. Analogue computations are generally performed using voltages or currents

as the physical representation of the real numbers. These quantities are not appropriate to

represent high dynamic ranges within low-voltage, low-power circuits.

Alternatively, the use of timing as the numerical representation for computations has been stud-
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ied [21, 122] and presents an important advantage due to the evolution of the CMOS fabrication.

Pushed by the digital processor market requirements, CMOS technology features tend to de-

crease to allow smaller and faster circuits. Considering the current applications, this evolution

represents a further increase of the allowed dynamic range when using timing representation1.

One of the first uses of timing processing was presented by Prof. Tsividis [18], who developed

a filter structure where the filter coefficients were set by switching times. In his work, Prof.

Tsividis showed that using a couple of switches and a low passfilter (LPF), it is possible to

perform a multiplication of a signal by a constant (gain). This kind of operation, the summation

of gains is used extensively in artificial neural networks (ANN) [123].

More recently, research groups started to use timing as signal representation to develop ana-

logue processing. Pulse Width Modulation (PWM) was used to implement switched filters [21]

and to carry out arithmetic operations [124], signal converters and information storage [125].

Other modulations have been used in specific applications asvoice and sound and video pro-

cessing [126], but a few groups are keen to use them in a more generic scope within analogue

processing.

One of them, the Analog VLSI and Biological Systems Group at MIT, leaded by Dr. Sarpeshkar,

presented a hybrid computation technique [127]. He defined hybrid computation as a type of

processing that combines the analogue computation primitives with the digital signal restoration

and discretisation using spikes as a way to transform a real (analogue variable, the inter-spike

intervals) number into an integer (discrete digital, the number of spikes) number.

However all these methods, apart the last one, have been designed for and used in particular

applications, presenting a flexibility degree very limitedto a generic analogue array. And Dr.

Sarpeshkar’s method requires accessory circuits to perform different operations.

The asynchronous spike event coding (ASEC) communication method presented in chapter 3

was found to be suitable to perform a series of generic computation on analogue signals in an

analogue array. Moreover, all computations are realized with the circuits already implemented

for the communication process. The idea underlying the computational properties of the com-

munication scheme and some examples are described next.

1This assumption is valid if considering the same signals used in the current computations. Many of these signals
are measures of physical properties and therefore, their dynamics are fixed. For instance, audio signals are useful
only up to 20kHz.
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Figure 4.1: Computation in the communication scheme. Analogue signalsare converted into
spikes by the coders and arithmetic computation may be performed by the AER and
decoder combination. The type of computation performed is defined by program-
ming the AER routing and decoder parameters.

4.2 Computational framework

In general, programmable analogue arrays perform computations using the exiting functionali-

ties of the programmed configurable analogue blocks (CABs),whilst the role of the communi-

cation interconnect is to route signals between those CABs and to external world. However, the

computation power of a programmable array can be enhanced ifthe communication channel

can be used to perform computations without additional overheads, as performed by the ASEC

scheme presented in this work.

In the architecture proposed in chapter 2, CABs are interconnected using the ASEC scheme.

The communication scheme consists of a spike event coder, AER and spike event decoder as

shown in figure 4.1. The spike event coder encodes the analogue signals into asynchronous

discrete amplitude signals (spike events) which are then routed to target CABs using an asyn-

chronous event representation (AER) protocol. The decoderat the target CABs decodes the

spike event signals received from the AER.

This communication scheme allows a set of arithmetic operations to be performed. For instance,

in figure 4.1, the top decoder outputs a summation of two inputs (sine and triangular waves)

and the second one provides a negation of one of the inputs (sine wave) using the same commu-

nication channel. These operations are performed simply byprogramming parameters of the
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communication channel. Other operations can be implemented by combining the channel re-

configurability with the analogue signal processing capability of the CABs. The computational

realm of this communication scheme can enhance the computing power of the programmable

array without using additional hardware.

Moreover, because of the shared nature of the channel, meaning it can enable multiple commu-

nications virtually at the same time, the computation operations can also be performed simulta-

neously. This intrinsic computation capability allows a simpler implementation than other pulse

based approaches, [128] as an example. Basic arithmetic operations will be the first examples

to be presented in the next sections.

4.3 Arithmetic operations

In this section a set of fundamental arithmetic computations performed by the communication

scheme are presented. Each operation is illustrated by simulation of the mathematical models

presented in the Appendix B. Actual chip results will be presented in chapter 5.

The following results were obtained for a 4-bit resolution conversion. Finally, the outputs

waveforms shown in the figures correspond to the decoder filter input zR(t) rather than the

coder outputxR(t) for simplicity as explained in the next chapter.

4.3.1 Gain operation

A common operation in any analogue processing is to change the amplitude of a signal, i.e.,

provide a gainG to the signal such as

xgain(t) = G× x(t). (4.1)

The gain may increase (amplification) or decrease (attenuation) the amplitude of the signal.

Both gain types are possible using the proposed architecture.

Equation 3.6 is valid for both coder and decoder blocks. However, if coder and decoder are

designed to present different tracking steps then the decoder output will be proportional rather
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Figure 4.2: Gain operation. The input sine wave signalx(t) is amplified by a factor of 2 in (a)
and attenuated by 2 in (b), at the decoderzR(t). The gain operation is obtained by
selecting the ratio of the tracking steps of coder and decoder. This operation will
result in signal amplification by setting the tracking step in decoder greater than
in the coder. Otherwise, it results in signal attenuation.
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than equal to the coder input. This proportionality is givenby the ratio of both tracking steps

G =
∆xgain(t)

∆x(t)
≈ ∆zR(t)

∆z(t)
=

δR
δ
. (4.2)

Having different tracking steps, the ASEC scheme will result in the coder and decoder working

with different resolutions. However this difference wouldbe attenuated by a proper decoder

filter design. Figure 4.2(a) shows simulations for an amplification of a sine wave by a factor of

2 whilst an attenuation by the same factor is shown in figure 4.2(b).

4.3.2 Negation operation

A second fundamental operation on analogue signals is changing their polarity resulting in the

signal negation:

xneg(t) = −x(t). (4.3)

According to equation 3.6, the signal value at any instantt (knowing the initial condition of

coder and decoder) is a function of the number of events transmitted and their type. Setting

the AER router to interchange the addresses of positiveyp(t) and negativeyn(t) spikes2 such

operation is performed. In other words, the AER router perform the address operation

yp(t) → yn(t)

yn(t) → yp(t)
(4.4)

resulting in the signal at the decoder outputzR(t) being an inverted version of the input signal

z(t). From equation 3.6

∆xneg(t) ≈ ∆zR(t) = −∆z(t) = δ(nn − np). (4.5)

Sincez(t) andzR(t) are the quantized versions ofx(t) andxR(t), respectively, the operation

of the equation 4.3 is obtained. An example using a sine wave signal is shown in figure 4.3.

2The coder outputy(t) as presented in the chapter 3 is actually the concatenation of both positive and negative
spikes, i.e.,y(t) = yp(t) ∪ yn(t).
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Figure 4.3: Negation operation. Snapshot of the input sine wavex(t) and the respective
negated signalzR(t). Signal negation is perform by interchange the positiveyp(t)
and negativeyp(t) spikes.

4.3.3 Modulus

Another unary function commonly presented is the modulus ofa signal. The modulus of a

signal is the magnitude of such signal, defined as

xabs(t) = |x(t)|. (4.6)

Such function in the proposed architecture is possible using the algorithm

yp(t) → yp(t), yn(t) → yn(t) if sig(x(t)) = +1

yp(t) → yn(t), yn(t) → yp(t) if sig(x(t)) = −1.
(4.7)

wheresig(x(t)) represents a control variable which is a function of the signal sig(x(t)) =

x(t)/|x(t)|.

This algorithm can be implemented in different two ways. Thefirst with an analogue compara-

tor and a second using a digital counter. In both cases, the result in the decoder is the modulus

of the signal. This operation is illustrated in figure 4.4 fora sine wave signal.
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Figure 4.4: Modulus operation. In this configuration, the modulus of theinput signalx(t) is
outputted as the result of selectively applying the negation operation. An digital
counter or a analogue comparator can be used to control the periods when the
negation is performed.

In the first method, the original signal is compared against areference signal representing the

zero value of the original signal. This comparator can be included in the same or in a distinct

CAB. The comparator output signalxc(t) is coded and transmitted to the communication chan-

nel. The AER router controller reads this signal and set (+1)or reset (-1) the variablesig(x(t))

on positive and negative spikes reception respectively. Ifthis variable is reset, the AER router

performs the negation operation on the original signal as described in subsection 4.3.2. The

operation is then performed using the algorithm

The second method employs a digital counter to measure the positive and negative spikes gen-

erated by the original signal. In order to work properly, theinitial condition of the signal should

represent the zero value. If so, the counter is incremented for each positive spike and decre-

mented for each negative one. Every time the counter value changes from a negative value to a

positive and vice-versa, the variablesig(x(t)) is updated.
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Figure 4.5: Signal summation in analogue (a) and spike coding event systems (b). Analogue
summation can be implemented in diverse forms, being the simplest the current
summation according to Kirchoff ’s current law on a node. Thesummation on the
proposed architecture is performed by simplymergingthe spikes generated by the
input signals (operands). In (b), A/P and P/A stand for Analogue-to-Spike and
Spike-to-Analogue conversions respectively.

4.3.4 Summation and subtraction

Beyond these unary operations, arithmetic operations involving two or more signals are also

required by any generic analogue computation system. The fundamental arithmetic operation

involving multiple signals is the summation of these signals. Figure 4.5 shows the conventional

concept of performing summation on analogue signal and in the proposed architecture. The

summation signalxsum(t) with N signal operators is

xsum(t) =

N
∑

i=1

xi(t). (4.8)

In order to implement this operation with the ASEC scheme, equation 3.6 is considered again.

From this equation, it is possible to demonstrate that the summation signal ofN operators is

obtained at the decoder outputxsum(t) by simplymergingof their respective output spikes

xsum(t) ≈ zR(t) = δ

(

N
∑

i=1

nip −
N
∑

i=1

nin

)

+ zR(t0) (4.9)
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Figure 4.6: Summation and subtraction operations. (a) show the summation of two input sine
waves,x1(t) andx2(t). SignalzR(t) is the respective summation whilstxT (t) is
the ideal summation result. The subtraction of the same input signalsx1(t)−x2(t)
is shown in (b). The summation is performed by the concatenation yR(t) of the
spikes from all operands, i.e.,y1(t) andy2(t) in this case whilst subtraction also
requires the negation operation. Spikes collisions are identified wheneveryR(t)
presents twice the amplitude in these figures.

60



Computation in communication with asynchronous event coding scheme

wherenip andnin are the number of positive and negative spikes, respectively, received from

theith operand after the initial instantt0.

In this architecture, it is performed by routing the spikes of all operands to a same decoder,

with CAB input (after the Spike-to-Analogue conversion) being the result. Simulation results

showing the summation of two sine wave signalsx1(t) andx2(t) are shown in figure 4.6(a),

with the decoder integrator outputzR(t). The signalxsum(t) is the theoretical result.

Subtractionxsub(t) may be performed applying both the summation and negation operations

outlined before and an example is depicted in figure 4.6(b). Other methods to realize the sum-

mation in timing domain are also presented in appendix D.

4.3.5 Multiplication and division

Whilst some operations are performed using asynchronous spike event coding and decoding

methods together with the AER router, the range of possible computations can be expanded

when the communication scheme is combined with the functionality of the CABs.

This is one example of this cooperation. Once both summationand subtraction operations are

performed by the ASEC scheme, multiplication and division are expected to be also possible to

implemented in this architecture. This assumption is fulfilled using the logarithmic property in

xmult(t) =

N
∏

i=1

xi(t) = exp

(

N
∑

i=1

ln xi

)

. (4.10)

This property establish that multiplication (and division) operation can be computed from sum-

mation (and subtraction) operation if the operandsxi(t) are submitted to a logarithm compres-

sion and the summation result expanded in an exponential fashion. Although this compression

and expansion are not performed by the ASEC scheme itself, ifthis operations are implemented

inside the CABs, both multiplication and division operations would be available in the array.

The conventional method to generate this logarithm compression are using the circuits in the

figure 4.7. They are known as logarithmic and exponential amplifier respectively [129]. Al-

though they present a simple topology, the diode resistanceis usually highly dependent of the

temperature. These circuits were not implemented for this thesis.
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Figure 4.7: Logarithm and exponential amplifiers. These figures show traditional circuits used
to realize both logarithm (a) and exponential (b) operations on analogue signals.
This circuits were not implemented in any chip designed for this thesis. These
circuits can be implemented inside the array CABs to allow multiplication and
division operations.

4.3.6 Average operation

Once the gain and the summation operations are available, another possible operation is to

perform the average of several inputs in each instant given by

xavg(t) =
1

N

N
∑

i=1

xi(t). (4.11)

To implement this operation, the ASEC uses the same summation and gain procedures, where

the gainG defined in subsection 4.3.1 is defined by

G =
1

N
. (4.12)

Figure 4.8 presents an example of such computation using thesame signals of the summa-

tion operation with the gainG = 0.5. This expression indicates that the minimum possible

amplitude for the tracking step limits the maximum number ofoperators in this operation.

4.4 Signal conversion

The main property of a programmable analogue array is to process analogue signals using its

CABs. However it might be of some interest to having a digitalrepresentation of the analogue

signals, both for storage and transmission purposes, for instance. Analogue-to-Digital (ADC)
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Figure 4.8: Average operation. This figure shows the input signalsx1(t) andx2(t) the respec-
tive Average signalzR(t). This operation is perform by combining the summation
and gain operations, where the gain factor is the inverse of the number of operands.

implementations based upon asynchronous modulations werepresented in [113, 127, 130, 131].

Realizing data conversion on the proposed architecture canbe achieved with the use of Timing-

to-Digital (TDC) and Digital-to-Time (DTC) Converters. Inits simplest implementation, TDC

circuits consist of a digital counter operating at a specificfrequency, which determines the

converter resolution. Its input is an asynchronous digitalsignal which triggers the conversion

process: read (and store) the current counter value and thenreset it. The digital value represents

the ratio between the interval of two consecutive inputs andthe counter clock period:

Xi =
ti − ti−1

tclk
(4.13)

whereXi is the digital representation of the time intervalti − ti−1.

Therefore an Analogue-to-Digital (ADC) conversion is implemented as follows. Because each

spike transmitted using the ASEC scheme presents the same signal magnitude change, the TDC

can be used to read the output spikesy(t) generated by a ASEC coder with inputx(t). An extra

bit is therefore needed to represent the polarity of the spike. For instance, the least significant

bit may indicate the spike polarity.
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As it was said before, for constant input signals the ASEC coder will not generate any spikes.

In this case, the digital counter can overflow and the information would be lost. One method

to avoid this is to ensure the registry of these instants, storing or transmitting the maximum or

minimum counter value, for instance. These value will add upuntil an incoming spike stops

and resets the counter.

Another method, more complex, would be dynamically changing the tracking step of the ASEC

coder, in the same fashion as the Continuously Variable Slope Delta (CVSD) modulation. Every

time the counter has overflowed, the tracking step would be reduced (halved, for instance) to

capture small signal variations. This approach will increase the digital word size because the

step size have to be stored too. On the other hand, less digital words would be generated.

The complementary process can be used to perform an Digital-to-Analogue conversion (DAC).

In this case a counter (DTC) is loaded with a digital word and then starts to count backwards

until reaches the minimum value, typically zero, and reloads the next digital word. At this

point a spike with the correct polarity is transmitted to an ASEC decoder throughout the AER

communication channel to (re)generate the analogue signal.

These applications can be used to implement complex systemsthat could not be fit in just one

programmable analogue array. Furthermore, this works onlyfor non real-time systems.

4.5 Other operations

4.5.1 Shift keying modulations

Specific applications can also be realized with the proposedarchitecture. A first example is

phase shift keying. Phase shift keying is a digital modulation where the information is coded in

the phase of the carrier. For instance the Binary Phase ShiftKeying (BPSK) is defined as

s(t) = z(t) =











a sin(ωct)

a sin(ωct+ 180◦)

if bi = 0

if bi = 1
(4.14)

wherebi is the bit to be transmitted,ωc is the angular frequency of the carrier anda is a function

of the energy per-symbol and the bit duration [132].

This function can be implemented by providing the carrier (sine wave) signal to the input of
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Figure 4.9: Binary phase shift keying. This modulation is implemented by routing the spikes
geberated by the sine wave carrierx1(t) according to the digital inputx2(t). In
this example the modulated digital word in 01011001.

the coder and routing the spikes according to the digital value to be transmitted. For instance,

whilst the input bit is zero, the carrier is replicated at thedecoder output, but when the input bit

is one, a negation function is performed on the carrier, i.e.

yp(t) → yp(t), yn(t) → yn(t) if bi = 0

yn(t) → yp(t), yp(t) → yn(t) if bi = 1.
(4.15)

Figure 4.9 shows the modulation resultzR(t) for an input wordx2(t) = 01011001.

Quadrature phase shift keying (QPSK) is possible using the summation operation with another

sine wave (90◦ phase shifted) and the generation of a fixed number of successive spikes to

quickly change the carrier phase due to signal discontinuity on the second sine wave.

This function has a similar working principle as the function modulus in section 4.3.3. The

difference is that the AER routing is controlled by an external signalb(t) rather than the input

signal itself.
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4.5.2 Weighted summation

The last operation included in this thesis is the weighted summation. This operation, along

a non-linear transfer function, is the functional core of the Artificial Neural Networks (ANN)

systems. Other applications for the weighted summation include bias compensation in statistics,

centre of mass calculation of a lever, among others. The expression for weighted summation is

WS(t) =

N
∑

i=0

wi(t) xi(t). (4.16)

The implementation using the proposed communication method is straightforward by combin-

ing the gain and the summation operations3.

One advantage of implementing such computation in this architecture is the possibility of im-

plement massive ANNs in real-time, because of the system inherit scalability. On the down side,

because different inputsxi(t) are multiplied by different and usually changing gainswi(t), the

decoder tracking stepδR need to be changed before receiving the correspondent spike. This

results in a further delay between the instant when AER routing computes the target address

and the moment when the ASEC decoder implement the update on its output. This delay is

needed to process this tracking step programming. This usually requires waiting for a DAC

controlling the decoder integrator to settle to a new value.

4.6 Summary

This chapter was dedicated to present and demonstrate the computational aspects of the ASEC

scheme. More than just act as an asynchronous communicationmethod, this method offers the

possibility of implement elementary but important operations on analogue signals.

These operations consist of arithmetic operations such as gain, negation, summation, subtrac-

tion, mean and weighted summation (linear operators). These operations are realized by either

programming the AER routing addresses or by selecting appropriate coder and decoder param-

eters. The design of these parameters will be detailed in thenext chapter.

These operations do not require any additional hardware than the ones required to implement

3This method do not work when changing the gain for constant signals.
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the communication itself. Other methods to perform such operations usually require dedicated

circuits, increasing the circuit area and limiting the circuitry flexibility.

Other operations are possible depending upon the hardware available. This hardware can be

presented either inside the analogue processing elements (CABs), as in multiplication operation

case (logarithmic amplifiers) and modulus operation (comparator), or external to the array, as

digital counters required to modulus and data conversion.

The subject of the next chapter is the physical implementation of the ASEC scheme and the

discussion about its characteristics and limitations.
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Chapter 5
Asynchronous spike event coding

scheme: VLSI design and
characterisation

5.1 Introduction

In chapter 3 the spike event coding method was introduced with the TSD as the analogue coding

method. It was selected among other methods according to itsnull spike frequency for constant

input signals, its performance against a figure of merit and its computational properties.

In this chapter, an analogue VLSI design approach for the spike event coding method is pre-

sented and the functionality of its physical implementation is tested [133]. Evaluation and

characterisation of the spike event coding scheme were performed with the design of two proof-

of-concept integrated circuits (ICs).

The first prototype IC firstly introduced in [134] includes the basic blocks of TSD coder pre-

sented in chapter 3. This prototype was designed mainly to the test the functionality of each

TSD block in particular and perform signal communication evaluation. As no AER router was

implemented in this IC, the pulses originated from the spikes were externally (wired) routed.

The second IC was presented in [135] and includes a number of spike event coders and decoders

and the AER circuitry needed to interconnect them. The function of this IC was to test the com-

plete asynchronous spike event coding scheme by implementing on-chip AER communication

protocol and, in particular, its computational propertiesdescribed in chapter 4.

For this thesis, no specific CABs were designed, although a new circuit for neuromorphic appli-

cations have been developed by the research group [64]. The proposed communication method

is independent on the CAB functionality and design used in the analogue array.

The first part of this chapter will describe the most important parameters in the spike event

coding scheme design. Next, VLSI implementation of each functional block of the scheme is

presented. The chapter ends with the discussion of test results obtained from the ICs.
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Figure 5.1: Block diagram of the ASEC implementation. Asynchronous Spike Event Coding is
the association of the TSD modulation with AER protocol channel included. CC
is thecomposite comparatorthat perform the function of both comparators in fig-
ure 3.4(a). This blocks outputs signalsc1(t) andc2(t) according to the input signal
x(t) and the system parameter∆eth = eth1 − eth2. SG is theSpike Generatorand
PG is thePulse Generatorwhich are merged into a single circuit in the coder side.
SG generates the AER request signalreq and waits for the acknowledge signal
ack from the arbiter in the AER channel. On the reception ofack, PG outputs the
integrator input pulsesinc anddec. The gainki, which defines the tracking stepδ
value, of theIntegratorblock INT is set by the currentI.

5.2 ASEC implementation

As stated in section 3.2, the Asynchronous Spike Event Coding (ASEC) scheme uses the TSD

modulation to perform the analogue-to-time conversion andthe AER protocol to deliver and

rout the spikes in the analogue array. The TSD block diagram was presented in figure 3.4(a).

The ASEC block diagram presented in figure 5.1 is the result ofthe rearrangement of the TSD

block diagram presented in figure 3.4(a) and the ASEC-CAB interface diagram presented in

figure 3.2. This rearrangement was perform to better understand of the the implementation of

each of the blocks designed.

The comparator, spike generator, pulse generator and integrator circuit design are further de-

scribed along this chapter. Before the analysis of these blocks individually, the parameters of

the ASEC and their design method are explained.
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5.2.1 Design parameters of the ASEC

The first step in the design of the coder is to define the main1 parameter of comparators of

figure 3.4(a), i.e., the thresholdeth1 andeth2. Absolute values of these thresholds impact on

the DC level of bothz(t) andzR(t). For a null DC level error, i.e.,e(t) = 0, these thresholds

must be symmetrical (eth1 = −eth2). A positive DC error is produced when|eth1| > |eth2|.
Similarly |eth1| < |eth2| results in a negative error. More importantly, thedifferencebetween

the comparators thresholds holds a relation with the codingresolution as

∆eth = eth1 − eth2 = δ (5.1)

whereδ is the tracking step and it is a function of the integrator gain ki

ki =
δ

T
(5.2)

andT is the duration of the pulses produced by the pulse generatorblock. The parameterT is

designed according to the predicted input signals, system size and overall configuration because

these characteristics determines the channel communication activity.

The communication channel may be overloaded when the activity of all coders exceed the

channel capacity. In this implementation, the spike generator sets a minimum period for the

interval between two successive output spikes as a preventive method to avoid this condition.

This “refractory period” is given by

∆t(min) =
1

fsk(max)
− T. (5.3)

Setting the period as a multiple of the spike “width”∆t(min) = k T and using the specification

of the maximum derivative of the input, the spike width is determined from

T =
δ

(k + 1) |ẋ(t)|(max)

. (5.4)

The definition of∆t(min) also provides an estimative about the limitations imposed to the input

1For this application, where speed in most crucial.
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signal. From equation 5.4 the frequency of an input sine wavex(t) = A sin(ω int) is

fin =
ωin

2π
=

1

2π

δ

A
fsk(max) =

1

2π

1

2Nb
fsk(max). (5.5)

In other words, once the system parameters are defined, the maximum input frequency is in-

versely proportional to the signal amplitude. Whenever theinput frequency is greater than the

value defined by equation 5.5, the system will present slope overload [92]. The slope overload

refers to the maximum rate that the coder can update the feedback signalzR(t).

Finally, the pole of the decoder first order low pass filter (LPF) is a key design parameter as it

improves the resolution by attenuating the undesirable out-of-band high frequency harmonics

generated during the decoding process.

5.3 Circuits design

The implementation of communication scheme in figure 5.1 makes use of a small number of

circuits to implement each block: comparator, spike generator and integrators. In the next

subsections, design methodology is presented in more detail for each of these circuits. The

decoder low-pass filter was not implemented on-chip, because it is an optional part of the circuit

which increases the method resolution. Therefore an offline, software-based implementation

was used instead.

These ICs were designed using a 3.3V, 4 metals, single poly, 0.35µm CMOS process. The volt-

age domain was used to represent the analogue signals involved in the communication process.

This choice would allow an easier integration with the CAB proposed in [64].

5.3.1 Comparator

In the block diagram presented in figure 3.4(a), signal subtraction and comparison functions are

performed by different blocks, but they are implemented as asingle circuit: the comparator.

The design of comparators can be implemented using a pre-amplifier (PA) followed by a de-

cision circuit (DC) and an output buffer (OB) [136] as shown in figure 5.2. The pre-amplifier

circuit provides a gain on the input signal enough to reduce the impact of the mismatch on the

decision circuit, which outputs a digital-like transitionsignalling the comparison. Finally the
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PA DC OB

x(t)

z(t)

c(t)

Figure 5.2: Block diagram of a typical comparator. The input signals difference is magnified
by the Pre-Amplifier (PA) and then used by the Decision Circuit (DC) to provide a
comparison signal. The Output Buffer (OB) keeps the transition times independent
of the load.
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Figure 5.3: Block diagram of the compound comparator. Pre-amplifierPAA outputs a current
∆Ixz according to the inputsx(t) andz(t), whilst pre-amplifierPAB generate a
fixed offset currentIeth. PAB outputs are added or subtracted fromPAA outputs
and the results are applied to the respective decision circuits (DC) and output
buffers (OB).

output buffer provides the current needed to keep the risingand falling times short for any load.

To provide the required∆eth, capacitive or resistive dividers can be used at the comparator

input nodes. However, these dividers compromise the input impedance of the circuit [137].

Another method to provide∆eth is to implement offset comparators. Composite transistors

can be used to provide this difference [137], however this topology suffers from low input

dynamic range. A programmable offset can also be generated by another pre-amplifier which

provides a respectiveIeth on the decision circuit input [138]. Both impedance dividers and

offset comparators allow the use of continuous values for∆eth.

In this implementation both outputsc1(t) andc2(t) are generated by a compound comparator as

in figure 5.3. Instead of using four pre-amplifiers with two sensing the inputsx(t) andz(t) and

two providing different offsets (two sets for each output),only two pre-amplifiers are needed.

73



Asynchronous spike event coding scheme: VLSI design and characterisation

+ −
Vdd

Vdd

Vdd

Vss

Vss
PA

DC

OB

A1,2 B1,2

C D

Ibias

Vout

M1M2

M3M4M6,8 M5,7

M9M10 M11M12

M13

M14M15

M16M17

M18

M19

Figure 5.4: Circuit schematic of each compound comparator blocks. Transconductance
preamplifier (PA, left), decision circuit (DC, top right) and output stage (OB,
bottom right).

The pre-amplifierPAA outputs a differential current∆Ixz(t) as the result of the amplification

of the difference betweenx(t) andz(t), i.e., the error signale(t) in figure 3.4(a). The capacitive

load on the input nodesx(t) andz(t) is reduced when only one pre-amplifier is used. The other

pre-amplifier (PAB) provides a differential currentIeth according to voltage∆eth on its inputs.

The results of adding (Ixz + Ieth) and subtracting (Ixz − Ieth) these currents are forwarded

to the decision circuits to speed up the comparison result. Finally, output buffers generate the

digital outputs.

Figure 5.4 presents the pre-amplifier, the decision and the output buffer schematic circuits im-

plemented on IC. The pre-amplifier is a transconductance amplifier with two identical differen-

tial output currents at nodes (A1, B1) and (A2, B2). The decision circuit is a positive feedback

circuit and the output buffer is a self-biased amplifier [139].

The transistor sizes for this implementation are presentedin table 5.1. The comparator was

designed to provide a hysteresis smaller than the tracking step to help avoiding excessive
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Transistors Size[ µm / µm ]
M1 −M2 20.0 / 1.0
M4 −M3 6.0 / 0.8
M5 −M8 6.0 / 0.8
M9 −M10 2.0 / 2.0
M11 −M12 1.8 / 2.0
M13 10.0 / 0.35
M14 −M17 2.0 / 0.35
M18 2.0 / 2.0
M19 0.8 / 2.0

Table 5.1: Transistor sizes of the compound comparator.

eth1

eth2

c1(t), c2(t)

e(t)

∆eth

(a)

∆eth1 ≈ 6σ(Vos1) ∆eth2 ≈ 6σ(Vos2)

∆ethD

∆eth(min) = δ

(b)

Figure 5.5: Comparator thresholds design and mismatch. (a) Comparatortransfer functions
and (b) comparator thresholds variations∆eth1 and∆eth2 used to calculate the
designed threshold difference∆ethD.

switching due to noise. This hysteresis is generated with the size difference between transistors

M9 −M10 andM11 −M12.

Non-idealities

For an optimum performance, the tracking stepδ generated at the integrator output equals to

difference between the thresholds∆eth of the comparators. However, due to process mis-

matches [140], comparators offsetsVos1 andVos2 may vary from thedesignedvalue∆ethD, as

shown in figure 5.5(b). Hence, theactual∆eth is bounded, for a 6σ variation (99.7%), by

∆ethD + 3σos ≥ ∆eth ≥ ∆ethD − 3σos (5.6)

whereσos = σ(Vos1) + σ(Vos2) for uncorrelated variables andσ(Vos1) andσ(Vos2) are the

standard deviations of the comparator offsetsVos1 andVos2 respectively.

Therefore a design margin is required because of the random offsets due to process variations.
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Figure 5.6: Comparator model simulation with mismatch. TSD model results for 3-bit resolu-
tion with different mismatches between tracking stepδ and comparator thresholds
difference∆eth. (a)∆eth = δ, (b)∆eth = 2.5 ∗ δ and (c)∆eth = 0.8 ∗ δ.

For instance, ifδ < ∆eth the feedback signalz(t) is delayed and distorted, in particular close

to the signal inflection points. Conversely,z(t) will oscillate for δ > ∆eth. The comparators

thresholds difference is designed to meet the following safety margin

∆ethD ≥ δ + 6σos (5.7)
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Figure 5.7: Impact of comparator mismatch on the resolution. Simulation results for TSD
model with different mismatches between tracking stepδ and comparator thresh-
olds difference∆eth. Measured ENoB inzR(t) signal.

Figure 5.6 illustrates the effects of this mismatch when∆eth is equal, greater and smaller

thanδ. This results were obtained from the TSD model simulation results for a 3-bit resolution.

Figure 5.7 shows the influence of this mismatch type on the resolution.

5.3.2 Spike and pulse generators

The spike generator block can provide either a positive or a negative spike according to the

output state of the comparator. When the errore(t) > ∆eth/2, a positive spike is transmit-

ted. Similarly, a negative spike is generated whene(t) < −∆eth/2. Otherwise, no spikes

are transmitted. From these spikes correspondent pulses are generated both at coder and de-

coder. Figures 5.8(a) and 5.8(b) are the block diagrams of the spike and pulse generators on the

coder and the pulse generator on the decoder respectively. Figures 5.8(c) and 5.8(d) show an

theoretical example of the behaviour of the control signals.

The arbiter senses which comparator outputsc1(t) andc2(t) changed first. It avoids further

interferences, such as noise, on these signals before the update cycle of the signalz(t) has fin-

ished. Arbiter output triggers the spike generator which starts the handshaking communication

with the AER arbiter setting thereq signal. On receipt of theacksignal, the pulse generator is

activated and provides a pulseinc or decto the integrator according to the arbiter output.

The pulse generator block includes programmable delay circuits for the generation ofT and
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Figure 5.8: Spike (SG) and pulse (PG) generators. Coder combined spike and pulse gener-
ators (a) and decoder pulse (b) generator block diagrams. (c) is an theoretical
example of timing diagram of the block in the coder while (d) shows timing di-
agrams on the decoder. In the coder an arbiter selects between c1(t) and c2(t)
inputs and starts the handshaking signalling. After the handshaking is completed,
either ainc or dec pulse is generated using delay blocks forT and∆t(min).

∆t(min) time intervals. These blocks were implemented as a current integrator feeding a chain

of inverters. This is a suitable implementation although more efficient methods have been

available [141]. The control logic for this circuit was implemented using a technique developed

to design asynchronous digital circuits [142] and showed inappendix E. Although the circuit

in [107] presents simpler hardware, it lacks noise tolerance provided by the arbiter.
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Figure 5.9: SCI examples. (a) Unipolar version as used in current-steering DACs and (b) bipo-
lar version used as used in signal modulation.

5.3.3 Integrator

The integrator is the last block remaining to be analysed. Together with the comparator thresh-

old difference∆eth, its gainki defines the resolution of the coder.

In the first IC, an integrator based on the switched current integration (SCI) technique [124]

was designed. This implementation, used in charge pump circuits, was also used in other

modulation schemes [91, 124] and a unipolar version of this type of circuit driving resistors is

used in steering current cells of some Digital-to-AnalogueConverters (DACs) [143] as shown

in figure 5.9.

The schematic of the implemented SCI circuit is presented infigure 5.10 and it works as fol-

lows. When a negative spike arrives at the integrator input,the dec signal goes high for an

intervalT , allowing currents1.5I and0.5I to flow in transistorsM22 andM23, respectively.

Similarly, for the case of a positive spike arrival, transistorsM20 andM21 provide symmetrical

operation withinc andinc signals. Therefore, the resulting currentI that discharges or charges

the integrating capacitorCint is given by

I = Cint
δ

T
(5.8)
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Figure 5.10: Schematic of the integrator based on a SCI technique. When a positive spike
arrives, M20 and M21 turn on and1.5I and 0.5I charges and discharges the
capacitorCint, respectively, resulting in a voltage increment ofδ given by (5.8).
For negative spikes, the complementary process decreases the capacitor voltage.
In the absence of spikes, currents are drawn to low impedancenodes (d1 − d4).
The schematic of the delay generators is shown in appendix E.

From equation 5.2 the designed integrator gain may be obtained as

ki =
I

Cint
. (5.9)

When there are no spikes from the spike generator, currents are driven to low impedance nodes

(d1 − d4) throughM24 −M27 by setting the signaldp high.

Another design approach would be switching on and off the current mirror itself instead of

driving the current to low impedance nodes. This solution would result in a lower power con-

sumption but switching the voltage reference at the gate terminal would also result in temporary

errors that would corrupt the tracking step amplitude.

The use of two different branches (M22 andM23 orM20 andM21) to both charge and discharge

the capacitor reduces charge injection on the integration nodesz(t) andzR(t) [144] at the cost

of doubling the power consumption required. If switchesM20 andM21 (M22 andM23) have the

same dimensions, the charges injected from the gate to draincapacitance of the complimentary

switches cancel each other.
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Component Size Unit
Current Sources 20.0 / 2.0 µm / µm
Cascode Curr. Sources 10.0 / 0.35µm / µm
Current Sinks 20.0 / 2.0 µm / µm
Cascode Curr. Sinks 10.0 / 0.35µm / µm
M20 −M27 1.5 / 0.35 µm / µm
Cint 1 pF

Table 5.2: Components sizes of the SCI based integrator.

(a) (b)

Figure 5.11: SCI divergence. (a) Decoder integrator output withinc and dec swing set to
original values 1.65V and (b) Decoder integrator output with inc swing reduced
to 0.9V.

Table 5.2 presents transistors and capacitor sizes designed for this work. The transistors of the

current sources and sinks are the most important considering the circuit mismatch, and therefore

their sizes were appropriately chosen to minimize this effect.

According to (5.8), the tracking stepδd is a function of the bias currentI. Therefore the gain

operation described in 4.3.1 is implemented by setting different bias currentsI for coder and

decoder integrators.

Non-idealities

According to equation 5.8, the integrator based on the SCI technique presents three different

source of mismatches between coder and decoder.

The first is in the pulse generation by the time delays in the pulse generator block. Because

of process variations, the current source, the capacitor and the inverters threshold can vary

and then provide different pulse widthT . The second mismatch source is due to the size of

the capacitorCint in each integrator. The third is the mismatch between current sources that

provide the currents1.5I and 0.5I in figure 5.10. Moreover the mismatch between current
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sources and current sink may cause a difference between the increase and decrease tracking

steps. Cascoded current mirrors were used to reduce the current mismatch.

The resulting difference may impact the functionality of the scheme. For instance, whilst the

coder integrator will still track the input signal, the decoder integrator might present a different

behaviour, normally saturating at either of the power supplies.

A solution for this erratic behaviour was found by changing the amplitude of theinc anddec

signals. Normally, these signals presents a full or half-scale amplitude2. By changing the

ON state amplitude, for instance limiting thedec signal amplitude to a valueVdec closer to

M22 threshold voltage, we can force the current mirror output transistor, which provides the

1.5I current, to leave the saturation region and to enter into thelinear region, thus reducing

the effective mirrored current. The IC provides a mechanismto change this amplitude. This

calibration mechanism can thus compensate for all 3 mismatches sources.

Figures 5.11(a) and 5.11(b) shows the decoder behaviour before and after this solution. In the

former bothinc anddec signals swing amplitude is 1.65V as designed originally whilst in the

last the amplitude swing for the signalinc was reduced to 0.9V.

5.3.4 Filter

Filter provides the averaging function in equation 3.4 by removing high component frequencies.

Ideally, the filter should provide total rejection of out-of-band harmonics with zero in-band

attenuation. However, the practical implementation of this characteristic is unrealisable. The

actual design of the filter is a trade-off between the amount of harmonic reduction and distortion

caused by the phase shift of each component frequency. In practice, the cut-off frequency of

the low pass filterωp is designed to be greater than or equal to the input signal bandwidth.

The filter is also a key factor for the delay between the coder inputx(t) and the decoder output

xR(t). For a sine wave, choosing the pole to beωp = ωin, the filter imposes a 45◦ phase shift

from the signalzR(t). When applying low-frequency input signals results in the delay due to

phase shift being greater than delays due to the modulator loop,∆t(min), and AER arbitration

process. For instance, the conversion of a tone signal (ωin = 2π 4 kHz) using 8-bit resolution

imposes∆t(min) ≈ 300ns≪ 31.2µs (45◦ phase shift).

2In this implementation, the control signals were originally designed for half-scale voltage amplitude, i.e.,inc
anddec swing from ground toVdd while inc anddec from ground toVss.
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5.3.5 AER communication

The AER communication method was introduced in the second ICto fully implemented the

asynchronous spike event coding scheme. Although the arbitration process was implemented

inside the IC, the routing control was implemented in an external FPGA (Xilinx XC3S1000-

4FG320). Therefore this IC presents two sets of control signals (request and acknowledge) and

addresses bus: one set from the IC to the FPGA and the other in the opposite direction.

5.4 IC results

In this section IC results to demonstrate the communicationaspects of the event coding scheme

are presented. Two different input signals were used to testthe communication system: a

speech signal and a single tone (sine wave) signal. MeasuredIC results for the computation

capabilities of the communication scheme presented in chapter 4 are shown as well.

5.4.1 Demonstration: speech input

A short speech signal of about 140ms was used to demonstrate the coding functionality. This

signal was originally sampled at 44.1 kSps with 8-bit resolution. The coding system was pro-

grammed to provide a resolution of 4 bits in order to demonstrate the coding properties.

Figure 5.12(a) was obtained from the first IC and shows the coder input signalx(t) (top), the

decoder integrator outputzR(t) (middle) and the coder output spikesy(t) (bottom, with the

negative spikes first). The same signals are presented in detail in figure 5.12(b) wherex(t) and

zR(t) are overlapped. This figure demonstrates the asynchronous nature of the communication

scheme and the absence of coder output spikes when the signalis constant or when its change

is smaller than∆eth.

The figure 5.13(a) is the test with the second IC. With the AER implemented in this IC, this

figure shows the request, acknowledge signals and both inbound and outbound spike addresses.

It is also possible to notice the difference between the 8-bit resolution input signalx(t) and the

4-bit resolution signalzR(t).
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Figure 5.12: Demonstration with an audio signal for the first implementation. (a) Coder input
x(t) and decoder integrator outputzR(t) for a 2.5Vpp speech signal. Negative
yn(t) and positiveyp(t) output coder spikes are also shown at the bottom of the
figure. (b) A detailed view of the same waveforms to show the absence of spikes
during the periods when the input signalx(t) is approximately constant, i.e., it
changes less than the coder resolution.

5.4.2 Resolution: single tone input

The resolution of the system was measured using a sine wave input signal with an amplitude of

2.0Vpp and frequency of 20 Hz (fin). The sine wave was sampled at 44.1 kSps and the coder

was programmed to provide a 4-bit resolution. A snapshot of the input and output signals is

presented in figure 5.14(a). Offline filtering results are shown in the figure 5.14(b) for a digital

LPF with a cut-off frequency of 20 Hz, the same frequency as the input signal.

The total harmonic distortion (THD) and resolution of the system was measured using this sine

wave input signal. The measured THD of the pre-filter signal is -26 dB which corresponds to
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Figure 5.13: Demonstration with an audio signal for the second implementation. This figure
presents the results from the second chip using the same testset-up of figure 5.12.
Similar results were achieved but instead of the spikes generated, it shows the
handshaking AER signals (request, acknowledge and spike addresses). In (b) is
clear the difference between the 8-bit resolution inputx(t) and the 4 bit resolution
outputzR(t). In addrout(t), the absence of spikes is represented by the address
0 whilst the same condition is represented in theaddrin(t) bus as7. (c) shows
the internal signalsz(t) andzR(t) and the AER control and address buses at the
handshaking instant, when a positive spike transmission occurs.
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THD(XR(s))= -39.97→ ENoB(XR(s))= 6.35
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THD(ZR(s))= -26.07→ ENoB(ZR(s))= 4.04
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zR(t)

(b)

Figure 5.14: Resolution of the coding of the first implementation. (a) Oscilloscope snapshot
with the inputx(t) (2.0Vpp sine wave), decoder integrator outputzR(t), negative
yn(t) and positiveyp(t) spikes from the coder output. (b) ReconstructedzR(t)
from ADC data and decoder outputxR(t) from the software filter (top). The
low pass filter cut-off frequency is the same as the input signal. The frequency
spectrumZR(s) andXR(s) of the filter input and output (bottom) computed.

a measured resolution of 4.04 bits. The measured THD of the post-filter output, with a filter

cut-off frequency equal tofin, improves to -40 dB which corresponds to a measured resolution

of 6.35 bits. This resolution improvement causes attenuation and phase shift of the signal.

When the cut-off frequency is increased to 10fin, the measured resolution is equal to 4.93 bits.

The low pass filter cut-off offin yields better resolution attributable to greater attenuation of
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x(t)

zR(t)

(a)

x(t)

zR(t)

(b)

Figure 5.15: IC results for the gain operation. The inputx(t) is simular to the one in figure 4.2.
5.15(a) is the illustrates the amplification while 5.15(b) shown the results when
the ASEC is configured to perform signal attenuation.

harmonics due to the lower frequency pole of the low pass filter. Resolution is limited by

mismatch in the circuit implementation and may be improved by further work.

5.4.3 Computation: gain, negation, summation and bpsk

Computation properties of the ASEC were explained in chapter 4. These explanations were

illustrated with software simulations of mathematical models. In this chapter IC results are

presented for some of the those computations. Figure 5.15 corresponds to the gain operation

while figures 5.16 and 5.17 correspond to negation and summation (and subtraction) operations.

Figure 5.18 is the IC result for the BPSK. Similar inputs fromthe simulation were used for the

IC results.
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x(t) zR(t)

Figure 5.16: IC results for negation operation. The ASEC circuits were configured to produce
an negated version of the sine wavex(t), as suggested in 4.3.2 and figure 4.3.

x1(t)

x2(t) zR(t)

xsum(t)

(a)

x1(t)

x2(t)

zR(t)xsub(t)

(b)

Figure 5.17: Summation and subtraction operations results from chip. This figures present
chip results similar to the simulation results in figure 4.6 where (a) show the sum-
mationzR(t) of two input sine waves,x1(t) andx2(t), with same amplitude but
different frequencies (23Hz and 4.7Hz) andxsum(t) being the ideal summation.
The subtraction of the same input signalsx1(t) − x2(t) is shown in (b), where
xsub(t) is the ideal result. Scope DC levels were shifted to better illustration.
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b(t)

clk(t)

zR(t)

Figure 5.18: Results of the binary phase shift keying operation from IC. In this snapshot, the
input digital wordb(t) to be modulated by the method is 010011.clk(t) frequency
is the same of the sine carrier (not shown).

5.4.4 Area and power consumption

As said before, the ASEC coder and decoder were layout in a 0.35µm CMOS technology

process. Figure 5.19 shows the snapshot of the ASEC coder layout. The main blocks described

earlier were highlighted in the figure to illustrate the sizeproportion of the blocks. The layout

of the decoder is similar with the exemption of the comparator and some minor differences in

the digital control.

Figure 5.20 and 5.21 show photographs of the first and second designed test IC respectively.

The total area of the second IC and the area of each block is presented in table 5.3 together with

the total power consumption and that for each block. All areameasurements and power con-

sumption refers to the second test IC with the exceptions of the individual power consumption

per block.

5.5 Summary

A VLSI implementation of the spike event coding scheme was presented in this chapter. The

steps and constraints involved in the scheme design were explained and detailed.

The communication scheme presents a simple topology with few functional blocks: com-

parator, integrator and digital communication. Well knowntopologies were used to design

these blocks including a compound comparator to avoid excessive input capacitance loads and

asynchronous-based digital design to the AER handshake interface.
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SCI Integrator

Digital Buffers

Spike and Pulse

Generators

Delay1 capacitor

Delay2 capacitor

Integrator

capacitor

Comparator

x(t)z(t)

25µm

Figure 5.19: ASEC coder layout. This figure shows the layout of ASEC coder with the main
blocks highlighted. The coder occupies an area of approximately of 0.03 mm2

(120µm x 240µm). ASEC decoder presents similar design excluding the com-
parator.

A two-step approach was adopted to implement this VLSI design. In the first stage, the compo-

nents were placed in a first IC to test each component separately and as the complete coder. The

last stage, a larger IC including the AER features (arbiter and address coding/decoding) and a

small array of eight coder and decoders, four with SCI based circuits and four with switched-

capacitor versions.
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Figure 5.20: First test chip photograph. The test chip area is 5 mm2. The circuits are high-
lighted as: (1) coder with no hysteresis comparator, (2) coder with hysteresis
comparator, (3) comparator with no hysteresis, (4) comparator with hysteresis,
(5) SCI (integrator), (6) analogue buffer, (7) delay circuit for pulse width, (8) de-
lay circuit for inter-spike period and (9) spike generator.The area of each coder
is 0.03 mm2 and each decoder (with no LPF) is 0.02 mm2.

Parameter Value Unit
Technology CMOS 0.35µm 1P4M -
Power Supply 3.3 V

Area

Coder 0.03

mm2
Decoder 0.02
AER 0.025
Circuitry 4.8
IC 29.25

Power Consumption

Coder 400

µW
Comparator 340
Decoder 50
IC 2700

Table 5.3: Test IC characteristics

The functionality was tested with an audio sample signal anda tone signal to measure the de-

coder output resolution, with and without the output filter.This implementation of the ASEC

is prone to mismatches both in comparator and in the integrator blocks and monte-carlo simu-

lations were performed to verify the dimensioning of the circuits. Mismatch in the comparator

results in an input offset which ultimately leads to input signal distortion.

In the integrators, mismatch effects result in different output valuesz(t) andzR(t) for these

blocks, being the most extreme condition when the decoder output tends to one of the power

supplies compromising the whole functionality. As this effect is most unpredictable and unde-

sirable, two different topologies were designed: one basedupon SCI circuits and another based
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Figure 5.21: Second test chip photograph. The test chip (a) is pad-limited and the circuitry (b)
occupies a quarter (5 mm2) of the die. The highlighted areas are: (1) four SCI
based coders, (2) four switched capacitor based coders, (3)four SCI based de-
coders, (4) four switched capacitor based decoders, (5) switched capacitor inte-
grator, (6) AER arbiter, (7) AER receiver, (8) analogue buffers, and (9) current
mirrors. The areas are presented in table 5.3.

on a switched-capacitor techniques presented in Appendix F.

Although the SCI integrator presents more potential mismatch sources, the VLSI circuitry im-

plemented in this work provided a calibration method to compensate the imperfection. Such

compensation method is not available in the switched-capacitor topology and it was not possible

to stabilized it.

In the next chapter, when discussing the next steps for this work, other possible solutions to

solve the mismatch problem will be addressed.
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Chapter 6
Summary and conclusions

In this last chapter, a summary of the work undertaken for this thesis is presented, followed by

extra work research which would be interesting to carry on inthe future. The chapter ends with

final considerations and conclusions about the work performed.

6.1 Review of the thesis

The two main objectives of this thesis were introduced in thechapter 1: the use of a spe-

cific time-based method to transmit analogue information between the elements (CABs) of a

programmable analogue array and the use of such method to perform computation over the

communication channel with no hardware overhead.

The first step to accomplish these objectives was to review the programmable analogue arrays

field in chapter 2. This review was useful to explain the reason why using timing rather than

conventional voltage, current or charge representation isbeneficial for this application. The

main justification is centred on the fact that conventional methods are susceptible to several

effects, like IR voltage drops, electromagnetic interference, cross-talk among others, which

imposes heavy limitations about the scalability of the array.

In this chapter, a time-based alternative method — the Asynchronous Spike Event Coding

(ASEC) scheme — was proposed as theassociationof the Ternary Spike Delta modulation

(TSD) with the Address Event Representation (AER) communication method widely used in

neuromorphic systems. TSD is the core of this method and its working principle was explained

in chapter 3, together with other similar timing methods.

Besides presenting better communication characteristics— Channel Efficiency (CE) — for

low resolutions than other spike modulations studied here,the ASEC presents very attractive

computational properties as explained in chapter 4. In thischapter, it was demonstrated a set

of arithmetic operations applied on analogue signals whichare realizable with the proper pro-

gramming of both TSD decoders and the AER routing map. In other words, no extra and
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specialized hardware is required. These operations include gain, negation, summation, modu-

lus, mean, signal conversion (ADC and DAC) and others. More operations can be implemented

if the computational properties of the ASEC is associated with the ones of the CABs, like

multiplication and division.

Finally, in the previous chapter (5) presented the physicalVLSI implementation of the ASEC

scheme. The basic operational blocks of the TSD - comparators, spike generator, integrator

and filter - were described in detail. To implement the dual comparator, a composite design

was developed to allow programmable tracking steps keepingthe input load the minimum.

The spike generator is a purely digital circuit which is in charge of the AER handshaking

signalling and the integrator pulse timings. The integrator was implemented as a switched

current integration (SCI) circuit1. Although this circuit presents high sensitivity to process

mismatches, the implemented version allows for external compensation mechanisms. And the

filter was implemented as an off-chip, off-line first order digital filter.

Experimental results of two different ICs were presented inthat chapter, with both functional

and resolution test set-ups. While the first IC implemented only the TSD modulation, the

second IC integrated AER channel too, implemented a full version of the ASEC scheme.

6.2 Further work

At the end of this thesis, some directions of future work can be suggested. The first group of

suggestions are corrections and improvements on the work done and the second group refers to

additional test and experiments to help in a better appreciation of the proposed method.

The first work to be considered is the redesign of test set-up.It was designed to make use

of previous IMNS test set-ups and expertise. The test set-upwas designed to use two or three

printed-circuit boards. The first one is the FPGA evaluationkit (Opalkelly XEM3010) to imple-

ment the test control and measurement, the second is a redesign of a previous data acquisition

board and the third was a daughter board to the second chip socket. Although the second board

was designed to be the more generic possible, its size and complexity lends to great noise lev-

els. The board noise path has to be re-evaluated and the number of active components shall be

reduced. The daughter board, for instance, includes 56 DACsand 16 ADCs. Noise reduction

1An additional switched-capacitor based integrator was also designed and is presented in the appendix F

94



Summary and conclusions

is paramount to correctly determine the maximum possible resolution of the ASEC scheme.

One method to reduce the number of these active components isto include calibration mech-

anisms. The function of a big number of DACs on the PCB is to generate variable analogue

bias values to both types of integrators implemented to compensate for mismatch. Several

compensating methods were considered after the design of the second IC. The most promising

techniques are based on calibration of the current mirrors,such as in [145] and [146]. Source

degeneration of either the input or the output transistor isthe working principle of both tech-

niques. However the solution presented in [146] allows for digitally-controlled compensation

and does not require periodically sampling as in [145].

To reduce the noise introduced by the test set-up, the next task would be to repeat the tests with

the switched capacitor integrator. On the confirmation of the circuit sensitivity to noise, the

redesign of the switch capacitor integrator in the appendixF is needed. Such effort is justified

because it presents a small number of elements sensitive to mismatch than the SCI version,

although it normally requires larger circuit area than the last. More studies on technology

scaling and PVT variations could be addressed in further work.

In addition to the corrections needed to fully quantify the ASEC coder, next likely steps are

to obtain IC results for some of the operations listed in chapter 4. Some of these operations

were not tested on IC because they required specific hardwaresuch as multiplication or the

first method to implement the modulus function. On the other side, other operations can be

implemented with the current ICs but with different or improved test set-up. For instance, the

weighted summation would be realizable with a better FGPA programming code.

Additional time can also be spent on the identification and study of new operations performed

with the ASEC scheme as well new uses for the proposed communication scheme. This scheme

is highly suitable to sensors applications. As an example, ASEC has been used associated

with MEMS cantilevers to implement biologically inspired microphones [147]. Also the work

presented in [107] can be further improved with the ASEC scheme.

Finally, for sake of completeness, a complete FPAA can be designed including selected CABs

circuits. A first prototype has been designed using Dr. Thomas Koickal’s programmable circuit

block for reconfigurable neuromorphic systems, as proposedin [148] and in [64].
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6.3 Final considerations and conclusion

In summary, this project aimed to study the viability of using asynchronous timing modulations

as a viable alternative to the classical approach of dedicated channels in programmable analogue

arrays. The outcome was the creation and definition of an event-based communication method,

named asynchronous spike event coding scheme and the identification that such method can

perform a set of arithmetic operations.

The working principle of this communication scheme was demonstrated as the association of

a analogue-to-spike and spike-to-analogue coding methodswith an asynchronous digital com-

munication channel (AER). Spike events are essentially asynchronous and robust digital signals

that are easy to route on shared channels, not only between CABs, but also between ICs provid-

ing improved scalability. Such scalability is also improved because the novel method presents

smaller area increment than the traditional switched-matrix approach.

In this method, spike events are transmitted asynchronously and power dissipation is dependent

upon signal activity. No spike events are generated when theinput signal is constant. This is

in direct contrast to other pulse based programmable analogue arrays. This characteristic has a

deep impact on the communication channel bandwidth.

The intrinsic computation capability of the spike event coding scheme was also demonstrated.

This provides basic arithmetic operations essentially in the communication channel, without

the need for additional CABs thereby enhancing the computing capability and flexibility of a

programmable analogue array.

Two ICs were designed to serve as proof-of-concept of such communications scheme, with

the design step of the scheme parameters being explained. The results of these ICs prove the

feasibility of these method.

96



Appendix A
Analysis of spike frequency and

channel efficiency

For the analyses presented here, it is assumed input signalscan be considered approximately

constant during the interval between 2 or 3 successive spikes. In other words, the input signal

xR(t) frequency is slower when compared with the spike frequency.For all methods considered

in chapter 3, the output spike frequency is given by the inter-spike period

fsk =
1

∆t1 +∆t2
(A.1)

where∆t1 is the intervalT (the spike ”width”) and∆t2 is ∆t (the inter-spike interval) for the

spike modulations (BSD, TSD, BSSD and TSSD).

It is also used the same measurementNs used in [102], where it was namedN{g(1)}, for the

number of spikes by second generated when applying a sine wave signalx(t) = A sin(ωint)

to each of the methods inputs

Ns = N{g(1)} =

∫ 1

0
f(t)dt (A.2)

A.1 Delta based modulations

ADM

For the analysis of Asynchronous Delta Modulation (ADM), I will use the figure A.1(a) is used.

The slope of the signalz(t) is given by

α1 = ż(t) ≈ 2 d+∆x(∆t1)

∆t1
(A.3)

given thatδ is given by equation 3.13 and

ẋ(t)|∆t1 ≈ ∆x(∆t1)

∆t1
⇒ ∆t1 ≈

δ

α1 − ẋ(t)|∆t1

(A.4)
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Figure A.1: Waveform details of (a) ADM, (b) BSD and (c) TSD. This figure present the same
wave details shown in the insets of figures 3.6(b), 3.5(b) and3.4(b), respectively.
In figure (c), the DC level of the feedback signalz(t) is shifted to simplify the
analysis.

Using similar analysis for the period∆t2 and consideringα = kI y(t), thenα = α1 = −α2

and the frequency is given by [110]

fsk(t) ≈
k2I − [ẋ(t)]2

2 kI δ
(A.5)

considering that the output amplitude is the unit. Therefore, ADM presents no spikes when the

absolute derivative of the input signal equals the integration gainkI and the maximum spike

frequency

(

kI
2δ

)

when the input signal is constant.

Reminding that ADM needs two spikes for each period, the number of spikesNs is

Ns = 2

∫ 1

0

k2I − [Aω cos(ω t)]2

2 kI δ
≈ kI

δ
− A2 ω2

2 δ kI
(A.6)

If ω ≫ 1 andkI = ẋ(t)|(max) = A ω, then

Ns ≈
A ω

2 δ
=

π

2
fin 2Nb (A.7)

whereδ is given by equation 3.5. Therefore, the channel efficiency for this modulation is

CEADM =
fin2

Nb

π
2 fin 2Nb

=
2

π
(A.8)
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BSD

The analysis of the spike frequency for BSD modulation is similar to the ADM presented be-

fore. By inspecting the figure A.1(b) and considering that the input signal derivative is approx-

imately constant during the interval of two spikes, the input dynamics is

ẋ(t) ≈ δ + α∆t

T +∆t
(A.9)

whereα = ż(t). As the period is defined asT +∆t, the spike frequency is given by

fsk(t) ≈
ẋ(t)

δ + α∆t
(A.10)

Equation A.10 is not useful because both∆t and ẋ(t) are functions of time. If we rewrite

equation A.9 in terms of∆t and replace into equation A.1, the output spike frequency can be

expressed as

fsk(t) ≈
ẋ(t)− α

δ − α T
(A.11)

According to equation A.11, there will be no spikes just whenẋ(t) = α, i.e., the integrator gain

kI =
α

pdc
is just sufficient to follow the input signal when this is decreasing. The maximum

frequency occurs when the derivative of the input signal is maximum.

The number of spikes in one second is, applying equation A.11in equation A.2,

Ns =

∫ 1

0

A ω cos(ω t)− α

δ − α T
=

A sin(ω)− α

δ − α T
(A.12)

From the condition to obtain the minimum number of spikes, for a sine waveα = −ẋ(t)|(max) =

A ω. Also consideringω ≫ 1, equation A.12 became

Ns ≈
1

T +
δ

A ω

= π fin 2Nb (A.13)

using equation 3.5 and assuming thatω ≪ 1

2Nb T
.
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Applying equation A.13 into equation 3.15, the channel efficiency for BSD modulation is

CEBSD =
fin2

Nb

π fin 2Nb
=

1

π
(A.14)

TSD

Figure 3.4(b) is used to determine the spike frequency of theTSD modulation. It can be redrawn

as in figure A.1(c) for better illustration, by shifting the DC level of signalz(t). From the figure

it can be shown that

|ẋ(t)| ≈ |∆x(t)|
T +∆t

(A.15)

As the signal amplitude variation∆x(t) during an inter-spike period is equal toδ, the spike

frequency of the TSD modulation

fsk(t) ≈
|ẋ(t)|
δ

(A.16)

Studying the equation A.16, one can verify that the minimum frequency occurs when the input

is constant and the maximum when the absolute value of input derivative is maximum.

Applying equation A.2, TSD’s number of spikes in one second equals to

Ns =

∫ 1

0

A ω

δ
|cos(ω t)| dt ≈ 4

A

δ

ω

2 π
= 2 fin 2Nb (A.17)

which is the same result found in [102]. The channel efficiency in equation 3.15 turns to be

CEBSD =
fin2

Nb

2 fin 2Nb
=

1

2
(A.18)

A.2 Sigma-delta based modulations

ASDM

Asynchronous Sigma Delta modulation analysis were alreadypresented by some works, such

as [114] and [91] and for convenience is shown here.

By observing the figure A.2(a), we notice the hysteresis comparator switches the coder output

either when an increasing integrator outputz(t) reaches+δ or a decreasingz(t) reaches−δ.
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Figure A.2: Waveform details of (a) ASDM, (b) BSSD and (c) TSSD. This figure present the
same wave details shown in the insets of figures 3.7(b), 3.8(b) and 3.9(b), respec-
tively. In (a), the input signalx(t) is DC shifted for better illustration.
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f [Hz]

xmin 0 xmax
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Figure A.3: Spike frequency as a function of input signal for ASDM modulation.

For the increasingz(t) interval∆t1 [149]:

d− (−d) =
1

ki

∫ t1+∆t1

t1

[b+ x(t)] dt ⇒ ∆t1 =
2dki

b+ x(t)
(A.19)

and similarly for the interval∆t2

∆t2 =
2dki

b− x(t)
(A.20)

The switching frequency is then given by [91]:

fsk(t) =
b2 − [x(t)]2

4dbki
(A.21)

Analysing equation A.21, we can notice the maximum frequency occurring when the input

signal is null. This is named oscillatory or idling frequency fsk0 =
b

4dki
. On the other hand,

the minimum when the input signal is maximum or minimum as it is show in figure A.3.
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Using equation A.21 and equation A.2 and considering that for each period there are two spikes,

the number of spikes per second for a sine wave signal is

Ns =
1

2 d b ki

{

b2 − A2

2

[

1− 1

2ω
sin(2ω)

]}

≈
b2 − A2

2
2 d b ki

(for ω ≫ 1

2
) (A.22)

using the floowing trigonometric property

∫

sin2(ax)dx =
1

2
− 1

4a
sin(2ax) + C (A.23)

Consequently, the channel efficiency for this modulation isgiven by

CEASDM =
2 d b ki fin2

Nb

b2 − A2

2

(A.24)

when replacingd as in equation B.3 withx(t) = 0 andτ = (2πfin)
−1. The ASDM channel

efficiency tends to0.423 as the resolution increase. This is independent of the inputfrequency

if the filter pole is a function of it.

BSSD and TSSD

Binary and Ternary Spike Sigma Delta modulations analyses are similar to the analysis of the

ASDM. However, differently from ASDM, these modulations presents a fixed intervalT on the

onset of the spike. For BSSD, during this periodz(t) reaches the minimum valuez(min):

z(min) − eth =
1

k

∫ t1+T

t1

(

x(t)− y(max)

)

dt. (A.25)

On the other hand, the maximum value forz(t) = Vth is reached at∆t

eth − z(min) =
1

k

∫ t2+∆t

t2

(

x(t)− y(min)

)

dt. (A.26)

Combining equation A.25 and equation A.26, the switching frequency is then given by

fsk(t) =
1

T

x(t)− y(min)

∆y
(A.27)
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where∆y = y(max) − y(min).

For BSSD, the frequency is a linear function of the input signal x(t). Therefore the maximum

frequency occurs when the input signal is also maximum whilst the minimum occurs when

the input signal is minimum and equal toy(min). Becausey(min) can be designed to be the

minimum value ofx(t) = x(min),

Ns =
1

T∆y

{

A

ω
[1− cos(ω)]− y(min)

}

≈ A

T∆y
(for ω ≫ 2) (A.28)

In TSSD case

z1 − eth1 =
1

k

∫ t1+T

t1

[

x(t)− y(max)

]

dt (A.29)

for positive spikes and

z2 − eth2 =
1

k

∫ t2+T

t2

[

x(t)− y(min)

]

dt (A.30)

for negative spikes. For the period∆t, when no spikes are outputted

eth1(2) − z1(2) =
1

k

∫ t3(4)+∆t

t3(4)
x(t)dt (A.31)

From equation A.29 to equation A.31, the instantaneous spike frequency is

fsk(t) ≈
1

T

|x(t)|
y

(A.32)

wheny = y1 = −y2.

As shown in equation A.32 the frequency is proportional to the absolute value of the input

amplitude and its maximum is
A

Ty
and the minimum is0 whenx(t) = 0.

Integrating equation A.32 over time gives the number of spikes per secondNs
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Ns ≈
2A

πTy
(for ω ≫ 2). (A.33)

Finally, the channel efficiencies of BSSD and TSSD are

CEBSSD =
T∆yfin2

Nb

A
=

T∆yfin
δ

(A.34)

and

CETSSD =
πTyfin2

Nb

2A
=

πTyfin
2δ

(A.35)

respectively, consideringδ =
Adec

2Nb
andAdec = 0.5A due to 3-dB filter attenuation and equa-

tion B.3 with x(t) = 0 and τ =
1

2πfin
. As the resolution increase, the BSSD and TSSD

channel efficiencies tend to constant values of0.212 and0.333 respectively, regardless the res-

olution and input signal frequency.
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Appendix B
Spike modulations numerical models

All analyses showed in chapters 3 and 4 were performed using numerical models. Theses

models were written in MatlabR© and Octave languages syntax.

Signals are represented by a 2-line matrix: the first lines refers the time whilst the second is the

signal amplitude. Variables are as follows:

Variable Description
Dx Maximum amplitude variation of the input signalx(t), i.e.,∆x(t)max.
freq Input bandwidth. The frequency ofx(t) when consideringx(t) = A sin(ωt).
Nb Designed resolution of the output signalxR(t) (zR(t) for delta modulations).
margin Margin (percentage) ofy(t) amplitude for some modulations. Default is 0.
mismatch Mismatch on the comparator(s) threshold. Defaultis 0.
A Sine wave amplitude. i.e., A =∆x(t)max/2.
w Angular frequency, i.e., w =2 ∗ π∗ freq.
steps Maximum amplitude variation to the pulse-induced change ratio. steps = 2Nb.
pole Pole of the first order low pass filter. In the simulationsresults, pole = freq.
fs Sampling frequency of all signals.
Wn Normalized pole of the low pass filter in z-domain. Wn = pole/(fs/2).
b,a Numerator and denominator of the Butterworth filter. [b,a] = butter(1,Wn).

Table B.1: Code global variables.

Following octave codes refers to the design (*par.m), coding (*coder.m) and decoding (*de-

coder.m) for each of the spike modulations studied. Parameter calculation for delta based

modulations follows the equations showed along the thesis.For sigma-delta cases, a brief

explanation of the approximated equations is provided.

TSD Modulation

1 f u n c t i on TSDpar

% TSD coder : Parameters c a l c u l a t i o n

3 d e l t a = 2∗A / s t e p s ;

dxdt max = A ∗ w; % maximum d e r i v a t i v e f o r x ( t ) = A s i n ( wt )

5 r e f r a c = d e l t a / dxdtmax − t d ;

z i = −2∗ d e l t a / 4 ; % i n t e g r a t o r i n i t i a l c o n d i t i o n
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7 i f po le / f r e q < 0 .5 % s e t decoder f i l t e r t o−90 phase change

dec = po le / f r e q ;

9 a t t dB = 20∗ l og10 ( dec ) ;

a t t = 1 0 ˆ ( a t t dB / 2 0 ) ;

11 x r i = (−A + z i ∗0) ∗ a t t ;

e l s e

13 x r i = z i ;

end

15 nspk = 2 ∗ s t e p s ∗ f r e q ; % t h e o r e t i c a l # s p i k e s / s

FoM = Nb / l og2 ( nspk / f r e q ) ; % t h e o r e t i c a l FoM

17 end

Design parameters for TSD models

f u n c t i on TSDcoder

2 % TSD modu la t i on : coder

znex t = z i ;

4 t r f = − r e f r a c t o r y ;

Deth = (1 + mismatch / 1 0 0 )∗ d e l t a ;

6 f o r n = 1 : s i z e( x , 2 ) ;

z c u r r = znex t ; % feedback s i g n a l z ( t )

8 e r r n = x ( 2 , n ) − z c u r r ; % e r r o r s i g n a l e ( t )

i f x ( 1 , n ) − t r f >= r e f r a c t o r y

10 i f e r r n > Deth / 2

y ( n ) = 1 ;

12 e l s e i f e r r n < −Deth / 2

y ( n ) = −1;

14 e l s e

y ( n ) = 0 ;

16 end

e l s e

18 y ( n ) = 0 ;

end

20 znex t = z c u r r + y ( n )∗ d e l t a ; % i n t e g r a t o r

t r f = x ( 1 , n ) ;

22 end

end

TSD coder model

1 f u n c t i on TSDdecoder

% TSD modu la t i on : decoder
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3 f s = 1 / ( y ( 1 , 2 )− y ( 1 , 1 ) ) ;

z r ( 1 ) = z i ;

5 z r = [ z i d e l t a∗cumsum( y ( 2 , : ) ) + z i ] ; % i n t e g r a t o r mode l led as an

accumu la to r

z r = [ y ( 1 , : ) ; z r ( 1 : numel ( z r )−1) ] ;

7 xr = [ z r ( 1 , : ) ; f i l t e r ( b , a , z r ( 2 , : ) , x r i ) ] ; % f i l t e r e d data

end

TSD decoder model

BSD Modulation

1 f u n c t i on BSDpar

% BSD coder : Parameters c a l c u l a t i o n

3 d e l t a = 2∗A / s t e p s ;

dxdt max = A ∗ w; % maximum d e r i v a t i v e f o r x ( t ) = A s i n ( wt )

5 r e f r a c = 1 /2 ∗ d e l t a / dxdt max ;

kd = dxdt max ; % i n t e g r a t o r ga in e q u a l s dxdtmax

7 nspk = p i ∗ f r e q ∗ s t e p s ; % t h e o r e t i c a l # s p i k e s / s

FoM = Nb / l og2 ( nspk / f r e q ) ; % t h e o r e t i c a l FoM

9 end

Design parameters for BSD models

1 f u n c t i on BSDcoder

% BSD modu la t i on : coder

3 t d = x ( 1 , 2 ) − x ( 1 , 1 ) ;

znex t = 0 ;

5 t r f = − r e f r a c t o r y ;

f o r n = 1 : s i z e( x , 2 )

7 z c u r r = znex t ; % feedback s i g n a l z ( t )

e r r n = x ( 2 , n ) − z c u r r ; % e r r o r s i g n a l e ( t )

9 y ( n ) = ( ( e r r n − o f f / 2 ) >= 0 ) ; % o u t p u t s i g n a l y ( t )

% feedback update

11 i f ( y ( n ) ˜= 0) && ( x ( 1 , n ) − t r f > r e f r a c t o r y )

t r f = x ( 1 , n ) ;

13 znex t = z c u r r + d e l t a ;

e l s e

15 znex t = z c u r r− kd∗ t d ;

y ( n ) = 0 ;

17 end

end

19 y = [ x ( 1 , : ) ; y ( 1 :s i z e( y , 2 ) ) ] ;
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end

BSD coder model

f u n c t i on BSDdecoder

2 % BSD modu la t i on : decoder

t d = y ( 1 , 2 ) − y ( 1 , 1 ) ;

4 z r a n t = 0 ;

f o r n = 1 : s i z e( y , 2 ) ;

6 i f ( y ( 2 , n ) > 0 )

z r ( n +1) = z r ( n ) + d e l t a ;

8 e l s e

z r ( n +1) = z r ( n ) − kd∗ t d ; % i n t e g r a t o r

10 end

end

12 z r = [ y ( 1 , : ) ; z r ( 1 :s i z e( zr , 2 )−1) ] ;

x r = [ z r ( 1 , : ) ; f i l t e r ( b , a , z r ( 2 , : ) ) ] ; % f i l t e r e d data

14 end

BSD decoder model

ADM Modulation

f u n c t i on ADMpar

2 % ADM coder : Parameters c a l c u l a t i o n

q = 2∗A / s t e p s ;

4 d = margin∗0.5∗ q ; % appr . q = d−(−d )

dxdt max = A ∗ w; % maximum d e r i v a t i v e f o r x ( t ) = A s i n ( wt )

6 b = margin ∗ A;

kd = dxdt max ; % i n t e g r a t o r ga in e q u a l s dxdtmax

8 nspk = p i / 2 ∗ f r e q ∗ s t e p s ; % t h e o r e t i c a l # s p i k e s / s

FoM = Nb / l og2 ( nspk / f r e q ) ; % t h e o r e t i c a l FoM

10 end

Design parameters for ADM models

f u n c t i on ADMcoder

2 % ADM modu la t i on : coder

t d = x ( 1 , 2 ) − x ( 1 , 1 ) ;

4 znex t = 0 ;

i f x ( 2 , 1 ) > 0 % i n i t i a l c o n d i t i o n o f y ( t )

6 yan t = −b ;

e l s e
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8 yan t = b ;

end

10 f o r n = 1 : s i z e( x , 2 )

z c u r r = znex t ; % feedback s i g n a l z ( t )

12 e r r n = x ( 2 , n )− z c u r r ; % e r r o r s i g n a l e ( t )

ys ( n ) = 0 ;

14 i f ( e r r n − d ) >= 0

yn = b ; % PWM ” o u t p u t ”

16 i f yan t ˜= yn

ys ( n ) = 1 ; % Spike o u t p u t

18 end

e l s e i f ( e r r n + d ) <= 0

20 yn = −b ; % PWM ” o u t p u t ”

i f yan t ˜= yn

22 ys ( n ) = −1; % Spike o u t p u t

end

24 e l s e

yn = yan t ;

26 end

znex t = z c u r r + kd∗yn∗ t d ; % i n t e g r a t o r

28 yan t = yn ; % PWM o u t p u t

end

30 y = [ x ( 1 , : ) ; ys ( 1 :s i z e( ys , 2 ) ) ] ;

end

ADM coder model

1 f u n c t i on ADMdecoder

% ADM modu la t i on : decoder

3 t d = y ( 1 , 2 ) − y ( 1 , 1 ) ;

% compute i n i t i a l c o n d i t i o n o f PWM y ( t )

5 indp = f i n d ( y ( 2 , : ) > 0) ;

indn = f i n d ( y ( 2 , : ) < 0) ;

7 yan t = 2∗ ( indp ( 1 ) > i ndn ( 1 ) ) − 1 ;

z r ( 1 ) = 0 ;

9 f o r n = 1 : s i z e( y , 2 )

i f y ( 2 , n ) ˜= 0

11 yan t = y ( 2 , n ) ;

end

13 yr ( n ) = yan t ;

% i n t e g r a t o r

15 z r ( n +1) = z r ( n ) + kd ∗ yan t ∗ t d ;
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end

17 xr = [ z r ( 1 , : ) ; f i l t e r ( b , a , z r ( 2 , : ) ) ] ; % f i l t e r e d data

end

ADM decoder model

ASDM Modulation

One characteristic common to the sigma-delta versions of spike modulation is that the output is

the filtered result of a sequence of pulses. Considering a first order filter, its step (with amplitude

U ) response is given by:

v(t) = v(∞) + [v(0)− v(∞)] e
− t

τ (B.1)

whereτ is filter time constant,v(0) is the filter initial condition andv(∞) is the final value of

the filter output given byv(∞) = Uτ .

+b

−b

∆t1 ∆t2

x(t)

xR(t)

yR(t)

t

q

A

t1t1 t2 t3

Figure B.1: Asynchronous sigma-delta modulation output. Illustration of ASDM output signals
behaviour.

Figure B.1 is an illustration of the behaviour of the filter output for a binary pulse such as it

happens in ASDM modulation. The filter output rises during the interval∆t1 and falls during

∆t2. We we first consider the interval∆t1, being the case for the interval∆t2 presenting
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symmetric expressions. From equation B.1:

xR(t1 +∆t1) = xR(∆t1) + q/2 = b+ [xR(∆t1)− q/2− b] e
− t1 −∆t1 − t1

τ ⇒

∆t1 = τ ln
b− xR(∆t1) + q/2

b− xR(∆t1)− q/2
(B.2)

wherexR(∆t1) is the middle point ofxR(t) during this interval andq, the variation on the filter

output amplitude during the interval∆t1, is defined by design. Reminding that equation A.21

refers to the pulse frequency, we can combine it with equation B.2 (and the equivalent for∆t2):

∆t1 +∆t2 =
4 d k b

b2 − x(t)2
≈ τ ln

(b+ q/2)2 − xR(t3 − t1)
2

(b− q/2)2 − xR(t3 − t1)2
⇒

d =
b2 − x(t)2

4 k b
τ ln

(b+ q/2)2 − x(t)2

(b− q/2)2 − x(t)2
(B.3)

considering that input signalx(t) is approximately constant during∆t1+∆t2 andxR(t3 − t1) ≈
x(t).

Expressions for other sigma-delta modulations (BSSD and TSSD) are similar but with one

interval fixed (T ).

f u n c t i on ASDMpar

2 % ASDM coder : Parameters c a l c u l a t i o n

k = 1 ; % i n t e g r a t o r ga in

4 Ad = 0 .5∗A; % ampl i t ude a t decoder H(w) =−6dB

q = 2∗Ad / s t e p s ; % maximum e r r o r i n t h e r e c e i v e s i d e ( happens

c l o s e t o x =0)

6 q = 1.333∗ q ; % c o r r e c t i o n f a c t o r

b = A + q / 2 ;

8 t a u = 1 / ( 2∗ p i ∗ po le ) ;

% d = ( bˆ2−x ˆ 2 ) / ( 4 kb ) ∗ t au ∗ l n ( ( ( b+q / 2 ) ˆ2 −x ˆ 2 ) / ( ( b−q / 2 ) ˆ2 −x ˆ 2 ) )

10 x = 0 ; % wors t case

A = ( b + q / 2 ) ˆ2 − x ˆ 2 ;

12 B = ( b − q / 2 ) ˆ2 − x ˆ 2 ;

C = ( b ˆ2 − x ˆ 2 ) / (4∗ k∗b ) ;

14 d = C ∗ t a u ∗ l og (A/B) ;

nspk = ( b ˆ2 − 0 .5∗Aˆ 2 ) / (2∗ d∗k ) % t h e o r e t i c a l # s p i k e s / s

16 FoM = Nb /l og2 ( nspk / f r e q ) ; % t h e o r e t i c a l FoM

end

Design parameters for ASDM models
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1 f u n c t i on ASDMcoder

% ASDM modu la t i on : coder

3 t d = x ( 1 , 2 ) − x ( 1 , 1 ) ;

znex t = 0 ;

5 yn = 1 ;

f o r n = 1 : s i z e( x , 2 )

7 z c u r r = znex t ;

e r r n = x ( 2 , n ) − b∗yn ; % e r r o r s i g n a l e ( t )

9 znex t = z c u r r + 1 / k∗ e r r n∗ t d ; % i n t e g r a t i o n s i g n a l z ( t )

ys ( n ) = 0 ;

11 i f znex t >= d

yn = 1 ;

13 e l s e i f znex t <= −d

yn = −1;

15 e l s e

yn = yan t ;

17 end

i f yan t ˜= yn % s p i k e g e n e r a t i o n

19 ys ( n ) = yn ;

end

21 end

y = [ x ( 1 , : ) ; ys ( 1 :s i z e( ys , 2 ) ) ] ;

23 end

ASDM coder model

1 f u n c t i on ASDMdecoder

% ASDM modu la t i on : decoder

3 x r i = 0 ;

yan t = 0 ;

5 % compute i n i t i a l c o n d i t i o n o f PWM y ( t )

i ndp = f i n d ( y ( 2 , : ) > 0) ;

7 indn = f i n d ( y ( 2 , : ) < 0) ;

yan t = 2∗ ( indp ( 1 ) > i ndn ( 1 ) ) − 1 ;

9 f o r n = 1 : s i z e( y , 2 ) ;

i f y ( 2 , n ) ˜= 0

11 yan t = y ( 2 , n ) ;

end

13 yr ( n ) = b∗ yan t ;

end

15 % f i l t e r e d data
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xr = [ y ( 1 , : ) ; f i l t e r ( b , a , yr , x r i ) ] ;

17 end

ASDM decoder model

TSSD Modulation

f u n c t i on TSSDpar

2 % TSSD coder : Parameters c a l c u l a t i o n

k = 1 ; % i n t e g r a t o r ga in

4 Ad = 0 .5∗A; % ampl i t ude a t decoder H(w) =−6dB

q = 2∗Ad / s t e p s ;

6 q = 1.33∗ q ; % c o r r e c t i o n f a c t o r

t a u = 1 / ( 2∗ p i ∗ po le ) ;

8 % T = 2 ∗ t au ∗ ( 1 − | x | / q ∗ l n ( ( | x |+ q / 2 ) / ( | x |+ q / 2 ) ) )

x = A; % wors t case

10 a1 = abs( x ) + q / 2 ;

a2 = abs( x ) − q / 2 ;

12 a3 = abs( x ) / q ∗ l og ( a1 . / a2 ) ;

T = 2 ∗ t a u ∗ (1 − a3 ) ;

14 % round T t o be m u l t i p l e o f d t

kT = round ( abs(T ) / d t ) ;

16 T = kT∗ d t ;

ya = q∗ t a u / T + abs( x ) − q / 2 ; % p u l s e s amp l i t ude

18 d e l t a = margin ∗ ya ∗ T / k ;

nspk = 2∗A / ( p i ∗T∗ya ) ; % t h e o r e t i c a l # s p i k e s / s

20 FoM = Nb /l og2 ( nspk / f r e q ) ; % t h e o r e t i c a l FoM

end

Design parameters for TSSD models

1 f u n c t i on TSSDcoder

% TSSD modu la t i on : coder

3 t d = x ( 1 , 2 ) − x ( 1 , 1 ) ;

kT = f l o o r (T / t d ) ; % number o f samples f o r t h e p u l s e T

5 spk = 0 ;

y ( 1 ) = 0 ;

7 znex t = 0 ;

f o r n = 1 : s i z e( x , 2 )

9 z c u r r = znex t ;

y f = ya ∗ y ( n ) ; % feedback ga in

11 e r r n = x ( 2 , n )− yf ; % e r r o r s i g n a l e r r ( t )

znex t = z c u r r + 1 / k ∗ e r r n ∗ t d ; %i n t e g r a t i o n s i g n a l z ( t )
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13 % feedback g e n e r a t o r

i f spk > 0 % p u l s e hasn ’ t f i n i s h e d y e t

15 y ( n +1) = y ( n ) ;

spk = spk − 1 ;

17 e l s e i f abs( znex t ) > d e l t a / 2 % s t a r t p u l s e

spk = kT ;

19 y ( n +1) = s ign ( znex t ) ;

e l s e

21 y ( n +1) = 0 ;

end

23 end

y = [ x ( 1 , : ) ; y ( 1 : s i z e( y , 2 )−1) ] ;

25 ys = abs( y ( 2 , : ) ) .∗ ( y ( 2 , : ) − c i r c s h i f t ( y ( 2 , : ) , [ 0 , 1 ] ) ) ; % c o n v e r t i n g t o

s p i k e s

y = [ y ( 1 , : ) ; ys ] ;

27 end

TSSD coder model

1 f u n c t i on TSSDdecoder

% TSSD modu la t i on : decoder

3 t d = y ( 1 , 2 ) − y ( 1 , 1 ) ;

kT = f l o o r (T / t d ) ; % number o f samples f o r t h e p u l s e T

5 x r i = 0 ;

indy = f i n d ( abs( y ( 2 , : ) ) == 1) ; % f i n d s p i k e s

7 y i = y ( 2 , : ) ;

f o r n = 1 : numel ( indy ) % c o n v e r t i n g f rom s p i k e s

9 y i ( indy ( n ) : indy ( n ) +kT−1 ) = y ( 2 , indy ( n ) ) ;

end

11 s1 = [ y ( 1 , : ) ; ya∗ y i ] ; % app l y ga in and dc va lue t o t h e s p i k e s

xr = [ y ( 1 , : ) ; f i l t e r ( b , a , s1 ( 2 , : ) , x r i ) ] ; % f i l t e r e d data

13 end

TSSD decoder model

BSSD Modulation

1 f u n c t i on BSSDpar

% BSSD coder : Parameters c a l c u l a t i o n

3 k = 1 ; % i n t e g r a t o r ga in

Ad = 0 .5∗Dx / 2 ; % ampl i t ude a t decoder H(w) =−6dB

5 q = 2∗Ad / s t e p s ;

q = 1.33∗ q ; % c o r r e c t i o n f a c t o r
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7 xmin = −Dx / 2 ;

yo = xmin − q / 2 ;

9 t a u = 1 / ( 2∗ p i ∗ po le ) ;

% T = 2 ∗ t au ∗ ( 1 − ( x−yo ) / q ∗ l n ( 1 + q / ( x − xmin ) ) )

11 x = 0 . 0 ; % wors t case

a1 = l og (1 + q . / ( x − xmin ) ) ;

13 a2 = ( x − yo ) / q ;

a3 = 1 − a2 .∗ a1 ;

15 T = 2 ∗ t a u ∗ a3 ;

% round T t o be m u l t i p l e o f d t

17 kT = round ( abs(T ) / d t ) ;

T = kT∗ d t ;

19 ys = q∗ t a u . / T + x − q / 2 ; % p u l s e s amp l i t ude

nspk = A / ( T∗ ( ys−yo ) ) ; % t h e o r e t i c a l # s p i k e s / s

21 FoM = Nb /l og2 ( nspk / f r e q ) ; % t h e o r e t i c a l FoM

end

Design parameters for BSSD models

f u n c t i on BSSDcoder

2 % BSSD modu la t i on : coder

t d = x ( 1 , 2 ) − x ( 1 , 1 ) ;

4 kT = f l o o r (T / t d ) ; % number o f samples f o r t h e p u l s e T

znex t = 0 ;

6 spk = 0 ;

y ( 1 ) = 0 ;

8 f o r n = 1 : s i z e( x , 2 )

z c u r r = znex t ;

10 yf = ys∗y ( n ) + yo∗(1−y ( n ) ) ; % feedback ga in

e r r n = x ( 2 , n ) − yf ; % e r r o r s i g n a l e ( t )

12 znex t = z c u r r + 1 / k∗ e r r n∗ t d ; % i n t e g r a t i o n s i g n a l z ( t )

% feedback g e n e r a t o r

14 i f spk > 0 % p u l s e hasn ’ t f i n i s h e d y e t

y ( n +1) = y ( n ) ;

16 spk = spk− 1 ;

e l s e i f znex t >= 0 % s t a r t p u l s e

18 spk = kT ;

y ( n +1) = 1 ;

20 e l s e

y ( n +1) = 0 ;

22 end

end
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24 y = [ x ( 1 , : ) ; y ( 1 :s i z e( y , 2 )−1) ] ;

ys = ( y ( 2 , : ) − c i r c s h i f t ( y ( 2 , : ) , [ 0 , 1 ] ) ) ; % c o n v e r t i n g t o s p i k e s

26 y = [ y ( 1 , : ) ; ( ys + abs( ys ) ) / 2 ] ;

end

BSSD coder model

f u n c t i on BSSDdecoder

2 % BSSD modu la t i on : decoder

t d = y ( 1 , 2 ) − y ( 1 , 1 ) ;

4 kT = T / t d ;

x r i = 0 ;

6 indy = f i n d ( y ( 2 , : ) == 1) ; % f i n d s p i k e s

y i = y ( 2 , : ) ;

8 f o r n = 1 : numel ( indy ) % c o n v e r t i n g f rom s p i k e s

y i ( indy ( n ) : indy ( n ) +kT−1 ) = y ( 2 , indy ( n ) ) ;

10 end ;

s1 = [ y ( 1 , : ) ; ys∗ y i + yo∗(1− y i ) ] ; % app l y ga in and dc va lue t o t h e

s p i k e s

12 xr = [ y ( 1 , : ) ; f i l t e r ( b , a , s1 ( 2 , : ) , x r i ) ] ; % f i l t e r e d data

end

BSSD decoder model

116



Appendix C
A distributed arbitration for AER

protocol

In chapter 2 it was defined the Address Event Representation (AER) protocol as the handling

mechanism to communicate spikes in the programmable analogue architecture.

AER is the de-facto standard communication protocol for neuromorphic systems [95]. It uses

digital buses to broadcast spikes to every element is the system. Each spike is identified by a

digital code representing the address of the sender or receiver elements.

However, sharing the same media (the digital bus) asynchronously can lead to transmission

collisions. The system can just ignore such collisions, eventually leading to loss of informa-

tion [101], or can handle these collisions by implementing some sort of arbitration. The arbitra-

tion process catches all the spikes involved in a collision and retransmit either one or all events

sequentially.

Usually, arbitration is implemented in with a centralized arbiter connected to every element in

the system. This appendix presents a distributed alternative for the centralized arbitration.

C.1 Distributed arbitration description

In centralized arbitration, each element or CAB, referred as node in this appendix, asks the

arbiter for permission to write to the bus every time it generates an event. The arbiter grants or

not this permission to the node according to the bus state. This communication between node

and arbiter is performed using asynchronous request and acknowledge signals.

In this implementation of distributed arbitration, each node manage event collisions autonomously.

This implementation presents two buses: awired-ORand awired-AND. Every time a node pro-

duces an event it directly write its own address on both busesand wait for a confirmation signal

set by all other elements on the array whilst monitoring the buses. On the reception of this

signal, the transmission was successful and another event can be transmitted.
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However if another node writes its address before the confirmation signal, the value of both

addresses will differ and then all nodes start an internal process to solve the conflict.

Three different methods to handle collisions were identified, ordered in increasing complexity:

1. ignore the collision and the events involved on that, signalling to the system that it is an

invalid address;

2. identify which addresses have collided, pick one up and discard the others or

3. try to resend sequentially these event addresses when theaddress bus is idle again.

The first two options can lead to information loss or distortion, which can be intolerable to the

system. The third option implies in information loss or distortion only if the information coding

used requires exact time generation (i.e. Pulse Position Modulation).

In case of options 2 and 3, if a collision happens, each node decides if it will keep writing its

address in the buses. After successive interactions, just one will keep writing its address to the

buses. When this happens, the address buses values are identical and the system could use it as

a valid event transmission.

In this work, a state machine was implemented to control the arbitration process. Besides the

two buses the system uses some asynchronous signals to control each node state machine. Some

of them are dual (wired-OR and wired-AND) control signals: Address Write (WR), address

WRite Acknowledge (WRA), address ConFlicT detection (CFT)and address ReaD (RD); and

one is a single address VALidation (VAL) control. This dual logic control signals are used to

synchronize the internal state machines of each node.

This arbitration can be understood as an error detection protocol, with some differences from

linear block codes. In linear bock codes, the receiver(s) try to identify valid codes from the

(possible noisy) input data using a parity-check matrix. The transmitted data is greater, in

number of bits, than the information itself because the extra bits are used to error detection.

Greater the code size, greater is the probability of error detection and correction [150].

Here, both the emitter(s) and receiver(s) try to identify the error in the data, but only the emit-

ter(s) try to correct the error, rewriting the information as many times as necessary. At each

iteration, each emitter will rewrite it according to some predefined criteria. In this first imple-

mentation, only two arbitration criteria are available: the node with the smallest or the biggest
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address will prevail. The following example uses the smallest address criterion, but further

considerations are similar for the second case.

A functional example

Now we describe the functionality of the arbitration process for a system using 3-bit address

size for its elements. Consider an array of 4 nodes: node A which address is001, node B (010),

node C (011) and node D (100). The idle state values for the wired-OR and the wired-AND

buses are, respectively,000 and 111. These two values are reserved and cannot be used to

address nodes. Such example was simulated and the results are presented in figure C.1.

A conflict between spikes generated by nodes B, C and D was forced to give a comprehensive

description of the arbitration process. After this nodes write their addresses, the buses values

will be 111 (wired-OR) and000 (wired-AND). As they are different from each other and are

not the same of the idle state, each node in the system is awareof an invalid address in the buses

due to a collision.

From this point, if the system uses the conflict options 2 and 3, each node that has written its

address (candidate node) will decide if it will keep writingits address or not.

Because of the most significant bit (MSB) of the wired-AND busis zero (000), the node D

understands that a node with a lower address was involved in the collision. Therefore, the node

will give up of being a candidate, stop writing its address inthe buses. The nodes B and C will

keep writing their address in the next iteration, as both could have generated this zero. After

both have rewritten their addresses, the resulting addressbuses values will be011 and010,

which indicates a new collision.

In the next step, both nodes will look at the second MSB, whichin this case is one in both

buses. As both have generated these ones, both nodes will keep writing their addresses in the

next iteration.

The last step will take a look at the least significant bit (LSB). It is one in the wired-OR bus and

zero for the wired-AND bus. The node C will give up of writing its address because it could not

have generated the zero in the wired-AND bus. Only the node B will keep writing its address

and, this time, both addresses have the same value and each node in the system acknowledge

that it is a valid address and can read it. Therefore, this arbitration requires, in the worst case, a

number of iterations equals to the bus size to resolve a conflict, i.e.,log2 N with N − 2 being
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Figure C.1: Distributed arbiter example waveform. (a) shows the control signals and (b) and
(c) are the wired-OR and the wired-AND address buses, respectively. The collision
happens at approx. 10ns when the signalwrOR goes high for the first time and is
resolved at approx. 195ns when the signalvalid goes down. Probability of event
generation was set high (approx. 50 %) to force a collision.

the maximum number of nodes supported by the bus size.

C.2 Comparison with other AER arbitration techniques

We made some preliminary and generic considerations about the benefits and disadvantages

to others arbitration techniques, considering overhead area, power consumption, latency and

scalability.

Circuit area and power consumption
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Figure C.2: AER arbiter area. Normalized area required bycentralizedand distributedar-
biter implementations. In the first the arbiter area grows proportionally to the
root square number of nodes in the system whilst the second requires an area pro-
portional to this number of nodes.

Area comparison is not straight forward. It depends on process and design, among other factors.

The total area was split in area occupied by the circuits and area occupied by signal routing.

In this approach, as each node has it own state machine to arbitrate collisions, the overhead in

area increases proportionally to number of nodesN . In a classical AER implementation, the

arbiter is implemented as a binary three of basic 2-input arbiters. The total number of arbiters

need is given by the sum of a geometric series given by:

Narb(CA) =
(

2L+1 − 1
)

+
(

2C+1 − 1
)

(C.1)

which, if considering a square array withN nodes, results in:

ACA = 2
(√

N − 1
)

(C.2)

as the normalized area expression for the classical centralized arbiter case. The difference

between the area requirements for both implementation in terms of the number of nodes in the

array is illustrated figure C.2.

Furthermore, the output transistors of the node drive wiresshared with
√
N other nodes tran-

sistor drains plus the arbiter gate in the centralized arbiter version. In the distributed case the

output transistors drive wires shared with all otherN − 1 nodes, both drains (transmission) and

gates (receptions). It implies in greater transistors areaand power consumption.
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Figure C.3: Example of routing placements. (a) Reduced version of original centralized ar-
biter with handshaking signals: Sender Column Request (SCR), Sender Row Re-
quest (SRR) and Acknowledge (SRA), Receiver Row Request (RRR) and Acknowl-
edge (RRA) and Receiver Column Request (RCR) signals commonto every node.
(b) distributed arbiter implementation with both control and address buses com-
mon to every node.

Routing area

The basic handshaking implementation of AER protocol requires one request signal and one

acknowledge signal to each transmitting node in the system.This signals are connected to an

arbiter which choose one of the nodes, in case of conflict, to transmit its address. For a system

with NT transmitting nodes the total amount of communication wiresis 2NT .

However, if such nodes are aligned in rows and columns like inan array, all nodes in the same

line or column can share this wire. The smaller number of request and acknowledge signals

happens when we distribute theNT nodes in a squared array configuration [95], i.e. the number

of lines is equal to the number of columns. In this case, two request and two acknowledge

signals are needed (one pair for all nodes in the column and another for the nodes in the same

row. This configuration leads to a total of4
√
NT control signals. Further developments reduced

this number to3
√
NT , concentrating the acknowledge information in just one signal.

Similar number is found in the receiving side1 totalling 3(
√
NT +

√
NR) signals. for the

1The original application of the AER protocol was to connected two different systems, usually in different ICs,
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Figure C.4: AER number of signals and routing area for a square array. Three different AER
architectures were compared. The first is theoriginal central arbiter. It uses four
request and four acknowledge signals andlog2(N) address bus size. The second
is a reducedversion with just two acknowledge signals. The third is thedistributed
arbiter version presented in this appendix. Although this version presents a small
number of control signals (a) for large number of elements, it also requires more
area (b) to implement the signal routing.

case where transmitting signals are also potential receivers, the number is6
√
N . The bus is

accessible only by the arbiter and address decoder. A typical placement is showed in figure C.3.

Therefore, the area occupied by such squared distribution of nodes is:

Arout(CA) ∝
√
N
[(

3
√
N + 4 log2N

)

(k1 + k2)
]

(C.3)

whereL, the number of lines, is
√
N for a squared layout, andk1 andk2 are the height and

width of each node, respectively.

with one only sending spikes and the other only receiving them.
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In the distributed arbiter implementation, the system needs nine control signals and one dual

address bus. Therefore, the routing area is:

Arout(DA) ∝ (2 log2 N + 9)
(

0.5Nk2 + k1
√
N
)

(C.4)

As shown in figures C.4(a) and C.4(b), the distributed arbiter implementation presents a smaller

number control signals. However it requires a larger area tolayout them across the circuit for a

squared layout.

Another comparison, not so direct, is with non-arbitrated implementations based on error cor-

rection algorithms. In this kind of systems, we need an information code greater than the

address only, to permit the inclusion of parity bits. The size of the transmitted data depends on

the size of the system, the probability of loss accepted and the system activity.

For example, in [101], for255 nodes operating at12 x 107 events/second with a probability of

loss of1%, the system needs32 bits. In the implementation presented here needs25 bits only.

As the signal routing is identical, this implementation demands less area than in [101].

Latency

The distributed AER arbiter is implemented using asynchronous state machines and, therefore,

most of the states transitions depend on any indication of every node in the system. The min-

imum latency is12 states and the maximum (in case of conflict) is9 log2N + 12 states. The

maximum latency does not depend on the number of nodes in conflict but on their addresses,

i.e. smaller (or bigger) is the addresses of at least2 nodes greater is the latency.

In the centralized version, there is no need for state machines and, therefore the system can runs

in a continuous fashion. As the circuit only depends of the responses given by the origin and

target nodes, the total latency is in the worst case equal to latency from the distributed version.

Scalability

The arbiter circuit of the centralized implementation of AER is a circuit separated from the

nodes of system. This means that when two or more IC are used tocreate a greater system, an

external arbiter need to be added too, as in SCX system [97]. In this implementation, no extra

hardware is needed, as long you provide address buses big enough to support all nodes.
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Appendix D

Additional summation methods using
timing modulations

It was demonstrated in chapter 4 that the asynchronous eventspike coding functional principles

lead to a natural and straightforward implementation of several arithmetic computations. In this

appendix, it is shown the methods to implement the summationwith other timing modulations.

D.1 PFM, PDM and PPM

When coding signals using Pulse Frequency Modulation (PFM), the information is represented

by the number of spikesn transmitted over a timing windowTM . Considering a linear trans-

formation, the summation is then given by:

fsum =
N
∑

i=1

(fi − f0) + f0 =
1

TM

[

N
∑

i=1

ni − (N − 1)n0

]

(D.1)

Knowing the number of signalsN to be summed up and the number of spikes which represents

the zeron0 of the signal, a counter can be used to perform the summation.The counter, which

is previously reset to an initial value, is incremented by each spike during the timing window.

This process is quantized, synchronous, purely digital andpower-hungry.

In the Pulse Delay Modulation (PDM) case, the information iscoded in the time delay between

two successive spikes. The summation is represented using the following equation:

∆sum =
N
∑

i=1

∆ti − (N − 1)∆t0 (D.2)

Distinctive methods can be used to realize this expression:an integrator with a leakage current

corresponding to the zero value or using a Time-to-Digital Converter (TDC). The first outputs
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an analogue results in contrast to the digital output provided by the last method. Therefore

this operation is essentially continuous (analogue method) or quantized (digital method), asyn-

chronous, noisy but power efficient with the analogue method.

Finally, in the Pulse Position Modulation (PPM) method, thephase between a spike and a

reference clock is used to code the signal the information. The expression for the summation

operation is equal to equation D.2, with∆ti representing the time difference of the spike and

the clock rather than the difference for successive spikes.Therefore, methods similar to the

PDM case can be used here. Other methods that outputs spikes as well will be detailed in the

next section. Differently from the PDM, PPM is a synchronousmethod.

D.2 Examples of circuits for PPM

The use of PPM is used instead of PDM because we need a time window (regular sampling,

synchrony) with this circuits. The reason is because we cannot allow more than two pulses from

the same signal arrive during the computation. Also, only positive representations can be used

with these circuits. As the computations are performed in analogue domain, the undesirable

effect of error propagation from pulse to analogue and analogue to pulse conversions is present.

Summation circuit version 1

This circuit is a derivation of the circuit presented by JohnHarris in [122] used to compute

weighted averages. In this circuit there areN current sources: one for each operand as shown

in figure D.1(a) with a continuous current sinkI removing charge from the capacitor. The

incoming spikes control the switches operations in the following way: from the beginning of

the cycle, all the signalsφ are active, allowing allN current sources to charge the capacitorC

and, therefore, increasing the voltageVint(t). On the detection of the spike from the operandk,

the respective signalφk turns off. When all spikes have arrived, this current sink works alone,

removing charge from the capacitor until it comes back to itsinitial state.

From figure D.1(b), the integrating voltage afterk spikes is given by

Vint(∆tk) =
I

C
[N − (k − 1)] (∆tk −∆tk−1) + Vint(∆tk−1)

Vint(∆tN ) =
I

C

N
∑

i=1

∆ti
(D.3)
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Figure D.1: PPM summation circuit and waveform: version 1. (a) circuit to perform the sum-
mation of multiple signals. (b) waveform example.

and the summation result is the time elapsed to charge up toVint(∆tN ) and discharge back to

the reference voltageVref = 0 such as

∆tsum =
N
∑

i=1

∆ti (D.4)

This implementation has the advantage of the comparator output transition represents the true

summation result, i.e., it does not present any summed constants to the result as in [122].

However the number of current sources (and power consumption) increase with the number of

operators and only positive operands are allowed (1-quadrant summation).

Summation circuit version 2

This PPM summation circuit is also based on integrating voltages like the previous one. How-

ever it does not require the same amount of current sources asthe previous circuit, as shown

in figure D.2(a). Only one current sourceIup, triggered byany incoming spike charges the

capacitorC whilst anotherIdn discharges it.

In fact this circuit can perform the summation operation on two different modes. In the first case

the control signalφN is always set, meaning the integrating node is always being discharged

by the currentIdn. For each input spike detected, the signalφP connects the current source

to the integration node for a fixed timeT . BeingIup ≫ Idn, the integrating node is charged

during this timeT . Because the currentIup is proportional (α) to the time∆tk, the voltage on
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Figure D.2: PPM summation circuit and waveform: version 2. (a) circuit to perform the sum-
mation of multiple signals. (b) waveform example for the case 1 and (c) for the
case 2.
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the integrating node afterk spikes is

Vint(∆tk) = Vint(∆tk−1 + T )− Idn
C

∆tk

Vint(∆tk−1 + T ) = Vint(∆tk−1) +
T

C
Iup(∆tk)

Iup(∆tk) = α∆tk

(D.5)

and the comparator output switches1 at a time proportional to the summation of the incoming

spikes as

∆tsum =
αT

Idn

N
∑

i=1

∆ti

∆tsum =

N
∑

i=1

∆ti if α =
Idn
T

(D.6)

Although this circuit has the advantage of can received a variable number of input spikes (num-

ber of operands), it still presents a high static current consumption. To reduce this current

consumption, the second mode can be implemented using the same circuit. In this mode, the

signalφN is set only after the last spike has arrived. This last spike also stops the comparator

referenceVref (t) integration. In this mode, equations D.5 and D.6 can be rewritten as

Vint(∆tk) = Vint(∆tk−1 + T )− T

C
Iup(∆tk)

Iup(∆tk) = α∆tk

(D.7)

and

∆tsum = ∆tN +
αT

Idn

N
∑

i=1

∆ti −
C

Idn
Vref (∆tN )

∆tsum =
N
∑

i=1

∆ti if α =
Idn
T

andVref (∆tN ) =
Idn
C

∆tN

(D.8)

respectively. Figures D.2(b) and D.2(c) show a 1-quadrant summation, but the method can

be adapted to performed a 4-quadrant summation if one periodTM latency is allowed as in

figures D.3(a) and D.3(a). In other words, the results appearonly in next period.

1In fact the comparator outputs switches every time the integrating node voltage crosses the reference voltage
Vref . To avoid this, the comparator can can enable using the signal en active only after the last spike has arrived.
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Figure D.3: PPM quadrant summation summation circuit and waveform: version 2. 4-
quadrant version of the summation methods using the circuitin figure D.2(a). (a)
waveform example for the case 1 and (b) for the case 2.

D.3 Summation expressions for the methods studied

Here are the expression derived from the communication methods presented in chapter 3. As

already shown, the summation expression for the TSD modulation is given by:

xsum(t) ≈ zR(t) = δ

(

N
∑

k=1

nkp −
N
∑

k=1

nkn

)

+ zR(t0) (D.9)
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wherenkp andnkn are the number of positive and negative spikes, respectively, received from

thekth operand after the initial instantt0. Meanwhile, for the BSD modulation, this operation

is given by:

xsum(t) ≈ zR(t) = δ

N
∑

k=1

nk − kiN (t− t0) + zR(t0) (D.10)

with ki being the integrator gain. Differently from the TSD case, inBSD modulation the

summation is a function of the current instant. For the ADM modulation, the expression is:

xsum(t) ≈ zR(t) = kib
N
∑

k=1





M
∑

mk=1

(−1)mk+1(tmk
− tmk−1)



+ zR(t0) (D.11)

meaning that the summation, as any individual signal, is a function of all spike timings and

therefore can not be implemented as just the merge of all spikes as it is in the TSD modulation.
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Appendix E
Schematics of the ASEC circuits

The circuits used in this thesis are presented in this appendix, with the exception of the AER

circuitry which was designed and cordially lend by Giacomo’s Invivieri Group at ETH Zurich

and were adapted to the project by Simeon Braford. All circuits were designed in CadenceR©

Electronic Design Automation (EDA) suit.

Figures E.1(a) and E.1(b) presents the top schematic for theASEC coder and decoder respec-

tively. The main blocks on the coder are the compound comparator (figure E.2) the spike and

pulse generators (figure E.3) and the integrator (figure E.7). The schematic of the digital circuits

presented in spike and pulse generators are also presented.Figure E.4 shows the schematic of

the arbiter while the schematic of the c-miller elements arealso presented in figure E.5. The

schematic of the delay circuits for the pulse generator block are presented in figure E.6.
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(a)

(b)

Figure E.1: Schematics of the ASEC coder and decoder. The ASEC coder (a) is build from three
fundamental blocks as show in chapter 5: Comparator (comp), digital control
(dig) and integrator (int). Inverters are used as buffers for test. The decoder (b)
two main blocks are the digital control (dig) and the integrator (int). The low
pass filter was implemented off-chip. The pull-up transistor MP0 sets the global
acknowledge signal.
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(a)

(b)

Figure E.2: Schematic of the compound comparator. In order to guaranteethe symmetrical
design of the comparator (a), it was divide in two identical halves. Therefore,
and modification on one side (the transistor sizes of the input differential pair,
for instance) is performed on both sides. (b) shown the circuits inside each half.
Components are grouped into the blocks of figure 5.2, i.e., pre-amplifier, decision
circuit and output buffer. Offset group is the pre-amplifierfor the∆eth.
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(a)

(b)

Figure E.3: Schematics of the digital control circuits. The combination of the spike and pulse
generator is show in (a) while pulse generator at the decoderin shown in (b).
Common blocks include the delay blocks (dl1 and dl2) to generate the input inte-
grator pulses. Digital control logic is asynchronous and were designed using the
method presented by [142]. A set of different C-miller elements (cm * * 30 rz)
were used to use the design method.
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(a) (b)

(c) (d)

Figure E.4: Schematics of the spike generator arbiter and C-miller elements. (a) presents
the schematic of the arbiter in figure E.3(a). Other figures show the different
c-miller elements used in the spike and pulse generator blocks. The elements
in these figures ( (b) to (d)) are, in order,cm 2s 2s 30 rz, cm 2p 2s 30 rz and
cm 2s 2p 30 rz.
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(a) (b)

(c) (d)

Figure E.5: Schematics of the C-miller elements (cont.). Figures ( (b) to (d)) show the c-miller
elementscm 2s 1 30 rz, cm 3s 1 30 rz, cm 1 2p2s30 rz and cm 1 2s 30 rz re-
spectively.
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(a)

(b)

Figure E.6: Schematics of the digital control delays circuits. These figures presented the
schematic of the delays circuit for the the pulse generator blocks. These circuits
works integrating a current into a capacitorCint. This current is the summation of
two externally supplied currents. Two different current mirrors provide a greater
range of input current while keeping the transistors in the operational region. The
voltage in the capacitor is connected to a chain of inverter which acts as a volt-
age buffer and reduce the transition times. (a) generates the pulse widthT while
the “refractory period” ∆tmin is produced by the circuit in (b), which presents
a programmable capacitor to increase the range of the interval periods between
successive pulses.
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Schematics of the ASEC circuits

Figure E.7: Schematic of the SCI integrator. The schematic is similar tofigure 5.10 with the
input current mirror and integration control signals bias being explicit. The input
currents are both sink from the nodeipb and source to nodeibn. In the first IC, just
one current was supplied being the complimentary current generated inside the
integrator. In the second IC, both currents were controlledoutside the IC to study
the mismatch on the generation of this reference current. These currents generates
the bias voltagesvp and vn to the current mirrors and voltagesvcp and vcn to
the cascode transistors of these current mirrors. The gate voltage of the control
switchessp* and sn* are set by the external voltagesvbn and vbp respectively
though the transistormo*. These voltages can be calibrated to compensate for the
integrator mismatches. A 1 pF capacitor is placed at the output integrator node
vo to hold the node voltage.
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Appendix F

Switched-capacitor integrator design

Due to the great sensibility to circuit mismatches presented in SCI topology another integrator

topology was included in the second chip. This topology is based in switched-capacitor de-

sign techniques [151, 152] and a wide variety of designs for integrators have been studied and

compared, as in [153] and [154], for instance.

The topology used in the second chip was proposed by [156] as aversion of the basic stray-

insensitive integrator [155] with offset-compensation, as seen in figure F.1. Other topologies

for offset compensation have been studied, but the one in figure F.1(b) was used as the base

configuration for integrator included in the second chip because of its simplicity.

The circuit implemented is the inverter integrator shown infigure F.2(a) and the phases se-

quence required to control the circuit is presented in figureF.2(b). The spike generator pre-

sented in 5.3.2 was adapted to output these non overlapped phases instead of the signalsinc

anddec.

Before eitherc1(t) or c2(t) are set by the comparator, the integrator samples the amplifier input

offset in the capacitorCo and resets the input capacitorCs. Whenever any of the compara-

tor outputs goes high, the new spike generator finishes the offset sampling by turning off the

switches 3 and 5 and starts sampling the voltagevd. The integrator output voltage is:

z(t) = z(t−∆t) +
Cs

Ci
vd (F.1)

wherevd = vdec if φ1p = 1 or vd = −vinc if φ1n = 1. Therefore, these voltages are given by:

vdec = δd
Ci

Cs
(F.2)

With this topology, the number of mismatch error sources arereduced. The timing is not
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Switched-capacitor integrator design
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Figure F.1: Switched-capacitor integrator topologies. Inverted versions of (a) stray-insensitive
integrator [155] and (b) offset-compensated integrator. The output switch phase
φ0 is equal toφ2 in [156] and equal toφ1 in [153]. In this topology, the capacitor
Co stores the amplifier offset voltagevos during the phaseφ1 for the compensation
during phaseφ2.

Component Size Unit
Switches PMOS 0.5 / 0.35µm / µm
Switches NMOS 0.5 / 0.35 µm / µm
Ci 100 fF
Co 100 fF
Cs 300 fF

Table F.1: Components sizes of the switched-capacitor based integrator.

critical, as long the circuit time constant is smaller than the phases width1. The coder/decoder

capacitor mismatch of the SCI circuits is replaced by the mismatch of theratio of the capacitors

Ci andCs, which is considerably less than the former.

Although the switched-capacitor based integrator is a knowbetter option for mismatch prob-

lems, the implementation of this circuit showed to be more sensible to noise effects then the SCI

implementation. In switched-capacitor circuits, the decoder output eventually saturates in one

power supply rail. This effect is presented in figure F.3 where (a) represents the decoder output

for the designed values ofvinc andvdec and (b) is the best result obtained when changing both

vinc andvdec2.

1The time constant was designed to be five times smaller than the pulse width to obtain a final error< 1%.
2Switched-capacitor based integrators were implemented inthe second chip where all bias signals are controlled

by 12-bit resolution DACs. In other words 1 LSB change invinc or vdec was not enough to obtain a stable output
for the decoder integrator.
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Figure F.2: Switched-capacitor integrator. (a) Circuit schematic and(b) typical behaviour of
the control phases and output signal. The output switch phase φ0 is equal toφ2

in [156] and equal toφ1 in [153]. In this topology, the capacitorCo stores the
amplifier offset voltagevos during the phaseφ1 for the compensation during phase
φ2.

(a) (b)

Figure F.3: Switched-capacitor integrator divergence. (a) Decoder integrator output with de-
signed values forvinc andvdec and (b) Decoder integrator output withvinc and
vdec tuned (best fit). With the best fit settings, the integrator randomly saturates at
different power rails.
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An Asynchronous Spike Event Coding Scheme for
Programmable Analog Arrays

Luiz Carlos Gouveia, Thomas Jacob Koickal, and Alister Hamilton

Abstract—This paper presents a spike time event coding scheme
for transmission of analog signals between configurable analog
blocks (CABs) in a programmable analog array. The analog
signals from CABs are encoded as spike time instants dependent
upon input signal activity and are transmitted asynchronously
by employing the address event representation protocol (AER),
a widely used communication protocol in neuromorphic systems.
Power dissipation is dependent upon input signal activity and
no spike events are generated when the input signal is constant.
Computation is intrinsic to the spike event coding scheme and
is performed without additional hardware. The ability of the
communication scheme to perform computation will enhance
the computation power of the programmable analog array. The
design methodology and analog circuit design of the scheme are
presented. Test results from prototype chips implemented using a
3.3-V, 0.35- m CMOS technology are presented.

Index Terms—Address event representation (AER), analog very
large scale integration (VLSI), array signal processing, asyn-
chronous delta modulation, field programmable analog arrays
(FPAAs).

I. INTRODUCTION

A
FIELD programmable analog array (FPAA) consists of

several configurable analog blocks (CABs) that are pro-

grammed to perform analog computation and signal processing

functions [1]–[9]. An important design problem in an FPAA
is the communication of analog signals between CABs. Pre-

vious implementations of FPAAs used crossbars or switch ma-

trices [3], [4]. These approaches suffer from signal distortion

due to voltage drops, parasitic capacitances along the wires and
switches, and through signal interference [4]. Some of these is-

sues can be reduced using floating gate technology [7] or by

limiting the communication range to neighboring CABs [8], for

instance.
In an alternative approach [9], pulse-width modulated sig-

nals were used for transmitting analog information in the array.

However, this approach requires a global clock signal to syn-

chronize the transmission leading to greater power consump-
tion and issues such as clock skew, noise, metastablity, and high
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Sciences Research Council (EPSRC) under research grant (EP/C015789/1) to
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levels of electromagnetic interference (EMI) compared to asyn-

chronous systems [10].

Recently, event driven signal processing techniques based
upon signal dependent sampling strategies has received in-

creasing research interest [11]–[13]. A motivation for this type

of study is drawn from biology where the brain processes

signals in the analog domain and transmits them as time events

[14]. In event-driven sampling schemes, the intersampling
intervals are quantized instead of the signal amplitude and an

event is triggered whenever the input signal crosses prespecified

levels along the amplitude domain [15]. In [16], signal recovery

from time encoded signals has been demonstrated and this
method has been extended to recover information from spiking

neurons [17].

In this paper we present a spike event coding scheme for

transmitting analog signals between CABs in a programmable
analog array. In this scheme analog signals are encoded as

spike timed events and are transmitted between CABs using the

address event representation (AER) protocol [18]. There are

many benefits in using an event-based coding scheme. First,
event coding transmits signals as asynchronous, essentially

digital spikes triggered by input signal activity. This reduces

power consumption and results in better resource utilization

when signal activity is low or static. Second, in contrast to
synchronous signal processing, event-based processing benefits

from immunity to metastable behavior, low crosstalk, and

freedom from clock skew. Third, event-based processing trans-

mits signals as digital spikes and hence are easy to route, not

only between CABs but also between multiple chips allowing
greater scalability.

In general, programmable analog arrays perform compu-

tations using programmed configurable analog blocks, while

the role of the communication interconnect is to route signals
between programmed analog blocks. However, the computation

power of a programmable array can be enhanced if the commu-

nication channel can perform computation without additional

overheads, as performed by the spike event communication
scheme presented here.

This communication scheme allows a set of fundamental

arithmetic operations to be performed, for example gain,

negation, and summation. These fundamental operations are
performed simply by programming parameters of the communi-

cation channel. More complex operations can be implemented

either by programming the channel and/or by programming

the CABs. The computation capability of this communication
scheme can enhance the computing power of the programmable

array without using additional hardware.

The paper is organized as follows. The architecture is de-

scribed in Section II. In Section III, the spike event coding

1549-8328/$26.00 © 2010 IEEE
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Fig. 1. (a) Architecture diagram. The array of configurable analog blocks
(CABs) is connected using an asynchronous digital channel. (b) Block diagram
of the spike event communication interface between a CAB and the digital
channel.

scheme is introduced and the design methodology is explained.

The computation properties of the communication scheme are
introduced in Section IV. The circuit design and analog VLSI

implementation of the spike event coding scheme are presented

in Section V and Section VI contains experimental test results

from a prototype chip. Section VII contain a discussion of the
method and conclusions.

II. ARCHITECTURE DESCRIPTION

In the proposed architecture shown in Fig. 1(a), CABs are

interconnected using an asynchronous spike event communica-

tion scheme [19]. The communication scheme consists of spike

event coders and decoders to interface each CAB to an asyn-

chronous digital channel as shown in Fig. 1(b). For each trans-

mission, the spike event coder of the transmitter CAB encodes

the analog signals into asynchronous discrete amplitude signals

(spike events) which are then delivered to receiver(s) CAB(s),

where the decoder(s) convert the signal back to analog repre-

sentation.

The transmission of these spike events is implemented using

a digital bus instead of analog interconnections. Because events

are asynchronous, the address event representation (AER) pro-

tocol [18]—widely used in neuromophic designs—is an appro-

priate choice. The asynchronous nature of the AER protocol pre-

serves the information conveyed in the time difference between

events. It can also handle possible collisions of simultaneous

spikes.

Fig. 2. (a) Event coding block diagram and (b) typical waveform diagram. In
the inset, � is the tracking step, � is the spike “width” and �� is the time
interval between successive spikes.

III. SPIKE EVENT CODING SCHEME

The spike event coding scheme is shown in Fig. 2(a). This

scheme is based on asynchronous delta modulation [20] and

schemes that use the principle of irregular sampling as in [11],

[13] and [15], where it was used to implement asynchronous

A/D converters.

The spike event coder operates by generating a signal similar

to the input signal. In other words, a feedback signal is

forced to track the input signal by bounding the error

between them:

(1)

where is the coder output. In this paper, this output is rep-

resented either by positive or negative pulses with a short and

fixed duration (spikes). These spikes are produced by the spike

generator and transmitted both to the communication channel

and to the input of the feedback integrator (INTC).

Each positive or negative spike results in an incremental or

decremental change (tracking step) at the output of the feed-

back integrator:

(2)

where is the number of previous positive (negative)

spikes since as shown in Fig. 2(b).

On the receiver side, the analog output is given by

(3)

with the decoder low-pass filter (LPF) removing high-frequency

harmonics and averaging the signal , which is the result of

integrating the incoming spikes .
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Fig. 3. Comparator thresholds design. (a) Comparator transfer functions and
(b) comparator thresholds variations �� and �� used to calculate the
designed threshold difference �� .

Considering an ideal channel, i.e., , the spikes

are also transmitted to the decoder integrator INTD of the re-

ceiver CAB. The gain of this integrator may be the same as

the coder feedback integrator (INTC) . Therefore, is

(4)

Therefore, the maximum difference between the decoder

output and coder input is , which is defined

by the specification of the system resolution:

(5)

where is the input dynamic range and is the de-

sired resolution in bits.

In an AER system, one of the most important parameter is the

output spike frequency. For the chosen coder, the output spike

frequency is a function of the magnitude of the input derivative

(6)

From (6), we see that this event coding scheme presents no

output activity when the input signal is constant and does not

exhibit self-oscillatory behavior as in [10], [20]. This character-

istic is beneficial in a programmable analog framework where

significant number of slow or non-active signals, like bias sig-

nals may be present.

Next, we discuss the design process of the spike event coder

and decoder.

A. Design

The first step in the design of the event coder is to design the

comparators of Fig. 2(a), i.e., the threshold limits and ,

as shown in Fig. 3(a). The difference between the comparators

thresholds , as shown in Fig. 3(b), define the

tracking step .

Ideally, . However, due to process mismatches,

comparators offsets and may vary from the designed

value [21]. Hence, the actual is bounded by

(7)

where . and are the

standard deviations of the comparator offsets and , re-

spectively. Therefore, the comparators thresholds difference is

designed to meet the specification

(8)

The design of the integrator gain (and ) is also based on

the tracking step

(9)

where is the width of the pulses from the spike generator

block. This parameter is designed according to the input signal

and the AER system characteristics.

In order to reduce the overload of the communication

channel, this implementation of the spike generator sets

a minimum period for the interval between two succes-

sive output spikes. This “refractory period” is given by

. Setting the period as a multiple of

the spike “width” and using the specification

of the maximum derivative of the input, the spike width is

determined

(10)

The definition of also provides an estimative about

the limitations of the input signal. For instance, from (10), the

frequency of an input sine wave is:

(11)

In other words, once the system parameters are defined, the

maximum input frequency is inversely proportional to the signal

amplitude. Whenever the input frequency is greater than the

value defined by (11), the system will present slope overload.

The slope overload refers to the maximum rate that the coder

can update the feedback signal .

Finally, the pole of the decoder first-order low-pass filter

(LPF) is a key design parameter as it improves the resolution

by attenuating the undesirable out of band high-frequency

harmonics generated during the decoding process. Ideally, the

filter should provide total rejection of out of band harmonics

with zero in-band attenuation. However, the practical imple-

mentation of this characteristic is unrealizable. The actual

design of the filter is a tradeoff between the amount of har-

monic reduction and distortion caused by phase shift of each

component frequency. In practice, the cutoff frequency of the

low-pass filter is designed to be greater than or equal to the

input signal bandwidth.

The filter is also a key factor for the delay between the coder

input and the decoder output . By choosing the pole

to be , for instance, the filter imposes a 45 phase

shift from the signal . When applying low-frequency input

signals, the delay due to phase shift is greater than delays due

to the modulator loop, , and AER arbitration process.

For instance, the conversion of a tone signal kHz

using 8-bit resolution imposes ns s

(45 phase shift).
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Fig. 4. Computation in the communication scheme. Analog signals are con-
verted into spikes by the coders and arithmetic computation may be performed
by the AER and decoder combination. The type of computation performed is
defined by programming the AER routing and decoder parameters.

IV. ARITHMETIC OPERATIONS

The spike event coding scheme allows not only commu-

nication between CABs, but it is also capable of performing

computation without additional hardware. Arithmetic opera-

tions are performed by configuring a combination of decoder

and/or channel routing parameters. Fig. 4 illustrates the basic

concept. This intrinsic computation capability allows a simpler

implementation than other pulse-based approaches, for example

[22].

In this section, we show a basic set of computations per-

formed by this scheme and, for each of these operations, we

show snapshots of chip results. From this set of basic com-

putations more complex functions can be implemented. The

following results were obtained for a 4–bit resolution design.

The output waveforms shown correspond to the decoder filter

input . The details of the chip implementation are shown

in Section V.

A. Gain

A common operation in any analog processing is to amplify

a signal, i.e., provide a gain to the signal

(12)

The gain may increase (amplification) or decrease (attenua-

tion) the amplitude of the signal. Both gain types are possible

using the proposed architecture.

The expression in (2) is valid for both coder and decoder

blocks. However, if coder and decoder are designed to present

different tracking steps , then the decoder output will be pro-

portional but not equal to the coder input. This gain is given by

the ratio of both tracking steps amplitudes

(13)

Fig. 5. Gain operation. The input sine wave signal ���� is scaled by a factor
of � � � in this example, producing the decoder signal � ���. The gain
operation is obtained by changing the ratio of the tracking steps of the coder �
and decoder � .

Fig. 6. Negation operation. Snapshot of the input sine wave ���� and the
negated signal � ���. The negation is performed by the interchange of the
positive and negative spikes using the AER router.

Fig. 5 shows chip result for an amplification of a sine wave

by a factor of 2.

B. Negation

A second fundamental operation on analog signals is

changing their polarity, i.e., signal negation

(14)

According to (2), the signal value at any instant (knowing

the initial condition of coder and decoder) is a function of

the number of events transmitted and their type. By setting

the AER router to interchange the addresses of positive and

negative spikes, the signal at the decoder output is a

negated version of the input signal

(15)

An example using a sine wave signal is shown in Fig. 6.

C. Summation

Beyond these unary operations, arithmetic operations in-

volving two or more signals are also required by generic

systems. The fundamental arithmetic operation involving mul-

tiple signals is the summation of these signals:

(16)
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Fig. 7. Summation operation. Summation of two input sine waves, � ��� and
� ���, with the same amplitude but different frequencies (23 and 4.7 Hz) and
their respective summation � ���. ���� is the ideal summation of the two
signals.

Again considering (2), the summation signal of opera-

tors is given by

(17)

where and are the number of positive and negative

spikes, respectively, received from the th operand after the ini-

tial instant .

The chip results showing the summation of two sine wave

signals and are shown in Fig. 7, together with the

decoder integrator output . The signal represents

the ideal summation result. Subtraction operations may be per-

formed by combining the summation and negation operations

outlined above.

These basic operations may be combined to compute more

complex computations in a programmable analog array. For ex-

ample, the weighted sum operation commonly used in artificial

neural networks

(18)

is a combination of summation and gain operations.

All of the operations above are performed using asyn-

chronous spike event coded signals and by AER router

and decoder programming. However, the range of possible

computations is expanded when the communication scheme is

combined with the functionality of the CABs [23]. For instance,

if CABs were designed to perform logarithmic compression

and exponential expansion, as in [1], both multiplication and

division can be implemented using the summation operation

according to the logarithmic property

(19)

Since the AER protocol is used to transmit spike events, colli-

sions during access to the channel are possible and a 1-persistent

arbiter is used to resolve them. Collisions lead to an error in the

summation process. This is studied in more detail in [19].

Fig. 8. Second test chip photograph. The test chip is pad-limited and the cir-
cuitry occupies a quarter (approximately 5 mm ) of the die. Highlights show
four coders, four decoders, output buffers, current mirrors, AER sender, and
AER receiver. The area of each coder is approximately 0.03 mm and each de-
coder (with no LPF) is approximately 0.02 mm .

TABLE I
SECOND TEST CHIP CHARACTERISTICS

V. ANALOG VLSI IMPLEMENTATION

The spike event coder and decoder were implemented in a

first chip for validation of the spike event coding scheme [24]. A

second test chip, capable of performing computation in addition

to communication, was implemented containing an array of four

coders, four decoders and an AER router. A chip photograph of

this second test chip is shown in Fig. 8 and a summary of the

characteristics of this chip is presented in Table I.

In this section, we describe the spike event coder and decoder

circuits implemented on both chips: comparators, spike gener-

ator, and integrators. The coder and decoder integrators are im-

plemented using the same circuit design. The decoder LPF was

implemented off-chip, using an offline digital filter.

A. Comparators

The comparators were implemented using a preamplifier

�� followed by a decision circuit �� and an output buffer

�� [25]. To provide the required , capacitive or resistive

dividers can be used at the comparator input nodes. However,

these dividers compromise the input impedance of the circuit.

Another method to provide is to implement offset com-

parators. Composite transistors can be used to provide the offset

[26]; however, this topology suffers from low input dynamic

range. A programmable offset can also be generated by another

preamplifier which provides a respective on the decision

circuit input [27]. Both impedance dividers and offset compara-

tors allow continuous resolution values to be used.
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Fig. 9. Block diagram of the compound comparator. Preamplifier �� out-
puts a current �� according to the error signal ���� � ���� � ����, while
preamplifier �� generates a fixed offset current �� ��. �� outputs are
added or subtracted from �� outputs and the results are applied to the respec-
tive decision circuits �	
� and output buffers ����.

Fig. 10. Circuit schematic of each of the compound comparator blocks.
Transconductance preamplifier (��, left), decision circuit (	
 , top right) and
output stage (��, bottom right).

In this implementation, both outputs and are gen-

erated by a compound comparator shown in Fig. 9. Instead of

using four preamplifiers, with two sensing the inputs and

and two providing different offsets, we use only two pream-

plifiers.

The preamplifier ��� outputs a differential current as

the result of the comparison between and . Thus, the

capacitive loads of these nodes are reduced by using only one

preamplifier. The other preamplifier ��� provides a differen-

tial current corresponding to the input voltage .

The input to the decision circuit ��� is and

to ��� is . The decision circuits speed up the

comparison result. Finally, output buffers generate the digital

outputs.

Fig. 10 presents the schematics of the preamplifier, the

decision and the output buffer schematic circuits implemented

on chip. The preamplifier is a transconductance amplifier with

two identical differential output currents at nodes and

. The decision circuit is a positive feedback circuit and

the output buffer is a self-biased amplifier [28].

B. Spike Generator

The spike generator block can provide either a positive or a

negative spike according to the output state of the comparator.

Fig. 11. (a) Block diagram and (b) an example timing diagram of the spike
generator. An arbiter selects between 
 ��� and 
 ��� inputs and starts the hand-
shaking signaling. After the handshaking protocol is completed, either a ��
 or
��
 pulse is generated using delay blocks for � and �� .

When the error , a negative spike is transmitted.

Similarly, a positive spike is generated when .

Otherwise, no spikes are transmitted.

The spike generator block also includes programmable delay

circuits for the generation of and time intervals.

Fig. 11(a) is the block diagram of the spike generator and

Fig. 11(b) shows an example of the signals behavior.

The control circuitry for this logic was implemented using a

technique for the design of asynchronous digital circuits [29].

These spikes are transmitted across the channel using AER.

C. Integrators

We implemented the integrator block using a charge pump

integrator as shown in Fig. 12. A unipolar version of this type

of circuit driving resistors is used in steering current cells of

some digital-to-analog converters (DACs) [30].

In this implementation, a spike with width is used in the in-

tegrator block to increment or decrement by . According

to (6) the coder output spike frequency is a function of the mag-

nitude of the input derivative and the coder integration step.

For an optimum performance, the tracking step is equal to

the difference between the thresholds of the comparators.

However, a design margin is required because of the random

offsets present in the comparator due to process variations. For

instance, setting , more output spikes will be needed

for the feedback signal to track the input signal . Con-

versely, will oscillate for . Therefore, the de-

signed tracking step is the same as given by (8).

The integrator circuit in Fig. 12 works as follows. When a

negative spike arrives at the integrator input, the signal goes

high for an interval , allowing currents and to flow in

transistors and , respectively. Similarly, for the case of
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Fig. 12. Schematic of the integrator based on a charge pump technique. When
a positive spike arrives, � and � turn on and ���� and ���� charges and
discharges the capacitor � , respectively, resulting in a voltage increment of
� given by (20). For negative spikes, the complementary process decreases the
capacitor voltage. In the absence of spikes, currents are drawn to low impedance
nodes �� � � �.

a positive spike arrival, transistors and provide sym-

metrical operation with and signals. The resulting cur-

rent that discharges or charges the integrating capacitor

is given by

(20)

From (9), the designed integrator gain may be obtained. When

there are no spikes, currents are driven to low impedance nodes

through by setting the signal high.

The use of two different branches ( and or and

) to both charge and discharge the capacitor reduces charge

injection on the integration nodes and [31] at the cost

of doubling the power consumption required. If switches

and ( and ) have the same dimensions, the charges

injected from the gate to drain capacitance of the complimentary

switches cancel each other.

According to (20), the tracking step is a function of

the bias current . Therefore, the gain operation described in

Section IV-A is implemented setting different bias currents

for coder and decoder integrators.

D. AER Channel

The AER protocol employs asynchronous transmission of

digital words using a multiple access channel common to every

transmitter and receptor in the array. The information trans-

mitted has a unique identification (address) of either the coder

or the decoder, depending on the implementation.

An AER router is responsible for distributing these events to

the appropriate receivers using internal or external LUTs, for

instance. In this paper, we use an external FPGA to route the

spikes between coders and decoders. Because each coder trans-

mits two types of spikes (positives and negatives), two different

addresses were used in this work for each coder.

Spike collisions during access to the channel are possible and

an arbiter is used to resolve them. In our implementation, spike

collisions are resolved by a 1-persistent arbiter by queueing and

transmitting successively all the spike events involved in the col-

lision [19]. The effect of such collisions is an error in signal

Fig. 13. (a) Coder input ���� and decoder integrator output 	 ��� for a ���

speech signal. Negative (ON) and positive (OP) output coder spikes are also
shown at the bottom of the figure. (b) A detailed view of the same waveforms to
show the absence of spikes during the periods when the input signal is constant.

during the time the spikes are being recovered from the

queue. Although the decoded value after the conflict resolution

is correct, this temporary error causes distortion on the decoded

waveform [19].

VI. CHIP RESULTS

In this section, we present chip results to demonstrate the

communication aspects of the event coding scheme. Measured

chip results for the computation capabilities of the communi-

cation scheme were presented in Section IV and are shown in

Figs. 5–7. Two different input signals were used to test the com-

munication system: a speech signal and a sine wave.

A. Response to a Speech Signal

A speech signal sampled at 44.1 kSps with 8 bit resolution

was used and the coder was designed to provide a resolution of

6 bits. The coder input signal , the decoder integrator output

and the coder output spikes are shown in Fig. 13(a).

The same signals are presented in detail in Fig. 13(b). This figure

demonstrates the asynchronous nature of the communication

scheme and the absence of coder output spikes when the signal

is constant or when its change is smaller than .

B. Response to a Sine Wave

The resolution of the system was measured using a sine wave

input signal with an amplitude of 2.0 and frequency of 20

Hz . The sine wave was sampled at 44.1 kSps and the coder

was designed to provide a 4-bit resolution. A snapshot of the

input and output signals is presented in Fig. 14(a). Offline fil-

tering results are shown in the Fig. 14(b) for a digital LPF with

a cutoff frequency of 20 Hz, the same frequency as the input

signal.
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Fig. 14. (a) Snapshot of ���� sine wave input ���� and decoder integrator
output � ��� and negative (ON) and positive (OP) spikes from the coder output
(bottom). (b) � ��� and the low pass filter output � ��� (top). The low pass
filter cutoff frequency is the same as the input signal. The frequency spectrum
� ��� and � ��� of the filter input and output (bottom).

The total harmonic distortion (THD) and resolution of the

system were measured using this sine wave input signal. The

measured THD of the pre-filter signal is 26 dB which cor-

responds to a measured resolution of 4.04 bits. The measured

THD of the post-filter output, with a filter cutoff frequency equal

to , improves to 40 dB which corresponds to a measured

resolution of 6.35 bits. This resolution improvement causes at-

tenuation and phase shift of the signal. When the cutoff fre-

quency is increased to 10 , the measured resolution is equal

to 4.93 bits. The low pass filter cut-off of yields better reso-

lution attributable to greater attenuation of harmonics due to the

lower frequency pole of the low pass filter. The maximum res-

olution is mainly defined by mismatch and noise in the circuit

implementation and may be improved in further work.

VII. DISCUSSION AND CONCLUSION

In this paper, we have presented a spike event coding scheme

for communicating analog signals between CABs in a pro-

grammable analog array. The design methodology and circuit

implementation of the communication scheme were presented

together with results from fabricated chips.

In our method, spike events are transmitted asynchronously

and power dissipation is dependent upon signal activity. No

spike events are generated when the input signal is constant.

This is in direct contrast to other pulse-based programmable

analog arrays, [9] for example.

We have shown that the proposed communication scheme

is capable of asynchronous transmission of analog signal in-

formation between CABs using the AER protocol. The use of

spike event coding and the AER protocol allows time-sharing

of the same physical channel between multiple CABs thereby

avoiding an exponential increase in the number of analog

connections—a limiting factor in the realization of large pro-

grammable analog arrays. Our system has an interconnect

complexity of , whereas analog interconnect using

crossbars and switch matrices have a complexity of

[32], [33]. The circuit area consumed by the implementation

of crossbars and switch matrices increases as , while

our architecture has a proportional increase in circuit area,

increasing as . In other words, this architecture is more

suitable to large arrays.

Spike events are essentially asynchronous and robust digital

signals that are easy to route on shared channels, not only be-

tween CABs, but also between chips providing improved scal-

ability. When extended to interchip communications the inter-

connect complexity is .

We have demonstrated the intrinsic computation capability of

the spike event coding scheme. This provides basic arithmetic

operations essentially in the communication channel, without

the need for additional CABs thereby enhancing the computing

capability of a programmable analog array.
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Abstract—This paper presents the computation properties
of an asynchronous spike event coding scheme employed for
communicating signals between analog blocks in a programmable
array. The computation is intrinsic to the spike event commu-
nication scheme and is performed without additional hardware.
The ability of the communication scheme to perform computation
will enhance the computation power of the programmable analog
array. Test results from a chip implemented using 0.35µm CMOS
technology are presented.

I. INTRODUCTION

A field programmable analog array (FPAA) consists of

a number of configurable analog blocks (CABs) that are

programmed to perform a set of computations. This set of

computations is defined by the target application of the system.

For instance, a neuromorphic application requires integration

(for an integrate-and-fire neuron) [1] and summation (for the

summation of presysnaptic spikes into the soma) [2], among

others. Likewise, an array designed to perform more generic

analog signal processing requires amplification, filtering and

summation [3]. In general, these systems perform compu-

tations by programming the configurable analog blocks in

the array, while the role of the communication interconnect

is to route the signals between analog blocks. The compu-

tation power of a programmable array can be enhanced if

the communication channel can perform computation without

additional overheads.

The authors proposed a novel analog array architecture in

[4]. This architecture uses an asynchronous spike event coding

scheme [5] to communicate analog signals between CABs.

This is distinct from conventional communication methods

using voltage or current with crossbars or matrix switches

[6] to represent signal amplitudes. It is also distinct from

our previous work where analog signals were encoded using

synchronous pulse width modulated signals [7]. The use of

asynchronous spike event coding leads to the ability of our

system to perform computation in the communication channel.

In this paper, we show the computation properties of

the spike event communication scheme. The communication

scheme can perform a set of fundamental arithmetic operations

for example gain, inversion and summation, without using

extra hardware. These fundamental operations are performed

simply by programming parameters of the communication

channel. From these basic operations, more complex opera-

tions can be implemented either by programming the channel

Fig. 1. Computing over the channel. Analog signals are converted into spikes
by the coders. Available computations are performed using the decoders and
the shared communication channel. The type of computations performed is
defined by programming the decoders and channel parameters.

and/or by programming the CABs. The computation capability

of this communication scheme can enhance the computing

power of the programmable array without using additional

hardware. The communication scheme is implemented in

0.35µm CMOS technology and chip measurement results

showing the computation properties are presented. In the

following section, communication system architecture is de-

scribed.

II. ARCHITECTURE DESCRIPTION

In the proposed architecture, CABs are interconnected using

an asynchronous spike event communication scheme [5]. The

communication scheme consists of a pair of spike event coder

and decoder for each CAB and the channel as shown in

Fig.1. The spike event coder encodes the analog signals into

asynchronous discrete amplitude signals (spike events) which

are routed to target CABs using the Asynchronous Event

Representation (AER) protocol. The decoder at the target

CABs decodes the spike event signals received from the AER

bus.

A set of fundamental arithmetic computations can be per-

formed by configuring the AER router and the decoder pa-

rameters as explained in Section III. For instance, in Fig. 1,

the top decoder performs a summation of two inputs and the

second one provides a negation of one of the inputs using the

same channel. In this section, we give a brief description of

the spike event coding scheme and the AER protocol.

978-1-4244-5309-2/10/$26.00 ©2010 IEEE 857
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Fig. 2. (a) Event coding block diagram and (b) an example showing
waveforms of predict behavior for important signals. In the inset, δ is the
tracking step, T is the spike ”width” and ∆tD is the time interval between
successive spikes.

A. Spike Event Coding Scheme

The spike event coding scheme is a communication method

based on the principle of irregular sampling schemes described

in [8] and [9]. The scheme provides an efficient utilization of

resources and lower power consumption. Further, the events

are transmitted digitally providing improved scalability in

building large arrays.

The block diagram of the spike event coding scheme is

shown in Fig. 2(a). The event coder tracks the input signal by

bounding an error signal given by:

e(t) = x(t) − z(t) = x(t) −

∫

y(t)dt (1)

where e(t) is the error between the analog input signal x(t)
and coder feedback integrator (INTC) output z(t). The coder

output spikes y(t) are sent to the communication channel and

to the input of the feedback integrator. The decoder output

xR(t) is an analog signal given by:

xR(t) = LPF (zR(t)) ≈ zR(t) =

∫

yR(t)dt (2)

If the channel is ideal, yR(t) = y(t) then

xR(t) ≈

∫

y(t)dt = z(t) = x(t) − e(t) (3)

The error between the decoder output xR(t) and coder input

x(t) is bounded, |e|max ≤ δ, where δ, the tracking step or

quantization error, is a system parameter.

The outputs of the event coder are represented by positive

and negative fixed short duration pulses (spikes). These spikes

are generated by the spike generator when the comparators

change their states. Each positive or negative spike generates

an incremental or decremental change (δ) at the output of the

both integrators (INTC and INTD).

The amplitude change in the integrator is given by:

∆z(t) = δ (Np − Nn) (4)

where Np (Nn) is the number of previous positive (negative)

spikes since t0 as shown in Fig. 2(b). In other words, knowing

the initial condition of coder and decoder, the signal value at

any instant t is given by the number of events of each type

transmitted. Further details about design of the spike event

coding scheme may be found in [5] and [11].

B. Communication Channel Protocol: AER

The signal to be transmitted between CABs is a series of

asynchronous spike time events generated by the coder block.

The transmission of these events, represented by discrete

amplitude signals, may be implemented using a digital bus

instead of analog interconnections. By time-sharing the same

physical channel an exponential increase in the number of

analog connections can be avoided - a limiting factor in the

realization of large programmable analog arrays. As these

events are asynchronous, the AER protocol [10], widely used

in neuromophic designs, is an appropriate choice because it

avoids the synchronization of events and therefore preserving

the information conveyed in the time difference between

events.

The AER protocol employs asynchronous transmission of

digital words using a multiple access channel (MAC) common

to every transmitter and receptor in the array. The information

transmitted has a unique identification (address) of either the

coder or the decoder, depending on the implementation. An

AER router is responsible for distribute these events to the

appropriate receivers using internal or external LUTs, for

instance.

For this work, different addresses for the positive and

negative spikes for each coder are transmitted.

III. ARITHMETIC OPERATIONS

In this section we show a set of computations performed by

the communication scheme. For each operation, we show the

measured chip results. From these basic set of operations more

complex operations can be achieved. Details of the circuits

used to implement the coder and decoder together with chip

results were presented in [11].

Another chip has been designed containing a larger array

containing 4 coders, 4 decoders and an AER router. Results

from this chip are reported here for the first time. The

following results were obtained for a 4-bit resolution design.

The outputs waveforms shown correspond to the decoder filter

input zR(t).
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Fig. 3. Gain operation. The input sinusoid signal x(t) is amplified by 2 at
the decoder zR(t). The gain operation is obtained by changing the ratio of
the tracking steps of coder and decoder.

A. Gain

A common operation in any analog processing is to change

the intensity of a signal, i.e., provide a gain G to the signal:

xR(t) = G × x(t) (5)

The gain may increase (amplification) or decrease (attenua-

tion) the amplitude of the signal. Both gain types are possible

using the proposed architecture.

Eq. 4 is valid for both coder and decoder blocks. However,

if coder and decoder are designed to present different tracking

steps δ then the decoder output will be proportional to the

coder input. This gain is given by the ratio of both tracking

steps amplitudes:

G =
∆zR(t)

∆z(t)
=

δD

δC

(6)

Fig. 3 shows the chip result for an amplification of a

sinusoid by a factor of 2.

B. Negation

Another fundamental operation on analog signals is to

change their polarity, i.e., signal negation:

xR(t) = −x(t) (7)

According to Eq. 4, the signal value at any instant t

(knowing the initial condition of coder and decoder) is a

function of the number of events transmitted and their type. By

setting the AER router to interchange the addresses of positive

and negative spikes, the signal at the decoder output xR(t) is

a negated version of the input signal x(t):

∆zR(t) = −∆z(t) = δ (Nn − Np) (8)

An example using a sinusoid signal is shown in Fig. 4.

C. Summation

Beyond these unary operations, arithmetic operations in-

volving two or more signals are also required by a generic

Fig. 4. Negation operation. Snapshot of the input sinusoid x(t) and the
negated signal zR(t). The negation is perform by interchange the positive
and negative spikes using the AER router.

Fig. 5. Summation operation of two input sinusoids, x1(t) and x2(t), with
same amplitude but different frequencies (23Hz and 4.7Hz) and the respective
summation zR(t) with s(t) being the ideal summation.

system. The fundamental arithmetic operation involving mul-

tiple signals is the summation of these signals:

s(t) =

j
∑

i=1

xi(t) (9)

Again considering Eq. 4, the summation signal s(t) of j

signals is given by:

s(t) = δ

(

j
∑

i=1

Npi −

j
∑

i=1

Nni

)

+ s(0) (10)

where Npi and Nni are the number of positive and negative

spikes, respectively, received from the ith operand and s(0) is
the initial state of the decoder.

Chip results showing the summation of two sinusoid signals

x1(t) and x2(t) are shown in Fig. 5, together with the decoder

integrator output zR(t). The signal s(t) represents the ideal

summation result.

Subtraction operation is performed by combining the sum-

mation and negation operations outlined above.

D. Examples of applications

These basic operations allow to configure an array of

programmable analog blocks to compute more complex tasks.
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Fig. 6. Binary phase shift keying. This modulation is implemented by routing
the spikes according to the digital input (D6). D5 frequency is the same of
the sinusoid carrier.

A first example is phase shift keying (PSK). Phase shift

keying is a digital modulation where the information is coded

in the phase of the carrier. For instance, binary phase shift

keying (BPSK) is defined as follows:

s(t) =

{

a sin(ωct) if bi = 0

a sin(ωct + 180◦) if bi = 1
(11)

where bi is the bit to be transmitted, wc is the angular

frequency of the carrier and a is a function of the energy-

per-symbol and the bit duration [12].

This function can be implemented by providing the carrier

(sinusoid) signal to the input of the coder and routing the

spikes according to the digital value to be transmitted. For

instance, while the input bit is zero, the carrier is replicated

at the decoder output, but when the input bit is one, a

negation function is performed on the carrier. Fig. 6 shows

the modulation result zR(t) for a input word of 010011.

Quadrature phase shift keying (QPSK) is implemented

summing two carriers with 90◦ phase shift.

Another application example of our scheme is to imple-

ment the weighted sum operation commonly used in artificial

neural networks. A weighted summation is a combination of

summation and gain operations:

f(t) =
∑

i

wixi(t) (12)

All of the operations above are performed using asynchronous

spike event coded signals and by AER router and decoder

programming. However, the range of possible computations

is expanded when the communication scheme is combined

with the functionality of the CABs [4]. For instance, if

CABs were designed to perform logarithmic compression and

exponential expansion, both multiplication and division can be

implemented using the summation operation according to the

logarithmic property:

xR(t) =
∏

i

xi(t) = e
P

i
log xi(t) (13)

IV. CONCLUSIONS

In this paper we presented the principles and results from a

CMOS implementation of a communication strategy intended

for use in programmable analog arrays that is also capable of

performing fundamental arithmetic operations (gain, negation

and summation). The architecture uses an asynchronous spike

event coding scheme to communicate between analog blocks.

This scheme allows the user to select which operations to

be performed by simply programming the channel router and

decoder parameters, either before or even during the process.

No extra dedicated hardware is needed to perform these

operations and any decoder in the array is able to perform

any of the operations. More complex and specialized functions

are available by combining these fundamental operations,

like PSK and weighted summation. Other applications, like

multiplication, are possible when combined with the functions

performed by the analog blocks.
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Abstract— This paper presents a CMOS circuit implementa-
tion of a spike event coding/decoding scheme for transmission of
analog signals in a programmable analog array. This scheme uses
spikes for a time representation of analog signals. No spikes are
transmitted using this scheme when signals are constant, leading
to low power dissipation and traffic reduction in a shared channel.
A proof-of-concept chip was designed in a 0.35µm process and
experimental results are presented.

I. INTRODUCTION

Configurable Analog Blocks (CABs) are the basic pro-

cessing units of Field Programmable Analog Arrays (FPAAs)

and are configured to perform different types of analog func-

tions [1]. The communication between CABs is an important

issue because traditional techniques like crossbars or switch

matrices [2] degrade the transmitted signals. These techniques

cause distortion of the signal due to voltage drops, parasitic

capacitances along wires and the switches and through signal

interference, limiting the size of analog arrays.

Pulse modulations are an alternative to these techniques.

They map the amplitude of analog signals onto the timing

domain. The use of these discrete-amplitude continuous-time

modulations allows greater system scalability than analog

routing methods. Synchronous versions were used in analog

arrays [3], but as they require a global clock signal, these mod-

ulations suffer from clock skew and high power consumption.

Asynchronous modulations are used in some biological

inspired systems [5] [6]. Recently, a spike event coding

scheme was proposed by the authors to transmit analog signals

between CABs [4]. It presents advantages over other pulse

modulations, such as transmission of information on demand

and, therefore, reduction in communication traffic, and low

energy dissipation, freedom from clock skew and low crosstalk

due to asynchronous coding.

In this paper we present a CMOS implementation of the

spike event coding scheme with programmable resolution.

First we review the working principles of the scheme. Later,

we describe the design parameters and the circuits used to

realize the coder. Finally, we present results from a tested

chip.

II. SPIKE EVENT CODING SCHEME

The spike event coding scheme [4] is shown in Fig. 1(a).

The spike event coder operates by generating a signal similar

to the input signal. In other words, a feedback signal z(t) is

   

channel    
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Fig. 1. (a) Block diagram of the spike event coding scheme and (b) an
example of the behavior of the main signals. δ is the tracking step, T is the
spike width and ∆tD is the time interval between successive spikes.

forced to track the input signal x(t) by bounding the error e(t)
between them:

e(t) = x(t) − z(t) = x(t) −

∫

y(t)dt (1)

where y(t) is the coder output. This output is represented

either by positive or negative pulses with a short and fixed

duration (spikes). These spikes are produced by the spike

generator and transmitted both to the communication channel

and to the input of the feedback integrator (INTC).

Each positive or negative spike results in an incremental

or decremental change δ (tracking step) at the output of the

feedback integrator:

∆z(t) = δ (Np − Nn) (2)

where Np (Nn) is the number of previous positive (negative)

spikes since t0 as shown in Fig. 1(b).

Considering an ideal channel, the spikes are also transmitted

to the decoder integrator INTD, which presents the same
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gain KI of the coder feedback integrator INTC. The decoder

output xR(t) is given by:

xR(t) ≈

∫

y(t)dt = z(t) = x(t) − e(t) (3)

with the decoder Low Pass Filter (LPF) removing high fre-

quency harmonics and averaging the signal zR(t). Therefore,
the maximum difference between the decoder output xR(t)
and coder input x(t) is |e(t)|max, which is defined by the

specification of the spike event scheme resolution:

|e(t)|max =
∆x(t)max

2NB − 1
(4)

where ∆x(t)max is the input dynamic range and NB is the

desired resolution in bits.

III. ANALOG VLSI IMPLEMENTATION

The spike event coding scheme was implemented in a

proof-of-concept chip for validation of the scheme. The layout

dimensions of the spike event coder are 240µm x 120µm using

AMS 0.35µm CMOS process.

In this section we describe the spike event coder and decoder

circuits implemented on chip: comparators, spike generator

and integrators. Both coder and decoder integrators were

implemented using the same design. The decoder LPF was

implemented off-chip, using an offline digital filter.

A. Comparators

In the block diagram in Fig. 1(a), the error e(t) is limited

by two comparators with different thresholds (Vth1 and Vth2):

|e| ≤ ∆Vth = |Vth1 − Vth2| (5)

From (4) and (5), the resolution of the spike event coding

scheme is a function of the thresholds of both comparators.

The design of the comparators can be implemented using

a preamplifier (PA) followed by a decision circuit (DC) and

an output buffer (OB) [7]. To provide the required ∆Vth,

capacitive or resistive dividers can be used at the comparator

input nodes. However, these dividers compromise the input

impedance of the circuit.

Another method to provide ∆Vth is to implement offset

comparators. Composite transistors can be used to provide the

offset [8], however this topology suffers from low dynamic

range. A programmable offset can also be generated by

another preamplifier which provide a respective ∆Ioff on the

decision circuit input [9]. Both impedance dividers and offset

comparators allow continuous resolution values to be used.

In this implementation, both outputs c1(t) and c2(t) are

generated by a compound comparator in Fig. 2. Instead of

using four preamplifiers, with two sensing the inputs x(t)
and z(t) and two providing different offsets, we use only

two preamplifiers. The preamplifier PAA outputs a differential

current ∆Ixz as the result of the comparison between x(t) and
z(t). Thus, the capacitive loads of these nodes are reduced

by using only one preamplifier. The other preamplifier (PAB)

provides a differential current ∆Ioff/2 according to ∆Vth/2

x(t)

PAA
+

_

A

B

OB2∆V
th
/2

c
2
(t)

z(t)
OB1

c
1
(t)

PAB
+

_

A

B

DC1
C

D

DC2
C

D

∆I
xz

∆I
off

/2

Fig. 2. Block diagram of the compound comparator. Preamplilfier PAA
outputs a current ∆Ixz according to the inputs x(t) and z(t), while
preamplifier PAB generate a fixed offset current ∆Ioff /2. PAB outputs are
added or subtracted from PAA outputs and the results are applied to the
respective decision circuits (DC) and output buffers (OB).
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Fig. 3. Circuit schematic of each of the compound comparator blocks.
Transconductance preamplifier (PA,left), decision circuit (DC,top right) and
output stage (OB,bottom right).

voltage on the inputs. The results of adding ( ∆Ixz+∆Ioff/2)
and subtracting (∆Ixz−∆Ioff/2) these currents are forwarded
to the decision circuits to speed up the comparison result.

Finally, output buffers generate the digital outputs.

Fig. 3 presents the preamplifier, the decision and the

output buffer schematic circuits implemented on chip. The

preamplifier is a transconductance amplifier with two identical

differential output currents at nodes (A1, B1) and (A2, B2).

The decision circuit is a positive feedback circuit and the

output buffer is a self-biased amplifier [10].

B. Spike Generator

The spike generator block can provide either a positive or a

negative spike according to the output state of the comparator.

When the error e > ∆Vth/2, a negative spike is transmitted.

Similarly, a positive spike is generated when e < −∆Vth/2.
Otherwise, no spikes are transmitted. The control circuitry

for this logic was implemented using a technique for the

design of asynchronous digital circuits [11]. These spikes can

be transmitted using switch matrices or any asynchronous

Medium Access Channel (MAC) protocol, like AER [12].
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Fig. 4. Schematic of the integrator based on a charge pump technique.
When a positive spike arrives, M20 and M21 turn on and 1.5I and 0.5I

charges and discharges the capacitor Cint, respectively, resulting in a voltage
increment of δd = T × I/Cint. For negative spikes, the complementary
process decreases the capacitor voltage. In the absence of spikes, currents are
drawn to low impedance nodes (d1-d4). The schematic of the delay generators
is not shown.

C. Integrators

In this implementation, the spike width T is used in the

integrator block to increment or decrement z(t) by δ. A

minimum interspike interval ∆tDmin = kT is also introduced

in the design to avoid overload on the communication channel

(“refractory period”). The coder output spike frequency is a

function of the magnitude of the input derivative and the coder

integration step:

f =

∣

∣

∣

dx(t)
dt

∣

∣

∣

δ
=

1

T + ∆tD
(6)

The first conclusion from (6) is that no spikes are transmitted

when the input derivative is zero, i.e. the input signal is

constant. This is true only after the feedback signal z(t) has

tracked the input signal x(t), i.e. e(t) ≤ ∆Vth.

We also conclude from (6) that the maximum output fre-

quency occurs when the input signal presents its maximum

absolute input derivative. From the specification of this deriva-

tive, ∆tDmin is defined and pulse width T is:

T =
δ

(k + 1)
∣

∣

∣

dx(t)
dt

∣

∣

∣

max

(7)

The integrator block includes programmable delay circuits

for the generation of T and ∆tDmin time intervals.

For an optimum performance, the tracking step δ is equal

to the difference between the thresholds ∆Vth of the com-

parators. Setting δ < ∆Vth, more output spikes will be

needed for the feedback signal z(t) track the input signal x(t).
Conversely, z(t) will oscillate for δ > ∆Vth. However, a

design margin is required because of the random offsets

present in the comparator due to process variations. Therefore,

the designed tracking step is:

δd ≤ ∆Vth − 6σ(Vos) (8)

where σ(Vos) is the comparator offset standard deviation.

We implemented the integrator block using a charge pump

integrator as shown in Fig. 4. A unipolar version of this type

of circuit driving resistors is used in steering current cells of

some Digital-to-Analog Converters (DACs).

When a negative spike arrives at the integrator input, the dec

signal turns high during an interval T , allowing currents 1.5I

and 0.5I flowing in transistors M22 and M23, respectively.

Similarly, for the case of a positive spike arrival, transistors

M20 and M21 provide symmetrical operation with inc and

inc signals. The resulting current I that discharges or charges

the integrating capacitor Cint is given by I = Cint × δd/T .

Therefore, the integration gain is given by KI = δd/T . When

there are no spikes, currents are driven to low impedance nodes

(d1-d4) through M24-M27 by setting the signal dp high.

The use of two different branches (M22 and M23 or M20

and M21) to both charge and discharge the capacitor reduces

charge injection on the integration node [13] at the cost of

doubling the power consumption required. If switches M20

and M21 (M22 and M23) have the same dimensions, the

charges injected from the gate to drain capacitance of the

complimentary switches cancel each other.

IV. CHIP RESULTS

We used two different input signals to test the chip: a speech

signal and a sine wave. The speech signal was sampled at 44.1

kSps with 8 bit resolution. The coder was designed to provide

a resolution of 6 bits. The coder input signal x(t), the decoder
integrator output zR(t) and the coder output spikes y(t) are

shown in Fig. 5(a). The same signals are presented in detail in

Fig. 5(b) to show the absence of coder output spikes when the

signal is constant or when its change is smaller than ∆Vth.

The resolution of the system was measured using a sine

wave input signal. The sine wave presents 1.0 Vpp amplitude

and 4.4 kHz frequency (fin) sampled at 555 kSps and the

coder was designed to provide a 4 bit resolution. A snapshot

of the input and output signals is presented in Fig. 6(a). Offline

filtering results are shown in the Fig. 6(b) for a digital LPF

with a cutoff frequency of 4.4 kHz, the same frequency as the

input signal.

The measured resolution of the pre-filter signal is 3.83 bits.

The resolution increases to 6.97 and 5.29 bits for post-

filter signals, using filter cut-off frequencies equals to fin

and 10fin, respectively. However, this resolution improvement

causes attenuation and phase shift of the signal. These results

are similar to the simulation values presented in [4]. The

measured power consumption of the coder is 0.4 mW, with

approximately 90% of if used by the comparator.

V. CONCLUSIONS

In this paper we described a CMOS implementation of a

spike event coding scheme. This scheme is intended to be

used to transmit analog signals inside a FPAA and/or between

different FPAAs using asynchronous events (spikes).

This scheme presents an efficient utilization of channel re-

sources and lower power consumption because no output activ-

ity is present when signals are constant. A chip was designed
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(a)

(b)

Fig. 5. (a) Coder input x(t) and decoder integrator output zR(t) for a
2.5Vpp speech signal. Negative (ON) and positive (OP) output coder spikes
are also shown at the bottom of the figure. (b) A detailed view of the same
waveforms to show the absence of spikes during the periods when the input
signal is constant.

in a 0.35µm process and the experimental results validate the

circuit design. This scheme is being implemented within a

small array of CABs developed by the authors [14] [15].
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Abstract— This paper presents a spike event coding scheme
for the communication of analog signals in programmable analog
arrays. In the scheme presented here no events are transmitted
when the signals are constant leading to low power dissipation
and traffic reduction in analog arrays. The design process and
the implementation of the scheme in a programmable array
context are explained. The validation of the presented scheme
is performed using a speech signal. Finally, we demonstrate how
the event coded scheme can perform summation of analog signals
without additional hardware.

I. INTRODUCTION

A field programmable analog array (FPAA) consists of sev-

eral configurable analog blocks (CABs) that are programmed

to perform specific signal processing functions. An important

design problem in a FPAA is the communication of analog

signals between CABs. Previous implementations of FPAAs

used crossbars or matrix switches [1] [2]. These approaches

suffer from signal distortion due to voltage drops, parasitic

capacitances along the wires and switches and through signal

interference. In an alternative approach [3], pulse width mod-

ulated signals were used for transmitting analog information

in the array. However, this approach requires a global clock

signal to synchronize the transmission.

Recently, asynchronous signal processing based on signal

dependent sampling strategies has received increasing interest

[4]. A motivation for this type of study is drawn from biology

where the brain processes signals in analog domain and

transmits them as time events [5]. In event based sampling

schemes, the intersampling intervals are quantized instead of

the signal amplitude and an event is triggered whenever the

input signal crosses prespecified levels along the amplitude

domain [6]. In [7], signal amplitude information is coded into

the timing sequence and this scheme has been extended to

recover information from spiking neurons [8].

In this paper we present a spike event coding scheme

for transmitting analog signals between CABs. There are

some benefits in using an event based coding scheme in a

programmable analog array. First, an event coding transmits

signals based on demand. This leads to a better utilization

of resources due to traffic reduction. Second, in contrast to

synchronous signal processing, event based processing benefit

from low energy dissipation, freedom from clock skew, im-

munity to metastable behavior and low crosstalk. Third, event

based processing transmits signals as digital spikes and hence

Fig. 1. Block diagram of the spike event communication interface to a
configurable analog block (CAB). Spike events are transmitted across the
array using AER protocol.

it is more suited to communication between distant CABs,

even in different ICs, than analog signals [1] [2], allowing

greater scalability.

II. SPIKE EVENT CODING SCHEME

A. Description

The block diagram representation of a CAB with the spike

event communication interface is shown in Fig. 1. Analog

signals from the CAB form the input to the spike event

coder. In a programmable array context, these spikes can be

transmitted between CABs using an AER protocol [9]. The

destination CAB reads spikes through an AER receiver and

these spike inputs are converted to analog signals at the spike

event decoder. The control registers are used for configuration

and control of the circuit block.

The spike event coding scheme is shown in Fig. 2(a). This

scheme is based on the principle of irregular sampling schemes

described in [4] and [6], where it was used to implement

asynchronous A/D converters. The event coder tracks the input

signal by bounding an error signal given by:

e(t) = x(t) − z(t) = x(t) −

∫

y(t)dt (1)

where e(t) is the error between the analog input signal x(t)
and coder feedback integrator (INTC) output z(t). The coder

output spikes y(t) are sent to the communication channel and

to the input of the feedback integrator. The decoder output

xR(t) is an analog signal given by:

xR(t) = LPF (zR(t)) ≈ zR(t) =

∫

yR(t)dt (2)

978-1-4244-1684-4/08/$25.00 ©2008 IEEE 1364
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(a)

(b)

Fig. 2. (a) Event coding block diagram and (b) waveforms example. An
example of predict behavior of some signals are shown in b), where δ is the
tracking step, T is the spike width and ∆tD is the time interval between
successive spikes.

If the channel is ideal, yR(t) = y(t) and

xR(t) ≈

∫

y(t)dt = z(t) = x(t) − e(t) (3)

The error between the decoder output xR(t) and coder input

x(t) is bounded, |e|max ≤ δ, where δ, the tracking step or

quantization error, is a system parameter.

The outputs of the event coder are represented by positive

and negative fixed short duration pulses (spikes). These spikes

are generated by the spike generator when the comparators

change their states. Each positive or negative spike generates

an incremental or decremental change (δ) at the output of the

both integrators (INTC and INTD). Although δ can be varied

based on the characteristics of the input signal, in this paper

we consider the case for fixed δ only.

The change in the output of both integrators is given by:

∆z(t) = δ (Np − Nn) (4)

where Np(Nn) is the number of previous positive (negative)

spikes since t0 as shown in Fig. 2(b).

B. Design

In this section we discuss the design process of the spike

event coder and decoder. The first step in the design of the

event coder is to determine the tracking step δ:

δ =
∆x(t)max

2NB

(5)

where ∆x(t)max is the input dynamic range and NB is the

desired resolution in bits.

(a) (b)

Fig. 3. Comparators threshold design. a) Comparators transfer function and
b) Comparator offsets ∆Vth1 and ∆Vth1 are used to design the threshold
difference ∆VthD .

The tracking step is used to design the comparators thresh-

olds difference ∆Vth = Vth1 − Vth2, as shown in Fig.

3(a). Ideally, this difference is equal to the tracking step

δ. However, due to the comparators offset the actual ∆Vth

is bounded (∆VthD + 6σ ≥ ∆Vth ≥ ∆VthD − 6σ) by a

function of the comparator offset standard deviation σ and the

designed thresholds difference ∆VthD (Fig. 3(b)). Therefore,

the comparators thresholds difference is designed to meet the

specification:

∆VthD ≥ δ + 6σ (6)

Another design parameter is the spike width T and it is

designed according to the input signal and the AER system

characteristics. In order to reduce the overload of the commu-

nication channel, the spike generator sets a minimum period

for the interval between two successive output spikes. This

“refractory period” is given by ∆tDmin = kT . Using ∆tDmin

and the specification of the maximum derivative of the input
∣

∣

∣

dx(t)
dt

∣

∣

∣

max
, the spike width is determined:

T =
δ

(k + 1)
∣

∣

∣

dx(t)
dt

∣

∣

∣

max

(7)

In an AER system, one of the most important specification is

the output spike frequency. The coder output spike frequency

is a function of the magnitude of the input derivative:

f =
1

T + ∆tD
=

∣

∣

∣

dx(t)
dt

∣

∣

∣

δ
(8)

From (8), we see that this event coding scheme presents a null

output activity when the input signal is constant. This char-

acteristic is beneficial in a programmable analog framework

where significant number of bias signals are present.

From (7) and (8), the maximum output frequency is:

fmax =
1

(k + 1)T
(9)

The spike width T and the tracking step δ are used to design

the coder and decoder integrator gains given by KI = δ
T

.

Finally, the pole of the decoder low pass filter (LPF) is a key

design parameter as it improves the resolution by attenuating
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the undesirable out-band high frequency harmonics generated

during the decoding process. Ideally, the filter should provide

total rejection of out-band harmonics with zero in-band attenu-

ation. However, practical implementation of this characteristic

being unrealizable, the dominant pole of the filter is designed

to be near the cutoff frequency ω, for an input signal with

bandwidth of ω.

III. SIMULATION RESULTS

The event coding scheme was simulated using a speech

signal and a pure tone as the coder input. In order to depict

the coder functionality clearly, the coder was implemented to

provide resolution of 4 bits.

Response to a Speech Signal: The response of the spike

event coding to the speech signal is shown in Fig. 4. The

speech signal is shown in Fig. 4(a). The decoded signal xR(t)
at the output of a first-order LPF shows a close match with

the input speech signal x(t) (see expanded plot Fig. 4(b)). The

pole of the LPF was designed to be at 4 kHz (allocated voice

bandwidth). Fig. 4(c) and 4(d) demonstrate two important

characteristics. First, Fig. 4(c) shows the error e(t) is bounded

by ∆Vth. Second, Figs. 4(b) and 4(d) show that no spikes

are transmitted when the input signal is relatively constant

thereby reducing the communication traffic and leading to a

better utilization of the resources.

THD measurement: The THD of the system was measured

using a 4 kHz sine wave as the input signal. Two LPFs were

designed to demonstrate the influence of the pole design: one

with the pole at 4 kHz (LPF1) and the second at 40 kHz

(LPF2). The coder input x(t), the decoder integrator output

zR(t) and the LPF1 and LPF2 outputs xR1(t) and xR2(t),
respectively, are shown in Fig. 5(a). Fig. 5(b) shows the

frequency spectrum of the output signals.

The specified resolution of spike event coder is obtained

at the decoder integrator output (4.0 bits). The resolution

increases to 5.3 bits and 6.7 bits using the filters LPF2 and

LPF1, respectively. As stated in Section II, the improvement in

resolution in LPF1 is attributed to the larger attenuation of the

harmonics because the pole is designed at a lower frequency.

The influence of the refractory period ∆tDmin on the coder

performance is shown in Fig. 5(a). Because the initial state

of the coder integrator was set to zero and x(t0) = 1, the

error signal e(t) is initially greater than δ. The error decreases

for each successive output spike occurrence. By choosing

∆tDmin ≈ 4.6µs and T ≈ 100ns and according to (9), the

maximum output spike frequency is 213 kHz. Therefore, the

refractory period ∆tDmin determines the initial tracking speed

of the coder.

IV. COMPUTATIONAL APPLICATION

In a programmable analog array, an important requirement

is the capability of adding analog signals; the summation of the

outputs of hundreds or thousand synapses in a neuromorphic

system is an example. Due to the large number of operators,

it is desirable that this operation can be performed without

additional hardware like the summation of currents in analog
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Fig. 4. Example of coding and decoding of a speech signal. (a) The complete
speech signal x(t). (b) The expanded plot showing the decoding xR(t) of
the speech signal and the integrator output z(t). (c) The error signal e(t)
bounded by the difference of comparators thresholds ∆Vth. (d) The spike
event coder output y(t).
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Fig. 5. THD simulation. (a) Decoder output for a 4 kHz sine wave. The
integrator output z(t) tracks the input x(t). The signals xR1(t) and xR2(t)
are the outputs of filters: the first with the pole at 4kHz and the second at
40kHz. The initial state of both integrators are set to zero. (b) The frequency
spectrum of LPF input, ZR(s) and outputs XR1(s) and XR2(s) were
computed for the last period (250 µs < t < 500 µs).
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Fig. 6. Example of summing operation. The inputs x1(t) and x2(t), the
decoder output xR(t) and a predicted result xRT (t) are shown in graphs a)
and b). The spike outputs, y1(t) and y2(t), and an AER arbiter output yR(t)
are shown in c) and d). The graphs b) and d) show of the effect of spike
collisions: an error with amplitude δ appears on the output xR(t) between
the transmissions of y1(t) and y2(t), which were involved in a collision.

domain [10]. Here we show how summation is performed with

event coding without any extra hardware.

Using (4), the summation signal s(t) with j operators is:

s(t) = δ

(

j
∑

i=1

Npi −

j
∑

i=1

Nni

)

(10)

where Npi and Nni are the number of positive and negative

spikes, respectively, received from the ith operator.

Since AER protocol is used to transmit spike events, col-

lisions during the access to the channel are possible and an

arbiter is used to resolve them. Collisions lead to an error in the

summation process. This error is given by ǫ = δ (Npc−Nnc),
where Npc(Nnc) is the number of positive (negative) spikes

in the collision. One possible resolution of the conflicts is

performed by queuing and transmitting successively all events

involved in the collision (1-persistent). This method was used

for the simulation.

Simulation: The results showing the summation of a sine

signal x1(t) and a step signal x2(t) are shown in Fig. 6,

together with the decoder output xR(t) and the predicted result

xRT (t). The coders outputs y1(t) and y2(t) and the decoder

input yR(t) are shown in Fig. 6(c).

The expanded results in Fig. 6(b) show the effect of spike

collision (Fig. 6(d)) in the summation result using a 1-

persistent arbiter: an error (with amplitude δ in this case)

between the transmission of the spikes y1(t) and y2(t).

The decoder output xR(t) follows the predicted result

xRT (t), except for the limited tracking time in the step signal

coding and for the spike collisions in the AER bus.

V. CONCLUSIONS

In this paper we presented a spike event coding scheme

for the communication of analog signals in a programmable

array. The scheme transmits spike events based on input signal

activity thereby providing efficient utilization of resources and

lower power consumption. Further the events are transmitted

digitally providing improved scalability in building large pro-

grammable arrays. The methodology of the scheme and the

parameters design process were presented. The functionality

of the event coded scheme was validated through simulations.

We demonstrated how event coding can be used to add analog

signals without extra hardware; an important feature in pro-

grammable analog systems. Currently the circuits of the spike

event communication interface are being implemented on a

chip to interface CABs in a programmable array developed

by the authors [11].
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